
Computational Imaging and Vision 44

Giovanni Bellettini · Valentina Beorchia 
Maurizio Paolini · Franco Pasquarelli

Shape Reconstruction 
from Apparent 
Contours
Theory and Algorithms



Computational Imaging and Vision



Computational Imaging and Vision

Managing Editor

MAX VIERGEVER
Utrecht University, Utrecht, The Netherlands

Series Editors

GUNILLA BORGEFORS, Centre for Image Analysis, SLU, Uppsala, Sweden
DANIEL CREMERS, Technische Universität München, München, Germany
RACHID DERICHE, INRIA, Sophia Antipolis, France
KATSUSHI IKEUCHI, Tokyo University, Tokyo, Japan
REINHARD KLETTE, University of Auckland, Auckland, New Zealand
ALES LEONARDIS, ViCoS, University of Ljubljana, Ljubljana, Slovenia
STAN Z. LI, CASIA, Beijing & CIOTC, Wuxi, China
DIMITRIS N. METAXAS, Rutgers University, New Brunswick, NJ, USA
HEINZ-OTTO PEITGEN, CeVis, Bremen, Germany
JOHN K. TSOTSOS, York University, Toronto, Canada

This comprehensive book series embraces state-of-the-art expository works and advanced
research monographs on any aspect of this interdisciplinary field.

Topics covered by the series fall in the following four main categories:

• Imaging Systems and Image Processing
• Computer Vision and Image Understanding
• Visualization
• Applications of Imaging Technologies

Only monographs or multi-authored books that have a distinct subject area, that is where each
chapter has been invited in order to fulfill this purpose, will be considered for the series.

Volume 44

More information about this series at
http://www.springer.com/series/5754

http://www.springer.com/series/5754


Giovanni Bellettini • Valentina Beorchia • Maurizio
Paolini • Franco Pasquarelli

Shape Reconstruction
from Apparent Contours
Theory and Algorithms

123



Giovanni Bellettini
Department of Mathematics
University of Rome Tor Vergata
Rome
Italy

Valentina Beorchia
University of Trieste Department

of Mathematics & Geosciences
Trieste
Italy

Maurizio Paolini
Università Cattolica del Sacro Cuore

Department of Mathematics & Physics
Brescia
Italy

Franco Pasquarelli
Università Cattolica del Sacro Cuore

Department of Mathematics & Physics
Brescia
Italy

ISSN 1381-6446
Computational Imaging and Vision
ISBN 978-3-662-45190-8 ISBN 978-3-662-45191-5 (eBook)
DOI 10.1007/978-3-662-45191-5

Library of Congress Control Number: 2015933011

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

www.springer.com


Contents

1 A Variational Model on Labelled Graphs with Cusps
and Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Reconstruction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Mumford–Shah Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Nitzberg–Mumford Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Other Curvature-Depending Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 The Variational Model on Labelled Graphs . . . . . . . . . . . . . . . . . . . . . . . 13
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Stable Maps and Morse Descriptions of an Apparent
Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Stability of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Stable Maps from a Two-Manifold to the Plane . . . . . . . . . . . . . . . . . . . 31
2.3 Ambient Isotopies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Ambient Isotopic and Diffeomorphically Equivalent

Apparent Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Morse Descriptions of an Apparent Contour . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Genericity of Morse Lines in Case of No Cusps . . . . . . . 44
2.5.2 Morse Lines in Case of Cusps: Markers . . . . . . . . . . . . . . . . 45
2.5.3 The Morse Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.4 Recovering the Shape from a Morse Description . . . . . . 50

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Apparent Contours of Embedded Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Three-Dimensional Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Splitting of R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Apparent Contours of Embedded Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 The Function f† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Labelling an Apparent Contour: The Function d† . . . . . . . . . . . . . . . . 64

v



vi Contents

3.5 Ambient Isotopic and Diffeomorphically Equivalent
Labelled Apparent Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Visible Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Solving the Completion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1 Some Concepts from Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Contour Graphs and Visible Contour Graphs . . . . . . . . . . 75
4.2 Complete Contour Graphs and Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Statement of the Completion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Morse Descriptions of a Visible Contour Graph . . . . . . . . . . . . . . . . . . 82

4.4.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Proof of the Completion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Analysis at the Global Maximum
and at Local Maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Analysis at Terminal Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 Analysis at T-Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.4 Analysis at Local Minima and at the Global

Minimum .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Topological Reconstruction of a Three-Dimensional Scene . . . . . . . . . . . . 101
5.1 Statement of the Reconstruction Theorem .. . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Depth-Equivalent Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Proof of Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Glueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Smooth Local Embedding of T in R

3 . . . . . . . . . . . . . . . . . . 108
5.2.3 Smooth Global Embedding of M in R

3 . . . . . . . . . . . . . . . . 112
5.2.4 Definition of the 3D-Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Proof of Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Completeness of Reidemeister-Type Moves
on Labelled Apparent Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1 Moves on a Labelled Apparent Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.1 List of All Simple Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2 Stratifications and Stratified Morse Functions .. . . . . . . . . . . . . . . . . . . . 136

6.2.1 Stratifications Induced by a Stable Map . . . . . . . . . . . . . . . . 137
6.3 Informal Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Rigorous Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Proof of the Completeness Theorem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6 Completeness of Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



Contents vii

7 Invariants of an Apparent Contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.1 Definition of B.appcon.'// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2 Definition of BL.appcon.'// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.3 Coincidence Between B.appcon.'// and BL.appcon.'// . . . . . . . 162

7.3.1 Proof of Coincidence Up to a Constant . . . . . . . . . . . . . . . . . 163
7.3.2 Proof of Coincidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Euler–Poincaré Characteristic of @E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.5 Cell Complexes and Fundamental Groups.. . . . . . . . . . . . . . . . . . . . . . . . 176

7.5.1 Cell Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.2 Fundamental Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Alexander Polynomials and Invariants
of Fundamental Groups .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.7 Free Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.8 Links with Two Components: Deficiency One . . . . . . . . . . . . . . . . . . . . 189
7.9 Surfaces with Genus 2: Deficiency Two . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8 Elimination of Cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1 Embedding Sign of a Cusp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.2 Connectable Cusps in an Open Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3 Statement of the Elimination Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.4 Proof of the Elimination Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.5 Application to Closed Embedded Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 206
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9 The Program “Visible” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.2 Encoding a Morse Description of the Visible Contour . . . . . . . . . . . . 212

9.2.1 Encoding the Morse Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.2 Implicit Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.3 The “e” Region Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.3 Using the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.4 Encoding a Morse Description of the Constructed

Apparent Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.5 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Reference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10 The Program “Appcontour”: User’s Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.1 An Overview of the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.2 Region Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

10.2.1 Extended Arcs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.2.2 Describing a Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.3 Completeness of the Region Description . . . . . . . . . . . . . . . 234

10.3 Encoding an Apparent Contour with Labelling . . . . . . . . . . . . . . . . . . . 235
10.3.1 Region Description as a Stream of Characters . . . . . . . . . 235
10.3.2 Morse Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.3.3 Knot Description .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



viii Contents

10.4 The Rules (Reidemeister-Type Moves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10.4.1 Simple Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
10.4.2 A Nonlocal Effect of the B Rule . . . . . . . . . . . . . . . . . . . . . . . . 244
10.4.3 Composite Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.4.4 Inverse Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

10.5 Surgeries on Apparent Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5.1 Vertical Surgery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5.2 Horizontal Surgery .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

10.6 Canonical Description and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.6.1 On the Isomorphism Problem for Graphs . . . . . . . . . . . . . . 250
10.6.2 The “Regions” Graph: R-Graph . . . . . . . . . . . . . . . . . . . . . . . . 250
10.6.3 The Depth-First Search of an R-Graph .. . . . . . . . . . . . . . . . 252
10.6.4 The Canonization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.6.5 Comparison of Apparent Contours. . . . . . . . . . . . . . . . . . . . . . 258

10.7 Fundamental Groups and Cell Complexes .. . . . . . . . . . . . . . . . . . . . . . . . 258
10.7.1 Computing the Euler–Poincaré

Characteristic and the Number
of Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

10.7.2 Fundamental Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
10.7.3 Invariants of Finitely Presented Groups

and the Alexander Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 262
10.7.4 Alexander Polynomials and Alexander

Ideals in Two Indeterminates .. . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.8 The Mendes Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
10.9 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.9.1 Euler–Poincaré Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.9.2 Bennequin Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.9.3 Examples of Invariants Computation . . . . . . . . . . . . . . . . . . . 276

10.10 contour Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.10.1 Informational Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.10.2 Operating Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
10.10.3 Conversion and Standardization Commands . . . . . . . . . . . 287
10.10.4 Cell Complex and Fundamental Group Commands.. . . 288
10.10.5 Options Specific to Fundamental Group

Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.10.6 Common Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
10.10.7 Direct Input of a Finitely Presented Group

or an Alexander Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.11 showcontour Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

10.11.1 Producing a Proper Morse Description . . . . . . . . . . . . . . . . . 293
10.11.2 From the Morse description to a polygonal drawing .. . 294
10.11.3 Discrete Optimization of the Polygonal Drawing . . . . . . 294
10.11.4 Dynamic Smoothing of the Polygonal . . . . . . . . . . . . . . . . . . 295



Contents ix

10.12 Using contour in Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.12.1 contour_interact.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.12.2 contour_describe.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.12.3 contour_transform.sh .. . . . . . . . . . . . . . . . . . . . . . . . . . 299

10.13 Example: knotted Surface of Genus 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
10.14 Example: Knots in a Solid Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.15 Example: Klein Bottle and the “House with Two Rooms” . . . . . . . 304
10.16 Example: Mixed Internal/External Knot . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.17 Using appcontour on Apparent Contours Without

Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.17.1 Haefliger Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.17.2 Boy Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.17.3 Milnor Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.17.4 Millett curve.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
10.17.5 Klein bottle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

10.A Appendix: Practical Canonization of Laurent Polynomials. . . . . . . 317
10.A.1 One-Dimensional Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.A.2 Two-Dimensional Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

11 Variational Analysis of the Model on Labelled Graphs . . . . . . . . . . . . . . . . 323
11.1 The Action Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

11.1.1 Graphs with Cusps and Curvature in Lp . . . . . . . . . . . . . . . 324
11.1.2 The Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
11.1.3 A Notion of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

11.2 Lower Semicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
11.3 On the Lower Semicontinuous Envelope of the Action . . . . . . . . . . . 332

11.3.1 Limits of Labellings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
11.3.2 Sufficient Conditions: An Example .. . . . . . . . . . . . . . . . . . . . 337

11.A Appendix A: Systems of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
11.A.1 Curves of Class pwrpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
11.A.2 Systems of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
11.A.3 Parametrizations of Complete Contour Graphs . . . . . . . . 345

11.B Appendix B: Convergence and Compactness
of Systems of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
11.B.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361





Introduction

Computer vision and image processing have become active areas of basic and
applied mathematical research, due to their impact in the development of new
technologies and to the related interesting theoretical problems. The vastness of
applications requires a multi-disciplinary study; a selection of involved mathemat-
ical areas includes, in particular, calculus of variations, optimization and partial
differential equations, probability and statistics, topology and differential topology,
differential and discrete geometry, affine geometry, harmonic analysis, inverse
problems and numerical analysis; see for instance [2, 9, 18, 19, 26, 28, 37, 57, 62,
63, 68, 70, 75, 89]. The areas of application in ordinary life are numerous and we
could mention: medical imaging (image reconstruction, interpretation and aid to
diagnostics), video processing and analysis, stereo vision, 3D reconstruction and
shape recognition from image sequences, and the restoration and interpretation of
satellite images; we refer the reader to [69] and references therein.1 These subjects
are mostly directed by applications, but they require solid grounded theories,
appropriate for instance to ensure robustness of the related algorithms.

The aim of this book is to investigate one of the central problems of computer
vision,2 namely the topological and algorithmical reconstruction of a three-
dimensional scene E � R

3, composed of various smooth bounded solid objects
(the connected components of E) starting from information on a generic orthogonal
plane projection3 of E . As explained in detail in Chap. 1, the original motivation
that led us to this study came from the calculus of variations, in the effort of finding
an action functional F (introduced in [12]) defined on plane graphs and whose
minimization should give information on the depth ordering of the various objects
composing the scene. Postponing the technical discussion on the variational aspects

1See also [17, 29, 51, 77, 78, 81].
2See for instance [30–32, 38, 39, 41–44, 55, 56, 65, 66, 76, 82, 83] and references therein.
3 In this book we shall not consider the case when two or more simultaneous projections are
involved; the case of shapes evolving in time is, instead, related to ambient isotopic deformations
of the objects, an issue which will be treated in various chapters.

xi
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Fig. 1 Two partially
overlapping objects: neither
of them is in front of the other

Fig. 2 A knotted torus

of the model to Chaps. 1 and 11, it is worth recalling that the functional F has
been introduced with the purpose of removing a difficulty in a previous model by
Nitzberg and Mumford [65, 66] related to self-occlusions: in particular, in Figs. 1
and 2, we draw two interesting and typical examples of self-occlusions, which
can be analysed using the functional F . We also remark that, as observed in [12],
admissible configurations for F , which can be arguably minimizers under a certain
range of parameters, may give, as a result, the illusory contours4 of the famous
Kanizsa triangle [54], as discussed in Sect. 1.5; see, more specifically, Figs. 1.6, 1.7,
and 1.8.

In order to carry out our analysis on the topological and algorithmical aspects
of the reconstruction problem of a three-dimensional shape E , let us briefly explain
what is the information we need on one of its stable plane projections. Denote by
† the boundary @E of E; for a given generic projection direction, let us consider
the so-called visible apparent contour vis.G†/ � R

2 of †, an oriented plane graph
which is the natural sketch of† that one usually draws by hand in order to represent
the scene. For instance, for the solid shape in Fig. 3, the bold curves in Fig. 5
represent the visible apparent contour. In order to have a better picture of the various
graphs involved, it is often useful to imagine the shape to be semi-transparent, as in
Fig. 4. Due to the genericity assumption on the projection direction, it turns out that

4We shall treat contours without corners; as we shall explain in Chap. 1, a slight smoothing of the
original Kanizsa image does not change the qualitative properties of the example, and does not
alter the presence of illusory contours.
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Fig. 3 The
three-dimensional scene E
producing the apparent
contour of Fig. 5. Image taken
from [14]

Fig. 4 The same
three-dimensional scene as in
Fig. 3, but made
semi-transparent. Image taken
from [14]

Fig. 5 The bold graph
represents the visible part of
the apparent contour of the
three-dimensional scene in
Fig. 3; the whole graph
represents its apparent
contour. Image taken
from [14]

the singular points of vis.G†/, if any, are only of two types: terminal points and
T-junctions. The example of Fig. 5 shows three terminal points and one T-junction.
It is not difficult to realize that vis.G†/ is a subset (usually, but not always, a proper
subset) of another oriented graph G†, the so-called apparent contour of †5; see
Fig. 5 again. The graph G† has two types of singular points only: cusps, arising as
local completions of terminal points of vis.G†/, and X-junctions (called crossings),
local completions of T-junctions. Accordingly, the apparent contour of Fig. 5 has
four cusps and one X-junction. It is useful to observe that G† has here a geometric
meaning: it is the plane projection of a finite set of smooth pairwise disjoint closed
curves lying on † (and called critical set, or also singular set), obtained as the
set of all points of † where the tangent plane contains the projection direction.
Now, the crucial three-dimensional information carried by G† is contained in a
labelling [25, 53, 87, 88], which is a number d†.a/ 2 N attached to any arc a, and
representing the number of sheets of † in front of the part of the singular curve
projecting on that arc. Accordingly, vis.G†/ is the closure of the set fd† D 0g.
For instance, in Figs. 1 and 2, we have d† D 2 on the dotted arcs, and d† D 0

on the visible arcs. The labelled apparent contour, namely the pair .G†; d†/,
is the starting point for the definition of the action functional F , leading to the
minimization principle described in Chaps. 1 and 11. We mention here that another

5Sometimes, we shall call G† apparent contour of E .
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symbol, denoted by f†, appears in the domain of F : for x … G† in the projection
plane, the value f†.x/ represents the total number of intersections between † and
a light ray emanating from x (see Fig. 1.1 (right)). Such a locally constant function,
which can be easily recovered as a doubled winding number with respect to G†, is
useful for various reasons, one of them being that it simplifies the presentation of
the model.

Several theoretical and practical questions arise in a natural way, and show
beautiful and unexpected relations between calculus of variations [62], singularity
theory [4–6, 20, 86], Morse theory [10] and knot theory [73]. Moreover, we stress
that the techniques we use when dealing with most of such issues fit naturally in an
algorithmic setting: as we shall see, it is one of our primary goals to analyse this
algorithmic part, with implementations, experiments and computed examples.

We shall be interested in investigating:

(i) the completion problem, namely: the characterization of those plane graphs
which are visible part of a labelled contour graph;

(ii) an algorithmic construction of a completion, to be implemented as a computer
program;

(iii) the characterization of those labelled plane graphs which are apparent
contours of some smooth stable three-dimensional scene;

(iv) an algorithmic reconstruction of the topology of a three-dimensional smooth
shape starting from a labelled apparent contour, and its implementation on a
computer;

(v) a list of topological invariants of three-dimensional shapes, which can be
directly computed starting from the apparent contour, and that can be
implemented on a computer;

(vi) the recognition of two labelled apparent contours which are apparent contours
of two ambient isotopic shapes, using a finite sequence of elementary moves,
taken from a complete finite set. In other words, what are the moves on the
labelled apparent contours that relate two embedded surfaces, deformable into
each other by a smooth path of embeddings?

(vii) a computer program aiming to implement the elementary moves on apparent
contours, and, more in general, capable to manage labelled (or unlabelled)
apparent contours from a structural/topological point of view;

(viii) the problem of elimination of cusps, namely: how to use the elementary
moves in order to modify a labelled apparent contour into another one
without cusps, representing a three-dimensional shape, ambient isotopic to
the original one;

(ix) the generalization of some of the above problems, in particular the algorith-
mic parts, to more general situations, concerning for instance abstract closed
(not necessarily orientable) surfaces;

(x) a variational study of the functional F , such as an investigation of the
properties of sequences of labelled apparent contours having a uniform bound
on the action.
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Problem (i), which is global in nature, addresses necessary and sufficient
conditions on an oriented plane graph K with nonexterior terminal points and T-
junctions, in order to be the visible part of what we shall call a complete labelled
contour graph .G; d/, having cusps and X-junctions. Here the function d , defined
on the arcs of G, is a labelling, and must fulfill the same consistency properties6

shared by the function d†. We can roughly rewrite (i) with the statement

givenK 9 .G; d/ such that G � K and K D fd D 0g: (1)

Following [14], in Chap. 4 we give a constructive solution to this problem (see
Theorem 4.3.1, that we call the completion theorem), based on a suitable Morse
description of K and G. We note here that the aim of the completion theorem is
not to provide the “simplest” completion of K , whatever simplest could mean7; the
scope of the result is to show that the conditions8 imposed on K are sharp, and
allow us to construct at least one completion. The problem of returning, as output
of the completion, a “simple” graph G is related to points (v) and (vi), and will be
addressed below. An improvement of the results of [14] is given by Corollary 4.5.1,
based on the introduction of the background; this represents a further degree of
freedom, which allows us to fix a priori the regions of G where f D 0. Here the
function f is defined on R

2 n G; it can be obtained as a doubled winding number
with respect to G, and has to satisfy various consistency relations with the labelling
d . Examples 4.6.2 and 4.6.4 clarify the interest in the use of Corollary 4.5.1, in
connection with the reconstruction of the apparent contour of a standard torus; see
also the example illustrated in Sect. 9.1 with the use of the visible program. We
remark that the completion of a visible contour is inherently nonunique, even when
forcing a priori the background (the region where f D 0); this is clarified with the
example displayed in Fig. 9.10.

The Morse description, explained in Sect. 2.5, is a convenient way to encode
all topological information of a graph, and fits well for practical purposes. This is
clearly seen when dealing with problem (ii): the software code described in Chap. 9,
in particular the visible program, is an actual implementation of the constructive
proof given in the completion theorem. The input of the program is a Morse
description of a drawing of a visible contour, see for instance Figs. 9.1, 9.9 and 9.11.
The output, provided the graph is completable (namely, it satisfies the necessary
and sufficient conditions of the completion theorem) is a complete labelled contour
graph, still identified using a textual Morse description, and next graphically
reconstructed as a drawing, using the visualization program showcontour. The
visible program also recognizes those graphs K which are not completable
(called “impossible graphs”), such as those described in Figs. 9.12 and 9.13.

6See Definition 4.2.5.
7For instance, a graph with a minimal number of vertices, or without cusps.
8See Definition 4.1.8 and Figs. 3.15 and 3.16.
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The algorithmic reconstruction of the completion theorem (and of the visible
program) strongly depends on the Morse description of the visible contour: different
Morse descriptions of the same visible contour will in general lead to different
structurally non-equivalent 3D shape reconstructions. Conversely, different (but
structurally equivalent) visible contours described by the same Morse description
will clearly lead to the same reconstruction.

The usefulness of the existence of a consistent labelling d on an oriented
complete graphG is that it characterizes the apparent contours of smooth stable 3D
shapes. Following closely the proof of [12] (see also [58, 87, 88]), in Theorem 5.1.1
(called the reconstruction theorem) we show how to reconstruct a smooth, not
necessarily connected, 3D shapeE starting from the labelled graph .G; d/; namely,
how to find a smooth closed surface † WD @E such that

G D G†; d D d†: (2)

The notion of stability9 employed in this theorem (Definition 2.1.2) goes back to
the pioneering works of Whitney [86] and Thom [79], (see also Arnold [3] and
Wall [84]) on singularity theory; stability turns out to be a crucial concept, and its
generalizations and ramifications are of central importance in the whole book. Just
to mention a few consequences of this assumption,10 it guarantees that all graphs that
we consider have a finite number of nodes, that the self-intersections (X-junctions
and T-junctions) are double and transverse, and that the cusps are ordinary cusps.
Remarkably, stable maps from a closed two- or three-dimensional manifold to a two-
or three-dimensional manifold are dense, and their singularities have been classified
(see for instance [40] and references therein): these results are the cornerstone for
the completeness result illustrated in Chap. 6 and, as a consequence, for a large part
of the algorithms described in Chap. 10.

The cut-and-paste proof of the reconstruction theorem is topological in character
and constructive. Deferring the technical details to Chap. 5, a couple of related
comments are in order. The reconstructed @E is unique, up to transformations which
do not change the order and the number of intersections of the manifold with the
light rays emanating from the projection plane (and therefore do not modify the
corresponding labelled apparent contour): this sort of uniqueness result is proven
in Theorem 5.1.4. The proof of the reconstruction theorem furnishes an embedded
smooth manifold @E , but not the “roundest” way to embed it in the ambient space
R
3; investigation of this latter problem is beyond the scope of the present book.
Summarizing the discussion concerning points (i)–(iii), we conclude that, start-

ing from a visible contour graph K , we can construct a complete labelled contour
graph .G; d/ satisfying (1), which, in turn, provides a three-dimensional scene

9See, e.g., [40] and references therein.
10We assume that the boundary of the scene E is in general position with respect to the projection:
using the concept of stability, this means that the restriction to @E of the projection is stable, see
Sect. 3.2 for the details.
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E satisfying (2) and fulfilling the natural sort of uniqueness for such kind of
problems. The completion and the cut-and-paste procedure are automatized in
a computer program. Moreover, problem (iv) is one of the issues considered
in Chap. 10, which aims to be a self-contained user’s guide to an original and
rather complex computer program for the reconstruction of three-dimensional
shapes, based on an analysis of apparent contours. The reconstruction problem is
completely solved from an algorithmic point of view; the program appcontour
reconstructs the topological structure of @E , in particular information such as
the number of connected components of @E and the Euler–Poincaré charac-
teristic of each of them can be obtained, together with information about the
relative position in space allowing to distinguish, e.g., between two concentric
spheres (E is a hollow sphere) and two mutually external spheres (E is a
pair of solid spheres), with the commands “contour countcc”, “contour
extractcc”, “contour characteristic”, “contour ccordering”,
“contour ccparent” (see Sect. 10.10.1).

When proving results such as the reconstruction theorem, or also when analysing
topological invariants of apparent contours, one realizes that a basic idea is to
consider the more general concept of apparent contour of a map from a manifold
into another manifold.11 This is a classical topic in differential topology: see for
instance [50, 60, 79, 86]. In particular, given a two-dimensional smooth closed
(abstract) manifoldM and a smooth stable map ' W M ! R

2, the apparent contour
appcon.'/ of ' is the subset of R

2 where the function counting the number of
preimages of ' has a jump. It can be equivalently defined as the image in R

2 of
the critical set (or singular set) of ' in M , where the rank of the differential of ' is
not maximal. The previously discussed labelled apparent contour of an embedded
surface is a special case: in particular, the reconstruction theorem can be restated in
terms of factorization of maps, as follows. Let .G; d/ be a complete labelled contour
graph. Then

G D appcon.'/ D G† and d D d†;

where ' is a map from a smooth closed two-manifoldM to the plane, † WD e.M/

for a smooth embedding e ofM into R
2 � R, and ' factorizes as

' D � ı e; (3)

where � is an orthogonal projection � W R2 � R ! R
2, with † in general position

with respect to � . Indeed, the core of the proof of the reconstruction theorem
consists in producing the manifoldM as a quotient, and next in embedding it in R

3;
the same theoretical procedure is next implemented in the appcontour program,
as a starting point of the computation of the first fundamental group, as we shall see.

11As we shall see, this abstract viewpoint is essential also in Chap. 6.
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According to this more general viewpoint, in Chap. 2 we recall a few well-known
facts from singularity theory12 (see, e.g., [7, 8, 40] and references therein), for a
stable map ' from a closed smooth manifold X to a manifold Y , and give some
examples. It is worth recalling here that knot theory is the study of stable maps from
the circle S

1 to R
3. The choices

X D M; Y D R
2 or R3

(in particular dim.X / D 2) can be applied to the study of apparent contours of
closed not necessarily embeddable (or even not immersible) manifolds in R

3; we
quickly touch these issues (point (ix) of the above list) in Sect. 10.17, with the Boy
surface (a standard immersion of the real projective plane), the Klein bottle, and
examples from the literature such as the Haefliger sphere, the Millet projection of
the real projective plane and the Milnor sphere. These examples lead to consider the
interesting problem of apparent contours possibly without labelling, a subject that
we do not want to further deepen in the present book.

Concerning point (v), in Chap. 7, we study some invariants of an apparent
contour for a map ' W M ! R

2. In the first part of the chapter (Sects. 7.1–
7.3), we analyse invariants under diffeomorphisms of the target space R

2. Besides
the number of cusps and of crossings of the apparent contour appcon.'/, a third
invariant has been considered in [67], and called Bennequin-type invariant, denoted
by BL.appcon.'//. This invariant, based on the Bennequin’s construction for
Legendrian knots [16, 52], does not have an immediate interpretation.13 Following
[13], in Theorem 7.3.1, we show that such an invariant can be obtained solely
looking at the apparent contour, without resorting to a Legendrian lift (see, in
particular, Definition 7.1.2): indeed, it turns out that the invariant can be computed
only taking into account the nodes, the cusps, the extremal points with respect
to some height function and the orientation of the apparent contour. Here, again,
Morse descriptions of appcon.'/ play a central role. In this way the computation
can be implemented into a computer program, and this is done by the program
appcontour, command “contour info”. In the last part of the chapter
(Sect. 7.4), we suppose that the map ' factorizes through an embedding in R

3 and
an orthogonal projection as in (3). Then, we analyse some invariants of the apparent
contour under diffeomorphisms of R

3. The computation [12] of the total Euler–
Poincaré characteristic �.†/ of the surface @E of the corresponding solid shape is
given in Theorem 7.4.1, in terms only of the apparent contourG†: interestingly, and

12such as the notion of stratification [45], see Sect. 6.2.
13It is defined as an appropriate linking number of the Legendrian lift of appcon.'/ in the
projectivized cotangent bundle PT �

R
2, and its computation for a given apparent contour is not

trivial. More precisely, BL.appcon.'// is defined by taking the sum of the self-linking numbers
of the liftings of the components of appcon.'/ and the linking numbers between the liftings of
two different components. The self-linking number is itself defined by also taking into account the
twisting of a strip constructed by shifting points of the lifted curve by a small amount in the normal
direction to the contact plane; we refer to [67] for the precise definition.
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a posteriori not surprisingly, the formula for �.†/ is independent of the labelling d†
on G†; see the discussion in Sect. 7.4.

The chapter concludes with a number of remarks concerning the first fundamen-
tal group of E and R

3 n E . In particular, we discuss the Alexander polynomial
(focusing mainly on Fox differential calculus [35, 36]) and some invariants of
fundamental groups, applied to surfaces with genus two; see Sects. 7.6–7.9. These
issues, as well as the actual computation of �.†/, are implemented in Chap. 10 (see
Sects. 10.7 and 10.9).

Now, let us discuss the (huge) problems listed in points (vi) and (vii) and their
consequences (for instance, the solution to point (viii)). To this aim, it is useful
to start by recalling the well-known result [1, 21, 64, 71] of Reidemeister in knot
theory, asserting that two link diagrams14 represent ambient isotopic links if and
only if they can be related by a finite number of local Reidemeister moves or
their inverses. We are interested in a similar question for two-dimensional smooth
closed manifolds M embedded in R

3. Following [15],15 in Chap. 6 we prove
that two generic embeddings of a closed surface M in R

3 are ambient isotopic
if and only if their apparent contours can be connected using only a finite set
of elementary moves (also called rules, or Reidemeister-type moves) on labelled
apparent contours and a finite number of smooth planar isotopies. We refer to
Sect. 6.3 for an informal presentation of this result, which is proven in Sect. 6.5, and
addressed as the completeness theorem. It turns out that there are six basic moves16

on an apparent contour (see Fig. 6.2 for a graphical representation) originated from
a general deformation of the corresponding embedded surface; they can be used
in exactly the same way as the Reidemeister moves on link diagrams. The essence
of the result is that this set of moves is complete. This means that two embedded

14The diagram of a knot, or more generally of a link, is an orthogonal projection of the image of
the link onto some generic plane, with the addition of the knowledge of which strand goes over at
each crossing. Stability implies that transversal crossings are the only possible singularities of the
diagram.
15The proof has some similarities with the one described in [24] for the embedding of surfaces in
R
4.

16Namely, K (from the Russian word kasanie D tangency), L (lips), B (beak-to-beak), C (cusp-
fold), S (swallow’s tail) and T (triple point). This list of moves is essentially the same found
in the literature for the related subject of maps from two-manifolds into R

2 (see, e.g., [67]),
even if the addition of the labelling entails a different classification of the list of moves. Similar
classifications appear in various contexts, in particular in Thom’s catastrophe theory [80] and in
Cerf’s theory [27], and in the paper [61] of Mond; see also the papers [59, 72, 85]. Concerning
a complete set of Reidemeister moves relating two equivalent knotted surfaces in R

4, we refer to
the set of moves found by Roseman [74], to the papers of Carter and Saito [22, 23] where generic
embedded surfaces in R

4 are considered, projected in R
3 (diagram) and projected further in R

2,
and to the papers [46–49] of Goryunov. We refer to [7, 8, 11, 24, 25] for further information. The
results illustrated in Chap. 6 treat the case of embeddings, which are usually not considered in the
literature. Considering paths of embeddings concretely means that one has to take into account the
behaviour of the labelling at the “critical times” corresponding to the intersection with the strata of
the so-called discriminant hypersurface.
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surfaces in general position with respect to the projection, that can be deformed
into each other, have apparent contours that can be connected using solely a finite
sequence of such moves (and a finite number of planar isotopies). A relevant part of
Chap. 10 consists in the implementation of the above-mentioned moves, which are
essential for the results related to Chaps. 4, 7 and 9; see Sects. 10.1 and 10.2. Among
the various interesting features of the program appcontour, the implementation
of the moves allows, in several situations, to “simplify” the apparent contour, thus
making possible to recognize the topology of the actual three-dimensional shape
to which it corresponds (via the reconstruction theorem). It is however worth
recalling that, in the simpler case of knots, there is at the moment no algorithm
(and no invariant) which is capable to recognize equivalent knots. The knot group
(fundamental group of the complement in R

3), a powerful invariant that can be
computed by appcontour via a presentation, is capable of distinguishing the
unknot; however, it is not a manageable invariant and the problem is shifted to that
of recognizing equivalent presentations of the same finitely presented group.17

A typical situation is when considering a completion of a visible contour graph
provided by the completion theorem; if the completion is so complicated that the
corresponding three-dimensional shape is not recognizable, we can resort to the
appcontour program in order to try to simplify it: in several cases, this makes
possible to figure out the scene (see for instance Example 4.6.4).

One interesting application of the completeness theorem is given in Chap. 8,
where we give a solution to point (viii): in Theorem 8.3.2, we show that, up
to R

3-ambient isotopies, any smooth closed surface embedded in R
3 has an

apparent contour without cusps.18 The proof of this result is based on the judicious
application of various combinations of the elementary moves and their inverses.
This result is, in some case, another example showing a possible way to simplify an
apparent contour. Notice carefully, however, that this is not always the case: indeed,
there are situations in which the elimination of all cusps is obtained at the expenses
of increasing the number of crossings.

The book concludes with Chap. 11 where, following [12], we analyse some
variational properties of the action functional F discussed at the beginning (and
described in Chap. 1). In order to minimize F it is useful to deepen the study of
its lower semicontinuous envelope, and this amounts in taking limits of sequences
of labelled apparent contours with a uniform bound on the action. In this passage
to the limit, many nice properties of labelled apparent contours (consequences of
the stability assumptions) are lost. In particular, in Sect. 11.3.2 we produce some

17There are a number of software codes for the study of knots and their invariants and for the
manipulation of three-manifolds, such as SnapPea, SnapPy, Orb, and Knotscape; we refer to the
link http://www.math.uiuc.edu/~nmd/computop/index.html for further information. See also [33,
34].
18Probably the more common example is represented by the apparent contour of a torus with four
cusps and two crossings, which can be modified into two concentric circles.

http://www.math.uiuc.edu/~nmd/computop/index.html
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examples which illustrate the difficulties in identifying a notion of limit labelling
defined on a limit graph.

Finally, the reference list of this book is far from being complete; we apologize
for this incompleteness.
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Chapter 1
A Variational Model on Labelled Graphs
with Cusps and Crossings

In this chapter we review some of the variational models appearing in the mathe-
matical literature of image segmentation. We will mainly focus attention on those
models related to the problem of reconstructing a notion of order between the
various objects in a three-dimensional scene. Next, we describe a variational model
[14]1 that can be considered as one of the motivations for the topological study of
the apparent contours and of three-dimensional shapes made in the sequel of the
book.

1.1 The Reconstruction Problem

Let � � R
2 be a Lipschitz bounded simply connected open set, typically � D

.0; 1/� .0; 1/, let I WD .0; 1/ and I D Œ0; 1� be the closure of I . We assume to have
given an image, mathematically described as a function

g W � ! I ;

containing information on the grey-level intensity. The function g gives the bright-
ness at each point of the plane domain�, and it is discontinuous along curves which
correspond to sudden changes in the visible surfaces. Conventionally, we assume
regions where g takes the value one (respectively zero) to correspond to the black
(respectively white) colour. The final aim, which is also one of the main issues in

1With kind permission from Springer ScienceCBusiness Media, in this chapter and in Chap. 11
we illustrate the results and report some of the figures from the quoted paper [14].
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2 1 A Variational Model on Labelled Graphs with Cusps and Crossings

computer vision, would be to reconstruct a three-dimensional scene (a 3D-scene, or
a scene for short)

E � Q WD � � I � R
3 (1.1)

corresponding to g. By definition, a 3D scene E is the union of a finite number of
connected closed pairwise disjoint solid subsets of Q with smooth boundary and
not intersecting the boundary @Q (see Definition 3.1.1). We shall clarify in the next
paragraphs what we mean by a 3D scene corresponding to g, on the basis of a
variational principle.

In order to reconstruct a 3D scene E , a first problem that one has to face is
the so-called segmentation problem, which consists in decomposing the image into
regions and contours corresponding to meaningful parts of the objects of E . This
decomposition is described through a pair .u; K/: the intensity function (or grey
level)

u W � ! R;

required to be as uniform as possible inside each region, with sharp transitions K ,
taking place across the boundaries of the regions, or on fractures interior to some
region.2 Such transitions are usually called discontinuity arcs. Any discontinuity arc
is an intensity edge and the related problem of edge detection3 looks for the location
of the sharp transitions in intensity. Edge detection requires a further linking process
of the edges into global curves to achieve a segmentation. One of the advantages of
the variational approach to image segmentation is that it unifies edge detection
and linking into a single minimization process. In Sects. 1.2–1.4 we shall describe
some4 of the approaches recently proposed in the literature, that aim to solve the
segmentation problem by minimizing suitable action functionals, and to provide
an optimal segmentation .u; K/ of g (uniqueness of an optimal segmentation, in
general, cannot be expected). These models, in particular the Nitzberg–Mumford
one, can be considered as the starting point for the variational model based on the
apparent contours, which is described in Sect. 1.5 and analysed in Chap. 11.

Once an optimal segmentation .u; K/ has been obtained, the next step to face
is the reconstruction problem, namely to reconstruct a three-dimensional scene E
starting from .u; K/. In this process the outline of the scene (or more precisely
the visible part of the apparent contour of the scene, as we shall see) should

2In the context of what we shall call “visible contours”, there are (arcs) fractures with terminal
points ending inside a region; these arcs are not part of the boundary of a segmentation.
3The problem of edge detection is extensively studied in computer vision; see, for instance, [24,
45, 56, 67].
4It is not the aim of this chapter to give a complete overview on this argument. We refer the reader,
for instance, to [3, 27, 53, 60, 66, 72, 79] for some of the topics that are not treated here, and for a
more complete list of references.
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correspond to the discontinuity curves K of the optimal segmentation. Observe
that discontinuity curves arising from solid bodies partially or totally occluded are
necessarily lost in the two-dimensional picture. Therefore the completion problem
arises, namely the process of completing K into a new set of curves representing
the projection of the whole boundary of the 3D scene. In the reconstruction of the
occluded arcs, a priori information on the topology of the scene could in principle
be used as a constraint. Since the final aim is to provide the scene, or at least its
topology, information on the depth of the various solid objects must be contained
in the action functional to be minimized. In a sense (that is made precise) this
information appears in the Nitzberg–Mumford model. In a different way, in the
variational model described in Sect. 1.5, this information is provided by the Huffman
labelling (labelling,5 for short) which will enter in the domain of the action. For
convenience of the reader, in Sect. 1.5 we make more explicit the relations of the
variational model with the completion problem studied in Chap. 4, and with the
reconstruction of the topology of the 3D scene studied in Chap. 5.

Remark 1.1.1 (On Roundedness of the 3D Shape) In this book we will not be
concerned with the reconstruction of the “best shape” (i.e., the most round in
some sense) that a scene may have, for instance for a given topology. Accordingly,
we shall call depth-equivalent those scenes that differ by a homeomorphism of
Q which preserves the fibres of the orthogonal projection of @E on � and the
order of the points on each fibre.6 Then, we shall be concerned here only with the
reconstruction of the depth-equivalence class ŒE� of a scene E . We remark that
the various quantities introduced in Sect. 1.5 are independent of the choice of the
representative in the depth-equivalence class of E .

Before starting with a more detailed discussion, we advise the reader about some
simplifications that are shared by all models that we are going to describe. These
models, indeed, do not take into account what we could call “spurious” discontinuity
sets, due, for instance, to

– shadows,
– patterns on the surfaces of the solid objects, caused by the presence of different

materials, or by optical properties of the surfaces themselves,
– corners or edges. These however were already excluded by the smoothness

requirement on E .

5It is worthwhile to observe that a contour may be, in general, endowed with several different
labellings.
6Basically, two scenes E and F are depth-equivalent if they consist of the same number of
connected components, and each connected component Fi of F is obtained from the corresponding
connected component Ei ofE through a strictly monotone map in the view direction, continuously
depending on the position in �. In particular, if it happens that Ei is in front of the connected
component Ej , then the same depth ordering is preserved for the corresponding connected
components Fi and Fj of F . See Definition 5.1.2 for the details.
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Concerning shadows, we shall in particular suppose that the illumination direction
coincides with the projection direction of the scene on �.

Finally, we will not discuss the dependence of the minimizing configurations on
the various possible choices of the parameters appearing in the action functionals.

1.2 The Mumford–Shah Model

The variational approach to the image segmentation problem yields a single
nonlinear process, by simultaneously placing the discontinuity setK and smoothing
the image only out of the boundaries. In the Mumford–Shah action functional [62],
the segmentation problem is formulated as theL2-approximation of the given image
g by means of a piecewise smooth function u, the jump of which consists of the
discontinuity curves separating the regions of approximately constant, or possibly
smooth, intensity. This is achieved by considering the functional

MS.u; K/ WD
Z
�

.u � g/2 dx C ˛

Z
�nK

jruj2 dx C ˇH1.K/; (1.2)

where K � � (the closure of �) is a closed set, u 2 C1 .� nK/, H1 denotes
the one-dimensional Hausdorff measure in R

2,7 and ˛ and ˇ are nonnegative
parameters. The function u is discontinuous across the set K and, outside K , it
is required to be of class C1; in (1.2), ru denotes the gradient of u in � n K . The
first term (sometimes called fidelity term) in the expression of the Mumford–Shah
functional, namely8

Z
�

.u � g/2 dx; (1.3)

forces u to be close to g in the L2-distance. In order to make nontrivial the
minimization of (1.3), some regularizing term must be added. The second term in
the functional favours u to be smooth, requiring the squared L2 gradient norm to be
finite. At the same time, the last term penalizes large sets K in order to avoid a too
fragmented segmentation. The variational formulation, namely the infimization of
the functional MS.u; K/ over all closed sets K � � and over all u 2 C1.� n K/,
overcomes the inconvenients of separate smoothing and detection processes, at the
cost of an increased computational complexity. As already discussed in Sect. 1.1,
the function u represents a denoised approximation of the image g, andK represents
the set of contours of the segmentation. Because of the presence of the length term

7That is, H1.K/ is the length of K when K is sufficiently smooth, see [43].
8Other norms different from the L2-norm in (1.3) have been considered in the literature; also,
suitable functions of u different from the identity can be taken into account: we refer the reader,
for instance, to [44, 52] and the references therein.
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H1.K/, this minimization process is not a straightforward matter. The proof of
existence of minimizers is obtained by resorting to a weak formulation: first the
existence of a weak solution is proved, then the solution of the original problem is
obtained by proving regularity properties of the weak solution [34]. Weak solutions
are looked for in a class of discontinuous functions introduced by De Giorgi and
Ambrosio in [33], and denoted by SBV.�/.9 In this way, the setK is now implicitly
defined as the discontinuity set (or jump set) Ju of u, so that the weak form of the
functional depends only on the function u and becomes

MS.u/ D
Z
�

.u � g/2 dx C ˛

Z
�nJu

jruj2 dx C ˇH1.Ju/:

We refer the reader to the book [2] for the details and a list of related references.
Mumford and Shah studied the properties of minimizers of the functional (1.2)
under some simplifying assumptions. They proved that the nodes of K can only
be either triple points where three curves meet with equal angles, or points of the
boundary of � where one curve meets the boundary perpendicularly, or crack tips
where a curve ends and meets nothing. See also [26, 32], and the books [31, 60] for
more information.10

From the above results, however, it follows that relevant features for pattern
recognition, such as T-junctions due to occlusions, are not allowed in a configuration
minimizing the Mumford–Shah functional. Indeed, due to the presence of the
length term, T-junctions are locally deformed in an unnatural triple junction at
120ı angles.11 One possibility that has been explored12 is to add to the action
functional a term depending on the curvature � of the contour. Indeed, it is known

9This is a subspace of the space BV.�/ of functions with bounded variation in �, and it is called
the space of special functions of bounded variation in �. An example of a function in SBV.�/ is
given by the characteristic function of a finite perimeter set in �.
10We recall also the variational model where the total variation ˛

R
� jDuj is considered, in place

of the terms ˛
R
�nJu

jruj2 dx C ˇH1.Ju/; see [70]. The advantage of this model (originally
introduced in the context of image denoising) is that the functional involved is convex; the
disadvantage is its lackness of differentiability at zero and its linear growth at infinity. The
discontinuities recovered by the total variation method appear less sharp with respect to the ones
recovered by the Mumford–Shah functional (and seems not to be suited for the reconstruction of
T-junctions). The total variation model has found (in one variant or another) many applications
as a tool to compute the minimum of geometric functionals, in surface reconstruction, in the
development of more sophisticated anisotropic total variation models, as a test example to develop
efficient numerical schemes for nonlinear and non-differentiable functionals, or as inspiration for
edge preserving regularizers. See also the book [3] for related questions and references.
11Similarly, corners in case of nonsmooth shapes are smoothed out: however, in this book we
will never be concerned with nonsmooth (polyhedral, for instance) 3D scenes. Apart from the
discussion related to the functional in (1.5), all contours that we shall consider will be without
corners.
12We are not concerned here with functionals depending on the Hessian of u, see [18] for more
information.
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that including curvature integrals in variational segmentation models allows a more
accurate reconstruction of the singularities along the visible contours [30, 71]. Such
a new term is also often used to solve the completion problem for occluded contours:
for instance, in [47, 61] it is suggested the study of the elastica functional

Z
.ˇ C �2.�// dH1; where �2.�/ WD 	�2 for any � 2 R;

	 being a nonnegative parameter, and the integration being performed over the
missing boundaries. See also [1, 5, 6]. This idea has been pursued by Nitzberg and
Mumford in [64], who proposed a segmentation model which also allows regions to
overlap, in order to take into account the partial occlusion of farther away objects
by those nearer. See also the book [65] of Nitzberg, Mumford and Shiota,13 where
the reader can find a discussion on the segmentation problem with depth, on the role
of T-junctions in the human visual system and on the psychology of continuation of
contours, together with a list of related references.

1.3 The Nitzberg–Mumford Model

The Nitzberg–Mumford model, called the 2.1D sketch, is a variational model aiming
to give a reasonable solution to the segmentation problem described in Sect. 1.1,
taking into account the depth ordering between different objects, and suited for
possibly restoring by completion the hidden parts of incomplete regions, with arcs
of sufficiently smooth (and not necessarily rectilinear) curves.

Let Partoverlap.R
2/ be the set of all finite families S of possibly overlapping closed

subsets of R2 with nonempty connected interior, such that eachR 2 S has boundary
@R of class C2, and

[
R2S

R D �:

Given S 2 Partoverlap.R
2/ and a partial order relation � on S , we enumerate the

elements of S using �, writing S as .R1; : : : ; Rn/. The relation � can be interpreted
as a relative depth: Ri � Rj (or equivalently i � j ) means that “Ri is closer than
Rj to the observer”, i.e., Ri occludes Rj . The sets R0

i defined as

R0
1 WD R1;

R0
i WD Ri n

i�1[
jD1

Rj for i 2 f2; : : : ; ng

13In this reference the Nitzberg–Mumford model was developed further, together with a related
computer algorithm which, however, does not implement a direct minimization of the functional
NM in (1.4).
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are therefore the “visible” parts of the objects (with respect to the choice of �),
namely, for any i 2 f1; : : : ; ng the set R0

i is interpreted as the visible part of Ri .
Now, let us denote by �NM W R ! .0;C1/ an even convex function vanishing

quadratically at the origin, and linearly increasing at infinity with slope 	. The
Nitzberg–Mumford functional [64, 65] has the following expression:

NM.S;�/ WDNM..R1; : : : ; Rn//

WD
nX
iD1

Z
R0

i

.g0
i � g/2dx C ı

nX
iD1

jRi j C
nX
iD1

Z
@Rin@�

.ˇ C �NM.�// dH1;

(1.4)

where g0
i is the mean value of g on R0

i , jRi j is the area of Ri , ı is a nonnegative
parameter, and � is the curvature of the boundary of each region. Notice that:

– the first term in the expression of the functional NM depends on the order �
(while the second and the third one do not). It encourages partitions with visible
brightness g0

i close to the data.
– The second term is a penalization on the total area of the regions Ri , so that too

many overlappings are penalized.14

– The last term is a penalization on the length and the curvature of all contours,
which are therefore required to be short and wiggle as little as possible. The
linear growth of �NM at infinity serves to assign a finite energy contribution to a
corner of the contour, proportional to the change in tangent direction. Indeed, if
the boundary of a set R in the partition is not smooth, but just piecewise smooth,
the curvature depending term in (1.4) is defined as follows. Write @R as the image
of a map 
 using the arclength s 2 Œ0; l.
/�, where l.
/ D H1.@R/, and let �
denote the angle between the tangent to 
 and the positive direction of the first
axis. Assuming that � is of class C1 out of a finite set of points C , then the termZ
@Rn@�

�NM.�/ dH1 is replaced by

Z
Œ0;l.
/�nC

�NM. P�/ ds C 	
X
s2C

j�C.s/ � ��.s/j; (1.5)

where �C.s/, ��.s/ are the two one-sided limits of � at s 2 C .
– The reason of the presence of the mean values g0

i is the following. Suppose to
fix the pair .S;�/ and to consider the right-hand side of (1.4) as a function of
the constants g0

1; : : : ; g
0
n. Then, this function is minimized for the choices g0

i D
1

jR0

i j
R
R0

i
g dx for any i D 1; : : : ; n.

14If ı is too large, a minimizing configuration could, in principle, destroy a T-junction, transforming
it into a smoothed corner.
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Remark 1.3.1 A slight modification of NM consists in taking a finite ordered
family .R1; : : : ; Rm/ of closed subsets of R2 with nonempty connected interior and
boundary of class C2, definingR0

1 WD R1, R0
i WD Ri n [i�1

jD1Rj for i 2 f2; : : : ; mg,
R0
mC1 WD �nSm

jD1 Rj (the background) and then defining the action functional on

the family QS of these partitions, as

eNM..R1; : : : ; Rm;R
0
mC1//

WD
mC1X
iD1

Z
R0

i

.g0
i � g/2dx C ı

mX
iD1

jRi j C
mX
iD1

Z
@Rin@�

.ˇ C �NM.�// dH1;
(1.6)

where, again, g0
i is the mean value of g on the visible part R0

i of Ri . In this way, the
background is not penalized. This modification corresponds to impose Rn D � in
the Nitzberg–Mumford model (and n D mC 1).

The Nitzberg–Mumford model represents a scene in terms of overlapping
ordered finite families of subsets of �. An ordered family which minimizes NM
is called an optimal overlapping segmentation of g. In such a segmentation possibly
new contours are introduced,15 interpreted as the continuation of partly occluded
contours. Interestingly, besides a segmentation of g, a configuration minimizing NM
carries an order information among the various regions, so that the model identifies
a sort of notion of relative depth between the objects, which tells us which region
is in front and which region is in back. In addition, the model is capable to often
reconstruct correctly16 the T -junctions, differently with respect to the Mumford–
Shah model.

Example 1.3.2 (Partially Overlapping Disks) Take� D .0; 1/�.0; 1/ as usual, and

B� WD
(
x D .x1; x2/ 2 � W

�
x1 � 3

8

�2
C x22 � 1

16

)
;

BC WD
(
x D .x1; x2/ 2 � W

�
x1 � 5

8

�2
C x22 � 1

16

)
:

Choose a piecewise constant function g as follows: g equals to a constant in B� and
another constant in BC n B�, and g D 0 in � n .B� [ BC/. If we consider the
family fB�; BC; � n .B� [ BC/g with the order relation so that

R1 D B�; R2 D BC; R0
3 D � n .B� [ BC/;

15Thus giving a first guess on the completion of the occluded contours.
16Substituting �2 in place of �NM does not modify this positive feature of the model.
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we have: R0
1 D R1, R0

2 D R2 n R1, and

eNM..R1;R2;R0
3// D

Z
B�

.g0
1 � g/2 dx C

Z
BCnB�

.g0
2 � g/2 dx C ıjB� \ BCj

C
Z
@B�

.ˇ C �NM.�// dH1 C
Z
@BC

.ˇ C �NM.�// dH1

D ıjB� \ BCj C
Z
@B�

.ˇ C �NM.�// dH1

C
Z
@BC

.ˇ C �NM.�// dH1;

since g0
1 D g in B� and g0

2 D g in BC nB�. On the other hand, if we take the order
relation so that

S1 D BC; S2 D B�; S 0
3 D � n .B� [ BC/;

we have S 0
1 D S1, S 0

2 D S2 n S1,

eNM..S1; S2; S
0
3// D

Z
BC

.g0
1 � g/2 dx C

Z
B�nBC

.g0
2 � g/2 dx C ıjB� \ BCj

C
Z
@B�

.ˇ C �NM.�// dH1 C
Z
@BC

.ˇ C �NM.�// dH1

D
Z
BC

.g0
1 � g/2 dx C ıjB� \ BCj C

Z
@B�

.ˇ C �NM.�// dH1

C
Z
@BC

.ˇ C �NM.�// dH1;

and
Z
BC

.g0
1 � g/2 dx is positive. Therefore,

eNM..R1;R2;R0
3// <

eNM..S1; S2; S 0
3//:

This inequality leads to believe that, when looking for a minimizing segmentation of
g, the partition .R1;R2;R0

3/ is more favourable with respect to .S1; S2; S 0
3/, in which

case the set B� is in front of BC, and the depth order would be also reconstructed.17

17However, as in the Mumford–Shah functional, in a minimizing segmentation of g corners are
smoothed out due to the presence of the term measuring the length of the contours. Indeed, it is
still convenient to smooth a corner appearing in the jump set of g and then reduce the length term,
at the expense of slightly increasing the other terms in the functional. This implies that corners
are not sharply reconstructed, which is a phenomenon that would obviously happen also if one
replaces �NM with �2 in (1.4).
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However, another possible choice is to consider the ordered partition

T1 D B�; T2 D BC n B�; T 0
3 D � n .B� [ BC/;

where now T1 \ T2 D ;, and T2 is not of class C2, and therefore the expression for
the functional in (1.5) is required. We have

eNM..T1; T2; T 0

3 // D
Z
@B�

.ˇ C �NM.�// dH1 C
Z
@.BC

nB�/

.ˇ C �NM.�// dH1 C 	c;

where c takes into account the contribution due to the two corners of BC nB�. The
comparison betweeneNM..R1;R2; TR0

3// andeNM..T1; T2; T 0
3// depends now on the

magnitude of the various involved parameters (in particular of ı). It is worth noticing
that the partition .T1; T2; T 0

3/ cannot be a minimizer (even a local minimizer), since
a small smoothing of the corners makes lower the value of eNM: indeed the length
term decreases most with respect to the contribution of the fidelity term.

Remark 1.3.3 (Nonlocally Constant Grey Level) The model was conceived for
images having a locally constant grey level, since in (1.4) the function u is assumed
to be locally constant and equals g0

i on R0
i . As observed in [65, Chapter 6], it is

possible to remove such an assumption, by replacing the first sum in NM with the
term18

nX
iD1

Z
R0

i

.u � g/2 dx C ˛

nX
iD1

Z
R0

i

jruj2 dx:

Various properties of a weak formulation of NM were inspected in [13], based
on the previous work [15] (furtherly refined in [12]) on the elastica functional.19 A
numerical minimization of the Nitzberg–Mumford functional has been explored in
[39].

It is worthwhile to remark that the occlusion problem in the functional (1.4)
is tackled by enforcing a priori a “global” ordering between the objects, which are
therefore obtained as a stack of depth ordinate objects: in this way, self-overlappings
and interwoven shapes are excluded.

18Again, here ˛ is a nonnegative parameter. Note that letting ˛ ! C1 forces the function u to
be piecewise constant. Notice also that, referring to the modification considered in (1.6), the term
to be added reads as

PmC1
iD1

R
R0

i
.u � g/2 dx C ˛

PmC1
iD1

R
R0

i
jruj2 dx.

19See [16] and the references therein for the applications of the elastica functional to computer
vision.
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1.4 Other Curvature-Depending Functionals

Before passing to the discussion on the apparent contours, for completeness we
briefly illustrate some other variational models for image segmentation containing
a curvature term. We refer also to the books [60, 68] and their list of references for
a discussion on related arguments.

Functionals that include curvature terms have been considered by various authors
in the recent literature on image segmentation, see, for instance, [1, 4, 7, 17–20, 22,
25, 28, 29, 35–37, 40, 55, 57, 68]. In this section we limit ourselves to describe three
models related to our previous discussion.

The minimization of a functional depending both on the curvature and on the
total number of singularities along the curves was proposed by Terzopoulos [73]
and, independently, by Anzellotti, and reads as

A.u; C; P / WD
Z
�

.u � g/2 dxC˛

Z
�nC[P

jruj2 dxC
Z
C

.ˇC�2.�// dH1C�#P;

where C is a suitable family of plane curves20 in �, P is the set of the endpoints
of the curves in C , #P is the number of points of P and � is a suitable
positive parameter. The elastica term asks, as usual, for a greater regularity of a
minimizing configuration, while the penalization of the total number of endpoints
encourages the sensitivity for the recognition of the nodes. Differently with respect
to the Nitzberg–Mumford model, minimizing configurations of the functional A
do not necessarily destroy a corner. Therefore this model is suited for a better
reconstruction of the angles in the image, but it does not recognize any order due to
occlusions between the various regions.

With the purposes of incorporating the occlusion information and reconstructing
the hidden contours, another variational model has been proposed in [9] (see also
[8, 10]). In this model the fidelity term is the usual one as in (1.3), hence it does not
depend on any notion of ordering. The order dependence due to occlusions appears
in another term in the functional, that we now quickly describe. Let us denote by
BV.R2;Z/ the space of functions of bounded variation taking integer values. A
function � 2 BV.R2;Z/ can be written as

� D
X
i2I

˛i�Ri ; with ˛i 2 Z n f0g for any i 2 I;

where I � N is at most countable, fRigi is a family of possibly overlapping finite
perimeter sets with Ri ¤ Rj for any i; j 2 I with i ¤ j , and �Ri denotes the
characteristic function of Ri , namely �Ri .x/ D 1 if x 2 Ri and �Ri .x/ D 0 if
x … Ri . We call the double sequence .˛i ; Ri /i2I a representation of �.

20The functional A has been studied in [30] (see also [21] for further approximation properties), to
which we refer for all details.
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The functional proposed in [9] reads as follows: if u 2 SBV.�/ and � 2
BV.R2;Z/ are such that u is of class W 1;2 out of the closure of the jump set J�
of �,21 then

BM.u; �/ WD MS.u/C inf
X
i2I

j˛i jW.Ri /;

where the infimum is taken over all representations .˛i ; Ri / of �, and W denotes the
L1-lower semicontinuous envelope of the functional

A !
Z
�\@A

.ˇ C �NM.�// dH1: (1.7)

In this model, J� represents the set of all contours, and the occluded part corre-
sponds to J� n Ju. The function u is, as usual, the denoised grey level. However,
also this model is not capable to detect occluded and occluding objects at the
same time. To overcome this problem, in [11] it is proposed a different variational
model allowing for interwoven and self-overlapping shapes such as those in Fig. 1
in the Introduction, which reads as follows. Let us denote by Wp the L1-lower
semicontinuous envelope of the functional in (1.7), where �NM is replaced now by

�p.�/ WD 	j�jp; � 2 R; (1.8)

and p > 1. Let n 2 N and let fRigiD1;:::;n be a family of bounded subsets of R2 with
Wp.Ri / < C1 for any i D 1; : : : ; n. Associated with fR1; : : : ; Rng, we introduce
the function  defined as

4

2

0

4

Fig. 1.1 (Left) The bold graph represents the visible part of the apparent contour of the three-
dimensional scene in Fig. 3 of the Introduction; the whole graph represents its apparent contour.
(Right) The values of the function f†. The labelling d† is not displayed here, but it can be inferred,
for instance, from Fig. 3.11. Compare also with Fig. 9.11

21This means essentially that the jump set of u is contained in the jump set of �.
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8̂
ˆ̂<
ˆ̂̂:

 .x/ 2 ˚i 2 f1; : : : ; ng W x 2 Ri
�
;

 .x/ D 0 if x …
n[
iD1

Ri ;

so that several choices of the values of  are possible, in the intersection of two of
the sets Ri . The function  takes the role of a local depth ordering associated with
fR1; : : : ; Rng, and the set fx 2 R

2 W  .x/ D ig represents the visible part of Ri , for
any i 2 f1; : : : ; ng. Let u 2 BVloc.R

2/ be piecewise constant. We denote by D the
set of all .u; n; fR1; : : : ; Rng;  / satisfying the inclusions

Ju � J �
n[
iD1

@Ri :

We define the functional BM1 W D ! Œ0;C1� as

BM1.u; n; fR1; : : : ; Rng;  / WD
Z
R2

.u � g/2 dx C
nX
iD1

Wp.Ri /:

Observe that the dependence of BM1 on  appears in the domain D. A comparison
between this model and the Nitzberg–Mumford model will appear in [11].

We conclude this section by recalling

– the perspective taken in [68, 69], where the mathematics of the completion
problem is inspired by the architecture of the visual cortex; see also [29], for
a phenomenological variational model based on the elastica functional.

– the models for visual interpolation of missing contours in [38, 41, 42, 46, 58, 74,
75] and the references therein.

1.5 The Variational Model on Labelled Graphs

As already observed, the occlusion problem in the functional (1.4) is tackled by
enforcing a priori a “global” ordering on the objects,22 which are then considered
basically as flat silhouettes at constant distance from the observer. This excludes
situations where two objects overlap in opposite order in different locations as
in Fig. 1, or where a single body self-overlaps, like the knotted solid torus in
Fig. 2. Therefore, the Nitzberg–Mumford model can represent pictures of interposed
objects that are neither woven nor self-overlapping. This limitation can be consid-
ered as the main motivation for the authors of [14] to introduce the variational model
on labelled graphs, that we want now to describe. As we shall see, this model is

22See also [65, Chapter 6].
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Fig. 1.2 The values of f† do
not identify a
three-dimensional scene

JfΣ

4 0

2

strictly tied to the reconstruction problem of the 3D-scene E described in Sect. 1.1,
and it requires a topological analysis on apparent contours, an argument covered
in various chapters of this book. Indeed, declaring the domain Dom.F/ of the
action functional F requires an understanding of the structure of a labelled apparent
contour. More precisely, it requires the solution of an inverse problem which is
topological in character, namely the characterization of those planar graphs which
are apparent contours of some three-dimensional stable scene in a given projection
direction. This problem is called the recovery problem in computer vision, and aims
to bridge the gap between three-dimensional scenes and two-dimensional contours.

Let us start with a quick description of the apparent contour23 of the boundary
† of a three-dimensional scene E , referring to Chap. 3 for the details. Writing a
point of the set Q in (1.1) as .x1; x2; z/, let us consider the orthogonal projection
of † onto the plane fz D 0g. We will interpret the direction e3, orthogonal to this
plane, as the viewing direction: ideally, the observer is situated behind the plane,
while the scene is in front of the plane, as depicted in Fig. 3.1. Associated with the
choice of the projection direction, we can now consider the critical set, defined as
the set of all points of † where the tangent plane contains the line spanned by e3.
Under a suitable stability assumption,24 it turns out that the critical set consists of a
finite number of smooth simple pairwise disjoint closed curves. Then the apparent
contourG† of†, defined as the orthogonal projection on fz D 0g of the critical set,
consists of the image of a finite family of maps which are smooth immersions of S1

in � up to a finite number of points corresponding to canonical (or simple) cusps;
the image of each of these maps can have a finite number of self-intersections, and
also two images can intersect. In any case, the intersections (called crossings) are
double and transverse.25 As we have anticipated in the Introduction, in Fig. 3 we
show a connected three-dimensional scene, and in Fig. 4 we show the same scene,
but as if it were transparent, in order to make clear the apparent contour, which in
this case has four cusps and one crossing: see Fig. 1.1 (left). On the other hand, we
do not display the critical set.

Now, given a point x 2 � out of the apparent contour, we denote by f†.x/ the
total number of layers of † which are in front of the point .x; 0/. Then the jump

23The reader can look through reference [23] for an introduction to apparent contours.
24See Definition 3.2.1.
25In computer vision, the description of the possible singularities of the visual mapping of a smooth
manifold-solid onto the image plane under parallel projection can be found, for instance, in [54].
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2

40

2

0

2

0
dΣ = 2

dΣ = 0

4 4

dΣ = 0 dΣ = 0

dΣ = 0 dΣ = 1

Fig. 1.3 Image taken from [14]. The values of f† (the same as in Fig. 1.2) and of d D d† identify
the depth-equivalence class of E . Left: the larger sphere is in front of the smaller one. Centre: the
larger sphere is behind the smaller one. On the right the large sphere has a hole inside. Compare
also with Examples 9.5.2–9.5.5

0

4

2

2

2 2

d = 1

d = 2d = 0

d = 0

Fig. 1.4 The values of fE and of d D dE . Image taken from [14]

set Jf† of f† coincides with G†, and f† jumps of two units when passing from
one side to the other along an arc of the apparent contour.26 Moreover, Jf† carries
a natural orientation, so that the higher value of f† lies locally on the left.27 It is
not difficult to see that the local values of f† around an arc, a cusp and a crossing,
respectively, are as displayed in Fig. 2.3.28 In Fig. 1.1 (right) we denote the values
of f† for † as in Fig. 3.

It is worth noticing that the knowledge of f† does not uniquely identify the
depth-equivalence class of a three-dimensional scene, as it follows by looking
at the example in Fig. 1.2. This configuration, indeed, represents three ambient
isotopically inequivalent29 scenes E , sharing the same values of f†:

– E has two connected components: a large sphere in front of a smaller one;
– E has two connected components: a large sphere behind a smaller one;
– E is connected, and it is a sphere with a hole inside.

26Notice that f† 2 BV.�; 2N/, the class of all functions of bounded variation in � taking values
in the even natural numbers (zero included).
27This is the reason why, in some of the figures containing the values of f†, we do not display the
orientation of the apparent contour.
28In Fig. 2.3 the function f† is denoted by f since in the more general framework of Sect. 2.2,
there is not a surface † embedded in R

3.
29The notion of ambient isotopically equivalence of two scenes is explained in Chap. 6.
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To hope uniqueness of solutions to the recovery problem up to certain transfor-
mations of R3, it is indeed necessary to enrich G† with a labelling d† (sometimes
called Huffman labelling [48], see also [77, 78]). Precisely, for a given point x in the
relative interior of an arc, d†.x/ is the number of layers of † in between .x; 0/ and
the unique point on the critical set projecting on x. Namely, d†.x/ gives the number
of layers of † which are “anterior” to the point on the critical set corresponding to
x.30 Referring to the three possible interpretations of Fig. 1.2, we show in Fig. 1.3
the three corresponding different labellings. One can realize that f† and d† must
satisfy a certain number of compatibility conditions, precisely the ones depicted in
Fig. 3.11. It is also worthwhile to observe that the apparent contour and the two
functions f† and d† do not depend on the choice of an element inside the depth-
equivalence class of E .

In Chap. 5 we show that the labelling characterizes those graphs which are
apparent contours of some three-dimensional scene. Namely, given a plane graph
G the nodes of which are only cusps and crossings, enriched with a labelling
d satisfying all compatibilities (called consistent labelling), there exists a smooth
stable three-dimensional scene E having that labelled graph as its apparent contour,
i.e., G† D G and d† D d (where, as usual, we adopt the notation † D @E).
Moreover, the depth-equivalence class of E is unique. Keeping in mind this
existence and uniqueness result also in connection with the reconstruction problem
described in Sect. 1.1, we can finally identify the domain of the functional F :
Dom.F/ consists of the triplets .f; d; u/, where f 2 BV.�; 2N/, and

– the jump set Jf of f is an oriented graph with cusps and crossings,
– d is a compatible labelling on Jf ,
– u is in the Sobolev space H1 out of the visible part fd D 0g of Jf .

Then, given .f; d; u/ 2 Dom.F/, the functional F reads as follows31:

F..f; d; u// WD
Z
�

.u � g/2 dx C ˛

Z
�nfdD0g

jruj2 dx

C
Z
Jf nnodes.Jf /

.ˇ C �p.�// dH1 C �#nodes.Jf /;

30See also Fig. 3.14, which shows the labelling for Fig. 3 in the Introduction. Once we have given
d†, we can define the visible contour of † as the closure of fd† D 0g. Its singularities are only
terminal points (corresponding to cusps in the apparent contour) and T-junctions (corresponding to
crossings).
31Chapter 11 is devoted to the mathematical study of some aspects of the functional F , whose
rigorous definition is given in Sect. 11.1.
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where p 2 .1; 2/,32 �p is defined in (1.8), and nodes.Jf / denote the set of all cusps
and crossings of Jf . Notice that:

– the fidelity term (first term in F ) is the same as in the Mumford–Shah functional,
and therefore is independent of any occlusion ordering.

– Recall that fd D 0g � Jf and that d depends on the values of f ; f is, in turn,
determined by its jump and a suitable orientation of it (as shown in Lemma 2.2.9).

Therefore, the term
Z
�nfdD0g

jruj2 dx depends also on the orientation of Jf .

The condition u 2 H1.�nfd D 0g/means essentially that Ju � fd D 0g. Hence
u is required to be “smooth” along the invisible part fd > 0g of Jf . In order to
decrease the action F , it is therefore convenient, for a given f , to have fd D 0g
as large as possible, in order to let u jump in a larger set and consequently to
reduce the value of F..f; d; u//. The invisible part of the graph Jf is therefore
“minimized”.

– The third term, which contains the curvature, is a penalization for both the visible
and the invisible part of the graph. Since we assume p > 1, a graph with corners
is excluded.

– The last term is a penalization on the total number of nodes (i.e., crossings
and cusps). However, in a minimizing configuration, this does not lead to the
reconstruction of corners related to the presence of polyhedral parts in the scene.
The only allowed possibility happens when a corner is interpreted as a T-junction:
this is exactly what happens in the Kanizsa triangle discussed below.

– We cannot in general confine ourselves to consider a piecewise constant function
u out of the visible part of the apparent contour. Take, for example, the case of
Fig. 1.4: assuming u to be piecewise constant out of the visible contour would
imply the arcs of the apparent contour ending at a cusp not to be anymore parts
of the discontinuity set of u.

Let us observe that this model has, in certain situations and with the proper choice
of the parameters, a higher degree of freedom with respect to the Nitzberg–Mumford
model, for what concerns the completion of the hidden contours. Consider, for
instance, Fig. 1.5 (left), where we assume g D 0 out of the figure, g D 1=2

in the lower part, and g D 1 inside the ellipse, and two T-junctions are present.
The completion of hidden contours obtained by minimizing the Nitzberg–Mumford

32As we shall see in Chap. 5 the exponent p D 2 is not allowed (close to the cusps). Notice that
the canonical cusp of Jf has the local form x22 D x31 ; hence locally around the origin on a branch
of the cusp and for x1 > 0, we have �.x/ D 3

4
1

x
1=2
1 .1C 9

4 x1/
3=2

, which belongs to Lp for p 2 Œ1; 2/

but not to L2 in a neighbourhood of the origin. It may also be useful to observe that, as in the
Nitzberg–Mumford model, the values of the parameters appearing in the expression of F can be
related to the size of the curvature of the contour.
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1 22

0

0

Fig. 1.5 Centre: the completion given by minimizing the Nitzberg–Mumford functional in (1.4),
for a certain range of parameters. This configuration, as well as the one on the right, is admissible
for the model on apparent contours. We display the values of the labelling: the integer 2 refers to
the short arcs connecting a cusp to the visible part. Compare also with Example 9.5.6

model is, under certain parameters range,33 most probably the one depicted in
Fig. 1.5 (centre), which corresponds to a 3D scene consisting of two connected
components, with the ellipsoid in front of the other connected component. On the
other hand, besides this reconstruction, the model on apparent contours has another
inequivalent way to resolve the 3D scene: this is shown in Fig. 1.5 (right), with
u D g. This latter figure displays a connected 3D scene representing a mushroom. In
this configuration (where we indicate also the values of d ), there are two new nodes
(the two cusps inside the ellipse) that are penalized in the functional F ; however,
the curvature of the invisible contour may be not so high, so that this configuration
may become more favourable.

The variational model on apparent contours is more complicated than the
Nitzberg–Mumford model, and allows in general for a larger number of possible
topological completions of the occluded contours. However, it shares with the
Nitzberg–Mumford model the limitation of computing the continuation of hidden
contours using only local information on the endpoints and tangents.34

It is interesting to look at the behaviour of the functional F on the Kanizsa
triangle [49].35 Instead of the original Kanizsa triangle, we consider the picture in
Fig. 1.6, where the three vertices are slightly smoothed. Such a smoothing simplifies
the presentation, it does not affect our qualitative discussion, and does not affect the
presence of the illusory contour. We take g D 1 inside the three dark regions and
g D 0 elsewhere. We also imagine to have a very large positive parameter in front of
the fidelity term, so that a minimizing configuration .f; d; u/ has u very close to g.

33Another configuration with finite action (both for NM and for F ) less favourable for a suitable
range of parameters and also less natural, consists in splitting the set into two disjoint regions, by
smoothing the two T-junctions and transforming them in two smoothed corners.
34Namely, the continuation of hidden contours is computed solely from the endpoints and tangents
to the visible contours at their terminal points, and not from a procedure taking also into account
the global shape of the regions.
35Concerning the “Gestalt school”, see, e.g., [50, 51, 59, 76].
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Fig. 1.6 Smoothed Kanizsa
triangle; we take g D 1 inside
the dark regions and g D 0

outside. Image taken from
[14]

Fig. 1.7 The values of fa

and da. The function ua is
equal to g. Note that the
visible part fda D 0g of the
contour consists of the whole
big triangle and the union of
the long arcs of the three
disks. Image taken from [14]
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Consider the triplet .fa; da; ua/ where ua 	 g and the values of fa and da are
displayed in Fig. 1.7. Note that

– the set fda D 0g (visible contour) contains the three long segments composing
the “illusory contour”, so that the whole big triangle with the smoothed vertices
is visible and occludes part of the three circles;

– the set Jua is strictly contained in fda D 0g.

We then have

F ..fa; da; ua// D
Z
Jfa nnodes.Jfa /

.ˇ C �p.�// dH1 C 6�; (1.9)

where Jfa is the whole apparent contour in Fig. 1.7 and nodes.Jfa/ are the six
crossings, which are penalized.

The optimality of this configuration in terms of F obviously depends on the
choice of the parameters. For instance, another admissible triplet .fb; db; ub/ is
obtained by slightly smoothing the six crossings, as displayed in Fig. 1.8, so that
they do not contribute anymore to the action. The function ub is equal to 1 inside
the three smoothed regions and 0 outside, and the values of fb and db are depicted
in Fig. 1.8, so that the three smoothed regions are visible. Differently with respect
to ua, in this case ub is not exactly equal to g, and this gives a nonzero contribution
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Fig. 1.8 The values of fb

and db. The six corners of
Fig. 1.6 are smoothed, and
this has a cost in terms of the
curvature of the contour. The
function ub is not identically
equal to g. Image taken from
[14]
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in the expression of F ..fb; db; ub//. Notice also that Jub D fdb D 0g. Since the
corresponding apparent contour now has no nodes, we have

F ..fb; db; ub// D
Z
�

.ub � g/2 dx C
Z
Jfb

.ˇ C �p.�// dH1: (1.10)

The largest contribution on the right-hand side of (1.10) is due to the termZ
Jfb

j�jp dH1 around the smoothed corners, since the exponent p is larger than

one.36 On the other hand, the length of Jfb is now smaller than the length of Jfa ,
since the illusory arcs are not anymore in the jump set of fb. Finally, a small nonzero
contribution is present, due to the L2-penalization of the difference between ub and
g, which is of the order of the area of the difference between the black regions in
Fig. 1.6 and their smoothed versions.

In conclusion, if ˇ is sufficiently small with respect to the other parameters, and
if the smoothing of the corners is accurate enough, comparing together formulas
(1.9) and (1.10), it is reasonable to expect that

F ..fa; da; ua// < F ..fb; db; ub// ;

and that .fa; da; ua/ is a triplet minimizing F .
It is worth noticing that parts of the visible contour fda D 0g are present also

where ua does not jump: this happens exactly on the illusory contours, which are
therefore reconstructed.

Summarizing, our approach to the problems illustrated in Sect. 1.1 is the
following.

(1) Given g, infimize F among all admissible triplets. Assuming that the problem
has at least one solutions, call

.f; d; u/

a minimizer.

36For a circle S" of radius " > 0 and � its curvature, we have

Z
S"

j�jp dH1 D 2�"1�p , which

diverges as " ! 0C.
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(2) Find the depth-equivalence class ŒE� of the three-dimensional scene E such
that, setting † D @E ,

f† D f and d† D d

via Theorems 5.1.1 and 5.1.4.

The interesting conclusion is that a three-dimensional output ŒE� is obtained,
starting from an input represented by the two-dimensional image g.

A preliminary analysis for the study of the infimization of F is made in Chap. 11.
Recognizing the 3D shape, once ŒE� is given, a problem which concretely

consists in simplifying the apparent contour by means of admissible moves cor-
responding to isotopies of R3, is the content of part of the book.

We conclude this chapter by observing that a direct minimization of the
functional F seems to be a hard problem (and essentially the same holds for
the Nitzberg–Mumford functional). If one is concretely interested in finding a
minimizer of F , a possible strategy could be to use a descent method along the
gradient, starting from some initial configuration. Such an initial configuration could
be found as follows. First one approximates g with one of the available methods
in segmentation and devise, in particular, a set of curves expected to be close to
the visible contour of a minimizer of F . Making use of the results of Chap. 4,
this segmentation of g, in particular the approximation of a visible contour, can be
completed into a labelled apparent contour. Such an apparent contour can finally be
used as the starting configuration for the above-mentioned gradient descent method.
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Chapter 2
Stable Maps and Morse Descriptions
of an Apparent Contour

In this chapter we recall the notion of stable map between two manifolds.1 It is
convenient to introduce the terminology in arbitrary dimension, and in a rather
abstract setting. In Chap. 3 we will be concerned with the material collected here,
in the special case of a two-manifold embedded in R

3: the reader interested in
the embedded case can skip this chapter, and look directly through Chap. 3. In
Chap. 6 we shall make use of the stability properties of a one-parameter family of
embedded surfaces. Interesting situations for us will be when the source and target
manifolds have the same dimension, and in particular the two-dimensional and the
three-dimensional cases.

2.1 Stability of Maps

Given a (finite dimensional) manifold Z of class C1 without boundary, we set

Diff.Z/ WD f� W Z ! Z W � diffeomorphism of Z of class C1g:

We say that � 2 Diff.Rn/ is supported in B � R
n if �.x/ D x for any x 2 R

n n B;
� is said to have compact support if B is bounded.

We set

Diffc.R
n/ WD fF 2 Diff.Rn/ W F has compact supportg :

Notice that if F 2 Diffc.R
n/, then F is a positive2 diffeomorphism of Rn.

1See [23, 25, 26], the books [9, 10, 18, 24], the references quoted in [27], and also [1, 17].
2The map F keeps the orientation: for instance, when n D 2, a positively oriented Jordan curve in
R
2 is mapped through F into a positively oriented Jordan curve.
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As it is customary in differential topology, by a closed manifold we mean a
compact manifold without boundary.

Let X denote a closed manifold of dimension m 
 1 of class C1 (source
manifold), and let Y be a manifold of dimension n 
 1 of class C1 without
boundary (target manifold). We denote by C1.X ;Y / the set of all maps of class
C1 from X to Y , endowed with the Whitney topology [10], [15, Section 41], [2].

Definition 2.1.1 (Equivalence) Two maps '1; '2 2 C1.X ;Y / are C1 left–right
equivalent (briefly, equivalent) if there exist � 2 Diff.X / and � 2 Diff.Y / such
that

'2 ı � D � ı '1:

In other words, the diagram

is commutative.
The next definition relates the notion of equivalence with the Whitney topology.

Definition 2.1.2 (Stability) A map ' 2 C1.X ;Y / is smoothly stable (briefly,
stable) if there exists a neighbourhoodU' � C1.X ;Y / of ' such that any map in
U' is equivalent to '.

We set

Stable.X ;Y / WD f' 2 C1.X ;Y / W ' is stableg:

We notice that Stable.X ;Y / is an open subset of C1.X ;Y /.
In view of the important role taken by the concept of stability, it is worthwhile to

illustrate it with some examples.

Example 2.1.3 (Morse Functions) Suppose that Y D R. When X is closed, ' 2
Stable.X ;R/ if and only if ' is a Morse function (that is, it has a finite number of
critical points, and each critical point is nondegenerate) with distinct critical values3

(see, e.g., [10, Chapter 3, Proposition 2.2]).

3In the terminology of Thom, Morse functions are called correct, and Morse functions with distinct
critical values are called excellent [6].
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ba ba a b

Fig. 2.1 Example 2.1.4. Left: a stable Morse function with two nondegenerate critical points.
Centre: an unstable function with one degenerate critical point. A small deformation produces
two critical points. Right: an unstable Morse function with three nondegenerate critical points

Example 2.1.4 As a special case of Example 2.1.3,4 suppose that X D R and
Y D R. Stability now means that the second derivative cannot vanish at stationary
points (that is, critical points cannot be degenerated) and that distinct critical points
cannot map onto the same value. Consider the functions in the left and right Fig. 2.1,
with nondegenerate critical points in the interval .a; b/: one local maximum and
one local minimum in Fig. 2.1 (left) having different critical values, and the double-
well potential shaped-function with two minima at the same level and one local
maximum, in Fig. 2.1 (right). Then the function in Fig. 2.1 (left) is stable; on
the other hand, the one in Fig. 2.1 (right) is not stable, as well as the function in
Fig. 2.1 (centre), having one horizontal inflection point. Roughly speaking, stability
means that a small (in C1.R;R/) deformation of the function does not change the
qualitative properties of its graph. It is clear that a small deformation of the function
in the central picture of Fig. 2.1 alters the number of critical points, and a small
deformation of the function in the right picture of Fig. 2.1 alters the number of
critical values. On the other hand, for the function in Fig. 2.1 (left) it is not possible
to introduce new critical points as well as to modify the local number of critical
values using small deformations, since these deformations may slightly change only
the horizontal or the vertical position of the critical points.

Example 2.1.5 A stable map from S
1 to R

2 is a smooth curve that can have a
finite number of transverse self-intersections, and the number of preimages cannot
be larger than two (no triple intersections). This readily generalizes to a one-
dimensional closed manifold X , which is the disjoint union of a finite number of
copies of S1.

Example 2.1.6 (Knots) Classical knots5 in R
3 (respectively in S

3) are stable maps
from S

1 to R
3 (respectively to S

3).

Let ' 2 C1.X ;Y / and let us denote by d' the differential of '.

4Not quite, since R is not closed. However we require functions to behave “nicely” outside some
interval Œa; b�, e.g. by forcing them to have constant nonzero derivative.
5In this book a knot is a C1 embedding of S1 in R

3, hence in particular a tame knot in the usual
terminology; see, for instance, [8, p. 5].
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Definition 2.1.7 (Critical Set) The critical set of ' is defined as follows:

crit.'/ WD
n
� 2 X W rank .d'.�// < min.m; n/

o
:

In the literature of singularity theory, the critical set is often also called singular
set.

Notice that the critical set living on a single connected component of X is not
necessarily connected.

The next example, as well as Theorem 2.1.12, is of particular importance in
connection with the apparent contours of embedded surfaces, which are considered
in Chap. 3.

Example 2.1.8 Suppose that X is two-dimensional, and let ' 2 Stable.X ;R2/.
Then, a theorem in singularity theory due to Whitney (see [25], [10, p. 191]) asserts
that ' is excellent, namely, the following properties hold. The critical set of '
consists of folds, denoted by

S1.'/:

This is the set of all points � 2 X where d'.�/ has rank one. S1.'/ is a smooth
submanifold of X of codimension one without boundary, hence it is the union of
a finite number of smooth closed disjoint simple curves,6 called fold curves. Inside
the folds, we can isolate the set of cusps,7 denoted by

S12.'/ � S1.'/:

This is the set of all points of S1.'/ where the differential of the restriction of '
to S1.'/ vanishes. S12.'/ is a smooth submanifold of codimension two, hence it
is a finite set of points. The characterization of stable maps in this case is given in
Theorem 2.1.12, below.

Example 2.1.9 Suppose that X is two-dimensional. A classical result (see, e.g.,
[10, Chap. 6, Sec. 1]) asserts that a stable map ' 2 C1.X ;R3/ can have (only) the
following features:

• regular points: (image of) points where locally ' maps diffeomorphically onto
its image;

• double curves: points of R3 having exactly two preimages;

6Therefore, each of these curves is the embedded image of S1 into X .
7We warn the reader that these cusps, belonging to the source manifold X , should not be confused
with the cusps of an apparent contour, which lie in the target manifold Y .
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• pinch points (in finite number): (image of) points where the differential of '
drops rank. The standard example of a map exhibiting a pinch point is the so-
called Whitney umbrella8;

• triple points (in finite number): points of R3 having exactly three preimages.

The next example is useful in connection with the results illustrated in Chap. 6.

Example 2.1.10 Suppose that X is three-dimensional and let ' 2 Stable.X ;R3/.
Then, a theorem in singularity theory (see, e.g., [10, Chap. 7, Sec. 6]) asserts that the
critical set of ' consists of folds, denoted by S1.'/. This is the set of all points � 2
X where d'.�/ has rank two. S1.'/ is a smooth submanifold (without boundary)
of X of codimension one. Inside the folds, we can isolate the pleats, denoted by
S12.'/ � S1.'/. This is the set of all points of S1.'/ where the differential of the
restriction of ' to S1.'/ has rank one. S12.'/ is a smooth submanifold (without
boundary) of X of codimension two. Inside the pleats, we can, in turn, isolate the
set of swallow’s tails, denoted by

S13.'/ � S12.'/;

namely the set of all points of S12.'/ where the differential of the restriction of ' to
S12.'/ vanishes. S13.'/ is a smooth submanifold of X of codimension three, hence
it is a finite set of points.

Definition 2.1.11 (Critical Value Set) Let ' 2 C1.X ;Y /. The critical value set
of ' is defined as

'.crit.'//:

The critical value set, for a stable map from a closed two-dimensional manifold
to the plane (also called apparent contour), will be extensively studied in the
subsequent chapters. In Chap. 6 we shall consider the case of maps from a closed
three-dimensional manifold into R

3 (see, in particular, the stratification of Y in
Sect. 6.2).

The next result (see, e.g., [27] and the references therein; see also [23, pp. 61,62])
is crucial for the aims of the present book.

Theorem 2.1.12 (Equivalence to Stability in the Two-Dimensional Case) Let
X be a closed two-dimensional manifold of class C1, and let ' 2 C1.X ;R2/.
Then ' is stable if and only if the following two conditions hold:

– ' is excellent,
– the images of fold curves intersect only pairwise and transversally, whereas the

image of any cusp does not coincide with the image of any other fold point.

8Sometimes called the cone on a figure-eight curve.
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Moreover

– if � 2 X is a fold point then, locally around � and '.�/, there are coordinates
such that ' takes the form

.u; v/ ! .x1; x2/ D .u2; v/I

– if � 2 X is a cusp then, locally around � and '.�/, there are coordinates such
that ' takes the form

.u; v/ ! .x1; x2/ D .uv � u3; v/:

Example 2.1.13 (Inequivalent Maps with the Same Critical Value Set) Two maps
having the same critical value set are not necessarily equivalent, as shown by the
following example. Let X D S

1 and Y D R. Consider the two maps taking X
in R, as in Fig. 2.2 (where, for convenience, the abstract manifold S

1 is depicted
in R

2). The critical value set is in this case a finite number of (oriented) points of
R, and it is the same for the two maps which, however, are not equivalent. Indeed,
the two correspondences between the points of the critical set and the points of
the critical value set are topologically different. In the left case, the preimages of
the minimal/maximal values 	˙ of the singular value set are separated by critical
points, while in the case on the right this is not verified.

When the dimension of X is not larger than the dimension of Y , we denote by

Emb.X ;Y /

the set of embeddings of X into Y of class C1. It is possible to prove9 that
Emb.X ;Y / is open in C1.X ;Y /.

We also recall the following result.10

Fig. 2.2 Two maps with the
same critical value set are not
necessarily equivalent:
Example 2.1.13

9See, for instance, [10, Chapter II, Proposition 5.8].
10See [23] and [10, p. 162].
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Theorem 2.1.14 (Density of Stable Maps) Suppose that the dimensions of X and
Y are less than or equal to three. Then Stable.X ;Y / is dense in C1.X ;Y /.

Unless otherwise specified, all maps that we shall consider will be stable:
therefore, in our discussion on apparent contours, stability will play a central role.

The case of interest in the sequel of this chapter and in Chap. 3 is that of
Example 2.1.8; in the next section we shall focus on this case.

2.2 Stable Maps from a Two-Manifold to the Plane

Let us denote by M a closed manifold of class C1 of dimension two.11 In this
section we consider the case

X D M and Y D R
2;

where, here and in the following, we fix the standard orientation on R
2.

Let

' 2 Stable.M;R2/: (2.1)

We specify the notation of Definition 2.1.11 in this two-dimensional case as
follows.

Definition 2.2.1 (Apparent Contour) The apparent contour appcon.'/ of ' is
defined as the critical value set of ', namely

appcon.'/ WD '.crit.'//:

Notice that appcon.'/ is nonempty; indeed, setting ' D .'1; '2/, the minimum
problem min

m2M '1.m/ has a solution, and a minimizer is a point belonging to crit.'/.

Observe also that the critical set in a single connected component of M can give
raise to an apparent contour consisting of several connected components.

Sometimes, we shall refer to appcon.'/ as an apparent contour without labelling
(or, equivalently, an unlabelled apparent contour).

Definition 2.2.2 (Component) A component of appcon.'/ is the image through '
of a connected component of crit.'/.

As we have seen in Theorem 2.1.12, the stability of ' ensures that the number
of components of appcon.'/ is finite, and that each component is the image of

11M is an abstract manifold, not necessarily oriented or connected. We shall be mostly interested
(for instance, in Sect. 3.2) in the case when M can be embedded in R

3, which gives, in particular,
an orientation to M .
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a C1 map from S
1 to R

2. Such a map is an immersion, up to a finite number
(possibly zero) of points corresponding to cusps12;13 in the image. Each component
may have a finite number of double transverse self-intersections, at points that are
not cusps; furthermore, different components may have a finite number of double
transverse intersections (at points that are neither cusps nor self-intersections of the
same image). All such intersection points will be called crossings of the apparent
contour of '.
Notation: The set of all crossings of appcon.'/ will be denoted by

crossings.appcon.'//;

and the set of all cusps of appcon.'/ will be denoted by

cusps.appcon.'//:

Since appcon.'/ is also considered as a plane graph, possibly containing closed
arcs,14 it is convenient to introduce the set

nodes.appcon.'// WD cusps.appcon.'//[ crossings.appcon.'//

of nodes (or vertices) of the apparent contour of '.
Finally, we denote by

arcs.appcon.'//

the set of all relatively open arcs of appcon.'/; that is, a is an arc if a is a connected
component of appcon.'/ n nodes.appcon.'//.

The arcs of ' are classified as follows:

– closed arcs (smoothly diffeomorphic to an S
1);

– loops that start and end at the same node (a cusp or a crossing);
– arcs connecting two distinct nodes.

A component of appcon.'/ corresponds to a sequence of arcs taken from
arcs.appcon.'// and nodes taken from nodes.appcon.'// obtained by “glueing”
arcs at cusps, and pairs of opposite arcs at crossings.

Summarizing, when X D M and Y D R
2, the apparent contour of the map '

has the following local structure: any point of appcon.'/ has a neighbourhood U

12Locally, each cusp of the apparent contour is diffeomorphic to the simple (or ordinary, see, for
instance, [3, p. 115]) cusp, which has the form f.x1; x2/ W x22 D x31g or equivalently, in a parametric
form, .t 2; t 3/ for a real parameter t in a neighbourhood of the origin.
13The component is, sometimes, called “irreducible” (with cusps and double points); see, e.g., [22].
14Compare, for instance, with Chaps. 1 (Fig. 1.3) and 4. We specify below and in Definition 4.1.1
what is a closed arc, a nonstandard feature in graph theory.
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f

f + 2

f + 2f

f

f + 4

f + 2

f + 2

Fig. 2.3 Left: an arc of appcon.'/. Centre: a simple cusp of appcon.'/, i.e., the semicubic curve
.t 2; t 3/. Right: a crossing of appcon.'/. The labels refer to the function f D f' defined in (2.2)
and counting the number of preimages of '. The apparent contour of ' is oriented according to
Remark 2.2.7

in R
2 such that U \ appcon.'/ is smoothly diffeomorphic to one of the pictures

displayed in Fig. 2.3.
The complement R2 n appcon.'/ of the apparent contour is a disjoint union of

a finite number of connected open sets. It is then convenient to give the following
definitions.

Definition 2.2.3 (Regions) We call region of the apparent contour of ' any
connected component of R2 n appcon.'/.

Definition 2.2.4 (External Region) The external region is the only unbounded
region of the apparent contour of '.

Notice that the external region is necessarily not simply connected.
We continue our description of the apparent contour of the map ' in (2.1) by

introducing the function counting the number of preimages of '. Such a function
easily determines a natural orientation of appcon.'/.

We recall that, given a set P � R, we denote by #P the cardinality of P . As
usual, we denote by N the set of natural numbers (zero included) and by Z the ring
of integer numbers.

Definition 2.2.5 (The Function f') We define the function f' W R
2 ! N as

follows:

f'.x/ WD # fm 2 M W '.m/ D xg ; x 2 R
2: (2.2)

The function f' is finite, constant on each region of appcon.'/, it vanishes on the
external region (but not necessarily only in the external region), and jumps exactly
on appcon.'/. Furthermore, stability of ' implies that f' jumps of two units across
an arc (see Theorem 2.1.12).

Remark 2.2.6 The value of f' on appcon.'/ is the following:

• on an arc of appcon.'/ it is the mean value of the two neighbouring values (an
odd natural number);
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• on a crossing it is the mean value of the four neighbouring values (an even natural
number);

• on a cusp it is the minimum between the two neighbouring values (an even natural
number).

Remark 2.2.7 (Orientation) There is a natural choice of the unit normal to the
apparent contour out of the nodes; namely, the one which points toward the region
where the value of f' is higher. Using the orientation of R

2, this determines an
orientation of the tangent unit vector to the apparent contour out of the nodes, so
that the higher value of f' is taken locally on the left; see Fig. 2.3.

We recall that the winding number w.
; x/ of a continuous closed curve 
 W S1 !
R
2 with respect to a point x … 
.S1/ is the number of complete counterclockwise

turns of the curve around x. The winding number depends on the orientation of 
 ,
and is negative if the curve travels around x clockwise.

Definition 2.2.8 (Winding Number) The winding number

w.appcon.'/; �/ W R2 n appcon.'/ ! Z

of appcon.'/ is defined as follows:

w.appcon.'/; x/ WD
X


 W S1!R
2


.S1/ component of appcon.'/

w.
; x/;

for all x 2 R
2 n appcon.'/.

The function f' can be reconstructed from its jump set (i.e., the apparent contour)
and an orientation of it. More precisely, the following observation holds.

Lemma 2.2.9 (f' and Winding Number) We have

f'.x/ D 2 w.appcon.'/; x/; x 2 R
2 n appcon.'/:

Proof The assertion follows by observing that the apparent contour is oriented, and
that both f' and twice w.appcon.'/; �/ satisfy the following properties:

– they are locally constant on the regions of the apparent contour,
– they vanish on the external region,
– they jump by two and with the same sign when crossing an arc of the apparent

contour.
ut

Remark 2.2.10 Not all oriented closed plane curves satisfying the properties
described above are apparent contours of some stable map '. For instance, it is
clear that the following are necessary conditions:
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• the function f' , as reconstructed using Lemma 2.2.9 according to the winding
number, must be nonnegative in every region;

• cusps cannot be adjacent to regions with f' D 0. Indeed, from the local equations
of ' around a cusp c given by Theorem 2.1.12, if x belongs to a sufficiently small
neighbourhood of c, the points of '�1.x/ correspond to the real solutions of a
cubic equation.

However, these two further requirements are not sufficient to identify graphs that are
apparent contours of some map. For example, it can be checked that the graph shown
in Fig. 3.12 (centre), the one with the “figure-eight”, satisfies the two requirements
above, but cannot be obtained as an apparent contour, even in the broad context
of this chapter concerning stable maps from a closed, not necessarily connected,
two-manifold to R

2.

Example 2.2.11 (Haefliger Sphere) An interesting example of apparent contour,
due to Haefliger15 [12], is depicted in Fig. 2.4, and corresponds to a stable map from
the sphere S

2 to R
2. It is worth mentioning here that this apparent contour cannot

be obtained as an orthogonal projection, onto R
2, of the critical set of an immersion

(self-intersections are allowed) of the sphere S
2 in R

3 D R
2 � R. We shall briefly

discuss this example in Sect. 10.17.1. Apparent contours of maps which factorize as
an embedding (self-intersections are not allowed) and a projection will be studied
in Chap. 3.

In the special case when M is orientable, we can distinguish positive and
negative cusps16 of appcon.'/.

Definition 2.2.12 (Positive and Negative Cusps) Let M be orientable. Let c D
'.m/ 2 cusps.appcon.'//, where m 2 M is the unique preimage of ' on the
critical set of '. Cusp c is called positive (respectively negative) if the image of
a clockwise oriented small topological circle around m goes around c clockwise
(respectively counterclockwise).

Fig. 2.4 Picture taken from
[12]. It represents the
apparent contour of a map
from the sphere S

2 to R
2 due

to Haefliger. As shown in
[12], this map cannot be
factorized as an immersion in
R
3 and a projection onto R

2

15In [12, Theorem 1] the author gives necessary and sufficient conditions for the factorization of
an excellent map (see Example 2.1.8) through an immersion and a projection.
16The notion of positive and negative cusps of Definition 2.2.12 (see, e.g., [21]) is different from
the notion considered in Chap. 8 (compare Definition 8.1.2 and Remark 8.1.3).
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We shall make use of the notions of positive and negative cusps in the com-
putational part of the book; we refer, in particular, to Sect. 10.9.2. Positive and
negative cusps, in the special case of labelled apparent contours, are considered in
Remark 3.4.10.

2.3 Ambient Isotopies

We start by recalling from [14, p. 178] the following concepts, adapted to our case.

Definition 2.3.1 (Rn-Ambient Isotopy) We say that a map

H W Rn � Œ0; 1� ! R
n

is an R
n-ambient isotopy of class C1 (briefly, an R

n-ambient isotopy), if the
following properties17 hold:

– H 2 C1.Rn � Œ0; 1�;Rn/,
– Ht 2 Diff.Rn/ for any t 2 Œ0; 1�, where we use the notation

Ht.�/ WD H.�; t/;

– H0 D id in R
n.

In this book we will be interested only in R
n-ambient isotopies with compact

support.

Definition 2.3.2 (Compact Support) We say that the R
n-ambient isotopy H has

compact support if there exists a bounded subset B of Rn such that

Ht.x/ D x; x 2 R
n n B; t 2 Œ0; 1�:

Notice that an R
n-ambient isotopy can be viewed as a path

t 2 Œ0; 1� ! Ht 2 Diffc.R
n/

with origin the identity.
Throughout the book, we shall use the symbol h to denote an R

2-ambient
isotopy,18 and the symbol H to denote an R

3-ambient isotopy. When, as usual, an
apparent contour appcon.'/ lies inside � D .0; 1/ � .0; 1/, and an R

2-ambient

17The first property means that H admits an extension of class C1 on an open set of R
nC1

containing R
n � Œ0; 1�.

18Consistently, we set ht .�/ D h.�; t /.
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isotopy h with compact support is applied to appcon.'/, we shall tacitly assume
that h.�; t/ is the identity out of a compact set contained in �, for any t 2 Œ0; 1�.

We shall need the following technical result.

Theorem 2.3.3 (Plane or Space Isotopies with Compact Support and Diffeo-
morphisms) Let n 2 f2; 3g and # 2 Diffc.R

n/. Then there exists an R
n-ambient

isotopy h W Rn � Œ0; 1� ! R
n with compact support such that

h0 D id; h1 D #:

Proof Suppose first n D 2. Let us consider S2 as the compactification of R2 with the
point at infinity, denoted by 1. Let us extend # on S

2 (keeping the same symbol)
as #.1/ WD 1. Consider the spherical inversion inv W S2 ! S

2 defined as

inv.x/ WD

8̂
<̂
ˆ̂:

x
jxj2 if x 2 R

2 n f0g;
0 if x D 1;

1 if x D 0;

(2.3)

where jxj is the euclidean norm of x.
Define

Q#.x/ WD inv.#.inv.x///; x 2 S
2:

Then Q# 2 DiffC.S2/, where DiffC.S2/ denotes the set of all positive diffeomor-
phisms of S

2 of class C1. In addition, Q# is the identity in a neighbourhood of
the origin which, without loss of generality, we can suppose to be the unit ball
B1 D fx 2 R

2 W jxj < 1g � S
2.

From [19, Theorem 1.3] and [20],19 it follows that there exists a path Qh W S2 �
Œ0; 1� ! S

2 of positive C1 diffeomorphisms of S2, i.e., Qht 2 DiffC.S2/ for any
t 2 Œ0; 1�, such that Qh0 D id in S

2 and Qh1 D Q# . Note that Qh1 D id in B1.
Now, the idea of constructing ht directly from Qht by spherical inversion could not

lead to the correct conclusion, since it is not guaranteed that a neighbourhood of 0
is left fixed20 by Qht for all t 2 .0; 1/.

We divide the proof into three steps. In the first step, we show that it is possible
to modify Qh into a map hwith the same properties, and, in addition, fixing the origin
for all t 2 Œ0; 1�.

19We recall that, if V is a C1 orientable n-dimensional manifold without boundary, and if
DiffC.V / denotes the group of positive diffeomorphisms of V endowed with the C1.V; V /

topology, then the orbits coincide with the connected components; see [7, p. 1]. If V D S
2, then

the connected component of the identity coincides with the arcwise connected component of the
identity (see [6, p. 1]).
20Actually, even f0g could not be left fixed by Qht .
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Step 1. There exists a map h W S2 � Œ0; 1� ! S
2 of class C1 such that

(1) ht 2 DiffC.S2/ for all t 2 Œ0; 1�,
(2) h0 D id in S

2,
(3) h1 D Q# , in particular, h1 is the identity in B1,
(4) ht .0/ D 0 for all t 2 Œ0; 1�.

Let us consider the orbit of the origin, namely Qht .0/, for t 2 Œ0; 1�. Up to the
composition of Qht with a positive C1 diffeomorphism of S2 smoothly depending on
t , we can suppose that this orbit never meets 1, namely

Qht .0/ 6D 1; 8t 2 Œ0; 1�: (2.4)

In order to ensure the validity of property (3), it is sufficient to consider a rotation21

R.�; t/ sending Qht .0/ into the origin, and then define

h.�; t/ WD R
� Qh.�; t/; t

�
; t 2 Œ0; 1�:

Then h satisfies the required properties.
Note that

h0 D Qh0; h1 D Qh1: (2.5)

Step 2. We can modify h into a map (still denoted by h and belonging to C1.S2 �
Œ0; 1�;S2/) satisfying, besides properties (1)–(3), also a stronger version of (4),
namely

(4’) there exists � 2 .0; 1/ such that, setting B� WD fx 2 R
2 W jxj < �g � R

2,

h.x; t/ D x C Ot .jxj2/; x 2 B�; t 2 Œ0; 1�; (2.6)

21Making use of (2.4), we defineR.�; t / as follows. Let us identify S
2 with the unit sphere in R

3 and
endow it with parallels and meridians with the north pole identified with 1 and 0 2 S

2 identified
with the south pole. The stereographic projection from the north pole to the tangent plane at the
south pole provides an identification of points of R2 with points of S2 n f1g (we employ a scale
reduction of a factor 2 on the stereographic projection so that the equator is mapped onto the unit
circle of R2). Suppose first that Qht .0/ is not the south pole. Let P.t/ be the intersection between the
equator of S2 and the meridian passing through (the poles and) Qht .0/. Let r.t/ be the line (in R

3)
joining p.t/ to q.t/, where p.t/ [respectively q.t/] is the point on the equator having the longitude
of P.t/ plus (respectively minus) �=2. Then R.�; t / is the (smallest) rotation around r.t/ sending
Qht .0/ into the origin. This is a rotation of angle given by the latitude of Qht .0/ plus �=2, clearly
this rotation takes the above-mentioned meridian into itself. If Qht .0/ is the south pole, we define
R.�; t / WD idS2 .�/. Then, R.�; t / 2 DiffC.S2/, and R is of class C1 and satisfies the required
properties.
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uniformly with respect to t 2 Œ0; 1�; that is, Ot .jxj2/ is a smooth map of .x; t/,
such that

sup
t2Œ0;1�

jOt .jxj2/j
jxj2 < C1:

Given x 2 R
2, let Jht .0/ be the Jacobian matrix of ht (with respect to x) evaluated

at x D 0. Making use of the compactness of Œ0; 1�, let us select � 2 .0; 1/ with the
property that

.Jht .0//
�1.B�/ �� B1; t 2 Œ0; 1�:

Define, for any t 2 Œ0; 1�, the map �t W S2 ! S
2 as follows:

�t .x/ WD

8̂
<̂
ˆ̂:
.Jht .0//

�1x if x 2 B�;
 .x; t/ if � � jxj < 1;
x if jxj 
 1 or x D 1;

where the C1 map  glues the values of �t in order to ensure that �t belongs to
DiffC.S2/.

In order to get condition (4’), it is then enough to consider the composite map

.x; t/ 2 S
2 � Œ0; 1� ! h.�t .x/; t/;

and to use a Taylor expansion. The uniformity of the remainder in (2.6) with respect
to t 2 Œ0; 1� is a consequence of the invertibility of Jht .0/ and the compactness of
Œ0; 1�.

This concludes the proof of step 2. Observe that (2.5) is still valid.
Now, we have to find a neighbourhood of the origin which is fixed by ht .
Step 3. We can modify the map h into a map h 2 C1.S2 � Œ0; 1�;S2/, satisfying,

besides properties (1)–(3), also

(4”) h.x; t/ D x for any x 2 B� and any t 2 Œ0; 1�.
Choose a function ˛ W S2 ! Œ0; 1� of class C1 such that

– ˛.x/ D 0 if jxj 
 �,
– ˛.x/ D 1 if jxj � �=2,
– there exists C 2 .0;C1/ such that supx2S2 jr˛.x/j � C=�.

Next, define

h.x; t/ WD ˛.x/x C .1 � ˛.x//h.x; t/; .x; t/ 2 S
2 � Œ0; 1�;

so that h.x; t/ D x for any x 2 B�=2, and h D h in .S2 n B�/ � Œ0; 1�.
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The Jacobian matrix of ht at x 2 R
2 is computed as

Œ˛.x/Id C .1 � ˛.x//Jht .x/�C .x � ht .x//˝ r˛.x/;

where:

– the first term is an approximation of the identity as � ! 0C by (4)’ uniformly
with respect to t 2 Œ0; 1�. Indeed

Œ˛.x/Id C .1� ˛.x//Jht .x/� � Id D .1 � ˛.x// �Jht .x/ � Id
�
;

and by (4)’

k.1 � ˛.x//
�
Jht .x/ � Id

� k � kJht .x/ � Idk � jOt .jxj/j;

where Ot .jxj/ is a smooth map of .x; t/, such that

sup
t2Œ0;1�

jOt .jxj/j
jxj < C1I

– the second term (supported in B�) is infinitesimal as � ! 0C: indeed, by (2.6),
we have that x � ht .x/ behaves quadratically in jxj (uniformly with respect to
t 2 Œ0; 1�), hence it is of the order of �2, while jr˛j blows up at most as C=�.

It follows that the determinant of the Jacobian of h is everywhere positive. We
conclude by resorting to [13, Proposition 2.30]: on the one hand, by the properties
of h, in S

2 n B� (where it coincides with h) we have that ht has degree one. On
the other hand, knowing that the degree is one, positivity of the determinant of the
Jacobian implies that every point of S2 has exactly one preimage.

Finally, we define

h.x; t/ WD inv.h.inv.x/; t//; x 2 R
2; t 2 Œ0; 1�:

Then h satisfies the required properties.
If n D 3, the proof follows along the lines as in the case n D 2, with the following

differences. One has to use, in place of [19, 20], the results of [6, Section 1, pp. 1,3]
(see also [5]), which gives a smooth path QH W S

3 � Œ0; 1� ! S
3 of positive C1

diffeomorphisms of S3 such that QH.�; 0/ D id in S
3 and QH.�; 1/ D QF.�/, where QF is

a positive diffeomorphism of S3 (R3 compactified with the addition of the point 1)
extending F . In addition, the rotationR in the proof of the case n D 2 must now be
replaced by the map

� W x 2 S
3 !

(
x � QHt .0/ if x 2 R

3;

1 if x D 1:
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To establish the regularity of � in a neighbourhood of 1, we have to use a local
chart, in order to replace 1 with 0; this can be done using the spherical inversion
inv defined as in (2.3) with S

3 replacing S
2. In the new chart, inv.�.inv.x/// is of

class C1, since

inv.�.inv.x/// D 1

jinv.x/ � QHt.0/j2
�
x

jxj2 � QHt.0/

�

D 1

1 � 2x � QHt.0/C jxj2j QHt.0/j2
�
x � jxj2 QHt.0/

�

Dx C 2. QHt.0/ � x/x C jxj2 QHt.0/C O.jxj3/ as x ! 0;

and the Jacobian of inv.�.inv.x/// converges to the identity as x ! 0. We can now
regularize by convolution the function inv.�.inv.�///, using a standard convolution
kernel independent of t , and with sufficiently small support. ut

2.4 Ambient Isotopic and Diffeomorphically Equivalent
Apparent Contours

In various parts of the book we will be interested in structural properties of
apparent contours; it is then convenient to introduce suitable notions of isotopies
and equivalence between apparent contours.

Let us denote byM1 andM2 two closed two-dimensional manifolds of class C1.

Definition 2.4.1 (Ambient Isotopic Apparent Contours) Let

'1 W M1 ! R
2; '2 W M2 ! R

2

be two stable maps. We say that appcon.'1/ and appcon.'2/ are C1
R
2 ambient

isotopic (briefly, ambient isotopic) if there exists an R
2-ambient isotopy h W R2 �

Œ0; 1� ! R
2 with compact support such that

h1.appcon.'1// D appcon.'2/;

and

f'2 ı h1 D f'1:

Therefore, two apparent contours are ambient isotopic if there exists a path t 2
Œ0; 1� ! ht .�/ 2 Diffc.R

2/ with origin the identity, taking at the final time one
apparent contour into the other, and respecting the values of the functions f'1 , f'2
(this latter condition being equivalent to consistency of the R2-ambient isotopy with
the orientation of the arcs of the apparent contour).
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Definition 2.4.2 (Diffeomorphically Equivalent Apparent Contours) Let

'1 W M1 ! R
2; '2 W M2 ! R

2

be two stable maps. We say that appcon.'1/ and appcon.'2/ are diffeomorphically
equivalent if there exists # 2 Diffc.R

2/ such that

#.appcon.'1// D appcon.'2/; (2.7)

and

f'2 ı # D f'1: (2.8)

Definitions 2.4.1 and 2.4.2 are equivalent, as the following result shows.

Theorem 2.4.3 (R2-Ambient Isotopies and Diffeomorphisms) Let

'1 W M1 ! R
2; '2 W M2 ! R

2

be two stable maps. Then appcon.'1/ and appcon.'2/ are ambient isotopic if and
only if they are diffeomorphically equivalent.

Proof Suppose that appcon.'1/ and appcon.'2/ are ambient isotopic. Then, the map
# WD h1 belongs to Diffc.R

2/, and (2.7) and (2.8) hold. Conversely, if appcon.'1/
and appcon.'2/ are diffeomorphically equivalent, then they are ambient isotopic, as
a consequence of Theorem 2.3.3. ut

A first use of the diffeomorphic equivalence between apparent contours is given
in the next section.

2.5 Morse Descriptions of an Apparent Contour

In this section we shall consider again the case X D M a closed two-dimensional
manifold, and Y D R

2. In a number of problems, it is convenient to seek a way to
describe an apparent contour, capable of keeping track of its topological structure,
and insensitive to smooth sufficiently small deformations of R

2.22 We shall use
this description for solving the completion problem (Chap. 4), to give a natural
description of the invariant B.appcon.'// defined in Sect. 7.1, and, above all, for
algorithmical applications (Chaps. 9 and 10). It turns out that this description can
be achieved by a simple technique obtained by adapting the methods of Morse

22This task is similar to describing a prime knot in knot theory by means of notations like the one
introduced by Dowker-Thistletwaite [16, p. 7], see also the combinatorial description of knotted
surfaces in [4, pp. 21,22].



2.5 Morse Descriptions of an Apparent Contour 43

theory [2]. As seen in Sect. 2.2, an apparent contour is essentially a 1D manifold
with the addition of singular points, namely crossings and cusps. This suggests the
introduction of a height function with the usual nondegeneracy properties of a Morse
function, and further requirements that take into account the singular points. Such
additional requirements would be similar (and simpler, due to the lower dimension)
to those that define a stratified Morse function,23 the stratification of appcon.'/
being defined as the set of crossings and cusps as the zero-dimensional stratum, and
its complement as the one-dimensional stratum. By scanning the apparent contour
while moving the level of the height function, we can keep track of all critical
changes in the local shape of the apparent contour: local maxima/local minima are
typical of standard Morse theory (for one-dimensional manifolds). To them we must
add new Morse events: traversing of a crossing and traversing of a cusp.

However, by doing so, we shall lose information about the relative position, in the
plane, of the point of the apparent contour originating the Morse event with respect
to the rest of the apparent contour, in particular to the other regular points at the
same level (same value of the height function). Therefore, we adapt this approach in
a way that takes into account the embedding of the apparent contour in R

2. It turns
out that appcon.'/ defines a stratification of the plane having the set of crossings
and cusps as the zero-dimensional stratum, its complement in appcon.'/ as the
one-dimensional stratum and R

2 n appcon.'/ as the two-dimensional stratum. We
could thus consider height functions defined on the whole of R2, that are stratified
Morse functions with respect to the given stratification (see again Definition 6.2.3).
Actually, here we do not need this generality; moreover, it is convenient to depart
substantially from the details of such an approach in the vicinity of a cusp, in order
to simplify the resulting description.

In the end, we shall be able to describe the apparent contour in terms of a finite
sequence of events. This sequence can be readily converted into a sequence of
typographical characters to be used, for instance, as input for a computer program
that implements specific computations on apparent contours as the ones described
in Chaps. 9 and 10. As already said, a Morse description of an apparent contour24

will also be used in Chap. 7 and, in the context of labelled apparent contours, in
Sect. 4.4, for the completion problem of visible contours. A software program that
automates the completion process will be illustrated in Chap. 9.

The Morse description will be:

• Finite: the description requires only a finite sequence of symbols, taken from a
finite set. The action of an element of Diffc.R

2/ leads to a deformed apparent
contour that might or might not have the same Morse description.

• Complete: two apparent contours with the same Morse description are ambient
isotopic. This last property is crucial, and a proof will be sketched at the end of
Sect. 2.5.4.

23See [11] for the definition of stratifications and stratified maps. Compare also with Chap. 6,
Definition 6.2.3.
24See, e.g., [4].
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Definition 2.5.1 (Morse Lines) By a one-parameter family of Morse lines travers-
ing R

2 we mean a C1 diffeomorphism25 m W R�R D Rs �R	 ! R
2 D R

2
x which

is the identity out of a bounded set of R � R.

The first variable of m will be denoted by s and the second variable by 	.
If p 2 R

2 has coordinate x D .x1; x2/, with 	.p/ we shall thus refer to the second
component of the inverse m�1 of m, which will play the role of the aforementioned
Morse height function. The first component of the inverse of m will be usually
denoted by s D s.p/ and used as a parametrization of the lines of constant 	,
called Morse lines.

For any 	 2 R we set m	.�/ WD m.�; 	/, which is an oriented curve “traversing”
R
2. Note that if 	1 ¤ 	2 then m	1.R/\ m	2.R/ D ;.
Since all apparent contours that we shall consider are compactly contained in the

square � D .0; 1/ � .0; 1/, we can suppose without loss of generality that m is the
identity outside �, so that

m0.Œ0; 1�/\ appcon.'/ D m1.Œ0; 1�/\ appcon.'/ D ;:

For any given point p 2 R
2 there is a unique value of 	 D 	.p/ 2 R such that the

Morse line m	.�/ passes through p. In this way the height function 	.p/ is defined
in the whole of R2 and in particular on the apparent contour.

Remark 2.5.2 (Horizontal Morse Straight Lines) Up to the action of an element in
Diffc.R

2/, we can suppose that m is the identity everywhere, so that the Morse lines
m	 become horizontal straight lines at height 	. It is therefore equivalent to leave the
apparent contour unchanged and choose m appropriately or to deform the apparent
contour (by smoothly deforming the plane) and choosing m as the identity map.
Note also that using m�1.p/ D .s.p/; 	.p// in place of p D .x1; x2/ is equivalent
to a change of (curvilinear) coordinate system: in the modified coordinate system
we can take m to be the identity without having to deform the apparent contour
and again the Morse lines m	 become horizontal straight lines. In Fig. 2.5 the same
apparent contour is drawn in the x1x2 coordinate system (left picture) and in the s	
coordinate system (right picture).

2.5.1 Genericity of Morse Lines in Case of No Cusps

Suppose for the moment that the apparent contour does not contain cusps. Given
	 2 Œ0; 1�, we say that m	.�/ is generic if m	.Œ0; 1�/ does not contain any crossing,
it intersects appcon.'/ in a finite set and each intersection is transverse.

25Notice that m can be thought of as an element of Diffc.R
2/.
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Fig. 2.5 The descriptive map m (Definition 2.5.4) can be regarded as an alternative coordinate
system. In the new system (right) the Morse curves (dotted lines in the left figure) become
horizontal straight lines (right). Note that the interior local maximum remains after the coordinate
change

We say in turn that m is generic if m	.�/ is generic for all 	 except for a finite
set f	1; : : : ; 	ng of values called critical levels (or critical values), with 1 > 	1 >

	2 > � � � > 	n > 0. Moreover for any N	 2 f	1; : : : ; 	ng we require that there exists
a unique Ns 2 .0; 1/ such that mN	.Œ0; 1� n fNsg/ intersects transversally appcon.'/ in
a finite set of points not in crossings.appcon.'// (i.e., mN	 would be generic but for
the presence of the point mN	.Ns/) and, if we set p WD mN	.Ns/ 2 appcon.'/, we have
exactly one of the following items:

– p is a crossing with the two tangents transversal to the Morse line;
– p is an intersection point with appcon.'/ locally on one side of the Morse line

(a local maximum or a local minimum).

Since crossings are in a finite number we can readily adapt the standard
arguments of Morse theory and conclude that the set of generic families of Morse
lines is dense in the set of C1 diffeomorphisms of the plane. This means that the
identity is generic up to a small deformation (equivalently, that the identity is generic
if we slightly deform the apparent contour).

In view of Remark 2.5.2, we shall assume that each m	 is a horizontal straight
line. Therefore we call m a generic family of horizontal Morse lines for appcon.'/.
We choose an orientation of R2 and we take the convention that the lines foliate R2

from top to bottom as 	 2 R decreases.
Recall that the family of Morse lines m	.�/ can equivalently be seen as the family

of level curves of the Morse height function 	.p/. In this context the critical levels
correspond to self-intersections and (nondegenerate) critical points of the Morse
function.

2.5.2 Morse Lines in Case of Cusps: Markers

Cusps of the apparent contour are treated in a special way. Indeed it is convenient
to view cusps simply as marked points along an otherwise smooth arc (either
closed or connecting pairs of crossings). This is accomplished for any cusp c 2
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cusps.appcon.'// by devising the diffeomorphism m so that the Morse line m	

passing through c is tangent to the cusp (namely, tangent to the two arcs ending at
c). This is clearly achievable by a local modification of the diffeomorphism m in a
sufficiently small ball centred at c.

Equivalently, as shown in Fig. 2.7, we can deform the apparent contour locally
around the cusp and make it tangential to the Morse line through it; if m is the
identity, this is equivalent to require that cusps are horizontal. Compare also Fig. 2.5,
in which the use of the s	 coordinate system allows to leave the apparent contour
unchanged; see also Remark 2.5.2.

Remark 2.5.3 It is important to clarify that the above described modifications (of
m or of the apparent contour) are not small in terms of the W 1;1-norm, since we
are substantially changing the derivatives of m or the slope of the apparent contour.
Moreover the required tangentiality property is lost under small perturbations of m
or of the apparent contour in the Whitney topology. However such a requirement is
perfectly legitimate and well suited for our purposes. Indeed, if the cusp were not
tangent to the Morse line, then necessarily the apparent contour would lie locally on
one side, similarly to the case of local maxima/minima, and this would confuse the
resulting description.

To take into account the presence of cusps we accordingly modify the definition
of one-parameter family of Morse curves as follows.

Given 	 2 Œ0; 1�, we say that m	.�/ is generic if m	.Œ0; 1�/ does not contain any
crossings or cusps, it intersects appcon.'/ in a finite set and each intersection is
transverse.

Definition 2.5.4 (Descriptive Map of an Apparent Contour) We say that m is a
descriptive map of appcon.'/ if:

(1) there exists a finite set f	1; : : : ; 	ng of real numbers, called critical values, with
1 > 	1 > 	2 > � � � > 	n > 0, such that m	.�/ is generic for any 	 2 Œ0; 1� n
f	1; : : : ; 	ng;

(2) for any N	 2 f	1; : : : ; 	ng there exists a unique Ns 2 .0; 1/ such that mN	.Œ0; 1� n
fNsg/ intersects appcon.'/ in a finite set of points and each intersection is
transverse and belongs to appcon.'/ n nodes.appcon.'//. Moreover, if we set
p WD mN	.Ns/ 2 appcon.'/, we have exactly one of the following items:

(a) p is a crossing with the two tangents transversal to the Morse line mN	.R/;
(b) p is neither a crossing nor a cusp of appcon.'/ and is a local maximum or

a local minimum, namely appcon.'/ lies locally on one side of the Morse
line mN	.�/ with the values of 	 being locally smaller than N	 for a maximum
and locally larger than N	 for a minimum;

(c) p is a cusp and the Morse line is tangent to the two arcs ending at p; in
view of the local shape of cusps which forces the curvature to blow up both
at C1 and at �1 at the cusp, the Morse line must necessarily traverse the
apparent contour at p, i.e., the two arcs at p are locally in opposite sides
with respect to the Morse line.
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The pair .Ns; N	/ in Definition 2.5.4 is called critical point; with a slight abuse of
notation we shall also refer to mN	.Ns/ as a critical point.

Since a Morse line through a cusp crosses locally the apparent contour, from
the point of view of the Morse description a cusp behaves essentially in the same
way as a regular point at a regular value of 	, at which the Morse line has only
transversal intersections. Moreover the local geometry of the cusp is, up to a
compactly supported C1 diffeomorphism of R2, completely determined and only
depends on the local orientation of the two arcs ending at the cusp. Namely the cusp
points to the right if the two arcs are oriented upwards, and it points to the left if
the two arcs are oriented downwards; here, we suppose for definiteness that m is the
identity, i.e., the Morse lines are horizontal straight lines oriented from left to right
for increasing values of the parameter s.

In other words, a cusp can be reconstructed (up to the action of an element of
Diffc.R

2/) if we substitute it with a distinguished point (that will be called a marker
or marked point) on the arc, obtained by glueing the two arcs meeting at the cusp
in a smooth way and with a non-horizontal tangent; this is described in Fig. 2.8.
Concretely, we smooth out all cusps and only keep track of them by marking their
former position along the arcs.

Definition 2.5.5 (Extended Arcs) The relatively open arcs that result after glueing
at cusps will be called extended arcs.

As an example, the apparent contour of Fig. 2.6 can be conveniently described
using the equivalent sketch of Fig. 2.8 in which we have five extended arcs, two of
them containing two markers each (representing the four cusps).

We shall still regard such markers as formally representing cusps, so that they
will still be listed in nodes.appcon.'//.

Remark 2.5.6 For clarity of exposition, cusps (marked points) are considered
singular points in the definition of a generic m	.�/ (i.e., the intersection of m	.�/
with appcon.'/ at a marked point implies that m	.�/ is nongeneric). However the
topological structure of the apparent contour does not change when locally crossing
such a critical level and the only required information for our purposes is the

Fig. 2.6 An example of oriented apparent contour with two crossings and four cusps (M is a
torus)
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Morse line

Morse line

Fig. 2.7 A cusp in general position with respect to the Morse line (left) can be locally deformed
into a cusp tangent to the Morse line (right)

Fig. 2.8 Substitution of a marker in place of a cusp in the apparent contour of Fig. 2.6. Cusps are
moved so that they have different height, which is a required condition for m to be a descriptive
map using a family of horizontal Morse lines

number of cusps contained in each extended arc of appcon.'/. Such extended arcs
are curves that do not contain any crossing, which are either closed or have crossings
as endpoints.

Remark 2.5.7 In Sect. 10.2 we shall introduce another description of an apparent
contour, called the region description, which is also well suited for being imple-
mented on a computer.

2.5.3 The Morse Description

A descriptive map m W R � R ! R
2 provides a way to encode the shape

of the apparent contour, up to deformations by a C1 diffeomorphism of R
2 (or

equivalently of R � R) with compact support. For any given 	 2 .0; 1/ we have
a finite set of intersections of the Morse line m	.�/ with appcon.'/, all of these,
except at most one, are transverse, with an arc a of the apparent contour that
crosses the Morse line upwards (following the canonical orientation, a crosses the
Morse line with increasing values of 	) or downwards (a crosses the Morse line
with decreasing values of 	). For regular values of 	 (i.e., when m	.�/ is generic),
these are the only possible intersection points. Since we seek a description up to
the action of Diffc.R

2/, it is not important to record the values of the parameter
s corresponding to these crossings, but only their relative ordering together with a
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sign distinguishing between upward and downward crossings. Therefore we end up
with a finite sequence of symbols taken from

f";#g:

If 1 > 	1 > � � � > 	n > 0 are the critical values of 	, the sequence of arrows
does not change for all values 	 2 Sn�1

iD1.	iC1; 	i /. Hence it suffices to choose one
regular value for each interval between two consecutive critical values to represent
the whole regular interval.

At a critical level N	 D 	i for some i 2 f1; : : : ; ng we have a special intersection
point which, according to its type and depending on the local orientation of the arcs
involved, corresponds to one of the following (finite) list of symbols

which, together with the symbols " and #, allows to encode the shape information
associated with N	. Finally, the information in a regular interval can be easily inferred
from the information at one of the two critical values bounding the interval, and can
thus be omitted.

In the end we can encode the shape information with a list of n sequences of
symbols, each taken from the lists above, exactly one of which is not in f";#g.

Remark 2.5.8 (Morse Description and Diffeomorphic Equivalence) Two diffeo-
morphically equivalent apparent contours (Definition 2.4.2) do not necessarily have
the same Morse description. Similarly, an apparent contour has infinitely many
different Morse descriptions.

Example 2.5.9 (Morse Description of a Torus) To illustrate this we give the encod-
ing corresponding to the apparent contour of Fig. 2.8 (right) where the four markers
are just a graphical replacement for small horizontal cusps:
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The critical levels are the following:

Oriented global maximum: �� . The orientation is necessarily from the right to the
left.

Oriented local maximum, having one arc on the left (respectively on the right)
oriented downwards (respectively upwards): # �� ".

Oriented marked point � having one arc on the left oriented downwards and two
arcs on the right oriented upwards: # � " ".

Oriented marked point � having two arcs on the left oriented downwards and one
arc on the right oriented upwards: # # � ".

Oriented crossing, having one arc on the left (respectively on the right) oriented
downwards (respectively upwards): # %& ".

Oriented crossing, having one arc on the left (respectively on the right) oriented
downwards (respectively upwards): # .- ".

Oriented marked point � having one arc on the left oriented downwards and two
arcs on the right oriented upwards: # � " ".

Oriented marked point � having two arcs on the left oriented downwards and one
arc on the right oriented upwards: # # � ".

Oriented local minimum �� , having one arc on the left (respectively on the right)
oriented downwards (respectively upwards): # �� ".

Oriented global minimum �� .

Remark 2.5.10 (Morse Description and Labelling) In Sect. 3.4 (see also Defini-
tion 4.2.5) we shall introduce a labelling of the apparent contour, which is, in
essence, just a nonnegative integer tag attached to each arc. For such labelled
apparent contours the Morse description is slightly more complex. Indeed we need
to add one or more nonnegative integers to each symbol encoding the corresponding
value of the labelling: one integer is enough for the symbols representing transversal
crossings f";#g and local maxima/minima f �� ; �� ; �� ; �� g, two integers are
necessary to give the values of the labelling before and after a cusp for the symbols
in f�;�g, and finally four integers are required for giving the labelling of the four
involved arcs at a crossing for the remaining symbols.

2.5.4 Recovering the Shape from a Morse Description

Given the list of symbols obtained from an apparent contour appcon.'/with the pro-
cedure described above and using m as descriptive map, we can physically construct
a representative apparent contour and prove that it is diffeomorphically equivalent to
appcon.'/ (Definition 2.4.2). From this it readily follows the completeness property
listed at the end of the introductory text of Sect. 2.5. In the construction below all
diffeomorphisms are assumed to be of class C1 and with compact support.

Step 1: construction of the representative when appcon.'/ does not contain
cusps.
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We start by constructing a grid of relevant points as follows. Let n be the number
of lines of symbols in the Morse description (number of critical levels). Let us
introduce n equally spaced horizontal lines in the square � D .0; 1/ � .0; 1/ and
on each line (starting from the top) fix a number of equally spaced points in the
same number as the symbols in the corresponding line of the Morse description.
The constructed set of points corresponds to the intersections of the Morse line
with the apparent contour at the critical levels. Now, we connect the points on
two adjacent horizontal lines with oriented segments consistently with the type
indicated by the corresponding symbols. This is clearly possible since the Morse
description actually comes from some apparent contour. In this way we end
up with an oriented polygonal apparent contour that can be smoothed out with
standard smoothing techniques without moving the points of the grid and using
only horizontal displacements. Let us call ‰ the resulting apparent contour and let
Nm be the corresponding descriptive map (which is actually the identity map). On one
side it is clear that the Morse description of‰ given by Nm coincides with our Morse
description. On the other side we can prove that ‰ is diffeomorphically equivalent
to appcon.'/. First, by preliminarily using m as a diffeomorphism of the plane, we
can assume without loss of generality that m is the identity map. Then we can map
the n critical levels of m onto the equally spaced lines used to construct ‰ with an
increasing diffeomorphism of the x2-coordinate; we can thus assume that the critical
levels of m are exactly the same as those of Nm. Eventually, for any given height x2
we map diffeomorphically the intersection points of m onto those of Nm. This can be
done in view of our construction and can also be done smoothly with respect to the
x2-coordinate, giving the desired equivalence.

Step 2: dealing with the cusps.
Cusps can be introduced into the representative apparent contour at the end of the

previous construction (obtained as if cusps were not present). We simply deform the
apparent contour in a small enough neighbourhood of the cusp point by introducing
a rescaled version of the standard semicubic cusp with horizontal tangent and
oriented to the right or to the left according to the orientation of the arcs ending
at the cusp. It is again possible to prove the diffeomorphically equivalence of ‰
with appcon.'/ by locally modifying around cusps the diffeomorphism constructed
in step 1.
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Chapter 3
Apparent Contours of Embedded Surfaces

In this chapter we adapt the notions introduced in Chap. 2 to the special case of the
apparent contour of a smooth, possibly nonconnected, compact surface † without
boundary embedded in R

3. Embeddedness allows to enrich an apparent contour with
a labelling, which, in particular, permits to define the visible contour.

3.1 Three-Dimensional Scenes

Let us start by defining what we mean by a three-dimensional scene.

Definition 3.1.1 (3D Scene) By a 3D scene E (a scene, for short) we mean the
closure of a bounded open subset of R3 having boundary @E of class C1.

We recall that @E is of class C1 if the following holds: for any point p 2 @E

there exist a ball B centred at p and an orthogonal coordinates system of R3 such
that B \ @E (respectively B \ E) can be written as the graph (respectively the
subgraph intersected with B) of a function of class C1 defined in an open subset of
R
n�1.
We shall always assume thatE � Q D ��I , namely that the scene is contained

in the open portionQ of cylinder over the open square� D .0; 1/� .0; 1/.
From the definition, it follows that the set E is the union of a finite number

of smooth, compact, pairwise disjoint connected components (sometimes called
bodies), each connected component being the closure of a bounded open subset
of R3. In the sequel, in order to simplify notation, the boundary of E will be often
denoted with the symbol†, which is an orientable, possibly nonconnected, closed1

1Recall that closed here means compact without boundary.
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retinal plane

x1

E

scene

Σ= boundary of E
x2

z

observer

apparent contour of Σ

z = − ∞

Fig. 3.1 The left-oriented orthonormal basis fe1; e2; e3g. The span of e1 and e2 is the retinal plane,
which lies in between the observer and the scene

surface of class C1, embedded in R
3. It is clear that R3 is partitioned as the disjoint

union of the interior of E , of †, and of the complement R3 n E of E .
In our framework, the scene is seen from the point of view of an observer lying

far away from E . As explained in the Introduction and in Chap. 1, one of our main
interests is to reconstruct E , or at least its topology, starting from information on
a two-dimensional picture of E taken by the observer. The picture of E lies on
a “retinal plane” where points of E are projected: conventionally, we imagine the
retinal plane to be interposed between the observer and E itself, as in Fig. 3.1. In
this way we can recover the 2D picture by looking at the intersections of the light
rays connecting a point on † with the point of view. The actual position of the
retinal plane is not really important, and positioning the plane behind the scene
(with respect to the observer) would make no real difference.

We will be concerned with the case of an observer situated at infinite distance
from E , and of an orthogonal projection from R

3 onto the retinal plane. This
suggests the following splitting.

3.1.1 Splitting of R3

Let us denote by fe1; e2; e3g a left-oriented orthonormal basis of the ambient space
R
3, see Fig. 3.1, where the z-axis corresponds to e3. We split R3 as

R
3 D R

2 ˚ R;

so that a point p 2 R
3 has coordinates .x; z/ in the basis fe1; e2; e3g, with x D

.x1; x2/ 2 R
2 and z 2 R. The coordinate z has the meaning of depth and increases

from the observer toward the scene. We fix the plane fz D 0g D spanfe1; e2g to
be the retinal plane. Since by our convention the retinal plane lies in between the
observer and E , the scene is, from the point of view of the observer, behind the
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retinal plane2: points of E have positive third coordinate z, while the observer is
situated at z D �1.

We denote by

� W R3 ! R
2 � f0g; �.x; z/ WD .x; 0/; (3.1)

the orthogonal projection ontoR2; whenever no confusion is possible, we shall often
write R

2 in place of R2 � f0g. As we shall see, the apparent contour of † will be
the planar image, via the map � , of a suitable set of curves lying on †. In the
terminology of computer vision, the planar image of E is sometimes called the
outline of the scene, while the boundary of the outline is called the contour [12,
Chap. 8].

When E is considered as consisting of opaque bodies, parts of E may be
occluded by other parts. As already discussed in Chap. 1, various qualitatively
different cases can occur. For instance, the occlusion does not necessarily take place
between two different connected components ofE , since one connected component
can be partially occluded by itself, as displayed in Fig. 2 of the Introduction.
This shows that, in general, there is no depth ordering relation between the
connected components of E . In Chap. 4 we will be concerned with the problem
of reconstructing hidden portions of the apparent contour of † when E is opaque.3

Another case is when E is partially transparent, so that it may be possible
to recognize the boundary of the outline of † even in presence of occlusions.
Depending on the situation at hand, it might or might not be possible to infer the
number of layers of † crossed by the light ray before hitting an occluded target
point on †. The transparent case will be considered in Chap. 5.4

We shall always assume that the boundary of the scene is in general position with
respect to � . To properly introduce this notion (Definition 3.2.1 below) we need to
recall some concepts from singularity theory (see, for instance, [1, 2, 9] and the
references therein).

3.2 Apparent Contours of Embedded Surfaces

We now come back to the discussion started in Sect. 2.2, focusing our attention to
the case of three-dimensional scenes, therefore when our surfaces are embedded
in the three-dimensional Euclidean space. Essentially, this amounts to consider
particular maps ' that factorize through an embedding ofM inR3 and an orthogonal

2We advise the reader that in some of the figures, it will be convenient to imagine the x1x2 plane
as horizontal, with the z direction being vertical, and e3 pointing downwards.
3We shall show a completion theorem starting only from the visible part of the apparent contour.
4We shall show a reconstruction theorem of a three-dimensional shape starting from the knowledge
of the whole apparent contour, and of a consistent labelling on it.
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projection R
3 ! R

2; see (3.3) below. In this situation we are allowed to identifyM
with its embedded image† � R

3. We shall see that it is then possible to give a clear
geometric meaning to the function f' introduced in Definition 2.2.5. Moreover,
it is also possible to define a new function on the apparent contour related to the
depth ordering, leading to the concept of labelling; see, e.g., [11, 17], [7, p. 19], [6,
pp. 19,20], [3]. The labelling will be crucial in the process of global reconstruction
of a scene starting from a suitable plane graph, as described in Chap. 5.

Let there be given a scene E � R
3, and set, as usual,

† D @E: (3.2)

Consider the splitting of R3 and the projection � W R
3 ! R

2 � f0g described in
Sect. 3.1.1.

Definition 3.2.1 (General Position, Stable Scene) We say that † is in general
position with respect to � , or equivalently that the scene E is stable (or also that
† is stable), if the restriction of � to †,

�j† W † ! R
2 � f0g;

is stable.

Definition 3.2.1 can be easily related to Definition 2.1.2. Indeed, take a two-
dimensional smooth closed orientable manifold M with the same topology of †,
denote by

Emb.M;R3/ � C1.M;R3/

the set of all smooth embeddings5 of M in R
3, and take e 2 Emb.M;R3/ so that

† D e.M/:

Without loss of generality we can fix M D †, viewed as an abstract two-manifold,
and e D id. Next, define ' W M ! R

2 D R
2 � f0g as

' WD � ı e D �j†: (3.3)

Then † is in general position with respect to � if and only if the map ' is stable.6

Up to small deformations, we can assume that † is in general position with
respect to � ,7 in the following sense.

5Following, e.g., [9], a smooth embedding of M into R
3 is a smooth injective map having

differential of rank 2 (maximal) at all points of M .
6See [13] for stability theorems of composite mappings.
7This could be achieved also in terms of small changes in the viewing direction, as in [16, 17].
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Lemma 3.2.2 (Stable Scenes Up to Small Deformations) Given e 2
Emb.M;R3/ and a neighbourhood Ue � C1.M;R3/ of e, there exists Oe 2
Emb.M;R3/\ Ue such that O† WD Oe.M/ is in general position with respect to � .

Proof The composition � ı e 2 C1.M;R2/ is a map between two 2-manifolds,
and the source manifold M is closed. We recall now that the set of all stable
maps from M to R

2 is dense in C1.M;R2/ (see [9, p. 160, and Theorem 2.5 of
Chapter 6, Proposition 3.3 of Chapter 2]). Therefore, given any neighbourhoodV �
C1.M;R2/ of � ı e, there exists a stable map  2 V . We define Oe W M ! R

3 as

Oe.m/ WD . .m/; z.m// 2 R
2 � R D R

3;

where m 2 M and z.m/ is the z coordinate of e.m/ 2 R
3. In other words we use  

to deform† in the x1x2 plane while keeping the z coordinate fixed.
In particular we conclude

� ı Oe D  : (3.4)

Taking V small enough and recalling that Emb.M;R3/ is an open subset of
C1.M;R3/, we obtain that Oe 2 Emb.M;R3/ \ Ue; the stability of  and (3.4)
imply that O† WD Oe.M/ is in general position with respect to � . ut
Example 3.2.3 Figure 3.2 shows an example of † not in general position with
respect to � .

Unless otherwise specified, from now on we shall always assume that † is in
general position with respect to � .

Remark 3.2.4 (Critical Curve) Denote by d.�j†/ the differential of �j†. Since M
and † can be identified via the embedding map e, the critical set crit.'/ (where '
is as in (3.3)) can be identified with

n
� 2 † W rank

�
d.�j†/.�/

� D 1
o

D f� 2 † W the tangent plane to † at � contains spanfe3gg

22

0

Fig. 3.2 Image taken from [3]. The scene E consists of two disjoint three-dimensional closed
balls at different depth. We display the values of f† (see formula (3.5)). This scene is not stable.
See [9, p. 88] for more information
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which, as we already know, consists of a finite set of pairwise disjoint connected
components, each component being a smooth closed simple curve in †, and will be
called the critical curve. At the points of the critical curve, the projection � maps
the tangent plane onto a line, and e3 generates the kernel of d.�j†/.

Definition 3.2.5 (Apparent Contour) Let ' be as in (3.3). The apparent contour
appcon.'/ of ', denoted by

G†;

will be called the apparent contour of †.

With a small abuse of language, sometimes G† will be called the apparent
contour of the 3D shape E (recall (3.2)).

The reason for using the symbol G† is that it reminds the notion of graph; as
we shall see, graphs will be of frequent use in the next chapters. Accordingly, arcs,
crossings, cusps and nodes of G† are denoted by

arcs.G†/; crossings.G†/; cusps.G†/; nodes.G†/;

respectively. The external region will be denoted by

ext.G†/:

To have a better geometric insight, let us list some of the properties of the apparent
contours in this embedded case. Under our stability assumptions the apparent
contour of † coincides with the set of all points x 2 R

2 such that there exists a
point .x; z/ belonging to ��1.x/\† where ��1.x/ and† are nontransverse. More
precisely:

– if x 2 arcs.G†/ then, inside the finite set of points of ��1.x/ \ † there is
only one, call it .x; z/, which is a nontransverse intersection, and the intersection
multiplicity at .x; z/ is two.

– If x 2 cusps.G†/ then, inside the finite set of points of ��1.x/ \ † there is
only one, call it .x; z/, which is a nontransverse intersection, and the intersection
multiplicity at .x; z/ is three. See also Fig. 3.3.

– If x 2 crossings.G†/ then, inside the finite set of points ��1.x/ \ † there are
exactly two distinct points .x; z/ and .x;w/ which are nontransverse intersec-
tions, and the intersection multiplicity at .x; z/ and at .x;w/ is two. Moreover,
the tangent planes to † at .x; z/ and .x;w/ are non-parallel. Figure 3.4 displays
a local realization of this situation.
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Fig. 3.3 A smooth fold
generating a cusp in the
apparent contour: here the
vertical direction is the
direction of the observer.
Compare also with
Example 3.3.3

Fig. 3.4 Two smooth folds,
one behind the other,
generating a crossing in the
apparent contour

3.3 The Function f†

Assuming the factorization ofG in (3.3) through the embedding e and the projection
� makes it possible to give a geometric interpretation of the function f�ıe defined
in (2.2). Indeed, setting for notational simplicity

f�ıe D f†;

we have

f†.x/ D #
˚
��1.x/ \†� D #fz 2 R W .x; z/ 2 †g; x 2 R

2: (3.5)

Therefore, f†.x/ is the total number of intersections between † and the line
emanating at .x; 0/ in the view direction. As we already know, f† is constant and
even on each region, and vanishes on the external region (and obviously also out of
�). With a small abuse of notation, we denote by

f†.R/

the constant value of f† on the region R � R
2 n G†. Remember that the local

orientation of the apparent contour around a cusp c is such that the inside (i.e., the
acute part) of the cusp lies locally on the left. Hence, in a neighbourhood of c we
always have the higher number of preimages of � in the inside of the cusp (see
Fig. 3.3). Accordingly, a cusp pointing to the right is always oriented upwards. The
incoming arc of G† at c will be sometimes denoted by c� and the outgoing arc by
cC. In Fig. 3.11 we show the local values of f† around c.
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0

0

4

4

2

2

Fig. 3.5 The curve G† is the apparent contour of a three-dimensional set E consisting of two
interwoven connected components. The integer numbers are the values of the function f† on the
various regions

4

4

0

2

0

Fig. 3.6 The apparent contour of a torus, together with the values of f† on the regions

Fig. 3.7 Image taken from [3]. Pair of consecutive cusps. The configuration on the right is not
allowed in an apparent contour G†, in view of the properties of the function f† (the highest value
of f† is taken in the acute part of the cusp)

In Figs. 3.5 and 3.6 we show two examples of apparent contour G† with the
values of f† on the regions; Fig. 3.5 corresponds to an occlusion between two
different objects, none of them being in front of the other, and Fig. 3.6 corresponds
to a torus.

In Fig. 3.7 (right) we show an example of two consecutive cusps which cannot
appear in an apparent contourG†.

In the last two pictures of Fig. 3.11 we show the local values of f† around a
crossing. If p is a crossing, the four arcs at p will be sometimes denoted by aȧ and
aḃ (a stands for above, b stands for below) in such a way that a�

a is incoming and
is opposite to aC

a which is outgoing (aȧ belong locally to the same component of
the apparent contour). Similarly for aḃ .
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Definition 3.3.1 (Stratum) A stratum of regionR is a pair

.R; r/;

where r 2 N is an index with r 2 f1; : : : ; f†.R/g.

As a consequence, we can identify f†.x/ with the number of strata of † in front
of the point .x; 0/, for any x in a region.8

Remark 3.3.2 (The Function f† on the Apparent Contour) The function f† is
defined at all points of R2, not only on regions. In particular, its values on G† are
precisely as follows.9

– If a is an arc of the apparent contour of †, the value of f† is constant on a and
takes the mean value of f† on the two adjacent regions. For instance, the value
of f† on the two vertical arcs in Fig. 3.4 is 1

2
.2C 4/ D 3 on the upper part, and

1
2
.0C 2/ D 1 on the lower one (remember that the apparent contour is oriented,

and the higher value of f† is taken on the region locally on the left, and equals
the lower value plus two). Again with a small abuse of notation, when necessary
we will denote by

f†.a/

the value of f† on the arc a.
– If x is a crossing of G†, then f†.x/ is the mean value of f† on the four

neighbouring regions. For instance, in Fig. 3.4 the value of f† on the crossing
is 1

4
.0C 2C 2C 4/ D 2.

– If c is a cusp of G†, then f†.c/ is the minimum of the values of f† over the two
regions adjacent to c.

Example 3.3.3 (Local Equations Around a Cusp) The simplest way to obtain an
ordinary cusp point in a plane curve is to project a space twisted cubic curve, see
[5, Chapter 1], [9, pp. 146,147], [8, p. 10]. Assume10 that the tangent plane to † at
.0; 0; 0/ is spanned by e1 and e3, and that locally around .0; 0; 0/ the set † takes the
form

f.x1; x2; z/ W x2 D Fc.x1; z/g ;

8The critical curve divides, with the terminology of [16], the “anterior” surfaces from the
“posterior” ones.
9Compare with Remark 2.2.6 which deals with a more general case.
10For simplicity, in the present example, the set E is not disjoint from the retinal plane. Clearly,
this assumption is irrelevant.
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Fig. 3.8 Image taken from
[3]. The surface represents
the graph of the function Fc
in (3.6). The plane is
f.x1; x2; z/ W x2 D 0g, and is
tangent to graph.Fc/ at the
origin. The intersection of the
plane and the surface consists
of the parabola
f3x1 D z2; x2 D 0g and the
line fz D 0; x2 D 0g

where

Fc.x1; z/ WD 1

2

�
z3 � 3x1z

�
: (3.6)

In Fig. 3.8 we display the graph of Fc over the plane fx2 D 0g.
Locally around .0; 0; 0/, † is parameterized as .x1; z/ ! .x1; Fc.x1; z/; z/, and

the tangent plane is spanned by .1; @Fc
@x1
; 0/ and .0; @Fc

@z ; 1/. The condition that, on †,
the tangent plane to † contains spanfe3g (Remark 3.2.4) becomes

†\
	
@Fc

@z
D 0



:

Therefore the critical set (the critical curve, in this case) takes locally the form

˚
.x1; x2; z/ W x2 D Fc.x1; z/; x1 D z2

�
; (3.7)

and since Fc.z2; z/ D �z3, it is a curve that can be parameterized locally around
.0; 0; 0/, as

z ! .z2;�z3; z/:

This is a smooth one-dimensional submanifold11 of † the orthogonal projection of
which, on the plane spanned by e1 and e3, is the parabola x1 D z2.

Note that the intersection multiplicity of ��1.0; 0/ D fx1 D x2 D 0g with †
is three, and the differential of the restriction of � to (3.7) vanishes at the origin.
Moreover, at the origin, the order of contact [9] of ��1.0; 0/ with the singular set is
one.

11Note that e3 is the tangent vector to the critical curve at the origin, thus coinciding with the kernel
of d�j†.
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Fig. 3.9 Image taken from
[3]. The set f.x1; x2; z/ W
x1 � 0; x2 D ˙x3=21 g is
tangent to the graph of Fc
along the singular set. The
intersection contains also
another curve ‚, which
bounds the two external
layers

Fig. 3.10 Image taken from
[3]. The critical curve is the
intersection of the graph of
Fc with the cylinder over the
plane parabola x1 D z2, while
‚ lies on the cylinder
x1 D z2=4. The three layers
diffeomorphic to the acute
part of the cusp are projected
to three planar regions
bounded by the two parabolae

Locally around the origin of R2 D R
2
.x1;x2/

D R
2 � f0g, the apparent contour of

† takes the form

˚
.x1; x2/ W x22 D x31

� D ˚
.x1; x2/ W x1 
 0; x2 D ˙.x1/3=2

�

i.e., a simple cusp of R2.
The intersection of † with the set f.x1; x2; z/ W x2 D ˙.x1/3=2g (a cylinder over

the cusp f.x1; x2; 0/ W x2 D ˙.x1/3=2g) consists of the critical curve and of a smooth
curve ‚ � † the orthogonal projection of which, on the plane fx2 D 0g, is given
by the parabola f.x1; 0; z/ W x1 D z2=4g (see Figs. 3.9 and 3.10).

Indeed, points .x1; x2; z/ in

graph.Fc/ \ f.x1; x2; z/ W x1 
 0; x2 D ˙.x1/3=2g (3.8)

satisfy

x31 �
�

z3

2
� 3

2
zx1

�2
D 0
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which factorizes as

.x1 � z2/2
�
x1 � z2

4

�
D 0:

Notice also that, locally, the projection map � is a diffeomorphism outside the cusp,
and it is a triple covering over the acute part

Uinn WD f.x1; x2/ W x1 
 0;�x3=21 < x2 < x
3=2
1 g

of the cusp, see Fig. 3.8. To check that the three layers forming ��1.Uinn/ are
diffeomorphic one to the other, one may project onto the coordinate plane fx2 D
0g, with the projection map px2.x1; x2; z/ WD .x1; 0; z/. Clearly px2 restricted to
graph.Fc/ is a diffeomorphism. The three layers we are considering are bounded
by (3.8) which is the union of the critical curve and of the curve‚ with

px2.‚/ D fx1 D z2=4g:

Hence the images under px2 of the three layers are the plane regions bounded
by the image through px2 of the critical curve and by px2.‚/, and the three regions
diffeomorphic to the three layers are therefore locally given by

	
.x1; z/ W z � 0;

z2

4
< x1 < z2



;

	
.x1; z/ W z 
 0;

z2

4
< x1 < z2



;

˚
.x1; z/ W x1 > z2

�
:

3.4 Labelling an Apparent Contour: The Function d†

The factorization of ' in (3.3) allows to enrich the apparent contour with a labelling
[11], which is a function defined on the arcs of G†, and has the meaning of the
ordering induced by the depth. The starting point is the observation that, for any
x 2 R

2, there is a natural ordering between the points of the fibre ��1.x/ over x,
according to the value of the last coordinate in R

3, 0 being the nearest value to the
point of view. This ordering induces obviously an ordering on the points of the set
��1.x/ \ † consisting of f†.x/ elements, which we number from 1 to f†.x/. As
a consequence, if x 2 arcs.G†/, we can count the number of layers of† in front of
the corresponding point of the critical curve (see Remark 3.2.4), and the resulting
number will be the labelling d†.
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Definition 3.4.1 (Labelling) Given a point x 2 G† which is not a crossing, the
intersection between ��1.x/ and the critical curve consists of only one element
with coordinates .x; z/. Then the function

d† W G† n crossings.G†/ ! N

is defined as follows: d†.x/ is the number of points of ��1.x/ \ † having
coordinates .x; �/ with � < z.

The function d† is finite, and constant on each arc; namely, if x; x0 are two points
on the same arc, then d†.x/ D d†.x

0/. To address this property, we shall often say
that d† is locally constant on the arcs.12 With a small abuse of notation, if a is an
arc of the apparent contourG†, we will denote by

d†.a/

the value of d† on a.

Definition 3.4.2 (Labelled Apparent Contour of †) The pair .G†; d†/ will be
called labelled apparent contour of †.

When no confusion is possible, sometimes also G† will be called labelled
apparent contour of E .

It is useful to remember the list of compatibility conditions that f† and the
labelling d† must satisfy (consistency of a labelling).

Remark 3.4.3 (Compatibilities) The following properties hold.

– f† takes nonnegative locally constant even integer values on the regions, and
vanishes on the external region. It jumps by two when passing from a region to
an adjacent one.

– d† takes nonnegative locally constant integer values on the arcs.
– At a crossing, d† jumps by two when passing from an arc to a consecutive one,

without however jumping on the other pair of consecutive arcs, and respecting the
compatibility conditions in the last two pictures of Fig. 3.11. The case d2 > d1
happens when there is at least one intermediate transversal layer in between the
two folds.

– At a cusp, d† jumps by one when passing from an arc to the adjacent one,
respecting the compatibility conditions in the second and third picture of
Fig. 3.11.

– If x 2 arcs.G†/,

0 � d†.x/ � lim inf
x!x

f†.x/: (3.9)

12The function d† is not defined at a crossing, where it could be defined as a multifunction taking
two nonnegative integer values: we shall not need such an extension.
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Fig. 3.11 f stands for f† on the various regions; d; d1; d2 stand for the possible values of d†
on the arcs. These figures are the analog of the ones in Fig. 2.3, now enriched with the labelling.
Since in the present situation we have the embedding (see (3.3)), the central picture in Fig. 2.3
concerning the cusp gives rise to two different possibilities (observe the strict inequality d < f )
which are displayed here. In the first case d is decreasing around the cusp, while in the second case
d is increasing (see Definition 8.1.1). An example is given by the apparent contour of the torus in
Fig. 3.6. Similarly, the right picture in Fig. 2.3 generates two different possibilities, depending on
which arc is behind the other in terms of the labelling. d1 < d2 at a crossing means that the arc
labelled by d2 is “behind” the arcs labelled by d1, so that there is at least one layer of † separating
the two corresponding contours. The labelling d† is therefore constant on the arcs “closest” to the
eye, while it jumps across the “furthest” arcs (the higher value of d is adjacent to regions where the
value of f is higher). The functions f and d must satisfy various compatibility conditions around
an arc, a cusp and a crossing. See also the inequalities above the pictures. The gap shown in the
pictures for arcs at a crossing is just added for visual convenience to help to distinguish the arc
with larger values of d (where d jumps by two, broken arc) from the arc with smaller value of d
(unbroken, closer to the eye, and called emerging; see Definition 3.4.5). Image taken from [3]

Remark 3.4.4 (The Labelling d† on a Cusp) The labelling d† is defined at all points
of G† which are not crossings. In particular, its value on a cusp c is given by the
minimum of d† on the two arcs of G† meeting at c.

Notation The region inside (respectively outside) a cusp shall be often denoted by
Rinn or Rmax (respectively Rout or Rmin). We shall write f D finn D fmax in Rmax.
Around a crossing, the region where f takes the maximal (respectively minimal)
value shall be denoted by Rmax (respectively Rmin). We shall write f D fmax in
Rmax and f D fmin in Rmin.

Definition 3.4.5 (Occluding and Emerging Arcs) The two vertical arcs joining
smoothly in the fourth picture of Fig. 3.11 are called occluding arcs, and the
horizontal arc on the right of the occluding arcs is called emerging arc. Similarly, the
two horizontal arcs joining smoothly in the fifth picture are called occluding arcs,
and the vertical arc below the occluding arcs is called emerging arc.
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Observe that the emerging arc is always on the right of the occluding arcs.

Lemma 3.4.6 (Parity of Cusps) The number of cusps on a component of G† is
either even or zero.

Proof At a crossing, the labelling d† varies of an even (D 0 or 2) quantity when
passing from an arc to a consecutive one. Moreover, it varies of an odd (D 1)
quantity when passing throughout a cusp. Therefore, in order that d† attains its
original value at the starting point when travelling along the whole component of
the apparent contour, there must be an even number of cusps.13 ut

A stronger version of Lemma 3.4.6 is given in Lemma 8.1.4.

Remark 3.4.7 (Number of Nodes) The number of self-intersections (if any) of a
single component of an apparent contour can be either even or odd: indeed, if we
insert a small loop inside one of the two parts of the figure-eight in Fig. 3.12 (left)
then it is possible to check that the new graph admits a compatible labelling. On the
other hand, the number of intersections of a component of an apparent contour with
another (different) component is necessarily even.

Remark 3.4.8 The usefulness of the labelling stands on the fact that it encodes all
three-dimensional information. Indeed, as we shall prove in Chap. 5, given a plane
graph with cusps and crossings admitting a consistent labelling, it is possible to
construct a stable scene14 having that graph as its apparent contour. Furthermore,
the depth-equivalence class of the scene is unique. These results have been already
addressed in the variational model discussed in Sect. 1.5.

Now, we describe some examples of “impossible” graphs, i.e., planar graphs for
which there is no labelling satisfying all compatibility conditions.

Example 3.4.9 (Impossible Graphs) Let us consider the planar graphG in Fig. 3.12
(left). The orientation of the exterior loop is forced to be counterclockwise. On

0 4

2

0

0

2

Fig. 3.12 Example 3.4.9: two examples of graphs which are not apparent contours of some †.
Image taken from [3]

13For results concerning the number of cusps of apparent contours in general contexts, see [15,
p. 409], [14, p. 84].
14As already anticipated in the Introduction, the existence of a labelling satisfying all compatibility
conditions makes possible the construction of an abstract smooth surface M and a smooth
embedding e W M ! R

3 so that † D e.M/; see Theorem 5.3.1 for a precise statement.
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Fig. 3.13 This graph is the
apparent contour of
three-dimensional scene.
Image taken from [3]

4 0

2

2

0

0

the other hand, reversing the orientation of the figure-eight would not change the
final conclusion, so we fix the orientation as in the figure. Accordingly, in Fig. 3.12
(centre) we display the values of twice the winding number in the various regions.
To check that G admits no labelling, we argue as follows. From inequality (3.9), it
follows d D 0 on the exterior loop and on the left part of the figure-eight. Then
there is no choice of d on the right part of the figure-eight, which is consistent
with the compatibility conditions specified in the last two pictures of Fig. 3.11.
Hence G cannot be the apparent contour of a three-dimensional scene. The same
assertion holds for the graph in Fig. 3.12 (right). Indeed, once we properly orient
the graph (counterclockwise), twice the winding number on the regions takes the
values indicated in the figure. Then, any choice of d (necessarily d D 0 on the
lower arc and d D 1 on the upper one, or vice versa) leads to a contradiction with
inequality (3.9). On the other hand, the graph in Fig. 3.13 is the apparent contour of
a three-dimensional scene: define, for instance, d D 0 everywhere on G except for
the central lower arc connecting the two crossings, where d D 2.

Remark 3.4.10 (Positive and Negative Cusps on Labelled Apparent Contours) The
presence of a labelling on appcon.'/ provides a standard orientation ofM , obtained
by identifying M with an embedded closed surface in R

3 (see Theorem 5.1.1).15

In this case, recalling Definition 2.2.12, it turns out that c 2 cusps.appcon.'// is
positive (respectively negative) if the minimum of the labelling on the two arcs
incident at c is even (respectively odd). This can be checked, for instance, in
Fig. 8.116; in this case, the right figure can be identified with M , and a positive
small circle around the upper cusp has the opposite orientation with respect to a
positive small circle around the lower cusp, due to the fact that M is oriented (by a
normal vector field).

15Recall that a closed surface embedded in R
3 encloses an interior, hence an outward normal is

well defined; see, for instance, [10, p. 89].
16Notice carefully that the signs C and � in Fig. 8.1 refer to the embedding sign of a cusp
(Definition 8.1.2), and not to the notion of positivity and negativity of Definition 2.2.12.
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3.5 Ambient Isotopic and Diffeomorphically Equivalent
Labelled Apparent Contours

In Sect. 2.4 we have introduced certain isotopies and a notion of equivalence
between apparent contours. These notions, adapted to labelled apparent contours,
read as follows.

Definition 3.5.1 (Ambient Isotopic Labelled Apparent Contours) We say that
two labelled apparent contours .G†1 ; f†1; d†1/, .G2; f†1 ; d†2 / are C1 ambient
isotopic (briefly, ambient isotopic), if there exists an R

2-ambient isotopy h W
R
2 � Œ0; 1� ! R

2 with compact support such that

h1.G†1/ D G†2;

such that17

f†2 ı h1 D f†1 ;

and such that if we extend the function d†1 (respectively d†2 ) out of the arcs ofG†1
(respectively of G†2 ) to a given constant value, say C1 for definitiveness, then the
following diagram

is commutative, namely d†2 ı h1 D d†1 .

According to the discussion in Sect. 2.4, we can now give the following
definition.

Definition 3.5.2 (Equivalence of Labelled Apparent Contours) We say that two
labelled apparent contours .G†1 ; f†1 ; d†1/, .G†2 ; f†2 ; d†2/ are diffeomorphically
equivalent if there exists # 2 Diffc.R

2/ such that

#.G†1/ D G†2;

f†2 ı # D f†1 ;

17Hence h1 preserves the orientation of the arcs.
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and the functions d†1 , d†2 , extended as in Definition 3.5.1, make commutative the
following diagram

namely, d†2 ı # D d†1 .

Similarly to the abstract case (Theorem 2.4.3) Definitions 3.5.1 and 3.5.2 are
equivalent; indeed, the following result.

Theorem 3.5.3 (R2-Ambient Isotopies and Diffeomorphisms) Two labelled
apparent contours are ambient isotopic if and only if they are diffeomorphically
equivalent.

Proof The proof is the same as in Theorem 2.4.3. ut

3.6 Visible Contours

The arcs ofG† where d† vanishes form the visible part of the contour, called visible
contour, since there are no layers of † in front of the corresponding points of the
singular set. They play an important role, in particular in Chaps. 1, 4 and 9.

Definition 3.6.1 (Visible Arcs and Visible Contour) An arc where d† D 0 is
called a visible arc. The visible contour of G† is defined as follows:

vis.G†/ WD closure of
˚
x 2 arcs.G†/ W d†.x/ D 0

�
:

The visible contour is usually drawn with thick arcs in the figures.
In Fig. 3.14 we draw the apparent contour, its visible part and the labelling, for

the corresponding scene in Fig. 3 of the Introduction.

Remark 3.6.2 (Structure of the Visible Contour) The structure of the visible contour
shall be analysed in Chap. 4, as well as necessary and sufficient conditions for a
plane graph to be the visible part of an apparent contour. It is clear that vis.G†/ is
oriented, its arcs are smooth, and that a node of G† belonging to vis.G†/ is either
a T-junction or a terminal point. Moreover, at a terminal point the local shape of
the incident arc is diffeomorphic to the arc of the semicubic curve .t2; t3/. We also
anticipate here18 that:

18This list of properties originates the definition of visible contour graph given in Chap. 4: indeed,
the visible contour is a visible contour graph in the sense of Definition 4.1.8.
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d = 2

d = 1
d = 0

d = 0
4

4
d = 1

2

0

Fig. 3.14 The bold graph represents the visible contour of the three-dimensional scene in Fig. 3
of the Introduction; the whole graph represents its apparent contour (all cusps are ordinary cusps).
We also depict the corresponding values of f† and d D d†

K K

K

not allowed

K

not allowed

Fig. 3.15 The plane graphs in the first two figures satisfy all properties listed in Remark 3.6.2.
The graph in the third figure has a terminal point which is adjacent to the external region. The arc
connecting the two circles in the last figure has the external region also on the left. Image taken
from [4]

not allowed not allowed

Fig. 3.16 First two figures: allowed orientations around a T-junction of vis.G†/. Last two figures:
forbidden orientations. Compare also with (K4) of Definition 4.1.8. Image taken from [4]

– a terminal point of vis.G†/ cannot lie in the external region. For instance, the
graphK in the third picture of Fig. 3.15 cannot be the visible part of an apparent
contour.

– Any arc a of vis.G†/ which is adjacent to the external region is oriented in such
a way that the external region lies locally only on the right of a. For instance, the
graph K in the last picture of Fig. 3.15 cannot be the visible part of an apparent
contour.

– At a T-junction the transversal (or emerging) arc lies locally on the right of the
two occluding arcs. Emerging arcs are the nearly horizontal arcs in Fig. 3.16.

– At a T-junction the two occluding arcs must join smoothly and with consistent
orientation, and the emerging arc must be transverse.
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– If we define the invisible contour of G† as

fx 2 arcs.G†/ W d†.x/ > 0g;

then any of its arcs cannot enter the external region.
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Chapter 4
Solving the Completion Problem

Following [1],1 in this chapter we show how to solve the completion problem,
namely we characterize those oriented plane graphs that are visible part of an
apparent contour (Theorem 4.3.1). The proof is generalized to the case where the
background is not reduced to the external region. In our presentation we need some
elementary concepts of the theory of oriented graphs, and the Morse description of
a graph, as outlined in Sect. 2.5.3. In Chap. 9 we describe a code that automates the
construction of the proof of Theorem 4.3.1.

4.1 Some Concepts from Graph Theory

In this section the properties of an apparent contour described in Chaps. 2 and 32

will be promoted to definitions. The usefulness of these definitions is validated by
the completion theorem.

A nonempty plane oriented graphH is a graph with oriented arcs3 embedded in
R
2. We are concerned only with compact plane graphs; for definiteness and without

loss of generality, all graphs that we consider are contained in the open square� D
.0; 1/� .0; 1/.

By

nodes.H/

1With kind permission from SIAM Journal on Imaging Sciences: in this chapter we illustrate the
results and report some of the figures from the quoted paper [1].
2In particular, the local and global structures of an apparent contour and the labelling.
3As in Chap. 2, an arc of H is relatively open.

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_4
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we denote the set of nodes (or vertices) of H . We always assume that the graph is
finite, namely it has a finite number of nodes. Observe that we do not require H to
be connected.

We stress that we allow H to contain closed arcs and loops,4 which are defined
as follows.

Definition 4.1.1 (Closed Arcs and Loops) Closed arcs of H are Jordan curves
that have neither starting nor ending points, hence they do not contain any node.
Loops, on the other hand, are arcs of H that start and end at the same node.

According to the notation introduced in Sect. 2.2, the connected components of
the complement of H in R

2 are called regions of H . The unbounded region will be
called the external region of H , and denoted by

ext.H/:

Concerning the regularity ofH , we assume thatH is continuous, which means that

H D 
.S/;

with 
 W S ! R
2 a continuous map, where S is the disjoint union of a finite number

(possibly zero) of copies of the unit interval Œ0; 1� and of a finite number (possibly
zero) of copies of S1.5

Denoting by @S the boundary of S , i.e., the disjoint union of all the endpoints of
the unit intervals, we have that nodes.H/ D 
.@S/.

Definition 4.1.2 (Degree of a Node) The degree of a node p of H is the total
number of incident arcs at p, and it is denoted by

deg.p/;

with the convention that loops are counted twice.

Definition 4.1.3 (Consecutive, Adjacent and Opposite Arcs) Two arcs of H are
consecutive at a common node p if p is the terminal node (head) of an arc and the
starting node (tail) of the other. Two arcs ofH are adjacent at the node p if they are
incident in p and locally they are adjacent to the same region. If p is a node of H
of degree 4, we say that two incident arcs are opposite if they are not adjacent.

4The presence of closed arcs makes our notion of graph different from the classical one.
5The image of Œ0; 1� is an oriented arc (possibly oriented loop) and the image of S1 is an oriented
closed arc.
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4.1.1 Contour Graphs and Visible Contour Graphs

For the discussion on completion of graphs, it is convenient to introduce the
following concept.

Definition 4.1.4 (Contour Graph) We say thatH is a contour graph ifH D 
.S/

is a nonempty compact finite oriented continuous plane graph, and the following
conditions hold:

(i) if t1; t2 2 S are such that 
.t1/ D 
.t2/, then either t1 D t2 or t1; t2 2 @S .
(ii) If p 2 nodes.H/, then deg.p/ 2 f1; 2; 3; 4g, and

(ii-1) if deg.p/ D 1, we refer to p as a terminal point;
(ii-2) if deg.p/ D 2, we refer to p as a cusp. In this case the two arcs incident

in p must be consecutive;
(ii-3) if deg.p/ D 3, we refer to p as a T-junction. In this case we distinguish

one of the incident arcs and we call it transversal; the remaining two arcs
are called occluding, and must be consecutive;

(ii-4) if deg.p/ D 4, we refer to p as a crossing; each pair of opposite arcs
incident at p must be consecutive.

Remark 4.1.5 Condition (i) means that distinct arcs can only meet at a node. The
terminology that we use in (ii-2) (respectively in (ii-3)) is motivated by the fact that
p will play the role of a semicubic cusp point (respectively a T-junction) in a visible
contour.6

Remark 4.1.6 (Components) Note that

– we allow for loops, and for multiple arcs that connect the same two nodes.
– In view of the consecutiveness assumptions, we can always continue arcs (i.e.,

follow the corresponding consecutive arc) that end on a cusp or on a crossing, or
if the arc is an occluding arc of a T-junction. In case of a crossing, continuation
arcs must be opposite. The components of H that we obtain by continuing arcs
as far as possible are either closed oriented arcs or arcs that start and end at a
terminal point or at a T-junction as transversal arcs.

Definition 4.1.7 (Interior Terminal Points) Let H be a contour graph. We say
that a terminal point of H is interior if it is not adjacent to ext.H/.

Remembering the structural properties of a visible contour listed in
Remark 3.6.2, we now give the following definition.7;8

6Compare Sect. 2.2.
7The smoothness requirements (K1), (K5) and (K6) in Definition 4.1.8, as well as conditions (G1)
and (G4) in Definition 4.2.2 below, are not essential for the proof of Theorem 4.3.1. However, they
are important for the reconstruction results of a 3D scene described in Chap. 5.
8Definition 4.1.8 is better understood looking also at Fig. 3.16 of Chap. 3.
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Definition 4.1.8 (Visible Contour Graph) Let K be a contour graph. We say that
K is a visible contour graph if the following properties hold:

(K1) the arcs of K are of class C1;
(K2) any node of K is either a T-junction or a terminal point;
(K3) any arc a of K adjacent to ext.K/ is oriented in such a way that ext.K/ lies

locally only on the right of a;
(K4) at a T-junction of K the transversal arc lies locally on the right of the two

occluding arcs. Such an arc will also be called the emerging arc of p;
(K5) at a T-junction of K the two occluding arcs join in a C1 way and with

consistent orientation, and the emerging arc is transverse;
(K6) the local shape of the incident arc at a terminal point of K is smoothly

diffeomorphic to one of the two arcs of the semicubic curve .t2;�t 3/ with t
in a neighbourhood of the origin. The orientation of the arc must be consistent
to that of the semicubic curve as given by increasing values of t .

With a small abuse of language, the union of the two occluding arcs at a T-
junction will be sometimes referred to as the occluding arc.

Remark 4.1.9 (Terminal Points Are Interior) Requirement (K3) implies that all
terminal points of K are interior.

An example of contour graph where property (K4) is not satisfied is given in
Fig. 9.12 of Chap. 9; see also Fig. 9.13.

Remark 4.1.10 (Background) In Definition 4.1.8 we could substitute the set ext.K/
with a larger set background.K/ (background), union of some of the regions of
K including the external region, and check whether requirement (K3) still holds
with background.K/ in place of ext.K/. If this is the case, then background.K/
will be called an admissible background. This remark is motivated by the fact
that the completion result stated in Theorem 4.3.1 can be obtained in such a
way that background.K/ coincides with the set ff D 0g of the reconstructed
apparent contour. Note that the notion of interior terminal pointp in Definition 4.1.7
will also change accordingly, by requiring p not to be adjacent to the larger set
background.K/. See also Remark 4.3.4.

Example 4.1.11 LetK be the visible part of an apparent contour of a smooth closed
surface† D @E embedded in R

3 as in Sect. 3.6, namely

K WD vis.G†/:

Then K is a visible contour graph. As we shall see, the content of the completion
theorem and the results of Chap. 5 allow to prove that also the converse statement
holds.9

9It is not difficult to see that the conditions defining a visible contour graph K are necessary for K
to be the visible part of an apparent contour; compare, for instance, Sect. 3.6.
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Notation According also to the notation used in Chap. 3, a visible contour graph
shall usually be denoted with the symbol K . In addition, it will be usually depicted
with thick arcs in the figures.

Remark 4.1.12 (Number of T-Junctions and Terminal Points) Let K be a visible
contour graph. It follows from basic graph theory that if q1; : : : ; qh are the
T-junctions of K and p1; : : : ; pk are the terminal points (where h; k are two
nonnegative integer numbers), then hCk is even; this also follows from the fact that
h C k is twice the number of nonclosed components of K , where the components
are introduced in Remark 4.1.6.

4.2 Complete Contour Graphs and Labelling

Let us start with the following definition.

Definition 4.2.1 (Winding Number) Let H be a contour graph. The winding
number of H ,

w.H; �/ W R2 nH ! Z;

is defined as follows:

w.H; x/ WD
X


 WS1!R
2


.S1/ component of H

w.
; x/; x 2 R
2 nH:

Part of the following definition is suggested by the relations between the function
f' and the winding number described in Lemma 2.2.9.

Definition 4.2.2 (Complete Contour Graph) Let G be a contour graph. We say
that G is a complete contour graph if the following properties hold:

(G1) the arcs of G are of class C1 up to their relative closure;
(G2) if p 2 nodes.G/, then p is either a crossing or a cusp, and in this case we

write p 2 crossings.G/ and p 2 cusps.G/ respectively;
(G3) the function f W R2 nG ! 2Z defined as

f .x/ WD 2w.G; x/; x 2 R
2 nG; (4.1)

is nonnegative;
(G4) at a crossing of G the opposite arcs join in a C1 way and the two pairs of

opposite arcs cross transversally;
(G5) at a cusp of G the local shape of the two incident arcs is smoothly

diffeomorphic to the semicubic curve .t2;�t 3/ with t in a neighbourhood
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of the origin. The orientation of the arcs must be consistent to that of the
semicubic curve as given by increasing values of t .

Crossings of G will be also called transversal crossings.

Remark 4.2.3 The function f defined in (G3) has the following properties:

– it is locally constant, i.e., it is constant on each region of the complement of G;
– f D 0 in ext.G/;
– if x 2 G n nodes.G/ and if fC.x/, f�.x/ are the values of f on the two sides of
x, then

jfC.x/ � f�.x/j D 2I

– along an arc of G, the region where the value of f is higher lies locally on the
left.

Remark 4.2.4 Requirement (G5) in particular excludes the (impossible) configura-
tion of Fig. 3.7, right. See also the discussion about the orientation of the apparent
contour near a cusp at the beginning of Sect. 3.3.

We have already discussed in Chap. 3 what is a labelling for an apparent contour,
see in particular Sect. 3.4. We now define a similar concept for a complete contour
graph. In Theorem 4.3.1, one of the main difficulties is due to the fact that one has
to construct a completion of a visible graph, together with a labelling.

Definition 4.2.5 (Labelling on a Complete Contour Graph) Let G be a com-
plete contour graph and let f W R2 n G ! 2N be twice the winding number of G.
A labelling of G is a function

d W G n nodes.G/ ! N

satisfying the following properties:

(L1) d is locally constant, i.e., d is constant on each arc of G.
(L2) Let a be an arc of G and d.a/ be the value of d on a. If R1, R2 are the two

regions adjacent to a and f .R1/ and f .R2/ are the values of f in R1 and R2
respectively, then

d.a/ � minff .R1/; f .R2/g:

(L3) The compatibility conditions between f and d in Fig. 3.11 must be satisfied
at the crossings and at the cusps of G.

The labelling function d satisfying all properties listed in Definition 4.2.5 will be
sometimes called consistent labelling.

We shall occasionally need to extend the function d at the cusps of G, as the
minimum value of d in the two adjacent arcs; in this way, the function d will be
defined on G n crossings.G/ (with values in N).
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Definition 4.2.6 (Complete Labelled Contour Graph) A complete contour
graph endowed with a labelling is called a complete labelled contour graph.

We can easily provide a number of necessary conditions for a complete contour
graph to admit a labelling; for example, we cannot have cusps adjacent to the
external region, see the second point in Remark 2.2.10. Nevertheless, we do not have
an elementary characterization (which does not amount to test all possible feasible
values of d ) of those complete contour graphs that admit at least one labelling. An
example of complete contour graph admitting more than one consistent labelling is
the one discussed in Chap. 1, in connection with Fig. 1.3.

Remark 4.2.7 (Parity of Cusps) It readily follows from Definition 4.2.5 that the
number of cusps of each component of a complete labelled contour graph is even.10

Notation with a slightly redundant notation, we sometimes denote by .f; d/ a
labelling and by

.G; f; d/

a complete labelled contour graph, even if f is directly deduced from G via
formula (4.1).

Example 4.2.8 (Apparent Contour as a Complete Labelled Contour Graph) Let
† D @E be a smooth closed surface embedded in R

3, in general position with
respect to � . Following the notation of Sects. 3.2–3.4, letG† be the apparent contour
of †, f† be as in (3.5), and d† be the labelling of Definition 3.4.1. Then it follows
from the discussion in Chap. 3 that

.G†; f†; d†/

is a complete labelled contour graph, that we shall also call labelled apparent
contour.

Definition 4.2.9 (Visible and Invisible Arcs) Let .G; f; d/ be a complete labelled
contour graph. An arc ofG where d D 0 is called a visible arc ofG, and the closure
of the set fd D 0g is called the visible part of G and it is denoted by

vis.G/:

An arc ofG having d > 0 is called an invisible arc, and the complementG n vis.G/
of the visible part of G is called the invisible part of G.

Remark 4.2.10 The visible part of G is a contour graph having as nodes only T-
junctions and terminal points: a T-junction corresponds to a transversal crossing of
G, while a terminal point corresponds to a cusp ofG. In addition, the visible part of

10It is sufficient to repeat the proof of Lemma 3.4.6 in Chap. 3; compare also with Lemma 8.1.4.
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G satisfies conditions (K1)–(K6) listed in Definition 4.1.8, hence the visible part of
G is a visible contour graph.

We are now in a position to give a precise meaning to the notion of completion
of a graph.

Definition 4.2.11 (Completable Contour Graphs) Let K be a contour graph. We
say that K is completable if there exists a complete labelled contour graph G such
that K is the visible part of G.

Definition 4.2.12 (Completion) When K and G are as in Definition 4.2.11, the
graph G is called a completion of K .

Notation: according to our previous notation, and for clarity of exposition, when
necessary in the figures the visible part ofG will be depicted with thick arcs, and its
invisible part with thin arcs.

4.3 Statement of the Completion Theorem

The completion theorem characterizes those graphs which are the visible part of an
apparent contour. As we shall see, the proof is constructive and relies on a Morse
description ofK described in Sect. 4.4.

Theorem 4.3.1 (Completion) LetK be a contour graph. ThenK is completable if
and only if K is a visible contour graph.

In other words, letK be a plane graph oriented in such a way that the unbounded
connected component of R2 nK lies locally only on the right ofK . Suppose that the
nodes of K are only T-junctions and terminal points, that all terminal points of K
are interior (Remark 4.1.9) and that at a T-junction condition (K4) is met. Then there
exist a complete contour graph G and a labelling of G such that K is the visible
part of G. Since from the results of Chap. 5 it follows that G is originated from a
smooth closed surface (not necessarily connected) † D @E embedded in R

3, we
conclude that K is completable if and only if there exists a 3D shape E such that

K D vis.G†/:

Before starting the proof of the theorem, it is worthwhile to make two other
observations.

Remark 4.3.2 (Nonuniqueness) The completion of K constructed in the proof of
the theorem is nonunique; compare, for instance, with Example 4.6.4.

Remark 4.3.3 (On the Optimality of a Completion) We have already observed that
the proof of Theorem 4.3.1 is constructive; however, in many cases the resulting
completion could be very far from “optimal”. The concept of optimality here is
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difficult to make rigorous: we can only say that, in certain situations, it may happen
that the completion given by the algorithmic proof of Theorem 4.3.1 does not
provide (even topologically) the 3D shape E usually inferred by the human brain.
In other words, the reconstruction of the stable 3D scene E having G as apparent
contour andK as visible apparent contour, is not unique, and the choice of the “best”
reconstruction may depend on a subjective interpretation of the scene.

Remark 4.3.4 In the proof of Theorem 4.3.1 we construct a complete labelled
contour graph .G; f; d/ so that K D vis.G/. For simplicity of exposition of the
iterative algorithm in the proof, we construct the labelling in such a way that

ff D 0g D ext.K/I

see requirement .P2i / in the proof. This constraint can be removed, by assigning a
priori a part of the plane, background.K/ (background), containing ext.K/, where
ff D 0g; compare with Remark 4.1.10.

In the proof of Theorem 4.3.1 we describe the graphs using a family m of
horizontal Morse lines m	.R/ travelling from top to bottom. The proof, based on
an iterative argument, consists in showing that a completion with a labelling of K
in correspondence of the i -th level of the Morse function can be continued up to
the .i C 1/-th level. One has to consider all types of Morse events and show that
locally the completion of the graph can be continued beyond such events. A number
of new invisible arcs, specified by the order of their intersection with the Morse line
and by a value of the labelling d , are added during this process. Instead of giving
explicit formulas of these intersections, we shall simply graphically illustrate the
local shape of such invisible arcs in the neighbourhood of the Morse line. Roughly
speaking, these invisible arcs are continued downwards as far as possible, till one
meets as a Morse event either a local minimum or the global minimum of K . The
operation needed at this final stage is a nonlocal one, and indeed this is the most
delicate part of the proof, since one needs to join together different invisible arcs in
order to “close the regions”. This will be the global part of the proof.

Remark 4.3.5 The invisible arcs introduced in our construction can intersectK only
at a T-junction or at a terminal point, giving raise to a crossing or a cusp respectively,
or they can cross a visible arc with a value of d that jumps of two units with strictly
positive values, thus creating a new crossing. These invisible arcs will be glued
together only in a basin around a local minimum ofK , while around a T-junction or
a terminal point they will be simply extended downwards.

When 	 crosses a critical value, only a few of the segments in which m	.R/ is
divided by the transversal intersections with K are involved in the Morse event; all
dangling invisible arcs contained in the remaining segments (those not involved in
the Morse event) are simply extended smoothly downwards without creating any
local minimum/maximum, and without intersecting each other (hence in particular
keeping their relative ordering from left to right).
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Remark 4.3.6 (Keeping the External Region or the Background) Since we cannot
insert any invisible arc in the region ext.K/, it will follow at the end of the proof
that

ext.K/ D ext.G/:

Furthermore we have the even stronger condition ext.K/ D ff D 0g. If we
substitute the larger set background.K/ in place of ext.K/ in .P2i / of the proof
(provided condition (K3) of Definition 4.1.8 is met with background.K/ in place of
ext.K/), then this condition becomes

background.K/ D ff D 0g:

4.4 Morse Descriptions of a Visible Contour Graph

The structural properties of a graph is encoded in a Morse description, which is
based on the existence of a Morse height function. We have already discussed this
argument in Sect. 2.5 of Chap. 2. Remember that in Sect. 2.5 we have defined what
is a one-parameter family m W R � R ! R

2 of Morse lines traversing R
2, and the

meaning of s.p/, 	.p/ and m	.11 Following what we have done in Sect. 2.5.2 for
apparent contours, we introduce the notion of descriptive map of a visible contour
graph.

More precisely, let K be a visible contour graph. Given 	 2 R, we say that m	 is
generic if m	.Œ0; 1�/\nodes.K/ D ;, m	.Œ0; 1�/\K is finite, and each intersection
is transverse.

We now give the following definition.12

Definition 4.4.1 (Descriptive Map of a Visible Contour Graph) Let K be a
visible contour graph. We say that m is a descriptive map of K if:

(1) there exists a finite set f	1; : : : ; 	ng of real numbers, called critical values, with
1 > 	1 > 	2 > � � � > 	n > 0, such that that m	.�/ is generic for any 	 2
Œ0; 1� n f	1; : : : ; 	ng;

11Recall also that m0.Œ0; 1�/\K D m1.Œ0; 1�/ \K D ;.
12See Figs. 4.1 and 4.2a for (m1), Figs. 4.8 and 4.10 for (m2), Figs. 4.5a and c for (m5),
Figs. 4.6a, 4.7a for (m6), Fig. 4.4a and b for (m3), Fig. 4.4c and d for (m4).
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(2) for any N	 2 f	1; : : : ; 	ng there exists a unique Ns 2 .0; 1/ such that mN	.Œ0; 1� n
fNsg/ intersectsK in a finite set of points and each intersection is transverse and
is not a node of K . Moreover, if we set p WD mN	.Ns/ 2 K and Ǹ WD mN	.R/, we
have exactly one of the following Morse events:

(m1) p … nodes.K/ andK lies locally below Ǹ (p is a strict local maximum of
K with respect to Ǹ);

(m2) p … nodes.K/ and K lies locally above Ǹ (p is a strict local minimum of
K with respect to Ǹ);

(m3) p is a terminal point, with the arc lying locally above Ǹ (ending terminal
point); moreover, ` is tangent to the visible arc at p;

(m4) p is a terminal point, with the arc lying locally below Ǹ (starting terminal
point); moreover, ` is tangent to the visible arc at p;

(m5) p is a T-junction, and locally two arcs of K , one of which being the
transversal arc, lie above Ǹ and the third one lies below Ǹ (ending
T-junction);

(m6) p is a T-junction, and locally two arcs of K , one of which being the
transversal arc, lie below Ǹ and the third one lies above Ǹ (starting
T-junction).

According to the orientation of the arcs of K , each of the items (m1)–(m6) split
in a certain number of different cases (compare, for instance, with Example 4.4.3),
as we shall see in the proof of Theorem 4.3.1.

Remark 4.4.2 (Tangency of the Morse Line at a Terminal Point) In Sect. 2.5.2 we
have discussed the reasons for a Morse line to be tangent at a cusp of an apparent
contour. Essentially for the same reason and since a terminal point p gives raise
to a cusp in the completion procedure described in Theorem 4.3.1,13 in the present
context of visible contour graphs we require a further condition, which is always
possible with an appropriate choice of the map m: the arc at p is forced to stay
locally at one side of the Morse line. This can be achieved as a consequence of the
fact that the curvature of a visible arc blows up with a sign near a terminal point
(condition (K6) in Definition 4.1.8).

Example 4.4.3 For the visible part of the graph in Fig. 3.14, the Morse description
reads as follows: a global maximum, a local maximum oriented from right to left,
a T-junction, a terminal point, another local maximum oriented from left to right, a
terminal point, another terminal point, and a global minimum.

13We need to avoid that the Morse line passing through p has locally both arcs of the completed
contour on the same side, an inconvenient fact since it makes p to behave like a local
maximum/minimum which is undesirable, since p (being a node of K) already forces the Morse
line through p to be critical.
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4.4.1 Localization

For the proof of the completion theorem it is convenient to give a localized version
of Definition 4.2.12.

LetK be a contour graph, let m be a generic family of horizontal Morse lines for
K , and for 	 2 Œ0; 1� let UC

	
be the open half-plane above m	.R/. Let 	i and 	iC1

be two consecutive critical values of m, and let

� 2 .	iC1; 	i /:

Set

K� WD K \ UC
� ;

and let nodes.K�/ be the set of nodes of K�. Finally, let G� be a contour graph.

Definition 4.4.4 (Localized Completion in a Half-Plane) We say that .G�; f�;
d�/ is a completion of K� in UC

� if

– there exists a function f� W UC
� n G� ! 2N such that condition (G3) of

Definition 4.2.2 holds, with UC
� in place of R2 and G� in place of G;

– if p 2 nodes.G�/, then p is either a crossing, or a cusp, or a terminal point.
Moreover all terminal points of G� lie on m�.Œ0; 1�/;

– there exists � > 0 small enough such that the arcs of G� intersecting the strip

UC
��� n U

C
� are transverse to m	.Œ0; 1�/ for all 	 2 Œ� � �; ��;

– there exists a function d� W G� n nodes.G�/ ! N satisfying (L1)–(L3) of
Definition 4.2.5 with G� in place of G and f� in place of f ;

– K� \ UC
� coincides with fd� D 0g.

The pair .f�; d�/ is called a labelling of G� in UC
� .

Definition 4.4.5 (Dangling Arcs) The arcs of G� nK� traversing the strip UC
��� n

U
C
� will be called the dangling arcs of G�.

4.5 Proof of the Completion Theorem

We are now in a position to start the proof of Theorem 4.3.1. We have already seen
that if K is completable then K is a visible contour graph. Therefore, what remains
to prove is the converse statement. Take a visible contour graph K . Let m be a
generic family of horizontal Morse lines for K and let 	1; : : : ; 	n be the critical
values of m with 1 > 	1 > 	2 > � � � > 	n > 0.
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Given 	 2 Œ0; 1�, denote as before by UC
	 the open half-plane above the Morse

line m	.R/. Take noncritical values �1; : : : ; �nC1 with

1 > �1 > 	1 > �2 > � � � > 	n > �nC1 > 0:

Given i 2 f1; : : : ; ng, let us suppose that the following properties are verified:

.P1i/ a localized completion .Gi ; fi ; di / of K is constructed in UC
�i

;
.P2i/ the labelling .fi ; di / satisfies the further condition

fi D 0 only in UC
�i

\ ext.K/: (4.2)

Note that .P11/ and .P21/ are satisfied.
Our aim is to show that we can construct a completion .GiC1; fiC1; diC1/ of K

in UC
�iC1

, in such a way that properties .P1iC1/ and .P2iC1/ hold, thus going beyond
the critical value 	i . In order to do this, we need to take into account all possible
Morse events at level 	i , and provide a certain number of rules for constructing
the completion and the labelling around each event in such a way to keep valid
properties .P1iC1/ and .P2iC1/.

Once we show this step, the proof of the theorem concludes after nC 1 steps, by
setting

.G; f; d/ WD .GnC1; fnC1; dnC1/:

Indeed, since 	n necessarily corresponds to the global minimum, we have UC
�nC1

�
K , and our construction will give a completion

G�nC1
� � n ext.K/ � UC

�nC1
:

Notation In the figures, the dotted lines denote the Morse lines m�i .Œ0; 1�/ and
m�iC1

.Œ0; 1�/. The bold arcs are the arcs of K , while the thin arcs are added ones
in the completion procedure. The inductively given values of f at step i in UC

�i
are

denoted by the index i , for instance f 1i f
2
i and so on. We adopt a similar notation

for the inductively given values of d on the arcs, using d1i , d2i , etc. For simplicity,
in the figures the new values fiC1, f j

iC1, and diC1, djiC1 on the various regions and
arcs will be simply denoted by f , f j , and d , dj respectively.

Since the Morse lines travel from top to bottom as 	 decreases, it is natural to
begin the list of Morse events at level 	i with the local maxima, the first one being
obviously the global maximum.
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4.5.1 Analysis at the Global Maximum and at Local Maxima

There are two possible orientations of the involved arc of K , depicted in Figs. 4.1
and 4.2a, where R denotes the region bounded by the arc.

– Case 1: Fig. 4.1. From (K3) of Definition 4.1.8 it follows that R cannot be
contained in the exterior region ext.K/. Therefore, we define f WD fi C 2 in R.

– Case 2: Fig. 4.2a, which describes a local maximum that necessarily is not the
global maximum. In view of the orientation of the involved arc of K and the
inductive hypothesis .P2i/ it follows that fi 
 2. We need to distinguish two
further subcases, depending on whether region R is contained in the exterior
region of K or not.

– Case 2a: R � ext.K/. In order to fulfill requirement .P2iC1/, we need to define
f WD 0 in R. This is compatible with the inductively given value fi only if
fi D 2, a situation in which we do not add any local completion and we simply
proceed to the next Morse event. On the other hand, if fi > 2 we add the proper
number fi=2�1 of arcs (depicted with thin arcs) with the correct orientation as in
Fig. 4.2b: the figure displays the construction in the particular case fi D 6. In this
way we reduce f of two units across each new arc so that we can match the value
f D 0 in R. Then we assign any value of d > 0 to each new arc (so that they
become invisible arcs), with the only requirement that (L2) of Definition 4.2.5
is satisfied: the simplest choice is of course d D 1. Note that we have created
fi � 2 new terminal points just below the Morse line m�iC1

.R/. Such terminal
points must be continued up to the subsequent Morse event.

– Case 2b: R\ ext.K/ D ;. If fi > 2 we define f WD fi � 2 in R, so that .P2iC1/
is satisfied, and there is no need to add any local completion. On the other hand,
if fi D 2 we add an arc with the reversed orientation as in Fig. 4.2c, so that we
can increase the value of f to f D 4 above the visible arc, and consequently
define f WD 2 in R. The value of d > 0 on the new (invisible) arc is adjusted to
fulfill condition (L2): again the simplest choice is to assign d D 1. In this case
we have created 2 new terminal points just below the Morse line m�iC1

.R/, to be
continued up to the subsequent Morse event.

To conclude the analysis at local maxima we need to specify how to deal with
dangling invisible arcs that might be present on the Morse line m	.R/, �i > 	 >

�iC1, in the open segment S	 between the consecutive transversal intersections of
m	.R/ with K , where the new local maximum Morse event occurs. As shown in
Fig. 4.3 this segment gets split into two parts S�

	 and SC
	

, 	 < 	i separated by the
new regionR below the local maximum. For each dangling arc in S	 we are free to
choose one of the two new segments S�

	 and SC
	

, provided we preserve the relative

Fig. 4.1 Local or global
maximum. Image taken
from [1] R

fiμi



4.5 Proof of the Completion Theorem 87

fi fi = 6

f := fi − 2

f := fi − 4

R d := 1 d := 1 R

f := 4

d := 1

fi = 2

f := 2

R
μi+1

fiμi

a b c

Fig. 4.2 (a): local but not global maximum. (b): the case R � ext.K/, and the local addition of
new invisible arcs when fi D 6. (c): the case R \ ext.K/ D ; and fi D 2. Image taken from [1]

R

p

μi

λi

μi+1
S−

λ

Sλ

S+
λ

Fig. 4.3 At a local maximum p we conventionally choose to continue all dangling invisible arcs
on the left. Image taken from [1]

ordering. We shall conventionally make here the choice of continuing all dangling
arcs by traversing the left segment S�

	 , as shown in Fig. 4.3.
Being concluded the casistics of the local maxima, we continue the list of Morse

events at level 	i with the analysis at terminal points and T-junctions in the order.

4.5.2 Analysis at Terminal Points

Let us observe preliminarly that from the assumptions on K and requirement .P2i/

we have fi > 0 in a neighbourhood of a terminal point p.
We distinguish two possibilities: ending terminal points (Fig. 4.4 a, b, e and f)

and starting terminal points (Fig. 4.4 c, d, g and h).

– Ending terminal point. Let f li (respectively f r
i ) be the inductively given value of

f on the adjacent left (respectively right) region to the arc of K , where left and
right are taken with respect to the orientation of the arc. There are two cases to
be considered, depicted in Figs. 4.4a and b.

– Case 1: Fig. 4.4a. We locally complete the arc as in Fig. 4.4e, with a new arc
starting at p and below the Morse line, forming a simple cusp with the correct
orientation. We also set d WD 1 on this new arc and set the values of f in
the inside of the cusp and in the complement as in the figure. Notice that the
labelling is locally consistent, in the sense that it locally meets the requirements
of Definition 4.2.5.
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p
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i f r

i fi
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fi

μi

μi+1
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i

p
f := f l

i f := f l
i f := fr

i
p p p

d := 1 d := 1

d := 1d := 1

f := fi + 2

f := fif := fi

f := fi + 2

a

e f g h

b c d

Fig. 4.4 (a), (e): ending terminal point p: case 1. (b), (f): ending terminal point p: case 2. (c), (g):
starting terminal point p: case 1. (d), (h): starting terminal point p: case 2. Image taken from [1]

– Case 2: Fig. 4.4b: it is similar to case 1, and the local construction is displayed in
Fig. 4.4f.

– Starting terminal point. There are two cases to be considered, depicted in
Figs. 4.4c and d.

– Case 1: Fig. 4.4c. By the inductive assumption .P2i/ it follows that fi 
 2. We
proceed as in Fig. 4.4g: namely, we add an invisible arc at p with d WD 1, and
forming a simple cusp at p, with f D fi C 2 inside the cusp. Observe that the
labelling is locally consistent.

– Case 2: it is similar to case 1, and it is shown in Figs. 4.4d and h.

For a starting terminal point the segment of the Morse line where the Morse event
occurs gets split into two. If there are dangling arcs, we can proceed similarly to the
case of the local maxima, see Fig. 4.3.

4.5.3 Analysis at T-Junctions

We distinguish two possibilities: ending T-junctions (Figs. 4.5a and c) and starting
T-junctions (Figs. 4.6a and 4.7a).

– Ending T-junction. We are in the situation of Fig. 4.5a or c. Suppose that there
are ki 
 0 dangling invisible arcs between the two points z and w, with the
corresponding labelling values ff ji gjD1;:::;kiC1 (for the regions) and fdji gjD1;:::;ki
(for the arcs), with dji 
 1 for any j 2 f1; : : : ; ki g. If ki D 0 (i.e., no dangling
arcs are present), we have f 1

i WD fi and d1i WD di . We now distinguish two cases,
depending on the local orientation of K .

Case 1: Orientation as in Fig. 4.5a. Notice that the orientation and the inductive
assumption .P2i/ imply that R \ ext.K/ D ;.
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fi − 2 fi − 2

d := 2

fi

f := fi

fi

p p
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μi+1

f := fi + 2

a b

Fig. 4.6 (a): starting T-junction. (b): the local continuation of the transversal arc. Image taken
from [1]

Firstly we locally continue the transversal arc joining p and w, downwards on
the left with the correct orientation as in Fig. 4.5b, setting d WD 2 on the local
continuation of the arc and f WD f

kiC1
i in the lower region L (if no dangling arcs

are present f WD f 1
i in L).

Now, let us denote by U the region lying above the just constructed new invisible
arc. We claim that it is possible to locally continue all dangling arcs inside U as in
Fig. 4.5b, downwards on the left, and to assign a consistent local labelling. Note that
each arc creates a crossing between z and p in the local completion. We define the
local labelling in Fig. 4.5b as follows. Let l 2 f1; : : : ; ki g; on the local completion
of the l-th dangling arc we set d WD d li C 2. Next, the (consistent) values of f
are indicated in Fig. 4.5b. Observe that this construction works independently of
the orientation of the dangling arcs: this is the reason why we do not indicate the
orientation of the dangling arcs in Fig. 4.5b. One then directly checks that all local
consistency properties required for the functions f and d are satisfied.

Case 2: Orientation as in Fig. 4.5c. Again, due to the local orientation of K , we
haveR\ext.K/ D ;. We firstly locally continue the transversal arc joiningp and
w downwards on the left as in Fig. 4.5d, setting d WD 2 on the local continuation
of the arc and f WD f 1

i C 4 in region L. The local completion of the dangling
arcs and the assignment of the labelling is then exactly the same as in Fig. 4.5b,
see Fig. 4.5d.

– Starting T-junction. We are in the situation of Fig. 4.6a or Fig. 4.7a. Note that in
both figuresR\ext.K/ D ;. Again, we need to distinguish two cases, depending
on the local orientation of K .

Case 1: Orientation as in Fig. 4.6a. By the inductive hypothesis .P2i/ it follows
that fi 
 2. We locally continue the transversal arc at p upwards on the right with
the correct orientation as in Fig. 4.6b, setting d WD 2 on the local continuation of
the arc and defining the values of f as in the figure.

Case 2: Orientation as in Fig. 4.7a. As a consequence of the constraint (K2) we
have U \ ext.K/ D ; and R \ ext.K/ D ;, so that by the inductive hypothesis
.P2i/ it follows fi 
 4. Firstly, we locally continue the transversal arc at p on
the right with the correct orientation as in Fig. 4.7b, and we set d WD 2 on the
local continuation. We now need to distinguish two subcases.
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Fig. 4.7 (a): starting T-junction. (b): local continuation, case in which L � ext.K/ and fi D 4.
(c): Case in which L � ext.K/ and fi > 4; we take as an example fi D 8. (d): case in which
L\ext.K/ D ; and fi > 4. (e): case in whichL\ext.K/ D ; and fi D 4. Image taken from [1]

Case 2a: L � ext.K/. We necessarily have to define f WD 0 in L. If fi D 4,
then it is enough to construct the labelling as in Fig. 4.7b. If fi > 4 we need to
introduce the proper number fi=2� 2 of oriented arcs as in Fig. 4.7c, in order to
match the value f WD 0 in the lower region L. On the invisible arcs (but to the
lowest passing through p) we define d WD 3. One checks that the local labelling
is consistent at the new crossings on the arc separating region U from regionR.

Case 2b: L \ ext.K/ D ;. If fi > 4, then we locally complete the graph as
in Fig. 4.7d. If fi D 4 we need to introduce an oriented arc (with reversed
orientation) as in Fig. 4.7e in order to obtain a value of f > 0 in the lower region
L. One checks that the resulting local labelling is consistent. This concludes the
analysis at T-junctions.

Now, we analyse the merging part of the proof, and consider those Morse events
for which the invisible dangling arcs obtained in the previous steps must be suitably
joined each other. This is the case, for instance, when the Morse line intersects the
global minimum p of K , and there are invisible dangling arcs inside the region
U which is locally above p and bounded by K . In this situation the invisible arcs
cannot go out of U since the region below p (denoted by R in the corresponding
figures) is contained in ext.K/ (compare with Remark 4.3.6). This is the most
delicate part of the proof. As we shall see, besides new crossings, in some cases
it will be necessary also to introduce new cusps.
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4.5.4 Analysis at Local Minima and at the Global Minimum

There are two cases to be considered: Figs. 4.8a and 4.10a (this latter case happens,
for instance, for the global minimum, and is the most involved).

Case 1: Fig. 4.8a. In view of the orientation of the involved arc, we necessarily
have R \ ext.K/ D ;. If there are no dangling invisible arcs between the two
points z and w, we simply define f WD fi C 2 in R (and of course no local
continuation is required).

If there are ki 
 1 dangling invisible arcs between z and w, denote by
ff ji gjD1;:::;kiC1 the corresponding labelling values for the regions, and by
fdji gjD1;:::;ki the labelling for the arcs, with dji 
 1 for any j 2 f1; : : : ; ki g,
see Fig. 4.8b. Note that f 1

i 
 2, since no invisible arc can be adjacent to ext.K/.
We then continue downwards the arcs inside region R, increasing of two units
the corresponding value of d , and this is done independently of the orientation of
each arc. Observe that in this process we create ki new crossings, as indicated in
Fig. 4.8c. The values of the function f are correspondingly increased of two units
passing from region U to regionR. One checks that the local labelling around each
new crossing is consistent, independently of the orientation of the dangling arcs.

Case 2: Fig. 4.10a. If there are no dangling invisible arcs between z and w, we
simply keep the value of f in R as the one given by the inductive step.
If there are ki 
 1 dangling invisible arcs between z and w, as, for instance, in
Fig. 4.9a, we need to distinguish two further subcases.

Case 2a: R \ ext.K/ D ;. In this case f 1
i 
 4. If there is some dangling arc


 having labelling d D d.
/ D 1 then, by inserting one cusp (similarly to
what done, for instance, in Fig. 4.9c) to 
 , we increase the value of d.
/ of
one unit. After this operation, we can therefore suppose that the value of d on
each dangling invisible arc in region U is larger than or equal to 2, namely

d
j
i 
 2 inside U for any j 2 f1; : : : ; ki g: (4.3)
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μi wz
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z w
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z w
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i d2

i dki

i

ki = 3

f 1
i f 2
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i +2R

fki+1
i

f 1
i +2

f 2
i +2

d := d1
i +2
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f 3
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a b c

Fig. 4.8 (a): local but not global minimum:R\ext.K/ D ;. (b): independently of the orientation
of the dangling invisible arcs, we continue these arcs inside region R. In (c) we show the local
completion when ki D 3. Image taken from [1]
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Fig. 4.9 (a): the case in which R\ ext.K/ D ;. (b): if there is a region inside U where f ji D 2,
then necessarily we have the depicted values of f and d , and the depicted orientations. The two
arcs with di D 2 are then smoothly joined remaining inside U , as in (c). (c): example of the
procedure adopted in case 2a of the proof. Image taken from [1]

Moreover, observe that the dangling arcs having dji D 2 cannot be continued
downwards since, due to the local orientations, the new value of d should
decrease of two units (remember Fig. 3.11), thus vanishing on the local
continuation of the arc.14 This is not allowed, as the continued arcs cannot
be visible.

If there is j 2 f1; : : : ; ki C 1g such that f ji D 2, using also (4.3), we are
necessarily in the local situation displayed in Fig. 4.9b. Then the two arcs locally
bounding the region where f ji D 2 can be smoothly joined one to each other,
remaining inside U , similarly to what displayed in Fig. 4.9c. From now on these
joined arcs will be no longer considered as dangling arcs, and therefore we shall not
consider them anymore.

Let 
 be a dangling invisible arc with d DW d.
/ D 2. In view of the previous
construction, necessarily the local value of f on the regions on the two sides of 
 is
larger than or equal to 4. Then by adding one cusp (as shown in Fig. 4.9c) we can
increase the value of d.
/ to d.
/ D 3 on 
 . We can therefore assume that

all dangling arcs have d ji 
 3: (4.4)

We are now in the position to continue all dangling arcs under consideration
from region U to regionR, similarly to what depicted15 in Fig. 4.9c, where now the
values of f j

i and dji are decreased of two units when passing from U to R. The
resulting values of f are strictly positive, thus meeting the inductive assumptions.
Also, the resulting values of d are strictly positive, thanks to (4.4).

Case 2b: R � ext.K/, see Fig. 4.10b. Necessarily fi D 0 in R, therefore no
dangling invisible arc is allowed to leave U . Observe that

14For example, if the dangling arc is oriented downwards (respectively upwards), the local labelling
at the corresponding crossing is the same as in the penultimate (respectively last) picture of
Fig. 3.11.
15If the dangling arc is oriented downwards, then the new formed cusp points on the left.
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Fig. 4.10 (a): local or global minimum. R can be contained in ext.K/, as in Figure (b) (and as in
the case of the global minimum). In that case the total number of dangling invisible arcs is even
(D 2hi , hi � 1), moreover, the values of f and the orientations are necessarily as in the figure.
(c): necessarily there are two contiguous arcs, among the dangling arcs of Figure (b), oriented in
this way. Image taken from [1]

– fi D 2 in the region between the arc of K and the first dangling invisible arc
starting from the left, since fi D 0 only in the exterior region by the inductive
assumption .P2i /. Similarly, fi D 2 in the region between the arc of K and the
first dangling invisible arc starting from the right. See Fig. 4.10b.

– The total number of dangling arcs is even. We denote this number by 2hi .
– Since dangling invisible arcs cannot be adjacent to ext.K/, it follows that fi D 4

in the region between the first and the second dangling invisible arc starting from
the left (if hi > 1). For the same reason, fi D 4 in the region between the
first and the second dangling invisible arc starting from the right, see Fig. 4.10b.
In particular, the orientation of the first dangling arc starting from the left is
downwards, whereas the orientation of the first dangling invisible arc starting
from the right is upwards, as shown in Fig. 4.10b.

– There exists at least one pair of contiguous dangling invisible arcs with the local
orientations as in Fig. 4.10c. They are found by looking for the maximal value
of f j

i , j D 1; : : : ; 2hi .

Fix a pair of contiguous dangling invisible arcs as in Fig. 4.10c, and let j; j C 1

be the integers indexing the arcs of the pair (see Fig. 4.11a). If dji D d
jC1
i , we

smoothly join the two arcs remaining inside region U as in Fig. 4.11b.
Suppose now that dji ¤ d

jC1
i (Fig. 4.11c), and set dmax WD maxfdji ; d jC1

i g.
Adding the appropriate number of cusps on the arc which has the lower value of
d , we can make the two invisible arcs to have the same value of d D dmax: see
Fig. 4.11c, where we have considered the case djC1

i D d
j
i C 2, and therefore

we have added two cusps with the correct orientation on the j -th invisible arc.
Then we can argue as in Fig. 4.11b, by smoothly joining the two arcs with the
same value of d D dmax remaining inside U (Fig. 4.11c). Now, we consider all
the remaining arcs: again we observe that there exists at least a pair of contiguous
arcs with the orientations and the local values of f as in Fig. 4.10c. We then argue
as before adding the proper number of cusps, and we smoothly join together the
two contiguous arcs remaining inside U , without intersecting the other dangling
arcs. After a finite number of these operations, all dangling arcs are smoothly joined
pairwise. One checks that the constructed labelling is consistent, and this concludes
the proof of the theorem. ut
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Fig. 4.11 (b): if two contiguous arcs of (a) have the same value of d we smoothly join them
remaining inside L. Here again R � ext.K/. (c): case in which dji ¤ d

jC1
i , for instance dji <

d
jC1
i ; we show the example when dji C 2 D d

jC1
i , so that we add two cusps to the left arc in

order to increase the value of d of two units. Image taken from [1]

We shall see in Example 4.6.4 that the constructive proof of Theorem 4.3.1
provides, forK as in Fig. 4.15a, the completionG of Fig. 4.15b. This is the apparent
contour of a solid shape topologically equivalent to a sphere (and not to a torus),
and this is a consequence of requirement (4.2). This requirement can be relaxed:
more precisely, the region ff D 0g can be larger than the external region ext.K/,
provided we strengthen condition (K3) in Definition 4.1.8. Under this assumption,
it turns out that the resulting completion is given by the apparent contour of a torus.
We observe that deciding whether f vanishes also in some nonexterior region is a
piece of information that must be known a priori.

Corollary 4.5.1 (Completion with Assigned ff D 0g) Let K be a contour graph
satisfying conditions (K1), (K2) and (K4)–(K6) of Definition 4.1.8. Suppose in
addition that background.K/ is a union of connected components of R2 n K and
satisfies the following conditions:

(K3’) background.K/ contains ext.K/,
(K3”) any arc a of K which is adjacent to background.K/ is oriented in such a

way that background.K/ lies locally only on the right of a.

Then there exists a complete labelled contour graph .G; f; d/ such that K is the
visible part of G, and furthermore

ff D 0g D background.K/:

Proof It is the same16 as the proof of Theorem 4.3.1, by replacing ext.K/ with
background.K/. ut
Remark 4.5.2 The local shape of K (respectively G), especially near a terminal
point (respectively a cusp), is inessential for the validity of Theorem 4.3.1. Indeed
it is always possible to recover the required regularity of G (properties (G1), (G4)

16Notice that in the proof of Theorem 4.3.1 the connectedness of ext.K/ is not used.
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and (G5) of Definition 4.2.2) a posteriori by means of local deformations. This is
also possible with no modification of the visible part K of G provided K already
has the required regularity properties (K1), (K5) and (K6) listed in Definition 4.1.8.

The completion of a visible contour graph is far from being unique. Therefore,
any invariant (in whatever sense) of a completion cannot be an invariant of the
original visible contour graph. We refer to Sect. 9.2.3 for a further discussion.

Remark 4.5.3 (Dependence on the Morse Description) The algorithmic proof of
Theorem 4.3.1 depends on the Morse description of the visible contour: different
Morse descriptions of the same visible contour will in general lead to inequivalent
3D shape reconstructions.

4.6 Examples

The aim of Theorem 4.3.1, as opposed, for instance, to that of [2], is not to provide
a good solution, i.e., a completion that corresponds to the 3D object that our brain
infers from the contour sketch, but only to rigorously show that the set of possible
3D (smooth) objects that give rise to the given visible contour is nonempty. In some
cases, however, the result of Theorem 4.3.1 coincides with the natural interpretation
of the original visible contour. In other cases, instead, the completion given by
Theorem 4.3.1 may not give, as a result, what one commonly expects. One can then
try to apply Corollary 4.5.1. Let us illustrate these assertions with some examples.

Example 4.6.1 (Bean) Let us consider the visible contour of Fig. 4.12a, which
satisfies all assumptions (K1)–(K6) of Definition 4.1.8. Applying the construction
described in Theorem 4.3.1, and employing the Morse description (see Defini-
tion 4.4.1), we proceed as follows:

– a (global) maximum, Morse event (m1). No addition of invisible arcs is required
(Fig. 4.1);

– a (local) maximum oriented from right to left, Morse event (m1). Again, no
addition of invisible arcs is required (Fig. 4.1);

Fig. 4.12 Example 4.6.1.
Image taken from [1]

d = 1

d = 2

a b
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– a T-junction, Morse event (m5). We are in the situation of Fig. 4.5c17; since we
have no dangling arcs we simply locally complete the transversal arc by creating
a new dangling arc with d D 2, oriented upwards;

– a terminal point, Morse event (m3). We are in the situation of Fig. 4.4a and we
will proceed as in Fig. 4.4e by adding a new dangling arc with d D 1 oriented
downwards;

– a (global) minimum, Morse event (m2). We are in the situation of Fig. 4.10b with
two (hi D 1) dangling arcs (with opposite orientation) with d D 1 and d D 2;
we will connect them after the addition of a cusp.

The result is depicted in Fig. 4.12b, which represents a bean. This is the natural
interpretation of the original visible contour.

The next example is peculiar: the visible contourK does not need any completion
since it already satisfies all properties required to be a complete contour graph.
The choice G D K gives therefore the simplest possible completion of K and
the resulting 3D object E is a solid torus. However the procedure illustrated in the
proof of Theorem 4.3.1 gives a different (but perfectly legitimate) result.

Example 4.6.2 (Torus, I) Let us consider the visible contour K of Fig. 4.13a
consisting of a pair of concentric circles with opposite orientation, the larger one
necessarily oriented counterclockwise. This contour satisfies all requirements (K1)–
(K6) of Definition 4.1.8. Notice that it does not contain any node, so that the trivial
choice G D K is already a solution to the completion problem. Such a G is the
apparent contour of a torus viewed from above. The constructive procedure in the
proof of Theorem 4.3.1 gives an unexpected result: indeed, due to requirement .P2i/

we cannot assign the (otherwise legitimate) value f D 0 inside the inner circle.
The obtained completion is the apparent contour G of Fig. 4.13b with a value of
d D 1 on the intermediate (invisible) circle. Compare case 2b in Sect. 4.5.1. The
3D reconstruction of such a G has the shape of a sphere with a large excavation
viewed from above; it could resemble to an amphora viewed from above. These
two very different 3D reconstructions (which also have different topological types)
are completely indistinguishable by means of their visible apparent contours. On
the other hand, imposing f D 0 also in the inside of the inner circle gives, using

Fig. 4.13 (a): Example 4.6.2.
In (b): we depict the resulting
completion G, given K ,
provided by Theorem 4.3.1.
Image taken from [1]

K G
a b

17With a left–right reflection. Notice that reflecting the values of f still results in an orientation of
the two arcs from right to left.
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K G
a b

Fig. 4.14 (a): Example 4.6.3. Note that this example is identical to Example 4.6.2 (Fig. 4.13) if we
restrict to the first two Morse events (above the dotted line). The completionG in (b): is “optimal”.
Image taken from [1]

Corollary 4.5.1, the apparent contour of the torus (G D K), which is the expected
result.

Example 4.6.3 (Sphere with a Cave) Consider the visible contour K of Fig. 4.14a.
It consists of an external circle oriented counterclockwise containing an arc with two
terminal points oriented from left to right. Note carefully that the visible contours of
the two examples in Figs. 4.13a and 4.14a coincide whenever restricted to the half-
plane above the dotted lines. Therefore their Morse description is identical until the
Morse line reaches the dotted lines, and consequently the initial construction of the
completion in Theorem 4.3.1 (based on the Morse description) will necessarily be
the same in both cases up to that line.

The resulting G that we obtain from the construction of the proof of Theo-
rem 4.3.1 is shown in Fig. 4.14b. The reconstructed 3D object E could resemble
a sphere with a cave, and in this case the reconstruction seems to be the expected
one.

In both Examples 4.6.2 and 4.6.3 our procedure requires the addition of an
invisible arc between the two local maxima Morse events; this addition is actually
redundant in the first example, but it is essential in the second one since otherwise
we would get a negative value of f locally in the region immediately below the
internal visible arc.

Example 4.6.4 (Torus, II) A more involved example is shown in Fig. 4.15a. In order
to distinguish the values of f from the values of d , we depict the values of f
inside a small circle. The sequence of Morse events includes two T-junctions and
two terminal points. Hence, following the constructions described in the proof of
Theorem 4.3.1, we create a total of 6 dangling arcs as shown in the lower part of
Fig. 4.15b. In particular note that the first T-junction forces us to add an invisible arc
with d D 3 in order to have f > 0 inside the hole of the original contour, in respect
to the inductive requirement (P2i). The result is rather complex and its analysis can
be carried out with the aid of the appcontour software described in Chap. 10.

In Chap. 9 we describe an actual implementation of the constructive proof
of Theorem 4.3.1 in a software code named visible. Its output is a Morse
description that can be directly used as input to the appcontour program.

Figure 4.16a shows the resulting apparent contour as reconstructed by the
software; the reader should check that this is equivalent to Fig. 4.15b up to ambient
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Fig. 4.15 Example 4.6.4. The values of f are depicted inside a small circle. The completion in
(b) of (a) is the apparent contour of a surface ambient isotopic to a sphere. Image taken from [1]

3

3

Fig. 4.16 Example 4.6.4. Use of the software appcontour to understand the constructed
apparent contour. The four pictures show the initial contour (ambient isotopically equivalent
to Fig. 4.15b) and the result of successive application of rules that correspond to 3D isotopic
deformations of the originating 3D shape; d D 1 on the dashed arcs and d D 3 on the dotted
ones. Image taken from [1]
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isotopies. A number of properties of the apparent contour are also computed, in
particular the number of connected components (D 1) and the Euler characteristic
(D 2) of the 3D surface.

Using appcontour it is also possible to apply rules (similar to the Reidemeis-
ter moves for knots) to the apparent contour, that correspond to ambient isotopic
deformations of the 3D surface; one of the applicable rules (denoted S by the
software) allows to simplify the swallow’s tail and the result is shown in Fig 4.16b.
Now rule C allows to untangle one of the two cusps, and the result is shown in
Fig. 4.16c. Finally, rule L produces the apparent contour of a sphere (Fig. 4.16d).

We remark that forcing f D 0 in the innermost region of Fig. 4.15a and
making use of Corollary 4.5.1, produces, as a result of the algorithmic proof of
Theorem 4.3.1, the usual torus: see the discussion in Example 9.1.
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Chapter 5
Topological Reconstruction
of a Three-Dimensional Scene

Following closely [1],1;2 in this chapter we characterize those planar graphs
contained in � that are apparent contours of a stable smooth 3D scene E � Q D
��.�1; 1/. As we shall see, the conditions imposed on a graph for being a complete
labelled contour graph are sufficient for our purposes.

The notation concerning graphs is introduced in Chap. 4; in particular, complete
labelled contour graphs are introduced in Definition 4.2.6. The meaning of a 3D
sceneE is explained in Definition 3.1.1, and the concept of stable scene is explained
in Definition 3.2.1.

5.1 Statement of the Reconstruction Theorem

The reconstruction result (Theorems 5.1.1 and 5.1.4) characterizes those graphs
which are apparent contours of a smooth three-dimensional scene. As we shall see,
the proof of this assertion is rather long, and splits into an existence and a uniqueness
part.

The existence result,3 the proof of which is given in Sect. 5.2, can be stated as
follows.

1With kind permission from Springer Science+Business Media, in this chapter and in Chap. 11 we
illustrate some results and report some of the figures from the quoted paper [1].
2See also the panelling construction in [11] and [2–6, 12].
3See again [11, 12], and also [8].

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_5
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Theorem 5.1.1 (Existence) Let .G; f; d/ be a complete labelled contour graph.
Then there exists a stable 3D scene E � Q such that

f D f† and d D d†;

where † WD @E .

It is worthwhile to observe that part of the proof of Theorem 5.1.1, specifically
the construction of the topological manifold T described in Sect. 5.2.1, is actually
implemented in the appcontour program. This piece of information is used in the
computation of the CW complex, and in the computation of the first fundamental
group of E and R

3 nE , as described in Sect. 10.7.
In order to state the uniqueness part of the reconstruction result, we need to

introduce a suitable notion of equivalence.

5.1.1 Depth-Equivalent Scenes

Let E � Q be a three-dimensional scene. For any x 2 �, we define Ex WD fz 2
.�1; 1/ W .x; z/ 2 Eg D ��1.x/ \ E as the one-dimensional slice of E passing
through the point .x; 0/. We call Ex the fibre of E over .x; 0/ in the direction of the
eye.

Since we are not interested in reconstructing the precise depth of the points on
the surfaces, we have to consider equivalent those three-dimensional scenes which
differ to each other by a homeomorphism preserving the order of the points on the
fibres.

Therefore, we need the following definition, already mentioned at the beginning
of Chap. 1.

Definition 5.1.2 (Depth-Equivalence Class of a 3D Scene) Let E1;E2 � Q be
two 3D scenes. We say that E1 and E2 are depth-equivalent, and we write [E1] =
[E2], if there exists a homeomorphism‚ W Q ! Q of the form

‚.x; z/ D .x;‚x.z//; .x; z/ 2 Q;

with ‚x strictly increasing for any x 2 �, and

1E1 D 1E2 ı‚:

Namely, if E1 and E2 are depth-equivalent, then, for any x 2 �, there is a
continuous strictly monotone map ‚x taking the fibre E1x of E1 over .x; 0/ onto
the fibre E2x of E2, and varying continuously with respect to x.
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Remark 5.1.3 Let E1 and E2 be depth-equivalent, let f1 and f2 be the correspond-
ing functions as defined in (3.5); that is, for any x 2 �,

f1.x/ D #f��1.x/ \†1g; f2.x/ D #f��1.x/ \†2g;

where

†1 D @E1; †2 D @E2; :

Let d1 and d2 be the corresponding labellings as in Definition 3.4.1. Then

f1 D f2 and d1 D d2:

We are now in a position to state the uniqueness part of the reconstruction
problem, which is proven in Sect. 5.3.

Theorem 5.1.4 (Uniqueness) Let E1;E2 � Q be two stable 3D scenes, such that

f†1 D f†2 and d†1 D d†2 :

Then

ŒE1� D ŒE2�:

5.2 Proof of Existence

The aim of this section is to prove Theorem 5.1.1.
Denote by

R1; : : : ; Rn

the regions4 of G (see Sect. 4.1).
The proof splits into various steps. In the first step we define a two-dimensional

abstract topological manifold T by properly glueing the boundaries of the regions.
The manifold T is obtained as a quotient of a set D, a sort of disjoint union5 of
the closure of the regions, each region appearing the proper number of copies. This
construction will be implemented in the program appcontour in Chap. 10, for
instance in Sect. 10.7.1.

4Remember that, by definition, the regions are open.
5We recall that, if X1; : : : ; Xm are sets, the disjoint union qm

iD1Xi is defined as [m
iD1f.x; i/ W

x 2 Xi g D [m
iD1.Xi � fig/, and the disjoint union topology on qm

iD1Xi is defined as follows:
A � qm

iD1Xi is open if A\ .Xi � fig/ is open for any i D 1; : : : ; m.
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According to our usual notation (Sect. 3.3), for any i D 1; : : : ; n we denote by
f .Ri / the value of the restriction of f to region Ri .6 We also let NC be the set of
all positive natural numbers.

5.2.1 Glueing

Define

D WD
n
.x; i; r/ 2 � � N � NC W i 2 f1; : : : ; ng; x 2 Ri ; r 2 f1; : : : ; f .Ri /g

o
:

The set D can be interpreted as the disjoint union qn
iD1Di , where

Di WD
n
.x; r/ 2 � � NC W x 2 Ri ; r 2 f1; : : : ; f .Ri /g

o
:

Notice that the setDi is, in turn, the disjoint union of f .Ri / copies ofRi , the strata7

of Ri . We endowD with the disjoint union topology.

Remark 5.2.1 By definition, the set Di is empty if f .Ri / D 0: this happens in
particular when Ri is the external region.

Now, we want to suitably “glue” together the boundaries of the various strata of
the regions, and this will be done by introducing an equivalence relation on D. The
idea is to paste ordered pairs of arcs (preserving the same orientation) of the strata
using the information given by the values of the labelling d .

Let .x1; i1; r1/; .x2; i2; r2/ 2 D. We say that .x1; i1; r1/ and .x2; i2; r2/ are
equivalent, and we write .x1; i1; r1/ 
 .x2; i2; r2/, if

x1 D x2 DW x;

and either i1 D i2 and r1 D r2, or one of the following four cases hold (the second
case splits into cases 2.1–2.4, the third one into cases 3.1–3.5 and the fourth one into
cases 4.1–4.3):

1. x … G.
In this case x belongs to only one region, so that i1 D i2. Then r1 D r2.

Therefore, glueing does not occur for points in the regions;
2. x 2 a 2 arcs.G/.

Let for notational simplicity d .D d.x/ D d.a// be the value of the labelling
d at x, and denote by Rmax and Rmin the two regions at opposite sides of the arc

6Remember from Definitions 4.2.1 and 4.2.2 that f .x/ is independent of the choice of x 2 Ri .
7Recall that a stratum of Ri is a pair .Ri ; r/ with r 2 f1; : : : ; f .Ri /g; see Definition 3.3.1.



5.2 Proof of Existence 105

horizontal gluings

vertical gluing

horizontal gluings

fmin = 4

fmin = 4

d = 2

i2 i1

fmin + 2

a

a

d = 2

fmin + 2 r = 1
r = 2
r = 3
r = 4
r = 5
r = 6

Fig. 5.1 Four horizontal glueings and one vertical glueing along the arc a. Image taken from [1]

a, with corresponding values fmax WD f .Rmax/ D f .Rmin/ C 2 DW fmin C 2.
Then

2.1. i1 ¤ i2, r1 D r2 � d . We glue along a the first d strata of the regions at
opposite sides of a. We call such an identification horizontal glueing along
a, see Fig. 5.1;

2.2. i1 D i2, Ri2 D Rmax, d C 1 � r1 < r2 � d C 2. We glue the .d C 1/-th and
the .d C2/-th strata ofRmax along a. We call such an identification vertical
glueing along a, see Fig. 5.1;

2.3. i1 ¤ i2, Ri1 D Rmin, d C 3 � r2 D r1 C 2, provided fmin > d . We glue
along a (horizontal glueing) the last fmin � d strata of the two regions at
opposite sides of a;

2.4. i1 ¤ i2, Ri1 D Rmax, d C 3 � r1 D r2 C 2, provided fmin > d . Same
identification as in 2:3, with exchanged i1 and i2.

While in item 2 we have been concerned with the identification of arcs, in item 3
we identify quadruples of points, and in item 4 we identify either pairs of points
or quadruples of points. We still use the words horizontal and vertical glueings
at the point x, considered as limit cases of the horizontal and vertical glueings
introduced in item 2.

3. x 2 crossings.G/.
Concerning the notation around x, we refer to Fig. 5.2. which coincides with

the last picture in Fig. 3.11 (the case of the penultimate picture being similar8).
Note that d1 � d2. There are two strata folding at depths d1 C 1 and d2 C 3

(items 3.2 and 3.4 below concern those strata in the order). The remaining strata
do not fold around x, and are divided into three groups and horizontally glued at
x (items 3.1, 3.3 and 3.5 below).

8For the glueing concerning the penultimate picture of Fig. 3.11, it is sufficient to repeat items
3.1–3.5, with iC� replaced by i�C.
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Fig. 5.2 Left: compatibility
conditions between f and d
around a crossing. Right:
Local realization in space
(f D 0, d1 D d2 D 0)

f +2

d2 +2
f +2

f

d1

d2

f +4

0 ≤ d1 ≤ d2 ≤ f

Denote by RiCC
(respectively Ri��

) the region where f takes its maximum
(respectively minimum) value among the four regions around x, and by RiC�

(respectively Ri�C
) the region in the first (respectively third) quadrant. Then

3.1. r1 D r2 � d1, provided d1 > 0. The first d1 strata in front of the two folded
strata are glued horizontally four by four at x;

3.2. .i1; r1/; .i2; r2/ 2
n
.iC�; d1C1/; .iC�; d1C2/; .iCC; d1C1/; .iCC; d1C2/

o
.

Remembering the glueing described for the arcs, and looking at the first
folding, at x we glue all together

– vertically the two strata of region RiC�
,

– vertically the two strata of region RiCC
,

– horizontally the first two strata of regions RiC�
and RiCC

,
– horizontally the second two strata of regions RiC�

and RiCC
.

3.3. .i1; r1/; .i2; r2/ 2
n
.i��; r/; .i�C; r/; .iC�; r C 2/; .iCC; r C 2/

o
for r 2

fd1C1; : : : ; d2g, provided d2 > d1. The d2�d1 strata intermediate between
the two folded strata are glued horizontally four by four at x at the proper
depth.

3.4. .i1; r1/; .i2; r2/ 2
n
.i�C; d2C1/; .i�C; d2C2/; .iCC; d2C3/; .iCC; d2C4/

o
.

Remembering the glueing described for the arcs, and looking at the last
folding, at x we glue all together

– vertically the two strata of region Ri�C
,

– vertically the two strata of region RiCC
,

– horizontally the first stratum of region Ri�C
with the third stratum of

region RiCC
,

– horizontally the second stratum of region Ri�C
with the fourth stratum

of region RiCC
.

3.5. .i1; r1/; .i2; r2/ 2
n
.i��; r/; .i�C; r C 2/; .iC�; r C 2/; .iCC; r C 4/

o
for

r 2 fd2C1; : : : ; fming, provided fmin > d2. The remaining fmin �d2 strata,
behind the two folded strata, are glued horizontally four by four at x.
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Fig. 5.3 Left: compatibility
conditions between f and d
around a cusp. Right: local
realization in space (d D 0)

f f +2

d+1

d

0 ≤ d < f

4. x 2 cusps.G/.
Let us denote by Riinn the region containing the acute part of the cusp, and

by Riout the other region. We also let fout be the value of f in Riout ; recall that
f D fout C 2 in Riinn . Then

4.1. r1 D r2 � d , provided d > 0. The first d strata in front of the cusp are
glued horizontally two by two at x (identification of two points).

4.2. .i1; r1/; .i2; r2/ 2
n
.iout; d C 1/; .iinn; d C 1/; .iinn; d C 2/; .iinn; d C 3/

o
.

Remembering the glueing described for the arcs, and referring9 to
Fig. 5.3 (which coincides with the third picture in Fig. 3.11), at x we glue
all together (identification of four points)

– vertically the first and the second stratum of Riinn , as a limit case along
the arc labelled by d ,

– horizontally the first stratum of Riinn with the stratum of Riout , as a limit
case along the arc labelled by d ,

– vertically the second and the third stratum of Riinn , as a limit case along
the arc labelled by d C 1,

– horizontally the third stratum of Riinn with the stratum of Riout , as a limit
case along the arc labelled by d C 1;

4.3. .i1; r1/; .i2; r2/ 2
n
.iout; r/; .iinn; rC2/

o
for r 2 fdC2; : : : ; foutg, provided

fout > d C 1 (recall that fout 
 d C 1). The last fout � .d C 1/ strata are
glued horizontally two by two at x (identification of two points).

Remark 5.2.2 We can rephrase the previous definitions as follows.

– Condition 3.2 is equivalent to

.x; iC�; d1 C 1/ 
 .x; iC�; d1 C 2/ 
 .x; iCC; d1 C 1/ 
 .x; iCC; d1 C 2/:

– Condition 3.4 is equivalent to

.x; i�C; d2 C 1/ 
 .x; i�C; d2 C 2/ 
 .x; iCC; d2 C 3/ 
 .x; iCC; d2 C 4/:

9The case of the second picture of Fig. 3.11 can be treated in a similar manner.
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– Condition 4.1 is equivalent to .x; iinn; r/ 
 .x; iout; r/ for any r 2 f1; : : : ; d g.
– Condition 4.2 is equivalent to

.x; iout; d C 1/ 
 .x; iinn; d C 1/ 
 .x; iinn; d C 2/ 
 .x; iinn; d C 3/:

– Condition 4.3 is equivalent to

.x; iout; r/ 
 .x; iinn; r C 2/; r 2 fd C 2; : : : ; foutg:

It is possible to check that 
 is an equivalence relation onD, and that all elements
of D belong to an equivalence class. If .x; i; r/ 2 D, we denote by

Œ.x; i; r/� D f.y; k; �/ 2 D W .y; k; �/ 
 .x; i; r/g

the equivalence class of .x; i; r/. Observe that the cardinality of an equivalence
class is

#Œ.x; i; r/� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 if x … G;
2 if x 2 G n nodes.G/;

4 if x 2 crossings.G/;

2 or 4 if x 2 cusps.G/:

We define T as the quotient ofD with respect to the equivalence relation 
, i.e.,

T WD D=
 D
n
Œ.x; i; r/� W .x; i; r/ 2 D

o
; (5.1)

which we endow with the quotient topology.10 The set T has a natural structure of
topological manifold, as described in a precise way in the appendix of this chapter.

5.2.2 Smooth Local Embedding of T in R
3

We now show that T can be endowed with a structure of smooth manifold, and that
it can be smoothly locally embedded in R

3 in such a way that the projection map
keeps the correct apparent contour. The explicit expressions of the embeddings will
be useful also in connection with the uniqueness result (Theorem 5.1.4).

1. x … G. In this case the local charts which make T a manifold of class C1 around
x are obtained using .x1; x2/ as parameters. Assume, without loss of generality,

10That is, if q W D ! T is the quotient map, then U � T is open if and only if q�1.U / is open
inD.
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that x D .0; 0/ and that .0; 0/ is contained in regionRi , so that f .0; 0/ D f .Ri/.
Fix r 2 f1; : : : ; f .0; 0/g. Select a neighbourhoodU �� Ri of .0; 0/. We define
the map  W U ! T as follows:

 .x1; x2/ WD Œ..x1; x2/; i; r/�; .x1; x2/ 2 U:

Then  is a homeomorphism between U and  .U /, and this latter is a
neighbourhood of Œ..0; 0/; i; r/� in T . The transition functions between two
intersecting neighbourhoods U � R

2
.x1;x2/

are the identity; in particular, they
are of class C1. Hence, T becomes a two-dimensional manifold of class C1
around x.

Now, let

eR W  .U / ! R
3

be defined as follows:

eRŒ..x1; x2/; i; r/� WD .x1; x2; zr /; .x1; x2/ 2  .U /;

where11

zr WD �1C 2
r

f .Ri/C 1
:

Then eR is a smooth local embedding of  .U / in R
3.

2. x 2 a 2 arcs.G/. As we shall see, and in contrast with the previous case, here the
local charts which make T a manifold of class C1 around x are obtained using
.x1; z/ as parameters. Assume that x D .0; 0/; let U � � be a sufficiently small
neighbourhood of x, in such a way that a \ U can be written as x2 D ga.x1/,
for x1 in an open interval I � R, for a function ga 2 C1.I / satisfying ga.0/ D
g0
a.0/ D 0. Suppose in addition that f D fmin D 0 in U \ fx2 < ga.x1/g (hence
f D 2 in U \ fx2 > ga.x1/g), the general case being an easy generalization.12

Denote by Ri the region containing U \ fx2 > ga.x1/g. Note that d D 0 in
a \ U . Set

Vr WD
n
Œ..x1; x2/; i; r/� W .x1; x2/ 2 U; x2 
 ga.x1/

o
; r 2 f1; 2g;

11Observe that zr 2 .�1; 1/, so that all points that we consider belong to Q. Moreover zr1 < zr2 if
r1; r2 2 f1; : : : ; f .0; 0/g and r1 < r2.
12If fmin > 0, it is enough to consider the strata that are transverse in correspondence of U , and
that are either in front of a parametrized stratum, or behind it, in dependence of the index r and of
the value of d .
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and

Va WD V1 [ V2;

which is a neighbourhood of Œ..0; 0/; i; 1/� in T .

Define, for .x1; z/ in a neighbourhood13 W of .0; 0/,

Ga.x1; z/ WD z2 C ga.x1/: (5.2)

Clearly, if W is small enough, we have Ga 2 C1.W /. Let  a W W ! T be the
parametrization map defined as follows:

 a.x1; z/ WD
(
..x1; Ga.x1; z//; i; 1/ if z < 0;

..x1;Ga.x1; z//; i; 2/ if z 
 0:

Provided W is small enough, we can ensure that  a.W / � Va. One checks that  
is a homeomorphism betweenW and  a.W /, so that the chart  �1

a W  a.W / ! W

is well defined and continuous.
Moreover, it turns out that the transition functions between two open sets W of

R
2
.x1;z/

(the domains of two parametrizations as above) having nonempty intersection
are of class C1. In addition, the transition functions between two open sets, one of
the form U as in case 1, and the other one of the form W , are of class C1.14

We are now in a position to construct a smooth local embedding in R
3. Let

ea W Va ! R
3

be defined as follows:

ea .Œ..x1; z/; i; 1/�/ WD .x1; Ga.x1; z/; z/ ;

ea .Œ..x1; z/; i; 2/�/ WD .x1; Ga.x1; z/; z/ ;
.x1; z/ 2  .W /: (5.3)

Note that ea is of class C1,

ea.Va/ D f.x1; x2; z/ W x2 D Ga.x1; z/g D graph.Ga/

locally around the origin, and that the tangent plane to ea.Va/ at .0; 0; 0/ 2 R
2
.x1;x2/

�
Rz is fx2 D 0g.

13We suppose, as usual, that jzj < 1.
14The reason being that the function � 2 .0;C1/ ! p

� is of class C1.
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Let us show that the projection map � leaves invariant the apparent contour. The
singular set is given by

ea.Va/ \
	
.x1; x2; z/ W @

@z
Ga.x1; z/ D 0



D ea.Va/\ fz D 0g D f.x1; ga.x1/; 0/g;

whose orthogonal projection on the plane fz D �1g coincides with fx2 D
ga.x1/g.

3. x 2 crossings.G/. In this case the embedding is constructed by repeating twice
the previous argument, making a suitable translation of the strata corresponding
to the highest value of d , and then inserting, if necessary, the proper number of
transversal layers at the correct depth.

Concerning the next case, it is helpful to recall the discussion made in
Example 3.3.3.

4. x 2 cusps.G/. Assume that x D .0; 0/, that the two arcs meeting at x belong,
locally, to f.x1; x2/ 2 � W x1 2 Œ0; ı/g for a suitable ı > 0 small enough, and
that have horizontal tangent line at 0. Up to a diffeomorphism of R2x , we know
that the two arcs have equation

x2 D ˙x3=21 ; x1 2 Œ0; ı/;

for ı > 0 sufficiently small.

We can suppose that the three involved strata are numbered with r D 1; 2; 3.
Consequently, we can assume15 that fmin D 1 in Rout D Rr2 (hence f D 3 in
Rinn D Rr1) and d D 1 in the lower arc of the cusp. Hence d D 0 in the upper arc
of the cusp; see Fig. 5.3.

We want to use .x1; z/ as local parameters. Let

W WD .�"; "/ � .�ı; ı/ � R
2
.x1;z/

be a sufficiently small rectangular neighbourhood of .0; 0/. Let Vc be a neighbour-
hood of Œ..0; 0/; iinn; 1/� in T , which is of the form

Vc WD
n
..x1; x2/; iinn; r/ W .x1; x2/ 2 U; x1 
 0; � x

3=2
1 < x2 < x

3=2
1 ; r 2 f1; 2; 3g

o

[ f..x1; x2/; iout; 1/ W .x1; x2/ 2 U; x1 < 0g

[
n
..x1; x2/; iout; 1/ W .x1; x2/ 2 U; x1 
 0; x2 > x

3=2
1 or x2 < �x3=21

o
;

15For simplicity, here f takes odd positive integer values: in order our discussion to be included in
the standard framework where f takes values in 2N, it is enough to add a transversal layer at the
proper depth.
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for a suitable sufficiently small neighbourhoodU of the origin. Define

Fc.x1; z/ WD 1

2

�
z3 � 3zx1

�
; .x1; z/ 2 W:

Let  c W W ! T be the parametrization map defined as follows:

 c.x1; z/ WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

.x1; Fc.x1; z/; iinn; 2/ if x1 > z2;

.x1; Fc.x1; z/; iinn; 3/ if z2

4
< x1 < z2 and z < 0;

.x1; Fc.x1; z/; iinn; 1/ if z2

4
< x1 < z2 and z > 0;

.x1; Fc.x1; z/; iout; 1/ elsewhere:

Provided W is small enough, we can ensure that  c.W / � Vc . Then  c is a
homeomorphism between W and  c.W /, so that the chart  �1

c W  c.W / ! W

is well defined and continuous.
One checks that the transition functions between two open sets W of R2

.x1;z/
(the

domains of two parametrizations as above) having nonempty intersection are of
class C1. In addition, the transition functions between two open sets, one of the
form U as in case 1, and the other of the formW , are of class C1.

We are now in a position to construct the smooth local embedding of T in R
3.

Let

ec W Vc ! R
3

be defined as

ec .Œ..x1; z/; iinn; 1/�/ WD .x1; Fc.x1; z/; z/ ;

ec .Œ..x1; z/; iinn; 2/�/ WD .x1; Fc.x1; z/; z/ ;

ec .Œ..x1; z/; iinn; 3/�/ WD .x1; Fc.x1; z/; z/ ;

ec .Œ..x1; z/; iout; 1/�/ WD .x1; Fc.x1; z/; z/ ;

.x1; z/ 2  c.W /:

The fact that the projection � leaves invariant the apparent contour follows from the
discussion in Example 3.3.3.

We denote byM the topological manifold T endowed with the smooth differen-
tial structure described above.

5.2.3 Smooth Global Embedding of M in R
3

In this section, we show that the local parametrizations introduced in Sect. 5.2.2 can
be glued in a smooth way, in the intersection of two coordinate neighbourhoods.
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This will allow us to use a partition of unity, which, in the end, will lead to the C1
global embedding of M in R

3.
We start by introducing a class of multifunctions in the variables .x1; x2/. Let

B � R
2
.x1;x2/

be an open ball centred at the origin, and denote by P.R/ the set
of all subsets of R. Let g 2 C1.R/ be a function, satisfying g.0/ D 0, and let
graph.g/ WD f.x1; g.x1// W x1 2 Rg.

Definition 5.2.3 (Smooth Two-Valued Function) Let � W B \ fx2 
 g.x1/g !
P.R/. We say that � is a smooth two-multifunction with ordered branches glued
along B \ graph.g/, if

�.x/ D f��.x/; �C.x/g; x 2 B \ fx2 
 g.x1/g;

where �˙ W B \ fx2 
 g.x1/g ! R are two functions of class C1 such that

�� < �C in B \ fx2 > g.x1/g;
�� D �C on B \ graph.g/:

We use the notation

� D Œ��; �C�

to indicate the smooth two-valued function �, and we set

graph.�/ WD graph.��/[ graph.�C/ � R
2
.x1;x2/

� Rz:

Definition 5.2.4 (Smoothly Glued Branches) We say that the two branches of �
are smoothly glued along B \ graph.g/, if graph.�/ can be seen as the graph of a
function � of class C1 with respect to the variables .x1; z/, such that

@2�

@2z
.x1; g.x1// > 0:

An example of a smooth two-valued function with smoothly glued branches is
given by the right-hand side of formula (5.3) (recall (5.2)).

Lemma 5.2.5 (Square-Root of a Smooth Function) Let I � R be an open
interval containing the origin, and let � W I ! Œ0;C1/ be a function with the
following properties:

– � 2 C1.I /,
– �.z/ D 0 if and only if z D 0,
– � 00.0/ > 0.

Then � can be written as follows:

� D ı2 in I;
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where ı 2 C1.I / has the following properties:

– ı.0/ D 0,
– ı.z/ < 0 for any z 2 I with z < 0, and ı.z/ > 0 for any z 2 I with z > 0,
– ı0.0/ > 0.

Precisely

ı.z/ WD
(

z
jzj
p
�.z/ if z 2 I n f0g;
0 if z D 0:

Proof Define

h.z/ WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

�.z/

z2
if z 2 I n f0g;

� 00.0/
2

if z D 0:

One checks16 that h 2 C1.I; .0;C1//, therefore
p
h 2 C1.I /. Since ı.z/ D

z
p
h.z/, it follows that ı 2 C1.I /. Observing17 that ı0.0/ > 0, it follows that ı is

locally invertible around zero. ut
Lemma 5.2.6 (Horizontal Interpolation) Let I � R be an open interval, and let
a; b 2 I with a < b. Suppose that ı1; ı2 2 C1.I / are two functions having the
following properties:

– ı1.z/ < 0 for any z 2 I with z < a, and ı1.z/ > 0 for any z 2 I with z > a,
– ı0

1.a/ > 0,
– ı2.z/ < 0 for any z 2 I with z < b, and ı2.z/ > 0 for any z 2 I with z > b,
– ı0

2.b/ > 0.

Then, given ! 2 C1.R; Œ0; 1�/ with !0.0/ D 0, and setting

c WD .1 � !.0//a C !.0/b;

16For example, let us check that h 2 C1.I /. For z ¤ 0 we have h0.z/ D z� 0.z/�2�.z/
z3 , so that,

applying twice de l’Hôpital’s theorem, we have limz!0 h
0.z/ D limz!0

� 000.z/
6

D � 000.0/

6
, and

therefore h is differentiable at the origin. In a similar manner, one proves that all derivatives of
h are continuous in I .
17For z > 0 we have �.z/ D z2

2
� 00.�/ and � 0.z/ D z� 00.�/, for two suitable points �; � 2 .0; z/.

Hence ı0.z/ D � 0.z/
2
p

�.z/
D � 00.�/

p

2� 00.�/
, and therefore ı0.0/ D limz!0C ı0.z/ D

q
� 00.0/

2
> 0.
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there exist a neighbourhood J of c and a function ı3 2 C1.J /, such that, for any
ı 2 R with jıj sufficiently small, if we set

z3 WD .1� !.ı//z1 C !.ı/z2; with z1; z2 2 I so that ı1.z1/ D ı and ı2.z2/ D ı;

we have z3 2 J and

ı D ı3.z3/:

Proof The function ı1 is locally invertible around a with a smooth inverse, and, in
the same manner, ı2 is locally invertible around b with a smooth inverse. Hence, for
ı 2 R with jıj sufficiently small, we can consider the C1-function

h.ı/ WD .1 � !.ı//ı�1
1 .ı/C !.ı/ı�1

2 .ı/:

Using the assumption !0.0/ D 0, we have

h0.0/ D .1� !.0//
1

ı0
1.a/

C !.0/
1

ı0
2.b/

> 0:

Inverting h in a suitable neighbourhood of zero, we can now define, locally around
c D h.0/, the function ı3 as

ı3 WD h�1:

Then the assertion of the lemma follows from the inverse function theorem. ut
Proposition 5.2.7 (Interpolation of Two Multifunctions) Let R be a region, and
let B be a sufficiently small open ball contained in� and intersecting G andR. Let
Œ��
1 ; �

C
1 � W B \ R ! P.R/ (respectively Œ��

2 ; �
C
2 � W B \ R ! P.R/) be a smooth

two-valued function smoothly glued along B \G of the form (5.3). Let wi ; i D 1; 2

be two nonnegative functions of class C1.B/ with

w1 C w2 D 1 in B \ R:

Define

�˙ WD w1�1̇ C w2�2̇ in B \ R; (5.4)

and

� WD Œ��; �C� W B \R ! P.R/:

Then � is a smooth two-valued function, smoothly glued along B \G.
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Proof We need to prove the smoothness assertion in a neighbourhood of a point x
belonging to the relative interior of an arc a � G. Assume without loss of generality
that x D 0, and that locally a can be written as a D fx2 D ga.x1/g, for a function
ga of class C1 with ga.0/ D g0

a.0/ D 0, and that R lies locally in fx2 
 ga.x1/g.
Hence, locally, �1̇ and �2̇ are defined for x2 
 g.x1/.

By assumption we have that, for i 2 f1; 2g,

˚�
x1; x2; �

�
i .x1; x2/

� W .x1; x2/ 2 B \R� [
n�
x1; x2; �

C
i .x1; x2/

�
W .x1; x2/ 2 B \R

o

can be viewed as the graph fx2 D �i.x1; z/g of a function �i , of class C1 in its
domain. In addition

– the function z ! �i .x1; z/ is strictly convex in a neighbourhood of z D 0,
– locally �i .x1; z/ 
 ga.x1/, with the equality only18 if

z D zi .x1/ WD �i̇ .x1; ga.x1// ;

namely �i .x1; zi .x1// D ga.x1/.

Define, for a fixed choice of x1,

�i .z/ WD �i .x1; z C zi .x1//� ga.x1/; i 2 f1; 2g;

for z in a suitable open interval .��; �/ of 0 2 R. The function �i is of class
C1..��; �// and satisfies the assumptions of Lemma 5.2.5, since �i .z/ D 0 only if
z D 0 and � 00

i .0/ > 0.
Therefore there exists � > 0 such that �i can be locally represented as

�i D .ıi /
2 in .��; �/;

for an invertible function ıi 2 C1..��; �//, which we shall use a new variable in
place of the square-root of x2.

Now, we write the function w1.x1; x2/ (and, as a consequence, also the function
w2.x1; x2/ D 1 � w1.x1; x2/) in the hypothesis of the proposition, as Qwi .ı/ in the
new coordinates .x1; ı/, related to .x1; x2/ via the C1-map

w1.x1; x2/ D w1
�
x1; ı

2 C ga.x1/
�

DW Qw1.ı/:

Observe that

– Qw0
1.0/ D 0,

– from Lemma 5.2.5, ı0
i .0/ > 0.

18Recall that �C

i D ��

i at .x1; ga.x1//.
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Therefore, we are in a position to apply Lemma 5.2.6 with the choice ! D Qw1, and
we get the function ı3. Let us define �3.x1; �/ WD ı23.�/, and

�3.x1; z/ WD �3.x1; z/C ga.x1/:

We have �3.x1; z/ 
 ga.x1/; moreover, �3 assumes its minimal value at z D
�˙.x1; ga.x1//. Eventually, it is possible to check that the two branches of the
inverse of �3 are exactly the functions �˙ defined in (5.4). ut

5.2.3.1 Partition of Unity

Let us cover G and all regions with a finite family of overlapping open balls, with
the property that any node of G belongs to only one ball. We have to show that in
the intersection of two balls of the covering the definitions given in Sect. 5.2.2 can
be glued in a smooth way. Since a node belongs to only one ball, we need to prove
our claim only locally around the relative interior of the arcs of G, therefore we
shall be concerned only with glueing two multifunctions of the form (5.3). Then the
assertion follows from Proposition 5.2.7.

Taking a partition of unity19 relatively to the above-mentioned covering, we
finally obtain the global C1-embedding of M in R

3.

5.2.4 Definition of the 3D-Shape

Since M is two-dimensional, closed and embeddable in R
3, the image † of

the embedding (an orientable surface) divides the space into various connected
components (see [7, p. 89]), only one of which is unbounded. We define the 3D
shape E as the set of points of R3 that are connected with infinity with a generic
curve20 intersecting † an odd number of times. The image of the embedding21 is
therefore @E D †.

19We recall that if A1; : : : ; An is a finite covering of �, a partition of unity subordinated to the
covering is given by a family of C1 functions 	1; : : : ; 	n W � ! Œ0; 1� such that

Pn
iD1 	i .x/ D 1

for any x 2 �.
20Generic here means the following: the curve has only a finite number of intersection with the
image of the embedding, and each intersection is transverse.
21Since † is orientable, alsoM turns out to be orientable; in this book, we shall always choose the
orientation on M consistently with the induced orientation on †.
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Remark 5.2.8 (Trivial Covering) The restriction of �j@E to the preimage ��1
j@E.Ri /

is a covering that, in principle, could be nontrivial whenRi is not simply connected:
this is not the case here, since the manifold that we want to construct is embedded,
and therefore we are allowed to properly order the preimages of the points of Ri .22

A careful analysis of the local reconstructions described above shows that the
solid shape E is stable: in the proof of this assertion one needs to use various facts,
for instance, the nondegeneracy assumption � 00.0/ > 0 of Lemma 5.2.5.

The proof of Theorem 5.1.1 is concluded. ut
In Theorem 7.4.1 we prove a formula (see [1]) which allows to compute the

Euler–Poincaré characteristic of † from the apparent contour.

5.3 Proof of Uniqueness

The aim of this section is to prove Theorem 5.1.4. Set f WD f†1 D f†2 and d WD
d†1 D d†2 . Denote by G the apparent contour of †1 (and of †2), namely G is the
jump set Jf of f .

We denote, as usual, by R1; : : : ; Rn the regions of G. If x 2 G, we denote
by Rmax.x/ (respectively Rmin.x// the region adjacent to x where f D fmax

(respectively f D fmin).
Let us start by recalling that the function f is defined at every point of G in a

natural way,23 namely:

x 2 G n nodes.G/ ) f .x/ D f �.x/C f C.x/
2

;

x 2 crossings.G/ ) f .x/ D 1

4
.fmin.x/C 2.fmin.x/C 2/C fmin.x/C 4/

D fmin.x/C 2;

x 2 cusps.G/ ) f .x/ D fout.x/ D fmin.x/:

22An example of a nontrivial covering can be constructed by taking the Klein bottle as M ,
constructed as the square Œ0; 1� � Œ0; 1� with identification of the two horizontal sides, the two
vertical sides are also identified but with reversed orientation: .0;m2/ is identified with .1; 1�m2/.
The map ' can then be constructed as .m1;m2/ 2 M ! �.cos �; sin �/ with � D 2�m1 and
� D 3C cos.2�m2/. The apparent contour consists of two concentric circles of radii 2 and 4.
23Compare with Remark 3.3.2: function f , on G†, counts the actual number of intersections of
the light ray with the surfaces.
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Fig. 5.4 E1 and E2 are topologically a three-dimensional ball and ŒE1� D ŒE2�, with the apparent
contour (coinciding here for simplicity with the visible contour) which is (topologically) a circle.
The bisectrix corresponds to the limit of the piecewise linear interpolation from the side ofRmin.x/.
On the other hand, as � converges to x 2 G from the side of Rmax.x/, and as zE11 .�/; z

E1
2 .�/

collapse, and similarly zE21 .�/; z
E2
2 .�/ collapse, the limit piecewise linear interpolation is the dotted

graph, passing through a suitable point P . The discontinuity between such a piecewise linear
function and the bisectrix is apparent. Image taken from [1]

Given h 2 f1; 2g and x 2 �, we let zEh1 .x/; : : : ; z
Eh
f .x/

.x/ be the depth

(z-coordinate) of each intersection of @Eh with the light ray ��1.x/ hitting x,
ordered as

�1 < zEh1 .x/ < � � � < zEhf .x/.x/ < 1:

For any x 2 � we let

`x W z 2 Œ�1; 1� ! `x.z/ 2 Œ�1; 1�

be the continuous piecewise linear interpolating function satisfying

8̂
<̂
ˆ̂:
`x
�
zE1r .x/

� D zE2r .x/ if r 2 f1; : : : ; f .x/g;

`x.˙1/ D ˙1;
(5.5)

see Fig. 5.4. Then

– given any i 2 f1; : : : ; ng and z 2 Œ�1; 1�, the function

x 2 Ri ! `x.z/ is continuous;
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because, for any r 2 f1; : : : ; f .x/g, the points zE1r .x/ and zE2r .x/ depend in a
continuous way on x, when x varies continuously in regionRi .

– Given z 2 Œ�1; 1�,

x 2 G H) lim
� 2 Rmax .x/

� ! x

`� .z/ D `x.z/;

and in the limit

Rmax.x/ 3 � ! x 2 G;
two distinct elements of the set fzE11 .�/; : : : ; z

E1
fmax.�/

.�/g collapse to the same

point, and the same happens for two elements of the set fzE21 .�/; : : : ; z
E2
fmax.�/

.�/g.
– After collapsing to the same point, these elements suddenly vanish when � leaves

the closure of Rmax.x/ and enters one of the adjacent regions: as a consequence,

x ! `x.z/ is not continuous at x 2 G;

see again Fig. 5.4. Such discontinuities prevent us to use the function `x for con-
structing the homeomorphism‚x which appears in the statement of the theorem.
Indeed, in the sequel we shall properly modify `x (recall Definition 5.1.2).

– For any x 2 � the function z 2 Œ�1; 1� ! `x.z/ is strictly increasing.

In order to get the continuity with respect to x also at points of G, we shall
modify the definition of `x in a neighbourhood of G. Set, for notational simplicity,

zE1r D z1r ; zE2r D z2r ; r 2 f1; : : : ; f .x/g:
We consider separately the cases of points on an arc, of crossings and of cusps.

1. x 2 a 2 arcs.G/. For h 2 f1; 2g and � 2 Rmax.x/, we denote by

zh��.�/; zh�.�/; zhC.�/; zhCC.�/ 2
n
�1; zh1.�/; : : : ; zhfmax.�/

.�/; 1
o
;

the depths of the four consecutive intersections between the fibre ��1.�/ and
@Eh, with zh��.�/ < zh�.�/ < zhC.�/ < zhCC.�/, such that zh�.�/ and zhC.�/
collapse as � ! x, i.e.,

lim
� 2 Rmax .x/

� ! x

zh�.�/ DW zh�.x/ D zhC.x/ WD lim
� 2 Rmax .x/

� ! x

zhC.�/;

with the convention that

f .�/ D 2 ) zh��.�/ D �1 and zhCC.�/ D 1;

a case which happens when d.x/ D 0.
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It is worthwhile to observe that

zh��.y/ and zhCC.y/ are defined also for y 2 Rmin.x/: (5.6)

For h 2 f1; 2g define

Q	h.x/ WD zhCC.x/ � zh�.x/
zhCC.x/ � zh��.x/

2 .0; 1/:

Now, we work on a one-sided strip of a, from the side of Rmin.x/. We take ı > 0

sufficiently small, and, given y 2 Rmin.x/ with 0 � dist.y;G/ � ı, we denote by
x.y/ a point on G nearest to y, i.e.,

dist.y;G/ D jy � x.y/j:

We take ı > 0 sufficiently small, so that x.y/ is uniquely defined.24 We also restrict
ourselves to those y 2 Rmin.x/ for which

x.y/ 2 G n nodes.G/ (5.7)

and x stays at some small positive distance from the nodes. We let Sa� � Rmin.x/ be
the one-sided strip of a consisting of the points y with the properties listed above.
We introduce a “fictitious” point Oz Eh� .y/ 2 .�1; 1/ as a suitable convex combination
of zh��.y/ and zhCC.y/ (recall (5.6)). More precisely, we extend Q	h on the side of
Rmin.x/ as follows: we set

�h.y/ WD dist.y;G/

2ı
C ı � dist.y;G/

ı
Q	h.x.y//; h 2 f1; 2g;

and we let

	h.�/ WD
( Q	h.x/ if � D x 2 a;
�h.y/ if � D y 2 Sa� is such that x.y/ satisfies (5.7):

Observe that 	h is continuous at the points x 2 a under consideration. In addition,

dist.y;G/ D ı ) 	h.y/ D 1=2:

24This can be done because the arcs of G are of class C1, and in proximity of a cusp we are
considering the region where f D fmin.
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Now define, for all y 2 Sa� such that x.y/ D x,

Oz h�.y/ WD 	h.y/z
h��.y/C.1�	h.y//zhCC.y/ 2 �zh��.y/; zhCC.y/

�
; h 2 f1; 2g:

Then

Ozh�.x/ D	h.x/zh��.x/C .1 � 	h.x//z
hCC.x/

D
�

zhCC.x/� zh�.x/
�

zh��.x/C
�

zhCC.x/� zh��.x/� zhCC.x/C zh�.x/
�

zhCC.x/
zhCC.x/� zh��.x/

Dzh�.x/;

and

dist.y;G/ D ı H) Ozh�.y/ D 1

2

�
zh��.y/C zhCC.y/

�
; h 2 f1; 2g: (5.8)

Hence, for y 2 Rmin.x.y// such that dist.y;G/ D ı, the fictitious point is exactly
the mean value of two consecutive intersections for both surfaces @E1 and @E2.
Referring to Fig. 5.4, in this way, we linearly connect the polygonal APB to the
segment AB , and this is done by moving point B onto the midpoint of AB , as the
distance of y from G passes from 0 to ı.

For any y 2 Sa� we let

`ay W Œ�1; 1� ! Œ�1; 1�

be the continuous piecewise linear interpolating function satisfying the analog
of (5.5), with the addition of the fictitious point,25 and such that `ay.˙1/ D ˙1.

Observe that (5.8) entails that the resulting interpolation is globally affine,
and hence `ay matches with `y , which is kept for those y 2 Rmin.x/ such that

dist.y;G/ > ı. This observation will be used later on when defining the final
homeomorphism (see (5.9), below).

2. p 2 crossings.G/. If d2 > d1 (i.e., there is a transverse layer separating the two
foldings) it is sufficient to repeat the arguments of case 1, separately for each
of the two foldings. Therefore, we can assume d1 D d2. We denote by a1 the
arc where the labelling does not jump when passing through p (emerging arc),
and a2 the other arc (broken arc). Along a1 let zh1 be the collapsing value of the
intersection of the light ray with the layer from the side where f is larger, and
define zh2 in a similar manner with respect to a2, for h 2 f1; 2g. We let zh�.�/
(possibly equal to �1) and zhC.�/ (possibly equal to 1) be the intersections of

25Namely, in the list of the z-coordinates of all intersections of @Eh with ��1.y/, we now insert
also the depth Ozh

�
.y/ of the fictitious point.
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the light ray ��1.�/ with the layers, just before and after the two foldings. As in
case 1, we introduce two fictitious points Oz h1 .y/ (respectively Oz h2 .y/) in a curved
rectangle S cr� of width ı > 0 sufficiently small, having p as a vertex, and located
on the side where f is smaller, around a1 (respectively a2). In order to ensure
the monotonicity of the interpolant, we use the factor 2=3 (respectively 1=3) as
the limit weight in the convex combination of zh�� and zhCC. We can then define
the piecewise linear interpolant

`cr
y

by adding the fictitious points in the regions where they are defined, and keep `y
elsewhere. In order to connect this construction with the previous one, we also
need two small rectangular regions separating the rectangle with each one-sided
strip constructed in case 1, where the limit weight passes linearly from 1=3 to
1=2.

3. p 2 cusps.G/. For h 2 f1; 2g and � 2 Rinn.p/ D Rmax.p/, we denote by

zh�.�/; zh0.�/; zhC.�/;

the depth of the three intersection points collapsing to zh0.p/ at p, with zh�.�/ <
zh0.�/ < zhC.�/; whereas, if y 2 Rout.p/ D Rmin.p/, we denote by zh˙.y/ the
depth of the unique intersection point.

We denote by a� (respectively aC) the arc of G where d has the lower
(respectively larger) value. We already know26 that, on the arcs a˙, two elements of
the set fzh�; zh0; zhCg collapse: precisely, we have, for h 2 f1; 2g,

zh�.�/ D zh0.�/ < zhC.�/; � 2 a�;

zh�.�/ < zh0.�/ D zhC.�/; � 2 aC;

zh�.p/ D zh0.p/ D zhC.p/:

If ı > 0 is small enough, given y 2 Rout.p/ D Rmin.p/ with 0 � dist.y;G/ � ı,
we denote by x.y/ the uniquely defined point on G nearest to y. We suppose for
definitiveness

x.y/ 2 aC:

26Recall that, by definition, the arcs are relatively open.
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We introduce the depth Oz h0 .y/ of a fictitious point, for y in a one-sided strip Sc� �
Rout.p/ of width ı, as follows: for y 2 Sc� such that x.y/ D x,

Oz h0 .y/ WD dist.y; G/

ı
zh
˙
.y/C ı � dist.y; G/

ı

�
zh
˙
.y/� zh

�
.x.y//C zh0.x.y//

�
; h 2 f1; 2g;

where we observe that zh˙.y/ joins continuously with zh�.y/ across aC (and
continuously with zhC.y/ across a�).

Note that

Oz h0 .y/ > zh˙.y/ provided dist.y;G/ < ı .and x.y/ ¤ p/; h 2 f1; 2g;

and

dist.y;G/ D ı H) Oz h0 .y/ D zh˙.y/; h 2 f1; 2g:

One checks that Oz0h is well defined and continuous in Sc�. For any y 2 Sc� we let

`cy

be the continuous piecewise linear interpolating function satisfying the analog
of (5.5), with the addition of the fictitious point at depth Ozh0 , and such that
`cy.˙1/ D ˙1.

Similarly to the case of crossings, we need two small interfacial regions where
we join `ay with `cy , keeping the required continuity and monotonicity.

Now, we collect the local interpolants defined in cases 1–3, and define the final
homeomorphism‚. We set

‚y WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

`cy if y 2 Sc�;
`cr
y if y 2 S cr� ;
`ay if y 2 Sa�;
`y elsewhere in �:

(5.9)

This concludes the proof, since the map ‚ is the homeomorphism required in
Definition 5.1.2, which makes E1 and E2 depth-equivalent. ut

The map ‚ W Q ! Q constructed in the proof of Theorem 5.1.4 is a
homeomorphism and for fixed x, ‚.x; �/ is piecewise linear (hence Lipschitz
continuous). One can show that ‚ is Lipschitz continuous. Providing a map ‚ of
class C1 seems to be more complicated, and we do not insist on this.

We have seen that existence of a consistent labelling on a complete contour graph
is equivalent to the embeddability of a closed surfaceM in R

3 corresponding to that
graph. The pair .f; d/ allows us to construct the abstract surface T with a cut and
paste technique, which turns out to be diffeomorphic toM : the function f allows to
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fix the number of copies of each region, and d determines the way to paste them. The
statements of Theorems 5.1.1 and 5.1.4 can be rewritten in terms of factorization of
maps as follows.

Theorem 5.3.1 (Reconstruction in Terms of Maps) Let .G; f; d/ be a complete
labelled contour graph. Then there exist

– a closed two-manifoldM of class C1,
– a map ' 2 C1.M;R2/,
– an embedding e W M ! R

2 � R of class C1,
– an orthogonal projection � W R2 � R ! R

2 on the first factor,

such that

(i) † WD e.M/ is in general position with respect to � ,
(ii) ' factorizes as

' D � ı e;

(iii) G D appcon.'/, f D f' and d D d†.

Moreover, if for i D 1; 2, Mi is a smooth closed two-manifold of class C1, 'i 2
C1.Mi ;R

2/, and ei W Mi ! R
2 � R is an embedding of class C1, such that

G D appcon.'1/ D appcon.'2/; f D f'1 D f'2 ; d D d†1 D d†2 ;

then there exists a homeomorphism‰ W M1 ! M2 such that the following diagram
commutes:

The map ‰ is constructed using Theorem 5.1.4, by means of the map ‚. We
actually expect to be able to choose ‰ W M1 ! M2 to be a C1 diffeomorphism but
that, at least, would require‚ to be in C1.Q;Q/.

5.A Appendix

In this appendix we show that the structure of topological manifold on T (defined
in (5.1)) can be constructed independently of the embedding shown in Sect. 5.2.2.
This observation could be useful in situations which are more general that those
considered in the present chapter. Our aim here is to construct an atlas of continuous
maps, in such a way that T is locally a copy of R2 around each of its points.



126 5 Topological Reconstruction of a Three-Dimensional Scene

1. x … G. Assume that x D .0; 0/ 2 Ri is a point in region Ri , and let r 2
f1; : : : ; f .Ri /g. For .s; �/ in a neighbourhood A of the origin of R2, define the
map

' W A ! T ; '.s; �/ WD �
.s; �/; i; r

�
: (5.10)

Then ' is a continuous local parametrization around x of the r-th stratum of
region Ri .

2. x 2 a 2 arcs.G/. Assume that x D .0; 0/, with d WD d.x/ D d.a/, and that
a, locally around x, is described by fx2 D 0g (the general case being an easy
extension). Suppose also that f D fmin locally in fx2 < 0g. Write Rmax D RiC
for some index iC 2 f1; : : : ; ng. For .s; �/ in a neighbourhoodA of the origin of
R
2, define the map

'a W A ! T ; 'a.s; �/ WD

8̂
<̂
ˆ̂:

�
.s; �/; iC; d C 1

�
if � 
 0;

�
.s;��/; iC; d C 2

�
if � � 0:

(5.11)

Formula (5.11) gives a local parametrization of a neighbourhood of the point
in the preimage of x on the singular set; concerning the other preimages, it is
enough to argue as in formula (5.10).

Then, recalling item 2.2 in Sect. 5.2.1 and the definition (5.1) of T and its
topology, it follows that 'a is a continuous local parametrization.

3. x 2 crossings.G/. Assume that x D .0; 0/ is a crossing between two arcs a
and 
 as in the right picture of Fig. 5.2 (the remaining cases being similar, as
well the corresponding general cases of two curved arcs). Let a (respectively 
 )
be described, locally around x, by fx2 D 0g (respectively fx1 D 0g), and let
d1 D d.a/ and d2 D d.
/. We have f D fmin in regionRi��

(locally contained
in fx1 > 0; x2 < 0g), where i�� 2 f1; : : : ; ng, hence f D fmax in region RiCC

for some index iCC 2 f1; : : : ; ng. As before, RiC�
(respectively Ri�C

) is the
region locally contained in fx1 > 0; x2 > 0g (respectively in fx1 < 0; x2 < 0g)
as displayed in the right picture of Fig. 5.2. For .s; �/ in a neighbourhood A of
the origin of R2, define the two maps '.1/cr W A ! T and '.2/cr W A ! T as follows:

'.1/cr .s; �/ WD

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

�
.s; �/; iC�; d1 C 1

�
if s 
 0; � 
 0;

�
.s;��/; iC�; d1 C 2

�
if s 
 0; � � 0;

�
.s; �/; iCC; d1 C 1

�
if s � 0; � 
 0;

�
.s;��/; iCC; d1 C 2

�
if s � 0; � � 0;

(5.12)
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'.2/cr .s; �/ WD

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

�
.�s; �/; iCC; d2 C 3

�
if s 
 0; � 
 0;

�
.�s; �/; i�C; d2 C 1

�
if s 
 0; � � 0;

�
.s; �/; iCC; d2 C 4

�
if s � 0; � 
 0;

�
.s; �/; i�C; d2 C 2

�
if s � 0; � � 0:

(5.13)

Formulas (5.12) and (5.13) give a local parametrization of a neighbourhood of
the two points in the preimage of x which lie on the singular set; concerning the
other preimages, it is enough to argue as in formula (5.10).

Then, recalling item 3 in Sect. 5.2.1 and definition (5.1) of T and its topology, it
follows that '.1/cr ; '

.2/
cr are continuous local parametrizations.

4. x 2 cusps.G/. Assume that the cusp is located at x D .0; 0/, and that the two
arcs adjacent at x have, locally around x, the equation x22 D x31 (the general case
being an easy extension). Moreover, assume that the labelling is d on the upper
arc and d C 1 on the lower arc, as in the right picture of Fig. 5.3 (the case of the
left picture being similar). For .s; �/ in a neighbourhood A of the origin of R2,
define the map

'c W .s; �/ 2 A !
�
.s; x2.s; �/; i.s; �/; r.s; �/

�
2 T

as follows:

if .s; �/ 2 A and �2 > s3 then 'c.s; �/ WD ..s; �/; iout; d C 1/;
if .s; �/ 2 A and �2 � s3 (in particular s 
 0) then

'c.s; �/ WD

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

�
.s; 3� C 2s3=2/; iinn; d C 3

�
if �s3=2 � � � � s3=2

3
;

..s;�3�/; iinn; d C 2/ if �s3=2
3

� � � s3=2

3
;

�
.s; 3� � 2s3=2/; iinn; d C 1

�
if s3=2

3
� � � s3=2;

(5.14)

see Fig. 5.5. Formula (5.14) gives a local parametrization of a neighbourhood of
a point in the preimage of x which lies on the singular set; concerning the other
preimages, it is enough to argue as in formula (5.10).

Recalling item 4 in Sect. 5.2.1 and definition (5.1) of T and its topology, it
follows that ' is a continuous local parametrization.
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Fig. 5.5 Plot of the graph of
the function � ! x2.s; �/

in (5.14), for a fixed value of
s > 0 small enough. Image
taken from [1]

s3/2

τ
s3/2

3−s3/2

s3/2

x2(s, τ )

−s3/2

3

−s3/2

It can be checked that the transition functions expressing the coordinate changes
are continuous. We have therefore constructed a C0 topological manifold T of
dimension two; note that T is a Hausdorff compact topological space.27
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Chapter 6
Completeness of Reidemeister-Type Moves
on Labelled Apparent Contours

In this chapter we illustrate the results and report the figures from the paper
[3]. More specifically, we shall prove that there exists a finite set of simple, or
elementary, moves (also called rules) on labelled apparent contours, such that the
following property holds1: the images †1 and †2 of two stable embeddings of a
closed smooth (not necessarily connected) surfaceM in R

3 are isotopic if and only
if their apparent contours can be connected using finitely many isotopies of R

2,
and a finite sequence of elementary moves or of their inverses (sometimes called
“reverses”). The completeness of this result2 is of crucial conceptual importance
in this book, because it helps in recognizing the topology of a 3D-shape, once its
apparent contour is given. We stress that the result refers to embedded (and not
immersed) surfaces. We also notice that, forgetting for a moment about the
labelling, the list of elementary moves coincides with the classification considered
in Chap. 7, on the codimension one stratum of the discriminant hypersurface in
C1.M;R2/. Roughly, the isotopy (consisting of embeddings) connecting †1 and
†2 intersects the discriminant hypersurface only on the codimension one strata, and
such intersections are transverse. We refer to Sect. 7.3 for more details.

The proof of the completeness result relies, basically, on the classification
of singularities of a stable3 map from a closed three-manifold S into a three
manifold T , which was briefly discussed in Example 2.1.10, and on the density
of Stable.S ;T / in C1.S ;T /.

1See Theorem 6.0.3 and Corollary 6.6.5 for a precise statement.
2Namely, the fact that there are no other moves, besides those in the list of Sect. 6.1, necessary to
connect two apparent contours of isotopic surfaces.
3In [6, Definition 2] a different notion of equivalence between maps is introduced. Such a definition
can be more suitable when the target space is the cartesian product of a two-dimensional manifold
with R.
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The program appcontour described in Chaps. 9 and 10, and the results of
Chap. 8 are heavily based on the use of the elementary moves devised in the
completeness theorem.

Recall from Sect. 2.3 the notion of R3-ambient isotopy with compact support.

Definition 6.0.1 (R3-Ambient Isotopic Embeddings) Let e1, e2 be two C1
embeddings in R

3 of a closed C1 surface M . We say that e1 and e2 are C1
R
3-

ambient isotopic (briefly, ambient isotopic), if there exists an R
3-ambient isotopy

H W R3 � Œ0; 1� ! R
3 with compact support, such that

H1 ı e1 D e2 in M:

Let us denote byM1 andM2 two closed two-dimensional manifolds of class C1.

Definition 6.0.2 (Ambient Isotopic Surfaces) Let

e1 W M1 ! R
3; e2 W M2 ! R

3

be two stable C1 embeddings. We say that †1 WD e1.M/ and †2 WD e2.M/ are
C1

R
3-ambient isotopic (briefly, ambient isotopic), if there exists an R

3-ambient
isotopyH W R3 � Œ0; 1� ! R

3 with compact support such that

H1.†1/ D †2:

Note that if †1 and †2 are ambient isotopic, then M1 and M2 are smoothly
diffeomorphic.

The next result ensures that, in order to check that †1 WD e1.M/ and
†2 WD e2.M/ are ambient isotopic, it is sufficient to find F 2 Diffc.R

3/ such
that F.†1/ D †2. In this way, the dependence on “time” t 2 Œ0; 1� is suppressed.
We refer to [5, p. 10] (see also [7]) for similar properties, in the case of topological
embeddings of knots.

Theorem 6.0.3 (R3-Ambient Isotopies and Diffeomorphisms) Let e1, e2 be two
stable C1 embeddings in R

3 of a closed C1 surface M . The two following
assertions are equivalent:

– e1 and e2 are ambient isotopic;
– there exists F 2 Diffc.R

3/ such that F ı e1 D e2.

Proof It follows from Theorem 2.3.3. ut
In a similar manner, it is possible to prove the following result.

Theorem 6.0.4 Let e1 W M1 ! R
3, e2 W M2 ! R

3 be two C1 embeddings. The two
following assertions are equivalent:

– †1 WD e1.M1/ and †2 WD e2.M2/ are ambient isotopic;
– there exists F 2 Diffc.R

3/ such that F.†1/ D †2.
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6.1 Moves on a Labelled Apparent Contour

In this section we list the moves, or rules (namely, local topological modifications)
on a labelled apparent contour. As we shall see, there are six basic moves, that
correspond to a general deformation of the corresponding embedded surface; they
can be used in exactly the same way as the Reidemeister moves on link diagrams.
We show that this set of moves is complete (see Theorem 6.4.6 and Corollary 6.6.2).
This essentially means that two embedded surfaces in general position with respect
to a fixed projection, that can be deformed into each other by an R

3-ambient isotopy,
have apparent contours that can be connected using only a finite sequence of such
moves and a finite set of R2-ambient isotopies.

Definition 6.1.1 (Reidemeister-Type Moves (Or Rules)) The moves on a
labelled apparent contour are denoted by

K, L, B, C, S, T:

They are defined in Fig. 6.2, by identifying a box in R
2 diffeomorphic to the box

on the left side of the picture and replacing it with a box diffeomorphic to the box
on the right.

We require that the moves leave unchanged a (small) neighbourhood of the
boundary of the box. The letters are motivated by the following terminology:

– K kasanie (D tangency),
– L lips,
– B beak-to-beak,
– C cusp-fold,
– S swallow’s tail,
– T triple point.

Remark 6.1.2 (Inverse Moves) Except for the move T, the same definition as
Definition 6.1.1 can be given by switching the role of the two boxes: this is
equivalent to reverse the orientation of the t-axis, and to consider the inverse moves
as temporal inverse moves (see also Sect. 10.4.4). The corresponding moves are
denoted by

K�1;L�1;B�1;C�1;S�1:

The (direct) moves K, L, B, C, S, T are chosen in such a way that they simplify
the local topology of the apparent contour (i.e., they decrease the number of
crossings/cusps). There is no distinction between direct and inverse moves of type
T, as we shall explain in the sequel.

Since the apparent contours that we consider are oriented, different orientations
determine different moves (see also Sect. 10.4.1); for simplicity of notation in
Fig. 6.2, the orientations are often not depicted. Moreover, we do not display the
values of f before and after the moves, since they can be inferred from the
orientation of the apparent contour (see Lemma 2.2.9).
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6.1.1 List of All Simple Rules

Now, we list the simple (or elementary) moves, taking into account the labelling
(see also Sect. 10.4.1).

– The four moves of type K. The moves of type K are subdivided into four different
cases as follows. First of all, possibly applying a rotation of 180ı, we can suppose
that the arc having the two extremal points on the left is in front of the other
arc. Accordingly, the four moves are classified on the basis of the four possible
orientations of the two arcs, and they are denoted by

K0;K1;K1b;K2;

as shown in Fig. 6.1 (see again Sect. 10.4.1). These four moves are parametrized
by two nonnegative integer numbers d and k, as explained in Sect. 6.1.3 below.4

– The moves L and B. Possibly applying a rotation of 180ı, we can assume that the
upper arc has the highest value of d . Then there is one move L and one move B,
as depicted in Fig. 6.2.5

– The eight moves of type C. We divide the moves of type C into two groups of
four different types. First we consider the case when the cusp is in front of the
(vertical) arc. The first of the pictures for C in Fig. 6.2 is, in turn, divided into
four cases, depending6 on whether the value of d decreases (decreasing cusp) or
increases (increasing cusp) when travelling along the cusp, and on the orientation
of the vertical arc. In the second picture the cusp is behind the vertical arc:
similarly as before, we have four cases. The set of values taken by d along the

d

d + k + 2

d + dk + k + 2d

d + k + 2 K0 d

d +k + 2d
K1

d + k + 2

d + k

d + k + 2

d

d
K1b

d + k

d + k

d + k

d + k + 2
d

d d + k
K2

d + k + 2

d + k

d + k

Fig. 6.1 Image taken from [3]. List of K-moves. Here d 2 N and k 2 N; compare also with
Fig. 3.11

4A realization in space of these moves involves two folds of the surface which can be “far one from
the other”.
5The move L can be realized in space by considering the surface in Fig. 1.4, by gradually reducing
the “hill”. The inverse of a move B can be realized by straightening the central part of a depression
in a long “wave” with two parallels arcs corresponding to the crease and the valley of the wave.
6Compare also with Definition 8.1.1.
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d

d + k + 2dd + k
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d + k + 2
K
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d d + k
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d
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d d d

d + 1 d + 1
d + 1

C
d + k + 3

d + k+ 1 d + k + 1 d d
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d

d

S
d

d

S

T

Fig. 6.2 The basic Reidemeister-type moves on a labelled apparent contour. Image taken from [3]

cusped arc are fd C k; d C k C 1; d C k C 2; d C k C 3g. Again the meaning
of the two parameters d and k is explained in Sect. 6.1.3.

– The two moves of type S. The moves of type S are divided into two groups: in the
first picture of Fig. 6.2 the value of d jumps up by two at the crossing and the two
cusps are decreasing, whereas in the second picture the two cusps are increasing.

– The 16 moves of type T. The three arcs carry the ordering given by their relative
depth (increasing values of d ); we can always rotate the picture so that the nearest
arc (lowest d ) is the vertical one. Then, we have two different possibilities for
the position of the intermediate and furthest arcs. Each of the three arcs can be
oriented in two ways: the internal triangular region can lie on the left or on the
right. In the end we have 16 different possibilities which however also account for
the corresponding time reversed moves, in the sense that the inverse of a T move
is still a T move (differently to what happens for all other moves). If d1, k1 and k2
denote respectively the number of layers in front of the first fold (nearest arc), the
number of layers interposed between the first and second fold and the number of
layers interposed between the second and the third fold, then d D d1 on the first
arc, d1 C k1 and d1 C k1 C 2 are the two values of d on the second arc, and the
values of d on the third arc are contained in the set fd1Ck1Ck2Ci W i D 0; 2; 4g,
the precise values depending on the orientation of the first and second arcs.
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Composition of simple moves will be largely used in Chaps. 8 and 10.

Remark 6.1.3 (Number of Layers Involved) In order to make a complete classifica-
tion of the moves, the number of layers, at different depths, of the corresponding
embedded surface7 must be taken into account: this introduces further degrees of
freedom in the list of different moves, as follows. Moves L, B and S have one
nonnegative integer parameter d , counting the number of layers in front of the fold.
Moves of type K and C have two nonnegative integer parameters d and k, counting
the number of layers in front of the first fold, and the number of layers in between
the two folds. Moves of type T have three nonnegative integer parameters, given
respectively by the number of layers in front of the first fold, by the number of
layers between the first and the second fold, and by the number of layers between
the second and the third fold.

Remark 6.1.4 Moves B, L and S elide pairs of cusps: we refer to Sect. 8.1 for more
information.

We can conclude this section with the following useful notion, which will be
generalized further in Definition 8.3.1.

Definition 6.1.5 (Reidemeister-Equivalence of Labelled Contour Graphs) We
say that two labelled apparent contour graphs are Reidemeister-equivalent if they
can be connected by using a finite sequence of direct or inverse Reidemeister-type
moves, and a finite number of R2-ambient isotopies with compact support.

More generally, if O � R
2 is a bounded open set, we say that two labelled

apparent contour graphs are Reidemeister-equivalent in O if they can be connected
by using a finite sequence of direct or inverse Reidemeister-type moves in O, and a
finite number of R2-ambient isotopies compactly supported in O.

6.2 Stratifications and Stratified Morse Functions

We shall recall here briefly a few facts about singularity theory (see, e.g., [1, 2, 8,
20, 22–24] and the references therein, and Sect. 2.1). Let S denote a closed smooth
manifold of dimension three, and let T be a smooth manifold of dimension three
without boundary. Remembering the concept of stability given in Definition 2.1.2,
we recall that if F is stable, then any map equivalent to F is stable. Moreover, for
the present choice of the dimension of S and T , we have8 that Stable.S ;T / is
dense in C1.S ;T /.

7See Chap. 5.
8See Theorem 2.1.14.
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6.2.1 Stratifications Induced by a Stable Map

In Example 2.1.10 we have seen that a map F 2 Stable.S ;T / has a critical set in
the manifold S consisting of:

• Folds. Denoted by S1.F /, it is a smooth submanifold of S of codimension 1;
• Pleats. Denoted by S12.F / � S1.F /, it is a smooth submanifold of S of

codimension 2 in S ;
• Swallow’s tails in S . Denoted by S13.F / � S12.F /, it is a finite set of points

of S .

These submanifolds allow to stratify S as follows. We define

X0.F / the set of regular points of F;

X1.F / WD S1.F / n S12.F /;
X2.F / WD S12.F / n S13.F /;
X3.F / WD S13.F /;

(6.1)

the index i in Xi.F / denoting the codimension in S .
Observe that S is the union of the mutually disjoint smooth submanifolds

Xj .F /, and

Xj .F / D
[

j�h�3
Xh.F /; j 2 f0; 1; 2; 3g:

Definition 6.2.1 (Stratification of S ) We call fX0.F /;X1.F /;X2.F /;X3.F /g
the stratification of S associated with the stable map F , and Xi.F / is called the
stratum of codimension i , for any i D 0; 1; 2; 3.

When no confusion is possible, for notational simplicity, we drop the dependence
on F of the sets on the left-hand side of (6.1), thus setting

Xi WD Xi.F /:

We are now in a position to introduce the stratification of T . By [8, Chap. 7,
Theorem 6.3], if F 2 Stable.S ;T /, the images of the strata Xi through F must
intersect transversally. On F.X0/ there are no conditions. The set F.X1/, if it self-
intersects, it self-intersects transversally, the resulting intersection is a set of double
curves of codimension 2 in T (points having two singular preimages, i.e., two
preimages in S1.F /) and a set of triple points (codimension 3, points with three
singular preimages) in T . Moreover, F.X1/ intersects F.X2/ transversally, giving
a finite set of cusp-fold points in T . The remaining cases have dimension that is too
low to give rise to any intersection set. Therefore, we define the following subsets
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of the target manifold T (the index i in Y ji .F / denoting the codimension in T and
the superscript j denoting the number of singular preimages):

• Y0.F / is the set of all � 2 T such that no element in F �1.�/ belongs to X1 [
X2 [X3; hence Y0.F / \ F.S / � F.X0/;

• Y 11 .F / is the set of all � 2 T such that F �1.�/ has one element in X1 and the
other elements in X0. We call Y 11 .F / the set of fold surfaces. It carries a natural
orientation, since it separates points where the number of preimages of F jumps
of two units;

• Y 12 .F / is the set of all � 2 T such that F �1.�/ has one element in X2, and
the other elements in X0. We call Y 12 .F / the set of cusp curves;

• Y 22 .F / is the set of all � 2 T such that F �1.�/ has two elements in X1 and
the other elements in X0. We call Y 22 .F / the set of double curves;

• Y 13 .F / is the set of all � 2 T such that F �1.�/ has one element in X3, and the
other elements in X0. We call Y 13 .F / the set of swallow’s tails;

• Y 23 .F / is the set of all � 2 T such that F �1.�/ has one element in X2, one
element in X1 and the other elements in X0. We call Y 23 .F / the set of cusp-fold
points;

• Y 33 .F / is the set of all � 2 T such that F �1.�/ has three elements in X1 and the
other elements in X0. We call Y 33 .F / the set of triple points.

Figure 6.3 shows an example of the strata sets Y 22 .F /, Y
1
2 .F / (twice), Y 13 .F /,

Y 23 .F /, Y
3
3 .F / in the order.

Now, we can define a natural stratification of the target manifold T in the smooth
submanifolds Y0.F /; Y1.F /; Y2.F /; Y3.F /, where

Y1.F / WD Y 11 .F /;

Y2.F / WD Y 12 .F / [ Y 22 .F /;
Y3.F / WD Y 13 .F / [ Y 23 .F / [ Y 33 .F /:

(6.2)

When no confusion is possible, for simplicity of notation, we drop the dependence
on F in (6.2), thus setting Y ij WD Y ij .F / and Yj WD Yj .F /.

Definition 6.2.2 (Stratification of T ) The set fY0.F /; Y1.F /; Y2.F /; Y3.F /g,
denoted also by fYj gF , is called the stratification of T induced by the stable map
F , and Yj .F / is called the stratum of codimension j , for any j D 0; 1; 2; 3.

We conclude this section by recalling the definition of a stratified Morse
function.9

9See, e.g., [9] and the references therein, or also [15, p. 597, 600, 601]. Usually, a stratified Morse
function takes real values: for technical reasons, we consider here the slightly different case of a
function taking values in S

1 , but the definition is essentially the same.
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Fig. 6.3 Image taken from [3]. Each row represents the fold surfaces Y1 near different types of
critical points for p: K, L, inverse of B, inverse of S, C, T. The second and third pictures on each
row show the slice at t D const [apparent contour, remember equality (6.4)] before and after the
critical time. Compare with Corollary 6.6.2
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Definition 6.2.3 (Stratified Morse Function) Let F 2 Stable.S ;T / and let

u W T ! S
1

be a function of class C1. We say that u is a stratified Morse function onT endowed
with the stratification fYj gF induced by F , if the following three conditions hold:

– for any j 2 f0; 1; 2g the restriction ujYj of u to stratum Yj is a Morse function,10

and the set crit.ujYj / of its critical points is finite;

– the critical values
[

j2f0;1;2g
ujYj

�
crit.ujYj /

�
[ u.Y3/ are distinct11;

– if j 2 f1; 2; 3g and � 2 Yj , then the kernel ker.du�/ of the differential of u at
� does not contain any limit of a sequence of tangent spaces to Yh at �.k/ 2 Yh,
where 0 � h < j and limk!C1 �.k/ D �.

As we shall see, the stratified Morse function of interest here is the second
projection p W R

2 � S
1 ! S

1. In this case, ker.dp�/ is the plane ft D 0g
(t the variable in S

1); this is the frontal plane in Fig. 6.3. The last condition in
Definition 6.2.3 therefore means that, at a point of a stratum, the limit tangent spaces
coming from the strata with higher dimension are not parallel to the plane ft D 0g.

6.3 Informal Statement

A rough version of the result we are interested in (Theorem 6.4.6 and its corollaries)
can be stated as follows. Let be given two stable scenes E1 and E2; think, for
instance, of†1 WD @E1 as the surface in Fig. 3 of the Introduction, and†2 WD @E2 as
the standard round sphere. Consider the corresponding labelled apparent contours,
namely the one in Fig. 5.1 of the introduction (for†1), and the round circle (for†2).
The statement consists of two parts. Suppose first that we are able to show that the
two apparent contours are Reidemeister-equivalent. Then

†2 D F.†1/; (6.3)

for some F 2 Diffc.R
3/, and therefore †1 and †2 are R

3-ambient isotopic (by
Theorem 6.0.3). The existence of F follows by observing that each move can be
realized as the composition of a diffeomorphism of R3, which is the identity out of
a neighbourhood of the region corresponding to the move, and a fixed projection.

Conversely, suppose that for some F 2 Diffc.R
3/ equality (6.3) holds. Then we

show that the two apparent contours are Reidemeister-equivalent. The rest of this

10Hence, the critical points of u
jYj

are nondegenerate.
11By definition, points of Y3 are considered as critical points of u.
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chapter is essentially devoted to the proof of this latter implication, which runs as
follows. Let be given an orthogonal projection � W R

3 D R
2 � R ! R

2 and a
smooth closed surface M . We apply Theorem 6.0.3, where we identify†1 with the
surface M , so that e1 WD id†1 . Calling e2 WD F ı e1, from Theorem 6.0.3 we can
find an R

3-ambient isotopy H as in Definition 6.0.1. In particular, †1 and †2 are
isotopic (Definition 6.4.3), via an isotopy


 2 C1.M � Œ0; 1�;R3/;

a path between an initial embedding (t D 0) and a final embedding .t D 1) of
M in R

3, both in general position with respect to � . Since we need to deal with
closed manifolds S , T , we extend 
 in a smooth periodic way to a map defined on
S WD M � S

1. Let us interpret as time the last coordinate t 2 S
1, and denote by

.m; t/ the coordinates of the points of S . Let us now consider the level-preserving
map

F
 W S ! T WD R
2 � S

1;

obtained as the composition of the track .m; t/ 2 M �S
1 ! .
.m; t/; t/ 2 R

3 �S
1

of the isotopy 
 with the projection .x; z; t/ 2 R
3�S

1 ! .x; t/ 2 R
2�S

1. Namely,

F
.m; t/ D .'t .m/; t/;

where

't W M ! R
2; 't .m/ WD .
1.m; t/; 
2.m; t//:

In other words,

F
 D .� ı 
; idS1/:

Provided F
 is stable, its critical set crit.F
/ (Definition 2.1.7) gives a stratification
of S into smooth submanifolds as explained in Sect. 6.2, and, in a natural way, also
a stratification fY0; Y1; Y2; Y3g D fYj gF
 of T . The critical value set of F
 can be
written as

F
.crit.F
 // D Y1 [ Y2 [ Y3;

where we recall that Y1 is the stratum of fold surfaces, Y2 the stratum of cusp curves
and double curves, and Y3 the discrete stratum of cusp-fold points, swallow’s tails
and triple points. The family of apparent contours relating the two embeddings then
satisfies the useful equality (see Remark 6.4.5):

F
.crit.F
// D
[
t2S1

.appcon.'t / � ftg/ : (6.4)
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Let us now consider the second projection p W T ! S
1, p.y; t/ D t . Provided p

is a stratified Morse function (when T is endowed with the stratification fYj gF
 ), it
turns out that Y3 and the critical points of the restriction pjY2 determine the complete
list of moves on the apparent contours (see Corollary 6.6.2 and Fig. 6.3). Ensuring
that p is a stratified Morse function means in particular, in our context, that the
tangent spaces to the various strata are transverse to the planes ft D constg.

One technical point in the proof consists in showing that F
 can be slightly
deformed into a stable map, keeping its level-preserving structure, and then per-
turbed once more in order to make p stratified: this is the content of Theorem 6.4.6
(based on Proposition 6.5.1, Lemma 6.5.3 and Corollary 6.5.2).

6.4 Rigorous Statement

In this section M denotes a C1 two-dimensional closed manifold (hence, not
necessarily connected). We recall from [11, p. 177] the following concepts (see also
[12, p. 33]).

Definition 6.4.1 (Isotopy) We say that a map 
 2 C1.M�Œ0; 1�;R3/ is an isotopy
fromM to R

3, and we write


 2 Isot.M � Œ0; 1�;R3/;

if, for any t 2 Œ0; 1�, the map 
.�; t/ W M ! R
3 is an embedding.

Given 
 2 Isot.M � Œ0; 1�;R3/ and t 2 Œ0; 1�, we often shall write


t .�/ D 
.�; t/:

Definition 6.4.2 (Isotopic Embeddings) Let e1 and e2 be two smooth embeddings
of M in R

3. We say that e1 and e2 are isotopic, if

9 
 2 Isot.M � Œ0; 1�;R3/ W 
0 D e1 and 
1 D e2: (6.5)

Next, we introduce what we mean by an isotopy between two surfaces†1 and†2.

Definition 6.4.3 (Isotopic Surfaces) Let †1 and †2 be the images of two smooth
embeddings of M in R

3. We say that †1 and†2 are isotopic if

9 
 2 Isot.M � Œ0; 1�;R3/ W 
0.M/ D †1 and 
1.M/ D †2: (6.6)

With a small abuse of language, if 
 , †1, †2 are as in (6.6), we say that 
 is an
isotopy between †1 and†2, or also that †1 and †2 are isotopic via the isotopy 
 .
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Notice that if e1 and e2 are two ambient isotopic smooth embeddings ofM in R
3

via an R
3-ambient isotopy H , then e1 and e2 are isotopic, as it follows by defining

the isotopy 
 as 
t WD Ht ı e1 for any t 2 Œ0; 1�.12

As already remarked in Sect. 6.3, we shall consider a slight modification of the
concept of isotopy, since, in order to apply the results of Sect. 6.2 on singularity
theory, we need to consider maps defined on a closed manifold; therefore, we
perform the following operations. We first reparametrize the map 
.m; �/ by
composing it with a strictly increasing C1.Œ0; 1�; Œ0; 1�/ function having vanishing
derivatives of all orders at 0 and 1. We still denote by 
 this composition and by t
the new variable, so that

@k


@tk
.m; t/jtD0 D @k


@tk
.m; t/jtD1 D 0; k 2 N; k 
 1:

We next extend 
 on the whole of M � R by reflecting it about 0 and 1, resulting
in a C1 periodic function of period 2 in the variable t . If we identify R=Œ0; 2� with
S
1, we obtain a smooth function, still denoted by 
 , defined on the closed smooth

manifold M � S
1 with values in R

3. In this way 0 and 1 are two distinct points in
the oriented circle S1.

From now on, we set

S WD M � S
1 (6.7)

(the source manifold) and

T WD R
2 � S

1 (6.8)

(the target manifold). Variables in S are denoted by

.m; t/ with m D .m1;m2/ 2 M (locally), and t 2 S
1:

Moreover, we denote by .x; z/ a point of R3 D R
2 � R where x D .x1; x2/ 2 R

2

and z 2 R.
Variables in T are denoted by

.x; t/ with x D .x1; x2/ 2 R
2; and t 2 S

1:

12The converse statement also holds true, as a consequence of the Isotopy Extension Theorem (see,
for instance, [11, Theorem 1.3, p. 180], see also [19, pp. 157–201]). Namely, suppose that 
 , e1 and
e2 are as in (6.5). Then, 
 induces an isotopy from e1.M/ to R

3, which extends to an R
3-ambient

isotopy with compact support.
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Moreover, we denote by

p W T ! S
1

the projection (that can be considered as a “height” function, or also a “time”
function) on the second factor,

p.x; t/ WD t; x 2 R
2; t 2 S

1; (6.9)

and we let

� W R3 D R
2 � R ! R

2

be the projection on the first factor, defined by �.x; z/ WD x.

Definition 6.4.4 (The Level-Preserving Map F˛) Let ˛ 2 C1.S ;R3/. We
associate13 with ˛ the map F˛ 2 C1.S ;T /, defined as

F˛.m; t/ WD .�.˛.m; t//; t/; .m; t/ 2 S : (6.10)

Remark 6.4.5 Writing 
 in components as 
 D .
1; 
2; 
3/, it is immediately seen
that the differential of F
 has rank 2 at .m; t/ 2 S if and only if the differential of
the map

't WD �.
.�; t// W m 2 M ! 't.m/ WD .
1.m; t/; 
2.m; t// 2 R
2

has rank one at m 2 M . In particular, formula (6.4) relating the critical value set of
F
 with the apparent contour of 't 14 holds true.

Let†1 and†2 be two isotopic surfaces embedded in R
3, and let 
 be the isotopy.

In order to prove the completeness of the set of moves (Sect. 6.6) we need that
F
 2 Stable.S ;T / and, at the same time, that p W T ! S

1 is a stratified Morse
function on T endowed with the stratification fYj gF
 . Following a terminology
similar to that of [18, Sect. 5], [17, p. 350], in this case we say that F
 is prepared
for moves.

Recalling the definition of general position of an embedded surface with respect
to a projection (Definition 3.2.1), we can now state the main result of this chapter.

13Notice that the map ˛ 2 C1.S ;R3/ ! F˛ 2 C1.S ;T / is continuous.
14Note also that, defining f't as in (2.2), we have f't .x/ D #fm 2 M W F
 .m; t/ D .x; t /g for
any .x; t / 2 T .
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Theorem 6.4.6 Let M be a C1 closed two-dimensional manifold. Let S and T
be defined as in (6.7) and (6.8), respectively. Let � W R3 D R

2 � R ! R
2 be the

orthogonal projection, let e1; e2 2 Emb.M;R3/, and suppose that the two surfaces

†1 WD e1.M/; †2 WD e2.M/

are in general position with respect to � . Let


 2 Isot.S ;R3/

be an isotopy between †1 and †2. Then, for any neighbourhood Uej �
Emb.M;R3/ � C1.M;R3/ of ej , j D 1; 2, and for any neighbourhood
U
 � C1.S ;R3/ of 
 , there exists a map15

Q
 2 U
 \ Isot.S ;R3/

so that Q
0 2 Ue1 , Q
1 2 Ue2 , Q†1 WD Q
0.M/ and Q†2 WD Q
1.M/ are in general position
with respect to � , and satisfying the following properties:

FQ
 2 Stable.S ;T /; (6.11)

and p W T ! S
1 is a stratified Morse function on T endowed with the stratification

fYj gF
Q


induced by the map FQ
 .

The proof of Theorem 6.4.6 is postponed in Sect. 6.5; as we shall see, the critical
points of the restriction of p to the codimension two and three strata of a suitable
stratification of T will determine the list of moves.

Remark 6.4.7 (Critical Points of the Restrictions of p) Let ˛ 2 C1.S ;R3/ be such
that

F˛ 2 Stable.S ;T /;

and let fYj gF˛ be the stratification of T induced by F˛ . Recalling definition (6.9)
of p and the fact that Y0 is an open set, it is immediate to check that

pjY0 has no critical points:

Moreover, observing that a point .x; t/ 2 Y1 is critical for pjY1 if and only if the
tangent plane to Y1 at .x; t/ is parallel to the plane ft D 0g, we have that

pjY1 has no critical points:

15For t 2 Œ0; 1�, we use the notation Q
t .�/ D Q
.�; t /.
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Indeed, let .m; t/ 2 X1 be such that F˛.m; t/ 2 Y1, and let us consider the differen-
tial d.F˛ jX1/.m;t/ of the restriction of F˛ to X1, at .m; t/. Then d.F˛ jX1/.m;t/.X1/
coincides with the tangent space to Y1 at F˛.m; t/, and d.F˛ jX1/.m;t/.X1/ �
.dF˛/.m;t/.X1/. But the definition of X1 implies that d.F˛ jX1/.m;t/.X1/ is two-
dimensional. On the other hand, the rank of the differential of F˛ at .m; t/ 2 S
is two and therefore also .dF˛/.m;t/.X1/ is two-dimensional, and we deduce
d.F˛ jX1/.m;t/.X1/ D .dF˛/.m;t/.X1/. Thus, the tangent space to Y1 at F˛.m; t/
coincides with .dF˛/.m;t/.X1/. The last column of the matrix of .dF˛/.m;t/ is
.0; 0; 1/: this implies that the tangent space to Y1 at F˛.m; t/ contains a vector of the
form .c1; c2; 1/ for some c1; c2 2 R. In particular the tangent plane to Y1 at F˛.m; t/
is transverse to ft D tg, and this holds uniformly with respect to the points in Y1.

Remark 6.4.8 Let .x; t/ 2 Y2 [ Y3 be a point which is limit of a sequence of points
.x.k/; t .k// 2 Y1 as k ! C1. Assume that the limit T of the sequence of tangent
planes to Y1 at .x.k/; t .k// 2 Y1 exists. Then, by Remark 6.4.7 and by continuity, still
.c1; c2; 1/ is one of the two vectors spanning T . Therefore T is transverse to ft D tg
at .x; t /.

It may happen that a curve in Y2 having an endpoint in Y3 has there a tangent
line contained in a plane parallel to ft D 0g, as we now show; this kind of examples
motivate Lemma 6.5.3.

Example 6.4.9 The function p could not be a stratified Morse function on T ,
endowed with the stratification fYj gF
 , since the third condition of Definition 6.2.3

may fail. Indeed, we can construct a map ˛ 2 C1.S ;R3/with F˛ 2 Stable.S ;T /,
having a triple point at .x; t / D .0; 0/ 2 Y 33 , with one of the double curves in Y 22
parallel to ft D 0g. For instance, it is enough to consider a map F˛ 2 Stable.S ;T /

having, locally around .0; 0/, the fold surfaces of the form fx1 D ˙tg and fx2 D 0g.
These folds are obviously mutually transverse, fx1 D t D 0g is locally one of the
double curves and it is parallel to the plane ft D 0g.

Remark 6.4.10 (Swallow’s Tail Singularity) Up to a change of variables in S
and T , a swallow’s tail singularity at the origin has the local description16

�1 D �1�2 C �21 �3 C �41 ; �2 D �2; �3 D �3:

There are two cusp curves and one double curve originating at the singularity with a
common tangent vector .0; 0;�1/; moreover, at the singularity, all fold surfaces are
locally tangent to the plane f�1 D 0g. We can provide two simple realizations in our
context of the canonical representation above. The choice

m D .�1; �2/; x D .�1; �2/; t D �3 D �3;

16See, for instance, [8, p. 176, 177], and more generally [13, 14].
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corresponds to the move S, whereas the choice

m D .�1; �3/; x D .�1; �3/; t D �2 D �2;

(whence �.˛.m; t// D .tm1 C m2m
2
1 Cm4

1;m2/) corresponds to an evolution that
is degenerate at t D 0: indeed, the corresponding apparent contour has a cusp with
one of the two departing arcs that is (locally) completely contained in another arc of
the contour.

6.5 Proof of the Completeness Theorem

Following closely [3], we split the proof of Theorem 6.4.6 into various steps.
The first step concerns the map ˛ ! F˛: essentially, it says that given a
neighbourhood N˛ of ˛, we can find a neighbourhood VF˛ of F˛, such that any
G 2 VF˛ is equivalent to a map having the third component equal to t .

Proposition 6.5.1 (On Level-Preserving Paths) Let ˛ 2 C1.S ;R3/. For any
neighbourhood N˛ of ˛ in C1.S ;R3/, there exists a neighbourhood VF˛ of F˛
in C1.S ;T / such that the following property holds:

8 G 2 VF˛ 9 ˛ 2 N˛ W G ı � D F˛ for some � 2 Diff.S /: (6.12)

In particular,

F˛ is equivalent to G:

Proof Let N˛ � C1.S ;R3/ be a neighbourhood of ˛. If we choose a sufficiently
small neighbourhood VF˛ of F˛ , we can ensure that any G 2 VF˛ , that we write
componentwise as

G D .G1;G2;G3/ W S D M � S
1 ! R

2 � S
1 D T ;

has the following property: for anym 2 M , the function

t 2 S
1 ! Gm

3 .t/ WD G3.m; t/ 2 S
1

is close to the identity in C1.S1;S1/, and therefore it is invertible. Let us denote by

gm W S1 ! S
1

the inverse of Gm
3 , so that

gm.Gm
3 / D idS1 and Gm

3 .g
m/ D idS1 :
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Notice that the map .m; t/ 2 S ! gm.t/ 2 S
1 is smooth. Denoting by

˛z

the third component of ˛, we define ˛ W S ! R
3 as follows:

˛.m; t/ WD
�
G1.m; g

m.t//; G2.m; g
m.t//; ˛z.m; t/

�
; .m; t/ 2 S :

Since ˛ depends continuously on G, possibly reducing VF˛ , we can ensure that

˛ 2 N˛:

By definition,

F˛.m; t/ D
�
G1.m; g

m.t//; G2.m; g
m.t//; t

�
; .m; t/ 2 S :

Now, if we consider the map � W .m; t/ 2 S ! �.m; t/ WD .m; gm.t// 2 S ,
we have

� 2 Diff.S /:

Since G ı � D F˛ D idT ı F˛ , the thesis of the proposition follows. ut
Corollary 6.5.2 Let ˛ 2 C1.S ;R3/. For any neighbourhood N˛ of ˛ in
C1.S ;R3/, there exists ˛ 2 N˛ such that

F˛ 2 Stable.S ;T /: (6.13)

Proof Let VF˛ and ˛ be as in Proposition 6.5.1. Since Stable.S ;T / is dense in
C1.S ;T /, it follows that VF˛ \ Stable.S ;T / is nonempty. Therefore, choosing
G in (6.12) with the further property that G 2 Stable.S ;T /, we deduce that F˛ is
equivalent to a map in Stable.S ;T /. As a consequence, (6.13) holds true. ut

In the next lemma17 we perform a further perturbation of a stable map Fˇ , in
order to get a new map which is prepared for moves.

Lemma 6.5.3 (Existence of Stable F Ǒ and Stratified p) Let ˇ 2 C1.S ;R3/ be

such that Fˇ 2 Stable.S ;T /. For any neighbourhoodWˇ of ˇ in C1.S ;R3/,

9 Ǒ 2 Wˇ such that F Ǒ 2 Stable.S ;T /; (6.14)

17See [18, Proposition 5.4] for related problems.
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and

p W T ! S
1 is a stratified Morse function on T endowed with fYj gF

Ǒ

: (6.15)

Proof Since Fˇ 2 Stable.S ;T /, from Remark 6.4.7 it follows that pjY0.Fˇ/
and pjY1.Fˇ/ have no critical points. Example 6.4.9 shows, however, that p is not

necessarily a stratified Morse function on T endowed with fYj gFˇ . Therefore, we
need to slightly perturb Fˇ (see (6.19) and (6.23), below), into a new map F Ǒ in
order to obtain (6.15).

Let Wˇ be a neighbourhood of ˇ in C1.S ;R3/. Recalling Definition 6.2.3, in
order to prove the thesis, we have to show that (6.14) holds, and the function p W
T ! R satisfies the following three properties:

(1) if .x; t / 2 Y3.F Ǒ/, then all curves in Y2.F Ǒ/ having .x; t / as an endpoint cannot

have a limit tangent line at .x; t/ contained in the plane ft D tg;
(2) the critical points of pjY2.F Ǒ

/
are nondegenerate;

(3) the critical values of pjY2.F Ǒ
/

are distinct and distinct from p.Y3.F Ǒ//, in turn

consisting of distinct points of S1.

Let us consider the stratification fYj gFˇ induced by Fˇ , and let .x; t/ 2 Y3.Fˇ/.
Note that, if .x; t/ 2 Y 33 .Fˇ/, then only one of the three double curves meeting at
.x; t / may have a limit tangent line contained in ft D tg: indeed, if two of them
share this property, then there is a fold surface in Y1.Fˇ/ having the tangent plane at
.x; t / parallel to ft D tg, which is in contradiction with Remark 6.4.7. Recall also
that, if .x; t / 2 Y 13 .Fˇ/ is a swallow’s tail, then the two cusp curves and the double
curve meeting at .x; t / have the same tangent vector there.

Firstly, we want to show that we can achieve condition (1). Assume that there is
a curve contained in Y2.Fˇ/[ f.x; t /g having .x; t / as an endpoint, and with a limit
tangent line at .x; t/ contained in ft D tg. Let 	 D .	1; 	2; 	3/ 2 C1.Œ0; 1�;T / be
a regular parametrization of such a curve, having .x; t/ as initial point, so that

	.0/ D .x; t / and 	0
3.0/ D 0:

Let us select a function a 2 C1.T / with compact support, and satisfying

a.x; t/ D 0; (6.16)

d

d�
a.	.�//j�D0 ¤ 0: (6.17)

Let

– O � T be a neighbourhood of .x; t / small enough so that

O \ �
Y3.Fˇ/ n f.x; t/g� D ;I
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– % 2 C1.T / be a nonnegative function, having support contained in O, and
which is constantly equal to one in a small neighbourhood of .x; t /;

– " 2 R.

Define the function j W T ! R as

j.x; t/ WD t C "%.x; t/ a.x; t/; .x; t/ 2 T :

Then, j 2 C1.T / and, provided j"j is sufficiently small, we have that for any
x 2 R

2 the function t 2 S
1 ! j.x; t/ 2 S

1 is invertible. Hence, if we consider the
map ‰ W T ! T defined by

‰ WD .idR2 ; j /;

we have

‰ 2 Diff.T /: (6.18)

Define G W S ! T as

G WD ‰ ı Fˇ: (6.19)

Thus, G is equivalent to Fˇ , and therefore, since by assumption Fˇ 2
Stable.S ;T /, we also have

G 2 Stable.S ;T /:

Now, let us consider the stratification

fY0.G/; Y1.G/; Y2.G/; Y3.G/g (6.20)

induced on T by G: by (6.18) and (6.19) it follows that such a stratification is the
image through ‰ of the stratification induced by Fˇ . Equality (6.16) implies that
.x; t / 2 Y3.G/; moreover‰.	.Œ0; 1�// � Y2.G/[f.y; t/g is regularly parametrized
in a neighbourhood of .x; t/ by � 2 Œ0; 1� ! ‰.	.�// D .	1.�/; 	2.�/; j.	.�///.
Since

d

d�
j.	.�//j�D0 D 	0

3.0/C "
d

d�
a.	.�//j�D0 D "

d

d�
a.	.�//j�D0; (6.21)

equality (6.17) guarantees that the right-hand side of (6.21) is nonzero. It follows
that assertion (1) is satisfied for the stratification (6.20); namely, if .x; t/ 2 Y3.G/,
then all curves in Y2.G/ having .x; t/ as an endpoint cannot have a limit tangent
line at .x; t / contained in the plane ft D tg.
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Applying Proposition 6.5.1 with the choice

˛ D ˇ; N˛ D Wˇ;

we obtain a corresponding neighbourhood VFˇ of Fˇ . If j"j is sufficiently small,
we have

G 2 VFˇ :

From (6.19) it follows

G.m; t/ D .� ı ˇ.m; t/; im.t// ; .m; t/ 2 S ;

where

im.t/ WD t C "�.Fˇ.m; t// a.Fˇ.m; t//; .m; t/ 2 S :

Denote by � W S ! S the map defined by �.m; t/ WD .m; .im/�1.t//. Then

� 2 Diff.S /; (6.22)

and

G ı � 2 VFˇ :

From (6.12), it follows that

9 Ǒ 2 Wˇ such that G ı � D F Ǒ: (6.23)

Since G 2 Stable.S ;T /, we deduce that

F Ǒ 2 Stable.S ;T /:

Moreover, (6.22) and (6.23) imply that the stratification of S associated with
G is the image through � of the stratification associated with Fˇ , and that the
stratification of T induced by G coincides with the stratification induced by F Ǒ .
We conclude therefore that the stratification induced by F Ǒ satisfies condition (1).

Now, if we replace the function a in the previous argument with the function
aC b, where b W T ! R is a smooth function satisfying

b.x; t/ ¤ 0; db.x;t/ D 0;

we obtain that p.Y3// consists of distinct points of S1.
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Considering the stratification of T induced by F Ǒ, from condition (1) we deduce
that pjY2.F Ǒ

/ has no critical points on the boundary points of Y2.F Ǒ/. Therefore,
being all critical points of pjY2.F Ǒ

/ interior to any arc of Y2.F Ǒ/, we can argue using
one-dimensional Morse theory, and obtain assertion (2). Also assertion (3) follows
in a standard way. ut

We are now in the position to prove Theorem 6.4.6.
For j D 0; 1, let Uej � C1.M;R3/ be a neighbourhood of ej . Let U
 �

C1.S ;R3/ be a neighbourhood of 
 . Let us apply Corollary 6.5.2 to ˛ D 
 and
with the choice of a neighbourhoodN˛ of ˛ satisfying

N˛ � U
 :

We obtain a corresponding map 
 2 N˛ such that

F
 2 Stable.S ;T /: (6.24)

Possibly reducingN˛, we can assume that


0 2 Ue0 and 
1 2 Ue1 :

Since (6.24) holds, we can now apply Lemma 6.5.3 to ˇ D 
 , taking as Wˇ a

neighbourhood of 
 satisfying Wˇ � N˛. We obtain a corresponding map Ǒ 2 Wˇ .
If we set

Q
 WD Ǒ;

it follows that

Q
 2 Wˇ � N˛ � U
;

and Q
 satisfies (6.11) and the (last) assertion of the statement of the theorem,
concerning the stratifiability of p. Moreover Q
0 2 Ue0 and Q
1 2 Ue1 .

Since 
t 2 Emb.M;R3/ and Emb.M;R3/ is open in C1.M;R3/, it follows,
possibly reducing Wˇ, that Q
0.M/ and Q
1.M/ are isotopic (Definition 6.4.2). Since
by hypothesis †1 and †2 are in general position with respect to � , we have that
�j†1 2 Stable.†1;R2/ and �j†2 2 Stable.†2;R2/. Whence, possibly reducing Wˇ ,
and recalling that Stable.†j ;R2/ is open in C1.†j ;R2/ for j D 1; 2, it follows
that

�j Q
0.M/ 2 Stable.†1;R
2/ and �j Q
1.M/ 2 Stable.†2;R

2/:

The proof of the theorem is concluded. ut
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6.6 Completeness of Moves

Let � , e1, e2, Q
 , T , fYj gF
Q


and p be as in Theorem 6.4.6. By stability and
compactness, the set crit.pjY2/ of critical points of pjY2 is finite. Since also Y3

consists of isolated points, it follows that pjY2
�

crit.pjY2/
�

[ p.Y3/ is a finite set

of points of S1.

Definition 6.6.1 (Critical Times) We call

pjY2
�

crit.pjY2 /
�

[ p.Y3/

the set of critical times.

If t0 is not a critical time, the apparent contour (given by a time-slice, i.e., the
transversal intersection of Y1 [ Y2 [ Y3 with ft D t0g) varies smoothly, and its
topology does not change. Hence, if t1 < t2 are such that the time interval Œt1; t2�
does not contain any critical time, we can find a smooth path Œt1; t2� ! Diffc.R

2/

of diffeomorphisms of R2 compactly supported in a fixed bounded set, connecting
the apparent contours at times t1 and t2. Moreover, in view of the classification of
singularities of stable mappings between three-manifolds (Sect. 6.2.1), we obtain the
following result (compare with Fig. 6.3; in that figure, notice carefully the direction
of t , with respect to which local maxima and minima are considered).

Corollary 6.6.2 (Completeness) A point .x; t/ 2 crit.pjY2/ [ Y3 lies in one of the
following classes, each determining a move in the list of Sect. 6.1:

– .x; t/ 2 Y 22 is a local maximum (respectively local minimum) of a double curve:
moves of type K (respectively of type K�1).

– .x; t/ 2 Y 12 is a local maximum (respectively local minimum) of a cusp curve
that bounds folds going downwards (respectively upwards): move L (respectively
move L�1).

– .x; t/ 2 Y 12 is a local maximum (respectively local minimum) of a cusp curve
that bounds folds going upwards (respectively downwards): move B (respectively
move B�1).

– .x; t/ 2 Y 13 : moves of type S.
– .x; t/ 2 Y 23 : moves of type C.
– .x; t/ 2 Y 33 : moves of type T.

The precise one-to-one correspondence between the list of moves of Sect. 6.1 and
the list in Corollary 6.6.2 is provided by the following observation.

Remark 6.6.3 A more refined classification of each move can be obtained by
looking at the orientation of the various folds involved, and at the relative depth
of the preimages in the critical set X1 D S1.FQ
 / (see Sect. 6.2.1) with respect to
the regular preimages. For example, a point in Y 33 .FQ
 / has three distinct preimages
in X1.FQ
 /, which can be ordered according to the z-coordinate (dropped by the
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projection �). Each of the three involved folds (which are transversal to “time”
direction t) carries a natural orientation and hence contributes with a sign. The
relative depth of the three singular preimages with respect to the remaining regular
preimages provides for the three nonnegative integer parameters, as explained in
Sect. 6.1.3. Note that a cusp curve forces the orientation of the two adjacent folds.

Remark 6.6.4 Corollary 6.6.2 is consistent with [4, Theorem 3.5.5], where isotopies
of surfaces 
 immersed in R

3, realized as projections of embedded surfaces in R
4,

possibly with pinch points, are considered. The authors of [4] seek all codimension
one singularities of mapsR3 � 
 ! R�R ! R. The majority of these singularities
are related to self-intersections and pinch points of 
 , which are excluded in our
setting. Moreover, they also consider singularities that arise from the presence of a
height functionR�R ! R, which we do not need here. The remaining codimension
one singularities correspond to those listed in Corollary 6.6.2.18

Corollary 6.6.5 Let � W R3 D R
2 � R ! R

2 � f0g be the projection on the first
factor, let e1; e2 2 Emb.M;R3/, and suppose that the two surfaces

†1 WD e1.M/; †2 WD e2.M/

are in general position with respect to � . Let '1 WD � ı e1 and '2 WD � ı e2. Then
†1 and †2 are isotopic if and only if their apparent contours

appcon.'1/; appcon.'2/ � R
2

are Reidemeister-equivalent.

Remark 6.6.6 (Reidemeister Moves on Knots) A proof similar to the one described
in Sects. 6.5 and 6.6 can be used to show the classical result of Reidemeister, on
the completeness of the three Reidemeister moves for knots and links. The proof
is obtained by replacing M with the disjoint union U of a finite number of
copies of S

1, and by recalling the classification of singularities of a map from
U � S

1 to R
2 � S

1. More specifically, the second and third Reidemeister moves
correspond, respectively, to the double curves and to the triple points, while the first
Reidemeister move corresponds to the Whitney umbrella (see Example 2.1.9).

18To be more specific, [4, Fig. 9(row 1, column 1)] corresponds to move L; [4, Fig. 9(2,1)]
corresponds to move B; [4, Fig. 9(3,1)] corresponds to move S; [4, Fig. 10(1,1)] corresponds
to move K; [4, Fig. 10(1,2)] corresponds to move C; [4, Fig. 10(2,1)] corresponds to move T.
Theorem [4, 3.2.3] is a simpler version of [4, Theorem 3.5.5], in which the height function is not
considered, and hence is more close to Corollary 6.6.2. It follows by combining the classifications
given by [10, 16, 21].
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CR0CR2

S+SB−1

Fig. 6.4 The first Reidemeister move is obtained with a suitable sequence of compositions of the
moves for apparent contours, by considering the apparent contour of a thin tubular neighbourhood
of the knot (or link); d D 1 on the dashed curves, and d D 2 on the dotted ones

Considering a sufficiently thin tubular neighbourhood of the knot (or link), the
second and third Reidemeister moves can be obtained, respectively, by means of an
iterated application of the K and T move. The first Reidemeister move, instead, is
obtained with the sequence of composite rules displayed in Fig. 6.4; composite rules
are defined in Sect. 10.4.3, and are extensively used by the program appcontour.
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Chapter 7
Invariants of an Apparent Contour

The aim of this chapter is to illustrate some interesting invariants of apparent
contours and labelled apparent contours. These invariants can be numbers, groups,
polynomials; invariance here means that the they are insensitive to certain transfor-
mations, that will be specified case by case.

As an example, let us consider an apparent contour appcon.'/ � R
2 of a stable

map ' W M ! R
2 (Definition 2.2.1). Then, it is clear that the number of components

of appcon.'/ is invariant under R
2-ambient isotopies. Moreover, the number of

crossings of appcon.'/ is

– invariant under diffeomorphic equivalence (Definition 2.4.2),
– invariant under the action of Diff.M/.

On the other hand, supposing that ' factorizes as an embedding in R
3 and a

projection on R
2 (formula (3.3)), then the number of crossings of appcon.'/ is not

invariant under the action of a diffeomorphism of R3.
The number of crossings is one of the three linearly independent first order

Vassiliev-type invariants [23, 45], [29, Chapter 12], [14] in the sense1 considered
in [33], the other two being the number of cusps and a Bennequin-type invariant
[10], which will be described later on in this chapter. When appcon.'/ is a labelled
apparent contour (Example 4.2.8), it is worthwhile to recall that the number of
crossings is not invariant under the Reidemeister-type moves described in Chap. 6.

When M is orientable, we can distinguish positive and negative cusps of
appcon.'/ (Definition 2.2.12), the number of which is easily seen to be, separately,
invariant under the action of Diffc.R

2/.

1By invariant, the authors of [33] mean a locally constant function on the set of stable mappings;
see Sect. 7.3. See also [23, 32] and the references therein. The invariants considered in [33] turn
out to be also invariants under diffeomorphic equivalence (Definition 2.4.2).

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_7
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7.1 Definition of B.appcon.'//

Let M be a two-dimensional closed (not necessarily connected) manifold of class
C1, and let ' W M ! R

2 be a stable map. In this section, following [9],2 we
associate with appcon.'/ a number, denoted by B.appcon.'//, computable only in
terms of the apparent contour.3 It turns out that B.appcon.'// is invariant under
the action of Diffc.R

2/; hence, if appcon.'1/ and appcon.'2/ are diffeomorphically
equivalent (Definition 2.4.2), then

B.appcon.'1// D B.appcon.'2//:

In Sect. 7.3 we shall prove that B.appcon.'// turns out to be the Bennequin-type
invariant considered in [33], the definition of which is based on Legendrian lifts.

Recalling the Morse description in Sect. 2.5, we denote by maxminor.appcon.'//
(oriented maximum/minimum points) the set of all pairs .p; or/, where p 2
appcon.'/ is a local maximum or minimum point, and “or” is the local orientation of
appcon.'/ at p. We shorthand maxminor.appcon.'// with the following symbols4:

maxminor.appcon.'// D
n
�� ; �� ; �� ; ��

o
:

Also, we indicate by crossingsor.appcon.'// (respectively cuspsor.appcon.'//) the
set of all pairs consisting of a crossing (respectively a (horizontal) cusp, or more
conveniently here a marked point, see Sect. 2.5.2) of appcon.'/ and the local orien-
tation of appcon.'/. We shorthand crossingsor.appcon.'// and cuspsor.appcon.'//
as follows:

crossingsor.appcon.'// D
n

%&; -%; .-; &.
o
;

cuspsor.appcon.'// D f �; � g;

where we notice that the orientation around a cusp is not indicated, since it is
determined by the cusp direction: namely, � is oriented downwards, and � is
oriented upwards.

2With kind permission from Elsevier, in this section and in Sects. 7.2 and 7.3 we illustrate the
results and report some of the figures from the quoted paper [9].
3B.appcon.'// is automatically computed in the appcontour program (Chap. 10).
4Compare also with Sect. 2.5.3.
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We set

critor.appcon.'//

WDmaxminor.appcon.'//[ crossingsor.appcon.'//[ cuspsor.appcon.'//:

Recall, as done in Sect. 2.5.3, that if 	 is a critical level, we classify it according to
the (transversal) intersections of a Morse line m	.�/ with appcon.'/ lying on the left
and on the right of the corresponding critical point.

We indicate by a vertical oriented arrow on the left (respectively on the right) of
a singular point p 2 nodes.appcon.'// the orientation of a left (respectively right)
arc to p.

Following the notation in Definition 2.2.5, we recall that

f'.x/ WD #fm 2 M W '.m/ D xg; x 2 R
2:

Using Remark 2.2.6, which specifies the values of f' on appcon.'/, we can
proceed with the following concept [9].

Definition 7.1.1 (The Function b) Let ' W M ! R
2 be a stable map. Let

s 2 maxminor.appcon.'// [ cuspsor.appcon.'//, and ps 2 appcon.'/ be the
corresponding point. We define

b.s/ WD

8̂
<̂
ˆ̂:
f'.ps/ if s 2 f �� ; �� g;
�f'.ps/ if s 2 f �� ; ��g;
�f'.ps/� 1

2
if s 2 f�;�g:

(7.1)

The contribution of s 2 crossingsor.appcon.'// is defined as follows:

b .%&/ WD C1; b .-%/ WD �1; b ..-/ WD C1; b . &. / WD �1:
(7.2)

Definition 7.1.2 (The Number B.appcon.'//) Let ' W M ! R
2 be a stable map.

We define

B.appcon.'// WD
X

s2critor.appcon.'//

b.s/: (7.3)

Some comments are in order.

• The number B.appcon.'// only takes into account the nodes, the cusps, the
extremal points (with respect to the height function) and the orientation of the
apparent contour, and its definition relies on a Morse description of appcon.'/.
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• The independence of B.appcon.'// of the Morse description5 of appcon.'/ is a
consequence of Theorem 7.3.1 (see Corollary 7.3.3). In a similar way, one checks
that B.appcon.'// is invariant under the action of any element of Diffc.R

2/.
• The definition of B.appcon.'// does not require the construction of the Legen-

drian lift (see Sect. 7.2).
• In the case of Legendrian knots, the so-called Thurston–Bennequin invariant (see,

e.g., [44, p. 360] and the references therein), reminds definition (7.3).

The computation of B.appcon.'// is implemented in the program appcon-
tour; the results obtained on some examples are presented in Sect. 10.9.2.

7.2 Definition of BL.appcon.'//

Let us briefly recall from [33] the construction of BL.appcon.'//. In the following
O is an open disk containing appcon.'/. The construction consists of various steps.

Step 1. Each component of appcon.'/ is lifted by using the direction of the
(projectivized) cotangent line as an additional dimension (Legendrian lift,
see, for instance, [34]). We can take the additional coordinate as an angle
� 2 Œ��

2
; �
2
� (direction of the normal to appcon.'/) with extremal values

identified to each other. The Legendrian lift of appcon.'/ obtained in
this way is a set of (pairwise disjoint) smooth closed oriented curves
embedded in O � Œ��

2
; �
2
� with top and bottom faces identified, which

is a set OT with the topology of a solid torus.
Step 2. One takes a thin strip along each component 
 of the Legendrian lift, by

moving it of a small amount ˙� in the normal direction to the contact
plane6 at the given point. We denote by Q
 the boundary of this strip: this
may consist of one or two components, according to whether the strip is a
Moebius band or a cylinder.

5An informal way to realize that B.appcon.'// is independent of the Morse description is the
following. Suppose we are given two Morse descriptions of appcon.'/. Possibly composing with
two elements of Diffc.R

2/, we can suppose that the Morse lines of both the two Morse descriptions
are horizontal and straight. The original apparent contour appcon.'/ is changed, under the action
of these two diffeomorphisms, into two new apparent contours, say G and G0. Let us construct by
hand an R

2-ambient isotopy takingG intoG0. One then classifies the events that appear in the path
of diffeomorphisms taking G into G0, which are the following: local maxima or minima can be
created or destroyed, and one checks that in both cases, (7.3) is unchanged. In addition, the number
of crossings does not change, since a diffeomorphism of R2 can only locally “rotate” and translate
a crossing. When performing a local rotation, local maxima and minima are introduced, and one
checks directly the invariance using definition (7.3) and Definition 7.1.1. Also the number of cusps
does not change; moreover, cusps have been previously transformed into transversal marked points:
applying a local rotation to an arc containing a marked point, the invariance follows from the
definition, since the weight is independent of the orientation of the arc.
6That is, the tangent line to appcon.'/ times R.



7.2 Definition of BL.appcon.'// 161

Step 3. The solid torus OT can be identified with a solid torus

T � R
3;

obtained by rotating O around some line r � R
3 by the angle 2� , � 2

Œ��
2
; �
2
�, with r chosen so that

r \ O D ; and r � fz D 0g; (7.4)

fz D 0g being the plane containing O. We obtain a set of oriented closed
nonintersecting curves 
 � T , together with the corresponding strip
boundaries Q
 � T , where each 
 (respectively Q
) is the image in T
of 
 � OT (respectively Q
 � OT ), obtained using such an identification.

Step 4. For each 
 one computes a self-linking number, which is obtained by
first projecting 
 and Q
 onto some generic plane, and then counting
crossings of the projected 
 and of the projected Q
 with an appropriate
sign,7 and with the following appropriate weight: 1 for self-crossings
of the projected 
 and 1

2
for self-crossings of the projected Q
 . When

counting self-crossings of the projected Q
 one omits crossing points that
are inherited by self-crossings of the projected 
; in other words, one
omits self-crossings of the projected Q
 that are at O.�/ distance from
self-crossings of the projected 
 . The resulting quantity can be shown to
be invariant under Reidemeister moves on the projections of 
 and Q
 .
This entails that the final result is in fact independent of the choice of the
generic projection plane.

Step 5. One also computes the linking numbers of any pair of distinct components

1 and 
2 of the Legendrian lift. We use the same sign convention
as before at each mutual crossing of the projection onto some plane;
in this case, the displaced curves Q
i are not involved. The resulting
quantity is also invariant under Reidemeister moves on the corresponding
projections.

Step 6. Finally,

BL.appcon.'//

is defined as the sum of the self-linking and linking numbers of the
Legendrian lift.

7According to the vector product of the tangent vector to the path above and the tangent vector to
the path below.
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It turns out that BL.appcon.'// is an invariant8 of the apparent contour
appcon.'/ under the action of Diffc.R

2/.

7.3 Coincidence Between B.appcon.'// and BL.appcon.'//

Following closely [9], in this section we prove that B.appcon.'// coincides with
BL.appcon.'//. In order to do this, we need to recall some results mentioned in [33]
(see also [5, 41] and [36]).

Let us denote by

Unstable.M;R2/ � C1.M;R2/

the collection of all unstable maps in C1.M;R2/ (sometimes called discriminant
hypersurface9). The codimension one strata of Unstable.M;R2/ are classified10 as
follows11: L (lips), B (beak-to-beak), S (swallow’s tail), K0, K1, K2 (kasanie, or
tangency), T0, T1 (triple points), C0, C1 (cusp-crossing). We refer to [33, Figure 2],
where it is shown that each stratum can be realized locally as the projection on R

2 of
a surface immersed in R

3 (see also Fig. 6.3, which however refers to the less general
case of labelled apparent contours).

Each stratum is locally cooriented, positively in the direction where the number
of cusps and crossings is increasing; as for T0 and T1, for which the number of
cusps and crossings does not change, the coorientation is toward the region where
the number of preimages of the newly formed triangle is higher [33, p. 30].

Given the ten local strata of the discriminant hypersurface, the corresponding
small letters (l , b, s, k0, k1, k2, t0, t1, c0, c1) denote functions whose jump is
equal to one at every crossing of the stratum in the positive direction defined by

8As we have already said in the Introduction, BL.appcon.'// is called a Bennequin-type invariant;
see, e.g., [36]. In [33] it is proved that all local first order Vassiliev-type invariants of appcon.'/
are a combination of the number of cusps of appcon.'/, the number of crossings of appcon.'/,
and of BL.appcon.'//.
9Or also the bifurcation set of C1.M;R2/ (see [42, 43] and [30]). Recall that, if a map ' belongs
to Unstable.M;R2/, then every neighbourhood of ' contains maps not equivalent to '. We refer
to the survey article [13] for more information.
10Not surprisingly, such a classification is similar to the one in Chap. 6; this becomes reasonable,
if one interprets ' as the first two coordinates of a local embedding of M in R

3. Notice carefully
that M is, in this chapter, an abstract two-manifold, therefore there is no labelling on appcon.'/.
In contrast, in Chap. 6 only labelled apparent contours are taken into account, and for this reason
the number of possible cases is much larger.
11See, e.g., [2–4, 6, 7] and [22].
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the coorientation: �l D �b D �s D �k0 D �k1 D �k2 D �t0 D �t1 D
�c0 D �c1 D 1. The invariant BL.appcon.'//, which we are interested in, has
jump given by

�BL.appcon.'// D �l C�b C 2�k0 � 2�k1 C 2�k2:

Theorem 7.3.1 (Coincidence) Let M be a closed two-dimensional manifold (not
necessarily orientable) of class C1. Let ' W M ! R

2 be a stable map. We have

B.appcon.'// D BL.appcon.'//: (7.5)

The next section is devoted to the proof of Theorem 7.3.1. We shall split the proof,
which is the same as in [9], into two parts. First we check that both B.appcon.'//
and BL.appcon.'// jump of the same amount when crossing each codimension
one stratum of the discriminant hypersurface. As a consequence, we have that
B.appcon.'// D BL.appcon.'// up to a constant. In the second part of the proof,
we show that actually this constant is zero.

7.3.1 Proof of Coincidence Up to a Constant

We start the first part of the proof, by localizing the degeneration in a sufficiently
small box. Let ˛ be the value of f' on the right of the box; in terms of ˛, we can
write the contribution to B.appcon.'// inside the box.

We use a family of Morse horizontal straight lines (see Sect. 2.5) travelling
downwards, as the parameter 	 decreases. The box A is a local description before
the degeneration, and the box B after the degeneration (see Figs. 7.1 and 7.2).

1. Stratum L. The contribution given by box A is clearly zero; in box B, the
function f' assumes value ˛C2 inside the contour, ˛C1 at the local maximum
and minimum points, ˛ at the two cusps. Hence, recalling the definition of b
given in (7.1), we have

in box B W

8̂
ˆ̂̂<
ˆ̂̂̂
:

b. �� / D 1C ˛;

b.�/ D �˛ � 1
2
;

b.�/ D �˛ � 1
2
;

b. �� / D 1C ˛:

Therefore B.box B/ D b. �� /Cb.�/Cb.�/Cb. �� / D 1, B.box A/ D 0,

�B WD B.box B/ � B.box A/ D 1:
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box B
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α
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α

α
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K2
α

α

Fig. 7.1 Strata L, B, S, K0 K1, K2. Image taken from [9]

box A box B

T0
α

α

box A box B

T1
α

α

box A box B

C0
α

α

box A box B

C1
α

α

Fig. 7.2 Strata T0, T1, C0, C1. Image taken from [9]

2. Stratum B. Here the value of f' at the extremal points is ˛ � 1, the value at the
cusps is ˛ � 2. Therefore, we have

in box A W
(
b. �� / D 1 � ˛;
b. ��/ D 1 � ˛:
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in box B W
(
b.�/ D �.˛ � 2/� 1

2
D 3

2
� ˛;

b.�/ D �.˛ � 2/� 1
2

D 3
2

� ˛:

Therefore B.box A/ D 2 � 2˛, B.box B/ D 3 � 2˛ and�B D 1.
3. Stratum S. Before the degeneration the values of f' outside the contour are ˛

and ˛� 2, hence we have a value of ˛� 1 at the extremal point in box A, ˛C 1

at the extremal point in box B and ˛ at the two cusps. Therefore

in box A W b. ��/ D 1 � ˛:

in box B W

8̂
ˆ̂̂<
ˆ̂̂̂
:

b. �� / D 1C ˛;

b.�/ D �˛ � 1
2
;

b.�/ D �˛ � 1
2
;

b.%&/ D 1:

It follows that B.box A/ D 1 � ˛, B.box B/ D 1 � ˛ and �B D 0.
4. Stratum K0. After the degeneration we have f' D ˛ � 4 in the internal region;

the value of f' is ˛� 1 at the two extremal points in box A and ˛� 3 at the two
extremal points in box B. Therefore

in box A W
(
b. �� / D 1 � ˛;
b. ��/ D 1 � ˛:

in box B W

8̂
ˆ̂̂<
ˆ̂̂̂
:

b. ��/ D 3 � ˛;

b.-%/ D �1;
b.&./ D �1;
b. �� / D 3 � ˛:

It follows that B.box A/ D 2 � 2˛, B.box B/ D �2˛ C 4 and �B D 2.
5. Stratum K1. In box A the values of f' are ˛C2, ˛ and ˛�2 respectively in the

top, middle and bottom region, hence we have values of ˛ C 1 and ˛ � 1 at the
extremal points. The same values are achieved in box B. Therefore

in box A W
(
b. �� / D 1C ˛;

b. ��/ D 1 � ˛:
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in box B W

8̂
ˆ̂̂<
ˆ̂̂̂
:

b. ��/ D �˛ � 1;
b.%&/ D C1;
b.%&/ D C1;
b. �� / D ˛ � 1:

It follows that B.box A/ D 2, B.box B/ D 0 and �B D �2.
6. Stratum K2. Here the values of f' at the extremal points are ˛C 1 in box A and
˛ C 3 in box B. Therefore

in box A W
(
b. �� / D 1C ˛;

b. �� / D 1C ˛:

in box B W

8̂
ˆ̂̂<
ˆ̂̂̂
:

b. �� / D ˛ C 3;

b.&./ D �1;
b.-%/ D �1;
b. �� / D ˛ C 3:

It follows that B.box A/ D 2C 2˛, B.box B/ D 2˛ C 4 and �B D 2.
7. Stratum T0. We have

in box A W

8̂
<̂
ˆ̂:
b.%&/ D C1;
b.-%/ D �1;
b..-/ D C1:

in box B W

8̂
<̂
ˆ̂:
b..-/ D C1;
b.-%/ D �1;
b.%&/ D C1:

Therefore B.box A/ D 1, B.box B/ D 1 and �B D 0.
8. Stratum T1. We have

in box A W

8̂
<̂
ˆ̂:
b.&./ D �1;
b..-/ D C1;
b..-/ D C1:

in box B W

8̂
<̂
ˆ̂:
b..-/ D C1;
b..-/ D C1;
b.&./ D �1:

Therefore B.box A/ D 1, B.box B/ D 1 and �B D 0.
9. Stratum C0. Going from right to left in box A the function f' assumes the values
˛, ˛C 2, ˛C 4 in the three regions. The value at the cusp is ˛C 2 in box A and
˛ in box B. Therefore

in box A W b.�/ D �˛ � 5

2
:
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in box B W

8̂
<̂
ˆ̂:
b.-%/ D �1;
b.�/ D �˛ � 1

2
;

b.-%/ D �1:

It follows that B.box A/ D �˛ � 5
2
, B.box B/ D �˛ � 5

2
and�B D 0.

10. Stratum C1. We have

in box A W b.�/ D �˛ C 3

2
:

in box B W

8̂
<̂
ˆ̂:
b..-/ D C1;
b.�/ D �˛ � 1

2
;

b.%&/ D C1:

Therefore B.box A/ D �˛ C 3
2
, B.box B/ D �˛ C 3

2
and �B D 0.

Now, it is proven in [33, Lemma 5.4 and Section 2] that the variation of
BL.appcon.'//, before and after a codimension one degeneration, is the same
as the one computed above. Therefore, there exists a constant C such that

B.appcon.'//� BL.appcon.'// D C: (7.6)

7.3.2 Proof of Coincidence

We pass to the second part of the proof of Theorem 7.3.1. We shall provide a
constructive argument, based on an alternative derivation of B.appcon.'//; this
argument will show that the additive constant C , found in Eq. (7.6), actually
vanishes.

The key tool is the invariance under Reidemeister moves of the self-linking and
linking numbers of the Legendrian lift (see Sect. 7.1). This allows us to perform a
deformation (see (7.7), below) of the Legendrian lift, and to choose a projection
plane to compute the self-linking and linking numbers directly on the original
apparent contour appcon.'/. This deformation, however, cannot be done directly,
since the Legendrian lift in the solid torus T involves a rotation around some line r ,
with r satisfying (7.4).

For convenience, let us translate O so that the straight line r passes through the
origin, with equation fx1 D z D 0g. If .P; �/ 2 
 � OT , P D .P1; P2/ is a point on a
component 
 of the Legendrian lift, the corresponding point under the identification
of OT with T is given by

.P1 cos.2�/; P2; P1 sin.2�//:
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Given � a small positive number, we map .P; �/ in

.P1 cos.2��/; P2; P1 sin.2��// if � 2 .��
2
;
�

2
/; (7.7)

f.P1 cos.!�/; P2; P1 sin.!�// W � � j!j � 1g if j� j D �

2
: (7.8)

Note that when j� j D �
2

this gives a set of values connecting nearby points
along a large circle. Notice that, as � grows to 1, this identification is continuously
deformed to the original one of step 3, Sect. 7.2.

For � > 0 very small, the set of angles from ��� to �� live in a set which
approaches a shallow cylinder; a further small deformation can be applied to get the
exact cylinder

C D O � .��; �/I

see Fig. 7.3. We denote by 
� and Q
� the components of the Legendrian lift thus
deformed.

We cannot yet project onto O, because the projection is nongeneric, since we
have distinct points of 
� and Q
� (those on the top/bottom face of C ) that project
onto the same point in appcon.'/ with the same (horizontal) tangent. We will then
slightly perturb 
� and Q
� , e.g., by cutting the apparent contour at points with
horizontal tangent, which we can suppose to be local maxima or minima and then
moving a little bit apart the two sides. Figure 7.3 represents the construction for an
apparent contour which is just a circle: the Legendrian lift 
� (thicker curves) has
two components, since the normal line to appcon.'/ attains each direction twice (at

Fig. 7.3 Legendrian lift 
�
(thick lines) of a closed circle
and projection back on O
(solid lines). Image taken
from [9]

O

−ζ
C

ζ



7.3 Coincidence Between B.appcon.'// and BL.appcon.'// 169

opposite points on the circle). For the sake of clarity the long arcs of 
� connecting
the top to the bottom endpoints of the two components are shown as straight thick
lines at 45 degrees; one should imagine the same arcs at an angle close to zero (so
that their projections on the plane fz D 0g are almost horizontal with positive slope).
The result of the projection back onto O is also shown in Fig. 7.3, with the signature
of the crossing points depending on which arc crosses over the other.

Without loss of generality (and possibly applying a deformation of appcon.'/)
we can assume that

• the two tangent lines at a crossing are not horizontal, and hence both components
of appcon.'/ cross the horizontal line transversally;

• each horizontal line crosses the apparent contour in at most one critical point (a
cusp or a crossing or a maximum/minimum);

• all cusps have horizontal tangent with the two branches lying at opposite sides
of the tangent. This is a source of nongenericity, since horizontal tangent implies
that cusp points end up on the top and bottom faces of the cylinder C . However
by slightly curving the cusps and introducing a new minimum/maximum point
we can resolve this issue.

We are now in a position to compute all contributions to BL.appcon.'//
described in steps 4 and 5 of Sect. 7.2, by considering all symbols s 2
critor.appcon.'//.

• s 2 crossingsor.appcon.'//. We need to recover the signature of the crossing
points and add it to the linking and self-linking numbers between the components

� . In the Legendrian lift the decreasing branch crosses over the increasing
branch, so that we end up with b.s/ as defined in (7.2).

• s 2 cuspsor.appcon.'//. For definiteness, let us assume that the cusp is pointing
to the right. The horizontal tangent at the cusp is a source of nongenericity;
therefore, we need to deform it by, e.g., curving it slightly upwards, thus
introducing a new minimum point corresponding to a symbol of type �� that
must then be taken into account. Moreover this deformation also introduces a
new crossing between the horizontal tangent to the minimum point and one of the
branches of the cusp; the corresponding contribution shall be taken into account
later on. The cusp itself is lifted in the Legendrian lift with a vertical tangent: it
is therefore necessary a further deformation in order to achieve genericity. This
produces a self-crossing of Q
� with positive signature and hence contributes with
1
2

in BL.appcon.'//.
• s 2 maxminor.appcon.'//. Take for definiteness a local minimum ps . Such a

point corresponds to a long arc that connects the top face (left half of the cut
minimum point) to the bottom face (right half of the cut minimum point) of the
cylinder C . Up to a deformation, we can assume that these arcs project on curves
that travel almost horizontally towards the right, with a nearby crossing over
appcon.'/ on the right of ps and possibly other crossings over appcon.'/ that lie
on the right of ps , make a large curve and reach the minimum point from the left,
possibly crossing below arcs of appcon.'/ lying on the left of ps . To account
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for these crossings we define an integer-valued function which is nonlocal, in the
sense that it depends on the orientation of the left and right arcs to the symbol.

Definition 7.3.2 (The Function w) Let p 2 R
2 and ` be the horizontal straight line

passing through p, and denote by `l � ` (respectively `r � `) the open half-line
starting at p and lying on the left (respectively on the right) of p. We define

w.p/ WD wleft.p/C wright.p/;

wleft.p/ WD #left # � #left "; wright.p/ WD #right " � #right #;

where #left # (respectively #left ") denotes the number of points of `l \ appcon.'/
where appcon.'/ traverses `l downwards (respectively upwards), and #right "
(respectively #right #) denotes the number of points of `r \ appcon.'/ where
appcon.'/ traverses `r upwards (respectively downwards).

Note that12

p 62 appcon.'/ ) w.p/ D f'.p/: (7.9)

When p D ps is the point corresponding to s 2 maxminor.appcon.'//, the resulting
w.ps/ accounts for all crossings far from ps . It has the correct sign, with respect to
the contribution in the linking and self-linking numbers, if s 2 f �� ; �� g, whereas
it has the opposite sign if s 2 f �� ; ��g. Indeed, in the latter case, the line ` is
traversed from right to left. The contribution coming from cusps (see the case s 2
cuspsor.appcon.'// above) always corresponds to the symbol �� , so that in this case
w has the opposite sign. We still need to take into account the crossing near ps; in
all cases, when s 2 maxminor.appcon.'//, a direct check shows that this crossing is
always positive, whereas in case of cusps we have two new crossings with opposite
signature, so that we have no contribution to the self-linking number.

We end up with a contribution:

1C w.ps/ if s 2 f �� ; �� g;
1 � w.ps/ if s 2 f �� ; ��g; (7.10)

1
2

� w.ps/ if s 2 f�;�g;

where in the cusp case we also take into account the self-linking due to
intersections of Q
� .

12Indeed, it suffices to check that both functions are zero far from appcon.'/ and that both have
the same jumps when crossing appcon.'/.
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Claim Let s 2 maxminor.appcon.'// [ cuspsor.appcon.'// and ps 2 appcon.'/
be the corresponding point. Then

s 2 f �� ; �� g ) w.ps/ D f'.ps/ � 1,
s 2 f �� ; ��g ) w.ps/ D f'.ps/C 1,
s 2 f�;�g ) w.ps/ D f'.ps/C 1.

Indeed, recalling the definition of w, (7.9) and Remark 2.2.6, the case where ps is a
local maximum (respectively minimum) follows by computing f' at a point slightly
above (respectively below) ps . If ps is a cusp, we compute w at a point z slightly
above ps , obtaining w.p/ D w.ps/�1 for both type of cusps, and the result follows
from f'.p/ D f'.ps/.

Finally, we can now prove (7.5): it was already observed that crossings contribute
in the same way. For the other type of symbols the result follows directly by recalling
Definition 7.1.2 and the contributions to BL.appcon.'// given by (7.10), in light of
the claim. ut

Since the definition of BL.appcon.'// does not involve any Morse description of
the apparent contour, from Theorem 7.3.1 we deduce the following result.

Corollary 7.3.3 (Independence) B.appcon.'// is independent of the Morse
description of appcon.'/.

7.4 Euler–Poincaré Characteristic of @E

In the previous sections of this chapter we have studied certain R
2-ambient isotopic

invariants of a (not necessarily labelled) apparent contour. The main results of this
section are, instead, confined to labelled apparent contours; however, we will be
concerned with a stronger invariance, namely, invariants of the corresponding 3D
shapes13 E under R3-ambient isotopies.

One of the main examples of such invariants is represented by the right-hand
side of formula (7.11), below. More specifically, we recall from Theorem 5.1.1 that
a complete labelled contour graph .G; d/ can be interpreted as the apparent contour
of a surface† D @E , where† is the image of an embedding in R

3 of a smooth two-
dimensional closed manifold M . Hence .G; d/ inherits all topological information
of †, and therefore one expects that it should be possible to compute from it the
Euler–Poincaré characteristic �.†/. As we shall see, this is indeed the case: �.†/
can be computed solely in terms of the apparent contour14 [8]. Even more, it turns
out that the actual computation of �.†/ from .G; d/ does not involve the labelling
d . A posteriori, this is not surprising, since �.†/ depends only on the manifoldM .

13See also [17, Definition (1.19), p. 107] for related subjects.
14Therefore, the resulting construction is not only invariant under diffeomorphic equivalence of
apparent contours (Definition 2.4.2), but also under R3-ambient isotopies.
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This suggests that the computed value is the Euler–Poincaré characteristic of the
source manifold also in the more general setting of apparent contours of abstract
manifolds. Interestingly, this turns out to be the case,15 provided we conventionally
define (as it is customary) the Euler–Poincaré characteristic of a nonconnected
manifold as the sum of the characteristics of each connected component (total
characteristic). We refer to Sect. 10.7.1 for an implementation of the formula in the
next result, and for further information.

Theorem 7.4.1 (Total Characteristic from the Apparent Contour) Let .G; f; d/
and † D @E be as in Theorem 5.1.1. Then the Euler–Poincaré characteristic �.†/
of † is given by

�.†/ D Fregions.G/ � Sarcs.G/C Vcrossings.G/C Vcusps.G/; (7.11)

where

Fregions.G/ WD
X

R region of G

�
2 � #f connected components of @Rg

�
f .R/;

Sarcs.G/ WD
X

a arc of G;
a\nodes.G/¤;

f C.a/C f �.a/
2

;

Vcrossings.G/ WD
X

p2crossings.G/

�
f min.p/C 2

�
;

Vcusps.G/ WD
X

c2cusps.G/

fmin.c/:

(7.12)

In particular, �.†/ is independent of d .

Proof Let us consider a curvilinear partition P of†, that is a finite family of closed
connected subsets T � † having the following properties:

– each T , called face, is the homeomorphic image of a closed planar polygon,
–
[
T2P

T D †,

– the intersection of two distinct faces is either empty, or a vertex, or an edge.16

15See, e.g., [26], [35, Thm. 1] and [27].
16By a vertex (respectively an edge) of P we mean the homeomorphic image of a vertex
(respectively an edge) of a closed planar polygon.
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It is well known17 that

�.†/ D F � S C V; (7.13)

whereF is the number of faces, S the number of edges and V the number of vertices
of the curvilinear partition.

Remembering the definition of the projection � in (3.1), we have that the graph
G induces a partition of †, obtained from the closed graph18

��1.G/ \†;

the set of vertices of which is, by definition, ��1.nodes.G//\†. Then the preimage
through � of each connected component of the complement of G with connected
boundary, each arc of ��1.G/ \ † containing at least one vertex and each vertex
are considered as elements of a partition of †.

We observe that this partition may differ from a curvilinear partition of †, since
there may be:

– loops (i.e., boundary of faces) with no vertices,
– faces which are not simply connected (hence with nonconnected boundary).

However, these loops do not contribute in the computation of �.†/ in (7.13). Indeed,
adding v vertices to a loop without vertices splits it into v edges, and therefore the
S and V contributions relatively to this loop satisfy �S C V D 0.

Now, let us compute the contribution to �.†/ of the above-mentioned non-simply
connected faces. LetR � † be a (connected) face with nonconnected boundary, and
let

cR WD # fconnected components of @Rg:

Denote by @extR � @R the external curve, bounding the union of all other connected
components @cc

innR of @R. To embed the given configuration in a curvilinear partition,
we add at least two arcs joining @cc

innR with @extR. If @extR and all @cc
innR contain some

vertex, we may choose the joining arcs without adding any new vertex. In this way
R splits into cR connected faces, and we have added 2.cR � 1/ new arcs. Hence the
contribution to �.†/ is

cR � 2.cR � 1/ D 2 � cR:

17Recall that the Euler–Poincaré characteristic of a CW complex is
P

d.�1/d#fd�
dimensional cellg; see, for instance, [40, p. 429], [11].
18This graph contains the singular curve (see Remark 3.2.4). The corresponding partition has been
considered, in more generality, for instance in [46].
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If a connected component C of @R contains no vertices, then C is a closed loop,
and we have to introduce some new vertices besides the new arcs; however, from
the preceding arguments, any number of new vertices on a closed loop gives no
contribution to the total sum.

From Theorems 5.1.1 and 5.1.4 it follows that † is homeomorphic to a quotient
T (see formula (5.1)), obtained by pasting in a suitable way the various copies of
the boundaries of the regions. The statement of the proposition follows by recalling
that, in the cut-and-paste construction of T ,

• a region R appears f .R/ times, and

Fregions.G/ D
X

R region of G with
@R connected

f .R/

C
X

R region of G with
@R not connected

�
2 � #.connected components of @R/

�
f .R/;

• an arc a appears f C.a/Cf �.a/

2
times,

• a crossing p appears .f min.p/C 2/ times,
• a cusp c appears fmin.c/ times.

ut
It is immediate to check that the right-hand side of (7.11) is invariant under R2-

ambient isotopies.

Remark 7.4.2 (Additivity on Connected Components) In Theorem 7.4.1 the mani-
fold † is not supposed to be connected. Assume, for example, that † consists of
two connected components, namely† D †1[†2, so that �.†/ D �.†1/C�.†2/.
From (7.11) we deduce the following formula, which is not directly evident. Let
G†1 (respectively G†2) be the apparent contour of †1 (respectively of †2). Then

Fregions.G†1[†2/ � Sarcs.G†1[†2/C Vcrossings.G†1[†2/C Vcusps.G†1[†2/

DFregions.G†1/ � Sarcs.G†1/C Vcrossings.G†1/C Vcusps.G†1/

C Fregions.G†2/ � Sarcs.G†2/C Vcrossings.G†2/C Vcusps.G†2/:

Remark 7.4.3 (Characteristic of the Interior and the Exterior) In the special case
where @E is connected, formula (7.12) allows us to deduce the Euler–Poincaré
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characteristic of the solid set E and of its complement R3 n E from the apparent
contourG, since19

�.E/ D 1

2
�.@E/; �.R3 n E/ D 1

2
�.@E/C 1:

It is customary to compactify R
3 into S

3: in this case, one obtains the more
symmetric formula

�.E/ D �.S3 nE/ D 1

2
�.@E/:

Obviously, these numbers do not identify the R
3-ambient isotopy equivalence class

of the embedding of the set E , as the following example shows.

Example 7.4.4 Let

– E0 be a knotted solid torus,
– E1 be the standard solid torus,
– E2 be a sphere with two small two-dimensional disks removed around the north

and south poles, and with a knotted gallery connecting the two removed disks
(the so-called knotted anti-torus, see, for instance, [1, Fig. 7], and Fig. 10.20).

Then

�.@E0/ D �.@E1/ D �.@E2/;

so that

�.E0/ D �.E1/ D �.E2/;

and

�.S3 n E0/ D �.S3 nE1/ D �.S3 n E2/:

On the other hand, E0 is not R3-ambient isotopic to E1 (and to E2), and E1 is not
R
3-ambient isotopic to E2.

In the next section we shall be concerned with invariants attached to a labelled
apparent contour, under ambient isotopies of R

2 and also of R
3, in the sense

specified at the beginning of Sect. 7.4.

19Suppose that M is a compact oriented connected three-manifold with boundary, and consider
the double D.M/ of M, obtained by identifying @M with the boundary of a copy �M of M,
with opposite orientation. Then [37, p. 261] �.D.M// D 0. On the other hand, it is possible to
show that �.D.M// D 2�.M/� �.@M/.
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7.5 Cell Complexes and Fundamental Groups

In knot theory one of the most important invariants20 is the topology of the
complement of a (tame) knot in R

3, and in particular its fundamental group �1.
This suggests to focus our attention on the topological properties of the three sets
E ,† D @E and R

3nE , the solid set (the inside), its boundary and its complement in
R
3 (the outside). Of these, the less interesting is †, since its topology is completely

determined by its Euler–Poincaré characteristic �.†/. Indeed, as it is well known,
all closed two-dimensional manifolds are completely classified [21, 39], and in
particular an oriented manifold can only be a sphere with zero or more “handles” (a
torus, for example, has the topology of a sphere with one handle). Also note that the
fundamental group of the outside R3 n E does not change if we compactify R

3 and
consider S3 n E ,21 so that in all considerations concerning the fundamental group
we shall often interchangeably use the most convenient one.

If † D @E consists of a single connected component, we can distinguish the
following cases based on the genus g of the surface,22 i.e.,† is a topological sphere
with g handles.

g D 0: The surface † D @E is a topological sphere (smoothly embedded in R
3).

The generalized version of the Schoenflies theorem [12] (see also, e.g.,
[31]) implies that E is topologically a solid sphere (a 3-ball). This is also
true for the outside, provided we compactify R

3 � S
3 by adding the point

at infinity. As a consequence both E and S
3 n E are contractible sets and

hence their first fundamental groups are trivial. Removal of the point at
infinity from S3 n E obtaining R

3 n E does not change its fundamental
group, although R

3 n E is no longer contractible.
g D 1: The surface † D @E is now a topological torus. Working in S

3 it can be
shown (we refer, e.g., to [38, p. 107]) that† bounds a solid torus on either
side (or both). This means that eitherE is a solid torus, hence a (deformed)
tubular neighbourhood of a knot inR3, or its complement is a solid torus in
S
3, or both. The latter case corresponds to the so-called unknot, a knot that

can be deformed into a circle. An example of the first case is illustrated in
Fig. 10.18 (the trefoil knot), an example of the second case is illustrated in
Fig. 10.20. The fundamental groups of E and R

3 n E allow us to identify
the three cases; the unknotting theorem [38, p. 103] ensures that having
the infinite cyclic group Z as fundamental group of both the inside and the
outside indicates that† is ambient isotopic to the standard torus. Observe
that in any case eitherE or S3nE can be retracted onto a one-dimensional
set (an S

1). Both the inside and the outside have a fundamental group

20Under R3-ambient isotopies with compact support.
21Beware however that R3nE and S

3nE are not, in general, homotopically equivalent; for example,
the complement of a solid sphere in S

3 is contractible, whereas the complement in R
3 is not.

22The Euler–Poincaré characteristic and the genus are related by �.†/ D 2� 2g.
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having infinite cyclic commutator quotient (the abelianized is the infinite
cyclic group Z).

g > 1: In this case we cannot say much aboutE or S3 n E . Sometimes E can be
retracted onto a one-dimensional set, a bouquet of more than one possibly
entangled loops (see Fig. 10.6) sometimes this is true for the complement
in S

3 (see Fig. 10.37), sometimes this is not true for either (see Fig. 10.38).

The picture above is however not complete. A connected component C of (say)
E (all considerations are symmetrically valid for S3nE) might have a nonconnected
boundary consisting of some of the connected components of †, for example if †
is made of three concentric spheres, the “inside” E will consist of two connected
(solid) components: an internal solid ball and a surrounding hollow sphere, the latter
has a boundary consisting of two of the three spheres composing†. This example is
not that interesting since the fundamental group of C is insensitive to the presence
of a connected component of the boundary with the topology of the sphere (because
the complement of that sphere is contractible due to the three-dimensional version
of the Schoenflies theorem [12]).

On the contrary, if there are more than one component of @C with positive
genus, then the fundamental group is greatly influenced by the relative position of
the boundary components. As an example consider a scene E consisting of r solid
tori obtained as tubular neighbourhood of a (tame) link with r components in R

3.
The fundamental group of the outside S3 nE is the link group and carries important
information on the topology of the link, often allowing to recognize links that cannot
be split by ambient isotopy. As an illustration, see Fig. 10.22 for three examples of
such situation. Of course we could have even more involved situations, such as the
one illustrated in Fig. 7.4. It has a fundamental group that can be presented as

hx1; x2; x3I x1x2x3x�1
1 x�1

2 x�1
3 i

having Z
3, the free abelian group of rank 3, as its abelianization.

Fig. 7.4 A torus and a
double torus in a mutually
linked position
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Fig. 7.5 A typical 3D cell is
bounded below and above by
two strata corresponding to a
region of the apparent contour
G†. We call these two faces
floor and ceiling. Arcs of the
apparent contour may give
rise to two-dimensional cells:
for instance, the vertical front
face arises from the
corresponding arc. Nodes of
the apparent contour may
give rise to one-dimensional
cells: for instance, the right
bold vertical segment arises
from the corresponding node

apparent
contour

3D cell

floor

ceiling

7.5.1 Cell Complexes

We observe that each of the three sets E , †, R3 n E can be decomposed in cells
to form a CW complex [24]. The surface† is a two-dimensional complex, whereas
the two solid sets E and R

3 nE are three-dimensional complexes.
For definiteness, let us focus our attention on the solid set E . The construction of

the complex, which is then implemented in the program appcontour (Sect. 10.7,
Chap. 10), proceeds as follows. Each element of the apparent contour (regions, arcs,
crossings, cusps) can be lifted in R

3 to produce one or more cells of dimension
three (regions), two (regions and arcs), one (arcs and crossings), zero (crossings and
cusps). For instance, a three-dimensional cell is a solid portion of R3 bounded from
below and above by two strata (floor and ceiling) of the surface that project onto a
regionR of the apparent contour (see Fig. 7.5), and bounded on the sides by “walls”
that project onto the arcs that boundR.

We proceed in a similar manner for the “outside” R
3 n E . In order to avoid

problems with infinite cells, we fix a sufficiently large ball B containing the solid
set E , and R

3 n E will be replaced by B n E; this has no effect on the homotopy
type. The apparent contour of B n E can be easily obtained by placing the original
apparent contour inside a large S1 and increasing by one the original labelling.

In order to meet the definition of a CW complex it is sometimes necessary to
introduce cutting elements to the apparent contour; in particular, this is necessary
for regions that are not simply connected: one cutting arc for each hole of the region,
and for closed arcs: one cutting node, that is actually an endpoint of a cutting arc.

Remark 7.5.1 The resulting cell complex is not necessarily connected, even for
a connected E . For instance, the outside of a hollow sphere has two connected
components, one homotopic to a point (the internal void) and the other homotopic
to an S

2 (the outside of the “filled” sphere).
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A key property of the 3D cells is that they are never glued together at floors
or ceilings.23 In other words, a ceiling of a 3D cell does not bound any other
3D cell. This allows us to perform a deformation retract that carries the original
complex to a new one in which both the 3D cell and its ceiling have been
removed. By repeating this procedure we can substitute the original complex with a
homotopically equivalent two-dimensional one.

This fact is crucial, since it is much easier to encode the adjacency information
for a 2D cell complex: after arbitrarily choosing an orientation for faces and arcs,
the boundary of a face is simply an ordered list of 1D cells (arcs) each with a sign
indicating whether the arc is positively or negatively oriented with respect to the
face; the boundary of an arc is just an ordered pair of 0D cells (nodes).

All properties of E (respectively R
3 n E) up to homotopy are now completely

encoded in the combinatorial structure of the corresponding cell complex, in
particular so is its fundamental group �1.

7.5.2 Fundamental Groups

The cell complex constructed in Sect. 7.5.1 is of little direct use, and in particular it is
not invariant underR3-ambient isotopies, since the construction is based on a choice
of a projection direction, and it changes when we change the projection direction.
However, its topological structure is indeed invariant under R3-ambient isotopies,
and in particular so are quantities like the number of connected components or (more
interestingly) the first fundamental group �1 of each connected component.

Two R
3-ambient isotopic scenes have homotopically equivalent “outsides”

leading to isomorphic fundamental groups, in other words each of the fundamental
groups (up to isomorphism) provides an invariant (a quite powerful one, actually) of
the 3D scene E up to ambient isotopy. Consequently non-isomorphic fundamental
groups correspond to necessarily non-equivalent scenes. On the contrary isomorphic
fundamental groups do not entail24 that the corresponding scenes are ambient
isotopic. This is the case even in the special case of knots and links (modelled
by using knotted tubes embedded in R

3), for example the two chiral versions of
the trefoil knot (Fig. 10.18) are not ambient isotopic, yet they lead to isomorphic
fundamental groups.25

23The reason being that† separates E (the interior) from R
3nE (the exterior): the interior is below

the ceiling, and consequently it cannot be above it at the same time.
24There are exceptions, most notably the unknotting theorem [38, p. 103] asserts that “trivial”
fundamental groups for † with the topology of a torus imply that the scene is ambient isotopic to
the standard solid torus.
25Proving that the trefoil knot cannot be deformed into its specular version, although apparently
obvious, requires quite sophisticated techniques, beyond the scope of this book.
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For definiteness, let us focus attention on the solid set R3 n E (outside).26 For
simplicity we shall assume that it is connected, otherwise (the hollow sphere is an
example) all subsequent considerations are to be carried out separately for each
connected component.

From the constructed cell complex we can obtain a presentation of its funda-
mental group by using standard procedures (see, e.g., [24]). For a two-dimensional
cell complex (our case) this amounts in finding a spanning tree for the one-
skeleton, listing the remaining arcs as generators of the group and constructing
a relator for each of the 2D faces. A presentation of a group G is written as
hx1; : : : ; xnI r1; : : : ; rmi where x1; : : : ; xn are specific elements (generators) of G
that generate all other elements and r1; : : : ; rm are words in the generators and their
inverses that correspond to the unit element of G.27

It should be noted, however, that dealing with a finite presentation of a group
is far from conclusive: we inevitably incur in algorithmic problems, most notably
the isomorphism problem28 of deciding whether two different finite presentations
describe isomorphic groups. More precisely, the isomorphism problem29 has been
proved to be undecidable: there does not exist a computer algorithm that correctly
solves every instance of the isomorphism problem regardless of how much time is
allowed for the algorithm to run [28].

The so-called Tietze transformations can be used to manipulate a finite presen-
tation with the intent of transforming one presentation into the other. If this can be
done, then we have isomorphic groups. Conversely proving that two presentations
describe different groups amounts in finding some group invariants that differ, e.g.,
the dimension of the abelianization, which however gives very little information.

26This is the most interesting choice in the case E is a knotted solid torus (tubular neighbourhood
of a knot), or a union of knotted solid tori, tubular neighbourhood of a link. Indeed in this case the
fundamental group of R3 n E is simply called the knot group (respectively link group), whereas
the fundamental group of E simply reduces to Z, the infinite cyclic group, for each connected
component. Of course in our broader context we can imagine situations, such as the sphere with a
knotted tunnel of Fig. 10.20, where the interesting solid set is E itself.
27Strictly speaking, x1; : : : ; xn are free generators of the free group F of rank n; r1; : : : ; rm are
elements of F and G is the quotient G D F=H where H is the smallest normal subgroup of F
containing r1; : : : ; rm.
28Although as a matter of fact the isomorphism problem is decidable if restricted to special
classes of finitely presented groups. Among these, interestingly, we also find the fundamental
groups of three-manifolds. A quite interesting post on this subject by Henry Wilton can be found
at the web address http://ldtopology.wordpress.com/2010/01/26/3-manifold-groups-are-known-
right/ (May 21,2014).
29The related word problem (respectively conjugacy problem) of deciding whether two words
define the same element (respectively conjugate elements) in a finitely presented group is also
undecidable in general.

http://ldtopology.wordpress.com/2010/01/26/3-manifold-groups-are-known-right/
http://ldtopology.wordpress.com/2010/01/26/3-manifold-groups-are-known-right/
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7.6 Alexander Polynomials and Invariants
of Fundamental Groups

Following [28], the isomorphism problem for finitely presented groups can be
alleviated by the computation of invariants: objects that are invariant under Tietze
transformations, so that they are independent of the actual presentation of the group.
Two presentations having different invariants necessarily describe groups that are
not isomorphic.

The simplest of such invariants is the abelianized of the group, obtained as the
quotient G=G0 of the group by its commutator, where G stands for the finitely
presented fundamental group and G0 is its commutator, defined as the smallest
normal subgroup containing all elements of the form aba�1b�1. The resulting group,
which turns out to be isomorphic to the first homology group of the set, does not
provide any particularly new information, since it is a finitely generated free abelian
group having rank r , i.e., isomorphic to Z

r , that can be recovered using the Euler–
Poincaré characteristic of each of the connected components of the surface† D @E

that are adjacent to the connected component C of R3 n E under consideration.30

Direct computation of the rank r from a presentation of the fundamental group of
C requires the construction of a so-called preabelian presentation, with a procedure
that resembles gaussian elimination of matrices [28, Section 3.3].

For a general presentation we can construct an integer-valued matrix, the so-
called exponent sum matrix, by considering the sum of the exponents in the relator
rj of the generator xi , obtaining the element in row i , column j . If the number m
of relators (number of columns of the exponent sum matrix) is less than the number
n of generators (rows of the exponent sum matrix), it is customary to add n � m

zero-valued columns on the right, so that we can assume m 
 n. For a preabelian
presentation this matrix is diagonal with non-negative diagonal elements d1; : : : ; dn
satisfying the property that di divides diC1, i 2 f1; : : : ; n � 1g. This is the so-
called Smith normal form of the matrix.31 In particular we have that di D 1 for
i 2 f1; : : : ; i0g, di > 1 for i D i0 C 1; : : : ; i1, di D 0 for i 2 fi1 C 1; : : : ; ng, with
appropriate choice of the values 0 � i0 � i1. The diagonal entries different from 0

and 1 are the so-called invariant factors, and their presence gives rise to the so-called
torsion part of the abelianized group; hence, if i0 D i1, there is no torsion part. The
number r D n � i1 of zeroes in the diagonal is the rank of the abelianizedG=G0.

The structure of G=G0 can be directly read from the diagonal entries of the
exponent sum matrix of (any) preabelian presentation as follows.

30The rank r is actually equal to the Betti number b1 of the component C that we are considering.
The other nonzero Betti numbers are b0 , which is equal to 1, since we are restricting to a single
connected component of R

3 n E , and b2: the number of “voids” (cavities) in C , equal to the
number of connected components of the complement of C (which is also the number of connected
components of† adjacent to C ) decreased by one. The Euler–Poincaré characteristic of C is given
by b0 � b1 C b2.
31It can be defined for any matrix with entries in a principal ideal domain.



182 7 Invariants of an Apparent Contour

• The entries equal to 1 do not count; they correspond to generators contained in
the commutatorG0, and vanish in the quotient G=G0.

• Each invariant factor di > 1 corresponds to a factor of G=G0 isomorphic to the
cyclic group Zdi of order di .

• Each zero entry in the diagonal corresponds to a factor isomorphic to the free
cyclic group Z.

Constructing a preabelian presentation is also a crucial step towards the compu-
tation of a more sophisticated invariant, the Alexander polynomial. This is a widely
known knot invariant (see, for instance, [15, 16]), often computed starting from a
knot diagram. In our context a knot is substituted by the surface † bounding a
knotted solid torus E; since we are not aware of any easy way to recover the knot
diagram from the apparent contour of a (possibly widely) deformed knotted solid
torus, we cannot take advantage of techniques based on the knot diagram. However,
it turns out that the Alexander polynomial can be viewed actually as an invariant
of the fundamental group (this is not true for other important knot invariants, such
as the Jones polynomial). Following [28, Section 3.4], in the special case where the
abelianized G=G0 of the fundamental group G is isomorphic to the infinite cyclic
group Z we have i0 D i1 D n � 1 and the Alexander polynomial is computed as an
invariant of the group G 0=G00, i.e., of the abelianized of the commutator subgroup
of G. Unfortunately, even for a finitely presented G, its commutator G0 is not in
general finitely presented, as it might require countably many generators; however,
a finite presentation can be recovered in the more general context of modules over
the ring L of Laurent polynomials with integer coefficients in one indeterminate,
i.e., polynomials where the indeterminate is allowed to have a negative (integral)
exponent.

If G is the fundamental group of a knot it turns out that there is a preabelian
presentation of G with one less relator than generators (deficiency equal to one); in
this case, the exponent sum matrix of the corresponding presentation of G0 in the
context ofL-modules turns out to be a square .n�1/�.n�1/matrix having Laurent
polynomials with integer coefficients as elements. The Alexander polynomial � is
its determinant.32 A straightforward computation shows that evaluation at 1 of the
elements of the .n�1/�.n�1/matrix produces the .n�1/�.n�1/ principal minor
of the exponent sum matrix of the preabelian presentation. HavingG=G 0 isomorphic
to Z we conclude that it is the identity matrix, so that �.1/ D 1.

If t denotes the indeterminate of the Laurent polynomials in L, it turns out that
the Alexander polynomial is defined up to multiplication/division by t and up to
the transformation t ! 1=t .33 Other than that, different Alexander polynomials

32In [20] the emphasis is given to the ideal of L generated by the Alexander polynomial, indicated
by "1, see Sect. 7.7.
33The mapping t ! 1=t corresponds to the automorphism of the ring Z mapping the (multiplica-
tive) generator t onto its inverse. This is the unique nontrivial automorphism of Z. Interestingly,
it turns out that the Alexander polynomial of a knot is invariant under such a transformation, up
to multiplication by a power of t ; this is not the case for a generic finitely presented group with
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denote different (non-isomorphic) finitely presented groups, which in turn implies
non-equivalency (up to R

3-ambient isotopies) of the original apparent contours.

7.7 Free Differential Calculus

For a finitely presented group that does not have the infinite cyclic group Z as its
abelianization, the construction of the Alexander polynomial described in Sect. 7.6
does not apply. This is the case, e.g., for a link group, which in our context
corresponds to E consisting of a number of solid tori, possibly mutually entangled.
It also happens when † D @E is a connected surface with genus g > 1.

The approach based on the free differential calculus of Fox [18, 19] provides a
way to construct invariants of a finitely presented group G that can be successfully
applied in the more general case G=G0 Š Z

r . For r D 1 we obtain the same
Alexander polynomial described in Sect. 7.6.

For a fixed nwe shall denote byX be the free group with n generators x1; : : : ; xn.
It is composed of words in x1; : : : ; xn; x

�1
1 ; : : : ; x�1

n that can be multiplied by
juxtaposition. The special empty word, denoted by 1, is the unit element of X .
Words can be reduced by removing adjacent occurrences of a generator and its
inverse; a reduced word is a word that cannot be reduced.

Let G D hx1; : : : ; xnI r1; : : : ; rmi D X=H be the finitely presented group
obtained by choosing H as the smallest normal subgroup of X containing the m
relators r1; : : : ; rm 2 X . The projection map will be denoted by

� W X ! G D X=H:

With ZX we denote the group ring of X , i.e., the ring containing the finite formal
linear combinations of elements of X with integral coefficients.

Following [18], the free partial derivatives

@

@xj
W X ! ZX; j 2 f1; : : : ; ng;

infinite cyclic commutator quotient. The symmetry of the coefficients of the Alexander polynomial
is a nontrivial fact, consequence of the Poincaré Duality isomorphism. It is known that any Laurent
polynomial having symmetric coefficients and that evaluates to ˙1 for t D 1 is the Alexander
polynomial of some knot [25].
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with respect to the generators x1; : : : ; xn, are defined by the identities

@1

@xj
D 0;

@xi

@xj
D ıij ; i; j 2 f1; : : : ; ng;

@.ab/

@xj
D @a

@xj
C a

@b

@xj
; a; b 2 X:

From the identities above, by differentiating xix�1
i D 1 it follows that

@x�1
i

@xj
D
(

�x�1
i if i D j ;

0 if i ¤ j :

The free partial derivative is then extended by linearity on the group ring ZX as

@

@xj

X
a2X

˛aa D
X
a2X

˛a
@a

@xj
;

with ˛a 2 Z and ˛a D 0 for all but a finite number of elements a 2 X .
It turns out that the free partial derivative of a reduced word a 2 X with respect

to the generator xj is a signed sum of elements Oak 2 X , one for each occurrence of
xj or x�1

j in a, negative in the latter case, with Oak consisting of the initial segment
of a up to the relevant occurrence of xj excluded if the exponent of xj is 1, included
if the exponent of xj is �1.

We clarify this with an example. Take a D x1x2x
�1
1 x�1

2 ; then

@a

@x1
D 1 � x1x2x

�1
1 ;

@a

@x2
D x1 � x1x2x

�1
1 x�1

2 :

Following [19], the Jacobian J of the presentation hx1; : : : ; xnI r1; : : : ; rmi of G
is the .m�n/-matrix containing all the free partial derivatives of them relators with
respect to the n generators,

J D

2
664
@r1
@x1

� � � @r1
@xn

:::
:::

@rm
@x1

� � � @rm
@xn

3
775 :

With the notation J � we indicate that the matrix entries are to be interpreted as
elements of ZG.
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Remark 7.7.1 (Dependence on the Presentation) The Jacobian matrix depends on
the presentation of G and a change of presentation induces a modification of the
matrix. In particular, the Tietze elementary transformations induce the following
actions on the Jacobian matrix:

• exchange of two rows or two columns;
• add to a row a left-multiple34 of another row;
• add to a column a right-multiple of another column;
• add a new zero-valued row;
• add a new row and a new column with all zero-valued entries except the entry

corresponding to the intersection of the new row and column, where a 1 (unit
element of G) is placed.

Since ZG is not abelian, working directly with the Jacobian matrix is impractical.
In order to make the computation manageable it is convenient to project the matrix
onto a simpler one by using a projection of G onto an abelian group. Two of such
maps are particularly useful: the trivial map

o W G ! f1g;

projection of G on the trivial quotient groupG=G, and the abelianizing map

 W G ! G=G0

with G0 being, as usual, the commutator subgroup. From now on, we shall assume
that the quotientG=G0 is isomorphic to Z

r for some r 2 N.35

Under the trivial map o, the Jacobian matrix is mapped onto an integral-valued
matrix that, after transposition, coincides with the exponent sum matrix introduced
in Sect. 7.6. It allows to identify the structure of the commutator quotient G=G0.

Under the abelianizing map  , the entries of the Jacobian matrix are mapped
onto the commutative ring Z.G=G0/, isomorphic to the ring L of the Laurent
polynomials in r indeterminates and with integral coefficients.

34Recall that ZX and ZG are noncommutative rings.
35This is always the case forG the first fundamental group of sets of the form† D @E ,E or R3nE .
This follows using the Mayer–Vietoris exact sequence [24] on the two solid sets E , R3 n E , and
their common boundary †. Indeed, let � > 0 and consider the open sets EC

� WD fx 2 R
3 W

dist.x; E/ < �g and E�

� WD fx 2 R
3 W dist.x;R3 nE/ > �g, so that R3 D EC

� [ .R3 nE�

� /. We

have the short exact sequence 0 D H2.R
3/ ! H1.E

C

� \ .R3 n E�

� // ! H1.E
C

� / ˚ H1.R
3 n

E�

� / ! H1.R
3/ D 0. HenceH1.E

C

� \.R3nE�

� // andH1.E
C

� /˚H1.R
3nE�

� / are isomorphic.

Since H1.@E/ is (for � > 0 sufficiently small) isomorphic to H1.E
C

� \ .R3 n E�

� // which is a

direct product of copies of Z, it follows that also H1.E
C

� / and H1.R
3 n E�

� / are direct products
of copies of Z, and the assertion follows.
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Definition 7.7.2 (Elementary Ideals) For d 2 f0; : : : ; n� 1g the d -th elementary
ideal "d is the ideal of L generated by all minor determinants of order n � d of the
projected Jacobian matrix J � . They form an ascending chain "0 � "1 � � � � �
"n�1. It is customary to define "d for d < 0 as "d WD f0g and for d 
 n as "d WD L.

The elementary ideals are invariant under the Jacobian matrix modifications
induced by the Tietze transformations, so that ultimately they are independent of
the presentation and are invariants of G. They however depend on how we choose
the isomorphism between G=G 0 and Z

r .

• For simplicity, from now on we shall restrict our analysis to the case of rank
r D 2; however, most of the results extend easily to the general case.

Remark 7.7.3 (Laurent Polynomials) The ring L of Laurent polynomials in two
indeterminates u; v and integral coefficients is a commutative ring whose invertible
elements (units) are all monomials of the form ˙u˛vˇ . It is not a principal domain
ring; it follows that the elementary ideals "d are not, in general, principal ideals.
The first nontrivial ideal "1 in the case of a knot group is however a principal ideal
generated by the Alexander polynomial.

The dependence of the elementary ideals on the actual choice of the isomorphism
G=G0 Š Z

2 entails that they are not by themselves invariants of G. In order to
compute an invariant we need to identify all possible such isomorphisms. In other
words we need to find all automorphisms of Z2 and consider as equivalent ideals that
correspond under such an automorphism. In the special case r D 1 (fundamental
group of a knot) there is only one nontrivial automorphism of Z, the one mapping
the generator t onto its inverse 1=t as already observed at the end of Sect. 7.6. For
r 
 2 the situation is not so simple; in what follows we shall briefly investigate the
subject for the special case r D 2.

Remark 7.7.4 (Automorphisms of Z2) With abuse of notation we shall still denote
by  the composite map  followed by the isomorphism between G=G0 and Z

2;36

in this way, the elementary ideals become ideals of the ring L. However they
will depend on the choice of the isomorphism between G=G0 and Z

2: different
isomorphisms are related to each other by an automorphism of the group Z

2 onto
itself, or, equivalently, by a change of base of Z2. A generic change of base is of the
form uB D u˛vˇ , vB D u
vı where

B D
�
˛ 


ˇ ı

�
; B�1 D

"
Ǫ O

Ǒ Oı

#
: (7.14)

Here B is a matrix in GL.2;Z/ with integral entries and determinant ˙1, B�1 is its
inverse and u; v are a base ofZ2. We use here multiplicative notation, for consistency

36Strictly speaking, the isomorphism between the corresponding group rings induced by the
isomorphism between G=G0 and Z

2.
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with the usual notation for Laurent polynomials in two indeterminates u and v. The
original base u; v can be recovered from uB; vB using the inverse matrix B�1 as

u D u Ǫ
Bv

Ǒ
B , v D u O


Bv
Oı
B .

Definition 7.7.5 (Change of Base) Given B;B�1 2 GL.2;Z/ as in (7.14) the
“change of variables” induced by the change of base defined by B is defined for
p 2 L as

pB.u; v/ D p.u˛vˇ; u
vı/:

Clearly we can recover the original polynomial with p D .pB/B�1 . If ƒ � L, then
we denote by ƒB the corresponding set ƒB D fpB W p 2 ƒg.

Proposition 7.7.6 If B 2 GL.2;Z/ denotes a change of variables and p; q 2 L,
then .p C q/B D pB C qB and .pq/B D pBqB . If I is an ideal of L, then IB is
itself an ideal of L.

Proof The first two assertions are a direct check. That IB is closed under addition
and multiplication follows from the first two assertions. If p 2 I and q 2 L, set
Oq D qB�1 . Then qpB D .qB�1p/B 2 IB since I is an ideal. ut
Definition 7.7.7 (Equivalent Ideals) We say that two ideals I; OI of L are equiva-
lent if there exists a change of base B such that OI D IB .

In the special case where I D .p/ is a principal ideal, generated by p 2 L, an
equivalent ideal OI is itself principal and it is generated by a polynomial q that is
related to p by a change of base and a unit of L, which is to say that

q D ˙mpB (7.15)

where B denotes a change of base and m is a monomial usvt , s; t 2 Z. The
combination “change of base” and “multiplication by m” can be interpreted as
an affine invertible transformation in the group Z

2. This justifies the equivalence
relation defined as follows.

Definition 7.7.8 (Base-Equivalent Polynomials) Two polynomials p; q are base-
equivalent if there exists a change of base B , a monomialm and " D ˙1 such that
p and q are related by (7.15)

Remark 7.7.9 In order to compute the projected Jacobian matrix J � we first need
to identify a base for G=G0 and compute the image of the generators x1; : : : ; xn in
terms of that base with respect to the projection . This can be done by preliminarily
computing a preabelian presentation of G. Indeed for a preabelian presentation, the
first n� 2 generators are all mapped into the identity element of G=G0, whereas the
last 2, once projected, are generators ofG=G0 (hence also providing an isomorphism
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of G=G0 with Z
2),37 they will be the two indeterminates of the Laurent polynomial

in L. This remark generalizes in a straightforward way to the generic case of
rank r .

Finally, we need to introduce the fundamental ideal.

Definition 7.7.10 (Fundamental Ideal) The fundamental ideal E � L is the ideal
generated by u � 1 and v � 1.

Lemma 7.7.11 The fundamental ideal E is characterized by

E D fp 2 L W p.1; 1/ D 0g:

Proof The inclusion E � fp 2 L W p.1; 1/ D 0g is clear. On the other hand,
take p 2 L such that p.1; 1/ D 0. After possibly multiplying p by a suitable unit
monomial u˛vˇ , we can assume that all exponents are nonnegative. We now think
of p as a polynomial in the indeterminate v having coefficients that are polynomials
in u (with integral coefficients). Euclidean division of p by v � 1 does not require
any division (direct check), so that it can be carried out in the ring of polynomial in
v with coefficients that are polynomial in u. We obtain

p.u; v/ D q.u; v/.v � 1/C r.u/;

where q 2 L and the rest r has forcibly degree 0 with respect to v since the divisor
v � 1 has degree one. Requirement p.1; 1/ D 0 now implies that r.1/ D 0, so that
r is divisible by u � 1 with a quotient s.u/ having integral coefficients since again
the euclidean division by u � 1 does not require any division. We end up with

p.u; v/ D q.u; v/.v � 1/C s.u/.u � 1/;

and the proof is complete. ut
Since evaluation in .1; 1/ of a polynomial is invariant under a change of base of

Z
2 we immediately have:

Corollary 7.7.12 (Invariance of E) E is invariant under a change of base of Z2.

37Note that when the presentation is directly obtained from a knot/link diagram using the Wirtinger
technique [38], then the relation of the generators with their projection is easily obtained:
all generators associated with the same link component project to the same element, whereas
generators associated with different link component (one per component) project onto a base of
the quotient group.
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7.8 Links with Two Components: Deficiency One

In the case of a link of two components, we have a finitely presented group with a
presentation of deficiency 1 and commutator quotient of rank 2, for example as the
fundamental group of the outside of two entangled solid tori.38

The Jacobian matrix J is, in this case, rectangular with one more column than
rows. The presentation hx1; : : : ; xnI r1; : : : ; rn�1i can be supposed to be preabelian,
meaning that the projected Jacobian J o� has elements

�
@ri

@xj

�o
D
�
@ri

@xj

�o�
D
(
1 if i � n � 2 and i D j ;

0 otherwise:
(7.16)

The isomorphism  W G=G0 ! Z
2 can then be chosen so that

 .xn�1/ D u;  .xn/ D v;  .xj / D 1; j 2 f1; : : : ; n � 2g; (7.17)

with u; v generators of Z2.

Theorem 7.8.1 Let G be a finitely presented group with G=G0 Š Z
2 with a

preabelian presentation G D hx1; : : : ; xnI r1; : : : ; rn�1i of deficiency 1. Define  
as in (7.17). Then there exist q1; : : : qn�1 2 L such that

�
@ri

@xn�1

� �
D qi .u; v/.v � 1/;

�
@ri

@xn

� �
D �qi .u; v/.u � 1/; i 2 f1; : : : ; n � 1g: (7.18)

In particular, the elementary ideal "1 is given by

"1 D .�/E ;

the product of the fundamental ideal and the principal ideal generated by a certain
polynomial� 2 L (Alexander polynomial) [20, p. 131].

Proof For any i 2 f1; : : : ; n � 1g, using [18, equation (2.3)] we obtain the identity

ri D 1C
n�2X
jD1

@ri

@xj
.xj � 1/C @ri

@xn�1
.xn�1 � 1/C @ri

@xn
.xn � 1/ (7.19)

38More generally this is the case for the inside and the outside of † made of two connected
components of genus 1, i.e., two toric surfaces.
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where ri is viewed as an element of ZX (having .ri /o D 1). Direct computation
using (7.16) leads to .ri / D 1, moreover .xj � 1/ D 0 for all j 2 f1; : : : ; n� 2g.
Projecting (7.19) through  then leads to

˛.u; v/.u � 1/C ˇ.u; v/.v � 1/ D 0 (7.20)

where ˛.u; v/ D
�

@ri
@xn�1

� 2 L and ˇ.u; v/ D
�
@ri
@xn

� 2 L. Evaluating (7.20) in

v D 1 (respectively in u D 1) shows that ˛.u; v/ is divisible by v � 1 (respectively
ˇ.u; v/ is divisible by u�1). Euclidean division by u�1 and v�1 is safe in L since
it does not require divisions and we can conclude that

˛.u; v/ D qi .u; v/.v � 1/; ˇ.u; v/ D �qi .u; v/.u � 1/

which is (7.18). The elementary ideal "1 is generated by the determinants of the n
minors of order n � 1 of the .n � 1/ � n projected Jacobian matrix. All minors
containing both the last two columns have vanishing determinant, since the last two
columns are multiples of the same column vector, so that we only need to compute
two determinants, obtained by removing one of the last two columns. They are of the
form �.u; v/.v � 1/ and ��.u; v/.u � 1/ respectively, where � is the determinant
of the .n � 1/ � .n � 1/ matrix obtained by replacing the last two columns of the
projected Jacobian with the column formed by the elements qi , i 2 f1; : : : ; n � 1g,
which concludes the proof. ut
Theorem 7.8.2 The evaluation j�.1; 1/j 2 N, where � 2 L is defined in
Theorem 7.8.1, is invariant under changes of base of Z2.

Proof This follows from Corollary 7.7.12 and the invariance of the evaluation in
.1; 1/ of a Laurent polynomial under a change of base. ut

Following [20, p. 132] if G is the fundamental group of a two-components link
and the generators xn�1 and xn are meridians of each of the two links, then the
evaluations�.u; 1/ and �.1; v/ verify

�.u; 1/ D .1C u C u2 C � � � C uq�1/�1.u/

�.1; v/ D .1C v C v2 C � � � C vq�1/�2.v/

where q 2 N is the (absolute value of the) linking number between the two links
and �1, �2 are the Alexander polynomials of the first and second components
respectively (the two knots obtained by removing the other component).

For a generic preabelian presentation we cannot expect the last two generators
to correspond to meridians of the link, however in view of the invariance result
given by Theorem 7.8.2 we can nevertheless recover the linking number of the two-
components link from G as follows.
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Corollary 7.8.3 The absolute value q of the linking number between the two
components of a two-components link can be recovered from the elementary ideal
"1 D .�/E as

q D j�.1; 1/j

Proof The result is true for the particular presentation where the two generators u; v
of Z2 correspond to meridians of the two components; then, we conclude in view of
the invariance Theorem 7.8.2. ut
Remark 7.8.4 The elementary ideal "1 is not an invariant of G by itself, rather we
must take into account the possible changes of base of Z2, and consider the whole
equivalence class Œ"1� of "1 given by Definition 7.7.7. A practical consequence is that
in order to conclude that two finitely presented groups are not isomorphic we need
a way to ensure that the computed elementary ideals "1 are not base-equivalent.
Computation of a canonical representative in the equivalence class Œ"1� clearly
solves the problem. This is easily done in the case of Alexander polynomials in one
indeterminate, however for polynomials in two or more indeterminates practical
computation of a canonical representative is not straightforward since there are
an infinite number of different changes of base, so we cannot directly compute
all representatives and select an optimal one using a lexicographic comparison
technique. This will be discussed in Sect. 10.7.4.

Remark 7.8.5 The free group of rank 2 is a special case, in this case the elementary
ideal is trivially "1 D L. The reverse implication is not to our knowledge true, so that
computing the first elementary ideal is not sufficient in proving that the fundamental
group is the free group. However, there is an unknotting Theorem also in the case
of links [29, Theorem 4.2],39 so that knowing that the fundamental group is free is
sufficient to conclude that the link is split (made of “far away” copies of a perfect
circle).

7.9 Surfaces with Genus 2: Deficiency Two

Computation of the fundamental group of each side of a surface † having genus
2 will also lead to a finitely presented group G with G=G0 Š Z

2, now with a
presentation with deficiency 2.

Let G D hx1; : : : ; xnI r1; : : : ; rn�2i be a preabelian presentation. Deficiency 2
implies that the elementary ideal "1 is trivial and gives no information, so that
we shall compute the subsequent elementary ideal "2. We proceed similarly to
Sect. 7.8, but now we have an .n � 2/ � n projected Jacobian matrix, having the

39The unknotting Theorem is valid more generally for links withm components, in which case the
fundamental group is the free group of rank m.
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last two columns with elements of the form qi .u; v/.v � 1/, i 2 f1; : : : ; n � 2g and
�qi .u; v/.u � 1/, i 2 f1; : : : ; n � 2g respectively.

There are
�
n
2

�
minors of order n � 2, however most of them (those containing

both the last two columns) have zero determinant. One of the remaining minors is
given by the first n�2 columns, let’s call w 2 L its determinant. Recalling the form
of the trivial projection .J /o� for a preabelian presentation we immediately deduce
that w.1; 1/ D 1, so that w 62 E .

For any choice of one of the first n � 2 columns we have two minors obtained
by removing that column and one of the last two. From the structure of the last
two columns however, the determinant can be computed by substituting the column
vector formed by the qi ; i 2 f1; : : : ; n � 2g in place of the chosen column, call wi
its determinant, and then multiplying wi times v � 1 or u � 1 respectively.

Summarizing, the elementary ideal "2 is generated by the principal ideal .w/ and
the ideal W obtained by multiplying the fundamental ideal times the ideal generated
by w1; : : : ;wn�2

W D .w1; : : : ;wn�2/E ; "2 D .w;W/:

Remark 7.9.1 Again, the elementary ideal "2 is not an invariant of G by itself,
rather we must take into account the possible changes of base of Z2, and consider
the whole equivalence class Œ"2� of "2 given by Definition 7.7.7.

Remark 7.9.2 Deciding whether or not two non-principal ideals are the same cannot
be done simply by comparing the two sets of generating polynomials, we also need
a way to decide whether a given polynomial belongs to the ideal generated by a
given set of polynomials. An alternative and more appealing approach consists in
finding a canonical set of generating polynomials. This problem will be discussed
in Sect. 10.7.4.

Remark 7.9.3 The free group of rank 2 is a special case, in this case the elementary
ideal is trivially "2 D L. The reverse implication is not to our knowledge true,
so that computing the second elementary ideal is not sufficient in proving that the
fundamental group is the free group. Also, we are not aware of an analogue of the
unknotting Theorem for the case of the inside/outside of a surface of genus 2, so that
knowing that the fundamental group of e.g., the inside is free does not imply that
the solid set E (inside of †) can be retracted onto a one-dimensional object.
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Chapter 8
Elimination of Cusps

In this chapter we show that the apparent contour of a stable embedded closed
smooth (not necessarily connected) surface can be modified, using some of the
moves illustrated in Chap. 6, to obtain an apparent contour without cusps.1 More
precisely, recalling the notion of Reidemeister-equivalence (Definition 6.1.5) and its
generalization on open sets (Definition 8.3.1) our aim is to prove (Theorem 8.3.2)
that any complete labelled contour graph is Reidemeister-equivalent to a complete
labelled contour graph without cusps (actually, in Theorem 8.3.2 we prove a
stronger statement, since the thesis is localized in suitable open subsets of R

2).
Together with the results of Chap. 6, it follows that, up to R

3-ambient isotopies,
any smooth closed surface embedded in R

3 has an apparent contour without cusps.
The prototypical example is maybe given by the torus, where its apparent contour
with four cusps (Fig. 2.6) is Reidemeister-equivalent to two concentric circles
(properly oriented).

The apparent contour is modified only in a local way; the new apparent
contour differs from the old one by the presence of suitable “doubled long” arcs,2

constructed so as to connect a cusp with another suitably chosen cusp. As already
remarked in the Introduction, it is worth noticing that it may happen that the number
of crossings of the new apparent contour is considerably higher than the number
of crossings of the original apparent contour. Therefore, the simplification of the
apparent contour due to “annihilation” of cusps could be obtained at the expense of
a complication in terms of arcs and crossings.

1A map having an apparent contour without cusps is usually called a fold map: see [3, 5, 7] for
related references, and also [9, p. 403], [1, 2, 6].
2On the surface embedded in R

3 having the graph as its apparent contour (compare with
Theorem 5.1.1), these long arcs correspond to a pair of folds on the surface, forming a sort of
wrinkle.

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_8
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To state the elimination result, two notions are required: the embedding sign of
a cusp, and the connectibility of two cusps in an open set. These two concepts are
introduced and discussed in the next two sections, respectively.

8.1 Embedding Sign of a Cusp

Let .G; f; d/ be a complete labelled contour graph (Definition 4.2.6). Recalling the
notation of Sect. 3.3, if c 2 G is a cusp, the incoming arc of G at c will be denoted
by c� and the outgoing arc by cC. Moreover, we let d.c�/ (respectively d.cC/) be
the value of d on c� (respectively on cC). From the requirements that we have on a
labelling (see Fig. 3.11), it follows that

jd.c�/ � d.cC/j D 1:

Remember that the function d is defined on G n crossings.G/, hence it has a
well-defined value at a cusp c, and it is also convenient to recall that

d.c/ D min
�
d.c�/; d.cC/

�

(see Remark 3.4.4).

Definition 8.1.1 (Increasing and Decreasing Cusps) We say that the cusp c of G
is increasing (respectively decreasing) if d is increasing (respectively decreasing)
at c, i.e., if d.c/ D d.c�/ (respectively d.c/ D d.cC/).

For instance, the third picture of Fig. 3.11 shows an increasing cusp, and the
second picture a decreasing cusp.

Now, we assign a sign to a cusp c, related to the value of d at the incoming arc
at c, see Fig. 8.1.

2

−

10

1

+

O

Fig. 8.1 Example of cusps that cannot be eliminated in O because they are not connectable. The
signs ˙ refer to the embedding sign of the cusps
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Definition 8.1.2 (Embedding Sign of a Cusp) Let c be a cusp ofG. We define the
embedding sign of c as

embsign.c/ WD .�1/d.c�/:

Remark 8.1.3 The embedding sign of a cusp c, which is the parity of d.c�/, differs
from the classical notion3 [4, 8] of parity of a cusp of an apparent contour of a map
from an oriented two-manifold into the plane. In our context (since an embedded
surface is necessarily orientable), the classical parity of a cusp would be simply
given by the parity of d.c/.4

It has been already observed in Lemma 3.4.6 that the number of cusps of a
component of the apparent contour is even. The following stronger statement holds.

Lemma 8.1.4 (Alternate Embedding Sign) Let C be a component of G. Then

X
c2cusps.C /

embsign.c/ D 0: (8.1)

Moreover, two consecutive cusps of C have alternate embedding sign.

Proof Let c1; c2 2 cusps.C / be two consecutive cusps5 of C . By the properties of
d on the arcs6 of G, we have that embsign.c1/ D �embsign.c2/, and (8.1) follows.

ut
The strategy of the proof of the elimination of cusps is based on the application

onG of the Reidemeister-type moves described in Chap. 6. It is then worth noticing
an invariance property of the embedding sign.

Remark 8.1.5 (Invariance of Embedding Sign Under Reidemeister-Type Moves)
Move B, as well as moves L and S, elides two cusps of opposite embedding sign
(belonging to two possibly different connected components ofG), whereas all other
Reidemeister-type moves do not involve cusps. Therefore, the sum of the embedding
sign of all cusps is invariant under the application of one of the (direct or inverse)

3See Definition 2.2.12.
4For example, in [4, remark following Theorem 2] if we orient the embedded surface according
to the inner normal, and the critical curve with the orientation induced by the arcs of the apparent
contour, then the definition of sign of a cusp coincides with .�1/d.c/.
5The argument is of course valid also in the presence of crossings in between the two cusps.
6Recall that, when traversing a crossing, either d remains constant, or it jumps by two units, so
that its parity remains constant.
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Reidemeister-type moves on apparent contours. This is consistent with (8.1), in the
following sense:

– if, after the application of one of the above-mentioned moves, two different
connected components C1 and C2 join into one single connected component C ,
then

X
c2cusps.C1/[cusps.C2/

embsign.c/ D
X

c2cusps.C /

embsign.c/I (8.2)

– if, after the application of one of the above-mentioned moves, one connected
component C splits into two different connected components C1 and C2,
then (8.2) holds.

Observe that move B either splits a component of the apparent contour into two new
components or joins two distinct components into a single new component; for this
reason, we cannot speak of invariance under Reidemester-type moves for a single
component. Similarly, move L completely eliminates a component with exactly two
cusps with opposite embedding sign (the reverse happens for the inverse L�1 of
move L).

8.2 Connectable Cusps in an Open Set

In this section we introduce the notion of connectable cusps relatively to an open set.
We start by formalizing the concept of adjacency between strata already used in

Sect. 5.2.1 (see, for instance, Fig. 5.1).

Definition 8.2.1 (Horizontal and Vertical Adjacency) The strata .R1; r1/ and
.R2; r2/ are horizontally adjacent if

– R1 ¤ R2,
– there exists an arc a of G with a � @R1 \ @R2,
– either r1 D r2 � d.a/, or r2 D r1 � 2 
 d.a/ C 1 if f .R2/ < f .R1/, or
r1 D r2 � 2 
 d.a/C 1 if f .R1/ < f .R2/.

In this situation the arc a is said to give horizontal adjacency between the strata.
The strata .R1; r1/ and .R2; r2/ are vertically adjacent if

– R1 D R2,
– jr2 � r1j D 1,
– there exists an arc a � @R1 ofG havingR1 on the left, and such that d.a/C 1 D

min.r1; r2/.

In this situation the arc a is said to give vertical adjacency between the strata.

Now, let O be an open connected subset of R2 with boundary @O of class C1;
O D R

2 is allowed, in particular @O can be empty.
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1

0

O

Fig. 8.2 Example of cusps that are connectable, hence they can be eliminated in O. Notice the
bold left arc in the left picture, which is not present in the left picture of Fig. 8.1, and makes now
connectable the two cusps in O. The signs ˙ refer to the embedding signs of the cusps. Observe
that the move B cannot be applied (see Fig. 6.2), because the two cusps lie in different strata

Definition 8.2.2 (Generic Position) We say that O is in generic position with
respect to G if

nodes.G/ \ @O D ;;

and all intersections between @O and G are transverse, and in finite number.

From now on in this chapter, O is in generic position with respect to G.

Definition 8.2.3 (O-horizontal and O-Vertical Adjacencies) Let us consider
two strata corresponding to regions that intersects O. The two strata are said
O-horizontally adjacent (respectively O-vertically adjacent) if the arc that gives
horizontal adjacency (respectively vertical adjacency) intersects O.

Example 8.2.4 Take, in Fig. 8.2, R1 D R2 as the complement in O of the inside of
the two cusps on the left of the arc a having7 d.a/ D 0, and r1 D 1 and r2 D 2. Then
.R1; r1/ and .R2; r2/ are O-vertically adjacent. On the other hand, take R1 D R2
to be the complement in O of the inside of the two cusps in Fig. 8.1 and r1 D 1

and r1 D 2. Then .R1; r1/ and .R2; r2/ are not O-vertically adjacent, because of
the lackness of an arc a giving vertical adjacency in O. An example of horizontal
adjacency is given in Fig. 8.3.

We are now in a position to introduce the notion of connectable strata.

Definition 8.2.5 (Connectable Strata in O) Two strata are connectable in O if
there exists a finite sequence of O-horizontally or O-vertically adjacent strata
connecting them.

7When G is the apparent contour of an embedded surface †, the arc a results from a folding of †.
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0

s=3

s=1 0

+

−

0
1

2

3

Fig. 8.3 The dashed curve represents the image of 
 , and is oriented from left to right; the bold arc
belongs toG. On the right we show the combined elementary moves for a horizontal adjacency: the
(labelled) contour on the right is obtained by performing the inverse of an Lmove and the inverse of
a C move (see Fig. 6.2), thus creating two new cusps on opposite sides of the bold arc. The signs ˙
refer to the embedding sign of the cusps. Note that the value of s at cusp c equals d.c/C1. All other
horizontal adjacencies are obtained from this one by left–right reflection, front–back inversion and
addition of a positive constant to the labelling d . As explained in the proof of Theorem 8.3.2, the
remaining (not displayed in the right figure) long dashed arcs are doubled, and cusps with the
proper value of d are inserted so as to annihilate the cusps in the right figure by using the move B,
see Fig. 8.7. The arcs and crossings remaining after this operation belong to QG but not to G. The
prototypical case of a fold “behind” the curve 
 corresponds to substituting: in the left picture, 1
in place of 0 and s D 1 in place of s D 3; in the right picture, the label 0 in place of 2, and 1 in
place of 3, while the value d D 0 is replaced by the sequence 1, 3, 1

Definition 8.2.6 (Cusp Pointing Into a Stratum) Let c be a cusp of G and .R; r/
be a stratum. We say that c points into .R; r/ if

– c 2 @R and R is locally on the right of c� and cC, namely R D Rmin,
– r D d.c/C 1.

Note that given a cusp c there is exactly one stratum such that c points into that
stratum. Referring to Example 8.2.4 (Fig. 8.2) we have that the upper cusp points
into .R1; r1/ D .R1; 1/, and the same happens in Fig. 8.1.

We now introduce the notion of connectable cusps, which takes a crucial role in
the proof of the elimination theorem.

Definition 8.2.7 (Connectable Cusps in O) Let c1; c2 2 O be two cusps of G.
Let .R1; r1/ and .R2; r2/ be two strata so that cj points into .Rj ; rj / for j D 1; 2.
We say that c1, c2 are connectable in O if .R1; r1/ and .R2; r2/ are connectable in O.

Remark 8.2.8 (Connectable Cusps in R
2) Let c1; c2 be two cusps on the same

component of G; then, independently of their embedding sign, c1 and c2 are
connectable in R

2, namely c1 and c2 point into connectable strata in R
2. A chain of

horizontally or vertically connectable strata that connect the two strata pointed by
c1 and c2 can be found by recalling that, from Theorem 5.1.1, .G; f; d/ coincides
with the labelled apparent contour .G†; f†; d†/ of a stable smooth closed surface†
embedded in R

3. Hence, a component of the apparent contour is just the projection
of a critical curve of the manifold, and the stratum pointed by a cusp corresponds
to a portion of the manifold that is adjacent to this critical curve. Therefore, it is
sufficient to follow the critical curve and annotate the strata corresponding to the
portions of manifold adjacent to it until we reach the point of the critical curve
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that projects to the target cusp c2. Recall that horizontally/vertically adjacent strata
correspond to adjacent portions of the manifold.

Notice that two cusps may be connectable also when they belong to different
components of G. Notice also that given a cusp c1 on a component C of G, there
exists at least another cusp c2 2 C with opposite embedding sign connectable
with c1.

In this section we have not made use of the function f , which will be used in the
next section.

8.3 Statement of the Elimination Theorem

In order to state the main result of this chapter (Theorem 8.3.2), we need the
following concept, which defines an equivalence relation.8

Definition 8.3.1 (Reidemeister-Equivalence in O) We say that two complete
labelled contour graphs are Reidemeister-equivalent in O if they can be connected
by using a finite sequence of direct or inverse Reidemeister-type moves with
compact support in O, and a finite number of R2 ambient isotopies with compact
support in O.

The essence of the next result is, roughly speaking, that if two cusps of
G in O have opposite embedding signs and are connectable in O, then G is
Reidemeister-equivalent in O to a complete labelled contour graph without c1 and
c2. The new apparent contour may have new crossings and new arcs: for instance,
arcs originally ending in c1 and c2 get extended.

Theorem 8.3.2 (Cusps Elimination in O) Let .G; f; d/ be a complete labelled
contour graph. Let O � R

2 be an open set with @O of class C1, in generic position
with respect to G. Let c1, c2 2 O be two cusps of G. Assume that

embsign.c1/ D �embsign.c2/;

and that c1 and c2 are connectable in O. Then there exist

– a complete labelled contour graph . QG; Qf ; Qd/,
– a neighbourhoodW of G,
– two disjoint neighbourhoodsU1, U2 of c1 and c2 respectively, with

U1 [ U2 �� O; U1 [ U2 \
�

nodes.G/ n fc1; c2g
�

D ;;

– pairwise disjoint neighbourhoodsA1; : : : ; An of portions of arcs of G, with

8Reidemeister-equivalence in R
2 has been already used in Chap. 6 (see Definition 6.1.5).
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n[
iD1

Ai �� O;
n[
iD1

Ai \ Œ.U1 [ U2/[ nodes.G/� D ;;

with the following properties:

– . QG; Qf ; Qd/ and .G; f; d/ are Reidemeister-equivalent in O;
– . QG; Qf ; Qd/ and .G; f; d/ coincide in W nD, where D WD U1 [ U2 [ Sn

iD1 Ai ;
– cusps. QG/ D cusps.G/ n fc1; c2g.

Notice that QG has no cusp in U1 [ U2, and

#cusps. QG/ D #cusps.G/ � 2:

Moreover QG can have in D new nodes and new arcs, but no new cusp. In addition,
in O and outside of W , the graph QG can have (new) arcs and (new) nodes but no
new cusp. Notice also that, if embsign.c1/ D embsign.c2/, then from Lemma 8.1.4,
the two cusps c1 and c2 cannot be eliminated, whatever the choice of O. Indeed,
elimination of c1 and c2 would then alter the total sum of the embedding sign, which
is on the contrary an invariant (equal to zero).

Corollary 8.3.3 (Cusps Elimination) Let .G; f; d/ be a complete labelled contour
graph. Then there exists a complete labelled contour graph . QG; Qf ; Qd/ without cusps
and Reidemeister-equivalent to .G; f; d/.

8.4 Proof of the Elimination Theorem

The aim of this section is to prove Theorem 8.3.2 and Corollary 8.3.3.
Without loss of generality, we can assume that the embedding sign of c1 is

positive and the embedding sign of c2 is negative. We start by selecting two points
P1 and P2 belonging to the regions pointed by the two cusps, with P1 sufficiently
close to c1 and P2 sufficiently close to c2. Since by assumption the two cusps are
connectable in O, we can construct a piecewise smooth curve9 connecting them, and
a locally constant function defined on it, indicating point by point in which stratum
the curve lies. The curve can pass from a region to another region, provided the
corresponding strata are either horizontally or vertically adjacent. In case of vertical
adjacency, the curve “bounces” on the arc giving adjacency (remaining on the left
of the arc, see Fig. 8.4). In case of horizontal adjacency, the curve crosses the arc
giving adjacency. Let us state all these properties in a precise way: there exist a

9It may be helpful to regard this curve as a curve connecting the two corresponding points in (a
connected component of) the embedded surface constructed in Chap. 5. Considered at this level,
the curve does not self-intersect, and two cusps are connectable if they lie in the same connected
component.
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Fig. 8.4 Combined elementary moves for a vertical adjacency: the (labelled) contour on the right
is obtained by performing one of the two inverses of an S move, which one depends on whether
the value of s is increasing or decreasing. At this stage of the proof two new cusps are added to the
graph. Applying this operation to the case of Fig. 8.2, the new added cusps (whose embedding sign
is indicated by ˙) will be annihilated in O with the preexisting cusps with corresponding opposite
embedding sign, by inserting a couple of arcs of im.
/ (see the left picture, where each dashed arc
must be doubled), and using the move B. Note that the value of s coincides with the value of the
labelling at a cusp increased by one. This move is applied when 
 “bounces left” and the labelling
of the arc is even (as in the figure) or when 
 “bounces right” and the labelling of the arc is odd,
otherwise we resort to the move illustrated in Fig. 8.6

continuous curve 
 W Œ0; 1� ! R
2 with 
.0/ D P1, 
.1/ D P2, and a function

s W im.
/ ! N;

(where im.
/ D 
.Œ0; 1�/) with the following properties:

– im.
/ self-intersects only at a finite set SI of points, any self-intersection is
double and transverse, and SI \G D ;;

– im.
/ \ nodes.G/ D ;,
– im.
/\G is finite and can be partitioned as TI [BI , where TI are the transversal

intersections, and BI are the bouncing intersections, namely those points such
that im.
/ lies locally on the left of the arc;

– im.
/ nBI is of class C1 up to BI from both sides, and at a point of BI the two
tangents to im.
/ are distinct and different from the tangent to the arc10;

– each crossing in TI corresponds to a horizontal adjacency of strata and each
crossing in BI corresponds to a vertical adjacency of strata;

– function s is locally constant on the arcs of im.
/ out of TI [ BI ;
– at a point of SI the two values of s (on the two concurring arcs of im.
/) are

distinct, see Fig. 8.5;
– function s at the endpoints P1 and P2 has the values corresponding to the strata

where the cusps point into;
– if we think of 
 as taking values in the embedded surface (footnote 9), then at

any point of im.
/, the value of s would coincide with the index numerating the
stratum containing that point.

10It is possible to modify the construction so that the whole of im.
/ is C1, requiring that at points
of BI the set im.
/ is tangent to the arc. Since this smoothness is not necessary here, we do not
add this requirement.
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Fig. 8.5 Combined elementary moves for a self-crossing: the graph on the right is obtained by
performing the inverse of two L moves and the inverse of two C moves. Again, new cusps are
created, the signs ˙ refer to the embedding signs, and the value of s coincides with the value of
the labelling at the cusps increased by one

0
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Fig. 8.6 Combined elementary moves allowing, when necessary, exchange of the embedding sign
of the cusps

The next step in the proof is the following:

– for each point in TI we perform one move as explained in Fig. 8.3;
– for each point in BI we perform a move as explained in Fig. 8.4 or in Fig. 8.6.

Which one depends on the parity of the labelling of the arc and on whether the
curve 
 “bounces left” or “bounces right” as explained in the caption of Fig. 8.4;

– for each point in SI we perform a move as explained in Fig. 8.5.

Notice that several new cusps are introduced at this stage of proof. The local
modifications displayed in Figs. 8.3, 8.4 and 8.6 require modifications of G in a
small portion of the involved arcs. These portions are the sets

A1; : : : ; An

in the statement of the theorem.
Now, if we remove from im.
/ those portions where we performed the local

modifications of Figs. 8.3–8.6, we remain with a set of disjoint arcs, the closure of
which is contained in the regions of G. Let us focus the attention on one of these
arcs, say 
.Œ˛; ˇ�/, for an interval Œ˛; ˇ� contained in Œ0; 1�. Using an inverse of an L
move, we double this arc into a pair of close together parallel arcs travelling along
im.
/, connecting the two newly introduced cusps (see Fig. 8.7), positioned near
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Fig. 8.7 A long arc of 
 (dashed curve) is doubled, and two new cusps are created using an inverse
of an L move (right picture). The embedding signs and the values of the labelling are so that these
cusps can be annihilated with the preexisting nearby cusps, using a B move

the endpoints of 
.Œ˛; ˇ�/.11 A choice of the inverse of L can be done in such a
way that:

– the labelling of the two arcs are s � 1 and s,
– the labelling on the arc on the right (with respect to the orientation of 
 ) is even.

As a consequence, the cusp close to 
.˛/ has negative embedding sign, while the
cusp close to 
.ˇ/ has positive embedding sign. At this point, we have a set of new
cusps paired in such a way that they can be all eliminated by B moves. The proof of
Theorem 8.3.2 is concluded. ut

We can now prove Corollary 8.3.3. Let C be a component of G. From
Lemma 8.1.4 it follows that the number of cusps of C having positive embedding
sign is equal to the number of cusps of C having negative embedding sign. Take
a cusp c 2 C with positive embedding sign; then, travelling along C , it follows
that the subsequent cusp c0 of C has negative embedding sign (Lemma 8.1.4).
By Remark 8.2.8 it follows that c and c0 are connectable in R

2. Then Theorem 8.3.2
provides a new complete labelled contour graph having as set of cusps the set
cusps.G/ n fc; c0g. The assertion follows by repeating this procedure until there
are no more cusps in C , and repeating the argument for any componentC ofG. ut
Remark 8.4.1 It is worth noticing that not all moves listed in Chap. 6 are necessary
to prove Theorem 8.3.2. More precisely, in the proof we have used the move B and
the inverses of the moves S, L and C, while moves K and T (and their inverses) have
not been used. Note also that the constructive proof of Theorem 8.3.2 allows us to
compute the number of moves which are necessary to annihilate all cusps of the
apparent contour.

11When G is the apparent contour of an embedded surface †, this operation corresponds to the
creation of thin long crease (a double fold) that follows that part of 
 .
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8.5 Application to Closed Embedded Surfaces

From Corollary 8.3.3, Theorem 5.1.1 and the results of Chap. 6 we deduce the
following result.

Theorem 8.5.1 (Cusps Elimination Applied to Shapes) Let † be a stable closed
(not necessarily connected) surface of class C1 embedded in R

3, and let G† be
its apparent contour. Then there exists an R

3-ambient isotopy deforming † into a
smooth stable closed surface Q† so that the apparent contour of Q† has no cusps.

Example 8.5.2 (Torus) The aim of Theorem 8.3.2 is to provide a general way to
elide pairs of cusps using the Reidemeister-type moves on apparent contours, and
there is no claim that such a procedure is, in some sense, the simplest one. This
is clarified by the example of the torus having the apparent contour as in Fig. 8.8.
In this case, an immediate way to annihilate (two by two) the four cusps is to perform
the move S on each pair of (nearby) cusps, c1 with c2 and c3 with c4 (note, on the
other hand, that the move B cannot be applied with the same pairing, although we
could annihilate with a B move, e.g. c1 with c4). This is not the procedure made in
the proof of Theorem 8.3.2, which, having a general validity, in this case results in a
much more complicated construction. Let us consider, for instance, the positively
embedded cusp c1: a move B cannot be applied between c1 and the negatively
embedded cusp c2, since c1 and c2 point into different strata, like in Fig. 8.4 (right).
Following the strategy of proof of Theorem 8.3.2, we introduce an arc 
 connecting
c1 to c2, and bouncing on the exterior boundary of the torus (see Fig. 8.8 (right)).
We then introduce a pair of new cusps near the bouncing point arguing as in Fig. 8.4
right (using the local part of the boundary of the exterior region, which takes the
role of the arc labelled by 0 in Fig. 8.2 (left); next, we annihilate c1 with one of
these cusps, and c2 with the other one, as in the last picture of Fig. 8.8. A similar
argument can be applied to annihilate the positively embedded cusp c3 with the
negatively embedded cusp c4.

c1 c4

c3c2

c4

c3c2

c1γ

γ

c4

c3

Fig. 8.8 Annihilation of cusps c1 and c2 in Example 8.5.2
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Chapter 9
The Program “Visible”

In this chapter we describe an actual implementation of the constructive proof of
the completion result (Theorem 4.3.1). The corresponding software code, a free
software program, called visible, is written in C language and is part of the
appcontour project described in Chap. 10 [1]. It is hosted on sourceforge.net,
its home page is http://appcontour.sourceforge.net/, from where the source code can
be downloaded, compiled and installed following the standard procedure for Unix
projects.

The software basically works as a filter that takes a description of the visible
contour graph (briefly, visible contour) K as input and produces a description of a
possible completionG as output.

Both input (visible contour) and output (complete labelled contour graph) are
described in terms of their topological structure, by using a Morse-like description
that corresponds to the one used in the proof of Theorem 4.3.1. All quantitative
information, such as the actual position and shape of the contour lines in the retinal
plane, are lost. In this respect the visible program should be considered as proof-
of-concept of an implementation of the construction described in Chap. 4.

9.1 An Example

Before entering into the details we clarify the basic ideas with an example.
The drawing of Fig. 9.1 (left) is a visible contour graph that satisfies the

requirements of Definition 4.1.8. Moreover, requirement (K3) is also satisfied when
replacing ext.K/with background.K/ obtained as the union of ext.K/ and the small
internal region marked with an “e” in the picture (see also Remark 4.1.10). This
allows us to apply the completion construction while forcing the region marked
with “e” to have f D f† D 0 (background) in the completed apparent contour
graph, see Corollary 4.5.1. The textual description of this visible contour is shown
on the right of Fig. 9.1, and is essentially based on the Morse description used in the

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_9
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Fig. 9.1 The visible contour
graph on the left is described
by the text on the right, by
listing a sequence of Morse
events

Table 9.1 To each Morse
event we associate a character
or a pair of characters taken
from the standard set of
ASCII characters

Morse ASCII Morse ASCII
event representation event representation

|

ˆ U

, (comma) ‘ or ’

n ’ ‘/

/. .n

proof of Theorem 4.3.1. We need to encode the description as an ASCII1 text file,
to be used as input for the program. For this reason we substitute the list of symbols
introduced in Sect. 2.5.3 (slightly modified to accommodate for T-junctions and
terminal points) with similar characters from the standard ASCII chart; for example,
the symbols �� and �� are both encoded with the caret (ˆ) ASCII character. The
complete list of Morse events and the corresponding ASCII characters are listed in
Table 9.1. Information on the orientation is in most cases inferred by the program,
by enforcing the validity of the assumptions in Definition 4.1.8. When needed,
orientation can be given explicitly, adding one of the characters “l” (lowercase L),
“r”, “u”, “d” to mean left, right, up and down respectively, to the corresponding
Morse event. In this way the various typographical characters in the description of
Fig. 9.1 (right) correspond to different kind of Morse events; the semicolons separate
the description of different (critical) Morse lines, and the letter “e” appearing in
the description is used to mark the corresponding region as part of the background
background.K/, forcing the program to reconstruct in such a way to have f D 0 in
that region.

1The American Standard Code for Information Interchange (ASCII) is a universally used character-
encoding scheme originally based on the English alphabet. It encodes a set of 128 characters (33
are non-printing control characters) that can be easily used in a text file.
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Fig. 9.2 The reconstructed labelled apparent contour is described by the text shown on the left,
with a corresponding drawing on the right

The Morse description of Fig. 9.1 (right) can be written into a file (with name,
say, example.morse) and given as input to the program visible with the
unix command

$ visible example.morse

It will produce the text shown in Fig. 9.2 (left), where again the various typograph-
ical characters correspond to different Morse events and are now also equipped by
additional characters carrying information about the orientation and labelling of the
arcs. The drawing on the right of Fig. 9.2 is a graphic reconstruction corresponding
(more or less line-by-line) to the textual description on the left. It is a (highly
deformed) apparent contour of a torus. Indeed the resulting Morse description can be
read by the appcontour program (described in Chap. 10) that can automatically
produce the apparent contour shown in Fig. 9.3 with the unix command line

$ visible example.morse | contour printmorse | showcontour

where we recall that, in a unix environment, the “pipe” “|” character connects the
output of the preceding command to the input of the following one. Since cusps
in the Morse description resulting from the visible program are described with
a syntax that differs from the one that showcontour understands, we need to
interpose the contour filter.

The result shown in Fig. 9.3 corresponds perfectly with what we would have
inferred from the visible contour that we selected for this starting example; however,
it is important to emphasize that this is not always the case. Indeed the visible
program does not make any effort to produce an “optimal” result, but it merely
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Fig. 9.3 The Morse
description obtained by the
visible program can be
processed by the
appcontour program
(Chap. 10) to produce this
picture. Solid lines
correspond to arcs with
d D 0, dashed lines to
d D 1, and dotted lines to
d D 2

follows the procedure in the proof of Theorem 4.3.1. In many cases the result of the
contour reconstruction, although perfectly valid, is far from optimal.

To make this clear we try to process the visible contour of the present example
modified by removing the marking of the small internal region as part of the
background (we remove the typographical character “e” in the Morse description).
We also need to add orienting information for the arc on the right connecting the
T-junctions (oriented downwards), since it can no longer be inferred by the program.
This can be done by adding the “d” character right after the “|” corresponding
to the transversal intersection Morse event, see Sect. 9.2. In this way we obtain
exactly the visible contour in Example 4.6.4, Fig. 4.15 of Chap. 4. The resulting
reconstructed apparent contour is shown in Fig. 9.15, right (Example 9.5.11) and is
not immediately recognizable. Actually, it corresponds to a deformed 3D sphere.

This modified visible contour is the same presented below in Example 9.5.11.
The reconstructed Morse description and a spatially corresponding graphic visual-
ization are shown in Fig. 9.16.

9.2 Encoding a Morse Description of the Visible Contour

As already mentioned in Sect. 9.1, we first need a way to describe the visible contour
using a text file, and this is done by enforcing the Morse description introduced in
Sect. 4.4. To each critical value 	i we associate a string of text terminated by a
semicolon “;”. In this string we encode the various type of events occurring at that
critical level, following their natural order from left to right. The overall syntax of
the descriptive text is thus the following:

morse {
<Morse line 1>;
<Morse line 2>;
...
}
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Each Morse line encodes the description of the events at the corresponding
critical level. Lines with no critical events (only transversal crossings, regular levels)
are allowed. Lines with more than one critical event are also allowed, although they
would be forbidden in a Morse description, and are interpreted in the obvious way
as two or more lines, each with a single critical event.

In the end, the syntax for the Morse description is similar to the one used by the
appcontour software, as we shall see in Sect. 10.3.2 of Chap. 10.

9.2.1 Encoding the Morse Events

The Morse events occurring at some level are encoded using the correspondence
Table 9.1, where we choose standard typographical characters from the ASCII chart
(or pairs of typographical characters) resembling the local shape of the event.

Each Morse event can be optionally followed by an orientation indicator, a
single letter from the set u,d,l,r standing respectively for up, down, left, right.
Orientations indicated by l or r (left/right) are reserved to the two Morse events
and , with obvious meaning, whereas all other Morse events can be oriented up
(u) or down (d). For a T-junction the orientation indicator refers to the transversal
arc, since the occluding arc carries a natural orientation due to restriction (K4) of
Definition 4.1.8.

9.2.2 Implicit Orientation

If the orientation information is omitted for some Morse event, the visible
program tries to infer it by assuming the validity of restrictions (K3) and (K4)
of Definition 4.1.82 (with background.K/ in place of ext.K/ if some region is
marked as part of the background by using the letter “e”, see below). Indeed, in
the example of Sect. 9.1, all orientations can be inferred by assuming the validity of
the constraints of Definition 4.1.8, in particular the (downward) orientation of the
short arc connecting transversally the two T-junctions is inferred by the fact that on
one side there is a region marked as part of the background (letter “e”). The program
complains with an error if

• it is not able to infer the orientation of all the arcs by enforcing the restric-
tions (K3) and (K4). In such a case it is necessary to add the orientation
information at some Morse event;

• the orientations (given explicitly in the description or inferred from the con-
straints) are incompatible with K being a visible contour.

2See also Remark 3.6.2 of Chap. 3 and Figs. 3.15 and 3.16 in the same chapter.
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9.2.3 The “e” Region Marking

It is possible to instruct the software that some internal region is actually part
of the background background.K/. This could be, e.g., an information inferred
from the image or some a priori knowledge. To this aim the character “e” can be
suitably inserted between two Morse events on any Morse line that traverses the
involved region. Of course more than one region can be marked in this way to
form the background set background.K/. The external region is always part of the
background and need not be marked; any non-external region that is not marked will
have f > 0 in the reconstructed apparent contourG.

The example presented in Sect. 9.1 has the small internal region marked as part
of background.K/.

Note that all arcs adjacent to a background region are implicitly oriented due to
requirement (K3) (applied to background.K/).

9.3 Using the Program

The textual file (say example.morse) is then fed to the visible program with
a unix command like

$ visible example.morse

It will implement the completion construction described in the proof of Theo-
rem 4.3.1 (see also Corollary 4.5.1 if there are regions marked as external with
the character “e”). The Morse description of the computed apparent contour is then
written in the standard output.3

The syntax of the resulting textual description will be briefly described in the next
Sect. 9.4 and can be used as input for the appcontour program (see Chap. 10)
in order to obtain information on the topological structure of the reconstructed
apparent contour and on the corresponding 3D surface. Automated visualization
of the apparent contour can be achieved using the showcontour program, but the
Morse description must be converted in a compatible form due to the different way
in which cusps are described (see Sect. 10.3.2). This conversion can be obtained
either by filtering the output through the command contour printmorse or
using the specially crafted morse2morse filter. The former entails first a conver-
sion from the initial Morse description into the region description used internally
by appcontour and then the construction of a corresponding Morse description,
which will in general be structurally different from the original one, although
describing the same apparent contour up to a deformation of the plane. The latter

3In a unix shell the standard output of a program is usually displayed on the console right after
the invocation command written by the user. It is however possible to redirect the standard output
to another program, using the pipe character “|”, or to a file, using the redirection character “>”.
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will instead maintain the structure of the Morse description and only remove the
Morse events corresponding to cusps and suitably encode the information about
cusps position along the so-called extended arcs.

Remark 9.3.1 We stress once more that the program visible makes no attempt
to produce an optimized reconstruction. Moreover, due to the way it operates,
quantitative information on the spatial geometry of the visible contour is lost in the
process (indeed this information is lost right at the beginning when the geometry is
replaced by its Morse description), making the program not suitable for the actual
recovering of the precise geometry of hidden lines in an image.

9.4 Encoding a Morse Description of the Constructed
Apparent Contour

The Morse description of the computed labelled apparent contour is similar to the
one used for the input visible contour (see Sect. 4.4), and uses the set of ASCII
characters to encode the Morse events with a few distinctions:

• T-junctions and terminal points are now respectively substituted by crossings and
cusps. As explained in Chap. 4, cusps are rotated in order to have horizontal
tangent and the ASCII characters “<” and “>” are conveniently used to encode
them. Crossings are encoded by the character “X”;

• labelling information must now be included (see Sect. 3.4, Chap. 3).

All characters encoding a Morse event are immediately followed by orienting
and labelling information. For example, the sequence “ˆl0” at the beginning of
the description in Fig. 9.2 describes a left-oriented maximum point with labelling
d† D 0. The sequence “>0+” describes a (horizontal) cusp pointing to the right;
orientation is not required, since cusps are naturally oriented upwards (respectively
downwards) for cusps pointing to the right (respectively left); the labelling is d† D
0 for the arc preceding the cusp (with respect to the arcs orientation) and d† D 1

for the arc following the cusp (the “+” sign means that the labelling is increasing).
The sequence “Xu0d0” encodes a crossing. The pair “u0” refers to the arcs in
the direction North–East to South–West, which are thus oriented upwards with a
labelling d† D 04 The pair “d0” refers to the arcs in the direction NW-SE, which
are oriented downwards with a labelling d† D 0.

Remark 9.4.1 There is an important difference with the Morse description
described in Chap. 10 regarding the treatment of cusps: there they do not produce

4Conventionally the labelling refers to the arc below the Morse line, the upper arc can have a
labelling that differs by 2. Its actual value must be inherited by information on nearby Morse
events. Also by convention the information on the two arcs in direction North-East to South–West
(in short NE-SW) always precedes the information on the two arcs in direction NW-SE.
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Morse events, but are rather regarded merely as added information (markers) on the
extended arc to which they belong. The software appcontour is however capable
to recognize and then read properly a Morse description that uses the syntax
produced by the program visible. The command contour printmorse can
be used as a tool to convert a Morse description with cusps as Morse events to
the appcontour syntax, typically in order to feed the result to the showcontour
visualization program. The filter morse2morse is provided as a more direct way
to make such a conversion

9.5 Some Examples

We conclude this chapter with a number of examples. In all figures (from Fig. 9.4 to
Fig. 9.17) the left picture shows a graphic representation of the visible contour,
sometimes with arrows indicating explicitly given orientations. The text in the
middle is a corresponding Morse description using the syntax described in Sect. 9.2;
instead of displaying the textual result given by visible (often difficult to
interpret), we prefer to show (on the right) the result of the command contour
printmorse followed by showcontour (see Chap. 10). The first command
transforms the Morse description resulting from visible into the corresponding
region description (Sect. 10.2 of Chap. 10) and then back to a Morse description,
in general different (although equivalent up to an R

2-ambient isotopy) from the
original one. The second command produces a graphical representation of the
apparent contour starting from its Morse description. As a consequence, the
resulting figure spatially corresponds to the original visible contour only up to an
R
2-ambient isotopy.
In a few examples we deliberately include (partially oriented) visible contours

that give rise to errors from the visible program.
For completeness we also include a few very simple examples.

Fig. 9.4 Left: the visible contour (a circle) is already an apparent contour. Middle: a possible
Morse description. Right: the reconstructed (labelled) apparent contour using visible, the
resulting Morse description (not shown here) is displayed using the visualization program
showcontour
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Example 9.5.1 (Sphere) The simplest possible (nonempty) visible contour consists
of a (counterclockwise) circle, it can be described by the ASCII text displayed
in Fig. 9.4 (middle), and happens to be a valid apparent contour (with no hidden
arcs). No orienting information is required in this case. The resulting reconstructed
(labelled) apparent contour is (not surprisingly) the circle itself with labelling
d† D 0.

Example 9.5.2 (Annulus 1) The visible contour of Fig. 9.5 (two concentric circles)
is deliberately left unoriented. The internal circle cannot be implicitly oriented,
since both orientations lead to a visible contour that satisfies the requirements of
Definition 4.1.8. This leads to the error message Insufficient orienting
information from the visible program.

Example 9.5.3 (Annulus 2) Figure 9.6 shows the same visible contour of the
previous example, but with an explicit clockwise orientation of the internal circle
(given in the Morse description by the “r” character after the first Morse event
involving the inner circle, that is its local maximum). The resulting reconstruction
(Fig. 9.6, right) does not correspond to a torus, indeed the small internal region of
the visible contour is forbidden to have f† D 0 by the reconstruction procedure,
unless it is explicitly tagged as part of the background background.K/.

Fig. 9.5 Left: two concentric circles cannot be implicitly oriented

Fig. 9.6 Explicit orientation (clockwise) of the inner circle
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Example 9.5.4 (Annulus 3) To the Morse description of the previous Example 9.5.3
we add a marker to the small inner region in order to tag it as part of the background,
thus forcing f† D 0. This is shown in Fig. 9.7. The explicit orientation of the
internal circle is not mandatory as it can be implicitly deduced by requirement (K3)
of Definition 4.1.8 applied to the marked internal region. Now the visible
program trivially reconstructs the (labelled) apparent contour of a torus with no
addition of hidden arcs (where d† > 0).

Example 9.5.5 (Annulus 4) The internal circle of the annulus of Fig. 9.8 is now
oriented counterclockwise. This prevents the internal region to be part of the
background. As for the previous Example 9.5.4, the program trivially reconstructs
the (labelled) apparent contour with no addition of hidden arcs. The result shown on
the right is the apparent contour of a small sphere in front of a bigger one.

Example 9.5.6 (Mushroom) The visible contour of Fig. 9.9 (left) reminds a mush-
room. The two T-junctions necessarily give rise to crossings in the recovered
apparent contour and hidden arcs with labelling d† D 2. However, the reconstructed
apparent contour corresponds to a sphere that partially occludes another sphere, and
is not even a connected set. Of the infinite number of possible reconstructions of
an apparent contour compatible with the given visible contour, the one selected by

Fig. 9.7 Marking the internal region as background (f† D 0)

Fig. 9.8 Orienting the inner circle counterclockwise
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Fig. 9.9 Visible contour of a “mushroom” (left). It is reconstructed as a pair of partially occluding
spheres (right)

Fig. 9.10 Two possible valid reconstructions of the visible contour of Fig. 9.9

the reconstruction procedure is not necessarily the “best” one. In Fig. 9.10 we show
two possible (both correct) reconstructions of this visible contour; on the left the
one that actually corresponds to a mushroom, on the right a reconstruction with two
spheres equivalent to the one obtained by visible (Fig. 9.9, right).

Example 9.5.7 (Grotto) We consider here (Fig. 9.11, left) the visible contour of
the 3D scene shown if Fig. 3 of Chap. 1, reconsidered again in Chap. 3 after
Definition 3.6.1. It is reconstructed “correctly” by visible in the labelled
apparent contour on the right of Fig. 9.11, which is a deformed version of the
apparent contour of Fig. 1.1, Chap. 1 (and Fig. 3.14, Chap. 3).

Example 9.5.8 (Impossible 1) The (unoriented) visible contour of Fig. 9.12 is
“impossible”, in the sense that there is no way to orient its arcs to get a visible
contour that satisfies requirements (K3) and (K4) of Definition 4.1.8. In particular,
due to requirement (K4), the two T-junctions force incompatible orientations upon
the common occluding arc. This causes visible to exit with the error message
Inconsistent orientation.
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Fig. 9.11 Visible contour and reconstructed apparent contour for the 3D shape already considered
in Chap. 1, Fig. 1.1

Fig. 9.12 This is an impossible visible contour due to requirement (K4) of Definition 4.1.8

Example 9.5.9 (Impossible 2) The visible contour of Fig. 9.13 is also “impossible”,
now because of a conflict between requirement (K3) and requirement (K4) of
Definition 4.1.8. The T-junction induces a clockwise orientation on the circular arc,
which is incompatible with the fact that it is adjacent to the external region.

Example 9.5.10 (Annulus 5) We can resolve the conflicting implicit orientations
of the previous Example 9.5.9 by adding an extra external circle. This is shown
in Fig. 9.14. The external circle is implicitly oriented counterclockwise due to its
adjacency to the external region (requirement (K3) of Definition 4.1.8), whereas
the internal circle is implicitly oriented clockwise due to the T-junction (require-
ment (K4) of Definition 4.1.8). The resulting visible contour is then reconstructed
by visible in the apparent contour displayed in Fig. 9.14 (right). This represents
a 3D shape similar to that of Example 9.5.3, Fig. 9.6 (right), with an extra partially
hidden small wrinkle.
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Fig. 9.13 Impossible visible contour because of conflicting implicit orientation due to require-
ments (K3) and (K4) of Definition 4.1.8

Fig. 9.14 An added external circle with respect to the visible contour of Fig. 9.13

Example 9.5.11 (Not a Torus 1) This visible contour (Fig. 9.15) was already
mentioned in the initial example of this chapter. By removing the “e” marking
in the small internal region we force the reconstructed apparent contour to have
f† > 0 there, thus preventing the reconstruction of the torus that one would expect
by looking at the visible contour. Indeed, the reconstructed 3D shape, as already
mentioned in the discussion of the initial example, has the topology of the sphere,
although this is not readily obvious by looking at the reconstructed apparent contour
in Fig. 9.15, right. For better clarity we also include the ASCII Morse description
of the reconstructed contour and a corresponding graphic drawing (Fig. 9.16). The
latter graphic reconstruction is a deformation (with no change of topology) of the
drawing obtained by the visualization program showcontour (Fig. 9.15, right).
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Fig. 9.15 By omitting the “e” marking in the initial example (Fig. 9.1) the reconstructed contour
corresponds to a deformed sphere. See also Fig. 9.16

Fig. 9.16 The reconstructed apparent contour corresponding to the visible contour of Fig. 9.15.
Morse description (left) and visual, spatially corresponding, graphic reconstruction (right)

Example 9.5.12 (Not a Torus 2) We conclude with a visible contour obtained by
vertical reflection from the one of the previous example (Fig. 9.17, left). Also
we reverted the orientation of the short arc connecting the two T-junctions. After
processing this visible contour with visible we obtain the apparent contour
displayed on the right. If deformed onto the original visible contour, it turns out
that the reconstructed apparent contour corresponds to a 3D shape made of two
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Fig. 9.17 The visible contour on the left is reconstructed as a nest containing an egg

deformed spheres, a larger one deformed in the shape of a nest and a smaller one
corresponding to an egg lying in the nest and partially occluded by it (rotate the
image clockwise 90 degrees to have the nest and egg correctly oriented).

Reference

1. Paolini, M., Pasquarelli, F.: Appcontour: a software code to interact with apparent contours.
SourceForge project: http://appcontour.sourceforge.net (2006)

http://appcontour.sourceforge.net


Chapter 10
The Program “Appcontour”: User’s Guide

In this chapter we describe a software code developed by the authors and capable to
manipulate the topological structure of apparent contours [15].

The appcontour package is a free software project hosted on sourceforge.net,
its home page is http://appcontour.sourceforge.net/ from where the source code can
be downloaded, compiled and installed, following the standard procedure for Unix
projects. It contains the executables “contour”, the core of the software, and
“showcontour”, the visualization program, a few utilities, mainly in the form
of shell scripts, and many examples of apparent contours. At the time of writing, the
package is at version 2.2.1.

The topological structure of an apparent contour is invariant under smooth
deformations of the plane. The software code is devised in such a way to be
completely insensitive to the particular embedding ofG† (or appcon.'/; see Chap. 3
for the notation) in the plane, and only captures such properties as adjacency, relative
position, orientation and topological structure of the apparent contour.

This choice has some drawbacks; for example, there is no way to recover the
exact shape and position of the input data, so that sometimes it is not easy to identify
elements (crossings, cusps, arcs or regions) on the result of some transformation
(e.g., application of one of the moves described in Chap. 6) of the input data.

The core of the software is an engine (contour) that typically reads a contour,
modifies it in the requested way and prints the result, usually a different apparent
contour. It works as a unix filter, reading data as a stream of characters from
standard input and returning the result again as a stream of characters on the
standard output. On a unix (or linux) system this allows concatenation of many
contour commands within a single pipe.

Internally, the software encodes the structure of an apparent contour with the so-
called region description to be explained in Sect. 10.2. Description of an apparent
contour in a manner that can be read by the software can be done mainly in two
different ways: the region description itself (encoded as a stream of characters) or a
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Morse description,1 that consists in choosing some height function defined on the
retinal plane and describing how the height function interacts with the contour. This
second way of describing a contour is convenient mainly because it can be readily
obtained from a drawn sketch by introducing a division of the paper in roughly
horizontal stripes bounded by lines representing constant height; see, for instance,
Fig. 2.5. Each stripe must contain at most one special point of the drawing: crossing,
cusp or local minimum/maximum with respect to the height function.

10.1 An Overview of the Software

Before entering in any detail we shall provide here a few basic examples, just to
give a rough idea of what can or cannot be done by the appcontour package. If
correctly installed on a Unix/Linux system, the program comes with a number of
prepackaged examples of apparent contours with labelling. One of these is named
torus2 and contains the description of the apparent contour of a torus when
viewed from a point located far from the vertical rotation axis and somewhat above
the horizontal symmetry plane. Up to a positive C1 deformation of the plane, the
result is shown in Fig. 10.1.2

The core program is invoked from the unix shell with the command contour,
as in this basic example:

$ contour info torus2

The $ sign refers to the shell prompt (e.g., bash) and is followed by the
user input: the command name (contour), the requested action (info) and the
apparent contour (torus2). This second argument (pointing to the file containing
the apparent contour description) can be omitted, in which case the program expects
the description to be entered from standard input (the user enters the description
directly with the keyboard or, more frequently, the description is the result of a
previous invocation of the program as part of a Unix pipe). If necessary the exact
location (unix path) of a packaged example can be obtained using a unix command
like “contour filepath torus2”.

1See Sect. 2.5.
2Most of the pictures of apparent contours in this chapter were obtained with the showcontour
software, sometimes with slight additions/modifications. The command used is “showcontour
<file>.morse --ge xfig --skiprtime 0.5”, it reads a Morse description of the
contour (often obtained with contour printmorse) and writes a picture in xfig format.
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Fig. 10.1 The reference apparent contour used in the software description corresponds to an
embedding of the standard torus. In this example we have five regions numbered from R0 to R4
(region R0 is the unique unbounded region), five extended arcs (a1 to a5) and two crossings (N1
and N2). The four cusps are contained in the two extended arcs a2 and a3. The labelling is 0 on the
solid lines, 1 on dashed lines and 2 on dotted lines. Apart from R0, the enumeration of regions and
arcs is chosen arbitrarily

After hitting the enter key, the result will be printed:

$ contour info torus2
This is an apparent contour with labelling

Properties of the embedded surface:
Connected comp.: 1
Total Euler ch.: 0

First order Vassiliev invariants:
Cusps: 4
Positive cusps: 2
Crossings: 2
Bennequin: 0.0

Properties of the apparent contour:
Arcs: 9
Extended arcs: 5
Link components: 2
Loops: 1
Nodes (cusps+cross):6
Positively embedded cusps: 2
Regions: 5
Connected comp.: 2

The info action provides a display of some relevant properties of the given
apparent contour. In this case the program asserts that
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• torus2 is indeed an apparent contour with labelling;
• it is the apparent contour of an embedded surface in R

3 consisting of one
connected component with Euler–Poincaré characteristic � D 0 (it is a torus!).

Moreover:

• a list of Vassiliev-type invariants [13] is computed, most notably the Bennequin
one (see Chap. 7);

• other elementary properties readily obtainable from a sketch of the contour are
displayed. In particular “Link components: 2” asserts that the critical set
(see Definition 2.1.7, the critical set is a set of closed curves in the source
manifold) has 2 connected components, whereas “Connected comp.: 2”
refers to the number of connected components of the apparent contour itself,
considered as a subset of R2.

We can ask what direct moves can be applied to the apparent contour:

$ contour rules torus2
Rules that apply:
K0 B B:2 S S:2 CR0L CR0R CR0LB CR0RB

Action rules requests a list of the simplifying (or direct) Reidemeister-type
moves (Sect. 10.4.1) or composite moves (Sect. 10.4.3) that can be legally applied
to the given contour. Some of the listed rules (simple rules) are the same described
in Chap. 6 under the name of Reidemeister-type moves, Definition 6.1.1, other rules
are useful combinations of simple rules and their inverses. Only simplifying rules
are listed. Inverse rules typically can always be applied, in many different places
of the apparent contour; application of such rules is governed by other appcontour
actions. The complete list of available rules and their description will be given in
Sect. 10.4. We have:

$ contour rule K0 torus2
applying rule K0
sketch {
Arc 1: (0);
Arc 2: (0 1 2 1 0);
Region 0 (f = 0): () (-a1);
Region 1 (f = 4): (+a2);
Region 2 (f = 2): (+a1) (-a2);
}

Action rule followed by a rule name (K0 in the example) actually applies
the rule (i.e., performs the move) and displays the result as a region description.
The region description will be explained in Sect. 10.2 and the rules will be listed
and discussed in Sect. 10.4. In this particular case the effect is to remove the two
crossings by passing arc a5 over arc a4, the result can be seen in Fig. 10.12 (left).
It should be emphasized that contour refuses to apply illegal rules (rules that do
not match the given contour).
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Fig. 10.2 Result of double
application of rule S to the
contour of Fig. 10.1 as
displayed by showcontour

As an example of a multiple invocation, let us apply rule S (removal of a
swallow’s tail) and then ask for the list of rules that can be applied to the result:

$ contour rule S torus2 | contour rules
applying rule S
Rules that apply:
S CR0R CR0LB CR2

Now we apply again rule S:

$ contour rule S torus2 | contour rule S
...
sketch {
Arc 1: (0);
Arc 2: (0);
Region 0 (f = 0): () (-a1);
Region 1 (f = 0): (-a2);
Region 2 (f = 2): (+a1) (+a2);
}

We can get a picture of the result by using another program, showcontour.
This program however requires a Morse description of the contour (see Sects. 2.5
and 10.3.2), which is provided again by contour using the printmorse action:

$ contour rule S torus2 | contour rule S |
contour printmorse | showcontour

The result of this command is shown in Fig. 10.2.
We end this quick overview with

$ contour fg torus2
Finitely presented group with 2 generators
<a,b; abAB>

where fg stands for fundamental group.
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It computes the fundamental group of the surface embedded in R
3, see

Sect. 10.7.2, the result is a presentation of Z � Z which is indeed the fundamental
group of the torus. The presentation is displayed as a list of generators (a and b in
this case) followed by a list of relators where capital letters stand for the inverse of
the corresponding generator, in our case the (only) relator asserts that bab�1a�1 is
the identity, or equivalently that ba D ab. Much more interesting is the command:

$ contour ifg torus2
Free group of rank 1
<a; >

which gives the fundamental group of the solid region inside the surface: ifg stands
for “inside fundamental group”. In this example the result is just Z, the fundamental
group of S

1. Command ofg gives, instead, the fundamental group of the solid
region outside the surface. The result is again Z which essentially means that the
torus is not knotted.

A number of contour commands are provided to deal with finitely presented
groups (typically obtained as fundamental groups of subsets of R3 delimited by the
surface), one important example is the computation of the Alexander polynomial. A
description of these commands will be given in Sects. 10.7.2, 10.7.3 and 10.7.4.

10.2 Region Description

We shall use here concepts introduced in Chaps. 2 and 3 and specifically in Sect. 2.2.
Basically a topological description of a labelled or unlabelled apparent contour
can be obtained by focusing mainly on regions (the connected components of the
complement of the apparent contour) and extended arcs (one-dimensional parts of
the apparent contour connecting two crossings or closed loops without crossings).
As a proof of concept we shall use the labelled apparent contour of Fig. 10.1 that
shows a torus in its typical representation.

Neglecting cusps for the moment, we can observe that the structure of a region
can be simply given by describing the boundary as an (oriented) list of arcs. A
couple of caveats are:

• A region is not necessarily simply connected. In such a case its boundary has two
or more connected components, one of which is the external boundary, the others
correspond to each hole of the region. An example is region R4 of Fig. 10.1 with
external boundary a1 and one hole described by a suitable sequence of arcs.

• Some crossing can appear more than once while travelling along the boundary
of a region. This in particular happens when a crossing is adjacent to the same
region on opposite quadrants. An example is given by crossings N1 and N2 that
have region R4 on opposite sides (Fig. 10.1).

• Arcs can be closed (no endpoints), for instance arc a1 in Fig. 10.1. They can have
the same crossing at both endpoints, for example the extended arc a2 starts and
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ends at crossing N1. They can have two distinct endpoints: arc a4 starts from
crossing N1 and ends at crossing N2.

10.2.1 Extended Arcs

We recall that all arcs of the apparent contour are oriented to have the higher value of
f' (number of preimages, see Definition 2.2.5 and formula (3.5) in Chap. 3) on the
left. The notion of extended arc was introduced in Sect. 2.5.2; in essence, extended
arcs are curves connecting two possibly coincident crossings (or they are a closed
curve) and may contain one or more cusps. In this way cusps are treated more as
an attribute of an (extended) arc rather than as a node of the apparent contour. In
Fig. 10.1 arc a2 (and similarly a3) contains two cusps; at the first cusp, the value of
the labelling jumps up from 0 to 1, at the second cusp it jumps up from 1 to 2. In the
end, all information for an extended arc reduce to a list of the values of the labelling
d across cusps.

Each extended arc will be tagged with consecutive integers starting from 1. The
numbering is arbitrary.

10.2.1.1 Streaming the Description of an Arc

We describe such an information with a string of characters as follows.

• For extended arcs that connect two distinct crossings we describe it as a list
of nonnegative integers representing the values of the labelling function d ,
separated by spaces and enclosed in square brackets. The number of integers
is the number of cusps increased by one. As an example the string “[1 2 3]”3

describes an extended arc that connects two distinct crossings with two cusps
that separates the values of the labelling, listed in the order given by the arc
orientation.

• For extended arcs that start and end at the same crossing we follow the same
convention as in the previous case but we substitute a round parenthesis in place
of the final square bracket. For example, “[0 1 2)” describes the extended arc
a2 of Fig. 10.1 that connects the crossing N1 to itself. The meaning of the integer
values is the same as for the previous case of distinct endpoints. This type of arc
is typical when the apparent contour contains a swallow’s tail.

• For closed extended arcs we use round parentheses in place of the square
brackets. In this case we do not have a natural starting point on the arc, so that
we just choose some point (distinct from a cusp) and list the d values while
traversing the arc along its orientation until we return to the chosen starting point.

3Of course the enclosing quotation marks ‘“’ and ‘”’ are not part of the string itself.
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Note that the first and last d values must be equal. For example, the string “(0 1
0 1 0)” describes a closed arc with four cusps. The closed arc a1 of Fig. 10.1
can be described by the string “(0)”.

10.2.2 Describing a Region

Relative position of the extended arcs is recovered from a suitable description of the
regions of the apparent contour. Recall that each region is a connected open set; it
can be either simply connected (i.e., it has no holes) or multiply connected, in which
case only a finite number of holes is allowed. For example, region R4 of Fig. 10.1 is
not simply connected with one hole. Basically we list all arcs bounding a given
region, in counterclockwise order, recording the arc number and an orientation.
The orientation is positive if the arc orientation is consistent with the direction in
which we are traversing the boundary (i.e., the arc is oriented counterclockwise
with respect to the region), negative if the arc is oriented opposite with respect to
the traversing direction (i.e., the arc is oriented clockwise). For simply connected
regions, the boundary has a single connected component. We then select any starting
arc along the boundary and traverse the boundary counterclockwise until we return
to the original arc and record all encountered arcs together with their orientation
(with respect to the region we are describing). The result is a circular list of pairs
.�; a/ where the orientation � belongs to fC;�g and a is an arc. For instance,
region R3 of the apparent contour of Fig. 10.1 is simply connected and bounded
by arcs a4 and a5. We can select a4 as a starting arc and move along the boundary
with the inside of region R3 on the left (counterclockwise). Since we are moving
contrary to the orientation of a4, we have " D � and start the description with
.�; a4/ or simply by the string “-a4”. Continuing to travel along the boundary
of R3 we then encounter arc a5 which is also negatively oriented and we record
“-a5”. The description of R3 is then completed since we arrive again at arc a4 and
the circular list describing it is “(-a4 -a5)”. A multiply connected region has
a boundary consisting of two or more connected components, one of which is the
external boundary, and the remaining components bound each hole of the region.
There is no particular ordering for the holes. In this case the region description is
a list of connected components of the boundary, with the external boundary being
listed first and the holes listed in no particular order. The arcs of each hole are
listed again counterclockwise if viewed from inside the region, which means that
they are actually listed clockwise around the hole. They again form a circular list of
pairs .�; a/ as above. An example is region R4 of the apparent contour of Fig. 10.1,
its description being “(+a1) (-a2 +a4 -a3 +a5)”. Since the lists describing
each connected component are circular, we could equivalently describe the region
as, e.g., “(+a1) (+a4 -a3 +a5 -a2)”.

A special region is the external region which is the only unbounded one (e.g.,
region R0 in Fig. 10.1). In this case there is no external boundary, we conventionally
decide that the external boundary in this case is described as an empty circular list
(the empty set).
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Note that any arc can appear in the description of a region at most once. Moreover
each arc will be part of the description of exactly two distinct regions: the description
of the region on the right of the arc will contain a reference to the arc with negative
orientation, whereas the description of the left region will contain a reference to the
arc with positive orientation.

As a whole, the region description of a labelled apparent contour is an unordered
collection of descriptions of each region, one of which is the external region, with
an empty external boundary. For definiteness we shall number the regions with
consecutive integers starting from 0, with 0 assigned to the external region. Clearly
the numbering of the regions that are not external is arbitrary.

Each region is described as explained above as a list of boundaries, the first of
which is the external boundary and the others can be reordered arbitrarily. Each
boundary is a circular list of signed arcs.

10.2.2.1 Streaming the Description of a Region

Summarizing, the region description can be encoded as a sequence of characters
as follows. Each connected component of the boundary, starting with the external
boundary, is described as a list of arc names prefixed by a ‘+’ or ‘-’ sign according
to orientation, separated by spaces and enclosed in parentheses.

As an example, as we have already seen, region R4 of Fig. 10.1, which is not
simply connected, will be encoded with the character string “(+a1) (-a2 +a4
-a3 +a5)”. The external region R0 is described by the string “() (-a1)”.

We conclude this section with an example of an apparent contour featuring three
closed arcs labelled 0 and one inside the other (see Fig. 10.3). All three arcs are

R0 a1

a2

a3

R1

R3

R2

Fig. 10.3 This apparent contour represents three spheres of increasing size at increasing distance.
Its region description allows to recover the relative position of each one of the three arcs, that
are otherwise indistinguishable. With the exception of the external region R0, the numbering of
regions and arcs is arbitrary. Reversing the orientation of the intermediate arc produces the apparent
contour of a big torus and a small sphere
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described with the same string “(0)”. The information about the relative position of
the arcs is encoded in the description of the regions: region R0 (the external region)
is described as “() (-a1)” which entails that arc a1 is the outermost one; region
R2 is described as “(+a1) (-a2)” which entails that arc a2 is the boundary of
the hole of a region (R2) having arc a1 as external boundary; region R3 is described
as “(+a2) (-a3)” which entails that arc a3 is the boundary of the hole of R3;
finally, region R1 is described as “(+a3)” which means that there is nothing inside
arc a3.

10.2.3 Completeness of the Region Description

We shall say that two region descriptions are equivalent if they are the same up to:

(1) renumbering of the extended arcs;
(2) renumbering of the regions different from the external region;
(3) reordering of the holes of each region, i.e., the connected components of the

boundary of the region different from the external boundary (simply connected
regions have no holes).

(4) changing the extended arc used as a starting point in the description of the
circular list of boundaries (see Sect. 10.2.2.1). That is, as part of a region
description the string “(-a2 +a4 -a3 +a5)” is equivalent to “(+a4 -a3
+a5 -a2)”;

(5) changing the starting point in the description of a closed extended arc (with
cusps) when listing the values for the function d (see Sect. 10.2.1.1). That is,
the arc description “(0 1 0 1 0)” is equivalent to “(1 0 1 0 1)”.

The region description satisfies properties similar to those satisfied by the Morse
description and listed at the end of the preamble of Sect. 2.5, namely it is

– Finite: the description requires only a finite sequence of symbols (taken from a
finite set).

– Complete: two apparent contours with the same region description are equivalent
in the sense of Definition 2.4.2 (modified for the case of labelled contours, see
Definition 3.5.1).

– Essential: conversely, two diffeomorphically equivalent apparent contours have
equivalent region descriptions.

The completeness property follows from the existence of an algorithm that can
recover a possible Morse description from the region description of an apparent
contour. It is then clear that apparent contours with the same region description
admit the same Morse description and we can conclude our claim using the
completeness property of the Morse description (see Sect. 2.5.4). We shall not
describe here the mentioned algorithm; it is encoded in the contour software
(function printmorse), whose source code is available, and works by pushing
an ideal Morse line through the region description.
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The essentiality property is a direct consequence of the notion of equivalence
of region descriptions, which in turn is suggested in a straightforward manner by
the definition of the region description. Namely, if ˆ W R

2 ! R
2 is a positive

diffeomorphism giving the equivalence of two apparent contours G and H (see
Definition 2.4.2), then ˆ clearly defines a bijection between the extended arcs of
G and the extended arcs of H ; corresponding extended arcs will have the same
description since ˆ is a positive diffeomorphism. In addition ˆ also induces a
bijection between the regions of G and the regions of H with the external region
of G corresponding to the external region of H . Moreover, for each region R of
G, ˆ defines a bijection between the connected components of @R and those of
@.ˆ.R//, the external boundary of R being mapped onto the external boundary of
ˆ.R/. Again, ˆ being a positive diffeomorphism, the description of each of the
connected components of the boundary of each region is the same as the one of the
corresponding boundary under ˆ. The equivalence of the two region descriptions
then follows.

10.3 Encoding an Apparent Contour with Labelling

10.3.1 Region Description as a Stream of Characters

The region description explained in Sect. 10.2 provides a way to encode an apparent
contour to be used by our software. We first choose a numbering of the extended arcs
starting from 1 and of the regions, starting from 0 (the external region). The syntax
of the region description is then best understood by looking at Fig. 10.4, where we
encode the apparent contour of Fig. 10.1.

Fig. 10.4 Region description
corresponding to Fig. 10.1 as
a stream of characters
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The BNF (Backus-Naur form) of the description syntax is the following:

<contour-region-description> :== "sketch" "{" <arcs> <regions> "}"
<arcs> :== <arc> | <arc> <arcs>
<arc> :== "Arc" <integer> ":" <arc-description> ";"
<regions> :== <region> | <region> <regions>
<region> :== "Region" <integer> ":" <region-description> ";"

where arc-description and region-description are described in
Sects. 10.2.1.1 and 10.2.2.1 respectively. Their BNF is the following:

<arc-description> :== "[" <d-values> "]" | "[" <d-values> ")"

| "(" <d-values> ")"

<d-values> :== <integer> | <integer> <d-values>

<region-description> :== <component> | <component> <region-description>

<component> :== "()" | "(" <signed-arcs> ")"

<signed-arcs> :== <signed-arc> | <signed-arc> <signed-arcs>

<signed-arc> :== <sign>"a"<integer>

<sign> :== "+" | "-"

All lines starting with the pound character # are comments and will be ignored
by the software. A description can be fed to the program as standard input or
(more often) saved into a file that will be read by the program.

10.3.2 Morse Description

A more useful way to describe an apparent contour follows directly from the Morse
description explained in Sect. 2.5. If the descriptive map m is the identity, the
horizontal Morse lines m	 can be visualized4 as a single sweep line ` that moves
across the whole of R2 from top to bottom traversing the apparent contour G†. We
shall then record all relevant events that occur during the traversal at the critical
levels. One important difference with the requirements of Sect. 2.5 is that we allow
here for the presence of multiple critical points at the same level. This allows
for more concise Morse descriptions and yet provides a complete description of
the apparent contour. Also we allow for (a finite number of) regular levels (no
critical points), this is sometimes useful in order to improve the readability of the
description. For a finite set of decreasing values 1 > 	1 > � � � > 	n > 0, we
investigate the intersection points of the sweep line with the apparent contour and
list them from left to right. The chosen levels 	i , i 2 f1; : : : ; ng must include all
the critical levels of the descriptive map. Adding regular levels to the description,
i.e., levels with only transversal intersections at points that are not crossings (cusps

4Here �	 has the meaning of time.
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Fig. 10.5 Morse description
corresponding to Fig. 10.1 as
a stream of characters

are treated in a special way, as we shall see shortly), is harmless and sometimes
useful to obtain a description that produces a printout graphically reminiscent of
the shape of the apparent contour. Thinking of the sweep line as horizontal is of
course just conventional, however its orientation when listing the intersection points
is important. For instance, if the sweep line is vertical and moves from left to right,
events at a given level will be listed from bottom to top.

Cusps are treated as marked points along extended arcs (compare Sect. 2.5.2),
hence the intersection of the sweep line with a cusp is considered as regular. Recall
here that for a descriptive map we require that the Morse line (the sweep line, as we
call it in this section) to be tangent to cusps.

Following the final part of Sect. 2.5.3 we now simply encode the symbols
identifying the type of intersection using typographical characters that can be
written into a description file.

We illustrate this in Fig. 10.5 with a Morse description of the torus of Fig. 10.1;
it can be obtained by traversing the drawing of Fig. 2.8 of Chap. 3 with a vertical
sweep line. Observe the preamble “morse {” which instructs the program that
the apparent contour is described by means of a Morse description. Each line of
text is terminated with a semicolon “;” indicating the end of the list of symbols
corresponding to a given position of the sweep line. The symbols �� and �� used in
Sect. 2.5.3 are rendered here by the typographic character “ˆ” followed by “l” (left)
or “r” (right) to indicate the orientation, the following integer (“0” for the first line)
gives the labelling of the corresponding arc. Similarly the typographical character
“U” is used in place of �� and �� . The indication of the labelling is not required
for all symbols, since in most cases the program can infer it from the context, and
the same holds true for the orientation. Transversal intersections " and # can be
rendered by a number of equivalent typographical characters: in our example, “|”,
“(”, “)”, “/”, “\” all have identical meaning for the program and are differentiated
only to improve the graphical rendering of the text. Each of these characters can be
followed by the orientation indication, which in this case can be “u” or “d” (up or
down) and by the value of the labelling.

Crossings are indicated with the “X” character and can be followed by two
orientations and two labellings (with appropriate syntax) referring to the two
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arcs directed downwards (for a horizontal sweep line). For instance, the sequence
“Xu0d2” refers to a crossing for which the arc leaving in the south–west direction is
oriented upwards with a labelling of 0 and the arc leaving in the south–east direction
is oriented downwards with a labelling of 2. Information on the other two arcs
towards the north cannot be given here and must be inherited from information
given at other Morse events referring to the same extended arc.

Multiple spaces are inessential and only used here to give a better idea of the
layout of the apparent contour directly by inspecting its Morse description.

For extended arcs containing one or more cusps, the required information must
be given once (attached to any of the typographical characters involving that arc) as
a list of integers or (more briefly) by the labelling before the first cusp (according
to the arc orientation) followed by a sequence of “+” or “-”, one for each cusp
and according to the fact that the labelling increases or decreases by one. This
is illustrated in the example of Fig. 10.5 twice: the sequence “(d0++” indicates
that the extended arc corresponding to this transversal intersection (“(d” marks
a transversal intersection oriented downwards) has initially a labelling of 0, then
there is a cusp with the labelling increasing from 0 to 1 (the first “+”), then there
is a second cusp with the labelling increasing from 1 to 2. The sequence “|u2--”
similarly indicates an extended arc with two cusps and a labelling with values 2, 1,
0. For apparent contours without labelling (as for appcon.'/) we can use a sequence
of “c”, each representing a cusp.

A variant of the Morse description illustrated above requires the indication of
cusps individually as Morse events with the typographical characters “>” and “<”
corresponding respectively to the symbols � and �. In this case cusps are treated as
specific Morse events in the spirit of the Morse description as explained in Sect. 2.5.
This variant was introduced mainly in order to allow to interface the program
appcontour with the program visible (see Chap. 9) that implements the
reconstruction procedure illustrated in Chap. 4. A reference guide for the visible
program is included in Chap. 9.

10.3.3 Knot Description

The knot description is an alternative and simpler way to describe a class of solid
shapes called handlebodies [18]. These are essentially a thin tubular neighbourhood
of 1D subsets of R

3 composed by a disjoint union of closed arcs and arcs that
connect triple junctions and/or endpoints, see Fig. 10.6. An important special case
of handlebody corresponds to a thin tubular neighbourhood of a tame knot (smooth
embedding of S1 in R

3) or of a tame link (smooth embedding of a finite number
of copies of S1 in R

3). We refer to [10] and [18] for basic terminology about knot
theory.

A standard way to describe a knot or link is by means of its diagram, which is a
projection onto a plane drawing composed by arcs and crossings. At a crossing we
need information about which one of the two crossing strands passes over the other.
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Fig. 10.6 Knot description of a tubular neighbourhood of the system of curves shown in the left

If S1 is substituted by a thin pipe generically positioned in R
3 and we consider

the apparent contour of the resulting system of pipes, we end up with a drawing
that outlines long stripes that resemble a system of streets that can cross over one
another at bridges. The value of f† is 2 inside the streets and 4 where one street
crosses over another.

Similarly, handlebodies can be described by adding triple junctions, where three
streets meet together. Although not strictly necessary to model handlebodies, we
also allow for endpoints, that are a dead-end of a street.

Instead of describing the boundary of the streets, it is much more convenient to
model, with a Morse-like description, the centre lines. We best explain the syntax
with the simple, yet interesting, example of a solid torus knotted as in the trefoil
knot. It produces the apparent contour shown in Fig. 10.18:

knot {
^ ^ ;
( x );
X X ;
( U );

U ;
}

The typographical characters “(”, “)”, “|”, “/”, “\”, “ˆ”, “U” have the same
meaning as for the Morse description (Sect. 10.3.2) without the necessity to add
information neither about orientation (knots/links are not necessarily oriented) nor
about the labelling. There are two symbols that can be used for a crossing: lowercase
“x” and capital “X”; this allows to distinguish between the case of the overpass
going in the northwest–southeast direction (“x”) from the case of the overpass going
in the northeast–southwest direction (“X”).

We allow for triple junctions, modelled with the character “Y” (two streets above
the sweep line that meet one street below the sweep line) or the character “h” (one
street above the sweep line that meets two streets below the sweep line).

The character “’” models a street that ends at the sweep line from above. The
character “,” models a street that ends at the sweep line from below.

An interesting example is illustrated in Fig. 10.6; the solid shape E is obtained
by taking a thin tubular neighbourhood of the set on the left of the figure, and its
knot description is shown on the right. Note that the second row of characters of
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the knot description corresponds to a noncritical Morse level and is only included in
order to make the knot description more self-explanatory.

The complement in S
3 of the example of Fig. 10.6 can be deformation-retracted

onto the Klein bottle with a disk removed, an example that will be considered in
Sect. 10.15.

10.4 The Rules (Reidemeister-Type Moves)

The main feature of the software is its ability to list and apply the Reidemeister-type
moves listed in Chap. 6, together with their inverses. Within this chapter we shall
call such moves simple rules. The inverse rules are a time-reversed version of the
simple rules; the composite rules are the result of combining a finite sequence of
simple and inverse rules.

These rules transform the apparent contour G† into a new one G†0 , with †0 D
@E 0, having a different topological structure but corresponding to an R

3-ambient
isotopy of E into E 0. In other words (see Chap. 6), there exists a smooth path of
compactly supported diffeomorphisms of R3 that connects the identity to a smooth
deformation that takes E into E 0.

We have shown in Corollary 6.6.5 that two 3D shapes E and E 0 are R
3-ambient

isotopic if and only if there exists a finite sequence of simple rules or their inverses,
and a finite number of R2-ambient isotopies, that transform the apparent contour of
† into the apparent contour of †0.

It is worthwhile to notice here that, in general, for a given apparent contour, only
a subset of the rules can be applied, and a given applicable rule can often be applied
in different ways or in different parts of the apparent contour.

10.4.1 Simple Rules

We follow the notation of [13] and of Sect. 6.1. The presence of the labelling makes
our list of moves more rich with respect to the ones in [13]; however, the type of
moves is the same; see Remark 6.1.3 for more.

Rules are applied with the command contour rule <rule> where <rule>
is one of the simple rules listed in the sequel. The software searches for a place
in the apparent contour where the required rule can be applied, and applies it as
soon as a suitable place is found. It is possible to apply the rule at the i -th suitable
place by using the syntax <rule>:i . The name of the rule is therefore the same as
that printed with the command contour rules, which lists all simple rules that
are applicable. For example, the command contour rules three_spheres
lists K2 K1b K1b:2 T T:2 as the applicable rules (Fig. 10.7, left), in particular
rules K1b and T can both be applied in two different places of the contour. Applying
rule K2 produces the apparent contour shown in the middle picture of Fig. 10.7: the
picture displayed is produced by the software and should be interpreted, as usual, up
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Fig. 10.7 An example with three partially occluding spheres and the applicable simple rules,
written inside the region involved (left); result after applying rule K2 (centre); result after applying
the lower occurrence of rule T (right)

Fig. 10.8 An example with a (small) sphere behind a torus where rules K0, K1 and K2 can be
applied with the results shown respectively in the top-right, bottom-left, bottom-right pictures

to smooth deformations of R2. Applying the first occurrence of rule T to the contour
shown on the left of the picture produces the result displayed on the right.5

10.4.1.1 The K Rules (kasanie)

The K rules (see Figs. 10.7 and 10.8 for examples involving them) are of four types:
for K0 the two arcs are oriented in such a way that the lowest value of f (zero in

5By inspecting the resulting apparent contour it turns out that the first occurrence of rule T is
the lowest one shown in Fig. 10.7, left. Applying the second occurrence of rule T (referring to it
with T:2) produces a result that is mirror-equivalent to Fig. 10.7, right, but not diffeomorphically
equivalent in the sense of Definition 2.4.2.
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the pictures) is in the internal region bounded by two arcs, i.e., the two surfaces
fold in such a way that they do not occlude the internal region. Rule K2 features
the highest value of f (four in the pictures) in the internal region (which is thus
occluded by both folding surfaces). We have two remaining rules: K1 and K1b,
where both surfaces fold on the same side, the two rules map into each other after a
front–back reflection of the shape E .

10.4.1.2 The T Rules

Three folding surfaces are involved in these rules. They can be ordered on the basis
of their relative distance from the point of view, using the values of the labelling.
An example of application of a T rule is shown in Fig. 10.7. There is a central
“triangular” region R with a boundary composed of three arcs, each arc can be
oriented clockwise (the corresponding surface folds away from the region R) or
counterclockwise (region R is covered twice by the corresponding folding surface)
for a total of 16 different situations, also counting those obtained by a left–right
reflection symmetry. However the software groups all these variants together as
a T rule. As already noted in Chap. 6, the inverse of a T rule is another T rule,
indeed such moves do not change the complexity of the apparent contour in terms
of number of crossings, cusps, arcs and regions.

10.4.1.3 The L Rule (Lip)

An example of application of the lip rule L can be seen in the top-middle picture of
Fig. 10.9.

Fig. 10.9 This apparent contour allows the simple rules K1b (top row) and B (bottom row); after
applying rule K1b, rule L becomes applicable, leading to the top-right circle
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10.4.1.4 The B Rule (Beak-to-Beak)

Figure 10.9 bottom shows an example of application of the B (beak-to-beak) rule
that melts together two cusps if the appropriate consistency conditions on the
labelling are met.

10.4.1.5 The S Rule (Swallow’s Tail)

Two occurrences of the swallow’s tail rule can be applied to the apparent contour
of a torus of Fig. 10.1, as already anticipated in Sect. 10.1 leading to the simpler
apparent contour of Fig. 10.2.

10.4.1.6 The C Rule (Cusp-Fold)

See Fig. 10.10 for an example of this rule.

Fig. 10.10 This is the apparent contour of a small sphere in front of a larger sphere with a partially
occluded wrinkle. It allows two different applications of rule C, the result of which is shown in the
two top and bottom rows. In both cases rule L could be subsequently applied
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10.4.2 A Nonlocal Effect of the B Rule

Suppose that a beak-to-beak rule B takes place in region R and that region R is not
simply connected, its boundary being composed by n > 1 connected components.
Suppose moreover that the two cusps involved in the B rule belong to the same
connected component of the boundary of region R. This entails that region R will
be divided into two regions after application of the rule.

In such a case the result of applying the rule is not univocally determined. To
explain this assertion suppose for definiteness that the cusps belong to the external
boundary (a similar reasoning applies in the other cases). We have n � 1 holes
of the original region. That part of the apparent contour that is contained in a
hole (including its boundary) will be called island; by abusing the term, we shall
also refer to an island for the external part of the apparent contour (the external
boundary of the region and everything outside of it). Each island must be placed
in one of the two newly formed regions. This leads to some degree of uncertainty
when applying rule B under particular circumstances and is signaled with a warning
by the software. It is possible for the user to force the positioning of the islands by
means of the option --ti <i>. The integer i is interpreted as a sequence of digits
0 or 1 in base 2, the value of each digit indicating the destination of each island of
the region. Another way to control the positioning is to add an extra specification
to the rule name, the complete syntax is then “<rule>:n:i” where n indicates
which occurrence of the rule we are referring to (rules can often be applicable in
more than one place) and i has the same meaning as for the --ti option.

An example of this situation will be encountered when applying rule B within
the composite rule CR4, see Fig. 10.15.

10.4.3 Composite Rules

Composite rules are particular sequences of simple rules that include at least one
inverse rule and that have an overall simplifying effect.

10.4.3.1 The CR0 Composite Rule (B�1S)

See Fig. 10.11 for an example. There are actually four variants: CR0L is shown
in the Figure, and consists in applying the inverse of B (beak-to-beak) on the two
arcs with labelling 1 and 2 followed by a swallow’s tail S (the same composite
rule can of course be applied if all labellings involved are incremented of the same
amount). The other variants: CR0R, CR0Lb and CR0Rb are obtained with a left–
right reflection, a front–back inversion or both, applied to the rule CR0L.

Notice that although the final result is simpler than the starting apparent contour,
we cannot obtain that result without resorting to the inverse of a simple rule.
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Fig. 10.11 In the indicated zone we can apply the CR0L composite rule leading to the result shown
on the right

Fig. 10.12 In the indicated zone we can apply the CR1 composite rule leading to the result shown
on the right

Fig. 10.13 In the indicated zone we can apply the CR2 composite rule leading to the result shown
on the right

10.4.3.2 The CR1 Composite Rule

See Fig. 10.12 for an example. It can be obtained by applying the inverse of a K1b
rule followed by two applications of the composite rule CR0 (specifically a CR0L
and a CR0R).

10.4.3.3 The CR2 Composite Rule

See Fig. 10.13 for an example. It can be applied to regions surrounded by a single
arc with coincident endpoints and no cusps. It is obtained by applying the inverse
of a S rule followed by the rule K0. The resulting apparent contour has one less
crossing and two more cusps.
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Fig. 10.14 In the indicated zone we can apply the CR3L composite rule leading to the result shown
on the right

Fig. 10.15 In the indicated zone we can apply the CR4R composite rule leading to the result shown
on the right

10.4.3.4 The CR3 Composite Rules

See Fig. 10.14 for an example. Rule CR3L is obtained by applying the inverse of
a B rule followed by the composite rule CR0R. Left–right symmetry leads to rule
CR3R. The resulting apparent contour has one less crossing and two more cusps.

10.4.3.5 The CR4 Composite Rules

See Fig. 10.15 for an example. Rule CR4R is obtained by applying rule B followed
by the inverse of rule K1 and finally by rule K2. Left–right symmetry leads to rule
CR4L, front–back symmetry leads to the remaining two rules CR4Lb and CR4Rb.

Notice that when applying rule B we are precisely in the situation described in
Sect. 10.4.2, now with the two cusps belonging to the connected component of the
same hole of the interested region. Similarly to what done in Sect. 10.4.2 we now
must specify precisely how to connect the two cusps: by circumnavigating the hole
from above or from below, so to speak.

10.4.3.6 The A1 Composite Rule

This rule can be applied whenever we have an annular region with both boundaries
positively oriented (i.e., the external boundary is an S

1 oriented counterclockwise,
the internal boundary is an S

1 oriented clockwise) and the labelling of the internal
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S
1 is of one unit larger than the labelling of the external S1. In this situation we can

apply the inverse of a B rule followed by an L rule and annihilate both S
1.

10.4.3.7 The A2 Composite Rule

Similar to rule A1 but with the internal labelling of one unit lower than the labelling
of the external S1.

10.4.3.8 The TI Composite Rule

This is obtained by applying the inverse of a B rule that melts two regions followed
by the same B rule but with a different choice of the position of the holes that have
to be placed in one of the two original regions. See the discussion in Sect. 10.4.2.
The option --ti < i> can be used to indicate which holes have to be transferred.
An alternative way is to indicate the rule as TI::i or TI:n:i ; in the latter syntax,
n indicates that we require the application of the rule at the n-th found location at
which the rule can be applied, while i must be interpreted as a sequence of binary
digits each of which decides the placement of a different hole.

10.4.4 Inverse Rules

With the exception of T, the inverses of the simple rules produce a more complex
apparent contour; moreover, each of the inverses is typically applicable in a large
number of positions for a given apparent contour. This is the reason why applicable
inverse rules are not listed with the command contour rules.

There are specific commands to obtain a list of applicable inverse rules, also
indicating the correct syntax to be used for the actual application of each occurrence.

Note that quite often we fall in the uncertainty situation described in Sect. 10.4.2
requiring the use of the “--ti < i>” option, or the more specific rule indication
such as “INVK2:1:i” if we want to precisely control the outcome of the applica-
tion of the rule.

For convenience, the rules INVK0, INVK1, INVK1b, INVK2 and INVB (respec-
tively inverses of the rules K0, K1, K1b, K2 and B) are all grouped together in the
class of “mergearcs” rules because they all involve merging pairs of arcs facing
the same region. For any pair of such arcs, which one of the mentioned inverse rules
is applicable depends on their relative orientation and on the values of the labelling.
See also the description of the listma command in Sect. 10.10.1.

Rule INVL, inverse of the lip rule L, can be applied on any region R with
f .R/>0, and in that case it can be applied to any one of the f .R/ strata. See
also the description of the listinvl command in Sect. 10.10.1.
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Rules INVS and INVSb are symmetric to each other by a front–back reflection
and are both inverses of the swallow’s tail rule S. See also the description of the
listinvs command in Sect. 10.10.1.

Finally INVC is the inverse of rule C and involves a cusp and an arc facing
the same region with appropriate orientations and suitable values of the labelling.
Application of INVC produces a new small region having the shape of a very sharp
triangle. See also the description of the listinvc command in Sect. 10.10.1.

10.5 Surgeries on Apparent Contours

The structure of an apparent contour can be modified in ways that correspond to
surgery applied to the solid shape E . A typical surgery consists in the removal of
two disks in selected positions on @E and glueing the two boundaries together in
a way that respects the surface orientation. With respect to the projection � we
distinguish two types of surgery: vertical and horizontal. Other type of topological
modifications like adding/removing spheres and the result of applying symmetries
are listed in the reference guide, Sect. 10.10.2.

10.5.1 Vertical Surgery

The portions of the surface @E involved by the surgery are two consecutive strata
of some region R of the apparent contour G†; the surgery acts in the projection
direction and the final effect in the apparent contour is the addition of a closed arc
insideR with appropriate labelling. The simplest possible application of this surgery
converts a sphere into a torus, see Fig. 10.16 (left):

$ contour punchhole sphere -r 1:0 | contour characteristic
Euler characteristic: 0

If the two disks belong to different connected components of @E , this
surgery glues them together, thus reducing by one the total number of connected

a b

Fig. 10.16 .a/: Vertical surgery (action punchhole) applied to the apparent contour of a sphere.
.b/: Horizontal surgery (action gluearcs) applied to the apparent contour of two disjoint sphere
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components. If the two disks belong to the same connected component of @E , the
effect of the surgery is to reduce the Euler–Poincaré characteristic by 2 units.

10.5.2 Horizontal Surgery

The surgery is done between two portions of the surface that correspond to two
facing arcs of the apparent contour. The two arcs must be oriented negatively with
respect to the common region and must have the same labelling. A simple example
is shown in Fig. 10.16 (right) converting the apparent contour of two spheres to the
contour of a single sphere:

$ contour gluearcs -a 1:0 -a 2:0 disjoint_spheres
sketch {
Arc 1: (0);
Region 0 (f = 0): () (-a1);
Region 1 (f = 2): (+a1);
}

This is the region description of the resulting contour (a single S1) of a sphere.
The topology of the resulting surface @E changes in the same way as for the

vertical surgery.

10.6 Canonical Description and Comparison

As observed in Sect. 10.2.3 we can have many equivalent region descriptions
(encoded differently as a stream of characters) corresponding to the same apparent
contour, by choosing a different numbering of arcs and regions (except for the exter-
nal region) and a different ordering of the holes of each region. Therefore it would be
useful to define a procedure capable of selecting a canonical representative among
all equivalent region descriptions: finding an optimal choice of a representative will
be called canonization procedure.

Since each different region description is, in the end, just a string of char-
acters, one way of selecting a representative would be simply to choose the
smallest descriptive string with respect to some lexicographical ordering. However
this would be inconvenient for two reasons. First, cycling among all equivalent
region descriptions is computationally impractical, because the number of different
reorderings of arcs and regions grows exponentially fast with respect to the number
of arcs and regions; second, it would seem more natural to devise a way to
compare region descriptions based on intrinsic (topological) properties and not on
an arbitrary numbering.
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Since an apparent contour is essentially a graph, it is natural to briefly discuss
the isomorphism problem for graphs, and then the more difficult task of finding a
canonical description (or canonical representation).

10.6.1 On the Isomorphism Problem for Graphs

The graph isomorphism problem is one of the most studied in computer science;
it is in NP, no polynomial-time algorithm is known, but it is not known whether
it is NP-complete [9]. For graphs with additional properties the situation is much
better: for trees there are linear-time algorithms, whereas the case of planar graphs
(the case we are interested in) is in Log space (a class contained in P) [4], and an
O.n2/ algorithm for the special case of planar 3-connected graphs is known since
1966 [20]. The canonization problem is clearly harder, since the ability to find a
canonical representative for a graph gives a trivial way to test for isomorphism.

However, recalling the notion of equivalence stated at the beginning of
Sect. 10.2.3, we must here emphasize that the canonization problem for apparent
contours can take advantage of the additional structure given by the embedding in
the plane. We also note that the notion of equivalence of two apparent contours that
we are interested in requires that the graph isomorphism must be consistent with the
particular planar embedding of the two graphs, which makes a big difference with
respect to the wider problem of graph canonization even in the case of planar graphs.
This is so because planar graphs are just graphs that admit at least one embedding in
the plane, but generally can admit more than one such (non-equivalent) embeddings.
Triply connected graphs are special, as they cannot admit multiple non-equivalent
planar embeddings (of course there might be none).

A planar embedding of a graph induces an additional structure. For each node, the
incident arcs are organized in a circular list (obtained by making a counterclockwise
turn around the node), i.e., each node is equipped with a cyclic permutation of its
incident arcs. We are interested in isomorphisms of graphs that are also consistent
with this additional structure.

10.6.2 The “Regions” Graph: R-Graph

Due to the structure of the region description, it is more useful to work with a kind
of dual of the apparent contour. Given a connected component C of the apparent
contour, we consider a graph (the regions-graph, or R-graph) having the regions
(connected components of R

2 n C ) as nodes. Each extended arc of C defines a
link connecting the two nodes corresponding to the regions at the two sides of
it; we orient this link from the region with lower value of f (the region on the
right) to the region with higher value of f (the region on the left). The R-graph
of C is planar and can be naturally embedded in the plane simply by arbitrarily
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Fig. 10.17 Left: apparent contour of a torus. It is centrally symmetric and not equivalent to that of
Fig. 10.1 due to the local structure of the two crossings. Due to the central symmetry an exchange
of the two extended arcs containing the cusps produces two equivalent region descriptions. Centre
and right: the R-graphs of the two connected components of the apparent contour

choosing a point in each region and connecting the selected points with disjoint
curves that transversally cross the extended arcs separating the two corresponding
regions. Being C connected, it follows that its regions are all simply connected,
with the exception of the external region6 that has a single hole and no external
boundary. Traversing the boundary of a region counterclockwise and annotating the
visited extended arcs allows to define an additional circular list of incident arcs at
each node of the R-graph. We can always identify a special node of an R-graph:
the one corresponding to the external region of C .

For a generic (possibly nonconnected) apparent contour we have one such
R-graph associated with each connected component. These graphs are naturally
organized hierarchically by observing that the regions of a connected component
form a partitioning of one of the regions (not the external one) of another connected
component of the apparent contour. We say that the latter connected component
directly contains the former. The most external connected components are an
exception. In this way we attach R-graphs to nodes of other R-graphs. An example
of an apparent contour (with two connected components) and the two corresponding
R-graphs is shown in Fig. 10.17, the dark nodes correspond to the respective
external regions. Observe that region R4 appears in both graphs, but with different
meanings: it is not the external region of the graph describing the outer component
of the contour, whereas it is the external region of the graph describing the inner
component of the contour. The whole R-graph having R4 as external region should
be regarded as an attribute of the node R4 of the other graph. In general each region
of an R-graph has its own set of holes as an attribute: it is a (possibly empty) set
of “holes”, where each hole corresponds to a separate connected component of the

6Not to be confused with the external region of the whole apparent contour, it is the unbounded
connected component of R2 n C . Occasionally we shall refer to the external region of C as the
subset of the unbounded connected component of R2 n C that coincides with the region of the
apparent contour adjacent to C from the outside.
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apparent contour. Simply connected regions have an empty set of holes, regions with
a single hole, like the one in Fig. 10.17, have a set of holes with just one element.
Since the function f jumps of two units whenever we cross an arc, we can give a
natural orientation to the arcs of the R-graph in the direction of increasing f .

10.6.3 The Depth-First Search of an R-Graph

Depth-first search (DFS in short) is a well-known algorithm widely used to traverse
trees or graphs. Basically it consists in following links as far as possible before
backtracking and (in the case of graphs) it will not follow links leading to an already
visited node. In the end the arcs that have been actually traversed define a spanning
tree of the original graph: a connected subgraph that contains all nodes, but with no
cycles. The result of the DFS depends on the starting node and on a total ordering
of the links incident to each node.

We describe now a natural way to apply a DFS to an R-graph.7 For each
connected component of the apparent contour it depends upon the selection of
a starting node and of one of its incident links (recall that we have an R-graph
associated with each connected component of the apparent contour). The external
region is the obvious candidate for the starting node, whereas in general we do not
have a natural way to select an incident link, that is one of the extended arcs that
compose the (inner) boundary of the external region.

During the DFS, as soon as we visit a region (a node of the R-graph) we define
its entry-point as the extended arc (a link of the R-graph) that has been crossed in
order to arrive to it. This, together with the cyclic ordering of the links at the node
induced by the planar embedding, allows us to define a total ordering of the incident
links that in turn can be used to continue in the DFS algorithm.

To summarize, for each R-graph (i.e., each connected component of the apparent
contour) and for each choice of an extended arc bordering its external region, we
have a procedure that allows us to define an entry-point for each internal region in
a natural way (a way that depends on the structure of the regions graph, but not on
its representation). Recalling the representation of (a connected component of) the
boundary of a region given in Sect. 10.2.2.1, this amounts in deciding the starting
arc of each cycle.

We illustrate the DFS procedure with an example (see Fig. 10.18). We choose the
apparent contour of a tube knotted in the shape of the trefoil knot, it is connected
and is composed of 14 regions and 24 arcs. We apply the DFS procedure selecting
as starting arc the one pointed by the arrow in Fig. 10.18. Starting from region

7This procedure was recently suggested to us by Giovanni Paolini, Scuola Normale Superiore,
Pisa, to whom we are indebted. It was first implemented in version 2.0.0 of the program. Previous
versions of appcontour suffer from an imperfect canonization procedure that could lead to
different regions descriptions starting from diffeomorphically equivalent apparent contours.
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Fig. 10.18 The DFS
procedure is applied to the
apparent contour of a knotted
tube by selecting the arc
pointed by the arrow as the
starting link from region R0.
Regions are numbered from 0

(the external region) to 13;
the black circles indicate the
resulting entry points. The
tube is knotted as in a trefoil
knot, the simplest possible
nontrivial knot

R0 the first region entered is thus R5 and consequently its entry point is the one
indicated by the black circle in the Figure. From R5 the procedure first tries to enter
R0 (already visited), then enters R11, crossing the next arc encountered walking
counterclockwise along the boundary from the entry-point. Of course following the
entry-point always leads to a just visited region, so we shall not mention such an
attempt again. Then from R11 down to R6, then (after an attempt to revisit R0)
down to R12, then R7, then R13, then (since R5 has already been visited) down
to R8, then R1. At this point both arcs of R1 lead to visited regions, hence DFS
backtracks to R8 and goes down into R4. The DFS procedures continue in this
way until it is forced to backtrack to R0 with no external arcs leading to unvisited
regions still to follow. The complete list of visited region in the visiting order is:
0 � 5 � 11� 6 � 12 � 7 � 13� 8 � 1 � 4 � 9� 2 � 10� 3.

Observe that the DFS also defines in a natural way a spanning tree for each R-
graph, in the case of Fig. 10.18 we can easily obtain the spanning tree by removing
all links that correspond to extended arcs that are not entry-points for either of the
two adjacent regions. The spanning tree is always rooted at the external region.

10.6.4 The Canonization Procedure

Canonization of the region description amounts in making a specific (optimal)
choice in items (1)–(5) of Sect. 10.2.3, among all equivalent representations.

After a preliminary step (Sect. 10.6.4.1) for the canonification of the extended
arcs description, item (5) in Sect. 10.2.3, the canonification process takes advantage
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of the DFS procedure together with a lexicographic comparison procedure between
different representations (Sect. 10.6.4.3). We shall refer to Fig. 10.17 as a concrete
example. The overall theoretical complexity of the resulting canonization algorithm
is O.n2/, n being the number of extended arcs. It is arguably not optimal, however
it seems sufficient for the uses that we can think for the software.

10.6.4.1 Canonical Description of an Extended Arc

The streaming description of an extended arc as described in Sect. 10.2.1.1 is unique
with just one exception. Namely, for a closed extended arc containing more than one
cusp we have to select a starting point along the arc when listing the sequence of d
values. We have thus a maximum of s (where s is the number of cusps) different
ways to describe the same extended closed arc. In such a situation we simply
define the canonical description to be the one that comes first in the lexicographical
ordering of the sequences of d values. There is no possible ambiguity in this
procedure. As an example, the strings (1 2 1 2 1) and (2 1 2 1 2) both
describe the same closed extended arc with four cusps of Fig. 10.12, right (recall
that conventionally for closed extended arcs the first and last values correspond to
the same simple arc, the one containing the chosen starting point); only the first
string gives however the (unique) canonical description.

10.6.4.2 Sorting Non-Equivalent Arcs

We can take advantage of the fact that extended arcs carry intrinsic information
(cusps and labelling) in order to reduce the algorithm overhead by introducing an
ordering among them based on such information. However we cannot assume that
all extended arcs are distinguishable based on such information. We end up with
a partition in equivalence classes of indistinguishable extended arcs, with a total
ordering among the equivalence classes. This can help reduce the computational
effort, yet it will not decrease the theoretical O.n2/ computational complexity.

For example, the apparent contour of Fig. 10.17 has one extended arc with
description “(0)” (the external closed arc), two indistinguishable extended arcs
with description “[0 1 2)” (the two swallow’s tails) and two indistinguishable
extended arcs with description “[0]” (those bordering the inner hole of the torus).

When selecting an extended arc along the boundary of some region we can also
take advantage of the orientation or the extended arc with respect to the region,
allowing further discrimination.

10.6.4.3 Using DFS and Lexicographic Comparison

In view of the discussion in Sect. 10.6.3 we need a way to select (in a natural
way) an incident link (bordering extended arc) to the external region of each of the
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R-graphs associated with each connected component of the apparent contour.
For this we introduce the notion of normalized description of an R-graph (or
equivalently normalized description of a connected component of the apparent
contour).

Assume for the moment that the apparent contour is connected, i.e., we have only
one R-graph. Then for any two distinct choices of a link incident to the external
region we can make use of the DFS strategy described in Sect. 10.6.3 to define a
complete set of entry-points for all internal regions and consequently two different
ways to traverse the graph, leading to two different descriptions. We can then
lexicographically compare the two descriptions by simultaneously traversing the
graph in both ways and returning with a “winner” as soon as we find a difference. We
stress that in this comparison we must make use of all intrinsic information attached
to arcs and nodes (orientations and labellings). The “winning” selection will be
subsequently compared one after the other to the descriptions (set of entry-points)
obtained by varying the starting link incident to the external region. Of course
we might restrict the search to one of the equivalence classes of indistinguishable
extended arcs discussed in the previous Sect. 10.6.4.2, the equivalence class being
selected according to some well-defined strategy, in order to reduce the cost of the
procedure.

The overall winner will be a natural choice of the starting link and defines a
distinguished extended arc among those bordering the external region.

We clarify the procedure by applying it to the internal connected component
of the apparent contour of Fig. 10.17. The external region is named R4 with four
incident links, corresponding to arcs a2, a5, a3, a4, listed according to their
circular ordering.

• Selecting e.g., the arc a2 as the starting link, the DFS procedure enters region
R1, and defines arc a2 as its entry-point (no surprise here, since this is the only
incident arc at region R1). Following arc a2 from region R1 leads to the already
visited region R4, so that the procedure backtracks to region R4 and proceeds
with the next arc following the circular ordering, namely arc a5. This leads to
region R3, the procedure defines a5 as its entry-point and tries to follow the two
incident arcs at R3, both leading to the already visited region R4. Backtracking
again it follows arc a3, defines the entry-point for region R2, backtracks and
finally tries to follow the last arc a4, that however leads to the already visited
region R3, terminating the DFS.

• The whole procedure must be repeated after changing the starting link from a2
to a5, the next one in the circular list, with a new definition of entry-points for all
internal regions. The two different ways to traverse the R-graph, the one defined
by starting with arc a2 and the one defined by starting with arc a5 are now
compared lexicografically, they differ right at the beginning, since arcs a2 (“[0
1 2)”) and a5 (“[0]”) are not indistinguishable. Some comparison technique
will then declare e.g., a2 to be “better” than a5 (we shall not enter here into the
details of how extended arcs are ordered) so that the winner so far is arc a2.



256 10 The Program “Appcontour”: User’s Guide

• At this point the procedure starts from a3, obtains a set of new entry-points and
compares the result with what obtained starting from a2. Not surprisingly (in
view of the central symmetry of the apparent contour) the comparison will show
no difference in the two descriptions, anyone between a2 and a3will be declared
best, say a3.

• The final application of the DFS strategy will start from arc a4, leading to a
description that will compare unfavourably with respect to that starting from arc
a3.

The final “winner” will then be arc a3 (together with all corresponding entry-
points), and this will be the normalized description of the inner connected compo-
nent of the apparent contour of Fig. 10.17.

If there are more connected components, the procedure explained above can
still be applied to the “innermost” connected components, the ones that have all
internal regions with no holes (they are all simply connected), and they can all be
normalized. If we now consider a connected component of the apparent contour
having one or more regions with holes, but such that all contained connected
components have been already normalized, we can proceed with its normalization
as follows, the key-point being that already normalized apparent contours can
be successfully compared using the lexicographic comparison technique already
explained above.

• For each internal region possessing more than one hole we need to reorder the
holes by comparing their normalized description, we end up with a “normalized”
list of “normalized” components of the apparent contour;

• When comparing two sets of entry-points defined by two different starting arcs,
we also must compare regions by taking into account their list of “normalized”
holes. This can be done safely since everything that we compare has already been
previously normalized.

By iterating the above procedure we can normalize one after the other all
connected components of the apparent contour, the most exterior ones will be
normalized last.

Please note that the net result of this normalization procedure allows to make a
natural choice at points (3) and (4) of Sect. 10.2.3.

As an example consider the apparent contours on the left and on the right of
Fig. 10.19. They are composed of many (8) very simple connected components, all
made of a single closed arc. From an algorithmic point of view the two apparent
contours are difficult to distinguish since each element (region or arc) of one
apparent contour can be found in the other apparent contour with the same local
structure: e.g., there are four empty closed arcs in both apparent contour, two closed
arcs containing a region with two holes can be found in both, and so on. However, a
correct application of the above strategy allows to distinguish among them.
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Fig. 10.19 The apparent contours on the left and on the right correspond to eight deformed spheres
with different relative positions (all closed arcs are oriented counterclockwise)

10.6.4.4 Sorting Regions and Arcs

Points (1) and (2) are now simple to deal with. The overall set of selected entry-
points automatically defines a transversal strategy for the overall collection of
R-graphs. Note that whenever we reach a region with holes we must traverse its
holes, which are completely independent R-graphs, in the order defined by the
normalization procedure, before continuing the traversal of the original connected
component. This traversal strategy naturally defines an ordering for the regions, with
the external region of the apparent contour listed first.

Similarly, arcs can themselves be reordered according, e.g., to which one is used
first during the traversal of the apparent contour. It is convenient however, for better
presentation, to use this latter ordering strategy only to discriminate (and reorder)
between indistinguishable arcs.

We have now resolved all ambiguities listed at points (1)–(5) of Sect. 10.2.3; the
resulting region description can be used as a “canonical” region description. In order
to decide whether two region descriptions describe diffeomorphically equivalent
apparent contours it would be enough to compare (character by character) the
corresponding canonical region descriptions.

10.6.4.5 Postprocessing

After we have a way to obtain a canonical region description we are however
completely free to apply to it any well-defined reordering procedure (among those
listed at points (1)–(5) of Sect. 10.2.3) that can depend both on intrinsic properties
of the apparent contour and on the canonical representation, and still obtain a good
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candidate for a canonical description. This is actually done by the appcontour
program for compatibility reasons and it is harmless.

Canonization of the region description is implicitly computed by appcontour
in most cases both before and after the application of rules, surgeries or other
modifications. For this reason the outcome of “contour print <example>”
can differ from the input region description (but will be an equivalent region
description). In many cases automatic canonization can be inhibited by using the
option --nocanonify in the command line.

10.6.5 Comparison of Apparent Contours

The canonization procedure allows to easily define a total ordering on equivalence
classes of apparent contours. It is sufficient to lexicographically compare the
canonical region description and have the guarantee that two region descriptions
will compare as equal if and only if they represent diffeomorphically equivalent
apparent contours. The ordering will moreover satisfy the usual properties of a total
ordering

Comparison criteria to decide which one of two non-diffeomorphically equiva-
lent apparent contours is better are quite subjective, so that we shall not enter into
the details of the criteria used by the program (they might also change in future
versions).

The command “contour compare” followed by one file containing the
description of two apparent contours or by two files will compare the two apparent
contours and print one of the strings “s1 = s2”, “s1 < s2”, “s1 > s2”, with
the obvious meaning.

10.7 Fundamental Groups and Cell Complexes

Commands cellcomplex, insidecomplex and outsidecomplex of the
software carry out the cell complex construction described in Sect. 7.5.1; in
particular, they print the constructed CW complex, possibly after the deformation
retract that reduces it to two-dimensional at most. The syntax of the description
is as follows. First we have a list of the nodes (0D cells) numbered starting from 0

followed by a count of how many arcs (1D cells) have it as an endpoint. For instance,
the string

node 0 ref 4

means that there are four 1D cells that concur at node 0. Then the software prints
a list of all 1D cells (arcs) numbered starting from 0 with the reference to the two
end nodes. This implicitly gives an orientation to the cell which is crucial when
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describing the 2D cells. For instance, the string

arc 2[1,3] ref 2

means that arc 2 starts at node 1 and ends at node 3. The final number 2 counts the
number of 2D cells that have this arc as part of the boundary. Finally all 2D cells
(faces) are listed with a description of the boundary. For instance,

face 1 [-5 -4 +1 ]

means that if we traverse the boundary of face number 1, which is always an S
1, we

find arcs 5, 4, 1 in this order; arcs 5 and 4 are traversed opposite to their orientation.

10.7.1 Computing the Euler–Poincaré Characteristic and the
Number of Connected Components

From the cell complex of each of the three setsE ,† WD @E and R
3 nE constructed

in Sect. 7.5.1, we can easily compute the corresponding Euler–Poincaré character-
istic by means of the Euler formula: number of 2D cells minus number of 1D cells
plus number of 0D cells. This information is shown respectively with the commands
contour icharacteristic, contour scharacteristic, contour
ocharacteristic, and is actually the total Euler–Poincaré characteristic, that
is the sum of the characteristics of each connected component.

The formula constructed in Theorem 7.4.1 provides a simpler way to compute
the Euler–Poincaré characteristic of †, and is used by the software code with the
command contour characteristic. It gives the same result as contour
scharacteristic and works more generally also for non-labelled apparent
contours. The same type of computation is used for the Euler–Poincaré characteris-
tic displayed with the command contour info.

The number of connected components of each of the three sets E , † D @E

and R
3 n E is just the number of connected components of the respective cell

complex and is displayed at the end of the corresponding cell complex description.
The computation of the number of connected components of † displayed with
contour countcc or as part of contour info is however computed directly
on the labelled apparent contour without resorting to the construction of the cell
complex. It should be noted, however, that we do not have a simple formula (as
it happens for the Euler–Poincaré characteristic, see formula (7.11)) and the actual
computation is carried on by simulating the construction of the topological manifold
T of Sect. 5.2. In particular there is no way to obtain the number of connected
components of the source manifold in the abstract case of non-labelled apparent
contours.
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It is possible to obtain separately the characteristic of each connected component
by combining the contour info command with contour extractcc <n>
with n ranging from 1 to the number of connected components.

10.7.2 Fundamental Groups

Following the procedure described in Sect. 7.5.2, the software can easily compute,
separately for each connected component, a presentation of the first fundamental
group of each of the three sets E , † WD @E and R

3 nE , starting from the computed
cell complex.

If this is done without any simplification, the result is however of no practical
use, due to the excessive complexity of the resulting presentation.

There are two levels of simplifying procedures. The first acts on the cell
complex itself, by removing pairs of 2D/1D or 1D/0D cells whenever the result is
a deformation retract (the procedure is similar to the one described for the removal
of the 3D cells). Another simplifying procedure glues together two 2D cells when
they share a common arc that does not bound any other 2D cell; a similar glueing
procedure can be applied to 1D cells.

The second level of simplification acts on the presentation of the fundamental
group by applying basic simplifying Tietze transformations ([11, p. 48]).

At least for sufficiently simple apparent contours, the resulting presentation is
simple enough to allow recognition of the corresponding group.

We now show how the software displays the presentation of the first fundamental
group by means of an example. The first fundamental group of (the inside of) a
solid shape E obtained by making a knotted tunnel into a sphere (see Fig. 10.20) is
described as follows:

$ contour fg --in internalknot
Finitely presented group with 2 generators
<a,b; abbaB>

Option --in instructs the software to consider the solid set E inside the surface
† in place of the surface itself, i.e., the set of points that can be reached from
infinity traversing transversely the surface an odd number of times; command ifg
is a shortcut for fg --in. The notation used to display a finitely presented group
mimics the usual mathematical way to write a presentation, as we have already seen
in Sect. 7.5.2. We first have a list of generators, in this case a and b, followed,
after the semicolon, by a list of relators, i.e., words that must be identified with the
identity of the group. In our example there is a single relator; capital letters must be
understood as the inverse of the corresponding generator (i.e., B stands for b�1). In
the end the corresponding presentation is

ha; bI ab2ab�1i:
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Fig. 10.20 Apparent contour
of a spherical shape with a
knotted tunnel; dashed lines
have labelling 1, dotted lines
have labelling 3

Unfortunately, a presentation of a group is often far from being satisfactory, due to
the inherent difficulty in deciding whether two different presentations describe the
same group. In the example at hand, we can introduce the two elements x D ba�1
and y D b; in this way, the original generators can be recovered from x and y as
a D x�1y, b D y so that x, y form themselves a set of generators of the group. The
relator now becomes x�2y3, that can also be written as x2 D y3. The group with
presentation hx; yI x2 D y3i is known to be non-free and to coincide with the knot
group of the trefoil knot [8].

As a comparison, we can actually compute the knot group of the trefoil knot (see
Fig. 10.18) with the command

$ contour fg --out trefoilknot
Finitely presented group with 2 generators
<a,b; abAbaB>

Here the option --out is used to require the computation of the fundamental
group of R

3 n E , the outside of the surface †, consisting of all points that can
be reached from infinity after crossing (transversely) the surface an even number of
times. The combinationfg --out can be abbreviated by using the commandofg.
We can rewrite the presentation <a,b; abAbaB> in terms of the new elements
x D ba�1b and y D a�1b; they are generators since we can express a D xy�2 and
b D xy�1. Finally, after rewriting the relator in terms of x and y, we end up again
with the presentation hx; yI x2 D y3i.

Remark 10.7.1 The list of relators can be empty, in which case we have the free
group generated by the given generators. If both the generators list and the relators
list are empty, we obtain the trivial group consisting only of the identity element.
A trivial first fundamental group indicates that the set is simply connected, which
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unfortunately does not always imply that the set is contractible; for instance, S2 has
a trivial first fundamental group, but nontrivial higher order homotopy groups.

As another example, consider the result of “contour fg torus2”, the first
fundamental group of a torus; it is displayed as
<a,b; abAB>
Now, aba�1b�1 is the commutator of the two generators a and b, so that the

resulting group is isomorphic to Z � Z, as expected.

Remark 10.7.2 In the cases when the set E (or †, or R3 n E) is not connected,
the software will compute the fundamental group of each connected component and
print a presentation of each.

Recognition of knotted/unknotted surfaces is thus related to the ability to decide
whether two different presentations describe the same group. This is the well-known
group isomorphism problem, which has been proven to be undecidable in general
[11].8

The three fundamental groups of †, E and R
3 n E are invariant under R

3-
ambient isotopies, so that they can be used to prove, e.g., that there is no sequence of
Reidemeister-type moves that can transform one apparent contour (with labelling)
to another.

10.7.3 Invariants of Finitely Presented Groups
and the Alexander Polynomial

The ability to compute the invariants discussed in Sect. 7.6 is essentially the only
way we have to ensure that two first fundamental groups are not isomorphic, which
entails that the originating 3D scenes are not R3-ambient isotopic.

A few of the discussed invariants are actually implemented in the software code.
Computing the abelianized of the fundamental group requires an implementation

of the procedure described in [11, Sect. 3.3]; this is done by implementing an iter-
ative procedure that directly mimics the algorithm in [11]; the resulting preabelian
presentation can be displayed by using the “fg” command in combination with the
“--preabelian” option. As an example, for the knot group (fundamental group
of the outside) of the trefoil knot we have

$ contour fg --out --preabelian trefoilknot
Finitely presented group with 2 generators
<a,b; abAbaBB>

8As already noted in a footnote of Sect. 7.5.2, the isomorphism problem is decidable in the special
case of the fundamental groups of 3-manifolds.
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If we sum up all exponents of the generator a in the relator (i.e., we count the
number of occurrences of a and subtract the number of occurrences of A) we obtain
the integer 1, whereas if we do the same with the generator b we obtain zero.

From the preabelian presentation the program can compute the abelianized and
display its description by printing its rank and the invariant factors, if present (the
torsion part). This is done with the command abelianizedfundamental,
abbreviated as afg as in the following example.

$ contour afg --out trefoilknot
Torsion-free abelian group of rank 1

It should be noted that no torsion will be present for fundamental groups obtained
in the context of apparent contours, the only way to obtain groups with a torsion
part is to directly enter a group presentation, see Sect. 10.10.7. For example, we can
ask for the abelianized of the finitely presented group < a; bI a2; b4 > by directly
entering the group presentation as follows:

$ contour afg
fpgroup{<a,b;aa,bbbb>}
Abelian group of rank 0 with torsion; invariant factors: 2 4

showing that the group is isomorphic to Z2 � Z4, the invariant factors are the
nontrivial diagonal entries in the Smith normal form of the exponent-sum matrix.

The Alexander polynomial can be computed (for a knotted solid torus) with the
command alexander, for the trefoil knot above we have

$ contour alexander --out trefoilknot
Computing Alexander ideal for d = 1:
Alexander polynomial (up to t -> 1/t):
+1-t+t^2;

The actual computation is performed following the procedure exposed in
Sect. 7.6, we observe a few facts

• The d = 1 assertion in the software output emphasizes the fact that the
Alexander polynomial computed is the generator of the elementary ideal "1
(Definition 7.7.2), we recall that the so-called order ideal "0 is trivially "0 D f0g,
so that "1 is the first nontrivial (and generally the most informative) elementary
ideal. It is always a principal ideal, generated by the Alexander polynomial. It
is possible to force different values for the index d of the elementary ideal "d
by using the option --foxd <d>, however elementary ideals of the outside of
knotted tubes with index d > 1 are not at present computable by the software,
excluding special cases where the result is trivially the whole ring of Laurent
polynomials.

• The “up to t -> 1/t” remark emphasizes the fact that the resulting ideal
is defined up to the choice of the isomorphism between G=G0 and Z, that in



264 10 The Program “Appcontour”: User’s Guide

the end corresponds to a change of base of Z, i.e., t ! 1=t , where t is a
generator of Z. This remark is somewhat diminished by the known property
of the Alexander polynomials of knots of having symmetric coefficients. This
however is not the case for a generic finitely presented group G having infinite
cyclic commutator quotient. Also recall that the Alexander polynomial is defined
up to multiplication by a unit of the ring of Laurent polynomials, i.e., monomials
of the form ˙t s .
The printed polynomial is a canonical representative. This implies that whenever

we obtained different polynomials when computing the Alexander polynomial of
two scenes, the corresponding fundamental groups are not isomorphic, and hence
the two scenes are not equivalent.

It is not a surprise that the Alexander polynomial of the “inside” of the set
illustrated in Fig. 10.20, computed as

$ contour --in alexander internalknot

Computing Alexander ideal for d = 1:

Alexander polynomial (up to t -> 1/t):

+1-t+t^2;

is exactly the same as that of the trefoilknot.
The “Conway knot” (Fig. 10.23, left) [3, pp. 180,181] is the smallest (in terms of

number of diagram crossings) nontrivial knot having trivial Alexander polynomial.9

The knot description corresponding to the diagram in Fig. 10.23 left allows to obtain
the apparent contour of a tubular neighbourhood from which we can compute the
fundamental group of the outside and the Alexander polynomial:

$ contour fg --out conway

Finitely presented group with 4 generators

<a,b,c,d; abAdaBAcabACabADaBAC, abADbDBdB, abAcaBACabADDBdADbdaBAc>

$ contour alexander --out conway

Computing Alexander ideal for d = 1:

Alexander polynomial (up to t -> 1/t):

+1;

We conclude this section with the examples displayed in Figs. 10.21 and 10.22,
four different collections of rings. The first two examples display a set of two rings,
unlinked (left) and linked (middle). Here is the fundamental group of their outside.

$ contour fg --out two_rings
Free group of rank 2
<a,b; >

9The “Kinoshita-Terasaka” knot has the same property. Indeed the Conway and the Kinoshita-
Terasaka knots form a “mutant” pair, they are non-equivalent knots with the same Alexander and
Jones polynomials.
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Fig. 10.21 Apparent contours of collections of rings. Left: two unlinked rings, middle: two linked
rings, right: the “Whitehead link”, two interlaced tori that have vanishing linking number

Fig. 10.22 Apparent contour of the “Borromean rings”, three interlaced tori that unlink com-
pletely when we remove any one of them

$ contour fg --out linked_rings
Finitely presented group with 2 generators
<a,b; abAB>

Since abAB is the commutator between the two generators the second presenta-
tion is readily recognized as the abelian group Z � Z, that we encountered above.
These results are consistent with [8, Example 1.23, p. 46].

The third example of Fig. 10.21 gives

$ contour fg --out whitehead
Finitely presented group with 2 generators
<a,b; abAbAbabABaBaBAB>

with a quite involved group presentation. Proving that this is not a free group,
or conversely, showing that it is a free group is not straightforward. In this case,
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resorting to the computation of the Alexander ideal allows to conclude that the two
components cannot be split, see Sect. 10.7.4.

The set of rings of Fig. 10.22 are the well-known Borromean rings. They consist
of three interlaced tori with the property that they become free as soon as we remove
any one of them. Here is the fundamental group of the interior.

$ contour fg --in borromeanrings

Connected component 0:
Free group of rank 1
<a; >

Connected component 1:
Free group of rank 1
<a; >

Connected component 2:
Free group of rank 1
<a; >

Since the solid interior is composed of three connected components, we also have
three fundamental groups, that in this case are all equal to Z, the fundamental group
of the solid torus.

More interesting is the fundamental group of the outside of the surface:

$ contour fg --out borromeanrings
Finitely presented group with 3 generators
<a,b,c; acACbcaCAB, acAbaBCbAB>

The two relators can be rewritten (after rotation of the second one) using the
commutator notation as ŒŒa; c�; b�, ŒŒA; b�; c�. Proving that this is not the free group
of rank three (the fundamental group of three unlinked tori) is however outside the
scope of this book.

The “outside” of the four examples of Figs. 10.21 and 10.22 all have a
fundamental group of rank larger than one, i.e., their commutator quotient is
isomorphic to Z

r with r D 2; 2; 2; 3 respectively:

$ contour afg --out two_rings
Torsion-free abelian group of rank 2

$ contour afg --out linked_rings
Torsion-free abelian group of rank 2

$ contour afg --out whitehead
Torsion-free abelian group of rank 2

$ contour afg --out borromeanrings
Torsion-free abelian group of rank 3
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Thus, they have Alexander polynomials (or, better, elementary ideals) in two or three
indeterminates, see Definition 7.7.2, Sect. 7.7. The software cannot deal at present
with more than two indeterminates; we shall discuss the case of two indeterminates
in the next section.

10.7.4 Alexander Polynomials and Alexander Ideals in Two
Indeterminates

In the context of commutator quotient groups of rank 2 we deal with Laurent
polynomials in two indeterminates (which we shall indicate with the letters u and
v) with integer coefficients. As already noted the ring of such polynomial is not a
“principal ideals” ring, so it is more appropriate to speak of Alexander ideals instead
of Alexander polynomials. There are two special cases:

• G has deficiency one. This is the case of the outside of a two-components links,
and we are thus interested in the elementary ideal "1. As noted in Sect. 7.8
the elementary ideal "1 is then given by the product "1 D .�/E , where .�/
is the principal domain generated by�. This is not a principal ideal, however its
special structure justifies the fact that the polynomial� in its definition is called
Alexander polynomial (of the two-components link).

• G has deficiency two. This is the case of the outside (or the inside) of a surface
of genus 2, and we are interested in the elementary ideal "2. Recalling the results
of Sect. 7.9, we now have a more involved situation where the Alexander ideal "2
is, in general, generated by a polynomial w satisfying w.1; 1/ D 1 and the ideal
W D .w1; : : : ;wn�2/E , product of the fundamental ideal and the ideal generated
by the polynomials w1; : : : ;wn�2, n being the number of generators in the group
presentation. For sufficiently simple scenes we have W D f0g, so that we still
have a principal ideal and we can still speak of the Alexander polynomial.

Let us consider again the apparent contour in the left of Fig. 10.21, two unkinked
rings. We can compute the corresponding Alexander ideal with

$ contour alexander --out two_rings --foxd 1
Alexander polynomial (special large deficiency case):
0;

This example requires a brief discussion. First of all in this special case we need
to explicitly indicate the value of the index of the requested elementary ideal
(“--foxd 1”). This is because we are in a situation where the deficiency of the
fundamental group presentation is larger than expected, 2 instead of the usual value
of 1 for the complement of links with two components. For this reason the software
assumes that the “interesting” value for the index d is d D 2 instead of d D 1, as
can be desumed by
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$ contour alexander --out two_rings
Computing Alexander ideal for d = 2:
Trivial whole ring ideal:
1;

It is then not a surprise that the Alexander ideal "1 turns out to be trivial. It still can
be written as .�/E with the choice �.t/ D 0.

The second example, displayed in the middle of Fig. 10.21, produces

$ contour alexander --out linked_rings
Computing Alexander ideal for d = 1:
Alexander ideal generated by:
(+1) (u - 1);
(+1) (v - 1);

where the output is clearly to be interpreted as a set of generating polynomials, that
are however written as the product of the Alexander polynomial � (in this case
�.t/ D 1) and the two generators u � 1 and v� 1 of the fundamental ideal E . Using
option -Q (see Sect. 10.10.7) we obtain a description of the ideal with a different
syntax:10

$ contour alexander --out linked_rings -Q
#
# --foxd 1
#
ideal(u,v) F: +1;

where the line starting with F: indicates that the ideal generated by the subsequent
polynomial must be multiplied by the fundamental ideal E .

Here is the Alexander ideal for the Whitehead link (Fig. 10.21 right):

$ contour alexander --out whitehead
Computing Alexander ideal for d = 1:
Alexander ideal generated by:
(+1-u-v+uv) (u - 1);
(+1-u-v+uv) (v - 1);

showing that the elementary ideal "1 is nontrivial, thus proving that the two links
cannot be split.11

10As we shall see in Sect. 10.10.7 this particular syntax can be used to directly feed a Laurent ideal
to the software.
11To conclude that the link cannot be split we also need to know that separately each component of
the links is the unknot. That is clear from the picture, but could also be seen by concatenating
the command “contour --extractcc 1 whitehead” or “contour --extractcc
2 whitehead” with “contour fg --out”.
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For all three examples we can compute the linking number of the two compo-
nents, the software makes the computation using the result of Corollary 7.8.3. We
have

$ contour linkingnumber --out two_rings
Linking number is 0

$ contour linkingnumber --out linked_rings
Linking number is 1

$ contour linkingnumber --out whitehead
Linking number is 0

Of course, having linking number 0 by no means implies that the two components
are unlinked (i.e., they can be completely separated from each other), the Whitehead
link being a counterexample.

Using the Alexander ideal as an invariant of a finitely presented group raises an
issue of primary importance. On the one hand, we cannot compare two ideals simply
by comparing the two sets of generators: an ideal can be generated with a variety of
choices for the generators. On the other hand, in view of Remark 7.7.4 the ability to
decide whether two ideals are the same is not enough. What we actually need is the
ability to decide whether they are equivalent in the sense of Definition 7.7.7.

For two important classes of ideals, namely

(1) principal ideals, generated by the Alexander polynomial� D �.u; v/;
(2) Alexander ideals of two-components links, of the form "1 D .�/E ,

equivalence of the ideals reduces to base-equivalence (in the sense of Defini-
tion 7.7.8) between the defining Alexander polynomials. This is immediate for the
class of principal ideals, whereas it follows from Corollary 7.7.12 for the ideals of
the form .�/E .

10.7.4.1 Canonization of a Laurent Polynomial

As usual, a canonization procedure is a standard way to select a representative
of an equivalence class starting from any one element of the class. Having such
a procedure allows to immediately solve the problem of deciding whether two
elements are equivalent: just compare the result of the canonization procedure.

In the present context the canonization process should select an “optimal”
Laurent polynomial among all those equivalent to a given one. Theoretically this
is quite easy to achieve, just define a well-ordering in the set L of all Laurent
polynomials with integer coefficients12 and select the minimum of the equivalence

12The elements of L can be represented by strings, a well-ordering on strings can e.g., be defined
by first comparing the strings length and, in case of equal length, by making a lexicographic
comparison.
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Fig. 10.23 Diagram of the Conway knot (left). With a suitable horizontal surgery performed on
the boundary of a tubular neighbourhood of the Conway knot we obtain a surface of genus 2,
boundary of a tubular neighbourhood of the diagram on the right

class. However we need a practical “constructive” procedure, i.e., an implementable
algorithm.

The set of possible changes of base in L (Definition 7.7.5) is infinite (for r 
 2),
so that enumeration of all equivalent polynomials is not an option.

The software code implements an algorithm to compute a canonical representa-
tive, we postpone the description of this procedure to Appendix 10.A.

Knowing that the printed polynomial is canonical ensures that different printed
polynomials indicate nonequivalent (in the sense of Definition 7.7.7) corresponding
principal ideals (often the case for the fundamental group of the outside/inside of
a genus two surface, but see Fig. 10.23 right for a counterexample), or indicate a
nonequivalent product of the generated principal ideal by the fundamental ideal E
(the case of the fundamental group of the outside of two knotted tubes).

We illustrate the first situation with a few examples. The Alexander ideal of the
fundamental group of the outside of Figs. 10.6 and of 10.38 are

$ contour alexander --out embrace
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1+u-v;

$ contour alexander --out internalexternal
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1-u+u^2;

Since the two Alexander polynomials are printed differently, we are assured that
the corresponding fundamental groups are not isomorphic, so that the two scenes
are not ambient isotopic.
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Fig. 10.24 A diagram
obtained by combining a
trefoil knot and the system of
curves of Fig. 10.6. As usual,
this is a schematic
representation of the apparent
contour of the boundary of a
tubular neighbourhood in 3D

Consider now the set illustrated in Fig. 10.24, obtained by combining the system
of curves of Fig. 10.6 with a trefoil knot.13 Computation of the Alexander ideal for
this example leads to

$ contour alexander --out embrace_trefoil
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1+u-v;

with a result that coincides with that of the diagram without the addition of the knot.
We are then in a nonconclusive situation: the Alexander ideal does not distinguish
the two scenes, whereas the two fundamental groups are printed with different
presentations, and we do not have sufficient information to decide whether the
fundamental groups are isomorphic.

$ contour fg --out embrace
Finitely presented group with 3 generators
<a,b,c; abABcAC>

$ contour fg --out embrace_trefoil
Finitely presented group with 4 generators
<a,b,c,d; aBcbAdBcbDBCb, bcBcbC>

In view of the example of Sect. 10.13 we should not assume that the two 3D
scenes (with or without the knot) are not ambient isotopic.

Concerning the Alexander ideal of scenes with two knotted tubes (tubular
neighbourhood of two-component links), we already computed the Alexander ideals

13In the context of knot theory this would correspond to the sum of the two diagrams, however the
result is different than the horizontal sum as apparent contours (of a tubular neighbourhood), indeed
the horizontal sum of the apparent contour will apply surgery only on one of the two “parallel” arcs
bounding each of the arcs of the diagrams involved in the sum operation of knots. Moreover one
of the two “summands” is not in this case a knot, making the result of the sum not well defined.
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of the three examples of Fig. 10.21. They are printed differently, so that we can
conclude that the corresponding fundamental groups are not isomorphic.

10.7.4.2 Canonization of a Laurent Ideal

The more general situation of an Alexander ideal that is not necessarily principal
is more involved. We can no longer resort to the canonization procedure of an
Alexander polynomial and we must carefully distinguish between two different
levels of equivalence between polynomials.

On the one hand, multiplication by a monomial with coefficient ˙1 corresponds
to multiplication by a unit of the ring L of Laurent polynomials, and can hence be
done independently on each of the polynomials that generate an ideal. On the other
hand, a change of base is an action that involves the ideal as a whole, so that we
must apply the same change of base (indicated by a 2 � 2 integral matrix B) to all
generating polynomials.

Moreover, even the simpler problem of constructing a canonical set of generators
for a given fixed ideal of L is not an easy task to accomplish, it requires the
construction of Gröbner bases, see, for example, [16], and is not yet implemented
in the appcontour software code.

Implementing, using, for example, a variant of the Buchberger’s algorithm, such
a construction would not however give a canonical set of generators that also takes
into account the notion of equivalence of ideals with respect to changes of base.

On the other hand, one would like to take advantage of the special structure
possessed by the Alexander ideals of the outside/inside of a surface of genus two as
generated by a principal ideal and the product of another ideal times the fundamental
ideal, see Sect. 7.9.

Whenever the software code is unable to compute the canonical representative
of an Alexander ideal it will make this clear by printing a warning message. Future
versions of the software could implement new canonization procedures enhancing
the present situation.

Recalling the computations of Sect. 7.9 it is clear that the Alexander ideal "2 of
the outside/inside of a surface of genus two is always defined by more than one
polynomial, however in many simple situations all but one of these polynomials
vanish, leading in the end to a principal ideal. This fact is recognized by the software
and is indeed the case for the three examples embrace, internalexternal,
embrace_internalexternal presented in Sect. 10.7.4.1. Fig. 10.23 (right)
provides an example of the general situation. This example is constructed by
suitably glueing together two points of the Conway knot.14 The boundary of a
tubular neighbourhood of the resulting set has genus two and here is the result of
the computation of the fundamental group and the Alexander ideal.

14The Conway knot and its “mutant”, the Kinoshita–Terasaka knot, are the simplest nontrivial
knots, in terms of number of crossing in their diagram, having trivial Alexander polynomial.
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$ contour fg --out conway_pinched
Finitely presented group with 4 generators
<a,b,c,d; abADbabADBdaBAbDbdaBACabADBdADbdaBAcabADBdB,

abADbcBdaBAbDbdaBACabADBdaBAbADbdaBAcabADBdB>

$ contour alexander --out conway_pinched
Computing Alexander ideal for d = 2:
# *** Warning: result can be noncanonical ***
Alexander ideal generated by:
+1-u-2v+2uv+u^2v+uv^2-2u^2v^2+u^3v^2;
(-1+u-u^2+u^3) (u - 1);
(-1+u-u^2+u^3) (v - 1);
(+2-2u+u^2-u^3-uv+2u^2v-u^3v+u^4v) (u - 1);
(+2-2u+u^2-u^3-uv+2u^2v-u^3v+u^4v) (v - 1);

The complexity of the resulting description can be greatly reduced by manually
modifying the generating set. In the end we arrive at the equivalent set of two
generators �1CuCv and 1Cu2, which also provides an example of a non-principal
Alexander ideal.

Remark 10.7.3 It is important to emphasize here that the software cannot even
compare a generic ideal generated by some polynomials wi ; : : : ;ws , s > 1 with the
principal ideal generated by some other polynomial w, since it lacks at the moment
the ability to decide whether an ideal is principal and in such a case to compute a
generator.

An example of this situation can be constructed by manually modifying the
fundamental group <a,b,c; abABcAC> of the example of Fig. 10.6 by means
of sequence of Tietze transformations15 into the equivalent presentation <a,b,c;
ACBACBAbcaabcacaabcab>

$ contour alexander
fpgrouop{<a,b,c; ACBACBAbcaabcacaabcab>}
Computing Alexander ideal for d = 2:
# *** Warning: result can be noncanonical ***
Alexander ideal generated by:
+1-u+uv-2u^2v+u^3v+u^2v^2-u^5v^3+u^5v^4;
(-1-v-uv+u^2v+u^2v^2-u^3v^3-u^4v^3) (u - 1);
(-1-v-uv+u^2v+u^2v^2-u^3v^3-u^4v^3) (v - 1);

A tedious computation shows that this ideal can be equivalently generated by
the single polynomial 1 � u2v C u3v2, which is base-equivalent to the polynomial
+1+u-v given by the software as Alexander polynomial for the example of

15Here is the list of equivalent presentations after each Tietze transformation:
<a,b,c; AbaBcaC>, <a,b,c; BAbacabC>, <a,b,c; BBAbabcabbC>, <a,b,c;
CBCBAbcabccabcb>, <a,b,c; ACBACBAbcaabcacaabcab>.
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Fig. 10.6. Once we have a principal ideal we can use the software to compute the
canonified polynomial as follows

$ contour alexander
alexander(u,v) {+1-u^2v+u^3v^2;}
Alexander polynomial:
+1+u-v;

It turns out that the corresponding change-of-base matrix is

B D
��1 1

2 �3
�

producing the transformed polynomial 1� u�1vC u�1 that becomes 1C u � v after
multiplication by u.

10.8 The Mendes Graph

Recall from Sect. 2.2 that the critical set crit.'/ is a set of m smooth closed curves
inM . These curves divideM in a finite number n of connected patchesM1; : : : ;Mn

defining the n nodes of the Mendes graph [6]. Each of the m curves bounds two of
such portions (possibly the same) and defines an arc of the Mendes graph connecting
the nodes associated with those two portions.

In the context of three-dimensional shapes (Sect. 3.2) the solid set E induces a
natural orientation on its boundary @E that plays the role of M above; this in turn
induces a signature on the nodes of the Mendes graph. Arcs of the Mendes graph
(components of the critical set) always connect a positive to a negative node, so that
in this case we have a bipartite graph. Moreover the topology of each patch of @E
gives a notion of genus [6] to be attached to the corresponding node of the graph.
More precisely, the genus is 1� e=2 where e is the Euler–Poincaré characteristic of
the patch considered as a 2D manifold with boundary. It is computed as

e D eb C e2 � e1 C e0;

where eb is the number of connected components of the boundary of the patch, and
ei is the number of i -dimensional cells of a subdivision of the patch into a CW
complex.

Our software can compute all these information and produce the Mendes graph
starting from a labelled apparent contour.
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10.9 Invariants

The invariants discussed in Chap. 7 can be computed by the software. We discuss
here how some of these, most notably the Euler–Poincaré characteristic and the
Bennequin-type invariant introduced in [13], can be computed in practice.

10.9.1 Euler–Poincaré Characteristic

This is actually a quite strong invariant, since it depends only on the source manifold
M . We can however compute it using solely the apparent contour of some map
' W M ! R

2 using the procedure described in Sect. 7.4. This means that we can
actually infer some information on M in terms of appcon.'/. We stress that in
the general abstract setting we cannot resort to the reconstruction Theorem 5.1.1,
that works only for an apparent contour with labelling, and allows essentially to
“reconstruct” the source manifoldM as an embedded closed surface in R

3. Also it is
worth pointing out that if the source manifoldM is not connected, then the result of
applying the procedure of Sect. 7.4 is the sum of the Euler–Poincaré characteristics
of each connected component (total characteristic), and that it is not in general
possible to recover the separate characteristics. Only in some special cases this can
be done: for instance, when the apparent contour has a single component, i.e., a
unique closed curve with cusps that possibly intersects itself transversally, so that
we can deduce that the source manifold is connected.

If appcon.'/ is described in terms of its Morse or region description, the
appcontour software computes the total Euler–Poincaré characteristic with a
command as in the “sphere” example:

$ contour info sphere
This is an apparent contour with labelling

Properties of the embedded surface:
Connected comp.: 1
Total Euler ch.: 2
[...]

The total Euler–Poincaré characteristic is correctly given as 2. It also states that
there is a single connected component, this information can be computed because
we provide a labelled apparent contour.

10.9.2 Bennequin Invariant

In the context of apparent contours of maps ' W M ! R
2, the Bennequin-

type invariant B.appcon.'// studied in [13] is interesting because it is nontrivial
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and, together with the number of cusps and the number of crossings, it gives a
complete set of three first-order local Vassiliev-type invariants for apparent contours.
It is invariant under the equivalence relation between apparent contours defined in
Definition 2.4.2, whereas it changes (in a precise way) under the Reidemeister-
type moves discussed in Chap. 6. We can compute this invariant also on labelled
apparent contours, i.e., those originated by an orthogonal projection of an embedded
surface † D @E , although we cannot take particular advantage of the additional
structure. However, since an embedded surface carries a natural orientation, we
have a standard notion of signature for cusps that allows to split the invariant
counting the cusps into the sum of the number of positive and negative cusps, see
Definition 2.2.12, and Chap. 7.

If appcon.'/ is described in terms of its Morse or region description, the
appcontour software computes the three (four if the contour is labelled, e.g.,
M is oriented) Vassiliev invariants with a command as in the example

$ contour info sphere
This is an apparent contour with labelling
[...]
First order Vassiliev invariants:
Cusps: 0
Positive cusps: 0
Crossings: 0
Bennequin: 2.0
[...]

applied to the simplest possible apparent contour of a sphere. The computed value
B.appcon.'// D 2:0 can be compared with the value of BL.appcon.'// as
computed following the procedure of Sect. 7.2, Chap. 7. The Bennequin invariant is
actually computed along the lines of the derivation of Sect. 7.1.

10.9.3 Examples of Invariants Computation

Since the Euler–Poincaré characteristic and the three Vassiliev invariants are defined
on apparent contours for an M which is not necessarily orientable, the examples
that we shall present hereafter are in most cases without labelling. Description of
an apparent contour without labelling is possible through a Morse description that
differs only slightly from that described in Sect. 10.3.2: no labelling is included and
the presence of cusps along an extended arc is described by using a sequence of one
or more characters ‘c’ in place of a depth value followed by a list of ‘+’ and ‘-’ (we
have no longer a notion of increasing or decreasing cusp). On some figures we also
include the corresponding Morse description.
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Fig. 10.25 The apparent
contour of the Boy surface
and the corresponding Morse
description. Note that
multiple critical Morse events
at the same level are allowed,
see the beginning of
Sect. 10.3.2

10.9.3.1 Projective Plane

In this example we take the Boy surface (Fig. 10.25), for which Ohmoto and Aicardi
in [13] computed a value of �5=2 for the Bennequin-type invariant. The Boy surface
is a standard way to immerse the projective plane in R

3 with a double curve and a
triple point.

Here is the transcript of a session with the appcontour program, where
the Morse description is included in the software package in a file with name
boysurface.morse:

$ contour info boysurface
This is an apparent contour without labelling

Properties of the 2D manifold:
Total Euler ch.: 1

First order Vassiliev invariants:
Cusps: 3
Crossings: 3
Bennequin: -2.5
[...]

We know that the source manifold is connected, since there is a single component
in the apparent contour, hence the Euler–Poincaré of 1 identifies M as a projective
plane.

The Bennequin invariant turns out to be evaluated correctly as �2:5 D �5=2.
The other two first order Vassiliev invariants (3 cusps and 3 crossings) have of course
an immediate interpretation in terms of the apparent contour.

As another related example, we take the apparent contour of Fig. 14a of
[13], which is depicted in Fig. 10.26 with its Morse description; note that both
components of the contour are oriented counterclockwise, so that the inside of the
triangle has four preimages in M . This apparent contour is connected to that of the
previous example through a number of codimension-one topological changes, the
analogue of the Reidemeister moves of Chap. 6 in the context of apparent contours
without labelling. Although we now have two components of the apparent contour,
the source manifold is forcibly connected, since cusps pointing in the external region
cannot exist.
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Fig. 10.26 The apparent
contour of a different map '
on the real projective plane

Here is the output of the appcontour program:

$ contour info deltoid
Properties of the 2D manifold:
Total Euler ch.: 1

First order Vassiliev invariants:
Cusps: 3
Crossings: 0
Bennequin: 0.5
[...]

Again the resulting characteristic of 1 ensures that M is a projective plane. It
is possible to construct an immersion of the projective plane in R

3 such that the
orthogonal projection gives this apparent contour, however there must be (at least)
two pinch points (Whitney umbrellas) and a double curve connecting them. The
resulting Bennequin-type invariant is in accordance with that computed in [13].

10.9.3.2 Milnor Curve and Millett Immersion

The Milnor curve [12, p. 207],[17] is the apparent contour of a particularly
interesting immersion of a sphere in R

3 (Fig. 10.27, left). There is a striking
similarity of the Milnor curve with an example provided by Millett [12] of an
immersion of the projective plane in R

3 (Fig. 10.27, right). The corresponding
apparent contour has only one component and a single cusp.

The result of the automated computation of the Euler–Poincaré characteristic
correctly indicates that the Milnor curve must be the apparent contour of a sphere
and that the Millett curve must be the apparent contour of a projective plane. The
Bennequin-type invariant B.appcon.'// is computed for these two examples as
B.appcon.'// D 0 for the Milnor curve and B.appcon.'// D � 5

2
for the Millett

example.
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Fig. 10.27 The Milnor curve (left) and the Millett example for the projective plane (right)

Fig. 10.28 The apparent contour of a torus (left) and of a knotted surface of genus 2 (right)

10.9.3.3 Torus

The apparent contour of Fig. 10.28 (left) corresponds to a projection of a torus.
Here is the output of the appcontour program:

$ contour info torus2
This is an apparent contour with labelling

Properties of the embedded surface:
Connected comp.: 1
Total Euler ch.: 0

First order Vassiliev invariants:
Cusps: 4
Positive cusps: 2
Crossings: 2
Bennequin: 0.0
[...]

Note that this example also carries information capable to reconstruct a 3D
embedding of the surface (labelling); the surface is consequently oriented, and in
this case there is a fourth invariant: number of positive cusps [13].



280 10 The Program “Appcontour”: User’s Guide

10.9.3.4 A knotted Genus-2 Surface

The apparent contour of Fig. 10.28 (right) corresponds to a surface of genus 2 (a
torus with two holes), having the two holes linked together.

Here is the output of the appcontour program:

$ contour info genus_2_linked
This is an apparent contour with labelling

Properties of the embedded surface:
Connected comp.: 1
Total Euler ch.: -2

First order Vassiliev invariants:
Cusps: 0
Positive cusps: 0
Crossings: 8
Bennequin: -2.0
[...]

10.10 contour Reference Guide

The typical contour command is of the type:

contour [options] <command><description-file>,

where the description file contains the apparent contour data in one of the forms
described above. If missing, the contour description is taken from the standard
input, typically as output of a previous command in a pipe chain. We shall describe
here all commands understood by contour; they can be grouped as informational
commands, commands that operate and modify the given contour, commands that
convert from and to different types of contour descriptions (most notably from
the region description to the Morse description), and commands related to the cell
complexes of the 3D shape associated with a labelled apparent contour. Options are
prefixed by a single dash character (single-letter options) as in -q or a double dash
(long options) as in --nocanonify, they will be listed at the end of this section.

10.10.1 Informational Commands

These are commands that print various kinds of information on the given apparent
contour.
info. Prints a list of properties and invariants of the given apparent contour, in

particular the Euler–Poincaré characteristic, and some 2D Vassiliev-type invariants:
the Bennequin-type invariant, the number of crossings, the number of cusps and
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(if the apparent contour is labelled, and hence the source surface is oriented) the
number of positive cusps [19], see Sect. 10.9. Finally it prints a few simple 2D
properties such as the number of extended arcs, crossings, cusps and regions.

A different notion of sign of a cusp was introduced in Sect. 8.1, and the number of
“positively embedded” cusps using this notion is also printed. We refer to Sect. 10.9
for more details about the computation of invariants.
characteristic. Prints just the Euler–Poincaré characteristic of the embed-

ded surface associated with the apparent contour (not necessarily including a
labelling). In case of a labelled apparent contour, or more generally if the manifold
M is orientable, the Euler–Poincaré characteristic is always an even integral
number.
iscontour/islabelled. Checks if the given description is an apparent

contour or if it is a labelled apparent contour. In the latter case the program checks
all conditions listed in Sect. 3.4 for the labelling function d†. If the option -q is
also given no text is printed and the program has a nonzero exit code if the apparent
contour does not have a labelling or if the labelling is not consistent.
rules. Prints a list of all simple and composite rules that can be applied to

the given apparent contour, see Sects. 10.4.1 and 10.4.3 for a complete list and a
description of each.

For instance, on the apparent contour of Fig. 10.1 we obtain the following list:

$ contour rules torus2
Rules that apply:
K0 B B:2 S S:2 CR0L CR0R CR0LB CR0RB

where each string indicates an applicable rule and can be used as an argument to the
command contour rule described in Sect. 10.10.2.
listma. Prints all positions where an inverse simple rule of the type

mergearcs (the inverses of K0, K1, K1b, K2 and B) can be applied. The
program loops through all pairs of arcs that bound the same region and searches
the mergearcs rules for an applicable one, based on the orientation relative to the
common region and the two values of the labelling. Here with arc we refer to the
portions of extended arcs between consecutive cusps, or the entire extended arc if
there are no cusps. Note that the pairing of an arc with itself is also legitimate. Even
for quite simple apparent contours there is typically a large number of possible
applications of inverse rules of the mergearcs type; for instance, the command
contour listma torus2 lists a total of 47 different positions for the contour
of Fig. 10.1, one of which involving the external region R0:

$ contour listma torus2
Region 0:
-r 0 -a 1:0 -a 1:0 (INVK2:1)
Region 1:
[...]
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The output contains one line for each possible application with the following
information (for definiteness we refer to the only position relative to region R0
in the example): “-r 0” indicates the region number 0, “-a 1:0” is the first
involved arc, it is the arc number 1 (the external arc), the 0 after the colon indicates
what portion of extended arc between cusps we are referring to, starting from 0;
it is always 0 for arcs without cusps as in this case; the second occurrence of
“-a 1:0” similarly identifies the second arc involved in the inverse rule, which
in this case coincides with the first arc. This set of informations is presented in
the form of options to be passed to contour mergearcs in order to apply
the described instance of the inverse rule, for instance “contour mergearcs
-r 0 -a 1:0 -a 1:0 torus2” actually applies the indicated inverse rule,
see also command mergearcs in Sect. 10.10.2. There is an alternative way to
apply each instance of the inverse rule which uses the same syntax as for simple and
composite rules by using the string indicated in parentheses: “contour rule
INVK2:1 torus2” meaning that we require application of the inverse of the
simple rule K2 in the first position found by the software (the 1 after the colon)
which is guaranteed to be the same as that indicated with the “mergearcs” syntax.

In order to control the exact result it might be necessary to use the “--ti i”
option or make the rule indication more specific such as in “INVK2:1:i”, see
Sect. 10.4.2.
listinvl. Prints all positions where the inverse of the simple rule L can

be applied. This is possible in all regions R having a nonzero number f .R/ of
preimages, for each of such region the inverse rule can be applied to anyone of the
f .R/ strata. For instance, the command contour listinvl torus2 lists a
total of ten different positions for the contour of Fig. 10.1, here is an excerpt of the
result:

$ contour listinvl torus2
[...]
Region 4:
-r 4 --stratum 0 (INVL:9)
-r 4 --stratum 1 (INVL:10)

relative to the annular region R4. Similarly to the command listma there are two
different ways to apply one of the listed inverse rules (we show here the command
that applies the last of the listed rules):

• contour rule INVL:10 torus2
• contour wrinkle -r 4 --stratum 1 torus2

see also command wrinkle in Sect. 10.10.2.
listinvs. Prints all positions where the inverse of the simple rule S can be

applied. This is possible on all arcs a and there are two variants related by front–back
inversion. Here arcs are intended as that portion of an extended arc between two
consecutive cusps. For instance, the command contour listinvs torus2
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lists 9 arcs for a total of 18 different applications of the inverse rule on the contour
of Fig. 10.1, here is an excerpt of the result:

$ contour listinvs torus2
[...]
-a 5:0 (INVS:9 INVSB:9)

relative to the arc a5 (the number 0 after the colon indicates which portion of the
extended arc 5 is to be selected, in this case there are no cusps, so that 0 is the only
possible value. Similarly to the command listma there are two different ways to
apply one of the listed inverse rules, here is an example:

• contour rule INVS:9 torus2
• contour swallowtail -a 5:0 torus2

see also command swallowtail in Sect. 10.10.2.
listinvc. Prints all positions where the inverse of the simple rule C can be

applied. This is possible for suitable pairs of a cusp and an arc. Arcs are intended
as that portion of an extended arc between two consecutive cusps. For instance,
the command contour listinvc torus2 lists 24 possibilities, one of which
reads as:

-a 2:0 -a 3:1 (INVC:5)

where the first -a option indicates the cusp (2:0 and 2:1 identify the two cusps
of the extended arc a2) and the second -a option indicates the arc involved in the
inverse rule. Similarly to the command listma there are two different ways to
apply the inverse rule, here is an example related to the information line shown
above:

• contour rule INVC:5 torus2
• contour puncture -a 2:0 -a 3:1 torus2

see also command puncture in Sect. 10.10.2, a picture of the result is shown in
Fig. 10.29.

Fig. 10.29 In the indicated zone we can apply an inverse of the C simple rule leading to the result
shown on the right



284 10 The Program “Appcontour”: User’s Guide

liststrata. Prints the number of strata (the value of f†) for each region.
countcc. Prints the number of connected components of the surface @E .
ccordering. Gives the containment relation among the connected compo-

nents of @E . A connected component @E1 is contained in the connected com-
ponent @E2 if it is not possible to connect @E1 with infinity without having to
cross @E2, it is directly contained if there is no other components in between.
A component is external if it is not contained in any other component. For
instance, a result of “1{2 3}” means that the external connected component 1
directly contains the connected components 2 and 3 (contour ccordering
twohollowsphere). A result of “1 2 3” means that the three connected
components (example three_spheres) are all external.
ccparent <n>. Shows which connected component of @E directly contains

the connected componentn, a result of Nonemeans that the componentn is external
(see command ccordering above).
ccorientation <n>. Positive or negative orientation of the connected

component n of @E . The orientation of a connected component is positive if it
is external, otherwise it is the opposite of the connected component that directly
contains it. The terminology comes from the fact that @E is the boundary of the
solid shape E and this induces an orientation on each connected component of
@E , that can be the compared to the orientation of the connected component when
considered alone.
compare. This command requires two apparent contours as input. They can

be given in two input files (contour compare sphere torus2) or, equiva-
lently, in a single file or a stream passed to the standard input as in the example cat
sphere.morse torus2.morse | contour compare, here the two files
must be in the current directory. The result shows which apparent contour (after
canonification) is simpler in the sense explained in Sect. 10.6. The result s1 = s2
implies that the two apparent contours are equivalent, the converse is also true unless
we disable canonification, see Sect. 10.6.

mendes. Prints the Mendes graph of the apparent contour discussed in
Sect. 10.8 [6]. The result is printed in text form as “mendes { <Nodes
information> <Arcs information> }.” The <Nodes information>
section lists each node of the Mendes graph and gives its sign (“+” or “-”) and
its genus. The<Arcs information> section lists each arc and displays the id number
of the positive and the negative node connected by that arc.

10.10.2 Operating Commands

These are commands that modify the given apparent contour in various ways
according to the requested action. Some of the modifications correspond to 3D
isotopic deformations of the surface associated with the apparent contour (with
labelling), see Sect. 10.4; other commands correspond to the result of applying some
surgery to the contour, see Sect. 10.5.
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rule <rule>:n:i.Applies the indicated rule to the given apparent contour.
The rules are all listed in Sect. 10.4, they are K0, K1, K1b, K2, T, L, B, S, C
(simple rules), CR0L, CR0R, CR0Lb, CR0Rb, CR1, CR2, CR3L, CR3R, CR4L,
CR4R, CR4Lb, CR4Rb (composite rules), INVK0, INVK1, INVK1b, INVK2,
INVB, INVL, INVS, INVSb, INVC (inverse rules). The complete syntax includes
the indication of a number n corresponding to a numbering (starting from 1) of all
positions in the apparent contour where the given rule is applicable (often there is
more than one position where a given rule is applicable) and the indication of an
integer i whose digits in base 2 tell where to place the islands when a region is split
into two by the rule. Both n and i are optional; if i is not present, the second colon
should be omitted; if both n and i are not present, both colons should be omitted. A
complete description of the rules is given in Sect. 10.4.
mergearcs. This applies the inverse of one of the rules K0, K1, K1b, K2, B.

Options -r and -a (twice) are mandatory and allow to specify where the inverse
rule must be applied, Which one of the listed rules should be applied depends on the
relative orientation of the arcs and on their labelling. See also command listma
in Sect. 10.10.1.
wrinkle. This applies the inverse of rule L. Options -r and --stratum are

to be used to indicate where the inverse rule must be applied. See also command
listinvl in Sect. 10.10.1.
swallowtail. This applies the inverse of rule S, thus creating a swallow’s

tail. Option -a must be used to indicate where the inverse rule must be applied. See
also command listinvs in Sect. 10.10.1. Note that command swallowtail
only creates one of the two variants listed by the command listinvs.
puncture. This applies the inverse of rule C, thus creating a thin triangle-

shaped new region. Option -a must be used twice to indicate both the cusp and the
arc involved in the rule. See also command listinvc in Sect. 10.10.1.
punchhole. Applies a vertical surgery to the apparent contour, see

Sect. 10.5.1. It is mandatory to indicate the region involved and the two strata
to be glued using the option “-r < r >:< s >”. The strata s and s C 1

of region r are glued together by removing a small disk from both strata and
glueing the resulting boundaries together. For instance, the command “contour
punchhole hollowsphere -r 1:0” creates a tube that connects the first
two (of a total of four) strata of region 1.
removehole. Applies the inverse of the punchhole surgery. It can be

applied only to simply connected regions bounded by an S
1 (closed arc without

cusps) oriented clockwise.
gluearcs. Applies a horizontal surgery to the apparent contour, see

Sect. 10.5.2. The user must indicate the two arcs to be glued using the option
“-a” twice like for instance in “-a 1:0 -a 2:0” which refers to the extended
arcs 1 and 2. The “W 0” substring refers to the portion between cusps of the extended
arc (before the first cusp if 0).
pinchneck.Applies the inverse of the gluearcs surgery. The user indicates

the two arcs where to apply the surgery using the “-a” option twice.
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addsphere. Computes the apparent contour resulting from the addition of a
small spherical surface to @E , this amounts to adding an S

1 in one of the regions with
the appropriate labelling. For instance, we obtain a hollow sphere from a sphere with
the command

$ contour addsphere sphere -r 1:1
sketch {
Arc 2: (1);
Arc 1: (0);
Region 0 (f = 0): () (-a1);
Region 2 (f = 4): (+a2);
Region 1 (f = 2): (+a1) (-a2);
}

The “-r 1:1” option indicates the region of the apparent contour (the 1 before the
colon) and requires that the sphere be added between stratum 0 and stratum 1 (the 1
after the colon). The option “-r 1:0” in the command before would add a small
sphere in front of the original one. Although similar in syntax and application to the
action punchhole, the effect on the structure of the solid shape and its apparent
contour is quite different.
removesphere.Removes a small sphere indicated by a region of the apparent

contour having an S1 oriented counterclockwise as boundary. The region is indicated
using option “-r”.
wrap. Has the effect of wrapping the whole solid set E in a big sphere. Note

that points in the inside of E become external and vice versa points not in E but
inside the big sphere become internal.
extractcc <int>. Extracts the indicated connected component of the

surface @E by removing everything else. The result is of course the apparent contour
of a connected surface.
removecc <int>. Removes the indicated connected component from the

surface @E . The result is the apparent contour of a surface with one less connected
components.
leftright. Applies a left–right symmetry to the apparent contour and

changes orientations of the arcs appropriately. The resulting apparent contour
corresponds to a left–right reflection of the solid shape E with respect to a plane
orthogonal to the projection plane.
frontback. Applies a front–back symmetry to the solid shape originating

the apparent contour with respect to the projection direction. This has the effect of
reversing the labelling.
3devert <int>. This action corresponds to an eversion of the surface @E .

It works by selecting an external portion of the surface, stratum 0 of the region
indicated by the argument int, cutting out a disk in that position and attaching a
large wrapping sphere at the boundary of a similarly cut disk. The same result can be
achieved by wrapping @E with the action wrap and then applying a punchhole
action.
evert <int>. The selected region (indicated by the argument int) becomes

the unbounded region. This is obtained by a projective transformation of the retinal
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plane that moves some point internal to the region to infinity. Since the value of
f† is not necessarily 0 in the selected region we end up with an apparent contour
with a nonstandard value of f† at infinity. The software has partial support for such
apparent contours and the use of option “--finfinity < f >” allows to force
a nonzero value of f† at infinity for an apparent contour to be given in input.
union. This gives the result of the union of two solid shapes E1 and E2, given

by their apparent contours, and placed in such a way not to occlude each other. The
description of the two apparent contours is given as one or two arguments or passed
to the standard input (see also the action “compare” above).
sum. This is similar to the “union” command, but performs a horizontal

surgery afterwards to glue the two apparent contours in a manner corresponding
to the connected sum of the boundaries of the two solid shapes.

10.10.3 Conversion and Standardization Commands

These are commands that convert between different types of contour descriptions.
print. Prints the region description of the given apparent contour. The

description is first canonified as explained in Sect. 10.6 unless the option
“--nocanonify” is present. This is almost a trivial action since apparent contours
are internally described using their region description. Most of the contour
commands print the canonified region description of the resulting apparent contour
after the required action, so this command is equivalent to a no operation on the
input data.
printmorse. Computes and prints a Morse description of the apparent

contour. This is extremely useful in order to interface the contour program
with the showcontour program that displays a graphic picture of the apparent
contour based on a Morse description. The result is obtained by letting an imaginary
sweep line traverse the apparent contour which is described in terms of its region
description. Note that the Morse description obtained with this action is often more
involved than necessary and in particular it is different from the Morse description of
the apparent contour given in input. This is because the original Morse description is
converted into a corresponding region description and then back into an equivalent
Morse description. For this reason, to display a picture of an apparent contour
described by a Morse description (most of the examples are described in this way) it
is usually better to feed the description file directly to the showcontour program
rather than use contour printmorse as a filter.
knot2morse. Converts a knot-type contour, or more generally the knot

description of a handlebody [18], into the corresponding Morse description, see
Sect. 10.3.3. This is done typographically without the usual internal conversion
through the region description. Each typographical character of the knot description
is substituted by a small matrix of typographical symbols that describes locally the
apparent contour by means of the Morse description.
canonify. Prints the region description after canonization (see Sect. 10.6).

This actually produces the same result as the print command.
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10.10.4 Cell Complex and Fundamental Group Commands

Commands related to the cell complexes of the 3D sets associated with the apparent
contour (with labelling).
cellcomplex. Computes a cell complex corresponding to the surface† D @E

as described in Sect. 7.5.1. Let us give a very simple example when E is a solid
sphere; the corresponding apparent contour is described in file sphere.morse
and consists in just one closed arc bounding a region with the shape of a disk.

$ contour cellcomplex sphere
node 0 ref 2
arc 0[0,0] ref 2
face 0 [+0 ]
face 1 [-0 ]
Found 1 connected component

The constructed cell complex consists in a single node (numbered 0), a single
arc that starts and ends at node 0 and two faces, both having arc 0 as their boundary
oriented in opposite directions. This implicitly gives an orientation to the two faces
(floor and ceiling of the sphere E). We can note here that the orientation of the
faces chosen by the software is not consistent across arcs, although we know that a
globally consistent orientation do exist since † is oriented.
insidecomplex. Computes a cell complex corresponding to the solid set E

as described in Sect. 7.5.1. If we take a sphere as the set E as before, we simply get

$ contour insidecomplex sphere
node 0 ref 0

This is the trivial cell complex consisting of a single 0D cell, which is the result
of the application of a sequence of simplifying deformation retractions.
outsidecomplex. Computes a cell complex corresponding to the comple-

ment R3 n E as described in Sect. 7.5.1. If we take a sphere as the set E as before,
we obtain

$ contour outsidecomplex sphere
node 1 ref 3
node 2 ref 3
arc 1[1,1] ref 2
arc 2[2,2] ref 2
arc 5[1,2] ref 2
face 1 [+1 ]
face 2 [+2 ]
face 3 [+1 +5 -2 -5 ]

This is more involved than the other two cell complexes, and derives from the
way the software actually works, i.e., by placing everything in a big bounding ball
B . Indeed the result is exactly the same as that obtained by asking the inside cell
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complex of a solid hollow sphere. In particular face 3 corresponds to an annulus
(arc 5 is the cutting arc added to make the annulus simply connected) which derives
from the external region of the apparent contour, bounded by the apparent contour
of the ball B .
fundamental (or fg). Computes the fundamental group of the surface † D

@E . The group is printed by means of a presentation as described in Sect. 10.7.2.
We stress that different presentations can refer to the same group.
insidefundamental (or ifg). Computes the fundamental group of the

solid shape E . The group is printed by means of a presentation as described in
Sect. 10.7.2. We stress that different presentations can refer to the same group. This
command is equivalent to the combination fg --in.
outsidefundamental (or ofg). Computes the fundamental group of the

complement R3 n E of the solid shape E . This command is equivalent to the
combination fg --out.
abelianizedfundamental (or afg). Computes the quotient of the fun-

damental group by its commutator, i.e., its abelianization. The resulting group is
described in terms of its rank and its invariant factors (torsion numbers). As already
observed in Sect. 10.7.3 fundamental groups constructed in the context of apparent
contours are always torsion-free, see also Sect. 10.10.7.
alexander. Computes the Alexander polynomial, or more generally one of

the Alexander ideals, from a group presentation. At the moment this computation is
only performed when the abelianized is the infinite cyclic group Z, in which case the
Alexander polynomial is a Laurent polynomial in one indeterminatet, or in the case
where the abelianized is Z�Z (torsion free with rank 2), in which case the Alexander
polynomial is a Laurent polynomial in two indeterminates u and v. In the case of
one indeterminate, the Alexander polynomial p.t/ always satisfies p.1/ D 1 and is
defined up to multiplication by powers of t or the substitution t ! 1

t
. The resulting

polynomial is hence canonified such that p.0/ 2 R n f0g. Invariance with respect to
t ! 1

t
is ineffectual since it is known that the Alexander polynomial of knots has

symmetric coefficients. In the case of two indeterminates, the Alexander polynomial
is only partially canonified (see Sect. 10.7.4 for details). Option --foxd <i> can
be used to force the index of the Alexander ideal that should be computed in some
special cases; details on this can be found in Sect. 10.7.4.
linkingnumber. This is valid only when the preabelian presentation has rank

2 and the number of relators is one less the number of generators. This happens for
the complement of a two-components link (two solid tori) or the equivalent situation
obtained after a 3D eversion (see examples in Sect. 10.14). See Sect. 10.7.3 for
details.

10.10.5 Options Specific to Fundamental Group Computations

They are only meaningful for commands cellcomplex (only options --in and
--out), fg (or fundamental), alexander, linkingnumber.
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--in. Apply the given command to the internal set E . --out. Apply the
given command to the external set R3 n E .
--preabelian.Applies the procedure illustrated in [11, Sect. 3.3] to produce

a preabelian presentation.
--nosimplify. Inhibits the automatic simplification process of the presenta-

tion of the fundamental group as computed from the cell complex.
--foxd <i>. Indicates the index of the elementary ideal to be computed (see

Definition 7.7.2). If missing, the implied value depends on the deficiency of the
finitely presented group and is generally the smallest value that produces a nontrivial
result (d D 1 for the outside of a knotted solid torus or two solid tori, d D 2 for the
inside/outside of a surface of genus 2). In order to avoid misinterpretations of the
result, whenever the value of d is implied it will be displayed in the output of the
computation.
--nobasecanonify. Inhibits the canonization process for the Alexander

polynomial/ideal. A warning message will be printed to alert the user that the result
might be non-canonical.
--shuffle.The Alexander polynomial/ideal is subjected to a random change-

of-base before application of the base canonization. This might be useful for
debugging purposes to test the computational complexity of the base-canonification
procedure. Option --seed followed by a number can be used to initialize the
pseudo-random generator.
-Q. Format the result using a syntax that can be understood in input by the

program, see Sect. 10.10.7.
If neither of the two options --in or --out is given, the requested action is

applied to the surface itself. In some cases there are abbreviated commands that
imply option --in, like ifg or option --out, like ofg.

10.10.6 Common Options

Options can alter the way that commands behave, or provide additional information.
--help. Prints a brief list of all available commands and options.
--version. Prints the version number of the program.
-q. Reduces the amount of text displayed to a minimum. This is useful if the

output needs to be parsed by automatic scripts or other programs.
-v (or --verbose). Increases the verbosity of the output for some actions.
--nocanonify. Disables in most cases the automatic canonification of the

region description before printing it.
--transfer_islands <int-coded-flags> (or --ti <int-

coded-flags>). Application of some rules (most notable the B, beak-to-
beak, move) to an apparent contour has an indeterminate behaviour in presence of
non-simply connected regions, as described in Sect. 10.4.2. This option allows to
precisely control the result. The integer argument is interpreted as a sequence of
bits (digits in base 2), each bit controlling the final position of an island (part of the
apparent contour contained in a hole of the region).
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--finfinity <int>. There is partial support for apparent contours with a
nonzero value of f† ad infinity. They can arise if the target space is S2 instead of R2

with the North pole of S2 identified with the point at infinity of R2. Such apparent
contours are not allowed in the definition of Sect. 3.2, however it might be useful
to use them in particular circumstances. The evert action (which in some sense
corresponds to a motion of the point at infinity into one of the regions) typically
produces this kind of apparent contours.
--mendes_ge <type>. Allows for a rough graphical presentation of the

Mendes graph, to be used in conjunction with action mendes described in
Sects. 10.8 and 10.10.1. type can be one of
text: This is the default, and produces a textual display of the Mendes graph as des-

cribed in Sect. 10.10.1;
kig: Produces a graphical representation using the syntax of a save file for the kig

program for interactive geometry (http://kig.kde.org/);
pykig: Similar to the above, but produces a file suitable to be executed by the
pykig frontend to kig.

The graphical position of the nodes is obtained with the help of a random number
generator.
--seed <int>.Allows to give a seed for the random number generator used

to produce a graphical presentation of the Mendes graph.
-r <int> (or --region <int>). Some actions require the indica-

tion of a region where to operate, this can be done using this option. The syntax
“-r n:i” can be used to indicate stratum i (starting from 0) of region n.
-a <int> (or --arc <int>). Some actions require the indication of

an extended arc where to operate, this can be done with this option. The syntax
“-a n:i” can be used to indicate a specific arc of an extended arc when cusps are
present (i D 0 refers to the arc from the starting node to the first cusp) or to indicate
a specific cusp (i D 0 refers to the first cusp). If two arcs are required (e.g., for
action mergearcs) this option must be used twice.

10.10.7 Direct Input of a Finitely Presented Group
or an Alexander Ideal

All appcontour commands related to fundamental groups (more generally,
finitely presented groups) allow the user to directly input a group presentation, on
standard input or from a properly formatted file. As an example the file (named
trefoilknot.fpgroup) containing

fpgroup {
<x, y; xxYYY>
}

describes one of the possible presentations of the fundamental group of the trefoil
knot.

http://kig.kde.org/
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We can use the description contained in trefoilknot.fpgroup in an
appcontour command as in

$ contour fg --preabelian trefoilknot.fpgroup
Finitely presented group with 2 generators
<a,b; bAbaBBa>

or we can enter directly the group description as in

$ contour afg
fpgroup { <x, y; xxYYY> }
Torsion-free abelian group of rank 1

or

$ contour alexander
fpgroup { <x, y; xxYYY> }
Computing Alexander ideal for d = 1:
Alexander polynomial (up to t -> 1/t):
+1-t+t^2;

where the lines with gray background are entered by the user as input for the
software code.

Since the fundamental groups of the three sets †, E , R3 n E are always of
a very special nature, and in particular are always torsion-free, direct feed of a
group presentation can be the only way to force the software to operate on them.
In this case the two options (see below) --in and --out have no effect, and
option --nosimplify can be very useful to exclude the preliminary automatic
simplification attempted by the software.

Similarly, it is possible to directly enter an Alexander polynomial or Alexander
ideal, for example in order to take advantage of the canonification postprocess. Here
are two examples.

$ contour alexander
alexander(t) {
t^(-1)+t-1;
}
Alexander polynomial (up to t -> 1/t):
+1-t+t^2;

$ contour alexander
alexander(u,v) {-1+u+uv;}
Alexander polynomial:
+1+u-v;

In the latter example the difference between the input polynomial and the
resulting one is a consequence of the change of base of Z

2 performed in the
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base-canonization process. Option --nobasecanonify inhibits the base-
canonization and the resulting polynomial will be equal to that given in input.

The syntax to be used should be clear from the above examples, that cover the
case of finitely presented groups and Alexander polynomials. It requires a brief
explanation for the description of an Alexander ideal. The description starts with
“ideal(u,v) {”, and must be closed by a “}”. The name of the variables can
be changed and must match those used in the polynomial description, they must
consist of a single lowercase letter. The description of the ideal itself consists of one
or more polynomials (the generators), each one terminated by a semicolon ‘;’. The
polynomial description can optionally be preceded by the keyword “F:”, in which
case the subsequent polynomial is to be multiplied by the fundamental ideal E and
the resulting ideal will act as a generator.

For all contour commands that produce a finitely presented group or a Laurent
polynomial/ideal (in one or two indeterminates), option -Q can be used to obtain a
formatted printout in a syntax that can be directly used as input. Here is an example:

$ contour -Q --out alexander whitehead
#
# --foxd 1
#
ideal(u,v) {
F: +1-u-v+uv;
}

10.11 showcontour Reference Guide

showcontour is a utility that produces a graphical display of an apparent contour.
As for the contour program, we are only interested in the topological structure of
the apparent contour, so that the aim is to produce a simple drawing up to an R

2-
ambient isotopy. Moreover the program must be able to display apparent contours
obtained by contour.

The Morse description seems the most appropriate way to translate a contour
description into a drawing, by somehow inverting the process of producing a Morse
description from a drawing.

There are four stages in the process; hereafter, we will shortly describe them, by
using as an example the apparent contour of three spheres with partial occlusions.

10.11.1 Producing a Proper Morse Description

The Morse description produced, e.g., by contour printmorse, or used by the
user to describe an apparent contour, allows for more than one Morse event (other
than transversal crossings, that are not, properly speaking, Morse events) at each
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critical level; it also allows for levels with only transversal crossings. It is convenient
to convert such a description into one where there is exactly one (proper) Morse
event per line.

We illustrate this with the following example:

morse {
^l0 ; ^

/ \ ; | ^ |
/ ^l0 ^l0 ) ; | | | ^ |

( / \ / \ / ; X | | | |
X Xd2 Xu2 ; | | X | |

( )d2( ) ( ) ; ==> | | | | X
X X X ; X | | | |

( \ / \ / \ ; | | X | |
\ U U ) ; | | | | X
\ / ; | U | | |

U ; | U |
} U

where on the left we have a Morse description that follows the syntactic rules of
Sect. 10.3.2 (the same also used by contour printmorse), and on the right
we have a schematic representation of the same Morse description, where lines with
only transversal crossings have been removed, and lines with more than one Morse
event are split in more lines with one Morse event each. In the example there are a
total of 12 Morse events: three maxima, six crossings and three minima.

10.11.2 From the Morse description to a polygonal drawing

From the new Morse description we can produce a polygonal drawing made with
unit segments oriented horizontally or vertically, where the Morse line is substituted
by a straight line tilted at 45 degrees with critical levels at regular intervals (see
Fig. 10.30). It is not difficult to procedurally obtain the polygonal, by associating
with each Morse event a set of two (for maxima/minima events) or four (for
crossings events) unit segments. By adding other small portions corresponding to
the transversal crossings, we obtain in this way a (nonsmooth) drawing that already
has the required properties.

10.11.3 Discrete Optimization of the Polygonal Drawing

As it happens, the Morse description obtained by contour printmorse is often
quite involved. As a result, the polygonal drawing obtained with the previous step
can be quite complex and difficult to understand. The third step then performs a
discrete optimization consisting in subsequent application of a few local rules that
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Fig. 10.30 The starting polygonal, directly obtained from the Morse description. The tilted lines
are Morse lines corresponding to proper Morse events

Fig. 10.31 The result of the discrete optimization (left) and the effect of the smoothing evolution
(right)

simplify the drawing by still using only unit horizontal or vertical segments. The
result of such optimization is illustrated in Fig. 10.31, left.

10.11.4 Dynamic Smoothing of the Polygonal

Finally, we need to smooth out the polygonal. This is done by replacing the unit
segments with smaller segments that are no longer constrained to be horizontal or
vertical. The resulting new polygonal is interpreted as a discretized curve, that we
subject to a smoothing evolution process. The evolution is actually just a gradient
flow with respect to a suitable action functional.

It is in this stage that cusps are introduced, originally just as distinguished points
in the polygonal curve.
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The action functional contains a length term and also a curvature term, the latter
having a strong smoothing effect and preventing in particular the vanishing of a
circle.

Unfortunately, the local nature of the functional does not prevent the curve from
self-intersecting (which is of course undesirable) which can sometimes happen in
complex examples. Moreover the presence of the curvature term leads to a fourth-
order evolution equation, which is sometimes slow to converge.

In most circumstances, however, this technique produces acceptable results.

10.12 Using contour in Scripts

Some useful scripts included in the appcontour package can simplify the use of
the program for specific tasks.

10.12.1 contour_interact.sh

This script is taylored for application of successive Reidemeister-type rules. It is
invoked as “contour_interact.sh <example>” where example refers to a
file containing the description of the apparent contour in any of the accepted forms:
region description, Morse description, knot description. The prompt “Contour>”
then accepts a small set of commands that in particular include the set of applicable
rules, including inverse rules and composite rules. The apparent contour is modified
during the session according to the commands given. At any time the command
“show” makes a call to the showcontour program in order to graphically display
the current apparent contour. We illustrate the basic usage with excerpts from a
sample session.

$ contour_interact.sh genus_2_linked

Found matching file: /usr/local/share/appcontour/examples/genus_2...

found showcontour [gtk] in /usr/local/bin

examplename: genus_2_linked

This is an apparent contour with labelling

[...]
Applicable rules: CR2

Contour> cr2

OK, applying rule cr2

Applied rules: cr2

Applicable rules: CR0L CR0RB CR3L CR3R CR3R:2

Contour> cr0rb

OK, applying rule cr0rb

Applied rules: cr2 cr0rb

Applicable rules: B CR0L CR0R CR2 CR3L CR3R

Contour> show

[A window with a drawing of the current apparent contour is displayed]
Applied rules: cr2 cr0rb

Applicable rules: B CR0L CR0R CR2 CR3L CR3R
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Contour> back

Applied rules: cr2

Applicable rules: CR0L CR0RB CR3L CR3R CR3R:2

Contour> cr0l

OK, applying rule cr0l

Applied rules: cr2 cr0l

Applicable rules: B CR0LB CR0RB CR2 CR3L CR3R

Contour> quit

$

The accepted commands (besides the applicable rules) are:

• info. Displays the result of “contour info” for the current apparent
contour;

• print. Prints the region description of the contour;
• morse. Prints the Morse description of the contour;
• back. Goes back one step in the history of applied rules (undoes the effect of

the last rule requested);
• show [rule]. Invokes showcontour to graphically display the apparent

contour, if a rule is specified, then the contour displayed corresponds to the result
of applying the rule;

• quit. Ends the session;
• wrinkle, mergearcs, swallowtail, puncture. Each of these com-

mands displays a list of applicable inverse rules in the classes respectively:INVL,
INVB or INVK, INVS, INVC.

10.12.2 contour_describe.sh

This script extracts information about the embedded surface originating an apparent
contour (with labelling) and describes it in english words, here is an example

$ contour_describe.sh -n sphere_behind_torus

Total number of connected components: 2

External components:

component #1, genus 0

component #2, genus 1

$ contour_describe.sh -n three_spheres

Total number of connected components: 3

External components:

component #1, genus 0

component #2, genus 0

component #3, genus 0

$ contour_describe.sh -n hollowsphere

Total number of connected components: 2

External components:

component #1, genus 0

Component #1 contains:

component #2, genus 0
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As can be seen, the Euler–Poincaré characteristic allows to compute the genus
of each connected component of the embedded surface. Furthermore, the labelling
allows to recover the relative relationship among the connected components in terms
of containment. This is because an embedded closed surface always divides the
ambient space R3 in an inside and in an outside. A hollow solid sphere is a 3D subset
of R3 the boundary of which is composed of two concentric spheres, the external
surface and the internal surface of the hole. In the description of this surface the
boundary of the hole (a sphere) is described as contained in the external boundary
(a sphere). Option “-n” is used to ask for a rather formal and essential description
in terms of containment relationship and genus of each connected component of
† D @E .

If no option is given, or if we use option “-z”, then we obtain an amusing
verbal description in the spirit of the old zork textual adventure games. This
latter description also contains a larger amount of information since it also takes
into account the result of computing the fundamental groups and Alexander
polynomials. Here are the examples above as obtained with this type of description.

$ contour_describe.sh sphere_behind_torus

You are in a clearing, with a forest surrounding you on all sides.

There is a total of two objects here.

You can see a sphere and a torus.

$ contour_describe.sh three_spheres

You are in a clearing, with a forest surrounding you on all sides.

There is a total of three objects here.

You can see a white sphere, a black sphere and a red sphere.

$ contour_describe.sh hollowsphere

You are in a clearing, with a forest surrounding you on all sides.

There is a total of two objects here.

You can see a white sphere.

The white sphere contains a black sphere.

$ contour_describe.sh genus_2_linked

You are in a clearing, with a forest surrounding you on all sides.

There is one object here.

You can see a double torus.

A “double torus” indicates a sphere with two handles (genus 2). The indicated
color of the objects is of course completely fictitious and allows to identify the same
object in different parts of the description. Here are a few examples involving the
computation of the Alexander polynomial.

$ contour_describe.sh internalknot

You are in a clearing, with a forest surrounding you on all sides.



10.12 Using contour in Scripts 299

There is one object here.

You can see a torus with a knotted hole, you can read "Alexander:

1-t+t^2" written in the inside.

$ contour_describe.sh painted_klein_bottle

You are in a clearing, with a forest surrounding you on all sides.

There is one object here.

You can see a double torus with knotted holes, you can read "Alexander:

-1+u+v" written in the inside.

$ contour_describe.sh links/link_2_6_1

You are in a clearing, with a forest surrounding you on all sides.

There is a total of two objects here.

You can see a white torus and a black torus.

The white torus is linked three times to the black torus.

$ contour_describe.sh whitehead

You are in a clearing, with a forest surrounding you on all sides.

There is a total of two objects here.

You can see a white torus and a black torus.

The white torus is linked with the black torus.

In the last example the contour_describe.sh script uses the phrasing
“is linked with” to describe a situation where the presentation of some
fundamental group (the fundamental group of the outside R

3 n E in this case) is
nontrivial with a nontrivial Alexander ideal, meaning that the link is not splittable.
However, the linking number turns out to be zero. The Whitehead link is indeed
the simplest example of an unsplittable link (with two components) where the two
components have vanishing linking number.

10.12.3 contour_transform.sh

The script “contour_transform.sh <example> <n>” automates the task
of applying all possible sequences of a maximum of n successive moves (direct
rules, simple of composite). Using large values of n is typically impractical, since
the number of possible sequences grows exponentially. Using the “contour
compare” action the script is able to sort all obtained apparent contours, so that
it can avoid applying rules to apparent contours that were already obtained with a
different path of subsequent rules. This script was used during the writing of this
book in order to find a simplifying set of moves for the examples of Sect. 10.13 and



300 10 The Program “Appcontour”: User’s Guide

Sect. 10.15. As a very simple example, we can check the result of two successive
rules applied to the apparent contour of the torus displayed in Fig. 10.1.

$ contour_transform.sh torus2 2
Transforming torus2 with rule K0
Transforming torus2 with rule B
Transforming torus2 with rule B:2
[...]

A directory named torus2.transformations is created containing all
resulting apparent contours; they are numbered in such a way that equal numbers
correspond to diffeomorphically equivalent apparent contours. In the example at
hand we obtain a total of 30 different apparent contours; some of them can be
obtained with a different set of rules, for example applying CR0Lb and then S gives
the same result as first applying K0 and then CR4L.

10.13 Example: knotted Surface of Genus 2

Figure 10.32 (left) shows a knotted surface of genus 2, a sphere with two (linked)
handles. A simple way to describe this surface is by means of a knot description, as
shown on the right of Fig. 10.32.

Surprisingly, it is possible to find a continuous deformation of the ambient
space that “unknots” this surface. We start by asking the program to compute the
fundamental group of the inside and outside of the surface:

$ contour ifg genus_2_linked
Free group of rank 2
<a,b; >
$ contour ofg genus_2_linked
Free group of rank 2
<a,b; >

Fig. 10.32 An apparently knotted surface of genus 2. The shaded region shows where the first
rule (CR2) of the unlinking chain of rules is applied



10.14 Example: Knots in a Solid Torus 301

Fig. 10.33 Intermediate results of application in sequence of moves CR2 CR0L CR0Lb CR2:2
CR3R S S S to the apparent contour of Fig. 10.32

That the “inside” is the free group of rank 2 is not surprising, since the solid
inside can clearly be deformation retracted to a one-dimensional CW complex
equivalent to a bouquet of two circles. More interestingly, the “outside” has the
same fundamental group, hinting that the surface can be unknotted. Of course this
is by no means a proof of equivalence: having the same fundamental group is a
necessary condition for isotopic equivalence, but in general it is not sufficient.

We can though try to apply Reidemeister-type moves to the apparent contour to
obtain the apparent contour of an unknotted sphere with two handles (torus with two
holes).

It turns out that this is indeed possible, and the minimum number of moves
required to achieve the goal is eight (counting composite moves as one), it can be
done in more than one way, here is one possible sequence of moves: CR2 CR0L
CR0Lb CR2:2 CR3R S S S.

Figure 10.33 shows the result of the application in sequence of the list of moves
mentioned above, with a final apparent contour of an unknotted torus with two holes.

In order to find the optimal simplifying sequence we used the script
contour_transform.sh to obtain the result of all sequences of eight
subsequent moves. This is a quite heavy computation and produced a total of 13; 560
nonequivalent apparent contours, ordered from simplest to most complex using the
“contour compare” action. According to “contour compare” the simplest
result is indeed the unknotted torus with two holes appearing last in Fig. 10.33.

10.14 Example: Knots in a Solid Torus

In Fig. 10.34 we show the diagram of four knots, three of them can be readily seen
to be R

3-ambient isotopic (smoothly deformable as an embedded closed curve)
to the trivial knot (the “unknot”), whereas the lower-left diagram is a realization
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Fig. 10.34 Diagram of four knots with the corresponding “knot” description. They have to be
interpreted as knotted tubular surfaces which we shall subsequently embed inside a solid torus (the
small letter ‘o’ indicating the hole of the torus). The lower-left diagram corresponds to the trefoil
knot, the others are all unknots, they can be deformed to the trivial knot

of the trefoil knot. Using the “knot” description we can regard these diagrams as
representing a knotted tubular surface diffeomorphic to a torus and bounding a solid
torus.

We already used the appcontour program to compute the fundamental group
of the trefoil knot (Sect. 7.5.2, Fig. 10.18) and its Alexander polynomial; in the three
remaining cases, the fundamental group is computed as <a; >, the free abelian
group of rank 1, which provides sufficient evidence that the three knots are the
unknot, thanks to the unknotting theorem [18, page 103].

We shall now enclose each of the four knotted tubes inside a torus in such a way
that the “hole” of the wrapping torus is positioned at the small letter “o” shown in
the diagrams. This can be achieved using the contour command twice:

• contour wrap: first places the apparent contour inside a big sphere;
• contour punchhole -r n:0: performs a vertical surgery in the region

indicated by the integer n. The appropriate value for n can be obtained by
examining the region description resulting after the application of contour
wrap; in all cases, the region of interest is easily identified.

On the final result we then compute the “internal fundamental group”, which is
actually the fundamental group of the original knots constrained to live inside the
wrapping torus.

As an example, all these operations can be carried out for the trefoil knot as
follows:

$ contour wrap trefoilknot | contour punchhole -r 4:0 | contour ifg
Finitely presented group with 2 generators
<a,b; ababABAB>

That this is not isomorphic to the fundamental group of the “unconstrained”
trefoil knot can be seen by computing the abelianization (e.g., using the command
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contour afg --in) which turns out to be the free abelian group of rank 2:
Z � Z

16.
The result of the computation of the internal fundamental group for all four

examples is the following:

• (upper-left diagram): <a,b; abbABB>
• (lower-left diagram, trefoil): <a,b; ababABAB>
• (upper-right diagram): <a,b; abbbABBB>
• (lower-right diagram): <a,b; abbaBabABBAbAB>

By using Tietze transformations it can be shown that the first two presentations
give the same finitely presented group where the relation says that the square of one
generator commutes with the other generator.

The third presentation can be interpreted as two generators, the cube of one
commuting with the other. The fourth presentation is rather long, however this fact
does not imply that the corresponding group is different from the others. In all four
cases the abelianization is always the free abelian group of rank 2.

By performing a 3D eversion that takes the point at infinity inside the wrapping
torus the effect is to turn the wrapping torus “inside-out”, the internal solid torus is
now external and we obtain a scene with two solid tori possibly linked with each
other. This suggest to compute the linking number between the two tori; an example
for the lower-left diagram is

$ contour wrap trefoilknot | contour punchhole -r 4:0

| contour linkingnumber --in

Linking number is 2

The same linking number 2 is obtained for the upper-left diagram, whereas we
obtain 3 and 0 respectively for the upper-right and the lower-right diagrams.

The software code can distinguish the two scenes corresponding to the left dia-
grams by computing the Alexander polynomial of the scene obtained by removing
the external torus: command contour ccparent can be used to identify the
external connected component, to be removed.

The contour-describe.sh script described in Sect. 10.12.1 can be used to
do just this:

$ contour wrap trefoilknot | contour punchhole -r 4:0

> trefoil_in_torus.sketch

$ contour_describe.sh -z trefoil_in_torus.sketch

You are in a clearing, with a forest surrounding you on all sides.

There is a total of two objects here.

16This is not unexpected: the abelianized of the fundamental group coincides with the first
homology group of the inside set E , the rank of which is the Betti number b1 and can be computed
by using the Euler–Poincaré characteristic � D 0 ofE as b1 D b0Cb2��where the Betti number
b0 D 1 is the number of connected components of E and the Betti number b2 D 1 is the number
of “voids” of E , which in our context is the number of connected components of @E decreased
by 1.
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You can see a white torus.

The white torus contains a black knotted torus, you can read "Alexander:

1-t+t^2" written on it.

The black torus is linked twice into the white torus.

The lower-right diagram corresponds to a tricky situation, indeed a 3D eversion
transforms the scene into the famous Whitehead link, a link with two components
that has vanishing linking number, but the two components cannot be separated.

The appcontour software code can distinguish the 3D structure corresponding
to the lower-right diagram (everted Whitehead link) from a scene where the inner
torus does not circle around the hole of the wrapping torus by computing the
Alexander ideal of the “inside”:

$ contour --in alexander contour
Computing Alexander ideal for d = 1:

Alexander ideal generated by:

(+1-u-v+uv) (u - 1);

(+1-u-v+uv) (v - 1);

where contour is the name of a file containing a description of the lower-right
diagram.

10.15 Example: Klein Bottle and the “House with Two
Rooms”

As a more complex example, we construct an embedded surface † D @E inspired
by the Klein bottle, the famous nonorientable closed surface. We start from the
typical immersion of the Klein bottle in R

3 displayed in Fig. 10.35 a). Since it is
nonorientable, any immersion of the Klein bottle in the three-dimensional space
must have self-intersections. In the immersion of Fig. 10.35 the self-intersection
reduces to a single circle 
 of double points. It bounds a small disk-like portion of
the surface, which is shown in dark in Fig. 10.35 a).

We denote by F the set that we obtain from the immersed surface by removing
this small disk. This is not a manifold, because three sheets of the surface meet
at the curve 
 . However 
 is the only singular part of F ; if we remove a small
tubular neighbourhood of 
 , we obtain a 2D manifold with a boundary composed
by three small deformations of 
 , intersection of F with the boundary of the tubular
neighbourhood.

The set F has two interesting properties:

(1) it cannot be deformation-retracted into a smaller subset. Indeed we cannot
remove any portion of F without changing its homotopy type;

(2) the complement of F is connected. Indeed we can reach the inside of the bottle
from the outside by following the dotted curve in Fig. 10.35b.
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a b

Fig. 10.35 Standard immersion of the Klein bottle in R
3. The small shaded disk in the left picture

is removed to obtain an interesting surface with a ramification line (the boundary of the removed
disk) where three sheets meet together

Fig. 10.36 The house with two rooms of Bing, original image taken from [8]. The two black
vertical panels in the middle picture of the union sequence are added with the explicit purpose of
preventing a complete tour around each of the two vertical tubes

Another famous example devised by Bing [1], and called the house with two
rooms, is displayed in Fig. 10.36. It is a set that is contractible but not in an obvious
way, see [8, page 4]. In that example the upper room can only be accessed through
a tunnel traversing the lower room and vice versa.

Two of the panels forming the house with two rooms (coloured black in
Fig. 10.36) are added with the explicit purpose of preventing the construction of
closed curves around the “tunnels” in the complement of the house. If we remove
those two panels, we obtain a set that satisfies the two properties above and also
has the same (nontrivial) fundamental group of our example. It is described as the
finitely presented group hx; y; zIxyzx�1z�1xy�1i.

This is exactly the construction of Exercise 11 in [8, Chap. 1, p. 53], where in
particular it is proved that the constructed fundamental group is not isomorphic to
the free group with two generators.

We note that the complement of F is not simply connected, since we can encircle
the tube-like portion of F that lies inside of the bottle and also the neck of the
bottle on the outside with a closed curve that cannot be deformed to a point without
crossing F .

Now, we slightly enlargeF by considering the set of points with distance smaller
than or equal to � fromF for a sufficiently small � > 0. We can smooth the boundary
of this set and call E the result (a solid set). The boundary† D @E is the image of
a smooth embedding in R

3 of a closed 2D manifold.
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Fig. 10.37 Morse description of the “painted Klein bottle” obtained as boundary of a thickened
Klein bottle with a small disc removed, as described in Sect. 10.15 (left). The corresponding
apparent contour is displayed on the right

A possible Morse description of the apparent contour of this surface is shown in
Fig. 10.37, left, which we write into a file called, say,painted_klein_bottle.
morse. In this description there are a few complex references to Morse events of
crossing type. For example, the sequence Xd1-+d1 refers to a crossing where the
extended arc in the south–west direction is oriented downwards with initial labelling
1 that decreases to 0 after the first cusp, then increases to 1 after the second cusp;
the extended arc in the south–east direction is also oriented downwards, does not
contain cusps and is labelled 1. The sequence X’ describes a crossing with the
north–east and south–west arcs passing “in front” of the other two (the labelling is
the same), orientation is inherited from information on other Morse events.

This description reveals quite complex, which is due to the fact that we have
locally two sheets of the surface on the two sides of the set F (globally there is a
single sheet, due to the nonorientability of the Klein bottle).

Basic properties of the apparent contour can be obtained with

$ contour info painted_klein_bottle.morse
This is an apparent contour with labelling

Properties of the embedded surface:
Connected comp.: 1
Total Euler ch.: -2
[...]

that tells us that indeed the surface † is connected, and has genus 2, i.e., has
the topology of a sphere with two handles (Euler–Poincaré characteristic �2), or
equivalently a torus with two holes.
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The fundamental group of the surface is

$ contour fg painted_klein_bottle
Finitely presented group with 4 generators
<a,b,c,d; abADCdcB>

that, after a simple change of generators, can be readily transformed into the
presentation ha; b; c; d I Œa; b�Œc; d �i which is the same for all oriented surfaces of
genus 2. Here the notation Œa; b� denotes the commutator aba�1b�1.

The command

$ contour --in fg painted_klein_bottle
Finitely presented group with 3 generators
<a,b,c; acACbAB>

computes the more interesting fundamental group of the inside E of †, that is the
same as the fundamental group of the set F . The abelianized of this group is clearly
Z � Z, however, as shown in [8], at the end of example 1B.13, it is not a free
group and in particular is different from the free group with two generators Z � Z.
We can confirm this conclusion by computing the Alexander polynomial (in two
indeterminates) of the inside with the command

$ contour --in alexander painted_klein_bottle
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1+u-v;

which is nontrivial (see Sect. 10.7.3).
Here is the fundamental group of the complement of E:

$ contour --out fg painted_klein_bottle
Free group of rank 2
<a,b; >

the same as for a solid torus with two holes (a handlebody with two handles). As
expected, the corresponding Alexander polynomial is trivial:

$ contour --out alexander painted_klein_bottle
Computing Alexander ideal for d = 2:
Trivial whole ring ideal:
1;

There is a strong relationship between the example that we are discussing and
the surface described (with its knot description) in Fig. 10.6; it turns out that the
fundamental group of the inside of one surface is the same as the fundamental group
of the outside of the other and the other way around. Indeed the outside fundamental
group of the surface of Fig. 10.6 is printed as <a,b,c; abABcAC>, the same
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as that of the inside of † after interchanging generators b, and c. The Alexander
polynomial turns out to be exactly the same: 1C u � v.

Such correspondence suggests that if we “evert” in 3D the set described in 10.6,
i.e., we move the point at infinity inside the solid set, we have a shape that can be
ambiently deformed into the set E . However equality of the fundamental groups
does not prove this equivalence, which is guaranteed if we can find a sequence of
Reidemeister-type moves that transforms one apparent contour into the other, and
this is the case. The set shown in 10.6, left, can be seen to be a deformation retract
of the complement of the closed set F , which is another way to assess the stated
equivalence.

The command

$ contour 3devert 7 embrace.knot

can be used to perform the eversion; the number 7 indicates what region has to be
used for the surgery, regions from 0 to 6 all have f† D 0 and cannot be used for the
eversion process.

Let us now go back to the “2D” set F with the closed curve 
 as critical set
(the Klein bottle with the small disk removed). Recall that the complement of F
is not simply connected. We can modify F by adding a disk-like panel inside the
bottle whose boundary consists of a closed curve in F that starts from a point of 
 ,
travels longitudinally along the internal tube and continues on the external part of
F until it meets the starting point on 
 again. This added panel is shown in gray in
Fig. 10.35b. Similarly we can add another panel that prevents the construction of a
closed curve around the neck of the bottle.

These two added panels serve exactly the same purpose as the two panels of the
house with two rooms of Fig. 10.36.

After this modification the resulting set will be called OF , it “almost” satisfies the
two properties mentioned at the beginning of the section, the first property is now
true in a local sense: we cannot remove any small portion of OF without changing
its homotopy type. Moreover its complement is now simply connected. Surprisingly
it turns out that OF can be deformation-retracted to a point, indeed OF has the same
structure as the house with two rooms of Fig. 10.36 and the discussion in [1] and [8]
applies.

The apparent contour of the enlarged set obtained from OF can be com-
puted from the apparent contour of E by applying suitable surgeries. As it
happens addition of the first panel can be achieved by successively applying
to painted_klein_bottle.morse the commands contour rule B:4
(perform a beak-to-beak) followed by the inverse vertical surgery contour
removehole -r 1. The resulting surface after the surgery has the topology of
a torus (we can confirm this by computing the Euler–Poincaré characteristic with
contour characteristic). It is known that a surface embedded in S

3 (R3

compactified with the addition of the point at infinity) with the topology of a torus
borders a solid torus on either side [18]. We check this by asking appcontour
to compute the fundamental group of the inside and of the outside (“contour
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--in fg” and “contour --out fg”) that in this case both result as <a; >,
the free group of rank 1. This is a hint that we have a solid torus on both sides, both
unknotted.17

Addition of the other panel is more elaborated and we must prepare the apparent
contour for the surgery with a sequence of Reidemeister-type moves.

• contour INVK0:2 (inverse of the K0 rule, second application possible). This
is equivalent to contour mergearcs -r 5 -a 25:1 -a 19:0 as can
be seen from the result of contour listmawhere we explicitly list the region
and arcs involved;

• contour rule C, followed by contour rule T, then contour rule
T:2, and again contour rule C;

• contour rule CR0L, one of the composite rules described in Sect. 10.4.3.

We are now in a position to apply as before the vertical surgery contour
removehole -r 1 equivalent to adding the second panel.

The resulting apparent contour has the topology of the sphere, as can be seen
with the command contour info that asserts that the embedded surface has one
connected component (is connected) and has Euler–Poincaré characteristic 2.

As stated by the 3D version of the Schoenflies theorem [2], the embedded surface
so obtained must bound a solid sphere, and thus there must exist a sequence of
Reidemeister-type moves that transforms the apparent contour into that of a round
sphere. As it turns out one such sequence is: C, C, CR2, B:3 (third possible
application of the beak-to-beak rule), K1b, K2, CR4Lb, S, S, A2, for a total of
10 moves.

This sequence was automatically found by using the contour_transform.
sh shell script described in Sect. 10.12, which simply tries out all possible
sequences of moves of given maximal length. Such task, however, has a complexity
that grows exponentially with the number of moves applied sequentially, and even
our relatively simple example took a very long computational time to be completed
with the construction of a total of 101; 687 distinct apparent contours, obtainable
with ten or less moves (simple or composite). We do not know at present a
constructive way to produce in polynomial time a simplifying sequence of this sort
for any connected surface with the topology of the sphere.

10.16 Example: Mixed Internal/External Knot

The generalized Schoenflies theorem [2] implies that if † D @E is a topological
sphere (i.e., † is connected and its Euler–Poincaré characteristic is � D 2), then it
bounds a 3D ball. A consequence of this fact is that both E and R

3 n E have trivial

17Actually the unknotting theorem in [18, page 103] implies that indeed both the inside and outside
are solid tori (in S

3) and that they are both unknotted.
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Fig. 10.38 Apparent contour
of the connected sum of a
trefoil-knotted solid torus and
a three-ball with a knotted
hole. The dotted lines in the
upper-left portion are labelled
with d D 3

fundamental group, which is confirmed by appcontour. The simplest possible
example of this situation is

$ contour --in fg sphere
Trivial group
<>
$ contour --out fg sphere
Trivial group
<>

For a surface † D @E with the topology of a torus (i.e., connected and � D 0) it
can be shown [18] that either the internal set E or the external set R3 n E (or both)
has Z (free group of rank one) as fundamental group:

$ contour --in fg trefoilknot
Free group of rank 1
<a; >
$ contour --out fg internalknot
Free group of rank 1
<a; >

Here we recall that internalknot contains the Morse description of the
apparent contour of a sphere traversed by a knotted tunnel.

We shall now construct a surface † D @E having both internal and external fun-
damental groups that are non-free [18, Exercise 4, page 108]. Command contour
sum trefoilknot internalknot constructs the connected sum of the two
surfaces just mentioned, resulting in a surface with genus two (Euler–Poincaré
characteristic � D �2), its apparent contour is displayed in Fig. 10.38, we can
ask for the fundamental groups of the resulting surface:
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$ contour sum trefoilknot internalknot | contour --in fg
Finitely presented group with 3 generators
<a,b,c; bcbCC>
$ contour sum trefoilknot internalknot | contour --out fg
Finitely presented group with 3 generators
<a,b,c; bcBcbC>

We can ensure that these are not free groups by computing the Alexander
polynomial which, for surfaces of genus two, is a polynomial in two indeterminates
(say u, v):

$ contour sum trefoilknot internalknot | contour alexander --in
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1-u+u^2;
$ contour sum trefoilknot internalknot | contour alexander --out
Computing Alexander ideal for d = 2:
Alexander polynomial:
+1-u+u^2;

The fact that each Alexander polynomial ultimately only depends on one of the
two indeterminates is not surprising and is related to the particular structure of the
surface, also note that 1 � t C t2 is the Alexander polynomial of the trefoil knot.
The base-canonization process discussed in Sect. 10.7.4 can be disabled by using
the option --nobasecanonify, for this example we obtain

$ contour sum trefoilknot internalknot | contour alexander --in
--nobasecanonify

Computing Alexander ideal for d = 2:
# *** Warning: result can be noncanonical ***
Alexander polynomial:
+1-u+u^2;
$ contour sum trefoilknot internalknot | contour alexander --out

--nobasecanonify
Computing Alexander ideal for d = 2:
# *** Warning: result can be noncanonical ***
Alexander polynomial:
+1-v+v^2;

The difference in the indeterminate name, although intriguing, is just incidental
and depends on the specific construction of the cell complex and on the details of
the various simplification procedures.
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10.17 Using appcontour on Apparent Contours
Without Labelling

We conclude this chapter with a few examples of apparent contours in the context
of stable maps ' W M ! R

2 (Sect. 2.2) where M is a smooth closed manifold of
dimension two. Most of the examples that we gather here were already mentioned
previously in this chapter (Boy surface, Sect. 10.9.3; Milnor and Millett curves,
Sect. 10.9.3.2) or in previous chapters (Haefliger sphere, Chap. 2, Example 2.2.11).

The apparent contour appcon.'/ alone does not carry, in general, enough
information to reconstruct the topological structure of the source manifold M ,
and indeed we often have topologically distinct possible “realizations” of a map
' W M ! R

2 with the same apparent contour. A natural problem is then to
investigate for a given apparent contour (without labelling) what are all possible
topologically distinct such realizations. Some of them might admit a factorization
through an embedding in R

3 followed by a projection; these correspond exactly to a
choice of a labelling that makes the apparent contour a “complete labelled contour
graph” in the sense of Definition 4.2.6. Finding all possible (possibly none) such
labellings is a finite combinatorial problem that can be readily solved for not too
complex apparent contours.

However, there exist maps ' W M ! R
2 having an apparent contour that does

not admit any labelling consistent with Definition 4.2.6, hence providing examples
of apparent contours of truly non-embeddable combinations of a 2D manifold and a
projection onto the plane; a fascinating example of this situation is illustrated in the
next Sect. 10.17.1.

10.17.1 Haefliger Sphere

Figure 2.4 shows a famous example devised by Haefliger in [7]. There cannot
be any consistent labelling simply because for any complete labelled contour
graph any component of the contour must contain an even number of cusps (see
Remark 4.2.7) whereas in this example each of the two components has exactly
one cusp. Nevertheless Haefliger shows how to realize this apparent contour with a
particular mapping ' from the sphere S

2 to R
2. Of course this mapping cannot be

factorized through an embedding in R
3 and a projection onto R

2. Haefliger in fact
proves the stronger result that the mapping cannot be factorized through a smooth
immersion in R

3 (thus allowing for self-intersections and triple points) followed by
a projection onto R

2. Although not given in explicit form, in [7] the mapping ' is
qualitatively described by first cutting the sphere in three pieces, two polar caps and
an equatorial band, using two parallels, the two parallels coinciding with the critical
lines, and then describing the behaviour of ' in the three regions.

The appcontour program can be used to compute the Euler–Poincaré charac-
teristic ofM , resulting to be � D 2, which, provided we know thatM is connected,



10.17 Using appcontour on Apparent Contours Without Labelling 313

leaves the topological sphere S
2 as the unique candidate for M . Connectedness of

M cannot be given as granted; it is indeed true for this particular example, because
a single component of the apparent contour (a closed curve with a single protruding
cusp) cannot be an apparent contour by itself. This in turn is a consequence of the
fact that the function f' cannot vanish in the vicinity of a cusp.

10.17.2 Boy Surface

The apparent contour of Fig. 10.25 corresponds to the Boy surface, a well-known
smooth immersion of the real projective plane in R

3. It has self-intersections in the
form of double curves and a single triple point. The appcontour program can
be used on the apparent contour to obtain the Euler–Poincaré characteristic � D 1

for M ; moreover, as already remarked in Sect. 10.9.3.1, M is forcibly connected
since the apparent contour has a single component, which in turn forces M to be
diffeomorphic to the real projective plane. If we want to factorize the map ' through
a generic immersion in R

3 and a subsequent projection on R
2, it turns out after a

tedious check that the Boy surface is the only possibility up to a diffeomorphism
of R3. Since the Boy surface is chiral (it cannot be rotated onto its mirror image),
we actually have two distinct (not ambient isotopic) realizations of the Boy surface
with opposite orientation.

Figure 10.26 shows the apparent contour of a different choice of a mapping of
the real projective plane on R

2, and again it can be shown that the given apparent
contour comes necessarily from a map of the real projective plane. We again can
try to factorize the map through an immersion, however we are now forced to allow
for at least two “pinch point” singularities [21], as already noted in Sect. 10.9.3.1,
obtaining a “crosscapped disk” [5].

10.17.3 Milnor Curve

Figure 10.27 (left) shows the apparent contour corresponding to an example
provided by Milnor (see [12, p. 207] and [17]). The single component of the
apparent contour is a curve that bounds a disk in two different ways. If we glue
together these two disks along the curve, we obtain a map of the sphere S2 onto the
plane that cannot be factorized through an embedding and a projection. It is possible
however to factorize this map through a regular immersion with no triple points, as
shown in Fig. 10.39. The numbers appearing in the figure give the labelling of the
corresponding curves, defined according to Definition 3.4.1 applied to the case of
immersions and extended in the obvious way to the image of double curves.

It is of course also possible to glue two copies of the same disk (choosing one
of the two disks bounded by the Milnor curve) to form a sphere S

2 that is now
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Fig. 10.39 The thin curves in the picture correspond to the projection of the self-intersection line
of a possible immersion of the sphere S

2 in R
3 having the Milnor curve as its apparent contour.

There are no pinch points (stable singularities of the immersion), hence the immersion is regular.
Moreover there are no triple points

embeddable in R
3, thus allowing the construction of a labelling making the apparent

contour a complete labelled contour graph. Figure 10.40 shows one of the two
possibilities, corresponding to the choice of one of the two disks bounded by the
curve. We also apparently have the freedom of choosing in which way the sphere
occludes itself, the constraints on the labelling leaves us two possibilities, they are
however the same up to 180 degrees rotation of the apparent contour. The two
possible embeddings, the other one obtained by choosing the other disk bounded by
the Milnor curve, are not equivalent in the sense of Definition 3.5.2, however they
are mirror images of each other, hence equivalent in the sense of Definition 2.1.1.

It turns out that there are no other structurally different realizations of the Milnor
curve as apparent contour.

10.17.4 Millett curve

Figure 10.27 right shows an apparent contour that differs from the apparent contour
of the Milnor curve of the previous example only for the presence of a single cusp.
It was provided by Millet [12] as the simplest possible example (in the appropriate
sense) having the projective plane as source manifold. Indeed the appcontour
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Fig. 10.40 The Milnor curve can also be the apparent contour of an embedding of the sphere.
This can be done by enriching the apparent contour with a labelling that makes it a complete
labelled contour graph. Solid lines have labelling 0, dashed lines have labelling 2, dotted lines
have labelling 4

program computes the Euler–Poincaré characteristic of the unlabelled apparent
contour as � D 1. Non-orientability implies that the map cannot be factorized
through an embedding in R

3, however we can factorize it (in more than one way)
through an immersion. Fig. 10.41 shows one possibility where the immersion is
stable (in the sense of 2.1.2) but exhibits two pinch point singularities. The two
singularities can be removed by sliding them along the contour onto each other at
the expense of creating a triple point.

10.17.5 Klein bottle

The apparent contour of Fig. 10.43 (left) is generally recognized as the standard
picture of the well-known Klein bottle; imagination is facilitated by adding the
double curve of the usual immersion of the Klein bottle in R

3, as shown in Fig. 10.43
(right), where the neck of the bottle crosses the lateral wall.

This is an non-orientable surface having Euler–Poincaré characteristic � D 0, as
confirmed by the appcontour program:
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Fig. 10.41 The thin curves in the picture correspond to the projection of the self-intersection line
of a possible immersion of the projective plane in R

3 having the Millett curve as its apparent
contour. There are two pinch points (stable singularities of the immersion) shown as empty circles,
that can be removed at the expense of creating a triple point

Fig. 10.42 The unlabelled apparent contour on the left corresponds to a possible map from the
Klein bottle to the plane. This map can be factorized through an immersion in R

3 (an embedding
is of course not possible since the Klein bottle is non-orientable). On the right the thin line
corresponds to the self-intersection of such an immersion where the neck of the bottle enters
through the lateral wall
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Fig. 10.43 The apparent contour of Fig. 10.42 can also be obtained from an embedded torus, with
two possible labellings

$ contour characteristic kleinbottle
Euler characteristic: 0

where the file kleinbottle.morse contains an unlabelled Morse description
of the apparent contour in the left of Fig. 10.42.

This is however an intriguing example, since � D 0 is also the Euler–Poincaré
characteristic of a torus, and indeed it is possible to adjoin a consistent labelling to
the given apparent contour obtaining as a result a non-obvious embedding of the
torus in R

3, see Fig. 10.43.
There are actually two different choices of the labelling, related through a

contour frontback reflection. We leave the actual reconstruction to the reader
as a simple exercise.

10.A Appendix: Practical Canonization of Laurent
Polynomials

Given a Laurent polynomial p D p.u; v/ 2 L with integer coefficients we need a
practical way to canonically select a representative of the equivalence class Œp� with
respect to the equivalence relation of Definition 7.7.8.

It is useful to interpret a Laurent polynomial as a function (the coefficient
function) Z � Z ! Z giving the coefficient of the monomial having given
exponents of the unknowns u and v. Clearly, Laurent polynomials correspond to
those functions having finite support (or equivalently bounded support, since Z � Z

is a discrete set) S D Supp.p/. If we neglect the possible change of sign, the notion
of base-equivalency is then interpreted as the composition of the coefficient function
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with an invertible affine transformation of Z � Z, and we are led to the problem of
finding a canonical representation of a bounded subset of Z � Z, the support of
the coefficient function, up to such affine transformations. Canonification of the
support S D Supp.p/ is not equivalent to canonifying the Laurent polynomial
p; however, it allows to restrict the canonization procedure to only those few
polynomials equivalent to p and having support equal to the canonified support.
Selecting the canonical polynomial among these few polynomials can be done using
any lexicographic ordering.

Similarly, a possible change of sign can be taken into account by separately
canonifying both p and �p and then selecting an optimal one by lexicographic
comparison.

If the support is empty or consists of a single point, the canonization procedure
is trivial and leads to a nonnegative constant canonical polynomial; hence, we shall
suppose that p contains at least two nonzero distinct terms. We distinguish two
cases:

– the support S is at most one-dimensional, i.e., it consists of a finite number of
aligned points in Z � Z;

– the support S is two-dimensional, i.e., there exist three points PA;PB; PC 2 S

that are vertices of a nondegenerate triangle.

10.A.1 One-Dimensional Support

Let PA and PB 2 Z�Z be the two extremal points of its support. A straightforward
computation shows that there exists an affine invertible transformation that takes
PA and PB onto the origin and the point .d; 0/ respectively, with d the greatest
common divisor (GCD) between the coordinates of PB � PA. We have actually
two choices, upon exchange of PA and PB , and we can select one of these using a
lexicographic type of comparison between the two corresponding polynomials. In
the end we obtain a polynomial in only one variable u.

10.A.2 Two-Dimensional Support

Let p D p.u; v/ 2 L; we first observe that a suitable “translation”, i.e.,
multiplication by a monomial with unit coefficient, allows to transform it into a
polynomial with no negative exponent and such that its support intersects both the
“u” axis and the “v” axis. We shall call this polynomial the “stem” of p and denote
it by stem.p/. Equivalently stem.p/.u; v/ D p.u; v/u˛vˇ where ˛; ˇ 2 Z are the
smallest possible values leading to a polynomial with no negative exponent. Two
polynomials have the same stem if and only if they differ by multiplication of a
unit monomial and in particular they are base-equivalent; we can thus reduce the
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canonification problem to a selection process of a canonical representative among
base-equivalent stems.

The canonification procedure presently implemented selects the candidate among
the set of those base-equivalent stems that minimize their total degree (the maximal
sum of the two exponents of all terms). By extension, from now on we shall call
“total degree” of a Laurent polynomial the total degree of its stem. Let ı 2 N denote
this minimal total degree.

If M 
 ı is some estimate of the minimal total degree, we want to find a
corresponding estimate on the elements of the change of base matrix B in order
to exclude changes of base leading to a polynomial pB with total degree larger
than M . A starting value for M is of course the total degree of p; then during the
process of selection of the canonical representative we shall decrease the boundM
whenever we find a base-equivalent polynomial with lower total degree.

We need to find a bound on the elements of a change of base matrix B that is
guaranteed to be satisfied whenever pB has total degree not larger than M . The
software will then scan all matrices satisfying such bound in search of the optimal
representative among those having minimal total degree.

We proceed as follows. Let Œ˛i ; ˇi �; i D 1; 2; 3 denote three points in the support
of p, vertices of a nondegenerate triangle and listed in a counterclockwise order.
Define the .3 � 3/ matrix

A D
2
4˛1 ˇ1 1˛2 ˇ2 1

˛3 ˇ3 1

3
5 ; (10.1)

whose determinant ı turns out to be twice the area of the triangle.
The three vectors O�i 2 Z

3, i D 1; 2; 3 are defined as

O�1 D Œˇ2 � ˇ3; ˛3 � ˛2; ˛2ˇ3 � ˛3ˇ2�
T

O�2 D Œˇ3 � ˇ1; ˛1 � ˛3; ˛3ˇ1 � ˛1ˇ3�
T

O�3 D Œˇ1 � ˇ2; ˛2 � ˛1; ˛1ˇ2 � ˛2ˇ1�
T :

A direct computation shows that they satisfy

A O�i D ıei ; i D 1; 2; 3 (10.2)

where ei , i D 1; 2; 3 denote the standard basis of Z3. We define the rombohedron
OK � R

3 as

OK WD
(

3X
iD1

	i O�i W 0 � 	i � 1; i D 1; 2; 3

)
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and set

K WD
�
M

ı

�
OK \ Z

3:

Finally, we define Ke as the smallest subset of Z
3 of the form Ke D

.Œamin; amax� � Œbmin; bmax� � R/ \ Z
3 such that K � Ke.

Proposition 10.1 If B is such that pB has total degree not larger thanM , then the

elements of B D
�
a b

c d

�
necessarily satisfy the bounds

amin � a; c � amax and bmin � b; d � bmax:

Proof There exists a translation t D Œe; f �T 2 Z
2 such that the polynomialpBuevf

is the stem of pB and has total degree not larger than M and in particular all points
in its support are contained in the square Œ0;M � � Œ0;M �. Among these points we
find the result of the affine transformation z ! Bz C t applied to the three points
Œ˛i ; ˇi �. They turn out to be the three columns of the matrix

�
a b e

c d f

�
AT ;

where A is the matrix defined in (10.1). The constraint on the total degree of pB
entails in particular that each component of each of the three vectors is contained in
the interval Œ0;M �. This means that there are six values 	i and �i , i D 1; 2; 3 such
that 0 � 	i ; �i � 1, i D 1; 2; 3 and

A� D M

3X
iD1

	iei ; A� D M

3X
iD1

�i ei ;

where � D Œa; b; e�T and � D Œc; d; f �T . Using (10.2) this is equivalent to

� D M

ı

3X
iD1

	i O�i ; � D M

ı

3X
iD1

�i O�i H) �; � 2 K

and we can conclude recalling thatK � Ke. ut
The algorithm that can be constructed using this bound, actually implemented in

the software, is not very efficient, although it seems to work well for scenes that are
not too complex. It is possible to achieve a much lower computational complexity
by using the strategy described in [14]. However that procedure will produce a
canonical representative that does not minimize, in general, the total degree.



References 321

References

1. Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré Conjecture.
In: Saaty, T.L. (ed.) Lectures on Modern Mathematics II, pp. 93–128. Wiley, Boston (1964)

2. Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc. 66, 74–76
(1960)

3. Cromwell, P.: Knots and Links. Cambridge University Press, Cambridge (2004)
4. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar Graph Isomorphism is

in Log-Space. 24th Annual IEEE Conference on Computational Complexity (2009)
5. Francis, G.k, Weeks, J.R.: Conway’s ZIP proof. Am. Math. Mon. 106, 393–399 (1999)
6. Hacon, D., Mendes de Jesus, C., Romero Fuster, M.C.: Global topological invariants of stable

maps from a surface to the plane. Proceedings of the 6th Workshop on Real and Complex
Singularities, 2001. Lecture Notes in Pure Applied Mathematics, vol. 232, pp. 227–235 (2003)

7. Haefliger, A.: Quelques remarques sur les applications différentiables d’une surface dans le
plan. Ann. Inst. Fourier. Grenoble 10, 47–60 (1960)

8. Hatcher, A.: Algebraic Topology online book. Cambridge University Press, Cambridge (2002)
9. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complex-

ity. Birkhäuser Verlag, Berlin (1993)
10. Lickorish, W.B.R.: An Introduction to Knot Theory. Springer, New York (1997)
11. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in

Terms of Generators and Relations. Dover Publications, New York (1976)
12. Millett, K.C.: Generic smooth maps of surfaces. Topology Appl. 18, 197–215 (1984)
13. Ohmoto, T., Aicardi, F.: First order local invariants of apparent contours. Topology 45, 27–45

(2006)
14. Paolini, G.: An algorithm for a canonical form of finite subsets of Zd up to affinities,

arXiv:1408.3310 [cs.DS]
15. Paolini, M., Pasquarelli, F.: Appcontour: a software code to interact with apparent contours,

SourceForge project: http://appcontour.sourceforge.net (2006)
16. Pauer, F., Unterkircher, A.: Gröbner bases for ideals in Laurent polynomial rings and their

application to systems of difference equations. Appl. Algebra Eng. Commun. Comput. 9, 271–
291 (1999)

17. Poenaru, V.: Extension des Immersions en Codimension 1 (d’après Samuel Blank). Séminaire
Bourbaki 342, 473–505 (1967/68)

18. Rolfsen, D: Knots and Links, AMS Chelsea Publishing, New York (2003)
19. Vassiliev, V.A.: Cohomology of knot spaces. Adv. Sov. Math. 21, 23–69 (1990)
20. Weinberg, L: A simple and efficient algorithm for determining isomorphism of planar triply

connected graphs. Circuit Theory 13, 142–148 (1966)
21. Whitney, H.: On singularities of mappings of Euclidean spaces. I. Mappings of the plane into

the plane. Ann. Math. 62, 374–410 (1955)

http://appcontour.sourceforge.net


Chapter 11
Variational Analysis of the Model on Labelled
Graphs

In this chapter, essentially following [2],1 we discuss some coerciveness and
semicontinuity properties of the functional F introduced in Sect. 1.5 and motivating
our study of apparent contours and three-dimensional shapes.

Notation As in Chap. 1, g 2 L1.�; Œ0; 1�/ is a given function, which stands for the
grey-level intensity of an image. Given a bounded open connected subset I of R or
of the unit circle S

1, and2

p > 1; (11.1)

we denote by W 1;p.I/ (respectively W 2;p.I/) the Sobolev space consisting of
all functions of Lp.I/ having first (respectively first and second) distributional
derivative in Lp.I/. Recall3 that W 1;p.I/ embeds compactly in C0.I/, and even in
the space of .1 � 1=p/-Hölder functions in I.

Definition 11.0.2 (Curve of Class W 2;p) We say that a continuous plane curve is
inW 2;p if its first and second distributional derivatives, with respect to an arc length
parameter, belong to Lp .

Depending on the situation, a continuous closed plane curve shall be considered
equivalently either as a map 
 W S1 ! � (a map 
 W Œ0;L� ! � with 0 and L > 0

1With kind permission from Springer Science+Business Media, in this chapter we report some of
the results and figures from the quoted paper [2].
2We recall that the model described in Sect. 1.5 requires p 2 .1; 2/. The results of the present
chapter hold under the less stringent assumption (11.1).
3See, e.g., [4, Theorem 8.8] and [5, Corollary 8.31].

© Springer-Verlag Berlin Heidelberg 2015
G. Bellettini et al., Shape Reconstruction from Apparent Contours, Computational
Imaging and Vision 44, DOI 10.1007/978-3-662-45191-5_11
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identified) or as a map defined on the one-dimensional torus R=.LZ/ (namely, as an
L-periodic map).4 We denote by

im.
/ WD f
.t/ W t 2 Œ0;L�g D 
.Œ0;L�/

the image of 
 .
Given a closed set C � � WD .0; 1/ � .0; 1/, we let H1.� n C/ be the space of

functions in L2.� nC/ having square integrable distributional gradient on the open
set � n C (see [4]). Given u 2 H1.� n C/, we set

M.u; � n C/ WD
Z
�

.u � g/2 dx C ˛

Z
�nC

jruj2 dx; (11.2)

where ˛ is a given positive parameter. The functional M is one of the addenda of
the functional F , defined in the next section.

Following some notation given in previous chapters, we denote by BV.�; 2N/
the space of functions with bounded variation in � taking values in the nonnegative
even natural numbers. If f 2 BV.�; 2N/, we denote by Jf the jump set of f and
by f ˙ the two traces of f on Jf . We refer the reader to [1] for the theory of BV
functions.

11.1 The Action Functional

Our first task is to give a rigorous definition of the domain of the functional F . We
start by defining the class of plane graphs on which the functional F is naturally
defined.

11.1.1 Graphs with Cusps and Curvature in Lp

Since one of the terms in the expression of F involves the Lp norm of the
curvature of a graph, we need to slightly generalize Definitions 4.2.2 and 4.2.6:
the generalization concerns only the regularity of the graph and the regularity at a
junction between two arcs.

Definition 11.1.1 (Complete Contour Graph of Class W2;p
graph) LetG be a contour

graph.5 We say that G is a complete contour graph of class W2;p
graph if condi-

tions (G2), (G3) of Definition 4.2.2 hold, and if in addition:

4Accordingly, a subinterval of Œ0;L� corresponds to a connected subset of R=.LZ/; we shall adopt
this convention, for instance, when integrating functions on such subintervals.
5See Definition 4.1.4.
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(G10) the arcs of G are of class W 2;p ;
(G40) at a crossing the opposite arcs join in a W 2;p way6 and the two pairs of

opposite arcs cross transversally;
(G50) at a cusp the two tangent vectors have the same direction and opposite

orientations. Moreover, the orientation is so that when travelling along a cusp,
the cusp lies on the left during the 180 degrees turn.

Notice that a complete contour graph is a complete contour graph of class W2;p
graph.

Remark 11.1.2 A component of a complete contour graph of class W2;p
graph having

some cusp is not in W 2;p , since the tangent vector jumps at a cusp, and therefore
its distributional derivative with respect to an arc length parameter does not belong
to Lp .

Let G be a complete contour graph of class W2;p
graph and let f W R2 nG ! 2N be

twice the winding number of G (see Definition 4.2.1, and recall condition (G3) of
Definition 4.2.2). A labelling of G is a function

d W G n nodes.G/ ! N

satisfying properties (L1), (L2) and (L3) of Definition 4.2.5.

Definition 11.1.3 (Complete Labelled Contour Graph of Class W2;p
graph) A com-

plete contour graph of class W2;p
graph endowed with a labelling is called a complete

labelled contour graph of class W2;p
graph.

Following Definition 3.6.1, the closure of the set fd D 0g is called the visible
part of Jf , and it is denoted by vis.Jf /.

11.1.2 The Functional

We start with the definition of the domain of the action functional.

Definition 11.1.4 (Domain of F ) We denote by Dom.F/ the set of all triplets
.f; d; u/ such that

– .Jf ; d/ is a complete labelled contour graph of class W2;p
graph contained in �,

– f .x/ D 2w.x; Jf / for any x 2 � n Jf ,
– u 2 H1.� n vis.Jf //.

6We could equivalently require that the opposite arcs join in a C1 way: indeed, if 0 < L1 < L2,
and 
 2 W 2;p..0;L1/;R2/\W 2;p..L1;L2/;R2/\ C1..0;L2/;R2/, an integration by parts shows
that 
 2 W 2;p..0;L2/;R2/.
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If .f; d; u/ 2 Dom.F/, then f 2 BV.�; 2N/ and it vanishes near @�. In
addition,

jf C.x/ � f �.x/j D 2; x 2 Jf n nodes.Jf /; (11.3)

Given a function f 2 BV.�; 2N/ whose jump Jf is a complete contour graph
of class W2;p

graph contained in �, we set

W.f / WD
Z
Jf nnodes.Jf /

jf C � f �j
2

�
ˇ C �p.�/

�
dH1;

where � 2 Lp
�
Jf n nodes.Jf /

�
is the H1-almost everywhere defined curvature (a

real number) of Jf nnodes.Jf /, �p.�/ WD 	j�jp for any � 2 R, and ˇ, 	 are positive
parameters.

Notice that if f satisfies the properties listed in Definition 11.1.4, then W.f /

has the simpler expression

W.f / D
Z
Jf nnodes.Jf /

�
ˇ C 	j�jp

�
dH1: (11.4)

Making use of (11.2) and (11.4), we are now in a position to define the action
functional, whose minimization describes our variational model (see Sect. 1.57).
Let � be a positive parameter.

Definition 11.1.5 (The Functional F ) The functional F W Dom.F/ ! Œ0;C1/

is defined as follows:

F.f; d; u/ WD M.u; �nvis.Jf //CW.f /C�#nodes.Jf /; .f; d; u/ 2 Dom.F/:

11.1.3 A Notion of Convergence

In the study of the coercivity properties of F it is necessary to inspect the
compactness properties of a sequence ..fn; dn; un// � Dom.F/ satisfying the
uniform bound

sup
n2N

F.fn; dn; un/ < C1: (11.5)

7Referring to the final discussion in Sect. 1.5, suppose that the infimization of F has a solution;
then condition (G5) in Definition 4.2.2 is not necessarily satisfied. As a consequence, if we adapt
the proofs of Theorems 5.1.1 and 5.1.4 to this case, the reconstructed three-dimensional scene E
is not necessarily of class C1 anymore.
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This inspection suggests a suitable notion of convergence on Dom.F/ which
makes F lower semicontinuous. The characterization of the closure of the space of
sequences satisfying (11.5) is, on the other hand, a problem related to the relaxation
of F , and this study is not carried on here in its full generality; in Sect. 11.3, we
shall discuss some related issues.

Definition 11.1.6 (Convergence on Dom.F/) Let .fn; dn; un/ 2 Dom.F/ and
.f; d; u/ 2 Dom.F/. We say that the sequence ..fn; dn; un// converges to .f; d; u/
if

– lim
n!C1fn D f in L1.�/,

– lim
n!C1 vis.Jfn / D vis.Jf / in the sense of Kuratowski,8

– lim
n!C1 un D u in L1.�/.

Note that, concerning the sequence .dn/, only the convergence of the visible part
of Jfn to the visible part of Jf is required. It would be natural to require some
convergence on .dn/, however the actual value of F would be unaffected, and we
prefer to impose as few restrictions as possible at this stage.

11.2 Lower Semicontinuity

We start to prove the sequential lower semicontinuity of the functional M intro-
duced in (11.2).

Lemma 11.2.1 (Lower Semicontinuity of M) Let ..fn; dn; un// � Dom.F/ be a
sequence converging to .f; d; u/ 2 Dom.F/. Then

M.u; � n vis.Jf // � lim inf
n!C1M.un;� n vis.Jfn //: (11.6)

Proof Since all Jfn are contained in �, it is possible to prove9 that vis.Jfn /
converges to vis.Jf / in the Hausdorff distance (see [1, Section 6.1]).

8A sequence .Kn/ of compact subsets of the plane converges to K in the sense of Kuratowski, if
the following two conditions hold:

– any x 2 K is the limit of a sequence .xn/ with xn 2 Kn for any n 2 N,
– if xn 2 Kn for any n 2 N, then any limit point of .xn/ belongs toK .

See [8, Chapter 2, par. 20, Section VI] and [6, Definition 4.10] for more information.
9See also [1, Theorem 6.1].
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Therefore, for any " > 0 we can take an "-tubular neighbourhoodN" of fd D 0g
so that, for n sufficiently large, the closure of fdn D 0g is contained in N". From the
lower semicontinuity of the Dirichlet integral functional in � nN", we have

M.u; � nN"/ � lim inf
n!1 M.un;� nN"/ � lim inf

n!1 M.un;� n vis.Jfn//:

Letting " ! 0C we then get (11.6). ut
Now, let us show that the functional F is lower semicontinuous on its domain.

Theorem 11.2.2 (Sequential Lower Semicontinuity of F ) Let ..fn; dn; un// �
Dom.F/ be a sequence converging to .f; d; u/ 2 Dom.F/. Then

F.f; d; u/ � lim inf
n!C1F.fn; dn; un/: (11.7)

Proof We can suppose that the right-hand side of (11.7) is finite, since when
it is C1 the thesis is trivially satisfied. Take a (not relabelled) subsequence
..fn; dn; un// in such a way that the right-hand side of (11.7) is a limit, and also
that the three sequences .M.un;� n vis.Jfn///, .W.fn// and .#nodes.Jfn// admit
a limit.

Let

C WD sup
n2N

F.fn; dn; un/ < C1: (11.8)

From (11.6) it follows that (11.7) is proven once we show that

W.f / � lim
n!C1W.fn/ (11.9)

and

#nodes.Jf / � lim
n!C1 #nodes.Jfn/: (11.10)

To show inequality (11.9), it is convenient to parametrize the graphs Jfn . Given
n 2 N, using Definition 11.A.6, we consider an oriented parametrization

O
n D f O
n1 ; : : : ; O
nmg (11.11)

of Jfn . The bound

sup
n2N

 Z
Jfnnnodes.Jfn /

.ˇ C 	j�jp/ dH1 C �#nodes.Jfn /

!
� C; (11.12)
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which follows from (11.8), implies, together with Theorem 11.B.6 that, possibly
passing to a not relabelled subsequence, we can suppose that:

– m is independent of n, the number of cusps of Jfn D im. O
n/ is independent of
n, and the number of crossings of Jfn is independent of n,

– there is a (possibly empty) proper subset I of f1; : : : ; mg, independent of n, such
that

i 2 I ” lim
n!C1 `. O
ni / D 0I

note that, in view of Lemmas 3.4.6 and 11.B.1, if i 2 I then im. O
ni / has at least
two cusps.

We now focus our attention on the components of Jfn having length that does not
go to zero as n ! C1. Since we want to take the limits of these components, it is
preferable to have a common parameter space independent of n.

Set

h WD m � #I:

If h D 0, we have f D 0 in �, hence F.f; d; u/ D M.u; �/ and (11.7) follows
from Lemma 11.2.1. Hence, we can suppose h 
 1.

Up to renumbering the curves, we can assume that O
n1 ; : : : ; O
nh are the curves of
O
n having length that does not tend to zero as n ! C1; therefore, there are two
real constants `1; `2 such that

0 < `1 � `. O
ni / � `2; n 2 N; i 2 f1; : : : ; hg: (11.13)

Since h is independent of n, from (11.13) it follows that we can regularly
parametrize O
ni on Œ0; 1� (0 and 1 identified) for any n 2 N. For any i 2 f1; : : : ; hg
let us denote by 
ni 2 pwrpc .Œ0; 1�;�/ (Definition 11.A.1) such a reparametrized
curve, and set


n WD f
n1 ; : : : ; 
nh g;

which is a system of pwrpc .Œ0; 1�;�/ curves, defined on the disjoint union of h copies
of Œ0; 1�. From Theorem 11.B.6 it follows that, possibly passing to a not relabelled
subsequence, there exist h curves 
1; : : : ; 
h of class pwrpc .Œ0; 1�;�/, such that .
n/
converges weakly in pwrpc to


 WD f
1; : : : ; 
hg:

Let us prove that

im.
/ � Jf : (11.14)
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Since the number of curves composing each system 
n does not depend on n,
remembering that fn is twice the winding number of 
n, we have10

sup
n2N

kfnkL1.�/ < C1: (11.15)

From (11.12) it follows H1.Jfn/ � C hence, using (11.15) we get

sup
n2N

Z
�

jDf nj < C1; (11.16)

where
R
�

jDf nj denotes the total variation of fn in �.
Let now x 2 Jf , � > 0, and denote by B�.x/ � R

2 the open ball centred at x
with radius �. From the bound (11.16) it follows (possibly passing to a subsequence)
that the sequence .jDf nj/ weakly converges in the sense of measures to a Radon
measure 	, which turns out11 to be supported on im.
/. Hence, for any � > 0 such
that 	.@B�.x// D 0 (in particular, for almost every � > 0) we have12

	.B�.x// D lim
n!C1 jDf nj.B�.x// 
 jDf j.B�.x//;

where the last inequality follows from the L1-lower semicontinuity of the total
variation inB�.x/. Since jDf j.B�.x// D R

Jf \B�.x/ jf C�f �j dH1 
 2�, it follows
that x belongs to the support of 	, hence x 2 im.
/, and (11.14) is proven.

Now, let i 2 f1; : : : ; hg; since .
ni / weakly converges to 
i in pwrpc , we have
`.
i / D limn!C1 `.
ni /, hence

`.
/ D lim
n!C1 `.
n/ D lim

n!C1 `.Jfn/:

Remembering inclusion (11.14), we deduce

H1.Jf / � `.
/ D lim
n!C1 `.Jfn/: (11.17)

We observe now that, if x 2 crossings.Jf / then, for any n 2 N, there exists xn 2
crossings.Jfn/ such that limn!C1 xn D x. Indeed, if by contradiction x has a
neighbourhoodU where there are no crossings of Jfn for n sufficiently large, by the

10The bound (11.15) can be proven with an inequality similar to that used in (11.37) below, which
implies that a complete turn without cusps around a point has a fixed cost in terms of the action.
As a consequence, an unbounded number (as n ! C1) of complete turns is forbidden, in view
of (11.8). If cusps are present, it is sufficient to recall that their number must be uniformly bounded
with respect to n, again due to assumption (11.8).
11See [3, Lemma 3.3 (iii)] for similar arguments.
12See, for instance, [7, Theorem 1, Section 1.9].
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convergence13 of im.
n/ to im.
/, it follows that im.
/ has in U no points of self-
intersections with transverse tangent vectors, and this contradicts inclusion (11.14).
We deduce that

#crossings.Jf / � #crossings.Jfn/; n 2 N: (11.18)

We also notice that, if x 2 cusps.Jf / then, for any n 2 N, there exists xn 2
cusps.Jfn / such that limn!C1 xn D x. Indeed, from (11.14), we have x D 
i .t/

for some i 2 f1; : : : ; hg and t 2 Œ0; 1�. If by contradiction x has a neighbourhood
U where there are no cusps of Jfn for n sufficiently large, it follows that there is a
neighbourhood of t , independent of n, where 
ni is of class C1. Remembering (ii)
of Definition 11.B.2, it then follows that 
i is of class C1 in a neighbourhood of t ,
which is a contradiction. We deduce that

#cusps.Jf / � #cusps.Jfn/; n 2 N: (11.19)

From (11.18) and (11.19) we obtain

#nodes.Jf / � #nodes.Jfn/; n 2 N;

and (11.10) follows.
Reasoning as in [3, Lemma 3.4], from (11.14) and the regularity properties of Jf

and 
 , it follows

Z
Jf ncusps.Jf /

j�jp dH1 � K.
/: (11.20)

Arguing as in [3, Theorem 3.2], one can prove that, if i 2 f1; : : : ; hg and if I is a
compact subset contained in Œ0; 1� n parcusp.
i /, we have

Z
I
j�
i jpj
 0

i j dt� lim inf
n!1

Z
I
j�
ni jpj
ni 0j dt� lim inf

n!1

Z
Œ0;1�nparcusp.


n
i /

j�
ni jpj
ni 0j dt�C:

Passing to the supremum with respect to I gives

Z
Œ0;1�nparcusp.
i /

j�
i jp ds � lim inf
n!1

Z
Œ0;1�nparcusp.


n
i /

j�
ni jpj
ni 0j dt:

Summing over i and using (11.20) we deduce
Z
Jf ncusps.Jf /

j�jp dH1 � lim
n!C1K.
n/: (11.21)

13For instance, in the Hausdorff distance.
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From (11.17), (11.20) and (11.21) it follows

W.f / � ˇ`.
/C 	K.
/ � lim
n!C1W.fn/;

which gives (11.9) and concludes the proof of the theorem. ut

11.3 On the Lower Semicontinuous Envelope of the Action

The minimization of the functional F requires to relax the formulation of the
problem (see point (1)) in the summarizing discussion in the end of Chap. 1 and to
introduce the sequential lower semicontinuous envelope14 F of F , which is defined
as follows. Denote by P.N/ the set of all subsets of N.

Definition 11.3.1 (Convergence) Let .fn; dn; un/ 2 Dom.F/, f 2 BV.�; 2N/,
let d W Jf ! P.N/ be a multifunction defined H1 almost everywhere, and u 2
H1

�
� n fd 3 0g

�
. We say that the sequence ..fn; dn; un// converges to .f; d; u/,

and we write limn!C1.fn; dn; un/ D .f; d; u/, if

– lim
n!C1fn D f in L1.�/,

– lim
n!C1 vis.Jfn / D fd 3 0g in the sense of Kuratowski,

– limn!C1 un D u in L1.�/.

Here we have used the notation fd 3 0g D fx 2 Jf W 0 2 d.x/g, and fd 3 0g
denotes the closure of fd 3 0g.

The actual value of the multivalued function d is intentionally left essentially free
except for the set f0 2 dg, and indeed the value of the functional is insensitive to
such modifications. Defining d as some limit of the sequence .dn/ seems natural;
however, the complexity of what can happen in the limit (see Sect. 11.3.2) suggests
to impose as few restrictions as possible.

Definition 11.3.2 (Sequential Lower Semicontinuous Envelope) For any f 2
BV.�; 2N/, any multifunction d W Jf ! P.N/, and any u 2 H1

�
� n fd 3 0g

�
,

we set

F.f; d; u/

WD inf

	
lim inf
n!C1

F.fn; dn; un/ W .fn; dn; un/2Dom.F/; lim
n!C1

.fn; dn; un/D.f; d; u/


:

14Sometimes called also (sequential) relaxation of F .
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The aim of this section is to study some preliminary properties of F . In connection
with the analysis of the domain of F , the first problem to solve is maybe to
understand what compactness properties are inherited by a sequence .fn; dn; un/ 2
Dom.F/ satisfying

sup
n2N

F.fn; dn; un/ < C1; (11.22)

and to recognize the qualitative behaviour of the limit points. As we shall see, such
sequences admit converging subsequences, but the limit does not belong, in general,
to Dom.F/. Such limits consist, roughly speaking, of triplets .f; d; u/ where f is a
BV.�; 2N/ function having jump contained in the image im.
/ of a limit system

 2 sys.pwrpc / of complete labelled contour graphs of class W2;p

graph. Twice the
winding number of 
 with respect to a point x 2 � n im.
/ turns out to coincide
with f.x/. In contrast with what happens in the domain of F , here:

– Jf may have an infinite number of singular points;
– Jf may have singular points not of the form of crossings or cusps [see Fig. 11.1

(right)]; in general, a cusp (or a crossing) of Jf may collide with another arc, or
with another cusp and/or crossing (or many of them). Moreover, the aperture of a
crossing may vanish in the limit, so that the transversality properties of crossings
are lost; in addition, cusps are not necessarily ordinary cusps;

– f may jump of an even number along an arc of Jf, and not necessarily by two
units [see again Fig. 11.1 (right)]; moreover, f may not jump along some parts of
im.
) (see Fig. 11.2).

In addition, d is now an N-multivalued function defined on im.
/ (and u 2 H1.� n
fx 2 im.
/ W d.x/ 3 0g/). The multivalued character of d shows up along self-
intersections of im.
/ of positive one-dimensional Hausdorff measure: an example
of this behaviour is given in Fig. 11.2. As a consequence, it seems not easy to derive
all compatibility conditions between the values of f and d, standing for a possible
generalization of the rules in Fig. 3.11.

0

2

4

0

2

4

0
0

0
0

p q

Jfn

Jf

Fig. 11.1 The limit function f has a jump of 4 (right picture) along the arc .p; q/, hence (11.3)
fails in the limit. Note that p and q are singularities of Jf which are neither cusps nor crossings in
the usual sense that we have considered for apparent contours. Original image taken from [2]
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d1 d4

d6d3

m = 1

m = 1 m = 1

m = 1

m = 2 d ∈ {d2, d5}

f1 f2

f4

f3

p

q

Fig. 11.2 Locally, the image im.
/ of the limit system 
 and the values of f. Note that if f1 D f2
then im.
/ strictly contains Jf. We display also the values of d out of the vertical segment Œp; q�. On
Œp; q� we have to retain the possible limits of .dn/ (for instance, two values d2; d5). This expresses
the fact that limits of labellings may be, in general, N-valued multifunctions. The symbol m stands
for the multiplicitym
 . Original image taken from [2]

We can conclude that the triplets in the domain of F do not share, in general,
the nice properties of the triplets in the domain of F , which were a consequence of
certain stability assumptions analysed in the previous chapters.

Let us start by finding some necessary conditions that arise in the limit when
enforcing the bound (11.22).

Lemma 11.3.3 (Limits of Twice Winding Numbers) Let ..fn; dn; un// �
Dom.F/ be a sequence satisfying the bound (11.22). Then .fn/ has a subsequence
converging in L1.�/ to a function

f 2 BV.�; 2N/\ L1.�/:

Proof Since (11.22) implies the bound (11.12), we can choose a (re)parametrized
system O
n of pwrpc curves as in the proof of Theorem 11.2.2 [see formula (11.11)].
Arguing as in the proof of that theorem, we have that (11.15) and (11.16) hold; the
assertion of the lemma follows.15 ut
Remark 11.3.4 (Even Heights of Jumps) In general, if f is as in Lemma 11.3.3, then

jfC.x/ � f�.x/j 
 2 for H1 � almost every x 2 Jf;

15See, for instance, [1, Theorem 3.23].
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and the equality is not guaranteed. An example of this behaviour is shown in
Fig. 11.1 (right). This is a difference between f and the function f appearing in
Definition 11.1.4; compare with formula (11.3).

The next lemma informs us on the regularity of the jump of a function f: it must
be contained in the image of a limit system.

Lemma 11.3.5 (Limit System and Jump of the Limit) Let .fn; dn; un/ and f be
as in the statement of Lemma 11.3.3. If 
n is an oriented parametrization of Jfn ,
then the sequence .
n/ admits a subsequence weakly converging in pwrpc to a limit
system 
 2 pwrpc .Œ0;L�; �/, such that

im.
/ � Jf: (11.23)

Moreover

f.x/ D 2w.x; 
/; x 2 � n im.
/: (11.24)

Proof Inclusion (11.23) follows as in the proof of (11.14). Let us now consider a
(not relabelled) subsequence of .fn/ converging almost everywhere to f in �; then,
equality (11.24) follows by passing to the limit in the equality

fn.x/ D 2w.x; 
n/; x 2 � n im.
n/;

as n ! C1. ut
Proposition 11.3.6 (Further Properties of Cusp Parameters) Let 
 D
f
1; : : : ; 
hg be the limit system given by Lemma 11.3.5 and let i 2 f1; : : : ; hg.
Then

– #parcusp.
i / 2 2N;
– for any t 2 parcusp.
/ there exists a neighbourhood N of t such that 
jN is

injective.

Proof The first conclusion follows invoking Proposition 11.B.4, while the second
conclusion follows from (ii) of Definition 11.B.2. ut

11.3.1 Limits of Labellings

Assume that, on the image of a limit system 
 of curves as in Lemma 11.3.5, it is
defined an N-valued multifunction d, i.e.,

d W im.
/ ! P.N/:
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For such a map d to be “limit” of a sequence .dn/, when .fn; dn; un/ 2 Dom.F/
satisfy (11.22), it is reasonable to expect that:

(i) fx 2 im.
/ W d.x/ 3 0g ¤ ;;
(ii) d is single valued on points x 2 im.
/ such that #
�1.x/ D 1;

(iii) if x 2 im.
/, then16

d.x/ � #
�1.x/; (11.25)

see Fig. 11.2;
(iv) the limit system 
 admits a reparametrization, still denoted by 
 , such that, if

x 2 im.
/, then

max d.x/ � 2min

	
lim

h!C1 w
�

; xh

� W .xh/ � � n im.
/; lim
h!C1xh D x



:

The latter condition is a “relaxed” version of the compatibility condition (L2) of
Definition 4.2.5 between d and f on the relative interior of the arcs; if im.
/ is
a complete labelled contour graph of class W2;p

graph, it reduces to that compatibility
condition.

Furthermore, one can expect that:

(v) there exists a locally constant function Qd defined on the domain of
 , and taking
values in N, such that

d.x/ D
[

s2
�1.x/

Qd.s/; x 2 im.
/;

and

ˇ̌Qd.tC/� Qd.t�/ˇ̌ D 1; t 2 parcusp.
/: (11.26)

Condition (11.26) is a “relaxed” version of one of the conditions in (L3) of
Definition 4.2.5, concerning the behaviour of d around a cusp of an apparent
contour, see the second and third pictures of Fig. 3.11.

(vi) For a function u which is the limit of a sequence .un/ with .fn; dn; un/ 2
Dom.F/ satisfying (11.22), it is reasonable to expect that u belongs to the
space of special functions of bounded variation in � [1], and moreover that

u 2 H1
�
� n fd 3 0g

�
: (11.27)

16Equality in (11.25) in general does not hold, as in the case of Fig. 11.2 with the choices d1 D
d2 D d3 D d4 D d5 D d6 D 0.
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a b c d

Fig. 11.3 Only (c) and (d) should correspond to a crossing in the limit system of curves 
 of
Fig. 11.2. Original image taken from [2]

The above remarks enlight a difficulty, related to the definition of the character
of self-intersection points (which may even lie on Cantor-type sets) of an immersion
(or of two or more immersions) of S1: in particular, understanding whether or not
such points must be considered as “crossings”. Moreover, once one decides whether
self-intersections must be considered a crossing or not then, in order to describe
the functional F , one has to understand which compatibility conditions should be
satisfied between the local values of f and d. For instance, in the simple case of
Fig. 11.2, understanding whether or not the whole vertical segment Œp; q� must be
considered as a “crossing” requires to decide whether or not
 is the limit of the third
or the fourth configuration of Fig. 11.3. Note however that the first two pictures in
the same figure are other possible approximations, that cannot be neglected a priori.
A detailed discussion of this example is made in the next section where we show, in
particular, that certain choices of fi and di in Fig. 11.2 are not compatible for .f; d/ to
be a limit of a sequence ..fn; dn//with ..fn; dn; un// � Dom.F/ satisfying (11.22).

11.3.2 Sufficient Conditions: An Example

The characterization of the domain of F is related to the description of the
compatibility conditions between the values of the multifunction d and of the
function f, locally around self-intersections of im.
/ having positive H1 measure.
The problem is the following. Let be given f; 
; d; u satisfying conditions (i)–
(vi) of Sect. 11.3.1: find under which further conditions there exists a sequence
..fn; dn; un// � Dom.F/ converging to .f; d; u/ and satisfying (11.22). In this
section we want to show that the answer to this problem is involved, even in the
simplest cases: we will exhibit several situations where keeping (11.22) is not
possible. For simplicity, we shall concentrate only on f and d, for a given function u
as in (11.27).
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Example 11.3.7 (Approximating a Whole Segment of Self-Intersections) Let be
given locally a curve 
 , the image of which is depicted in Fig. 11.2, having the
following multiplicity17 m D m
 :

– m D 1 on the (relatively open) curved arcs,
– m D 2 on the vertical segment Œp; q�.

Assume also that the parametrization of im.
/ is everywhere regular and smooth,
so that parcusp.
/ D ;.

Let fmin 2 2N and let be given numbers

f1; f2; f3; f4 2 ffmin; fmin C 2; fmin C 4g ;

which are the values of f out of im.
/, such that locally the values of f are as in
Fig. 11.2.

Finally, let be given integer numbers

d1; d2; d3; d4; d5; d6 2 f0; : : : ; fming ; (11.28)

which are the values of the limit labelling d. Suppose that

– d is single valued on the relatively open curved arcs of im.
/,
– d takes two (possibly equal) values fd2; d5g on Œp; q� (recall inequality (11.25)).

The set im.
/ is obtained as a limit of (part of) the boundary of the two regions
corresponding to f D fi , i D 1; 2, which locally collide on Œp; q� keeping (11.22)
satisfied (see Fig. 11.3).

Note that

– Jf may be strictly contained in im.
/, for instance when f1 D f2, since in this
case f does not jump along the vertical segment Œp; q�;

– it may happen that jfC.x/ � f�.x/j D 4 on Œp; q� � Jf, for instance when
f2 D f1 C 4;

– Jf may not contain fd 3 0g (while fd 3 0g � im.
/), for instance when d1 D
d2 D d3 D d4 ¤ 0 and d5 D d6 D 0 and f1 D f2.

Now, we show that for some values of fi and dj there cannot be any sequence
..fn; dn// converging to .f; d/ and keeping (11.22) valid. We shall consider config-
urations up to obvious symmetries (such as, in some cases, that of pictures (c) and
(d) of Fig. 11.3).

Case 1. f takes two values.

The approximating sequence .fn/ of the last picture of Fig. 11.4 violates one
of the compatibility conditions in Fig. 3.11 at the crossing. Similarly, this violation
happens when inserting fn D fmin in the thin region between the two crossings in

17See Definition 11.A.3, below.
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fmin

d1 d5

fmin + 2

fmin

fmin

fmin + 2

fmin

fmin

fmin + 2 fmin + 2 fmin + 2 fmin + 2

Fig. 11.4 A case in which f takes two values, a situation similar to the one in Fig. 3.2 of
Chap. 3. We depict the values of possible approximations fn of f. The first two pictures represent
approximating sequences in the domain of F satisfying the bound (11.22); the first configuration
does not introduce crossings, hence the corresponding value of F is lower. Original image taken
from [2]

fmin

fmin + 2

fmin

d1 d5

fmin fmin

fmin + 2

fmin + 2

fmin fmin

fmin + 2

fmin + 2

Fig. 11.5 A case in which f takes two values, corresponding locally, for instance, to the limit of
a thin dumbell. We depict the values of possible approximations fn of f. Original image taken
from [2]

the central picture of Fig. 11.4. On the other hand, inserting f D fmin C4 in the thin
region is admissible, but in terms of the functional F two crossings are penalized.
The other way to approximate .f; d/ with .fn; dn/ is displayed in the first picture
Fig. 11.4, giving no crossings contribution to F . In this case the limit segment Œp; q�
in Fig. 11.2 should not be considered as a crossing, and therefore the two singular
points p and q should not be penalized in the computation of the value of F .

The other case when f takes two values is depicted in Fig. 11.5. The approximat-
ing sequence .fn/ of the third picture in Fig. 11.5 violates one of the conditions of
Fig. 3.11, at the crossing. Similarly, inserting fn D fmin C 2 or fn D fmin C 4 in
the thin region between the two crossings in the central picture of Fig. 11.5 violates
that condition, while inserting fmin � 2 is admissible, provided fmin 
 2. The other
way to approximate .f; d/ with .fn; dn/ is shown in the left picture of Fig. 11.5. As
in the situation of Fig. 11.4, also in this case the limit segment Œp; q� in Fig. 11.2
should not be considered as a crossing.
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Fig. 11.6 A case in which f
takes three values. This
configuration represents an
approximating sequence in
the domain of F only if
d1 D d3 and d4 D d6.
Original image taken from [2]

fmin fmin + 4

d1 d4

d5 d2

d3 d6

The conclusion is the following:
If f takes two values ffmin; fmin C2g around Œp; q�, then the system 
 in Fig. 11.2

can be parametrized (as the limit of the parametrizations corresponding to the left
pictures of Figs. 11.4 or 11.5) in such a way that it is possible to find a sequence
..fn; dn// (presumably locally F -optimal) satisfying (11.22) and converging to
.f; d/, provided d1 D d2 D d3, d4 D d5 D d6 satisfy (11.28).

Case 2. f takes three values.

We shall consider only the interesting case when f1 D fmin, f2 D fmin C 4 and
f3 D f4 D fmin C 2.

Proposition 11.3.8 (Admissible Approximating Sequences) The configuration of
Fig. 11.6 represents a sequence ..fn; dn// in the domain of F only if

d1 D d3 and d4 D d6: (11.29)

Proof Assume by contradiction that d1 ¤ d3. From the compatibility conditions in
Fig. 3.11 it follows d2 
 d1 and d2 
 d3, more precisely

min.d1; d3/C 2 D d2 D max.d1; d3/: (11.30)

Suppose d1 < d3, the case d1 > d3 being similar. From (11.30) it follows

d1 C 2 D d2 D d3: (11.31)

From Fig. 3.11 we also have d4 D d5, and

d5 � d1: (11.32)

Moreover the only possibility which is not ruled out by (11.31) is d5 D d6�2. This,
together with Fig. 3.11, implies d5 
 d3. Using (11.32) we deduce d3 � d5 � d1, a
contradiction. The first relation in (11.29) is proved.
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fmin fmin + 4

d1 d4

d1

d5 d2

d4

fmin + 4

fmin + 2

d1 d4

fmin

reduction of energy

Fig. 11.7 In these two configurations we depict the values of .fn; dn/, where fn converge to the
winding number of a parametrization of the curve in Fig. 11.2, and dn converge to the multifunction
d in Fig. 11.2. The value of F is lower for the right configuration, since no singular points are
present. Original image taken from [2]

It remains to show that d4 D d6. We have two cases: either d2 D d1 C 2 or
d2 D d1. If d2 D d1 C 2, then d2 D d3 C 2 by the equality d1 D d3 proved above.
Hence from Fig. 3.11 we deduce d4 D d5 D d6.

If d2 D d1, we have d2 D d3. Then d4 D d5 C 2 D d6. The proof of (11.29) is
complete. ut

The conclusion is the following:
If f takes three values ffmin D f1; fmin C2 D f3 D f4; fmin C 4 D f2g around

Œp; q�, and if (11.28) and (11.29) hold, provided we reparametrize the system 


of Fig. 11.2 (as the limit of the parametrizations corresponding to one of the two
pictures in Fig. 11.7), then it is possible to find a sequence ..fn; dn// converging
to .f; d/ and satisfying (11.22). The sequence corresponding to the right picture of
Fig. 11.7 has no singular points, and therefore its value in terms of F is lower than
the one in the left picture; in this case, obviously d1 D d2 and d4 D d5. It follows that
also in this situation the limit segment Œp; q� must not be considered as a “crossing”.

If f takes three values ffmin D f1; fmin C2 D f3 D f4; fmin C 4 D f2g around
Œp; q�, if (11.28) holds, and if

d1 ¤ d3 or d4 ¤ d6; (11.33)

then the approximating sequence in Fig. 11.6 does not belong to Dom.F/ by
Proposition 11.3.8. Still the value of F is finite, since Fig. 11.8 (with either d2 D
d1 C 2 and d4 D d5, or d1 D d2 and d4 D d5 C 2) shows a possible approximating
sequence in Dom.F/ satisfying (11.22). In this case the whole segment Œp; q�
should be considered as one crossing, and therefore correspondingly penalized in
the computation of F .
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fmin fmin + 4

d1 d4

d5 d2

fmin + 2

fmin + 2

Fig. 11.8 A possible approximation of the configuration of Fig. 11.2 under condition (11.33). The
limit parametrization has a crossing in correspondence of the vertical overlapping segment, that
should presumably contribute in the computation of F . Original image taken from [2]

11.A Appendix A: Systems of Curves

In this section we collect some useful definitions and results on parametrizations of
curves (and of finite family of curves) with cusps, in particular for parametrization
of complete labelled contour graphs. These definitions are needed, in particular,
when passing to the limit along sequences consisting of connected components of
the graphs.

11.A.1 Curves of Class pwrpc

In the presence of cusps, a component of a complete labelled contour graph of class
W2;p

graph cannot be parametrized with a single curve of class W 2;p (Remark 11.1.2),
and a finite number of such parametrizations is required. These latter maps fall
within the class of parametrizations of the next definition which, in addition,
contains the limits of converging sequences of components of complete contour
graphs of class W2;p

graph having a uniform bound on the functional F .

Definition 11.A.1 (The Class pwrpc ) Let L > 0 and 
 W Œ0;L� � R ! � be
a continuous closed curve. We say that 
 is a piecewise regular W 2;p curve with
cusps, and we write


 2 pwrpc .Œ0;L�; �/;

if there exists a (possibly empty) finite set

parcusp.
/
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of points of Œ0;L�, called cusp parameters of 
 , such that the following properties
hold: if I is any connected component of Œ0;L� n parcusp.
/, then

(i) 
 2 W 2;p.I;�/,
(ii) there exists a constant c > 0 independent of I, such that

j
 0.t/j D c; t 2 I;

where j
 0.t/j denotes the euclidean norm of the vector 
 0.t/,

(iii) for any t 2 parcusp.
/, the angle between the two unit vectors lim
�!t�


 0.�/
j
.�/j and

lim
�!tC


 0.�/
j
.�/j belongs to f��; �g.

When the image of 
 is contained in �, we write 
 2 pwrpc .Œ0;L�; �/. When
it is not necessary to specify the domain and the codomain of 
 , we simply write

 2 pwrpc .

Remark 11.A.2 (Behaviours of Components) A component of a complete contour
graph of class W2;p

graph is the image of a map 
 2 pwrpc . However, in general the
image of a map 
 2 pwrpc is a much more general object. Indeed:

– im.
/ may have a large set (for instance, a continuum set) of self-intersections,
– no transversality conditions on isolated self-intersections of im.
/ is imposed,
– no condition on the number of arcs concurring at an isolated self-intersection of

im.
/ is imposed,
– if t is a cusp parameter of 
 , then 
.t/ could be a self-intersection of im.
/,
– a local situation like the one displayed in the right picture of Fig. 3.7 is allowed,
– the winding number of a point in � n im.
/ with respect to 
 is not necessarily

nonnegative.

Definition 11.A.3 (Multiplicity) Given 
 2 pwrpc , we set

m
.x/ WD #
�1.x/; x 2 im.
/;

and we call m
 the multiplicity of 
 .

We denote by `.
/ 2 .0;C1/ the length of 
 , and we set

K.
/ WD
Z
.0;L/nparcusp.
/

j�
 jpj
 0j dt;

where �
 is the curvature (a real number) of 
 . Notice that �
 2 Lp.I/ for any
interval I � Œ0;L� n parcusp.
/, and in particular

K.
/ < C1:
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A regular reparametrization of 
 2 pwrpc .Œ0;L�;R2/ is a map O
 of the form O
 D 
 ı
', where ' W Œ0; L� ! Œ0;L� is a Lipschitz18 strictly monotone surjective function,
in such a way that O
 2 pwrpc .Œ0; L�;R2/.

The map 
 can be regularly reparametrized19 by an arc length parameter s,
i.e., with unit speed, on each connected component of Œ0; `.
/� n parcusp.
/, where
parcusp.
/ consists now of the set of cusp parameters in the new parametrization,
which is the image via the reparametrizing map of the set of cusp parameters in the
original parametrization. We denote by P
 the derivative of 
 with respect to s, and
we have j�
 j D j R
 j almost everywhere in Œ0; `.
/� n parcusp.
/. If x 2 � n .
/,

w.
; x/

denotes the winding number (or index) of x with respect to 
 .

11.A.2 Systems of Curves

Since in general the graphs that we consider consist of more than one component,
we need the following definition.

Definition 11.A.4 (System of pwrpc Curves) By a system of pwrpc .Œ0;L�; �/
curves we mean a finite family f
1; : : : ; 
hg, where 
i 2 pwrpc .Œ0;L�; �/ for
any i 2 f1; : : : ; hg.

The set of all systems of pwrpc .Œ0;L�; �/ curves is denoted by

sys.pwrpc /.Œ0;L�;�/:

When it is not necessary to specify the domain and the codomain, we shall use the
symbol sys.pwrpc /; when the image of all curves composing the system is contained
in �, we shall write sys.pwrpc /.Œ0;L�; �/.

The parameter space of the system 
 D f
1; : : : ; 
hg 2 sys.pwrpc / is the disjoint
union of h copies of S1. A regular reparametrization of 
 D f
1; : : : ; 
hg is a system
f O
1; : : : ; O
hg 2 sys.pwrpc / where O
i is a regular reparametrization of 
i for any i 2
f1; : : : ; hg.

18It is also of class C1.I/, where I is any connected component of the complement of cusp
parameters.
19For notational simplicity, we shall keep the symbol 
 to denote an arc-length reparametrization.
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We set

im.
/ WD
h[
iD1

im.
i /;

parcusp.
/ WD
h[
iD1

parcusp.
i /;

and

`.
/ WD
hX
iD1

`.
i/; K.
/ WD
hX
iD1

K.
i /:

We define the winding number of 
 as

w.
; x/ WD
hX
iD1

w.
i ; x/; x 2 � n im.
/:

11.A.3 Parametrizations of Complete Contour Graphs

Let f 2 BV.�; 2N/ be such that Jf is a complete contour graph of class W2;p
graph.

Then Jf can be parametrized by a system of pwrpc curves as follows. Let C1; : : : ; Ch
be the components of Jf . For any i 2 f1; : : : ; hg we take a curve 
i 2 pwrpc such
that

Ci D im.
i / and 
�1
i .cusps.Ci // D parcusp.
i /:

Accordingly, we say that the system 
 WD f
1; : : : ; 
hg 2 sys.pwrpc / parametrizes
Jf . Observe that

W.f /C �#cusps.Jf / D ˇ`.
/C 	K.
/C �#parcusp.
/:

The next lemma says that f can be described with the winding number of a
“canonical” parametrization of its jump.

Lemma 11.A.5 (Existence of Oriented Parametrizations) Let .G; f; d/ be a
complete labelled contour graph of class W2;p

graph. Then there exists a system 
 of
pwrpc curves parametrizing G and satisfying

f .x/ D 2w.
; x/; x 2 � n im.
/: (11.34)
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Proof Let f
1; : : : ; 
hg be any system of pwrpc curves parametrizing G. Then, in
order to fulfill condition (11.34), it is sufficient to orient 
1; : : : ; 
h in such a way
that at each point out of G, the higher value of f is taken locally on the left. ut
Definition 11.A.6 (Oriented Parametrization of G) Let .G; f; d/ be a complete
labelled contour graph of class W2;p

graph. A system 
 2 sys.pwrpc / parametrizing G
and satisfying condition (11.34) is called an oriented parametrization of G.

11.B Appendix B: Convergence and Compactness of Systems
of Curves

Let .
n/ � pwrpc .Œ0;L�; �/ be a sequence of curves such that

sup
n2N

˚
ˇ`.
n/C 	K.
n/C �#parcusp.
n/

�
< C1: (11.35)

The uniform bound (11.35) does not exclude, in principle, that

lim
n!C1 `.
n/ D 0: (11.36)

For instance, let im.
/ be as in the right picture of Fig. 3.12, so that im.
/ has
two cusps. By homothety and aligning20 at the same time the arcs connecting
the cusps, we can shrink im.
/ to a point, and produce a sequence of curves 
n
satisfying (11.35) and (11.36).

Lemma 11.B.1 (Cusps on a Component with Infinitesimal Length) Let .
n/ �
pwrpc .Œ0;L�; �/ be a sequence satisfying the bound (11.35), and suppose that
#parcusp.
n/ 2 2N for any n 2 N. If (11.36) holds, then there exists n 2 N such
that

#parcusp.
n/ 
 2; n 2 N; n 
 n:

Proof Suppose by contradiction that, for an arbitrarily large n 2 N, we can find a
curve 
n 2 pwrpc .Œ0;L�; �/ so that #parcusp.
n/ < 2, and therefore parcusp.
n/ D ;.
We choose a continuous function �n W Œ0;L� ! R as follows: given t 2 Œ0;L�, we
define �n.t/ as the oriented angle between the first coordinate axis and the tangent

20For example, if the common tangent line at the two cusps is fx2 D 0g, then one can use a
transformation of the form .x1; x2/ ! ."x1; "

2x2/, and then let " ! 0.
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vector of 
n at t . Let us write, with obvious notation, P
n.s/ D .cos �n.s/; sin �n.s//
at the differentiability points of 
n. Then, �n 2 W 1;p..0;L//, and using Hölder’s
inequality, it follows

Z
.0;`.
n//

j�
n jp ds D
Z
.0;`.
n//

j P�njp ds 
 `.
n/
�p=p0

�Z
.0;`.
n//

j P�nj ds

�p
;

where 1
p

C 1
p0

D 1. Hence

`.
n/ 

�Z

.0;`.
n//

j P�nj ds

�p0 �Z
.0;`.
n//

j�
njp ds

�� p0

p


.2�/p0

�Z
.0;`.
n//

j�
n jp ds

�� p0

p


 .2�/p
0

	
p0

p C
� p0

p ;

(11.37)

where C 2 .0;C1/ is an upper bound for the left-hand side of (11.35). The proof
is concluded, because formula (11.37) contradicts assumption (11.36). ut

11.B.1 Convergence

Now, we give the notion of convergence for a sequence of elements of pwrpc ; this
convergence is related to the coercivity properties of F (see Theorem 11.B.3).

For simplicity, we start with sequences of curves, the systems being considered
later.

Definition 11.B.2 (Weak Convergence of pwrpc Curves) Let .
n/�pwrpc.Œ0;L�; �/
and 
 2 pwrpc .Œ0;L�; �/. We say that the sequence .
n/ weakly converges to 
 in
pwrpc if:

– there exist two real constants `1; `2 such that

0 < `1 � `.
n/ � `2; n 2 NI (11.38)

– #parcusp.
n/ is independent of n;
– the curve 
 and each curve 
n admit a regular reparametrization on Œ0; 1�, for

simplicity still denoted by 
 and 
n respectively, such that limn!C1 
n D 
 in
C0.Œ0; 1�I�/, and the following properties hold:

(i) the sequence .parcusp.
n// converges in the sense of Kuratowski to a finite
set K of points of Œ0; 1�, with

K � parcusp.
/;
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Fig. 11.9 The three points making up a swallow’s tail (two cusps and one crossing) can collapse to
a single point as shown in this sequence. Observe that, from the discussion after Definition 11.B.2,
the bound (11.35) remains valid [as well as (11.38)]. The curve of the last picture is of class W 2;p ;
in particular, the tangent vector is continuous in a neighbourhood of the marked point

(ii) the sequence .
n/ converges to 
 as n ! C1 weakly inW 2;p.Œ0; 1�nK;�/,
and in C1.I; �/ for any connected component I of Œ0; 1� nK .

The set #parcusp.
/ of cusp parameters21 of 
 can be strictly contained in the
set K , because of the possible collision, in the limit, of (two or more) distinct cusp
parameters of 
n. To construct an example of this behaviour, it is sufficient to take a
sequence .
n/ having as image the torus in Fig. 3.6 and satisfying (11.35), in such a
way that, as n ! C1, one of the two swallow’s tails tends to disappear (Fig. 11.9),
forcing the two involved cusps to collide at the crossing. The construction must be
made so that, as n ! C1, also the crossing disappears, in the sense that the curve
becomes locally of class C1, and hence of class W 2;p . In this case the parameter
corresponding to the collision points belongs to K n parcusp.
/.

Theorem 11.B.3 (Compactness in pwrpc ) Let .
n/ � pwrpc .Œ0;L�; �/ be a
sequence such that #parcusp.
n/ 2 2N for any n 2 N. Suppose that the bound (11.35)
holds. Then there exists a (not relabelled) subsequence such that one of the two
following alternatives holds: either (11.36) holds, and in this case #parcusp.
n/ 
 2,

or there exists 
 2 pwrpc .Œ0;L�; �/ such that .
n/ weakly converges to 
 in pwrpc .

Proof Take a (not relabelled) subsequence such that any addendum on the left-hand
side of (11.35) has a limit as n ! C1, and so that the sum of the three limits is
finite. If (11.36) holds, then the thesis follows from Lemma 11.B.1. Hence, we can
suppose that

inf
n2N `.
n/ > 0: (11.39)

The bound (11.35) implies that

sup
n2N

`.
n/ < C1; (11.40)

21The structure of parcusp.
/ can be described (see (11.44), below).
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and that, possibly extracting a not relabelled subsequence,

#parcusp.
n/ D l is independent of n:

We have to construct a curve 
 2 pwrpc .Œ0;L�; �/ for which all requirements in
Definition 11.B.2 are satisfied.

From (11.39) and (11.40) it follows that, for any n 2 N, we can regularly
reparametrize 
n with a map still denoted, for simplicity, by t 2 Œ0; 1� ! 
n.t/

(recall that 0 and 1 are identified). If

parcusp.
n/ D ft1;n; : : : ; tl;ng � Œ0; 1�;

possibly passing to a further not relabelled subsequence, we can assume that

9 lim
n!C1 tj;n DW tj 2 Œ0; 1�; j 2 f1; : : : ; lg; (11.41)

where the tj are not necessarily distinct (see Fig. 11.9 for an example). We define

T WD ft1; : : : ; tlg: (11.42)

Observe that the sequence .parcusp.
n// of sets converges to T in the sense of
Kuratowski.

Let I � Œ0; 1� be a connected component of Œ0; 1� n T . Let In be a connected
component of Œ0; 1� n parcusp.
n/, chosen so that the left (respectively right)
extremum of In converges, as n ! C1, to the left (respectively right) extremum
of I. Let ı > 0 be sufficiently small, and let I�

ı WD ft 2 I W dist.t; T / > ıg, for
ı > 0 small enough. Notice that In � I�

ı , for n 2 N large enough. Denote by Jn the
connected component, in an arc length parametrization of 
n, corresponding to In,
and let `.
nI In/ be the length of 
n.In/. Using the equality

Z
Jn

j�
n jp ds D `.
nI In/
1�2p

Z
In

ˇ̌

 00
n

ˇ̌p
dt;

from (11.40) and (11.35) we obtain that

sup
n2N

Z
In

ˇ̌

 00
n

ˇ̌p
dt < C1:

Since the image of each 
n is contained in �, we deduce that

sup
n2N

k
nkW 2;p.In;R2/ < C1:
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Therefore, from (11.41), it follows that there exist a not relabelled subsequence22 of
.
n/ and a map 
I�

ı
2 W 2;p.I�

ı ;R
2/, such that

lim
n!C1 
njI�ı D 
I�ı

in C1
�
I�
ı ;R

2
�

and weakly in W 2;p.I�
ı ;R

2/; (11.43)

and k
I�
ı

kW 2;p.I�ı ;R
2/ � lim inf

n!C1 k
nkW 2;p.I�ı ;R
2/. Taking a suitable sequence .ın/ of

positive numbers converging to zero as n ! C1, we obtain a limit map 
I 2
W 2;p.I;R2/. Now, we glue together the various 
I, and define 
 W Œ0; 1�nT ! R

2 as:


.t/ WD 
I.t/ if t 2 I:

Since 
n is Lipschitz continuous in Œ0; 1�, with a Lipschitz constant independent of n
(recall (11.39) and (11.40)), observing that lim"!0C 
.tj � "/ D lim"!0C 
.tj C "/

for any j 2 f1; : : : ; lg, we have


 2 Lip.Œ0; 1�;�/ \W 2;p.Œ0; 1� n T;R2/:

In addition, for any I we have 
 2 C1.I; �/, and there exists a constant c ¤ 0

independent of I such that j
 0j D c in I.
Now, let I1 and I2 be two consecutive intervals of Œ0; 1� n T , hence with

sup I1 D inf I2, and let I1;n, I2;n be the corresponding intervals considered above,
so that sup I1;n � inf I2;n. We notice that it may happen sup I1;n < inf I2;n, a
case which may occur in case of collision of two or more cusp parameters of 
n.
Now, we recall that the total number of cusp parameters is uniformly bounded;
in addition, if �n < �n are two distinct consecutive cusp parameters belonging to
parcusp.
n/ \ Œsup I1;n; inf I2;n�, we have that limn!C1 j�n � �nj D 0. The same
argument leading to formula (11.45), below, shows that the variation of the angle
made by 
 0

nj
 0

n j in the interval .�n; �n/ tends to zero as n ! C1.
In conclusion, as a consequence of (11.43), at a point of T either the unit tangent

vector to 
 is continuous (and in this case this point can be eliminated from T ), or
it jumps of an angle belonging to f�;��g. ut
Proposition 11.B.4 (Characterization of the Limit Cusp Parameters Set) Fol-
lowing the notation of (11.42), for any t 2 ft1; : : : ; tlg D T define23

Jt WD fj 2 f1; : : : ; lg W lim
n!C1 tj;n D tg:

Then

parcusp.
/ D ft 2 T W #Jt is oddg: (11.44)

22See [4, Theorem 8.8 and Proposition 3.5].
23That is, at t there is a collision of #Jt cusp parameters of 
n as n ! C1.
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In particular, if t 2 T is such that #Jt is even, then 
 is of class W 2;p (and
hence C1) locally around t : in this case, an even number of cusp parameters collide,
leaving a point t 2 T around which 
 is W 2;p , as in Fig. 11.9.

Proof In order to show (11.44), we take " > 0 small enough; we want to compute
the rotation angle between 
 0.t�"/

j
 0.t�"/j and 
 0.tC"/
j
 0.tC"/j . From (ii) of Definition 11.B.2, it

is sufficient to estimate the rotation angle between 
 0

n.t�"/j
 0

n.t�"/j and 
 0

n.tC"/j
 0

n.tC"/j for large
values of n 2 N. This angle is the sum of three contributions: the first one, denoted
by C1;n, is due to the cusps, the second one, denoted by C2;n, due to each of the
arcs between two consecutive parameters ti;n; tiC1;n belonging to Jt , and the third
one, originated from the rotation angle between t � " and the first cusp parameter in
.t � "; t C "/, and the rotation angle between the last cusp parameter in .t � "; t C "/

and t C ". This latter contribution turns out to be of order O."/, uniformly with
respect to n. In addition, the first contribution is an integer multiple of � , more
precisely

C1;n D �#Jt :

Let us show that

lim
n!C1C2;n D 0: (11.45)

Choose, as usual, a continuous function �n W Œ0;L� ! R in such a way that �n.t/ is
the oriented angle between the first coordinate axis and the tangent vector of 
n at
t 2 Œ0;L�. Denoting by l.
nI .ti;n; tiC1;n// the length of 
n..ti;n; tiC1;n//, using the
Hölder inequality we have

 Z
l.
nI.ti;n;tiC1;n//.ti;n;tiC1;n/

j P�nj ds

!p0

� `.
nI .ti;n; tiC1;n//
�Z

.0;`.
n//

j�
n jp ds

� p0

p

:

(11.46)

Observe now that, from (11.35),

sup
n2N

�Z
.0;`.
n//

j�
n jp ds

� p0

p

< C1; (11.47)

and that

lim
n!C1 `.
nI .ti;n; tiC1;n// D 0:
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Hence, being

C2;n �
 Z

.ti;n;tiC1;n/

j P�nj ds

!p0

;

formula (11.45) follows from (11.46) and 11.47. We then conclude the proof of our
claim (11.44), observing that if #Jt is even, then in view of the previous arguments,
the unit tangent vector to 
 does not jump at t , namely 
 is locally of class C1 in a
neighbourhood of t (and therefore also of class W 2;p). ut

We are now in a position to generalize the previous definitions and results to the
case of systems of curves.

Definition 11.B.5 (Weak Convergence of Systems of pwrpc Curves) We say that
the sequence .
n/ � sys.pwrpc /.Œ0;L�; �/ weakly converges to 
 D f
1; : : : ; 
hg 2
sys.pwrpc /.Œ0;L�; �/ in pwrpc if the number of curves of each system 
n equals
the number of curves of 
 , i.e., 
n D f
n1 ; : : : ; 
nh g for any n 2 N, and for any
i 2 f1; : : : ; hg the sequence .
ni / weakly converges to 
i in pwrpc .

The next theorem generalizes Theorem 11.B.3; we omit the proof, which is
the same as that of Theorem 11.B.3, and is obtained reasoning separately for the
sequences of curves composing the approximating systems, possibly taking into
account Lemma 11.B.1.

Theorem 11.B.6 (Compactness in sys.pwrpc /) Let m 2 N be given. For any
n 2 N let 
n D f
n1 ; : : : ; 
nmg 2 sys.pwrpc /.Œ0;L�; �/ be a system of pwrpc curves

parametrizing a complete labelled contour graph of class W2;p
graph. Suppose that

sup
n2N

�
ˇ`.
n/C 	K.
n/C �#parcusp.
n/

�
< C1:

Then there exists l 2 f1; : : : ; mg independent of n such that, possibly reordering
the curves composing 
n, the system f
n1 ; : : : ; 
nl g admits a subsequence weakly
converging in pwrpc to a system f
1; : : : ; 
lg 2 sys.pwrpc /.Œ0;L�;�/, and, if l < m,
limn!C1 `.
nj / D 0 for any j 2 fl C 1; : : : ; mg.

The system f
1; : : : ; 
lg consists of a number l of curves in general smaller than
the number m of curves composing 
n, because of the possible presence of curves
in 
n having infinitesimal length as n ! C1. Observe also that there is no claim
that the limit system is a parametrization of a complete labelled contour graph of
class W2;p

graph.
We conclude this appendix with a definition, useful in the study of the func-

tional F .
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Definition 11.B.7 (Limit System of Complete Contour Graphs) We say that 

is a limit system of complete labelled contour graphs of class W2;p

graph if 
 is the weak
limit of a sequence .
n/ of oriented parametrizations of complete labelled contour
graphs of class W2;p

graph.
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# Function measuring the cardinality of a set,
page 33

� Order relation in the Nitzberg–Mumford model,
page 6R

�
jDf j Total variation of the BV function f , page 330

2N Nonnegative even natural numbers, page 16
aȧ Arcs “above” in a crossing, page 60
aḃ Arcs “below” in a crossing, page 60
A.u; C; P / A curvature depending functional with penal-

ization of singular points, page 11
appcon.'/ Apparent contour of the map ', page 31
arcs.appcon.'// Arcs of an apparent contour, page 32
arcs.G†/ Arcs of G†, Sect. 3.2, page 58
b Definition 7.1.1, page 159
B Move B, Definition 6.1.1, page 133
background.K/ Remark 4.1.10, page 76
B.appcon.'// Bennequin’s type invariant, Definition 7.1.2,

page 159
BM1 A curvature depending functional for occlu-

sions, II, page 13
BM.u; �/ A curvature depending functional for occlu-

sions, I, page 12
BV.�; 2N/ Functions of bounded variation in� taking val-

ues in the even natural numbers (zero included),
page 15

C Move C, Definition 6.1.1, page 133
C1.X ;Y / Section 2.1, page 26
c� Incoming arc at cusp c, page 59
cC Outgoing arc at cusp c, page 59
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356 Nomenclature

crit.'/ Critical set of the map ', page 28
critor.appcon.'// Oriented critical points of appcon.'/, page 159
crossings.appcon.'// Crossings of the apparent contour appcon.'/,

page 32
crossings.G†/ Crossings of G†, Sect. 3.2, page 58
crossingsor.appcon.'// Symbols for oriented crossings of appcon.'/,

page 158
cusps.appcon.'// Cusps of the apparent contour appcon.'/,

page 32
cusps.G†/ Cusps of G†, Sect. 3.2, page 58
cuspsor.appcon.'// Symbols for oriented cusps of appcon.'/,

page 158
d Limit of a sequence of labellings, page 332
deg.p/ Degree of the node p of the plane graph H ,

page 74
Diff.Z/ Section 2.1, page 25
Diffc.R

n/ Diffeomorphisms of Rn with compact support,
Sect. 2.3, page 25

DiffC.S/ Set of all positive diffeomorphisms of S
2,

page 37
Dom.F/ Domain of the action functional F , page 325
d† Value of the labelling on the arc a, page 65
� Alexander polynomial, page 182
ŒE� Depth-equivalence class of the shape E ,

page 102
E Fundamental ideal, page 188
E 3D scene, page 53
e Embedding, usually from a two-manifold in R

3,
page 125

Emb.X ;Y / Section 2.1, page 30
embsign.c/ Embedding sign of a cusp, Definition 8.1.2,

page 197
ext.H/ External region of the plane graphH , page 74
ext.G†/ External region of G†, Sect. 3.2, page 58
"d Elementary ideals, Definition 7.7.2, page 186
f Limit of a sequence of twice winding numbers,

page 332
F D F.f; d; u/ Functional on apparent contours, page 17
f' Definition 2.2.5, see equation (2.2), page 33
finn Value of f in Rmax, page 66
fmax Value of f in Rmax, page 66
fmin Value of f in Rmin, page 66
F Sequential lower semicontinuous envelope of

F , page 332
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f ˙ The two traces of the BV function f on Jf ,
page 324

f† Function counting the total number of inter-
sections between † and a light ray, Sect. 3.3,
page 59

f†.a/ Value of f† on arc a, Sect. 3.3, page 61
f†.R/ Value of f† on region R, Sect. 3.3, page 59
�2 Quadratic integrand in the elastica functional,

page 6
�NM Integrand in the Nitzberg–Mumford functional,

page 7
�p p-growing integrand, page 12
'.crit.'// Critical value set, page 29
g Grey level, page 1
G A generic finitely presented group, page 180
G† Apparent contour of a factorized map, Sect. 3.2,

page 58
G0 Commutator normal subgroup of G, page 181
.G; d/ Complete labelled contour graph, page 79
.G; f; d/ Complete labelled contour graph, page 79
g0
i Mean value of g on R0

i in the Nitzberg–
Mumford model, page 7

.G†; f†; d†/ Complete labelled contour graph originated
from†, page 79

H R
n-ambient isotopy, page 36

h R
2-ambient isotopy, page 37

H1 One-dimensional Hausdorff measure in R
2,

page 4
Ht Time-slice of H , page 36
ht Time-slice of h, page 37
im.
/ Image of the curve 
 , page 324
im.
/ Image of the system 
 , page 345
INVB Inverse of move B, page 247
INVC Inverse of move C, page 248
INVK0 Inverse of move K0, page 247
INVK1b Inverse of move K1b, page 247
INVK1 Inverse of move K1, page 247
INVK2 Inverse of move K2, page 247
INVL Inverse of move L, page 247
INVS Inverse of move S, page 248
J Jacobian of a presentation, page 184
Jf Jump set of the function f , page 324
Ju Jump of the BV function u, page 5
K Move K, Definition 6.1.1, page 133



358 Nomenclature

K0, K1, K1b, K2 Simple moves of type K, page 134
K.
/ Curvature-depending functional on the curve 
 ,

page 343
K.
/ Curvature-depending functional on the system


 , page 345
K� Localization ofK in the half-plane UC

� , page 84
� Curvature, page 7
�
 Curvature of the curve 
 , page 343
L Move L, Definition 6.1.1, page 133
L Ring of Laurent polynomials in one or

more indeterminates and integer coefficients,
page 185

`.
/ Length of the curve 
 , page 343
`.
/ Length of the system 
 , page 345
m Descriptive map, page 46
M A closed two-dimensional manifold, page 31
maxminor.appcon.'// Symbols for oriented local maxima/minima of

appcon.'/, page 158
m
 Multiplicity of 
 , page 343
m	 	-slices of the descriptive map m, page 44
MS.u/ Mumford–Shah functional, weak form, page 5
MS.u; K/ Mumford–Shah functional, strong form, page 4
M.u; � n C/ Part of the functional F containing the Dirichlet

integral, page 324
N Nonnegative integer numbers, page 33
NC Positive natural numbers, page 104
NM Nitzberg–Mumford functional, page 7
eNM Modification of the Nitzberg–Mumford func-

tional, page 8
nodes.appcon.'// Nodes (or vertices) of an apparent contour,

page 32
nodes.H/ Nodes (or vertices) of the plane graph H ,

page 74
nodes.appcon.'// Nodes (or vertices) of an apparent contour,

page 32
nodes.G†/ Nodes of G†, Sect. 3.2, page 58
o Trivial map o W G ! f1g, page 185
� Screen, typically � D .0; 1/ � .0; 1/, page 1
parcusp.
/ Cusp parameters, Definition 11.A.1, page 343
parcusp.
/ Cusp parameters of the system 
 , page 345
Partoverlap.R

2/ Set of all finite overlapping partitions of R
2,

page 6
P.N/ Set of all subsets of N, page 332
P.R/ Set of all subsets of R, page 113



Nomenclature 359

pwrpc Definition 11.A.1, page 342
pwrpc .Œ0;L�; �/ Definition 11.A.1, page 342
pwrpc .Œ0;L�;�/ Definition 11.A.1, page 342
� Orthogonal projection R

2�R ! R
2 on the first

factor, Sect. 3.2, page 56
Q Container of all 3D scenes, � � I , page 2
.R; r/ Stratum, Definition 3.3.1, page 61
Rinn Region inside a cusp, page 66
R0
i Visible part of Ri in the Nitzberg–Mumford

model, page 6
jRi j Lebesgue measure of Ri , page 7
Rmax Region inside a cusp, page 66
Rmin Region outside a cusp, page 66
Rout Region outside a cusp, page 66
S Source three-manifold in the completeness the-

orem, see also (6.7), page 136
S Move S, Definition 6.1.1, page 133
S1.'/ Section 2.1, page 28
S
1 Unit circle, page 27
S12.'/ Section 2.1, page 28
S13.'/ Section 2.1, page 29
S
2 Unit two-dimensional sphere, sometimes con-

sidered as the compactification of R2, page 37
S
3 Compactification of R3, page 40
SBV.�/ Special functions of bounded variation in �,

page 5
Stable.X ;Y / Stable maps from X to Y , page 26
sys.pwrpc / Systems of pwrpc curves, page 344
sys.pwrpc /.Œ0;L�; �/ Systems of pwrpc .Œ0;L�; �/ curves, page 344
sys.pwrpc /.Œ0;L�; �/ Systems of pwrpc .Œ0;L�; �/ curves, page 344
† Boundary of a 3D shape, Sect. 3.2, page 56
T Topological manifold, page 108
T Target three-manifold in the completeness theo-

rem, see also (6.8), page 136
T Move T, Definition 6.1.1, page 133
‚ Homeomorphism preserving the order on the

fibres, Definition 5.1.2, page 102
UC
	 Half-plane above the line at height 	, page 84

Unstable.M;R2/ Unstable maps in C1.M;R2/, page 162
vis.G/ Visible part of a complete labelled contour

graph, page 79
vis.Jf / Visible part of Jf , page 325
W 1;p.I/ Sobolev space, page 323
W 2;p.I/ Sobolev space, page 323



360 Nomenclature

w.appcon.'/; �/ Winding number of appcon.'/, Defini-
tion 2.2.8, page 34

W Curvature-depending part of the functional F ,
page 326

w.
; �/ Winding number (or index) of x with respect to

 , page 344

w.
; �/ Winding number of the system 
 , page 345
w.H; �/ Winding number of the contour graph H ,

page 77
wleft Definition 7.3.2, page 170
wright Definition 7.3.2, page 170
X Free group with n generators for some n 2 N,

page 183
fX0.F /;X1.F /;X2.F /;X3.F /g Stratification of S , Sect. 6.2.1, page 137
fY1.F /; Y2.F /; Y3.F /g Stratification of T , Sect. 6.2.1, page 138
Z Ring of integer numbers, page 33
ZX Group ring, page 183
Œ��; �C� Smooth two-valued function, page 113



Index

Abelianized, 181
Abelianizing map, 185
Adjacency, 198
Adjacency of strata in an open set, 199
Adjacent arc, 74
Admissible background, 76
Alexander polynomial, 181, 182, 262
Ambient isotopic apparent contours, 41
Ambient isotopic embeddings, 132
Ambient isotopic labelled apparent contours,

69
Ambient isotopic surfaces, 132
Ambient isotopy, 36
Ambient isotopy with compact support, 36
Apparent contour, 31

without labelling, or unlabelled apparent
contour, 31

orientation, 34
Arc

of an apparent contour, 32
incoming at a cusp, 196
outgoing at a cusp, 196

Arnold, V.I., xvi

Background, 76
Beak-to-beak (rule B), 133
Bean, 96
Bennequin type invariant, 159, 275, 280
Betti numbers, 181
Bing’s example, 305
Body, 53
Borromean rings, 266
Boy surface, 277, 313

Canonization procedure, 249
Cell complex, 176
Closed arc, 32
Closed arcs of a graph, 74
Closed manifold, 26
Command

abelianizedfundamental, 263, 289
addsphere, 286
afg, 263, 289
alexander, 263, 289
canonify, 287
ccordering, 284
ccparent, 284
cellcomplex, 258, 288
characteristic, 259, 281
compare, 258, 284
contour rule, 240
coorientation, 284
countcc, 284
3devert, 286
evert, 286
extractcc, 260, 286
fg, 229, 289
frontback, 286
fundamental, 289
gluearcs, 285
icharacteristic, 259
ifg, 230, 260, 289
info, 226, 280
insidecomplex, 258, 288
insidefundamental, 289
iscontour, 281
islabelled, 281
knot2morse, 287
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leftright, 286
linkingnumber, 289
listinvc, 283
listinvl, 282
listinvs, 282
listma, 281
liststrata, 284
mendes, 284
mergearcs, 247, 285
ocharacteristic, 259
ofg, 261, 289
outsidecomplex, 258, 288
outsidefundamental, 289
pinchneck, 285
print, 287
printmorse, 287
punchole, 285
puncture, 285
removecc, 286
removehole, 285
removesphere, 286
rule, 228
rules, 228, 281
scharacteristic, 259
sum, 287
swallowtail, 285
union, 287
wrap, 286
wrinkle, 285

Commutator, 181
Completable contour graph, 80
Complete contour graph, 77
Complete contour graph of class W2;p

graph, 324
Complete labelled contour graph, 79
Complete labelled contour graph of class

W2;p
graph, 325

Completeness of a Morse description of an
apparent contour, 43

Completeness theorem, xix, 154
Completion, 80
Completion theorem, xv, 80
Component of a complete contour graph of

class W2;p
graph, 343

Component of an apparent contour, 31
Connectable cusps in an open set, 200
Connectable strata in an open set, 199
Consecutive arc, 74
Consistent labelling, 78
Contour graph, 75
Convergence on Dom.F/, 327
Critical curve, 58
Critical set, 28
Critical value set, 29

Crossing of a contour graph, 75
Crossing of an apparent contour, 32
Curvature-depending functionals, 11
Cusp

of an apparent contour, 32
decreasing, 196
increasing, 196
negative, 35, 68
pointing into a stratum, 200
positive, 35, 68
simple, or ordinary, or semicubic, 32

Cusp parameter, 343
Cusp-fold (rule C), 133
Cutting arc, 178, 289
Cutting node, 178

Dangling arc, 84
Deficiency, 182
Degree of a node of a graph, 74
Depth equivalence, 102
Depth-first search, 252
Descriptive map

of an apparent contour, 46
of a visible contour graph, 82

Diffeomorphically equivalent apparent
contours, 42

Diffeomorphism supported in a compact set,
25

Discriminant hypersurface in C1.M;R2/, 162
Domain of the action functional F on labelled

graphs, 325
Double curve, 28

Elementary ideals, 186, 263
Elementary moves, xix
Embedding sign of a cusp, 197
Emerging (or transversal) arc at a T-junction,

76
Ending terminal point, 83
Ending T-junction, 83
Equivalent labelled apparent contours, 69
Equivalent maps, 26
Euler-Poincaré characteristic, 275
Excellent map, 28
Exponent sum matrix, 181
Extended arc, 47
External region of an apparent contour, 33

Fiber, 64
Fiber of E , 102
Fidelity term, 4
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Finitely presented group, 180
Finiteness of a Morse description of an

apparent contour, 43
Fold, 28, 29, 137
Fold curves, 28
Fold map, 195
Fox, 183
Free derivative, 183
Free differential calculus, 183
Functional F , 326
Fundamental ideal, 188

General position of an embedded surface with
respect to a projection, 56

Generic family of horizontal Morse lines, 45
Generic Morse line, 44, 46, 82
Generic position of an open set with respect to

an apparent contour, 199
Group ring, 183

Haefliger sphere, 35, 312
Handlebody, 238
Head of an arc, 74
Height function, 43, 44
Horizontal adjacency of a stratum, 198
Horizontal and vertical adjacency between

strata, 198
Horizontal glueing along an arc, 105

Image of a curve, 324
Impossible graph, 67
Interior terminal point, 75
Inverse moves, see rules, inverse, 133
Invisible arc, 79
Invisible part of a complete labelled contour

graph, 79
Island, 244
Isomorphism problem, 180
Isotopic embeddings, 142
Isotopic surfaces, 142
Isotopy, 142

Rn-ambient, 36

Kanizsa triangle, 18
Kasanie (rule K), 133
Klein bottle, 315
Knot description, 238
Knot group, 180
Knots in a solid torus, 301
Kuratowski convergence, 327

Labelled apparent contour, 79
Labelling, 65
Labelling on a complete contour graph, 78
Laurent polynomials, 185, 263
Legendrian lift, 160
Level-preserving map, 144
Limit system of complete contour graphs of

class W2;p
graph, 353

Link group, 180
Lip (rule L), 133
List of Reidemeister-type moves, 133
Localized completion of a contour graph in a

halfplane, 84
Loop of a graph, 74
Loop of an apparent contour, 32
Lower semicontinuous envelope (or relaxation)

of F , 332

Marked point, 47
Marker, 47
Mendes graph, 274
Millett curve, 278, 314
Milnor curve, 278, 313
Morse description, 226, 236

of the visible contour, 212
Morse event, 43
Morse function, 26
Morse lines, 44
Moves, 133. See also Rules
Multiplicity of a curve, 343
Mumford-Shah functional, 4

Nitzberg-Mumford functional, 6

Occluding arc, 75
Opposite arc, 74
Option

---finfinity, 287
---foxd, 263
---help, 290
---in, 260, 290
---mendes_ge, 291
---nobasecanonify, 290
---nocanonify, 258
---nosimplify, 290
---out, 290
---preabelian, 262, 290
---Q, 268
---seed, 290, 291
---shuffle, 290
---stratum, 285
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---ti, 244, 247
---transfer_islands, 290
---verbose, 290
---version, 290
-a, 285
-n, 298
-q, 290
-Q, 290, 293
-r, 285
-v, 290
-z, 298
--out, 261

Outline of a scene, 55

Parity of cusps, 67
Piecewise regular W 2;p curves with cusps, 342
Pinch point, 29
Pleat, 29, 137
Preabelian presentation, 181

Rank, 181
Reconstruction theorem, xvi, 102
Recovery problem, 14
Region description, 233

canonization, 253
Region of an apparent contour region, 33
Regions graph, 250
Regular point, 28
Regular reparametrization, 344
Reidemeister-equivalence, 136
Reidemeister equivalence in an open set, 201
Reidemeister-equivalence of apparent

contours, 201
Reidemeister-type moves, xix, 133
Retinal plane, 54
Rule

B, 133
C, 133, 243
composite A1, 246
composite A2, 247
composite CR0L, 244
composite CR0Lb, 244
composite CR0R, 244
composite CR0Rb, 244
composite CR0, 244
composite CR1, 245
composite CR2, 245
composite CR3, 246
composite CR3L, 246
composite CR3R, 246
a composite CR4, 246
composite CR4L, 246
composite CR4Lb, 246

composite CR4R, 246
composite CR4Rb, 246
composite TI, 247
inverse INVB, 247
inverse INVK0, 247
inverse INVK1, 247
inverse INVK1b, 247
inverse INVK2, 247
K, 133, 241
K0, 134, 241
K1, 134, 242
K1b, 134, 242
K2, 134, 242
L, 133, 242
S, 133, 243
T, 133, 242

Rules, xix

Schoenflies, 309
Script

contour_describe.sh, 297
contour_interact.sh, 296
contour_transform.sh, 299

Showcontour, 293
Singular set. See Critical set
Smith normal form, 181
Sphere with a cave, I: reconstruction from the

visible part, 98
Stable map, 26
Stable scene, 56
Standard output: redirect, 214
Starting terminal point, 83
Starting T-junction, 83
Stratification of an apparent contour, 43
Stratification of the plane induced by an

apparent contour, 43
Stratum of a region, 61
Swallow’s tail (rule S), 29, 133, 137
System of pwrpc curves, 344

Tail of an arc, 74
Tame knot, 238
Tame link, 238
Terminal point, 75
Theorem

R
2-ambient isotopies and diffeomorphisms,

42, 70
R
3-ambient isotopies and diffeomorphisms,

132
coincidence of the two Bennequin’s type

invariants, 163
compactness in sys.pwrpc /, 352
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compactness in W2;p
graph, 348

completeness, 145
completion, 80
density of stable maps, 31
elimination of cusps, 206
elimination of cusps in an open set, 201
equivalence to stability in the two-

dimensional case, 29
existence of a 3D-shape with given

apparent contour, 102
plane or space isotopies with compact

support and diffeomorphisms, 37
reconstruction in terms of maps, 125
sequential lower semicontinuity of F , 328
total characteristic from the apparent

contour, 172
uniqueness of a 3D-shape with given

apparent contour, 103
Thom, xvi, 26
Three-dimensional scene, 53
Tietze transformation, 180
Torsion, 181
Torus, I: reconstruction from the visible part,

97
Torus, II: reconstruction from the visible part,

98
Transversal crossing (or crossing), 78

Transversal (or emerging) arc at a T-junction,
76

Triple point, 29
Triple point (rule T), 133
Trivial map, 185

Unknotting theorem, 176, 302
Unlabelled apparent contour, i.e., an apparent

contour without labelling, 230

Vertical adjacency of a stratum, 198
Vertical glueing along an arc, 105
Visible arc, 79
Visible contour graph, 76
Visible program, 214

Wall, xvi
Weak convergence of systems of W2;p

graph curves,
352

Weak convergence of W2;p
graph curves, 347

Whitehead link, 304
Whitney, xvi, 28
Whitney umbrella, 154, 278
Winding number, 34, 77
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