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Preface, Motivation, and
Objective

Digital shadow generation is an important aspect of visualization and visual effects
in film, games, simulations, engineering, and scientific applications. Whenwe first
published our original shadow survey paper [639] more than twenty years ago, we
had no idea that the topic of digital shadow generation would generate so much
more research. The abundance of research since the 1990s is due to several reasons:

● The difficulty of resolving the shadowing problem well.

● The need to optimize the shadow algorithms for specific real-time applica-
tions. However, this is not an invitation to omit offline rendering needs,
which, sadly, has been a problem in the last decade in terms of paper publi-
cations.

● Different performance issues due to advancement in hardware, such as the
focus on GPUs (graphics processing units), multicore and SIMD architec-
tures, a switch from reducing FLOPs to accelerate algorithms to improving
locality of reference of RAM, etc.

● The emergence of different data representations, such as image-based im-
postors, and point-based and voxel-based primitives, which, in many cases,
are used alongside the more common polygonal representation.

● The emergence of visually realistic and feasible rendering capabilities that
take indirect illumination (e.g., ambient occlusion, precomputed radiance
transfer) and global illumination (e.g., radiosity, Monte Carlo ray tracing)
into account.

This abundance of research is reflected in the large number of papers published
in the past (see Figure 1). Also note the significant activities since 2000, with a

xiii
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Figure 1. Number of publications published per year related to shadowing algorithms in
computer graphics. Note that the paper count for 2011 is only partially available.

climb to above 30 papers published each of the following years, mainly in the real-
time domain due to broad usage of the GPU.This large amount of literature results
in the need to have a “shadow algorithms data miner” resource. Thus, the objective
of this book is to provide an understanding of the shadow fundamentals (with little
emphasis on actual code and detailedmathematical formulation) so that the reader
gets an organized and structured picture of the motivations, complexities, and cat-
egorized algorithms available to generate digital shadows. The objective is further
enhanced by sorting out which are the most relevant algorithms for the reader’s
needs, based on practitioners’ experience and looking at shadow algorithms from
a larger (graphics) system perspective. As a result, the reader knows where to start
for his application needs, which algorithms to start considering, and which ac-
tual papers and supplemental material to consult for further details. In fact, this is
why we chose the book cover from the wonderful work of Kumi Yamashita, where
many numerical characters combine to cast a shadow of a woman. A data miner
resource, such as this book, can clear the confusion (the many bits and bytes) and
help developers to achieve results that are simple, clever, and elegant (the shadow
of a woman).

Note that we have deliberately included older references in this book as well.
This is important not only for acknowledging the authors in the older works, but
also because there is likelihood that some older techniques can prove useful in the
future due to advances in hardware and other algorithms. For example, many ray
tracing acceleration papers, published back in the 1980s, have come back in the last
five years due to the emergence of ray tracing for near-real-time needs. The older
techniques also may bemore appropriate for mobile devices due to the assumption
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of a lower baseline set of GPU capabilities. In fact, the offline techniques of today
may become the real-time techniques of tomorrow.

Finally, in order to focus our attention, this book concentrates purely on the 3D
digital generation of shadows within the domain of 3D computer graphics. There
are related and important domains in which shadows play a key role, such as al-
gorithms in computer vision which detect shadows within images, but we do not
intend to delve into these algorithms unless they are directly connected to the abil-
ity to digitally generate shadows.

Before starting on the main content of this book, we first go over the organi-
zation of the book, followed by the consistent notation used throughout the book,
and then the state of graphics consumer hardware.

Enjoy!

Organization

This book represents the complete published work (as far as we could find) up un-
til the middle of 2011 for shadow generation from direct illumination approaches;
indirect and global illumination approaches are only lightly touched on. How-
ever, due to the abundance of papers, we are bound to miss or misinterpret some
papers—we apologize for this ahead of time.

Note that it is recommended that the reader have some background in 3D ren-
dering before proceeding with this book.

1. If the reader has none, a good introductory book is Fundamentals of Com-
puter Graphics by Shirley and Marschner, Third Edition, published by A K
Peters, Ltd. [525].

2. For a more advanced coverage of the topics, please refer to Real-time Ren-
dering by Akenine-Möller, Haines, and Hoffman, Third Edition, published
by A K Peters, Ltd. [7].

A website is associated with this book; it can be accessed at the following ad-
dress http://www.iro.umontreal.ca/∼poulin/SADM. It provides additional comple-
mentary information, and it will be updated over time.

Our book is organized into major chapters, including

Chapter 1: Preliminaries of Shadows. This chapter provides basic concepts and
high-level categorized approaches for shadow determination. This chapter
must be read before the reader should proceed to the next chapters. The rest
of the chapters are prettymuch self-contained, although we recommend that
the order of reading be in the order it is written. The hard shadow chapter
should be read before the soft shadow chapter.

Chapter 2: Hard Shadows. This chapter provides an overview of the major ap-
proaches used to compute hard shadows, i.e., shadow boundaries with hard

http://www.iro.umontreal.ca/~poulin/SADM
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edges. The typical light types that generate hard shadows include the direc-
tional, point, and spot lights. After this chapter, if the reader only needs to
consider polygons, then our recommendation is to skip Chapter 3 for now
and proceed to Chapter 4. However, if non-polygons need to be considered,
Chapter 3 will address this subject.

Chapter 3: Supporting Shadows for Other Geometry Types. The major geome-
try type discussed throughout this book mainly focuses on polygons (in
most cases, triangles are assumed), which is a very common graphics prim-
itive. This chapter provides an overview of the major approaches used to
compute shadows for non-polygonal primitives, which can be quite differ-
ent from the polygonal algorithms in some cases. Such primitives include
higher-order surfaces, image-based rendering for impostors, geometry im-
ages, particle systems, point clouds, voxels, and heightfields. Most of the
algorithms discussed in this chapter belong to hard shadows, as very little
literature exists for soft shadow algorithms of non-polygonal objects.

Chapter 4: Soft Shadows. This chapter provides an overview of the major
approaches used to compute soft shadows, i.e., shadow boundaries with soft
edges. The typical light types that generate soft shadows include extended
lights such as linear, polygonal, area, spherical, and volumetric lights. Other
important sources of soft shadows can come frommotion blur, ambient oc-
clusion, precomputed radiance transfer, and global illumination. These will
be covered in the next chapter.

Chapter 5: Other Treatments of Shadows. This chapter provides an overview of
other treatments of shadows and shadow computations, such as bumpmap-
ping, advanced reflection models, semitransparency, highly complex thin
materials, atmospheric shadows, motion blur, ambient occlusion, precom-
puted radiance transfer, and global illumination.

Chapter 6: Applications of the Shadow Algorithms. This chapter provides some
insight into other applications of the shadow algorithms discussed thus far,
including supporting augmented reality, non-photorealistic rendering, and
using shadows as interaction tools.

Chapter 7: Conclusions. This last chapter provides some concluding remarks
about shadow determination algorithms.

Notation

Unless stated otherwise, the commonly used formatted variables that are used con-
sistently throughout this book are given in Table 1, and illustrated in Figure 2.
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Variable Definition

P Point (x, y, z) to be shaded.
N̂ Unit normal (x, y, z) at point P.
L Point light source position (x, y, z), or

point sample on an extended light source.
L̂ Unit light vector from P to L; thus, L̂ = L−P

∥L−P∥
(note that a directional (infinite) light is only defined by L̂).

C Camera position (x, y, z).
V̂ Unit view vector (x, y, z) for camera at C pointing at P;

thus, V̂ = P−C
∥P−C∥ .

Table 1. Notation used in this book.

N̂

ϕo

θo θi

ϕi
T̂

V̂

B̂

L̂
P

Figure 2. Illustration of the commonly used variables.

Spaces

When rendering a 3D scene in an image, as well as when computing shadows,
various stages of the process can be accomplished in different spaces, most often
for efficiency purposes.

When we refer to world space, we assume the coordinates are given according
to the 3D space of the entire scene. In object space, the coordinates are given in the
local space of the object, i.e., before the object is transformed and inserted in world
space. In camera space, the coordinates are given in the local space of the camera
pyramid, formed by the C position, the image rectangle, and sometimes, near and
far clipping planes. This pyramid is sometimes called view frustum. In normal-
ized camera space, the pyramid has been transformed into a box of coordinates
(±1,±1, {0,−1}). In light space, the coordinates are expressed in the same space as
in camera space, but they take the point light source L as the camera position C.
Figure 3 illustrates these different spaces.
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Figure 3. Different working spaces illustrated in 2D: object space, world space, light space,
camera space, and normalized camera space.

State of Graphics Consumer Hardware

We feel that a snapshot of today’s graphics consumer hardware provides an impor-
tant context to the current algorithms described in this book. We try to present
most of the older contributions in today’s context, discussing their limitations
when appropriate. In the future, changes in the graphics consumer hardware can
significantly alter the future algorithms, as well as the effectiveness of today’s algo-
rithms. The most significant consumer hardware aspects include

Direct3D, OpenGL. The two most used APIs that can render 2D and 3D elements
and take advantage of hardware acceleration (GPU) when available. Di-
rect3D is targeted for Windows platforms, whereas OpenGL is an open in-
dustry standard that is available on many platforms. Direct3D is currently
on version 11, and OpenGL is on version 4.1.
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OpenGL ES. While Direct3D and OpenGL are available for PCs, OpenGL ES is
the only API available on mobile devices (phones, tablets, and video game
consoles). Some of the older techniques (assuming a lower baseline set of
GPU capabilities) described in this book would be more suitable for mobile
devices under OpenGL ES. OpenGL ES is currently on version 2.

GPU. Current mainstream GPU capabilities (available onmost PCs, laptops, note-
books) include graphics capabilities such as matrix, vector, and interpola-
tion operations, texture mapping, rendering polygons, and programmable
(vertex, fragment, pixel) shaders. Current GPUs can easily support typical
memory of 512MB to 1 GB, with high-end GPUs supporting several GB.The
GPUhas also advanced to the point of being able to perform a lot more than
just graphics operations, known as GPGPU (general purpose GPU).

CPU + GPU. An important trend has been to combine CPU +GPU on a chip (e.g.,
AMD’s Fusion, NVIDIA’s Tegra 2, Intel’s Sandy Bridge, etc.). This is signifi-
cant because CPU to GPU transfer (of data) becomes much less of a bottle-
neck.

GPGPU. There are three main APIs for GPGPU: OpenCL, DirectCompute, and
CUDA. CUDA is well suited for NVIDIA-based machines, DirectCompute
is well suited for DirectX-based machines, and OpenCL is attempting to
target a wider set of platforms. CUDA is on version 2.1, DirectCompute is
linked with DirectX-10 and DirectX-11, and OpenCL is on version 1.1.

Multicore. The PCs, laptops, and notebooks of today are minimally dualcore or
quadcores (i.e., they contain two or four CPUs, respectively). Even tablets
(e.g., iPad2) are dualcores. However, this is a recent trend within the last five
years, so single-core machines should not ignored.

SIMD architecture. The most common SIMD architecture today would be the
MMX and SSE instruction sets, where code can be written at the micro-
processor level to achieve much higher speeds than writing in a standard
programming language.

32-bit and 64-bit architectures. Most PCs and laptops today support 64-bit ar-
chitectures, which means that the machine can support RAM sizes signifi-
cantly larger than 2 GB. However, there are still existing PCs as well as sup-
porting software that are only capable of 32-bit, which means that any ap-
plication can only use 2 GB of memory (in most cases, it is actually around
1.6 GB, since memory is needed to run the OS).
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Derek Nowrouzezahrai, Marc Stamminger, and Eugene Fiume, for provid-
ing invaluable suggestions about our book.

● Luc Leblanc,Thomas Annen, Lee Lanier, TomKlejne, Victor Yudin, Aghiles
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CHAPTER 1 

Preliminaries of Shadows 

1.1 What’s Covered in This Chapter 
This chapter covers the basic concepts of shadows, including an introduction of the 
perceptual impact of hard, soft, and colored shadows (Section 1.2). It then classifies 
the algorithms into major categories (planar receivers of shadows, shadow depth 
map, shadow volume, ray tracing, etc.), and discusses the high-level algorithm as 
well as advantages and disadvantages of the categorized approaches (Section 1.3). 
Because this book mainly deals with shadowing based on occlusion of other objects 
onto the shadowed object, self-shadowing also needs to be considered (Section 1.4). 
This chapter concludes with the many considerations for choosing the appropriate 
shadow-determination algorithm, which are usually dependent on non-shadow 
factors (Section 1.5). 

1.2 Basic Concepts 
In the upcoming sections, the basic concepts of shadows are discussed, including 
why shadows are important (Section 1.2.1), the concepts of hard and soft shadows 
(Section 1.2.2), and the causes of colored shadows (Section 1.2.3). 

1.2.1 Why Shadows 

A shadow is a region in 3D space where light emitted or reflected is completely or 
partially occluded. As such, computing shadows is the same as computing the 
visibility of the light emitter or re-emitter for a region. 
Using almost any measure of image quality, the computation of shadows is essential. 
They cause some of the highest-intensity contrasts in images; they provide strong 
clues about the shapes, relative positions, and surface characteristics of the objects 
(both occluders and receivers of shadows); they can indicate the approximate 
location, intensity, shape, size, and distribution of the light source; and they
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Figure 1.1. Shadows provide visual information on relative positions of the spheres on the 
floor and wall. Image courtesy of Tom Klejne. 

represent an integral part of the sunlight (or lack of) effect in architecture with 
many buildings. Figure 1.1 illustrates clues that shadows provide in context of the 
same image without and with shadows. 

In fact, in some circumstances, shadows constitute the only components of the 
scene, as in shadow-puppet theater and in pinscreen animation, developed by 
Alexander Alexeieff and Claire Parker [457, 365]. Another wonderful treatment of 
shadows comes from “shadow art,” including the work of Kumi Yamashita (see the 
book cover), as well as Paul Pacotto [449], who uses a sculpture of a rose to cast a 
shadow of a woman (see Figure 1.2). An equivalent form of shadow art can be seen 

 
 
Figure 1.2. Sculpture of a rose casting a shadow of a woman. Photograph courtesy of Paul 
Pacotto 
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Figure 1.3. An equivalent of shadow art in computer graphics form. ©2009 ACM, Inc. 
Included here by permission [414]. 

in computer graphics [414], although the visual effect is purely shadows-based, 
where there are no aesthetics in the shadow casting model (see Figure 1.3). 

Perceptual Impact of Shadows 

Wanger [623] evaluates various depth cues that are useful for displaying inter-object 
spatial relationships in a 2D image. Shadows form an important visual cue among 
the depth cues. However, comparing the use of hard shadows versus soft shadows as 
visual cues, he determined that hard shadows are actually more beneficial as a visual 
cue. Studies have been done in which the availability of shadows improves the 
interaction of object positioning and improves the accuracy of spatial relationships 
between objects [622, 30, 380, 251, 375] and the perception of realism [472]. In fact, 
without the presence of shadows, surfaces often appear as if they are floating over a 
floor when they are actually lying on the floor (as can be seen in Figure 1.1). This is 
why shadows are one of the crucial elements in some augmented reality applications 
(see Section 6.2). 

One conclusion to draw from these studies is that shadows form important 
visual cues for spatial relationships between objects and light sources in a 3D scene. 
However their exact determination might not be as important as long as they are 
consistent with our expectations. In fact, when dealing with extended light sources, 
exact shadows can be very surprising and unnatural for the average observer. The 
three images in Figure 1.4 show the shadow from a linear light aligned with the  

 
 
Figure 1.4. A cross-shaped object is rotated by 20 degrees and 40 degrees around the vertical 
axis. The soft shadow cast on the plane below from a thin elongated linear light source 
becomes discontinuous under rotation. 
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Figure 1.5. Super Mario casts a simplified circular shadow, which remains effective enough in 
this Nintendo Super Mario 64 game. 

object (left) and with the object rotated by 20 degrees (center) and by 40 degrees 
(right) around the vertical direction. Notice the (correct) discontinuity within the 
shadows. 

This can lead to potential shadow approximations that exploit visual expecta-
tions and therefore to simplifications over the visibility algorithms. Direct image 
visibility is always more demanding than shadows, which are a secondary 
phenomenon. The next set of chapters will show a number of such approximations 
that are commonly used for shadows. 

We can go even further. Shadows reflecting the shape of the occluder can be 
very approximate and remain very effective in certain real-time environments such 
as video games. For example, in Super Mario 64, Super Mario casts a circular 
shadow on the ground (see Figure 1.5). Although the shadow does not reflect the 
silhouette of (the occluder) Super Mario, it is a very effective, real-time visual cue as 
to where Super Mario is with respect to the ground. That such simplified shadows 
satisfy many users is actually confirmed by two studies [427, 499]. Further, shadow 
algorithms have also been introduced that are less accurate but acceptable for 
moving objects [402]. 

1.2.2 Hard Shadows versus Soft Shadows 

Shadow determination, in the context of occlusion from other surfaces, can be con-
sidered some variation of the visibility determination problem. Instead of comput-
ing visibility from the camera, however, shadow determination computes visibility 
from the light source. One main difference is that for shadow determination, it is 
not necessary to calculate the closest visible surface; it is only necessary to deter-
mine if there is occlusion between the surface and the light. 
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Figure 1.6. Hard shadows versus soft shadows. Image courtesy of Hasenfratz et al. [227], 
©Eurographics Association 2003. Reproduced by permission of the Eurographics Association. 

There are basically two shadow types: hard and soft shadows. Figure 1.6 shows 
an illustration of the two shadow types. We will discuss the shadow types in detail in 
the subsequent chapters. 

For existing shadow algorithm surveys, refer to the following important 
publications: 

1. An older survey by Woo, Poulin, and Fournier (1990) [639]. 

2. A real-time, soft shadow algorithm survey by Hasenfratz, Lapierre, 
Holzschuch, and Sillion (2003) [227]. 

3. A book that includes a real-time shadow algorithm survey by Akenine-
Möller, Haines, and Hoffman (2008) [7]. 

4. A real-time, hard shadow depth map survey by Scherzer, Wimmer, and 
Purgathofer (2010) [507]. 

5. A recent book by Eisemann, Schwartz, Assarsson, and Wimmer (2011) 
[158], which provides in-depth description, mathematics, and analysis of 
real-time shadow algorithms. 

Hard Shadows 

A hard shadow is the simplest type of shadow, displaying only the umbra section.   
If a region of space is either completely occluded or completely lit, hard-edged 
boundaries are formed between the shadowed (umbra) and lit regions. Calculation 
of hard shadows involves only the determination of whether or not a point lies in 
shadow of occluding objects. This is a binary decision problem on top of the 
illumination model. In other words, we multiply a value of either 0 or 1 by the 
reaching light intensity, indicating in shadow or not in shadow, respectively. The 
types of light sources truly generating hard shadows include a point light, spotlight, 
and directional light (Figure 1.7). Chapter 2 covers algorithms that generate hard 
shadows for polygons, and Chapter 3 does the same for non-polygonal primitives. 
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Figure 1.8. Soft shadows from area light.

occluder

4 overlapping
hard shadows

4 point lights square light

occluder
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penumbra
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hard shadow hard shadow

occluder

directional light

Figure 1.7. Point (left) and directional (right) light casting hard shadows. 

Soft Shadows 

The other type of shadow is a soft shadow, or the inclusion of a penumbra region 
along with the umbra for a higher level of quality resulting from an extended light 
source (although there can be cases of the combination of light and object positions 
where the umbra or the penumbra may not be visible). Full occlusion from the light 
causes the umbra region, and partial occlusion from the light causes the penumbra 
region. The degree of partial occlusion from the light results in different intensities 
of the penumbra region. The penumbra region causes a softer boundary between 
shadowed and fully lit regions. The resultant shadow region is a function of the 
shapes of the light source and the occluder. Instead of a binary decision on top of 
the illumination model as for hard shadows, a fraction in the range of [0,1] is 
multiplied with the light intensity, where 0 indicates umbra, 1 indicates fully lit, and 
all values in between indicate penumbra. Needless to say, soft shadows require more 
computations than hard shadows, and the soft-shadow algorithms are also more 
complex. 
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The types of light sources generating soft shadows include linear, polygo-
nal/area, and spherical lights—actually any extended light. Figure 1.8 shows an 
example of a soft shadow due to a square-shaped area light (right) and a poor ap-
proximation due to point lights located at the corner of the same square-shaped 
light (left). Soft-shadow algorithms from extended lights are discussed in detail in 
Chapter 4. 

Different regions within hard and soft shadows can be observed. Each such re-
gion corresponds to different gradients of the visibility function of the light source. 
These regions are defined by visual events generated from combinations of vertices 
and edges from the light source and occluders. The theory behind these visual 
events has been studied for polygonal scenes, and is covered in Section 4.3. 

There are other sources of soft shadows, which include 
• Motion blur, which is critical for film and video (see Section 5.7). 
• Ambient occlusion, which fakes skylight with the look of soft shadows as if all 

objects are under an overcast day (see Section 5.8). 
• Precomputed radiance transfer, which is mainly effective in real-time, diffuse, 

low-frequency lighting environments, assuming infinitely distant lights (see 
Section 5.9). 

• Global illumination, which includes radiosity and Monte Carlo ray tracing 
techniques (see Section 5.10). 

1.2.3 Colored Shadows 

One assumption is that a shadow can only appear as a black/grey region. This is not 
always the case, especially with multiple colored lights that can result in colored 
shadows. 

 
 
Figure 1.9. Colored shadows from three (red, green, blue) colored lights. ©1993 IEEE. 
Reprinted, with permission, from [643]. 
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Take the example of a blue light and a 
red light shining on a white-ish object. A 
region occluded only from the blue light 
will appear red, and a region occluded only 
from the red light will appear blue. Only a 
region occluded from both lights will ap-
pear black. In the case of three colored 
lights, when one color of light is blocked 
with an object, the color of its shadow is 
the sum of the two remaining colors. See a 
visual example of three colored (red, green, 
blue) lights in Figure 1.9. 

Another form of colored shadows can 
come from occlusion of semitransparent 
surfaces. Instead of totally blocking the 
light, the light is transmitted, filtered, and 
altered through the semitransparent sur-
face and lands on the receiver with some 

color as a result of the light transmission. The same phenomenon occurs with re-
fractive surfaces; however, light rays deviate according to changes in the media 
refractive indices and light wavelengths. A visual example is shown in Figure 1.10. 
Dealing with such shadows is much more involved and is discussed in Section 5.4. 

1.3 Shadow Algorithms: Basic Ideas and Properties 
In the upcoming sections, we will review the major classes of algorithms avail-

able for shadow generation. This is to ensure that the reader has some basic un-
derstanding of these algorithms, before delving into the details in the upcoming 
chapters. In fact, based on the information provided here, the reader may choose to 
ignore certain classes of algorithms due to the high-level descriptions because 
certain algorithms clearly do not fit his needs. The major classes of shadow algo-
rithms include planar receivers of shadows, shadow depth map, shadow volume, ray 
tracing, and area subdivision and preprocessing. 

1.3.1 Planar Receivers of Shadows 

In simpler applications of real-time shadows, certain assumptions may be made 
about the environment. One such example is that hard shadows are projected only 
on a planar floor or wall [57], i.e., the floor or wall does not self-shadow, and shad-
ows from other objects in the scene are only accounted for on the floor or wall. The 
floor or wall is generally infinite and perpendicular to some fixed orientation, the 
easiest being one of the x, y, z world axes; thus, a single transformation matrix re-
sembling oblique or perspective screen projection matrices is all that is necessary  

 
Figure1.10. Photograph of colored shad-
ows from semitransparent objects. 
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Figure 1.11. Projected shadow polygons on a planar floor. 

to project the polygons’ vertices onto the floor. In fact, the projected shadows can 
even be modeled as dark polygons, so that little additional rendering code is neces-
sary. In Figure 1.11, vertices of the box project to vertices on the floor to determine 
the shadows. 

Variants of this algorithm have been used in many real-time implementations 
when shadows on floors are needed, due to the algorithm’s simplicity and speed. 
Hard shadow variants [567, 223] are discussed in Section 2.2, and soft shadow vari-
ants [240, 232, 550, 220, 156, 157] are discussed in Section 4.4. 

1.3.2 Shadow Depth Map 

In the literature, the terms shadow map and shadow buffer are often used in an 
inconsistent fashion. For example, a shadow buffer used in the context of voxels 
may refer to a 2D or 3D shadow buffer. In the context of this book, the term shadow 
depth map will be used explicitly to indicate a 2D shadow map that stores a single 
depth value per pixel. Any shadow map or shadow buffer references will indicate 
explicitly what information is stored per element and in how many dimensions it is 
stored. The reader may also see references in the literature to “image-based ap-
proaches” that refer to shadow depth maps in the context of shadow determination, 
versus “geometry-based approaches,” which belong to other approaches discussed in 
this book, such as shadow volumes and ray tracing (to be discussed in the next 
sections). In general, image-based approaches have the advantage of performance 
while the geometry-based approaches have the advantage of accuracy. 

Williams [630] uses a Z-buffer approach to determine visibility and depth with 
respect to the camera, and this process is repeated for the light source. Thus, like the 
preprocess seen in Figure 1.12, the approach creates a buffer with respect to the 
viewpoint of the light source L except that the buffer contains the smallest (Zn)       
Z-depth values and not shading values or object information. During rendering of 
the camera view, each point P to be shaded is projected towards the light and 
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Figure 1.12. Basics of the shadow depth map algorithm; if ||P−L ||  > Zn , then P is in shadow. 

intersects the shadow depth map pixel. If the distance ||P−L || is larger than the       
Z-depth value Zn (as shown in Figure 1.12) from the projected shadow depth map 
pixel, then P lies in shadow; otherwise, it is fully lit. The papers by Williams [630] 
and Reeves et al. [476] are the most often cited and implemented versions of the 
shadow depth map approach. 

From a GPU-based implementation, Segal et al. [515] and Everitt et al. [166] 
use a GPU texture (typically 16-bit, 24-bit, or 32-bit texture) to represent a shadow 
depth map, projectively texture it onto the scene, and then compare the depth val-
ues in the texture during fragment shading to achieve per-pixel shadows. Note that 
the use of the GPU texture to achieve depth map shadows may be a bottleneck on 
older GPUs (1990s) or lower-end platforms. An early example of rendering using 
the GPU is shown in Figure 1.13. 

 
 
Figure 1.13. Rendering generated with a GPU-based shadow depth map. Image from 
Everitt et al. [166], courtesy of NVIDIA Corporation. 
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The shadow depth map has been very successful in many graphics environ-
ments because 

• The basic approach is simple to implement. 

• It can handle surfaces other than polygons. See Chapter 3. 

• It can be used as a sort of protocol of shadow information from different 
geometry representations or different renderers. 

• It can be used as a sort of protocol of shadow information to account for 
shadows from different geometry layers (that are merged into one single 
scene) [344]. 

• The performance can be quite fast without GPU assistance. Occlusion 
culling algorithms [106, 201, 52] can also be applied so that the light source 
rendering can achieve good performance while handling large data sets. The 
shadow depth map can handle large data sets much easier than other 
approaches because it only needs to process and store a single buffer per 
shadow casting light. Additional performance considerations are discussed 
in Section 2.3.2. 

• It can be simply implemented in the GPU as a hardware texture [515, 166, 
438, 65, 259, 69] for real-time applications, including as a standard feature in 
real-time engines such as Second Life, Unity 3D, DX Studio, Renderware, 
etc. 

• Its quality is good enough that it has been used in film since the 1980s [476]. 
Major software renderers use some variation of the shadow depth map, such 
as Renderman, Maya, Mental Ray, Lightwave, etc. 

• Soft shadows from extended lights have been developed based on the 
shadow depth map approach [570, 2, 237, 66, 652, 254, 267, 309, 268, 646, 
83, 555, 16, 17, 296, 597, 173, 338, 61, 79, 489, 208, 29, 41, 27, 40, 336, 511, 
209, 252, 12, 535, 43, 513, 512, 276, 486, 514, 651, 506, 417, 210, 138, 425, 
522, 672]. This is discussed in Section 4.5. 

• Although the basic shadow depth map approach can only deal with shadows 
from opaque objects, there are successful variations to handling 
semitransparent object shadowing as well [362, 304, 115, 555, 159, 495, 394]. 
This is discussed in Section 5.4.2. 

• Extensions of the shadow depth map approach are the standard for handling 
highly complex thin materials such as hair and fur [339, 313, 362, 303, 304, 
316, 405, 424, 47, 533, 655, 534, 265]. See Section 5.5. 
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• Extensions of the shadow depth map approach have been successful for pro-
ducing atmospheric/volumetric effects [134, 135, 412, 257, 647, 186, 590, 162, 
34, 90, 394]. See Section 5.6.2. 

• Extensions of the shadow depth map approach can achieve soft/blurred 
shadows due to motion blur [548, 362]. See Section 5.7. 

The disadvantages include 

• Shadow determination is more complex for point lights (when placed within 
the convex hull of the scene) because it requires more than one shadow depth 
map per light [68, 307, 190, 441, 107]. This is also true for spotlights with a 
large angle of view because an angle of view larger than 90 degrees will likely 
result in poor-quality renderings if only one shadow depth map is generated. 
This is discussed in Section 2.3.1. 

• Rendering quality issues relating to filtering and self-shadowing issues [250, 
476, 642, 616, 576, 600, 298, 261, 129, 606, 166, 167, 65, 627, 75, 450, 15, 509, 
596, 671, 140, 510, 11, 300, 334, 13, 43, 117, 373, 496, 302, 211] have not been 
completely resolved. These topics are discussed in Sections 2.3.4, 2.3.5, and 
2.3.6. However, the terminator problem is avoided when using some of the 
self-shadowing techniques. 

• The rendering quality is particularly poor when the view focuses on a spe-
cific region that only covers a small part of the shadow depth map. Many 
algorithms [172, 575, 557, 69, 97, 518, 387, 95, 386, 317, 4, 20, 74, 275, 633, 341, 
508, 663, 664, 96, 665, 358, 632, 197, 196, 161, 214, 342, 21, 667, 670, 131, 598, 
35, 359, 408, 360, 535, 599, 451, 668, 335] manage to reduce such poor results, 
but these algorithms can get quite complex. This is discussed in Section 2.3.3. 

• Changes in the shadow coverage region can result in changes in rendering 
quality. By shadow coverage, we mean the world space region represented by 
the shadow depth map. Changes in the shadow coverage may be needed to 
get the sharpest image quality by encompassing only particular objects, and 
the particular objects’ occupied world space changes during an animation. 
This is discussed in Section 2.3.3. 

1.3.3 Shadow Volumes 

Crow [114] creates shadow polygons projected from the original polygons in the 
opposite direction of the light and then places them into the rendering data struc-
ture as invisible polygons. The original set of polygons is also included in this ren-
dering data structure for shadow determination and are sometimes called light 
caps. To compute shadow determination, a shadow count is used. An initial 
shadow count is calculated by counting the number of shadow polygons that con-
tain the viewing position. The shadow count is then incremented by 1 whenever a 
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Figure 1.14. Basics of shadow volumes. Computing the shadow count for point to be shaded 
P from camera C. 

front-facing shadow polygon (that is, entering the shadow umbra) crosses in front 
of the nearest visible surface. The shadow count is decremented by 1 whenever a 
back-facing shadow polygon (that is, exiting the shadow umbra) crosses in front of 
the nearest visible surface. If the final shadow count is 0, then the visible surface 
does not lie in shadow; if positive, it is in shadow; if negative, then it is time for a 
peer code review. In Figure 1.14, the initial shadow count is 1. It gets decre-
mented/incremented to 0, 1, 2 until it hits the point to be shaded P. Since the final 
shadow count is greater than 0 (it is 2), then P is in shadow. 

To implement shadow volumes on the GPU, Heidmann [236] draws the scene 
polygons shaded only by an ambient light with a hardware Z-buffer. Front-facing 
shadow polygons are then drawn (using a front-facing culling test), incrementing 
shadow counts in an 8-bit GPU stencil buffer if visible for each affected pixel. 
Similarly, visible back-facing shadow polygons decrement their respective shadow 
counts. Finally, the scene polygons are drawn with diffuse and specular shading 
only where their stencil shadow count is 0. 

The shadow volume approach has been successfully used in some real-time 
graphics environments because 

• It is computed at object precision and is omnidirectional, i.e., can handle 
shadows in any direction. 

• It can very effectively produce atmospheric/volumetric effects [390, 431, 638, 
152, 264, 51, 648, 49]. See Section 5.6.1. 

• Soft shadow variations have been developed [71, 92, 128, 636, 595, 5, 23, 25, 
24, 346, 175, 176, 177]. This is discussed in Section 4.6. 

• It was one of the first GPU-supported shadow techniques and usually em-
ploys a hardware stencil buffer [236, 301, 37, 50, 81, 393, 165, 48, 5, 345, 487, 24, 
23, 25, 26, 67, 397, 168, 3, 84, 357, 398, 249, 330]. In fact, GPU shadow volumes 
have been deployed successfully in a number of video games such as Doom 
3 [601], and software such as RealityServer, EON Studio, and Sketchup. This 
is discussed in Section 2.4.2. 
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• Near-real-time variations without the need for the GPU have been devel-
oped [91, 92, 99, 100, 636, 356]. This is discussed in Section 2.4.4 and Sec-
tion 4.6.2. 

• Partial regeneration of shadow polygons is easy to achieve over an animation 
since only shadow polygons for changed objects need to be regenerated. 
However, this is complicated by the many optimizations needed for a 
performance-efficient implementation, as discussed in Section 2.4.3. 

The disadvantages include 

• It is primarily effective for polygonal representations, although there are 
more advanced variations that can deal with other geometric representations 
[266, 235, 580, 579, 170]. See Section 3.2.3. 

• For optimal use, it needs well-formed closed objects (2-manifold shadow 
casters, which means an edge is shared by exactly two polygons) with adja-
cency information to optimize silhouette detection, although there are more 
generic variations [46, 8, 400, 306, 536]. This is discussed in Section 2.4.3. 

• It exhibits linear growth in complexity in terms of performance, which 
makes it a lot less desirable in terms of larger data sets. Some optimizations 
are discussed in Section 2.4.3. 

• Many (up to one quadrilateral per edge per light source) long shadow 
polygons need to be scan-converted (high fill rate). Conservative occlusion 
culling algorithms [106] can be applied to significantly reduce the number 
of shadow volumes required. Additional optimizations are discussed in Sec-
tion 2.4.3; however, the optimizations discussed have not been good enough 
to guarantee a consistent frame rate for many real-time applications (such as 
many modern-day games). 

• It has a limited representation of 8 to 16 bits for hardware-based shadow 
counts, but is most commonly just 8 bits. This issue remains unsolved and 
poses a problem if the shadow count surpasses 255. 

• Aliasing errors exist in the shadow counts due to scan-conversion of very 
narrow shadow polygons. This issue remains unsolved. 

• There is no obvious workaround for the terminator problem (see Section 
1.4.1). 

• Semitransparent objects cannot easily receive shadows when this algorithm is 
implemented on the GPU. The problem is that a pixel on the screen has the 
shadow state of only one surface, normally the closest opaque surface, stored 
for it. There is no additional storage for semitransparent objects that cover the 
pixel. Partial solutions for semitransparent-object shadowing [228, 306, 177, 
536] are discussed in Section 5.4.3. 
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1.3.4 Ray Tracing 

Ray tracing is a powerful way to render objects from the camera as well as reflec-
tions, refractions, and shadows [629]. Shadow determination using ray tracing is 
trivial: a shadow ray is shot from the point to be shaded P towards the light source 
L. If the shadow ray intersects any object between P and L, then it lies in shadow; 
otherwise, it is fully lit. Figure 1.15 shows a visual representation of this algorithm, 
and a rendering is depicted in Figure 1.16. 

Ray tracing is so flexible that it is available in just about all offline rendering 
products because 

• It is computed at object precision and is omnidirectional. 

• An offset workaround is available to reduce the terminator problem (see 
Section 1.4.1). 

• It supports surfaces other than polygons in the integration of shadow infor-
mation from different geometry representations. See Chapter 3. 

• There are many algorithms for soft shadow generation [108, 10, 231, 407, 
465, 527, 621, 570, 463, 603, 643, 577, 33, 269, 528, 578, 452, 352, 189, 178, 
297, 225, 2, 372, 328, 148, 473, 447, 64, 154]. See Section 4.7. 

• Shadows from semitransparency [221, 340, 524, 454] can be achieved easily 
(see Section 5.4.1). 

• Shadows from motion blur [108] can be achieved easily (see Section 5.7). 

The primary weakness of ray tracing has been its slow performance. How-
ever, due to its flexibility and simplicity, there have been quite a number of pa-
pers [198, 526] written on the topic of accelerating ray tracing, including shadow 
computations. See Section 2.5 for further performance discussions [10, 231, 219, 
494, 164, 638, 625, 527, 641, 94, 188, 643, 528, 171, 133]. Furthermore, in the last 
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Figure 1.15. Basics of the ray tracing shadow algorithm. 
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Figure 1.16. Ray traced rendering with shadows. ©1986 IEEE. Reprinted, with permission, 
from [219]. 

decade, platform changes (SIMD instructions) and algorithmic improvements (ray 
packing) have allowed ray tracing to be much faster, although it is still generally not 
capable of being used for real-time applications unless there is sufficient hardware 
support for high parallelism on the CPU (multicores) [610, 613, 64] or GPU [469, 
248, 213, 464, 676]. See Section 2.5.2 for more details. 

Keep in mind that just because ray tracing reflections and refractions might be 
needed for the specific application, it is not necessarily a forgone conclusion that 
shadow determination must apply ray tracing as well. Shadow depth map or shadow 
volume algorithms can still be applied without complication (except for warping 
shadow depth maps (see Section 2.3.7)). However, note that most ray tracing 
algorithms do not require any per-light preprocessing, which is an advantage over 
shadow volume or shadow depth map algorithms if the number of (shadow casting) 
lights significantly increases. 

1.3.5 Area Subdivision and Preprocessing 

Nishita and Nakamae [428] and Atherton et al. [28] use clipping transformations for 
polygon shadow generation. In this two-pass hidden surface algorithm, the first 
pass transforms the image to the view of the light source and separates shadowed 
and lit portions of the polygons via a hidden surface polygon clipper (see Figure 
1.17). It then creates a new set of polygons, each marked as either completely in 
shadow or completely lit. The second pass encompasses visibility determination 
from the camera and shading of the polygons, taking into account their shadow flag. 
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Figure 1.17. Shadow polygons clipped. 

This category of shadow algorithms has received very little research attention 
since the original papers. Reasons for the reduced focus on this class of shadow al-
gorithms are likely the significant increased complexity with medium-to-large data 
sets as well as potential numerical instability issues [183]; particularly difficult is a 
GPU-based implementation. Ghali et al. [191, 192] take the subdivision approach 
and store the shadow edge and adjacency information in a visibility map, which 
avoids polygon clipping instability issues, but does not resolve the other issues. 
Such edges can also store penumbra information for extended lights; however, a 
practical algorithm to compute the visibility map is needed, which makes this ex-
tended subdivision approach more theoretical so far. 

Appel [14] and Bouknight and Kelly [63] generate shadows during the display 
using an extended scanline approach. During preprocessing of each polygon, all 
polygons that lie between the light source and the polygon itself are identified and 
stored in a list. During the display phase, polygonal boundaries from the currently 
scanned polygon’s list are projected down onto the currently scanned polygon to 
form shadow boundaries, clipped within the boundaries of the currently scanned 
polygon, and then projected onto the viewing screen. The intensity of a scanned 
segment changes as it crosses the shadow boundaries. See Figure 1.18. It is easy to 
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Figure 1.18. Scanline approach for calculating shadows. 
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see that the complexity of this approach will grow significantly with medium-to-
large data sets. 

Due to the lack of research papers and limited use of the above algorithms, this 
category of shadow algorithms will not be further discussed in this book. 

1.4 Self-Shadowing 
From a computer graphics standpoint, there are typically two main components for 
determining the shadowing: shadows due to occlusion from other objects and self-
shadows. Most of the discussions in this book focus on occlusion from other 
objects. However, we do want to cover a few essential topics on self-shadowing to 
allow a more complete understanding of shadowing. Most self-shadowing issues 
assume the simulation of non-smooth surfaces and relate to (or are considered part 
of) the illumination computations or the reflection models employed, such as the 
ˆ ˆN L⋅ check, bump mapping, and advanced reflection models. 

1.4.1 ˆ ˆN L⋅  Check  

The simplest example of self-shadowing can be done using a dot product check, 
ˆ ˆN L⋅ , where N̂ is the surface normal and L̂ is the light direction with respect to 

the point to be shaded. This check is done in almost all rendering systems. This 
means that no light directly reaches the portion of the surface that is facing away 
from the light without further computations. This also means that direct shading 
computation and shadowing from other occluding surfaces are only checked when 
ˆ ˆN L⋅ > o . This is a concept similar to back-face culling from the view direction, 

except it applies to the lighting direction in this case. While this check is physically 
correct, natural, and optimal, there are consequences to this check that should be 
understood, such as specular highlight cutoff and the terminator problem, which 
are discussed below. 

Specular Cutoff 

The first consequence comes from bad specular highlight cutoff [640]. Because 
the ˆ ˆN L⋅  evaluation also happens to be the diffuse reflection amount and the spec-
ular component is calculated independently of the diffuse evaluation, there can 
be cases where ˆ ˆN L⋅ < o , but the specular component is positive, indicating a 
specular contribution when the diffuse component has no contribution. Thus, the 
selfshadowing check appears to have prematurely cut off the specular component 
(Figure 1.19). This problem is not usually visible due to the unusual circumstances 
required to encounter this situation. 

Terminator Problem 

The second consequence comes from the terminator problem. This problem re-
sults from improper self-shadowing due to polygonal mesh approximation of a 
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Figure 1.19. Specular cutoff: the specular reflection component spreads where direct light 

should not reach because the ˆ ˆN L⋅ check was not performed. 

smooth surface. In Figure 1.20(left), polygons A and B represent polygonal ap-
proximations to the smooth surface. At point P on A, the vertex-interpolated 
normal N̂ ′ is used to compute the illumination as opposed to the plane’s nor-
mal N̂ . Since ˆ ˆN L′ ⋅ > o , light contribution is present, and the shadow occlusion 
from other surfaces must be computed to determine whether P is shadowed. The 
shadow ray for point P intersects B and incorrectly concludes that P is in self-
shadow. This artifact is usually visible as shadow staircasing and is illustrated in 
Figure 1.20 (right), where the staircasing occurs between the dark and lit regions. 
A simple solution [546] is to offset the shadow ray origin by a small amount along 
N̂ ′ to avoid the self-shadowing. Unfortunately, the correct offset value is difficult 
to figure out, and this offset typically assumes convex region behavior because a 
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Figure 1.20. Shadow terminator problem: interpolated normal on the polygonized sphere 
(left); resulting shadow staircasing (right). 
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concave region should ideally have a negative offset. Furthermore, although this 
problem has been described in the context of ray tracing, it is actually a problem 
in all shadow algorithms, but less so in the shadow depth map and ray tracing 
algorithms due to the use of bias or offset factor. Further, see Section 2.3.6 for 
how the various shadow depth map algorithms exhibit the terminator problem. 
Unfortunately, a workaround has not been made available in the shadow volume 
approach. 

A recent search on the Internet indicates that efforts to improve the terminator 
problem, without the need for an offset, have been attempted by the Thea render on 
Blender. Too few details about these attempts are publicly available, although we 
suspect the solution deals with identification of the silhouette to perform special-
case computations and avoid the terminator problem. 

1.4.2 Bump Mapping 

Another example of the self-shadowing problem is bump mapping [54], where sur-
face normals are perturbed to give the impression of a displaced, non-smooth sur-
face. Bump mapping does not actually displace the geometry (as in displacement 
mapping [110]). As a result, shadowing for bump mapped surfaces appears as if 
the surface is perfectly smooth, because shadow determination does not use the 
perturbed surface normal information at all. 

Techniques such as horizon mapping [391] are used to take into account the 
self-shadowing effects. See Figure 1.21 as an example of bump maps with and 
without proper self-shadowing. Please see Section 5.2 for more details on bump-
map self-shadowing [391, 435, 538, 294, 238, 179, 439] as well as some advanced 
bump mapping effects [312, 619, 620, 396, 626, 581, 85]. Also note that some of 
these techniques have been useful for shadow determination of heightfields (see 
Section 3.8). 

 
 
Figure 1.21. Bump-mapped surface without (left) and with self-shadowing (center and 
right). Image courtesy of Sloan and Cohen [538], ©Eurographics Association 2000. Repro-
duced by permission of the Eurographics Association. 
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1.4.3 Advanced Reflection Models 

Direct shading is computed only when the surface is facing light ( ˆ ˆN L⋅ > o ) and is 
not in shadow. However, even under direct illumination, shadowing can occur 
within the reflection model itself. 

When the bumps are smaller and denser over a surface, such that many bumps 
fit within a pixel, neither the bumps nor the shadows can be perceived. However, 
the reflection of light behaves differently as bumps cast shadows on some areas and 
not on others. This phenomenon should be captured by the local reflection model. 
In advanced reflection models, such as anisotropic reflection models, proper self-
shadowing is needed for the correct visual effect. Section 5.3 discusses details on 
self-shadowing computations needed for advanced reflection models, and related 
self-shadowing computations with respect to highly complex thin materials can be 
seen in Section 5.5. 

1.5 Considerations for Choosing an Algorithm 
The choices of a shadow algorithm will get more and more complex because the 
following issues need to be considered while the reader is going over the algorithms 
described in the next set of chapters. Note that some considerations are part of the 
system one may be trying to build, external to the shadow algorithms themselves. 
Such considerations are addressed by questions like 

• Are real-time or interactive speeds a requirement, and is real-time feedback 
from dynamic scenes a requirement? 

• What is the requirement to handling data complexity (e.g., large data sets)? 
The appropriateness of certain classes of algorithms to handle large data sets 
is discussed in some of the Trends and Analysis sections. 

• What platform dependencies or constraints exist? On certain older or 
smaller platforms, a decent GPU may not be available, so one may need to 
resort to efficient CPU-based algorithms or assume fewer GPU capabilities. 
On current tablets (e.g., iPad, Android, PlayBook), memory available to the 
applications is quite limited and may require out-of-core techniques (Sec-
tions 2.5.2, 2.6, 3.7.6). Also, the opportunity for extreme parallelism (multi-
core) can influence the choice of algorithms, particularly affecting ray trac-
ing approaches (see Section 2.7 for further details). 

• If the GPU is being applied, care must be taken if IP protection of the ge-
ometry (being displayed) is of critical importance. There are techniques to 
intercept geometry information on the GPU, such that the act of viewing the 
information could result in IP theft of the geometry. This is made worse by 
shadow algorithms because the shadow computations provide another view 
of the geometry. 
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Feature Shadow  
Map 

Shadow 
Volumes 

Ray 
Tracing 

 Hard shadows 3 3 3 
Higher-order surfaces 3 3 3 
Point clouds 3  3 
Voxels 3  3 
Heightfields   3 
Soft shadows 3 3 3 
Semitransparency 3 3 3 
Complex thin materials 3   
Atmospheric shadows 3 3 3 
Motion blur 3  3 
Global illumination 3  3 

 
Table 1.1. Overview of shadow algorithm features. 

• What is considered a sufficient quality or accuracy level for your needs? In 
particular, for offline renderings, the antialiasing quality usually needs to 
be much higher, not only spatially but also temporally in certain domains. 
Especially for production needs, one can pose the question of whether it is 
better to have an algorithm be 80% correct, or always consistently wrong? 
Unfortunately for temporal aliasing, 80% correct can be quite damaging be-
cause it may result in flickering, which is very disturbing to the human visual 
system, whereas the consistently wrong may not be noticed by the human 
visual system. While this is not a true measurement of how good an algo-
rithm is, and the above question is skewed by “how wrong the result is,” it 
does make us wonder how stringent an algorithm might need to be to meet 
offline rendering needs. 

• What features from the shadow algorithms are needed? See Section 1.3 of this 
chapter for the capabilities inherent within each of the major approaches as 
well as Table 1.1 for a high-level feature overview.  

• Are there any constraints on the type of geometry used for rendering or in-
teraction purposes? See Chapter 3 for shadow algorithms for other (than 
polygons) geometry types, including higher-order surfaces, image-based 
impostors, geometry images, particle systems, point clouds, voxels, and 
heightfields. 

• Are there dependencies on the visibility determination algorithms used? In 
some cases, reusability of the code for visibility determination and then for 
shadow calculations is an attractive feature, not only because it reduces the 
initial coding effort, but it also decreases future code maintenance. This may 
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be an important consideration for visibility approaches such as ray tracing 
(for visibility and shadow rays) and Z-buffer (for shadow depth maps). 

• Similarly, are there opportunities for reduced or shared code maintenance 
when combining different features of shadows (e.g., hard shadows, soft shad-
ows, semitransparent shadows, other applications of shadow algorithms, etc.)? 
In some of the Trends and Analysis sections, code maintenance is discussed 
as one of the factors in the overall decision of algorithm choice. 

• How much user intervention and user input are acceptable? Offline ren-
derings tend to be a lot more patient with user interventions, in the hunt 
for good-quality results, whereas real-time renderings usually assume 
more automatic approaches and less user input. 

• Is the algorithm you wish to implement within a product already patented? 
If so, it is time to talk to legal council and discuss whether it is appropriate 
(businesswise) to base an implementation on top of a patented solution. We 
were originally going to list all the patents (that we know of) on shadow al-
gorithms as part of this discussion because we thought this would be a useful 
service to the reader. However, in better understanding the patent policy of 
certain companies, this service may turn into a disservice. As a result, we 
have removed such a list here, and the references to patents and their im-
plications are entirely removed from this book. If the reader is interested in 
such a patent list as well as how patents have affected the literature and 
adoption of these algorithms, we invite the reader to contact us directly for 
an addendum. 

The above considerations in conjunction with the Trends and Analysis sections 
of the following chapters can help determine which category of algorithms is most 
appropriate for the reader’s current needs. 
 



CHAPTER 2

Hard Shadows

2.1 What’s Covered in This Chapter

This chapter covers algorithms that generate hard shadows. The discussions
around each categorized approach include details of individual papers and details
on how tomake each approach feasible in terms of image quality and performance.
The main categorized approaches include

● Fake shadows on planar receivers (Section 2.2) [7, 355].

● Shadow depth maps (Section 2.3) [7, 354, 507, 158].

● Shadow volumes (Section 2.4) [7, 355, 158].

● Ray tracing (Section 2.5) [613].

The chapter concludes with other miscellaneous hard shadow algorithms (Sec-
tion 2.6), followed by trends and analysis of the criteria for application, success, and
deployment of each categorized approach (Section 2.7).

2.2 Planar Receivers of Shadows

Blinn [57] provides the basicmathematics andCPU implementation details needed
for the projection of fake shadows onto a planar floor or wall, using a set of black
polygons to represent the shadows. To make sure that the shadows show up, an
offset is created so that the projected shadow polygons are visible over the floor or
wall. While this is somewhat effective, it is tricky to come up with a good offset
value that is artifact free. Instead, Hallingstad [223] implements the fake shad-
ows on a plane on the GPU using a stencil buffer. This is done by first rendering
the scene without shadows, then during the shadow casting (projection) step, the
depth test is disabled and blending enabled for the floor. For static scenes, it is
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Figure 2.1. Correct shadowing (left). Example of anti-shadows (right).

also interesting to calculate the shadow polygons and place the shadowing onto a
texture map for that planar receiver.

One limitation to this approach is that this floor or wall does not cast shadows,
it just receives shadows. Also, the common assumption is of an infinite floor or wall
so that no clipping of the shadow polygons are needed, although there is no reason
(except the performance hit) not to do the clipping in the presence of a finite floor.
Another common procedure is to only project front-facing polygons.

Care must be taken to avoid anti-shadows. Anti-shadows occur when a point
light is located between the planar receiver and the occluder, and shadows actually
show up on the receiver incorrectly. This is not a concern if the light is outside
the convex hull of the scene (which is the assumption made in certain environ-
ments [567]). Anti-shadows canusually be detected by doing dot product testswith

Figure 2.2. Fake shadows on planar receivers. Note that shadows are only cast on the floor
and not on the other objects. Image courtesy of Transmagic Inc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-018.jpg&w=209&h=130
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respect to bounding boxes, but this method is not foolproof. See Figure 2.1(left) for
correct shadowing and Figure 2.1(right) for an example of anti-shadows.

An example of shadows generated in this manner is given in Figure 2.2. Note
that shadows only exist on the floor and not on the object itself. This is a very com-
mon occurrence in real-time applications, where only the shadows on the floor
serve as good points of reference. However, (fake) soft shadows are often desir-
able, which is why Transmagic uses a simplified shadow depthmap approach (Sec-
tion 2.3), as seen in Figure 2.2, instead of the Blinn approach. The shadow depth
map is simplified because this particular use does not require it to be concerned
with self-shadowing (Section 2.3.4; this problem is avoided because the floor does
not need to be part of the shadow depth map, and thus self-shadowing on the floor
is never checked), and the uniform blur operation can simply be handled using
percentage-closer filtering (Section 2.3.5).

2.3 Shadow Depth Maps

While the shadow depth map appears simple, one must consider many aspects
when efficiently and robustly rendering a data set. Among them are how to deal
with different light types (Section 2.3.1) and the impact of these shadows on per-
formance (Section 2.3.2) and quality (Section 2.3.3).

2.3.1 Dealing with Different Light Types

For the shadow preprocess rendering, it is important to realize that a spotlight
maps to a perspective rendering from the light. However, the circular region of-
ten represented by the spotlight must be totally inside the perspective rectangular
region, resulting in some wasted rendering region. Similarly, a directional light
maps to an orthographic rendering from the light, but the bounding region of the
rendering must be clipped with the scene (or portion of the scene that is visible to
the camera).

Things get a bit more complicated when dealing with point lights because a sin-
gle perspective rendering cannot cover a view frustum of 360 degrees. For a point
light source, multiple shadow depth maps need to be generated using a perspec-
tive rendering. The most common approach produces six 90-degree-view shadow
depth maps, such that the six views form a full cube around the point light. In this
way, full coverage in both the azimuth and altitude of the point light is considered
for shadow computations. During the actual shading phase, the point to be shaded
is projected on one of the six shadow depth maps to determine the shadow occlu-
sion. An implementation of the above can be achieved using cube-maps [307],
which have also been referred to as omnidirectional shadow depth maps. Gerasi-
mov [190] goes over the code details for omnidirectional shadow depthmaps. This
cube-map structure is fairly standard on the GPU today.
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Note that the above method may result in discontinuous artifacts (when
zoomed in) when the point to be shaded projects close to the border of one of
the six shadow depth maps. This is due to the perspectives changing drastically
at the borders when moving from one shadow depth map to another. A simple
workaround is to slightly overlap the six shadow depth maps, computing six 95-
degree-view shadow depth maps instead of 90 degrees. When a point projects
to any of the overlapping regions, then the shadow lookup is done for multiple
shadow depth maps (up to a maximum of three), and their results are averaged.
This alleviates most of the discontinuous artifacts, although it is slower in perfor-
mance.

Note that six such shadow depth maps are not always required for point lights.
In many cases in which the point light is above all surfaces (e.g., the light is on the
ceiling), the number of shadow depth maps can be reduced or, put another way, if
this optimization is not done, some shadow depth maps may be empty.

Brabec et al. [68] deal with the point-light shadow depth map problem by em-
ploying a dual-paraboloid mapping. Instead of six planar shadow depth maps
forming a full cube, only two hemispherical shadow depth maps are needed. Each
paraboloid map can be seen as an image obtained by an orthographic camera view-
ing a perfectly reflecting paraboloid. However, with large polygons, linear interpo-
lation performed during rasterization could cause nonlinear behaviors. As well, it
is likely that some discontinuity artifacts might appear near the hemisphere bor-
ders. Implementation details of this approach are documented by Osman et al.
[441], and the nonlinear behavior is bypassed by tessellating the surfaces based on
the distance from the light (i.e., higher tessellation is applied when closer to the
light).

Contreras et al. [107] propose an approach to perform only a single render
pass by using dual-sphere-unfolding parameterization. Both the dual-paraboloid
and dual-sphere-unfolding approaches remain more experimental at this point,
as standard approaches to handle self-shadowing properly (Section 2.3.4) re-
quire more examination, and it is difficult to incorporate them with some focus-
resolution approaches (Section 2.3.7), especially nonlinear shadow depth maps.

2.3.2 Performance Considerations

There are a number of performance considerations to optimize the performance of
a shadowdepthmap implementation, such as faster shadowdepthmap generation,
temporal coherence considerations, and memory issues.

General Performance Techniques

Zhang [669] introduces the concept of forward shadow mapping to exploit spatial
coherence in the shadow depth map when rendering. The shadow depth map is
computed as usual. This is followed by rendering from the camera view without
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accounting for shadowing. Each shadow depth value per pixel is then warped to
the camera view. The depth value of each camera view pixel is compared against
the warped shadow depth value. If they are approximately the same, the cam-
era view pixel is lit. The lit/non-lit status is put into a modulation image. The
modulation image is blurred to achieve antialiasing of the shadow edges. This
has the advantage that the shadow depth map pixels, as well as the camera-view
pixel values, are accessed in order so that spatial coherence is achieved. The main
problems with this approach are that there may be self-shadowing problems due
to the warping and the antialiasing may not generate high quality results over an
animation.

The shadow depth map generation step may be costly in certain situations,
which is why the rest of this section is devoted to discussing strategies to optimize
shadow depth map generation. For example, in static scenes of walkthrough ani-
mations, a common shortcut renders the shadow depth map just once and reuses
it for the entire walkthrough animation. This is because the shadow depth map is
generated in world space (typically, except for some of the nonlinear shadow depth
map approaches (see Section 2.3.7)), and if the objects and light do not change, the
shadow depth map should remain exactly the same for all frames of the anima-
tion. Similarly, with moving-object animations, a shortcut involving two shadow
depth maps can be generated—one for the static objects (rendered once), and one
for the moving objects (reduced complexity but still rendered per frame). During
the shadow testing phase (for a point to be shaded), it is necessary to test against
both shadow depthmaps. This is useful because in some applications, for instance,
in several video game contexts, only a few objects in a large environment might
be moving, such as people walking through a city of static buildings. As a re-
sult, the second shadow depth map tends to be much faster to render as well as to
check during shading. However, this does require the knowledge of what ismoving
or not.

Regardless of the above different flavors for the shadow depth map approach,
it is crucial to realize that the shadow depth map generation preprocess employs
many, if not all, of the occlusion culling algorithms (several such algorithms are
described by Cohen-Or et al. [106]) in order to deal with large data sets very ef-
ficiently. These culling algorithms can be used because the shadow depth map
generation preprocess is the same as a regular rendering, except that it is from the
light source instead of the camera and no shading-related computations are nec-
essary. For example, Govindaraju et al. [201] use a potentially visible set (PVS)
algorithm to cull out polygons that are not visible from the camera and are not
illuminated. Those culled polygons do not need to be processed from a shadow
standpoint any further. A shadow depth map is created to determine if the re-
maining polygons are fully lit, fully occluded, or partially occluded. Any polygon
that is fully lit or occluded is easily handled. Any partially occluded polygon goes
through a shadow-polygon clipping process, whereby the polygon is clipped be-
tween the lit and shadowed regions. A pixel-based criterion is chosen to avoid
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Figure 2.3. Occlusion culling where certain shadow casters can be omitted during shadow
depth map generation. ©2011 ACM, Inc. Included here by permission [52].

clipping against polygons whose clipped results would not be visible anyway. Due
to the above optimizations, the list of such partially occluded polygons should be
small, and therefore, the shadow-polygon clipping process should not be too slow.
The hybrid approaches can also be split up among three GPUs to render the shad-
ows in real time. However, a numerically robust shadow-polygon clipper remains
difficult to implement.

Bittner et al. [52] introduce another shadow-occlusion culling algorithm. First,
a rendering from the camera viewpoint is done in order to determine the visible
shadow receivers; objects hidden from the camera do not require their shadow
status determined. They then compute a mask for each shadow receiver to deter-
mine the regions that need shadow computations, thus culling out many shadow
casters. The mask can be a bounding volume (BVOL), a rasterization of the object
(GEOM), or visible regions of the rasterization (FRAG). In Figure 2.3, the colored
bunny is the only visible receiver and the red-highlighted section is the visible re-
gion of that bunny. Using the BVOLmask, the bounding box of the visible receiver
narrows the angle of view of the light such that D is entirely culled from shadow
considerations. Using the GEOM mask, where the rasterization of the visible re-
ceiver results in an even smaller angle of view, C and D are culled from shadow
considerations. Using the FRAG mask, where the rasterization of only the visible
region results in the smallest angle of view, B, C, and D are culled from shadow
considerations, leaving only A for processing. In fact, in manually analyzing this
scene, one will notice that only parts of A (and the receiver, the colored bunny)
need to be processed in the shadow depth map.

Note that when dealing with atmospheric shadows (Section 5.6), many of the
occlusion culling techniques discussed in this section may not easily apply.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-055.jpg&w=150&h=153
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Temporal Coherence Considerations

To achieve shadows between view frames, Chen and Williams [88] interpolate the
results between a fixed set of shadow depth maps so that not all frames require
shadow depth map generation. Such a technique can be extended for stereo view-
ing as well, although the interpolated results tend to be unpredictable and may
produce artifacts.

Scherzer et al. [505] use temporal reprojection with a history buffer of shadow
depth maps to increase the confidence of the antialiased result and smooth out
the transition between frame history to reduce aliasing artifacts of the shadowing.
This sounds good in theory, but a number of problems prevent such algorithms
from being practical. Among the potential difficulties, one can consider the fol-
lowing: moving objects may not be of much use to the history buffer, still frames
can change in appearance due to the different history buffers, objects not in the
previous frame cannot contribute to the history buffer and can negatively affect
the current frames by promoting the assumption that the first set of frames pro-
vide essentially correct results (i.e., bad results will continue to taint the history
buffer), and the extra memory needed is significant when using the history buffer,
especially for more than a few lights.

Another concern with any algorithm that takes advantage of temporal coher-
ence is its inability to simply send frames out to a render farm in an offline render-
ing situation because the sequence of frames need to be sequential.

Memory Issues

From a memory standpoint, the storage expense of shadow depth maps for many
shadow-casting lights can become prohibitive. One simple way to reduce memory
usage is to tile each shadow depthmap and compress each tiled shadow depthmap
on disk. A least-recently-used (LRU) array of tiles is stored in memory, and when
a shadow sample is needed, its corresponding tile will be loaded from disk, decom-
pressed, and added to this LRU array. The decompressed tile will typically be useful
for a number of consecutive samples. When the LRU array is full, least-used tiles
are dumped in favor of incoming tiles. This scheme is effective because the LRU
array keeps thememory usage constant, and the decompression of tiled shadow re-
gions is fast. The above generic LRU-tile approach has been implemented in Maya
and mentioned in several papers [172, 480, 130]. Note that Ritschel et al. [480]
achieve high compression from coherence between multiple shadow depth maps
with similar depth values, and Diktas and Sahiner [130] remind us that shadow
maps storing surface IDs (Section 2.3.4) can be very efficient to compress and thus
can be used in the above LRU scheme as well.

In the PolyTrans software, adaptive tiles are used to reducememorywhere only
bounding regions of occupied z-regions are stored (instead of the entire shadow
depth map) [333]. In Figure 2.4, the objects are actually lying on a floor. The
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Figure 2.4. Shadow depth map using adaptive tiles to reduce memory usage. Image courtesy
of Okino Computer Graphics.

floor is not part of the tiling because PolyTrans stores mid-distance (Section 2.3.4)
z-values, and therefore the floor becomes exempt from the shadow depth map.

A geometrywith different levels of detail (LOD) is a common solution to reduc-
ing the memory used in a renderer. However, when using different LOD represen-
tations between the camera view and the shadow depth map generation process,
there may be bad self-shadowing problems because the depth values of the differ-
ent representations may cause discrepancies during comparison of depth values.
An example of LOD can come fromoptimized tessellation of higher-order surfaces
(such as NURBS or subdivision surfaces) or on-the-fly tessellation of displacement
mapped surfaces [110] based on the camera view. In such situations, the pregen-
erated shadow depth map needs to verify that its optimized tessellation for the
light view is not too different from the camera view. Although this problem is an
issue for most shadowing algorithms, care must be taken to avoid this problem
in particular for the shadow depth map because the shadow depth map genera-
tion pass (from the light’s viewpoint) is entirely separate from the camera-view
rendering.

Another example of different LOD comes from the hybrid rendering of points
and polygons. The premise is that for all polygons that are smaller than the area
of a pixel they project into, there is no need to spend all the time rasterizing and
interpolating polygonal information. In those cases, Chen and Nguyen [87] re-
place the tiny polygons with points and get much faster rendering times. Shadows
were not considered in the paper. Since the choice of point or polygon is deter-
mined moment by moment based on the viewpoint, care must be taken to make
sure that there is no improper self-shadowing from the tiny polygon that shad-
ows the replaced point. Fixing a depth for each tiny polygon, encoded in the sub-
stituted point, may help resolve self-shadowing issues but may also miss proper

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-074.jpg&w=306&h=149
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self-shadowing within the region represented by a single point. Guthe et al. [215]
employ perspective shadow depth maps (Section 2.3.7) for the above hybrid ren-
dering but have not addressed self-shadowing issues.

2.3.3 Quality Considerations

There are a number of quality issues related to the standard shadow depth map
technique. Figure 2.5 illustrates some of them. These issues will be discussed in
the upcoming sections.

● Avoiding bad self-shadowing problems. The sphere and cone should be
shadow-free. The narrow dark strips (highlighted by the red circles) are due
to bad self-shadowing. See Section 2.3.4.

● Filtering considerations. The aliased shadows of the sphere and cone on the
floor (highlighted by the green circles) can be improved upon with filtering
techniques. See Section 2.3.5.

● Combining self-shadowing and filtering. The quality of the filtering can be
improved by algorithms that combine both filtering and bad self-shadowing
mitigation at the same time. See Section 2.3.6.

● Focusing the resolution. No matter how well the filtering technique works,
it still does not really help when the artifacts are very blocky (highlighted
by the blue circles). The problem is due to insufficient resolution, and some
techniques address how to permit sufficient resolution in desired locations.
See Section 2.3.7.

Figure 2.5. Quality issues with shadow depth maps.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-084.jpg&w=322&h=120
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Figure 2.6. Moiré artifacts due to bad self-shadowing in shadow depthmaps. Image courtesy
of Bobby Anguelov (http://takinginitiative.net).

2.3.4 Avoiding Bad Self-Shadowing Problems

One rendering quality problem with the basic shadow depth map approach is the
bad self-shadowing artifacts that can result from a shadow depth map pixel pro-
jecting onto several screen pixels. The resulting artifacts usually appear as aliasing
artifacts, either as dark strips on the objects as seen in Figure 2.5 (highlighted by the
red circle) or as moiré patterns, as seen in Figure 2.6. The situation is particularly
bad when the light direction is close to parallel to the surface being shaded (see
Figure 2.7), where Zn is the shadow depth map pixel value (taken at the center of
the pixel), but the pixel itself projects onto a large region on the nearest polygon. As
a result, for a point P to be shaded and a point light source L, the test ∥P − L∥ > Zn
indicates that P is in shadow, but clearly it is not the case. By increasing the shadow
depth map resolution, this problem is more localized, but never fully eliminated

second
nearest
polygon

nearest
polygon

shadow depth map
L

Zm

Zf

ZnP

Figure 2.7. Self-shadowing in the shadow depth map algorithm. The distance of point P
to the point light L is larger than the depth sampled in the shadow depth map pixel, i.e.,
∥P − L∥ > Zn .

http://takinginitiative.net
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since the situation is exactly the same. Partial solutions to this problem, without a
need to increase the shadow depth map resolution, are discussed below, including
surface ID, bias, and alternative Z-depth value.

Object or Surface ID

Hourcade and Nicolas [250] address this problem by using a surface ID. Each sur-
face is assigned a unique ID, and each shadowmap pixel stores the surface ID that
represents the closest surface at that pixel. During rendering, surface IDs are com-
pared instead of Z-depths—if the shadowmap pixel has a different surface ID than
the current surface, then it is in shadow; otherwise, it is not. However, this general
technique does not allow for self-shadowing of surfaces, and thus surfaces must be
convex and non-intersecting.

Dietrich [129] and Vlachos et al. [606] apply the self-shadowing surface ID
approach on the GPU: surfaces are split up into convex parts and given a unique
surface ID, put in a sorted order from front to back with respect to the light source,
and the alpha channel is used to compare objects to the corresponding value in the
shadow map. However, the sorting and the operation of splitting the surface into
convex parts can be expensive and thus is not appropriate for surfaces that morph
over time. Alternative hybrid approaches use the surface ID approach for occlusion
between different surfaces, and localized shadow depth map or localized shadow
volumes are used to determine proper self-shadowing [172].

Bias

Reeves et al. [476] address the self-shadowing artifact using a user-specified offset
value called a bias. The bias value is used to escape self-shadowing by displacing
the closest surface Zn further away from the light source by a small distance. Thus,
there is shadowing only if ∥P−L∥ > Zn+bias. However, choosing a good bias value
is tricky in many cases because a single bias value must pertain to the entire scene,
i.e., a bias value too large can result in shadowed cases where the bias value addition
causes the algorithm to indicate fully lit; a bias value too small does not remove the
bad self-shadowing. To improve this situation, Reeves et al. [476] introduce a bias
value that has a lower and upper bound on biasing, and apply a stochastic factor
to have different per-pixel bias value in between, i.e.,

bias = minBias + random × (maxBias −minBias).
In this way, it is hoped that a good number of cases will properly detect self-
shadowing, and for those cases that are inaccurate, it is hoped that the stochastic
component will result in noise, which is more acceptable than the aliasing artifacts
present in Figure 2.5 (highlighted by the red circle) and Figure 2.6. However, good
guesses at bias values are still needed.

Everitt et al. [166] apply a small texture transform offset on the GPU to achieve
an offset behavior but cannot achieve a random factor for the offset. In OpenGL
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(glPolygonOffset) and DirectX (D3DRS DEPTHBIAS, D3DRS SLOPESCALE

DEPTHBIAS), a slope-scale bias factor has been implemented. This can best be
described as

bias =minBias +m × slopeScaleBias,
where m is another user input that acts as a multiplier to a computed
slopeScaleBias value. There are variations of how slopeScaleBias can be calculated,
but the general idea is to calculate the surface slope of the polygon as seen from the
light; slopeScaleBias needs a larger offset as the slope is closer to the light direction.
Wang and Molnar [616] use the tangent plane (i.e., the plane perpendicular to the
surface normal) as the basis for the slope; Schuler [509, 510] calculates the slope by
evaluating the depth information from the pixel’s neighbors; some authors [15, 117]
reconstruct the slope from the triangle itself, but this requires storage of additional
triangle information within the shadow depth map.

Alternative Z-depth Value

Woo [642] indicates that keeping the closest Zn value in the shadow depth map
may not be the best choice. A Z-depth value between the closest (Zn) and second
closest surface (Zf ) would be a better choice: in practice, the mid-distance Zm
between the two Z-depth values is chosen for implementation (i.e., Zm = (Zn +
Z f )/2, see Figure 2.7) thus we refer to this approach as themid-distance approach
in this book. If there is no second-closest surface, then Zm is set to some large
value. Thus, the check ∥P − L∥ > Zm indicates shadowing. In this case, the closest
surface would always be in light, and the second closest surface would always be in
shadow. This reduces the need to have a good bias value. However, when Zn and
Z f happen to be very close together, then the original self-shadowing problemmay
still persist. Thus, it may still be useful to have the shadowing check as ∥P − L∥ >
Zm +minBias, where minBias is some small value (but less requisite upon in most
cases). Even with these modifications, there can be some light-leaking problems at
the intersections of surfaces, and at the boundary between surfaces. For example,

floorA

Zf

wall

Zn

Zn

A

Zf

shadow depth map pixel

Figure 2.8. Two cases where the mid-distance approach [642] is incorrectly shadowed.
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refer to Figure 2.8, where there are two cases where polygon A, under the depth
map pixel, is computed as “not in shadow” but is clearly in shadow.

To resolve problems found with the mid-distance extension, Weiskopf and
Ertl [627] compute a depth value using a dynamically generated bias value that
is the smaller of a (user input) bias value and Zm. In other words, the shadowing
check is ∥P − L∥ > min (Zm , Zn +minBias). This formulation should avoid the
problems seen in Figure 2.8. This approach also requires more storage for both Zm
and Zn per shadow depth map pixel.

Note that the preprocess render time to achieve mid-distance computations
is a bit more complicated and tends to be slower. As a result, Everitt et al. [166]
implement themid-distance variation on the GPUby applying depth peeling [167].
Depth peeling works by first doing the shadow depth map pass, then the nearest
surface is “peeled away” in favor of some combination with what is immediately
behind it. Themid-distance variation is enticing for the GPU because it relaxes the
need for high precision in general numerical computation and in the depth values,
as the GPU textures used for the shadow depth map are typically only 16 or 24 bits
per pixel.

Wang and Molnar [616] choose the second-closest surface Z f as the Z-depth
value to store in the shadow depth map pixel in order to escape self-shadowing
at Zn . In this case, the second-closest Z-depth Z f is not concerned about being
in light because the N̂ ⋅ L̂ check has already put it in shadow. To compute the
second-closest surface hit, performing a front-face culling render does the trick
very efficiently, assuming that the surface normals are properly oriented (i.e., out-
ward facing). This approach can also deal effectively with the terminator problem.
However, the paper assumes that the surfaces are closed, which is often not the case
in many DCC applications, nor is it the case once the closed surface is cross sec-
tioned and not capped (which has become a common feature inCAD and scientific
visualization applications). This technique is also less able to handle the cases at
silhouette edges or with thin objects, resulting in light-leaking problems in some
cases.

Final Words on Self-Shadowing

The self-shadowing problem remains not entirely solved at this point. Each ap-
proach has its merits and limitations. However, some variation using the bias ap-
proach remains the safest choice for production needs because when something
goes wrong (and it inevitably will), there is an “out” via manual input of an appro-
priate bias value. If atmospheric shadows are needed (Section 5.6.2), or shadowing
from voxels (Section 3.7.5), then the bias approach appears to be the best approach.

Unfortunately, we cannot close the book on self-shadowing either. This is be-
cause we have to reevaluate the situation for new techniques in combining self-
shadowing and filtering (Section 2.3.6) and warping shadow depth maps (Sec-
tion 2.3.7).
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2.3.5 Filtering Considerations

Because the basic shadow depth map uses the typical Z-buffer to compute Z-depth
values, the results tend to be aliased. Reeves et al. [476] use percentage-closer filter-
ing (PCF)with a basic Z-buffer to achieve antialiasing (Hourcade andNicolas [250]
employ a similar filtering scheme). Basically, PCF calculates a fractional occlusion
value by doing depth value comparisons (between Zn and ∥P − L∥) for the current
and neighboring shadow depth map pixels (see Figure 2.9 for a 3 × 3 neighboring
region). This remains the most cost-effective method and results in blurred shad-
ows rather than correct antialiased shadows, although the rendered shadows are
quite pleasing in most cases, and this approach remains the most successful imple-
mentation of the filtering techniques (see Figure 2.10 for an image rendered using
this technique).

Using PCF, the size of the filter region is user selectable and a large filter region
fakes soft shadows, i.e., the softness of the shadows is not physically correct but
an attribute of filtering. A typical region size is either 2 × 2 or 3 × 3, where the
shadowing amount is the average of the shadowing hits based on each Z-depth
comparison (see Figure 2.9). Implementations of PCF on the GPU are discussed
in a few papers [65, 75], and most GPUs today can do a 2 × 2 PCF in a single fetch.

In terms of PCF performance, there is no need to sample all pixels inside the
n × n filter region per point to be shaded, as this can become expensive when n
is larger than 3. One way is to stochastically choose (fewer than n × n) points in
the filter region. Another way is to rotate a fixed pattern of samples [260]. Both
techniques can also help reduce banding. Another optimization is introduced by
Uralsky [596], where depth comparison is done for a few initial samples, and if the
shadow occlusion decision is the same (either all in shadow or all lit), then nomore
samples are computed and the same shadow occlusion decision is used.

In terms of quality improvements over the standard PCF, Pagot et al. [450] use
multiple depths to better filter the results, but the visual results do not look that
promising. Zhao et al. [671] use the alpha coverage values to better filter the results
to mitigate the sawtooth artifacts from a typical PCF interpolation. The basic idea
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Figure 2.9. Percentage-closer filtering is used to compute fractional occlusions, resulting in
good filtered results.
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Figure 2.10. Shadow depth map rendering with bias offset and percentage-closer filtering,
which appears much cleaner than the equivalent shadows in Figure 2.5(left).

is to use the alpha values to better estimate the occluder silhouette and incorporate
it into the PCF equation. However, this works well primarily for a single occluder
within the PCF kernel. Kim et al. [302] apply bilateral filtering to achieve better
results. Bilateral filtering is basically a nonlinear product of two Gaussian filters in
different domains, which has been known to generate smooth images while pre-
serving strong edges. Although the above solutions have improved some of the
resulting shadows, prefiltering techniques (Section 2.3.6) have had better adoption
so far.

Instead of using PCF,Keating [298] stores fragments per pixel, a depth value per
fragment, and employs an A-buffer [82] to antialias shadow edges. Because there
is fragment information per shadow depth map pixel, the shadow depth map reso-
lution can be decreased to get a similar quality. Similarly, other buffer variations to
achieve antialiased shadows include the cross-scan buffer [576], EE buffer [600],
andEDbuffer [261]. Note that the above techniques require additional information
on top of a standard shadow depth map.

Another way to filter the shadow results comes from using shadow textures
[300]. While the shadow depth map generation pass is still required, its results
are stored in a UV texture atlas for each object. In this way, the filtering used is the
same for texturemapping (e.g., mipmapwithin the GPU).However, this algorithm
requires a lot more memory and processing time to map the shadow depth map
generation results into each object’s UV texture space.

2.3.6 Combining Self-Shadowing and Filtering

Recently, some interesting research into better quality prefiltering of the shadow
depth map has surfaced, including the variance shadow map, convolution shadow

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-142.jpg&w=208&h=155
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Figure 2.11. PCF (top) versus variance shadow mapping (bottom). ©2006 ACM, Inc. In-
cluded here by permission [140].

map, and exponential shadow map. These methods use a probabilistic approach
and attempt to solve both the filtering and self-shadowing problems within a single
algorithm. They also generate superior-quality results.

With the variance shadow map (VSM) [140], instead of storing a depth value
per pixel as in the standard approach, each pixel stores the mean μ and mean
squared value of a distribution of depths, from which the variance σ 2 can be de-
rived. The mean is computed during an additional prefiltering step of the sur-
rounding pixels of the shadow depth map—the softness of the shadow is deter-
mined by the size of prefiltering. When shading a particular point, the shadow oc-
clusion fraction is computed by applying the one-tailed version of the Chebychev’s
inequality theorem, which represents a statistical upper bound for the amount of
occlusion:

unoccludedlight = σ 2

σ 2 + (∥P − L∥ − μ)2 .
The main advantages of this algorithm are that the filtering and self-shadowing
problems are solved in a single approach, only a single shadow map pixel is ac-
cessed per shading step (thus it is much faster when the filtering region is large),
and the shading step should be more pleasing with thin features than percentage-
closer filtering [476]. See Figure 2.11 for a visual example of the quality improve-
ment. However, the disadvantages are that the increase in shadow map memory
usage doubles over the standard shadow depth map approach and that the upper
bound property used as shadow occlusion often makes the shadows less dark than
expected, thus making the objects incorrectly appear to float in midair. They also
identify a high frequency, light-leaking problem due to large variance cases from
large differences in depth values, which can bemanually improved through a user-
input bleeding factor. See Figure 2.12 for a visual example of the light-leaking prob-
lem. Improvements to the light-leaking problem are achieved by slicing the scene
into depth intervals with better depth accuracy, using summed-area tables [334],
but this comes at the expense of even larger memory requirements. This requires
the user to input the number of depth intervals for acceptable results.
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Figure 2.12. Light-leaking problem in the original variance shadow map implementation
(left). Slicing into depth intervals reduces the light-leaking problems (right). Image courtesy
of Lauritzen and McCool [334].

Very recently, a variation of the VSM can be seen in the work of Gumbau et al.
[211] using a cumulative distribution function (CDF), in which the Chebychev’s
inequality function is replaced with a Gaussian or power function. Gumbau et al.
indicate a reduction in light-leaking problems as compared toVSMbut also suggest
using a number of depth intervals to resolve these problems.

Convolution shadow mapping (CSM) [11] approximates the shadow occlusion
fraction using a 1D Fourier series expansion. Each shadow map pixel is converted
into several basis textures instead of a single depth value. During the shading of a
point, prefiltered texture samples are used to smooth the shadow result. In other
words,

unoccludedlight = [w ∗ f (∥P − L∥, Zn)] (d),
where d represents the shadow map pixel, f the Fourier series expansion, w the
filter kernel, and ∗ the convolution operator. As compared to the variance shadow
map, the convolution shadow map is slower (due to the spontaneous convolution)
and uses much more memory (to store the basis textures). However, it does not
exhibit the type of light-leaking problems as seen in VSM, although it does exhibit
ringing artifacts, which can be manually improved by user inputs on the series
expansion order and an absorption factor, respectively.

The above problems led to the proposal of the exponential shadowmap (ESM)
[13, 496], where an exponential expansion is used instead of the Fourier series
expansion—i.e.,

f = exp(−c∥P − L∥) exp(cZn).
This shorter expansion allows the memory requirements to be significantly less
than the convolution shadow map and also causes faster convolution computa-
tions, and no light-leaking problems, although there is guesswork as to what the
appropriate value for c might be, which can change the shadow appearance quite
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Figure 2.13. Rendering of the same scene using CSM (left), VSM (center), and ESM (right).
MainCSMartifacts are near the stairs where shadows fade, andmainVSMartifacts are from
the light-leaking problems. Image courtesy of Annen et al. [13].

drastically. An example comparison of the three techniques can be seen in Fig-
ure 2.13.

In terms of comparisons of the three above approaches, Lv et al. [373] evaluate
both VSM and ESM and find that computing both approaches, and then taking the
minimum of the occlusion values resolves much of the quality limitations of both.
However, this is expensive to implement. Bavoil [43] notes that fromaperformance
perspective, the CSM is much slower, whereas the VSM and ESM are about the
same in performance. What is very important is that there are at least one or two
additional parameters needed for each approach to manually fix visual artifacts,
which can be a hinderance during production. However, with better quality and
performance results over standard percentage-closer filtering, these techniques are
quite worthwhile, and VSM appears to be the most often adopted technique of the
three (VSM, CSM, ESM).

One interesting side effect of solving the self-shadowing and filtering in this
manner is that the terminator problem (Section 1.4.1) now rears its ugly head be-
cause the bias offset is no longer available to escape the self-shadowing (deeper
subdivision is the main workaround). VSM and ESM can also exhibit terminator
artifacts slightly differently, with sawtooth effects (see Figure 2.14). The unexpected
artifact from PCF is the bad self-shadowing at the polygon edges: this is due to
the drastically different Z-depth values near the polygon edges (when extremely
undertessellated), causing incorrect self-shadowing. This can be alleviated with a
larger bias value or one of the alternate-Z self-shadowing correction techniques
(Section 2.3.4).
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Figure 2.14. Terminator problem shown in VSM/ESM (left) and in PCF (right). Image
courtesy of Thomas Annen.

2.3.7 Focusing the Resolution

It is prudent to consider rendering the smallest region possible for the preprocess
of shadow depth map generation. This gives higher-quality results for a specific
resolution. Brabec et al. [69] clip the region for shadow depth mapping to be the
intersection of an optimized per-frame view frustum and light frustum. The op-
timized per-frame frustum results in a smaller angle of view as well as a smaller
z-range for clipping (near and far clipping planes). See Figure 2.15 for an example
of such a reduction in the angle of view and z-range clipping. Additional reduction
may be achieved with the occlusion culling techniques described in Section 2.3.2.
However, keep in mind that quality can change for the same shadow depth map
resolution if the angle of view region to be rendered changes; thus, this approach
should be considered for entire units at a time, not objects that would fly away
and back during an animation (thus dramatically changing the size of the region
to be rendered). See Figure 2.16, where the same shadow depth map can result in

L angle of

optimal

spotlight

z−range

for clipping

optimal

view

Figure 2.15. Given a spotlight, reduce it to the relevant angle of view and z-range clipping
for optimal shadow depth map rendering.
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L L

shadow depth map

occluders

pixel size changes

Figure 2.16. In an animated sequence, the size of a pixel in a shadow depth map with the
same resolution can be altered due to changes in the optimized angle of view.

different quality due to the different coverage of 3D space; the shadow depth map
pixel between the two cases is of different sizes. This can be partially resolved by
adjusting the shadow depth map resolution to match the percentage of the smaller
angle of view to the original angle of view [599, 668]. Further, dramatic changes
in z-range for clipping can produce temporal artifacts, as this changes the depth
precision over an animation.

Another approach to focusing the resolution is to remove the usually large floor
from the shadow depth map computation and focus the shadow depth map on the
much smaller objects above the floor. This assumes that the floor does not self-
shadow, nor does the floor shadow other objects. Shadow z-comparisons are still
being done to the floor and can capture the shadow information from the objects
above it (i.e., the floor can receive shadows). For example, for a car moving on a
large, static road, it is not necessary to include the road in the shadow depth map
if only the car casts its shadow on the road. As a result, the shadow of the car on
the road should be of very high quality.

The above optimizations can still be limiting and may require high-resolution
shadow depth maps. Nonlinear shadow depth map alternatives, to be discussed in
the next sections, can achieve good quality while maintaining reasonable shadow
depth map resolutions. These approaches mitigate the blockiness artifacts in Fig-
ure 2.5 (indicated by blue circles).

Nonlinear Shadow Depth Maps

There are currently several categories of nonlinear shadow depth maps, each cate-
gory focusing the resolution to resolve slightly different issues. They are discussed
in the upcoming sections.

● Warping shadow depth maps. The shadow depth map is warped such that
the focus of the resolution is higher near the viewpoint and lower farther
away from the viewpoint. This improves what is referred to as perspective
aliasing, where shadow blockiness is mitigated for view-nearby points, but
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extreme care must be taken to avoid worsening quality for far-away points
that exhibit high-frequency shadow changes; thus, this technique may not
be appropriate for high-quality offline rendering scenarios.

● Z-partitioning shadow depth maps. This is a nonwarping alternative ap-
proach to mitigate perspective aliasing where zones along the Z-depth axis
are partitioned into separate depth maps, with high resolution focused on
the Z-depths closer to the camera view. This approach should produce better
quality than warping shadow depthmaps, although at a slower performance
rate. Note that this approach is known by various names, including sunlight
buffers, parallel-split planes, z-partitioning, or cascaded shadow depthmap-
ping.

● Alias-free shadow maps. This method calculates shadowing only for the
needed visible points. It represents the highest-quality approach to address
perspective aliasing, although it cannot easily adopt filtering techniques
(discussed in Sections 2.3.5 and 2.3.6) and changes the shadow map render-
ing pipeline quite significantly. It also provides extensions to soft shadows
(Section 4.5.5) and shadows for highly complex thin materials (Section 5.5).

● Adaptive shadow depth maps. For this approach, the higher resolution is
focused on shadow edges where the insufficient resolution would result in
shadow blockiness. Thus, even in the tricky case when the light direction is
nearly perpendicular to the normal of the point to be shaded, the increase
in focus on shadow edges mitigates shadow blockiness as a result of projec-
tion aliasing. These approaches tend to produce higher-quality results than
warping and z-partitioning approaches, but the performance is slower than
both approaches.

Some of these nonlinear approaches have been used successfully in real-time
applications. However, robustness of the approaches should be more carefully ex-
amined. For example, the directional light is the main light type discussed when
dealing with warping shadow depth maps, and better examination into spot and
point lights is warranted. For all the above approaches, it is unknown how a point
light, under six shadow depth maps forming a cube, will perform in terms of
discontinuity artifacts at the boundaries of the six shadow depth maps. As well,
although approaches addressing perspective and projection aliasing can be com-
bined, it is not clear whether it is worth the trouble.

Warping Shadow Depth Maps

Stamminger and Drettakis [557] introduce perspective shadow depth maps (PSM)
to concentrate the depthmap shadowdetails according to the current view by com-
puting and comparing depths in postperspective space, i.e., they squash the view
into a [(−1,−1,−1), (1, 1, 1)] clipping cube (see Figure 2.17(top)). Thus we can get
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Figure 2.17. In the top row, schematic view world space and postperspective space. In
the bottom row, standard shadow depth map (left) versus perspective shadow depth map
(right). ©2002 ACM, Inc. Included here by permission [557].

very high precision and high quality with respect to shadows seen close to the cam-
era view. The shadows far away from the camera view are coarser, but then their
coverage in screen space is small, so it should not matter as much. However, to
get high precision for objects close to the camera, it is critical to have a tight near
clipping plane so that the concentration of precision is not wasted on empty space
ahead of the near clipping plane. This approach maps well to the GPU but cannot
render the shadow depth map once for walkthrough animations (as discussed in
Section 2.3.2).

See Figure 2.17(bottom), inwhich the two leftmost images represent the regular
shadow depth maps, whereas the perspective and current view nature (as seen in
the two rightmost images) allow the shadow depthmap to concentrate on a certain
region and to cover more details in that region.

Perspective shadow depthmaps have since attracted much attention. However,
they have a number of quality issues, among them,

1. Known as the virtual camera issue, i.e., shadow occluders located behind
the camera are not numerically stable in the perspective space. Stamminger
and Drettakis [557] suggest shifting the camera back to handle such occlud-
ers. However, the numerical behavior will worsen and produce poor-quality
results.
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2. The shadow quality depends heavily on the light direction relative to the
camera view [317]. If the light direction points towards the camera, the
shadow image quality can be poor. Chong and Gortler [95] also indicate
poor quality in common situations when the object is far from the camera.

3. It is not immediately clear how warped the shadow depth map parameteri-
zation should be for the best overall quality.

4. Because of the need (on a per-frame basis) to adjust the near clipping plane
to optimize precision and quality, Martin [387] indicates that changes in the
near and far clipping planes over an animated sequence may also cause shifts
in quality.

5. Martin [387] and Kozlov [317] indicate that due to the nonlinear behavior of
the Z-depth values, it is very difficult to come up with a good bias value. The
topic of self-shadowing thus needs to be revisited beyond what has already
been discussed in Section 2.3.4 for regular shadow depth maps.

Kozlov [317] focuses on the special cases that make perspective shadow depth
maps difficult to robustly implement. For the virtual camera issue (issue 1), the
postperspective camera transformation is reformulated such that a slightly larger
area of coverage is achieved without having to extend back the light frustum and
cause as much image quality sacrifice. Chong and Gortler [97, 95, 96] interpret
the perspective shadow depth map as an orientation selection of the shadow depth
map projection plane, according to the visible points in the current view. They
present metrics to automatically choose an optimal orientation in 2D, indicating
that these metrics could be extended in normal 3D environments.

To improve on issues 1 and 2, trapezoidal shadow depth map (TSM) [386] and
light space perspective shadow depth map (LiSPSM) [633] apply a projection for
the light source and then a projection along the camera view, projected into the
view plane of the light. Thus, the virtual camera C becomes perpendicular to the
light’s view direction. See Figure 2.18, where C is created on the left, and the result-
ing warp on the right.

For warping in issue 3, LiSPSM [633, 632] provides a user-controlled parameter
n that pushes the viewpoint back. A small n value indicates a stronger warp and
resolution focus on nearby objects. Wimmer et al. [633] also attempt to employ a
logarithmic perspective transformation because of the ideal warping, but the ren-
dering of logarithmic shadow depth maps proves to be expensive and difficult to
support on the GPU. Other authors continue to investigate variations and enhance
the performance of the logarithmic perspective transformation [665, 359, 360], but
none are feasible on the GPU yet.

For TSM [386], the light frustum is approximated as a trapezoid, and shadow
depth values are represented in trapezoidal space. Relating to issue 4, the danger of
concentrating shadow depth map information resides in the fact that there can be
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Figure 2.18. LiSPSM fundamentals, with the concept of the virtual camera C.

jumps in quality over a sequence of frames because the region of the concentration
can change significantly over a frame. A scheme is devised to lower the frequency
of the jumps by having the trapezoidal transformation map the focus region to
within 80% of the shadow depth map (see Figure 2.19). This heuristic decreases
the number of jumps but does not eliminate them.

As for the self-shadowing issue (issue 5), the artifacts appear most pronounced
for TSM, and Martin and Tan [386] suggest linear z-distribution by omitting the
z-coordinate from the perspective transform. Kozlov [317] indicates that a single
bias value is unable to resolve the self-shadowing issue well, and thus proposes a
slope-scale bias instead. Gusev [214] reformulates the shadow depth map param-
eterization and refers to this as extended perspective shadow depth map (XPSM).
Based on this parameterization, the bias calculation can be simplified with a sin-
gle bias value. Scherzer [508] experiments with various Z-depth value approaches

Figure 2.19. Trapezoidal shadow depth map focuses a region to reduce jumps over an an-
imation. Image courtesy of Martin and Tan [386], ©Eurographics Association 2004. Repro-
duced by permission of the Eurographics Association.
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(Section 2.3.4), and finds that the best results come from using the combination of
linear z-distribution and slope-scale bias.

Lloyd et al. [358] compare the error distribution and results of the PSM,
LiSPSM, and TSM, and found the same overall error. The LiSPSM approach gen-
erates the most even distribution of errors and thus has been the favored area of
continued research among the warping shadow depth map approaches. A thor-
ough mathematical treatment of the warping shadow depth maps is provided by
Eisemann et al. [158].

In general, the above issues show improvement, but are not completely solved.
Furthermore, robust handling of near clipping-plane changes, camera looking at
the light source, and discontinuity issues surrounding omnidirectional lights have
not been pursued. Finally, the sacrifice of lower resolutions at farther away dis-
tances can also cause noticeable aliasing artifacts that may not be acceptable for
offline rendering animations.

Z-Partitioning Shadow Depth Maps

Before we begin this section, we want to remind the reader that the techniques
described in this section go bymultiple names, including sunlight buffers, parallel-
split planes, z-partitioning, and cascaded shadow depth map.

Several authors [575, 663, 664, 358, 161, 131] propose a set of parallel-split (to
the view plane) planes, where a cluster of objects is tightly bound by the parallel-
split planes and a separate shadow depth map is generated per parallel-split plane.
The resolution of each such shadow depth map is dependent on the distance from
the viewpoint: the closer the parallel-split plane is to the viewpoint, the higher
the resolution, thus capturing the near details of interest with high resolution. See
Figure 2.20.

+ =

uniform split logarithmic split practical split

higher resolution required

Figure 2.20. Splitting the shadow depth map regions into parallel-split planes, using (from
left to right) uniform subdivision, logarithmic subdivision [358], and weighted average of
the two types of subdivision [664].
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The main questions are how many and where to position the parallel-split
planes:

● Valient [598] recommends some manual intervention.

● Lloyd et al. [358] indicate that a logarithmic scale subdivision is ideal due to
the logarithmic perspective transform. See Figure 2.20(middle).

● While a logarithmic subdivision may be ideal, it is not appropriate be-
cause most of the resolution would be close to the near-plane; thus,
Zhang et al. [664] suggest some weighted average between the above log-
arithmic approach and an equidistant split-plane distribution. See Fig-
ure 2.20(right).

● Lauritzen et al. [335] indicate that a static determination of the subdivision
locations can either be wasteful or ineffective and suggest a scene-dependent
logarithmic approach, where the optimal subdivisions are computed based
on evaluation of the actual light-space shadow depth map sample distribu-
tion.

● Independent authors [35, 408] use two parallel-split planes in conjunction
with a light-space perspective shadow depth map, so the accuracy of the
split is not as critical.

As compared to warping shadow depth maps, the methods of parallel-split
planes appear to have fewer special cases that they need to deal with, such as light
being behind the viewpoint, resulting in better quality rendering. However, care
must be taken to reduce visual discontinuity artifacts at the borders of the parallel-
split planes by blending between the bordering parallel-split planes [668].

From a performance standpoint, the technique should be slower than the ap-
proach of warping shadow depth maps, because it takes longer for shadow depth
map generation (improvements are discussed by Zhang et al. [667]), as well as
shading of a point (multiple shadow depth maps may need to be accessed to com-
pute shadowing).

Alias-Free Shadow Maps

Aila and Laine [4] (who refer to their approach as alias-free shadow maps), and
Johnson et al. [275] (who refer to their approach as irregular shadow mapping)
independently come up with an approach where the actual shadow depth map is
not required any more.

An initial rendering from the camera is done—this step identifies the points P
to be shaded, in which shadow computations are needed. All points P are trans-
formed to light space (P′), and their corresponding Zn (near Z-depth value) is
computed, of which Zn is then compared against the distance ∥P′ − L∥ to deter-
mine shadowing occlusion. The obvious solution to compute all Zn is to use ray
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Figure 2.21. Visual comparison of the conventional shadow depth map (top), alias-free
shadow map (middle), and subpixel alias-free shadow map (bottom). Image courtesy of
Pan et al. [451]. Computer Graphics Forum ©2009 The Eurographics Association and Black-
well Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. Reproduced by permission of the
Eurographics Association and Blackwell Publishing Ltd.

tracing, but that is too slow. Instead, Johnson et al. [275] use a nonuniform Z-buffer
for rasterization, and Aila and Laine [4] use a 2D BSP tree.

While this approach is promising, the different preprocess step is slower than
the standard shadow depth mapping, and nontrivial effort is needed to apply
some simple percentage-closer filtering [476]. To mitigate the slower perfor-
mance, some authors [21, 535] detail a GPU implementation of the above approach.
Pan et al. [451] also build on top of the alias-free shadow maps by considering the
subpixel-level aliasing that is produced by the rasterization on the view plane. To
retain good performance, a silhouette mask map is used to do only subpixel com-
putations on silhouettes. See Figure 2.21 for a comparison of the conventional
shadow depth map, alias-free shadow map, and the subpixel alias-free shadow
map.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-273.jpg&w=305&h=272


52 2. Hard Shadows

Adaptive Shadow Depth Maps

Fernando et al. [172] apply an adaptive resolution to the shadow depth map, focus-
ing more resolution on the shadow boundaries using a quadtree structure. This
way, they do not need to store large shadow depth maps to get high quality. The
shadow boundaries are identified using edge-finding techniques. The criteria for
higher resolution subdivision is Z-depth discontinuity, provided the shadow depth
map resolution is lower than the camera-view resolution. Lefohn et al. [341, 342]
avoid the slow edge-finding techniques by identifying all shadow depth map pixels
that are needed from screen space pixels and then sample at a higher resolution for
those shadow depth map pixels. Coherence between camera-space, light-space,
and GPU usage are also discussed to optimize the algorithm.

Arvo [20] uses tiled shadow depth maps, where the light view is initially di-
vided up into equally sized tiles. The observation is that each tile should not be
considered equal, i.e., each tile should be computed with a different resolution to
maximize the eventual shadow quality. Each tile computes a weight that deter-
mines the resolution of the shadow depth map, where the tile weight is the sum-
mation of the weight of each pixel (within that tile). The pixel weight is a function
of the depth discontinuity (if it contains a shadow boundary), depth difference (be-
tween the occluder and receiver), and surface distance (between the surface and
camera view—higher resolution when the surface is close to the camera view).

Giegl andWimmer [197] introduce queried virtual shadow depth maps, where
an initial shadow depthmap is generated, then tiled, andwhere each tile is shadow-
rendered at double the resolution, then compared to the previous shadow-render.
If the differences in shadow depth map pixels between the shadow-render passes
are large, then another shadow-render is done at twice the resolution. This is recur-
sively repeated until the difference is below a certain threshold. Giegl and Wim-
mer [196] introduce fitted virtual shadow depth maps to reduce the large number
of shadow-render passes needed for the queried virtual shadow depth maps by
trying to predetermine the final refinement levels for the quadtree; this is done by
prerendering the (shadow) scene and computing the necessary resolution needed
for each 32 × 32 tile based on the Z-depth differences for the screen locations. See
Figure 2.22 for a rendering of the approach compared to standard shadow depth
maps at very high resolution (4096 × 4096).

On a slightly different track for adaptive depth maps, Sen et al. [518] generate
a piecewise linear approximation of the occluder’s silhouette region, so that the
advantages of shadow depth map are retained, while the silhouette approximation
results in high-quality shadow edges. A standard shadow depth map is created as
usual, along with a silhouette map, which is computed using a dual contouring
algorithm to store shadow-edge information. During shading, if the four closest
samples all agree on the shadowing occlusion (i.e., all in shadowor all in light), then
this pixel is considered in shadow or in light without any further computations.
However, if there are shadow occlusion differences, then the silhouette is found,
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Figure 2.22. Standard shadow depth map at a resolution of 4096 × 4096 (top) versus fitted
virtual shadow depth map (bottom). Image courtesy of Giegl and Wimmer [196].

and the silhouette map is used to determine the exact amount of shadowing for
the current pixel. The main issue with this approach is that when edges are too
close to each other, boundary artifacts can remain because the shadow edges may
not be easily identifiable. Similarly, Bujnak [74] also focuses just on the silhouette
to achieve better shadow-edge quality. Instead of shadow edges as in Sen et al. [518],
silhouette information is encoded inside the shadow depth map using one or two
quads per silhouette edge.

2.4 Shadow Volumes

Although the earlier description of shadow volumes in Section 1.3.3 appears sim-
ple, details as to how to compute the initial shadow count, how to intersect the
shadow polygons to update the shadow count, etc., require elaboration for ro-
bust implementation. In fact, such implementations are separately covered for
the CPU (Section 2.4.1) and GPU (Section 2.4.2) because they need to be handled
quite differently. We then discuss performance-related algorithms to reduce the
shadow polygon complexity and fill rate, which are applicable to both CPU and
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GPU (Section 2.4.3). The shadow volume discussion concludes with the descrip-
tion of shadow volume algorithms that integrate BSP trees (Section 2.4.4).

2.4.1 Shadow Volumes on the CPU

The Initial Shadow Count

When the camera is outside all shadow volumes, then the initial shadow count is
0. Otherwise, the initial shadow count needs to be correctly set as the number
of shadow volumes that contain the viewing position. In addition to generaliz-
ing shadow volumes for nonplanar polygons, Bergeron [46] indicates the need to
close (cap) shadow volumes so that a correct initial shadow count of shadow vol-
umes within the camera can be computed. By rendering a single (arbitrary) pixel
and counting all shadow polygons that pierce this ray (even the shadow polygons
occluded by the scene geometry), call this Esvc, then the initial shadow count is
simply (−Esvc).

Another simpler way is to treat the shadow count calculation as a ray tracing
problem in which a ray is shot toward the light from the viewpoint in order to
count the number of hits Esvc that the ray encounters on surfaces that are front-
facing to the light source. In this case, Esvc is the initial shadow count. Since this
only needs to be done once per rendering, this expensive ray tracing solution can
be considered quite reasonable.

For software-based solutions, the initial shadow count can be a single value. In
GPU variations, where the shadow polygons are clipped to the near clipping plane,
the initial shadow count may be different for particular pixels (see Section 2.4.2 for
further coverage on how to deal with initial shadow counts when using GPU).

Visibility Algorithms to Intersect Shadow Polygons

The easiest solution is to employ a Z-buffer for shadow-count incrementing and
decrementing [184, 181]. The Z-buffer is first used to render the non-shadowed
pass. The shadow polygons are then scan-converted onto the Z-buffer, and any
shadow polygon that resides in front of the Z-depth is used to increment or decre-
ment the shadow count. A variation of the Z-buffer approach to employ a scanline-
based solution has also been achieved [46].

Slater [537] suggests that it might also be interesting to apply a light buffer [219]
approach (Section 2.5.1), in which a hemicube surrounds the light source. Each cell
(pixel) in this light buffer indicates the objects that project in it. Thus, to determine
the shadow count, the camera ray is projected to the light buffer, and only the
relevant cells are visited to access a small candidate set of shadow polygons that
the camera ray might hit. Slater [537] compares this light buffer approach with the
SVBSP approach [91] (explained in Section 2.4.4) and finds no conclusive evidence
about which approach provides faster rendering speeds.

Eo and Kyung [164] suggest a ray tracing solution in which the shadow poly-
gons are scan-converted (distributed) into a voxel data structure and the viewing
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ray traverses the voxels to find the candidate shadow polygons it should intersect
to increment or decrement the shadow count. Of course, this is quite slow, as Eo
and Kyung are trying to use it in conjunction with regular voxel traversal (see Sec-
tion 2.5.1).

The Z-buffer and, in some cases, scanline-based variations tend to be the more
commonly accepted implementations. In Section 2.4.2, we show that for shadow
volumes on the GPU, the Z-buffer is employed almost universally in the form of
a stencil buffer. Due to the Z-buffer and stencil buffer approaches, the only ways
to antialias the shadow results is to increase the resolution of the required buffers.
The exception is the slower ray tracing approach [164], in which adaptive and/or
stochastic samples can be used to antialias shadows.

2.4.2 Shadow Volumes on the GPU

Z-pass Algorithms

Heidmann [236] is one of the first to present a GPU implementation of the original
Crow [114] approach. This is referred as the z-pass approach. The exact steps to
achieve z-pass shadow volumes include

1. Enable the depth buffer in order to render the scene (without shadows) onto
the color buffer.

2. Clear the stencil buffer and disable depth buffering.

3. Draw all front-facing shadow polygons, and increment the shadow count for
the relevant pixels in the stencil buffer.

4. Draw all back-facing shadow polygons and decrement the shadow count for
the relevant pixels in the stencil buffer.

5. Darken the pixels in the color buffer where the stencil values are not equal
to 0.

The above steps, however, do not properly handle the combination of ambient,
diffuse, and specular terms. An alternate would be to change steps 1 and 5:

1. Enable the depth buffer in order to render the scene without shadows but
only with the ambient term onto the color buffer.

5. Draw the diffuse and specular terms for the pixels when the stencil value is
equal to 0.

Unfortunately when using the GPU, shadow polygons must be clipped against
the view frustum, thus potentially introducing erroneous initial shadow counts
for some of the image pixels if the camera view is inside the scene. One simple
way to resolve this is to compute the value Esvc for the camera point in terms of



56 2. Hard Shadows

CC

LL

occluder occluder
clip plane clip plane

shadow polygonsshadow polygons

Figure 2.23. Potential errors in the initialization of a single camera shadow count when the
near clipping plane intersects some shadow polygons.

its initial shadow count, then initialize the stencil buffer with Esvc instead of 0.
This method is fairly accurate unless the camera is deep inside the scene and the
near clipping plane intersects a shadow polygon. For example, Figure 2.23(left)
shows that a single initial shadow count is valid, but this is not the case for Fig-
ure 2.23(right), where the shadow polygon cuts across the near clipping plane and
the initial shadow counts are different when the near clipping plane intersects the
shadow polygon. See Figure 2.24(left) for shadow errors when a single shadow
count is assumed, and Figure 2.24(right) illustrates the correct shadow result.

Some authors [37, 393, 48] propose to cap the shadow volumes with new
shadow polygons where the shadow volumes are clipped against the view frustum’s
near clipping plane. Everitt and Kilgard [165] explain why it is difficult to robustly
implement this capping technique that needs to account for all the different combi-
nations. However, ZP+ shadow volumes [249] manage to properly initialize all the
shadow counts in the stencil buffer by rendering the scene that resides between the
light and the camera near clip plane from the perspective of the light. Numerical
precision issues can occur when the light or an object is very close to the camera
near clipping plane or an object. Z-fail algorithms and per-triangle shadow vol-
umes (both described in the remainder of this section) seem more appropriate for
robust behaviors.

Figure 2.24. Shadow errors due to a single shadow count (left), with the correct shadows
(right). Image posted by Aidan Chopra, courtesy of Google Sketchup and Phil Rader.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-329.jpg&w=258&h=92
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Z-fail Algorithms

Another set of solutions [50, 81, 165] to deal with a correct initial shadow count
starts from the observation that this point-in-shadow-volume test need not be
evaluated along the line of sight, but can also be evaluated from the visible surface
to infinity instead (called z-fail test). Thus, the shadow count for the viewpoint
is simply initialized to 0: occluded back-facing shadow polygons increment their
shadow counts, occluded front-facing ones decrement them, and shadow polygons
need not be clipped by the near plane. A shadow count greater than 0 indicates
shadowing. As can be seen in Figure 2.25(right), the z-fail count starts from the
right at 0; then, going left, it ends up at 2 when it hits the point P to be shaded.
Note that z-fail can be considered the computation of the z-pass in the reverse di-
rection, where the z-pass (Figure 2.25(left)) starts at the left (camera) at 1, going
right, and ending up at 2 when it reaches P.

Note that capping shadow volumes against the rest of the view frustum is still
necessary to produce correct shadow counts. Some hardware extensions [301, 165]
avoid the need to correctly compute the capping with respect to the view frus-
tum. This has actually become standard in both DirectX (DepthClipEnable)and
OpenGL (DepthClamp). Another solution simply eliminates the far clipping pro-
cess with a small penalty to depth precision; as a bonus, capping at infinity for
infinite light sources is not necessary, as all shadow polygons converge to the same
vanishing point.

Everitt and Kilgard [165] and Lengyel [345] realize that the z-pass approach
is generally much faster than the z-fail approach. They thus detect whether the
camera is within a shadow volume and employ z-pass if not, and z-fail if so. How-
ever, the sudden shifts in speed difference may be disruptive to some applications.
Similarly, Laine [330] determines such cases on a per-tile basis so that the z-pass
approach can be used more often than the z-fail approach, while retaining correct
shadows. This is done by comparing the contents of a low-resolution shadow depth
map against an automatically constructed split plane.
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Figure 2.25. Z-pass (left) versus z-fail (right) algorithm. Both algorithms arrive at the same
shadow count of 2, but come from opposite directions.
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Per-triangle Shadow Volumes

Very recently, Sintorn et al. [536] revisit the shadow volume algorithm, where each
scene triangle generates its shadow volume for a point light source. Themain idea is
to compute a hierarchical Z-buffer of the image. In otherwords, a hierarchy ofmin-
max 3D boxes is constructed from hierarchical rectangular regions of the image.
Pixels with their shadowing status already known (e.g., background, back-facing
the light, etc.) are not part of a 3D box. Shadowing is applied as deferred shading.

All four support planes of a triangle shadow volume are rasterized together,
and each min-max 3D box is tested against these four planes. Usually, a box will
be efficiently culled as not intersecting the triangle shadow volume. If a box is
completely enclosed in the shadow volume, it is marked (and all its pixels) as in
shadow. Otherwise, the box is refined at the next (more detailed) level of boxes.

The rasterization of the triangle shadow volumes is made very efficient and is
computed in the homogeneous clip space, thus avoiding problems with near and
far clipping planes. Because each triangle shadow volume is treated independently,
the method achieves stable frame rates, and it can work with any soup of polygons.
Therefore, it can handle some ill-formed geometry and does not need to prepro-
cess silhouette edges. It can be extended for textured and semitransparent shadow
casters.

The method, implemented in CUDA, is always more competitive than z-fail
methods, and for larger resolution images and/or higher antialiasing sampling, it
outperforms z-pass methods. Although it could be less efficient for scenes with
high depth variance and tiny triangles, the robustness of the method, its small
memory footprint, and its generality show great promise. It is also not immediately
obvious if it is worthwhile to consider the optimizations mentioned in Section 2.4.3
for this approach.

Other Considerations

Brabec and Seidel [67] use the GPU to compute the actual shadow polygons to
further speed up shadow computations as well as to avoid differences in numerical
properties (between the CPU and GPU) that can result in some shadow-leaking
problems. In fact, numerical instability issues can potentially arise due to shadow
polygons created from elongated polygons, or when the normal of the polygon is
almost perpendicular to the light-source direction. Care must be taken in dealing
with such cases.

If the silhouette optimization techniques discussed in Section 2.4.3 are not
used, then there are likely other numerical problems. In particular, because all
shadow polygons (not just on the silhouettes) are created for shadow volumes,
there are likely visibility problems due to the limited precision of the z-values—
this problem is sometimes referred to as z-fighting.

Roettger et al. [487] replace the stencil buffer with the alpha or screen buffers
(because the stencil buffer can be overloaded in its use to cause bottlenecks) and
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the computations of shadow counts by blending operations, i.e., instead of incre-
menting and decrementing shadow counts, they multiply and divide by 2 in the
alpha buffer, respectively. As the shadow-polygon fill rate is the main bottleneck
in shadow volume approaches, these two buffers can be computed at lower res-
olutions (at the additional cost of a rerendering at this lower resolution), copied
into textures, and the shadows can be treated by exploiting texture bilinear inter-
polation. However, the basic approach may have incorrect results with specular
highlights and may suffer with complex objects in terms of the performance capa-
bility.

2.4.3 Reducing the Complexity

Because of the large number of shadow polygons that are processed, there has been
much research to significantly reduce such complexity. The optimizations can ba-
sically be categorized into three approaches that can be used in combination: a
per-mesh silhouette approach, a global scene analysis optimization, and a hybrid
shadow depth map approach.

These discussions are useful for both CPU and GPU versions of the shadow
volume algorithm. On the GPU, this allows fill-rate reduction of the stencil buffer,
which is crucial for performance.

Per-mesh Silhouette Approach

Many efficient implementations [46, 37, 48, 165] eliminate redundant shadow poly-
gons within a single polygonal mesh by exploiting some silhouette identification

Figure 2.26. Reduced number of shadow polygons generated as a result of the object sil-
houette. Image courtesy of Jerome Guinot/Geeks3D.com.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-357.jpg&w=258&h=169
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(see Figure 2.26, where shadow polygons are generated only at the silhouette of the
object). These silhouettes mainly correspond to the polygon edges that have differ-
ent N̂ ⋅ L̂ positive/negative values (the view-dependent boundary case) and also to
edges that have no other shared edges (the view-independent boundary case). Such
polygon edges are the only edges that require the generation of shadow polygons,
i.e., any internal polygon edges do not need shadow-polygon generation. Such
an approach can potentially reduce the number of shadow polygons quite signifi-
cantly.

As a side note, two observations about silhouettes are interesting to mention.
First, the degree of a silhouette vertex is even [6], where the degree n means the
vertex on such a silhouette can be connected by n silhouette edges. Second, another
observation from McGuire [399] is that in many triangle meshes consisting of f
triangles, the number of silhouette edges is approximately f 0.8 .

Note that the above silhouette optimizations are only accurate for 2-manifold
shadow casters, and there have been attempts at improving the generality of the
meshes [46, 8, 400, 306]. Bergeron [46] indicates that silhouette edges with two
adjacent triangles should increment/decrement the shadow count by 2 and incre-
ment/decrement the shadow count by 1 for open edges. To generalize this approach
even more, Aldridge and Wood [8] and Kim et al. [306] compute the multiplic-
ity of each shadow polygon, and the shadow count is incremented/decremented
by this multiplicity value (although the usual case is either 2 or 1, as in the case
identified by Bergeron). While supporting non-manifold shadow casters, these
approaches require storage of the multiplicity value per shadow polygon, and a
GPU stencil buffer implementation ismore complicated because the standard sten-
cil buffer only supports incrementing/decrementing by 1; additionally, the risk
of exceeding the stencil buffer’s 8-bit limit (shadow counts above 255) becomes
higher. To mitigate the above issues, for the case of increments/decrements of 2,
creating double-quads is a possible brute-force approach. Another possibility is
proposed by McGuire [400], who experiments with additive blending to a color
buffer.

The shadow count also needs to consider some portions of the original mesh
(i.e., the light cap) within the shadow volume polygons. However, those poly-
gons can be culled because of their irrelevance to the shadow-count computa-
tions [345, 397]. For example, if the occluder is between the light and the viewpoint,
and the view direction is pointing away from the occluder, these polygons are not
necessary for consideration for the shadow count. Similarly, if the viewpoint is be-
tween the occluder and the light and the view direction is pointing away from the
occluder, then these polygons do not need to be considered for the shadow-count
computation. In fact, in the latter case, all the shadow (silhouette) polygons for this
mesh can be culled from any shadow-count computation. This work can reduce
the fill rate for GPU-based solutions even more.
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Global Scene Analysis Optimizations

Beyond optimizing for just a single mesh, conservative occlusion culling tech-
niques as discussed by Cohen-Or et al. [106] can be used as a global scene analysis
optimization technique. Additional specific examples are elaborated below.

Slater [537] points out that a shadow volume completely enclosed within an-
other shadow volume can be eliminated. In other words, by processing shadow
volumes in a front-to-back order from the light source, simple configurations of
shadow volume clipping can reduce the extent of shadow volumes closer to the
light source. This can be seen in Figure 2.27, where the shadow volume of occluder
A can eliminate the need for the shadow volume for occluder B as a result from
this sorting.

Fill rates can be further improved by reducing the size of the shadow polygons.
For example, the intensity of the light diminishes as the square of its distance; thus,
shadow polygons can be clipped at a distance where light intensity becomes so
small that it does not affect shading [345, 397]. Similarly, the shadow polygons can
be clipped beyond a certain camera depth range [398] because those points are
not easily visible. Both techniques may result in shadow errors if there are many
shadow-casting lights, and the accumulation errors may add up (see Section 2.5.3
for additional implications of handling many lights).

Another reduction of shadow polygon size can be achieved by clipping the
shadow polygons to exactly fit to camera-visible objects [357, 155], a tool referred to
as scissors [346]. A bounding volume hierarchy can also be traversed front-to-back
to accelerate the determination [631, 565] of the pruning suggested in [537, 357, 155]
because entire nodes (in the hierarchical bounding volumes) can be pruned along
with all the leaf nodes that reside under the node.

In another optimization, a hierarchical shadow volume algorithm [3] is pre-
sented, where the screen is divided up into many tiles of 8× 8 pixels. If the shadow
polygons do not intersect the bounding box formed by the objects within this 8×8
tile, then the points within this 8× 8 tile are either entirely in shadow or entirely in
light, and the fill rate can be reduced because the stencil value for this 8×8 tile will
be the same, and can be computed with any arbitrary ray through the 8 × 8 tile.

L

shadow
polygons

occluder A

occluder B

Figure 2.27. Occluder A can eliminate the need for the enclosed shadow volume from oc-
cluder B.
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Fawad [169] proposes a lower level of detail in certain cases for the silhouette
computation, thus reducing the time needed for the computation of the silhouette
as well as the complexity of the number of shadow polygons. In addition, temporal
coherence is applied to the next frame to further reduce the silhouette computation
time. While this sounds theoretically interesting, self-shadowing is likely going to
be a difficult problem to get around due to the different levels of detail. Zioma [675]
provides a partial solution for closed surfaces, where front-facing (to the light)
polygons are avoided for near capping, although self-shadowing concerns remain
at the silhouette polygons.

Hybrid Shadow Depth Map

An interesting contribution in reducing the complexity of the general shadow vol-
ume approach comes from McCool [393]. A standard shadow depth map is first
created, and then an adapted 2D edge detector is applied on the shadow depthmap
to identify the edges that form the only polygons casting shadow volumes. This
scheme results in no overlapping shadow volumes (which others [37, 605] have
tried to achieve through geometric clipping of volumes, but the computations are
very numerically unstable); thus, only a 1-bit stencil buffer on the GPU is necessary
to process the shadow volumes. When visualizing static scenes (i.e., the shadow
depth map and edge detector preprocessing are not needed per frame), the actual
shadow volume rendering should be very fast. However, the extra overhead in
converting the shadow depth map to shadow volumes via an edge detector can be
slow. The shadow depth map resolution limits how well these extracted edges cap-
ture smaller details and can lead to some aliasing artifacts in the resulting shadow
volumes.

In the hybrid shadow-rendering algorithm proposed by Chan and Du-
rand [84], the shadow depth map is initially generated. For the non-silhouette
regions, it can be determined whether the region is entirely in shadow or entirely
lit. For the silhouette regions, shadow volumes are used to determine exact shad-
owing, thus significantly reducing the fill rates because only silhouette regions are
being considered. Unfortunately, this algorithm also has the same concerns as the
above approach by McCool.

2.4.4 Shadow Volumes Integrating BSP Trees

Another variation of shadow volumes employs the combination of shadow vol-
umes and binary space partitioning (BSP) trees [91]. A BSP tree is constructed
that represents the shadow volume of the polygons facing the light. The shadow
determination is computed by filtering down this shadow volume BSP (known as
SVBSP) tree. This variation is quite different from the standard shadow volume
approach because there is really no shadow incrementing nor decrementing, and
it also has the advantage that there is no need to compute an initial shadow count.
While speed improvements of the approach have been attempted [356], it has not
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Figure 2.28. Construction of SVBSP so that tree traversal can be done to determine if a
point P is in shadow.

been attempted on the GPU and likely remains slower than the regular shadow
volume approach, although it may be efficient for computing shadows of indoor
environments, with simpler and fewer openings for light to come through.

Figure 2.28 illustrates what the SVBSP tree looks like with the insertion of poly-
gons (edges) ab, cd, and e f , respectively. Note that clipping is needed to ensure
nonoverlapping cases, which means numerical stability issues must be handled
with care. For a particular point P to be shaded, its shadow status can be deter-
mined by traversing this tree—left and right traversal is determined where P is
with respect to the slices (at each node).

In terms of dynamic scenes, Chrysanthou and Slater [99] employ a BSP tree
and a shadow-tiling approach (in the form of a hemicube) to get quick updates
in dynamically changing scenes. Chrysanthou and Slater [100] then extend the
SVBSP tree [91] to get dynamic updates in dynamic scenes to quickly add and
delete changing elements of the scene, as well as to merge the modified SVBSP
tree. Batagelo and Junior [37] use the SVBSP to prune the scene and only use the
relevant shadow polygons within the standard stencil buffer.

2.5 Ray Tracing

The basic ray tracing approach to compute shadows is very simple. Most of the re-
search has been focused on speeding up the ray tracing approach, although most
methods remain generally inappropriate for real-time applications (except per-
haps those covered in Section 2.5.2). The methods of acceleration include shadow
culling algorithms (Section 2.5.1), combining ray packing and modern architec-
tures (Section 2.5.2), dealing with many lights (Section 2.5.3), and speeding up an-
tialiasing (Section 2.5.4).
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2.5.1 Shadow Culling Algorithms

There are many intersection-culling algorithms to accelerate ray tracing, andmany
have been discussed in detail in other references [198, 526]. Of particular interest
for shadow algorithms is the light buffer, hybrid shadow testing, voxel occlusion
testing, and conservative shadow depthmaps. Most of these algorithms are mainly
good for static scenes or offline rendering and are highlighted because parts of their
algorithms are also useful for progression towards real-time purposes.

Light Buffer

L

Figure 2.29. The light buffer of a point
light source. Each pixel of the light buffer
contains a depth-sorted list of encoun-
tered objects up to an object producing
full occlusion.

The light buffer [219] consists of six grid
planes forming a box surrounding the
point light source (see Figure 2.29). Each
cell of the buffer contains information on
the closest full occlusion from the point
light (the closest object that occludes the
entire cell) and sorted approximate depth
values of candidate occlusion objects that
project in the cell. For each point to be
shaded, if the depth value of its corre-
sponding light buffer cell is greater than
the closest full occlusion distance, then the
point is in shadow. Otherwise, shadow
determination requires intersection tests
with candidate occlusion objects of the cell. They are performed in order with
respect to the depth values (starting with the object closest to the point light) until
either an intersection hit is found (in shadow) or the depth value of the candidate
occluding object is greater than the intersection point (not in shadow). This data
structure has been employed in some variation of shadow volume algorithms [537]
(Section 2.4.1), radiosity computations [104], and ray tracing soft shadows [407].
Also note that the image in Figure 1.16 is rendered using this light-buffer approach.

A ZZ-buffer [494] is a different data structure, but can be used in a very similar
fashion to the light buffer to accelerate object intersection with shadow rays. The
ZZ-buffer is basically a Z-buffer with each pixel containing pointers to geometry
information (geometry that resides in that pixel). Thus, a rasterization step to pop-
ulate the ZZ-buffer is done per light; then for each shadow ray, only the objects in
the ZZ-buffer’s projected pixel are intersected.

Hybrid Shadow Testing

Hybrid shadow testing [164] uses a voxel data structure to store the shadow poly-
gons as invisible surfaces (as in shadow volumes of Section 2.4). The shadow count
is updated as the ray traverses the voxels. No shadow rays need to be generated for
this scheme, but intersection calculations with the shadow polygons in traversed
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voxels are necessary. When the closest intersected surface is found, the shadow
count is checked. If the count is 0, then the surface is not in shadow; otherwise
the surface is in shadow. However, since it might need to deal with a large num-
ber of shadow polygons, the implementation resorts to the traditional shadow ray
approach under such circumstances.

Voxel Occlusion Testing

For voxel occlusion testing [638], each voxel uses up an extra 2 bits per light
source. Its value indicates the level of opaque occlusion of the voxel with respect
to each light source: full occlusion, null occlusion, and unknown occlusion (see
Figure 2.30). The shadow umbra of all objects is scan-converted into the voxel oc-
clusion bits, such that if the voxel entirely resides inside or outside the shadow um-
bra, then the voxel occlusion value is full or null occlusion, respectively. If the voxel
contains the boundary of the shadow umbra, then it is marked with unknown oc-
clusion. When the viewing ray intersects an object in a voxel that has either full or
null occlusion, then any intersected object in the voxel must be in shadow, and no
shadow rays need to be generated. If unknown occlusion is found instead, then the
fastest method of shadow determination is to resort back to voxel traversal of the
shadow ray. However, as each voxel is traversed, its occlusion value is checked—a
quick exit condition for the shadow ray traversal is available if any of those tra-
versed voxels show a full or null occlusion value, which will again mean that the
point to be shaded is fully shadowed or fully lit, respectively.

The objective of this approach is to get known occlusion status as often as possi-
ble, and thus for polygonal meshes, it is best to preprocess voxel occlusion testing
with the per-mesh silhouette optimizations described in Section 2.4.3 instead of
processing on a per-polygon basis.

For interactive applications, a high enough voxel resolution may be used to
reduce the occurrence of unknown occluded voxels, or it can be used to en-
code only totally occluded or unoccluded voxels [650, 503] (Sections 3.7.4 and 2.6,
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Figure 2.30. In voxel occlusion testing, each voxel of the regular grid is marked as full, null,
or unknown occlusion from one light source.
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respectively). Such an encoding can also lead to the ability to generate atmospheric
shadows as well (Section 5.6.1).

An alternative but similar optimization is introduced by Djeu et al. [133]. Ob-
jects are assumed to be closed and totally opaque. An interior fill operation of the
objects is done to fill up the k-d tree. When computing shadows, the shadow ray
traverses the k-d tree, but instead of first intersecting the mesh, the shadow ray
first tries to locate filled regions. If a filled region is found, then it is in shadow. If
a filled region is not found, then costly intersection calculations with the mesh are
needed, but this is usually only required at the silhouette of the object (from the
perspective of the light).

Conservative Shadow Depth Maps

Acouple of independent papers [337, 243]make the observation that shadow depth
maps usually provide a decent approximation to the shadowing occlusion and can
be used as a first pass to avoid shooting lots of shadow rays (in the standard case)
and to make the final quality higher. The shadow depth maps created in the first
pass tend to be more conservative, to cover cases where the shadow occlusion is
uncertain. Whether or not to shoot a shadow ray is determined on a view-pixel
basis—these shadow rays are often needed at the silhouette of the geometry.

The above two papers differ in their approaches for determining which pixels
need to shoot a shadow ray. Hertel et al. [243] store in the shadow depth map
the minimum z-value of the entire coverage of triangles in the shadow depth map
pixel. A check is also done if the shadow depth map pixel is entirely covered. If
entirely covered, then the shadow-ray origin compared to the shadow depth map
pixel z-value can determine whether the point is in shadow or lit without shooting
a shadow ray. Otherwise, a shadow ray is shot, but traversal of the shadow ray
does not need to go beyond the shadow depth map pixel z-value (i.e., early ray
termination).

Lauterback et al. [337] tag each shadow depth map pixel as requiring a shadow
ray to be shot if the Z-depth pixel differs significantly from the neighboring Z-
depth pixels. In essence, it is tagging the silhouette to discover the need for a
shadow ray.

Both papers test their approaches on the GPU. It is unclear how effective the
algorithms would be when insufficient shadow depth map resolution occurs.

2.5.2 Combining Ray Packing and Modern Architectures

Relating to the previous discussions on shadow-culling algorithms, other papers
[453, 641, 94, 545] accelerate the computation of shadows from simple lights using
voxels as the culling approach. Theyhave not enjoyed asmuch success as hoped be-
cause the performance bottleneck in an optimized ray tracer no longer resides with
the reduction of floating-point computations and object intersection tests. Rather,
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lack of locality ofmemory references has become the bottleneck withmodern plat-
forms. This is precisely why a ray-packing approach towards ray tracing has met
with much more success [610, 613, 64] in improving performance. Ray packing
generallymeans doing computations for a group of rays such thatmemory accesses
only the same, small set of geometries.

Ray packets, in conjunction with a suitable culling data structure (bounding
volume hierarchies (BVH), k-d trees, BSP trees, uniform grids, concepts all de-
scribed in [198, 526]), the SIMD architecture (e.g., Intel’s SSE), and a highly parallel
environment in eitherCPU [610, 613] orGPU [248, 213, 464, 676], have enjoyed sig-
nificant speed improvements. However, the memory requirements remain large,
and texturing is currently not well supported in the above environments.

To help with the memory requirements, out-of-core algorithms [461, 609, 611,
73] have been introduced. The order of ray computations is done differently to
optimize the above ray packing in conjunction with voxel cache hits. This allows
for much less data set I/O to move in and out of the entire data set.

2.5.3 Dealing with Many Lights

In scenes that contain many shadow-casting lights, it becomes quite costly to com-
pute shadows for each point to each of those lights. To achieve a similar-looking
result, a number of algorithms have been proposed.

Bergeron [46] defines a sphere of influence around each point light source, for
which the radius is related to the light intensity. Any point outside the sphere is
not considered for shadowing. While efficient, the method fails when many light
sources of low intensity are ignored, but their combined contribution could be
observable. This is also the case when approximating an extended light source
with many point lights. Using more light samples would reduce the overall scene
illumination and therefore also the shadowing effects.

Ward [625] determines, among all the lights, an ordering of which lights con-
tribute most to the current point to be shaded. He only calculates lighting and
shadowing based on the lights that have significant contributions. As a result,
shadow rays only need to be shot to some small number of lights per point to be
shaded.

Shirley et al. [527, 528] attempt to find good probability density functions us-
ing Monte Carlo integration for direct lighting of extended light sources (for soft
shadows) as well as for a large number of lights. The algorithm subdivides the
scene into voxels, and for each voxel, separates the set of lights into either an im-
portant or an unimportant set. While each light in the important set is sampled
by shooting shadow rays per light, only one arbitrary light from the unimportant
set is chosen for the shadow ray shooting to represent the entire unimportant set
of lights. The use of exactly one shadow ray provides good results because the
noise generated from low-intensity changes tend to be less objectionable over an
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animated sequence. The optimal number of shadow rays to achieve accurate
enough quality has not been researched in this work. Figure 2.31 shows one ex-
ample from this approach.

Fernandez et al. [171] also subdivide the scene into voxels, more specifically oc-
trees. The basic preprocessing results in a voxel indicating whether the entire space
occupied by the voxel is fully occluded, partially occluded, or unoccluded for each
light. The storage is quite large: for each light, fully occluded voxels store noth-
ing, unoccluded voxels store a pointer to the light, and partially occluded voxels
store a pointer to the light and links to potential occluders for that voxel. During
the shading phase, for fully occluded voxels, nothing needs to be done; for un-
occluded voxels, the lighting equation is computed; for partially occluded voxels,
shadow rays are shot to determine the shadowing. To accelerate the case of many
lights, Weber’s law, K = ΔI/I, is applied to unoccluded and partially occluded vox-
els. Weber’s fraction K determines which points to be shaded do not really matter
from visual perceptions. Weber’s law therefore identifies lighting that could be
eliminated from computation based on quick evaluations of whether each lighting
case per voxel contributes noticeably to the final shading.

Figure 2.31. Results with reduced sam-
pling of many lights. Image courtesy of
ChangyawWang.

The many-lights problem might not
come only from multiple emitting light
sources. Virtual point lights (VPL) can
be generated to propagate indirect illumi-
nation in global-illumination algorithms.
Techniques derived from instant radios-
ity [299], lightcuts [614], and light trans-
port matrices [229, 443] are discussed in
more detail in a section about VPL (Sec-
tion 5.10.2) in the global illumination sec-
tion (Section 5.10).

Note that although the above work has
been done with respect to ray tracing, it
can be extended to some other shadow al-
gorithms as well, as the point of the above
work is to avoid shadow computations for
each point for all lights. In addition, al-
though the above research work is very in-
teresting, it has not been used in produc-
tion work as far as we know. In produc-
tion work, in order to save rendering time,
there may be a lot of lights, but only a few
lights are tagged for shadow calculations.

Also, options such as associating certain objects with certain shadow-casting lights
(so that the object casts shadows only by those lights, to reduce rendering compu-
tations) are available in most software renderers. Finally, there are also options to

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-3&iName=master.img-439.jpg&w=137&h=207
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select certain objects as shadow casters (or not) or as shadow receivers (or not)—
i.e., not all objects need to be considered for shadowing.

2.5.4 Antialiased Shadows

To get better antialiased (hard) shadows without shooting a large number of
shadow rays all the time, some cone tracing [10] (Section 4.7.2) or beam trac-
ing [231] extensions have been implemented. For example, Genetti and Gor-
don [188] use cone tracing [10] not to determine visibility, but as an indication
of how many shadow rays need to be shot and in which section of the cone to get
good antialiasing. The criteria of the presence of different polygons is used to de-
termine how complex that cone region might be and thus indicates howmany rays
need to be shot. This may be ideal for parametric surfaces, implicit surfaces, or
large polygons, but not ideal for polygonal meshes, as polygonal meshes will al-
ways require many shadow rays to be shot based on the above criteria. Similarly,
Ghazanfarpour andHasenfratz [193] use beam tracing [231] to get antialiased shad-
ows. It encapsulates the different cases in which the objects will intersect the beam.
This approach is again mainly ideal for large polygons but not polygonal meshes
because the meshes will slow down the approach.

Another fast antialiased shadow algorithm involves acceleration based on in-
formation from the current pixel’s sample results [643]. That implementation as-
sumes antialiasing is achieved by adaptive supersampling [629]. Instead of always
shooting a shadow ray when extra samples are needed (due to some aliasing), the
ray trees of the surrounding samples are first checked. Additional shadow rays
are shot only if the invocation of the extra samples is due to different shadow oc-
clusion values. Otherwise, the extra sample’s shadow occlusion value is assumed
to be the same as the surrounding samples. Note that this can provide important
performance gains if significant aliasing is caused by geometry silhouettes, noisy
textures, specular highlights, etc., and not shadow aliasing. For example, looking
at Figure 1.16, one would assume that a single shadow ray per pixel is shot when
rendering the counter top, except at the border of the shadow. Due to the textures
on the counter top, additional subpixel rays are shot to antialias the texture, but the
shadow information should not need to be computed.

2.6 Other Hard Shadow Algorithms

A number of algorithms have been investigated for the specific cases of convex
polygonal meshes [618], shadow outline processing as used in the video gameOut-
cast [500], discretized shadow volumes in angular coordinates [585], theoretical
studies of precision shadows through epsilon visibility [146], and subtractive shad-
ows to generate shadow levels of detail [124].
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An interesting class of algorithms use GPU projection textures [426, 421, 438]
to render shadows. Nguyen [426] renders projected polygons to a GPU texture
and applies this texture onto the receivers by computing its projective texture co-
ordinates on the fly. Two papers [421, 438] discuss the use of shadow depth map
results to project shadow textures onto receivers. The shadows are generated as a
result of multipass rendering of the shadow textures with the receivers. Although
these techniques are quite fast, the main limitations are that an object cannot self-
shadow and canonly be an occluder or a receiver, not both. Further, it is not feasible
to implement this for more than one shadow-casting light. Oh et al. [437] combine
projection textures with shadow depth maps to alleviate the above limitations.

Schaufler et al. [503] implement a variation of voxel occlusion testing [639] us-
ing an octree. Because the lights and models are not changing during the visual-
ization, the fixed shadow occlusion values can be embedded in voxels to indicate
whether a certain voxel region is in shadow or not. They also improve the detection
of full occlusion due to combined occlusions (occluder fusion) of disjoint occlud-
ers. When the voxel contains regions that are in shadow and some region not in
shadow, it requires additional shadow rays to be shot to determine the shadow oc-
clusion.

There is also an entire class of algorithms focusing onout-of-core approaches to
reduce memory of large data sets. A small discussion was provided in Section 2.5.2
specific to ray tracing. A more generalized discussion of out-of-core algorithms
can be found in the following reference [531].

2.7 Trends and Analysis

In reviewing the contents of this chapter, it is clear that there is no algorithm for
all situations. From a research perspective, shadow (depth) map papers have been
the most abundant in an attempt to automate the correction of shadow artifacts.
The current count for the papers are

Planar receivers of shadows 5

Shadow (depth) map 103

Shadow volumes 44

Ray tracing 37

2.7.1 Offline Rendering Trends

In offline rendering situations, the trend is that most turnkey software (such as film
and video software including Houdini, Renderman, Maya, Mental Ray, Lightwave,
etc., and CAD software including SolidWorks, AutoCAD, TurboCAD, etc.) pro-
vide shadow options from both ray tracing and shadow depth maps, and shadow
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volumes are rarely offered. Shadow depth maps offer the faster, less memory con-
suming (unless out-of-core techniques are applied (see Section 2.5.2)), approxi-
mate, and usually aesthetically pleasing quality solution, whereas ray tracing pro-
vides the most flexible and exact solutions, usually used when shadow depth maps
become troublesome or fail. Also, with platforms supporting high parallelism (on
the CPU or GPU) or scenes with many shadow-casting lights (due to less per-light
preprocessing or many light optimizations (see Section 2.5.3)), ray tracing is be-
coming more affordable.

Shadow depth maps are much more appropriate than shadow volumes in of-
fline rendering situations because shadow depth maps allow efficient handling of
large data sets, higher quality renderings due to user-input tweaking (and the users’
willingness to tweak parameters), and percentage-closer filtering capabilities to
achieve fake soft shadows, which can also mask the straight edges of polygons that
shadow volumes cannot. As well, shadow depth maps can deal much more ef-
fectively with the terminator problem (Section 1.4.1). Finally, shadow depth maps
can easily integrate shadows from any surface type with the flexibility of using dif-
ferent visibility determination algorithms for each surface type (e.g., Z-buffer for
polygons, ray tracing for algebraic surfaces, simplified splatting for voxels, etc.).

The most common implementation of shadow depth maps in offline render-
ing situations is the implementation described by Reeves et al. [476]. Some offer
the mid-distance solution [642] for avoiding bad self-shadowing, and many offer
some tile-like implementations [172, 333, 480] to reduce memory usage. It is rare
to see any nonlinear shadow depth maps implemented, however. This is likely due
to the lack of image-artifact-free robustness (especially with aliasing far-away ge-
ometry) of the nonlinear approaches inmany offline rendering situations as well as
the ability of the production users to optimize their scenes very well (i.e., the entire
model is rarely submitted for rendering of specific scenes; parts of the models are
manually culled) that allows linear shadow depth maps to be very effective.

2.7.2 Real-Time Rendering Trends

In real-time situations, it is rare to see ray tracing in turnkey real-time engines.
Although ray tracing is, by far, the most flexible, unfortunately it remains inap-
propriate if real-time frame rates are desired unless the platforms support high
parallelism (on either the CPU or GPU), which is not universally true yet. Shadow
depth map and shadow volume algorithms tend to be much faster on common
hardware. Shadow volumes are quite at home in real-time, GPU-based, simple
environments (e.g., Sketchup) because the polygon count (for shadow-casting ob-
jects) tends to be small, polygons are the dominant primitive for real-time appli-
cations, and shadow volumes can deal with polygons very efficiently and accu-
rately with little to no user input. However, shadow volumes have not been used
in many AAA titled games (high-quality games with large budgets) or other real-
time environments because a consistent frame rate cannot be achieved despite the
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Figure 2.32. A closed model (left) is no longer closed after cross sectioning (right). Image
courtesy of NGRAIN (Canada) Corporation.

optimizations discussed in Section 2.4.3. Also, note that some important shadow
volume optimizations (Section 2.4.3) require that objects be closed, but this as-
sumption may not be true upon creation, or the assumption may be broken due to
real-time interactions such as cross sectioning (without capping). See Figure 2.32
for a simple example of a closed model (left) not being closed after cross sectioning
(right). However, new approaches such as the per-triangle shadow volumes [536]
do show some interesting promise.

On the other hand, shadow depth maps have been quite abundant in real-
time engines for more complex environments (such as Second Life, Unity 3D, DX
Studio, Renderware, etc.). In fact, most implementations involve either warping
shadow depth maps or z-partitioning variations (Section 2.3.7). This has become
important to allow entire worlds to be rendered with decent shadow quality with-
out resorting to very high shadowdepthmap resolutions. Z-partitioning variations
seem to be gaining more momentum because they generate better quality, tend to
be more artifact free, and the quality/performance effects can be controlled by al-
lowing the user choice of the number of split planes. In fact, z-partitioning varia-
tions seem to be the approach of choice for AAA titled games. There has also been
a trend to combine z-partitioning with variance shadow maps to get very good-
quality renderings. This is not surprising considering that the two approaches are
easy to code and combine.

If only shadows cast on a floor/wall in real time are required, the planar re-
ceivers of shadows approach [57, 567, 223] is clearly the winner and most often
used implementation under such circumstances (e.g., WebGL). It is even appro-
priate and easy to combine approaches: shadows on a floor (where some floors can
be a significant size/portion of the scene) are computed using the planar receivers
of shadow approach, and the rest of the scene is computed using shadow depth
maps, for example.

2.7.3 General Comments

Figure 2.33 shows a decision tree for novice practitioners that considers which ap-
proaches will work in certain scenarios. Note that the image quality aspect is ad-
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yes

use shadow volumes use shadow depth map

high scene complexity, or
have ill−formed model, or
need other features

use ray tracing

low parallelism opportunity
and low number of lights?

use planar shadow
algorithms

use shadow depth mapuse ray tracing

low parallelism opportunity
and low number of lights?

support polygons only?

shadows on planar
floors only?

no no

no

no
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yes yes

yes

Figure 2.33. Graph for determining which shadow approach to use.

dressed at the bottom of the tree, which may be surprising but not unexpected,
because the external considerations of the entire system (of which shadow algo-
rithms are a part) are generally more constraining.

Pluginable shaders and lights have become commonplace in high-quality ren-
derers, such as Renderman, Mental Ray, Maya, etc. This is because shaders and
lights only require localized information such as intersection point, texture coor-
dinates, tangent values, etc. Allowing shadows to be easily pluginable is tougher
however. In the case of ray tracing, this is simple because the user can write user
code to add or change shadow rays during shading. However, in non ray tracing
algorithms, pluginable shadow algorithms are not that simple because shadow al-
gorithms are basically some variation of the visibility determination algorithms. As
such, shadow algorithms need access to the data structures of the geometry. Thus,
the information required is not so localized. In the case of Renderman, the main
support for shadow algorithms is the shadow depth map, and it is treated as a sep-
arate rendering pass (Z-depth render mode); then, some user code incorporates
the comparison of depth values during shading.

And that is just the literature on hard shadows. The discussions on soft shadows
are even more complex and its algorithms less organized. In fact, if the reader only
needs to consider polygons, then the recommendation is to skip the next chapter
for now and proceed to Chapter 4 on soft shadows. However, if non-polygons
need to be considered, the following chapter should be read next, as it covers hard
shadows for non-polygonal objects.



CHAPTER 3

Supporting Shadows for
Other Geometry Types

3.1 What’s Covered in This Chapter

This chapter covers algorithms that generate shadows for non-polygonal primi-
tives. Most of the published papers for such primitives discuss hard shadows only
with very few delving into soft-shadow discussions. The list of non-polygonal
primitives discussed in this chapter includes

● Higher-order surfaces, such as parametric, implicit, subdivision, and CSG
(constructive solid geometry) surfaces (Section 3.2).

● Image-based rendering supporting impostors (Section 3.3) [274].

● Geometry images (Section 3.4).

● Particle systems (Section 3.5).

● Point clouds (Section 3.6).

● Voxels within volume graphics (Section 3.7) [349, 160, 385].

● Heightfields (Section 3.8).

Note that higher-order surfaces, particle systems, and point clouds are usu-
ally natively created in some software (e.g., parametric surfaces created in Maya),
whereas heightfields, voxels, and impostors tend to be natively created in other
forms and then converted to their particular geometry type for convenience of
rendering and visualization.

75
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3.2 Higher-Order Surfaces

Higher-order surfaces, such as parametric surfaces, implicit surfaces, and CSG, are
critical to computer graphics because they represent exact mathematical represen-
tations of the 3D model and can be described with less data input (thus using less
memory) than the many vertices for polygonal meshes. There are multiple ways
to render higher-order surfaces: the most popular among them use numerical it-
eration (Section 3.2.1) or rely on a form of polygonization (Section 3.2.2). There
are also a few variants that use shadow volumes to directly generate shadows (Sec-
tion 3.2.3).

Before proceeding, we provide a few words on what these higher-order sur-
faces are:

● Parametric surface, also known as a spline surface, which is a particular and
popular form of a polynomial parametric surface. A parametric surface in
3D is defined by a function of two parameters, usually denoted by (u, v). The
surface is defined by a set of user-input control 3D points and the interpola-
tion function for those points (see Figure 3.1). The most common example
of parametric surface is the cubic NURBS.

● Implicit surface, also known as a level-set or isosurface. An implicit surface
is defined by a mathematical function F , where F(x , y, z) ≤ c. For example,
a unit sphere located at (0,0,0) is defined by F(x , y, z) = x2 + y2 + z2. A
variation of an implicit function is known as algebraic surface, metaballs, or
blobbies, with the definition that∑i Fi(x , y, z) ≤ c. An example of blobbies
can be seen in Figure 3.2, where the water is composed of blobbies and they
are rendered using numerical iteration techniques.

● Subdivision surface, which starts froman initial polygonalmesh that is recur-
sively refined by inserting more vertices and faces to replace the ones from

Figure 3.1. Control points on the left, with the piecewise polynomial definition, result in
the surface generated on the right.
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Figure 3.2. Blobbies and their corresponding shadows, by Duncan Brinsmead. Image cour-
tesy of Autodesk, Inc. © 2007. All rights reserved.

the previous iteration. The refinement schemes compute new vertex posi-
tions within a given neighborhood; they are interpolating when the original
vertices are matched with the subdivision, and otherwise approximating.

● Constructive solid geometry (CSG), procedural modeling technique that uses
Boolean operators (such as union, intersection, difference) to combine ob-
jects.

Oddly enough, we found little to no literature on shadow algorithms for bound-
ary representation (B-rep) surfaces. We suspect this is because the rendering of
those surfaces is almost always done through polygonization. Further, B-reps are
usually applied in CAD situations where shadows are not as critical. Thus, we have
no coverage of B-rep surfaces as higher-order surfaces in the upcoming discussion.

3.2.1 Numerical Iteration

Rendering of higher-order surfaces can be achieved through direct rendering that
applies numerical iteration techniques. Such techniques compute the intersection
of a 3D ray with the surface, and the closest intersection point with the ray is deter-
mined. Numerical iteration techniques require a starting guess where the closest
point might be; then, iterations of the guesses hopefully result in the convergence
of the solution. The quest for all numerical iteration techniques is to bound the
intersection point’s range sufficiently to allow both fast and correct convergence.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-027.jpg&w=242&h=184
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Example numerical iteration techniques for implicit surfaces can be found us-
ing Newton’s iteration and regula falsi [55], deriving analytic solutions to low-
order polynomials [224], and using interval arithmetic [285, 411]. To achieve
faster performance, the following papers use GPU to directly render implicit sur-
faces [363, 588, 287, 532].

Example numerical iteration techniques for parametric surfaces can be found
in the following: using Laguerre’s root-finding algorithms [281, 432], multivariate
Newton’s method [572], interval arithmetic [591], subdividing polygonal approxi-
mation [644], Bézier clipping [432], and Chebyshev polynomials [180]. To achieve
faster performance, the following papers use GPU to directly render parametric
surfaces [216, 448, 286, 318].

Although the above numerical iteration techniques hint at a ray tracing ap-
proach for shadowing, and while it is definitely the case, the intersection tests can
be done as a preprocess to fill up depth information for shadow depthmaps as well.
Initial guesses can then rely on neighboring shadow depth map pixels.

The numerical robustness to guarantee closest intersection hits with the earlier
approaches can be difficult to achieve, resulting in potential holes in the rendered
images. However, robustness has been increasing. Further, rendering speed may
be slow due to poor convergence rate to evaluate a single point visibility but signif-
icantly improved due to GPU-based algorithms. The quest remains high for direct
rendering of higher-order surfaces due to the small amount of memory needed
and exact intersections achieved, as compared to polygonization of the surfaces,
which will be discussed next.

3.2.2 Polygonization

Instead of numerical techniques to deal with the same parametric surfaces and
implicit surfaces, polygonization (tessellation of the higher-order surface into a
polygonal mesh) is another approach. However, polygonization has its costs, in-
cluding the need for larger amounts of memory to deal with the polygonal mesh,
the need to approximate a smooth surface with a sufficient number of polygons,
and the need to deal with the terminator problem (as described in Section 1.4.1,
although this problem can be reduced with finer tessellation).

There is a variant of polygonization that avoids some of the above concerns. In
the Renderman implementation [110], fine tessellation (micropolygons) occurs on
a per-tile basis, where each tile is a small region of the entire Z-buffer. The tessella-
tion is thrown away once that tile has completed rendering. In such a case, neither
memory nor terminator problems are of concern. However, this only works for a
Z-buffer rendering approach, and care must be taken to account for the differing
levels of detail of the tessellation between theZ-buffer render and the shadowdepth
map render, resulting in improper self-shadows (this is discussed in Section 2.3.2).

Example references on polygonization from implicit surfaces [59, 58] and para-
metric surfaces [607, 523] are available. Many other geometry types also employ
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polygonization for the final rendering and shadowing steps due to some subset of
the above reasons, such as Marching Cubes [367] to convert voxel data to poly-
gons, and techniques to convert point-cloud data to polygons [594, 552]. Direct
shadow rendering algorithms for those other geometry types are discussed in sec-
tions starting with Section 3.6.

Note again that if the implementation employs polygonization, then the algo-
rithms in Chapter 2 are more than relevant to the reader, and the graph of Fig-
ure 2.33 to determine which algorithms to use applies.

3.2.3 Shadow Volumes

Jansen and van der Zalm [266] use shadow volumes to calculate shadows for CSG
objects. Shadow volumes are first calculated for the shadow-generating parts of
the silhouette (from the viewpoint of the light source) of each CSG object. A very
large shadow CSG tree per object is formed. They consider only the front-facing
parts of the CSG object to simplify the complexity of the shadow CSG tree. The
shadow trees tend to be quite large and are needed on a per-object and per-light
basis.

Heflin and Elber [235] extend the shadow volume approach to support free-
form surfaces. Once the silhouette from the viewpoint of the light source is identi-
fied, a set of trimmed surfaces are created to represent the shadow polygons of the
shadow volume. The shadow count computations intersecting from these trimmed
surfaces can be slow.

Tang et al. [580, 579] use the GPU to accelerate silhouette extraction in geom-
etry images (Section 3.4) from subdivision surface-based models.

3.2.4 Trends and Analysis

Polygonization remains the more popular technique in industry (offline or real-
time). Since it can apply any of the rendering and shadowing algorithms described
in this book, the rendering can be fast because the polygonal mesh can be acceler-
ated on the GPU, and most importantly, polygonization allows code maintenance
to be much simpler since the rendering algorithm essentially only deals with one
type of primitive (polygon) and the tessellation components for handling the dif-
ferent higher-order surfaces can be self-contained. The latter point is especially key
for some software which offers multiple surface types, e.g., Maya supports model-
ing of NURBS, subdivision surfaces, and polygons.

However, with direct rendering solutions on the GPU, and the advantages of
less memory usage plus avoidance of the terminator problem, direct rendering so-
lutions should become more viable. The decreased memory factor makes native
support ideal for current tablets, but the GPU capabilities of these devices may not
be powerful enough. Further, the exact rendering of surface detail (through direct
rendering solutions) is also ideal for certain domains that require such accuracy,
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such as CAD or scientific applications/simulations. Also, direct rendering is most
efficient when using blobbies to represent particles (such as water), due to the large
data set complexity.

Another scenario that is becoming more common is the need to deal with dis-
tributed learning scenarios (distributed over the internet), where the 3D files need
to be quickly downloaded (via the internet) in order to visualize the content. With
certain higher-order surfaces (e.g., NURBS), the geometry representation can be
very compact and thus quite suitable for fast network transmission. As a result,
being able to render the geometry natively, without the need to wait for the poly-
gonization would be a significant advantage, i.e., perceived wait of download plus
polygonization may be long and hurt the user experience.

3.3 Image-Based Rendering for Impostors

Figure 3.3. The combined effect of a
few planar impostors can approximate
the rendering of a complex 3D geometry,
here, foliage, which appears different on
both sides of each impostor. Image cour-
tesy of Lluch et al. [361].

Image-based rendering techniques [88]
make use of textured semitransparent
polygons as impostors in a scene. These im-
postors can be rendered faster in general
than the many detailed 3D geometries that
they are replacing, mainly because each
impostor is usually built from very few un-
derlying polygons. The image-based ren-
dering techniques allow such impostors to
be used in certain far-away views, bene-
fiting from texture filtering within the im-
postor surface, instead of facing the alias-
ing of rendering multiple small, distant
polygons. Impostors can also be interpo-
lated between different textures, thus sim-
ulating changing appearance under differ-
ent view angles, under different light di-
rections, or for animated objects (e.g., a
walking sequence for a human encoded as
a movie sequence). Impostors are particu-
larly useful in urban environments because
of the many buildings, trees, or humans
(crowds) that can be faked almost seam-
lessly. They can also be usedmultiple times

as instances in a same scene or combined or textured differently to introduce some
variability. Finally, because they are built on simple polygons, impostors integrate
well within any polygonal-based rendering system.
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Much of the research in image-based rendering has been focused on the com-
putation of the seamless view interpolation of the impostors, as well as the compu-
tational cost and access speed of many GPU textures representing the impostors.
Impostors have been represented by 2D cross images called planar impostors [374],
billboards [123], multilayer depth images [520], or volumetric billboards [121]. A
single object can be represented by one or multiple impostors, and vice versa, an
impostor can represent several different objects. Figure 3.3 illustrates the combined
effect of a few planar impostors.

In the brief coverage that follows, we present the literature on the shadowing
techniques used in image-based rendering, specifically for large numbers of build-
ings, trees, and humans (crowds), where the application of image-based rendering
appears to be the most obvious. Note that the majority of the shadow algorithms
are assumed to be shadows landing on a ground floor.

3.3.1 Trees

In a very traditional approach, Zhang et al. [666] use a set of three orthogonal
billboards, each billboard complete with color and alpha channel information.
Shadow projection onto the ground plane is achieved with the alpha channel in-
formation and a stencil buffer. Themethod is only valid for distant trees, and these
trees must be very symmetrical due to the minimal set of billboards.

Max and Ohsaki [389] simply precompute Z-buffer images from different view
directions around a sphere, and project the 3D points extracted from the closest Z-
buffer directions to produce an image from an arbitrary viewpoint. The 3D points
should provide a better depth complexity, compared to blending between flat bill-
boards. Shadow determination for the rendered 3D points comes from a similar
construction of a shadow depth map.

Zhang and Nakajima [660] experiment with shadowing of impostors from
trees. Features of the trees are captured as irregular lines, and projection of the
irregular lines onto the ground plane forms the basis of the shadow generation.
Several methods [132, 291, 661, 659] apply computer vision techniques to extract
shadow silhouettes from image-based objects to achieve shadow projections of the
silhouette on a planar ground.

Meyer et al. [406] render many trees on a landscape by also using image-based
rendering techniques. A hierarchy of bidirectional textures is used to store dif-
ferent LODs to represent the tree, and the appropriate LOD texture is sent to the
GPU. Shadowing is accounted for in the following combinations: a hierarchy of
visibility cube-maps is built where each tree’s cube-map accounts for visibility of
other trees and other geometries (e.g., landscape); self-shadowing of the tree onto
itself is taken care of in the bidirectional texture functions (BTFs) and horizon-
mapping techniques [391]; a shadow depth map [630] is used to incorporate all of
the above.
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Qin et al. [470] use several vertical and a few horizontal 2D buffers to store a
sampled representation of the shading and shadowing information. Voxels are also
precomputed to approximate the visibility of the hemisphere surrounding a single
tree in order to capture skylight shadowing. They handle shadows of a sunlight
cast by a tree on itself, on the ground, and on neighboring trees, as well as softer
shadows due to skylights.

3.3.2 Crowds

Loscos et al. [370, 583] represent humans walking in virtual cities, in which each
human is treated as an animated impostor. Shadows of these humans are cast
onto the floor by projecting a colored shadow version of the animated impos-
tor itself, using a method similar to the fake shadows of Blinn [57] (see Sec-
tion 2.2). Shadowing of buildings onto the humans is achieved using a shadow
depth map of the city, and computing its height coverage against the human im-

Figure 3.4. Crowds are rendered using impostors to reduce the complexity ofmany 3Dmod-
els. Image courtesy of Tecchia et al. [583]. Computer Graphics Forum ©2002The Eurographics
Association and Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsing-
ton Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. Reproduced
by permission of the Eurographics Association and Blackwell Publishing Ltd.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-074.jpg&w=306&h=219
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postor. Shadows are displayed using a shadow impostor (the impostor is com-
posed of two parts: shadow and semitransparency) mapped onto the human
impostor. An example of such crowd rendering is given in Figure 3.4. Dob-
byn et al. [136] use instead a stencil-buffer approach for the shadows on the ground
in order to remove z-fighting artifacts and to better blend in shadows on a textured
ground.

In crowds lit by many static light sources (e.g., street lamp posts), shadowing
can become a burden. Ryder and Day [493] combine each of the many shadow
maps into a single large shadow map, thus reducing light context switches. The
resolution of each shadow map is dependent on its distance in the image. Each
light source has also a display list of all static scene elements within its radius of
influence, and at run-time, a 3D grid is used to identify the impostors potentially
lit by each light source. The impostors are augmented with depth per texel and
rendered correctly with these depths in the shadowmaps and in the image in order
to cast accurate shadows and self-shadows.

3.3.3 Trends and Analysis

The real-time applications of image-based techniques in industry have been popu-
lar in architecture projects, virtual reconstruction, and population of heritage sites,
synthetic avatars in interactive dialogs, molecular visualization, some forms of hy-
brid rendering for a large terrain (further away landscape rendered as an impos-
tor), and obviously, within the video game industry. The latter has seen its use of
impostors becoming mainstream for vegetation, animated particle-based effects,
or captured video sequences to represent phenomena such as smoke, torches, rain,
and large crowds.

Standard projection, shadow depth map, and ray tracing algorithms apply in
many situations, but completely image-based representations or those from poly-
gons augmented with image-based data require adaptations. For trees and crowds,
the adaptations discussed previously form a good base, but no single solution
proves perfect, and more work is still expected. A number of applications for of-
fline rendering have appeared, notably for rendering tree impostors. In the case of
multiple cross-plane impostors, these applications often give the ability to the user
to select how impostors cast shadows.

Finally, one could draw similarities between impostors and other representa-
tions such as point clouds (Section 3.6), voxels (Section 3.7), and heightfields (Sec-
tion 3.8). One could suspect that some solutions for shadowing in one representa-
tion could successfully be adapted to another.



84 3. Supporting Shadows for Other Geometry Types

3.4 Geometry Images

An object formed as a polygonal mesh often has a one-to-one parameterization
associated with its surface, which can be used for texture mapping purposes. By
unwrapping the entire polygonal mesh into a rectangle, thanks to its surface pa-
rameterization, the resulting encoding of the mesh can be sampled in this rect-
angle in order to reconstruct a 3D point interpolated from the mesh polygon it
intersects. Regular sampling of this encoding, like an image with regularly spaced
pixels, reconstructs an entire mesh from the original mesh. This corresponds to
replacing the usual RGB coordinates of a pixel by XYZ coordinates of a 3D point,
or any other sampled information such as the coordinates of the normal vector
at this location. This regular structure, called geometry image by Gu et al. [206],
encodes vertex adjacency implicitly and offers several advantages for image pro-
cessing operations that are more GPU-friendly. One such operation subsamples
the geometry image to generate LOD representations for the mesh. Figure 3.5
shows a 3D mesh resampled from its geometry image representation. Several
other uses and improvements of geometry images have been presented over the
years.

Most shadowdepthmap or shadowvolume algorithms apply trivially to amesh
resulting from geometry images. However, because image processing can be ap-
plied directly on a mesh extracted from geometry images, shadow volume algo-
rithms appear more adapted to this representation. Therefore a few improvements
have been exploited for shadow volume algorithms on the GPU.

Tang et al. [580, 579] detect the silhouette edges from the geometry image of a
subdivision surface, store these edges in a silhouette image, and extrude on-the-fly
quadrilaterals to construct the shadow volumes.

Fawad [170] precomputes LODs of the geometry images and the associated
shadow volumes that are also stored as geometry images. The rendering gains are
directly related to the reduced number of triangles rendered because the LODs for
both geometry and shadow volumes are dynamically selected.

Figure 3.5. From left to right: original mesh, 3D coordinates of the mesh vertices encoded
in RGB, 3D coordinates of the normals, and lower resolution resampled mesh from the
geometry image. Image courtesy of Gauthier and Poulin [185].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-093.jpg&w=71&h=72
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-096.jpg&w=71&h=72
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3.4.1 Trends and Analysis

To the best of our knowledge, geometry images are applied in a small niche domain,
mostly developed in academia. They are well adapted to the GPU, and therefore
to real-time display, but 3D polygonal meshes remain the most common repre-
sentation on the GPU.Therefore, one can suspect that geometry images will adapt
well to the constant advances in GPU technology, but the difficulties in getting a
good surface parameterization, central to geometry images, will limit their wider
adoption.

3.5 Particle Systems

Particle systems tend to refer to the simulation of fuzzy phenomena, which are
usually difficult to render with polygons. Examples using particle systems include
smoke, water, trees, clouds, fog, etc. There has been older literature on directly
rendering particle-based trees [475] and clouds [56, 280], but today, much of the
focus on rendering particle systemshas fallen on either image-based impostors (for
trees, see Section 3.3), or implicit surfaces (for clouds, water, etc., see Section 3.2), or
voxels (for clouds, smoke, fluids, fire, etc., see Section 3.7). Figure 3.2 illustrates the
use of a particle system for a rendering of blobby-based water. Themain exception
of particle systems not handled by image-based impostors, blobbies, or voxels is
the rendering of atmospheric shadows, also known as volumetric shadows, which
is discussed in Section 5.6.

3.6 Point Clouds

Levoy and Whitted [347] introduce point clouds as a display primitive. A point
cloud describes a surface using an unorganized set of 3D points (in floating-point
coordinates), and each associated 3D point usually contains information such as
color and normal to permit shading. If the points are sufficiently close, a surface
begins to form. This representation is not unlike a polygonal mesh description,
where each point is basically a polygon vertex, but a point cloud has no connectivity
information between the vertices (i.e., edges and faces). See Figure 3.6 for a display
of raw point-cloud data, and the insert, which is a zoomed-out view that allows all
the points to be close enough to produce a smoother shading appearance.

For a while, this primitive rarely was considered in the literature. It came back
into the research fold as laser and range scanners produced point-cloud data, and
there was a need to model and display point clouds. Today, even common games
hardware such as Kinect (for XBox 360) generates point-cloud data. Also, most
computer-vision techniques to extract 3D models from photographs tend to ini-
tially generate point-cloud data, as in Figure 3.6. Examples of point cloud visual-
ization software include (Arius) Point Stream, XB Point Stream, Resurf3D, VG4D,
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Figure 3.6. Raw point-cloud data. Notice the holes between the points; the insert shows a
zoomed-out view of the same data. Model courtesy of Chen and Yang [89].

Cyclone, Prism 3D, etc. These software applications do not appear to handle shad-
ows (proper self-shadowing can be difficult as well) in general, although Point
Stream fakes some shadows onto a planar floor.

Fast algorithms for shadows from point clouds can be difficult because there is
usually no connectivity information between the points, and there can be empty
space between the points (that should be filled—see example of the empty space
from Figure 3.6). While these empty regions can be filled up by some method
in viewing space, this same filling may not provide sufficient filling in light space
(i.e., there may be see-through problems in the shadowing); or if a different filling
is used for light space, then there could be a discrepancy between the view- and
light-space geometry, possibly causing bad self-shadowing problems. This is one of
the reasons why a number of papers have focused on converting point-cloud data
to polygons [594, 552] for rendering purposes and also converting to voxels for fast
visualization. The data from Figure 3.15 actually came out of a laser scanner with
significant complexity of point-cloud data. It was converted into lower resolution
voxels for fast visualization. Equivalently, LiDAR data is very point cloud–like, and
representation for visualization of LiDAR data is always either in polygonal form
(called TIN, triangulated irregular network), heightfields, or voxels [566, 187].

The following sections describe the papers directly addressing shadow cal-
culations for a point cloud, which include shadow depth map techniques (Sec-
tion 3.6.1), ray tracing techniques (Section 3.6.2), and a few miscellaneous ap-
proaches (Section 3.6.3).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-115.jpg&w=208&h=183
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Figure 3.7. A hierarchy of Z-buffers can help detect and fill gaps.

3.6.1 Shadow Depth Map

Grossman and Dally [205] use a hierarchy of Z-buffers to detect gaps. Since gaps
are found and fixed, a shadow depth map approach can be trivially used to pro-
duce gap-less shadows. See Figure 3.7 for how a lower resolution Z-buffer can help
fill holes in the higher-resolution Z-buffer. A few papers [145, 62] use variations of
splats (see description of splatting from Section 3.7.1) to gap-fill the empty space
and then easily generate the shadow depth maps. Because the above gap-filler ap-
proaches are approximate in Z-depth computation, each done in their own light or
view space, such approaches can result in bad self-shadowing. See Figure 3.8 for a
sample rendering with shadows.

Figure 3.8. Using shadow depth maps
and splats of a point-cloudmodel to ren-
der shadows. ©2004 IEEE. Reprinted,
with permission, from [145].

Guennebaud and Gross [207] do local
surface construction by using least-squares
fitting of algebraic surfaces. As a result, the
standard shadow depth map approach is
applied without any gaps.

Gunjee et al. [212] introduce a translu-
cent shadow mapping algorithm that uses
a spherical coordinate system, which per-
mits omnidirectional mapping and stores
additional information per shadow map
pixel, similar to the deep shadowmap [362]
(Section 5.4.2) that allows the algorithm
to handle semitransparency. Another ap-
proach is proposed by Dobrev et al. [137],
where depth peeling is used to compute
light visibility at each point on the point

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-125.jpg&w=130&h=130
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cloud, and this information is stored in a point-cloud shadowmap that determines
whether the pixel is lit or in shadow.

3.6.2 Ray Tracing

Schaufler and Jensen [502] use ray tracing to render and compute shadows for point
clouds. A ray in this context is a closed cylinder with radius r, where r is a value
slightly larger than the radius of the largest spherical neighborhood that does not
contain any point. Intersection hits occur when there are points in this cylinder.
The intersection hit point and normal are reconstructed as a weighted average of
the nearest points inside this cylinder. The same idea is extended for shadowing,
using shadow rays. Automatic determination of the r value may be difficult and
requires an O(n2) preprocess step, where n is the number of points in the cloud.
Structures such as octrees and k-d trees can significantly reduce this cost. Sim-
ilarly, Wand and Strasser [615] ray trace cones into a multiresolution hierarchy,
where the cone structure allows a weighted average of the point-cloud hits, and
the multiresolution is used for intersection culling.

Instead of ray tracing points (as described above), Adamson and Alexa [1] in-
tersect a ray against locally reconstructed surfaces via numerical iteration, which
can be quite slow. Several papers [608, 351, 290] ray trace splats (disks) instead.
Each of the above papers discusses different approaches to intersection culling.
Wald and Seidel [608] also examine the feasibility of intersecting implicit surfaces
to represent the points, but find the performance to be too slow.

3.6.3 Other Miscellaneous Techniques

An important development of point clouds comes from the concept of surfels [459].
Surfels are basically point samples that contain color, normal, depth, etc. Data is
scanned from three orthographic views of a synthetic model and stored in hierar-
chical form to handle LOD. High-quality rendering is achieved through warping
and texturing techniques on top of the LOD information. While this is an impor-
tant development, shadowing has not been discussed. The shadowing issue may
be tricky for surfels due to the changing LOD possibly causing bad self-shadowing
effects if not carefully considered.

To reduce the usually large number of points to be considered for shadowing,
Katz et al. [292] identify only the visible points from a specific viewpoint without
reconstructing the surface or estimating normals. In this way, any shadow algo-
rithm used can benefit from a much reduced data set to consider shadowing.

Dutré et al. [150] use a clustered set of point clouds to approximate a lot of
tiny polygons forming meshes and to compute approximate visibility between the
clustered set of point clouds. In this way, global illumination can be achieved in
a faster manner without having to consider many tiny polygons. Because of the
global illumination nature of the algorithm and of the visibility determination, this
technique can produce shadows as well.
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3.6.4 Trends and Analysis

From the previous descriptions, we can see that there are basically some shadow
depth map and ray tracing variations to render point clouds directly. In addition,
due to lack of silhouette information, shadow volume approaches have not been
used for point clouds. While there are open standard, real-time libraries such as
XB Point Stream and PCL that render point clouds directly, much of the industry
software seems to revolve around point-cloud rendering by converting to polygons
(or NURBS) or to voxels when shadows are required, as those primitives offer bet-
ter speed and capabilities in terms of rendering.

3.7 Voxels

In this section, we refer to voxels as a geometric primitive [293], not voxels as sup-
plementary data structures used in ray tracing or global illumination acceleration
techniques. Voxels used in this manner are also often referred to as volume graph-
ics. One interesting difference between the two voxel usages is that a volume graph-
ics voxel is almost always cubical, whereas acceleration voxels can be rectangular.
Also, the volume graphics voxel resolution is usually much higher than the accel-
eration voxels.

A voxel is basically a 3D cubic box, and a 3D grid of voxels is built to contain
a larger set of voxels, which is also a 3D box (note there are non-box-like irregu-
lar grids used to deal with volumes; however, there have been no specific shadow
algorithmsdiscussed for those irregular grids to date, sowewill not discuss it). Sur-
faces are described by assigning color (either RGB or RGBA) and normal (among
other attributes) to each voxel, to permit shading. See Figure 3.9 asmany voxels are
used to represent an object. Like Lego, with high enough resolution (and rendering
techniques), the combined voxels will appear as a smooth surface.

There are similarities between voxels and point clouds, in that a series of very
small elements, expressed in (x , y, z) coordinates, is used to describe a surface.
However, the main difference between point clouds and voxels is that voxels are
organized in a 3D grid with implicit connectivity information between neighbor-
ing voxels, whereas point clouds are usually not organized and contain no connec-
tivity information, although they are adaptive in terms of level of density. Another
difference is that voxels can much more easily represent solids.

Voxels as a display primitive have been used for scientific visualization, such as
viewing X-rays, CT-scans, MRIs, LiDAR data, point clouds, or engineering parts
(e.g., polygons [113]). These scientific visualization examples are also sometimes
simply referred to as volume graphics. In the above examples, voxels are usually
not natively created, but other sources of data are converted into voxels, and they
are usually static objects.

Volume graphics examples that are dynamic in nature include terrains, ge-
ological activities, seismic activities, computational fluid dynamics, abstract
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Figure 3.9. Voxels as indicated by the boxes within a voxel set (grid). Image courtesy of Arjan
Westerdiep.

mathematics, weather, etc. Voxels have also been used more and more in film
special effects for clouds, smoke, fire, etc., with software from JIG, Hypervoxels,
etc. Note that voxels are typically semitransparent (as encoded in the A of the
voxel’s RGBA). This is another potential difference with most point-cloud data,
where point clouds are usually assumed to be opaque.

In this section, the coverage on shadows from voxels will include several classes
of algorithms, with all of the research papers focusing on uniform grids. These
classes of algorithms are all meant for real-time applications, except for the CPU-
based ray tracing approaches:

● Splatting (see Section 3.7.1).

● Shear-warp (see Section 3.7.2).

● Slice-based hardware textures (see Section 3.7.3).

● Ray tracing techniques (see Section 3.7.4).

● Shadow depth map techniques (see Section 3.7.5).

Technology has advanced significantly in this domain in recent years. Splat-
ting, shear-warp, and slice-based hardware textures, although prominent earlier,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-153.jpg&w=241&h=227


3.7. Voxels 91

are less used today due to the emergence of GPU-based ray tracing and shadow
depth map techniques, which can achieve higher quality, good performance, and
other capabilities (e.g., motion blur, multiple voxel sets, etc.).

3.7.1 Splatting

resultant splats

screen

occupied voxels as spheres

Figure 3.10. Splatting technique by projecting a splat
onto the screen.

The splatting approach [628]
does voxel-order traversal in a
front-to-back order from the
perspective of the camera view
and splats the occupied voxels
by projecting an appropriately
sized sphere onto the screen
(see Figure 3.10).

In terms of shadow gen-
eration from splatting, Nulkar
and Mueller [436] use an
image-aligned sheet-buffer
variation of splatting [419] to achieve shadows by accumulating opacity values
from the light-source rendering into the voxel data, but this technique requires
an entire 3D voxel set to store opacity values accumulated in the direction of the
light. During camera rendering, this opacity value is accessed to determine the
amount of shadowing (see Figure 3.11). Grant [202] has done something similar
by only requiring a 2D shadow buffer instead of a 3D voxel set. However, there are
artifacts for the above techniques when the viewing and lighting directions are
too different.

Figure 3.11. Splatting shadows using image-aligned sheet buffers. Image courtesy of Nulkar
and Mueller [436], ©Eurographics Association 2001. Reproduced by permission of the Euro-
graphics Association.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-163.jpg&w=176&h=141
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Figure 3.12. Using the halfway vector as the orientation for the slices to be splatted.

Two papers [657, 310] improve upon both approaches by incrementally accu-
mulating the opacity values for shadow determination by storing the values in
a 2D shadow buffer. To get a consistent orientation of the image-aligned sheet
buffer between the light and the camera, the halfway vector H is used as the ori-
entation to suit both the camera and the light. This common orientation between
the camera-view and light-view slices is needed, or the order of traversal between
light and view is different and cannot rely on only a 2D shadow buffer (see Fig-
ure 3.12). Likely, problems will occur when the camera and light views are too far
apart.

Zhang et al. [658, 662] extend their approach by storing participating media
information in the 2D shadow buffer. As well, texture-convolution is applied on
the 2D shadow buffer to achieve soft shadows. This combination does not contain
the disadvantages of original texture convolution approaches because the occluder
and receiver are axis-aligned slices (in the 2D shadow buffer), so the need for ap-
proximate occluder and receiver planes is not necessary.

3.7.2 Shear-Warp

Lacroute and Levoy [322] introduce the shear-warp factorization to achieve fast
front-to-back voxel rendering. The voxel set is warped so that screen axis-aligned
renderings can be done (see Figure 3.13), and a clever approach to skip already
occluded voxels is introduced. Shadows are not considered in this work except in
Lacroute’s dissertation [323], where shadow generation is attempted by extending
Grant’s approach [202], but the authors continue to have the same quality problems
that Grant experienced. If the H halfway vector extension [657, 310] is applied, it
may help resolve those problems.
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Figure 3.13. Shear-warp technique to allow fast axis-aligned rendering.

3.7.3 Slice-Based Hardware Textures

Behrens and Ratering [44] compute shadows in a hardware texture-based volume-
rendering approach introduced by Cabral et al. [78]. In this case, n slices of ac-
cumulated shadow information are computed, where each slice indicates a slice
in the voxel representation. The accumulation of shadow information is done by
projecting the shadow information from a particular slice that is closer to the light
to all slices farther away from the light. This is repeated for each slice in an incre-
mental fashion so that the algorithm runs in linear time. The shadow information
is then blended on the GPU into the illumination of the voxels. Due to this accu-
mulation, the shadowed results tend to be overblurred and sometimes darker than
they should be.

Ikits et al. [255] extend the technique from Zhang and Crawfis [657] by using
GPU fragment shaders to blend the alpha values with a 2D shadow buffer. While
this approach provides improvements to the Behrens and Ratering [44] approach,
there remain cases where the shadows are overblurred and sometimes darker.

3.7.4 Ray Tracing

CPU Ray Tracing

Levoy [348] applies ray tracing with a fast voxel traversal scheme. A voxel in this
paper (andmost ray tracers) indicates an enclosure of eight points at the corners of
the voxel versus a single point in the middle of the voxel, which is the case for the
papers discussed thus far. This enclosure of eight points at the corners of the voxel
is sometimes referred to as a cell. When a ray hits a voxel with any of the eight
points non-empty, then there is a hit, and the resultant hit and its illumination is
a trilinear interpolation of those eight points. Shadow rays are treated in the same
manner.

Jones [277] extends the above approach with some precomputed occlusion val-
ues. During preprocessing, the voxels are computed whether they are inside a solid
region or on the surface (labeled “transverse voxel”). Rays are shot to the light
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Figure 3.14. Ray tracing voxels to achieve shadows. Image courtesy of Jones [277],
©Eurographics Association 1997. Reproduced by permission of the Eurographics Association.

source, and when the traversal scheme hits a voxel that indicates it is already in-
side a solid region, it is in shadow. If not, then traversal checks whether it hits a
transverse voxel. If traversal through the transverse voxels comes up empty, then
it is fully lit. Otherwise, the actual surface is intersected against the shadow ray
to determine shadow occlusion. With the above approach, much less ray-surface
intersections should need to be done. See Figure 3.14 for a sample rendering.

Discrete ray tracing [650] uses ray tracing of the opaque voxels to determine
shadow occlusion. The shadow occlusion is encoded as a bit in each voxel, whether
a voxel is in shadow or not. In a static environment, querying this bit indicates
whether the region inside this voxel is in shadow or not.

GPU Ray Tracing

Sobierasjski and Avila [549] use a hardware render pass to obtain nearest and far-
thest depth per pixel and use this information to accelerate the actual ray tracing
computations. With the information of nearest depth per pixel (actually the near-
est depth of its own pixel as well as neighboring pixels), the ray tracing for that
pixel can start at that depth. This means that much ray traversal computation is
avoided. A quick exit condition is achieved when the ray has traversed beyond the
farthest depth. This is repeated for the shadow pass for simple light sources such
as infinite, point, or spot lights. For totally opaque surfaces, only the nearest depth
is of concern. For shadows from semitransparent voxels, the farthest depth can be
useful. With this approach, however, small details can be missed if not caught by
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the hardware render pass because the hardware render pass may not capture po-
tentially important subpixel regions closer to the camera view that the ray tracer
would have caught otherwise (without this optimization step).

Ray tracing on the GPU has become feasible due to the availability of advanced
fragment shaders [488, 319]. Many of the techniques used for GPU ray tracing
have been adopted from CPU techniques relating to voxel traversal [198, 526, 160]
with a large focus on ray tracing acceleration relating to early ray termination, fast
voxel traversal, and efficient space leaping, usually applying some variants of sparse
octrees [490, 70, 112, 113, 491, 326]. Shadow rays are then a natural extension for
shadow computations on the GPU.

Note that in the context of volume graphics, since voxels are already a part of
the data structure, voxel-like structures (such as sparse octrees) are often used for
performance reasons instead of the application of k-d trees, BSP trees, or bounding
volume hierarchies as seen in polygonal intersection cullers (Section 2.5.2).

3.7.5 Shadow Depth Map

A variation of the shadow depth map approach can be used if all voxels are either
empty or opaque [490], where a pregenerated shadow depth map is rendered, and
where the distance from the light to the closest voxel is stored in the shadow depth
map. When rendering a voxel, it is projected onto the shadow depth map, and if

Figure 3.15. Voxel-basedmodel of a head with its shadows. Model courtesy of XYZ RGB Inc.
and image courtesy of NGRAIN (Canada) Corporation.
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the distance of the voxel is farther away from the shadow depth map value, it is in
shadow; otherwise, it is not (see Figure 3.15 for a sample rendering). To avoid self-
shadowing (Section 2.3.4), the bias approach is chosen, as the surfaceID or mid-
distance approaches are not easily extended for voxels. However, the bias seems a
good offset in the direction of the voxel normal.

If there are semitransparent voxels, then theGPU-assisted variation of the deep
shadow map [217, 490] can be applied in the same manner—see the description of
the deep shadow map algorithm in Section 5.4.2. The GPU-assisted variation for
voxels uses GPU ray casting to do initialization of the deep shadow map informa-
tion because the ray tracing operation implicitly generates a sorted list of depth
values without the expense of sorting.

3.7.6 Trends and Analysis

● Fourier volume rendering [163] is another approach to directly render vox-
els. However, shadowing has not been attempted with this approach and
thus is not included in the above discussions.

● Conversion to polygons [367] remains a very popular option in the indus-
try, and it makes sense because there are many rendering options available
for dealing with polygons. However, with recent advancements, rendering
natively in voxels has become very practical.

● While there are techniques to store shadow volumes as occlusion bits in vox-
els [650], there has been no application of the shadow volume approach in
this domain.

● If all voxels are entirely either empty or opaque (i.e., each voxel is only RGB),
then the simple shadow depth map can be very efficient and effective. For
voxels that contain semitransparency, GPU-based deep shadowmaps can be
computed in real time, although ray tracing still provides the highest quality,
and its usage on the GPU has achieved much faster speeds.

● In the visualization industry, NGRAIN uses the basic shadow depth map
approach for fast shadowing, VolumePro uses the combination of ray tracing
and shear-warp on a customized chip, VTK uses GPU ray tracing, and VGL
ray traces isosurfaces. For film special effects, deep shadow maps [645] (as
used in production) or ray tracing (as used in Hypervoxels) are the norm.

● There is an increasing number of scenarios wheremultiple voxel sets need to
be rendered [70], accounting for correct shadows from possibly intersecting
voxel sets. In the extreme case, NGRAIN helps with maintenance and repair
of complex mechanical equipment (e.g., jet engine), where each mechanical
part is a voxel set. There can be thousands of such voxel sets because each
mechanical part may need to be assembled or disassembled properly. For
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most ray tracing [70] or shadow depth map approaches, shadow computa-
tion is generally not a problem. However, extensions need to be developed
for shadow buffer–based shadow solutions [202, 436, 657] and slice-based
hardware texture solutions [44, 255]. This is a problem because the multiple
voxel sets can intersect (although the geometry itself does not intersect), and
the semitransparent shadowing function needs to be composited correctly
in the depth order of the semitransparent regions, which may jump from
one voxel set to another.

● The need for handling large voxel-based data sets is growing. Although this
is not specific to shadowing within voxels, voxel shadow algorithms do need
to integrate with solutions for large voxel data sets. LOD and out-of-core
(e.g., bricking) techniques are available in [113, 258] and Chapter 17 of [160].
Also note that most out-of-core techniques favor ray tracing approaches due
to the ease of swapping in and out of chunks (bricks) of voxels at a time.

3.8 Heightfields

There are some references on the web and in the industry where the term voxels is
misused to indicate heightfields. Although voxels can be enumerated to represent
heightfields, voxels are 3D elements, and can handle concavities that heightfields
cannot. A heightfield is a 2D uniform grid, where each grid element is associated
with a single height value (relative to a flat surface) to generate common geome-
tries such as terrains or mountains. See Figure 3.16 for raw data after texture map-
ping to a polygon and the rendering result. The source of the raw data can come
from point clouds, LiDAR (although multireturn LiDAR data cannot be handled

Figure 3.16. The heightfield data when texture-mapped to a polygon and its rendering re-
sult. Image courtesy of Ratko Jagodic.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-220.jpg&w=322&h=142
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by heightfields, but can by voxels), topographical maps, USGS data, etc. Height-
fields are also sometimes referred to as height maps.

Note that heightfields are quite similar to bump or displacement maps (Sec-
tion 5.2). The differences are that heightfields assume a planar base (while dis-
placement maps can be applied on a curved surface), and heightfield shadowing
needs to be a lot more precise than for a displacement map since the camera will
often lie very close to the heightfield. This similarity leads to a discussion about
sharing similar shadow algorithms (see Section 3.8.2).

Earlier research involves keeping the shadow information provided by project-
ing the scene in the light source direction [409, 485]. Since then, several direct and
indirect rendering approaches have become feasible options.

In terms of indirect rendering approaches, heightfields can be converted into
polygons [350] (including handling LODs) so that the GPU can easily be used for
rendering needs, including shadows, of which there aremany algorithms to choose
fromwithin this book (e.g., Kaneda et al. [289] apply shadow volumes). As alluded
to in the previous paragraph, there is also opportunity for mapping heightfields to
voxels [105], and the voxel rendering options made available (Section 3.7).

In terms of direct rendering options, variations of ray tracing (Section 3.8.1) and
horizonmapping (Section 3.8.2) have become the preferred approaches, the former
due to their simplicity, the latter due to their ability to utilize the GPU for real-time
performance. However, care must be taken with horizon-mapping approaches due
to special casing when heightfields need to integrate with other geometry types.
More are discussed in terms of the direct rendering options below.

3.8.1 Ray Tracing

Using ray tracing, the 2D uniform grid is traversed, using any DDA algorithm,
from the point to be shaded to the light source. If the visited pixels from the 2D
grid indicate that the pixel height is higher than the ray height, then that point is in
shadow [111]. A GPU-assisted version of the above is also available [381]. However,
this basic approach results in the rendering of flat tops, which means the highest
points are always horizontally flat. To achieve pointy tops, Musgrave [420] bilin-
early interpolates the height of the four corner points. To achieve proper ray hits,
he uses the above traversal approach, but if the minimum height of the ray extent
(crossing the pixel) is higher than the maximum height of the four corners, then
traversal continues assuming no hit; otherwise, the ray is intersected against two
triangles formed with the four corners to determine ray-hit success.

Performance gains in ray tracing heightfields can be seen in a couple of di-
rections, including the work of Henning and Sephenson [239], that optimizes
the traversal algorithm to achieve faster rendering speeds, and the work of
Qu et al. [471] that uses the GPU to render the triangles.
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Figure 3.17. Heightfields used for visualizing terrain using a hierarchical approach. ©1998
IEEE. Reprinted, with permission, from [562].

3.8.2 Horizon Mapping

As for horizon mapping, as stated in Section 5.2, the shadows are approximate.
While appropriate for bump maps, this is not appropriate for heightfields due to
the high frequency changes that can be abundant in heightfields. As a result, sam-
pling in more directions is necessary, and thus the research has focused on faster
computation of the horizon angles.

Stewart [562] extends the horizon-mapping technique by using a hierarchical
approach to consider all points in the heightfield as occluders. See a rendering re-
sult in Figure 3.17. Snyder et al. [547] apply a multiresolution pyramid of height

Figure 3.18. Heightfields used for visualizing mountains, using a multiresolution pyramid
of height values. Image courtesy of Snyder et al. [547]. Computer Graphics Forum ©2008The
Eurographics Association and Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,MA 02148, USA.
Reproduced by permission of the Eurographics Association and Blackwell Publishing Ltd.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-239.jpg&w=322&h=106
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-4&iName=master.img-240.jpg&w=160&h=154
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values—at a given point, the check for maximum height values uses high resolu-
tions for close-by grid pixels and lower resolutions for far-away grid pixels. Thus,
the details close by are not lost, and the far-away details are blurred to generate
soft shadows, so extreme accuracy is not as crucial. See a rendering result in Fig-
ure 3.18. Timonen and Westerholm [586] also accelerate the computation of the
horizon angles, by being able to reuse neighboring grid pixels’ height and horizon
angles as guide for the current pixel’s horizon angle.

3.8.3 Trends and Analysis

Most of the industry software do not apply direct rendering of heightfields when
heightfields are not the only primitive to render and using direct rendering tech-
niques would incur nontrivial amounts of processing in order to integrate the dif-
ferent primitives. Example integration issues include heightfield shadows on other
objects and other objects’ shadows on the heightfield. As a result, when render-
ing heightfields, industry software such as ArcGIS, Terragen, Picogen, POV Ray,
Blueberry3D, etc., convert to polygons for rendering needs, or the native format
is already in TIN (triangulated irregular network) format. There are also some
growing trends to convert heightfields to voxels as well, such as the engines from
Vulcan 3D and Atomontage. Both polygons and voxels offer good integration and
rendering capabilities.

3.9 Final Words

While polygons remain the dominant representation, and polygonization is often a
very feasible approach, rendering in its native form remains an important research
area to pursue. This is especially true for representations that present some advan-
tages that polygons do not possess, for example, where voxels can represent solid
information at a granularity that polygons cannot, or rendering of particle systems
that can be more efficient using image-based impostors or implicit surfaces.

Next up, soft shadows!



CHAPTER 4

Soft Shadows

4.1 What’s Covered in This Chapter

In addition to the visually pleasing aspects of soft shadows, studies by Rademacher
et al. [472] indicate that the presence of soft shadows contribute greatly to the real-
ism of an image, which makes the generation of soft shadows that much more im-
portant. In this chapter, we only discuss soft shadows from extended light sources,
such as linear lights, polygonal, spherical, and general area lights, and volumetric
lights. Several excellent surveys [227, 7, 158] exist on this topic. Other sources of
soft shadows are discussed in Chapter 5; they include motion blur (Section 5.7),
ambient occlusion (Section 5.8), precomputed radiance transfer (Section 5.9), and
global illumination (Section 5.10).

We start off this chapter with some soft shadow basics (Section 4.2), followed
by some theory behind soft shadow computations (Section 4.3)—the latter is very
important to understand though the concepts have not received much adoption to
date. The main categorized approaches are then presented, in the same order as
they were presented for hard shadows, including the planar receivers of shadows
algorithms (Section 4.4), shadow depth map (Section 4.5), shadow volumes (Sec-
tion 4.6), ray tracing (Section 4.7), and somemiscellaneous additional soft shadow
algorithms (Section 4.8). The algorithms introduced for soft shadows can vary in
terms of accuracy, which can affect the effectiveness of certain algorithms on cer-
tain applications. However, the goal of all soft shadow approaches is the aesthetics
of the rendered results and performance feasibility, which are discussed in this
chapter. The chapter concludes with trends and analysis of the criteria of applica-
tions and appropriate deployment of each categorized approach (Section 4.9).

101
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4.2 Soft Shadow Basics

4.2.1 Computing the Soft Shadow Integral

In Section 1.2.2, recall that a fraction in the range of [0,1] is multiplied with the light
intensity, where 0 indicates umbra, 1 indicates fully lit, and all values in between
indicate penumbra. This statement is actually incorrect, and thus it is important to
understand the nature of the integral that must be evaluated in order to compute
the soft shadow resulting from the direct illumination of an extended light source.
The correct integral of the irradiance E at a receiving (illuminated) surface element
dA can be expressed as follows:

E = ∫
Ae

V (L cos θ cos ϕ
πr2

) dAe ,

where V is the binary visibility of an emitting surface element dAe on the light
source, and the remainder of the equation is the irradiance over a surface element
as if fully lit.

Ideally, if the domain of integration can be reduced to the fragments of the
extended light that are visible from the point to be shaded (i.e., the points on Ae
for which V is 1), then the integral reduces to a direct illumination integral over
precisely these fragments. Unfortunately, as will be seen in back-projection algo-
rithms [141, 561], determining these fragments is a difficult problem in itself, as
visibility must be evaluated for each fragment dAe for any visible 3D point. Thus
a common simplification for the computation of the integral is to assume that it
is separable, and to integrate visibility and irradiance separately. Many of the soft
shadow algorithms presented in Chapter 4 will assume this separation of the visi-
bility term. This gives rise to the following approximation of the irradiance:

E = [∫
Ae

VdAe] [∫
Ae

L cos θ cos ϕ
πr2

dAe] .
Note that whereas this approximation will generate soft shadows, the accuracy

of the results will not necessarily be reliable, especially in cases where the solid an-
gle subtended by the light source is large (e.g., the light source is large and/or close
to the receiving surface) or the extended light’s normal is close to perpendicular
to the surface’s normal. The inaccuracies from the decoupling of the irradiance
integrand and of the visibility factor will be most evident when the parameters θ,
ϕ, and r vary greatly over the domain of the integrand and the visibility function
V is not constant. For example, in Figures 4.1 and 4.2, the same fraction of the
linear light’s length is occluded from the point to be shaded. However, whether the
shadowing function is evaluated outside or inside the irradiance integral leads to
different results, as the solid angle formed by the visible parts of the light is quite
different.
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linear light
50% occluded 50% occluded

P P

occluder occluder

receiver

a b b

Figure 4.1. The same occlusion fraction of an extended light source may not result in the
same illumination value.

The appeal of such a simplification is great, given that an analytic solution can
be computed for the non-shadowed illumination integral [430, 465, 578] for spe-
cific reflection models and that some algorithm can be used to approximate the
visibility of the light (i.e., the integral of V over Ae ). The approximation is also
simpler for radiosity solutions (see Section 5.10.1), for some direct illumination al-
gorithms [550, 669], for sampling criteria in the final gathering of penumbrae [504],
and may also be applied to specular integrands. However, care must be taken that
the artifacts resulting from such an approach are reasonable. This being said, such
approximations are more than acceptable in several visually plausible situations.
In fact, the differences are not visually discernable in many situations and applica-
tions, thus explaining their popularity.

Another approximation consists of computing individual shadows and then
combining them. This remains an approximation, as the combined occlusion (also

Figure 4.2. In the top row: shading without shadowing (left), and shading with a constant
shadowing fraction (50%) for all pixels (right). In the bottom row: shading with correct
pixel-wise shadowing fraction (50%, but within the integral) from an occluder at the center
of the light source (left), and to the right side of the light source (right).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-029.jpg&w=214&h=159
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-029.jpg&w=214&h=159
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-029.jpg&w=214&h=159
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-029.jpg&w=214&h=159
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Figure 4.3. The shadow cast by a set of objects can be quite different than the combined
shadows of each individual object. Image courtesy of Hasenfratz et al. [227], ©Eurographics
Association 2003. Reproduced by permission of the Eurographics Association.

called occluder fusion) can be quite different than summing up occlusion factors
for each individual shadow. This is illustrated for a simple case in Figure 4.3 and
for an actual 3D rendering in Figure 4.4.

Figure 4.4. In the top row: correct shadow cast by the left occluder only (left), and by the
right occluder only (right). In the bottom row: combined shadows as the maximum occlu-
sion of the two individual shadows (left), and correct shadows from both occluders (right).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-042.jpg&w=241&h=194
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-043.jpg&w=196&h=145
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-043.jpg&w=196&h=145
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-043.jpg&w=196&h=145
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-043.jpg&w=196&h=145
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4.2.2 Generic Algorithmic Approaches

From an algorithmic standpoint, the most straightforward approach to consider
soft shadow generation from extended lights is to apply any existing hard shadow
algorithm for a point light source and simulate the extended light shadow with
many point lights, where each point light represents a small region of the extended
light. This is actually the basis for the approach by Haeberli [218], Brotman and
Badler [71] (Section 4.5.4), for distribution ray tracing [108] (Section 4.7.1), and
Herf and Heckbert’s [240] approach (Section 4.4.1), among others. However, just
a straightforward implementation of multiple point source simulation tends to be
very slow, often requiring a large amount of memory for the shadowing structures,
and usually results in separation or banded results, i.e., there are noticeable shadow
boundaries from the point sources (see Figure 4.5 as an illustration of this separa-
tion/banding artifact (left) versus smooth soft shadows (right)). This produces a
very low-quality result because our human visual system is very sensitive to and
unforgiving of banding artifacts. Banding frommultiple point sources is reduced if

● Many such point sources are used, e.g., Herf andHeckbert [240] use asmany
as 256–1024 point sources to simulate an extended light, which results in
slow rendering times. The difficult question becomes then how many point
sources are sufficient, and this question is barely addressed at all in the liter-
ature.

● Some low-discrepancy, nonuniform, or stochastic sampling patterns are em-
ployed, as in distribution ray tracing techniques (see Section 4.7.1). Such pat-
terns usually result in noise (to mask the banding artifacts), and our human
visual system is a lot more accepting of noise than banding.

Figure 4.5. Treating soft shadows as an averaging of hard shadows from multiple point
sources can result in shadow bands (left), but ultimately converges to proper soft shadows
(right). Image courtesy of Hasenfratz et al. [227], ©Eurographics Association 2003. Repro-
duced by permission of the Eurographics Association.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-056.jpg&w=311&h=116
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-056.jpg&w=311&h=116
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● Some filtering, interpolation, or blending is done between themultiple sam-
ples.

Due to the above performance and banding issues, multiple point sources have
not been the only approach explored in the literature. Many of the algorithms
that are discussed in this chapter tend to start off from a hard shadow preprocess,
then perform operations to approximate soft shadows. This can be seen in plateau
shadows (Section 4.4.2), z-difference penumbra approximation (Section 4.5.1), mi-
cropatches (Section 4.5.2), silhouette detection-based solutions (Section 4.5.3),
penumbra wedge implementations (Section 4.6.3), single-ray analytic solution
(Section 4.7.3), and ray tracing depth images (Section 4.7.4). Because the results
are approximated from a hard shadow standpoint, the results are not physically
correct but can be visually pleasing to different degrees.

For further performance reasons, the concepts of an inner penumbra and
an outer penumbra are introduced (see Figure 4.6). The inner penumbra is
the soft shadow region inside the umbra produced from a single representa-
tive point source. Algorithms computing just the inner penumbra usually re-
sult in undersized shadows. The outer penumbra is the soft shadow region out-
side this umbra, and algorithms computing just the outer penumbra usually re-
sult in oversized shadows. This distinction is useful in some approximations be-
cause certain algorithms compute for performance reasons only the outer penum-
bra [452, 220, 83, 646] or just the inner penumbra [254, 309]. Physically accurate
results should produce both inner and outer penumbrae.

point light
square light

occluder

umbra

outer penumbra
inner penumbra

Figure 4.6. Inner and outer penumbrae.
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4.3 Theoretical Aspects

Shadows result from complete (umbra) and partial (penumbra) occlusion of a light
source. The occlusion function, i.e., the parts of a light source that are occluded (or
equivalently, “seen”) from any 3D point in space, changes depending on how ob-
jects occlude the light source. The projection of occluders from any 3D point to be
shaded onto the light source, changes qualitatively at certain geometrical configu-
rations of light and occluders. Knowing what occludes light and how it occludes it
can lead to very accurate shadows.

Computing the different 3D shadow regions cast by one or more blockers for
a given light source can be summarized as an interesting geometrical problem. At
first, this problem could appear simple, considering that computer graphics has
developed several representations and algorithms to handle some related situa-
tions, for instance, with CSG operations and BSP representations. Moreover, a
knowledge of these regions can also be used for more efficient sampling strate-
gies in order to better approximate shadowing. However, Figures 1.7, 1.8, and 4.4
barely hint at the difficulties. In reality, robustness issues, algorithmic complex-
ity for large scenes, and memory restrictions in the number of resulting poly-
gons, indicate some of the intricacies of the problem. This section covers these
issues.

First, we restrict the theoretical aspects discussed here to polygonal scenes.
This encompasses planar polygonal light sources and objects. Point and direc-
tional light sources are degenerate cases that are already handled by hard shadows
computed with shadow volume techniques, as discussed in Section 2.4. There are
some rare exceptions to polygonal scenes, for example, simple primitives such as
spheres in cone tracing [10] and disks in a number of light-source representations
for shadow mapping (e.g., [550]), but those remain more limited in application.

It is important also to note that in the history of the main contributions of this
visibility theory to computer graphics, most contributions originated from the ra-
diosity literature, which we touch on in Section 5.10. Therefore, several shadowing
algorithms predating 1990 will not discuss computing shadow regions in the light
of the theoretical aspects presented in this section.

One direct application of this theory for shadowing aims at splitting scene poly-
gons into fully lit by a given light source, fully shadowed (umbra), and partially
lit/shadowed (penumbra) polygons. The polygons in penumbra can “see” differ-
ent parts of the light source resulting from different occluder parts, and therefore,
each penumbra region is qualified by the ordered list of edges and vertices from
the blocking scene polygons and light source.

These split polygons result in view-independent meshes, and in the particular
case of diffuse surfaces, their shading can be precomputed as an approximation
in the form of a texture or an interpolation from the color at each vertex of the
polygons.
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4.3.1 Discontinuity Events

ThePhDdissertation ofDurand [149] covers someof themore theoretical concepts
in this section.

Visual events result in changes in visibility of the light source, and they occur
at combinations of scene and light-source edges and vertices. Unoccluded edge-
vertex (denoted EV) events form a plane such that on either side, a convex light
source starts to appear or disappear. A combination of three unoccluded edges
(denoted EEE) may form a ruled quadric surface with the same properties. These

rhombus light behind a square occluder becoming visible at a vertex

square light behind a square occluder becoming visible at an edge

rectangular light behind a square occluder, with a rhombus occluder
becoming visible at a vertex

square light behind two slanted occluders becoming visible at an edge

Figure 4.7. Configurations of edges leading to EV and EEE visual events.
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Figure 4.8. Back-projection of associated events onto the light source in order to evaluate
its visibility. ©1994 ACM, Inc. Included here by permission [141].

events are illustrated in Figure 4.7. Similar events can also be critical when none
of the edges and vertices belong to the light source, but on the condition that the
associated visual event extends to intersect the light source. All these events, if
they are not blocked by other polygons, define the various regions (also known
as aspects of the light source) in 3D space. For any point within such a region,
the back-projection through this point of all its associated events form the same
ordered list of elements defining the visible portion of the light source (Figure 4.8).

Discontinuity events result in discontinuities in the shading of a diffuse poly-
gon at the specific locations of visual events. They have been categorized accord-
ing to the type of discontinuity in the shading: D0 for shading value, for instance,
where a polygon intersects another polygon; D1 for shading derivative, for instance,
between umbra and penumbra regions; and D2 for the shading second derivative,
for instance, within different penumbra regions. Such events are illustrated in Fig-
ures 4.9 and 4.10.

Nishita andNakamae [430] compute one shadow volume for a convex occluder
for each vertex of a convex light source. The convex hull of all shadow volumes
form the penumbra contour, according to the authors, while the intersection of all
shadow volumes form the umbra contour. In doing so, they neglect several visual
events discussed above. Campbell and Fussell [80] compute also the contour of
the penumbra regions and intersection of the umbra regions with minimum and
maximum extremal planes. The corresponding volumes are merged with BSP rep-
resentations similar to Chin and Feiner [92]. While they observe different regions
in the penumbra region, they still miss some regions.

Heckbert [234] and Lischinski et al. [353] detect and compute D0 and D1 events
in order tomesh scene polygons for an improved patch definition in radiosity algo-
rithms. The events are projected as line segments onto the receiving polygon, and
a structure is designed to connect these events or erase those that are occluded.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-095.jpg&w=224&h=136
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Figure 4.9. Simple scenes of cast shadows (left column). Plot of intensities along the red
segment indicated in the only-shadows version of the image (right column).

Lischinski et al. [353] also use a BSP algorithm to perform these operations. They
both mention D2 events, producing quadric ruled surfaces as a future extension
to their work. Drettakis and Fiume [141] and Stewart and Ghali [561] use back-
projection onto the light polygon to compute amore accurate irradiance on diffuse
polygons.

While these events are complex and difficult to compute robustly, Du-
rand et al. [147] exploit the concept of changes along these events in the form of

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-105.jpg&w=91&h=372
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http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-105.jpg&w=91&h=372
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Figure 4.10. Different regions in the penumbra (left). Same configuration but with the
discontinuity events indicated by a color mesh on the floor (right). Image courtesy of James
Stewart.

extremal stabbing lines [584] defined as VV, VEE, and EEEE to incrementally com-
pute a visibility skeleton. This structure corresponds to a graph where a node is an
extremal stabbing line, and a link between twonodes indicates that a visibility event
(a surface defined by a line swath between two extremal stabbing lines) occurs be-
tween them. With a careful implementation and catalogs of events, Durand et al.
are able to handle discontinuity events for scenes of up to a few thousands poly-
gons.

Duguet and Drettakis [144] apply interval arithmetic to the construction of
these extremal stabbing lines to achieve a fairly robust implementation of discon-
tinuity events in scenes of a few hundred thousands polygons.

Even though the maximum number of visual events can be in O(n4) for n
edges in a 3D scene, this complexity can be strongly reduced considering the spe-
cial case of one polygonal light source and all combinations of EEEE that do not
result in an extremal stabbing line due to its construction or occlusions. Unfor-
tunately, even given these advances, the complexity and robustness issues are still
such that even today, the applications of shadowing that rely on thesemore theoret-
ical bases are rare. Such examples include [418]. They remain, however, important
in understanding the issues related to the complexity of computing exact shadows.

4.4 Planar Receivers of Shadows

In this section, we describe some soft shadow algorithms that assume simplified
environments or shadows on planar shadow receivers only. They include soft
shadow textures (Section 4.4.1), plateau shadows (Section 4.4.2), and convolution
textures (Section 4.4.3).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-126.jpg&w=144&h=145
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4.4.1 Soft Shadow Textures

Herf and Heckbert [240, 232] take advantage of fast hardware Z-buffer and textur-
ing to stochastically sample an area light source atmany points. For each such sam-
ple point (on the light), and for each polygon that acts as an occluder, the shadow
is projected onto all other planar receivers to form umbra regions stored as atten-
uation shadow maps. Essentially, each sample point pass produces hard shadows.
In the end, all the results are averaged via an accumulation buffer to get penumbra
regions. If enough sample points are used (e.g., 256 samples), the results can look
quite good and very accurate. However, for real-time purposes, if a small number
of sample points is chosen, then banding (between the discrete sample points) re-
sults. To improve performance, Isard et al. [259] distribute the above attenuation
shadow maps as hardware textures, over texture units on each graphics card, and
claim fast performance numbers.

4.4.2 Plateau Shadows

Haines [220] uses the basic approach from Parker et al. [452] (Section 4.7.3) to
achieve soft shadows in a real-time environment but assumes that the receiver is
always a planar surface. The umbra region is always the same as if it came from
a point source. As in Figure 4.11, a conical region and sheet-like region are cre-
ated outside the umbra silhouette vertices to define the penumbra region. The
penumbra region is a function of the distance from the occluder and the distance
from the umbra vertices. The algorithm can be implemented on the GPU by us-
ing the Z-buffer to create the soft shadow hardware texture, which is then mapped
onto the receiving surface. Both approaches assume the computation of only the

Figure 4.11. In the plateau approach, a vertex generates a cone, and an edge generates a
sheet. Hardware texturing interpolates the soft shadowing. Image courtesy of Haines [220],
reprinted by permission of Taylor and Francis Ltd.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-137.jpg&w=192&h=149
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Figure 4.12. Visual comparison between the plateau algorithm (left) and the soft shadow
textures (right). Image courtesy of Haines [220], reprinted by permission of Taylor and Francis
Ltd.

outer penumbra and can produce overstated shadows. However, the results tend
to look quite good (see Figure 4.12 for a comparison between the approaches of
Haines [220] and Herf and Heckbert [240, 232]).

4.4.3 Convolution Textures

Soler and Sillion [550] realize that the shape of the penumbra is a function of both
the occluder and the light source shapes. In an ideal situation, where the light
source, occluder, and receiver are parallel to each other, this function corresponds
to a convolution of the occluder and the light source. This is achieved by render-
ing the occluder and light source into shadow maps without Z-buffering turned
on. In other words, convolution, in its simplest form, means that the shadow of
the occluder is blurred, with the distance from the occluded object controlling
the amount of blur. They choose some heuristics as representative and virtual
light sources, occluders, and receivers projected onto parallel planes. However,
choices of such virtual representations can result in errors and can easily miss self-
shadowing cases. In scenarios such as meshes for radiosity, these limitations may
be less severe.

Eisemann and Décoret [156, 157] extend the above approach. To improve re-
sults from overlapping shadowed objects, slices (buffers) parallel to the polygo-
nal light are created, containing the prefiltered occlusion textures. For each point
to be shaded, the slices from the point to the light are intersected (similar to ray
tracing depth images), and a convolution of the slice results is performed. While
the improved method can lead to plausible shadows, it still can suffer from some
problems when using too few slices and lower texture resolutions. These problems
can appear as incorrect self-shadowing, light-leaking problems, complex overlap
of shadowed objects, etc.
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4.5 Shadow Depth Maps

There are basically five categories of shadow depth map algorithms to produce soft
shadows. The first two categories include a z-difference penumbra approxima-
tion approach (Section 4.5.1), and a recent approach that uses micropatches (Sec-
tion 4.5.2) and back-projection to approximate soft shadows. Both use a shadow
depth map from a single point source. Furthermore, there are the silhouette-based
shadow depthmaps (Section 4.5.3), which rely heavily on silhouette properties and
are represented by one or a few point light sources. The fourth category of shadow
depth map approaches is the multiple point source approaches (Section 4.5.4),
which tends to be slower though more physically accurate. The final category dis-
cusses artifacts due to low resolution when rendering large scenes (Section 4.5.5).

The first two categories of algorithms should be the fastest, but their perfor-
mance can be hampered if the extended light is very large (unless prefiltering tech-
niques are used). The z-difference penumbra approximation is the simplest to im-
plement, least accurate due to the assumptionsmade, andmostworry-free in terms
of artifacts, whereas caremust be taken to avoid artifacts when usingmicropatches.
The silhouette-based shadow depth maps are faster than the multiple point source
approaches but also generate the most artifacts, including incorrect shadows at the
intersections. Themultiple point source approaches are themost expensive ifmany
point sources are needed, but noise or banding can occur if an insufficient number
of point sources is used.

4.5.1 Z-Difference Penumbra Approximation

There are a number of fast shadowdepthmap algorithms [254, 66, 309, 597, 173, 338]
that simulate the look of visually pleasing but approximate soft shadows from a
point source. They lower the penumbra intensity (i.e., make the penumbra less
dark) as a function of the distance from the occluder, but otherwise assume only
a single point source. This makes sense because the farther away the occluder is
from the point to be shaded, the more likely the point to be shaded is partially
lit. However, this class of shadow algorithms will be noticeably incorrect for large
extended lights.

The simplest approach [254] is to use a single Z-depth test: if in shadow, the
difference between ∥P−L∥ and Zn is used as an indicator of the filter size to sample
neighboring pixels (in the shadow depthmap), and the softness of the penumbra is
computed via percentage-closer filtering. This approach does not account for the
outer penumbra and can produce light-leaking problems.

Fernando [173] introduces percentage-closer soft shadow depth maps (PCSS),
where the penumbra size per point to be shaded is computed as

(∥P − L∥ − Zavg)Wlight/Zavg,
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Figure 4.13. Computation of penumbra for
percentage-closer soft shadows (PCSS).

where Wlight is the width of the light
and Zavg is the average of the nearest Z-
depths Zn sampled (i.e., occluders). The
penumbra size is then mapped to the fil-
ter size for which a PCF computation is
done (see Figure 4.13 for rationale for the
above equation and Figure 4.14 for a sam-
ple rendering). Note that the assump-
tion of an averaged Zavg may cause self-
shadowing artifacts or improper penum-
bra sizes. Valient and deBoer [597] pro-
pose a similar technique.

More sophisticated schemes are
available [66], in which for each point
P to be shaded, if the Z-depth test shows it is in shadow, then P is considered as
in shadow. However, if the Z-depth test shows it is illuminated, then the shortest
distance to the closest shadow depthmap pixel that indicates it is in shadow is iden-
tified. Thepenumbra intensity is a function of this shortest distance and the z-value
difference between occluder and receiver. Note, however, this shortest distance
can be limited to some maximum value so that the search does not become the
bottleneck of the algorithm. Also, note that if only the inner penumbra were
computed, the computation of the shortest distance is only needed for points in
shadow. Another advantage of computing the inner penumbra is that a shadow-
width map can be precomputed [309] to store the shortest distance information
per shadow depth map pixel. Lawlor [338] extends the above approach for both

Figure 4.14. Shadow computations using percentage-closer soft shadow depth maps. Image
by Louis Bavoil, courtesy of NVIDIA Corporation.
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inner and outer penumbrae. The above approaches can be slower and require
some knowledge or assumption of object relationships, which can get quite
confusing with more complex scenes.

Among the above approaches, PCSS [173] is the cleanest and most often used
approach. In fact, there are optimizations to this approach that combine PCSS
with variance or convolution shadow maps (Section 2.3.6). They are appropriate
extensions because of the potentially large filter sizes needed to achieve the soft
shadows, which can significantly slow down the basic percentage-closer approach.
Lauritzen [336] creates several prefiltered layers and stores them in a summed-area
table format so that variable-size filters per point to be shaded can be generated.
Dong and Yang [138] and Annen et al. [12] discuss a faster method for computing
more accurate Zavg for variance and convolution shadow maps, respectively.

Another avenue of performance improvement for PCSS is motivated by Robi-
son and Shirley [486] via image-space gathering. In essence, PCSS information is
stored in screen space, such that many fewer depth-map pixel samples are visited
for the penumbra region (when projected to the screen), especially when the ex-
tended light is larger [417]. However, there is a loss in quality because the shadow
depthmap information is now discretized in screen space, and the filtering is trick-
ier due to loss of edge information. The latter issue is improved by using a bilateral
Gaussian filter [417] or an anisotropic Gaussian filter [672, 210]. It is unclear how
much performance savings is gained using such techniques, especially with the ex-
tra preprocessing andmemory needed, and it is unclear whether this might hinder
integration with nonlinear shadow depth maps (Section 2.3.7).

4.5.2 Depth Values as Micropatches

Several independent papers [208, 29, 27, 40] treat each depth value as a square
micropatch geometry (the size of the depth map pixel) parallel to the light. In de-
termining a soft shadow value, the technique back-projects affected micropatches
from the point to be shaded to the light source and queries all the shadow depth
map pixels contained in the back-projection to get an accumulated area that repre-
sents the amount of shadowing (see Figure 4.15). Figure 4.16 shows a comparison
between the micropatch and the penumbra wedges [5] approaches (Section 4.6.3)
and flood fill [17] (Section 4.5.3).

Although this is a practical and fast approach, the generic approach has sev-
eral limitations: the soft shadow computed does not entirely match the extended
light, as the depth map information is due to a single shadow depth map from a
spotlight. This is a generic limitation with this class of algorithms. However, there
is progress to resolve other limitations, such as micropatch overlap artifacts (shad-
ows are darker than they should be (see Figures 4.15 and 4.17)); micropatch gap
(light-leaking problem) artifacts (Figure 4.15); performance can be slow due to the
large number of shadow depth map values that need to be queried, especially for
large extended lights.
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Figure 4.15. Using micropatches for shadow depth map soft shadows. Image courtesy of
Schwarz and Stamminger [511]. Computer Graphics Forum ©2007The Eurographics Associa-
tion and Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road,
Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. Reproduced by permis-
sion of the Eurographics Association and Blackwell Publishing Ltd.

To address the overlap issues, Schwarz and Stamminger [511] employ a jittered
n×n pattern (by ray tracing) to get shadow occlusion, and Bavoil et al. [41] sample
the back-projection region using a Gaussian Poisson distribution.

To address the gap issues, Guennebaud et al. [208] check the neighboring depth
map information and extend themicropatches appropriately to the neighbors’ bor-
ders. However, Bavoil [43] reminds us that bad self-shadowing artifacts will per-
sist using micropatches. He uses mid-distance depth values and depth peeling to

reference micropatches penumbra wedges flood fill

Figure 4.16. Shadow computation comparisons. Image courtesy of Guennebaud et al. [208],
©Eurographics Association 2006. Reproduced by permission of the Eurographics Association.
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light leaking

micropatches microquads microtris

Figure 4.17. Back-projection with micropatches, microquads, and microtris.

reduce such artifacts, incurring additional performance cost. Alternatively,
Schwarz and Stamminger [511] propose microquads, where each depth map pixel
represents a vertex in the microquad. As a result, there are no gap problems,
although performance is lowered due to the nonparallel back-projections. Ex-
tensions to the microquads include the microtris [512], and variable-sized mi-
crorects [513], to allow a better shape representation of the occluder. For the same
reason, Guennebaud et al. [209] detect occluder contours from the micropatches,
and perform radial area integration based on the occluded area; however, this ap-
proach may incorrectly miss occluded regions. Yang et al. [651] propose package-
based optimization to speed up occluder contour construction. See Figure 4.17 for
some of the different geometry types to represent micropatches.

To address the performance issues when a large number of shadow depth map
pixels process large extended lights, Guennebaud et al. [208] create a mipmap of
the shadow depth map, storing the min and max depth values. Any depth value
less than the min value indicates full lighting represented by that shadow depth
map region; any depth value larger than the max value indicates full shadowing
represented by that shadow depth map region. However, the region represented
by the mipmap is usually much larger than the actual extended light, which means
this representation is not optimal. Schwarz and Stamminger [511] propose the mul-
tiscale shadow map, where each shadow map pixel at level i stores min and max
depth values in a neighborhood region of size 2i × 2i centered around that pixel.
Because there is a bettermatch of the accessed region versus the extended light, full
lighting and full shadowing cases can be determined with less (level) accesses, but
only by sacrificing extra memory usage. Schwarz and Stamminger [512] propose
the hybrid Y shadow map to take the best of the above two approaches.

Some of the papers above discuss the concept of multilayered depth im-
ages [41, 511, 43, 425], of which the results are more accurate but at the cost of
slower performance. Also, ray tracing variations of such an approach exist and will
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light radius = 2 light radius = 4 light radius = 6

Figure 4.18. From top to bottom: distribution ray tracing [108], ray tracing multi-layer
depth map [649], ray tracing single-layer depth map, multi-layered micropatches [41], and
single-layered micropatches [208]. Image courtesy of Xie et al. [649], ©Eurographics Associ-
ation 2007. Reproduced by permission of the Eurographics Association.

be discussed in Section 4.7.4. Light-leaking or gap problems exist for the ray trac-
ing variations as well. In general, the ray tracing variations tend to provide more
accurate soft shadows but are much slower than the algorithms discussed here (see
Figure 4.18 for comparisons of various single and multilayered approaches).

4.5.3 Silhouette Detection-Based Solutions

Heidrich et al. [237] simulate soft shadows for linear lights. Two shadow depth
maps, S1 and S2 are constructed at the endpoints of the linear light. If the depth
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Figure 4.19. Visibility function of a linear light in the presence of an occluder.

comparisons for S1 and S2 indicate shadow, then the final illumination is 0 (fully
shadowed). Equivalently, if the depth comparisons for S1 and S2 indicate no
shadow, then the final illumination is 1 (fully lit). If depth comparisons indicate
both shadowing and lighting, then Li = visibility × local illumination, and the
final illumination value for the linear light is ∑n Li , for n sample points on the
linear light. The visibility interpolation (see the visibility function in Figure 4.19)
is achieved through an associated visibility map by warping all the triangles from
one view to another (and vice versa), and the shadow depth discontinuities are
identified: this is known as the “skin,” which produces the penumbra region (see

Figure 4.20. Resulting shadows for a linear light source (center), from skins generated for
shadow depth maps. Skins generated for the left and right shadow depth maps are shown
on both sides of the image. Image courtesy of Heidrich et al. [237], ©Eurographics Association
2000. Reproduced by permission of the Eurographics Association.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-233.jpg&w=304&h=100
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-233.jpg&w=304&h=100
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-233.jpg&w=304&h=100


4.5. Shadow Depth Maps 121

penumbra cone

light
spherical

penumbra cone

penumbra
sheet

receiver plane

occluder

Figure 4.21. Penumbra cones and sheets are generated from the vertices and edge of the
occluder.

Figure 4.20, where the skin for the shadows from the boxes are illustrated in the
two shadow depth maps). When the light source is large, accuracy of the above
approach may be poor, and the number of shadow depth maps generated can be
increased above two so that the accuracy can be improved. Ying et al. [652] extend
that approach for (polygonal) area lights in which a visibility map is computed per
light boundary edge.

Wyman and Hansen [646] generate cones at silhouette vertices (Fig-
ure 4.21) and intermediate sheets along silhouette edges similarly to Haines [220]
(Section 4.4.2). These volumes are then scan-converted in a penumbra map
(see Figure 4.22(right)). For each cone or sheet pixel, the corresponding illumi-
nated 3D point in the shadow depth map is identified. The shadow occlusion is
(Z−Z′)/(Z−Zn), where Z is the distance from the light to the point to be shaded,

Figure 4.22. A shadowdepthmap from the representative point source (left).The penumbra
cones and sheets are scan-converted in a penumbra map (right). Image courtesy of Wyman
and Hansen [646], ©Eurographics Association 2003. Reproduced by permission of the Euro-
graphics Association.
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Figure 4.23. From left to right: shadow depth map from the representative point source,
smoothie depth, smoothie alpha, and outer penumbra soft shadows. Image courtesy of Chan
and Durand [83], ©Eurographics Association 2003. Reproduced by permission of the Euro-
graphics Association.

Zn is the distance from the light to the occluding vertex (or point on the silhouette
edge), and Z′ is the distance from the penumbra map. This method is suitable for
hardware implementation and for interactive to real-time performance. Arvo and
Westerholm [16] extend this approach to handle both the inner and outer penum-
bra regions.

Similarly, Chan and Durand [83] extend each silhouette edge of polyhedral
models along two normals of the edge. This quadrilateral, called a “smoothie,”
is textured with an alpha ramp, simulating the penumbra produced by a spheri-
cal light source. These smoothies are then rendered (alpha and depth) from the
light source in an alternate buffer (see Figure 4.23). If two smoothies fall on the
same shadow depth map pixel, only its minimal alpha value (i.e., darker penum-
bra) is kept. In the final rendering, if a 3D point projects with a larger depth value
than in the shadow depth map, it is considered in full occlusion. If it projects with
a larger depth value than in the alternate buffer, its alpha value is used as an at-
tenuation of the illumination. Otherwise, the 3D point is considered fully illu-
minated. Even though the shadows are only approximate and the algorithm only
computes the outer penumbrae, the Chan and Durand technique still produces ex-
tended penumbrae of good visual quality at interactive to real-time rates. It also
inherits many fundamental limitations of shadow depth maps, but extends their
possibilities to produce antialiased soft shadows.

Along the lines of smoothies [83] and penumbra maps [646], Boer [61] intro-
duces “skirts,” which can produce both inner and outer penumbrae. The algorithm
uses image processing techniques to detect silhouettes and then creates around a
silhouette a skirt that has a width twice the radius of the light source, rendered into
a skirt buffer. Another shadow depth map is generated with second-depth occlud-
ers, and the combination of the second-depth map and the skirt buffer generates
soft shadows. Cai et al. [79] do something quite similar in what they refer to as
“shadow fins.”

Arvo et al. [17] use a single point source to simulate a spherical light and apply
a flood-fill algorithm to achieve soft shadows. The scene with umbra shadows is
first rendered using the standard shadow depth mapping techniques. A shadow
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silhouette algorithm is used to determine the silhouette of the umbra in the image.
The penumbra rendering pass spreads out this umbra, where each pass spreads
out by two pixels. The rendering passes terminate once the spreading is completed
when the silhouette reaches the edge of penumbra. With these potentially many
penumbra rendering passes, this algorithm appears to be quite slow, especially for
larger light sources (additional optimizations using flood jumping are discussed by
Rong and Tan [489]). However, overlapping objects will cause noticeable artifacts,
as seen in Figure 4.16.

4.5.4 Multipoint Source Shadow Depth Map Algorithms

In the previous three sections discussing shadow depth map algorithms, these al-
gorithms employ one or very few point light samples, which makes them very at-
tractive in terms of real-time performance. In this section, many point light sam-
ples are relied upon to achieve more accurate results, but the algorithms tend to
be slower. Although there is commonality in the approaches with respect to re-
lying on multiple point sources, most approaches are really quite disjoint, i.e., the
approaches are not based on one another.

Sung [570] identifies the triangles that reside in the volume defined by the point
to be shaded and the rectangle encompassing the extended light. Those triangles
are inserted into a hardware Z-buffer to automatically do the scan-conversion and
determine the amount of occlusion, with the point to be shaded as the viewpoint,
and the view direction as the center of the light. The scan-conversion is meant
to simulate a set of faster distribution ray tracing computations. Note that this
approach can be seen as an inverse shadow depth map approach, where the Z-
buffer visibility is done from the perspective of the points to be shaded, not from
the light-source origin.

Agrawala et al. [2] render shadow depth maps from different sample points on
an area light source. These shadow depthmaps are warped to the center of the light
source and combined into a layered depth image, where each pixel in the layered
depth image consists of depth information and a layered attenuation map, which
stores the light attenuation at each depth. During display, each visible point to be
shaded is projected onto the layered depth image and the attenuation is computed
by comparing the depth value with each layer. Note that ray tracing variants of the
layered shadow depthmap are described in Section 4.7.4, but they aremuch slower.

St-Amour et al. [555] also warp each sampled point light to the center of the ex-
tended light as in the above approach. However, the information is stored within
a deep shadow map [362] (Section 5.4.2 for a detailed description) instead of a lay-
ered depth image. This approach, called penumbra deep shadow mapping, also
allows the combination of semitransparency, soft shadows, and motion blurred
shadows, all dealt with in a single algorithm. However, the approach results in a
very large structure where the extended light and the occluders are assumed static.
Soft shadows can be cast over moving objects, but the objects themselves cannot
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Figure 4.24. Extensions of the deep shadow depth map that include soft shadows. Image
courtesy of St-Amour et al. [555].

cast soft shadows computed from this structure. See Figure 4.24 for a sample ren-
dering.

Schwarzler [514] uses an adaptive sampling approach to create shadow depth
maps for each frame. Four shadow depth maps are initially created, each point
representing a point on the corner of the rectangular light. The shadow depthmaps
are compared to determine if further inner samples are necessary, and if so, further
shadow depthmaps are generated and so on. The criteria for determining the need
for additional shadow depth maps can be tricky, and if not determined correctly,
shifts or jumps in an animated sequence will surely appear.

Additionalmultipoint light-source shadowdepthmap techniques can be found
in the following research [267, 268]. The two most interesting techniques in this
section remain the layered attenuation map [2] and the penumbra deep shadow
map [555].

4.5.5 Rendering Large Scenes

None of the shadow depthmap algorithms that generate soft shadows that we have
discussed thus far address the need to deal with artifacts due to the lack of focused
resolution. In other words, it is not uncommon for the above approaches to ex-
hibit sawtooth-like results in large scenes. Only a couple of approaches have been
discussed in the literature for large scenes, such as extensions to alias-free shadow
maps and fitted virtual shadow depth maps. We do find it curious why the com-
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bination of PCSS (Section 4.5.1) with z-partitioning (Section 2.3.7) have not been
proposed to date, as this seems the most obvious extension.

Alias-Free Shadow Maps

The alias-free shadow map (or irregular Z-buffer) algorithms [535, 276] described
in this section are soft shadow extensions of their hard shadow equivalents [4, 275]
described in Section 2.3.7. In general, for the visible pixels, they first calculate the
umbra, then use various techniques to approximate the penumbra.

Sintorn et al. [535] first compute the camera viewpass to determinewhich pixels
need to answer the shadowing question. Each triangle is then processed, in a sin-
gle pass similar to the one from Laine and Aila [325], to compute the conservative
influence region of the umbra and penumbra from each triangle (see Figure 4.25
for construction of the conservative influence region). Instead of a single bit as
attached to the alias-free shadow map in the hard shadow case, a bitmask is asso-
ciated with each visible pixel to indicate visibility of (typically) 128 light samples.
Temporal jittering of each sample can also be done to account for motion blur.

Johnson et al. [276] also compute the camera view pass to determine which
pixels need to answer the shadowing question. Those visible pixels are stored in
a 3D perspective grid (see Figure 4.26). Instead of a bitmask approach to com-
pute soft shadows, they perform geometric projection of the triangles to capture
umbra information and create penumbra wedges (as in [23]; see Section 4.6.3) for
silhouettes only relevant to those visible pixels. This is especially significant for the
penumbra-wedge approach since its main drawback is complexity, which is dra-
matically reduced in this technique. Additional optimizations for this approach
are discussed by Hunt and Johnson [253].

The approach of Johnson et al. [276] has the advantage of a geometric approach
(using penumbrawedges) but with reduced cost. It generates soft shadow solutions
analytically. It has inherent disadvantages of penumbra wedges such as incorrect
overlap results. The approach of Sintorn et al. [535] does not have the incorrect

Figure 4.25. Computing the conservative influence region for the alias-free shadow map.
Image courtesy of Sintorn et al. [535]. Computer Graphics Forum ©2008 The Eurographics
Association andBlackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. Reproduced by
permission of the Eurographics Association and Blackwell Publishing Ltd.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-288.jpg&w=242&h=78
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Figure 4.26. 3D perspective grid to store visible pixels. ©2009 ACM, Inc. Included here by
permission [276].

overlap situation, but may likely need more computation time due to the need for
128 samples per visible pixel—this can turn into an advantage with temporal jitter-
ing to account for motion blur.

Both approaches currently do not provide real-time performance in general,
but remain an interesting approach for further research.

Fitted Virtual Shadow Depth Maps

Shen et al. [522] use a variation of fitted virtual shadow depth maps (Sec-
tion 2.3.7) and percentage-closer soft shadows (PCSS—see Section 4.5.1). First
a low-resolution shadow depth map is rendered to allow the estimation of the
penumbra width of each visible point. This information is then used to predict
the required resolution of a depth map tile in a fashion similar to fitted virtual
shadow depth maps. High resolution depth map tiles are rendered, and PCSS is
applied for the final rendering.

This approach is very reliant on the accuracy of the tile resolutions, or else
visible artifacts between the tile borders (due to different resolutions) can be visible.

4.5.6 Other Shadow Depth Map Variations

Mo et al. [416] introduce the concept of a depth discontinuity occlusion camera
(DDOC), which is a non-pinhole camera that is placed in the center of the ex-
tended light. A distortion shadow depth map is created, where the distortion oc-
curs around the discontinuities or silhouettes of the objects. The distortion causes

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-298.jpg&w=193&h=184


4.6. Shadow Volumes 127

bending of the shadow rays and thus generate soft shadows. While this approach
is theoretically interesting, the creation of the distortion map is very slow.

Jakobsen et al. [263] store multiple z-values per pixel to indicate the transition
of the umbra to penumbra regions. However, this algorithm suffers from projec-
tion aliasing problems, where the slightest bias or offset values can cause incorrect
self-shadowing.

Ritschel et al. [479] introduce coherent shadow depth maps in which a set of
many shadow depth maps per object are precomputed and compressed, each set
containing per-object visibility. Thus, with any animation where the objects’ con-
vex hulls do not overlap, a distributed sampling approach to compute soft shadows
can be very fast. However, this approach implies significant preprocessing time and
memory overhead.

Scherzer et al. [506] generate a single shadow depth map based on stochas-
tically choosing a point on the extended light. Shadow determination is based
on previous frames’ shadow depth maps, which represent other points on the ex-
tended light and the current frame’s shadow depth map. Some smoothing is ne-
cessitated by the flickering that results from this approach, and likely additional
self-shadowing artifacts will appear.

4.6 Shadow Volumes

There are three basic shadow volume approaches—themultipoint shadow volumes
(see Section 4.6.1), shadow volume BSP (SVBSP; see Section 4.6.2), and penum-
bra wedges (Section 4.6.3). The penumbra-wedge algorithms have received signif-
icantlymore research attention even though the penumbrawedge approach cannot
easily use many of the culling techniques of shadow polygons as discussed in Sec-
tion 2.4.3, especially when a hard boundary for a silhouette from an extended light
does not exist. In comparison, the SVBSP approach has not been attempted on the
GPU and has the tree structures growing very quickly in size and complexity. The
multipoint shadow volumes approach is the most accurate, because it attempts to
simulate point sources of the extended light, but is also the slowest approach.

4.6.1 Multipoint Shadow Volumes

Brotman and Badler [71] stochastically choose points to model extended light
sources. Their algorithm generates shadow polygons (in the form of shadow vol-
umes) for each point source. A 2D depth buffer for visible surface determination
is extended to store cell (pixel) counters. The cell that the point to be shaded re-
sides in is found, and the associated cell counter is incremented by 1 if the shadow
polygons for that point source enclose the whole cell. If the corresponding cell
count equals the total number of point sources, then the point to be shaded is in
full shadow. If the cell count is less than the total number of point sources but
higher than 0, then the point lies in penumbra. Diefenbach and Badler [128] and
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Udeshi [595] implement the above approach on the GPU using multipass OpenGL
rendering.

4.6.2 Shadow Volume BSP (SVBSP)

Chin and Feiner [92] extend their own work on SVBSP data structure [91] (Sec-
tion 2.4.4) to achieve soft shadows. Instead of a single BSP shadow tree, as in their
original paper [91], two shadow trees are created: one umbra tree and one penum-
bra tree, which encompasses both penumbra and umbra. The polygon to be shaded
first explores the penumbra tree. If it reaches an out cell in the penumbra tree, then
the polygon is fully lit. If this same polygon reaches an in cell, then it may be in
umbra or in penumbra. This ambiguity is resolved by exploring the umbra tree.
If it reaches an out cell, then the polygon is in penumbra; otherwise it is in full
shadow.

The intensity of the penumbra for the SVBSP tree is based on contour integra-
tion for diffuse receiving surface elements. The light source may also need to be
partitioned so that a unique BSP-tree traversal order will be generated, i.e., so that
the split up area light will be entirely on one side of partitioned planes. Wong and
Tsang [636] indicate that this can be very wasteful and identify cases where this
extra partitioning of the area light can be avoided.

4.6.3 Penumbra Wedges

Akenine-Möller and Assarsson [5] modify the definition of a shadow volume to
produce soft shadows. Instead of a quadrilateral forming a shadow polygon, a
wedge is formed from a silhouette edge that represents the penumbra region. Each
wedge has a shape similar to a prism, and all the wedges surround the umbra (see
Figure 4.27). To determine visibility, instead of incrementing and decrementing a

Figure 4.27. Penumbra wedges with penumbra intensity variations within a penumbra
wedge. Image courtesy of Akenine-Möller and Assarsson [5], ©Eurographics Association 2002.
Reproduced by permission of the Eurographics Association.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-317.jpg&w=192&h=108
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shadow count, a fractional counter (of changing lighting intensity) is used to in-
crement and decrement when entering and exiting the wedges. A higher-precision
stencil buffer is needed to deal with this lighting intensity counter. The intensity of
the penumbra region has a linear decay between the wedge boundaries. As a con-
sequence, the penumbra intensities are approximate, and when wedges of a single
silhouette edge cross or are contained in one another, the shadow results can be
wrong.

Assarsson and Akenine-Möller [24] improve on the original algorithm’s per-
formance by separating the umbra and penumbra rasterizations. The umbra com-
putations are virtually identical to the typical shadow volume approach, using the
center of the light as the umbra point light source. The penumbra is only of inter-
est if the point to be shaded resides within a wedge (i.e., in penumbra). If within
a wedge but not in shadow from the umbra pass, then the shadow fraction is de-
creased; if within a wedge but already in shadow from the umbra pass, the shadow
fraction is increased to reduce the hardness of the umbra. Separating the two ras-
terizations allows less intersection computations than in their original work [5],
and since only visible surface points that reside within a wedge are of interest, the
bounding box of minimum and maximum Z-depths can be used to cull a lot of
penumbra rasterizations.

Despite the speed improvements [24], the above approaches can cause artifacts
when the wedges of a single silhouette edge cross or are contained in one another;
thus, another variant of the penumbra wedge solution has been proposed [23]
where wedges act as conservative penumbra regions that are combined in a vis-
ibility buffer bitmask to arrive at the shadow solution. In fact, the wedge created is
independent of the light silhouette, and only the center point of an extended light
is considered. The penumbra produced is fairly accurate unless the size of the light
source is large in comparison to its shadow casters, which then results in overstated
umbrae. Forest et al. [175] improve on the above problem by splitting the light into
four regions, optimized by doing it in a single pass.

In terms of improving performance for the above, Assarsson et al. [25] include
optimizations such as tighter shadow wedges and an optimized GPU pixel shader
for rectangular and spherical lights. Viney [604] constructs penumbra wedge ge-
ometry directly on the GPU using geometry shaders. Lengyel [346] suggests treat-
ing a penumbra wedge as two halves, containing an inner and outer penumbra. An
optimization would be to only process the outer penumbra wedge, resulting in less
accurate results that still look good.

Forest et al. [176] use penumbra wedges and depth complexity sampling to ar-
rive at a real-time soft shadow solution. See Section 4.7.3 for a ray tracing imple-
mentation of the general approach. Forest et al. apply that general approach but use
a sampling grid of only 16 samples, and instead of using ray tracing to compute the
reference sample, they apply a shadow volume approach. See Figure 4.28 and note
the overstated umbrae from the penumbra-wedge approach, as compared to the
more accurate result from Forest et al. [176]. Although penumbrae are generally
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Figure 4.28. Comparing soft shadows from the following: penumbra wedges (left); the ap-
proach of Forest et al. (center); reference image (right). Image courtesy of Forest et al. [176].
ComputerGraphics Forum©2008TheEurographics Association andBlackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350
Main Street, Malden, MA 02148, USA. Reproduced by permission of the Eurographics Associ-
ation and Blackwell Publishing Ltd.

much improved, the approximate precision of the shadow fraction of the shadow
volume approach may still result in penumbra errors.

Note that the implementations for the above penumbra wedge algorithms tend
to be quite complex due to the many cases that need to be properly handled, and
unfortunately, very little of the code from shadow volume hard shadows can be
reused for soft shadows. The reward for the above algorithms remains the visually
pleasing rendered results.

4.7 Ray Tracing

Ray tracing remains the most accurate, flexible, but also the slowest approach to
achieving soft shadows unless the platform supports a high level of parallelism.
Most of the research resides in distribution ray tracing (Section 4.7.1), although
some work has been done in analytic solutions through back-projections (Sec-
tion 4.7.2). Distribution ray tracing approaches tend to be easier to implement,
but getting high-quality results with minimal noise and without resorting to many
point light source samples tends to be challenging. Analytic solutions are more
difficult to implement, but they often provide smoother-looking results. The main
decision criteria to choose between the basic approaches is fundamentally how
many point samples can match the analytic solution in terms of performance and
quality. This is a difficult question to answer, although it is appropriate to conclude
that the larger the size of the extended light, the more feasible analytic solutions
become.

Faster alternatives to the above include the single-ray analytic solution (Sec-
tion 4.7.3) and ray tracing depth images (Section 4.7.4), although caremust be taken
to avoid artifacts when using ray tracing depth images.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-336.jpg&w=314&h=102
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4.7.1 Distribution Ray Tracing

In terms of soft shadows within ray tracing, variations of the distribution ray trac-
ing approach [108] have become the most often used technique. An example
is the work using distribution ray tracing for linear and area light sources [463]
and curve light sources [33]. By distribution ray tracing, we mean shooting a
number of rays towards the extended light to come up with an average for the
shadow occlusion fraction or to estimate the radiance at each sample. This does
not imply that it always requires stochastic sampling as implemented in the orig-
inal work of Cook et al. [108]. Deterministic sampling approaches (e.g., adap-
tive supersampling [629], stratified supersampling [340], Hammersley and Hal-
ton point sequences [637], N-rooks with a static multijittered table [617], and
blue-noise tiling patterns [442], etc.) for distribution ray tracing can work just as
effectively.

An important aspect in favor of distribution ray tracing [108] is that noise is
far more visually acceptable than banding, and when viewed over a sequence of
frames, the noise is hardly noticeable. Thus, stochastically shooting shadow rays,
hitting different points on the extended light over a sequence of frames, can achieve
good results. Other variations of the distribution ray tracing techniques are listed
below, mainly focusing on how to reduce the number of shadow rays while main-
taining good quality results.

For the rest of this section, a set of disjoint papers are presented. They have
little in common except that they discuss soft shadows computed by a distribution
of rays.

Shirley et al. [527, 621, 528] compute good estimators of probabilistic locations
on the extended light source for lighting and shadow computation used within a
distribution ray tracing environment. Ideal probabilistic locations are discussed
for various types of extended light sources. See a more detailed description of this
work in Section 2.5.3.

Jensen and Christensen [269] apply a preprocessing step for computing a pho-
ton map [273] by sending photons from the light source. For each photon inter-
secting a surface, a shadow photon is continued along the same direction as if the
original photonhad not hit any surface. To compute the illumination at a particular
point P, the nearest photons around P are gathered. If they are all shadow photons,
then P is considered in complete shadow. If they are all regular photons, then P is
fully lit. If they consist of both regular and shadow photons, then P is either on the
boundary of the shadow or it is in the penumbra of an extended light. One can take
the number of regular and shadow photons to determine the shadowing fraction,
but the authors [273] indicate that the result is not very good unless a very large
number of photons are generated from the light. Instead, shadow rays are shot to
the light source to determine shadowing. In essence, the photon map is applied
as a shadow “feeler.” Using this technique, the authors claim that as many as 90%
of shadow rays do not need to be cast. However, the preprocessing cost may be
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large for scenes only directly illuminated, and because the photons are shot based
on probabilities, small objects can be missed.

Genetti et al. [189] use pyramidal tracing to quickly compute soft shadows from
extended lights. A pyramid from the point to be shaded to the extended light is
formed. If there are different objects in this pyramid, then the pyramid is subdi-
vided into smaller pyramids as in typical adaptive supersampling approaches [629].
The subdivision criteria remain the same geometric identification the authors use
in their earlier work [188], whichmeans that the same limitations still hold, i.e., the
criterion of the presence of different polygons is used to determine how complex
that pyramid region might be and thus drives howmany rays need to be shot. This
may be ideal for higher-order surfaces, or large polygons, but not ideal for polyg-
onal meshes, as they will always require many shadow rays to be shot based on the
above criterion.

Hart et al. [225] precompute an occluder list per image pixel per light source
by tracing a very small number of shadow rays. When an occluder is found, a
check is done to determine if adjacent image pixels also “see” the same occluder
so that the adjacent pixels can also register this occluder. During the shading of
the pixel, the pixel’s occluders are projected and clipped against the extended light
to analytically determine the visible portions of the light. This algorithm ensures
consistency of occluders between adjacent pixels but can result inmissed occluders
(i.e., light-leaking problems), especially for small geometry occluders. The storage
of occluders per pixel can also be large.

Distribution ray tracing has enjoyed much faster performance with SIMD in-
structions, parallel systems on either the CPU or GPU, and ray packets for locality
of reference [64, 45]. Another optimization exploiting locality of reference can be
applied to the geometry itself, using hierarchical penumbra casting [325]. In this
approach, all shadow rays are identified first, then a loop through each triangle
occurs where the algorithm finds all shadow rays that intersect this triangle.

Additional reading on other distribution ray tracing optimizations includes

● Extensions of the hemicube data structure towards area sources [407].

● Extensions of the mailbox/rayID optimization to reduce computation of the
non-first shadow ray [643].

● Approximate contour integration to compute illumination from diffuse area
sources using distribution ray tracing only for the occluded or partially oc-
cluded cases [603].

● Use of the Minkowski operators [178, 372] and frequency analysis [148] and
gradients (normals) analysis [473] to focus the regions where shadow rays
need to be shot to get the desired details. Additional advanced frequency
analysis has been researched [154, 153].
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● Prefiltering and storing local occlusion information. Shadow rays can ter-
minate earlier based on ray differential and the local occlusion informa-
tion [321].

4.7.2 Structures for Exact Back-Projection

Amanatides [10] extends the ray tracing concept of a ray to a cone. Instead of
point sampling, cone tracing does area sampling. Achieving antialiasing requires
shooting exactly one conic ray per pixel. Broadening the cone to the size of a cir-
cular light source for shadow cones permits generation of soft shadows: a partial
intersection with an object not covering the entire cone indicates penumbra, an in-
tersection with an object covering an entire cone indicates umbra. Due to locally
complex scenes, it may be necessary to divide up a single cone into a set of smaller
cones to get a better approximation for soft shadowing, which can be complicated.
Note that it is ideal to use cone tracing only for spherical (or ellipsoidal) lights.
The lack of adoption of cone tracing is likely due to little success in performing ef-
ficient intersection culling. Figure 4.29 illustrates how cone tracing generates soft
shadows.

Heckbert and Hanrahan [231] introduce beam tracing, which is very similar
to cone tracing, except that beams (elongated pyramids) replace cones. It has the
advantages of cone tracing, such as achieving soft shadows naturally (in this case,
for polygonal lights). However, it also has the disadvantages of cone tracing, such
as complex beam-geometry intersections and lack of an effective culling structure.
Overbeck et al. [447] introduce fast algorithms for ray-geometry intersection and
k-d tree traversal as a culling structure, which has pushed the performance of beam
tracing quite significantly.

Poulin and Amanatides [465] introduce two structures to soft shadows for a
linear light. The first involves a light triangle, where a light triangle is defined
by the endpoints of the linear light and the point to be shaded. The regular grid
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Figure 4.29. Approximating the shadowing of the pixel-cone intersection by a spherical
light shadow cone.
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Figure 4.30. The light triangle formed by the point to be shaded and the linear light is
intersected against the objects of the scene. The intersected objects are back-projected onto
the linear light to determine the light illuminating segments.

voxels that encompass this triangle are identified through 3D scan-conversion, and
the objects in these voxels are intersected against the light triangle. All objects that
intersect the light triangle are projected toward the linear light to determine occlu-
sion. Although this algorithm provides an analytic solution to the shadow value,
the authors indicate that the results are slow due to the expensive scan-conversion.
In fact, this analytic solution is one of the few that generate the correct soft shadow
integral evaluation. See Figure 4.30, which shows the light triangle and how the
shaded regions are the final segments of the linear light that are fully lit, and see
Figure 4.31 for a sample rendering.

Figure 4.31. Analytic solution for soft shadows from two linear light sources per rectangle.
Image courtesy of Poulin andAmanatides [465], ©Eurographics Association 1990. Reproduced
by permission of the Eurographics Association.
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Figure 4.32. Angles ϕ and ψ from the linear light axis [577].

Poulin and Amanatides [465] also propose a more efficient linear light buffer
represented by an infinite cylinder oriented along the light. The cylinder is sub-
divided into arcs along its radius. Objects radially projecting in an arc are added
to the arc’s list. Any point to be shaded identifies the arc it resides in and projects
the list of objects associated with this arc on the linear light. To further reduce
arcs, each arc is divided into three parts: the left, center, and right side of the linear
light. They [465] found this algorithm to be much faster than the scan-conversion
approach, although it does require additional preprocessing and more memory to
store pointers to the entire object set.

Tanaka and Takahashi [577] extend the linear light buffer so that the list of
objects is partitioned as in the previous scheme [465], but it is also partitioned into
layers along the radius of the infinite cylinder as well as in overlapping, partitioned
bands that are ϕ and ψ angles from the linear light axis (see Figure 4.32). The bands
represent regions for potential shadow rays. A loop through all the partitioned
regions is executed, projecting all hit segments with the light triangle to get the
final shadow occlusion value. The memory requirements for this scheme appear
to be quite large.

The same authors [578] extend their approach to deal with area lights. Par-
titioned bands are created in each direction of the area light, and a 2D array of
bands is produced. The light pyramid (instead of light triangles for linear lights)
is intersected against the objects in the appropriate band. Instead of employing a
typical and expensive polygon clipper to identify the lit regions on the area light in
order to compute the visible regions of the area light analytically, a cross-scanline
clipping algorithm [576] is used. Both algorithms provide analytic solutions to
the shadowing of extended lights. Similarly, Stewart [563] is also able to compute
exact regions of visibility with the area light source and the point to be shaded.
Because of rendering systems that supersample to antialias, it is unclear if dis-
tribution ray tracing [108] with a few shadow rays per supersample converges to
the analytic solution just as easily without incurring the cost of the exact analytic
solution.
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Another class of back-projection techniques have been applied to radiosity
[560, 141, 561, 142, 368, 101, 32] in order to find an optimal discontinuity mesh (see
Section 5.10.1 for details).

4.7.3 Single-Ray Analytic Solution

Parker et al. [452] apply ray tracing to generate approximate but pleasant-looking
soft shadows by shooting only one shadow ray per spherical light. The basic idea
is to identify the silhouette of objects and make semitransparent a region around
the silhouette. These semitransparent regions therefore produce penumbrae. Any
penumbra region outside the umbra results in some interpolation from the umbra
to achieve soft shadows, i.e., computation of the outer penumbra. Note that the
umbra tends to be overstated, and a spherical light is assumed. This approach was
also the basic motivation for non-ray tracing approaches for soft shadow approx-
imation [220, 66, 83, 309]. See Figure 4.33 on the approach and Figure 4.34 for a
sample rendering.

Laine et al. [328] use penumbra wedges (Section 4.6.3) and depth complexity
sampling to accelerate the computation of accurate shadows by shooting a single
shadow ray per extended light. This is achieved by extracting silhouette edge in-
formation and storing it in an acceleration structure such as a hemicube. With a
shadow visibility query, a list of penumbra wedges of all potential silhouette edges
is created by projecting the point to be shaded onto the surface of the hemicube.
There are a fixed number of light samples (up to 1024 samples) representing an ex-
tended light, where each such light sample will accumulate the depth complexity.
Thedepth complexity of the light sample is incremented if an edge is projected onto
that light sample. A single shadow ray is then cast toward the light with the lowest
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Figure 4.33. A region around the object is marked as semitransparent. Any ray traversing
this region is considered partly occluded, depending on its distance to the real object.
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Figure 4.34. Hard shadows from a single point (left). Soft shadows approximated from
inner and outer object regions (right). Image courtesy of Parker et al. [452].

depth complexity. If the shadow ray is blocked, then the point is in full occlusion;
otherwise, the light sampleswith the same lowest depth complexity are fully visible.
Further work on the above general approach has been focused on an acceleration
data structure to replace the hemicube, such as k-d trees [226] and 3D grids [343].
The basic approach of depth complexity sampling should be much faster than dis-
tribution ray tracing except that it is unclear, when the geometric complexity (i.e.,
number of edges) of the scene is large, whether the O(n) geometric behavior of
the above algorithm will provide performance gains.

4.7.4 Ray Tracing Depth Images

Lischinski and Rappoport [352] achieve computationally faster soft shadows by hi-
erarchically ray tracing layered depth images (LDI) instead of the slower ray trac-
ing of scene objects. A shadow LDI is generated that represents the view from the
center of the extended light source. By itself, LDIs can result in missed shadow
hits, very similar to the early implementation of micropatches (Section 4.5.2). To
alleviate this, each depth is superimposed onto fixed boundaries, thus forming dis-
crete depth buckets [297], resulting in larger, flat surfaces (e.g., panels). To improve
performance, a 32-bit word can be used to describe 32 depth buckets at a pixel.
Shadow rays traverse the depth buckets (to the extended light), and the bitmasks
are ORed together to determine shadow visibility for each shadow ray (see Fig-
ure 4.35). For shadow depths that may cause self-shadowing, the original Z-depth
values are kept around for comparison. Although this scheme is fast and reduces
the risks of missed shadow hits, light-leaking problems can still occur, and the dis-
crete depth buckets may show shifting artifacts over an animation. Also, the soft

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-403.jpg&w=151&h=151
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Figure 4.35. The scene is converted in a layered depth image. The soft shadows result from
tracing shadow rays through this structure and testing for intersectionwith the flat panels in
occupied voxels. Image courtesy of Keating and Max [297], ©Eurographics Association 1999.
Reproduced by permission of the Eurographics Association.

shadows are very approximate because the LDI represents a single view from the
center of the extended light, and shadow rays are shot to the extended light. As
a result, the size of the extended light tends to be small for the results to be visu-
ally acceptable. Im et al. [256] extend the above approach by using depth peeling
to generate the LDIs. Xie et al. [649] accelerate the above approaches by storing a
quadtree ofminz andmaxz as well as opacity values per layer to achieve semitrans-
parent shadows as well. Visual comparisons of this approach versus micropatches
(Section 4.5.2) on soft shadows can be seen in Figure 4.18. If Xie et al. [649] al-
low an unlimited number of layers, one can consider the approach as being a data
structure suitable for volume graphics as well (Section 3.7).

Agrawala et al. [2] deal with the light-leaking problem in a different way, using
an approach that is similar to ray tracing heightfields. Multilayer depth images are
generated from points emanating from the extended light; thus, this approach is
more accurate than the above approaches, which assume only a single point from
the extended light. To compute shadowing for each depth image, an epipolar ray
traverses the depth image. As the traversal occurs, the epipolar depth interval
[Zenter , Zexit] is maintained. If the image depth Zref is inside the epipolar depth
interval, then it is in shadow. To speed up traversal, a quadtree is used. Because a
fixed set of depth images are preprocessed, if the number of such depth images is
too small, banding artifacts in the soft shadows may occur.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-5&iName=master.img-414.jpg&w=192&h=186
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4.8 Other Soft Shadow Algorithms

Yoo et al. [653, 654] provide fast algorithms to compute the exact umbra and
penumbra events of a single polygon, which is exploited byBala et al. [32] to achieve
fast antialiasing results without supersampling. Stark et al. [558] compute the exact
shadow irradiance using polygonal splines. Demouth et al. [127, 126] compute the
exact polygonal boundaries between umbra and penumbra sections. Boehl and
Stuerzlinger [60] merge geometric silhouettes and filter the results from several
point light sources (representing the extended light). As it currently stands, the
derived mathematics for the above papers are very interesting but less practical in
complex environments. The results could be input towards discontinuity meshing
in radiosity (Section 5.10.1).

Ouellette and Fiume [445, 446] determine the approximate locations of inte-
grand discontinuities for points in the penumbra. These points correspond to the
approximate boundaries of the visible portions of the linear light. The authors take
advantage of the fact that even with complex occlusions, there are usually only one
or two such discontinuities. They demonstrate that knowing the exact locations of
these points is not necessary, provided that the average location of these discon-
tinuities varies continuously throughout the penumbra. They introduce the Ran-
dom Seed Bisection algorithm, a numerical iterative technique for finding these
discontinuities in a continuous fashion. The same authors [444] follow up with
research to locate integrand discontinuities for area lights. The visible domains of
the integrand are approximated by a polygonal boundary, then subdivided into tri-
angles so each of the triangulated integrands can be computed analytically using
a low-degree numerical cubature (third degree analogy to a numerical quadrature
technique).

Donnelly and Demers [139] use occlusion interval maps to produce soft shad-
ows on the GPU that are feasible only for static scenes and a fixed light trajectory
over time (e.g., a sun). An occlusion interval map is very similar to a horizon map
(Section 5.2) in which each point has a hemisphere of information in terms of oc-
clusion, computed using ray tracing. The occlusion function is usually a bar chart
of binary-decision visibility occlusion, and can be turned into a smoother func-
tion to achieve soft shadows. During real-time playback, the shadow information
is simply retrieved from this map. There are hints of ambient occlusion in this
approach (see Section 5.8).

4.9 Trends and Analysis

From a research paper standpoint, it is very obvious that shadow depth maps have
captured most of the attention, ahead of shadow volume variations. This is likely
due to the flexibility and performance capabilities of shadow depth maps. Ray
tracing has also generated a lot of interest because it computes the most physically
accurate shadowswithout fail and because of the speed improvements gained in the
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last decade. Most of the speed improvements have positively affected the single-ray
analytic solution, distribution ray tracing, and beam tracing.

Although the number of papers on soft shadows from direct illumination has
been large, they pale in comparison to the number of papers published for hard
shadows. The current count for the papers is

Planar receivers of shadows 7

Shadow (depth) maps 51

Shadow volumes 9

Ray tracing 42

4.9.1 Offline Rendering Trends

In offline rendering situations for turnkey solutions, distribution ray tracing [108]
is almost universally available to generate soft shadows from extended lights.
Shadow depth maps are still the preferred solution for performance reasons, but
there is very little attempt to offer correct soft shadows from shadow depth maps,
as the PCF blurring [476] or its extended light version, PCSS [173], tend to be
good enough in many cases. This combination is also powerful in that there is
much common code to support hard and soft shadows (thus reducing code main-
tenance).

4.9.2 Real-Time Rendering Trends

In real-time turnkey engines, extended lights are seldom offered, and correct soft
shadows are almost never available aside from PCF blurring [476]. From a shadow
depth map perspective, we believe this is because no one has pieced together the
ability to render large scenes in real time without exhibiting sawtooth-like results.
Section 4.5.5 discusses those papers that come the closest to achieving this.

From a penumbra wedge perspective, performance remains a bottleneck, es-
pecially when many of the culling techniques of the shadow polygons as discussed
in Section 2.4.3 cannot be easily applied (mainly due to a lack of a hard boundary
silhouette). It also feels like a robust implementation is required to handle many
special cases, with very little code in common with hard shadow volumes.

The lack of adoption of correct soft shadow generation from extended lights
may also be due to focus on other sources of soft shadows, including indirect il-
lumination (ambient occlusion (Section 5.8), precomputed radiance transfer (Sec-
tion 5.9)), and global illumination (Section 5.10).

4.9.3 General Comments

When soft shadows from extended light sources are required, it is rare that only
soft shadows are offered. Rather, there is usually an option to achieve hard and
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soft shadows. Thus, due to reduction of code maintenance and consistent user
expectations, the tendency is to offer rendering solutions of the same type in both
hard and soft shadows. For example, one may prefer to offer some shadow depth
map variation in both hard and soft shadows instead of shadow volumes for soft
shadows and shadow depth maps for hard shadows. We mention this because the
choice of a soft shadow rendering solution could be dictated by both hard and
soft shadow choices. The same can be said for considerations for semitransparent
shadows, motion blur, and atmospheric shadows, which are discussed in the next
chapter. This is why a technique such as deep shadow maps [362] has been used
often, as it is able to offer hard, soft (Section 4.5.4), semitransparent (Section 5.4.2),
complex thin material (Section 5.5), and motion-blur (Section 5.7) shadows.

A perspective of algorithmic choices can be seen in the following four cate-
gories, quantifying the pitfalls, quality, and performance, so that the reader can
decide what is acceptable for his needs:

1. Single point source. This class of algorithms produce smooth soft shadows
with a single point. They are generally the fastest but also the least physically
accurate. A few of these algorithms exhibit light-leaking problems.

2. Boundary/silhouette cases. This class of algorithms produce smooth-looking
shadows due to extraction of boundary or silhouette cases and are based on
sampling one or very small number of point sources. However, they have
artifacts from geometry overlap, and sometimes only the outer penumbra is
considered. A few of these algorithms also exhibit light-leaking problems.

3. Multiple point sources. This class of algorithms represent the most physically
correct soft shadows from extended lights. They can converge to smooth-
looking shadows if enough point sources are used (performance might be
slow); otherwise, banding or noise may occur. This is usually the slowest
category of algorithms if a good visual result (minimal noise or banding)
is desired, although these algorithms have no issues with geometry overlap
nor light leaking.

4. Analytic solution. Alternative to multiple point sources, this technique ar-
rives at a solution analytically. This class of algorithms produce smooth-
looking shadows that are usually physically accurate. Performancewise, they
are usually between the algorithms of categories (2) and (3).

Table 4.1 is motivated by a similar table from Johnson et al. [276], and as can be
seen, the four categories proposed in this chapter appear to support useful trends,
such as all boundary/silhouette-based solutions having issues around accurate ge-
ometry overlaps. Note that the lack of inner penumbra support is only an issue
of accuracy, while accurate overlap and light leaking affect accuracy and consis-
tency (i.e., easily visible artifacts), which are more significant. Also note that all
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Chapter.Section + Algorithm Inner Accurate No light Light
penum. overlap leaking type

(1) Single point source
4.5.1 PCSS ✓ ✓ ✓ sphere
4.5.2 Micropatches ✓ maybe rect/sph
4.5.2 Occluder contour ✓ ✓ rect/sph
4.5.2 Microquads/microtris ✓ ✓ ✓ rect/sph
4.7.3 Ray trace single sample ✓ ✓ sphere
4.7.4 Ray trace LDI ✓ ✓ maybe sphere
(2) Boundary/silhouette
4.4.2 Plateau shadows ✓ sphere
4.5.3 Heidrich linear light ✓ ✓ segment
4.5.3 Penumbra map maybe ✓ sphere
4.5.3 Smoothies sphere
4.5.3 Flood fill sphere
4.5.5 Irregular Z-buffer ✓ ✓ sphere
4.6.2 SVBSP ✓ ✓ polygon
4.6.3 Penumbra wedges ✓ ✓ rect/sph
(3) Multiple point sources
4.4.1 Soft shadow textures ✓ ✓ ✓ polygon
4.5.4 Layered attenuationmap ✓ ✓ ✓ sphere
4.5.4 Penumbra deep shadow map ✓ ✓ ✓ sphere
4.5.5 Alias-free shadow map ✓ ✓ ✓ sphere
4.7.1 Distributed ray tracing ✓ ✓ ✓ any
4.7.3 Depth complexity sampling ✓ ✓ ✓ rect/sph
(4) Analytic solution
4.4.3 Convolution textures ✓ ✓ polygon
4.4.3 Occlusion textures ✓ ✓ polygon
4.7.2 Cone tracing ✓ ✓ ✓ sphere
4.7.2 Beam tracing ✓ ✓ ✓ polygon

Table 4.1. Soft shadow algorithms.

the above algorithms account for outer penumbrae and all dynamic ranges. Fi-
nally, a “maybe” in the above table indicates that it is possible to achieve/avoid the
feature/artifact given a specific implementation.

In the next chapter, we present literature on other treatments of shadows, in-
cluding soft shadows as a result of ambient occlusion, precomputed radiance trans-
fer, global illumination, and motion blur.



CHAPTER 5

Other Treatments of
Shadows

5.1 What’s Covered in This Chapter

This chapter covers other treatments of shadows. The topics include

● Bump-mapped surfaces taking self-shadowing into proper account (Sec-
tion 5.2) [573].

● Treatments ofmasking and self-shadowingwithin advanced reflectionmod-
els (Section 5.3).

● “Quasi” shadows from semitransparent and translucent surfaces (Sec-
tion 5.4). It is quasi because these are technically not creating shadows. They
use shadow algorithms not to compute a region not occluded from light, but
a region that represents the transmissivity of light through the semitranspar-
ent or translucent surfaces.

● Highly complex thin materials, such as hair and fur (Section 5.5).

● Atmospheric shadows to simulate fog-like environments taking into account
occlusion of light (Section 5.6). Though this is better known as “volumetric
shadows” in the literature, we hesitate to call it that only because it can be
mistaken for shadows as applied to volume graphics (voxels).

● Soft shadows as a result of motion blur, which are critical for film and video
output (Section 5.7).

● Soft shadows as a result of ambient occlusion, which fake sky light with the
look of soft shadows as if all objects are under an overcast day (Section 5.8) [7,
403].

143
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● Soft shadows as a result of precomputed radiance transfer, which use spheri-
cal harmonics and other forms of hierarchical directional representations in
diffuse, low-frequency lighting environments (Section 5.9) [542, 203, 474].

● Soft shadows as a result of global illumination, which includes discus-
sions on radiosity-based, instant-radiosity-based, and Monte-Carlo-based
ray tracing techniques (Section 5.10) [103, 530, 273, 384, 271, 610, 526, 151].

5.2 Bump Mapping

As indicated in Section 1.4.2, bump mapping by itself does not take the self-
shadowing effects into account, thus making the bump-mapped surface appear
somewhat flat looking. In this section, we review the techniques used to provide
self-shadowing for bump maps.

Horizon mapping [391] approximates the shadows cast by the bumps on the
same surface. Interpreting the bump function as a 2D table of height values, hori-
zonmapping computes and stores, for each point on the surface, the angle between
the horizon and the surface plane at eight or more azimuthal directions on the sur-
face plane (see Figure 5.1). During rendering, the horizon angle at the intersection
point is interpolated from the light direction and the horizon map. If the horizon
angle from the surface tangent exceeds the angle to the light, then this point lies
in shadow. The horizon map assumes that the surface on which the bump map is
applied is planar. Max [391] also introduces an approximate correction factor, to
take into account some moderate deformations caused by this underlying surface.

Sloan and Cohen [538] extend the horizon-mapping algorithm for the GPU
usingmultipass rendering of texture lookups and stencil buffering (Figure 5.2). The
eight horizon mapping directions are encoded into two four-channel texture maps
and multiplied with the basis functions (expressed as a texture map) to determine
the amount of shadowing. Note that this algorithm has been implemented and is
readily available on DirectX. Kautz et al. [294, 238] also permit self-shadows from
bump maps on the GPU. As a preprocess, rays are shot into the upper hemisphere
for each bump-map pixel in many directions, and a tight ellipse that contains as
many unobstructed rays as possible is computed (see Figure 5.3). To determine
shadowing per pixel, the lighting direction must have a hit inside this ellipse to be

f (P) ϕ
ω(P, ϕ)P′

P

Figure 5.1. Horizon angle at P as a function of the azimuthal direction.
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Figure 5.2. Bump-mapped surfacewithout (left) andwith self-shadowing (center and right).
Image courtesy of Sloan and Cohen [538].

lit; otherwise, it is in shadow. Testing to determine if it is inside of the ellipse is
done by fast dot products using the GPU.

To improve on the Sloan and Cohen [538] performance, Forsyth [179] avoids
the need to do multiple render passes for real-time horizon mapping by storing
the multiple horizon maps in a 3D hardware texture. Onoue et al. [439] then in-
troduce a distance map (in addition to the horizon map) to improve the accuracy
of shadows when the bump map is applied to high curvature surfaces.

Note that horizon mapped shadows are also useful in shadow determination
for heightfields (see Section 3.8). However, because the self-shadowing for bump
maps can be approximate, especially when high-frequency changes are not com-
mon, shadowing for heightfields need to be extended for better accuracy.

The above approaches compute self-shadowing of bump-mapped surfaces onto
themselves. Noma and Sumi [435] use ray tracing to cast shadows from other sur-
faces onto a bump-mapped surface. This is done simply by offsetting the bump-
mapped surface as the starting shadow-ray origin. Shooting the shadow ray with
this offset can make convincing shadows on the bump-mapped surface. For com-
plex bump maps though, since the offset is computed locally at the intersection
point, the offset will neglect bumps further away.

Figure 5.3. Tight ellipse (in green) containing unobstructed rays.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-027.jpg&w=306&h=95
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5.2.1 Advanced Bump Mapping Effects

Though bump mapping is widely used, it is limited in that the silhouette of the
surface is not “bumped,” which is very evident when the surface is viewed from up
close or when the shadow of the surface is up close. Also, bump mapping does not
account for proper adjustments when viewing from different angles.

The latter issue is improved upon by applying parallax mapping [312] and its
variations, where the (u, v) texture coordinates are modified to allow proper ad-
justments when viewing from different angles. However, no attempt at proper
shadowing has been done to date.

As for the “bumped” silhouette, displacement mapping [110] is introduced
where the surface is actually displaced (and retessellated in some form). Due to
the details that must be captured properly, shadow computations are trivially ac-
counted for using any shadow depthmap or ray tracing approaches; however, such
surface displacements tend to require significantlymore retessellated triangles, and
thus the performance of displacement mapping tends to be slower, and this tech-
nique is often used in offline rendering scenarios.

To permit faster bumped silhouettes with proper parallax computations and
shadowing (including self-shadowing and shadowing of/from other objects), two
directions have surfaced without the need for extreme tessellation to represent the
displacement:

● On-the-fly computations of the exact hit points with the displacement [396,
626, 581, 582], bounded locally by the original surface to its maximum per-
turbed height (denoted by h). The main examples of such techniques,
which also consider shadowing, include relief mapping [626], steep par-

Figure 5.4. Traditional bump mapping (left) versus relief mapping (right). Note the proper
shadows on the mapped surface and the floor. ©2005, Advanced Game Development with
Programmable Graphics Hardware, by Alan Watt and Fabio Policarpo. Reproduced by per-
mission of Taylor and Francis Group, LLC, a division of Informa Plc.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-037.jpg&w=129&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-038.jpg&w=129&h=142
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allax mapping [396], parallax occlusion mapping [581, 582], and cone step
mapping [85]. These techniques are similar, but differ by the way hit points
are computed. Watt and Policarpo [626] use iterative approaches (linear
and binary searches) to converge to a hit point within h, McGuire and
McGuire [396] use ray voxel traversal within h, Tatarchuk [581, 582] uses a
linear search towards a piecewise linear curve approximating the perturbed
height, and Chang et al. [85] use visibility cones to intersect against the area
light to determine the amount of occlusion. See Figure 5.4 for a sample ren-
dering of relief mapping.

● Precomputed visibility to allow very fast exact hit points to be com-
puted, such as view-dependent displacement-mapping techniques [619,
620], where a 5D function (grid) is used to store precomputed visibility due
to the displacement. The rendering is performed on the original nondis-
placed geometry and on a combination of this 5D function.

5.2.2 Trends and Analysis

Bump mapping itself has long been used in film, video, and games. However, self-
shadowing computations for bump mapping have not been that widely adopted,
likely because if the bump is important enough to account for self-shadowing ef-
fects, it is important enough to need to take into account the bumped silhouette
and its shadow implications, which bump mapping cannot do. When shadowing
is needed for bumps, typically, relief mapping or displacement mapping are used
instead—relief mapping typically for real-time needs and displacement mapping
for offline renderings.

The study for self-shadowing of bump maps remains important because the
main technique, horizon mapping, has become an interesting research direction
for rendering heightfields with shadows (Section 3.8) as well as ambient occlusion
(Section 5.8).

Also note that the term mesostructure has also been used in the literature to
describe the detailed features of a surface, such as bump mapping, relief mapping,
displacement mapping, etc.

5.3 Advanced Reflection Models

As indicated in Section 1.4.3, advanced reflectionmodels simulate how light reflects
off a surface, assuming that an infinity of surface details are integrated at the point
to be shaded. This phenomenon represents a special case in which proper self-
shadowing computations are needed to achieve the correct visual appearance, even
though individual shadows are not visible. The visual impact of self-shadowing
is often more amplified at grazing angles for the viewing or lighting directions.
Note, however, that in most reflection models, these surface details are considered
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Figure 5.5. Masking and self-shadowing in the V-shaped microfacets model of Torrance
and Sparrow [589]. The distribution of surface normals at the bottom right can be approxi-
mated to a shape at the top right, providing the fraction of surface normals oriented in each
direction.

much larger than the wavelength of light, thus limiting themselves to geometrical
optics. In this section, we go over the details of such shadowing computations for
advanced reflection models.

In a reflection model proposed by Torrance and Sparrow [589], the surface de-
tails are represented by a collection of mirror-like microfacets randomly oriented,
thus simulating isotropic reflection. Assuming that the microfacets are small but
elongated symmetric, V-shaped grooves, as illustrated in Figure 5.5, and that both
the lighting and the visibility can be considered at infinity (i.e., directional), the
masking and self-shadowing effects on each pair of V-shapes can be computed an-
alytically, resulting in visible portions of the grooves that are either illuminated or
in shadow. The appearance of roughness in the reflection model is captured by
a Gaussian distribution of the openings of these V-shapes. Trowbridge and Re-
itz [592] represent the microfacet distribution from ellipsoids of revolution, and
their formulation was later adopted by Blinn [53] in a commonly used reflection
model in computer graphics. While different microfacet distributions have been
introduced, they very often follow similar shapes. Several reflection models are
based on this microfacet theory. Using the same distribution of V-shapes but re-
placing the mirrors with perfectly diffuse reflectors, Oren and Nayar [440] show
how diffuse interreflections (radiosity) affect the appearance of rough surfaces.
Their incident illumination also assumes microfacet self-occlusions.

Cook and Torrance [109] consider the spectral composition of incident light
and reflection, in order to simulate the color-shift specular effect due to the Fres-
nel factor. Their reflection model achieves a very realistic appearance of metallic
surfaces.

In their Beard-Maxwell model, Maxwell et al. [392] simulate the appearance of
painted surfaces, with surfacic and volumetric reflections. A distribution of mi-
crofacets is assumed, but its self-shadowing formulation is different. It is based on
a function of two free parameters that can be associated to empirical observations
or user-determined in order to control the fall-off of reflection.
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Smith [543] describes the surface as a Gaussian distribution of heights, and
formulates the probability that a point of a surface at a given height and of given
slopes (in x and y on the surface plane) be in self-shadow, given an incident angle
of illumination. His formulae fit well with simulated experimental results.

He et al. [230] use Smith’s model [543] as a multiplicative shadowing factor and
modify the probability of shadowing and masking to take into consideration the
effective roughness, i.e., the roughness according to the illumination and viewing
angles, which can be very different at grazing angles than the actual surface rough-
ness. The physically based reflection model is consistent with its various terms and
it handles polarization. It has shown good comparisons with measurements of dif-
ferent types of materials, including metals, nonmetals, and plastics, with smooth
and rough surfaces. As a result, it forms, even to this day, the most complete ana-
lytical reflection model in computer graphics.

Ashikhmin et al. [22] introduce a very general microfacet distribution based
on normal distribution, therefore, not limited to heightfields, and fromwhich only
first-bounce reflection is considered. They observe that themicrofacet distribution
has the largest visual impact on mostly specular reflection surfaces and consider a
simple shadowing term to be sufficient as long as the reflection remains physically
plausible. Their shadowing term assumes uncorrelated microfacets, and therefore,
they simply multiply the two probabilities associated with the viewing and light-
ing directions as independent functions. Because this can underestimate reflection
intensity, in order to include a form of correlation, they introduce a linear inter-
polation based on the orientation away from the surface normal between the min-
imum of both terms (correlated) and the product of both terms (uncorrelated).
The reflection models thus generated are very flexible, and examples demonstrate
the quality of the approximation in comparison with several different specialized
reflection models.

However, for many types of surfaces, the microfacets have preferred orienta-
tions. The shadowing effect then also depends on the orientation of the micro-
facets relative to the surface. In the case of simple distributions of microfacets, the
self-shadowing can be computed analytically, such as in the work from Poulin and
Fournier [466], where they analytically compute the masking and self-shadowing
caused by adjacent parallel cylinders simulating an anisotropic surface (Figure 5.6).

While most reflection models assume the ray theory of light, Stam [556] uses
the wave theory of light in order to simulate related phenomena, such as diffrac-
tion. He extends the model of He et al. [230] to handle anisotropic reflection with
a correlation function of a Gaussian random surface and uses a shadowing term
accordingly.

Instead of using statistical models to represent the microstructure of a surface,
Cabral et al. [77] define a heightfield as a polygonal mesh and compute the direct
illumination over this surface for all combinations of light-camera orientations.
The result is an anisotropic reflection expressed as a 4D table. In order to speed up
shadowing computations, they rely on horizon mapping [391] over the heightfield.
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Figure 5.6. Anisotropic reflection model off a rotating sphere. Longitudinal scratches (top)
and latitudinal scratches (bottom).

Themethod of Heidrich et al. [238] for shadowing bump-mapped surfaces (de-
scribed in Section 5.2) can also be used to efficiently compute shadowing in the
microgeometry of BRDFs or BTFs simulated by heightfields or bump maps.

A common usage of anisotropic reflection models comes from themodeling of
hair, inwhich proper lighting and shadowing need to be considered [313, 303]. Hair
also has the property of lots of small details, in which the approaches for proper
shadowing are handled very similarly to semitransparency (see Section 5.4.2).

5.3.1 Trends and Analysis

The vast majority of reflection models used in image synthesis for applications
ranging from film production to real-time video games are simplified models as-
sociated with early work of Phong [462] and Blinn [53]. Their popularity is partly
due to their efficiency and the ease of control by artists, as well as to code legacy.
Standard APIs such as Direct3D and OpenGL continue to support Phong’s model.

The years of advances in reproducing realistic appearances, whether by cap-
turing reality from measurements or by modeling the behavior of various aspects
of reflectance, have resulted in a broad set of advanced reflection models and
BRDF/BTF databases publicly available. Such reflection models are often read-
ily included as advanced “shaders” in commercial rendering systems or offered as
“plug-in” or specialized libraries.

The flexibility of real-time shaders on the GPU allows most of these advanced
reflection models to be used, with potentially some impact on rendering speed
depending on the complexity of the shader.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-075.jpg&w=314&h=155
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Advanced reflection models are more common in predictive rendering and in
applications requiring accurate appearance simulation, such as in the car industry,
in lighting and material design, and in architecture.

5.4 Semitransparent Surfaces

Recall in Section 1.2.3 that colored shadows are present when semitransparent
surfaces are involved. There are three basic techniques to render shadows from
semitransparent surfaces: ray tracing (Section 5.4.1), shadow depth maps (Sec-
tion 5.4.2), and shadow volumes (Section 5.4.3). Also note that the majority of
the shadow algorithms for volume graphics (Section 3.7) support semitransparent
shadowing.

5.4.1 Ray Tracing

Theearliest shadow algorithms to support semitransparent surfaces come from ray
tracing approaches. Hall and Greenberg [221], Lee et al. [340], and Pearce [454]
perform the usual shadow-ray computations but do not stop at the first semitrans-
parent occluder, and they attenuate light as a function of the angle between the
shadow ray and the normal at the intersection between the shadow ray and any
object the shadow ray hits. They also need to ensure that the occluder-shadow-
hits are sorted properly for the attenuation computations. See an example of the
shadow attenuation effect achieved in Figure 5.7.

Figure 5.7. Semitransparent shadows from ray tracing, using no shadow attenuation on the
left, and full shadow attenuationbased on normals on the right. Image courtesy of Lee Lanier.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-090.jpg&w=224&h=169
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The above algorithms cannot take into account the refraction that takes place.
Shinya et al. [524] apply fundamentals of paraxial approximation theory to achieve
semitransparency, concentration, and diffusion of light (in the form of semitrans-
parent shadows). Apencil is defined by the axial ray surrounded by nearby paraxial
rays. For semitransparent shadows, pencils are shot from the lights to the bounding
volumes of all semitransparent objects, then propagated to the surfaces. Thus, re-
fraction is taken properly into account, but only first-generation transmitted light
is taken into account.

For faster computations, the shadow depthmap and shadow volume variations
(to be discussed in the next sections) have been extended to account for such shad-
ows, though no attenuation or refraction of light is achieved.

5.4.2 Shadow Maps

Lokovic and Veach [362] introduce deep shadow maps, in which a shadow map
pixel contains a 1D function of (R,G,B) transmittance and depth information,
sorted in depth order (see Figure 5.8). Each point to be shaded accesses its shadow
map pixel, determines where it resides with respect to the transmittance func-
tion, and returns a shadow result. Because the transmittance function carries a
lot more information per shadow depth pixel, the authors indicate that a lower-
resolution deep shadow map can match the quality (i.e., capture the details well)
of a much higher-resolution regular shadow depth map. Salvi et al. [495] attempt
deep shadow maps on the GPU. Note that the deep shadow map is also capable
of dealing with soft shadows (Section 4.5.4), motion blur (Section 5.7), and highly
complex thin materials (Section 5.5), and is supported in volume graphics (Sec-
tion 3.7.5). See Figure 5.9 for a result with semitransparent colored shadows, and a
result with shadows with motion blur.

Dachsbacher and Stamminger [115] use a structure based on the shadow depth
map to store depth, surface normal, and irradiance (incoming illumination) of the
directly illuminated points of a translucent object. To efficiently determine the sub-

Figure 5.8. A 1D function of (R,G,B) transmittance and depth information, due to semi-
transparency (left) and highly complex thin materials (right). ©2000 ACM, Inc. Included
here by permission [362].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-100.jpg&w=322&h=92
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Figure 5.9. Semitransparent shadows from deep shadow maps, and with motion blur. Im-
ages rendered by Victor Yudin in 3Delight. Images courtesy of DNA Research.

surface light contribution at a point to be shaded, the point is projected into the
translucent shadow map, and the values within a determined shadow map radius
are hierarchically (mipmap) filtered with a pattern of 21 samples according to a
formulation for the translucency computation. The current technique is, however,
limited to translucent objects for which all visible points can be linked by a line
segment within the translucent material to the contributing points directly illumi-
nated by the light source.

Xie et al. [649] ray trace multilayer shadow maps (Section 4.7.4) and include
an opacity value with the depth value so that semitransparent shadows and soft
shadows can be rendered.

Enderton et al. [159] apply a random screen-door mask for each semitranspar-
ent triangle to a regular shadow depth map and refer to it as a “stochastic trans-
parency shadow map.” This allows processing to be faster than generating an ab-
solutely detailed result, but it can produce stochastic noise, of which filtering is
applied to smooth out the results. McGuire and Enderton [394] extend the above

Figure 5.10. Regular shadow depth map versus stochastic transparent shadow map. ©2011
ACM, Inc. Included here by permission [394].
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approach to allow for color to be properly transmitted, even with multiple inter-
sections of the shadows from semitransparent objects. See Figure 5.10 for an illus-
tration of a stochastic transparency shadow map.

More shadow maps supporting semitransparency are available that are more
well suited to hair and fur and can be seen in Section 5.5. The two subjects
(semitransparent material and hair/fur) are actually quite similar in certain cases.
Further, semitransparent surfaces also contribute to atmospheric shadows, a topic
discussed in Section 5.6, though only covered by McGuire and Enderton [394].

5.4.3 Shadow Volumes

Kim et al. [306] compute shadows from semitransparent surfaces by modifying
the shadow count from incrementing/decrementing by 1 to incrementing/decre-
menting by the transparency multiplier. This modification makes the algorithm
difficult to implement on the GPU. Also, due to lack of depth information, correct
self-shadowing for semitransparent surfaces cannot be guaranteed, and the trans-
parency attenuation of the shadows cannot be guaranteed.

Haselgren et al. [228] support transparency mapping to arrive at hard, colored
shadows. For each semitransparent triangle, shadow volumes are generated, and
an extra render pass is needed. This approach is useful when there are few semi-
transparent triangles, such as the complex netting in Figure 5.11 represented by a
few transparency-mapped triangles. Forest et al. [177] combine the above approach
with penumbra wedges (instead of shadow volumes) to achieve the soft shadow
equivalent.

Figure 5.11. Soft shadows from transparencymapping. Image courtesy of Forest et al. [177].
Computer Graphics Forum©2009The Eurographics Association and Blackwell Publishing
Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA. Reproduced by permission of the Eurographics
Association and Blackwell Publishing Ltd.
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Sintorn et al. [536] use per-triangle shadow volumes to robustly support both
semitransparent and transparency-mapped shadows. See Section 2.4.2 for further
details.

Keep in mind that while supporting semitransparency, many of the optimiza-
tions discussed in Section 2.4.3 cannot be applied as they are, as semitransparent
shadows will require somemore information in addition to the opaque shadowing
situation.

5.4.4 Trends and Analysis

Semitransparent shadows are important in offline renderings. Deep shadow maps
are the norm in film and video rendering solutions, with ray tracing variants as the
backup solution. In CAD offline renderings, usually only ray tracing solutions are
offered.

Semitransparent shadows are not as commonplace for real-time engines,
though variants of the stochastic transparency and the per-triangle shadow vol-
umes show promise.

5.5 Highly Complex Thin Materials

For highly complex thin materials such as hair and fur, extreme care must be taken
to ensure good-quality rendering results to handle both self-shadowing and shad-
owing onto other objects. Due to the complexity of such materials, shadow vol-
ume techniques have not been offered in this domain. Also due to the need to
capture the tiny features, raw ray tracing techniques are also not recommended.
Thus, we are mostly left with shadowmap–based techniques and volume-graphics
techniques to date, the latter of which has already been covered in Section 3.7.

We have also seen some shadow map–based techniques able to support highly
complex thin materials from previous sections, such as deep shadow maps [362]
and ray tracing multilayer shadow maps [649] from Section 5.4.2, as well as alias-
free shadow maps [4, 275] from Section 2.3.7.

Early attempts at computing shadows for hair and fur include research from the
following papers [339, 313, 303]. The major trend since then has revolved around
opacity shadow maps [304], which can be considered slice-based approximations
to deep shadow maps [362]. The opacity shadow map approach creates slices of
opacity-map planes, each perpendicular to the light source. For each slice plane,
the opacity of each pixel is determined for the region that crosses the opacity map
plane and encloses the opacity pixel. During shading, the point to be shaded is
projected toward the slice planes and their corresponding pixels, and the shadow
occlusion is derived from the pixels’ opacity, including interpolation between the
slice planes using GPU alpha blending. Figure 5.12(left) shows the slice planes (in
green) and the pixels needed for consideration for a particular ray.
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Figure 5.12. Opacity map of uniformly spaced slice planes (left) versus deep opacity map,
which wraps the slice planes around the hair structure (right). Image courtesy of Yuksel and
Keyser [655]. Computer Graphics Forum ©2008 The Eurographics Association and Blackwell
Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA. Reproduced by permission of the Euro-
graphics Association and Blackwell Publishing Ltd.

In the original implementation [304], the slice planes are placed uniformly,
which requires many such planes to achieve good results. Some generic techniques
have been pursued to get better performance, such as

● More extensive use of the GPU towards faster opacity mapping performance
via simplified geometric assumptions of hair [316], multiple render targets
(rendering 16 slice planes in one render pass) [424], and rendering in depth
buckets [533].

● Better placement of the slice planes, such as adaptive density cluster-
ing [405], and wrapping the slice planes around the hair structure [655], a
technique called deep opacitymaps (see the green lines in Figure 5.12(right)).
A rendering comparison of deep opacity maps versus opacity maps can be
seen in Figure 5.13, which is also a good indication of the state-of-the-art
capabilities of (in this example) hair rendering.

● Representing the hair geometry in a highly compressed, voxel format instead
of slice planes [47, 155, 534].

● Reconstructing the transmittance function along each ray using a Fourier
series and additive blending as Jansen and Bavoil [265] do. The coefficients
of the Fourier series are stored in the so-called Fourier opacity map. This
provides memory savings as well as smoother results than slice-based solu-
tions.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-142.jpg&w=128&h=142
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-143.jpg&w=129&h=142
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Figure 5.13. No shadows versus opacity map and deep opacity map. Image courtesy of Yuk-
sel and Keyser [655]. Computer Graphics Forum ©2008 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford
OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. Reproduced by permission of
the Eurographics Association and Blackwell Publishing Ltd.

5.5.1 Trends and Analysis

Due to the complexity of such highly complex thinmaterials, shadow volume tech-
niques have not been offered in this domain. Also, due to the need to capture tiny
features, raw ray tracing techniques are also not recommended, unless one is pre-
pared to accept extremely high sampling densities.

In offline rendering situations, the deep shadow map remains the most con-
venient implementation, and ray tracing multilayer shadowmaps [649] have been
used successfully in production. In real-time rendering situations, some variation
of the opacity mapping seems to be the logical choice, but it is rare to see such
capabilities in real-time.

5.6 Atmospheric Shadows

Sunlight scattering in the air causes the atmosphere to glow. This glow is partic-
ularly visible in the presence of shadows. As usual, a ray is shot to determine the
closest visible surface, and the critical question is not just if the intersection point
is in shadow. The segments along the ray (not shadow ray) that are visible from the
light are just as crucial (see Figure 5.14). The information is necessary to acquire
atmospheric shadows assuming only a single scattering model for light diffusion.
Single scattering assumes that incoming light from the light source reaches a point
along the viewing ray and deviates only once in viewing direction. If the ray is not
illuminated, then the shading calculations are the same as in the original illumina-
tion model, including direct attenuation due to the media. However, with partial
illumination, an additional component (atmospheric shadows) is included. In the
literature, these techniques are also often referred to as volumetric shadows.

In the subsequent sections, we discuss the three common techniques used
to achieve atmospheric shadows: shadow volumes (Section 5.6.1), shadow depth
maps (Section 5.6.2), and global illumination (Section 5.6.3).

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-153.jpg&w=319&h=63
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Figure 5.14. Shadowing in the presence of light scattering media due to the above
illuminated/not-illuminated ray segments.

5.6.1 Shadow Volumes

For each pixel, Max [390] and Nishita et al. [431] use shadow volumes to calculate
the exact ray segments that are visible from the light to achieve atmospheric shad-
ows, employing a single scattering model. This approach can be extended to voxel
occlusion testing (Section 2.5.1), in which the voxel occlusion values that the view-
ing ray traverses are used to determine which regions illuminate or shadow the ray
segment. The span of the ray segment within each voxel can be trivially computed
since it is readily available in voxel traversal algorithms [9]. Similarly, Ebert and
Parent [152] also use subdivision grids to accelerate atmospheric shadows.

The above approaches are all CPU-based. James [264] and Biri et al. [51] ap-
ply shadow volumes on the GPU where the overlapping volumes are accumulated
using frame-buffer blending with depth peeling.

Wyman [648] voxelizes the shadow volumes and conceptually does a 1-bit ver-
sion of voxel occlusion testing (the voxel is either lit or shadowed). However, vox-
elization occurs in epipolar space, and traversal of the viewing ray can require as lit-
tle as a texture lookup on the GPU. Impressive performance numbers are reported
for this approach, though theremay be bottlenecks residing in the voxelization step
because a fairly high voxel resolution is needed to generate good results.

Billeter et al. [49] suggest that a shadow depth map already defines a volume
enclosing the directly illuminated space. Thus, a mesh surrounding this space can
be created and rendered in real-time with an accurate attenuation without the need
for traversing the shadow depth map per sample to determine visibility and atten-
uation. However, the complexity of this approach is huge when the resolution of
the shadow depth map becomes large and problematic when the resolution is in-
sufficient.
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5.6.2 Shadow Depth Maps

It is possible to achieve atmospheric shadows from shadow depth maps as well, as-
suming a conical atmospheric effect from a spotlight. Instead of comparing depth
values from the point to be shaded, the viewing ray is projected to the shadow
depth map pixels, and depth comparisons are done per shadow depth map pixel
(see Figure 5.15). An accumulation of the shadow tests determines the amount of
shadowing that occurs in the atmospheric effect. However, doing the comparison
per shadow depth map pixel can be quite expensive because the viewing ray can
potentially extend through the entire shadow depth map. To improve speed, only
every (stochastically chosen) nth shadow depth map pixel comparison is done;
this, however, can result in noise in the atmospheric shadows. Also note that in or-
der for the above approach to work, the Z-depth values stored must be the smallest
Z-depth value; thus, alternative Z-depth values and surface IDs cannot be used for
avoiding self-shadowing (Section 2.3.4).

The above approach is often referred to as ray marching. However, ray march-
ing can also mean that at each point to determine light visibility, ray tracing
(shadow rays) can be used instead of sampling shadow depth map pixels, though
ray tracing tends to be more expensive. Though the above approach has been
known and well implemented in offline rendering solutions since the early 1990s,
the real first mention in publication is seen in the paper of Gautron et al. [186].

To achieve the above approach on the GPU, fixed sampling planes parallel to
the viewing direction are used to record atmospheric shadow/visibility from the
shadow depth map information [134]. However, this approach can easily result in
banding artifacts for the atmospheric shadows. The use of subplanes between the
sampling planes are introduced by Dobashi et al. [135], where the need for sub-
planes is determined by the intensity of the region between the sampling planes.
In this way, the banding artifacts can be reduced without need for a significantly
higher number of sampling planes. Mitchell [412] goes over some implemen-
tation details of the sampling plane approach using GPU alpha-blended planes,
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Figure 5.15. Ray marching using shadow depth maps.
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Figure 5.16. Combination of colored semitransparent shadows and colored atmospheric
shadows. ©2011 ACM, Inc. Included here by permission [394].

whileMcGuire andEnderton [394] extendMitchell’s approach, taking into account
attenuation from semitransparent surfaces (see Figure 5.16). Imagire et al. [257]
reduce the number of sampling planes by averaging the illumination over regions
near each plane. In general, these approaches require expensive preprocessing and
high fill rates.

To reduce the frequency of raymarching in shadowed areas, Wyman and Ram-
sey [647] use shadow volumes. On a per-pixel basis, the absence of shadow vol-
umes means no raymarching is needed; the presence of shadow volumes indicates
regions requiring ray marching. Toth and Umenhoffer [590] avoid the entire ray-
marching operation for certain samples and use interleaved sampling to borrow
results from neighboring samples. Engelhardt and Dachsbacher [162] use epipolar
sampling so they need only ray marching depth discontinuities along the image-
space epipolar lines. Baran et al. [34] use a partial sum tree to indicate state changes
with respect to the visibility of the ray segments within a canonical configuration,
i.e., an orthographic view and parallel lighting situation. Under such situations,
the lack of state changes indicates that no ray marching is needed, as the previous
ray is identical. Epipolar rectification of the shadow depthmap then permits a gen-
eral view (e.g., perspective) and lighting (e.g., spot or point light) configurations.
Chen et al. [90] extend Baran’s approach to the GPU.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-181.jpg&w=290&h=217
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5.6.3 Global Illumination

Rushmeier and Torrance [492] apply zonal methods used in heat transfer to the
computation of radiosity (Section 5.10.1). Their method discretizes the medium
into small volumes for which the form factors volume/volume and volume/surface
are calculated. The shadows are generated with the hemicube extended to a full
cube.

5.6.4 Trends and Analysis

In the computation of atmospheric shadows, both shadow depthmaps and shadow
volumes have their own merits. The choice for hard shadows will likely match the
choice for atmospheric shadows due to the ease of code maintenance as well as
the ability to avoid any mismatches in the shadow computations, i.e., if shadow
volumes are used for hard shadows in the current application, it makes sense to
choose the shadow volume approach for atmospheric shadows as well.

The shadow depth map’s CPU ray-marching variation seems to be the most
used in industry for offline rendering solutions. This is likely because the shadow
depth map is already implemented in the same offline rendering solution, so this
capability is an extension. Atmospheric shadows have been seen in film quite often
nowadays.

For real-time purposes, Mitchell [413] provides a fast but approximate post-
processing approach. Among the shadow depth map variations, the approaches
by Baran et al. [34] and Chen et al. [90] seem the most promising. Among the
shadow volume variations, the approach byWyman [648] seems the most promis-
ing. However, adoption of the choice of algorithms is unclear at this point.

Note that some of the occlusion culling techniques as discussed in Section 2.3.2
cannot be used as they are, due to the need to account for invisible shadow casters
that are visible atmospheric shadow casters. Similarly, shadow depth map varia-
tions addressing perspective aliasing (Section 2.3.7) may no longer be appropriate,
because the effect of the atmospheric shadows cannot be easily localized to deter-
mine ideal resolution. Also note that atmospheric shadows are used more often in
conjunction with hard shadows. This is because if soft shadows were involved, not
only would the performance be significantly slower, the visual effect of the atmo-
spheric shadows would be less pronounced.

5.7 Motion Blur

Motion blur is now used extensively in rendering images for film and video. With-
out motion blur, the renderings appear noticeably jumpy in the temporal domain
over the animated frames (e.g., in stop-motion filming techniques [366]) and, as a
result, not as convincing as a special effect. With respect to its shadows, the blurred
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Figure 5.17. Shadows cast with motion blur. Image rendered by Victor Yudin in 3Delight.
Image courtesy of DNA Research.

(thus soft) shadows come from the occluder’s or light’s motion captured in a single
frame. See Figure 5.17 for a rendering of motion blur included.

Other than distribution ray tracing [108] and its optimized variants (see Sec-
tion 4.7.1), which shoot rays that intersect objects in stochastically chosen time do-
mains, there has been little published research on achieving motion-blurred shad-
ows. It may sound like a simple thing, but it is not, though it is simpler in a ray
tracing environment. The problem is complex enough when just considering mo-
tion blurring of hard shadows (resulting in soft shadows) from a moving occluder
but stationary receiver and light, but it gets even more complex when motion-
blurred soft shadows (from extended lights) need to be considered, or motion-
blurred shadows from a moving light.

One can render motion-blurred shadows by pregenerating several shadow
depth maps, each shadow depth map indicating a different snapshot in time.
This can be followed by integrating the shadowing based on sampling each of the
shadow depth maps. However, the merging of such results likely produces band-
ing of the blurred shadows if not enough time snapshots are done, which is very
visually distracting in an animation. Filtering the banding results may cause shifts
over an animation. This banding can be reduced by stochastically shifting each
frame’s rendered images by a very small amount [548] (though the authors apply
the approach over interlaced fields for video animations).

One could also do a time-jitter per shadow depth map pixel. However, be-
cause each shadow depth map pixel may project to multiple screen pixels, the
motion blurred shadows look very blocky. Within the concept of deep shadow
maps, Lokovic and Veach [362] apply this trick to the transmittance functions of
the shadowmap pixel; this is essentially jittering in 3D and thus can achieve decent
motion-blurred shadows.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-200.jpg&w=193&h=145
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Asmentioned before, the complexity of the problem is greatly increased if such
variables as moving occluders, moving lights, and extended lights are considered.
Sung et al. [569] formalize themotion-blur equation without explicitly considering
shadows:

i(ω, t) = ∑∫ ∫ R(ω, t)g(ω, t)L(ω, t) dt dω,
where ω is the solid angle intersected with a pixel at time t, g(ω, t) is the visibility
of the geometry, R(ω, t) is the reconstruction filter, and L(ω, t) is the shading
equation. Imagine the worst-case scenario in which both g(ω, t) and L(ω, t)must
be folded into the penumbra integrand in order to compute a motion blurred soft
shadow; the above integral becomes very difficult to solve. Actually, that is even
not exactly correct either, because the g(ω, t) term needs to be part of the soft
shadow integral.

5.7.1 Trends and Analysis

There are basically two feasible approaches to accounting formotion-blurred shad-
ows: distribution ray tracing [108] and deep shadow maps [362]. Both approaches
are very flexible, and both have been successfully used in film and video, though
distribution ray tracing tends to be slower. While motion blur is available for real-
time applications, it is rare to see motion-blurred shadows in that domain.

5.8 Ambient Occlusion

Ambient occlusion is the term coined to capture the darkening effect of more en-
closed (or occluded) regions when the incident illumination comes fromall its sur-
rounding. In the presence of ambient occlusion, creases and holes appear darker
than more-exposed areas, and contact shadows of objects resting on a surface look
more plausible. Ambient occlusion results in softer (lower frequency) shadows
due to outdoor skylight over diffuse surfaces, and thus provides visual clues about
depth, curvature, and proximity of elements around a surface and between neigh-
boring objects in a 3D scene.

Because of its appearance, ambient occlusion is often thought of as a simple
replacement for computationally intensive soft indirect illumination or for over-
cast sky or dome illumination. The constant “ambient” term used in a local re-
flection model results in a constant-value shading. The ambient occlusion term
adds variations that increases realism and therefore has been quite popular since
its introduction. Not surprisingly, some form of ambient occlusion shading ap-
pears in most commercial rendering packages, as well as in more and more game
engines.
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5.8.1 Related Concepts

In some of the earliest work to achieve skylight and shadowing, Nishita and Naka-
mae [429] generate a hemisphere representing the sky and band sources are defined
longitudinally on this hemisphere. By assuming a uniform incident illumination
of the sky within each band, they can sample the luminance over the centerline of
each band. The luminance of the sky can be interpolated from clear to overcast.
Every object in the scene is projected onto the sample lines in order to compute
the occlusion factor. If the point to be shaded is on a tilted surface, the hemisphere
is also tilted by the same angle in which the light reflection from the ground is
considered for this tilted angle.

Miller [410] introduces the notion of accessibility as the radius of a spherical
probe that can lie at a point on a surface. It can be evaluated by growing a sphere at
the point until it touches another polygon, or by shooting rays and keeping the clos-
est one. This accessibility value can be used to determine how much dust or other
material can accumulate in a region, or how sandpaper cannot polish (remove)
excess material. Ambient occlusion corresponds to accessibility of ambient light.

Stewart [564] integrates his vicinity shading to improve the perception of iso-
surfaces computed from volumetric data. His method estimates the vicinity for a
set of rays traversing voxels in the hemisphere above a given voxel. Stewart greatly
optimizes the computations by exploiting the regularity of voxels and the space
of global fixed directions traversing the set of voxels. He also assumes that only a
voxel of larger density completely occludes a sampled direction issued at a given
voxel. This allows him to efficiently compute in preprocessing the vicinity shading
for all voxels for any hemisphere radius, and for all possible values of isosurfaces.

Hernell et al. [242] include semitransparency of voxels in the evaluation of the
ambient occlusion factor, and improve on the computations by exploiting adaptive
sampling, multiresolution optimizations, and GPU.

Anumber of authors extend the notion of ambient occlusion in order to include
light intensity, shading, and local light’s multiple interactions with reflections and
refractions. They sometimes refer to their methods as “obscurances” to distinguish
from ambient occlusion. However, with more and more papers mixing the con-
cepts of obscurances and ambient occlusion, we will simply use ambient occlusion
in the following. In any way, the evaluation of obscurance requires a form of local
visibility, which is inherited from ambient occlusion methods. Because we deal in
this bookmostly with shadowing and not shading, we refer the reader to the survey
of Mendez-Feliu and Sbert [403] and a number of their original publications.

5.8.2 Representation

Even though ambient occlusion appeared in one form or another (Section 5.8.1 and
[674, 403]), it is mainly after presentations in the early 2000 [332, 98] that this con-
cept has taken over as the dominant approach of realistically generating a skylight
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look in the film and game industries. Figure 5.18 gives an example rendering using
ambient occlusion.

Figure 5.18. Rendering using ambient occlusion.
Image courtesy of NGRAIN (Canada) Corporation.

The basic idea is to compute,
for each point to be shaded, the
amount of local visibility (or re-
spectively, occlusion value) over
a hemisphere oriented along the
point’s normal and to apply this
value to reduce the incoming light
in a reflection equation. Consid-
ering such incoming light reduc-
tion as a local phenomenon, this
visibility is often limited to a given
maximum distance. This visibility
is sometimes also tapered with a
monotonical function of distance
within the range [0, 1] to simulate how a more distant object blocks less of the
incident light. These two controls allow artists to modify the extent of ambient
occlusion present in a scene for different scales of scenes. This alternate tapered
function to local visibility is distinguished by some by the name obscurance. We
will not discriminate between obscurance and ambient occlusion in the following,
as both can be applied to each technique with small changes.

The occlusion value can be precomputed or computed on the fly, and can be
stored per original vertex (per resampled surface points) in a special occlusion tex-
turemapped over the surface or in image-space froma given viewpoint. In order to
obtain more precise shading values, directions associated with the non-occluded
portion of the hemisphere above a point can also be added. This requires extra stor-
age for one average visibility direction (known as “bent normal”), or for a number
of such directions (stored in one map, a cube-map, or compressed as wavelets or
spherical harmonics), all represented as bitmasks or depths. In Figure 5.19(center),
the visible portions above a point Pi on the surface are sampled by rays. The
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Figure 5.19. Two distributions of rays (left). Rays sampling local visibility at each location
Pi (center). Unoccluded rays and resulting bent normal at each location Pi (right).
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unoccluded rays contribute to the average visible direction of the local bent normal
(Figure 5.19(right)).

Because computing the local visibility is the key to ambient occlusion, several
methods have been developed and tuned to this process and to application require-
ments. They are often divided into object-space and screen-space methods, and
their computations use either ray casting or GPU rasterizing. However, several
object-space strategies also apply to screen-space strategies and vice versa.

5.8.3 Object-Space Methods

Ray casting methods provide the most general solution and produce the best re-
sults for film production images. However they are also the most time-consuming
solution as many rays need to be shot (high-quality production may often require
up to 1024 rays per point). Since the rays can be limited in distance and they are
coherent in origin and distribution (often following a cosine-weighted distribution
according to the surface normal), several optimizations can be exploited. This is
also the case for computing an ambient-occlusion factor over an entire polygon
instead of at a single point. Rays are then distributed in location over the polygon,
as well as in angular direction.

For instance, considering that ambient occlusion is a rather low-frequency phe-
nomenon, Reinbothe et al. [477] ray trace voxels more efficiently than the actual
scene geometry. Laine and Karras [327] precompute a low discrepancy distribu-
tion of directions and use the same distribution for all points to be shaded. At each
such point, they slightly perturb (rotate) the point’s tangential and normal orien-
tations in order to reduce banding artifacts. Their optimized bounding volume
hierarchy (BVH) traversal is inspired by the BVH ray packets of Wald et al. [612]
(see Section 2.5.2) and achieves an important speedup.

Using the power of GPU rasterization to sample visibility instead of using ray
tracing has also been popular (e.g., [460]).

Bunnell [76] replaces each vertex of the scene polygons with a disk of a radius
related to the size of the polygons shared at the vertex. Ambient occlusion is ap-
proximated by the form factors (see Section 5.10.1) between all disks. A similar
approach to clustered hierarchical radiosity [544] and lightcuts [614] is used to re-
duce the O(n2) computations to O(n logn), where n is the number of radiosity
patches, point samples, or disks. In this approach, a pair of disks with larger form-
factor values produce more (ambient) occlusions on each other. Because between
a pair of disks, Bunnell does not consider occlusion due to other disks, a disk lying
behind a closer disk will still contribute to the ambient occlusion of the first disk.
Therefore, a first pass between all disks results in a darker ambient occlusion. To
reduce the contribution of a hidden disk, Bunnell multiplies in a second pass each
form factor of a disk by its own local ambient occlusion. Hence, strongly occluded
disks contribute less to the ambient occlusion of other disks. More passes of this
computation reduce occlusions of occlusions. Figure 5.20 illustrates this principle.
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Figure 5.20. Multipasses of form-factor computations can reduce ambient occlusion over-
occlusion. From left to right: one pass, two passes, three passes, and 200 random rays per
vertex. Image courtesy of Bunnell [76], and model courtesy of Bay Raitt.

Hoberock and Jia [246] suggest a number of improvements to reduce the arti-
facts (e.g., interpolating ambient occlusions between levels in the hierarchy, shift-
ing disks from a vertex to the center of polygons, and computing real form factors
for very nearby polygons). Unfortunately, these methods still tend to overshadow
the elements, and do not scale well for complex scenes.

Another class of methods encode into a cube-map around each object an
occlusion field that would be produced by this object on its surroundings.
Malmer et al. [379] precompute a spherical occlusion factor (in the form of a di-
rection and a cone of ambient occlusion) at each center of a 3D grid encompassing
an object. The grid is extended according to an estimation of the influence of the
object on ambient occlusion. For grid points falling inside the object, the full am-
bient occlusion is replaced by interpolated values from the surrounding voxels. At
rendering time, ambient occlusion due to an object is fetched from the point to be
shaded transformed in the object’s 3D grid, and the cone is clipped/weighted by
the surface normal. Values are typically interpolated from the 3D grid. The values
near the borders of the 3D grid are rescaled to reduce artifacts. Kontkanen and
Laine [315] propose to compute the occlusion factor due to an object for points
distributed around this object, each occlusion factor being stored in the form of
a sphere cap and a direction of occlusion. They also compute a correction factor
to capture how the direction of occlusion deviates from the center of the object as
a point gets closer to the object. Instead of storing these values in 3D space, they
sample them along each direction of a cube-map from the center of the object and
fit the data to a quadratic equation as a function of the radial distance. For a point
to be shaded within the convex hull of the object, an approximation formulation
is used. In the two methods, ambient occlusion values from the occlusion field
of nearby objects are approximated by blending them together (multiplication) for
each point to be shaded. Thesemethods rely on precomputations andmay result in
large memory requirements, but since they aim at capturing lower-frequency am-
bient occlusion, their resolutions are usually set to reasonably small values. They
lend themselves well to animation for rigid-body transformations.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-247.jpg&w=316&h=87
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Laine and Karras [327] devise a scheme based on a tight bounding volume for
each triangle in order to scan-convert it into a cube-map around each point to be
shaded to identifywhich of its low-discrepancy directions are blocked by this trian-
gle. Although less efficient than their ray casting solution in the same paper [327],
Laine and Karras’ method shows much improvement compared to an efficient ray
casting solution.

McGuire [401] analytically computes the occlusion factor at a point to be
shaded for each triangle in a scene. He builds some kind of “ambient shadow vol-
ume” around each scene triangle to determine efficiently which triangles could
contribute to an ambient occlusion factor on a 3D point. While very precise, ben-
efiting from a two-pass GPU rendering, and providing high-quality results, the
method can result in some overocclusion when the projection of several triangles
overlap on the hemisphere at a point.

As a side note, even though severalmethods discussed above rely ondata stored
in a cube-map in order to determine directional information at a given point,
spheres and spherical shapes have also been frequently used as approximations
of objects for efficient occlusion computations (e.g., [478]). They have been ap-
plied as well for ambient occlusion to compute and store occlusion with spherical
harmonics [541].

5.8.4 Screen-Space Methods

Screen-space methods (called screen-space ambient occlusion (SSAO)) compute a
depth buffer from the viewpoint and use only these values (depth and sometimes
surface normal) in order to determine ambient occlusion. Surfaces hidden or un-
dersampled from the viewpoint may be missed, resulting in visibility errors. How-
ever, because the depth buffer data is readily available on the GPU after visibility
determination, this approximation of the scene (from the viewpoint) can provide
a reasonable solution that is fast to compute and independent of scene complexity.
This iswhy several interactive and real-time applications, including the demanding
game industry, rely mostly on screen-space ambient occlusion.

The basic methods use the depth buffer from the viewpoint with or without
surface normals, generate a number of samples within a sphere (centered at the
depth of the pixel, with a radius related to the pixel distance), and test against the
depth buffer how many of these samples are visible [415, 279]. Full visibility is
achieved when less than half of the samples are occluded, i.e., when they fall below
the visible hemisphere, assuming a local flat surface. Increasing the number of
samples reduces the resulting noise in the ambient occlusion value, but this has a
direct impact on rendering performance.

For a point to be shaded, rays can be traced in 3D and tested at regular inter-
vals against the depth buffer, i.e., marching up to the maximum distance (sphere
radius). If a ray gets behind a depth for a depth-buffer pixel, it is considered as
intersecting the scene and therefore contributing to the occlusion. While this ap-
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Figure 5.21. Even with a horizon-map structure, other occlusions can be missed. Bavoil
and colleagues propose a ray-marching sampling [38, 42].

proach is reliable, it is improved when the data is organized in a highly coherent
depth map.

In a method similar to Sloan et al. [541], Shanmugam and Arikan [521] as-
sume that each pixel in the depth buffer is a 3D sphere of radius related to its pro-
jected pixel size and centered at its depth. For a given pixel, the ambient-occlusion
value corresponds to the projection of all such spheres within amaximumdistance.
The method may suffer from overocclusion since overlapping projections are not
treated.

Instead of point samples in a sphere, Loos and Sloan [364] use sampling lines
(and areas) and a statistical model of the local depth in order to better estimate the
visibility. By improving the position of samples over these lines, they improve the
quality of the reconstructed visibility with less samples.

In horizon-split ambient occlusion, Bavoil et al. [38, 42] assume the depth
buffer is a heightfield and compute a horizonmap (e.g., [391]) at each pixel location.
For each tangent direction (slice), the horizon angle is determined by traversing the
corresponding adjacent pixels in the depth buffer and updating the corresponding
horizon angle. The ambient occlusion due to the horizon map is approximated by
connecting the adjacent horizon angles and integrating the visible angle over the
hemisphere. However, the horizon for the normal direction could miss other oc-
clusions within the maximum distance, as shown in Figure 5.21. Ray marching is
used between the horizon angle and the normal direction, distributing the angles
according to the cosine factor. It is also possible to compute the horizon for an en-
tire sphere, neglecting the normal direction. The contributions to occlusion from
below the hemisphere at the normal are simply canceled out.

Some of the data missed with a single-layer depth map can be reduced with
multiple depths per pixel, implemented as depth peeling [39, 482]. For a given
scene with a high depth complexity from the viewpoint, the resulting computa-
tions can, however, be significantly slow. Polygons at grazing angles with the view
direction can also introduce wrong results. Another solution to reduce the missing
data consists of using multiple viewpoints [482]. Each position and view direction
must, however, be set with care in order to provide useful data without adding too
much rendering.
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Another problem with missing data in SSAO occurs at the borders of depth
buffers because of the missing depth values outside the view frustum. Bavoil and
Sainz [39] propose to extend the view frustum by constant size or by an estimate of
the maximum depth for a ray according to the current depth at the border pixels.

In order to increase performance, Bavoil and Sainz [39] suggest using lower
resolution for depth and normal data, thus improving cache efficiency. Upsam-
pling with edge-preserving filters then fills in some of the data. They also suggest
doing two passes, one at half resolution, from which the local variance is checked,
and if the variance is higher than a threshold, ambient occlusion is computed at
full resolution.

Hoang and Low [245] propose capturing closer and farther ambient occlusion
values by sampling only with one small kernel but inmultiresolution depth buffers,
and then combining the computed ambient-occlusion values. Bilateral filtering
and upsampling at coarser resolutions help to reduce noise and blur artifacts, and
the small kernel offers efficient GPU fetches.

Loos and Sloan [364] propose considering that every depth in a pixel has a
given thickness. This improves the quality of the ambient occlusion effects because
silhouette edges do not contribute anymore to more distant adjacent background
surfaces.

In volume ambient occlusion, Szirmay-Kalos et al. [574] reformulate the direc-
tional hemispherical integration of ambient occlusion into a volume integration of
a (smaller) tangential sphere. Theymust assume that, at most, one intersection can
occur for one sample in the associated tangent sphere, and they lose the ability to
capture both distant and close ambient occlusion phenomena. This remains as effi-
cient as the best SSAOmethods while producing more accurate ambient occlusion
with fewer samples. Interleave sampling is used to reduce noise or banding effects
due to the sampling of the new formulation.

Instead of computing an ambient occlusion factor that multiplies the incident
illumination, Ritschel et al. [482] take each visible point sample generated in a
hemisphere in a basic SSAO approach and use the corresponding direction from
the point to be shaded to identify the incident illumination, thus computing the
associated shading value. The occluded samples contribute to darken their sec-
tion of the hemisphere. The authors also project each sample to its closest surface
in the depth buffer and use these points to compute a local one-bounce indirect
illumination.

5.8.5 Animation

In general, the naive implementation of ambient occlusion is only suitable for static
walkthroughs. Akenine-Möller et al. [7] discuss techniques to allow fast computa-
tion of dynamic changes over an animation.

The efficiency of screen-space ambient-occlusion methods position them well
for animated scenes since the solution is recomputed at every frame. Unfortu-
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nately, these methods suffer from temporal discontinuities due to undersampling
problems or from performance issues whenmore data (higher resolution, multiple
depths, etc.) is generated.

In most animated scenes, only a few objects move while most of the scene re-
main static. It is therefore only necessary to recompute the ambient occlusion af-
fected by the movements [404].

Methods based on a formof occlusion field (e.g., [315, 379]) are also appropriate
for dynamic scenes where the objects are affected only by rigid transformations.

When deformations occur in a dynamic scene, Kontkanen and Aila [314] con-
sider the specificities of an animated character, compute ambient occlusion val-
ues for some poses, and identify correspondences between joint angles at vertices.
They then interpolate linearly according to the correspondence matrix. Kirk and
Arikan [308] compute similar correspondences but also compress the large data
thus obtained.

While interesting for each individual character, these solutions do not easily
extend to computing ambient occlusion between characters nor different types of
objects.

5.8.6 Trends and Analysis

In only a few years since their introduction, ambient-occlusion techniques have
become integrated in most of the image production applications, as much in high
quality renderings such as in film productions as in real-time renderings for video
games. Most commercial rendering software as well as game engines offer an
implementation of ambient occlusion. Even when the results of some ambient-
occlusion techniques are only approximations with associated known limitations,
the increase of realism that they provide is considered beneficial in most applica-
tions.

Very recent improvements on multiresolution sampling have helped much in
reducing several artifacts. It is expected that the accelerated pace of new solutions
will go on for at least the next few years.

5.9 Precomputed Radiance Transfer

Precomputed radiance transfer (PRT) approaches compute and store light-
transport data, such as point-to-point visibility and reflectance, in a compact form
using various basis-space representations. After this costly precomputation, the
light-transport data can be used to very efficiently relight the scene with a new ex-
ternal lighting configuration. As such, PRT can be viewed as a trade-off between
fully offline and fully dynamic real-time rendering solutions. The more costly the
precomputation and storage in PRT, the more realistic the results, but the slower
the performance. The key idea behind PRT is that in fixing one or more properties
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of the incident directional illumination, reflection model, interreflections, occlu-
sion, or geometry, and representing all these properties in a common basis-space,
it becomes possible to rerender a scene from the cached information using sim-
ple GPU-accelerated operations and do this with real-time performance and high
quality.

Examples of such data include infinitely distant incident illumination (e.g.,
from an environment map storing the incident light radiance for all directions),
isotropic reflection functions (BRDF), and binary mask to encode point-to-point
visibility. Uncompressed, this data quickly becomes unmanageable to store and
manipulate (especially in the context of real-time rendering systems). PRT takes
advantage of (potentially hierarchical) basis representations to compress this data.
Furthermore, the choice of which basis to use incurs its own performance ver-
sus accuracy trade-offs. Spherical harmonics (SH) are a popular choice for PRT
since they very efficiently encode smooth, low-frequency signals (e.g., smooth
skylight, diffuse reflectance, smooth soft shadows) with only a few SH coeffi-
cients. Haar wavelets [423], spherical wavelets, and spherical radial basis functions
(SRBFs) [593] are basis functions that are more adapted to higher frequency sig-
nals that can handle more accurate so-called all-frequency shading effects, such
as the combination of both smooth and hard shadows. However, while bet-
ter suited when compared to SH for these higher-frequency effects, these basis
representations require more storage and can require more work to process at
runtime.

At each (discrete) point of a scene, all incident lighting must be integrated by
the rest of the scene. By choosing a basis with appropriate mathematical properties
to express light transport, these integrals can be very efficiently computed using
simple dot-products, or matrix multiplications, of compact coefficient vectors.

Sloan et al. [539, 295] introduce PRT and establish many of the fundamental
concepts behind PRT approaches. By assuming both low-frequency environment
lighting and reflection (BRDF), light transport signals can be encoded with only a
few SH coefficients, and shading can be computed in real time for (static) scenes
consisting of thousands of vertices. Transfer functions at each vertex can include
visibility for self-shadowing and interreflections; however, only low-frequency re-
sults are possible with this representation. They also show results of objects casting
soft shadows over terrains, and low-frequency caustics from specular interreflec-
tion.

Several authors have addressed the low-frequency restriction, among which,
Ng et al. [423] propose the use of Haar wavelets to encode the light transport sig-
nals. Their method handles all-frequency signals much more efficiently than SH,
requiring typically two-orders-of-magnitude fewer coefficients to handle higher-
frequency shading effects, thanks to the local support of the wavelet basis. In par-
ticular, shadows can be finely determined, assuming an as-finemesh. Despite these
advances, PRT techniques still require a large amount of data to be stored over a
scene, and a number of other schemes (e.g., [540]) have attempted to further com-
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Figure 5.22. Comparing uniform (left) and adaptive subdivision (right) of the mesh for
precomputed radiance transfer. ©2004 ACM, Inc. Included here by permission [320].

press these representations. We refer the interested reader to the survey of Ra-
mamoorthi [474] for more details.

Regarding shadowing, as with radiosity approaches (Section 5.10.1), a fine
level of tessellation is required for PRT approaches to properly capture shadow
boundaries. Alternatively, PRT data can be stored in texture space, in which case
the texture resolution must be suitably high to capture shadow boundaries. Un-
fortunately, discontinuity meshing techniques cannot be easily applied to PRT.
Křivánek et al. [320] propose an adaptive method to subdivide a mesh by detect-
ing large changes in the transfer operators at the vertices in order to reduce the
artifacts at shadow boundaries. See Figure 5.22 for the improvement of adaptive
subdivision over uniform subdivision of the mesh.

One of the major limitations of standard PRT techniques is that they are re-
stricted to static scene geometry since the precomputation that takes place in the
scene is not computable in real time. To loosen this constraint, Zhou et al. [673]
introduce “shadow fields” around rigid objects, storing PRT data that encode how
the object contributes to the occlusion of its surrounding space. At runtime, the
shadowing at a given point is computed by combining the occlusion fields from
each (dynamically animated) rigid object, after which the standard PRT algorithm
can be used to reconstruct the shading at the point. The spatial and angular sam-
pling rate of each object’s shadow field varies depending on whether low- or all-
frequency shadows are required, as well as on the maximal distance within which
the object can cast a shadow. This latter issue can be exploited at runtime to ignore
objects far away frompoints to be shaded. Finally, the occlusion data in the shadow
field is compressed with SH or wavelets.

Onemajor advantage of this representation is that a shadow field can be shared
by all the instances of an object, and the idea easily extends to local light sources.
Unfortunately, shadow fields suffer even more seriously from storage limitations,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-302.jpg&w=135&h=135
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-303.jpg&w=134&h=135
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requiring hundreds of megabytes for even simple blockers. Moreover, combining
basis-space occlusion for all blockers (at each point to be shaded) can become quite
costly. Ren et al. [478] address these two limitations of shadow fields, and offer
support for non-rigid blockers by representing blocker geometry with a hierar-
chical sphere representation. They compute and accumulate basis-space occlusion
across the blockers in a logarithmic space and efficiently exponentiate the basis-
space occlusion before applying standard PRT reconstruction. Their approach is
much more efficient and requires very little storage. Their results are slightly more
approximate than standard low-frequency SHPRT since the logarithmic and expo-
nential operators introduce errors into the resulting SH reconstruction of visibility.

5.9.1 Trends and Analysis

Precomputed radiance transfer capabilities have been included in DirectX since
Version 9, exposed through the ID3DXPRTEngine APIs. Various forms of PRT
have appeared in video games such as Halo 2 and Half-Life. However, adoption
has been slow since limitations to rigid scenes, tessellation/sampling requirements,
and storage costs do not yet align with the use cases in current video game design
workflows.

5.10 Global Illumination

In this section, we continue with soft shadow coverage, but with our focus on soft
shadows due to global illumination. We cannot possibly cover the entire body of
global illumination literature, so we focus on the overall approaches and elements
of the literature that have impact on shadows in particular.

Global illumination algorithms take into account both the direct illumination
from a light source (discussed in the previous chapters) as well as the indirect illu-
mination of light that interreflects/interrefracts throughout an environment, i.e.,
light bounces off a wall multiple times before reaching the camera. The mathe-
matical foundation of this is described in the rendering equation [282]. It is the
indirect illumination that softens the shadow boundaries. Figure 5.25(left) shows
the direct illumination and Figure 5.25(right) shows the shading of a point on the
floor with secondary illumination; the shadowing is soft because there are now
implicitly multiple indirect sources. Global illumination algorithms tend to pro-
vide more realistic solutions, but are computationally more expensive than direct
illumination algorithms (which are most of the algorithms discussed in this book
so far).

The global illumination discussion is divided up into two categories: radios-
ity techniques, followed by Monte Carlo ray tracing techniques. Radiosity is well
suited for purely diffuse environments and requires deep tessellation into mesh
elements. Because there tends to be no specular component in radiosity-based
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algorithms, the illumination can be precomputed and its results used without al-
teration during shading in real-time walkthrough applications. On the other hand,
Monte Carlo ray tracing algorithms are more flexible, require no deep tessellation,
and are good for diffuse and specular environments, and appropriate formore than
just static walkthrough scenarios, but they are generally not real-time appropriate,
and thus tend to require offline renderings, especially in film and static-image sit-
uations.

It is sometimes difficult to distinguish a direct illuminated rendering of soft
shadows fromextended lights froma scene renderedwith global illumination. This
can provide some heuristics that allow good placement of a few point lights or
extended lights to generate the global illumination look [174]. These heuristics are
taken advantage of in instant radiosity and virtual point-light approaches, which is
why a third category has been added to supplement the radiosity and Monte Carlo
approaches.

5.10.1 Radiosity

Common among many radiosity algorithms, the surfaces of the scene are tessel-
lated into many smaller patches, where each patch theoretically represents a small
region where a unique radiosity value is computed. A form factor is computed for
each pair of patches. Patches that are far away from each other, oriented at oblique
angles relative to one another, or are mutually occluded, will have smaller form
factors. The form factors are used as coefficients in a linear system of equations.
Solving this system yields the radiosity, or brightness, of each patch, taking into ac-
count diffuse interreflections and soft shadows, but solving this system tends to be
slow [200], thus progressive refinement approaches tend to be the norm [104], and
patch-to-patch visibility calculations then result in the eventual shadowing result.

In a walkthrough animation scenario, assuming only diffuse interreflections,
solving this system can be done just once as a preprocess, and the only shading
computation required during actual rendering is the Gouraud shading of the patch
information. This has been the most common application of radiosity approaches,
and it is appropriate for architectural and interior design applications.

The reason for the smaller patches is that a single patch indicates a single value
for illumination, whichmeans that if the patch is not small enough to capture high-
frequency changes (usually due to shadows), then visible blockiness artifacts will
occur, which is why discontinuity meshing has been an important research area in
radiosity algorithms: it represents the optimal determination of patch sizes placed
at the right locations to capture high-frequency changes. By identifying patch
boundaries along the shadow discontinuities in the zeroth (zeroth derivative only
exist for light sources that can produce a hard shadow discontinuity, such as a point
light or a linear source that is parallel to the edge of an occluding object), first,
and second derivatives and intersecting them with the scene, radiosity solutions
can converge faster at a higher visual quality. This is because the patches will not
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Figure 5.23. Improvement of radiosity image quality after applying discontinuity meshing.
©1992 IEEE. Reprinted, with permission, from [353].

exhibit blockiness artifacts due to Gouraud shading, as the shadow discontinuities
are set at the patch boundaries. This also avoids shadow leakage where a shadow
extends on mesh elements straddling illuminated and shadowed regions. Impor-
tant work in this area comes from the following papers [80, 234, 353, 19]. See Fig-
ure 5.23(left) and (right) for a before and after set of images respectively, that show
the consequence of brute-forced subdivision into patches and the application of
discontinuity meshing.

To compute even more accurate irradiance on top of discontinuity meshing
techniques, back-projection techniques are used to build a complete discontinu-
ity mesh [560, 141, 561, 142, 368, 101, 32]. The back-projection in a region contains
the set of ordered lists of emitter vertices and edge pairs such that for every point
to be shaded, the projection of those elements through this point onto the plane

Figure 5.24. Back-projection as applied to discontinuity meshing. ©1994 ACM, Inc. In-
cluded here by permission [141].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-331.jpg&w=312&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-331.jpg&w=312&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-333.jpg&w=225&h=135


5.10. Global Illumination 177

of the light source forms the back-projection instance at this point. The parti-
tion of the scene into regions having the same back-projection is what forms the
complete discontinuity mesh (see Figure 5.24). Given the complete discontinu-
ity mesh, the penumbra irradiance can be efficiently computed. The different pa-
pers (listed above) utilize back-projection and propose optimizations on top of the
back-projection technique.

There are alternative algorithms that produce high-quality shadows within ra-
diosity algorithms without resorting to some form of discontinuity meshing:

● Zatz [656] uses 40 × 40 shadow maps with sampled and interpolated visi-
bility values as a shadow mask to come to a high-order Galerkin radiosity
solution. However, the determination of a good shadowmap resolution and
placement of the shadow maps are not discussed.

● Soler and Sillion [551] use texture convolution [550] to produce a visibility
texture applied to the mesh as a shadow mask.

● Duguet andDrettakis [144] use a robustmethod to compute shadow bound-
aries analytically without a need to generate a subdivided mesh, and small
shadow features can be merged while preserving connectivity.

5.10.2 Virtual Point Lights

Instant radiosity techniques [299] strategically place a number of virtual point
lights (VPLs) to simulate the soft shadowing from the emitting light sources and
from the indirect illumination. The shadowing is achieved using either shadow
depth maps [116, 329, 481, 247] or ray tracing [516, 517], with the optimal place-
ment of the virtual point lights and visibility tests as the common challenges in
avoiding light leaks. Such a simulation of virtual point lights can be seen in Fig-
ure 5.25, where the left image shows direct illumination and the right image shows
secondary illumination based on virtual point lights.

Figure 5.25. Instant radiosity with placement of virtual point lights to achieve shadowing.
Image courtesy of Laine et al. [329], ©Eurographics Association 2007. Reproduced by permis-
sion of the Eurographics Association.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-343.jpg&w=257&h=102
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Walter et al. [614] construct a hierarchical representation for VPLs (emitted
and reemitted), where one VPL (or a few, to allow for stochastic selection) gets
the intensity of all its children VPLs. At the point to be shaded, they test in a top-
down fashion (a cut in the tree of VPLs) when the combined VPL contribution
is large enough to deserve sending shadow rays. Bounds on each shading term
allow efficient evaluations of both local VPLs and global, more intense VPLs. The
method is conservative, but because tight bounds on shadowing are difficult to
efficiently compute, all VPLs are simply assumed to be visible. This can lead to
oversampling of intense VPLs that are occluded from the point to be shaded.

Hašan et al. [229] express this many-light problem in a large matrix of im-
age pixels in rows and VPLs in columns. Rows and columns are reorganized into
similar clusters to efficiently subsample the VPLs. The method is appropriate for
intense VPLs, but local VPLs are sampled for all pixels. Ou et al. [443] improve
on the clustering in order to achieve a good balance between local and global
VPLs. While shadows were computed via shadow depth maps in their original
work [229], because of bias and sampling artifacts, they rely on shadow rays for
their later work [443].

5.10.3 Monte Carlo Ray Tracing

Monte Carlo techniques are often applied to ray tracing, and in the case of global
illumination, it can mean one of several things:

● Many chosen rays are shot from the light and interreflected onto the scene,
and this contribution is accounted for in the rendering when it hits the cam-
era. This is sometimes referred to as backward ray tracing [18, 86]. To hold
indirect illumination information associated with points on a surface, tex-
tures per surface [18] or a voxel structure [86] can be used. Shirley [529]
uses a three-pass solution, the first pass using backward ray tracing to cap-
ture specular interreflections, the second using radiosity to capture diffuse
interreflections, and the third using standard ray tracing to calculate direct
illumination. Thismixture results in convincing images such as the one seen
in Figure 5.26, including caustics effects.

● Rays are traced from the camera to the scene and followed until they reach
a light source or connect to a light source. This is often referred to as path
tracing [282]. Acceleration of this approach can be done through irradiance
caching [624], where the indirect illumination can be derived by interpolat-
ing cached irradiance values.

● Variants of the first two techniques connect both types of ray paths (from
the light and from the camera) with careful weighing according to the prob-
abilities that such paths exist. This is often referred to as bidirectional path
tracing [324], with Metropolis light transport [602] being a common usage
of bidirectional path tracing.
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Figure 5.26. An early image illustrating the rendering of caustics. Image courtesy of
Shirley [529].

● Photon mapping [270, 272, 273, 384] is a special case in which rays from
the light source are shot and interreflected until a diffuse surface is hit. The
photon results are stored in a photon map. The final render does a single
camera view pass and reconstructs the irradiance with the closest photons.

In all the above approaches, shadows are implicitly considered due to the trac-
ing of the rays with first visible hits in mind. In other words, shadows on a surface
exist due to reduced amount of visible hits from the interreflections.

5.10.4 Trends and Analysis

Because there tends to be just the diffuse component in radiosity-based algorithms,
the (view-independent) illumination can be precomputed (or “baked”), making
it very useful and often seen in architectural and interior walkthrough applica-
tions. Example software that provides radiosity capabilities include Lightwave,
Lightscape, Renderzone plus, Englighten. Instant radiosity and virtual point-light
approaches seem to be the most researched approaches in the recent work.

On the other hand, Monte Carlo ray tracing algorithms are flexible, tend to
require offline renderings, and have become useful in film and its rendered anima-
tions seen in CAD, automotive, and architectural visualization. Example software
that includes Monte Carlo ray tracing includes Mental Ray, Maya, LuxRender, etc.
Not one single approach (among the four categories listed above) has been singled
out in terms of adoption, but often, several approaches are implemented in a single
system for the user to choose.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-6&iName=master.img-362.jpg&w=225&h=169
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5.11 Final Words

This chapter has covered other treatments of shadows, most of which can be con-
sidered as advanced features of the basic shadow algorithms. The importance of
those advanced features is significant, such as atmospheric shadows and motion
blur in film and video. Also, the investment of R&D into ambient occlusion, pre-
computed radiance transfer, and global illumination has overtaken the interest of
the soft shadow “look” due to extended lights.

In the next chapter, we cover some applications of the shadow algorithms.



CHAPTER 6

Applications of
Shadow Algorithms

6.1 What’s Covered in This Chapter

There are many standard uses of the shadow algorithms described in this book,
with the main aim of generating photorealistic images of digital 3Dmodels. In this
chapter, we discuss other applications of shadow algorithms, such as

● Integrating 2D images with 3D graphics, where 2D represents live action,
and 3D represents digital creation. This is often referred to as augmented
reality (Section 6.2) [433].

● Non-photorealistic environments to simulate sketch-like or paint-like, artis-
tic renderings (Section 6.3) [383, 501, 278, 118].

● Shadows as interaction tools, where the computation of shadows is used not
as a rendered result, but as a tool to guide other aspects of interactions in a
3D scene (Section 6.4).

6.2 Augmented Reality

Therehas beenmuch research done in the area of acquiring information from static
or live-action 2D images (using computer vision techniques), in order to incorpo-
rate new 3D graphics geometry to be rendered together so the integrated elements
will all appear photorealistic and indistinguishable from the origins of their repre-
sentations. This is often referred to as “augmented reality” in the literature and has
become an important application in film, medicine, manufacturing, visualization,
path planning [31], etc.

Historically, some augmented-reality aspects were integrated into DCC soft-
ware (offline purposes) as early as the 1990s. However, there was little recorded
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computer graphics literature on the subject until Fournier et al. [182]. Use of real-
time techniques were not published until 2003.

The major chores in integrating new 3D geometry in 2D images include

1. Deriving the view configuration from the original image so that new geome-
try can be added accurately into the scene, phantom objects (see item 3) can
be accurately reconstructed based on the original image and additional in-
put for the illumination aspect of the rendering equation [282]. For a video
sequence, it is necessary to track the motion of the camera and possibly of
some objects.

2. Deriving some lighting information (some from analysis of shadows) [497,
305, 498, 288, 120, 378] in order to support the proper rendering look of the
new geometry and to provide light directions for shadows, which has been
considered critical to the success of final integrated images [568, 377]. Oth-
erwise, the new geometry will look unrealistic and out of place. An example
can be seen in Figure 6.1, where the torus is the new synthetic geometry in-
serted in the rest of the scene captured by the original image; without the
shadows from the torus on the can and table, the torus stands out as some-
thing that does not quite fit in the scene.

3. Reconstructing phantom geometry, where phantom geometry represents
what should be the geometry present in the original image (but not rep-
resented in 3D). This reconstruction serves two purposes. The first is to
provide relative depth comparison to the new geometry, i.e., the phantom
geometry is either in front of or behind the new geometry. The second is
to provide geometry reference for proper shadowing. Note that this recon-
struction usually requires manual input (often using image tracing com-
bined with photogrammetry or other techniques (see Section 6.2.3)). The
objective is to minimize the number of phantom geometries that need re-
constructing, i.e., if it represents a background object and has no implica-
tions on the shadowing from and of the new geometry, then the reconstruc-
tion should be avoided. Also, if phantom geometry is needed to partially
occlude the new geometry from a camera viewpoint, then the reconstruc-
tion needs to be detailed, whereas if phantom geometry only has an impact
on shadowing, then the reconstruction can be approximate. Note that this
reconstruction is usually the most time-consuming step to achieving aug-
mented reality.

6.2.1 Augmented Reality Assuming Direct Illumination

From a shadowing standpoint, phantom geometry acts as an invisible object for
receiving and casting shadows. It only paints itself darker when there is a shadow
cast on it by the new geometry. Also, it should ideally only cast shadows on other
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Figure 6.1. Augmented reality scene without and with shadows accounted for by the syn-
thetic object (torus) and the phantom objects (can, table). ©2003 ACM, Inc. Included here
by permission [222].

new geometry because shadows fromphantomobjects onto other phantomobjects
are already accounted for in the original images. However, this distinction makes
the shadow algorithm difficult to implement if a ray tracing approach is not used—
checking is needed per point to be shadedwhether the source of the shadow is from
a phantom object or not. Therefore, a simplification for this phantom geometry is
to only receive shadows (and assume itwill not cast shadows on the new geometry);
thus, the alternate name of “shadow catchers,” “matte objects,” or “holdout objects”
in certain applications such as Sketch!, Cinema 4D, ProAnimator, and Blender.
Note that in the example of Figure 6.1, the phantom objects only receive shadows.

Avoiding Double-Counting Shadows

Figure 6.2. Double-counting shadows
from a single light source. Image cour-
tesy of Jacobs et al. [262].

As hinted above, if phantom objects do
cast shadows on other phantom objects,
such shadows would be double-counted
andmay not visually match what is already
there. Another form of double-counting
exists even if the above case is properly
handled, inwhich the phantomobject is al-
ready shadowed in the original image, but
the new geometry also occludes it. For this
case, there needs to be some registration
not to occlude the already occluded. An
example of double-counting can be seen in
Figure 6.2, where a single light seems to
cast multiple intensity shadows.

To resolve the two double-counting
shadowing problems, Jacobs et al. [262] use

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-027.jpg&w=154&h=121
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-028.jpg&w=153&h=121
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-029.jpg&w=130&h=135
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computer vision techniques to detect shadows in the original image and then pro-
tect that region from interference of newly rendered shadows. Another variant is to
remove the shadows from the original image and then to render (receive and cast)
shadows for all new geometries as well as phantom objects [378, 284, 371]. How-
ever, with increased complexity of the scene, the accurate detection and removal
of shadows can be in itself a very difficult task.

Hard Shadows

Anumber of authors use shadow depthmaps [559, 568] to achieve augmented real-
ity, while others employ a variation of stencil shadow volumes [222, 262]. Shadow
volumes are appropriate because the reconstructed phantom objects should be ap-
proximate and few; thus, geometry complexity should not be high. However, only
hard shadows are generated and can be a giveaway in terms of mismatch of the
original image versus graphics rendering. Figure 6.1 shows how the inclusion of
shadows helps to register the synthetic objects in the scene. The darkening due to
the computed shadows onto different surfaces does not match the original image’s
softer shadows.

Filtered shadow depth maps using percentage-closer filtering [476] can be ef-
fectively used. However, care must be taken as to how boundary cases for a spot-
light are handled. When a filter region for shadow depth map comparison is done,
if the shadowmap pixel is outside the light frustum, the computation should return
it as in light, although non-augmented-reality renderings should indicate that it is
in shadow. This is because the lighting and shadowing outside the light frustum
should already be accounted for in the original image, or a dark rim around the
boundary of the light source will result.

Soft Shadows

Kakuta et al. [283] use the concept of shadow catchers for phantom objects, and
render and store a hemisphere of lights and shadows so that soft shadows can be
achieved in real time, where soft shadows are a result of the linear combination of
a few of those lights and shadows.

Image-based lighting techniques [120] have used divisions of an environment
map over the scene, with each division containing a light source that can simu-
late incident lighting. Building on top of this technique, several authors [571, 376,
204, 422] use multiple shadow depth maps over this environment map to render
soft shadows. Similarly, Noh and Sunar [434] use the soft shadow texture tech-
nique [240, 232] (Section 4.4.1) to blend hard and soft shadows together effectively.

6.2.2 Augmented Reality for Global Illumination

Several authors [182, 143, 369, 194, 195] use an interactive, cluster-based radiosity
system to generate shadows cast by the new geometry. In a radiosity-based global
illumination environment, this means that every phantom object in the original



6.2. Augmented Reality 185

image needs to be reconstructed in 3D (often with some form of manual interven-
tion) because the additional 3D geometry will affect the illumination of everything
in the original image’s objects. As with the direct illumination case, the phantom
object can paint itself darker when shadows are cast on it, but unlike the direct illu-
mination case, the phantom object can also paint itself differently with additional
illumination from the new geometry (via interreflections).

Debevec [119] splits the scene into local and distant sectors. Distant sectors can
be unaffected, and thus no reconstruction is needed. Only phantomobjects in local
sectors need reconstruction. Ray tracing and differential rendering techniques are
used to produce the integrated results.

6.2.3 Model Reconstruction Techniques

Themost common techniques suggested in the literature for geometry reconstruc-
tion use some variation of photogrammetry—available software using such tech-
niques include RealViz, ImageModeler, Photomodeler, PhotoScan, etc. Some ad-
ditional reconstruction techniques are listed below.

Petrović et al. [458] generate approximate shadows from hand-drawn line art
by approximating 3D polygonal meshes from hand-drawn animation acting as
shadow casters. Tools are available for the user to manipulate the meshes, while
making sure that the image-space silhouettes still match the drawings. Input
is needed from the user pertaining to the relative 3D positions of the drawing’s
shadow casters and receivers. The shading and shadows of the 3D geometry are
composited with the drawings to form realistic shadows from hand-drawn anima-
tions. The shadows are generated using ray tracing; however, they can be generated
using any of the algorithms listed in this book.

Chuang et al. [102] attempt to solve a slightly different problem in integrating
the original images with 3D graphics geometry. The goal is to extract the shadow
matte produced by some main object, assuming the shadow is cast on a planar
ground. This shadow matte goes through a displacement map in order to con-
form to the shape of a new background containing the main object. This displaced
shadow is then composited with the new background, to achieve realistic looking
shadows of the same main object into another background.

6.2.4 Trends and Analysis

There is a superset of augmented reality which includes integration of real/live ob-
jects called mixed reality. From a shadow-generation standpoint, the issues in both
augmented andmixed reality appear to be very similar, sowe do not cover shadows
for mixed reality specifically.

ARToolKit seems to be a popular software library in which augmented-reality
applications are built, including shadow handling. Although there has been a lot of
literature on shadows within augmented reality, much augmented-reality software
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does not support shadows. We suspect the predictability of the automation of ac-
curate shadow generation continues to lack robustness. Within offline rendering
production, robustness is not much of an issue because a very restrictive environ-
ment is assumed; e.g., the basic “shadow catcher” concept can be used without
needing to handle the double-counting issue or any attempt to perform relighting.
Example software that contains “shadow catcher” capabilities include Sketch!, Cin-
ema 4D, ProAnimator, and Blender. For a more flexible environment, some of the
algorithms described above may be used as a first guess, but there is a lot of manual
labor in touching up the scenes afterward due to a lack of robustness.

There have also been a number of applications on intelligent phones that use
augmented-reality technology, which are quite impressive but easy to achieve be-
cause the view configuration has been determined due to the phone’s camera.
However, shadows are not considered, likely due to the speed of computation as
well as the above complexities of the shadows.

6.3 Non-photorealistic Environments

The term non-photorealistic rendering (NPR) is actually a generic term for a few
different types of rendering; among them are pen-and-ink (Section 6.3.1), technical
illustration (Section 6.3.2), and cartoon rendering (Section 6.3.3). In this section,
we go over some usages of shadows in NPR environments, even if there is not a lot
in terms of shadow generation to speak of. In fact, detailed shadows can sometimes
detract the viewer from the specific areas of focus [501], which is why, sometimes,
modified, simplified, or no shadows are preferred in NPR applications.

6.3.1 Pen and Ink

Figure 6.3. Pen-and-ink rendering
with shadows. ©1996 ACM, Inc. In-
cluded here by permission [635].

Pen-and-ink techniques usually refer to either
line-drawing algorithms, stippling, hatching,
or engraving.

Sousa and Buchanan [553] provide a tool
for pencil drawing, where a simulation-based
approach is used to mimic the characteristics
of graphite pencils. Shadows are handled in the
same fashion. Tolba et al. [587] generate shad-
ows in a projective 2D representation system.
A shadow projection is cast onto a plane, and
the user is asked to warp this shadow into the
desired location.

Winkenbach et al. [635] and Markosian
et al. [382] produce shadows from pen-and-ink
renderings by employing something similar to
shadow depthmaps (see Figure 6.3). A shadow

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-057.png&w=122&h=141
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planarmap is built in preprocessing, and during display, after the view’s planarmap
has been processed, the remaining visible shadow strokes are clipped against the
shadow planar map for the regions in shadow. Martinec [388] uses shadow depth
maps, and if in shadow, he uses the same hatching algorithm to render the shad-
ows, but tilted at another angle than from the non-shadowed areas.

More typical shadow displays adopted for pen and ink include shadow vol-
umes binary space partitioning (SVBSP) [634] (Section 2.4.4) and stencil shadow
volumes [244] (Section 2.4.2). Shadow volumes are useful for many NPR environ-
ments because the simplified geometry allows viewers to focus on the right areas;
thus geometry complexity (the usual concern for shadow volumes) is typically not
large.

6.3.2 Technical Illustration

There is very little literature discussing shadows for technical illustrations. This is
because the objective of technical illustration is to focus on specific areas of im-
portance without being distracted by visual enhancements such as shading and
shadows. The only two papers that discuss shadows for technical illustrations only
do so for shadows cast on a planar floor.

Gooch et al. [199] simplify the look of shadows by using projective shadow
techniques (Section 2.2) on planar floors for non-photorealistic hard shadows.
Similarly, for non-photorealistic soft shadows, they use multiple points on the ex-
tended light source projected onto different elevations of the floor to compute and
then combine the shadows.

Ritter et al. [484] integrate 3D and 2D information displays. The shadows are
projected on the floor, and 2D text and annotations occur next to the projected

Figure 6.4. Projected shadows for information display. ©2003 ACM, Inc. Included here by
permission [484].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-067.jpg&w=258&h=144


188 6. Applications of Shadow Algorithms

shadows to clearly illustrate which sections of the structure are being looked at
even though the non-shadow view may have partially occluded the actual struc-
ture. Ritter et al. [483] then draw semitransparent shadow volumes of the structure
of interest. In this way, the structure of interest is nonambiguous, although it may
be partially occluded from view. An example is illustrated in Figure 6.4.

6.3.3 Cartoon Rendering

Figure 6.5. Cartoon self-shadowing. ©2000
ACM, Inc. Included here by permission [331].

Lake et al. [331] add color to self-
shadowingwith a simple self-shadowing
function check of N̂ ⋅L̂ < 0.5. This simple
self-shadowing can look quite appeal-
ing (see Figure 6.5). Spindler et al. [554]
introduce stylistic shadows, where the
shadows that fall on a foreground object
are painted in black, and shadows that
fall on a background object are painted
in white. This is achieved by adding a
foreground attribute in a buffer associ-
ated with a stencil shadow volume. An-
other style is also achieved by drawing
a thin outline around the silhouettes of
geometry and shadow boundaries.

Woo [641] introduces an optimization that emphasizes the shadows when the
shadow hit distance is small, and causes shadows to fade as the shadow hit dis-

Figure 6.6. Cartoon reflections and shadows. Note the decay in reflections and shadows.
Image courtesy of Woo [641].

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11901-7&iName=master.img-077.jpg&w=147&h=123
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tance grows larger to the extent of entirely culling shadows after a maximum dis-
tance maxDist. A simple fading factor can be ((maxDist−tHit)/maxDist)k , where
tHit <maxDist. This approach is motivated by cel animation films such as “the al-
ligator and hippo dance” in Disney’s Fantasia, which is why Woo refers to that
optimization as “cartoon shadows” (see Figure 6.6).

DeCoro et al. [125] apply distance transformation andGaussian blur techniques
to achieve (intentionally geometrically incorrect) shadows that are either inflated,
with a high level of abstraction, or with softness. See Figure 6.7 for such examples.

Petrović et al. [458] support drawings of shadows in an existing, hand-drawn
scene. The user has to specify the depth of various objects in the scene. The
approach inflates a 3D drawing of an object based on the hand-drawn art. A
standard shadow map is then applied to generate regular shadows. Other typi-
cal shadow displays adopted for cartoon rendering include shadow volumes [72],
billboard shadow volumes (to render cartoon smoke clouds) [395], and shadow
depth maps [122].

Accurate shadow Moderate abstraction
α = 10, i = 10

High abstraction Abstraction and softness
α = 70, i = 10 α = 20, s = 20

Figure 6.7. Different modes of abstract shadows.©2007 ACM, Inc. Included here by permis-
sion [125].
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6.3.4 Trends and Analysis

This is one of those sections where shadows do not play as important a part. In fact,
in certain cases, especially in technical illustrations, shadows can be a distraction
in parts of a scene. Themain interest in shadow generation appears to be in cartoon
rendering, and the shadow techniques described are quite simple.

Additional papers discussing NPR shadows are available, but they are written
in Korean [93, 311, 519].

6.4 Shadows as Interaction Tools

Shadows are very useful not only as a graphics rendering effect, but as a tool to-
wards other goals, just as early men used shadows from the sundial to estimate
the time of day. In this section, techniques using shadows to position the light or
objects in the desired locations are discussed.

Poulin and Fournier [467] suggest using a variation of the shadow volume ap-
proach to allow a user to quickly manipulate the geometry of shadows. By modi-
fying the shadow volume while remaining geometrically correct, inverse lighting
is computed to indirectly position and aim the light source. Poulin et al. [468] ex-
tend their work by instead sketching regions that must be in shadow. Extended
light sources are positioned by sketches of umbra and penumbra regions. The re-
sulting system allows the user to quickly position light sources and to refine their
positions interactively and more intuitively.

Herndon et al. [241] introduce the concept of a shadow widget. When shadows
are projected onto planar walls, transformations of the shadow along some planar
walls produce transformations of the occluding object that the user expects. This
is done instead of transforming the light, as in the above approaches. Shadows also
do not need to be seen as just a darker region, but can use different rendering styles
such as silhouette or wireframe modes.

Pellacini et al. [455] describe an interface that allows the user to select a shadow,
thenmove, scale, or rotate the shadow. The systemwill then compute the necessary
changes in either the light or occluding object. Shadow depth maps are used as in
the shadow generation algorithm. Pellacini et al. [456] allow the user to paint color,
light shape, shadows, highlights, and reflections, as input to compute the lighting
and shadowing properties.

Barzel [36] indicates that it can be very difficult to position the same lights and
shadows exactly where we want for the desired visual effect. While the above ap-
proaches can be used to approximately position lights (or objects), Barzel notes
that the shadow direction can be somewhat shifted away from the lighting direc-
tion without anyone noticing. Enhancing the lighting model to include a shadow
direction to support this can prove to be a big timesaver for the user, especially in a
cinematic design environment. Also, opaque cards can be faked in front of a light
so that the shape of the lighting/shadowing regions can be altered.
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6.4.1 Trends and Analysis

Rendering engines are so powerful nowadays that getting the initial shadow prop-
erties set up should be very fast with the usual 3Dmodeling techniques (i.e., chang-
ing lights and objects can result in real-time feedback of the shadowing result). The
cheats suggested by Barzel [36] should be able to get the precision of the shadow
properties achieved quickly as well.

The inverse techniques described above might not prove as useful today, except
in some very special cases. Work byMitra and Pauly [414] and shadow art forms, as
shown on the book cover byKumi Yamashita and other work by Paul Pacotto [449]
are such illustrations. It is not clear, however, if these inverse techniques would
scale well to such difficult geometric constraints.

6.5 Final Words

In this chapter, some of the applications of shadow algorithms have been cov-
ered, including augmented reality, non-photorealistic environments, and shadows
as interaction tools. While shadows play an important part of these applications,
they often skip the shadow computations for different reasons (importance, per-
formance, complexity, etc.). We are also certain there are other applications we
have not covered (such as line-of-sight, though shadow algorithms seem overkill
for such applications), but the ones covered in this chapter appear to be the most
relevant to shadows.
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Conclusions

On the surface, shadow determination appears to be a simple task to achieve. How-
ever, as evidenced by the enormous set of research literature today and the trend
that seems to continue, it is much more complex when the algorithms need to be
robust, of good quality, and of good performance. We also doubt if there will ever
be a single, feasible approach that unifies and serves all shadow needs. We strongly
suspect that improvements will mostly come in the form of extensions to the three
major shadow approaches—shadowvolumes, shadowdepthmaps, and ray tracing.

From an application standpoint, the choice of categorized approach needs to
be objectively determined, not chosen due to personal preference. The objective
determinations can be evaluated in conjunction with

● Understanding the capabilities of the approach—see Section 1.3.

● Considerations for choosing an algorithm—see Section 1.5.

● Trends and analysis sections, including

○ Hard shadows—see Section 2.7.
○ Higher-order surfaces—see Section 3.2.4.
○ Image-based rendering for impostors—see Section 3.3.3.
○ Geometry images—see Section 3.4.1.
○ Point clouds—see Section 3.6.4.
○ Voxels—see Section 3.7.6.
○ Heightfields—see Section 3.8.3.
○ Soft shadows—see Section 4.9.
○ Bump mapping—see Section 5.2.2.
○ Advanced reflection models—see Section 5.3.1.
○ Semitransparent surfaces—see Section 5.4.4.
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○ Highly complex thin materials—see Section 5.5.1.
○ Atmospheric shadows—see Section 5.6.4.
○ Motion blur—see Section 5.7.1.
○ Ambient occlusion—see Section 5.8.6.
○ Precomputed radiance transfer—see Section 5.9.1.
○ Global illumination—see Section 5.10.4.
○ Augmented reality—see Section 6.2.4.
○ Non-photorealistic environments—see Section 6.3.4.
○ Shadows as interaction tools—see Section 6.4.1.

From the experience of writing this book, we want to pass along our top ten
reflections on shadow algorithms (other than how excited we are to see so much
research work done on it), in no particular order:

1. Polygons are very important but not the only way to render shadows.

2. Don’t ignore ray tracing as a potential solution for offline production and
real-time shadow generation, even for today, and especially for tomorrow.

3. Self-shadowing (due to geometry or otherwise) is just as important for visual
effects and feedback as is shadowing of other objects.

4. Don’t ignore the terminator problem—it’s real.

5. When using LOD techniques, ensure that there is some correlation of the
LOD between the camera view and the light/shadow view; otherwise, bad
self-shadowing may occur. And it may get worse (shifting or flickering arti-
facts) over an animation with changing LODs.

6. Assuming that “objects can be closed” may not be a good assumption in
many environments.

7. Something will go wrong, and usually at the worst time during production,
so leave room for user input to “kludge” around the problem(s).

8. Beware of shadow algorithms withmany or complicated special cases—once
integrated into a larger system, the number or complexity of special cases
may multiply.

9. Make sure the shadowing results look consistent spatially and temporally.
Otherwise, even if it is easy to fool the human visual system, especially when
the shadows represent supplementary visuals of the scene, some artifacts
might catch your attention.



195

10. In a 1987 paper by Paul Heckbert [233] entitled “Ten Unsolved Problems in
Rendering,” number four was the lack of an efficient and robust approach to
deal with shadows. While it is not a solved problem, it has certainly come a
long way since then, with many more alternatives.

We hope you enjoyed the shadowy treatment of this book.
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