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Preface

Crowdsourcing has emerged as an important paradigm in human problem solving
techniques on the Web. More often than noticed, programs outsource tasks to
humans which are difficult to implement in software. Service-oriented crowd-
sourcing enhances these outsourcing techniques by applying the principles of
service-oriented architecture (SOA) to the discovery, composition, and selection of
a scalable human workforce. This book provides both an analysis of contemporary
crowdsourcing systems such as Amazon Mechanical Turk and a statistical
description of task-based marketplaces. In the following, a novel mixed service-
oriented computing paradigm is introduced by providing an architectural
description of the Human-Provided Services (HPS) framework and the application
of social principles to human coordination and delegation actions. Then, the
previously investigated concepts are extended to business process management
integration including the extension of XML-based industry standards such as
WS-HumanTask and BPEL4People and the instantiation of flexible processes in
crowdsourcing environments.

Vienna, August 2012 Daniel Schall
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Chapter 1
Introduction

Abstract This chapter gives an introduction to human computation and crowdsourc-
ing techniques. Next, the key features of human task marketplaces such as Amazon
Mechanical Turk are briefly outlined. In the following, service-oriented crowdsourc-
ing is motivated by giving an example. Finally, adaptive processes in the context of
crowdsourcing are discussed and an outline of the book is given.

1.1 Overview

The shift toward the Web 2.0 allows people to write blogs about their activities,
share knowledge in forums, write Wiki pages, and utilize social platforms to stay in
touch with other people. Task-based platforms for human computation and crowd-
sourcing, including CrowdFlower [7], Google’s Smartsheet [17], or Yahoo’s Pre-
dictalot [11] enable access to the manpower of thousands of people on demand by
creating human-tasks that are processed by the crowd. Human-tasks include activities
such as designing, creating, and testing products, voting for best results, or organizing
information. The notion of crowdsourcing describes an online, distributed problem
solving and production model with increasingly interested business parties in the last
couple of years [6]. Crowdsourcing follows the open world assumption [9] wherein
peers interact and collaborate without being organized on a managerial/hierarchical
model [5]. Thousands of individuals make their individual contributions to a body
of knowledge and produce the core of our information and knowledge environment.
One of the main motivations to outsource activities to a crowd is the potentially
considerable spectrum of returned solutions. Furthermore, competition within the
crowd ensures a certain level of quality.

According to [18], there are two dimensions in existing crowdsourcing platforms.
The first categorizes the function of the platform. Currently these can be divided in
communities (i) specialized on novel designs and innovative ideas, (ii) dealing with
code development and testing, (iii) supporting marketing and sales strategies, and

D. Schall, Service-Oriented Crowdsourcing, SpringerBriefs in Computer Science, 1
DOI: 10.1007/978-1-4614-5956-9_1, © The Author(s) 2012



2 1 Introduction

(iv) providing knowledge support. Another dimension describes the crowdsourcing
mode. Community brokers assemble a crowd according to the offered knowledge
and abilities that bid for activities. Purely competition based crowdsourcing plat-
forms operate without brokers in between. Depending on the platform, incentives
for participation in the crowd are either monetary or simple credit-oriented. Even if
crowdsourcing seems convenient and attracts enterprises with a scalable workforce
and multilateral expertise, the challenges of crowdsourcing are a direct implication
of human’s ad-hoc, unpredictable behavior and a variety of interaction patterns.

1.2 Task Marketplaces

Task-based crowdsourcing platforms such as Amazon Mechanical Turk [2] (AMT)
enable businesses to access the manpower of thousands of people on demand by
posting human-task requests on Amazon’s Web site. To date, AMT provides access
to the largest group of workers available for processing Human Intelligent Tasks
(HIT). Crowdsourcing platforms like AMT typically offer a user portal to manage
HITs. Such tasks are made available via a marketplace and can be claimed by work-
ers. In addition, most platforms offer application programming interfaces (APIs) to
automate the management of tasks. However, from the platform point of view, there
is currently very limited support in helping workers to identify relevant groups of
tasks matching their interests. Also, as the number of both requesters issuing tasks
and workers grows it becomes essential to define metrics assisting in the discovery
of recommendable requesters. Some requesters may spam the platform by posting
unusable tasks. A study from 2010 showed that 40 % of the HITs from new requesters
are spam [10].

1.3 SOA for Crowdsourcing

Service-oriented architecture (SOA) is an emerging paradigm to realize extensi-
ble large-scale systems. As interactions and compositions spanning multiple enter-
prises become increasingly commonplace, organizational boundaries appear to be
diminishing in future service-oriented systems. In such open and flexible enter-
prise environments, people contribute their capabilities in a service-oriented manner.
We consider mixed service-oriented systems [12, 13] based on two elementary build-
ing blocks: (i) Software-Based Services (SBS), which are fully automated services
and (ii) Human-Provided Services (HPS) [14] for interfacing with people in a flexi-
ble service-oriented manner. Here we discuss service-oriented environments wherein
services can be added at any point in time. By following the open world assumption,
humans actively shape the availability of HPSs by creating services. Interactions
between HPSs are performed by using Web service-based technology (XML-based
SOAP messages).
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! I
: task-B task-E | |
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Expert Crowd

Fig. 1.1 Utilizing crowdsourcing in process flows

A motivating scenario for discovering members of the crowd in process-centric
flows is depicted in Fig. 1.1.

The Process Flow (PFL) may be composed of single tasks that are either processed
by corresponding Web services or are assigned to responsible persons. In this sce-
nario, a task (task-D) may be outsourced to the crowd. This is done by preparing a
request for support (RFS) containing various artifacts to be processed by the crowd
and additional metadata such as time constraints and complexity of the task. The first
step in a mixed service-oriented systems is to discover and select a suitable HPS.
Discovery and selection is based on both, matching of functional capabilities (the
service interface) and non-functional characteristics such as the degree of human
expertise. In the depicted case, the actor u# has been selected as the responsible HPS
for processing the given request. The selection is based on u’s expertise (visualized
by the size of the node in the network), which is influenced by u’s gradually evolv-
ing expertise and dynamically changing interests. The novelty of the approach is that
members of the crowd may also interact with each other by, for example, simply dele-
gating requests to other members (e.g., member u delegates the request to the peer w)
or by splitting the request into sub-tasks that are assigned to multiple neighboring
peers in the network. In our approach, the discovery of neighbors is based on the
social structure of networks (e.g., friend or buddy lists). How decisions within the
crowd are made (delegation or split of tasks) emerges over time due to changing inter-
action preferences and evolving capabilities of people (depicted as expertise areas).
These dynamic interactions are defined as Crowd Flow (CFL). Flexible interaction
models allow for the natural evolution of communities based on skills and interest.
Our presented expertise mining approach and techniques help to address flexible
interactions in crowdsourcing scenarios.



4 1 Introduction

1.4 Adaptive Processes

Web services have paved the way for a new type of distributed system. Services let
developers and engineers design systems in a modular manner, adhering to standard-
ized interfaces. Services already play an important role in fulfilling organizations’
business objectives because process stakeholders can design, implement, compose,
and execute business processes using Web services as well as languages such as the
Business Process Execution Language [4] (BPEL).

However, the BPEL specification was lacking a concept of (process) activities that
are performed by human actors. Specifically the case that certain services in a process
need to be provided by people is not covered. Recently, major software vendors
have been working on standards addressing the lack of human interaction support in
service-oriented systems. WS-HumanTask [3] (WS-HT) and BPEL4People [1] (B4P)
were released to address the emergent need for human interactions in business-
oriented processes. These standards specify languages for modeling human inter-
actions, the lifecycle of humans tasks, and generic role models. Meanwhile, the
Web-based crowdsourcing model called attempts to harnesses the creative solutions
of a distributed network of individuals established with the goal to outsource tasks
to workers [6, 9, 18]. This network of humans is typically an open Internet-based
platform that follows the open world assumption and tries to attract members with
different knowledge and interests. Large IT companies such as Amazon, Google,
or Yahoo! have recognized the opportunities behind such mass collaboration sys-
tems [8] for both improving their own services and as business case. While WS-HT
and B4P have been defined to model human interactions in BPEL-based processes,
it remains an open issue how to apply them to crowdsourcing. The WS-HT and B4P
specifications need to be extended with Non-Functional Properties (NFPs) to ensure
quality-aware crowdsourcing of human tasks.

1.5 Outline

This book is organized as follows. Both a statistical analysis of the Amazon Mechan-
ical Turk marketplace and social network mining techniques of crowdsourcing task
markets are presented in Chap.2. In Chap.3 Human-Provided Services (HPS) and
mixed service-oriented systems are introduced. The integration of HPS and crowd-
sourcing techniques into business process management are presented in Chap. 4. The
book is concluded in Chap. 5.

The work presented in this book is based on the author’s research performed over
the last six years. The content is mainly based on the following journal publications:

e Social Network Mining of Requester Communities in Crowdsourcing Markets by
D. Schall and F. Skopik (see [16]).


http://dx.doi.org/10.1007/978-1-4614-5956-9_2
http://dx.doi.org/10.1007/978-1-4614-5956-9_3
http://dx.doi.org/10.1007/978-1-4614-5956-9_4
http://dx.doi.org/10.1007/978-1-4614-5956-9_5
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e A Human-centric Runtime Framework for Mixed Service-oriented Systems by

D. Schall (see [13]).

e Crowdsourcing Tasks to Social Networks in BPEL4People by D. Schall, B. Satzger,

and H. Psaier (see [15]).
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Chapter 2
Crowdsourcing Task Marketplaces

Abstract In this chapter, we discuss detailed statistics of the popular Amazon
Mechanical Turk (AMT) marketplace to provide insights in task properties and
requester behavior. We present a model to automatically infer requester communities
based on task keywords. Hierarchical clustering is used to identify relations between
keywords associated with tasks. We present novel techniques to rank communities
and requesters by using a graph-based algorithm. Furthermore, we introduce models
and methods for the discovery of relevant crowdsourcing brokers who are able to act
as intermediaries between requesters and platforms such as AMT.

Keywords Crowdsourcing + Mechanical turk - Hierarchical clustering
Community detection - Community ranking - Broker discovery

2.1 Introduction

In this chapter we define the notion of communities in the context of crowdsourcing.
Communities are not predefined but emerge bottom-up based on posted tasks. Here
we use keyword information applied to tasks to identify communities and community
members (i.e., requesters). Hence, communities are mainly driven by requesters. For
example, the keywords ‘classification’ and ‘article’ identify a community who makes
tasks regarding the categorization of articles available. Managing the community
standing of requesters in an automated manner helps to identify those requesters
who contribute to a valuable marketplace.
In this chapter, we present the following key contributions:

e Basic AMT Marketplace Statistics. We thoroughly examine an AMT dataset and
study properties regarding task distribution, rewarding, requester behavior and task
keyword usage. The analysis of basic features and statistics provides the basis for
the discovery of communities and the requester ranking model.

D. Schall, Service-Oriented Crowdsourcing, SpringerBriefs in Computer Science, 7
DOI: 10.1007/978-1-4614-5956-9_2, © The Author(s) 2012
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e Keyword Clustering Approach. Hierarchical clustering is used to identify rela-
tions between keywords associated with tasks, and finally requester communities
demanding for workers in particular expertise areas. This is an important step
toward a community ranking model. To our best knowledge, there is no exist-
ing work that shows how to automatically discover communities in task-based
crowdsourcing marketplaces.

e Community Ranking Model. We propose link analysis techniques derived from
popular Web mining algorithms to rank requesters and communities. This model
helps to rate requesters with respect to their task involvement on AMT.

e Broker Discovery Model. We present a novel model for the discovery and ranking
of crowdsourcing brokers. Brokers act as intermediaries between requesters and
platform providers. The duty of brokers is to provide a specialized interface towards
crowdsourcing platforms by the provisioning of additional services such as quality
assurance or validation of task results.

e Evaluation of the Community Ranking Model and Broker Discovery Approach.
Our evaluation and discussions are based on the properties of a real crowdsourcing
marketplace.

This chapter is organized as follows. Section 2.2 outlines important related work.
In Sect. 2.3 we highlight the basic properties of the AMT marketplace, including inter-
actions and the system context model. This is the basis for Sect. 2.4, where we discuss
a hierarchical clustering approach in order to group keywords and subsequently asso-
ciate tasks. Using that model, we introduce a task requester and community ranking
model. In Sect.2.5 we present the broker discovery and ranking model. Section2.6
details our experiments that are based on real data obtained from the AMT platform.
Section 2.7 concludes the chapter.

2.2 Background

The notion of crowdsourcing was coined by Howe [27, 28] and is defined as ‘the
act of taking a job traditionally performed by a designated agent and outsourcing
it to an undefined, generally large group of people in the form of an open call’.
The crowdsourcing paradigm [14, 43] has recently gained increased attention from
both academia and industry, and is even considered for application in large-scale
enterprises.

Crowdsourcing offers a attractive way to solve resource intensive tasks that cannot
be processed by software [49]; typically all kinds of tasks dealing with matching,
ranking, or aggregating data based on fuzzy criteria. Some concrete examples include
relevance evaluation [1], evaluation of visual designs and their perception by large
user groups [24], and ranking of search results [8]. Numerous further approaches
deal with the seamless integration of crowds into business processes and information
system architectures: CrowdDB [20] uses human input via crowdsourcing to process
queries that neither database systems nor search engines can adequately answer.
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Others study algorithms which incorporate human computation as function calls
[35]. One of the largest and most popular crowdsourcing platforms is AMT. Besides
tagging images and evaluating or rating objects, creating speech and language data
with AMT [7] and the transcription of spoken language [36] are in the focus of the
large application area of language processing and language studies [38]. Recently
various platforms have been established that interface with and harness AMT, in order
to provide more customized services, such as SmartSheet [56] and CrowdFlower [13].

Tagging is used to improve the navigation in folksonomies [21] and has been
widely studied [22]. Applying tags to objects helps users to discover and distinguish
relevant resources. For instance, users manually annotate their photos on Flickr [18]
using tags, which describe the contents of the photo or provide additional contextual
and semantical information. This feature is also utilized on the AMT platform, where
tasks are described by tags, informing potential workers about the nature of a task
and basic required skills. In contrast to predefined categories, tags allow people to
navigate in large information spaces, unencumbered by a fixed navigational scheme
or conceptual hierarchy. Previous works [54] investigated concepts to assist users
in the tagging phase. Tags can also assist in creating relationship between semantic
similarity of user profile entries and the social network topology [3].

Several approaches have been introduced, dealing with the construction of hierar-
chical structures of tags [15, 26, 55], generating user profiles based on collaborative
tagging [37, 53], and collaborative filtering in general [25]. Our work aims at a sim-
ilar goal by clustering tags and recommending categories of keywords to requesters
and workers looking for interesting tasks. Our approach uses various methods and
techniques from the information retrieval domain, including term-frequency metrics
[46], measuring similarities [51], and hierarchical clustering [44].

With regards to community and role detection, community detection techniques
can be used to identify trends in online social networks [9]. A context-sensitive
approach to community detection is proposed in [5] whereas [45] proposes random
walks to reveal community structure. Actors in large scale online communities typ-
ically occupy different roles within the social network [17]. The authors in [16]
present methods for classification of different social network actors. Certain actors
may act as moderators to separate high and low quality content in online conver-
sations [34]. We specifically focus on the notion of community brokers who have
the ability to assemble a crowd according to the offered knowledge [58]. Brokers
in a sociological context may bridge segregated collaborative networks [52]. These
community brokers could be ranked according to their betweenness centrality in
social networks (see [33] for identifying high betweenness centrality nodes). The
idea of structural holes, as introduced by Burt [6], is that gaps arise in online social
networks between two individuals with complementary resources or information.
When the two are connected through a third individual (e.g., the broker) the gap is
filled, thereby creating important advantages for the broker. Competitive advantage
is a matter of access to structural holes in relation to market transactions [6].

‘We position our work in the context of crowdsourcing with the focus on requester
communities. Some works [29, 31] already studied the most important aspects of the
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Fig. 2.1 Crowdsourcing system context model

AMT user community and describe analysis results of their structure and properties.
While these works provide a basis for our experiments, we go important steps further:

1. We introduce crowdsourcing communities that are identified bottom-up through
the analysis of the hierarchical keyword structure.

2. We develop a sophisticated link-based ranking approach to rank communities and
requesters within the AMT community.

3. Here we propose the discovery of community brokers by adapting popular link
mining techniques. The novelty of our approach is that the crowdsourcing broker
discovery is based on query sensitive personalization techniques.

In the next section we introduce a basic task-based crowdsourcing model and
discuss the statistics of the popular AMT crowdsourcing marketplace.

2.3 Basic Model and Statistics

2.3.1 System Context Overview

In this section we detail the basic system elements and user interactions. Figure 2.1
shows the high-level model and a set of generic building blocks. We illustrate the
system context model by using the AMT platform and its HIT data model as an
example of a task-based crowdsourcing marketplace.

e At the core, the AMT middleware offers the task management with a definition
of the basic model for a HIT Group. The Groupld is a unique identifier of a
HIT group. A HIT group encapsulates a number of HIT instances (HitsAvailable).
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Workers can claim HIT instances within a group. The Requester identifier asso-
ciates a task requester with a HIT group. Each HIT has a set of Keywords that
will play a central role in subsequent discussions. The requester can define Qual-
ification requirements such as geographical location. HITs are given a duration
(specified as TimeAllotted) and an ExpirationDate. Workers receive a monetary
Reward after successfully finishing a HIT instance. The Description attribute pro-
vides additional textual information.

e Requesters post tasks to the platform by using either the User Portal or a Web
services based API. APIs help to automate the creation and monitoring of HITs.
In addition, 3rd party crowdsourcing platform providers have the ability to build
their own platforms on top of the AMT middleware.

e Workers are able to claim HIT instances from the Marketplace if they qualify
for a given task. Additional constrains can be given by the requester, such as
required skills or desired quality. Quality management is typically provided by
3rd party crowdsourcing platform providers (e.g., CrowdFlower) and not by the
AMT system itself.

2.3.2 Marketplace Task Statistics

The techniques presented in this work are generally applicable to task-based crowd-
sourcing environments. To illustrate the application and rational behind our commu-
nity discovery and ranking model, we will discuss the key features and statistics of
real world crowdsourcing systems such as the AMT marketplace. We collected a HIT-
dataset by periodically crawling AMT’s Web site between February and August 2011
(in total seven months). The dataset contains 101027 HITs (5372355 HIT instances)
and 5584 distinct requesters that were active during the time frame by making new
HITs available.

Figure 2.2 shows the basic task statistics from the obtained dataset. In Fig.2.2a
we show the number of tasks and the number of requesters in a scatter plot with
logarithmic scale on both axis (in short, log-log scale). The basic task-requester dis-
tribution follows the law that only few requesters post many tasks (the top-requester
SpeechlInk [57] posts 32175 HITs) while a large portion of requesters only post few
tasks. A number of 2393 requesters (i.e. 43 %) only posts one task.

Next in Fig.2.2b we show the number of tasks that require qualification versus
tasks that do not require any particular qualification. The x-axis shows the number
of task instances available within a HIT group and the y-axis depicts the number of
tasks grouped by the amount of task instances available. Generally, more tasks require
some sort of qualification like based on location (‘Location is not in India’) or based
on qualification (‘Image Transcription Description Qualification is greater than 88”).
Thus, from the requester point of view, there is already some pre-selection of workers.
However, AMT offers limited support to actually filter and rank tasks and requesters.

Figure2.2¢ shows the time allotted to tasks (in minutes). The largest segment of
tasks is concentrated around 60—100 min. This means that most tasks are relatively
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Fig. 2.2 Task statistics. a Number of tasks. b Qualification. ¢ Time alloted. d Task reward

simple such as searching for email addresses or tagging of images. Finally, Fig.2.2d
shows the reward in cents (US currency) given for processing tasks (the x-axis is
shown on a linear scale). The maximum reward given for a task is 60$. However, we
find that most tasks have relatively little reward (26604 tasks have less than 55 cents
reward).

Our community discovery and ranking approach uses task-keyword information
as input for clustering of communities. Figure 2.3 shows the most important keyword
statistics (all log-log scale). Figure2.3a shows the number of keywords versus the
number of requesters. The x-axis is based on the total number of keywords used
by requesters. The distribution has its maximum (y-axis) at 4 keywords amounting
for 758 requesters. Next, Fig.2.3b depicts the average number of HIT keywords in
relation to the number of requesters. By inspecting the maximum value (y-axis),



2.3 Basic Model and Statistics 13

1ooo§ A B B 1ooo§ . r I Raas
[ o . b °
d ° °
< ° ) °
2 % 2 o
1] L B 7] L [ ] |
% 100 ¢ LY - % 100 g ]
£ ° £ N ]
4 LY ¢ °
5 s 5 o
— [ L]
] o) °
kel 10 k = 2 10 =
€ e £ F - E
z () P4 .-.
[_J
[ _J om o
1 M| L ianhem, AP PN 1 L R | L PSPPI
1 10 100 1000 1 10 100
Number of Keywords Keywords per HIT
(a) (b)
10* ¢
b
” [ i
& 1000 ® E
g £ ° B
=]
8’ L [ )
LJ
‘100 -—% E
o} £ °
g ]
§ I . !
Z ; b 3
£ o ]
[_J
o 00 ®
1 P | Lmles e
1 10 100 1000  10°*

Average Keyword Frequency

(c)

Fig. 2.3 Keyword statistics. a Keywords. b Keywords HIT. ¢ Frequency

we observe that 935 requesters apply on average 4 keywords per HIT. The last key-
word related statistic is shown in Fig. 2.3c depicting how often a particular keyword
isused. By looking at the raw (unfiltered) keyword set, keywords with the highest fre-
quency include company names of 3rd party platform providers such as Speechlnk,
CastingWords or CrowdFlower.

However, a prerequisite for creating meaningful (hierarchical) clusters is a set
of keywords that is not distorted by such keyword relations. Thus, we performed
some filtering and cleaning of all stopwords (‘and’, ‘on’, ‘is’ and so forth) and
also company names. Amongst those top-ranked keywords are ‘survey’, ‘data’, or
‘collection’. Ranked by total reward, the keywords ‘data’ (79492%), ‘transcribe’
(550138%), ‘search’ (547448$), ‘transcription’ (47268$), ‘collection’ (43156$), and
‘voicemail’ (42580$) would be among the top ones.
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2.4 Clustering and Community Detection

2.4.1 Clustering Approach

Current crowdsourcing platforms such as AMT offer limited search and navigation
support for both requesters and workers. Workers are usually presented a long list
of tasks to potentially work on and need to navigate from page-to-page to discover
new and interesting tasks. Some workers may prefer to work on tasks regarding a
specific topic of interest. Therefore, workers should be able to discover communities
that post tasks regarding the desired topic. Requesters pick keywords they would like
to apply to tasks freely and independently without following a particular convention
or taxonomy. The positive aspect of a bottom-up approach (i.e., freely choosing
keywords) is a domain vocabulary that may actually change based on the keywords
chosen by the requesters. On the downside, problems include spelling mistakes,
ambiguity, or synonyms because a large amount of different keywords may be used
to describe the same type of task.

We propose hierarchical clustering to structure the flat set of task-based keywords
into a hierarchy. The general idea is to first calculate the co-occurrence frequency
of each keyword (how many times a particular keyword is used in combination
with another keyword) and second group pairs of keywords into clusters based on
a distance metric. Each HIT keyword starts in its own cluster. Subsequently pairs
of clusters are merged by moving up the hierarchy. In other words, the correlation
between keywords increases by moving from the top (root) to the bottom (leaves).

We have tested different distance metrics and configurations of the clustering
algorithm. Based on our experiments, the following configuration yielded the best
results (i.e., hierarchical structure). Pairwise average-link clustering merges in each
iteration the pair of clusters with the highest cohesion. We used the city-block
distance, alternatively known as the Manhattan distance, to measure the cohesiveness
between pairs of clusters. In the conducted experiments, the input for the cluster-
ing algorithm was a set of about 300 keywords that have already been filtered as
described in the previous section. Furthermore, we only used those keywords that
had a co-occurrence frequency of at least 10 with some other keyword (minimum
threshold). In total, the algorithm generates 328 clusters.

The next step in our approach is to create communities using the layout of the
keyword-based hierarchy. This is shown in Algorithm 1. It is important to note that
in Line 7 of the algorithm the keywords of all child-clusters are retrieved as well. To
calculate the overlap in Line 9, the set intersection between K Wy ;7 and K Weyyster
is divided by the set size | K W¢yyszer |- Note that by associating collections of HITSs to
clusters (Line 16) we extend the notion of clusters to communities (i.e., an extended
structure of a cluster with associated tasks and requesters). As a next step, we calculate
basic statistics of the resulting community structure.

First, we show how many tasks requesters have in each cluster (Fig.2.4). Since
many requesters post only one task, also the count of requesters that have only
one task in a cluster is high (757 requesters have one task in a cluster). In the middle
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Algorithm 1 Creating communities using keyword hierarchy.

1: input: Set of Tasks, Keyword Hierarchy
2: for each HIT in Set of Tasks do

for each Cluster in Hierarchy do

4 /I Keywords of HIT

5: KWyt < GetKeywords(HIT)

6: /I Keywords of Cluster and Children
’7.
8

KWeiuster < GetKeywords(Cluster)

: /I Save Overlap

. KWuir NKWciuster
9: Overlap(HIT, Cluster) <« %
10:  end for

11:  // Sort Clusters by Overlap

12:  SortedList <— GetSortedClusterList(Overlap, HIT)
13:  // Pick highest ranked Cluster

14:  Cluster < PickFirst(SortedList)

15:  // Add HIT to Collection associated with Cluster
16:  CollectionAdd(Cluster, HIT)

17: end for

segment, 744 requesters have 2 to 10 tasks in clusters. The high score is one requester
with 2058 in one cluster.

A natural question when performing clustering is the quality of the resulting hier-
archy. As mentioned before, we have evaluated the resulting clusters by looking at
the groupings of keywords, which were consistent. Another possible metric for mea-
suring the quality is the distance of similar tasks. Recall, each HIT is associated with
a cluster (Algorithm 1, Line 16). Also, the hierarchy of clusters can be represented
as a directed graph G(V, E) where vertices V represent clusters and edges E the
set of links between clusters (e.g., the root node points to its children and so forth).
To understand whether the hierarchy represents a good structure, we sampled 1000
pairs of tasks randomly from the entire set of tasks and calculated the keyword-based
similarity between the pair. Next, we calculated the Dijkstra shortest path distance
between the pair of tasks using G(V, E). The results are depicted by Fig.2.5.
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One can see that the hierarchy of clusters represents a good mapping between
overlap similarity and shortest path distance: similar tasks have a low distance and
tasks with little overlap similarity are very distant from each other in the graph G.
Another positive effect of the proposed clustering and community discovery method
(task association to clusters) is that spam or unclassified tasks can be identified.

2.4.2 Community-Based Ranking Model

In the previous section we investigated clustering methods to build communities using
the keyword-based hierarchy. Here we attempt to answer the following question:
which are the most important communities and who are the most recommendable
requesters? The applications of the presented ranking approach are, for example,
recommending relevant communities to both workers and requesters (e.g., to find
interesting tasks) and also rating tasks of requesters with a high community standing.
First, we need to detail the meaning of ‘relevant communities’ and ‘community
standing’ of requesters. A relevant community is identified based on the authority
of the requesters that post tasks to it. The community standing of requesters (i.e.,
authority) is established upon the relevancy of the communities the requester posts
tasks to. Mathematically, the idea of this ranking model can be formalized using the
notion of hubs and authorities as introduced in [32].
Formally, this recursive definition is written as

H(c) = Z w(r — ) (r) 2.1)
(c,r)eEcRr
A (r) = Z w(r — ¢)H(c) (2.2)

(c.r)€ECR
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with 77 (c) being the hub score of the community ¢ € V¢ in the set of com-
munities V¢, <7 (r) the authority score of the requester r € Vg in the set of
requesters Vg, (¢,r) € Ecpg an edge in the community-requester bipartite graph
Gcr(Ve, VR, Ecr), and w(r — ¢) a weighting function based on the number of
tasks posted by r in a community c. Notice, by posting tasks to a community c, an
edge is established between the community ¢ and the requester r.

2.5 Crowdsourcing Broker Discovery

There are multiple companies that provide marketplaces where users can post tasks
that are processed by workers. Among the previously discussed AMT, there are
also platform providers such as oDesk [39] and Samasource [47]. In contrast other
companies, such as CrowdFlower [13] and ClickWorker [12] act as intermediaries
allowing large businesses and corporations to not have to worry about framing
and posting tasks to crowdsourcing marketplaces [41]. We call such intermediaries
brokers. Brokers post tasks on behalf of other crowdsourcing requesters. Typically,
such brokers offer additional services on top of platforms like AMT including
quality control (e.g., see CrowdFlower [13]) or the management of Service-Level-
Agreements (SLAs) [42].

In this work we provide a model for the discovery and ranking of brokers based
on requester profile information. A requester’s profile is created based on the task
posting behavior and associated keywords. The requester profile contains a set of
keywords and their frequency. The profile is defined as follows:

Py = {{ki. fur) (k2. fia) - - (ks S )} (2.3)

where (k,,, fkn) denotes the tuple of keyword k, and its frequency f;,. Next we
propose the creation of a directed profile graph G pg(Vc, E pc) that is created using
the following algorithm:

Algorithm 2 Creating profile graph G pg using requester profile information.

1: input: Set Vg of Requesters
2: for each Requester u € Vg do
3:  for each Requester v € Vi do

4: if u # v then

5: // Calculate match between u and v

6: pm < match(u, v)

7: if (pm > &)or(§ = 1and pm = &) then
8: /I Add profile relation to G pg

9: GraphAddRelation(u, v)

10: end if

11: end if

12:  end for

13: end for
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The idea of our approach (as highlighted in Algorithm 2) is to establish a directed
edge (u,v) € Epg from u to v if there is high match (i.e., profile similarity) between
u and v from u’s point of view. The parameter £ can be used to adjust the similarity
threshold that the profile match pm must exceed to connect u and v through a profile
relation edge.

match(u,v) =1— > wiMax((f(w) — fi("))/fi(u), 0) 2.4

keKW,

The calculation of the degree of match (see 2.4) is not symmetric. This is done
because of the following reason. The requester v’s profile P, might exactly match
u’s profile P, with P, C P, (match(u,v)) but this may not be true when matching
u’s profile from v’s point of view (match(v, u)). Suppose we calculate match(u, v),
a match of 1 means that v perfectly matches u’s profile. Thus, it can be assumed that
v has posted some tasks that are very similar to those posted by u. Therefore, it can
be said that there is a high degree of interest similarity between « and v and v could
potentially act as a broker for u. Again, keyword information associated with the
requesters’ HITs is used to create profiles through mining. Also keyword frequency
is taken into account when calculating profile matches. A detailed description on the
symbols depicted in (2.4) can be found in Table 2.1.

As mentioned before, a broker could submit the task on behalf of another requester
and monitor the task’s progress or could even segment the task into subtasks and sub-
mit the subtasks to one or more crowdsourcing platforms. At this stage, we focus on
the discovery and ranking techniques of brokers without discussing the actual broker-
requester interaction model. For instance, the management of SLAs in crowdsourcing
environments has been addressed in our previous work [42] and is not the focus of
this research.

Here we focus on the discovery and ranking of relevant brokers. Compared to the
previously defined community requester graph G cg, the profile graph G pg consists
only of a single type of nodes Vg. In this case, the requester importance is not
influenced by the relevance of communities but rather by the degree of connectivity
within the graph G pg. A well-known and popular model to measure importance
in directed networks is PageRank [40]. A advantage over the hubs and authority
method [32] is that the PageRank model corresponds to a random walk on the graph.

Table 2.1 Description of profile matching calculation

Symbol Description

match(u, v) The matching of profiles between « and v. A value between [0, 1]

Kw, The set of keywords used by u

Sk The frequency of a keyword k. The frequency fy (u) is counted based on how

many times the keyword & has been applied to tasks posted by u

Wk The weight of a specific keyword k. The weight is calculated as zkf ". i
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The PageRank pr(u) of a node u is defined as follows:

pru)= —+(1—a) > wv,upr(y) 2.5)
|VR] ureE
V,U)EL PG

At a given node u, with probability o the random walk continues by following
the neighbors (v, u) € Epg connected to u and with probability (1 — «) the walk is
restarted at a random node. The probability of ‘teleporting’ to any node in the graph
is given as by the uniform distribution V;R The weight of the edge (v, u) is given as
w(v, u). The default value for the transition probability between v and u is given as
Sutdegres()” The function outdegree returns the count of the edges originating
from v. The model can also be personalized by assigning non-uniform ‘teleportation’
vectors, which is shown in the following:

ppr:Q) = apw: Q)+ (1 —a) > #ﬁ;(y) 2.6)
(v,u)eEpg

The personalized PageRank ppr(u; Q) is parameterized by the keyword based
query Q. Instead of assigning uniform teleportation probabilities to each node (i.e.,
IVI_R\)’ we assign preferences to nodes that are stored in p(u; Q). This approach is
similar to the topic-sensitive PageRank proposed by [23] (see also [10, 19, 30, 50]).
Whereas in PageRank the importance of a node is implicitly computed relative to
all nodes in the graph now importance is computed relative to the nodes specified in
the personalization vector. The query Q is defined as a simple set of keywords Q =
{ki, k2, ..., k,}thatare selected to depict a particular topic(s) of interest. Algorithm 3
shows how to compute the values within the personalization vector p(u; Q).

2.6 Experiments

The discussions on our evaluation and results in separated into two sections: first we
discuss experiments of our community-based ranking model followed by discussions
of the crowdsourcing broker ranking approach.

2.6.1 Community Discovery and Ranking

Here we discuss ranking results obtained by calculating .77 and 7 scores using the
community-requester graph G ¢r. Communities are visualized as triangular shapes
(in blue color) and requesters are visualized as circles (in red color). The size of each
shape is proportional to the .7 and &7 scores respectively. The line width of an edge
is based on the weight w(r — ¢).
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Algorithm 3 Assigning personalization vector p(u; Q) based on query Q.
1: input: Set Vr of Requesters and query Q

2: // Variable total Sum is used for normalization

3: totalSum < 0

4: for each Requester u € Vg do

5: currentSum < 0

6: for each Keyword k¢ € Q do

7

8

for each Keyword k € KW, do
/1 If k€ and k matches

9: if Equals(kQ, k) and fi(u) > O then

10: /I Add frequency fi(u) to current Sum
11: currentSum <— currenSum + fi(u)
12: end if

13: end for

14:  end for

15:  PersonalizationVectorAdd(u, current Sum)

16:  totalSum < totalSum + currentSum

17: end for

18: // Normalize the values in p(u; Q)

19: for each Requester u € Vg do

20:  weight < PersonalizationVectorGet(u)

21:  PersonalizationVectorAdd(u, weight /current Sum)
22: end for

First we look at the top-10 requesters and communities they are associated with.
The top-10 requester graph is depicted by Fig.2.6. Table 2.2 shows the number of
clusters the requester is associated with (3rd column) and the number of tasks (4th
column). In addition, the table depicts in the last column the rounded values of the
o/ scores to show how the scores among top-ranked requesters are distributed.

The requester Smartsheet.com Clients clearly outranks other requesters. It has
also posted a large number of tasks to relevant communities. Between the 5th to
the 10th ranked requesters one can see less significant differences in the ranking
scores because the number of tasks and clusters are also not significantly different.
The number one ranked community in AMT using our community discovery and
ranking approach is the community dealing with ‘data’ and ‘collection’. Each
requester in the top-10 list is associated with a number of communities and all
requesters are also connected with the top community.

Next, we filter the graph and show the top-10 communities and the associated
requesters in Fig.2.7 (best viewed online). Descriptions on the top-ranked commu-
nities are given in Table 2.3.

The top-ranked community deals with ‘data’ and ‘collection’ and can be easily
located in the graph by looking at the triangular node which has a dense neighbor-
hood of requesters (top left in Fig.2.7). Table2.3 shows in addition to the cluster-
based keywords (last column) the total number of tasks found in the community (3rd
column), the number of top-10 ranked requesters connected to a given community
(4th column), and the number of top-10 ranked requester tasks (also in 4th column
in parentheses). One can observe that top-ranked communities have also top-ranked
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Fig. 2.6 Top-10 requester graph

Table 2.2 Description of top-10 requester graph

Rank Requester name Number of clusters Number of tasks </ (rounded)
1 Smartsheet.com Clients 46 877 0.002706
2 Freedom CrowdControl 14 51 0.002387
3 Ross Arbes 6 56 0.002269
4 Confirm Data 5 16 0.002249
5 Polyvore, Inc. 4 20 0.002206
6 Streema 3 22 0.002203
7 CDTP 3 13 0.002197
8 Jack Carrier IIT 4 12 0.002194
9 Michael Kanko 3 14 0.002192
10 Joe Sawatske 3 19 0.002183
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Fig. 2.7 Top-10 community graph

requesters associated with them, which is the desired behavior of our ranking model.
Also, since the algorithm takes weighted edges into account, the number of tasks
that are actually posted in a community play a key-role.

To conclude our discussions, top-ranked requesters are identified based on their
active contribution (posting tasks) to top-ranked communities.

2.6.2 Recommendation of Crowdsourcing Brokers

In this section, we discuss the performed experiments to discovery crowdsourcing
brokers. First, we take the entire set Vg and establish the keyword-based profiles of
each requester. In the next step, we apply the Algorithm 2 to construct G p using the
matching function as defined in (2.4). To find a suitable threshold &, we generated a
number of graphs with varying thresholds 0.0 < & < 1.0 and measured the indegree
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Table 2.3 Description of top-10 community graph

Rank Community Id ~ Number of tasks Number top-requesters Keywords

1 GROUP314 1222 10 (109) Data, collection
2 GROUPI11 801 5(352) Actors, website
3 GROUP128 136 2(4) Photo, article, social
4 GROUP26 146 5(20) TV, web
5 GROUPS87 139 2(4) Review, shopping
6 GROUP157 34 3(18) Marketing, phone
7 GROUP149 53 1(1) Moteur, question
8 GROUP74 250 2 (10) Assistance, text
9 GROUP305 92 14) Fast, quick
10 GROUPI181 28 209 Interesting, business
100 100 100
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Fig. 2.8 Degree distributions under different connectivity thresholds. a § = 0.0. b & = 0.1.
c£=02.d¢§=03.e£=04.1£=05

of each node in G pg. The following series of scatter plots and shows the indegree
distributions for the interval 0.0 < & < 0.5(Fig.2.8)and 0.6 < £ < 1.0 (Fig.2.9)
respectively. On the horizontal axis, the indegree is shown and on the vertical axis
the number of nodes. Recall that the set Vg holds 5584 distinct requesters.

The plots in Figs.2.8a and 2.9e can be regarded as boundaries. However, notice
that the profile match pm must be greater than £ (see Algorithm 2). Otherwise each
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Fig. 2.9 Degree distributions under different connectivity thresholds. a & = 0.6. b & = 0.7.
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requester would be connected to all other requesters yielding an indegree of 5583
for all requesters. In the case of pm > 0.0 (Fig.2.8a), the indegree is almost evenly
distributed with an average degree of 500.

Next we increased & and observe that the indegree yields a shape similar to those
indegree distributions found in naturally emerging graphs [2]. The majority of nodes
has a low indegree whereas a lower number of nodes has a high indegree. This scaling
law is also clearly visible when setting a threshold of & > 0.4. This behavior fits well
our proposal where a few requesters would qualify for being brokers that transmit
tasks on behalf of others (i.e., the majority of nodes) to crowdsourcing platforms
such as AMT or oDesk. Within the interval & = [0.5, 1.0] the degree distributions
exhibit a similar shape.

In subsequent discussions, we chose a threshold of & = 0.5 since higher thresholds
would not drastically change the shape of the distribution.

The next step in the broker ranking approach is to take the graph G pg and calculate
ppr scores using (2.6). To illustrate the approach, we set the query keywords as
0O = {‘korrigieren’, ‘deutsch’} to find and rank requesters which would be suitable
brokers for tasks related to correcting German related documents, articles, etc. The
personalization vector p(u; Q) was calculated using Algorithm 3. Furthermore, (2.6)
was parameterized with o = 0.15. The top-10 results are visualized by Fig. 2.10. The
node size is based on the position (1-10) in the ranking results where the number 1
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Fig. 2.10 Top-10 ranked requesters in G pg

Info Seeker

Amazon

PAN

ranked node has the largest size and the number 10 ranked node the smallest size.
The edge width is based on the matching score calculated by using (2.4). Only edges
among the top-10 ranked requesters are shown. Information regarding the top-10
ranked requesters is further detailed in Table2.4.

We made the following important observation when performing broker discovery
in Gpg. The greatest benefit of applying a network-centric approach to ranking
requesters is the discovery of related requesters that may not actually match any of
the keywords provided by Q. Suppose the following case where o = 1 yielding

ppr(u;Q) = p(u;Q), with o =1. 2.7)

Requesters are assigned a value of 0 if none of their profile keywords match Q
and otherwise the weight based on keyword frequency as described in Algorithm 3.
In other words, requesters are ranked based on simple keyword-based matching
and frequency-based weighting. The results are quite similar by having the top-7
requesters (see Table 2.4) ranked in the same order:

Table 2.4 Description of top-10 ranked requesters in G pg

Rank Requester name Indegree Number of tasks (total) ppr (rounded)
1 Amazon Requester Inc. 25 1021 0.139038
2 Dolores Labs 933 2063 0.006523
3 PAN 12 11 0.002715
4 Christian Scheible 27 7 0.002036
5 Sebastian Pado 1 2 0.001357
6 Info Seeker 4 2 0.001357
7 Frank Keller 16 3 0.000679
8 Grimpil 60 3 0.000577
9 Annotation Task 227 18 0.000245
10 Retaildata EU 43 21 0.000002




26 2 Crowdsourcing Task Marketplaces

Table 2.5 Top-ranked

. Rank Requester name
requesters using (2.7)
1 Amazon Requester Inc.
2 Dolores Labs
3 PAN
4 Christian Scheible
5 Sebastian Pado
6 Info Seeker
7 Frank Keller

Notice, however, only 7 out of 5583 requesters exactly match the query Q =
{ ‘korrigieren’, ‘deutsch’}. Thus, all other nodes will receive a ranking score of 0. By
applying our proposed approach using (2.6) we have the following important benefits:

e Since importance of requesters is computed relative to the nodes specified in the
personalization vector, all nodes (requesters) receive a ranking score.

e Requesters that do not match the query but are connected in G pg with other high
ranked requesters will be able to improve their position in the ranking results.

Amazon Requester Inc. is the highest ranked requester in either case, « = 0.15 and
o = 1, with regards to the keywords specified in Q. Therefore, this requester would
be the most recommendable broker. However, by using « = 0.15 other requesters
such as grimpil (see requester with rank 8 in Table2.4) who has strong inbound
links from Dolores Labs and Info Seeker are also discovered in the top-10 list. This
requester, for example, would have not been discovered otherwise.

Overall, our approach provides an important tool for the discovery of brokers
by establishing a profile-relationship graph G pg and by ranking requesters based
on their actual match (i.e., p(u; Q)) and based on their degree of connectivity (the

second part of (2.6)—that is Z(V)u)eEPG —outé”e’;g;e(v) ).

Indeed, both components cannot be computed independently by simply summing
them up. Instead, the pr and ppr scores must by computed in an iterative process
that needs to converge towards a fixed value (see [23, 40]). Finally, our approach lets
other requesters desiring to utilize brokers for crowdsourcing their tasks to discovery
the best matching brokers and also pathways revealed by G pg to matching brokers
(e.g., a suitable path to Amazon Requester Inc. can be established via Info Seeker).

As a final remark on the experiments, time complexity of the presented clustering
and ranking algorithms becomes an issue as the size of the number of keywords
and the number of requesters increases. As mentioned in Sect. 2.4, at this point we
have considered a subset of about 300 keywords that have already been filtered.
Furthermore, we only used those keywords that had a co-occurrence frequency of at
least 10 with some other keyword (minimum threshold). Thus, time complexity has
not been an important issues in our currently conducted experiments but deserves
attention in our future experiments with larger crowdsourcing datasets.
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2.7 Conclusion and Future Work

Crowdsourcing is a new model of outsourcing tasks to Internet-based platforms.
Models for community detection and broker discovery have not been provided by
existing research. In this work we introduced a novel community discovery and rank-
ing approach for task-based crowdsourcing markets. We analyzed the basic market-
place statistics of AMT and derived a model for clustering tasks and requesters. The
presented approach and algorithm deliver very good results and will help to greatly
improve the way requesters and workers discover new tasks or topics of interest.

We have motivated and introduced a broker discovery and ranking model that lets
other requesters discovery intermediaries who can crowdsource tasks on their behalf.
The motivation for this new broker based model can be manifold. As an example,
brokers allow large businesses and corporations to crowdsource tasks without having
to worry about framing and posting tasks to crowdsourcing marketplaces

In future work we will compare the presented hierarchical clustering approach
with other techniques such as Latent Dirichlet Allocation (LDA) [4]. In addition,
we will evaluate the quality of the keyword-based cluster as well as the community
rankings through crowdsourcing techniques (cf. also [11]). With regards to com-
munity evolution, we will analyze the dynamics of communities (birth, expansion,
contraction, and death) by looking at the task posting behavior of requesters. This
will help to make predictions about the needed number of workers with a particular
set of skills. The crowdsourcing platform may manage resource demands by creating
training tasks to prevent shortcomings in the availability of workers that satisfy task
requirements. Some of the related issues have been tackled in our previous work [48]
but an integration with the present work is needed.

Furthermore, based on our broker discovery approach, we will look at different
negotiation and service level agreement setup strategies. The personalization vector
could be computed based on further parameters such as costs, the requesters avail-
ability and reliability constraints. Finally, standardization issues of interfaces towards
crowdsourcing platforms in general as well as interfaces for brokers will be part of
future research.
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Chapter 3
Human-Provided Services

Abstract In this chapter, we discuss collaboration scenarios where people define
services based on their dynamically changing skills and expertise by using Human-
Provided Services. This approach is motivated by the need to support novel
service-oriented applications in emerging crowdsourcing environments. In such open
and dynamic environments, user participation is often driven by intrinsic incentives
and actors properties such as reputation. We present a framework enabling users to
define personal services to cope with complex interactions. We focus on the discovery
and provisioning of human expertise in service-oriented environments.

Keywords Human provided services + Mixed service-oriented systems - Crowd-
sourcing - Social computing

3.1 Introduction

The transformation of how people collaborate and interact on the Web has been
poorly leveraged in existing SOA. In SOA, compositions are based on Web services
following the loose coupling and dynamic discovery paradigm. We argue that people
should be able to define interaction interfaces (services) following the same principles
to avoid the need for parallel systems of humans and software services. We intro-
duce mixed service-oriented systems [26] that are composed of both Software-Based
Services (SBS) and Human-Provided Services (HPS) [30], interacting to perform
certain activities. Here, user-provided services are well-defined interfaces to interact
with people. The problem is that current systems lack the notion of human capabil-
ities in SOA. The challenge is to support the user in providing services in open
Web-based environments. HPSs can be discovered in a manner similar to SBS.
Following this approach, humans are able to offer HPSs and manage interactions
in dynamic collaboration environments.

D. Schall, Service-Oriented Crowdsourcing, SpringerBriefs in Computer Science, 31
DOI: 10.1007/978-1-4614-5956-9_3, © The Author(s) 2012
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Unlike traditional process-centric environments in SOA, we focus on flexible and
open collaboration scenarios. In this chapter, we present the following novel key
contributions:

e People need to be able to be able to provide services and to manage interactions
in service-oriented systems. We present the HPS architecture and its core compo-
nents: a Middleware Layer providing features for managing data collections and
XML artifacts, the API Layer comprising services for user forms generation and
XSD transformations, a Runtime Layer enabling basic activity and user manage-
ment features as well as support for interactions using Web services technology.

e In open and dynamic environments, expertise profiles need to be maintained in an
automated manner to avoid outdated information. We introduce a context-sensitive
expertise ranking approach based on interaction mining techniques.

e We evaluate our approach by discussing results of our expertise mining approach.

This chapter is organized as follows. We overview related work in Sect.3.2. In
Sect. 3.3, we present the HPS activity and task model enabling dynamic interactions
in service-oriented systems. In Sect. 3.4, we discuss the Human-Provided Services
architecture and framework. The discovery and selection of HPS is strongly influ-
enced by human expertise. Our expertise ranking approach based on interaction
mining techniques is presented in Sect.3.5. Section3.6 presents experiments and
implementation details. We conclude the chapter in Sect. 3.7.

3.2 Background

We structure our discussion regarding related work in three topics: (i)
crowdsourcing to clearly motivate the problem context of our work, (ii) interac-
tion modeling to overview different techniques for structuring collaborations, and
(iii) metrics and expertise mining to track user interest and skills in open Web-based
platforms. Our work is specifically based on the assumption that evolving skills
and expertise influence how interactions are performed (for example, delegations) in
crowdsourcing environments.

Crowdsourcing. In recent years, there has been a growing interest in the com-
plex ‘connectedness’ of today’s society. Phenomena in our online-society involve
networks, incentives, and the aggregate behavior of groups [9]. Human computa-
tion is motivated by the need to outsource certain steps in a computational process
to humans [11]. An application of human computation in genetic algorithms was
presented in [17]. A variant of human computation called games that matter was
introduced by [37]. Related to human computation are systems such as Amazon
Mechanical Turk! (AMT). AMT is a Web-based, task-centric platform. Users can
publish, claim, and process tasks. For example [35], evaluated the task properties of
a similar platform in cases where large amounts of data are reviewed by humans. In

! http://www.mturk.com/
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contrast to common question/answer (Q/A) forums, for example Yahoo! Answers,>
AMT enables businesses to access the manpower of thousands of people using a Web
services API. Mixed service-oriented systems [26] target flexible interactions and
compositions of Human-Provided and Software-Based Services [30]. This approach
is aligned with the vision of the Web 2.0, where people can actively contribute ser-
vices. In such networks, humans may participate and provide services in a uniform
way by using the HPS framework [26]. A similar vision is shared by [23] who defines
emergent collectives which are networks of interlinked valued nodes (services). In
such collectives, there is an easy way to add nodes by distributed actors so that the
network will scale. Current crowdsourcing platforms do not support complex inter-
actions (e.g., delegation flows) that require joint capabilities of human and software
services.

Questions include: how can people control flexible interaction flows in emerging

crowdsourcing environments?
Interaction Modeling. In business processes (typically closed environments),
human-based process activities and human tasks can be modeled in a standardized
service-oriented manner. WS-HumanTask [4] (WS-HT) and BPEL4People [3] (B4P)
are related industry standards released to address the need for human involvement
in service-oriented systems. These standards and related efforts specify languages
to model human interactions in BPEL [3], the lifecycle of humans tasks [4] in SOA,
resource patterns [25], and role-based access models [19]. A concrete implemen-
tation of B4P as a service was introduced in [36]. A top-down approach, however,
demands for the precise definition of roles and interactions between humans and ser-
vices. The application of such models is therefore limited in crowdsourcing due to
the complexity of human tasks, people’s individual understanding, and unpredictable
events. Other approaches focus on ad-hoc workflows or self-contained subprocesses
(worklets) [1] based on activity theory, and task-adaptation [10] to cope with chang-
ing environmental conditions. In [20], business activity patterns were introduced to
design flexible applications.

Questions include: how can one control interactions in open and dynamic environ-
ments that are governed by the emergence of social preferences, skills and reputation?
Metrics and Expertise Mining. Human tasks metrics in workflow management
system have been discussed in [18]. A formal approach to modeling and measuring
inconsistencies and deviations, generalized for human-centered systems, was pre-
sented in [7]. Studies on distributed teams focus on human performance and interac-
tions [5, 22], as well as in Enterprise 2.0 environments [6]. Models and algorithms
to determine the expertise of users are important in future service-oriented environ-
ments [27]. Task-based platforms allow users to share their expertise [38]; or users
offer their expertise by helping other users in forums or answer communities [2]. By
analyzing email conversations [8], the authors studied graph-based algorithms such
as Hyperlink-Induced Topic Search [16] and PageRank [21] to estimate the expertise
of users. The authors in [32] used a graph-entropy model to measure the importance of
users. In [39] the authors applied PageRank in online communities such as Java Q/A

2 http://answers.yahoo.com/
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forums. Approaches for calculating personalized PageRank scores were introduced
in [13, 14] to enable topic-sensitive queries in search engines, but have not been
applied to interaction analysis (social networks). Most existing link-based expertise
mining techniques do not consider information related to the interaction context.
Questions include: how can interaction mining algorithms track users’ expertise,
interest, and skills in an automated manner considering context information?

3.3 HPS Interaction Model

The availability of interaction models in open, Web-based platforms such as the
motivating crowdsourcing scenario is currently limited. Most existing crowdsourc-
ing platforms do not support interactions and collaborations between users (tasks
are typically assigned to individuals). Other Web-based tools (e.g., bulletin boards,
email, instant messaging) lack the ability to compose the capabilities of human-
and software-based services, which typically requires standardized (XML-based)
message formats, interfaces, etc. The main purpose of the proposed interaction model
is:

1. Provisioning of human expertise in a service-oriented manner using SOA princi-
ples (Sect. 3.3.1). Examples are ‘document review’ [30] or ‘document translation’
[31] services provided by human actors.

2. Model to support flexible interactions between crowd members (Sect. 3.3.2).

3. Task model that can be used to link PFL (Process Flow) artifacts (task descriptions)
to flexible crowd-activities which are provisioned through HPS (Sect. 3.3.3).

3.3.1 HPS Activity Model

Activities are used for different purposes. People use activities to structure collabo-
rations in a flexible manner. Also, activities enable users to define Human-Provided
Services. We now turn to the activity model enabling the use of HPS in various inter-
action scenarios, for example CFLs (Crowd Flows). The presented activity model in
Fig. 3.1 depicts the most important elements to support basic interaction scenarios.

e An ActivityDeclaration defines the name and description of an activity, URI, and
a set of tags that can be applied to the declaration. Tags are applied by users to
associate keywords to declarations.

e The HPS Interface relates to an ActivityDeclaration. Name in the HPSInterface
depicts the HPSs name, for example, a review service. The HPSInterface
(description) is very similar to the description of conventional SBS. We perform
a simple mapping to depict declarations as Web service descriptions (e.g., using
WSDL).

e An HPSGroup defines the set of people providing a certain type of service
established as the relation between User, HPSInterface, and HPSGroup. An
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Fig. 3.1 Overview of HPS activity model

HPS requester can be a human seeking the opinion of experts or a composed
software service (PFL) requiring human input. A ranking procedure must be
used to select the best available HPS. We term the relation between User and
HPSlInterface personal service, which is technically an instance of an HPS. Each
user has a Profile identifying people and storing user preferences.

e A Resource is used for different purposes. As mentioned before, HPSInterfaces are
depicted using languages such as WSDL. Thus, the interface is an XML document
that can be modified by using resource identifiers (URIs) to retrieve or update
resources. Other resources are type definitions, for example, activity types and/or
parts of complex data types.

e A GenericResource is a special type of Resource, which we use to wrap Artifacts.
Artifacts include collaboration documents and all sorts of files that are used and
created during collaborations. The GenericResource defines metadata associated
with Artifacts.

e The Action concept is used to interact with HPSs in the scope of an activity. The
HPSInterface is composed of a set of Actions. Notice, there are different action con-
cepts in our model. On the one hand, Action, as discussed here, is defined by the user
in the scope of an HPSInterface. The definition of an Action is done at design time.

e The HPSPort depicts the technical—in a Web services sense—realization of an
HPS interface. (The details are not needed at this point and will be discussed in
the HPS framework section.) The HPSPort relates to a set of resources (e.g., typed
messages), which are used in certain Actions.

The previous concepts were introduced as models to depict and design HPSs. The
following concepts describe activity and HPS-centric interactions at run-time.

e An Activitylnstance represents an actual work item. An activity can be performed
many times, which are called instances of the activity. Each instance corresponds
to a declaration. Instances represent the context of interactions.



36 3 Human-Provided Services

e An ActionInstance is connected to an Activitylnstance. Each Actionlnstance is
defined by an Action. An Attachment is something generic to associate XML
documents, for example, XML messages that are exchanged between services,
and other content-types with an ActionInstance. Attachments usually convey typed
messages that are defined in an HPSInterface and Resources.

Both ControlAction and ActionInstance are used at run-time. A ControlAction,
however, depicts common action types in human collaboration. ControlActions
include coordination, communication, and execution actions that are associated
with instances of activities, for example delegations of activities. However, such
actions are not part of an HPSInterface.

A ControlAction is always used between two or more people to, for example, coor-
dinate the execution of activities; whereas an Actionlnstance may be the result
of interactions between human and software services. Each action, ControlAc-
tion as well as Actionlnstance, is logged to keep a history of interactions. The
InteractionLog captures traces of interactions (activities and their actions) per-
formed in collaborations. Also, interactions between software services are logged
to maintain a history of the collaboration context.

3.3.2 Hierarchical Activities

Activities can be structured as hierarchies (see Fig. 3.2) using parent and child rela-
tions. Child activities specify the details with respect to the (sub-)steps in collabora-
tions, for example, sub-activities in the scope of a parent activity. This allows for the
refinement of collaboration structures as the demand for a new set of activities (e.g.,
performed by different people and services) increases. The need for the dynamic
refinement of collaboration structures is especially required when people have lim-
ited experience (the history of performed activities) with respect to a given objective
or goal. Furthermore, some people tend to underestimate the scale and complexity
of an activity; thus the hierarchical model enables the segmentation of activities into
sub-activities, which can be, for example, delegated to other people.

ControlAction

FURI
-ExecutedBy
-AppliedResource

parent child
0% 01 . -Service
relatesTo  *
ActivityInstance

1 User

T Y

Generil Ir tRole Coordination Communication Execution

Fig. 3.2 Excerpt of hierarchical activity model
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The basic HPS activity model (cf. Fig.3.1) did not define any notion of activity
hierarchies because, currently, we do not support the mapping of activity hierarchies
onto HPSs. For example, hierarchically structured activities in activity declarations
would require a mapping of such hierarchies into a set of Actions. Activities have a
relatedTo property which provides a mechanism to link to any other activity. Typi-
cally, multiple members work on the same activity with different roles. The Involve-
mentRole identifies the creator, observer, contributor, responsible, and supervisor of
an activity. Involved workers apply a set of GenericResources to perform their work.
As mentioned before, objects such as documents are represented as a shared Artifact.
A ControlAction captures activity-change events, interactions between members, and
work carried out. Actions can trigger events describing the progress of activities.

3.3.3 Task Model

In most collaborations, activities need to be controlled by capturing temporal aspects
such as progress of activities and monitoring of deadlines. In this section, we define
an extended task model, which can be used in open collaboration scenarios; for
example, in HPS-based collaborations on the Web. Figure3.3 shows task-related
concepts and their relation to previously introduced concepts.

Controlling the execution of activities. The most fundamental aspect is to control
the execution of activities by associating a HumanTask with an Activitylnstance. Mul-
tiple tasks can be created because activity instances can be divided into sub-activities.
A HumanTask is derived from a generic Task defining basic task-properties—StartAt,
DueAt, and, Priority. If tasks are used in HPS-based collaborations, requesters are
aware of the state of a given interaction (e.g., accepted, inprogress, or completed).
Based on these execution parameters, for example, the properties Priority and DueAt,
Notifications can be sent to a set of people. Examples include, notify a set of people
(PeopleGroup) about the status of an activity, escalate deviations in the execution
of activities, or notify the supervisor of an activity when the activity (or one of its
sub-activities) has been completed.

L TaskDescription

[ORT Location

| startAt < :#yap":

-DueAt

| Priority  Tags . 0.1 0.1

relatesTo

restricted applied Resource

PeopleGroup

-Type
I-Description

HumanTask onAtivity
[-State involved asRole Notification .
|-Progress
-Duration o ’—‘ o1 -

Activitylnstance - 1 ActivityDeclaration

Requirement

0.1

Fig. 3.3 Overview task model
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This model is well aligned with the WS-HumanTask [4] (WS-HT) specifica-

tion. Moreover, functional properties can be associated with ActivityDeclarations,
depicted as Requirement in Fig.3.3; for example, role models controlling whether
users are allowed to work on activities. Again, a generic PeopleGroup is used which is
populated with a set of people depending on specified requirement. Notice, require-
ments typically do not change over time. For example, if we use a role model to
control the set of people who can work on an activity, we follow a fop-down view—
modeling how an activity should be performed. In contrast, constraints change over
time depending on the run-time context. Constraint are, for example, the minimum
set of skills or level of expertise a potential worker must have. Indeed, skills and level
of expertise change over time depending on performed activities.
Creating announcements. The idea of the HPS model is not only to support enter-
prise collaboration scenarios but also Web-based crowd collaborations. In enter-
prises, a corporate directory usually holds all information regarding employees, their
role in the company, and additional contact information, which can be accessed to
populate a PeopleGroup. However, these announcements are well applicable to enter-
prise collaborations as well because in global corporations it is impossible to maintain
expertise, roles, interests of employees in a central directory.

Here we define two scenarios showing the usefulness of announcements:

e We can imagine a TaskDescription as an announcement to express the need for a

set of HPSs to work on tasks. The notion of task descriptions is similar to mar-
ketplaces of work in task-based platforms on the Web, for example, Amazon’s
Mechanical Turk where Human Intelligence Tasks (HITs) are used for this pur-
pose. See the relation between TaskDescription, Resource, and PeopleGroup in
Fig.3.3. A Resource describes an HPS as previously discussed in the basic HPS
activity model.
Task descriptions comprise constraints such as task availability information (begin-
ning and expiration time of the task) and the number of available task instances
(how many of those tasks can be claimed by users). In this case, it is clear that a
particular type of HPS has to be used in the context of a task.

e The relation between ActivityDeclaration, TaskDescription, and Location depicts

the need for a service—potentially in a specific location area.
Therefore, these kind of announcements are opportunities for users to create new
HPSs or to associate an existing HPS with a description which has not been con-
sidered before. Such announcements are different with respect to the previous case
(marketplace example) because ActivityDeclaration and TaskDescription do not
demand for a particular type of HPS.

3.3.4 Task Execution Model

The next step is to introduce a task execution model defining the possible task
states. The task execution model is depicted by Fig. 3.4. It is relevant for both cases,
announcements of task and the control of activity executions.
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e Claiming Tasks: Announcements allow requesters to denote the availability of
work items (i.e., activities) without explicitly selecting a particular HPS. Announce-
ment can be generated if there is not any matching HPS available; or if the
demanded HPS is currently not provided by users. Initially, a task is set to
Available and becomes Unavailable when the announcement expires. Based
on announcements, tasks can be Claimed, Accepted or rejected by requesters
(becoming Available again).

e Task Assignments: A task can be Assigned to HPSs without issuing announcements,
specifically when software services generate tasks that need to be processed based
on, for example, deadlines. An Assigned task may go into the Accepted state,
otherwise to Aborted when the assignment procedure times out. For example, the
user is not responding to an assignment request.

The task state changes from Accepted to Initiated when an action is performed in
the context of an activity (e.g., sending a request to an HPS). The task changes its state
to Aborted if the initiation fails (Initiated state). The state Activated indicates that
the request is processed, followed by the Finished state or Failed if the HPS was
unable to deliver the desired output—the expected information, which can be vali-
dated by, for example, a (human) requester reviewing the output. A task is successful
if the output of an HPS is Approved by the requester.

3.4 Architecture

Most systems based on SOA-principles (registration, discovery, and interaction)
typically lack the notion of human capabilities that can be provisioned as service.
Traditional service-oriented systems provide support for software-based services
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only. We propose mixed service-oriented systems. Moreover, existing tools for
designing services usually require ‘expert’ knowledge in terms of understanding
various WS-standards. HPS harnesses human capabilities within service-oriented
environments while leveraging Web 2.0 innovations.

In addition, our architecture provides an approach for interaction monitoring that
captures the context of interactions through activity identifiers. Monitored interac-
tions are logged and analyzed to calculate various metrics such as reputation and
interest profiles of users. The automatic calculation of reputation and skills through
mining is a novel technique to support the discovery of human capabilities in SOA
considering changing expertise and interests of people.

3.4.1 HPS Framework

This section details the HPS framework by introducing various services to enable
human interactions in SOA. The HPS platform allows requesters (people and software
services) to find and interact with HPSs. The framework offers a set of tools to support
the design of HPSs and a middleware hosting various services such as the HPS Access
Layer (HAL). Figure 3.5 shows the main components of the HPS framework. The
arrows in the figure depict a ‘using’ relation between various blocks.

Design Tools. HPS Design tools allow users to create service interfaces (annotation 1)
in a simplified manner. These tools are hosted in a Web portal (see [26] for details).
Figure 3.5 illustrates the design flow:

e Interface and Message Formats: the HPS framework provides tools to automat-
ically translate high level specifications (e.g., activities and interface elements)
into low level service descriptions (annotation 2) without requiring the user to
understand underlying technologies such as XML or WSDL.

e Publication of Design Artifacts: artifacts such as message formats and activity
definitions are saved in XML collections (annotation 3).

API Layer. The framework includes services and tools for the design of HPS as
well as runtime support for the automatic generation of interfaces. The API Layer
includes the following core services:

e WSDL API service to generate service descriptions; in particular, to create WSDLs
based on human activities and user specified interface elements (parameters and
complex elements)

e Forms API implementing support for XML Forms (XForms)

e XSD Transformer service utilizing the Forms API to automatically generate
XForms based on XML schema definitions, for example, as defined in WSDL
documents

e Tug Management service associating tags with HPS artifacts (activities, actions,
and WSDLs)
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Fig. 3.5 HPS framework and architecture

Runtime Infrastructure Services. The following services have been designed and
implemented to enable HPS-based collaboration.

The Activity Management service maintains activity declarations and activity
instances (annotation 4).

e The User Management service holds data related to profiles and contact details.
e The Interface Emitter generates HPS interfaces depending on the interaction

scenario (annotation 5); for example, interactions between humans or interactions
requiring WSDL interfaces (e.g., compositions of HPS and software services).
Since collaboration scenarios include enterprise collaborations, for example,
Web-based portals implementing rich user interfaces, and also mobile collabora-
tion scenarios, interface generation can be customized based on the user’s current
context. Therefore, based on the requirements and constraints of the current or
preferred user device, different interface representations can be generated.

Middleware Layer. The HPS FS is an XML based, distributed file system to manage
user profiles, human tasks, service related information such as WSDL descriptions,
and personal services. The HPS FS offers a set of APIs to manage XML artifacts and
collections via the Atom Protocol Model? to retrieve and update HPS related informa-
tion. We embed HPS interfaces, described using WSDL, as elements in Atom-based

3 http://tools.ietf.org/html/rfc5023
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XML documents (see Atom Syndication Format*). Atom-formatted representations
contain HPS ‘information items’ with the advantage that various Web 2.0 authoring
tools and APIs can be used to retrieve and update Atom-based elements. HPS infor-
mation includes: (i) which services are registered with the HPS framework, (ii) how
to interact with services, (iii) the geographic location of services; if location infor-
mation is shared by the user, and (iv) other context information of an HPS including
the current availability of a particular service.

HAL dispatches and routes SOAP requests to the corresponding service. Thus,
humans and software services (i.e., HPS requesters) are able to interact with HPSs
by issuing requests toward the HPS middleware. HAL implements security features
to prevent unauthorized access and allows requests to be routed according to user-
defined rules (e.g., automatic delegations based on load-conditions [34]). The HPS
Ranking algorithms are used for the analyses of human and service interactions
to recommend the most suitable HPS based on various interaction and task metrics.
Ranking results and recommendations can be requested from a Expertise Ranking ser-
vice (annotation 6). The HPS Lookup supports various ways to discover HPSs. Web
browsers can be used to obtain a list of services as ‘news items’ embedded in Atom
elements. For example, the middleware implements a service which returns XML
documents as news feeds containing HPS-related information. We have implemented
this mechanism to support the integration of HPS with other Web 2.0 platforms. Also,
a Web services-based API can be used to support typical lookup operations to get a
list of available services. The middleware hosts a Service Registry that is used when
the lookup is performed.

3.4.2 Data Collections

The HPS framework utilizes Web services technology to enable HPS at the technical
level. Therefore, various XML-based collections and resources need to be managed
in an efficient manner. In HPS, XML-based collections are managed by the HPS
FS. Basic create, read, update, and delete (CRUD) operations can be performed on
HPS-related information. As mentioned before, the Atom protocol is used for this
purpose. Resources and collections include:

e User Profile and Metrics: Profiles contain hard and soft-facts. Hard-facts includes
information as found in resumes such as education, employment history including
organizational information and position held by the user, and professional activi-
ties. Soft-facts are represented as competencies. A competency consists of weights
(skill level of a user), classification (description of area or link to taxonomy), and
evidence (external sources acting as reference or recommendation). Soft-facts can
be generated by the middleware based on users’ activities to indicate expertise or

4 http://tools.ietf.org/html/rfc4287
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skill level. We use friend-of-a-friend (FOAF®) profiles to manage social networks
structures (e.g., buddy lists) and other user information.

e Service Registry: The registry maintains a number of XML documents describing
HPS. This information includes a set of service definitions, the list of available
services, and information regarding personal services. The term personal service
was introduced as a metaphor for a service instance. Service instance is a purely
technical term to denote the number of physically deployed services that have the
same (syntactic) interface characteristics.

e Tuask Registry: Manages human tasks that can be either public tasks (i.e., announce-
ments used to advertise the need for HPSs) or private tasks that are associated with
HPS-based interactions to control the status of collaborations. Public tasks are
associated with an interaction upon claiming and processing tasks.

3.4.3 Interactions and Monitoring

The HPS framework dynamically generates interfaces for the discovery of services
and interactions with users. Next, we show a (simplified) WSDL-based interface
description to realize HPS-based support services (as introduced in the crowdsourc-
ing scenario).

<?xml version="1.0"7>
<wsdl:definitions name="SupportService" ..>
<wsdl:types>
<xsd:schema targetNamespace="http://danielschall.at/rfs">
<xsd:complexType name="GenericResource">
<xsd:sequence>
<xsd:element name="Location" type="xsd:anyURI" />
<xsd:element name="Expires" type="xsd:dateTime" />
<xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Request ">
<xsd:sequence>
<xsd:element name="SupportResource" type="GenericResource" />
<xsd:element name="Comments" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
<!—— further types ... ——>
<xsd:element name="SupportRequest" type="Request" />
<xsd:element name="AckSupportRequest" type="xsd:string" />
<xsd:element name="Get SupportReply" type="xsd:string" />
<xsd:element name="SupportReply" type="Reply" />
</xsd:schema>
<wsdl:types>
<wsdl:message name="Get Support">
<wsdl:part name="partl" element="SupportRequest" />
</wsdl:message>
<wsdl:message name="AckSupportRequest ">
<wsdl:part name="partl" element="AckSupportRequest" />
</wsdl:message>
<!—— further messages ... ——>

5 http://xmlns.com/foaf/spec/
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<wsdl:portType name="HPSSupportPortType">
<wsdl:operation name="GetSupport">
<wsdl:input xmlns:wsaw="http://.../addressing/wsdl"

message="GetSupport" wsaw:Action="urn:GetSupport" >

</wsdl:input>
<wsdl:output message="AckSupportRequest" />
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="HALSOAPBinding" type="HPSSupportPortType">
<soap:binding style="document "
transport="http: //xmlsoap.org/soap/http" />

</wsdl:binding>

</wsdl:definitions>

Listing 3.1 HPS WSDL definition

Listing 3.1 shows a complete HPS WSDL example to support the discovery of HPS
interfaces. Lines 4-23 define XML type definitions including GenericResource
and SupportRequest. The user can create such definitions by using tools hosted
by the HPS platform. In this simplified example, the activity to be performed by a
human is the previously mentioned request for support (RES) activity comprising
resources, the actual request, and the reply, which is a complex XML data structure
(abbreviated in this example). Lines 24-29 show an excerpt of WSDL messages.
However, we only show the request denoted as SupportRequest.

The HPSSupportPortType is described by lines 31-38. Notice, the HPS
Access Layer (HAL) dispatches all interactions. At run-time, HAL extracts and
routes messages to the demanded HPS. Since every interaction is entirely asyn-
chronous, interactions (session) identifier are automatically generated by HAL (e.g.,
AckSupportRequest). Finally, lines 39—42 show the HALSOAPBinding of
the HPSSupportPortType.

<?xml version="1.0"7>
<soap:Envelope xmlns:soap="http: //www.w3.0rg/2001/12/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:hps="http://danielschall.at/"
xmlns:types="http://danielschall.at/types"
xmlns:rfs="http://danielschall.at/rfs">
<soap:Header>
<types:timestamp value="2010-03-05"/>
<types:delegation hops="3" deadline="2010-03-06"/>
<types:activity url="http://.../Activity#42"/>
<wsa:MessageID>uuid</wsa:MessageID>
<wsa:From>http://.../Actor#Florian</wsa:From>
<wsa:ReplyTo>http://.../Actor#Florian</wsa:Reply To>
<wsa:To>http://.../Actor#Daniel</wsa: To>
<wsa:Action>http://.../Type/RFS</wsa: Action>
</soap:Header>
<soap:Body>
<hps:Request>
<rfs:subject>WSDL consumption with Axis2</rfs:subject>
<rfs:requ>Axis2 reports a parsing error while consuming
the given resource. What is wrong?</rfs:requ>
<rfs:comments>Used Axis2 1.4</rfs:comments>
<rfs:keywords>WSDL, Axis2</rfs:keywords>
<rfs:category>Software/SE/General/SE for Internet projects
</rfs:category>
<rfs:resource>
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<!—— details omitted ——>
</rfs:resource>
</hps:Request>
</soap:Body>
</soap:Envelope>

Listing 3.2 Simplified RFS via SOAP example

The HPS Access Layer logs each service interaction (request and response mes-
sage) through a logging service. RFSs and their responses, exchanged between crowd
members, are modeled as traditional SOAP calls, but with header extensions, as
shown in Listing3.2. The most important SOAP-header extensions include: The
Timestamp captures the actual creation of the message and is used to calculate tem-
poral interaction metrics, such as the average response time. The tag Delegation
holds parameters that influence delegation behavior, such as the number of sub-
sequent delegations numHops (to avoid circulating RFSs) and deadlines. The
Activity uri describes the context of interactions that is based on the previ-
ously introduced activity model. The MessageID enables message correlation to
match request/response pairs. WS-Addressing tags, besides MessagelD, are used
to route RFSs through the crowd.

Interactions are periodically analyzed to calculate metrics such as reputation and
trust between community members. While the depicted architecture follows a cen-
tralized approach, the logging facilities are replicated for scalability reasons, and
monitoring takes place in a distributed form. Interactions are purged in predefined
time intervals, depending on the required depth of history needed by metric calcula-
tion plugins (e.g., for trust inference [33]).

3.5 Expertise Ranking

Evolving skills, interests and expertise need to be maintained in an automated man-
ner to avoid outdated profile information. Top-down approaches define interest and
expertise areas using taxonomies and ontologies. Here we follow a interaction mining
approach that addresses inherent dynamics of flexible collaboration environments.

3.5.1 Context-Sensitive Interaction Mining

Our expertise ranking approach is based on observed interactions (from logs) and
analysis of the structure and dynamics of interaction networks. Therefore, an inter-
action network (see Fig.3.6a) is modeled as a graph G = (V, E) composed of the
set of vertices V and the set of edges E. Note, here the terms edge and link have the
same meaning.

We argue that context information is essential for expertise mining. The context
of an interaction can be captured by, for example, extracting relevant keywords
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(a) Interaction network.

o Context Tags
o Interaction Behavior
o Social Preferences

(b) Link information. (¢) Context networks.

o Context
Weights

o Dynamic
Interests

Fig. 3.6 Collaborative networks: a interactions are performed between nodes in the network;
b Metadata and metrics are associated with links between nodes; ¢ Context networks are created
based in link information

from messages exchanged between users or by tags applied to various collaboration
artifacts. In this work, we focus on rags (Fig. 3.6b) serving as input for contextual link
information. Interactions such as delegation requests are tagged with keywords. As
delegation receivers process tasks, our system is able to learn how well people cope
with certain tagged tasks; and therefore, able to determine their centers of expertise.
The profile P(u) = (f,(t1), fu(t2), fu(t3) ...) describes the frequencies f,, of tags
T = {t1,t,t3...} that are applied in collaborations by and with u. Interaction
metrics such as weights depicting the interest and focus of a user to collaborate
with other peers in a specific context are automatically calculated through mining.
Figure 3.6¢ shows networks for context C1 and C2. Each context network may have
one or more tags associated with it.

Existing work in the area of expertise mining (e.g., [39]) typically focuses on a
graph representation as depicted by Fig.3.6a. In contrast, we present an approach
and algorithm that is suitable for scenarios as shown in Fig. 3.6c. We base our exper-
tise mining algorithm on well proven and theoretically sound techniques (i.e., see
[16, 21]). Specifically, we take the notion of hubs and authorities as introduced
by Kleinberg [16] as a starting point to derive a context-sensitive expertise mining
approach.

3.5.2 Hubs and Authorities

The notion of authorities in social or collaborative networks can be interpreted as
a measure to estimate the relative standing or importance of individuals in social
networks. Applying this idea in our crowdsourcing scenario (see Fig. 3.7), a member
of the Expert Crowd may receive an RFS and delegate work to some other peer in the
network (characterizing hubs in the network). For example (as depicted in Fig.3.7),
u delegates the received RFS to w. Receivers of the delegated work, however, expect
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rating relation ———=

Fig. 3.7 Hubs in different personalized expert queries

RFS:s fitting their skills and expertise (i.e., being an authority in the given domain).
Careless delegations of work will overload these peers resulting in degraded process-
ing time due to missing expertise.

Within the Expert Crowd, authorities give feedback using rating mechanism (e.g.,
anumber on the scale from 1 to 5) to indicate their satisfaction; i.e., whether a partic-
ular hub distributes work according to their skills and interest. Thus, a ‘good hub’ is
characterized by a neighborhood of peers that are satisfied with received RFSs. Also,
delegation of work is strongly influenced by #rust, for example, whether the initial
receiver of the RFS (hub within the Expert Crowd) expects that a peer will process
work in a reliable and timely manner. RES receivers need to be trusted by influential
hubs that are highly rated to be recognized as authoritative peers in the Expert Crowd.

3.5.3 Personalized Expert Queries

Here we utilize the concept of personalized expert queries (as introduce in [27]) to
discover expert hubs that are well-embedded in expertise networks given a particular
query context. A hub is thereby characterized by the social network structure (node
degree) and connection strength (e.g., count of delegated or processed RFSs) based
on joint collaborations. Delegation is important in flexible, interaction-based systems
because expert hubs typically attract a large amount of RFSs over time (due to their
distinguished expertise). From a network perspective, this means that hubs will be
‘bottlenecks’ due to the limited capacity and processing speed of the HPS. However,
being a hub in the Expert Crowd means that a person knows many other experts in
similar expertise areas. The main argument of our approach is that the likelihood of a
successful delegation of RFSs to other experts increases based on the hubness of a per-
son (embedding of a person in expert areas such as communities and interest groups).

Let us start formalizing this concept. A personalized expert query Q is defined as
0 = (KW, W(kw)) where KW = {kwy, kwa, kws, ...} is the set of keywords or
terms determining the context of a query. Each keyword kw may have a weight asso-
ciated with it depicted by W (kw). Consider the scenario in Fig. 3.7. First, a query (see
Q4 and Q8. A and B depicting the query context) is specified either manually by a
(human) expert seeker or derived automatically from a given process context (PFL),
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for example a predefined rule denoting that a particular set of skills is needed to solve
a problem. The purpose of a query is to return a set of HPSs who can process RFSs,
either by working on the RFSs or delegation. Thus, Q4 would return H4 as the user
who is well-connected to authorities in query context Q4. Being well-connected
means that H4 has the highest number of links and has performed interactions over
these links (e.g., delegations) that are relevant for a given query context. There are
two influencing factors, i.e., relations, determining hub- and authority scores: (i) how
much hubs frust authorities (depicted as filled arrows from hubs to authorities) and
(ii) ratings hubs receive from authorities (open arrows to hubs). Trust mainly influ-
ences the potential number of users (e.g., known by H4) who can process delegated
RFSs. On the other hand, receivers can associate ratings to RFSs to express their
opinion whether the delegated RFSs fit their expertise. 9 may demand for a dif-
ferent set of skills. Thus, not only matching of actors is influenced, but also the set
of interactions and ratings considered for calculation expertise scores (i.e., only the
set of RFSs and ratings relevant for Q). Note, single interactions that lead to trust
relations, as well as single rating actions that lead to rating relations are not depicted
by Fig.3.7. A single arrow may in fact depict a number of interactions or ratings.

3.5.4 Ranking Model

One of the main pillars of our work is to consider the context in which interactions
take place. In our previous work we defined two independent expertise ranking
approaches, one called DSARank [27] and the other approach called ExpertHITS
[28, 29]. Here we introduce a generalized ranking approach based on our previous
discussions on the concept of hubs and authorities in evolving Expert Crowds. The
starting point for our ranking algorithm is (3.1) (see [16, 28]).

Hu)= > AW AW = > H) (3.1)

(u,v)€E (u,v)EE

The edge (u, v), which reads u knows v, is established based on links in the
social network (FOAF profiles). Notice, by ranking nodes in a graph G using this
method, each node u € V receives both hub and authority scores. However, we are
primarily interested in computing the hub importance H (u) of a particular node.
This is motivated by the need to find coordinators who distribute requests by dele-
gating tasks within the Expert Crowd [28] (emerging CFLs). However, we argue that
an expertise mining algorithm must consider a person’s interest and activity level
in a certain collaboration context. As proposed in [27], preferences that are based on
mining of interaction metrics can be used to compute contextual expertise profiles.

H(w; Q) = (1= )pu; Q)+ i D wlAW;Q) 32)

(u,v)eE
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Table 3.1 Interaction weights and related symbols

Symbol Description

Wqu The link weight based on ratings given by v to RFSs received from u

va The connection strength of a hub z to authority v. Delegation behavior of hubs is based

on the success of interactions (successful completion of delegated task)

Computing contextual expertise profiles is accomplished by expanding (3.1) in
terms of adding (1 — A,) p(u; Q) to the standard HITS model as shown in (3.2). The
parameter Ay is used to balance between preferences p(u; Q) and the propagation of
global importance scores denoted by the term Z(W)e E WVQM A(v; Q). The link weight
wyy, based on Q is discussed in Table 3.1. From the network point of view, the defin-
ition in (3.2) can be interpreted as influence propagation based on a node’s outgoing
links. This is similar to TrustRank [12] where trust scores are propagated along neigh-
boring outlinks. TrustRank is based on an inverse PageRank model that utilizes good
seeds to influence trust flows. Also (3.2) permits a similar interpretation because
H (u; Q) can be computed as the inverse PageRank [12]. However, our approach
closely follows the personalized PageRank model [21] by assigning preferences to
the personalization vector p(u; Q) to create context-aware importance rankings.

Similarly, importance scores for authorities A(v; Q) are determined using (3.3):

AWQ) = (1 —1)piQ) +ia Y. WOH(:0) (33)

(z,v)EE

Without considering the dual nature of HITS (assigning hub and authority scores
to each node in the network), we can regard (3.3) as the personalized PageRank
model that is biased towards a particular interaction context using the contextual
preference vector p(v; Q). Again, the weight wZQV is detailed in Table3.1. Notice,
(3.3) permits an interpretation of delegation behavior within the Expert Crowd as a
stochastic process as hubs may choose to interact with known authorities or decide
to pick a newcomer for task delegation either randomly® or based on, for example,
interest similarities (see also [33] for bootstrapping newcomers in collaborations).

To create a unified equation for H (u; Q), we substitute A(v; Q)—as defined in
(3.3)—in (3.2) and define the hub importance of u as follows:

Hu:0) = (1= a)p: Q) + (1= 1a) D wlpv:0)

(u,v)EE

+anka D, > wlwlH(z:0) (3.4)

(u,v)eE (z,v)eE

6 The probabilistic interpretation of PageRank is known as the random surfer model [21].
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(3.4) provides the basic formalism to determine coordinators based on contex-
tual preferences. Next, we reformulate the context-sensitive personalization vector
p(u; Q) as follows (based on (3.4)):

1—x
P Q) = ﬁpm;@ + (Z):E wl p(v;0) (35)

(3.5) essentially consists of two components: preferences given to a particular
hub u, for example based on the PFL problem context, and how well u is rated by
authorities expressed by the weight Wqu~ The authority preference vector p(v; Q) is
personalized based on interaction dynamics captured by metrics such as the interac-
tion intensity of v. We refer interested readers to [27] for a detailed description on
these metrics.

Here we focus on personalizing p’(u; Q) based on ratings to reduce the complexity
of preference parameters (i.e., determining p(u; Q)). By setting A, = 1 we have:

Py = 3 wipviQ) with 4, = 1 (3.6)
(u,v)eEE

Based on (3.4) and (3.6), let us define the following equation to estimate the hub
importance of a given network node u:

Mwr)y=0-0p@r)+r > > whwlif @) 3.7)
(u,v)eEE (z,v)EE

(3.7) introduces various new concepts (detailed in Table3.2). In particular, we
define %7 as the hub importance of a node u since our approach does not require two
types of rankings (hub and authority scores) anymore. Given (3.7), we have derived
an expertise ranking model that is similar to the basic idea of PageRank. While such
a model has been extremely successfully applied to search engines on the Web, the
drawback is the complexity of computing the PageRank equation.” Especially in
crowdsourcing scenarios that require on-demand discovery of experts based on a
set of specified skills, computation of expertise scores taking up to several hours is

Table 3.2 Topic-sensitive hub importance and related symbols

Symbol Description
I H

The topic-sensitive hub importance score of a given node in G

T’ Topic T’ C T based on a set of tags applied to interactions. 7’ can be calculated auto-
matically based on tag-clustering techniques (e.g., see [33]) or by using a predefined
skill-based taxonomy for tags [28, 29]

7 In large social networks (for example network size >10000 nodes), it may take up to several hours
to compute PageRank importance scores.
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not acceptable. We have first raised this issue in [26] and proposed a combination
of offline mining and online aggregation of expertise ranking scores based on query
preferences. Here we apply this approach to solve the problem of context-sensitive
hub discovery in Expert Crowds. The first step (as shown in (3.7)) was to introduce
predefined topics T’ that are query independent.

To create topic-sensitive expertise profiles offline through mining that can be
aggregated online, we propose the PageRank linearity theorem:

Theorem 1 (Linearity) For any personalization vectors py, py and weights wi, w
with w1 + wa = 1, the following equality holds:

ppr(wip1 +wap2) = wippr(p1) +wappr(p2) (3.8)

The above equality states that personalized PageRank vectors ppr can be com-
posed as the weighted sum of PageRank vectors. The linearity theorem has been
originally introduced by [13, 14] to create topic-sensitive importance scores for Web-
pages, but has not been applied in existing (related) approaches for expertise mining.

1 u;0) = wi I ;1) +wal " ;o) with Q={T1, .} (3.9)

(3.9) shows how to create query-dependent rankings established upon topic-sensitive
expertise importance scores using (3.7) and (3.8).

3.6 Evaluation

We structure our evaluation in four sub-sections. First, we discuss a SOA-based
testbed environment allowing us to simulate crowdsourcing scenarios. Second, we
present performance experiments based on logged interaction data to test the effi-
ciency of our online ranking approach considering concurrent expertise queries.
Third, we analyze the effectiveness of our ranking approach based on synthetic
interaction data gathered through simulations.

3.6.1 SOA Testbed Environment

Our evaluations were gathered using the features of the Genesis2 framework [15]
and infrastructure services (e.g., logging) as introduced in [24]. Genesis2 has a man-
agement interface and a controllable runtime to deploy, simulate, and evaluate SOA
designs and implementations. A collection of extensible elements for these environ-
ments are available such as models of services, clients, registries, and other SOA
components. Each element can be set up individually with its own behavior, and
steered during execution of a test case. For the experiments in this work, we deployed
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Genesis2 Backends to the Amazon Elastic Compute Cloud.® We launched, depending
on the amount of involved services instances, two or three Community AMIs of the
type High-Memory Extra Large Instance (17.1 GB of memory) running a Linux OS.
In the following, we provided each instance with the same Genesis2 Backend snap-
shot via mountable volumes from the Elastic Block Store. Finally, we deployed the
following environment setup from a local Genesis2 Frontend. It included SOA-based
HPS communities established by Genesis2 Web services equipped with simulated
behavior and predefined relations to provide communication channels and instantiate
communities. Services act like HPSs when delegating each other new tasks, process-
ing tasks, re-delegating existing tasks, or reporting tasks’ progress status. Tasks are
not delegated arbitrarily but must match the receivers capabilities. Therefore, they
are tagged with three keywords one of which must match the picked receivers capa-
bilities. Task processing and delegation decisions happen individually and in random
time intervals (1-8s). A hub combines capabilities of multiple communities by dis-
tributing tasks according to expertise areas of a given community (brokering of tasks).
A hub avoids task processing and only forwards tasks. Finally, the deployed testbed
environment has a variable number of services and participants per community.
Consequently, the number of hubs varies depending on disparate expertise commu-
nities hubs are connected to (through knows relations).

3.6.2 Performance Aspects

We performed several experiments to test the performance of our expertise ranking
algorithms under varying characteristics such as number of nodes and expertise
communities. Graph-based modeling and ranking algorithms have been implemented
in C# and were deployed on our local (lab-based) blade servers accessible via a query
Web service.

Hardware Setup. Our servers are equipped with Intel Xeon 3.2 GHz CPUs (quad
core) and 10 GB RAM hardware. Interaction logs are managed by MySQL 5.0 data-
bases. A client request pool (RP, see Fig. 3.8a) is created on a separate machine (Intel
Core2 Duo CPU 2.50 GHz, 4 GB RAM) to perform parallel invocations of the query
Web service. Clients are connected with the server via a local 100 MBit Ethernet.
Performance Results. The results for online expertise queries® are summarized in
Fig.3.8. The first experiment is based on a graph containing 198 nodes, 200 edges,
and a total number of 10 distinct tags applied to interactions between nodes. The
query service processing time for this environment is shown in Fig.3.8a. We vary
the number of concurrent requests, denoted as RP, by launching multiple threads.
Given a size of RP = 50 and a total amount of # 100 requests to be processed,
setting RP = 100 does not speed up the processing time of requests (i.e., the total
time needed to process a number of requests). The average processing time increases

8 hitp:/aws.amazon.com/ec2/
9 Performance of the offline mining procedure as discussed previously is not shown here.
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|Experiment|# Req.|MIN | AVG| MAX | Total |

Applied Tag sin Exp.4(n=1029 |Frequ.
50 |3167) 9083 | 10368 | 52543 and communities=230)
1(RP=10) | 100 |1669| 9369 | 10576 101244
self-* 295
200 (18259211 | 10748 {190647
Robustness 306
50 |1606|15955)29952 | 50762
Testbed 311
1(RP=50)| 100 (1482(27440| 48562 | 98685 DB 314
200 (1638|36313|47689 |188573 .
Healing 321
50 [1606|15955| 29952 | 50762
Trust 322
1(RP=100) | 100 [1544|28560| 57501 105331 WS 327
200 |1591{55185/100370[202394 .
Autonomic 335
2(RP=50) | 100 [2308|37891| 63258 |123677| |q. .1 .
Similarity 341
3(RP=50) | 100 [2854{42041(67516 (136266 .
Logging 353
4(RP=50) | 100 [3276|55058| 84739 |167778 )
(@
|Query ID|Query keywords |# Hubs|AVG proc.time
Q1  |Robustness Logging 105 3993
Q2  [Robustness Logging DB Testbed 134 3666
Q3  [Robustness Logging DB Testbed Similarity 146 3478

()

Fig. 3.8 Processing statistics in simulated environment (in milliseconds). a Processing time. b Tag
frequency. ¢ Queries in Exp. 4, number of discovered hubs and AVG processing time

by comparing RP = 100 and RP = 50 due to the overhead when handling a larger
amount of requests simultaneously. Thus, we use RP = 50 for all further experiments.

Also, by processing a larger amount of requests, say # 200, the total processing
linearly increases with the number of requests. We increased the number of nodes
and interactions to understand the scalability of the query Web service under different
conditions: experiment 2 with 579 nodes, experiment 3 comprising 774 nodes, and
experiment 4 with 1029 nodes in the tested. HPSs in the testbed have been deployed
equally on multiple hosts, e.g., 3 cloud hosts in experiment 4 to achieve scalability. In
subsequent experiments detailed in Fig. 3.8 (experiments 2—4) we focus on a request
pool with RP = 50 and 100 requests to be processed by the query service using
different keywords (see Fig.3.8c). To compare the experiments 1-4, we query the
interaction graph using the keywords Q = {Robustness, Logging}. Increasing the
number of nodes by a factor &~ 3 (see experiment 1 and 2), the processing time goes
up by 30%. Comparing the experiments 2 and 3 (node addition of ~30 %), the
processing time increases by 10%. By comparing the experiments 3 and 4 (node
addition of ~30 %), the processing time increases by 20 %. Our experiments show
that the online creation of expertise profiles based on different queries scales with
larger testbeds linearly.

Furthermore, we used different query keywords as shown in Fig. 3.8c. The number
of discovered hubs increases if multiple keywords are used (see Fig.3.8b for the set
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of available tags). The average processing time is not significantly influenced by the
number of used keywords.

3.6.3 Quality of Expertise Rankings

Next, we analyze the effectiveness of our ranking approach based on synthetic inter-
action data since real interaction logs have not been available at time when performing
this research.

Ranking Evaluation Metrics. To study the results of our ranking approach, we
define a set of ranking evaluation metrics in the following.

e The absolute ranking change RC (1) returns the ranking change in a given query:
RC(u) = pos(u)pLr — pos(u)csr (3.10)

BLR are the base-line rankings (here we use the standard HITS algorithm to
obtain the base-line results) compared with CSR context-sensitive rankings using
our with (cf. I as defined by (3.9)).

e We define quality 2(u) as the aggregated link weights of u’s neighbors as:

2= > D wy (3.11)

(u,v)eE (z,v)eE

We have studied the calculation of link weights extensively in our previous work.
For example, weights can be calculated based on trust metrics (e.g., delegation
behavior) or link intensity [27]. Thus, we refer the interested reader to [28, 33].

Algorithm Parameters. CSR are obtained based on both link weights and the
assignment of preferences to personalization vectors p'(u;T') = 3, \cg Wiy
p(;T’). In our experiments, preferences are assigned as follows:

T — [1, if T'[v] # null G2

0, otherwise

T’[v] holds those users who have interacted with other users with focus on a
particular topic T’. For example, users have performed tasks tagged with keywords
related to T’. However, not only interaction-based profiles must be used to assign
preferences. In addition, a user’s manually maintained profile (e.g., FOAF) may be
used to account for the user’s interest (i.e., the authority v) in a given topic.
Ranking Results. To test the effectiveness of CSR, we performed experiments to
study the impact of ratings and link weights on expert rankings. In the following
figures, we show the top-30 ranked experts in a small-scale network (100 nodes).
Results are sorted based on the position within the result set (see horizontal axis
of Fig.3.9 and column Rank in Fig.3.10). Figure 3.9a shows the node degree and
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Fig. 3.9 Node degree and results of CSR/BLR comparison. a Node degree. b Ranking change
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Rank | Quality @ | Rating | | Rank | Quality Q| Rating |

1 3.7 0.8 16 1.0 1.3
2 3.0 0.7 17 1.0 0.9
3 3.0 1.4 18 1.0 0.9
4 3.0 0.5 19 1.0 2.7
5 3.0 0.5 20 1.0 4.1
6 1.0 0.8 21 1.0 1.5
7 1.0 1.6 22 1.0 1.0
8 1.0 1.8 23 1.0 0.9
9 1.0 0.8 24 1.0 1.1
10 1.0 0.3 25 1.0 0.2
11 0.4 0.9 26 1.0 1.3
12 1.0 1.1 27 1.0 1.2
13 1.0 0.9 28 1.0 0.8
14 1.0 1.1 29 1.0 1.5
15 1.0 0.3 30 1.0 2.5
(a) (b)

55

Fig. 3.10 CSR ranking results: rank, quality, and ratings. a Hub quality and ratings (1-15). b Hub

quality and ratings (16-30)
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Fig. 3.9branking changes obtained by comparing CSR results with BLR (i.e., ranking
results without accounting for metrics and ratings).

Figure3.10 shows that all nodes within the top segment received high ratings
given a high degree of links which is the desired property of CSR. Different lev-
els of quality (i.e., quality mainly being 1 of ranked nodes between the positions
6-30) can be explained by the impact of node degree on quality. Some nodes are
demoted (negative ranking change) since the node (e.g., see 11) has received low
ratings even though the node has a high degree of links. Nodes get promoted (pos-
itive ranking change) if they exhibit sufficient high ratings (see 15) or high quality
(see 20 which was promoted a few positions only due to limited degree). Overall,
CSR exhibit the demanded properties of promoting well-connected and rated hubs,
thereby guaranteeing the discovery of reliable entry points to the Expert Crowd.

3.7 Conclusion and Future Work

The Web is evolving rapidly by allowing people to publish information and services.
At the heart of this trend, interactions become increasingly complex and dynamic
spanning both humans and software services. However, the transformation of how
people collaborate and interact on the Web has been poorly leveraged in existing
service-oriented architectures. The benefit of the presented approach is a seam-
less service-oriented infrastructure of human- and software services. The resulting
service-oriented application needs to be flexible supporting adaptive interactions.

In this chapter, we have motivated the need for adaptive interactions discussing
an Expert Crowd scenario where people can register their skills and capabilities as
services. Mixed service-oriented systems are open ecosystems comprising human-
and software-based services. We discussed the HPS architecture enabling dynamic
interactions in mixed service-oriented systems. We defined a novel expertise rank-
ing approach that is based on context-aware interactions. Our ranking approach
shows promising results, but needs to be further validated in real crowdsourcing
environments. Our future work includes the public deployment and evaluation of the
implemented framework. Also, we will further study the effectiveness and quality
our expertise ranking approach in large-scale collaboration environments.
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Chapter 4
Crowdsourcing Tasks in BPEL4People

Abstract In this chapter we extend BPEL4People with non-functional properties
that allow to cope with the inherent dynamics of crowdsourcing processes. Such prop-
erties include human capabilities and the level of skills. We discuss the formation of
social networks that are particularly beneficial for processing extended BPEL4People
tasks. Furthermore, we present novel approaches for the automated assignment of
tasks to a social group. The feasibility of our approach is shown through a proof of
concept implementation of various concepts as well as simulations and experiments
to evaluate our ranking and selection approach.

Keywords Crowdsourcing - BPEL4People - Non-functional properties + Social
networks

4.1 Introduction

Most efforts to model human interactions using BPEL4People [3] (B4P) and
WS-HumanTask [4] (WS-HT) focus on relatively static role models for selecting
the right person to interact with. Thus, BPEL4People is not well suited for specify-
ing and executing processes involving crowdsourcing of tasks to online communities.
The WS-HT specification does not define any particular mechanisms to find or select
people in open and dynamic environments. Instead, a Logical People Group is used
to query an organizational directory. We believe that human interactions in SOA
need to be supported in a flexible manner, in particular, it should be possible to use
crowdsourcing for process execution.
In this chapter we present the following key contributions:

1. An approach for combining crowdsourcing techniques and B4P related XML
standards.

2. B4Pwith non-functional properties for adaptive and quality-aware crowdsourcing
of service-oriented processes.

D. Schall, Service-Oriented Crowdsourcing, SpringerBriefs in Computer Science, 59
DOI: 10.1007/978-1-4614-5956-9_4, © The Author(s) 2012
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3. Social community formation for efficient crowdsourcing of processes.
4. Automated matching of tasks to members of a social crowdsourcing community.
5. Implementation and evaluation of our concepts.

This chapter is structured as follows: In Sect.4.2 we discuss related work, in
Sect.4.3 we present the application areas of our proposed service-oriented crowd-
sourcing environment and outline the steps of our approach. In Sect. 4.4 we propose
extensions to introduce non-functional requirements for B4P. In Sect. 4.5 we explain
the establishment of a social network structure that allows for an efficient execution
of B4P processes. We present the automated matching of extended B4P processes to
a social community crowd in Sect.4.6. Finally, we present in Sect. 4.7 the results of
our evaluation and conclude this chapter in Sect. 4.8.

4.2 Background

The work presented in this chapter focuses on a methodology and tools allowing
human interactions in SOA to be executed in a flexible manner. There has been a
growing interest in the complex ‘connectedness’ of today’s society. Phenomena in
our online-society involve networks, incentives, and the aggregate behavior of groups
[15]. Peer-production distinguishes from the property- and contract-based models of
firms and markets. Research by [7] analyzes how groups of individuals successfully
collaborate on large-scale projects following a diverse cluster of motivational drives
and social signals. Human computation is motivated by the need to outsource certain
steps in a computational process to humans [16, 39]. A variant of human computation
called ‘games that matter’ was introduced by [48]. Crowdsourcing [8, 13, 18, 49]
refers to a new Web-based collaboration model where human tasks are outsourced to
an anonymous workforce by various requesters including companies or individuals.
Related to crowdsourcing are systems such as Amazon Mechanical Turk! (AMT).
AMT is a Web-based, task-centric platform in which users can publish, claim, and
process tasks. [46] evaluates the task properties of a similar platform in cases where
large amounts of data are reviewed by humans. In contrast to common question/an-
swer (Q/A) forums, such as Yahoo! Answers,2 AMT enables businesses to access the
manpower of thousands of people using a Web services API. Mixed service-oriented
systems [38, 39] target flexible interactions and compositions of Human-Provided
Services (HPS) and Software-Based Services (SBS) [42]. This approach is aligned
with the vision of the Web 2.0, where people can actively contribute services. In
such networks, humans may participate and provide services in a uniform way by
using the HPS framework [39]. In a similar spirit, [33] defines emergent collec-
tives which are networks of interlinked valued nodes (services). In such collectives,
there is an easy way to add nodes by distributed actors so that the network will scale.

! http://www.mturk.com/
2 http://answers.yahoo.com/
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Current crowdsourcing platforms offer very limited support for modeling complex
interactions that require coordination of humans’ joint capabilities and software-
based services.

Several trends originated from human interactions in service-oriented systems.
As mentioned before, B4P defines human interactions in business processes via the
human task specification [4]. A concrete implementation of B4P as a service has been
introduced in [47], but without supporting process adaptivity. Worklets [1] grounded
in activity theory represent self-contained subprocesses. Another approach for flex-
ible activities in business-oriented environments was presented in [11]. In [36], the
relation of various B4P-related Web standards and resource patterns is discussed.
In contrast to process-centric compositions in SOA, task-based crowdsourcing plat-
form such as AMT do not support long-running interactions and compositions of
humans and services. The problem of composition is strongly related to organization
and control. The key principles of autonomic computing [19] aim at supporting sys-
tems featuring self-* properties such resilience through self-organizing computing
elements. As an example, [26] focus on autonomic services and trusted service selec-
tion. In [25], a reference architecture for self-organizing service-oriented systems is
presented, but without considering humans ‘as part’ of the system. The authors in [17]
propose adaptive flows to support flexibility and evolution in collaborative, pervasive
environments.

Human tasks metrics in workflow management system have a long history in
research (e.g., see [12, 23, 52]). Studies on distributed teams focus on human per-
formance and interactions [5, 32]. With the emergence of Enterprise 2.0 environ-
ments [10], the information available in social networks becomes important in a
professional context as well. Thus, both fechnological and social aspects shape
the operation constraints of a system [22]. As a consequence, it is important not
only to model human interactions in process-centric systems, but also to understand
how people are connected [43, 50] and how information flows are influenced by
social structure. When building Web-centric applications involving human tasks,
engineers have to consider incentive schemes that are likely to encourage users
to perform these tasks that crucially rely on human input [44]. Models and algo-
rithms to track people’s expertise are important in future service-oriented crowd-
sourcing environments [40]. In Web-based environments, task-based platforms allow
users to share their expertise [50] or help other users in Q/A communities [2].
In [51], the authors applied PageRank [31] in online communities to measure
expertise.

In our previous work, we have designed and implemented the HPS framework
[42] allowing users to define services and to provision human expertise in a service-
oriented manner. Furthermore, we have designed a market-based crowdsourcing
platform [37] and simulation environment to stimulate the evolution of user skills.
Here we extend B4P and related XML standards to cope with the inherent dynamics
of crowdsourcing environments. Also, we show how social networks can help to
process crowdsourced tasks in a more efficient manner. To our best knowledge, this
is the first effort to extend B4P and related standards to cope with the challenges of
crowdsourcing environments.
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4.3 Service-Oriented Crowdsourcing

Business processes are affected by rapidly changing requirements and imperative
adaptations that come along with necessary modernizations of the in-house activities
and adjustments to the market. Many of today’s workflow-based systems are still
based on a top-down design for processes. It is clear, that there is a trend to the
combination of interactions between humans and software based applications, such
as SBS, as a central requirement in business environments. This may work fairly well
for processes involving only SBS with minor human interaction. However, once the
human interaction models in those processes become more important and complex,
a top-down approach is unable to foresee and cope with the implications of the
human behavior related dynamics. There are several types of tasks that are still best
processed by humans.

4.3.1 Task-Based Crowdsourcing Markets

Currently, the extensions to the specifications for business processes are designed for
simpler human tasks, e.g., making process progress decisions and process approval
requests [3]. Nevertheless, with the new marketplaces provided by crowdsourcing
including workers with manifold skills, new types of tasks can be considered for
outsourcing. Recently, many platforms have started to offer a versatile number of
tasks that can be outsourced to the crowd.

In the following, we overview some of the potential crowd tasks that could be
designed and outsourced using our approach:

e Classification or categorization tasks using for example the AMT marketplace
[20], CrowdFlower,? or SmartSheet.* Categorization is one of the most common
use cases for crowdsourcing. A categorization task is one that asks a worker to
select from a list of options.

e Transcription tasks as offered by CastingWords® or SpeechInk.® Transcription
services include transcription of audio-to-text.

o Web development and web programming as provided by, for example, oDesk.’
Web development tasks include integration of scripts with Web service APIs or
programming questions regarding different frameworks or toolKkits.

We foresee that our B4P-based approach can be used in scenarios like document
translation, proof-reading and correction of documents (see also crowd-powered

3 http://www.crowdflower.com
4 http://www.smartsheet.com

3 http://www.castingwords.com/
6 http://www.speechink.com/

7 http://www.odesk.com
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word processors®), transcription, data-cleansing, and simple programming tasks as
those offered by oDesk. These tasks can be crowdsourced by creating appropriate
B4P activities and WS-Human Tasks embeddings that are transmitted to the HPS
middleware. The HPS middleware implements algorithms for matching, ranking,
selection and runtime monitoring of tasks.

4.3.2 Approach Outline

Here, we propose adaptive human interaction support in service-oriented systems.
Human interaction support in SOA has only recently been proposed and supported
by standards such as WS-HT [4] and B4P [3]. We argue that these standards need
to be extended to support compositions of both HPS and SBS in crowdsourcing
applications. The benefit of this approach is a seamless QoS-based service-oriented
infrastructure that is able to adjust its interactions based on service-level agreements
(SLAs) and quality constraints. Our previous work [37, 39] has already detailed the
challenges of integrating in-house processes to a crowdsourcing environment. Here
the approach is extended by support for crowdsourcing of composed, complex tasks.
Here we identify the following main challenges:

e Crowd structure: Composed tasks not only require humans for processing the set
of subtasks, but also, a coordinated and supervised assignment and merging of the
individual results to a final result. For this purpose, in this work we identify three
roles. The Coordinator, on the one side, keeps in touch with the business process
management, and, on the other side, maintains her/his relations to various crowd
communities. The motivation of coordinators is to some extend similar to the role
of a moderator in social-online communities such as Slashdot. Moderators, in our
case coordinators, can be understood as gatekeepers [24] who control the quality
of postings (in our case tasks) in online communities. The Supervisor represents
a community and is aware of the current possible segmentation of one crowd task
to a set of subtasks with the related distribution to her/his team. Finally, there are
the common crowd Workers. We believe that this simple role model consisting of
three distinct roles is sufficient for crowd tasks as described in Sect.4.3.1. Crowd
members temporarily form teams to work jointly on tasks on a magnitude of
hours and days. Shortly after that the team dissolves again and workers pick some
other task. More complicated hierarchies as found in enterprises or large-scale
development teams may not be suitable for such short-lived groups.

e Non-functional properties: Current service-based process definitions for human
interactions, in particular the combination of BPEL, B4P, and WS-HT defin-
itions, need to be extended for the requirements of crowdsourcing. A further
challenge addressed with crowdsourcing, is the integration of SOA agreements’
specifications WSLA (Web Service Level Agreements)? in the outsourcing process.

8 http://projects.csail.mit.edu/soylent/
9 http://www.research.ibm.com/wsla/WSLA093.xsd
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e Crowd member ranking: Crowd environments are dynamic by nature. Therefore,
it is vital to the outsourcing party that the current best matching crowd members
can be detected and ranked according to the task’s requirements. The result allows
the customer to select from a large set of potential workers. Also, the final decision
remains with the customer that can hide possibly sensitive selection constraints
from the public crowd platform.

An important aspect of this work is to introduce the notion of expertise (i.e., human
skills) in the context of B4P. Existing approaches for expertise mining (e.g., see [51])
have mostly been applied in online communities or social network analysis, but not
in process-oriented crowdsourcing environments. Here we introduce the notion of
capabilities and skills in B4P to ensure quality-aware crowdsourcing of human tasks.
In the following, we define important concepts used in this work:

e Skills are specific to the functions workers perform doing their job. As an example,
a worker may perform activities related to a software development task such as
reviewing code. The worker may be an expert in ‘Java programming’, a beginner
in ‘Python programming’ and so forth. However, skills—as used in this work—are
always based on personal expertise workers have and workers may improve their
skills through training (e.g., improving the skill level from ‘knowledgeable’ to
‘expert’).

e Capabilities describe non-functional human properties to determine a workers suit-
ability to work on a task. Human capabilities describe behavior properties which
cannot be directly derived from the worker’s profile. Example capabilities include
‘worker should be capable of coordinating 5 other team members’ or ‘worker
should be capable of merging and finalizing translated input from other workers’.
Thus, the suitability of a worker is highly dependent on the current load conditions
within the crowdsourcing environment. A worker might have in principle the skills
to finalize a translated document but may not have the resources to merge the input
from other workers. At B4P level, only capabilities are defined such as ‘translate
document and split/merge sections’. To fulfill this capability, workers are matched
and ranked based on their skills, their social network connectivity (being able to
split, distribute portions of the document to peers in the social network and to
merge the received input) and their current load (number of pending tasks in a
worker’s queue).

e Constraints allow the customer and owner of the WS-HT to state some strict or
relaxed filter options on the different roles. For example, from the customer point
of view, certain crowd members may belong to a group Preferred Workers that
is either populated automatically based on past experiences (e.g., reliable and
trustworthy behavior of a worker towards the customer) or other customer internal
policies. Constraints could state that only Preferred Workers should be able to
review certain parts of a document. Other constrains could for example state that
only workers from a certain geographical location may work on a task.

Figure 4.1 outlines the idea of the approach. In the first step in Fig.4.1a, part of a
BPEL process includes a B4P extended activity (ba4) to transfer a set of human tasks
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Fig. 4.1 Enhanced B4P environment: matching, ranking, and selection of human workers.
a BPEL/B4P processes. b FP matching. ¢ NFP matching. d Select and assign

(ht) to the crowd. A task’s description comprises functional properties (FPs), e.g.,
assignment regions R, and furthermore, non-functional properties (NFPs) including
capabilities C and quality expectations Q. In Fig. 4.1b a set of potential crowd workers
W that can participate in the task ht is estimated by matching the task’s assigned set
of regions to the regions available in the environment. Next, in Fig. 4.1c the initial set
of workers is reduced to a set that provides the required NFPs, e.g., their capabilities.
Additionally, in this step the workers are ranked according to their capabilities’ related
skill level. The skill level hints the expectable quality of returned task results. It is
important to note that the requester has no knowledge about the hierarchical structure
in the crowd. Hence, the workers recommended to the requester are actually a set of
coordinators with aggregated capabilities. Finally, to guarantee the promised quality
the human tasks are assigned according to the ranking (see Fig.4.1d).

All interactions within the environment are monitored by a logging component.
These logs contain information regarding task creation time, task assignments, inter-
actions among workers and so forth. Based on this information various metrics are
automatically calculated such as task processing speed and reliability (accepted and
finished tasks). The ranking procedure is based on these metrics which are frequently
updated. Thus, this feedback-loop approach enables the system to self-adapt based
on the workers’ behavior.

4.4 Non-Functional Properties in B4P

Current B4P compositions include mainly functional properties. In the common case
these comprise the WSDL based information (operations and ports), and, related
to the potential assignments, role-based access models to the activities around the
task (c.f. [3, 27, 47]). However, the dynamic nature of crowdsourcing environ-
ments requires a flexible definition of interactions in B4P. In particular, a situation-
aware selection of potential workers must be possible. Thus, instead of defining
strict interaction models it is necessary to include in the definitions some prop-
erties that guarantee a certain degree of freedom at composition and execution
time. We call these particular properties non-functional properties for B4P. Just
as the functional properties, these properties define possible task assignments and
human task processors that come into consideration. However, non-functional prop-
erties’ values are either not completely known a-priori, or tend to change rather
frequently over time. A crowd worker’s observed performance might be better or
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less than expected because of the worker’s current situation and context which influ-
ences her/his behavior. A typical example includes her/his present task load. The
following section gives a brief overview of the concepts included in BPEL, B4P,
and WS-HT before the new extensions are presented and explained in an XML
example.

4.4.1 Human Tasks in B4P

Figure4.2 shows the relation between BPEL, B4P, and WS-HT. The figure is a
simplified version of the relation and contains only the essential elements that are
addressed by our extensions.

Generally, a BPEL Process uses services to process the included activities. In
our case these can either include SBSs or HPSs. In the event of an HPS activity,
the B4P specification allows to bridge a BPEL Extension Activity to a B4P People
Activity. The People Activity contains either locally defined tasks from B4P Human
Interaction, a container for task definitions, or, from a WS-HT document’s Human
Task. Apart from the wrapping tasks, B4P also defines People Assignments. These are
defined role types that refer to the whole process context. Similar to B4P’s definition,
WS-HT has a Human Interaction element. It is also a container for a task collection,
however, with additional elements. In particular, it allows to define Logical People
Groups that list the involved parties and their roles aligned with the tasks. The Human
Task used by both B4P and WS-HT is actually a WS-HT element that defines the
individual assignments between task and human (People Assignment), deadlines
with the Deadline element, and human readable description of the task with the
Presentation Elements.
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4.4.2 Basic Model and Extensions

The current specification of WS-HT provides no elements to include non-functional
properties into their definition as required in crowdsourcing. This is a major short-
coming in the specification when applied to dynamic environments. The reminder of
this section explains the extensions to WS-HT necessary to include non-functional
properties. Additionally, in reference to the previous work in [34] with a similar
scenario, we consider that the agreements between the crowd brokers, the previously
introduced Coordinators, and the customers settle on an XPath processable WSLA
document. Hence, the values to the WS-HT functional and non-functional properties
are manly taken from an WSLA XML document.

<?xml version="1.0" encoding="UTF-8" 7>

<htd:humanInteractions xmIns:htd="http: / /www.example.org/WS-HT"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:tns="http://danielschall.at/hps/"
targetNamespace="http://danielschall.at/hps/" xmlns:cp="http://danielschall.at/crowd/params"
targetNamespace="http://danielschall.at/crowd/params"
xsi:schemaLocation="http://danielschall.at/WS-HT/ws-humantask.xsd">
<htd:import importType="http: //schemas .xmlsoap.org/wsdl/"

location="CrowdSourcing.wsdl" namespace="http://danielschall.at/crowd" />

<!—— htd:logicalPeopleGroups ——>
<!—— hid:tasks ——>
<htd:notifications>
<htd:notification name="taskComplete">
<htd:interface portType="tns:CustomerPT"
operation="reportComplete" />
<htd:peopleAssignments>
<htd:recipients>
<htd:from>htd:getInput(" SLA" )//wsla:Parties/wsla:ServiceConsumer</htd: from>
</htd:recipients>
</htd:peopleAssignments>
<htd:presentationElements/>
</htd:notification>
</htd:notifications>
</htd:humanlInteractions>

Listing 4.1 Human interactions including roles, tasks and notifications

Human Interaction. Listing4.1 presents an extract of a WS-HT XML docu-
ment. Such a document starts with the humanlnteractions tag and for our purpose
links an additional namespace (cp). Next, the namespace (tns) related to the crowd-
sourcingservice is defined. Then, the import tag specifies the WSDL file and its
location for all WS operations specified in the interaction. The following logicalPeo-
pleGroups and tasks will be detailed by the following listings. At the end, an example
of anotification is listed. In WS-HT notifications are used to notify a person or a group
of people of a noteworthy business event. For this crowdsourcing scenario a general
one is defined at the end of the interaction definition. Via the port CustomerPT the
customer is informed that her/his outsourced task is complete. In this case, the from
tag does not specify one of the logical people groups defined in Listing4.2. Instead,
it specifies the service customer which can be found in the WSLA’s Parties section.

Logical People Groups. This part of the human interactions definition organizes
the members of the crowd in our scenario in groups of people. As motivated in
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Sect.4.3.2 and in detail explained later in Sect.4.5 we have identified three distinct
roles for structured crowdsourcing. Listing4.2 defines those roles for the WS-HT
document. Furthermore, the content of the tag logicalPeopleGroup allows to char-
acterize the different roles in the outsourcing process. Here, our first extension to
the standard is evident. Apart from the standard WS-HT parameter region, the
parameters define some necessary non-functional properties for the groups.

<htd:logicalPeopleGroups>
<htd:logicalPeopleGroup name="taskCoordiantors">
<htd:documentation xml:lang="en-Us">
coordinate tasks in the crowd
</htd:documentation>
<htd:parameter name="region" type="xsd:string" />
<htd:parameter name="communities" type="cp:ListOfCommunities" />
<htd:parameter name="capabilities" type="cp:tListOfAggregateCapabilities" />
<htd:parameter name="constraints" type="cp:tListOfConstraints" />
</htd:logicalPeopleGroup>
<htd:logicalPeopleGroup name="taskSupervisors">
<htd:documentation xml:lang="en-UsS">
supervises tasks in the crowd and aggregates results
</htd:documentation>
<htd:parameter name="region" type="xsd:string" />
<htd:parameter name="communityId" type="xsd:string" />
<htd:parameter name="capabilities" type="cp:tListOfAggregateCapabilities" />
<htd:parameter name="constraints" type="cp:tListOfConstraints" />
</htd:logicalPeopleGroup>
<htd:logicalPeopleGroup name="taskWorkers">
<htd:documentation xml:lang="en-Us">
can processes tasks
</htd:documentation>
<htd:parameter name="region" type="xsd:string" />
<htd:parameter name="communityId" type="xsd:string" />
<htd:parameter name="capabilities" type="cp:tListOfCapabilities" />
<htd:parameter name="constraints" type="cp:tListOfConstraints" />
</htd:logicalPeopleGroup>
</htd:logicalPeopleGroups>

Listing 4.2 Groups defined in the context of the crowd model

These include a parameter for the affiliation of the crowd members. For the coordi-
nator this is a list of communities. The communityId is for members affiliated
with exactly one community (supervisor and worker). Next, the capabilities of a
member are stated in capabilities. Those of the coordinator and supervisor are
aggregated across the social hierarchy. Finally, a property denoted constraints
allows the customer and owner of the WS-HT to state some strict or relaxed fil-
ter options on the different roles. Hard constraints may be used to hide sensitive
information from crowd members and soft constraints may be used to influence the
automatic matching of tasks to crowd members.

Tasks. The main part of a WS-HT states the tasks and subtasks. Listing 4.3
includes a single document review task, a service offered by many current crowd-
sourcing platforms. After a brief documentation of the content, the WS port offering
the review service is defined. The port connects the caller to the selected crowd
coordinator. Any further delegation of the task is not directly influenced by this
task specification, but remains in the hands of the crowd members. Another nec-
essary extension to the standard is the quality tag. It defines the expected qual-
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ity of the promised reviews. The value of the quality is derived from the publicly
accessible WSLA document with immutable content and prepared to be reused for
future similar review tasks. Therefore, there is a need for a document that contains

1| <htd:tasks>
2 <htd:task name="DocumentReview">
3 <htd:documentation xml:lang="en-Us">
4 This task requires the review of a multipage document
5 </htd:documentation>
6 <htd:interface portType="tns :ReviewHandlerPT" operation="review"
7 responsePortType="tns :ReviewHandlerCallbackPT" responseOperation="reviewResponse" />
8 <cp:quality>
9 htd:getInput(" SLA")//wsla:Expression[wsla:SLAParameter="quality’ ]/wsla:value
10 </cp:quality>
11 <htd:peopleAssignments>
12 <htd:taskStakeholder>
13 <htd:from logicalPeopleGroup="taskCoordiantors">
14 <htd:argument name="region"> <!—— hard constraints ——>
15 htd:getInput(" SLA")//wsla:Expression[wsla:SLAParameter="region’ |/wsla:value
16 </htd:argument>
17 <htd:argument name="capabilities"> <!—— hard constraints ——>
18 htd:getInput(" SLA")//wsla:Expression[wsla:SLAParameter="' capabilities’ ]/wsla:value
19 </htd:argument>
20 <htd:argument name="constraints"> <!—— hidden hard/soft constraints ——>
21 htd:getInput(" DocumentReview" )/listOfConstraints
22 </htd:argument>
23 </htd:from>
24 </htd:taskStakeholder>
25 </htd:peopleAssignments>
26 <htd:presentationElements>
27 <htd:name xml:lang="en-US">Document Review</htd:name>
28 <htd:presentationParameters>
29 <htd:presentationParameter name="title" type="xsd:string">
30 htd:getInput(" DocumentReview" )/title
31 </htd:presentationParameter>
32 <htd:presentationParameter name="chapters" type="xsd:integer">
33 htd:getInput(" DocumentReview")/chapters
34 </htd:presentationParameter>
35 <htd:presentationParameter name="document_url" type="xsd:string">
36 htd:getInput("DocumentReview")/document_url
37 </htd:presentationParameter>
38 <htd:presentationParameter name="review_url" type="xsd:string">
39 htd:getInput("DocumentReview" )/review_url
40 </htd:presentationParameter>
41 <htd:presentationParameter name="result_url" type="xsd:string">
42 htd:getInput("DocumentReview" )/result_url
43 </htd:presentationParameter>
44 <!—— and more ——>
45 </htd:presentationParameters>
46 <htd:subject xml:lang="en-US">
47 Review of a document {$title} comprising {$chapters}
48 </htd:subject>
49 <htd:description xml:lang="en-US" contentType="text/plain">
50 Review the attached document {$title} comprising {Schapters}.
51 Find the document at {$document_url} and the related questionnaire at {$review_url}.
52 Only fully and in—time completed questionnaires accepted at {$result_url}.
53 </htd:description>
54 </htd:presentationElements>
55 <!—— htd:deadlines ——>
56 <!—— crowdsourcing is flexible thus NO task compositions ——>
57 </htd:task>
58| </htd:tasks>

Listing 4.3 The set of human tasks



70 4 Crowdsourcing Tasks in BPEL4People

the customers requirements for this particular task. In the presented case, this is the
DocumentReview document only accessible by the customer.

In the tag peopleAssignments, after region and capabilities criteria, the tag
constraints contains a number of hard or soft constrains in listOfConstraints
that define the final selection and are provided by DocumentReview. These might
include constraints that must not be propagated to the crowd. Otherwise, as by def-
inition the content of the tag peopleAssignments maps between the roles defined in
WS-HT and their properties defined in Listing4.2.

The presentationElements tag contains standard information about human tasks
and notifications. This is another example where all values are gathered from the
customers own document. As intended by the standard, the content is human-readable
information about the task and structured according to content displayable at a user
interface. This allows the customer to specify the particularities of the task and the
involved crowd members to deal with their tasks and notifications via a user interface.

From Listing4.3 it becomes apparent that the document comprises a number of
chapters. Also, urls are defined indicating where the document is provided for review
(document_url), the location of the questionnaire (review_url), and a result
submission portal at result_url. According to the WS-HT standard, the task
tag can also include compositions with a set of subtasks connected to individual
task definitions. These tags provide a convenient method to detail segmented tasks
a-priori. Nevertheless, crowdsourcing is a dynamic environment and a top-down
segmentation of the task might contradict the current possible worker assignments.
Thus, for our scenario we transfer the burden of on-line segmentation to the involved

<htd:deadlines>
<htd:completionDeadline name="notifyManagement ">
<htd:documentation xml:lang="en-US " >notify the requester on deadline</htd:documentation>
<htd:for>htd:getInput(" SLA" )//wsla:Expression[wsla:SLAParameter="deadline’ /wsla:value</htd:for>
<htd:escalation name="deadlineMissReview">
<htd:condition><![CDATA[htd:getInput("DocumentReview")/reviewComplete=true()]]></htd:condition>
<htd:notification name="deadlineMissSupervisor">
<htd:documentation xml:lang="en-US">inform the hierarchy of responsible roles</htd:documentation>
<htd:interface portType="tns:ReviewHandlerPT" operation="escalate" />
<htd:peopleAssignments>
<htd:recipients>
<htd:from logicalPeopleGroup="taskSupervisors">
<htd:argument name="supervisorID">
htd:getActualOwner("AssignedSupervisor")
</htd:argument>
</htd:from>
<htd:from logicalPeopleGroup="taskCoordiantors">
<htd:argument name="coordinatorID">
htd:getActualOwner("AssignedCoordinator™")
</htd:argument>
</htd:from>
</htd:recipients>
</htd:peopleAssignments>
<htd:presentationElements/>
</htd:notification>
</htd:escalation>
</htd:completionDeadline>
</htd:deadlines>

Listing 4.4 Defined timeouts and escalation actions
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crowd supervisors and hint a possible segmentation in this example by providing the
number of chapters.

Deadlines. The WS-HT standard also provides sections to notify the associated
parties in the process. The section related to a particular task is enclosed in the
deadlines tag displayed in Listing 4.4. Related to our document review example, the
defined notification chain is triggered by a completion deadline. The deadline itself
has been agreed in the WSLA. An escalation is triggered if the condition stated is
violated. In the example DocumentReview’s value reviewComplete is set to
true if the complete review has been submitted to the aforementioned result_url.
If the condition is broken then the assigned supervisors and coordinators are informed
about the SLA violation.

4.5 Social Aggregator

Today, social networks are a mass phenomenon found in private (e.g., Facebook) and
professional environments (e.g., LinkedIn). It is reasonable to assume that the trend
of social networks will continue to penetrate more and more aspects of our lives. In
a business context a social network is either formed explicitly, by manually adding
contacts, or implicitly, based on observed interaction and collaboration patterns.
We argue that it is highly beneficial to consider social aspects in crowdsourcing
since a clique in a social network is more likely to efficiently work on collaborative
tasks than a group of random workers. On a global scale, members of the latter are
likely to have never worked together before, to have different cultural background,
to speak a different language, and to live in different timezones, which altogether
makes it extremely hard to create high-quality task processing results. The structure
of companies is typically organized hierarchically. We borrow that concept to some
extent and distinguish between three roles in our crowdsourcing system:

e Workers perform the actual processing of tasks and are assigned to one or multiple
supervisors.

e Supervisors represent the head of a group of workers. They are responsible for
breaking a task down into subtasks, to distribute those subtasks to suitable workers
in her/his team, and to finally check the result. Each supervisor in turn is assigned
to one or multiple coordinators.

e Coordinators are the interface between the customers who submit tasks to the
social network and the supervisors who are responsible for tasks processing.

Figure 4.3 shows the main steps that are performed to augment the social network
in order to make it suitable for crowdsourcing. The origin is a social network (c.f.,
Fig.4.3a) that was formed either explicitly or implicitly; the nodes denote users of the
crowdsourcing system and the edges social relationships between those users. Every
user has a profile describing her/his skills. In the next step, illustrated in Fig.4.3b,
role hierarchies are formed.

We use betweenness centrality, a measure from graph theory indicating the impor-
tance of a node, to determine a member’s role. We propose betweenness central-
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ity because it is often used in social and communication networks to estimate the
potential monitoring and control capabilities a node may have on data flowing through
the network [14]. In particular, we assume that nodes obtaining the role of a super-
visor will have a high betweenness centrality value because these nodes have great
influence on task flows. Let us define the graph G(V, E) consisting of the set of
vertices V and the set of edges E. Shortest-path betweenness centrality, as used in
this work, defines the importance of a node s based on how many pairs of vertices
go through s € V in order to connect through shortest paths in G (e.g., see [43]).
Betweenness centrality B(s) is formally defined as:

Bis) < > Bur (5) 4.1)
oy 8ut

where g,,; is the number of shortest paths linking nodes u and ¢; and g, (s) is subset
of those paths that contain node s. When the betweenness centrality of a user exceeds
a certain threshold tg s/he has the prerequisites for becoming a supervisor, if it is
greater than an even higher threshold value 7¢ s/he could adopt the role of coordinator.
This functionality is outlined in Algorithm4.

When the importance values are calculated and a user fulfills the basic requirements
for becoming a supervisor or coordinator two different approaches are supported how
to actually decide on the roles:

e [nvitation: The platform invites users exceeding a certain betweenness centrality
threshold to adopt a hierarchically higher role. The user may accept or decline the
offer.

e Nomination: The platform only nominates candidates for higher roles based on
their importance in the social network. Users connected to the nominee can vote
whether they support the candidate. Only with a certain minimum number of
supporters the user is awarded the higher role. This prevents to assign high roles
to users who have a high number of relationships and therefore a high importance
indicator but whose relationships are mostly superficial and weak.

The final step to make the social network ‘crowdsourcing-ready’ is to create the
higher-role profiles as an aggregation of all affiliated user profiles, as seen in Fig. 4.3c.
This provides the basis for simple and rapid matching of tasks to competent groups
in social crowdsourcing, as described in the following section.
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Algorithm 4 Detecting roles of users

1: input: The social collaboration graph G(V, E).

2: output: The set V containing workers u# € V with different roles in the social network.
3: tg // threshold for supervisors

4: 1¢ // threshold for coordinators

5: // simplified betweenness centrality evaluation of nodes in network G (for details see [9])
6: for eachv € V do

7:  for each n € N(v) /¥ neighbors of v */ do

8 if shortest path through n then

9: // save distance
10: end if

11:  end for

12: end for

13: for each node along shortest path tov do
14:  // from the most distant s to v
15: if s # v then

16: increase B(v)
17:  end if
18: end for

19: for each u € V do
20: if B(u) > 15 then

21: isSupervisor(u, true)
22: elseif B(u) > t¢ then
23: isCoordinator(u, true)
24:  end if

25: end for

4.6 Task Segmentation and Matching

In this section we detail our approach for task processing in the crowd. First, we
explain in detail how human tasks (as defined in the context of B4P) are passed from
coordinators to supervisors and finally assigned to workers. As the next step, we
introduce a ranking approach to select the best suited coordinator.

4.6.1 Hierarchical Crowd Activities

Crowd activities can be structured as hierarchies (see Fig.4.4) using parent and
child relations. Child activities specify the details with respect to the (sub-)steps
in collaborations, for example, sub-activities in the scope of a parent activity. This
allows for the refinement of collaboration structures as the demand for a new set of
activities (e.g., performed by different people and services) increases. The need for
the dynamic refinement of collaboration structures is especially required when people
have limited experience (the history of performed activities) with respect to a given
objective or goal [39]. Furthermore, some people tend to underestimate the scale and
complexity of an activity; thus the hierarchical model enables the segmentation of
activities into sub-activities, which can be, for example, delegated to other people.
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Activities have a relatedTo property which provides a mechanism to link to any
other activity. Typically, multiple members work on the same activity with different
roles. The InvolvementRole identifies the coordinator, supervisor, and responsible
worker of an activity. Involved workers apply a set of GenericResources to perform
their work. Objects such as documents are represented as a shared Artifact. A Con-
trolAction captures activity-change events, interactions between members, and work
carried out. Actions can trigger events describing the progress of activities.

4.6.2 Social Interactions

Figure4.5 and related sub-figures show how task processing is performed in the
crowd. We argue that interactions in crowdsourcing environments are governed by
user preferences, social trust, and reputation.

Crowdsourcing follows the open world assumption which permits users to join
and leave a particular community (platform) at any time. Instead of following a set
of company rules or policies, crowd workers can be regarded as ‘self-employed’
individuals. However, it is in the interest of the worker to earn higher rewards and to
work on tasks matching her/his expertise and interest. Also, we believe that complex
tasks are typically rewarded higher as compared to simple tasks. Crowd members
may decide to work with other members on a joint task based on previous experience
or recommendations received from friends. Indeed, these interactions are not known
in advance. Therefore, it is not possible to specify different task processing patterns
that are performed in the crowd at the B4P or WS-HT level. The segmentation of
human tasks is illustrated by Fig.4.5.

As a first step in Fig.4.5a we assume that the selected coordinator W1 forwards
(e.g., through delegation) the human task to W5 who is a supervisor. The selection
of the supervisor may entirely depend on W1’s preferences to forward tasks to WS5.
Moreover, the previously discussed preferences as defined along with the groups
may prevent W1 to forward a task to any of the supervisors s/he is connected to in
the social network.
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The supervisor receives a given task and performs some segmentation. In this con-
text, we introduce crowd activities, which are collaborative activities performed by
crowd members in a flexible manner. The notion of flexible (crowd) activities is inde-
pendent of the previously discussed process activities that are designed in the context
of processes such as BPEL. Here, we show how to combine flexible interactions and
top-down process activities and tasks in order to support adaptive compositions of
human- and software-based services. In our previous work [39] we have designed
an activity model supporting collaborative working environments. The model and
a set of collaboration tools have been implemented on top of Web services tech-
nology. Also, the inclusion of human capabilities in service-oriented collaboration
environments is supported through the HPS concept [42]. These activities include,
for example, ‘write document’, ‘review document’, ‘proof-read paragraph’. Further-
more, these activities can be created and modified on-demand by people, e.g., the
supervisor, based on their preferences and expertise in performing a specific type of
task. Figure4.5b shows an example of such an activity structure that can be created
in a specific human task (ht) context.

Assume the ‘review document’ task (cf. Sect.4.4) that needs to be outsourced to
the crowd. The supervisor decides to split and to process the task by creating a hier-
archical crowd-activity structure. A parent activity is initiated with the task’s context
data (presentation, elements, time constraints, etc.). Depending on the task’s proper-
ties (e.g., duration, effort) sub-activity a2 and a3 are associated as child activities to
al. The segmentation step may be assisted by an activity service (a software service
to manage crowd-activities) that recommends how many sub-activities the parent
activity should be segmented to. Though, it is the responsibility of the supervisor
W5 to allocate sub-activities to workers.

In social environments selection preferences and resulting interactions typically
depend on the trust between actors. How much WS35 trusts its neighboring peers
(e.g., workers) is strongly influenced by previous interaction behavior. For example,
W5 may trust a worker W6 more than W7 in performing a given activity depend-
ing on W5’s collaboration experience. Positive experience results in higher trust
between collaboration partners. We have established a set of metrics to measure col-
laboration experience (see [38, 40, 45]) including the activity success and respon-
siveness when processing an activity. A detailed description of these metrics and
a trust model is, however, out of scope of this work. The assignment procedure
is shown in Fig.4.5¢ where W5 assigns a2 to W6 and a3 to W7. Each of these
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sub-activities can be controlled (e.g., inspecting the status and progress of an activ-
ity) by the supervisor. Once the workers W6 and W7 (see Fig. 4.5d) deliver the results,
the supervisor takes the output of a2 and a3 and merges them. For example, the results
can be combined by simply merging separate document sections to one document
that was reviewed by W6 and W7. However, since the supervisor W5 is responsible
for the final quality, W5 checks the result before the output of al is returned to the
coordinator and/or B4P requester. How the result is being passed from the supervisor
to the B4P requester may in fact depend on the ‘social protocol’ or preferences of
actors. A coordinator may prefer to act as the main interface towards the crowd and
thus may want to return the result.

The final step is the rating of the supervisor. Rating is performed to give feedback
how well the supervisor distributes activities in the crowd. Crowd workers will be
satisfied if the supervisor distributes activities that fit their expertise. Also, a worker’s
queue should neither be empty nor overloaded. This means that the supervisor should
not accept too many tasks to avoid overload conditions. Careless assignments (e.g.,
activities that have low or no overlap with a worker’s interest and skills) and false
assumptions with regards to activity effort would cause bad ratings.

Next, we will introduce a ranking algorithm to rank coordinators based on capa-
bilities and quality constraints specified by the B4P requester.

4.6.3 Ranking Coordinators

Here we introduce our novel ranking approach that bases its input on skill information
as well as social network metrics. The approach consists of three essential steps that
are briefly introduced in Algorithm 5.

Algorithm 5 Ranking approach outline

input: The social graph G(V, E) and detected roles.
output: Ranked list of coordinators.

1. Calculate importance scores in the hierarchical social network (detailed by Algorithm 6).
2. Calculate the rank of supervisors SR based on

o their skills and
e their social standing (reputation) within the social network.

Also, calculate the rank of each worker based on

o their skills and
e task load conditions.

Append the workers’ rank connected to a particular supervisor to SR.
3. Each coordinator gets the ranking scores of the top-ranked supervisor it is connected to. Sort
coordinators according to their ranking score.
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Let us start with the definition of a procedure to rank the importance of individuals
in social networks. In this work we utilize the concept of hubs and authorities in Web-
based environments. This concept has been introduced by Kleinberg [21] to rank
Web pages in search queries using the hubs and authorities algorithm. The notion
of authorities in social or collaborative networks can be interpreted as a measure
to estimate the relative standing or importance of individuals in social networks.
Compared to methods such as PageRank [31], the main advantage of the hubs and
authorities model is that both hub and authority scores are calculated for each node
in the network.

Applying this idea in our scenario, assume an undirected social network and
roles of users that were detected using the previously introduced approach (cf. Algo-
rithm4). Also assume the hierarchical network that can be created considering the
roles and the social graph. Coordinators are responsible for forwarding tasks to super-
visors, thereby acting as hubs in the network. According to the theory developed in
[21], the hub H (u) and authority A(u) scores of nodes # € V in the network is
calculated as:

Hw) < > AW A@w) < > H®) @2)

(u,v)eE (v,u)eE

However, we assume multiple roles in the social network such as coordinators,
supervisors, and workers. Workers develop expertise in different areas depending on
their interest and task processing behavior. Given the model in (4.2), workers would
have higher authority scores if they receive requests to perform activities from super-
visors that are connected to many ‘good’ authorities (i.e., workers). Good workers
are characterized by their reliable task processing behavior which is monitored at
runtime. Note, task processing behavior is observed through interaction monitoring
techniques. Interaction metrics are established to obtain weighted social relations
between actors. These relations are used to automatically calculate social network
metrics such as hub- and authority-based importance scores.

Thus, a supervisor trusts a particular worker if the worker processes tasks in
timely and satisfactory manner. Supervisors are rated by workers based on the suit-
ability of assigned work. For example, supervisors who carelessly delegate tasks to
workers without knowing their interests or who ignore the workers’ load conditions
(e.g., oversupply of task assignments in too short time frames) would receive bad
ratings. Ratings thereby influence the weight of a relationship between worker and
supervisor. Notice, both trust and rating relations are established upon interaction
monitoring and mining. Thus, in addition to the undirected social links, directed rela-
tions are introduced based on collaborations between actors in the crowdsourcing
environment. The recursive definition of hub and authorities is typically computed
using an iterative algorithm. In the Algorithm 6, we introduce an extended hubs and
authorities algorithm suitable for calculating hub- and authority scores in hierarchical
social networks.
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The goal of the algorithm is to calculate:

e hub scores for coordinators as they forward tasks to supervisors through delegation
actions,

hub scores for supervisors as they perform pre-processing of tasks and create
flexible crowd-activities that are distributed and assigned to workers,

authority scores for supervisors as they receive task requests from coordinators,
and

authority scores for workers as they perform the actual work.

Algorithm 6 Hubs and authorities algorithm in hierarchical social networks

1: // Initialize hub and authority scores
2: foru € V do

3 w0 « plfl’ o W) «— p,f‘
4: end for

S50t=1

6: while not converged do

7: foreachu €V do

8: // update ranking scores

9: for v € N(u) do

10: if isCoordinator(u) then

11: W) — )V 4 ()

12: else if isSupervisor(u) A —~isCoordinator(v) then
13: A WD — W) 4wy ()

14: else if isSupervisor(u) A isCoordinator(v) then
15: W) — W)V + ()

16: else if isSupervisor(v) then

17: A @)D < o @)D 4wy, (1)

18: end if

19: end for

20: // Normalize rankings and test for convergence

21: t=t+1

22:  end for

23: end while

The first step in Algorithm 6 (see lines 2—4) is to initialize two vectors 7 and .o/
that hold hub and authority scores, which are updated after each iteration #. Without
any prior (node bias), the initialization vectors pf’ and p# hold for each node the
same initial value. The main loop (lines 6-23) is executed until the ranking scores
converge (i.e., the ranking order of nodes is no longer changed between the step
t — 1 and ). For each node u € V, we update hub- and authority scores according to
the aforementioned update procedure. The set of #’s neighbors is obtained by N (u).
Assume that u is a coordinator (line 10), then only u’s hub score 7 (u) is updated.
The next case holds (line 12) if u is a supervisor and the neighbor v is a worker. In
this case, the supervisor’s hub score needs to be updated.

As mentioned before, the hub score of supervisors is influenced by ratings they
receive from workers. Thus, the authority score of v is added with weight wy,, to 77 ()
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(see line 13). In case v holds the role of a coordinator (line 14), u’s authority score
is updated. Notice, weights are only calculated between supervisors and workers as
we assume stronger collaborations between these two actors whereas coordinators
mainly act as ‘entry points’ to the crowdsourcing platform.

The final procedure (line 16—18) is performed to update the worker’s authority
score. Here, the score 77°(v) is appended with weight w,, that is calculated based
on mining metrics (e.g., how much the supervisor v trusts the worker u). After these
steps, a check in line 20 verifies if convergence has been reached. For larger social
networks a fixed number of steps can be used to reduce the time needed for computing
importance scores. After convergence the final scores are copied into H and A.

Next, we introduce the ranking procedure to process crowd-activities that can
be segmented into flexible activity structures. Certain activities can be decomposed
hierarchically into sub-activities depending on their required processing effort or
complexity. Algorithm7 shows the procedure to rank coordinators. As input we
assume the social network graph G(V, E), an activity a € A which could be part
of a complex activity structure, and the set VC of coordinators. The goal of the
algorithm is to assign a ranking score to each user u € V°.

Algorithm 7 Rank coordinators based on social graph G

1: input: G(V, E) representing the social network graph, splittable activity @ € A and the set of
coordinators V that have already been filtered based on hard constraints.

2: output: Ranked list of coordinators (CR).
3: for u € V€ do

4:  // Get supervisors connected to u

5. foreachv € N(u) do

6: if isSupervisor(v) then

7: VS < VvSuv

8: end if

9: end for

10: foreachv e VS do

11: /I Get workers connected to v

12: for n € N(v) do

13: if —isCoordinator(n) then

14: VvV <« vVun

15: end if

16: end for

17: SR(v,a) < «a-skill(v,a) + (1 —a)-(0.5-AWv)+0.5- H(v))
18: for each n € V, do

19: scorey, < B -skill(n,a) 4+ (1 — B) - (1 — getRate(n, a, DueAt(a))
20: scoreyw < scoreyw + Vi scoren
21: end for

22: SR(v,a) < SR(v,a) + scoreyw

23:  end for '

24: s < getTopRanked(SR(a))

25: CR(u,a) < getScore(s, a)

26: end for

27: /I Order by soft constraints: sort C R in descending order
28: return CR
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Table 4.1 Description of calculations and equations

Ranking input Description

Skill The skill of supervisors and workers. The function skill(v, a) returns v’s skill level
with respect to an activity a. For example, if a demands for language skills in
English with the level ‘expert’ and v’s experience in English is at the level ‘expert’,
v’s skills match perfectly a’s skill requirements. Also, skill profiles are automatically
maintained by updating the users’ experience. In our previous work we have designed
and implemented algorithms for profile matching [41] and skill updates [37]. Details
regarding skill matching and update are not presented in this work.

Importance  The relative standing of a user within the social network. As explained before, the
importance of a node is based on the concept of hubs and authorities in social
networks. The supervisor’s importance is determined by both hub and authority
scores due to the hierarchical nature of the previously explained social (collaborative)
network. Hence, v’s importance score is the weighted sum of the authority score A(v)
and the hub score H (v). Different weights could be used to assign preferences to
either score.

First, a set VMS isinitialized that contains supervisors connected to « (see lines 5-9).
The next loop (lines 10-23) shows how to calculate rankings scores for supervisors.
Note that the coordinator u acts as a ‘proxy’ for supervisors; thus u’s score is based on
the score of the highest ranked supervisor (lines 24-25). The basic idea to calculate
rankings for supervisors has been shortly explained in Algorithm5. Our approach
(see Algorithm 7) is to rank supervisors based on the actual (observed) skills (line
17), the importance of supervisors in the social networks (line 17), and the actual
skills of workers a supervisor is connected to (lines 18-21). The set of workers
VVW connected to v is first initialized (lines 12—-16). In the following (lines 17-22)
the computation of v’s ranking score is shown. The initial supervisor ranking score
SR is calculated as shown in line 17. The initial score is the aggregation (weighted
by the parameter «) of the supervisor’s skills and (social) importance. These input
parameters are detailed in the following Table4.1.

The next steps (lines 18-21) in Algorithm 7 is to calculate ranking scores for each
worker connected to the supervisor v. This is done in a similar manner as for the
supervisor. However, instead of considering the importance of a worker within the
social network, we take other workload related factors into account. The function
get Rate calculates the workers’ rate based on the earliest possible start time (influ-
ence by the workers’ task queue size) and activity effort. This means that even if
a supervisor has high skills and high importance, it still needs to be connected to
a set of workers who have free resources in terms of free time to process a crowd
activity. Otherwise, the supervisor would need to handle all acltivities him/herself.

The score of each worker is appended with equal weight TAUE The final score

v
SR is the sum of the supervisor’s initial ranking score plus the workers’ ranking
scores.



4.7 Implementation and Evaluation 81

WS-HT Interface Template Store Logging Service

‘ HPS Middleware

‘ HA Service

‘ B4P Layer ‘ Relevance Engine

Resolution Query

7 7
| i

|

; d

i i

| |

| =

3 o \oos
|

|

|

|

|

|

|

T
i
i
i
i
i
|
>
1
i
}
)
! Query Response "6'

Get Raflked Workers
é';i:,t:I, Annotations Ranked List of Workers
S T e I
HT Created\ o Kmmm e !

Init HA Context
|
Get Execution Template

|
|

]

|

|

|

|

|

} —
! ! ! Template Response
i Init HA E—--—-———==- !
|

|

|

|

|

|

|

|

|

|

|

|

e

Get Escalation Template
|

i
T T
} Template Response

|
|
|
|
|
I
|
|
|
: ‘ ‘
! .
: Context : Get t—iA Graph [Execution ‘emplate]
|
! P ! i HAGraph |
‘ T [ A ‘
| . _ |HA Context Initiated | ! ! !
| B i | | I
1 ' Subscribe HA Events [Filter] 1 i
! HT Active : : : > 1
| | | | |
| i | | i |
| Message 1 | ! ' |
! A { HA Event ! !
I
| S r T » |
! 7 I HAEvent ! !
| /e I I |
| HT InProgress 1 Ind I T |
| HT InProgress ! I | i i
e ! ! Message 2 ! ! !
— [
! ! ! HA Event !
| | T > |
[ | 1
HA < 1 HA Event }
Execution !
|
|
|
|
|
i
»

|
I
I oo ;
i i | Perform Escalation [Template]
| : : .
N | | HA Action
i it
N Message N ! !
-—
) | |
Finalize HA | !
i |
I |
| |
I |

HT Completed i
Fig. 4.6 Sequence diagram of adaptive B4P process execution

4.7 Implementation and Evaluation

Our evaluation and results are based on a proof of concept implementation of
various introduced concepts and simulations of interactions in social-crowd environ-
ments. The following Sect.4.7.1 describes the SOA-based crowdsourcing environ-
ment including the lifecycle of a human task and the principle interactions between
services, Sect.4.7.2 explains how the basic social network structure has been gener-
ated and Sect.4.7.3 presents our findings.

4.7.1 SOA-Based Crowdsourcing Environment

In this section we provide an overview of the main services and the most important
interactions between services (see Fig.4.6). The implementation of our NFP-aware
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B4P execution environment is mainly built on-top of a service-oriented collabora-
tion environment. The collaboration services, however, can be used independently
of any top-down process model. The main extensions of the environment consist
of the WS-HT Interface (a plugin of the HPS Middleware) to provide a
bridge between B4P and the crowdsourcing environment. The protocol between the
B4P Layer and the WS-HT Interface isin conformance with the WS-HT [4]
standard.

The collaboration environment consists of a SOA-runtime for mixed service-
oriented systems (see HPS Middleware). Unlike traditional SOA-based systems,
also human-based services (i.e., HPSs) are made available for discovery and invoca-
tion [42]. Coordination and collaboration among people and services (HPS and SBS)
is achieved by using an activity service (HA Service). The Template Store
contains activity skeletons (e.g., activity structure) that can be instantiated at run-
time. Such templates include, for example, the definition of parent child activities
to perform a document review. The Logging Serwvice monitors all interactions
and saves XML-messages and additional metadata in a database for later analysis.
The Relevance Engine implements ranking and mining algorithms.

The lifecycle of human task execution is structured into three essential phases.
First, a resolution query is performed to find suitable candidate workers who can
process a human task. Second, a crowd-activity structure is initialized that allows
crowd-members to process activities in a flexible manner. Third, workers collaborate
to jointly work on activities (collaboration phase). Figure 4.6 details the interactions
between the various services.

4.7.1.1 Human Task Creation and Resolution of Workers

A request to create a human task that is to be performed by the crowd is initiated
by the B4P Layer. This layer is typically implemented as an extension of a BPEL
orchestration engine. The specification of a human task contains additional elements
to ensure the quality of a task’s result (cf. QoS Annotations). These annotations have
been introduced in the context of Listing4.3 and define the required set of human
capabilities, which are matched against capability profiles, and the required quality.
NFP elements such as human capabilities are used in the matching procedure (see
arrow Resolution Query).

<mex:Metadata>
<mex:MetadataSection Dialect="http://schemas.xmlsoap.org/wsdl/">
<wsdl:definitions>
<!—— Omitted ——>
</wsdl:definitions>
</mex:MetadataSection>
<mex:MetadataSection Dialect="http: //xmlns.com/foaf/0.1/">
<rdf:RDF xmlns:foaf = "http://..." xmlns:capability = "http://.../capability.owl#">
<foaf:Person rdf:about="http: //www. tuwien. ../staff/">
<foaf:name>H. Psaier</foaf:name>
<foaf:interest rdf:resource="http://.../hpsaier/interests.rdf"/>
<!—— Omitted ——>
<capability:op>
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<capability:port id="TSportType">
<capability:op id="translateDoc">
<capability:opwsdlxpath>
wsdl:operation/[ @name="TSportType"]
</capability:opwsdlxpath>
<capability:opmetricgrounding
rdfiresource="http://.../grounding-translateDoc.xml"/>
<capability:opmetric>
<capability:opmetricid>cost</capability:opmetricid>
<capability:opmetricvalue>100.0</capability:opmetricvalue>
</capability:opmetric>
<capability:opmetric>
<capability:opmetricid>reliability</capability:opmetricid>
<capability:opmetricvalue>0.8</capability:opmetricvalue>
</capability:opmetric>

</capability:op>
</capability:port>
</foaf:Person>
</rdf:RDF>
</mex:MetadataSection>
</mex:Metadata>

Listing 4.5 HPS metadata exchange description

Listing 4.5 shows the simplified structure of the resolved HPS information. NFP
elements are embedded in the HPS’s WSDL interface. In addition, an extended
FOAF description is inserted into a WS-Metadata-Exchange'® (MEX) document
(see also [42]). The HPS framework uses SPARQL to define search queries11 on
FOAF structures. The sample response message to a MEX GET request in Listing 4.5
comprises the following elements. The main response body contains the currently
offered operations ina WSDL (omitted for brevity) and the related NFPs in the second
MetadataSection in FOAF format. The elements with the capability prefix pro-
vide the current NFP values for a related operation defined in the WSDL section. In
our current implementation, such NFPs are costs and primarily quality metrics, such
as the HPSs reliability and responsiveness. The XPath statement identifies an oper-
ation uniquely. The following metric grounding resource opmetricgrounding
links a document with metric definitions (meaning, measurement, unit, range of
values, etc.) to the listed metric ids. The HPS Middleware interacts with the
Relevance Engine to obtain aranked list of workers. For simplicity, we do not
discuss the different social roles such as coordinators or supervisors in this context.
Notice, the result of a resolution query is a list of coordinators if the task can be
segmented in multiple crowd-activities. The successful result of this interaction is
denoted by the arrow HT Created.

4.7.1.2 Reserve Human Task and Initialize Activity
Structure

The activity structure is being initialized by Start HT. The WS-HT Interface
passes the HT Context to the HPS Middleware, which in turn signals Init HA

10 http://www.w3.org/Submission/WS-MetadataExchange/
T http:// www.w3.org/TR/rdf-sparql-query/
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Context to the HA Service. Depending on the selected HT Context, different
activity execution templates can be selected (Get Execution Template). An execution
template may define how activities are processed. For example, if the result that is
provided in the context of a specific human task has always low quality, an additional
quality assurance step can be inserted dynamically in the execution template. The
next step is to assign people to activities that are part of the execution template (see
Get HA Graph). Ranking of people is performed by the Relevance Engine!?
(cf. to discussions related to matching and ranking in the previous section). The
Logging Service logs all service interactions (i.e., SOAP calls) and also
events triggered by the activity service. Activity events are fired based on activity
changes (start, suspend, or finalize activity) and actions taken by human actors. Such
actions include delegations of activities or the assignment of new activities. The
Logging Service implements a publish/subscribe mechanisms that allows sub-
scribers to get notified about specific events. The HPS Middleware subscribes
to activity change events to monitor the status of activities (see arrow Subscribe HA
Events). The result of these steps is HT Reserved.

4.7.1.3 Task Execution and Escalation Handling

In service-oriented systems, people interact and collaborate by using tools and ser-
vices to perform their work. Each service call (performed in the context of an activity)
is processed by the HPS Middleware. The middleware implements a SOAP dis-
patcher that performs message inspection and routing. The HA Service notifies
the Logging Service about activity changes (see HA Event). Here the activity
status is changed to ‘activity in-progress’. The event is also sent to the middleware
which signals HT InProgress. A series of messages 1...N is then exchanged between
the HA Service and the HPS Middleware until an activity is finalized. Esca-
lations are defined in the context of a human task (cf. Listing4.4). As mentioned
before, the HPS Middleware acts as a bridge between the B4P-based process,
the activity-based collaboration services and tools that are used by crowd workers.
Thus, the middleware monitors the status of activities and checks whether devia-
tions in the progress of activities may cause deadline violations. The Relevance
Engine receives a Perform Escalation call to trigger a HA Action if a deadline
is going to be violated. As shown previously in Listing4.4, a notification may
be the result of such an escalation action. The Relevance Engine performs
the escalation by sending the HA Action to the activity service. Notice, escalations
are not directly performed by the HPS Middleware.The Relevance Engine
deals with escalations to support dynamic aspects (e.g., adaptive notification chains)
and also future extensions of our approach such as complex event processing fea-
tures. HT Completed 1is triggered once Finalize HA is received from the activity
service.

12 The Relevance Engine has by default access to all logs and events collected in the envi-
ronment.
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4.7.2 Social Network Generation

In our experiments, we generate synthetic social graphs to test the applicability and
effectiveness of our proposed ranking model. At the time when performing this
research, a sufficiently large crowd user-base was not available to perform tests with
real users. We use two different methods to generate social graphs: random graphs
[28, 30] are generated and graphs based on the preferential attachment model [6, 35].
The more general case are random graphs wherein each pair of nodes has an identical,
independent probability of being joined by an edge. Preferential attachment results in
more specific graphs wherein nodes preferentially connect to existing nodes with high
degree (the ‘rich get richer’). By using these two methods, we are able to evaluate
the effectiveness of our ranking approach by considering different social network
structures. Figure 4.7 shows a basic social network structure that has been generated
according to the statistical properties as found in freely emerging networks. Each
figure visualizes a graph with 200 workers.

1. Random graphs are based on the assumption that any random actor will establish
a connection to some other random actor with probability p. The resulting graph
structure is visualized by Fig.4.7a. In our experiments, we use a probability of
0.3 that an actor u will establish a connection with a random actor v.

2. Preferential attachment graphs are based on the assumption that networks emerge
according to the rule of preferential attachment [35]. This process produces
a scale-free graph with node degrees following a power-law distribution. The
resulting social graph represents very well the structure of autonomously form-
ing collaborations in cooperation networks [29].

By using a probability of 0.3 to generate random graphs, both graphs, random
and preferential, have approximately the same amount of edges; thereby making the
both types of graphs comparable with regards to number of workers and number of
edges. Roles in the social network were detected according to Algorithm4. Coordi-
nators are visualized as triangular shapes, supervisors are depicted by rectangles, and
regular workers are shown as circular nodes. One can see that the random graph in
Fig.4.7a exhibits only sparsely connected nodes when compared to Fig.4.7b. Using
these two graphs, we are able to compare the results of our ranking approach under
different conditions. This is an important issue because sparse networks are a natural
phenomenon in newly established social networks.

In each network, workers have certain skills associated with it. In our experiments
we only use a single skill whose skill level is distributed according to a normal
distribution .4 (i1, 0'?) with a mean value &+ = 0.6 and a standard deviation 0% =
0.25. The parameters of this model (mean value and standard deviation) yield the
following skill level properties of the resulting worker population: most workers have
good skills in performing their tasks with an average skill level of 0.6, some workers
are highly skilled with a maximum skill level of 1.0 (top expert) and on the contrary
some workers have a very low skill level (in our experiments the minimum skill level
was 0.02). If a higher or lower average value would be chosen, the expected quality
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Fig. 4.7 Generated social graphs: a sparsely connected random graph. b preferential attachment
graph

Table 4.2 Configurations for different experiments

Configuration 1 2 3 4 5 6
Number of workers 100 100 100 100 200 200
Activities per round 5 5 10 10 5 5
Advanced processing No Yes No Yes No Yes

of returned tasks can also be expected to be higher or lower respectively. If a higher
standard deviation is chosen, the likelihood of having more highly skilled workers
as well as workers with very low skills increases. By choosing a lower standard
deviation, it is more likely that the workers will have the average skill level of 0.6
and it is less likely that workers have high or low skills.

4.7.3 Discussion

We performed several experiments and compared the quality of task results consider-
ing task processing with and without social network structures. The default option of
our simulation is to process activity in the context of a human task without advanced
processing. This configuration provides the baseline results for comparison with the
advanced processing option. The configurations of our experiments are detailed in
Table4.2. The entry advanced processing indicates whether certain activities were
split and processed collaboratively in social networks.

Table 4.2 shows three pairs of experiments (1, 2), (3, 4), and (5, 6). Each pair com-
pares the default processing behavior with the advanced processing option. Advanced
processing means that actors’ behavior is guided by their social role. Coordinators
forward task requests to supervisors which split tasks into multiple (crowd-) activities
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Table 4.3 Numerical values of experiment results using random graph

Configuration 1 2 3 4 5 6
Created activities 1000 2237 2000 4106 1000 2208
Finished activities 940 2234 1147 3950 989 2108
Average quality 0.720 0.736 0.488 0.607 0.847 0.907
Overdue activities (%) 23 2 13 1 7 1
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Fig.4.8 Experiment results using random graph. a Activity creation. b Activity quality. ¢ Activities
overdue

that are assigned to workers. In our simulation, tasks are issued by the B4P requester
in fixed rounds. In each round, 5 tasks are issued in configuration 1 and 2 and also
in 5 and 6. The configurations 3 and 4 are based on 10 tasks per round to analyze
processing behavior (e.g., quality) under different load conditions.

4.7.3.1 General Case: Random Graphs

The first set of experiments were performed using random graphs as depicted in
Fig.4.7a. However, we vary the number of workers according to the previously
described configurations.

Table 4.3 shows the numerical results, which are visualized in Fig.4.8.



88 4 Crowdsourcing Tasks in BPEL4People

Table 4.4 Numerical values of experiment results using preferential attachment graph
Configuration 1 2 3 4 5 6

Created activities 1000 2237 2000 4406 1000 2208
Finished activities 944 2233 1258 4062 989 2208
Average quality 0.724 0.799 0.492 0.550 0.847 0.873
Overdue activities (%) 22 1 12 1 6 0
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Fig. 4.9 Experiment results using preferential attachment graph. a Activity creation. b Activity
quality. ¢ Activities overdue

4.7.3.2 Specific Case: Preferential Attachment Graphs

The second set of experiments were performed using preferential attachment graphs
as depicted in Fig.4.7b. Again, we vary the number of workers according to the
previously described configurations.

The Table 4.4 shows the numerical results, which are visualized in Fig.4.9.

4.7.4 Overall Findings

Both sets of figures, Figs.4.8 and 4.9 show the results of our experiments by com-
paring the different pairs of configurations. The horizontal axis of each figure shows
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the index of a configuration that corresponds to the simulation parameters as defined
in Table4.2. In general, both graphs (random and preferential attachment) exhibit
similar results with only minor differences. This means that our proposed ranking
approach is applicable to both, sparsely connected random graphs as well as more
densely connected preferential attachment graphs. Thus, the following discussions
apply to both sets of experiments using respective graph structure.

The first series of experiments shows the relation of the number of created activities
versus the number of finished activities. Without advanced processing, an activity is
simply created based on the properties of a human tasks and assigned to individual
workers. On the other hand using advanced processing, if the duration of a task
exceeds a certain duration threshold, an activity is created that is split into multiple
sub-activities. The supervisors distributes sub-activities in the context of a parent
activity, assembles the result, and passes it on to the coordinator.

Both Figs.4.8a and 4.9a show that the number of activities is always higher in
social-crowd environments (i.e., advanced processing) because activities are split
and reassigned to workers. However, the number of finished activities in relation
to the number of created activities is always higher when compared to the regular
processing behavior. This means that advanced processing increases the number of
created and successfully finished activities (i.e., the reliability in processing activities
in crowdsourcing environments increases).

Figures4.8b and 4.9b visualize the average quality obtain in different experiment
configurations. The quality of a task result is based on the worker’s skill (regular
processing) or the supervisor’s skill (advanced processing). Thus, in the latter case
the quality is ensured by the supervisor. The average quality of tasks is always
higher in the advanced processing case. This is the result of our ranking approach
which ensures that coordinators are ranked higher if they are connected to skilled
supervisors. Comparing the pairs of configurations, the quality in the configuration
pair 3 and 4 is lower due to the larger number of activities to be processed. However,
our advanced processing approach still outperforms the regular processing setting in
terms of providing better quality results. Also, given a larger social network of 200
workers the task quality is higher.

Finally, Figs. 4.8c and 4.9c show the number of overdue activities which were not
processed on time (deadline violations). The percentage ratio of overdue activities is
much lower in the social-crowd environment because larger tasks (based on effort/-
duration of a task) are split into smaller crowd-activities which are processed faster
than larger chunks of work. It is easier to assign smaller tasks to crowd members
instead of finding people to process larger tasks; thereby reducing the number of
overdue activities. To conclude our discussions, we confirm that the proposed social-
crowd environment has a number of advantages over traditional environments that are
based on a population of workers which perform tasks separately. Our experiments
show that task quality is increased while improving reliability and performance of
the crowd.



90 4 Crowdsourcing Tasks in BPEL4People

4.8 Conclusion and Future Work

Crowdsourcing has emerged as an important paradigm in human problem solving
techniques on the Web. In such environments, people offer their skills and capabilities
in a service-oriented manner. However, one cannot rely on the constant availability
of people. The dynamic discovery of skilled people becomes a key aspects. Here we
proposed social-crowds that collaboratively process tasks. We designed extensions
for BPEL4People to utilize crowds in process-centric enterprise environments. We
explained in detail various extensions to cope with quality issues. Furthermore, we
proposed a role detection algorithm to build up hierarchical social networks. The pre-
sented social-crowd environment brings a number of benefits including (i) increased
task quality and (ii) an increased number of successfully finished activities as well as
(iii) a reduced number of overdue activities. We believe that social-crowd environ-
ments have a great potential to make crowdsourcing more reliable while increasing
quality of task results.

Task costs in crowdsourcing have not been detailed in this work (see our previous
work in [34, 37]) but will be addressed in the context of B4P in future work. We plan to
utilize AMT for experiments with real people and we will investigate the integration
of various XML-based standards and interfaces including B4P, WS-HT, and AMT'’s
APIL. Also, our future work will specifically deal with the question of stakeholder
support in the context of BPM. In particular, the question we attempt to answer
is which stakeholders need to be involved when designing novel crowdsourcing
applications. For example, engineers may be interested in dynamic interaction and
discovery policies whereas business analysts may want to design different incentive
schemes for crowdsourcing services. These questions have not been addressed in our
current research.
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Chapter 5
Conclusion

The Web is evolving rapidly by allowing people to publish information and services.
At the heart of this trend, interactions become increasingly complex and dynamic
spanning both humans and software services. Thus, there has been a growing inter-
est in the complex structure and dynamics of todays society. Our online-society
is increasingly influenced by networks, incentives, and the behavior of social
communities.

In this book, we analyzed the basic marketplace statistics of Amazon Mechani-
cal Turk and derived a model for clustering tasks and requesters. Furthermore, we
introduced a novel community discovery and ranking approach for task-based crowd-
sourcing markets. We have discussed a broker discovery and ranking model that lets
other requesters discovery intermediaries who can crowdsource tasks on their behalf.
The motivation for this new broker based model can be manifold. As an example, bro-
kers allow large businesses and corporations to crowdsourcing tasks without having
to worry about framing and posting tasks to crowdsourcing marketplaces.

The transformation of how people collaborate and interact on the Web has been
poorly leveraged in existing service-oriented architectures. In SOA, compositions
are based on Web services following the loose coupling and dynamic discovery
paradigm. In this work, we highlighted the role of humans in SOA as first class
citizens. We argue that people should be able to define interaction interfaces (services)
following the same principles to avoid the need for parallel systems of Software-
Based Services (SBS) and Human-Provided Services (HPS). We define such systems
as mixed service-oriented systems.

The benefit of this approach is a seamless service-oriented infrastructure of
human- and software-based services. In this research, we focus on innovative appli-
cations based on mixed service-oriented systems. Specifically, we focus on service-
oriented crowdsourcing in open Web-based environments. The most prominent
crowdsourcing platform is currently Amazon Mechanical Turk. An application of
crowdsourcing is to outsource tasks that are difficult to implement as solutions based
on software services. Another benefit of crowdsourcing is the on-demand allocation
of a flexible workforce. Dynamically changing properties including user preferences,
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changing expertise, and reputation make the design of mixed service-oriented sys-
tems challenging. The novelty of our approach is that context-sensitive interaction
mining algorithms track these properties based on monitoring of ad-hoc interactions.

Finally, human-interactions are a substantial part of today’s business processes.
It becomes increasingly important to enable human-interactions in service-oriented
systems. This has led to specifications such as WS-HumanTask and BPEL4People
which aim at standardizing the interaction protocol between software processes and
humans. These specifications received considerable attention from major industry
players due to their extensibility and interoperability. Most efforts to model human
interactions using BPEL4People focus on relatively static role models for selecting
the right person to interact with. Thus, BPEL4People is not well suited for specifying
and executing processes involving crowdsourcing of tasks to online communities.
Here, we extended BPEL4People with non-functional properties that allow to cope
with the inherent dynamics of crowdsourcing processes. Such properties include
human capabilities and the level of skills. We discussed the formation of social
networks that are particularly beneficial for processing extended BPEL4People tasks.
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