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Preface

In recent years, technological advances have resulted in the rapid development of
a new exciting research direction — the interdisciplinary use of sensors for data
collection, systems analysis, and monitoring. Application areas include military
surveillance, environmental screening, computational neuroscience, seismic detec-
tion, transportation, along with many other important fields.

Broadly speaking, a sensor is a device that responds to a physical stimulus (e.g.,
heat, light, sound, pressure, magnetism, or motion) and collects and measures data
regarding some property of a phenomenon, object, or material. Typical types of
sensors include cameras, scanners, radiometers, radio frequency receivers, radars,
sonars, thermal devices, etc.

The amount of data collected by sensors is enormous; moreover, this data is
heterogeneous by nature. The fundamental problems of utilizing the collected data
for efficient system operation and decision making encompass multiple research
areas, including applied mathematics, optimization, and signal/image processing, to
name a few. Therefore, the task of crucial importance is not only developing the
knowledge in each particular research field, but also bringing together the expertise
from many diverse areas in order to unify the process of collecting, processing,
and analyzing sensor data. This process includes theoretical, algorithmic, and
application-related aspects, all of which constitute essential steps in advancing the
interdisciplinary knowledge in this area.

Besides individual sensors, interconnected systems of sensors, referred to as
sensor networks, are receiving increased attention nowadays. The importance of
rigorous studies of sensor networks stems from the fact that these systems of
multiple sensors not only acquire individual (possibly complimentary) pieces
of information, but also effectively exchange the obtained information. Sensor
networks may operate in static (the locations of individual sensor nodes are fixed)
or dynamic (sensor nodes may be mobile) settings.

Due to the increasing significance of sensor networks in a variety of applications,
a substantial part of this volume is devoted to theoretical and algorithmic aspects of
problems arising in this area. In particular, the problems of information fusion are
especially important in this context, for instance, in the situations when the data
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collected from multiple sensors is synthesized in order to ensure effective operation
of the underlying systems (i.e., transportation, navigation systems, etc.). On the
other hand, the reliability and efficiency of the sensor network itself (i.e., the ability
of the network to withstand possible failures of nodes, optimal design of the network
in terms of node placement, as well as the ability of sensor nodes to obtain location
coordinates based on their relative locations — known as sensor network localization
problems) constitutes another broad class of problems related to sensor networks.
In recent years, these problems have been addressed from rigorous mathematical
modeling and optimization perspective, and several chapters in this volume present
new results in these areas.

From another theoretical viewpoint, an interesting related research direction
deals with investigating information patterns (possibly limited or incomplete)
that are obtained by sensor measurements. Rigorous mathematical approaches
that encompass dynamical systems, control theory, game theory, and statistical
techniques, have been proposed in this diverse field.

Finally, in addition to theoretical and algorithmic aspects, application-specific
approaches are also of substantial importance in many areas. Although it is
impossible to cover all sensor-related applications in one volume, we have included
the chapters describing a few interesting application areas, such as navigation
systems, transportation systems, and medicine.

This volume contains a collection of chapters that present recent developments
and trends in the aforementioned areas. Although the list of topics is clearly not
intended to be exhaustive, we attempted to compile contributions from different
research fields, such as mathematics, electrical engineering, computer science, and
operations research/optimization. We believe that the book will be of interest to
both theoreticians and practitioners working in the fields related to sensor networks,
mathematical modeling/optimization, and information theory; moreover, it can also
be helpful to graduate students majoring in engineering and/or mathematics, who
are looking for new research directions.

We would like to take the opportunity to thank the authors of the chapters for their
valuable contributions, as well as Springer staff for their assistance in producing this
book.

Gainesville, FL, USA Vladimir L. Boginski
Clayton W. Commander

Panos M. Pardalos

Yinyu Ye
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Part I
Models and Algorithms for Ensuring
Efficient Performance of Sensor Networks



On Enhancing Fault Tolerance of Virtual
Backbone in a Wireless Sensor Network
with Unidirectional Links

Ravi Tiwari and My T. Thai

Abstract A wireless sensor network (WSN) is a collection of energy constrained
sensor node forming a network which lacks infrastructure or any kind of centralized
management. In such networks, virtual backbone has been proposed as the routing
infrastructure which can alleviate the broadcasting storm problem occurring due
to consistent flooding performed by the sensor node, to communicate their sensed
information. As the virtual backbone nodes needs to carry other nodes’ traffic,
they are more subject to failure. Hence, it is desirable to construct a fault tolerant
virtual backbone. Most of recent research has studied this problem in homogeneous
networks. In this chapter, we propose solutions for efficient construction of a
fault tolerant virtual backbone in a WSN where the sensor nodes have different
transmission ranges. Such a network can be modeled as a disk graph (DG), where
link between the two nodes is either unidirectional or bidirectional. We formulate the
fault tolerant virtual backbone problem as a k-Strongly Connected m-Dominating
and Absorbing Set (k,m) SCDAS problem. As the problem is NP-hard, we propose
an approximation algorithm along with the theoretical analysis and conjectured its
approximation ratio.

1 Introduction

A wireless sensor network (WSN) is a collection of power constrained sensors
nodes with a base station. The sensors are supposed to sense some phenomena
and collect information, which is required to be sent to the base station for further
forwarding or processing. As the sensors are power constraint, their transmission

R. Tiwari « M.T. Thai ()
Computer Science and Engineering Department, University of Florida, Gainesville, FL, USA
e-mail: rtiwari @cise.ufl.edu; mythai @cise.ufl.edu
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ranges are small. Hence, the sensed information may be relayed on multiple
intermediate sensor nodes before reaching the base station. As there is no fixed
or predefined infrastructure, in order to enable data transfer in such networks, all the
sensor nodes frequently flood control messages, thus causing a lot of redundancy,
contentions, and collisions [20]. As a result, a virtual backbone has been proposed
as the routing infrastructure of such networks for designing efficient protocols for
routing, broadcasting, and collision avoidance [1]. With virtual backbone, routing
messages are only exchanged between the sensor nodes in the virtual backbone,
instead of being flooded to all the sensor nodes. With the help of virtual backbone,
routing is easier and can adapt quickly to network topology changes. It has been
seen that the virtual backbones could dramatically reduce routing overhead [18].
Furthermore, using virtual backbone as relay nodes can efficiently reduce the energy
consumption, which is one of the critical issues in WSNs to maximize the sensor
network lifetime.

However, transmission range of all the sensor nodes in the WSN are not
necessarily equal. As the transmission range depends upon the energy level of
a sensor node which can be different for different sensor nodes, this may result
in sensor nodes having different transmission range. The sensor nodes can also
tune their transmission ranges depending upon their functionality, or they may
perform some power control to alleviate collisions or to achieve some level of
connectivity. In some topology controlled sensor networks, sensor nodes may adjust
their transmission ranges differently to obtain certain optimization goals. All these
scenarios result into the WSN with different transmission ranges. Such a network
can be modeled as a Disk Graph (DG) G. Note that G is a directed graph, consisting
both bidirectional and unidirectional links.

Since the virtual backbone nodes in the WSN need to relay other sensor node’s
traffic, so, due to heavy load often they are vulnerable to frequent node or link failure
which is inherent in WSNs. Hence, it is very important to study the fault tolerance
of the virtual backbone in wireless sensor networks. Therefore, constructing a fault
tolerant virtual backbone that continues to function during node or link failure is
an important research problem, which has been not studied sufficiently. In [6, 7],
the authors considered this problem in Unit Disk Graph (UDG) [2], in which all
nodes have the same transmission ranges. When a wireless network has nodes with
same transmission ranges then it will only have bidirectional links. In such a case
the virtual backbone is represented by the connected dominating set (CDS) of the
graph representing the wireless network. Whereas, when the wireless network has
nodes with different transmission range then it will have both unidirectional and
bidirectional links. In this case the virtual backbone is represented by a strongly
connected dominating and absorbing set (SCDAS) [12], here, a node not in virtual
backbone has at least one virtual backbone node as its incoming and outgoing
neighbor, respectively.

Although the virtual backbone problem has been extensively studied in general
undirected graphs and UDGs [3, 13, 16, 17, 19, 21-23], the construction of virtual
backbone in wireless networks with different transmission ranges is explored to a
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little extent. In [8] and [5], the authors extended their marking process to networks
with unidirectional links to find a SCDAS. However, the paper does not present any
approximation ratio. Recently, we proposed a constant approximation algorithms for
SCDAS problem [4, 10, 12, 14]. The construction of fault tolerant virtual backbone
in general undirected graphs is also one of the newly studied problems. Dai et al.
addressed the problem of constructing k-connected k dominating set ((k, k) CDS)
[6] in UDG. In Feng et al. [7] introduced the problem of constructing (2, 1) CDS
in UDGs and proposed a constant approximation ratio. Note that the solutions of
these two papers are applicable only to undirected graphs. In addition, the authors
just considered a special case of the general problem, where k = m or k = 2 and
m = 1.1In [24] Wu et al. studied the construction of (k, m) CDS but they considered
undirected graph. Recently, we have considered the fault tolerant virtual backbone in
heterogeneous networks with only bidirectional links [15]. We proposed a constant
approximation algorithm for any value of k and m. In summary, no work has studied
the (k, m) SCDAS in heterogeneous networks with unidirectional and bidirectional
links for any value of k and m.

In this chapter we study the enhancing of fault tolerance of virtual backbone
in WSN represented by a directed disk graph (DG). The virtual backbone in this
case is represented as a strongly connected dominating and absorbing set (SCDAS).
The fault tolerance of a virtual backbone can be enhanced in two aspects. Firstly,
by increasing the dominance and absorption of the virtual backbone nodes, i.e.,
by increasing the number of virtual backbone nodes in the incoming and outgoing
neighborhood of a non-virtual backbone nodes. Secondly, by increasing the con-
nectivity of the virtual backbone, by ensuring the nodes in virtual backbone has
multiple paths to each other in the subgraph induced by them. In order to generate
a fault tolerant virtual backbone, we formulate the (k,m) SCDAS problem. The
(k, m) SCDAS problem is to find an SCDAS of a directed graph G = (V, E) such
that the graph induced by the (k, m) SCDAS nodes is k-strongly node connected and
any node not in (k,m) SCDAS has at least m nodes in its incoming and outgoing
neighborhood, respectively.

The rest of this chapter is organized as follows. Section 2 describes the
preliminaries, network model, and problem definition. The enhancement of fault
tolerance of virtual backbone in terms of dominance and absorption is studied in
Sect. 3. In Sect. 4 we conclude the chapter with a brief summary.

2 Network Model and Problem Definition

2.1 Preliminaries

Let a directed graph G = (V, E) represent a network where V' consists of all nodes
in a network and E represents all the communication links.
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For any vertex v € V, the incoming neighborhood of v is defined as N~ (v) =
{u € V| (u,v) € E}, and the outgoing neighborhood of v is defined as Nt (v) =
{ueV|u e E}.

Likewise, for any vertex v € V, the closed incoming neighborhood of v is
defined as N~ [v] = N~ (v) U {v}, and the closed outgoing neighborhood of v is
defined as Nt[v] = NT(v) U {v}.

A subset S C V is called a dominating set (DS) of G iff SUN T(S) = V where
NT(S) =U,es NT(w)and Vv € NT(S), N~ (NS #0.If IN“(v) N S| > m,
then S is said to be a m dominating set.

A subset A C V is called an absorbing set (AS) of G iff AUN~(S) = V where
N (S)=U,s N (w)and Vv e N~ (S),NT(WNS #G.IfINT(v)NS|>m,
then A is said to be a m absorbing set.

A subset S C V is called an independent set (IS) of G iff S UNT(S) = V and
SNNT(S) =0.

A subset SI C V is called a Semi-independent Set (SI) of G iff u, v € SI, then,
{(u,v), v,u)} ¢ E, orif (u,v) € E then (v,u) ¢ E and vice-versa. Nodes u and v
are said to be Semi-independent to each other.

Given a subset S € V/, an induced subgraph of S, denoted as G[S], obtained
by deleting all vertices in the set V' — § from G.

A directed graph G is said to be strongly connected if for every pair of nodes
u,v € V, there exists a directed node disjoint path. Likewise, a subset S C V is
called a strongly connected set if G[S] is strongly connected. If for every pair of
nodes u, v € V, there exists at least k directed node disjoint paths then the graph G
is said to be k strongly connected, similarly a subset S C V is called a k strongly
connected set if G[S] is k strongly connected.

A subset § € V is called a Strongly Connected Dominating Set (SCDS)
if S is a DS and G[S] is strongly connected. S is called a Strongly Connected
Dominating and Absorbing Set (SCDAS) if S is an SCDS and for all nodes u ¢ S,
Ntw)NS # @and N~ (u) NS # @. S is a (k,m) SCDAS if it is k strongly
connected and m dominating and m absorbing.

2.2 Network Model and Problem Definition

In this chapter, we study the fault tolerant virtual backbone in wireless sensor
networks with different transmission ranges. In this case, the WSN can be modeled
as a directed graph G = (V, E). The sensor nodes in V' are located in the two
dimensional Euclidean plane and each sensor node v; € V has a transmission range
Fi € [Fmin, 'max]. A directed edge (v;,v;) € E if and only if d(v;,v;) < r;, where
d(vi,v;) denotes the Euclidean distance between v; and v;. Such a directed graphs
G is called Disk Graphs (DG). An edge (v;,v;) is bidirectional if both (v;,v;) and
(vj,vi)arein E,ie., d(v;,v;) < min{r;, r;}. Otherwise, it is a unidirectional edge.
Figure 1 shows a disk graph (DG), here the black dots represents the sensor nodes
and the dotted circles around them represents their transmission disks. The directed
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Fig. 1 A disk graph (DG) et .
with unidirectional and
bidirectional links

arrows represent the unidirectional links whereas the bidirected edge represents
bidirectional links. In our network model, we consider both unidirectional and
bidirectional edges.

The virtual backbone in a WSN that can be represented by the connected
dominating set (CDS). In this chapter we studied the fault tolerance of the virtual
backbone in the WSN modeled as a disk graph (DG). In this case the virtual
backbone can be represented by a strongly connected dominating and absorbing
set (SCDAS). There can be two kinds of faults occurring in WSN. A sensor node
can become faulty or a link between two sensor nodes might go down. Hence, the
fault tolerance of virtual backbone in WSN can be enhanced in two ways. Firstly, by
enhancing the dominance and the absorption of the SCDAS representing the virtual
backbone by ensuring more SCDAS nodes are there as incoming and outgoing
neighbors to a non-SCDAS node. This ensures that a non-virtual backbone node
has other options to forward its data, if one of its virtual backbone neighbor goes
down due to some failure. Secondly, by ensuring there are multiple paths between
the virtual backbone nodes in the subgraph generated by the virtual backbone nodes,
so that if a link between two virtual backbone goes down it would not affect
the connectivity of the virtual backbone. This can be achieved by increasing the
connectivity of the SCDAS representing the virtual backbone.

Under such a model and requirements, we formulate the fault tolerant virtual

backbone problem as follows:

k-Strongly Connected m Dominating and Absorbing Set problem ((k,m)
SCDAS): Given a directed graph G = (V, E) representing a sensor network and
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two positive integers k and m, find a subset C C V with a minimum size and
satisfying the following conditions:

e C isan SCDAS
* The subgraph G(C) is k-connected
* Each node not in C is dominated and absorbed by at least m nodes in C

3 Enhancing Domination and Absorption
of the Virtual Backbone

In this section we study enhancing fault tolerance of the virtual backbone in the
WSN represented by a directed disk graph G = (V, E). The fault tolerance of a
virtual backbone needs to be enhanced in two aspects, firstly in terms of domination
and absorbtion, secondly, in terms of connectivity of the subgraph induced by the
virtual backbone nodes. As a fault tolerant virtual backbone in the WSN with
unidirectional and bidirectional links can be represented by a (k, m) SCDAS, hence,
we propose an approximation algorithm for constructing a (k,m) SCDAS for a
directed disk graph G = (V, E) representing the WSN for any value of k and
m. We also provide the theoretical analysis of our algorithm and conjectured its
approximation ratio. The (k, m) SCDAS of graph G represents the virtual backbone
of the WSN such that any node v not in virtual backbone has at least m virtual
backbone nodes in N*(v) and N~ (v), respectively, and the graph induced by
the virtual backbone nodes is k-strongly connected. This ensures that the virtual
backbone can sustain m — 1 virtual backbone nodes failure without isolating any
non-virtual backbone node from the virtual backbone and it can sustain k — 1 virtual
backbone nodes failure without disconnecting the virtual backbone. In order to
generate a (k, m) SCDAS we first generate an (1, m) SCDAS, which is a special case
of (k,m) SCDAS where k = 1. We then enhance the connectivity of the subgraph
induced by the (1, m) SCDAS nodes to make it k-node connected, which results in
a (k,m) SCDAS.

3.1 An Approximation Algorithm for (k, m) SCDAS Problem

The algorithm for generating the (k,m) SCDAS is illustrated in Algorithm 1. In
order to generate a (k,m)SCDAS we first generate a (1,m)SCDAS, which is
a special case of (k,m)SCDAS where k =1. The algorithm for generating a
(1, m) SCDAS is illustrated in Algorithm 2.

The construction of (1,m) SCDAS is divided into two phases. In the first phase
a strongly connected dominating and absorbing set (SCDAS) is generated and then
in the second phase extra nodes are iteratively added to make it m dominating. In
the first phase a strongly connected dominating and absorbing set is generated by
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Algorithm 1 Approximation Algorithm for (k, m)-Strongly Connected Dominating
and Absorbing Set

1: INPUT: An m-connected directed graph G = (V, E), here m > k
: OUTPUT: A (k,m) SCDAS C of G

: Run Algorithm 2 on G to generated an (1, m) SCDAS C.

: for Every pair of black nodes v;,v; € C do

C = CUFindkPath (G, 1, j, k)

: end for

: Return C as the k-m-SCDAS

N Uk W

Algorithm 2 Algorithm for (1, m) Strongly Connected Dominating and Absorbing
Set

: INPUT: An m connected directed graph G = (V, E)

: OUTPUT: A (1,m) SCDAS C of G

: Generate a directed graph G’ by reversing the edges of graph G
: Select a nodes s as a root.

cC=90

C = CUFindDS1 (G.s);

C = CUFindDS1 (G',s);

cfori =1;i <m—1;i ++do

Color all the Gray nodes in G and G’ White

C = CUFindDS2(G)

C = CUFindDS2(G’)

: end for

: The set C is the (1, m) SCDAS

0N U A WN —

[
w09

calling Algorithm 3 twice. When Algorithm 3 terminates there are three different
color nodes in the graph; the black nodes, the blue nodes, and the gray nodes. In
first call to Algorithm 3 the graph G and a node s are passed as the parameter and
it returns a set of black and blue nodes forming a directed dominating tree for G
rooted at 5. The black nodes in the tree form the dominating set of G and they
are semi-independent to each other, they dominate all the gray nodes in the graph.
The blue nodes act as connectors: they connect the black nodes in a way to form
a directed tree rooted at s, as shown in Fig. 2a. In the second call to Algorithm 3
the inverse graph G’ and the node s are passed as parameters. Similarly it returns a
set of blue and black nodes forming a directed dominating tree for G’ rooted at s.
As the graph G’ is the inverse graph of G, hence, the set of blue and black nodes
forming a directed dominating tree for G’ equivalently forms a directed absorbing
tree in G, as shown in Fig. 2b. For all the gray nodes in G’ the corresponding nodes
in G are absorbed by the nodes in G corresponding to all the black nodes in G’.
The union of the set of blue and black nodes returned for G and the set of nodes
in G corresponding to the set nodes returned for G’ forms a strongly connected
dominating and absorbing set for G.

In the second phase extra nodes are added to enhance the dominance and the
absorption of the strongly connected dominated and absorbing set to m. In order
to do this m — 1 iterations are performed and in each iteration the Algorithm 4
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Algorithm 3 Find DS1 (G,s)

1: Set S =0

2: §=SUs

3: BLACK = @; BLUE = ()

4. while There is a white node in G do

5: Select a White node « € S having maximum number of white nodes in N *(u)
6:  Color u black and remove it from §

7:  BLACK = BLACK Uu

8: ifu! = s then

9: Color the Parent(u) Blue if it is Gray
10: BLUE = BLUE U Parent(u)
11: end if

12:  Color all the nodes v € N T (u) Gray
13:  for All the White node w € N1 (v) do

14: if w € S then

15: S=SUw

16: end if

17: Mark v as the parent of w
18: end for

19: end while
20: Return BLACK U BLUE

Algorithm 4 Find DS2(G)
: BLACK =0
: while There is a White node in G do

1

2

3 Select a White node « having maximum number of white nodes in N 1 (x)
4:  Color u Black and all the White node v € N * (i) Gray
5

6

7

BILACK = BLACK U u
: end while
: Return BLACK

A directed dominating tree A directed absorbing tree

Fig. 2 A directed dominating and absorbing tree
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Algorithm 5 Find k-Path(G, 1, j, k)

1: Keeping vertex v; as source and v; as destination, construct a flow network G, of G with
2% |V — 2| 4+ 2 vertices and |E| + |V — 2| edges

2:S=¢

3: G,. < Gf

4: flow<=0

5:forl =1;1 <k;l + + do

6:  Find an augmented path from v; tov; in G, by increasing the flow by 1 unit.

7. For all the saturated edges (viy, Vour ) On this augmented path color the corresponding nodes

vin G blue if they are white and add them to S
Update the residual network G,

end for

10: Return S

o ®

is called twice. In the first call G is passed as a parameter, this results in the
enhancement of the dominance of the SCDAS by one. In the second call G’ is
passed as a parameter, which results in the enhancement of the absorption of the
SCDAS by one. After m — 1 the SCDAS becomes (1, m) SCDAS.

Once the (1,m)SCDAS is formed, for each ordered pair of nodes in (1,m)
SCDAS, k — 1 node disjoint paths are identified by running Find k-Path algorithm
given in Algorithm 5. All white nodes on these paths are colored blue and are
included in the virtual backbone. These nodes are called the connector nodes.
Now, as the domination and the absorption of the virtual backbone is m and the
connectivity of the subgraph generated by the virtual backbone nodes is k, hence, it
forms a (k, m) SCDAS. One important thing to be noticed here is that to ensure that
the subgraph G((k, m) SCDAS) is k-connected and the graph G should be at least
m-connected and m > k.

The Findk-Path Algorithm: The Findk-path Algorithm 1is illustrated in
Algorithm 5. Given a k-connected directed graph G = (V, E), and a pair of vertices
vi,v; € V, the algorithm finds the set of nodes on k node disjoint paths from v; to
v; in graph G. The algorithm first generates a flow network G s by partitioning each
node v € V \ {v;,v;} into two nodes vi, and voy. Then connecting vi, and vou
through a unidirectional edge (vin, vour) and assign this edge a capacity of 1 unit. All
the incoming edges directed towards v in G are set as incoming edges to vi, in G ¢
whereas all the outgoing edges emanating from v in G are set as outgoing edges
from voy in G assign infinite capacity to these edges, this results in G having
2|V —2| +2nodes and |E| + |V —2]| edges. Once the flow network G s of graph G
is formed, we run k iterations and in each iteration an augmented path in G ; from v;
to v; is determined by increasing the flow by 1 unit. We consider that a unit flow is
indivisible. On each newly found augmented path, for any saturated edge (Vin, Vout)
we select the corresponding vertex v in G as a node on the k disjoint path from v; to
v;. Figure 3 show the iterations of finding augmented paths between v; and v; for
k=2
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a Vi
a
b

v.

]

Fig. 3 Iterations for finding augmented paths for k = 2

3.1.1 Theoretical Analysis

Lemma 1. The Algorithm 2 is correct and produces a virtual backbone which is
(1,m) SCDAS.

Proof. In order to prove this lemma we need to show that the virtual backbone
formed is strongly connected and m dominating and absorbing. The algorithm
works in two phases, in the first phase it generates a dominating tree and an
absorbing tree for the graph G. Let the set of blue and black nodes forming the
dominating tree represented as D and the set of blue and black nodes forming the
absorbing tree be represented as A. Now let the set of black nodes in D and A
be represented as Black(D) and Black(A) respectively. The node s has a directed
path using blue and black nodes to all the nodes in Black(D), and all the nodes in
Black(A) has a directed path using blue and black nodes to s. Hence, the black nodes
in Black(D)N Black(A) has a path using blue and black nodes to all the other blue
and black node in D U A. The black nodes in Black(A) \ Black(D) have a directed
blue-black path to s and as this node must be dominated by some black node in
Black(D) it must also have a directed blue-black path from s to it through its
dominator. Similarly the nodes in Black(D) \ Black(A) will have a blue-black path
from and to the root node s. As all the black nodes in Black(D)U Black(A) have a
directed blue—black path from and to the root s, hence, all the nodes in D U A are
strongly connected and forms a SCDAS.

In the second phase extra nodes are added to enhance the domination and the
absorption of the virtual backbone by m — 1. As all these extra nodes are dominated
and absorbed by black nodes, hence, the extended virtual backbone will still be
strongly connected. O

Lemma 2. The number of Semi-Independent neighbors Ky of any node u can be
bounded by (2R + 1)*. Here R = mx

Tmin

Proof. Let u be the node with transmission range rp,x. The number of semi-
independent neighbors of u, i.e., N*(u) N SI can be bounded by Kg;. It can be
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noticed that the distance between any two nodes vand w € ST, i.e., d(v,w) > Fpiy.

Hence, the size of N7 (1) N ST, i.e., K| is bounded by the number of disjoint disks

with radius ry;, /2 packing in the disk centered at u with radius of ry.x + Fmin /2. So,

we have:

n(rmax + rmin/2)2
”(rmin/z)z

INT)NS| < <R+ 1)~ (1)

O

Lemma 3. Let G = (V, E) be any directed graph (DG) with bounded transmission
range ratio R, then the number of black nodes in a dominating set of G obtained on
calling Algorithm 3 or the number of black nodes added on every call to Algorithm 4
in order to enhance the domination by 1 is bounded by: |DS| < (% +1) DS},
here DS, is the optimal solution for m dominating set of G.

Proof. Let us consider DS and DS, there are two possible cases:
1. DS € DS},
2. DS ¢ DS,
Case (a): As DS C DS, we have |DS| < |DS;,

ml®

Case (b): Yu € DS \ DS}, let D, = |DS;;, N N~ (u)|. As DS;,, is an m dominating
set of G, D, > m for each u € DS \DS; and we have:

> D,=m|DS\DS}|. 2)
ue€DS\DS}

For all v € DS*, let

d, = |[(DS\DS*) N N*t(v)|. (3)

As the black nodes in DS obtained on calling Algorithm 3 or obtained in every
call to Algorithm 4 cannot have a bidirectional edge between each other, hence, they
form a Semi-Independent set. From Lemma 2, we have Vv € DS,*n there are at most
Ks1 Semi-independent nodes in its neighborhood, hence d, < Kg;. Therefore we
have:

Ks/IDS3| = > d,. 4)

UGDS;;

However note that

> Dy=|{(v.u) € ElucDS\DS}, . veDS}} = Y d. 5)
ueDS\DS}: ueDns};



14 R. Tiwari and M.T. Thai

From (2), (4) and (5) we have:

mDS\DS;|< > Di.= ) dy <KslDS;|. ©)
ueDS\DS;; ueDS;),
Therefore,
m|DS\ DS} | < Ks1|DS}|. @)

Thus it follows that,
K
IDS| < (i + 1) IDS? . (8)
m
Therefore from the two cases (a) and (b), we conclude that

K

IDS| < (=2 +1)|DS|. )
m

(]

Lemma 4. The number of nodes in m dominating set of G is at most (Kg; + m)
|DSY,,|, here DST,, is the optimal solution for (1, m) SCDS.

Proof. The number of nodes in m dominating set are DS! UDS?-- U DS” |. Here
DS’ is the set of nodes added in the ith iteration. Let [DS| = max;{|[DS’|}, then
from Lemma 3, we have:

K
DS' UDS?...UDS"| <m|DS|<m (% + 1) IDS; | < (Kst +m)|DST,,|. (10)

O

Theorem 1. The Algorithm 2 produces a (1,m)SCDAS with the size bounded
by 2 (KSI (1 + %) +m+ 1) |DASY,,|, here DASY, is the optimal solution for
(1,m) SCDAS.

Proof. Let C denotes our solution to the (1,71) SCDS. Let BLUE and BLACK be
the set of blue and black nodes in G and BLUE’ and BLACK' be the set of blue
and black nodes in G’ respectively. Then we have:

|C| = |BLUE| + |BLACK|+ |BLUE'| + |BLACK'|. (11)
When the Algorithm 3 runs on G and G’ it results in a dominating tree for each of

them, respectively. For both G and G’ the dominating tree is rooted at same node s.
The dominating tree for G’ is equivalent to the absorbing tree for G. On every
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branch of these trees black and blue nodes are placed in alternative sequence,
starting from a black node. Hence, we have | BLUE| = |BLACK| — 1. According
to Lemma 3:
The number of black nodes generated on calling Algorithm 3 is bounded by
Ks[ *k
Hence we have:

K. K.

|BLUE| < (ﬂ + 1) IDS* | < (ﬂ + 1) IDAS? |, (12)
m ’ m ’
K. K.

|BLUE'| < (% + 1) DS}, | < (% + 1) IDASY,,|. (13)

According to Lemma 4 the total number of black nodes are bounded by (Ks;+m)
* [DSY,,| < (Ksp + m) x [DAST, |. So we have:

1.m

|BLACK| < (Ks; + m)|DAST |, (14)
|BLACK'| < (Kg1 + m)|DAST,,|. (15)
from (11) to (15) we have:
1
|ICl<2 (KSI (1 + Z) +m+ 1) IDAST,,|. (16)
O

Lemma 5. The Algorithm 5 for any two vertices v;,v; € G finds all the nodes on
the k node disjoint directed paths from v; to v;.

Proof. In order to find the nodes on k node disjoint directed paths from v; to v;, the
Algorithm 5 run k iterations. In each iteration it finds a new augmented path from
v; to v; by increasing the flow by 1 unit. As the graph G is k-connected, hence,
there will be at least k augmented paths existing. As we consider that a unit flow
is indivisible, hence, in each iteration exactly a single directed linear augmented
path will be explored and determined. As the capacity of all edge (Vin, Vo) is 1
unit, hence, each of them can be used in a single augmented path. This ensures that
any node v is selected only for a single path from v; to v; in G which ensures the
node disjointness of the k paths explored. As the Algorithm 5 can find k-augmented
paths ensuring any edge (vin, vour) can be used exactly in one augmented path, this
will result into finding all the nodes on k node disjoint paths from v; to v;. O

Lemma 6. The Algorithm 1 is correct and produces a virtual backbone which is m
dominating and absorbing, and the subgraph generated by virtual backbone nodes
is k-connected.
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Fig. 4 Examples for showing the existence of k nodes disjoint path from a blue node to a blue or
black node

Proof. Algorithm 1 first considers a virtual backbone as (1, 7) SACDAS generated
by Algorithm 2 and extends it to a (k,m)SCDAS. As shown in Lemma 1 the
(1,m) SCDAS is m dominating and absorbing. Hence, the (k,m) SCDAS will
also be m dominating and absorbing. Now we have to show that the subgraph
G((k,m) SCDAS) is generated by nodes in (k,m) SCDAS is k-connected. Using
Algorithm 5 all the black nodes in (1,m)SCDAS are connected to each other
through k disjoint paths. This is proved in Lemma 1. Now as all the black nodes
are connected to each other through k nodes disjoint paths we only need to show
that all the blue and the black nodes as well as blue and blue nodes are connected
to each other through k node disjoint paths. As any blue node v has at least m
black nodes in N *(v) and N *(v) respectively and m > k. This will ensure that
there will be at least k node disjoint paths from any blue node to another blue node
through its absorbing black nodes. As shown in the example depicted in Fig. 4a, for
k = 2,m = 2, their exists 2 node disjoint paths from a blue node u to another blue
node v. Similarly there will be k node disjoint blue—black paths from any blue node
to all the black nodes. Figure 4b shows that for k = 2, m = 2, here a blue node u is
having 2 node disjoint directed blue—black paths to a black node v. O

Conjecture 1. In Algorithm 5 the number of blue connector nodes needed to make
the black nodes in (1,m) SCDAS connected to each other through k node disjoint
paths are bounded by 2k * 2(Ks; 4 m)|DASY , |. Here, 2(Ks; 4+ m)|DASY | is the
bound on number of black nodes in (1, m) SCDAS according to inequality in (14)
and (15).

Conjecture 2. Following Lemma 1 and Conjecture 1 the Algorithm 1 provides an
approximation ratio 2(2k + 1)(Ks; + m) for the (k, m) SCDAS problem.
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4 Conclusion

In this chapter we studied the fault tolerance of the virtual backbone in a sensor
network having both unidirectional and bidirectional links. We modeled the sensor
network as a directed disk graph and formulated the problem of finding a virtual
backbone as a (k, m) SCDAS problem for any value of k and m. The (k, m) SCDAS
of any directed graph G = (V, E) represents a virtual backbone, such that, for
every node not in the virtual backbone there are at least m virtual backbone nodes in
its incoming and outgoing neighborhood, respectively and the subgraph induced
by the virtual backbone nodes is strongly k-connected. As the problem is NP-
hard, we proposed an approximation algorithm and provided a conjecture on its
approximation ratio.
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Constrained Node Placement and Assignment
in Mobile Backbone Networks

Emily M. Craparo

Abstract This chapter describes new algorithms for mobile backbone network
optimization. In this hierarchical communication framework, mobile backbone
nodes (MBNs) are deployed to provide communication support for regular nodes
(RNs). While previous work has assumed that MBNs are unconstrained in position,
this work models constraints in MBN location. This chapter develops an exact
technique for maximizing the number of RNs that achieve a threshold throughput
level, as well as a polynomial-time approximation algorithm for this problem. We
show that the approximation algorithm carries a performance guarantee of % and
demonstrated that this guarantee is tight in some problem instances.

1 Introduction and Background

Data collected by distributed sensor networks often must be collected or aggregated
in a central location. The mobile backbone network architecture has been proposed
to alleviate scalability problems in ad hoc wireless networks [1, 2], which can
hinder the deployment of large-scale distributed sensing platforms. Noting that
most communication capacity in large-scale single-layer mobile networks is ded-
icated to packet-forwarding and routing overhead, Xu et al. propose a multi-layer
hierarchical network architecture and demonstrate the improved scalability of a two-
layer framework [2]. Srinivas et al. [3] define two types of nodes: regular nodes
(RNs), which have restricted mobility and limited communication capability, and
mobile backbone nodes (MBNs), which have superior communication capability
and which can be deployed to provide communication support for the RNs.
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In addition to scaling well with network size, the mobile backbone network
architecture naturally models a variety of real-world systems, such as airborne com-
munication hubs that are deployed to provide communication support for ground
platforms, or mobile agents that are positioned to collect data from stationary sensor
nodes.

Srinivas et al. [4] and Craparo et al. [5] address problems involving simultaneous
MBN placement and RN assignment. Both [4] and [5] seek to simultaneously place
K MBNSs, which can occupy any location in the plane, and assign N RNs to the
MBNS, in order to optimize a various throughput characteristics of the network.
Srinivas et al. describe an enumeration-based exact algorithm and several heuristics
for maximizing the minimum throughput achieved by any RN [4]. Craparo et al.
study the problem of maximizing the number of RNs that achieve a threshold
throughput level tni,; they propose an exact algorithm based on mixed-integer
linear programming, as well as a polynomial-time approximation algorithm with
a constant-factor performance guarantee [5].

A key feature of the formulations in [4] and [5] concerns the potential locations of
the MBNs. Although the MBNss can feasibly occupy any locations in the plane, [4]
and [5] demonstrate that the MBNs can be restricted to a relatively small set of
locations (O(N?)) without compromising the optimality of the overall solution. In
particular, each MBN can be placed at the /-center of its assigned RNs. (A MBN
is located at the /-center of a set of RNs if the maximum distance from the MBN
to the any of the RN in the set is minimized.) Additionally, each 1-center location
[ is associated with a unique radius of communication. This radius is the maximum
possible distance between the MBN at location / and any of the RNs in subsets for
which / is a 1-center [5]. Thus, the restriction of MBNs to 1-center locations not only
dramatically reduces the size of the feasible set of MBN locations, but also removes
the communication radius as an independent decision variable in the optimization
problem.

In the formulations of [4] and [5], it is always possible to place MBNs in
1-center locations because the MBNs are assumed to be capable of occupying any
location. In some applications, this assumption is valid. For instance, an airborne
communication hub (e.g., a blimp) could easily be placed at the 1-center of its
assigned RNs. In other applications, however, the potential locations of the MBN's
may be limited. In hastily-formed networks operating in disaster areas, for instance,
ground-based communication hubs are generally restricted to public spaces such as
schools, hospitals, and police stations [6]. In this case, the mobile backbone network
optimization problem is constrained, in the sense that the MBNs can occupy only
a discrete set of locations, and these potential locations are given as input data.
In this application, it is generally impossible to place each MBN at the 1-center
of its assigned RNs. Although the restriction of MBNSs to a finite set of locations
can reduce the size of the solution space with respect to MBN placement, the
maximum communication radius of each MBN is a separate decision variable in
this case, and the formulations of [4] and [5] are inappropriate. This work describes
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a mobile backbone network optimization problem with MBN placement constraints
and provides exact and approximation algorithms for solving this problem, along
with full proofs of results as previously described in [7].

2 Problem Statement

We use the communication model of [4] and [5], in which the throughput 7 that
can be achieved between a RN n and a MBN £, is a monotonically nonincreasing
function of two quantities: the distance between n and k, and the number of RNs
that are assigned to k (and thus interfere with n’s transmissions). We assume that
each RNs are assigned to one MBN encounter, no interference from RNs assigned
to other MBNSs (for example, because each “cluster” consisting of an MBN and its
assigned RNs operates on a dedicated frequency).

Under such a throughput model, we pose the constrained placement and
assignment (CPA) problem as follows: given a set of N RNs distributed in a plane,
place K MBNSs in the plane while simultaneously assigning the RNs to the MBNss,
such that the number of RNs that achieve throughput at least i, 1S maximized.
MBNSs can occupy locations from the set L = {1,..., L}, L > K, and each RN can
be assigned to at most one MBN.

We do not require the MBNs to be “connected” to one another; this model is
appropriate for applications in which MBNs serve to provide a satellite uplink for
RN, such as in the hastily-formed networks as mentioned in Sect. 1. It is also ap-
propriate for applications in which the MBNs are powerful enough to communicate
effectively with one another over the entire problem domain. We also assume that
the positions of RNs are known exactly, through the use of GPS, for example.

Problem CPA is similar to the message ferrying problem, in which RNs have
a finite amount of data available to transmit, and MBNs must efficiently collect
this data [8—11]. CPA differs in that as it does not assume that the RNs have a
limited amount of data to transmit; rather, CPA seeks to provide throughput on
a permanent basis. In this sense, CPA is similar to a facility location problem.
However, whereas CPA seeks to efficiently utilize a limited resource (the MBN5),
most facility location problems focus on servicing all customers at minimum
cost. Additionally, the throughput model in this work does not correspond to a
notion of “service” in any known facility location problem. CPA is also similar
to cellular network optimization; however, most approaches to cellular network
optimization involve decomposition of the problem. Some formulations take base
station placement as an input and optimize over user assignment and transmission
power, with the objective of minimizing total interference [12—15]. Others use a
simple heuristic for the assignment of users to base stations and to focus on selection
of base station locations [16, 17]. In contrast, CPA seeks to optimize the network
simultaneously over MBN placement and RN assignment, without assuming that
RNs have variable transmission power capabilities.
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3 Network Design Formulation

A key insight concerning the structure of the throughput function facilitates solution
of CPA. Consider a cluster of nodes consisting of an MBN and its assigned RNs.
Note that if the RN that is farthest away from the MBN achieves throughput of
at least Ty, then all other RNs in the cluster also achieve throughput of at least
Tmin- Thus, in order to guarantee that all regular nodes in a cluster achieve adequate
throughput, we need only to ensure that the most distant RN in the cluster achieves
throughput of at least ty;, [5].

Leveraging this insight, we can obtain an optimal solution to the simultaneous
MBN placement and RN assignment problem via a network design formulation. In
network design problems, a given network can be augmented with additional arcs
for a given cost, and the objective is to “purchase” a set of augmenting arcs, subject
to a budget constraint, in order to optimize flow in some way [18]. The formulation
of the network design problem used in this work is similar to that presented in [5], in
that the geometry and throughput characteristics of the problem are captured in the
structure of the network design graph. Relative to the formulation in [5], however,
we must use additional constraints in the network design problem. These constraints
account for the fact that the communication radius of each MBN is an independent
decision variable, i.e., it is not uniquely determined by the selection of the MBN
location.

Our network design problem is formulated on a graph G = (N, A) of the form
as shown schematically in Fig. 1. The graph G is constructed as follows:

The nodes of G consist of a source s, a sink 7, and two node sets, N =
{ny,...,ny}and M = {m}, .. ,mg}. N represents the RNs, while M represents
possible combinations of MBN locations and communication radii; node m;} repre-
sents the MBN at location / and that communicates with RNs within radius ri of l,
where 7' is the distance from location / to RN 7. The source s is connected to each
of the nodes in N via an arc of unit capacity. For each RN i, candidate MBN location
[, and communication radius ri', n; is connected to node m} if and only if r,i <r.
All of the arcs connecting nodes in N to nodes in M have unit capacity. Finally, each
node in M is connected to the sink, . The capacity of the arc connecting node m}
to 7 is the product of a binary variable y;' and a constant ¢;'. The binary variable y;'
represents the decision of whether to place the MBN at location / with maximum
communication radius r;'. The constant ¢ is the maximum number of RNs that
can be assigned to the MBN at location / such that an RN at a distance 7} from /
achieves throughput of at least t;,. This quantity can be computed by means of a
given throughput function, t, and a desired minimum throughput level, t;,. For an
invertible throughput function, one can take the inverse of the function with respect
to cluster size, evaluate the inverse at the desired minimum throughput level Ty,
and take the floor of the result to obtain an integer value for ¢;'. If the throughput
function cannot easily be inverted with respect to cluster size, one can perform a
search for the largest cluster size ¢;/ < N such that r(cf, rI”) > Tnin- A binary search
for ¢} would involve O(log(N)) evaluations of the function t for each radius.
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Fig. 1 Schematic representation of the graph on which an instance of the network design problem
is posed

The objective of the network design problem is to “activate” a subset of the arcs
entering ¢ in such a way as to maximize the volume of flow that can travel from s
to ¢. In addition to the capacity and flow conservation constraints typical of network
models, the network design problem also includes cardinality and multiple-choice
constraints. The cardinality constraint states that exactly K arcs are to be activated,
reflecting the fact that K MBNs are available for placement. The multiple-choice
constraints state that at most one arc with subscript / can be activated for each [ =

1,..., L. These constraints allow at most one MBN to be placed at each location; in
other words, the locations 1, ..., L represent item classes, while the possible radii
rll, e, rlN represent items within each class, and the multiple-choice constraints

state that at most one item can be selected from each class.

We denote the network design problem on G as the Multiple-Choice Network
Design (MCND) problem. MCND can be solved via the following mixed-integer
linear program (MILP):

N
max > xom, (la)

i=1



24 E.M. Craparo

L N
subject to ZZy,” =K (1b)
I=1n=1
N
Yoy Vi=1...L (Ie)
n=l1
Z Xij = Z Xk j EN\{S,Z} (1d)
iti.j)eA k:(jk)eA
xij =0 VijeA (le)
xij <1 V(@ jeA:jeN\{tp 1D
Xty < yiel VY I,n (1g)
Xyl < v VY i,l,n (1h)
v e 0,1} v I.n. (1)

The objective of MCND is to maximize the flow of x that traverses G, which
corresponds to the total number of RNs that can be assigned at throughput .
Constraint (1b) states that K arcs (MBN locations) are to be selected, and constraint
(1c) states that at most one MBN can be placed at each location. Constraints (1d)—
(1g) are network flow constraints, stating that flow through all internal nodes must
be conserved (1d) and that arc capacities must be observed (le)—(1g). Constraint
(1h) is a valid inequality that improves computational performance by reducing the
size of the feasible set in the LP relaxation. Constraint (1i) ensures that y;' is binary
for all /,n. Note that, for a given specification of the y vector, all flows of x are
integer in all basic feasible solutions of the resulting linear network flow problem.

An optimal solution to a instance of MCND provides both the placement of
MBNs and the assignment of RNs to MBNs. The MBN is placed at location [ if
v} = 1forsome n. RN is assigned to the MBN at location / if and only if the flow

from node n; to node m,’ is equal to 1 for some j. The equivalence between MCND
and the original problem CPA is more formally stated in Theorem 1.

Theorem 1 Given an instance of CPA, the solution to the corresponding instance
of MCND yields an optimal MBN placement and RN assignment.

Proof. The proof of Theorem 1 appears in Appendix 1. O

3.1 Hardness of Network Optimization

Although an optimal solution to MCND provides an optimal solution to the
corresponding instance of CPA, the MILP approach described above is not compu-
tationally tractable from a theoretical perspective. This fact motivates consideration
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of the fundamental tractability of CPA itself. If CPA is NP-hard, it may be difficult
or impossible to find an exact algorithm that is significantly more efficient than the
MILP approach. Unfortunately, CPA is indeed NP-hard.

Theorem 2 Problem CPA is NP-hard.

Proof. The proof of Theorem 2 appears in Appendix 2. O

4 Approximation Algorithm

The probable intractability of CPA motivates consideration of approximate tech-
niques. This section describes the approximation algorithm for MCND that runs in
polynomial time and has a constant-factor performance guarantee.

The approximation algorithm is based on the insight that the maximum number
of RNs that can be assigned is a submodular function of the set of mobile MBN
locations and communication radii that are selected. Given a finite ground set D =
{1,...,d}, aset function f(S), S € D, is submodular if

S U= fSUih) = F(SULH = f(S) 2)

foralli, j € D,i # jand S C D\ {i,j} [19]. Theorem 3 describes the
submodularity of the objective function in the context of problem MCND.

Theorem 3 Given an instance of MCND on a graph G, the maximum flow that can
be routed through G is a submodular function of the set of arcs incident to t that are
selected.

Proof. The proof of Theorem 3 is similar to that of Lemma 1 in [5] and will not be
presented here. O

4.1 Submodular Maximization with Multiple-Choice
and Cardinality Constraints

Submodular maximization has been studied in many contexts, and with a variety of
constraints. Nemhauser et al. [20] showed that for maximization of a nondecreasing,
nonnegative submodular function subject to a cardinality constraint, a greedy
selection technique produces a solution whose objective value is within 1 — %
of the optimal objective value, where e is the base of the natural logarithm [21].
Approximation algorithms have also been developed for submodular maximization
subject to other constraints, for example, Sviridenko [23] described a polynomial-
time algorithm for maximizing a nondecreasing, nonnegative submodular function
subject to a knapsack constraint.

In MCND, we aim to maximize a nonnegative, nondecreasing submodular
function subject to L multiple-choice constraints and one cardinality constraint.
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Algorithm 1

S« 0
maxflow <=0
U<A{l,..,L}
for k=1to K do
for / € U do
for n=1to N do
if /(S U{y}) = maxflow then
maxflow < f(SU{y})
vy
* <«
end if
end for
end for
S < SuU{y*}
U<« U\{*}
end for
return S

This is a special case of the problem of submodular maximization under multiple
linear constraints as described by Kulik et al. [24]. Kulik et al. described the
approximation algorithm for this problem, however, their approximation algorithm
runs in polynomial time only if the number of linear constraints is a fixed
constant [24]. Because MCND has O(L) linear constraints, this algorithm can be
quite computationally intensive. Fortunately, a simple greedy approach provides a
provably good solution to MCND.

Consider Algorithm 1. Algorithm 1 starts with an empty set of selected arcs,
S, and iteratively adds the arc that produces the maximum increase in the ob-
jective value, f, while maintaining feasibility with respect to the multiple choice
constraints. After K iterations, Algorithm 1 produces a solution that obeys both
the multiple-choice and cardinality constraints of MCND. The running time of
Algorithm 1 is polynomial in K, L, and N; it requires solution of O(KLN)
maximum flow problems on bipartite networks with at most N 4+ K + 2 nodes
each. Moreover, Algorithm 1 carries a theoretical performance guarantee, as stated
in Theorem 4.

Theorem 4 Algorithm 1 is an approximation algorithm for MCND with approxi-
mation guarantee %

Proof. The proof of Theorem 4 appears in Appendix 3. O

That is, if the optimal solution to an instance of MCND has objective value OPT,
then Algorithm 1 produces a solution S such that f(S) > %OPT.

The performance guarantee of % shown in Theorem 4 is indeed tight for some
problem instances. For example, consider the instance of CPA shown in Fig. 2b,
with K = 2, 7(c,r) = #, and tpip = 1. The corresponding instance of MCND
is shown in Fig. 2a. Note that on the first iteration of the greedy algorithm, nodes

m{, m%, and mé are all optimal; each allows one unit of flow to traverse the graph.
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£ Mobile backbone node
O Regular node

Fig. 2 Example of an instance of CPA for which the % approximation guarantee of Algorithm 1 is
tight. From left to right, the nodes shown are MBN 2, RN 1, MBN 1, and RN 2. (a) Example
of an instance of MCND for which Algorithm 1 exactly achieves its performance guarantee.
(b) A network optimization problem that yields the network design problem shown in Fig. 2a,
for z(c,r) = 6’% and T, = 1

Assume that the greedy algorithm selects node m|. Then, on the greedy algorithm’s
second iteration, nodes m% and m% remain available for selection. However, neither
of these nodes allows any additional flow to traverse the graph; thus, the total
objective value obtained by the greedy algorithm is equal to 1, while an exact
algorithm would have selected nodes m? and m) to obtain an objective value of 2.

While a theoretical performance guarantee is useful, the empirical performance
of Algorithm 1 is also of interest. Figure 3 shows the average performance
of Algorithm 1 relative to an exact (MILP) algorithm, for randomly-generated
instances of CPA and their corresponding instances of MCND. Both RN locations
and candidate MBN locations were generated according to a uniform distribution in
a square area. As the figure indicates, Algorithm 1 tends to significantly outperform
its performance guarantee, achieving average objective values up to 90% of those
obtained by the exact algorithm, with a dramatic reduction in computation time.
These results indicate that Algorithm 1 is a promising candidate for large-scale
network design problems.
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Fig. 3 Comparison of the exact and approximation algorithms developed in this work.
(a) Performance of the approximation algorithm developed in this work, relative to an exact solu-
tion technique, in terms of number of RN assigned at the given throughput level (b) Computation
time of the approximation algorithm and the exact (MILP) algorithm for various problem sizes.
Due to the large range of values represented, a logarithmic scale is used
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5 Conclusion

This chapter has described algorithms for maximizing the number of RNs that
achieve a threshold throughput level in a mobile backbone network. While previous
work on this topic has assumed that MBNs are unconstrained in position, we model
constraints in MBN location. Techniques described in this work include an exact
algorithm based on mixed-integer linear programming (MILP) and polynomial-
time approximation algorithm. Experimental results indicate that the approximation
algorithm achieves good performance with a drastic reduction in computation time,
making it suitable for a large-scale applications. We have also shown that the
approximation algorithm carries a theoretical performance guarantee, and that this
performance guarantee can indeed be tight in some instances, although the empirical
performance of the approximation algorithm tends to exceed the performance
guarantee.

Appendix 1. Proof of Theorem 1

Fix an instance of CPA, and consider a feasible solution to this instance, that is, a
solution in which at most one MBN is placed in each location, each RN is assigned
to at most one MBN, and each RN that is assigned to an MBN achieves throughput
at least Ty, Let A denote the set of RNs assigned to MBN k. Then, the objective
value of this solution is ), |Ax|. A solution to the corresponding instance of MCND
with objective value D, |Ax| can be constructed as follows.

Consider MBN k& occupying location /. Let f denote the most distant RN from
k that is in set A, and let d s denote the distance from f to k. Then, set y,f equal
to 1. For each RN i € Ay, set xy,, and xnim/ equal to 1, and set x,,, equal to

zero for all other m. Note that the arc from node n; to node m’;/ is guaranteed to
exist by construction. Flow conservation (constraint (1d)) is now satisfied at node
n;; repeating this process for each MBN k =1,..., K results in constraint (1d)
being satisfied for all i € Uy Ai. For all i ¢ Uy Ak, set x;p,; and x,,,,, equal to zero
for all m. Flow conservation is now satisfied at all nodes ny,...,ny, and capacity
constraints (1e) and (1f) are now satisfied for all arcs except those entering the sink
t. Setting the remaining binary variables to zero results in constraints (1b), (1c), and
(1i) being satisfied. Finally, consider the arcs entering the sink ¢. If the MBN is not
placed at location / with radius r}', the arc connecting node mj to ¢ has capacity
zero. Therefore, set Xy O Zero, and note that because node m} has no incoming
flow, constraint (1d) is satisfied at node m} . On the other hand, if the MBN is placed
at location / and has RN n as its most distant assigned RN, then the arc connecting
node m] to ¢ has capacity c¢]. Node m] has |Ai| units of incoming flow, and by
definition of ¢;' and our assumption that our original solution to CPA is feasible,
we know that |Ax| < ¢'. Therefore, we can set x,,, equal to | A/, thus satisfying
constraints (1d) and (1g) for all nodes and arcs. The objective value of this solution

is Zk |Ak|.
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We have shown that for every feasible solution to CPA, there is a corresponding
feasible solution to MCND with the same objective value. It remains to be shown
that for every optimal solution to MCND, there is a corresponding solution to CPA
with the same objective value.

Consider an optimal solution to an instance of MCND, and assume that all of
the flows in this solution are integer. (Due to total unimodularity of the network
flow constraint matrix, all flows x are integer in all basic feasible solutions of the
linear maximum flow problem induced by a specification of the y vector.) For each
I =1,..., L, place in the MBN at location / if and only if y} = 1 for some n.
K MBNs have now been placed.

For all [ and n, if y; = 1, assign to the MBN at location [ the set of RNs for
which Xnmi = 1 in the solution to MCND. Note that, by definition of ¢/, all of
the assigned RNs achieve throughput at least ty,. Furthermore, because all arcs
originating at s have unit capacity, and because all flows in the solution are integer,
each RN can be assigned to at most one MBN. Thus, we have obtained a feasible
solution to CPA. Furthermore, the value of this solution is equal to that obtained in
CPA: each unit of flow represents exactly one RN that is successfully assigned at
throughput at least tyi,. Thus, MCND yields an optimal solution to CPA.

Appendix 2. Proof of Theorem 2

The proof of Theorem 2 reduces an instance of the Euclidean K-center problem
on points to CPA. In the Euclidean K-center problem, the input is a set of N
points on the plane and a positive real number r, and the objective is to determine
whether it is possible to place K discs of radius r in the plane such that every
input point is within distance at most r from the center of at least one disc, i.e.,
every point is covered by at least one disc. The Euclidean K-center problem on
points has the additional restriction that the center of each disc must coincide
with one of the N input points. Both versions of the problem are known to be
NP-complete [25].

Proof. Fix an instance of the Euclidean K-center problem on points. Denote the
input points by N = {1, ..., N} and the radius by r. This instance can be reduced to
an instance of CPA as follows: Define N RNs, and let their locations coincide with
the input points. Next, define N candidate MBN locations also coinciding with the
input points, and let K be the number of MBNs to be placed. Fix tp,, and define
the throughput function t as follows:

Tmin  if dyk <7,
t(Ag, duir) = 1(dui) = 3)
(A dnr) D=00 itdy >

Note that 7 fits the assumptions stated in Sect. 2; it is monotonically nonincreasing
with d,; and does not vary with Aj.
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Denote an optimal solution to CPA by (4*, B*), where B* denotes the place-
ment of the MBNs (i.e., the subset of the candidate locations 1,..., N that
are occupied by MBNs) and A* denotes the optimal assignment of RNs to
MBNSs. Assume without loss of generality that the nodes are numbered such that
B* = {l,...,K}. Let Ay denote the set of RNs assigned to MBN £ in solution
(A*, B).

If the optimal objective value of this instance of CPA is equal to N, then the
answer to the original Euclidean K-center problem on points is YES. Given a
solution to CPA (A*, B*) in which ), |4x| = N, a solution to the Euclidean
K -center problem on points in which all points are covered can be constructed by
placing discs at locations B*. By our assumption that all RNs in the set Ay achieve
throughput at least Ty, it follows that all RNs in the set Ay are within radius r of
the disc at location k and thus are covered by that disc. Furthermore, since each RN
can be assigned to at most one MBN, the fact that >, |Ax| = N implies that all
RN achieve throughput at least t,,;,. Therefore, all nodes in the original Euclidean
K -center problem on points are covered by discs placed at locations B*.

Likewise, if the answer to the original Euclidean K-center problem on points
is YES, then the optimal objective value the corresponding instance of CPA must
be equal to N. Let B* denote a placement of discs such that each input point is
covered by at least one disc, and again denote this placement by B* = {1, ..., K}.
Let C, € B* denote the set of discs that cover point #. If point  is covered by the
disc at location k € C,, then the RN at location n can be assigned to the MBN at
location k and achieve throughput at least 7, in CPA. Since throughput is not a
function of cluster size in (3), a feasible solution to CPA consists of a placement of
MBNEs at the locations in B* and an assignment A4 in which each RN 7 is assigned
to exactly one of the MBNs occupying locations in C,,.

Thus, the Euclidean K-center problem on points can be reduced to CPA. The
time required to perform this reduction is polynomial in the number of input points;
therefore, CPA is NP-hard. O

Appendix 3. Proof of Theorem 4

Proof. Consider the problem of maximizing a nonnegative, nondecreasing submod-
ular set function f(S) subject to multiple-choice and cardinality constraints. Items
eligible for inclusion in S belong to a ground set D that is divided into C disjoint
subsets called classes. A set S is feasible if |S| < K and no two items in S belong to
the same class. Note that because f is nondecreasing, there always exists an optimal
solution such that | S| = K.

Let S¢ denote the set of items selected by the greedy algorithm, and let S* denote
the set of items selected by an exact algorithm (i.e., the optimal solution). We wish
to find a lower bound on the ratio of f(S%) to f(S*).
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Consider first the special case in which C = K, i.e., the number of elements
to be selected is equal to the number of item classes. In this case, exactly one item
from each class is to be selected.

Assume without loss of generality that the item classes are numbered such that
the item from class k was chosen by the greedy algorithm during its kth iteration,
fork =1, ..., K. Denote the kth item selected by the greedy algorithm by i#x, and
denote the item from class k selected by the exact algorithm by i;*. Furthermore,
denote the set of items selected by the greedy algorithm up to iteration k by S¥,
i.e., Slf = {i}, ..., ix}. Finally, denote the marginal increase in the objective value
obtained by adding item iy to the set Sf_, by &, i.e., & = f(S{) — f (SE_))-
Note that

K
f(8%) = ZSk
=1

and
Sk < k1.

A set function g defined over a ground set U is submodular if and only if [21]

g(T) <g(S) + Y (g(SU{j}—g(S))

JET\S

— Y @SUT)—g(SUT\{j}))VS. T cU.
JES\T

Because [ is a nonnegative, nondecreasing submodular function, the final term
ZJGS\T(f(S UT)— f(SUT\{j})) is nonnegative, and therefore

ST < fS)+ D (fSULD—S(S) VS.TCU. )

JET\S

In particular,

FSH) S f(SH+ Y. (f(SEULiD = f(59). )

JES*\S¢8

Consider item i ¢ S¢. Because i;” was not chosen by the greedy algorithm, it
follows that

FOSE VLD — f(SE) < b
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By (2),

F(SEULGEN — £(S8) < f(SE_, ULiED — f(SE), ©)
<5 7

Substituting this into (5), we obtain:

SN =[S+ Y fSEU{h = £(SF)

JES*\S¢8

K
< FSH+D 6

k=1

= 2f(S5%).

Thus, we have obtained a bound on the ratio of f(S¢) to f(S*) for the special
case in which C = K:

£s%) 1
ER

®)

Now consider the case in which C > K. In this case, neither the greedy algorithm
nor the exact algorithm can select an item from every class, and the two algorithms
will not necessarily select items from the same classes. Let S denote the set of
items in the optimal solution that belong to classes from which the greedy algorithm
also selected an item, and let S;‘ denote the set of items in the optimal solution that
belong to classes from which the greedy algorithm did not select an item. Note that
S§* = 8§ U SJ. Denote the item classesby ¢ = 1,...,C.

Consider item i € S belonging to class ¢, and denote the item selected from
class ¢ by the greedy algorithm as i.. Assume that the greedy algorithm selected
item . in iteration k. Then, by the same argument used in the case of C = K,

FSEULiH = £(S5) = f(S¢_, i) — (S, ©)
< &, (10)

where S,f_l is again the set of items selected by the greedy algorithm at the
beginning of iteration k, and §; is the marginal increase in the objective value
obtained by adding item i. to the set S¢_, i.e., & = f(Sf_, U{ic}) — f(SE_)).

Now consider item i € S7 belonging to class ¢’. The greedy algorithm did not
select an item from class ¢’; therefore:

FSEULY) = f(S5) = f(SE Ui} — f(SE_)).

<k,



34

E.M. Craparo

where §k is the marginal increase in the objective value obtained when the greedy
algorithm adds the final element i to the set S¥_, to obtain S¢ = S¥_ U {ix}.

Substituting these inequalities into (5), we obtain:

S S S+ Y f(SEULh - £(59)

jesy\se

+ ) fSEULD - f(S9)

JjESF\S¢
SfSH+ Y &+ STk

kiig€Ue U NS*£0

K
< FSH+D 6

k=1

=2/(5%),

where we have used the fact that §x < §; fork < K.

of C = K,ie., 1.

Thus, the approximation ratio for the case of C > K is the same as in the case

>
We note that an alternative proof of this performance guarantee can be obtained

by demonstrating the matroid structure of the feasible set [22]. O
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Canonical Dual Solutions to Sum

of Fourth-Order Polynomials Minimization
Problems with Applications to Sensor
Network Localization

David Yang Gao, Ning Ruan, and Panos M. Pardalos

Abstract This chapter presents a canonical dual approach for solving a general sum
of fourth-order polynomial minimization problem. This problem arises extensively
in engineering and science, including database analysis, computational biology,
sensor network communications, nonconvex mechanics, and ecology. We first
show that this global optimization problem is actually equivalent to a discretized
minimal potential variational problem in large deformation mechanics. Therefore,
a general analytical solution is proposed by using the canonical duality theory
developed by the first author. Both global and local extremality properties of this
analytical solution are identified by a triality theory. Application to sensor network
localization problem is illustrated. Our results show when the problem is not
uniquely localizable, the “optimal solution” obtained by the SDP method is actually
a local maximizer of the total potential energy. However, by using a perturbed
canonical dual approach, a class of Euclidean distance problems can be converted to
a unified concave maximization dual problem with zero duality gap, which can be
solved by well-developed convex minimization methods. This chapter should bridge
an existing gap between nonconvex mechanics and global optimization.
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1 Primal Problems and Connections to Finite Deformation
Mechanics

We are interested in solving the following general nonlinear programming problem:

m 1
(P): min P(x):ZW@(X)—i-EXTQx—fo : xeR"S, (1)
e=]
where
1 (1, ’ :
WE(X)ZEaE X Ax+b,x+c. ) . (2)

and A, = AZ, 0= QT € R are indefinite symmetrical matrices, f, b, € R”
are given vectors, ¢, € R and «, are given constants. Without loss generality, we
assume that o, > 0, Ve = 1,...,m. The criticality condition §P (x) = 0 leads to
a nonlinear equilibrium equation:

- 1
ZO[E (EXTAeX‘i‘bZX‘i‘Ce) (Aex+be) + QX—f: 0. 3)
e=1

Direct methods for solving this coupled nonlinear algebraic system are very diffi-
cult. Also (3) is only a necessary condition for global minimizer of the problem (P).
A general sufficient condition for identifying the global minimizer is a fundamental
task in global optimization.

The nonconvex minimization problem (P) arises naturally in a wide range
of applications, including chaotical dynamical systems [18], chemical database
analysis [47], information theory, large deformation computational mechanics [10],
location/allocation, network communication, and phase transitions of solids [34].

For example, the sensor network location problem is to solve the following
system of nonlinear equations [3, 6, 38]:

G VG ) ET, w=a, VkeI, “)

oy — w3 =d
where the vectors u; = {u} € R? (i = 1,..., p) represent the locations of the
unknown sensors, Z, = {(i, j) : i < j, d;; isspecified} and Z; = {k : w; = a;
is specified} are two given index sets, d;; are given distances for (i, j) € Z,, the
given vectors aj,a,...,a; € R4 are the so called anchors. By using the least
squares method, the quadratic equations (29) of the sensor localization problem can
be reformulated as an optimization problem:

) 1 2
mind P@ = Y 5 (I —wB-d?) s well. 5)
(i.))€T,
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where

i —ujfl> =

d
> —us)?
a=1

denotes the Euclidian distance between uw; and u;, and Y, = {u € RPP| wy, =
a,Vk € I} is a feasible space. Let x = {{u%u‘f}{u}”,ud}} e R”
(n = d x p) denote an extended vector. By using Lagrange multiplier method
to relax the boundary conditions in ,, the least squares method for the sensor
localization problem (5) can be written in the problem (1) for certain properly
defined matrices {A4.}.

The sensor network localization problem can also be viewed as a variant of
the Graph Realization problem, or a distance geometry problem [1, 44] which
has been studied extensively in computational biology, Euclidean ball packing,
molecular confirmation, and recently, wireless network communication. In general,
the sensor network localization problem is considered to be NP-hard even for the
simplest case d =1 [38, 43]. Recent result of Aspnes et al. [3] shows that the
problem of computing a realization of the sensors on the plane is NP-complete
in general. So and Ye confirmed that this is true even when the instance has a
unique solution on a given plane [44]. Therefore, many approximation methods
have been proposed for solving this nonconvex, nonsmooth global optimization
problem approximately. The semi-definite programming (SDP) and second-order
cone programming (SOCP) relaxations are two of the popular methods studied
recently [1,2,4-6,44-46]. Similar to the linear primal—dual interior point methods,
many numerical schemes for SDP or SOCP often return to the analytic center of
the solution set. Therefore, one common feature of SDP and SOCP relaxations is
that the computed sensor locations are very inaccurate when the solution of the
localization problem is not unique. Very often, these numerical solutions could be
even local maximizers of the least squares objective function (see the last section
and [42]).

Mathematics and mechanics have been two complementary partners since the
Newton times. Many fundamental ideas, concepts, and mathematical methods
extensively used in calculus of variations and optimization are originally developed
from mechanics. For examples, the Lagrange multiplier method was first proposed
by Lagrange from the classical analytic mechanics; while the concepts of super-
potential and sub-differential in modern convex analysis were introduced by Moreau
from frictional mechanics [39, 40]. From the point view of computational large
deformation mechanics, both the fourth-order polynomial minimization problem
(P) and the sensor localization problem (5) are actually two special cases of dis-
cretized finite deformation problems [10]. In continuum mechanics and differential
geometry, the deformation u(x) : 2 — R? is a vector field over an open domain
£2 c R4, and the nonconvex function

min%P(u):/ [W(Va) —u"f]d2 : uel,y, (6)
2
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where W(F) is the so-called stored strain energy, which is usually a nonconvex
function of the deformation gradient F = Vu, the feasible set I/, in this non-
convex variational problem is called the kinetically admissible space, in which,
certain boundary conditions are prescribed. According to the hyper-elasticity law
[14, Chapter 6.1.2], the stored strain energy should be a function of the right
Cauchy-Green strain tensor C = (Vu)” (Vu), i.e., there exists an isotropic function
V(C) such that:

W(Vu) = V(C(u)). (7)

Particularly, for the simplest St. Venant—Kirchhoff material, V(C) is a quadratic
function of C, and the stored energy W(F) is a fourth-order polynomial tensor
function of F. In terms of u, we have [13, 14, 32]:

W(Vu) = % [G(Vu)T(Vu) —e) ‘H: G(Vu)T(Vu) —e):|, (8)

where H = {H*P7%} is a fourth-order (Hooke elastic) tensor; € = {eqp} is a given
internal variable, which could be either residual strain tensor, or dislocation [13].
In the case that € = I, an identity tensor, £ = %(Vu)T(Vu) — I is the well-known
Green—St. Venant strain tensor. The double dot product

d d
H:E=Y Y HPE,

y=135=1

is a standard notation in finite deformation theory. In the most simple one-
dimensional problem, W(u,) = % (%u% - 6)2 is the well-known double-well
potential, first proposed by van der Waals in thermodynamics in 1895 [15, 18].
By using finite difference method (FDM), the deformation gradient Vu can be
directly approximated by the difference u(x;) —u(x;) = w; — u;. While in finite
element method (FEM), the domain £2 = UT £2¢ is discretized by a finite number of
elements £2¢ C §2 and in each element, the deformation filed u(x) = Y, N; (x)u;
is numerically represented by the nodal vectors w; via piecewise interpolation
(polynomial) function N; (x) [10]. Therefore, by either FDM or FEM, the minimal
potential variational problem (6) can be eventually reduced to a very complicated
large-scale fourth-order polynomial minimization problem with both the problems
(P) and (5) as its two special cases.

In order to solve the nonconvex variational problem (6), a unified canonical
duality theory has been developed from nonlinear analysis of finite deformation
theory [12, 14, 15, 31] and finite element analysis of large scale computational
mechanics [10, 34]. A general analytical solution of the problem (6) has been
obtained in [12,13]. It is now realized that this canonical duality theory is potentially
powerful for solving a large class of challenging problems in global optimization
[7,8,16,19,21,23,24,32]. The purpose of this chapter is to demonstrate the potential
of the canonical duality theory by solving the proposed primal problem (7). The rest
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of this chapter is arranged as follows. In the next section, we show how to use the
canonical dual transformation to convert the nonconvex problem into a canonical
dual problem. An analytical solution form is proposed. The extremality conditions
of this analytical solution are specified in Sect. 3. Examples are given in Sect.4 to
illustrate the powerful canonical dual approach. Application to the sensor network
localization shows that the canonical dual problem is a concave maximization over
a convex set, which can be easily solved to obtain a unique solution. The concluding
remarks are made in the last section.

2 Canonical Dual Problem

Following the standard procedure of the canonical dual transformation, we introduce
a Gateaux differentiable geometrical operator

1
£E=AX) = ExTAkx+ng+ cey R — R™, 9)

which is a map from R” into V, C R™. Thus, the nonconvex function W(x) can be
written in the canonical form:

W(x) = V(A(x)), (10)

where
m

1 1

V(E) =) Jouki = ol (Eok)
k=1

is a quadratic function, where & = {o;} € R”, and & 0 & = {£,&,} € R” represents

the Hadamard product. Thus, the duality relation

¢ =0V()=aock 1D

is invertible for any given & € V,.
Let VJ be the range of the duality mapping ¢ = §V(§) : V, — V; C R™. Thus,
for any given ¢ € V', the Legendre conjugate I/ * can be uniquely defined by:

m

x 1 _
V(s) =stalg’s —VE)} =) Sop'si
k=1
where sta{} denotes finding stationary points of the statement in {}. So (¢, ¢) forms a
canonical duality pair on V, x V [14] and the following canonical duality relations

holdon V, x V;:

s=38V(E) & E=8V") & Ee=VE+V(s) (12)
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Replacing W(x) = V(A(x)) by A(xX)¢ — V*(¢), the Gao-Strang generalized
complementary function [14,31] can be defined by:

E(x,5) = AX)s — V*(s) +x Ox —x'f
(1 7 T L1
:Z >X Arx +bpx + ¢ Sk = 3% Sk
x" Ox —x'f. (13)

For a fixed ¢ € V], the criticality condition 8,5 (x,¢) = 0 leads to the following
canonical equilibrium equation:

G(s)x— F(s) =0, (14)

where F(¢) =f— Y/ sibk, G(s) = O + > ;—, s Ak. Clearly, for any given
¢ € V7, if the vector F () is in the column space of G(¢), denoted by Cy; (G(s)),
the canonical equilibrium equation has at least one solution X = G'(¢)F(c),
where Gt denotes the Moore—Penrose generalized inverse of G. Therefore, the
dual feasible space defined by:

Sa =1{s e R" | F(s) € Cu(G(s))}, (15)
the canonical dual function can be formulated as:

Pl¢c) =sta{E(x,¢): x € X,}

< 1 1
= (ckgk - Eak‘lgi) —5F1 ()G (©)F().  (16)
k=1

which is piecewise smooth on S,. Thus, the canonical dual problem can be finally
proposed as the following:

(P) :sta{P!() =

»
i[=

1 1
(Cksk 5% ‘s;?) - EFT(s)GJr(s)F(s) D6 €S-

a7

Theorem 1 (Complementary-Dual Principle). The problem (P?) is canonically
dual to the primal problem (P) in the sense that if & is a critical point of (P?), then
the vector

x=G"(5F(S) (18)

is a critical point of (P) and
P®) = P!(s). (19)
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Proof. Suppose that ¢ is a critical point of (P¢), then we have:

—

IPI(3)
i1y

= —o g +bIX+ X A4x=0, k=1,....m, (20)

NS}

where X = G1(6)F(¢). The criticality condition (20) is actually the canonical
duality relation (constitutive equation) (11), i.e., ¢, = o (3X7 AxX + b/ X + ).
Thus, we have:

X=G"(@)F(S)

m +
1_ _
= |:Q + E o (EXTA/(X + b,{ + ck) Akj|
k=1

- 1
x |:f— kz_:lak (EiTAki +blx+ ck) bk] .

This shows that X is a critical point of the primal problem (7). Moreover, in term of
X = G1(¢)F(¢), we have:

- 1
PG =) (ckgk - —a,;*é;?) ~5FT(©)GTF )

m m T m +
_ 1 1 _ _
= (Ckgk—z()llj—glg) —E (f—ngbk) (Q +Z§kAk)
=1

k=1

m B 1 B 1_ m B ~ ~ m B
= Z (ckgk — Eoz,j’g;f) + EXT (Q + ngAk) x—x! (f— ngbk)

m
1 1 1
= [(EXTA/(X +blx+ Ck) Sk — Ea,jg,f} + EXTQX —x'f

>~
—_

i

N

1 2 1 (1 2
[(EXTAki +blx + ck) o — o (EiTAki + bl %+ Ck) ]

»
I
-

x"ox —x'f

N =
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1 (1 2
=D 5% (EXTAki +b{x+ Ck) + 5% 0% —X'f

This proves the theorem. O

Theorem 1 presents an analytic solution (18) for the critical point of the primal
problem (P). This solution is actually a special case of the general analytical
solution form proposed in nonconvex variational problems [12, 13, 15]. In finite
deformation elasticity, this theorem solves an open problem left by Hellinger (1914)
and Reissner (1954) and is recognized as the Gao principle [37]. Applications
of this complementary-dual principle have been given to a series of nonconvex
minimization and integer/fractional programming problems in global optimization
[7,16,19,23,24]. It is known that the criticality condition is only necessary for local
minimizers. In the next section, we will study sufficient conditions for both global
and local extrema.

3 Global and Local Optimality Criteria

In order to identify global and local extremality properties of the analytical solution
(18), we need to introduce some useful feasible spaces:

S =1{seS | G(s) >0} @1
S, ={s €S| G(s) <0} (22)

By the canonical duality theory developed in [14], we have the following results.

Theorem 2 (Triality Theorem). Suppose that the vector ¢ is a critical point of the
canonical dual function P4 (). LetX = Gt (¢)F(g).

If g € S}, then ¢ is a global maximizer of P? on St if and only if the vector X
is a global minimizer of P on R", i.e.,

P(X) = min P(x) & max Pé(¢) = P4(2). (23)
XER" gES,j_
If ¢ € S, then on the neighborhood Xy x S C R" x S, of (X, §), the vector
X € Xy is a local maximizer of P(X) if and only if ¢ € Sy is a local maximizer of
Pi(c), ie.,
P(X) = max P(x) < max P/(¢c) = P(¢). (24)
XEX) 5630

If¢ € S and n = m, then on the neighborhood Xy x Sy C R" x S, of (X, §), the
vectorX € Xy is a local minimizer of P(X) if and only if ¢ € Sy is a local minimizer
of P4(¢), i.e.,
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P(X) = min P(x) < min P(¢c) = P4(&). (25)
XEX) S €Sy

If n # m, the double-min duality (25) holds conditionally.

Proof. By Theorem 1 and the canonical duality theory [14], we know that vector
¢ € S, is a critical point of the problem (P?) if and only if X = GT(¢)F(g) is a
critical point of the problem (P), and

PR) = E(X.$) = PYS).

By the fact that the canonical dual function P9 (¢) is concave on S;F, the critical
point ¢ € S is a global maximizer of P?(¢) over S;\. Since (X, ¢) is a saddle
point of the total complementary function = (x,¢) on R” x 8;’ , 1.e., & is convex
in x € R" and concave in ¢ € S;F, by the canonical min-max duality theory [14],
we have:

P?(&) = max P%(¢) = max min &Z(x,¢) = min max Z(x,¢)
gGS(j_ geS;_x ! x€R” GES,

Ly T N 1 r T
=;1€1ﬁ§{§x Ox—f x+];sf{r;agz+ EX Ax+bx+ci | sk

1
it

1 U 1 2
= min % EXTQX —fTx + kZ::l 2% (EXTAkX +blx+ ck) }

xER”
= min P(x) = P(X).
xER”

This proves the statement (23).

If ¢ € S, the matrix G(¢) is a negative definite. In this case, the Gao—Strang
complementary function Z(X,¢) is a so-called super-Lagrangian [14], i.e., it is
locally concavein bothx € Xy C &, and ¢ € Sp C S, . By the fact that

max max & (x = max max = (X, 26
XEX) ¢€S) u( ’ g) cE€S) xER" u( g) ( )

holds on the neighborhood Ay x Sy of (X,¢), we have the double-max duality
statement (24). If n = m, we have [33]:

min max & (X, ¢) = min max = (X, ¢) 27
XEX) €Sy c€S) xeR”

which leads to the double-min duality statement (25). This proves the theorem. 0O
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Theorem 2 shows that the extremality condition of the analytical solution (18)
is controlled by the critical point of the canonical dual problem, i.e., if ¢ € Sj s
the solution X(¢) is a global minimizer of (P); if ¢ € S, , then X(¢) is a local
maximizer (or minimizer when n = m) of (P) if and only if the critical point ¢ is
a local maximizer (or minimizer when n = m) of P on S, . When n # m, the
double-min duality holds conditionally, which was an open problem left in [18, 19].
This open problem is solved recently in [33]. Therefore, based on this triality theory,
if S # 0, the primal problem is canonical dual to

(Pe): max{P'(s): s eS8} (28)
which is a concave maximization problem over a convex set and can be solved easily

via well-developed convex minimization algorithms. Existence and uniqueness of
the canonical dual solutions are discussed in [28,29].

4 Applications

We now present examples to illustrate the applications of the theory proposed in this
chapter.

Example 4.1. Unconstrained two-dimensional polynomial minimization.

2 2
1 1 1
min § P(x1,x2) = kz=:1 5%k (E(aklxlz + arx3) + Ck) + E(ql-xlz + ¢2x3)
2
- Zﬁxi cx e R?Y .
i=1

This fourth-order polynomial minimization problem is actually a discretized form
of a nonconvex variational problem in phase transitions studied recently in [26,27].
On the dual feasible set

Sa =1{s €R* | (q1 + 5 1a11 + 62a21)(q2 + §1a12 + §,a2) # O},

the canonical dual function has the form of

2

1 1
Pi(s) = Z (Cks‘k - ES%) - E[fl,fz]

k=1

" (@1 + s 1a11 + g2a21)~" 0 |:f1:|
0 (92 + g 1a12 + §,a) 7' | L2
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w

S}

[

o

L

Fig. 2 Graph of P?(¢) (left) and contour of P?(¢) (right)

If weleta;, = —0.4,a1, = 0.6,a,; = 0.5,a» = —0.3,¢9; = —1, g = 0.6,
f ={0.3,-0.2},c = {1,2}, « = {0.2, 0.8}, the graphs and contours of the primal
and dual functions are illustrated in Figs. 1 and 2. In this case, the dual problem has
a unique critical point ¢ = {0.3467,2.4700} in the space

S =1{s eR* | (q1 + g,a11 + 6,020 (q2 + §,a12 + §,a2) > 0}.
Therefore, by Theorem 2, we know that
x={/f1/(q1 + g1a1 + §,a21), f2/(g2 + §1a12 + §2am)}
= {3.1146,—2.9842}
is a global minimization. It is easy to verify that

P(X) = 0.4075 = P%(&).
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Example 4.2. Minimization problem of Colville Function.

min P(x) = 100(x; — xlz)2 + (1= x1)* 4+ 90(x4 — x%)2 + (1 —x3)?
+10.1((x2 — 1) + (x4 — D) + 19.8(x2 — (x4 — 1)
st. —10<x; <10,i =1,2,3,4.

This is a well-known test problem for global optimization. On the dual feasible set

Si={s R | (1-¢))(1—¢) # 0},

the canonical dual function has the form of

1 1
Pl¢c)=42— —c?— —¢?
(s) 10051 T 36052
2 226 ro2
1 40—g¢ 20.2 19.8 40 — ¢,
2 2 2—2¢) 2
40 — ¢, 19.8 20.2 40 — ¢,

1
-2 2
40051~ 36052
+ (¥ + 10103 + 3 + 10.1x7 + 19.8x2x,)

E(x.¢) =42+ (x2 —xD)g | + (x4 — x3)g5 —

— (2x1 + 40x; + 2x3 + 40x4).

By solving the criticality condition V& (x, ¢) = 0, we get three critical points:

x=(,1,1,1), ¢'=(0,0),
X2 = (—0.967974,0.947139, —0.969516,0.951248), ¢2 = (2.03309,2.03144),
X = (—0.031251,0.165971, —0.0312582, 0.184264), &> = (32.999,32.9916).

By the fact that ¢! is a unique solution in SF, Theorem 2 tells that X! is global
minimizer of P(x). Sincen =4 > m = 2and §2,¢> ¢ 8,7, we know that both 2
and X* are stationary points. But, it is easy to check out that P(x¥') = E(x',¢') =
P4y Vi =1,2,3and

P(EY) =0 < P(x2) = 0.127006 < P(3*) = 34.84.

Example 4.3. Sensor network location problem in R?.

We consider the simplest sensor network problem with one sensor and two
anchors, as shown in Fig. 3. The network is as follows:

Z, = {{1,2},{1,3} : di» and d3 are specified},

I, = {2,3 :u; = a; and u3 = aj are specified}.
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d13=5
di2 =5
u2 (=3, 0) - u3 (3, 0)
Fig. 3 Sensor network
Letu; = {u{,u%} € R? denote the location of sensor and w; = a; (i = 2,3)

denote the location of the two anchors, the sensor network location problem is to
solve the following system of nonlinear equations:

(Po) w—w|?* =dp, {1,2}€Z,, 2€1I,,
lui —ws||> = d, {1.3}€Z,, 3€Ts, (29)

where
diy=d;3 =5, wy=a,={-3,0}, u3 =a; ={3,0}.

The polynomial defined by (5) for this problem is:

P = 3 (=) + (6 =)’ @) + 5 ((d — )’

2 2
+ (uf —u3)" — (d13)?)".
Letx = {x;,x,} = u; € R?. On the feasible space
Uy = {w = {ul i}, i =1,2,3] uy =ar,u3 = a3},

the fourth-order polynomial P (x):

1 1
PO = 2 (0143 + 3 =5) 4 (0 =3 + 5 - )’
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Fig. 4 Double-well function P(x) (left) and its contours (right) for Example 4.3

is a double-well function as shown in Fig. 4, which has three critical points: two
minimizers x; = {0, 4} and x, = {0, —4}, and one local maximizer X3 = {0, 0}. It
is easy to check that the two minimizers X;, i = 1,2 are solutions to the problem
(Po). According to [44], this problem is not localizable. The “optimal solution” by
the SDP approach is x3 = {0, 0}, which is a local maximizer of the function P (x),
not a solution to the problem (7). Therefore, this simple example shows that the
popular SDP method for solving nonconvex minimization problems usually leads to
wrong results.

From the point view of nonconvex structural mechanics, this one sensor—two
anchors network system is equivalent to a post-buckling analysis of a large deformed
beam model as proposed in [11, 18]: each local minimizer represents a possible
buckling (locally stable) state of the beam, while the local maximizer represents the
un-bucked (unstable) state. Theoretically speaking, if the beam is made by perfect
material, the buckling will never occur unless there is a distributed lateral load, or
perturbation €. Therefore, in order to solve the sensor network problem (P) in a
realistically way, we introduce the following perturbed problem:

(Ps) : min {Pe(x) =Pkx)—€e'x: x€ Rz} , (30)

where € = {€!, €2} > 0is a given perturbation vector. On the canonical dual feasible
space S, is defined by:

Sa ={(s1,62) | 51 + 62 # 0},

the perturbed canonical dual problem is

(P)max = max {PI(g): ¢ €S}, (1)
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where
1
P(s) = =5 Ful) GTHSIFels) + (a7 — (dn)’)cy

1,1
+(a3a3 — (d13)’)s2 — 367 — 563,

Fe(s) = € + 2g1a; + 26023,

G(s) = 2diag(s1 + 62),

and the canonical dual feasible space ST = {¢ € S, | ¢1 + 52 > 0}.
If we assume € = {0.05, 0.05}, the canonical dual problem has a unique solution
¢! ={0.00729064,—0.00104125} € S;*. By the triality theory we know that

X1 = G(3,)F.(g,) = {0.000694324, 4.000390438}

is a global minimizer of P (x).
On the dual feasible space S, = {¢ € S, | 51 + ¢2 < 0}, the canonical dual
function P? () has two critical points (see Fig. 4):

&2 = {0.00104208, —0.0072927} € S,

&} = {~15.9625,-16.0375} € S; .

By the triality theory we know that X, = {0.0006944565, —3.9960323936} is a local
minimizer, while X3 = {0.00624986, —0.00078125} is a local maximizer (see
Fig.4). It is easy to verify that

P.(X)) = —0.200027 = P4 (') < P.(X,) = 0.200791 & 0.199973

PA(§%) < Pc(X3) =256 = P*(57).

By the fact that
P(x;) = 0.0000271153 < P(xz) = 0.00102382,

both the perturbed solutions X; and X, can be considered as the global minima to the
original problem (Pp) and it is easy to verify that

[x; —as|? = 25.0073, |x; —as3|* = 25.0130,
[x, —ay|? = 24.9724, ||x, — as||> = 24.9641.
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5 Conclusions

We have presented a detailed application of the canonical duality theory for
solving general sum of fourth-order polynomial optimization problem. An analyt-
ical solution is obtained by the complementary-dual principle and its extremality
property is classified by the triality theory. Results show that by using the canonical
dual transformation, the nonconvex primal problem in R” can be converted to
a concave maximization dual problem (P¢, ) in R”, which can be solved by
well-developed convex minimization techniques. Application to sensor network
localization problem shows that this NP-hard problem in global optimization is
actually a special case of discretized finite deformation problem. We demonstrated
that the “optimal solution” by the SDP approach is actually a local maximizer of
the total strain potential. A connection of this network problem with the buckling
analysis of large deformed beam model is revealed. By using a perturbed problem,
both global and local extrema are obtained. The idea and the method presented in
this article can be used and generalized to solve many difficult problems in global
optimization, network communication, and scientific computations. Comprehensive
review of the canonical duality and its applications can be found in [14,24,25,32].
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Optimal Estimation of Multidimensional Data
with Limited Measurements

William MacKunis, J. Willard Curtis, and Pia E.K. Berg-Yuen

Abstract Recent results indicate how to optimally schedule transmissions of a
measurement to a remote estimator when there are limited uses of the communica-
tion channel available. The resulting optimal encoder and estimation policies solve
an important problem in networked control systems when bandwidth is limited.
Previous results were obtained only for scalar processes, and the previous work
was unable to address questions regarding informational relevance. We extend the
state-of-the art by treating the case where the source process and measurements are
multidimensional. To this end, we develop a nontrivial re-working of the underlying
proofs. Specifically, we develop optimal encoder policies for Gaussian and Gauss—
Markov measurement processes by utilizing a measure of the informational value
of the source data. Explicit expressions for optimal hyper-ellipsoidal regions are
derived and utilized in these encoder policies. Interestingly, it is shown in this
chapter that analytical expressions for the hyper-ellipsoids exist only when the
state’s dimension is even; in odd dimensions (as in the scalar case) the solution
requires a numerical look up (e.g., use of the erf function). We have also extended
the previous analyses by introducing a weighting matrix in the quadratic cumulative
cost function, whose purpose is to allow the system designer to designate which
states are more important or relevant to total system performance.
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1 Introduction

The current technological advances in circuit miniaturization are driving down
the cost of producing many sensors, especially cameras and other electro-optical
imaging sensors. This makes it feasible to deploy numerous high-resolution sensors
to provide feedback for some control system. One of the many emerging chal-
lenges faced by modern feedback system designers is that such sensors are often
not collocated with the plant to be controlled. This leads to difficult questions
regarding bandwidth utilization, time-delays, and other effects that have been
somewhat addressed in the networked control systems (NCS) literature (e.g.,
[2,4-7,10-12,14,15,17,19-29]).

Research and design of NCS is of critical importance for applications includ-
ing remote surgery, chemical processes, automated highway systems, refineries,
power plants, and cooperative control of unmanned aerial vehicles and unmanned
ground vehicles. While the design of NCS for engineering systems with very high
communication rate (i.e., bandwidth) can be simplified, significant challenges can
arise in NCS design for systems with severe bandwidth limitations. Examples
of applications afflicted by severe communication rate constraints include mobile
telephony, sensor networks, remotely controlled systems, and unmanned aerial
vehicles. In these applications, the resolution of the transmitted data can be reduced
to adhere to the communication rate constraints. This can result in large quantization
errors, which can significantly hinder control performance.

Estimation and control of NCS in the presence of communication rate limitations
has been widely addressed in literature [5, 14, 15, 19, 21, 25, 28, 29]. In [28], the
problem of state estimation in the presence of bandwidth constraints is addressed.
Eschewing the classical assumption that the observation process is continuous
with additive noises, Wong and Brockett approached the problem by imposing
the condition that the observations must be coded and transmitted over a digital
communication channel with limited bandwidth. To this effect, they introduced
the concept of a coder-estimator sequence and a finitely recursive coder-estimator
sequence [28]. Building on the research in [28], Wong and Brockett investigated the
feedback control of a system with bandwidth-limited communication constraints in
[29]. It is shown in [29] that the delay in the feedback control prevents asymptotic
stabilization for communication constrained systems with uncontrolled dynamics
that are unstable. The weaker stability notion of containability is introduced in [29]
to describe the stability properties of such systems, and connections are shown to
exist between containability and the communication data rate, and the rate of change
of the state. Nair and Evans addressed stabilization of a linear networked system in
[19], where the feedback link has a fixed data rate. Specifically, they calculate the
minimum data rate that is needed to asymptotically stabilize the output (in the mth
moment) of a discrete-time, linear, time-varying, infinite-dimensional plant with no
process or measurement noise. In [6], De Persis shows that a nonlinear system can
be stabilized by feedback data communicated through a channel with a finite data
rate. Moreover, it is shown in [6] that this technique (termed encoded feedback) is
capable of achieving asymptotic stability for a nonlinear system that falls within
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the class of feedforward systems. The researches in [6, 19, 28, 29] provide multiple
techniques to stabilize systems subject to feedback communication rate limitations.
Additional difficulties exist, however, in designing NCS for systems with imperfect
communication systems.

For applications utilizing wireless and Internet channels, data packet losses
(drop-outs, erasures) can cause significant complications in NCS design. In [24],
the problem of state estimation in the presence of lossy measurements is addressed.
While the scheme (termed finite loss history estimator (FLHE)) proposed in [24]
is suboptimal, it has the practical advantage of handling lossy measurements in
a manner that is computationally less expensive than that of the time-varying
Kalman estimator (TVKE). This advantage is due to the fact that while, like
the TVKE, the FLHE scheme uses a predictor/estimator structure, the corrector
gains are precomputed in the FLHE, as opposed to being recursively updated
as in the TVKE. Feedback stabilization of discrete-time linear systems utilizing
communication channels subject to stochastic drop-outs is investigated in [7]. The
research in [7] proves that the maximum erasure probability that can be tolerated
using a linear receiver is directly related to the unstable eigenvalues of the plant.
The effect of data losses over unreliable network links is examined in [23]. By
modeling the arrival of an observation as a random process, a discrete-time Kalman
filter is utilized in [23] to estimate the state of a controlled system. This estimate is
then used for feedback control. Whereas in [23] the convergence properties of the
Kalman filter are examined assuming complete reception or loss of the observation
measurements, the research in [17] provides an extension by allowing partial packet
losses in the observation. In [26], a technique is presented for handling missing or
delayed information due to packet drops in a networked system. To that end, optimal
conditions for stability of a NCS in the presence of packet drops are determined
using a stochastic framework. The work in [26] is applicable to both continuous-
time and discrete-time systems, and it allows for both measurement of noise and
process noise.

A central issue in designing NCS that use slow and/or lossy communication
channels is that of deciding which data is valuable enough to transmit (and thus
consume relatively scarce bandwidth resources) and which data can be safely
discarded. The seminal work by Meier et al. [18] addressed a version of this
problem, where they assumed that only one sensor among a set of multiple sensors
could be used at any given time. Meier et al. also proved a separation property
between the optimal plant control policy and the measurement control policy. The
measurement control problem, which is the sensor scheduling problem, was cast as
a nonlinear deterministic control problem and shown to be solvable by a tree-search
in general. It was proven that if the decision to choose a particular sensor rests with
the estimator, an open-loop selection strategy is optimal for a cost based on the
estimate error covariance [1]. Forward dynamic programming (DP) and a gradient
method were proposed for this purpose.

In this chapter, we address the issue of informational value in a network
estimation and control context. In these fields there has been a traditional bias
towards using the entropic formulation [8,30] as a standard measure of information,
though there has recently been increasing interest in an alternative informational
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value metrics for cooperative and networked estimation [9] and control. In [13], the
authors examine the optimal communication policy of an observer who is observing
a random process and who must decide whether to send observations across a
communication channel to an estimator. They discover jointly optimal policies for
the observer and the estimator so as to minimize the mean-square estimation error
of the observer in the case where the observer is limited in the number of times that
it can transmit. A method is presented in [13] to compute the optimal transmission
policy off-line via DP. A very similar problem was treated in [16], where the optimal
policy involves transmitting a measurement only if it lies outside some symmetric
region centered around the mean value of the observed process. Both the papers
treat only the scalar case, and propose solutions of an optimization problem where
the objective function considers only estimation and communication errors.

The constrained uses of the communication channel necessitate information
arbitrage, and the sensing agent must decide which measurement will be of most
value to the estimator. Moving beyond a scalar problem is essential for exploring
informational relevance issues, because it forces the observer to consider which
elements of the observation vector may be most relevant to some decision-maker
(controller) who is being fed information by the estimator. The development in this
chapter illustrates how an observation and an estimation techniques can be designed
for optimal estimation of multidimensional data over a communication channel
with limited uses. This entails a nontrivial reworking of the proofs found in [13].
In particular, we assume a symmetric threshold policy is optimal, then we show
how to compute the optimal transmission region via DP. In the multidimensional
case we consider, these regions are hyper-ellipsoids. We discover that for even
dimensional spaces there exist analytical expressions for the optimal cost-to-go and
the corresponding hyper-ellipsoids. This is in contrast to odd dimensional spaces
(e.g., the scalar case presented in [13]), where the optimal cost-to-go must be
numerically computed via the error function.

An important aspect of our extension to multiple dimensions is that, in the
present work, the objective function can entertain notions of informational relevance
through a cost-weighting matrix. In the scalar case the objective is to minimize
the expected cumulative squared estimation error; in multiple dimensions one is
forced to grapple with the fact that some states might be much more valuable to
know precisely than others, and this leads to interesting future questions regarding
how control systems being fed by this estimator might influence the choice of
weights in the observer/estimator policy. Numerical simulation results are provided,
which illustrate the performance of the value of information (VOI)-based optimal
estimation strategy. Moreover, the results clearly show that reduced estimation error
can be achieved through the utilization of a cost-weighting matrix.

1.1 Problem Statement

The problem of optimal estimation of data based on limited measurements will be
addressed for the case where the source data is multidimensional. The problem will
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Fig. 1 Communication system with limited transmission channel uses

be framed in the context of communication of data across a channel with limited
uses as depicted in Fig. 1. By extending a technique similar to that presented in
[12], VOI-based encoder and decoder policies will be utilized for optimal sequential
estimation of n dimensional data communicated over a channel with limited uses.
Specifically, a source sequentially generates data b, € R” over an N -step decision
horizon 0 < k < N — 1, which must be transmitted over a noiseless channel.
The data by are generated according to some a priori known as stochastic process
(e.g., an independent identically distributed (I.I.D.) Gaussian random process or
a correlated Gauss—Markov process). An encoder/observer is placed at the source
output, and a decoder/estimator is placed at the channel output. Observer and
estimator policies are utilized to optimize the accuracy of the communication system
in the presence of limited channel uses.

The communication channel is restricted, such that, it can only be accessed for
M < N transmissions. The objective is to design observer and estimator policies
that minimize the error between the source data b, and its estimate 5k over the
N -step decision horizon. At each time step k, the number of remaining time steps
is denoted 1 < #x < N, and the remaining number of available transmissions is
denoted 1 < s < M.

2 Source Process is Gaussian

2.1 The Solution in the n-D Case

The total estimation error over the N -step horizon can be expressed as:
N—1

€l = Z{(bk—ék)TQ(bk—ISk)}, (1)

k=0

where Q € R™" denotes a user-defined weighting matrix. The estimate l;k e R" of
by is defined as the following conditional expectation:

b = E {by | (s, 10) i xi ),
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where x; € R” denotes the observer output. The observer policy pj can be
expressed as

bk if bk S k7(Sk,;fk),

Mk = . (2)
NTif by € J¢, .

where J(s ) and J, ) denote the optimal observation set and its complement,
respectively. To simplify the notation in the subsequent analysis, these terms will
be denoted as J and J°¢. It will be shown in the next section that J¢ can be
explicitly calculated as the n dimensional region that globally minimizes the cos?-
to-go of the estimation error. If the source data by € 7, the observer transmits the
data, and the estimator uses the transmitted data. If b, € J°¢, the observer does
not transmit the data, but instead transmits a single bit datum indicating NT for no
transmission. When the estimator receives the NT signal, it uses the expected value
of the source data based on knowledge of the statistics of b;. The observer policy
utilizes the VOI of the source data to determine whether or not the data should be
transmitted. Heuristically speaking, if the observer determines that the data falls
within the region 7¢, the data is determined to have low informational value since it
is close to the expected value of the source data. If the data falls within the set .7, it
is far from the expected value, so it is determined to have high informational value.
Data having low informational value is not transmitted by the observer; instead the
NT datum is transmitted. Data having high informational value is transmitted, and
the estimator simply uses the transmitted data. Since the estimator has knowledge
of the statistics of the source data, it can minimize the overall error in the estimation
of the source data by using the expected value of the data when the NT signal is
received. In the following development, the procedure for calculating the optimal
observation set 7 * will be presented.

2.2 Optimal Observation Set

In this section, the cost-to-go equation in (3) will be utilized to calculate an optimal
observation set J* within which the source data possesses high VOI. To that end,
the optimal region J“* will be calculated from (3) as the range of b that globally
minimizes e(*s - The set J* will be used to develop an observer policy that only
transmits data having high VOI.

Based on (1), the DP equation can be used to express the optimal estimation error

as [3]:

e =min{e*_ _ —/ [(e*_ _—e _)
(s,1) Tt (s—1,t—1) bee (s—1,t—1) (s,t—1)

£ (b)—b70bs (b)}zb}, 3)
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given that b has zero mean, where the fact that

fb)db=1- f(b)db
beJ bege
was utilized.
The Gaussian PDF f () in (3) can be expressed as:
f(b) ! Lymp1 )
= ——F————expy—= ,
P2
where P € R™" denotes a positive definite, symmetric covariance matrix. To
facilitate the following analysis, a linear transformation will be defined as:

x=P % b= P"%x. (5)

Using the Jacobian determinant, (5) can be used to express the integration differen-
tial db as:
db=|P"?|dx. (6)

After using (5), the expression in (4) can be rewritten as:

1 I
f(x): (27t)n/2|P|1/2 exp{_i-x x}v (7)
where the fact that

[P—I/Z]T — p-l2 ®)

was utilized. The motivation behind the linear transformation in (5) is based on the
desire to facilitate the subsequent evaluation of the integrals in (3). After substituting
(5) in (3), the following is obtained:

. 1/2
e(*s,t) = ?m {ezks—l,t—l) - (e(*s—l,t—l) - e(*s,t—l))/ |P / \ S (x)dx
(s.t) x€j€

—i—/ ‘P1/2|xTfo (x)dxy, 9)
xX€JE

where the positive semi-definite, symmetric matrix G is defined as:
G2 P'op'2,

After transforming (9) into spherical coordinates, the integration region minimizing
the estimation error can be calculated as:

* _ *
P T <e“‘“’t‘“ e“"”‘”) (10)
tr (QP) ’

where tr (-) denotes the trace of a matrix, x* denotes the optimal value of x, and r*
denotes the corresponding optimal distance as expressed in spherical coordinates.
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Hence, transforming (10) back into the 5 domain using (5), the optimal region is
obtained as:

n (e(*s—l,t—l) - e(*s,t—l))
tr (QP)

p*Tp=lp* = (11)

3 Estimation Error Recursion

In this section, an analytical formulation for the estimation error recursion formula
is derived. To derive an explicit mathematical expression for the optimal estimation
error, the two integrals in (9) must be evaluated. Since the integration variable in
this case is a vector, the expression will be transformed into spherical coordinates to
facilitate the derivation.

After transforming the Gaussian PDF given in (7) to spherical coordinates, the
PDF can be expressed as:

1 1
f (r) = (W) exp{—zrz}, (12)

where r € R denotes the radial distance in spherical coordinates.

3.1 Evaluating the Recursion Formula
By transforming the integral expression in (9) to spherical coordinates and utilizing

the region defined in (11) to define the limits of integration, the optimal estimation
error (cost-to-go) can be calculated as:

1/2
et =i = (€ =€) [PV

2 T T r*
x / / / / (f (r)r" " sin" 2 ¢y sin" > ¢y - sin ¢y—2)
o Jo o Jo

2 prw 7 pr
drd¢1~~~d¢),,_1+‘Pl/2|/ / .../ / f(r)rn+l
0 0 0 0

(g1 cos® g1 + gasin® ¢y cos® Py + + -+ + gy sin®
sin® ¢, - - sin® ¢, 1) sin" 2 ¢y - sinp,odrdidepr - dpy—1.  (13)

In (13), the limits of integration r* = ,/y were determined by utilizing (10) to
calculate the optimal set in terms of spherical coordinates as:

r* =7, (14)
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where y € R is defined as:

* *
n (e(s—l,t—l) - e(s,t—l))

tr[OP] (15)

y:

3.1.1 The Case of n Even

The first inner integral (i.e., the integral with respect to r) in (13) can be evaluated
for the case where n is even as follows:

o) 1 /ﬁ 1 { 1 z}d
cle (y) = r"lexp{—=r-; dr
= oy P12 ) o P12

n L—l
27 (5! S JC N G !

(16)

In a similar manner, the second inner integral in (13) can be evaluated as:

1 V7 n+1 1 2
ce () = (—(2n)"/2 |P|1/2 /0 r exp%—zr } dr

(2t S RO !

a7

For the case where 7 is even, the expressions in (16) and (17) can be used to rewrite
(13) as:

1/2
e(*s,r) =e<*s—1,f—1> - (e(*s—l,t—l) - e(*s,t—l)) |P / |cle (v)
2 T b4
X / / / (sin"_2 ¢y ---sin ¢n_2) dgy -+ dep_rd,_,
0 0 0

2 T b g
+ C2¢ ()’)|P1/2‘/ / / (g11 cos® ¢1 + g2 sin” ¢y cos” ¢y
o Jo 0

o gan sin® gy sin® @ ---sin® ¢,y sin" 2 By -

sin ¢n—2d¢ld¢2 e d¢n—l . (18)
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The first set of integrals in (18) can be evaluated with respect to ¢y, ..., ¢,—; as:
2 b T s ) (2%)%
(sm ¢y -+ -sin ¢n—2) Ay - dpp—dpy—1 = Py —
o Jo 0 22 (E — 1)!
(19)

where the fact that (1 —2) (n—4)--- (4) (2) = 2271 (£ —1)! was utilized.
Similarly, the last integral of (18) can be evaluated as:
2 T b g
/ / / (gn cos’ G144 gun sin’ b1 sin’ ¢y sin’ Pn—r sin’ ¢n_1)
o Jo 0

X sin” ¢y sin" ! ¢y - - - sin’ ¢y s sin® ¢ 1dprdes - - - dpy_2dpu_i

— r(QP) (2(22’2;') (20)
Y

where the facts that tr (OP) = (g1 +g2 + -+ gun) and (n) (n —2)--- (4) (2)
= 22 (4)! were utilized. Thus, after substituting (16), (17), (19), and (20) into (18),
e(*s,t) can be expressed as:

(2m)* cre (7)
*  _ * * *
e(s,t) - e(s—l,t—l) - (e(s—l,t—l) - e(s,t—l)) (2;_1 (% _ 1)'

21

+tr (OP) (M)

27 ()
3.1.2 The Case of n Odd

Similarly to the case where n is even, the integral expression in (13) can be evaluated
as follows for the case where n is odd:

. 2[ (. . 27 (1) n)’
€ = Cs—10-1) - (%—1,:—1) - e(s,t—l)) (1—2)! 1o (¥)

§ a5t (n=1
+tr<QP)((2”) 2 (2)’)62,,@), 22)

n!




Optimal Estimation of Multidimensional Data 67

where ¢y, () and ¢y, (y) are explicitly defined as:
-
vt = [T s
0

(n—2)!
@Qn)% 2" (12)1 P2

n 2% =3 ) -
)l o

) V[ (4F) - 0)]

j=3
j odd

and

JY
quw=A P () dr

=( & ) V279 (7) @ 0)]

27 (5541 2n)? [P

nt2 (2550 (d)l

2 i=2 1
- Z G- y 2 eXP{—EV} (24)

j=3
j odd

respectively. In (23) and (24), @ (-) denotes the cumulative distribution function
(CDF) of the standard Gaussian random variable with zero-mean and unit variance,
which is defined as @ (b) £ \/#27 ffoo exp {—%CZ} d¢ forany ¢ € R.

The VOI-based encoder policy in (2) and the decoder policy can be used along
with the estimation error recursion formulas given in (21) and (22) to optimize
estimation error over an N -step decision horizon, using a communication channel
with M < N uses.

4 Source Process is Gauss—Markov

In this section, the optimal estimation technique outlined in the previous section will
be applied to a system for which the source data is generated via a Gauss—Markov
process.
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In the case where the source process is Markov driven by an I.I.D. Gaussian
process {wy } with zero mean, the source data is generated by the following model:

by = Abg—1 + w1, (25)

where by, wy € R" and A € R"*". The current value of the state b; depends only
on the value of the state at the previous time step (i.e., Markov property). If r; time
steps have passed since the last transmission was received, then the current value of
the state by will depend on the value of the state ry time steps in the past, i.e., by—;.
If data were transmitted in the previous time step, then r, = 1, and the current value
by of the source data is given explicitly by (25). If r > 1, a linear regression can be
performed on (25) to determine the current value of the state by in terms of by, as:

b = A"bj—r + A" iy + APt o+ Al + AOWi—g. (26)

To simplify the notation in the following analysis, let r denote the number of time
units passed since the last transmission of a source output at time step k. So in
the presence of noise {wy}, the estimation error will increase with the number
of time steps passed since the use of the channel for transmission. Based on
(26), the expectation E [bk | b(k_,)] (i.e., the expected value of by after r missed
transmissions) can be expressed as:

E [bi | bg—r)] = A br—r. 27)

where the fact that wy has zero mean was utilized. Based on (27), it is apparent that
the mean value of by varies with the number of missed transmissions r. Thus, the
distribution of b can be expressed as:

b~ N (A bk, Pr), (28)

where P, € R™" denotes the covariance of by after r missed transmissions.

4.1 Covariance Matrix Calculation

For the source process given in (25), the expected value of b and the covariance
matrix will change with the number of missed transmissions r. In this section, the
general formula for the covariance matrix based on r missed transmissions will be
derived.

The covariance matrix P, is defined as:

P& E[—E ) G-EB)]. (29)
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In the n dimensional case, P, can be expressed in matrix form as:

0-12;« 01,02r e O1r0pr
01,02y 0221, tee 02, Opyr
p=| " , L (30)
: : . 3
O01rOnr  *** Om—1)rOnr Oy,
where oizr and 0;,0;, Vi,j = 1,...,n are defined as:
A - .
0ir0jr = E [(bix — A"bik—r)) (bjk — Abjk—n)]. (31)

where (27) was utilized, and bk, b;—,) denote the ith element of b at time
steps k and k — r, respectively. After utilizing (26) and performing the necessary
multiplications, (31) can be used to express the (7, j)th element of the covariance
matrix as:

n n
A . _
0ir0jr = E [(Z AT Wty + D AT Winti—r )
m=1 m=1
n n
+---+ Z A},mwm(k—z) + Z A?,mwi(k_l)>

m=1 m=1

n n
X (Z A;;nlwm(k_,) + Z AIJ"’_szm(k—r+l)
m=1

m=1

+---+ Z A;”mwm(k—Z) + Z A(j)',mwj(k_l))] ’ (32)

m=1 m=1

Vi,j =1,...,n, where the notation A,’{m represents the (i, m)th element of the
matrix A*, and wy(,) denotes the gth element of the vector w at time p. After
multiplying the parenthetic polynomial terms in (32) and taking the expected values,
the variances can be expressed as:

2

r n

ol =Y (Z Ag;‘am) (33)
g=1 \m=1

and the covariances can be expressed as:
r n n
— q—1 q—1
0iy0jr = E E Aj ) Om E Ajyp o, |, (34)

qg=1 \m=1 p=1

fori, j = 1,...,n, where the fact that the noise w is L.I.D. and was utilized.
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Note that if » = 1, the variances and covariances reduce to criz ando;o; Vi,j =
1,...,n, respectively. In the scalar case, n = 1, and (33) can be used to show that
the variance after r steps without transmissions can be calculated as [12]:

,
02 = (Z A2<k—1>) o7, (35)
k=1

where A € R, crrz denotes the variance of b after r time steps of no transmissions,
and og denotes the variance of b after only a single time step without a transmission
(i.e.,when r = 1).

4.2 Optimal Observation Set

For the case where the source data is generated via the Gauss—Markov process in
(25) and (26), the encoder and decoder policies can be derived in a manner very
similar to the case where the source data is a Gaussian random variable. The main
difference in the Gauss—Markov case is that the mean and covariance of the vector
b can change at each time step based on the number of missed transmissions r, as
expressed in (27), (30), (33), and (34).

The PDF in the Gauss—Markov case can be expressed as:

1 1
y=— — b-w)" P - } 36
f(b) ((2n)2|P,|1/2)eXp{ 5 (=) P(b—p) (36)

where u = A"bi—,, and P, is defined in (30), (33), and (34). To derive the optimal
observation set J(y, s, .)» the optimal cost-to-go is formulated as:

e(*r,s,r) = g}:?} {e(*l,s—l,t—l) - (e(*l,s—l,t—n - e(*r+1,s—1,z—1)) /bejc S (b)db
+[ (b—u)TQ(b—u)f(b)db}. (37)
beJgc

The notation e;‘r 51) is used in this case to represent the optimal estimation error,
since the estimation error depends on the three parameters: r, s, and ¢ in the
Gauss—Markov case. To facilitate the following analysis, a variable transformation

is defined as:
b=P"x+pu,  x=PV2b-p. db=|P!*|dx.  (38)

By using the linear transformation in (38), the PDF in (36) can be expressed as in
(7), and the optimal estimation error can be expressed as in (9). Thus, following
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a procedure identical to that used in the Gaussian case, the integration region
minimizing the estimation error can be calculated as:

n (e* —ef )
(1,s—1,t—1) (r+1.s,t—1)
P = x*Tx* = ’ o , (39)

tr (QP;)
where e(*1 s—1a—1) and e(*r i) denote the cumulative average estimation error
(i.e., optimal cost-to-go) after 1 missed transmission and r + 1 missed transmissions,
respectively. After utilizing (38), the optimal region in (39) can be expressed as:

(b* _ Arbk—r)T P—l (b* _ Arbk—r) =y, (40)

where the fact that u = A" by_, was utilized, and y is defined as:

* *
Al (e(l,s—l,t—l) - e(l‘+1,s,t—1))

tr(QF)

Hence, as in the case where the source data is purely Gaussian, the region
minimizing the estimation error in the Gauss—Markov case is defined by an n
dimensional hyper-ellipsoid. Unlike the Gaussian case, however, the center (i.e., 1)
and shape (i.e., P,) of the hyper-ellipsoidal region vary with the number of missed
transmissions 7.

Y (41)

4.3 Estimation Error Recursion

In a manner similar to the Gaussian source data case, the expression given in (37)
can be transformed using (38) to express the optimal estimation error as in (9). Thus,
following a procedure identical to that given in Sect. 3, the estimation error recursion
formula for the Gauss—Markov case can be obtained as follows.

4.3.1 The Case of n Even

* * * *
€rsa) = Cs—10-1) ~ (e(l,s—l,t—l) - e(r-i—l,s,t—l))
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4.3.2 The Case of n Odd

* * * *
€lrsr) = Cls—1—1) — (e(l,s—l,t—l) - e(l‘+l,s,t—1))

EICENRE)> ]_2),)' /% e -1

/ odd

nt2 (250 123)l -
+uw(0P) | 20 (V7 \/7 5

j odd

1
exp{—z)/} . (43)

S Limited Average Transmission Frequency

The optimal estimation strategy presented in the previous sections can be applied to
a system that is restricted to a fixed average number of transmissions per time. In
this section, we approach this problem using an infinite horizon approach, where the
objective is to maintain an average transmission frequency of w/k [transmissions
per time step].

5.1 Optimal Observation Set

Consider an optimal observation set that is independent of (s, 7). Since the objective
is based on a fixed average transmission frequency, the optimal observation set
also remains fixed with size proportional to the average transmission frequency
restriction.

For purely Gaussian source data, the optimal observation set can be calculated
by setting the integral of the PDF in (4) equal to the desired no transmit frequency
value and solving for the integration region. For example, if the average transmission
frequency restriction is 25% (in other words, if the communication rate is restricted
to an average of 1 transmission per 4 time steps), then a 25% probability of data
transmission will be enforced. Over an infinite horizon, this algorithm will result in
an average transmission frequency of 25%.

Let @ denote the fraction indicating the transmission frequency (e.g., w = 0.5
indicates 50% transmission frequency). By integrating the PDF in (4) and setting
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the result equal to 1 — @ (i.e., the desired NT frequency), the following region is
obtained:
1
TP =1n { _2}. (44)
1)

By transforming the expression in (44) to spherical coordinates, integration limits
can be determined as given in (14), where

I 1

=In{—.

14 o2

An identical procedure as that in Sect.3.1 can then be followed to calculate the
estimation error recursion formula.

6 Simulation Results

Numerical simulations were created to test the performance of the proposed optimal
estimation technique for the cases where the source data is generated via a purely
Gaussian random process and via a Gauss—Markov process. For each simulation, a
lookup table containing the optimal cost-to-go at each instant (s, ?) was generated
offline. The lookup table is used along with (21) or (22) for the purely Gaussian case,
and with (42) and (43) for the Gauss—Markov case to calculate the optimal cost-to-
go at each time step. For clarity of presentation, the simulation results presented in
this chapter were obtained using 2-D source data; however, the 2-D case effectively
serves to illustrate the capability of this estimation technique to estimate incomplete
multidimensional data. It is a trivial task to extend the 2-D results to n-D.

6.1 Source Process is Gaussian

For the purely Gaussian simulation, the source data is generated via a zero mean
standard Gaussian random process with a PDF defined as:

— 1 T p—1

where the constant covariance matrix P is given as:

105
P= [0.5 1 } (46)
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Fig. 2 The region minimizing the estimation error (the elliptical region [7°*) and the source data
point by at each time step for the case where (M, N) = (2, 6)

The initial conditions used in the simulation are:
e =0 e =NT V>0
(.1) > 0.1) ’ :

Figures 2-4 summarize the results of the numerical simulation for the purely
Gaussian source data case. In each of the six plot windows in Figs. 2 and 3, the
point indicating the current value of the 2-D vector by is denoted as an ‘0’ or an
‘x’, where ‘0’ indicates that the data will be transmitted, and ‘x’ indicates that the
data will not be transmitted. Toward the top right corner of each of the six plots in
Figs. 2 and 3, the [sk, ] value indicates the value of s and ¢ before the decision to
transmit or not is made at that time step. Figure 2 shows the optimal 2-D elliptical
region J* (i.e., see (11)) at each time step for the case where there are N = 6 time
steps in the decision horizon and M = 2 transmission opportunities. The final plot
for [se, t6] = [1, 1] shows no ellipse because the optimal observation set includes
the entire range space (indicating that the decision is to transmit regardless of the
value of by).

Figure 3 shows the optimal 2-D region J“* at each time step for the case where
N = 6 and M = 4. Since there are 4 > 2 transmission opportunities in this case,
J* is significantly smaller for the case shown in Fig. 3 in comparison to the case in
Fig. 2. The reduced size of the optimal region [7“* is equivalent to an increase in the
size of the optimal observation set 7 *. The fact that 7 * increases with the number
of transmission opportunities M agrees with the heuristic notion that transmitting
as much data as possible should reduce the overall estimation error.
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Fig. 3 The region minimizing the estimation error (the elliptical region [7°*) and the source data
point by at each time step for the case where (M, N) = (4, 6)

60 T T T T T T T T T
—— N=100, M=60
-+-N=100, M=30
50 | -+- N=1 OO, M=12_
+- N=100, M=6
40 | i
@ 30 [*eesssssece i
\..“Ovn!
.IMCO\.
20| teee... _
weoee
.“0!“.( P
10 :‘ONOOONNOO ..“\Oq“.( n
H“‘”“OOQ““OOQ\“‘ “.“\‘.
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.AAAAAAAAA“AA‘A"AA‘AA‘AA“A“‘““‘NNOOOO\’.’:‘\ va
AAAAAAAA““““AAAAAA:”;;\.
0 | | | | | | | 1 1 S2ET)
0 10 20 30 40 50 60 70 80 90 100

Time [K]

Fig. 4 Number of transmission slots remaining s; versus time step k for N = 100

In Fig. 4, the transmission patterns are shown for four different 2-D scenarios
(i.e., for M = 60, 30, 12, and 6) over a decision horizon of N = 100. Figure 4
illustrates that this optimal estimation algorithm naturally follows transmission
patterns to optimize the cost-to-go. This can be understood by noting that the pattern
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approaches a straight line as M — N (if M = N, the decision would always be to

transmit, and the pattern would be a line of slope % =—1).

6.2 Source Process is Gauss—Markov

For the 2-D Gauss—Markov case, the source data is generated via (25), where the
process matrix A € R?>*? is defined as:

050.2
AL
[0.1 0.9}

and {wy} is an L1.D. Gaussian process with zero mean. The PDF of b € R? can be
expressed as:

1
)= ——exp{-bT P}, 47
f @) I p{-b" P b} (47)

where the r-dependent covariance matrix P, € R**? is given as:

2

o;. 01,02

P, = [ ir O } (48)
01,02r G2r

The elements of the covariance matrix in (48), are defined as:

2 2
010 = Z o allon Y At o, (49)
p=1

qg=1 \m=1
Vi,j = 1,2, where 0, and 0, Y m, p = 1,2 are elements of the covariance
matrix P, for r = 1, which is given in (46). The initial conditions used in the

Gauss—Markov simulation are:

e;;,.t’t) == O,

r+t—1 m 2

2
€ = Z Z ZA?,;IU/C ZA?;I“P
p=1

m=r g=1 \k=1

Vi,j=1,2,Vt>0.

Figure 5 shows the results from the simulation in the Gauss—Markov case. The
dependence of the mean and covariance on the number r of missed transmissions
results in the center and shape of the ellipses as shown in Fig. 5 to vary with the
time step k. Specifically, the means at each time step 1 < k < 6 are (see (27))
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Fig. 5 The region (the ellipse) minimizing the estimation error and the source data point by
(‘0” or ‘X’) at each time step for the case Gauss—Markov case with (M, N) = (4, 6)

0 0.10 0.32 -0.11 —0.57 —0.27

E[bi | bu—n] =
[¢ 1 bu—] [0—0.01 0.19 —0.62 0.09 —0.04

i|, and the covariance matri-

021 0.19 0.41
value of r is 2 for time steps k = 2 and k = 6 since there were no transmissions
for k = 1 or k = 5. The simulation results clearly show that the size of the optimal
observation set increases with the number of missed transmissions r. This agrees
with the heuristic idea that a greater number of transmissions would be required to
reduce the overall estimation error in the presence of increased uncertainty.

cesforr = 1,2 are P, = [ ! 0’21| and P, = |:0'30 0'19:|, respectively. The

6.3 Benefit of Cost-Weighting

To test the effect of implementing a cost-weighting matrix, many trials were carried
out to compare the performance of the VOI-based estimation algorithm with and
without cost-weighting in the observer policy. Table 1 shows the results from both
of these cases over 100, 500, 1,000, and 5,000 trials. In all trials, (N, M) = (6, 4),
the covariance matrix P for the bivariate Gaussian randomly generated source data

was selected as:
10
P= [0 10} (50)
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Table 1 Effect of

- - 0 o 1
# of Trial T M Pol Pol
cost-weighting on average o mas ¢ COSUI® i ToToy My o1oy

estimation error 100 Mean 07593 0.5770
Median 07068 0.3181

500 Mean 07899  0.7656

Median 07249 03673

1000 Mean 07648  0.7310

Median 07104  0.3582

5000 Mean 07756  0.7542

Median 07057 0.3602

and the cost-weighting matrix Q was selected as:

10
0= [o 0.1}' ©D

The encoder policy for the case where cost-weighting is not used can be ex-
pressed as:
by if by € \_7(3'1{,[1{),

Mk = .
NT if b, € *7(i~k,rk)’

where the optimal observation set J(y, ;) is defined as:
Tisear = {be | b P™lbi <y} (52)
The encoder policy for the case where cost-weighting is used can be expressed as:

bk ifbk € jQ(Ska),
NT if by € jé(Sk’tk),

e =

where the optimal observation set Jp s, 1) is defined as:
Totsen) = bk 1 b G™'br <y}, (53)

where G £ Q'2PQ"2 and y is defined in (15).

From the data in Table 1, the inclusion of the cost-weighting clearly results
in a reduction in the average estimation error e”. In all cases the mean of the
average estimation error (i.e., the mean of e™) over all of the trials is slightly less
when the ,qu observer policy is utilized. Moreover, the median of e™ over all trials

is significantly reduced when the ug observer policy is used, being reduced by
approximately 55% in the most extreme case.

Figures 6 and 7 show the effect on the transmission patterns for a single trial of
the (M, N) = (4, 6) case. Heuristically, these figures show that the overall effect
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Fig. 6 Transmission pattern for the (M, N) = (4, 6) case using the ;. observer policy (i.e., with-
out cost-weighting)
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Fig. 7 Transmission pattern for the (M, N) = (4, 6) case using the /LkQ observer policy (i.e., with
cost-weighting)
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of including the cost-weighting matrix Q in the observer policy is to increase the
overall size of the optimal observation set, resulting in an alteration of the overall
transmission pattern.

7 Conclusion

Optimal encoder policies are developed for a sensor that takes multidimensional
measurements of some true state process. The criterion function to be minimized
consists of a weighted cumulative quadratic estimation error under the constraint
that over a time-window of length, N, only M < N measurements can be trans-
mitted to a remote estimator. We show how the optimal policy is to transmit a
measurement only if it lies outside of a certain hyper-ellipsoid, whose shape and
size depend on the number of remaining channel-uses, the number of remaining
time-steps, and the statistics of the measurement process. We show how dynamic
programming can be used to find the optimal hyper-ellipsoid in a Gaussian scenario,
as well as in a Gauss—Markov process, where the sensor is subject to Gaussian noise.

We also incorporate an arbitrary (positive-definite) weighting matrix that allows
the user to specify which elements of the state vector are most valuable to estimate
accurately. This is a first step in extending this research to address the larger issues
of informational value and relevance when this problem is set in a closed-loop
context (i.e., when the estimate is used by a control system to generate an input
signal that alters the trajectory of the state that is being measured). In previous
(scalar-valued) work, there was no place for consideration of which dimensions of
the sensor data might be most useful to control the system. It is likely that some
form of the separation principle holds in the scalar case, and that the encoder—
estimator policies are invariant regardless of how the estimate is used in the control
system. In the multidimensional case we consider, however, it is not clear that the
encoder—estimator polices can safely ignore the nature of the control law since some
dimensions of estimation error might be much more critical for successful system
control than others.
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Information Patterns in Discrete-Time
Linear-Quadratic Dynamic Games*

Meir Pachter and Khanh D. Pham

Abstract Information — who knows what, when — plays a critical role in game
theory, and, in particular, in dynamic games. Thus, dynamic game theory is an
ideal vehicle for exploring the interplay of dynamics and information. We confine
our attention to discrete-time Linear-Quadratic Dynamic Games (LQDGs) which
have the distinct advantage of readily being amenable to analysis without having
to overcome conceptual and technical difficulties, closed-form results are possible,
and one is in tune with modern digital signal processing techniques. In this chapter
a hierarchy of discrete-time LQDGs are characterized by a sequence of information
patterns which increase in complexity is analyzed and an insight into the Dynamics
of Information Systems is obtained.

Keywords Dynamic Games * Information pattern * Linear-Quadratic Control

1 Introduction

Information — who knows what, when — plays a critical role in game theory and
as such, game theory is an ideal vehicle for exploring the interplay of dynamics
and information. In static matrix games, the complete lack of information on
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the adversary’s action immediately leads to randomization, or, in the parlance of
game theory, mixed strategies. In dynamic games, namely, games that evolve over
time, information plays a critical role. In this chapter we consider a hierarchy of
Linear-Quadratic Dynamic Games (LQDGs). To fix ideas, the discussion centers on
disturbance rejection in control systems and an active noise cancelation/disturbance
rejection scenario [1] using digital signal processing is considered. The control
system is excited by a disturbance signal: the control signal is «# and the disturbance
signal is v; the rejection of the disturbance v is addressed. Control is employed
to actively counteract the effects of the disturbance on the system’s output, and
therefore a dynamic game formulation of the problem on hand is called for. The goal
of disturbance rejection is to be achieved using state feedback. At the same time,
the energy of the feedback control signal is applied for the purpose of disturbance
rejection which should remain within reasonable bounds. Hence, a Linear-Quadratic
Dynamic Game (LQDG) formulation is employed.

Continuous-time LQDGs, namely, linear-quadratic differential games, are per-
haps the best understood dynamic games and have been extensively researched —
we refer the reader to the monograph [2] and the recent book [3] published. Since
we are interested in digital signal processing, we confine our attention to discrete-
time LQDGs. In discrete-time the dynamic programming equation contains product
terms between the decision variables, which complicates the solution compared to
the continuous-time analogue. In this chapter the deterministic, finite-dimensional,
discrete-time, zero-sum, LQDG is carefully analyzed. Minimal necessary and
sufficient conditions for the existence of a solution to the discrete-time LQDG and
its complete closed-form solution are provided. Furthermore, the theory is expanded
to also include the presence of a random disturbance.

The disturbance rejection paradigm serves as a vehicle for investigating the
impact of information on the solution of dynamic games. In this chapter a hierarchy
of deterministic and stochastic LQDGs characterized by information patterns which
increase in complexity is analyzed and an insight into the dynamics of information
systems is obtained.

1.1 Discrete-Time LODG

The dynamics are linear:
Xp41 = Axgp + Bugy + Cvi, xo=x9, k=0,1,...,N — 1. (D

The state x; € R", the control of the minimizing player © € R™* and the control
of the maximizing player v € R™; the dynamics matrix A is a n X n matrix and
the minimizing and maximizing players’ input matrices B and C are n x m,, and
n x my, respectively. The planning horizon is N. An infinite planning horizon is also
considered.
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The payoff functional is quadratic:

N—1
J ({3 viieso 1 %0) = Xy Haxw + Z (241 QX1 + g Ruse = vig Ryvi).

k=0
@)

where H and Q are real symmetric n X n matrices and the minimizing and
maximizing players’ control efforts weighting matrices R, and R, are typically
real symmetric and positive definite m, x m, and m, X m, matrices, respectively.
It is oftentimes stipulated that also the state penalty matrices H and Q be positive
definite, or, at least, positive semi-definite; we shall relax these assumptions as much
as possible.

The disturbance signal is v and the controller-generated signal # aims to minimize
its effect on the system’s output, say y = ./QOx, while at the same time keeping
the control energy expenditure small. The goal of the disturbance v is diametrically
opposed. Hence, in our formulation the player/controller whose control variable is
uy strives to minimize the payoff functional J, the player/disturbance whose control
variable is v strives to maximize the payoff functional J, and a zero-sum dynamic
game is solved.

Concerning the information pattern: Both players are cognizant of the problem’s
parameters, namely, the dynamics (4, B, C), the payoff functional’s parameters
(H, Q, R,, R,), the planning horizon N, and, during the game, at time k, k = 0,
1,..., N — 1, both players have access to the system’s state xj.

In this chapter, necessary and sufficient conditions for the existence of a
solution, closed form solution and explicit formulae for the optimal strategies and
the payoff of the deterministic discrete-time LQDG, and LQDGs where random
disturbances are present, are provided. The optimal strategies for both players,
the controller, and the deleterious disturbance, are explicitly derived; of course,
we are mostly interested in the minimizing player’s/controller action, which is
conducive to minimizing the cost functional, and thus, rejection of the distur-
bance. Furthermore, minimal conditions for the existence of optimal solutions are
provided.

The chapter is organized as follows. The main result, that is, the explicit, closed-
form, solution of the deterministic discrete-time LQDG (1)—(2) is given in Sect. 2.
The reader is referred to [4] where the proof of the main result is provided. Building
on the results of Sect. 2, the simplest possible stochastic LQDGs are addressed in
Sect. 3. Novel stochastic LQDGs where the players have access to Nature’s input
and the players’ strategies are state feedback—stroboscopic strategies, including a
stochastic LQDG with an asymmetric information pattern, are analyzed. In Sect. 4
an illustrative example of a disturbance rejection scenario, where the discrete-time
LQDG paradigm is invoked, is analyzed and some fine points germane to dynamic
games with an infinite planning horizon are discussed. Concluding remarks are
made in Sect. 5.
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2 Main Result

A rigorous approach to the disturbance rejection problem entails its formulation as
a dynamic game. Thus, the method of Dynamic Programming (DP) is invoked. It is
conducive to the rigorous derivation of necessary and sufficient conditions for the
existence of a solution to the dynamic game (1) and (2), and the optimal disturbance
rejection strategy can be derived. It does however turn out that the solution of the
discrete-time linear-quadratic dynamic game is more involved than its continuous
time/differential game analogue. At the same time, digital signal processing entails
discrete-time and real-time operation, and therefore it is imperative to obtain an
explicit, closed form, solution of the LQDG. The main result, whose proof is given
in [4], is as follows.

Theorem 1. A necessary and sufficient condition for the existence of a solution
to the discrete-time zero-sum LQDG with dynamics (1), cost functional (2), and
complete state information is:

R,+BTP,B>0 (3)

and
R, > CTP.C 4)
Vk=1,...,N —1, where the real, symmetric, matrices Py are the solution of the

difference equation, where
Pisy = AT{Pk - Pk[BS;(Pk)BT + BS;" (P)BT P.C(R, — CTP.C) ' CT
+CR,-C"p.C)'cTPBS' (P)B
+CR,-C"p.C)'c"PBS; (P)B" P.C(R,—CT P,.C)™'CT
+C(CTPC - Rv)_ICT]Pk}A + 0.
Php=H+Q,k=0,....N—1. (5)
In (5), the matrix function
Sg(Py) = B"P.B+ R, + BT P.C(R,—CTP.C)'CT P, B.
In addition, the problem parameters must satisfy the conditions:
R.,+ BT (O + H)B >0 (6)

and

R,>CT(Q + H)C. (7
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The value of the LODG is:

Vo(xo) = x¢ (Px — Q)xo (8)

and the players’ optimal strategies are the linear state feedback control laws
i (vx) = =Sz (Py—k—1)B”
x[1 + Pyt C(R, = CT Py O)7ICT | Py Ay )

and

Vi) = (R = €T Py ©)7'CT {1 = Py BSF! (Py—i—1) BT

X[1 + Pyt € (Ry = €T Py—yi €)™ €T | Py A . (10)

2.1 Discussion

In discrete-time the dynamic programming equation contains product terms between
the control variables, which complicated the solution compared to the continuous-
time analogue. Using the Schur complement concept [5] and introducing the matrix
function Sp(-) allowed us to obtain the explicit, closed form, solution of the LQDG
(D-(2).

The Riccati equation lies at the heart of Linear-Quadratic control. To put things in
perspective, we note that the continuous-time analogue of the difference equation (5)
is the much simpler Differential Riccati Equation (DRE) from the classical theory
of continuous-time zero-sum LQDGs/differential games,

P=A"P+PA-PB"R'B-CTR]'C)P + Q,
PO)=H 0<t<T

In conformity with the well developed theory of continuous-time LQDGs/ differ-
ential games [2, 3], the difference equation (5) will be referred to as the Difference
Riccati Equation (DRE). One can appreciate the complexity of the recursion (5),
brought about by discrete-time action, and yet, the solution of the matrix DRE (5)
is a crucial step towards obtaining the solution of the discrete-time LQDG. Note,
however, that similar to the continuous-time case, for the calculation of Sgl and the
propagation of Py in discrete-time, the computation of only a r, x r, and a r, X r,
matrix inverse is required and in the important special case of single input systems,
this boils down to a scalar division. Furthermore, it is important to recognize that
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the DRE (5) need not be solved in real-time. The recursion (5) can be solved ahead
of time and the matrices Py can be stored for real time control action according to
the optimal disturbance rejection control law (9).

Note that, contrary to the continuous-time case, conditions (3) and (4) for the
existence of a solution do not automatically mandate that the players’ real and
symmetric control effort weighing matrices R, and R, be positive definite. Whereas
in continuous-time the players’ control effort weights must satisfy R, > 0, R, > 0
and for nonsingular optimal control the conditions are R, > 0, R, > 0, these are
not necessary conditions in discrete-time.

We are interested in disturbance rejection and we are therefore exclusively
interested in the minimizing player’s action u*, which is given in (9). In the
parlance of game theory, it is a pure strategy: a linear state feedback control law
is employed. The strategy (9) is a Nash strategy and should the minimizing player
unilaterally deviate from this strategy he will be penalized by incurring a higher
cost. Furthermore, the value function Vj(x) yields the optimal cost, as a function of
the initial state x(: since a zero-sum game is solved and a saddle point is obtained,
the Nash strategy is also a security strategy and the value function (8) provides a
guarantee to the minimizing player, that is, as long as the minimizing player sticks
with the strategy (9), the actually realized cost will be at most as high as the value
Vo(xo) of the game, and, most likely, if the maximizing player, a.k.a., the disturbance
v, deviates from its optimal play, it might actually be lower. This will indeed be the
case — the disturbance is a disadvantage because, unlike the controller, in reality it
does not have access to the system’s state:

T ({0 b2y v x0) = Volxo) = 53 (Py — Q)
Y v, k=0,....,N—1.
The discrete-time Riccati equation (5) can be written as:
Pept = AT{Pk _ Pk[l n Pkc(Rv - CTPkC)_lCT]TBSEI(Pk)BT
x[1+ Pec (R~ CTPkC)_ICT]Pk
+ PkC(RV - CTPkC)_lCTPk}A +0,
Phb=H+0, k=0,...,.N—1
and since Sp > 0, the following inequality holds.
Piy1 < ATPLA+ ATPLC(R,—CTP.C)'CTPLA+Q, Ph=H + O,

k=0,...,N—1.
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If, in addition, V k = 0,..., N — 1 the matrices Py are invertible, an application
of the Matrix Inversion Lemma [6] renders the above inequality in the compact
form:

Py < AT(PT'=CR;'CTY'A+Q, PBhb=H+Q, k=0,....,N — 1.
Let I} be the solution of the difference equation:
My = AT(IT7' - CR'CHY'A+Q, My=H+Q, k=0,...,N—1.
We prove by induction that
Py <, k=0,...,N.
Thus, Py = Ilyp; we assume that P, <II; and we show that this implies Pr4; <
M. Indeed, Proposition 8.8.5 from [9] yields Pr < IT, — P_' = I

Therefore Pk_1 —CR;!CT > I'[k_1 — CR;!'CT and reapplying Proposition 8.8.5
from [9] gives (P! — CR;'CT)™! < (II7' — CR;'CT)~". Hence

-1
My = AT (A7 = CR'CT) A+ 0

v

—1
AT(PT = CRTICT) A+ 0
> Py

The result that Py is bounded by the solution I7; of the difference equation is
somewhat similar to the Gronwall-Bellman inequality.

3 Three Stochastic LQDGs with Complete State Observation

So far, the deterministic LQDG was considered. The case where the dynamics
are perturbed by Gaussian process noise is now addressed — we refer to Linear-
Quadratic Gaussian Dynamic Games (LQGDGs). The LQGDGs’ dynamics are:

Xg41 = Axp + Bug + Cvg + 'wy, xo =x9, k=0,1,...,N—1. (11
The process noise input matrix I” is a n X m,, matrix and the process noise

wi ~ N0, W),

where W is a m,, x m,, real, symmetric, and a positive definite matrix.
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Building on the results of Sect.2, a hierarchy of three stochastic LQGDGs
characterized by increasingly complex information patterns is now addressed and
their explicit solution is provided in [4].

3.1 Stochastic LODG with Complete State Observation 1

The payoff is now a random number and therefore the payoff functional is:

J (fu k=0 vk} r=o s Xo)

N—1
=E, |:x1TVHxN + > (o Okt + u Rua — v,vavk):|. (12)
k=0

The expectation is taken over the process noise sequence, where w =
{W(), ey WN—I}'

As before, the players have complete state information. Thus, the simplest
LQGDG is solved. We shall refer to LQGDG 1.

The following holds.

Theorem 2. Consider the stochastic control system (11) and payoff functional (12).
The planning horizon is N. Assume that at decision time k the players have access
to the state xy, that is, the players have complete state information. In addition,
assume the deterministic LODG (1)—(2) has a solution for the planning horizon N.
The players’ optimal strategies in the LOGDG 1 with complete state information are
given by the solution of the deterministic LQDG provided by Theorem 1, namely, the
state feedback control laws (9) and (10). However, the value function of the zero-sum
game (11) and (12), namely, the players’ expected payoff, contains an additional
term:

VP (x0) = xI (Py — Q)xo + pY.

The real symmetric matrices Py are calculated according to the recursion (5) for
the deterministic case, and having obtained the sequence { Py }/]g’:o’ the new scalar

sequence p,((l) is calculated according to

k—1
P/i”:Trace(FT(ZPi)FW)’ k=1,....N (13)

i=0

so that the value function can be obtained. In (5) and (13), Py := Pr + Q.
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As in the deterministic case, conditions (3) and (4) are necessary and sufficient
for the existence of a solution to the LOGDG 1 on the finite planning horizon N.

3.2 Stochastic LODG with Complete State Observation 2

A somewhat nonconventional stochastic dynamic game is considered.

The LQGDG (11) and (12) is revisited. As before, the players have complete
state information. In addition, at decision time k the players also have access to
Nature’s random input wy, k = 0,..., N — 1; we here refer to a stroboscopic
information pattern. Stochastic optimal control problems where the realization of
the random variable is known at decision time are encountered in a sequential
inspection problems [7]. Stochastic Linear-Quadratic Dynamic Games with such
an information pattern and where Nature’s input is Gaussian will be referred to as
LQGDG 2.

The following holds.

Theorem 3. Consider the stochastic control system (11) and payoff functional (12).
The planning horizon is N . Assume that at decision time k the players have access to
the state xj and the random disturbance wy. In addition, assume the deterministic
LODG (1)—(2) has a solution for the planning horizon N. In the LOGDG 2 the
players’ optimal strategies are given by the state feedback/stroboscopic control
laws:

ui (xg, we) = — S5 (Py—k—1)B"
x [1 + PN_k_IC(RV - CTPN_k_lc)_ICT]
X Py—p—1(Axy + 'wy) (14)
and
Vi) = (Ro— €T PyinC) €T — Py B3 Py i) B
<14 Py C (R~ €T Py i) ]
XPn_j—1(Axg + T'wy). (15)

The value function of the zero-sum game (11)—(12) with the stroboscopic informa-
tion pattern, namely, the players’ expected payoff, is:

Vo(z)(xo) = x{(Py — Q)xo + Pﬁ)-
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The real symmetric matrices Py are calculated according to the recursion (5) for
the deterministic LQDG, and having obtained the sequence {Pk}ljc\[:O’ the new scalar

sequence p,({z) is calculated according to

p = p? + Tmce(rT{Pk — P [BS;I(Pk)BT
1 T T 1o
+ BS;'(P)B PkC(RV —C PkC) C
-1
+ C(Rv - CTPkC) CT PBS; (P BT
+ C(Rv - CTPkC) CTPkBsgl(Pk)BTPkC(RV - CTPkC) cT

+c(cThc —RV)_ICT]Pk}FW), PP =0, k=0,....N—1.
(16)

The solution of the recursion (16) entails a straight summation. In the recursions
(5)and (16) P, := Py + Q.

As in the deterministic case, conditions (3) and (4) are necessary and suf-
ficient for the existence of a solution to the LOGDG 2 on the finite planning
horizon N.

Concerning the new scalar difference (16): Comparing the matrix expression
whose Trace is calculated in (16) and the R.H.S. of (5), we observe that if the
dynamics matrix A is nonsingular — as in discrete-time control systems derived from
discretized continuous-time control systems — then the difference (16) can be written
in the compact form:

k
pY = Trace ( rra—"nHr [(Z P,») —kQ:| A—IFW), k=1,...,N. (17)

i=1

3.3 Stochastic LODG with Complete State Observation 3

The following stochastic dynamic game with an asymmetric information pattern is
now considered.

The LQGDG (11) and (12) is revisited. As before, the players have complete state
information. In addition, at decision time k the P player, namely, the minimizing
player whose control input is uy, also has access to Nature’s random input
wk, k =0,..., N — 1. The E player, namely, the maximizing player whose control
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input is v; does not have access to wy. Thus, E’s information pattern is as in

Sect. 3.1 whereas P’s information pattern is as in Sect. 3.2; evidently, player P has an

information advantage: player P knows everything that player E knows, and more.

Notwithstanding the asymmetric information pattern, the LQGDG 3 is tractable.
The results are summarized in as follows.

Theorem 4. Consider the stochastic control system (11) and payoff functional (12).
The planning horizon is N. Assume that at decision time k the player P has access
to the state xj and the random disturbance wy whereas player E has access to the
state xy. only. In addition, assume the deterministic LODG (1)—(2) has a solution for
the planning horizon N. In the LOGDG 3 P’s optimal strategy is given by the state
feedback/stroboscopic control law:

uZ(xk,wk) =— SEI(PN_k_l)BT
—1
< {[1 + Pys1C (R = CT Pyei€) T | Pygmi A e

+ PN—k—IF‘Wk} (18)

and E’s optimal strategy is given by the state feedback control law (10). The LOGDG
3 is a zero-sum game and its value function is:

VP (x0) = xI (Py — Q)xo + pY. (19)

The real symmetric matrices Py are calculated according to the recursion (5) for
the deterministic LODG, and having obtained the sequence { Py }ljc\[:o’ the new scalar
sequence is calculated according to the recursion:

pg_l = pf) + Trace(FT[Pk + PyBS3' (Pr)
(Ru + BTPkB)Sgl(Pk)BTPk]FW),
P =0,k=0,....N -1
PP =0, k=0.... . (20)

As in the deterministic case, conditions (3) and (4) are necessary and sufficient
for the existence of a solution to the zero-sum LOQGDG 3 on the finite planning
horizon N.

The strategy (18) is intuitively appealing — compare to the P player’s strategy in
the LQGDG 1 where neither player had access to the random input, (9) in Sect. 3.1,
and the P player’s strategy in the LQGDG 2, (14) in Sect. 3.2, where both players
were privy to Nature’s input.

Concerning the three stochastic games’ value function, the following is
derived:
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Corollary 5. The value functions of the LOGDG 1, LOGDG 2, and LQGDG 3
satisfy the inequality

VD (xx) < min {Vk“)(xk), Vk(z)(xk)} Vx,eR'. Yk=1.....N. @I

In other words, the sequence p® is dominated by the sequences p" and p®,
namely,

Y <min {p". p7} Yk =1...N (22)

and the value function differences are not state dependent, that is,

1 G _

Vk(l)(xk) _ VkG)(Xk) = pli ) _ Py const. ¥ x; € R" (23)

and
VP 0a) = VO () = p? — p = const. ¥ x; € R". 24)

Proof. All three dynamic games, namely, LQGDG 1, LQGDG 2, and LQGDG 3,
are zero-sum games. The information advantage of player P, the minimizing player,
over player E, the maximizing player, in the LQGDG 3 compared to the LQGDG 2
yields the inequality

) <pd Vik=1...N

Similarly, the advantage player P enjoys in the LQGDG 3 compared to the
LQGDG 1, or, alternatively, the fact that player E, the maximizing player, is better
off playing the LQGDG 1 compared to the LQGDG 3, and the fact that these three
games are all zero-sum games, yields the additional inequality

p/(f) <p,((l) YVk=1,...,N

wherefrom (21) and (22) follow. O

Similar results can be obtained when the roles are reversed and player E has the
information advantage. New scalar sequences p"), p®, and p® must be calculated.
The new sequences will satisfy the inequality

pf) > max {p,(cl),p,?)} Vk=1,...,N. (25)
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4 Example

The concepts and algorithms developed in Sects.2 and 3 are illustrated using the
vehicle of a scalar discrete-time LQDG.

Without loss of generality, let » = 1 and ¢ = 1. Let ¢ = 0, that is, one is
exclusively interested in suppressing the effect of the disturbance at the terminal
time. The problem parameters are the time constant a, the players’ control effort
weights r, and r,, and the terminal state penalty /.

4.1 Deterministic Control

The simple scalar dynamics are:

Xk+1 = aXp + up + Vi (26)
and the payoff functional is:
N—1
I (3T i) = hd + 3 (g = rof). @7)
k=0

We first calculate the Schur complement [5]:

(rv_ru)Pk + ruty
rv—Pk

Sp(Py) = (>0).

We insert the Sp(Px) expression into the Py recursion formula (5) and obtain the
scalar DRE:

bk
1+(i—,,iv)Pk’

Tu

Py =d’ Po=h, k=0,....N—1. (28)

Admittedly, in this example where both players’ control variables are scalars
(m, = 1 and m, = 1), the use of the Schur complement merely allowed us to
avoid the inversion of a 2 x 2 matrix.

The cost guarantee is:

Vo(xo) = Pyxg
and (9) yields the optimal disturbance rejection strategy,

Py—i—1
ru+ (1= 2) Py_j—1

Iy

Xk s k=0,...,N—1.

uf () = —a
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Concerning the existence of a solution to the scalar discrete-time LQDG
(26)—(27): according to Theorem 1, the solution of the DRE (28) must satisfy

—ry<P.<r, Yk=1,...,N—1.
In addition, the problem parameters must satisfy
—r,<h<r,. 29)

From (28) we immediately conclude that choosing the state penalty term 4 > 0 and
the control effort penalty terms

r>r,>0

guarantees that P, >0V k =0,1,....

We will assume that the problem parameters satisfy the above conditions. Indeed,
the requirement that r, < r, means that the minimizer’s energy cost is lower
than the maximizer’s energy cost — in other words the minimizing player is “more
energetic” than the disturbance, and therefore can overcome the action of the
disturbance. Hence, Py > 0 > —r, and we only need to worry about Py < r, V
k=0,....N—1.

If, in addition, the time constant —1 < a < 1 so that the control system, which
is excited by the disturbance, is stable, then Pj is monotonically decreasing and
therefore i < r, guarantees P, < r, Vk = 0,..., N — 1. Hence, the maximal
length of the planning horizon Ny.,x = oco. In addition, 0 < Pryy < Pr < h
Vk=0,1,....If however | a |> 1, that is, the open-loop system is not stable, then
a finite maximal planning horizon might exist — in other words, it is possible that
Nmax < 00; in which case the DRE (28) has a finite escape time.

We now proceed to solve the DRE (28). Note that

L1 1
Piyr a?>Pe a*\r. n)

provided that P, # 0. Setting
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whose solution yields the sequence:

a2k
l+6t22"_—1(i_i) if |a|#1
P, = h a —11 Tu ry (30)
Pt Gk

This, in turn, allows us to obtain the optimal disturbance rejection strategy:

a1 a2(N—k)
— x, if |a 1
. a a®-1)+ (1 — %)(az(N_k) -1) k a7
uk(xk) = 1 v
—a & ifa ==+1.

nr (-2 Nk

The optimal disturbance rejection strategy is linear in the state and is of the
form:

up(xg) = K*(k:N) - xp.

The optimal gain K* is time-dependent and is a function of the planning horizon
N. Thus, at time k = 0 the gain is:

_(aZ_l)r(z 1)+a(21N_1r )( T if |a|#1
I @ - — 5)(@N —
K*(0;N) = 1 .
-a— ifa = =1,
rH (=N

and at time k = N — 1 the optimal terminal gain is:

1
a—
L+ =

Iy

K*(N —1;N) = — YaeR',

provided that N < Npx — see (34) in the sequel.

The dynamics parameter a plays an important role in the solution of the LQDG
(26)—(27). In general, and not just at the terminal time k = N — 1, the gain K* is
continuous in the parametera as | a |— 1.



98 M. Pachter and K.D. Pham

Concerning the cost guarantee: (30) allows us to calculate Py so that the value
function:

a2N 5
1 cﬂf_—l(i_i)xo if |al|#1
] - u v
V()(Xo) _ g a*—1 \r, r (31)
1 2

— ifa = £1.
R LA

The value of the game is continuous in the parameter @ as | ¢ |— 1 and is
nonnegative V a € R'.

When the time constant | @ |> 1, we must determine Np,,. To this end, invoke
condition (4) for the existence of a solution:

a2k

W= 17y

Ty Iy

P, = <r, Vk=1,...,Npx— 1,

thatis, Vk =1,..., Npna — 1 the following must hold:

(az—ﬂ)a% < (az—l)ﬁ—i-l—ﬁ.
Ty h T

u

Now, :—‘ > | and it is readily verifiable that if

L<lal< [2, (32)

then even though the open-loop system is unstable,

Nmax = 00.

If however the parameter
Ty
la|> /= 1D, (33)
T

@—-DF+1-7

Iy

then

1
N 1 @ 34
max — E IOg | a | 5 ( )
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the notation [] in (34) designates the largest integer less than or equal to the
expression in the square brackets.

When the problem parameters are s.t. | a |> \/:: , the infinite horizon LQDG

(26)—(27) does not have a solution; this, notwithstanding the fact that the Discrete
Algebraic Riccati Equation (DARE) of the LQDG (26)—(27) has a solution: in fact,
the DARE has two solutions:

P =0, (35)

and

P=@-1) (36)
ry — Ty

In summary, when the LQDG’s control effort weighing parameters r, > r, > 0,

r, > h > 0 and the dynamics parameter | a |< 1, then Nyx = 0o and the DARE’s
applicable solution is given by (35); and if the dynamics parameter 1 <| a |< \/g ,
also in this case Npy,x = 00, however the DARE’s applicable solution is given by
(36). Inboth cases, | a |< 1,and 1 <| a |< \/:i:, the infinite horizon LQDG (26)—
(27) has a solution, the respective solutions (35) and (36) of the DARE apply, and
the DRE’s solution sequence Pj converges to the applicable DARE solution for all

“initial” conditions 0 < /& < r,. Indeed, Py — P when N — oo, where — see also
(35) and (36):

ryly 2 . T
—— (@ =1) if /[2>|a|>1
P = ry—ry T (37)
0 if |al<1,
so that the value function
Fulv 5 2 e [n

—— (@ " —Dx; if /2>|a|>1

Volxo) = 4 oy @~ D0 o2l el

0 if |al|<]l.
Hence, the disturbance rejection controller’s steady state optimal control law is:

r 1
—— (a—=)x,. k=0,1,... if /2 >|a|>1
uy (xg) = rv—ru< a) k Tu zlal
0 if |a|<1,
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and the dynamics of the closed-loop system which is excited by the disturbance are:

1 1 . "
—r,—ary | xg + v, if r—:2|a|>1

Xi4+1 = ry—Ty a (38)
axi + vi if |al<]l.
If the maximizing player plays optimally, the dynamics are:
1 1 [y
(arv——ru)xk+uk, if (/2 >al>1
X1 =9 v Tu a ! (39)

axy + ug if |a|<]1.

If both players play optimally, the closed-loop dynamics are:

1
—xg, if /2 >[a|>1

X1 =1 ¢ ’ (40)
axy if Ja|< 1.

It is readily verifiable that always, in (38) the coefficient

—ry,—ary
ry—Ty a

which guarantees stability. Thus, the minimizer’s optimal action brings about
stable dynamics. In the same vein, it is readily verifiable that in (39), the

coefficient
1 1
ar, — —r,
ry—ry a

that is, the maximizer’s optimal action tends to destabilize the system — which serves
the disturbance well. However, when both players play optimally, the closed-loop
dynamics (40) are stable: the more energetic minimizing player (r, < r,) is able to
overcome the maximizer’s action and always enforce stability. Thus, during optimal
play, and when | a |< 1, the trajectory is:

<1,

xk:akxo, k=0,1,...,
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the control energy expanded by the minimizing and maximizing players is:

[e.o]

E,

Il
=~
=
<
=~

and

o0
E, =, Z vz
k=0

:O’

respectively; and since limy o, Xy = 0, the value function Vy(x9) =0V xg € R'.

When /= >| a |> 1, the trajectory during optimal play is:

xk:a_kxo, k=0,1,...

and the optimal controls are:

Ty 1 —k
Uup = — a——\J]a Xy
ry—Ty a

Ty Iy
Vi = a——|)a " Xp.
ry —ry a

The calculation of the players’ control efforts, £, and E,, entails the summation
of convergent geometric series. We evaluate

and

2
ryr,
Eu = m({lz — l)xg
and
rir,
Ev = m({lz — l)x(%

and since limy oo Xy = 0, we directly calculate the value of the game

VO(XO) = Eu - Ev,
UL 1)x2.
ry — Ty

as expected.
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For finite planning horizons N, Py > 0 always; in other words, the value of the
game is always positive.

When the LQDG’s parameters r, > r, > 0, r, > h > 0, however the time
constant | a |> \/’r: , then Np,x < oo and is given by (34); the DRE (28) exhibits
a finite escape time, and the DARE’s solutions (35) and (36) do not apply to the
solution of the LQDG (26)—(27).

In general, when the LQDG formulation is used to model pursuit-evasion
scenarios, it is assumed that the minimizing player’s/pursuer’s control effort penalty
matrix:

0< R, <R,.

This is tantamount to saying that the pursuer’s/minimizer’s control cost is lower
than the evader’s/maximizer’s, so that the pursuer is more energetic and he will
close in on the evader/reduce the miss distance. In light of this observation, in the
disturbance rejection scenario it would be interesting to consider the situation where
the opposite is the case, that is, in our scalar example 0 < r, < r,. This, in itself,
will not preclude the existence of a solution, but will cause the maximum planning
horizon to be finite, that is, N, < 0o always.

4.2 Steady State Control

The following discussion concerns steady state control action. The infinite planning
horizon case N — oo requires special care [8].

The applicable parameter range is | @ [< /= (> 1) — the dynamics parameter

a = =*£1 requires special attention.
The steady state disturbance rejection strategy is:

Ty 1 .
- (a—_)xk’k=0,1,~- if /7 zlal>1
uZ(-xk) = ry =Ty a ’

0,k=0,1,... if al<l,

that is, the optimal control gain is constant:

v 1 .
_ T (a——),Vk:O,l,... if %2|a|>1
K*(k;00) = ry =TIy a "

0,Yk=01,... if |a|<l.
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In particular, the initial gain at time zero is:

v 1 ) -
S (a——) if (/2 >]al|>1
K*(0,00)= ry—"ry a "

0 if |a|<l.

Alternatively, the initial gain at time k = 0 can be obtained by setting k = 0 in
the gain formula for the case of a finite planning horizon of length N and letting
N — oo. We calculate

lim K*(0; N) = K*(0; 00),
N—o0

as expected.

Consider now the terminal gain. We are interested in the gain applied at the time
instant k = N — 1 when N — oo. The optimal gain formula derived for the finite
planning horizon case yields:

ry
— V |a |, /]— N=1,2,....
1+%_ﬂ I I_ Ty

ry

K*N—LN—-1)=—a

Thus, when N — oo

1 Ty
A Y lal=y
+7__ Ty

Iy

K*(c0;00) = —

and it is not equal to the steady-state gain at time k — oo: the terminal (at time
k = o0o) steady-state strategy is not the limit of the finite planning horizon strategy
when the planning horizon N — co.

This dichotomy is not germane to games only and it also arises in one sided
linear-quadratic optimal control problems. In this respect, it is instructive to
momentarily digress and consider the infinite horizon optimal control problem from
first principles.

The dynamics are:

Xp41 = axp +ug, xo=x9, k=0,1,...,

and the cost functional is
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Since we are interested in steady-state action we consider linear control laws of
the form:

up = —Kxy,

and we determine the optimal gain K*.
The closed-loop dynamics are:

X1 = (@ — K)xg, xo=x0, k=0,1,...,
and therefore the state evolves according to
xe = (a—K)xo
and the control
up = —K(a — K)kxo.

Hence, the expanded control energy is:
o0

2 ui

k=0

o0
K>x3 ) (a— K)*.
k=0

E

Feasible controls are in /,: the control energy is finite provided the gain K satisfies
a—1<K<a+1,

whereupon xo, = 0 and the cost

K? s
J(x0;K) = E = ——— x;.
(xo: K) 1—(a—K) 0
Hence, the optimal gain
1
K*=a——.
a

The optimal gain K™* is positive and satisfies the inequalitya — 1 < K* < a + 1if
the dynamics parameter

la|>1.
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The optimal (minimal) cost is:
J* =a®—1(>0).

Obviously, if

la|<1,
the gain
K*=0
and the optimal cost
J*=0.
Concerning | a |= 1: If
a=1
and
0<K <2,
the cost
2
J(x0; K) = K — K2 x% (>0).
The optimal gain must satisfy
0<K*<2

and one must solve the optimization problem:

. K
min .
0<k<2 2— K

The above cost function is monotonically increasing in K on the interval
0 < K <2if K =¢0< ek, the cost J(xp;€) ~ %6. If however K = 0
the cost J(xo; 0) = hxZ (> 0). A minimum does not exist.

Similarly, if

a=-1
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and —2 < K < 0, the cost:

2

T = ke

xS (>0).

The optimal gain must satisfy
-2<K*<0

and one must solve the optimization problem:

) K
min @ ———.
—2<K<0 24+ K
The above cost function is monotonically decreasing on the interval —2 <
K <2 if K = —¢,0 < €K1, the cost J(xp;€) ~ %6. However, if K = 0,
the cost J(x(;0) = hx% (> 0). A minimum does not exist.
In summary, the solution of the infinite-horizon optimal control problem is as
follows. The optimal control law is:

uZ (xk) = K*xk,

where the optimal gain

I .
K* — a—; if |al|>1

0 if |a|<l1,
the optimal (minimal) cost
J*(x0) =0 Vxo € R!

and if a = %1 an optimal solution does not exist, however by using the gains K = €
ifa =1and K = —¢ if a = —1 one can make the cost J* — 0.
In the LQDG, the steady state optimal control law for disturbance rejection is:

Ty

1
(a——)xk, k=0.1,... if /2>la|>1
ry —ry a u

* —_—
e (Xi) = 0 if |al<1
Does not exist if |al|=1.

There is a “gap” when | a |= 1 in both the optimal control and LQDG problems.
Note however that if | a |= 1, a small gain controller will yield a cost arbitrarily
close to the absolute minimum of zero.
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4.3 Stochastic Control: LOGDG 1

Asin Sect. 4.1, we assume that the parameters of the LQGDG 1 satisfy r, > r, > 0
and r, > h > 0. In view of the analysis in Sect. 4.1 — see, e.g., (28) — the sequence
(13)is:

_ a?
szzf.;gl o flal#Eli k=1 N-1
0= e (r_“_r‘v)
ko= 1
rwyr., ifa=+1; k=1,...,N -1,

If the dynamics parameter | a |< 1 then the increment in the p,({l) difference
equation — 0. Moreover, if the dynamics parameter satisfies | a |< 1, the sequence
p](cl) converges. We therefore conclude that if the open-loop control system is
asymptotically stable, the payoff functional in the infinite planning horizon case
is bounded and an optimal (Nash) solution to the LQGDG 1 exists. The calculation
of the value of the game requires the summation of the following series.

o0

(1 _
Yo (XO)_Zl a1 (1 1
k=05 T oy (r - —)

u

a% 1
*wx2 | < ——hI'*wx?| VxR
0 1 _az 0

If the dynamics parameter a = =1, the sequence p,il) does not converge.
Although the players’ “optimal” strategies are the steady-state strategies u; = 0 and
vi = 0, the payoff functional in the infinite planning horizon case is not bounded.

If the dynamics parameter | a |> 1, the increment in the plil) sequence
— (a*— 1)% I'?W (> 0) so that asymptotically the sequence p](cl) is an arithmetic
progression and the sequence p,il) does not converge. If the dynamics parameter

satisfies (32), that is, 1 <| a |< \/l’,:, then although the open-loop system is

unstable, steady state “optimal” strategies exist, however, since the sequence plil)
is not bounded the value function in the LQGDG 1 is not bounded; in other words,
when the dynamics parameter | @ |> 1, a solution to the LQGDG 1 does not exist.
This is due to the action of the persistent random disturbance wy.

4.4 Stochastic Control: LOGDG 2

As in Sect. 4.1, we assume that the parameters of the LQGDG 2 satisfy r, > r, > 0
and r, > h > 0. In view of the analysis of the example in Sect. 4.1 — see, e.g., (30)
— the p® recursion is:
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2(k+1) r 2

2) r @ _ B B

Pk +l a2+ _1 (i_l)(a) w, Do =0, k=0,...,N 1

h a?—1 Tu ry
pl(cZ) = if |al#1
+1 1
T rPw, p¥ =0 k=0...N-1
z+(, —;)(k+1)

Hence, if the dynamics parameter | @ | < 1 then the increment in the p® recursion
— 0. Moreover, the sequence p](cz) converges, provided that the dynamics parameter
satisfies | a | < 1, that is, the open loop system is asymptotically stable. We
therefore conclude that if the open-loop system is asymptotically stable the payoff
functional in the infinite planning horizon case is bounded and calculating the value
of the game requires the summation of the following series.

© 2(k+1) \2
Ve =3 a Nw (< hr2w
0 1, a2+ ( 11 ) a 1-— a2
_l’_ “® _ =

k=0 7 a’—1 Ty ry

If the dynamics parameter ¢ = =1, the sequence p,({z) does not converge and
although the players’ “optimal” strategies are the steady-state strategies u; = 0 and
vi = 0, in the infinite planning horizon case the payoff functional is not bounded —
an optimal solution of the LQGDG 2 does not exist.

If the dynamics parameter | a |> 1, the increment in the sequence pf) —
(a® — 1)1 2W (> 0) so that asymptotically the sequence p,iz) is an arithmetic
progressi(v)n.uHence, if the dynamics parameter satisfies (32) then the increment in
the p® recursion — (a? — 1) r 2W and, although in this case of an unstable
open-loop system steady state ¢ 0pt1ma1” strategies exist, similar to the LQGDG 1,
the performance functional in the LQGDG 2 is not bounded. Thus, if the planning
horizon N — oo and if the dynamics parameter | @ | > 1 an optimal solution of the
LQGDG 2 does not exist.

Finally, in our example the following relationship holds.

h a?—1

M _ 2 (2’+1“2W h—i l_l Vk=1 N
oV = a?pf — =1,...,N.

Hence, if | a |< 1,

pV =a’p? +hr*w
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and therefore if the open-loop system is asymptotically stable the values in the
infinite planning horizon case satisfy the relationship

v =a2v® 4 hriw.

4.5 Stochastic Control: LOGDG 3

Asin Sect. 4.1, we assume that the parameters of the LQGDG 3 satisfy r, > r, > 0
and r, > h > 0. The scalar p{”’ in the LQGDG 3 — see (20) — is:

pl = r*w
"i p it P)[P? + (r2 —2r,) P2 + 2r,(ry — 1) Pi + rr?] + r2 P2
X i N
i=0 [rv(rLl+Pi)_rLlPi]2
k=1,...,N,

where the sequence P; is specified by (30).

5 Conclusion

In this chapter a hierarchy of discrete-time Linear-Quadratic Dynamic Games is
analyzed, in the context of the application of the theory of dynamic games to optimal
disturbance rejection using digital signal processing. In discrete-time the dynamic
programming equation contains product terms between the decision variables,
which complicates the solution compared to the continuous-time analogue. With
a view to facilitate the application of the theory of dynamic games to digital
signal processing, and, in particular, disturbance rejection, minimal necessary and
sufficient conditions for the existence of a solution are established, the complete
solution of discrete-time LQDGs is worked out, and explicit results are obtained.
A hierarchy of three zero-sum stochastic LQDGs characterized by information
patterns which increase in complexity is analyzed and an insight into the dynamics
of information systems is obtained. It is shown that if the deterministic LQDG has
a solution for the planning horizon N then also the stochastic LQGDGs 1-3 have a
solution on this planning horizon. Moreover, while the LQDG value function and the
value functions of the LQGDGs’ 1, 2, 3 are all different, the difference in the value
functions is not state dependent. The results are illustrated in the example discussed
in Sect. 4, where some fine points concerning dynamic games are highlighted. The
infinite horizon LQGDGs are investigated and it is shown that while steady state
optimal strategies are possible even in the case where the open loop system is not
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asymptotically stable, the value function is not bounded and a solution does not
exist. We do however point out that the inclusion of a temporal discount factor 0 <
A < 1 in the cost functional will render the stochastic games’ value function finite.

Appendix A: Planning Horizon

The planning horizon N is chosen by the system designer, subject to the constraint:
N E NmaXs

where 1 < Npx < oo is exclusively determined by the problem parameters. Indeed,
in order for 1 < Np,x, the problem parameters must satisfy the minimal conditions
(6) and (7). We will assume that this is indeed the case so that 1 < N, and the
following discussion is not vacuous.

Using the theory developed in Sect.2, the maximal length of the planning
horizon, Npax, is determined as follows.

Algorithm 1
Step 0.) Assume that conditions (6) and (7) hold.

Step 1.) Iterate the recursion (5) for P, V k =0,..., K —1;if K > 1, assume that conditions (3)
and (4)heldVk=1,...,K—1:set

Npax = K
and calculate Pg.

Step 2.) Check conditions (3) and (4) for k = K. If conditions (3) and (4) hold, proceed to solve
the recursion (5) for Pg4; and set

Npax = K+ 1
Set k = K + 1 and return to the verification Step 2.), where conditions (3) and (4) are checked.

When condition (3) and/or condition (4) fail, the process stops — at which time a finite N,y is
established.

The DRE (5) is a nonlinear difference equation. When Ny,.x < oo the DRE has
a “finite escape time” and the LQDG (1)—(2) does not have a solution for planning
horizons N > Np.x. However, if the process can be continued ad infinitum — for
example, { P }72  is a bounded and monotonic sequence of real, symmetric, positive
definite matrices, as is the case in convex LQ optimal control with H > 0 and
O > 0 —then Npyx = 0o. When Nyx = oo, the LQDG with dynamics (1), cost
functional (2), and complete state information, has a solution V N > 1.

The determination of the longest possible planning horizon, Np,y, s.t. a solution
of the discrete-time LQDG (1)—(2) exists, is an interesting problem in its own



Information Patterns in Discrete-Time Linear-Quadratic Dynamic Games 111

right. However, one is especially interested in the infinite horizon case where
Nmax = 00, namely, the steady state solution of the DRE. That the solution of
the DRE can be extended to N — oo is not at all clear in dynamic games. This
comes somewhat as a surprise, for in one sided optimization problems, that is, in
linear-quadratic control and estimation/Kalman filtering, this is achievable under
relatively mild assumptions, e.g.,0 < Q and 0 < H.

Extending the planning horizon of the LQDG to infinite time is most desirable,
for then, the control action entails linear constant gain action — in other words, the
system is linear time invariant — a most desirable state of affairs in real-time control,
digital signal processing, and filtering. Now, steady state disturbance rejection
hinges first and foremost on the solution — see, e.g., (5) — of the following, fairly
complex, algebraic equation: when Ny = 00,3 P s.t. limgc Py = P and the
real, symmetric n X n matrix P is the solution of the algebraic matrix equation:

P =A"{P— P[BS;"(P)B" + BS;'(P)B"PC(R,—C"PC)"'C”
+ C(R,—CTpPC)~'CcTPBS;' (P)B"
+ C(R,—CTPC)~'CcTPBS; (P)B"PC(R, —CTPO)"'CT
+c(c’pc—-R)7'CT| P} A+ Q. (41)
The LQDG’s value function is then
Vo(xo) = x5 (P — Q)xo (42)

and the optimal strategies are constant gains, that is, Linear Time Invariant (LTT)
control laws. Specifically, the optimal disturbance rejection signal is then generated
by the constant gain Linear Time Invariant (LTT) control law:

il (xp) = —S5'(P)B” [1 +PC(R,—CTPC)”" CT] PA-x,  (43)
and
i) = (R, —C"PC)™ T {I — PBS;'(P)B"
x[I + PC(R,—C"PC)"'CT]} PA - x.

In conformity with the well developed theory of continuous-time LQDGs/linear-
quadratic differential games [2,3], the algebraic matrix equation (41) will be referred
to as the Discrete Algebraic Riccati Equation (DARE). Its off-line numerical
solution is required for the calculation of the controller’s m, x n gain matrix and
the implementation of steady-state real-time disturbance rejection control — see, e.g.,
(43). The gain matrix is calculated ahead of time, implementation is easy, and during
real-time operation the execution time is bounded.
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Note thatif Q = 0then P = 0 is a solution of the DARE (41). However, a real,
symmetric, solution P of the DARE (41), if it exists, is not necessarily unique. The
“correct” solution, namely, the solution which is applicable to the LQDG (1)—(2), is
the specific solution P of the DARE s.t. the sequence Pj generated by the difference
equation (5), initialized according to

Po=H+ Q,
satisfies

lim P, = P.

k—o00

Hence, according to Theorem 1, the following must hold.

Proposition 6. A candidate solution P of the DARE (41), and which is applicable
to the LODG (1)—(2), must satisfy the conditions:

R,+ B"PB>0
and
R,>CTPC.

Thus the following is derived.

Corollary 7. If Q = 0and R, > 0 and R, > 0, P = 0 is a candidate solution of
the DARE (41).

In addition, the following holds.

Proposition 8. A real symmetric nonsingular matrix P is a solution of the DARE
(41) if it satisfies the inequality

P<A" (P —cR;'cT) 4+ 0. (44)

Moreover, if Q = 0, the dynamics matrix A is nonsingular and the candidate
solution P > 0, the following holds.

P'—AP'A"T <crR;'CT. (45)

Proof. Equation (44) directly follows from the inequality from Sect.2 concerning
the solution of the DRE (5),

Pep1 < AT (P7'—CR;'CTY ' A4+ 0. Pp=H+Q, k=0,....N—1

and an application of Proposition 8.8.5 from [9] (A and B are positive definite
matrices and A < B — B™! < A7) yields (45). O
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In dynamic games it is not always possible to extend the solution of the DRE,
and consequently, the solution of the LQDG, to N — 00. N,y is obtained by
exercising Algorithm. Even so, and irrespective of whether N, is finite or infinite,
in the context of disturbance rejection an interesting corollary of Theorem 1 is as
follows.

Corollary 9. When the the initial state xo = 0, the value of the game, that is, the
minimizing player’s cost guarantee, is always 0 ¥ N, provided that the planning
horizon N < N4x.

Proof. Follows from (8). O

In other words: consider an initially quiescent dynamical system, excited by a
persistent disturbance with bounded energy. The disturbance rejection strategy in
Theorem 1 provides a zero cost guarantee, irrespective of the length of the planning
horizon N — provided that N < Np,x. Thus, the following holds.

e If the planning horizon N < Np, and the initial state xo = 0, the guaranteed
cumulative effect of the disturbance on the output is equal to the energy of the
disturbance minus the expanded control energy, that is, the applied control energy
directly diminishes the effect of the disturbance.

When the planning horizon N — oo, that is, the DRE (5) does not have a finite
escape time, the players’ optimal strategies reach a steady state. Specifically, the P
player’s optimal steady state strategy is given by (43), where the n xn real symmetric
matrix P is a solution of the DARE (41). At the same time, since P, — P, the
scalar se ) h ithmeti ion. Thus, i i

quence p, ~ approaches an arithmetic progression. Thus, in the stochastic

LQGDG 1 the sequence plil) is monotonic and, in general (if P # 0), it does not
reach a steady state. Hence, whereas in the deterministic LQDG the value function
is finite, in the stochastic LQGDG 1 the value function is in general not bounded; in
other words, an optimal solution does not exist. However, the inclusion of a temporal
discount factor 0 < A < 1 in the cost functional will render the value function finite.

The special case where O = 0 and the open-loop system is asymptotically stable
is particularly interesting. The applicable steady state solution of the DARE (41)
is then P = 0 and therefore the optimal strategies are u; = 0 and vy = 0. The
value function is finite and a solution to the LQGDG 1 exists. The value of the
LQGDG 1 is:

o0
Vo(l)(xo) = pV = Trace (FT (Z Pk) FW) = Const. V xp € R".
k=0

Finally, a word of caution concerning the infinite planning horizon is in order.
While the existence of a solution to the DARE is paramount, as pointed out by
Mageirou in [8], care must be exercised concerning the interpretation of the players’
steady-state strategies — see the discussion in Sect. 4.2 concerning the asymptotic
properties of the value of the game.
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Appendix B: Discounting the Future

In infinite horizon LQDGs, LQGDGs, or in optimal control problems, the value
function is not always finite; this is particularly true in the stochastic case. To
guarantee a finite value function and the existence of an optimal solution, and
motivated by the practice in economics to “discount the future”, the cost functional
(2) is modified as follows:

J ({3 p=o - v di=o s xo)
N—1
= Mx Hxy + Z Ak (ka+1ka+1 + ug Ryuy — v,vavk) ,  (46)
k=0

where the “prevailing interest rate” parameter 0 < A < 1.

B1 Deterministic LODG

Theorem 1 is modified as follows.

Theorem 10. Necessary and sufficient conditions for the existence of a solution
to the discrete-time zero-sum LQDG with dynamics (1), cost functional (46), and
complete state information are (3) and (4) where the real, symmetric, matrices Py
are the solution of the difference equation:

Piy1 = A" {Pc — P [BS5" (P)B" + BS;' (P)B" P.C(R,— CT P.C)'CT
+ C(R,—CTP.C)"'CT PBS;' (P)BT
+C(R,—CTP,C)'CT P BS" (P)B" P.C(R,— CT P.C)~'CT
+C(CTPRC—-R)'CT P YA+ Q.

Po=AH +Q, k=0,....,N—1. (47)
As in Theorem 1, the matrix function
Sg(Py)=B'P.B+R,+B"P.C(R,—CTP.C)'CT P, B.
In addition, the problem parameters must satisfy the conditions:
R,+B"(Q +AH)B >0 (48)

and

R,>CT(Q +AH)C. (49)
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The value of the LODG is:

Vo(xo) = —xo (Py — Q)xo (50)

and the P and E players’ optimal strategies are the linear state feedback control
laws (9) and (10), respectively.

B2 Stochastic control: LOGDG 1

The payoff functional is:

({”k}k o’{Vk}k 0 xo)

N—1
=E, (/\N)C/]\;H)CN + Z Ak (ka+lek+1 + u,fRuuk — v,{vak)) . (8D
k=0

The expectation is taken over the process noise sequence, where w =
{W()?"'vWN—l}‘
The following holds.

Theorem 11. Consider the stochastic control system (11) and payoff functional
(51). The planning horizon is N. Assume that at decision time k the players have
access to the state xy, that is, the players have complete state information. In
addition, assume the deterministic LODG (1)—(2) has a solution for the planning
horizon N. The players’ optimal strategies in the LOGDG 1 with complete state
information are given by the solution of the deterministic LQDG provided by
Theorem 10, namely, the state feedback control laws (9) and (10). However, the
value function of the zero-sum game (11) and (51), namely, the players’ expected
payoff, contains an additional term:

V" (x0) = —xo T(Py — Q)xo + pYy -

The real symmetric matrices Py are calculated according to the recursion (47) for
the deterministic LQDG, and having obtained the sequence {Pk}ljc\[:O’ the new scalar

sequence p,il) is calculated according to

k—1
p) = Trace (rT (Z A1 P,») FW), k=1,...N, (52)

i=0

so that the value function can be obtained. In (47) and (52), Py := APy + Q.
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As in the deterministic case, conditions (3) and (4) are necessary and sufficient
for the existence of a solution to the LOGDG 1 on the finite planning horizon N.

Concerning the infinite horizon problem: the DARE is:
P =2A" | P P[BS5'(P)B + BS3'(P)B"PC(R, — C"PO)™'C”
+ C(R,—CTPC)~'CTPBS;' (P)BT
+ C(R,—CTPC)~'CTPBS;' (P)B"PC(R, —CTPO)™'CT

+C(CTPC—RV)_1CT]P}A+ 0. (53)
The LQDG’s value function is then
1
Volxo) = 35 (P = Q)xo + p', (54)

where

m _

P ! ATrace (FTPI"W) (55)

and P is the applicable solution of the DARE (53).
Remark 1. The following holds.

o0
p =Trace (FT (Z A=t Pi) FW)

i=0

1 T
— ATrace (F Pr W) . (56)

Similar results are obtained for the stochastic LQGDGs 2 and 3.

In conclusion, the temporal discount factor 0 < A < 1 renders the value of the
infinite horizon stochastic games finite and the existence of a solution is exclusively
predicated on the DRE (47) not having a finite escape time. The reader is directed to
the discussion in Sect. 4.2 concerning the interpretation of the meaning of an infinite
horizon game’s value and the attendant optimal strategies.
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The Design of Dynamical Inquiring Systems:
A Certainty Equivalent Formalization

Laura Di Giacomo and Giacomo Patrizi

Abstract Dynamical systems include measuring sensor inputs of phenomena to
yield accurate predictions of the evolving sensor outputs or to determine optimal
control management policies based on sensor data. The input and output sets of
the system may be generalized and transformed with respect to the sets of sensors
available and formal deductive methods and chaos theory may be formulated to
obtain Dynamical Inquiring Systems over a horizon to yield solutions which will be
precise and be certainty equivalent to the future results of the phenomenon.

The aim of this chapter is to present a formalization of Mathematical Systems
Theory to demonstrate the theoretical basis of nonlinear dynamical chaotic systems
solved by simultaneous estimation and optimal control processes and to present
accurate predictions based on generalized sensor data of many forms both in input
and output such as dynamic malfunctioning of systems including engineering,
medical, economic, and environmental inquiring systems.

1 Introduction

Inquiringsystems belong to the category of decision systems called teleological,
i.e., goal seeking behavior [1, 6] and their design require accurate model for-
mulations [13] even in the presence of significant undetermined aspects [54] by
considering deterministic chaotic, instead of stochastic effects over limited time
horizons to ensure that the simultaneous estimation and optimization process
is accurate [38].
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Positivist design of inquiring systems was considered by Descartes [9] to
formulate the man—-machine system so that it could have been used to certify
the truth or falsity of singular and clear proposals. The theocratic presupposition
consisting in the statement “cogito ergo sum” and its deductive formalization
confirms that a positivist realist position was held [6]. The Spinoza inquiring
system [46], instead, forms an interpretative methodology [13], as many paradigms
may be chosen to perceive the essence of the phenomenon [6]. The Leibnitz
proposal is a ‘characteristica universalis’, a formal universal language to express
mathematical, scientific, and derivable representations of phenomena (as indicated
in [24]) examined for its logical structure by Godel, see [8].

System Analysis [53] and General Systems consisted of a rational formulation to
specify a priori empirical processes [32] to consider dynamic Input—Output systems
as representations of phenomena, characterized by a hierarchy of multilevel systems
structure. The inputs and outputs consist, at a conventional infimal and supremal
strata, of the appropriate sensor sets, where a sensor is a device that measures a
physical quantity and converts it into a signal which can be read by an observer
or by an instrument. System Analysis further is characterized by the assumptions
of similarity of all systems in a neo-kantian methodological approach, which are
required to justify the correctness of models that are proposed [51]. However, these
principles limit the methodology to a theory driven realist conception [6] and the
System Analysis methodology.

A sensor is predominantly indicated as a physical measurement recording instru-
ment or the measure itself, again usually limited to measures of light, temperature,
radiation or many other forms, considered as realist observable term, which must
satisfy a number of conditions defined by the theory in which it is applied to ensure
that the term conforms with the condition of the theory [18].

Formulating a dynamic system which will result sufficiently precise and certainty
equivalent requires to be suitably generalized by removing the limitations conditions
of System Analysis and those of sensor input data, since either input elements may
not be observable, nor satisfy a realist condition, nor be defined over an interval or
ratio scale, but can be extended to nominal and ordinal measurement scales [43].
A dynamic input-output system may be suitably generalized by considering a
nonlinear chaotic dynamical structure in the form of a dynamic inquiring system as
an instrumental neo-positivist formulation [13], rendered certainty equivalent [10] to
distinguish it from realist interpretations or positivist or neo-kantian methodologies.

The aim of this chapter is to formulate inquiring systems consisting of algorithms
to estimate and to determine the optimal solution of a nonlinear dynamical
chaotic system which can be used to determine predictions of financial crises,
vulnerability of structures under seismic events, dynamic malfunctioning of systems
and networks in both humans and in machines and many other similar problems
and informative systems and summarize the proof of the derivation and precise
solutions.

The outline of this chapter is as follows. In Sect. 2 the characterization of the
dynamical chaotic system to be formulated will be examined and in Sect. 3 the
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algorithm schema will be described and its convergence will be proved. In Sect. 4
various implementations will be discussed to show that accurate predictions have
been formulated and optimal controls have been achieved in engineering, medical,
economic, and environmental inquiring systems, based on generalized sensor data
of phenomena. A further section on concluding comments will finalize this chapter.

2 Dynamical Chaos

Empirical Process models may be considered as Data Driven Models rather than
Theory Driven Models through an Instrumental methodological approach, to ensure
that the derivations of the model are logically correct and the pursued applications
are adequate. In Theory Driven modeling, a realist approach is used to formulate
implementations, which may not have been formally derived, since they rely on
expert opinion and/or anecdotical considerations [13], to align the phenomenon
with the accepted explanations and current scientific view [4]. Empirical processes
necessarily require nonlinear dynamical systems to ensure that meaningful imple-
mentations can be carried out accurately [11].

A model is syntactically correct if it can be cast as a formal system, composed
of formal definitions, axioms (or assumptions), derived theorems, incorporating, if
need be, other required axiom systems (mathematics, statistics, numerical analysis,
etc.). Axioms of the theory must be proved to be complete, independent, and
consistent [3]. All propositions derived in the system can be checked for logical
consistency and correctness in their derivation. This assures that, if the derivations
are also consistent, the application is syntactically correct and will not lead
to any contradictory results. In computer science this requirement is known as
‘Mathematical Verification’. This may not guarantee that the policy is useful or
applicable, since excessive simplifications or unwarranted assumptions may have
been introduced to ensure syntactical correctness. Thus the semantical adequacy
of the syntactically correct model must be evaluated. A model is semantically
adequate if the results of all known legitimate applications of the phenomenon can
be reproduced by the model within a given level of accuracy, which is specified a
priori, so that it can be considered provisionally valid, until an exception is verified,
which will require appropriate extensions of the formulation.

Mathematical System Theory essentially deals with the study of the dynamical
relationships of systems under various conditions, more general than those that
define difference and differential equation systems [52]. A Dynamical System
is a precise mathematical object, and given the flows of the activities of the
phenomenon, the input—output relationships must be estimated by appropriate
methods. Not every relationship can be modeled by Mathematical System Theory,
since a representation that is nonanticipatory is required, while the condition that the
functionals are sufficiently smooth, which was previously required, may be wavered.
Dynamical Systems may be defined at a high level of generality [11,27].
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Definition 1. A Dynamical System is a composite mathematical object defined by
the following axioms:

1.

There is a given time set 7, a state set X, a set of input values U, a set of
acceptable input functions 2 = o : 2 — U, a set of output values ¥ and a
set of output functions ' =y : ' - Y.

. (Direction of time). T is an ordered subset of the reals.
. The input space £2 satisfies the following conditions.

(a) (Nontriviality). £2 is nonempty.
(b) (Concatenation of inputs) An input segment w, ), @ € §2 restricted to
t.]NT.ffw,0w’ € 2andt; < 1, < f3 there is a w” € £ such that

" — " — /
Oy = O] AN O, 1 = O, o).

. There is a state transition function ¢ : T x T x X x 2 — X whose value is

the state x(¢) = ¢(t;7,x,w) € X resulting at time ¢ € T from the initial state
x = x(r) € X at the initial time T € T under the action of the input w € £2. ¢
has the following properties:

(a) (Direction of time). ¢ is defined for all # > t, but not necessarily for all
r<rT.

(b) (Consistency). ¢(z;t,x,w) = x forallt € T,allx € X andall w € 2.

(c) (Composition property). For any #; < t, < 3 there results:

o(t3; 1, x,0) = @(t3; 1, p(t2; 1, X, ), ®)

forallx € X andall w € 2.
(d) (Causality). If w, 0’ € £ and wr,; = a)fm] then ¢(t;7,x,w) =
ot;7,x,0).

. There is a given readout map  : T x X — Y which defines the output y(t) =

n(t,x(t)). The map (z,t] — Y given by 0 — n(o, ¢(0, 1, x,®)), 0 € (t,1], is
an output segment, that is the restriction y(,, of some y € I" to (7, ].

The following mathematical structures in Definition 1 will be indicated by:

the pair (¢,x), t € T, x € X V¢ is called an event,

the values of the state transition function ¢(x;, u,) is called an orbit or trajectory,
the values of the input function 2 = @ which satisfies 3(a)—(b) may indicated
as a sensor, if the sensor is a physical measure on an interval or ratio scale which
satisfy the conditions to correspond the inputs of the system,

the sequential values of the readout map y(¢) = (¢, x(t)) is called a time series.

The input space must be nontrivial, so that an initial value of §2 is different from

zero, but all the remaining values may be null, which would scarcely define a sensor,
although such an experiment is legitimate and produce events. Further, for systems
so indicated by Definition 1 the only information that is observable is the time series
of system values of the readout map.
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Any time series may be represented by a Dynamical System according to
Definition 1 and may be characterized as a regular system with or without random
disturbances or as a chaotic dynamical system [28]. The dynamical system may not
be acquired isomorphically with the representation adopted, since the time series
does not necessarily contain information for all states of the system, since some
states may be hidden. It may be impossible in principle to reconstruct the state of a
stochastic dynamical system from the observed time series, and it is conceivable that
the complete history track of the time series is insufficient to determine the present
state of the system uniquely [16], so nonlinear nonstationary transformation may be
required, which may be neither observable nor realistic, but constructible.

For hyperbolic dynamical systems with small dynamical noise, a shadowing
property holds, which means that close to the trajectory of the noisy system there
is a trajectory of a noiseless system. A number of shadowing procedures for more
general dynamical systems with noise have been proposed [26]. If the shadowing
property does not hold for the system considered a noise-free dynamical system
representation can still be estimated by using the skeleton property as proposed [5].
The reproduction the features of the original time series will require appropriate
modifications of the skeleton by adding dynamical noise features.

An attractor associated with a chaotic motion in state space is not a simple
geometrical object as a finite number of points, a closed curve or a torus. It may not
be a smooth surface, and it may possess fractal dimensions [33]. The reconstructed
attractor has some geometrical structure, endowed with a measure related to the
relative frequencies with which different parts of the attractor are visited. The
dynamics of a deterministic system can be reconstructed up to a smooth parameter
transformation, and the dynamics so characterized. Dimensions and entropies can be
used to characterize the attractor and is invariant under the reconstruction procedure.
The sensitivity of a system to the perturbation to the initial state of the system,
so that chaotic evolution might occur, may be determined through the calculation
of the Lyapunov exponents of the nonlinear system [28, 35]. The main algorithm
consists in embedding the observations in a suitable dimensional space, which
may be determined iteratively, to use the observations obtained to reconstruct the
dynamics of the attractor [47]. The Jacobian of the reconstructed dynamics is then
used to calculate the Lyapunov exponents of the unknown dynamics [17].

The theory of dynamical systems has been formulated by considering determin-
istic nonlinear stationary time series, while empirical processes may be subject to
nondeterministic influences and are often nonstationary. Special methods can be
applied to reduce a given process to the required form, but these procedures are
limited and not generally applicable [16]. The reconstruction theorem will not apply
in the presence of dynamical noise, unless suitable transformations are introduced
as in an Instrumental Data Driven approach.

A chaotic dynamical system may be represented by applying an instrumental
approach and a syntactically correct derivation and the model should result seman-
tically adequate over the past time interval. The synergies and suitable inputs are
determined by the estimation process as required to attain the necessary desired
precision.
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The accuracy of a proposed model is verified experimentally by comparing
the prediction obtained with the effective outcome. Various procedures have been
defined to determine which system alternatives should be considered, depending on
the characteristics of the orbits of the time series [20,28,48].

A Chaotic Dynamical System is characterized by the following conditions [23]:

(1) the initial conditions influence the state of the system so that each point in such
a system is arbitrarily closely approximated by other points with significantly
different orbits,

(2) the evolution of the system over time is topologically mixing if any given point
or region of the phase space will eventually overlap with any other given region,

(3) periodic orbits are dense, which requires that every point in the state space is
approached arbitrarily closely by periodic orbits.

The properties or proposed axioms should be syntactically correct, which implies
that they are independent [3], so logical contradictions in the derivations must not
occur [13]. However, it has been shown that property (2) implies properties (1)
and (3) [50], while properties (2) and (3) imply property (1) [19], which is often
indicated as the butterfly effect [29]. Consequently, as there is no precise definition
for a chaotic solution to a Dynamical System [28] because it cannot be represented
through standard mathematical functions, since it is aperiodic, the theory driven
models cannot be implemented, although such systems can be characterized with
certain identifiable characteristics as a bounded steady-state behavior that is not an
equilibrium, periodic, or quasi-periodic solution [33].

Adopting an Instrumental Data Driven approach and emphasizing syntactical
correctness and semantic adequacy of the representation, suitable models of the
time series considered can be derived and permit the formulations of an inquiring
system. It should be stressed that the approach formulated in the following section
will derive an algorithm to achieve this goal, abstracting from any realist theory
formulation dependent on positivist or neo-kantian methodologies [13].

3 Properties and Convergence of the Algorithm

Consider an empirical process consisting of a given time series of measurements to
be estimated y,(t = 1,2, ..., T), where it is assumed that y, € R is a historic time
series. Let x, € R™ be an m-dimensional vector of state variables of the dynamic
process whose dimension must be estimated. Let u, € R? be a g-dimensional vector
of control variable for period ¢, which may be identically null, constituting in this
case an autonomous system. It is desired to determine suitable functional forms
¢ : R" — R™and n : R™ — R and a set of suitable coefficients ® € R” where
p = 2m which may be much larger than the dimension of the state space, because
the maps may be nonlinear. The optimal control vectors {u,|t = ¢ + 1,...,7T } are
to be determined over the desired horizon. Also v, = J; — y, is a residual stochastic
process to be determined, where y; is the estimated readout value of the time system
represented by the system, which will be as close as possible to the historic time
series values.
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The aim of this section is to describe the algorithm to solve these problems, to
prove that the statistical conditions will hold and provide correct solutions, and to
prove that the algorithm will converge under general conditions. Finally, it will be
shown that if the properties of such a system hold, then a dynamical inquiry system
has been formulated, and it will provide certain equivalent results to phenomena.

3.1 Description of the Algorithm

The dynamical system may be represented as follows:

X1 = @(xr,u; 2 01), (1)
Yi+1 = n(x; 2 62), ()

where a functional form, state space vectors must be determined appropriately. The
historical series of the system may be represented as:

{o(x0, uo : 01), (@(x0, ug : O1),uy : 01),....0(p(...,),u; : 01)} 3

in obvious notation. Without loss of generality, it is less complex in terms of
notations to indicate each element of the vector given in (3) in the original version x;.
Suppose that the dimension of the state space is m, so m initial state variables must
be determined, while the number of parameters that must be determined will depend
on the nonlinear structure of the functional space. If it is supposed that the number
of parameters of nonlinear functional form is ¢, then more than g + m values of the
time series are required to estimate the system.

As the system to be determined will be overfitted, residual errors may occur, so
letv, =y, —y, (t = 1,2,...,T). It is desired to minimize the error between the
actual and the estimated values.

The number of periods to predict will depend on the characteristics of the system.
Suppose that there are T historical time periods values of the process and it is
desired to predict the values of the next 7 — T periods, where 7 > T. The
mathematical programming problem to determine the dynamical systems can be
formulated as follows:

-

Min J = Z O — J’t)z “)
(=T+1

st xev1 = o(x, up 2 0) 5

Vi1 = n(x; 1 6) (6)

V[=yA[—y[ t=1,2,...,T (7)



126 L. Di Giacomo and G. Patrizi
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—Zv <oy r=34 (14)
x; € X, Yi € Y,vi € V, xo. (15)

The dynamical system is estimated by the system of equations between (5) and
(15). For autonomous systems a suitable cost function may be considered with
respect to the readout and control values by minimizing the objective function (4).

A number of statistical conditions must be satisfied, which are set up as
constraints of the optimization problem so that the parameters to be determined are
defined implicitly by the problem. The solution of the mathematical programming
problem, which is nonconvex as the constraints are nonlinear and nonconvex, yields
estimates of the parameters such that estimated values of the time series are as close
as possible to the values of the time series. All the available information is applied,
and the uncertainty of the estimates and the data fit is reduced to the maximum extent
possible. Thus the estimates of the parameters satisfy all the statistical conditions,
so they are the ‘best’ possible in a ‘technical’ sense [30], which will always be
determined, if the mathematical programming problem is feasible.

Given that a time series with 7 > (¢ + m) elements is available, then the state
space variables may be determined by solving the nonlinear terms indicated in (3)
substituted in the system (4)—(15), which will hold under mild conditions.

Theorem 1 ([47]). Let X € R" be a compact set of dimension m. For pairs (¢, 1),
¢ : X — X a smooth bijective map and n : X — R a smooth function. It is a
generic property that the map W, : X — R>"*! is an embedding.
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The statistical conditions that must be satisfied by the system [25,30] are:

. the parameter estimates are unbiased,

. the parameter estimates are consistent,

. the parameter estimates are asymptotically efficient,

. the residuals have minimum variance,

. the residuals are unbiased (have zero mean),

. the residuals have a non informative distribution (usually, the Gaussian distri-
bution). If the distribution of the residuals is informative, the extra information
could be used to reduce the variance of the residuals or their bias to obtain better
estimates.

AN B W=

These properties are ensured by solving the problem including the constraints
(8)—(15).

Theorem 2. Let the constrained minimization problem (4)—(15) have an optimal
solution, then the residuals {v/|t € {1,2,...,T}} have zero mean, are serially
uncorrelated and homoscedastic with finite minimum variance.

The theorem states that conditions 4 and 5 hold for the model and the data can
always be satisfied. The next lemma, and in particular the corollaries which follow,
prove that conditions 2 and 1, given the results of Theorem 2, hold, so the estimates
of the parameters are consistent and unbiased.

Lemma 1 ([7]). Any rational function or power of a rational function of the sample
moments, converges in probability to a constant obtained by substituting throughout
the corresponding population moments, provided that the latter exists and that the
resulting expression is well defined.

Corollary 1. Let the constrained minimization problem (4)—(15) have an optimal
solution, with minimum values for the variances of the residuals, as the sample size
increases, then the constraints (8)—(12) will tend to their constant population values.

Corollary 2. If the constrained minimization problem (4)—(15) has an optimal
solution, the solution 8 is an unbiased estimator of the population value.

The constraints (13)—(14) are sample moments of the probability distribution
function of the residuals which are made to assume given values in terms of the
variance o2 and its higher powers. These constraints enforce the residuals to have a
noninformative distribution, here a Gaussian, a fact reinforced by the next result.

Theorem 3 ([30]). Let the constrained minimization problem (4)—(15) have a
solution and let the regression function and its derivatives up to the third order
with regard to all arguments be bounded; then (é - 9) J/n is normally distributed
as the sample size n — oo.

The conditions 6 and 3 will hold in all cases that the constrained minimization
problem (4)—(15) has a solution, as the next theorem shows.

Theorem 4 ([30]). Let the constrained minimization problem (4)—(15) have a
solution, then the estimator 0 is asymptotically efficient.
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In traditional Theory Driven modeling procedures, the functional form is
assumed to be known and suitable parameters must be estimated, which should
satisfy the statistical conditions indicated above [25,30] to be valid. Thus the optimal
control solution of the system (4)—(15) will dominate the Maximum Likelihood
solution of any Theory Driven model specification of the dynamic system estimation
of the time series considered.

Theorem 5. Let the maximum likelihood solution of the theory driven formulation
of the dynamic system have a unique solution and consequently all the asymptotic
properties of nonlinear least squares estimates are met [25] then this solution will
be equal to the solution of the constrained optimization problem (4)—(15), but not
conversely .

Proof. The constrained optimization problem will determine a global minimum
to the objective function, which satisfies the statistical conditions necessary for
a solution to be unbiased. If the Maximum Likelihood unique solution of the
theory driven formulation exists, then it must be identical to the optimal control
solution. Otherwise the maximum Likelihood solution is biased, because one or
more statistical conditions are not satisfied and then the value of the Maximum
Likelihood function may be less than the global solution found, because not all the
constraints are respected, or the variance of the Maximum Likelihood solution is
larger than the global minimum value, because theory driven considerations have
imposed additional conditions, which limits the value determinable. In these cases
the Theory Driven solution is either incorrect because the statistical conditions are
not respected, or the found solution has a value of the variance, which is larger than
the one of the optimal control solution. O

The feasibility of the system may be ensured by relaxing the coefficients on the
right hand side of the constraints that are infeasible. By modifying these coefficients
and also carrying out binary search techniques on those that are feasible, and
recursing on the functional form of the system, better and better fits can be obtained.
At each iteration, the best combination of the parameters and functional forms
are derived by solving the optimization problem, and by subsequent iterations the
objective function, if possible, is reduced. A global minimum will be determined
when all subsequent recursions yield infeasible solutions.

3.2 Mathematical Convergence of the Algorithm

The general convergence of the system may be summarily presented by expressing
the system (4)—(15) in the following way:

Min Z = f(w) f:R"— R, (16)

gw) =0 g:R'"—>R?, (17)

h(w) =0 h:R"— RY. (18)
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The proposed algorithm consists in defining a quadratic approximation to the
objective function, a linear approximation to the constraints and determining a
critical point of the approximation by solving a linear complementarity problem,
as given in [37].

Expanding the functions in a Taylor series, at the given iteration point wX, the
equality constraints may be eliminated simply by converting them into p + 1
inequality constraints. Thus:

h(w) = h (wk) + Vh (wk) (w — wk) >0, (19)
—el h(w) = —e] (h (W) + VR (w") (w—w*) = 0. (20)

A set of trust region constraints can be imposed on the problem as a system
of linear inequalities centered around the iteration point, to limit the change in the
possible solution:

Dx +d >0, (21)

where D € R™ " is a suitable matrix which may be changed at every iteration and
d € R" asuitable vector. These can be included in the inequalities, so the problem
to be solved iteratively is:

Min f(x) = f (x* +e,l) + Vf (x* +en) (x —xF)

+% (x—xk)T sz (xk +en§) (x—xk) (22)
st g(x) =g (x* +e,0) + Vg (x* +e,l) (x —x*) =0 (23)
x >0, 24)

where g : R" — R"TP+4+1 The local solution of the mathematical programming
problem (22)—(24) leads to one of three cases. If the point is inside the trust region,
then it is an approximate stationary point. If the point is on a trust region constraint
and the point is feasible while a reduction in the objective function has occurred, the
point is taken as the new starting point and a new iteration is commenced. Otherwise,
if the new point is infeasible, the trust region is reduced. Finally if there has been
an increase in the objective function, the trust region is enlarged and the iteration is
repeated, with suitable safeguards to provoke a reduction in the objective function.

The problem can be written, without loss of generality as given in (22)-(24)
and the Kuhn—Tucker points for this problem will be given by determining suitable
solutions to the following nonlinear complementarity problem:

F(z) =0, (25)

72> 0, (26)
' F(z) =0. (27)
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This problem can be written equivalently as a variational inequality, since both
are defined over a convex set,

F@'(y—2=>0. (28)

Consider the application F : R" — R" and expand it in a Taylor series around a
point 7 € R" to get:

F(@=F()+VF({)(z—72), (29)
then for any €, > 0 there exists a scalar r > 0 such that:
[F@Q-FE)+VFE) -] =al:=Z]. V][=Z|=r ©O

as it has been proved in [15].

Thus, in a small neighborhood, the approximation of the nonlinear complemen-
tarity problem by a linear complementarity problem will be sufficiently accurate, so
that instead of solving system (25)—(27), the linear complementarity system approx-
imation can be solved. Recall that by construction, the subspace of the Euclidean
space is bounded and closed, so the nonlinear complementarity problem can be
solved by its linear complementarity approximation. Every linear complementarity
problem can be solved, or a solution can be shown not to exist by solving an
appropriate parametric linear programming problem in a scalar variable [37]. The
algorithm will find the solution of the linear complementarity problem, if such a
solution exists, such that ||x|| < « for some constant & > 0, or declare that no
solution satisfying this bound exists. In this case the bound can be increased. The
convergence of the algorithm can now be demonstrated. Consider a point x’ € R”"
such that F(x") > 0 and therefore feasible. Determine a neighborhood, as large as
possible, which can be indicated by:

0 ={zl|e=2| =r}. 31)

where r is the coefficient defined above in (30). Suppose that the acceptable
tolerance to our solution is &, so that if (z*)7 F(z*) < &, then the solution is
accepted. In this case, impose that:

&
eir < —. (32)
o

The local convergence of the algorithm is established in the following theorem.

Theorem 6. [f the linear complementarity problem has a solution 7* where all the
trust region constraints are not binding, then such a solution is also a solution
to the nonlinear complementarity problem (25)—(27) for which F(z*) > 0 and
@) F@E) < e
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Theorem 7. The objective function is bounded below by zero for the nonlinear
optimization problem (4)—(15) and the problem has a feasible solution so that
a sequence of feasible solutions is determined which exhibit strictly decreasing
values of the objective function through modifications of the trust region. If there
exists a feasible solutions x* which satisfies the hypotheses of Theorem 6 but no
other feasible solution can be determined with a strictly lower objective function
satisfying the same hypotheses, then that solution x* is a global minimum of the
problem.

Proof. By Theorem 6 each solution to the LCP is an approximate solution to the
nonlinear complementarity problem (25)—(27). A connected set exists such that the
nonlinear complementarity problem has a solution within the trust region or on a
constraint.

From this sequence choose a subsequence such that the value of the objective
function, as given by (4). Since the objective function is bounded not all the
solutions can lie on some trust region constraint, so a solution of the nonlinear
complementarity problem which lies within the trust region constraints must
eventually be determined, if such a solution exists. Let this solution be a local
minimum to the nonlinear optimization problem. By repeating this procedure the
global minimum will be determined. O

The transient function, readout function, and state vectors yield estimates of the
time series very close to the actual values of the time series by construction, but
nonzero random variables may also be present with zero mean value and finite
variance.

Therefore, consider the time series composed of the residuals of the estimation of
the system above, which is a sequence of random variables, say z,(t = 1,2,...,T)
and apply the system (4)—(15) specialized to time series of the residuals. A dynamic
chaotic nonlinear function can be estimated, determined, and constructed for the
time series that has a null mean value over the horizon of a finite variance and is
stationary. Moreover, 4, is taken to be identically zero and without loss of generality,
the objective function is given as:

T

Min J = Z (ﬁt—J’t)z- (33)
1=T+1

The derivations given above demonstrate that the system can be estimated and
in particular by Theorem 1 the required embedding can be determined, irrespective
of the possibility of formulating a Chaotic system as a theory driven model, so
this system can be taken to be homomorphic to the sequence of residuals which
are random variables by construction, and all the conditions of the theorems are
satisfied, so the estimated system can be taken to be a chaotic system and these dated
predicted chaotic values over the immediate future can be added to the predictions
formulated on the basis of the initial system, yielding aggregate predicted values of
the phenomenon over a close immediate future [54, 55].
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3.3 Certainty Equivalence of Solutions

A sufficiently general representation of a dynamic system may be formulated, with
a slight abuse of notation, in the following way:

Xip1 = (X1, 1), (34)
Y = n(x;). (35)

Dynamical systems are based on intermediary set of states and transition
functions, by applying the simultaneous estimation and optimization algorithm
to determine the state set X and the transition function [45]. Under appropriate
conditions the representation of the system will result unique, as it is indicated
below.

Definition 2. Given two states x;, and X;, belonging to systems S and S which
may not be identical, but have a common input space £2 and output space Y, the
two states are said to be equivalent if and only if for all input segments wy, ;) € £2
the response segment of S starting in state x;, is identical with the response segment
of S starting in state £, that is,

x,o = )/(\:[0 E=4 n(l, qD(-x[()s w[t(),[))):ﬁ(l, (,a()%[o,a)[[o,[))) Vl S T, Z() E Z, Vw[m,[) S S, S
(36)

The systems S and S may be two representations of a phenomenon.

Definition 3. A system is in a reduced form if there are no distinct states in its state
space which are equivalent to each other.

Suppose the actual system is in a reduced form.

Definition 4. Systems S and S are equivalent S = S if and only if to every state
in the state space of S there corresponds an equivalent state in the state space of S
and vice versa.

Definition 5. Simple and multiple experiments involve different sets of input/
output pairs:

* A simple experiment is an input/output pair (uf, ), Y,..)). that is, given the
system in an unknown state an input u, ) is applied over the interval of time
(to. t) and the output yy;, ;) is observed.

* A multiple experiment of size M consists of M input/output pairs (”ltto,t)’ yf'to’t)),
i =1,2,..., M, where on applying on the i th realization of the M systems the

input (”ito,z‘))’ the i th output yfto,t) is observed.
While a simple experiment is thought as a stimulus and response experiment,

multiple experiments are more complex and define multi-determined reactions, such
as synergisms of the system.
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Definition 6. A system is simply (multiply) observable at state x,, if and only if a
simple experiment (a multiple experiment) permits the determination of that state
uniquely.

Definition 7. Equivalence of dynamic systems can be distinguished:

* Two systems are simply equivalent if it is impossible to distinguish them by any
simple experiment.

e Two systems are multiply equivalent if it is impossible to distinguish them by
any multiple experiment.

Theorem 8 ([27]). If two systems are multiply equivalent then they are equivalent.

Definition 8. A system is initial-state determinable if the initial state x( can be
determined from an experiment on the system started at x.

Theorem 9 ([27]). A system is in reduced form if and only if it is initial-state
determinable by an infinite multiple experiment.

Definitions 5-8 and the results given in Theorems 8 and 9 formally justify the
possibility of defining one or more representations of the dynamical system. The
distinction between systems that are simply equivalent and multiply equivalent is
crucial, as comparative static or equilibrium models will be simply equivalent,
while for the analysis of dynamical systems which are multiple equivalent allow
to compare different representations and determine the optimal trajectory for the
system.

Thus consider the following definition.

Definition 9. An ex ante solution is a solution formed in a given period ¢ based on
anticipated outcome of future activities maturing in period ¢ + 1 and consists of the
forecast of the optimal values of the control variables.

Definition 10. An ex post solution is a solution formed in a given period ¢,
regarding outcomes of activities maturing in period # + 1 which are assumed known
(with fore-knowledge), in period ¢ so as to determine the optimal values of the
control variables in period ¢ + 1.

Let a phenomenon be represented by a multiply equivalent dynamic system in
an initial-state determinable and the state in period ¢ + 1 be predicted in period 7.
The state at ¢ 4+ 1 may be obtained from a representation of another copy of such a
system in the period 7 4 1. The state of period 7 + 1 predicted in period ¢ on the basis
of the knowledge in the same period, will be equivalent to the state at period ¢ + 1
on the basis of the knowledge at period ¢ 4- 1, which is indicated as the ex post state.

Theorem 10. An ex ante multiply equivalent Dynamic system in an initial-state is
equivalent to an ex post system, also a multiply equivalent dynamic system in an
initial-state.

Proof. By Theorem 8 the ex ante dynamical system is multiply equivalent and its
initial state is in reduced form by Theorem 9.
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Furthermore by the same reasoning the ex post dynamical system is also multiply
equivalent and its initial state is in reduced form. O

By Definitions 3 and 4 they are state equivalent.

Corollary 3. A Certainty Equivalent solution consists of an optimal solution to an
optimization problem determined as an ex ante solution in the control variables u™
which are also optimal ex post.

The state of the systems are equivalent if the state transition functions do
not exhibit significant random variation. The eventual random variation will be
negligible, but the expected value of the disturbances in both cases will assume null
values while the variance of the processes may be positive, but the autocorrelation
and cross-correlation must be zero and the processes are stationary.

This formulation is analogous to the properties derived earlier by different
methods [44,49].

No limitations have been enforced for the output equations (35). The random
disturbances of these forms may vary. The resulting outcome, as an output variable
may differ due to disturbances, although optimal solution values of the control
variables will be identical in the two processes.

4 Implementations

The objective of this section is to describe a number of implementations to show how
the the algorithm may be used to design inquiring systems to determine accurate
predictions of phenomena, how to use the algorithms in an inferential mode and to
achieve optimal control of phenomena.

4.1 Economic Implementations

The study of financial quotations may be useful to inquire in the status of the econ-
omy and to determine the economic dynamics of certain sectors of the economy.

To this end, certain key quotations are often used as predictors, such as
VIX index, various interest rates and the foreign exchange quotations. A realist
observable sensor may be a single quotation, say at closing time or a certain set of
quotations, but this leads to difficulties of realism and to observe them continuously.
Thus the concept of a sensor becomes more complex and should be in all cases
defined precisely.

Typical questions to be posed in inquiry is the prediction of a set of future events
similar to other historical events, see Theorem 7, and appropriate classification
of similar events in suitable classes. It is important in such implementations to
define precisely the characteristics of attributes common to what is considered in
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Table 1 Weekly Predictions five weeks ahead for financial future indices

Week SPX (1) Stoxx (2) Nikkei (3) VIX (4)

Date Actual Prediction Actual Prediction Actual Prediction Actual Prediction
08/13 1190.16 1190.08 2792.47 2792.68 11735.06 11732.36  20.42 20.55
08/20 1161.97 1161.94 2728.47 2728.25 11445.54 1144493 2287 23.84
08/27 1184.93 1184.94 2886.97 2887.70 10811.37 11167.05 20.56 19.71
09/03 1133.58 1133.41 2898.36 2898.14 10729.60 10715.34 25.85 24.94
09/10 1085.78 1085.68 2897.37 2898.14 10395.10 10518.82 31.84 31.06
09/24  965.80 965.24 2940.94 2941.19 9637.60 9559.98 37.75 4248
10/01 1040.94 1040.62 2978.50 2978.48 9766.75 9777.52 3232 31.84
10/08 1071.38 1071.72 2993.54 2993.48 10143.39 10206.37 35.12 33.47

a similarity set and those that differ between sets. Also given a set of objects, an
inquiring system should determine, which attributes from pertinent lists must be
considered to include these objects in a suitable identifiable similarity set.

A major crisis followed the terrorist attack on New York and Washington on
September 11th 2001. The New York Stock Exchange was closed for one week
and the predictions during that period are important. The period considered extends
from July 6th 2001 for 20 weeks. A second crisis followed on September 15th 2008
when the bankruptcy protection was filed by Lehman Brothers. To each period
of crisis, ten prior periods were added to the periods to be used in predictions
since at least 5 periods are required to initialize the predictions. For a number of
future index contracts the quotations were predicted 5 weeks ahead. Twenty periods
were transferred in the training set and placed at the end of the series to form a
verification set. There are two strong discontinuities: the first because of the transfer
of the 20 periods and the second occurs at the start of the verification set, but this
discontinuity is partially annulled because of the use of additional 5 periods as
indicated above [12].

We consider the following futures indices contract quotations:

1. The Standard and Poor 500 common stock index, (SPX).

2. The Dow Jones Euro stock index, consisting of 50 stocks expressed in Euros,
(SXSE).

. Nikkei 225 Stock Average, (NKY).

4. Chicago Board Options Exchange: Volatility Index, (VIX)

(O8]

Predictions were formulated weekly after closing time on Friday, to indicate
the closing quotation prediction on the next Monday evening for 5 subsequent
Mondays. The predictions that had been made 5 weeks before are given in the row
corresponding to the forecast date in Table 1 for the four future indices considered.

These indices tend to vary analogously over long intervals of time, except that
VIX tends to vary in the opposite fashion. For the initial 3 weeks reported the 4
indices seem to confirm this generalized behavior. For the predictions for 09/03 there
is a 4% reduction in SPX index, no marked reductions in the European indices, a fall
less than 3.2% in the Nikkei index and an increase of over 6% for the VIX index.
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Table 2 Weekly predictions 5 weeks ahead for future indices for Lehman Brothers’ bankruptcy
Week SPX (1) Stoxx (2) Nikkei (3) VIX (4)

Date Actual Prediction Actual Prediction Actual Prediction Actual Prediction
08/26 1290.47 1292.26 3312.41 3312.12 12797.54 12876.65 18.78 18.81
09/02 1287.83 1282.89 3365.63 3365.75 12936.81 12834.38 20.65 20.64
09/08 1249.50 1242.20 3185.83 3184.53 12359.93 12626.53 2222 23.05
09/15 1250.92 1255.28 3151.17 3151.08 12028.45 11626.53 25.66 31.10
09/22 1255.37 1213.25 3253.52 3253.77 12037.89 12113.62 3240 32.08
09/29 1209.07 1098.27 3156.46 3155.75 10883.25 11892.44 36.92 34.76
10/06  1097.56  897.56 3113.82 3113.84 10817.27 10935.46 45.12 45.00
10/13  912.75 944.02 2421.87 2415.31 8407.94 8288.18 69.95 68.26

Consider Table 1, comparative analysis of the quotations as between the
European, Japanese, and US indices suggests that a financial crisis, limited to the
US was apparent in the period between 09/10 and 09/24 so that the predictions 5
weeks before were available by 08/13 and 08/27 as at that time predictions would
have been made for the Monday 17th September. The data cannot imply that a
terrorist attack was being planned and then effected, but rather it is obvious the
predicted quotations can be tested for statistical significance in potential abnormal
stock movements which will be partially recuperated in 10/01 and 10/08. Hence,
some abnormal events were foreseen by some experts in the US, less so in Japan
and not at all in Europe.

It is not the trajectories of any particular series or sensor which can indicate
the financial crisis but the analysis of a set of quotations in time together with
the country, type of quotation and relative movements. It is unlikely that such an
analysis may be classed as the study of a set of sensors, but rather firstly the design,
secondly the analysis of an inquiring system. This requires a study of the semantical
adequacy of the design, once its syntactical correctness has been established.

In Table 2 similar results as in the previous event can be evidenced for the latter
period. The bankruptcy was filed on 15th of September 2008, but little effect seems
to have occasioned in the markets for three weeks, except for a marked increment in
the VIX index quotations. Instead at the start of the fourth week (13th October 2008)
a decrease over 20-30% in the quotations was predicted which in fact occurred.
From the scanty data, it would seem that a dynamic effect was in action.

Once again it is apparent that the inquiring system works well in the predictive
aspect, especially as these predictions were formulated 5 weeks before the events,
which occurred. Difficult inferential processes should be studied to determine if
speculative effects occurred in the interval from September 15th to October 13th or
if the restrictions demanded on the credit available had a delayed effect.

4.2 Medical Implementations

In-vitro fertilization is widely used to treat infertility, although the rate of success
of treatment is low, with an average overall birth rate per cycle of treatment of
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Table 3 Embryo classification results: precision in the verification sample,
2 classes, 5 moments per instance, see reference [41]

Mean s.e.e. Best Worst Number
Verification Results ~ 0.8406  0.003645  0.9383  0.7531 801

13.9%, [41]. Various factors have been identified as affecting this rate, such as the
age group of the women concerned, the duration of infertility, the usage of donor’s
eggs and perhaps the treatment center, a uterine factor, and other subsidiary aspects.
All these measurements and evaluations could be considered as sort of sensors of
the pathology, but the results were very limited, so typically a completely different
approach was adopted by designing an appropriate inquiry system based on the
properties of the images of the embryos [31].

The procedure used photographs of 801 embryos at the 4 cell stage, taken for
40-50h after fertilization and before transfer, by placing each embryo under a
microscope (Inverted Microscope Olympus IX 70), with a camera (videocamera
JVC TK-C401EG). Characteristics are defined from these images, by regarding each
image as an array of intensities of shades of gray, from which the frequency distri-
bution of the gray tones for each picture, in the horizontal and vertical direction can
be calculated. This pixel-intensity profile indicates the homogeneity of the image,
or whether it has many dark and light spots and how they are distributed. From
these distributions a certain number of moments (polynomial functions of central
tendency and spread) can be calculated, to express the shape of the distribution in
a standardized way. Thus a suitable number of these parameters 10, 20, or 30 can
be used to define the pattern vector for each image. The results here are given only
for the 10 element pattern vector (5 moments in each coordinate direction), as this
sample proved to be the most accurate, but one can see [21] for other results.

In a training set the outcome class could initially only be assigned with certainty
in the case of single embryo transfers, or when all the transferred embryos produced
births, or when no births occurred as a result of that transfer. These are termed sure
instances. Multiple transfers involving more births may be troublesome. Generally
it is difficult to determine which one of a set of embryos transferred is responsible
for the birth. Thus if 3 embryos are transferred and one baby is born, the embryo
that has given rise to the birth must be determined.

The classification algorithm is applied to these sure instances and consists of a
nonlinear complementarity algorithm [40] which is just a variant of the algorithm
described and determines an estimate of the classifier which can be improved by
enlarging the classification sample. Once a classifier has been obtained on the sure
instances, all the rest of the embryos can be classified on the basis of this classifier.
This will assign a class label to every embryo in the given set and suitable constraints
must be given to ensure that the correct number of embryos of the given type are
assigned in training.

Better results can be obtained by enlarging the training set [40].

Analogous results have been obtained in various medical implementations in
which the input data files must be considered general inputs, defined appropriately
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for every implementation, so all these applications confirm the utility of designing
inquiry systems according to this instrumental methodology. Consider, for instance
the diagnosis of Alport Syndromes [39], a diagnostic classification of geriatric
disorders [42], a classification of numerous well known pathologies [34], the
analysis of dynamic medical treatment of pathologies, such as ECG data [2] and
solving large protein secondary structure classification problems [40].

4.3 Environmental Implementations

Following a major seismic catastrophy in Southern Italy on November 23, 1980 a
sample of the damages incurred to buildings were accurately classified so that more
than 37,863 buildings were examined, consisting of over 57,000 dwellings, 257,000
rooms and over 44,000 other constructions [14] which must be considered a very
large set of sensors to measure this phenomenon.

Damages were incurred in a municipality S.Angelo dei Lombardi destroying
20.06% of the buildings and 45.3% were heavily damaged, while in a nearby
township the percentages were respectively 3.22% and 22.5%. Clearly many factors
must be involved if the phenomenon is so varied and it was evidenced that the
difference in damages cannot be imputed to random elements [14]. The sample
consisted of 41 out of 639 municipalities. Eight levels of damages were considered,
defined explicitly from ‘no damage’ to ‘partially destroyed’ and finally ‘destroyed’
and categories each group was aggregated in 4 major categories: ‘building material’,
‘height of building’, etc., for each building in the sample.

The association present in the resulting data set can be analyzed by cross-
classified categorical methods [22] which result in a nonlinear estimation problem
and can be solved in the traditional ways, or the algorithm described above can be
applied.

The relative frequencies of damages differ greatly from one municipality to
another, even if they are close by, because of many factors such as building material
and the height of the buildings, and many other factors indicated in [14], so pre-
ventive security policies should be enacted. Through this analysis the vulnerability
of each building can be estimated, and preventive structural modifications can be
enacted. For instance, constructions of buildings of loose stone should be kept of low
height and possibly enforced though elastic supports and additional floors should
never be allowed on such type of structures, which in fact were allowed by Italian
authorities.

Such an inquiry system allows to accurately modify the most potentially
dangerous constructions and is a typical implementation of the design of an inquiry
system under an instrumental methodology, and the interested reader can examine
additional relevant implementations [36].
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5 Conclusions

The design of inquiring systems provides a useful platform to determine accurate
predictions and to classify or recognize or acquire knowledge about objects both in
an inferential mode or in a taxonomic fashion.

The acquisition of information should not depend on a priori affirmations or on
anecdotical suggestions but on the knowledge that can be grasped from data. This
instrumental approach is purely provisionally correct, essentially the results can
always be generalized and improved, but the objective of the instrumental approach
is to determine the best possible solution to the system, if possible, without falling
back to unobservable relationships.
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Sensors in Transportation and Logistics
Networks

Chrysafis Vogiatzis

Abstract Transportation engineering and logistics have been utilizing sensor
networks for statistical analysis and data collection for years. In the last decades,
due to the increased interest in sensor networks for optimization techniques,
advancements have been made in attempts to provide on the fly algorithms that adapt
to an ever-changing world. This chapter aims to give useful insight and present the
latest developments in this growing branch of optimization and operations research.

1 Introduction

In the last decades, the economics of transportation have become a growing
importance for corporations, municipalities, and commuters. Due to the large
congestion levels every day users have to face lot of trouble in traveling for long
durations, and it is good for which being able to find even an approximate shortest
path is vital. However, the analyses that was provided to us with very useful
observations and insight would never be possibly correct and accurate if it were
not from an automated system of data collection used around the transportation
networks.

Since 1950 [1] the need for data collection to observe the levels of congestion or
the condition of links in the network has appeared. Researchers installed simple or
sophisticated sensors in order to measure the volume of the traffic flow on specific
links, the average vehicle velocity, and the time required to traverse a street among
others.

Nowadays, the majority of the vehicles using the network are equipped with
routing guidance (usually GPS devices). In addition to that, the increased wireless
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capacities of cell phones and PDA devices in the last few years have made tracking
and wireless sensing a common everyday phenomenon. The attempts to combine
these increased capabilities with practical transportation problems are going to be
described in detail in the following sections.

Moreover, it is important to note that especially in the United States, the
appearance of high congestion levels is noticed more often than ever. This comes
as a result of the large number of commuters that use the traffic network on an
everyday basis [2]. It can also be seen that public transportation users have shrunk
to insignificant levels while automobile commuters never cease to increase since
1950 [1]. It can be seen in the work of O Toole [2] that the last few years, average
vehicle speed is rapidly decreasing, while energy consumption and CO, levels are
increasing. It becomes evident that it is now more than ever that optimal routing and
traffic assignment techniques need to be applied.

1.1 Chapter Outline

This chapter is outlined as follows. In Sect.2, a presentation of sensor-based
methods for collecting useful data for analysis in the fields of transportation will
be given. Section 3 will then present the most recent advancements in the infamous
problems of vehicle routing and traffic assignment. In that section, special attention
will be given to modern GPS systems and intelligent vehicle sensors. Lastly, in
Sect. 4, the conclusions of the author along with future research possibilities will be
presented.

2 Data Collection and Statistical Analyses

Among the most important and vital ongoing research in any transportation system
is the development and implementation of Intelligent Transportation Systems.
Systems of this kind can be used to reduce the human factor as far as traffic
assignment and vehicle routing are concerned. In addition to that, optimization of
traffic flow in intersections will also result in less congestion and accidents [3].

2.1 Overview of Sensor Methods

First of all, let us focus on the tracking methods that have been put to practice
in the last decade. These algorithms have extensively investigated computer vision
as a means of vehicle tracking. A seminal contribution in the field of traffic
monitoring has been presented by Peterfreund [4] in 2002. The author focuses on the
snakes active contour models, introduced by Kass, Witkin and Terzopoulos [5] and
proposes a stochastic velocity snake model in order to track vehicles in intersections
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and traffic lights. Equally used is the method of Gardner and Lawton [6] which is
common in traffic images.

However, all the above methods are difficult to put into practice when, because
of congestion, there is a large number of vehicles at a given intersection at any
time. That is the insight behind the Kamijo et al. approach [3] where each vehicle
is tracked individually even if in these congestion levels, certain vehicles might be
not completely within the sensor/camera range. This phenomenon is referred to as
occlusion and has been a major obstacle in traffic monitoring.

2.2 Vehicle Detection Sensors

First of all, let us start by providing the reader with a summary of the major types of
sensors that are currently available for vehicle detection, as they were noted by Luz
and Mimbella [11].

e Inductive Loop:
One of the intrusive sensors, most usually installed on the pavement surface.
They can also be installed underneath the monitored road by tunneling under
the surface of the street. Even though they represent a technology that is greatly
understood and very accurate, their installation and maintenance is hard since it
requires the disruption of flow for a big time.

* Magnetometer:
Similar to the inductive loop, a magnetometer is a flexible sensor that can be used
for a variety of purposes. Unfortunately, it is prone to erroneous measurements
when the traffic is heavy and, hence, it has become unattractive. In addition to
that, another drawback that a magnetometer inherits from an inductive loop is
that it involves a huge cost of installation and maintenance.

e Active and Passive Infrared:
Active and passive infrared sensors can be used in combinations in order to
cover all measurements of the vehicles on a given road segment. An active
infrared sensor can measure accurately the vehicle position and class, while
it can also provide us with an estimate on the speed. A passive, on the other
hand, can be used for speed measurements. Both categories of infrared sensors
share a common disadvantage: they are susceptible to false measurements when
visibility is limited (i.e., less than 20 feet) because of weather conditions.

e Ultrasonic:
Ultrasonic permit multiple lane monitoring at the same time. This is the main
advantage that makes them attractive to use. However, they present problematic
behavior when functioning under sudden temperature changes and air turbu-
lences.

e Acoustic:
Similarly to ultrasonic sensors, for apparent reasons, acoustic sensors can also
monitor more than one lane at a time with accuracy. Their major problems have
to do with cold temperatures and specific traffic patterns. For example they are
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not recommended for use in large city crossroads where the phenomenon of stop
and go traffic is usual.
* Video image processing:

A video image processing sensor is, in most cases, the ideal candidate. Provides
monitoring for as many lanes as the video image capturer can take care of and it is
easy to install and maintain without disrupting the normal vehicular flow. A major
drawback is the increasing complexity at decoding the sensor measurements into
actual data that can be used. Also, as far as requirements for normal installation
are concerned, it needs to be ensured that they are installed at a high point, usually
50-60 feet above the monitored road.

2.3 Accident Detection Through Image Processing

The fundamental idea of Kamijo et al. [3] is the application of a stochastic relaxation
algorithm in the detection process. This is vital for the practice, since vehicles have a
series of very distinct characteristics, including but not limited to their appearance,
their direction and their color. Given that in an intersection, congestion levels are
higher and occlusion occurs often, it is impractical to adopt a simple contour method
for tracking.

For the modeling purposes of their algorithm, the tracking of a single vehicle
is transformed into a labeling method, where each pixel is assigned (i.e., labelled)
to a specific vehicle at any time. After all pixels have been labelled, it is part for
the deductive method to be applied in order to obtain an initial, but accurate, object
mapping.

There are five major components to the deductive process:

* [nitialization:
The background image is set by using a 20min image sequence. Also, the
entrance points to the intersection are set by defining slits where new intensities
of the image (i.e., incoming traffic) appear.

e Generation of new vehicles:
Whenever along the slits defined, a new intensity is observed, a new ID is
assigned to the incoming vehicle. All the pixels sharing that intensity are assigned
the same ID.

e Vehicle vector estimation:
At each block of time, the similarity of the vehicle motion is estimated by:

(x(r+ 1D,y + 1)) = (x(@) + u@). y() +v(1)) (1)

and the motion vector is approximated as the most frequent motion vector of all
pixels assigned with the same label,

D= Yo HG+di+tu, j+dj+vit+)—1G+di. j+dj:0)]. (2)
0§d,-§8,0§dj58

In this case, I(x, y;t) is the intensity of pixel (x, y) at time ¢.
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o Vehicle region update:
All the vehicle blocks are updated at time ¢ + 1 compared to time ¢ as per
the motion vector obtained in the previous step. If the new intensity difference
is smaller than a threshold then the vehicle is considered to be out of the
intersection. In the case where the difference is bigger, then it is assumed that
a neighboring vehicle is hiding a part of the vehicle tracked.

e Vehicle blocks division:
At the entrance point of the camera (the slits defined during initialization),
simultaneous arrivals may result in characterizing multiple vehicles as one. This
is the reason why it is checked always if the motion vectors obtained by a labelled
vehicle match. If that is not the case then the pixels corresponding to the same
label are divided in order to distinguish between different vehicles.

The last part of this methodology consists of the stochastic relaxation in order to
assign certain pixels to more than one vehicles, because of occlusion. The authors
then extend the MRF model to include and deal with not only images as in the
work by Geman and Geman [7] and by Andrey and Tarroux [8], but also time-axis
distribution. Their spatio-temporal MRF model provides an estimation of the current
object map based on the information provided in the previous object map along with
the current and previous images. After applying the stochastic relaxation procedure
to their methodology, the traffic monitoring system for detecting accidents is ready
to be examined and tested with the results being successful in a specific intersection,
but can be generalized to each topology and geometry [3].

2.4 Sensor Networks for Traffic Monitoring

Before the recent advancements in image processing and data extraction, the use
of inductive loop detectors was and still remains the most common way to collect
information on traffic conditions mainly because of their high levels of accuracy and
reliability. However, their installation and their maintenance requires a significant
down-time of the arc being updated and hence, they become exceedingly expensive.
That is the main reason why in the last years, more sophisticated sensors are being
used, such as surveillance cameras, microwave radars, ultrasound, and infrared
sensors. However, these sensors are less reliable, even though the methods have
become more involved over the years, and they also are costly.

Therefore, numerous scientific efforts have been made in order to incorporate
cheaper, wireless sensors in the existing infrastructure for statistical and monitoring
purposes. The approaches that will be focused upon in this subsection are the ones
by Coleri et al. [9, 10].

In the work of Coleri et al. [9], the Traffic-Dot sensor model consists of the
following major components:
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Table 1 Notation for the model of Coleri et al. [10]
Notation Definition

G=(V,E) The graph representing the sensor network, with V' = {1} U V; U V, symbolizing
the nodes. Node 1 is the access point, V; = [2, N] are the sensor nodes and

V. =[N+ 1, M]
the relay nodes. If nodes i and j are within transmission range then
@i,j)e€E.
gi Rate of packets per unit time that node i € [1, N] can transmit.
Ds Energy spent in sensor when obtaining packets in one packet.
Dix.ij Energy spent for the transmission of a packet from node i to node j per time unit
fii Average time required to receive packets at node j from node i.
e; The battery energy of each of the parts of the nodes i € [1, M]
¢ processor,
e radio,
* magnetometer, and
e Dbattery.

The magnetometer (magnetic sensor) is used for vehicle detection. The power
consumption of such a sensor based model is very small, making it an ideal
candidate for traffic measurements and data collection for statistical analysis. Its
accuracy is also very high, reaching the 97% accuracy that is achieved by inductive
loop detectors. In order to increase efficiency and battery utilization the authors have
proposed the following linear programming model [10], that is described in (3)—(9),
with the notation given in Table 1.

M
min > (3)
i=1
S.L. > fi =2 fii = i Vi € [2,N] (4)
J J
lq (Z ptx,ijfij + Zprxfji + psgi) =<e, Vi e [27 N] (5)
J J
2 fij =2 Ji =0, Vi €[N +1.M] (6)
j J

ta (Z Dixij fij + Zprxfji) <e, Vie[N+1,M] ()
J J

fi; =0, Vi, j e[l, M] (8)
e >0, Vi e [1, M]. 9)

The above linear program has the limitation that it constrains the relay sensors to
be in a fixed position in the network. In reality, it is desired to be able to determine
the optimal placement of the relay nodes, thus altering dynamically the topology of
the network. The resulting formulation is presented in (10)—(18).
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M
min Y e (10)
i=1
S.t. Zﬁj—iji=g,-, Vi € [2,N] (11)
J J
ta (Z Pixij fij + 22 Pra fi + Psgi) <e, Viel[2,N] (12)
J J
Y fi—> fii=0, Vie[N+1,M] (13)
J J
ta (Zptx,,-,-f,-,- + Zprxﬂf) <ei, Vie[N+1,M] (14)
J J
Pixij = ptx(d(is ./))s VIvJ € [lsM] (15)
d(lvj)zzlll_ljlzs Vl,]E[l,M] (16)
fij =0, Vi,j e[l,M] 17
e; >0, Vi €[l,M]. (18)

However, the resulting formulation as can be seen by the reader is a nonlinear,
nonconvex problem and hence, the authors propose an approximate algorithm
for its solution. Their proposed algorithm is then tested through simulation with
remarkable results. Their novel approach in energy management for sensors in a
wireless network can result in a more efficient method of data collection in traffic
engineering, as can be seen by their work at the Traffic-Dot [9].

3 Vehicle Routing and Traffic Assignment

Vehicle routing and traffic assignment problems are two of the most important
problems in transportation engineering and planning. Many attempts to solve
them in a dynamically changing environment such as the modern urban grid
have appeared in literature, however it is in the last few years with the boom of
smartphones and sensors that there exist the tools to tackle them successfully.

Online algorithms [12] use recent information as feedback to alter their solutions
in order to remain optimal at every instance. For these algorithmic approaches to
function effectively reliable information needs to be provided in a fast and efficient
way. With the recent increase of guidance devices, such as GPS, and cheap wireless
sensors, the possibility to obtain these data appeared.

3.1 Sensor-Based Robotic Vehicle Routing Complexity

Before generalizing the vehicle routing problem to realistic, practical applications
involving decision makers in the urban environment, it is important to review the
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Table 2 The notation for the formulation of Sharma et al. [18]

Notation Definition

0 The square environment where agents are allowed to move of area A.
(0, D); The origin—destination pair of agent i.

to.i The time when an agent is dispatched in the network, #5; > 0.

T; The time an agent requires in the network until it reaches its destination.
Vi The time-dependent path that agent i is following, y : [0, T;] = Q.

vi (1) The velocity of agent i, v; (1) < Viax-

Ci (1) The exclusion zone C of an agent at time 7.

robotic vehicle sensor based routing. This is a common application in automated
control systems in industry [13—15] and, thus, there have been attempts to model
and optimize their behavior.

The results of this scientific research has provided insight to researchers as far
as online guidance through intelligent automobile systems equipped with sensors
are concerned. Usually, in robotic applications, instead of an optimal shortest path
for all the vehicles involved, researchers are interested in limiting the selection
to a set of available paths and selecting the best among those. This approach
has been studied by Inalhan et al. [16] where fixed routes were given to the
vehicles and by Gerkey et al. [17], where a fixed roadmap with arcs and nodes was
employed.

The above approaches, even though they are practical and present good results,
are not theoretically guaranteeing optimality. So, that led Sharma et al. [18] to
research the time complexity of this sensor-based vehicle routing problem with
no limitations on the selection of routes to the agents utilizing the network. For
their work, previous research on communication between robotic systems [19] was
considered and customized. The notation for the setup of the problem is presented
in Table 2.

The exclusion zone C is a disk of a nonconstant radius centered at the position
of the agent, where there can be no other vehicle. If there is another vehicle at the
same time, then a conflict is said to appear and new routing has to occur. The disk
is defined in (19). As it can be seen, the radius is dependent on the velocity of the
agent i at that time 7. More specifically, a conflict occurs and there exists a time ?,
such that:

e agentsi and j are active at time 7. and
* Cit)NCjilic) #9.

Ci(t) ={ze R*:||lz— x: (0)|| < ro+k|[vi(®)]}. (19)

The objective of the sensor based vehicle routing problem with robotic agents is
to find an optimal routing policy. As such we define a mapping:

w:(0,D) — (t,T,y),
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which is safe, that is, no conflict occurs at any time. The authors then define T, to
be the time when all agents have safely arrived at their destinations according to
policy r. Then, the time complexity is defined as:

T*(0.D) = inf T,(0.D).

This formulation leads to interesting theoretical results when it comes to the
upper and lower bounds in the time complexity of the problem. There are two cases
that were examined:

* Best case scenario.
* Average case scenario.

In the best case scenario, the (O, D); pairs are selected so as to minimize the total
time required for all agents to remain in the environment. The authors go ahead and
prove the following lemma in that case.

Lemma 1. For any set of n (O, D) pairs, such that the average distance be-
tween origin and destination points is L, the time complexity of the problem is

2 (/nlL).

They also proceed to prove the following lemma for an upper bound on the time
complexity of the best case.

Lemma 2. For any n € N, 3 n (O, D) pairs such that the time complexity is
0 (ﬁL), where L represents the average distance of any two origin—destination
points.

Combining these two lemmas, the authors obtain a very important theorem on the
time complexity of the sensor based vehicle routing problem as formulated above.
However, the most important aspect of their work is yet to follow with the average
case scenario study, where the origin—destination pairs are no longer arbitrarily
selected, but are random. In that case, the following lemma is proved by the authors
on a lower bound of the time complexity.

Lemma 3. The time complexity of the problem when the set of n origin—destination
pairs is randomly selected from the uniform distribution is, with high probability,
2 (V).

Next, the authors present their algorithmic framework that terminates in O(/n)
time, hence concluding that with high probability the time complexity of the prob-
lem is O(4/n). Sensor based fully automated vehicles are used for transportation
purposes in large facilities [20] or depot centers [21] and, hence, the result of the
time complexity of their optimal routing problem is of significant importance in the
fields of logistics.
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3.2 Intelligent Vehicle Routing Through a Centralized
Highway System

The previous results may apply only to supply chain networks and to the
optimization of the automated procedures regarding storing, handling, and shipping,
however inspired a number of researchers in generalizing the notions in the large-
scale, real-life traffic system. The idea of receiving feedback that provides the
tripmaker with information on the state of the roads that they are planning to use
is not new at all.

Television and radio channels spend time on informing the audiences which
streets should be avoided, where the users are experiencing normal traffic flows
or if there has been an accident. In the last years, guidance devices, such as the GPS
routing system, provide the possibility to obtain traffic data in real-time [22].

As was mentioned in the previous subsection, many attempts to model realis-
tically the problem for real vehicular flows emanate from the robotic world and
a fully automated and controlled system of vehicles. That was, also, the insight
of Baskar, De Schutter and Hellendoorn, who first proposed an hierarchical traffic
control system for intelligent vehicles [23,24] and then adapted its formulation to
obtain a mathematical programming problem in order to come up with the optimal
routing of the vehicles [25].

The framework, described in Baskar et al. [23] consists of the following
elements:

1. the vehicle controllers, which control the speed and steering of the vehicles by
receiving orders from the platoon controllers;

2. the platoon controllers, which take care of the merges and splits of platoons and
the vehicle to vehicle distances by receiving control commands from the roadside
controllers;

3. the roadside controllers, which are in charge of a segment of the whole network
in the infrastructure;

4. and the higher-level controllers, which coordinate the whole network and
supervise all other controllers.

Using this infrastructure, the authors focus on optimal routing to each platoon that
is currently in the network. The notation that is used is given in the following table.

The simple linear model that corresponds to the framework described before is
given in (20)—(23). The notation that is used is given in Table 3.

min i = Y > XeauT (20)
(0.d)EOXD IE€L, 4

s.t. Z X1od = Dog, Yoe€ O,¥d eD Q1
[€LSN L,y
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Table 3 Notation used in the autonomous vehicle routing by Baskar et al. [25]

Notation  Definition

o Origin nodes

D Destination nodes

1 Internal nodes

|4 The set of all nodes, V= 0 U I U D

L The set of links in the network

(0,d) One origin—destination pair, (0,d) € O X D

Loa The set of links that belong to a route connecting o to d

D,q The demand of the pair (o0, d)

C The capacity of the link / € L

vy The speed on link / € L

T The travel time on link [ € L

Lin The set of all links incoming to node v

Lo The set of all links leaving node v

Xl.0.d Decision variables denoting the flows for every pair (0,d) € O X D
T The simulation period

Y Xea= ), Xoa. YvEV(.d)eOxD (22)

leLitNL, 4 [€LNL, 4

Z Xi0a <C;, VleL. (23)
(”sd)EI()d.l

The model is simple to understand since it involves only the flow balance in the
network and the capacity constraints for each of the links. The objective function in
(20) is a measure of the time that the vehicles have to spend while traveling in the
network.

In order to more realistically model the problem, the authors then proceed to
include queues that can be formed at the entries of the infrastructure. So now the
model can be rewritten as:

min Jlinks + Jqueue = Z Z Xl,0.d TIT (24)
(0,d)€EOXDI€EL,y

1
+ Y E(D,,,d—F;{;‘) T2

(0,d)eOXD
st Y Xea= ). Xed. YvEV(.d)eOxD (29
leLIMNL, 4 l€LYNLoq
> xea<C. VleL (26)

(0.d)Eloa
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Z Xl,0.d =< D(),da Yo € Oa Vd € D (27)
I€LNL, 4
Fl= > Xioa. (28)
€L NLyq

Jqueue 18 @ measure of the time spent by the vehicles in the queues formed in the
origin nodes. In order to come up with an estimate for these measures, the authors
note that the queue size increases with time with a rate of D, s — F}. Hence, at

the end of the simulation the total length is (D,,,d — Foo,ltlil) T and the average can be

calculated as %(D,,,d — F:‘;‘)T. That is how the term of Jqueye is computed in the
objective function above. It is important to note that once more the mathematical
program obtained is linear.

Even in this last model, the approach is highly unrealistic. It is not a valid
assumption that the demands are static, but have to be considered dynamic in order
to accommodate most practical applications. In order to do so, a discretization of
the time spent on each link is introduced, with the elementary measurement of 7.
This can be written more clearly as:

1 =xT,, wherek; € ZT. (29)

Letting g, 4 (k) be the partial queue length of vehicles traveling from o to d at time
k,i.e.,t = kT, and by assuming that the network is initially empty, i.e., g, 4 (k) = 0
and x; , 4 (k) = 0 for k < 0 we can now have for each of the origin nodes o:

Go.a (k)
T,

N

Y xioak) < Doalk) + vd € D, (30)

€L NLyq

and by definition D, 4 (k) = 0 for k > K. Now, by considering the fact that every
vehicle on link / will reach the end of the link after «; time segments, we obtain that

Y Xeak—t)= Y xak). Yvel V(o.d)eOxD. (31

I€L"NLy gy [€LMNL,q

Also for every link, we have the capacity constraints, however taking into consider-
ation the time we are in. So (25) is now transformed in the dynamic case into

Z X0alk) <C;, Vle€L. (32)
(0.d)€loq

The important part of this modeling approach is the description of the queues
formed. The flow is given by a similar constraint to the one presented in (27), which
however is transformed in order to accommodate the time factor into
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FRlk) = Y xiealk). (33)

I€LYMNL, 4

Therefore, the queue length is increasing linearly with the rate of D, 4(k) — F o‘f‘;‘(k)
for the time interval [k T}, (k4 1)T}) and we get the following equation for the queue
length:

Goa(k +1) = max (0,¢o.a (k) + (Doa(k) — Fy5(k)) Ty) . (34)
There exist two cases which can be distinguished for the determination of the

time Jqueue 0,4 (k) that a vehicle has to spend in the queue formed at an origin o:

a. The queue length becomes zero while the interval [k T, (k 4+ 1)Ty).
b. The queue length remains positive in the same interval.

Let us consider the second case. Defining the time after k7 at which the queue
length becomes zero as:

Go.a (k)
T,q(k) = , 35
a (k) FOk) — Dy (k) (35)
Jqueue can now be estimated as:
Ygoalk) + Qpu(k +1))T, for the first case
Jqueue,(),d (k) = Z(q ’d( ) Q Yd( )) (36)

1900 (k) T, (k) for the second case.

In general now, we have

Kena—1

Jqueue = Z Z Z Jqueue,o,d(k) (37)

k=0 (0.d)€OXDIEL,qy

and

Kena—1

Jins = Y > Y Xiea(kki T (38)
k=0 (0,d)€OXDIEL,yq

So, finally the mathematical formulation becomes

min(Jiinks + Jqueue) (39)
s.t. (30)~(34). (40)

This model is for the second case a nonlinear, nonconvex, and nonsmooth
problem. As such, this problem is hard to solve and hence, the authors present an
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approximate solution algorithm. Either way, by transforming the above problem into
amixed integer linear program, there exist several solvers that can solve it efficiently
[26]. For this transformation to take place, the properties of Bemporad and Morari
[27] can be used:

Property 1. [f <0] < [§ = 1]is true iff

f=M1-9)
f =€+ (m—e)é,

where € is a small positive number.

Property 2. 'y = §f is equivalent to

y < Ms

y >mé
y=f-—m(-9)
y=f—-Ms.

Then, the term of F{f’"j}(k) from (34) can be eliminated, thus

Goa(k + 1) =max | 0,goa(k) + | Doa()— Y x10a(k) | T |, (41)

€L NL, 4

which still is nonlinear. However, by letting Dpax0.4 be the maximum demand

for (0,d) € O x D, Fyaxoq be the maximum feasible flow (i.e., Fnaxod =
> C;) and @max 0.0 be the maximum queue length formed from origin o

[€LYMN Ly 4

to destination d and equal to D475 Keng, then two new parameters can be

defined as:

m})o\;}/ = _Fmax,o,d Ts (42)

upp _

mg’d = {max,0,d + Dmax,o,d Tsa (43)

hence the following always stands:

My < qoa (k) + (Doa(k) = Y x10a(k)Ty <m)7%. (44)
€L NLyq

Now, by introducing the binary variables 6, 4 (k) as:

1 iff Q(J,d(k) + (Do,d (k) - Z Xl,0.d (k)) TS‘ > 0 (45)

[€LY"NLy g

50,d (k) =
0 otherwise.
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So, applying Property 1, constraint (41) takes the form of

Goak + 1) =804 (k) [ Got (k) + Doak) = > x10a(k) | Ts.  (46)
[ELYNL, 4

3.3 Vehicle Routing and Traffic Monitoring Using Personal
Sensors

As personal sensors we denote these devices that can provide on the fly feedback
and information, such as smartphones, Personal Digital Assistants (PDA), and GPS
systems. The main driving idea is that the number of the traffic network users that
also owns one of the aforementioned devices has significantly increased in the last
years, making the propagation of information easier.

This has been the insight of Thiagarajan et al. [28] in creating a prototype
application that gathers the information required through mobile phones and
provides online routing based on recent traffic trends. In their work, they present
real-time traffic monitoring system tracking the vehicle trajectories using a hidden
Markov chain.

In general, three are the major pillars of a high quality online routing
algorithm:

1. Accuracy:
The time estimations and the congestion levels that are used to reroute and guide
vehicles in the network have to be close enough to represent the real situation.

2. Energy efficiency:
It is an important note that a smart phone battery is consumed much faster
when an algorithm that requires access to online data is executed continuously.
Therefore, a trade-off between the sampling time of the data and a high quality
solution needs to be agreed.

3. Time efficiency:
The algorithm applied needs to be fast and efficient. An algorithm that is too
computationally expensive may present optimal routes, however it is unrealistic
to assume that it can provide on the fly routes when needed.

However, the above objectives of an online routing algorithm present a number
of challenges, the most difficult and common of which are mentioned below:

* Map matching of the trace to the road segment it corresponds to [29,30].

* Time estimation of specific segments in a route.

e Accuracy is energy consumptive. Sampling GPS has been shown to be [31] far
more expensive in terms of energy that WiFi sampling, which unfortunately is
less accurate.
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For the tracking algorithm proposed, the authors use a hidden Markov chain.
By that, they imply that the positions at each sampling period of time are known,
however the road segments (i.e., the transitions between positions) are unknown.
Given a set of known positions over the time of the vehicle movement, the goal is
to detect the maximum likelihood road segments that were used. The algorithm that
they proposed can be summarized as follows:

e Compute transmission probabilities.

e Compute emission probabilities.

* Employ the Viterbi decoding algorithm.
* Bad zone detection and removal.

In order to compute the transition probabilities, the following notions need to
be considered. First of all, there exists a probability that the car will still be in
the same road segment for the next sampling period. Also, a car can only change
road segments if there exists an intersection between the segment it was on and the
segment it is observed to be on. Last, there are limits on the vehicle speeds that
prohibit the car to go extremely fast in any given road segment. Mathematically,
the notions above are summarized in (47)—(49) representing the probability p for a
vehicle whose position at sampling time ¢ — 1 is i while at sampling time ¢ is j:

If i=j, p=e. 47
If j and i share no intersection, p = 0. (48)
If i and j share an intersection, p =e€or p = 0. (49)

Equation (47) defines the probability that a car is still found in the same road
segment and € is defined as:
1
€< —.
- dmax + 1

The third equation prohibits effectively the vehicle to move extremely fast at any
road segment. If a vehicle is detected at position i at time # — 1 and then at time 7 is
found at j, then the algorithm computes the time it would normally take the vehicle
to traverse this route. If that implies that the car is traveling at a speed that is greater
than the threshold speed Sougier defined at 200 mph, then the probability is set to be
equal to 0; otherwise it is equal to €.

The next step of the tracking algorithm involves the emission probabilities of
the model. The emission probability notion is employed to cover the fact that it
is possible for a point to be observed from a road segment that is close but is not
necessarily the closest one. So, using a Gaussian function with zero mean N, the
emission probability of the road segment i at position / is defined as:

N(dist(i, 1)),

where dist(i, /) is the Euclidean distance. The variance of N is dependent on the
sensor that produced the position and, hence, different variances are used for WiFi
and GPS position sampling.
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The most important component of the technique applied is the Viterbi decoding
algorithm [29] which finds the most likely sequence of hidden states, i.e., road
segments, that the vehicle is required to pass through. Last in the sequence, after
having obtained a valid route by applying the Viterbi algorithm, the “bad zones”
are detected and removed from the route. That way, the authors can ensure that the
route is as realistic as possible and they can use it to obtain useful information on
the traffic status and the time required to traverse these arcs in real time.

Overall, the algorithm presented was applied to real data, with important results,
including the facts that:

» Using WiFi localization, 90% of the routes predicted were within a 10-15% of
the optimal route. GPS localization presented optimal results with high accuracy
over a sampling period of 30s.

e A hybrid algorithm employing the 30 s GPS sample with WiFi localization in
between has an improved performance over the two methods mentioned above,
however the gains are much less than the energy consumptions.

* Using GPS localization over a sampling period of 20 s outperforms the hybrid
approach.

4 Conclusions and Future Work

The recent boom that smart phones have seen in the last few years has made cheap
sensors available to a number of users. Especially when it comes to transportation
systems, there is now the possibility of collecting information fast through the
wireless networks that support these phones. This insight drove a number of
researchers like in [28] to investigate the methods that feedback can be derived from
these devices and provided to sophisticated algorithms.

As it is easy to see by the patents submitted by Resende and Pardalos [32],
using sensor-based algorithms or deploying smartphones to collect information and
optimize real-time problems is becoming more widely used. An important part
of these algorithms that would benefit the trip makers’ decisions would be the
incorporation of historical data of the day or the period in the prediction model.
In order to do so, sophisticated time-series approaches [33] and/or kernel regression
machine learning can be applied to the model. Data mining techniques [34] can
also provide us with useful remarks on the traffic behavior throughout a time
period.

Another component of these algorithms that needs to be improved significantly
is energy consumption. Nowadays, it is known that tracking and routing devices
are expensive and use up a significant amount of battery. Therefore, it is not only
important to provide travelers with reliable, on-the-fly algorithms for routing, but
also algorithms that use up as little energy as possible. These are the major directions
for future research that will optimize the procedures of using sensors in routing
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and traffic assigning. If we were to improve these conditions, then the algorithms
discussed in this chapter would certainly be much more accessible to a number of
users.

References

1. National Transportation Statistics. http://www.bts.gov/publications/national_transportation_
statistics/.

2. O’ Toole R. Gridlock: Why we’re stuck in traffic and what to do about it, CATO Institute,
Washington, D.C., 2009.

3. Kamijo, S. and Matsushita, Y. and Ikeuchi, K. and Sakauchi, M. Traffic monitoring and
accident detection at intersections. /[EEE Transactions on Intelligent Transportation Systems,
Vol. 1, No 2, pp. 108-118, 2002.

4. Peterfreund N. Robust tracking of position and velocity with Kalman snakes. /IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 21, No 6, pp. 564-569, 2002.

5. Kass M., Witkin A. and Terzopoulos D. Snakes: Active contour models, International journal
of computer vision, Vol. 1, No 4, pp. 321-331, Springer, 1988.

6. Gardner W.F. and Lawton D.T. Interactive model-based vehicle tracking, IEEE Trans. Pattern
Anal. Machine Intell., Vol. 18, pp. 1115-1121, Nov. 1996.

7. Geman S. and Geman D. Stochastic relaxation, Gibbs distribution ad the bayesian restoration
of images, IEEE Trans. Pattern Anal. Machine Intell, Vol. PAMI-6, pp. 721-741, June 1984.

8. Andrey P. and Tarroux P. Unsupervised segmentation of Markov random field modeled textured
images using selectionist relaxation, IEEE Trans. Pattern Anal. Machine Intell., Vol. 20, Mar.
1998.

9. Coleri S., Cheung S.Y. and Varaiya P. Sensor networks for monitoring traffic, Allerton
conference on communication, control and computing, pp. 32—40, Citeseer, 2004.

10. Coleri S. and Varaiya P. Optimal placement of relay nodes for energy efficiency in sensor
networks, IEEE International Conference on Communications, ICC '06, Vol. 8, pp. 3473—
3479, IEEE, 2006.

11. Luz E.Y. and Mimbella A. Summary of vehicle detection and surveillance technologies in
intelligent transportation systems, The Vehicle Detector Clearinghouse, Southwest Technology
Development Institute at New Mexico State University, Fall 2007.

12. Karp R.M. On-line algorithms versus off-line algorithms: How much is it worth to know the
future, Proceedings of IFIP 12th World Computer Congress, Vol. 1, pp. 416-429, Madrid,
Spain, 1992.

13. Bullo F, Cortés J. and Martinez S. Distributed control of robotic networks, Princeton
University Press, 2009.

14. Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles,
Springer Verlag, 2009.

15. Dixon C. and Frew E.W. tMaintaining optimal communication chains in robotic sensor net-
works using mobility control, Mobile Networks and Applications, Vol. 14, no. 3, pp. 281-291,
Kluwer Academic Publishers, 2009.

16. Inalhan G., Stepanovic D.M. and Tomlin C.J. Decentralized optimization, with application
to multiple aircraft coordination, Proceedings of IEEE Conference on Decision and Control,
2002.

17. Gerkey B.P. and Mataric M.J. Sold!: Auction methods for multi-robot coordinatio, /EEE
Transactions on Robotics and Automation, Vol. 18, no. 5, pp 758-768, 2002.

18. Sharma V., Savchenko M., Frazzoli E. and Voulgaris P. Time complexity of sensor-based
vehicle routing, Robotics: Science and Systems, pp. 297-304, Citeseer, 2005.


http://www.bts.gov/publications/national_transportation_statistics/
http://www.bts.gov/publications/national_transportation_statistics/

Sensors in Transportation and Logistics Networks 163

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Klavins E. Communication complexity of multi-robot systems, Proceedings of Fifth Interna-
tional Workshop on the Algorithmic Foundations of Robotics, Nice, France, 2002.

MacDuffie J.P. and Krafcik J. Integrating technology and human resources for
high-performance manufacturing: Evidence from the international auto industry, Transforming
organizations, pp. 209-226, Oxford University Press, 1992.

Vivaldini K.C.T., Galdames J.P.M., Bueno T.S., Aradjo R.C., Sobral R.M., Becker M. and
Caurin G.A.P. Robotic forklifts for intelligent warehouses: Routing, path planning, and
auto-localization, 2010 IEEE International Conference on Industrial Technology (ICIT),
pp. 1463-1468, 2010.

Nadeem T., Dashtinezhad S., Liao C. and Iftode L. TrafficView: traffic data dissemination
using car-to-car communication, ACM SIGMOBILE Mobile Computing and Communications
Review, Vol. 8, no. 3, pp. 6-19, ACM, 2004.

Baskar L.D., De Schutter B. and Hellendoorn H. Hierarchical traffic control and management
with intelligent vehicles, Proceedings of the 2007 IEEE Intelligent Vehicles Symposium
(1V°07), pp. 834-839, Istanbul, Turkey, June 2007.

Baskar L.D., De Schutter B. and Hellendoorn H. Traffic management for intelligent vehicle
highway systems using model-based predictive control, Proceedings of the 88th Annual
Meeting of the Transportation Research Board, Washington, D.C., January 2009, Paper 09-
2107.

Baskar L.D., De Schutter B. and Hellendoorn H. Optimal routing for intelligent vehicle
highway systems using mixed integer linear programming, Proceedings of the 12th Symposium
on Transportation Systems, Redondo Beach, California, pp. 569-575, Sept. 2009.

Pardalos PM. and Resende M.G.C. Handbook of Applied Optimization, Oxford University
Press, Oxford, UK, 2002.

Bemporad A. and Morari M. Control of systems integrating logic, dynamics and constraints,
Automatica, Vol. 35, no. 3, pp. 407-427, 1999.

Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S. and
Eriksson, J. VTrack: accurate, energy-aware road traffic delay estimation using mobile phones,
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85-98,
ACM, 2009.

Hummel B. Map matching for vehicle guidance. In Dynamic and Mobile GIS: Investigating
Space and Time, CRC Press: Florida, 2006.

Krumm J., Letchner J. and Horvitz E. Map matching with travel time constraints. In SAE World
Congress, 2007.

Gaonkar S., Li J. Choudhury R.R., Cox L. and Schmidt A. Micro-blog:sharing and querying
content through mobile phones and social participation. In MobiSys, pp. 174-186, 2008.
Williams B.M. and Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal
stochastic time series process, Pennsylvania State University, Pennsylvania Transportation
Institute, 1999.

Cook D.J. and Holder L.B. Graph-based data mining, Intelligent Systems and their Applica-
tions, Vol. 15, no. 2, pp. 32-41, IEEE, 2000.

Hirsch M., Pardalos PM. and Resende M.C. Sensor registration in a sensor network by
continuous GRASP, Proceedings of IEEE Military Communications Conference, Washington,
D.C., Oct. 2006.



Study of Mobile Mixed Sensing Networks
in an Automotive Context

Animesh Chakravarthy, Kyungyeol Song, Jaime Peraire, and Eric Feron

Abstract Mixed sensing mobile networks comprise of mobile sensors that have
different sensing capabilities. We look at such sensor networks in an automotive
context; wherein automobiles with two levels of sensing (and consequently with
two different dynamics) are ‘mixed’ among one another. The two levels of sensing
considered are local, near-neighbor information sensing; and advance, far-ahead
information sensing. We look for conditions governing the way the two types
of sensors should be mixed (i.e., required minimum number and distribution
of the far-ahead information sensing vehicles in a mixed N-vehicle string) in
order to meet certain performance objectives. In this regard, two types of models
are considered — microscopic models (using ODEs) governing individual vehicle
behavior; and macroscopic models (using PDEs) governing average behavior of
groups of vehicles. The performance objective that we address is related to the safety
of the overall network, and depends on the type of model being adopted — thus in the
microscopic model, the performance metric is one of achieving zero collisions, in
conditions where there otherwise would have been multi-vehicle collisions; while
in the macroscopic model, the metric is one of weakening the shock waves that
otherwise would have existed.
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1 Introduction

The concept of coordinating the use of sensors of different types, so as to enhance
the overall performance, is well known. Such a concept could be applicable in a
variety of ways, and in a variety of scenarios. Complimentary filtering is possibly
the most well-known version of this concept, wherein one combines the use of
sensors that have good characteristics at low frequencies with sensors that have
good characteristics at high frequencies, in order to measure a single quantity that
can vary over a broad frequency range. In the context of mobile sensor networks,
the concept of ‘mixing’ different types of sensors could be applicable in the format
shown in Fig. 1. The figure shows a network of N mobile sensors, comprising of two
types of sensors schematically depicted in orange and green. This differentiation
is performed on the basis of two features — (a) their respective dynamics and (b)
their ability to communicate. The orange sensors share a common set of dynamics
(denoted by X = fj(x, u)); while the green sensors share a different set of dynamics
(denoted by x = f>(x,u)), with x and u representing the state and input vectors
respectively, of the entire sensor network. Additionally, the orange sensors have
access to state information of their immediate neighbors, as well as the ability
to communicate with other orange sensors in the network (say through wireless
communication), while the green sensors have access only to the state information
of their immediate neighbors. It is reasonable to consider each orange sensor
as being inherently more expensive than each green sensor (due to the wireless
communication abilities required by the former). With a view to keeping the total
number of expensive sensors as low as possible, a key issue then is that for given N,
fi1, and f>, what should be the minimum number of orange sensors in the network,
and how should these orange sensors be distributed (i.e., placed in the network), so
that a given performance metric of the overall mobile sensor network is satisfied?

The answer to the above question obviously depends on the fype of mobile sensor
network under consideration, as well as the performance metric of the network, that
is of interest to us. In this chapter, the network we consider is one of automobiles
on the highway; and the performance metric we consider is one related to the
occurrence of pileup crashes (i.e., multiple vehicle collisions or shock waves on
the highway).

Fig. 1 Mobile sensor .

network comprising of

sensors of two types. The

orange sensors have the .
ability to communicate .

wirelessly among themselves;

while the green sensors do

not. The two types of sensors .

also have different dynamics
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Fig. 2 Propagation of slowdown information in cases (a), (b), and (c)

Rear end collisions are a major cause of multiple car crashes, especially during
bad weather conditions [1-4]. The cause for such crashes is that each driver gets
warned of an impending slowdown ahead, only when the brake-lights of the car
immediately in front of him/her, turn on. This is particularly true during poor
visibility conditions, and/or while driving behind a large vehicle, when a driver
is unable to look several cars ahead, as he/she otherwise normally would have.
Thus each car-driver unit is able to sense only the relative velocity and inter-vehicle
distance to the car immediately in front of him/her. So, if we consider a platoon of
cars traveling on a single lane, and the lead car executes an abrupt deceleration, this
information is propagated from car to car in a staggered fashion (Fig. 2a), as the
brake-lights of each car come on, one after the other. There is an associated delay t
for each car as the information propagates through the line of cars, (t comprises of
the time it takes for each driver to realize that the front car’s brake-lights are on, and
to react with a corresponding deceleration that turns his/her own brake-lights on).
Thus if car 1 (i.e., the lead car) poses a hazard by a sudden deceleration that turns on
its brake-lights at time ¢ = 0, then the kth car (k > 2) senses the slowdown ahead
att = (k —2)t, and turns on his/her own brake-lights (k — 1)t seconds after the
first generation of the hazard. Thus the driver’s reaction time t gets continuously
accumulated as the information propagates through the line of cars. Consequently,
cars with higher position number k in the platoon are more likely to crash. This
illustrates that this mode of transmission of information of a slowdown (from car to
car as in Fig. 2a) is too slow, and since drivers further behind in the platoon sense the
hazard later than those ahead of them, they consequently have lesser time to react.
Car pile-up crashes are the consequence of this delayed sensing.
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The concept of inter-vehicle communication has been discussed in the literature,
e.g.,in [5,6,8—12]. Researchers discuss concepts such as vehicular ad-hoc networks
(VANETS) through which information can propagate in a wireless mode. In
particular, one can equip cars with a slowdown warning system [15-18]. A car
equipped with such a system has the ability to (a) Automatically transmit a
slowdown warning signal whenever it decelerates abruptly, or its velocity becomes
dangerously low for highway driving conditions, and (b) Receive a slowdown
warning signal, and alert the driver accordingly, if it deems the signal to be relevant.
A schematic representation of this slowdown warning system concept (involving the
use of GPS) is shown in Fig. 3. Since wireless communication delays are of the order
of milliseconds [32], they can be considered small compared to human reaction time
delays; therefore information of a slowdown is sensed near simultaneously by all the
cars within the communication range (as in Fig. 2b). This allows sufficient time for
the car drivers to react appropriately to avoid the crash.

We now study the influence of having only a few equipped vehicles in this multi-
vehicle system. In this case, information is propagated as in Fig. 2c. The figure
shows a schematic representation of some equipped vehicles, scattered among the
unequipped vehicles. Thus if car 1 transmits a warning signal at time ¢ = 0, then
since cars 2 and 4 are equipped with the warning system, both of them receive the
warning signal at # = 0 and thus sense the hazard almost as soon as it has occurred.
Furthermore, the unequipped cars 5 and 6 also sense the hazard since they receive
(indirect) information of the slowdown at 7 and 27, respectively, which contributes
significantly to safety improvement, as compared to the case in Fig. 2a when cars 5
and 6 receive the warning information only at t = 3t and 47, respectively.

Figure 2c is thus the context in which we explore the original schematic depicted
in Fig. 1. Each car-driver unit is a sensor in that it can sense the velocity and
inter-vehicle distance to its immediate predecessor. The equipped vehicles (that have
the ability to communicate wirelessly among themselves, and thus sense advance
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far-ahead information) represent the orange sensors of Fig. 1. The unequipped
vehicles (that do not have the ability for inter-vehicle communication, and can sense
only local information) represent the green sensors of Fig. 1. We will explore this
mobile sensor network in two modeling contexts:

(a) Microscopic models that involve the use of ODEs (Ordinary Differential
Equations) to model the dynamics of the vehicles. We will use linear ODEs
in this chapter, and formulate the problem as a single-lane problem [18, 19].

(b) Macroscopic models that involve the use of PDEs (Partial Differential
Equations) to model the vehicle dynamics. We will use nonlinear, hyperbolic
PDEs in this chapter and formulate the problem as an aggregate multi-lane
problem [19,20].

Note that while microscopic models can detect the presence/absence of collisions
between vehicles, the same is not true for macroscopic models. Since macroscopic
models govern average or aggregate behavior of groups of vehicles, it is therefore
not possible for these models to detect actual vehicular collisions. Macroscopic
models can, however, demonstrate shock waves, i.e., discontinuous solutions rep-
resenting large decreases in average velocity with corresponding large increases
in average vehicle density, where the average vehicle density denotes the average
number of cars per unit length of the highway. Now since a large decrease in average
velocity represents several vehicles having to slam on their brakes, the presence
of a shock wave can be construed to be qualitatively similar to the occurrence of
a pileup crash. There exists an important analogy between the occurrence of car
pile-up crashes and the shock waves occurring in compressible flow dynamics. In
compressible fluid flow, a shock wave occurs when an object in the fluid travels
faster than the speed at which information of its existence propagates ahead.
Likewise, in traffic flow, car pile-ups occur if the cars travel at a speed higher than
that at which the information (of the lead car’s deceleration) propagates. Shock
waves in traffic flow dynamics have been discussed elsewhere, for example, in
[35]. In both types of models (microscopic and macroscopic), the equipped and
unequipped vehicles will have different dynamics. In the microscopic model case,
we will look for conditions governing the minimum number and distribution of
equipped vehicles in a N-vehicle network that will guarantee zero collisions (i.e., our
performance metric is one of zero collisions); while in the macroscopic model case,
we will look for conditions on the equipped vehicle average density (i.e., average
number of equipped vehicles per unit length of the highway) that will ensure that
the shock wave strength is weakened (i.e., our performance metric is one of velocity
change occurring across a shock).

This chapter is organized as follows. Microscopic models of this mobile sensor
network (with ‘mixed’ sensing capabilities) are addressed in Sect. 2, wherein the
goal is to arrive at analytical estimates of the requisite minimum number and
distribution of equipped vehicles that will guarantee zero collisions. Macroscopic
models of this mobile sensor network are addressed in Sect. 3, wherein the goal
is to arrive at estimates of the requisite equipped vehicle density to significantly
weaken a shock. Finally, Sect. 4 presents the conclusions.
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2 Microscopic Models of the Mobile Sensor Network:
Simulations and Analysis

In this section, a microscopic model is used to analyze the mixed sensing network.
Section 2.1 discusses a finite-state model of this network. Section 2.2 demonstrates
simulation results showing the decrease in inter-vehicle spacing along a line of
vehicles (subsequent to an abrupt deceleration by the lead vehicle) that leads
to a violation (i.e., the presence of collisions) of the desired performance index
of the network. It then demonstrates how the presence of a few vehicles with
advance sensing capabilities has a beneficial effect on the overall safety of the inter-
connected system of vehicles. In Sects. 2.3 and 2.4, we conduct a theoretical analysis
of the effects indicated by the simulation results of Sect. 2.2.

2.1 Finite-State Model of the Mixed Sensing Network

To account for the change in driver behavior in response to brake-lights and/or
advance slowdown warnings, we assumed the driver to be a finite-state system (refer
Fig. 4), whereby he could be in one of three different modes. Modeling the driver
as a finite-state system has been done before, for example, [23]. Before we go into
a discussion of the modes, we briefly introduce some nomenclature.

There are N vehicles in a platoon, numbered 1,2,..., N, with car 1 being the
lead car, and i denoting the ith vehicle. Some of the cars are equipped with
the slowdown warning system and thus have advance sensing capabilities, while
the others are not. Define:

e [ : The set of vehicles that have advance sensing capabilities (since they are
equipped with the slowdown warning system).

e U : The set of vehicles that have only local sensing capabilities (since they do
not have a slowdown warning system).

e slrec(i) = A flag indicating whether a vehicle i € E (i.e., an equipped car) is
currently receiving a slowdown warning. A value of 1 indicates that a warning is
being received, while 0 indicates otherwise.

e bl(i) = A flag indicating whether a vehicle i (which may be equipped or
unequipped) currently has its brake-lights on. A value of 1 indicates that its brake-
lights are on, while 0 indicates otherwise.

The velocities of the cars are denoted by Vi, V5, ..., Vy while the inter car
separations are denoted by §12,823, ..., SN—1.N-

At time ¢t = 0, it is assumed that all the n cars are traveling at equal velocities, and
the inter car separations are all equal. The lead car then suddenly decelerates, and
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Fig. 4 Finite-state model of a car driver

emits a slowdown warning signal that is received by all the equipped cars behind
it. The instant the equipped cars receive this signal, the drivers of these cars go into
an alert mode and smoothly increase the distance between themselves and the car
immediately in front of them. The unequipped cars, on the other hand, receive no
such signal — only when the brake-lights of the car immediately in front of them
come on, do these drivers go into an alert mode. However, they do not have the time
to increase the distance between themselves and the car in front. We assume that the
distance a car maintains to his/her immediate predecessor is equal to the product of
the velocity of the following car and a quantity referred to as the time headway.

Thus, at any given time, the driver of the ith (following) car can be in one of
three modes, viz., ¢1, g2, or g3, and he/she transitions from one mode to another,
depending on the flags sl_rec(i) and b_1(i — 1). The descriptions of the modes are as
follows:

1. Mode ¢;: This is the initial mode in which all the drivers reside, when both the
flags sl_rec(i) and b_1(i — 1) are zero. This mode is characterized by ‘normal’
driver dynamics, manifested by ‘normal’ time delays. We denote the driver
dynamics in this mode by X = fi(x,u). A driver can reside in mode g; for
long periods of time. In this mode, he/she tries to maintain a ‘normal’ distance
between his car and the one immediately ahead of him/her (this distance is
characterized by shorter time headways).
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2. Mode ¢,: Only the drivers in cars with advance sensing capabilities can be in
this mode. These drivers transition from mode ¢, to g, if and only if they receive
sensing information of the hazard ahead. This mode is characterized by (a) Faster
driver dynamics, manifested by shorter time delays compared to g (it is denoted
by the equation X = f>(x, u)) and (b) A higher value of reference distance/time
headway d(i ), compared to ¢;. Mode ¢, is a high alert mode, in which a driver
resides for only a short duration, before reverting back to g .

3. Mode ¢3: The drivers of both the equipped as well as the unequipped cars can
reside in this mode. The drivers of the unequipped cars transition from g to g3 if
and only if the brake-lights of the car ahead of them come on, while the drivers
of the equipped cars transition from ¢, to g3 if and only if the brake-lights of
the car ahead of them come on, and additionally, they are not in receipt of a
slowdown warning. This mode is characterized by the faster driver dynamics,
represented by X = f,(x, u) and the ‘normal’ reference distance (with a shorter
time headway). A driver resides in mode g3 only for a short duration of time.

Each of these modes, and the transitions thereof, are schematically represented in
Fig. 4, for equipped and unequipped cars. Note that this figure holds for all following
cars and the behavior of the lead car is treated as an input to the inter-connected
system.

2.2  Numerical Simulation

Consider a string of vehicles driving on a single-lane highway. We assume that at
t = 0, they are all driving with equal speeds and equal inter-car distances. The
string of cars is modeled as an inter-connected system, with each car-driver system
forming one element of the inter-connected system. Each car-driver unit is able
to sense only the relative velocity and inter-vehicle distance to his/her immediate
predecessor. The acceleration response of the driver of the ith vehicle is modeled
by the following equation, presented in [22,23]:

dv(;—f[) = K1 (Si—l,i(t - T) - TV,’(Z N T))
R (=0~ = ).
W = vi1(t) —vi(1), v

where v; indicates the velocity of the ith vehicle and s;_;; represents the inter-
car distance between the ith and the (i — 1)th vehicles, with vehicle 1 being the
lead vehicle. t indicates the response delay of each car-driver system. K, represents
the sensitivity of each driver to the velocity difference between his/her vehicle and
the one immediately ahead while K is the sensitivity to the difference between
the desired inter-vehicle distance and the true inter-vehicle distance. The desired
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Fig. 5 All vehicles unequipped with advance sensing capability (a) Velocity vs. time profiles (b)
Inter-car separation vs. time profiles

inter-vehicle distance of each driver (to the vehicle ahead) is proportional to his/her
own velocity, with the proportionality constant being 7" (the time headway).

Consider a situation wherein all the vehicles are initially traveling at typical
highway speeds of about 30m/s, (i.e., 67.5mph), with the inter-vehicle distance
being 36 m (i.e., T = 1.2s). We assume t to be a ball-park value of 0.6 s, and then
determine K; and K, such that it ensures stable, non-oscillatory behavior for each
two-vehicle system. (These were obtained using guidelines available, for example,
in [25]). At ¢t = 5s, the lead vehicle begins to execute an abrupt deceleration,
and decelerates continuously for 5s. Refer to Fig. 5, which shows the velocity
and inter-car distance profiles of 10 vehicles, when the information of the lead
vehicle’s deceleration is transmitted from vehicle to vehicle, as in Fig. 2a. It can
be seen that the values of the minimum vehicle velocity and minimum inter-vehicle
distance keep decreasing with increasing vehicle index, until vehicle 6 is rear-ended
by vehicle 7, and crashes occur for all the vehicles behind. It can be seen from the
figure that if there were more vehicles behind vehicle 10, they too would all collide,
thus leading to a pile-up. This is the phenomenon of string instability [13,24,31].

String instability refers to the amplification of velocity errors as these errors
travel along a string of vehicles. If we define €,(z) = Vi(¢) — Va(¢), e2(t) =
Va(t) — Va(t),...,en—1(t) = Vy—1(t) — Vn(2), then a string of vehicles is said
to be /,, stable if:

llexIlp = lle2Ollp = -+ =< llen (D], 2
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where p indicates the pth norm. In the context of this chapter, we are interested in
the amplification (or otherwise) of the co norm of the velocity errors, i.e., we are
interested in /o string stability. The smaller the time headways, the more severe
is the instability; for sufficiently large time headways, string instability does not
manifest [31].

Now, consider a scenario when all the 10 vehicles are equipped with the slow-
down warning system, and thus all vehicles possess advance sensing capabilities
(as shown in Fig. 2b). If the lead vehicle now executes an identical deceleration
profile, the trailing vehicles are able to react much earlier (vehicle 10, for example,
is able to react t seconds after the lead vehicle begins to decelerate, as opposed to
9t seconds that it would otherwise have taken, if all vehicles were unequipped). We
make the reasonable assumption that on receipt of the slowdown warning signal, the
driver of each equipped vehicle transitions to a slightly lower value of t than when
he was unequipped (in these simulations, we assume t = 0.4 s for an equipped
vehicle — this signifies the increased alertness of the driver on receipt of the warning
signal). Furthermore, the driver of each equipped vehicle attempts to increase his/her
time headway to the vehicle in front of him/her, in anticipation of the imminent
slowdown. The result is shown in Fig. 6, where, on receipt of the warning signal,
each driver tries to increase the time headway to the vehicle immediately ahead
(from the original T = 1.2s to T = 1.65s). The string instability trend (earlier
observed in Fig. 5) is no longer seen.

Now consider a case when only some cars possess long distance sensing
capabilities, while other cars possess only local sensing capabilities. It turns out
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Fig. 7 Only vehicles 1, 7, and 9 equipped with advance sensing capability

however, that in many cases, even if a fraction of the cars are equipped, this can still
be sufficient to break the trend of decreasing inter-vehicle spacings as it propagates
down the line of vehicles, and this can prevent pile-up crashes. This is illustrated
in Fig. 7, where only vehicles 1, 7, and 9 are equipped with advance sensing
transmit/receive capabilities. It is seen that after the lead vehicle decelerates, there
is an onset of decreasing inter-vehicle spacings from vehicles 2 to 6. However,
the fact that vehicle 7 is equipped breaks this trend, and in fact, the minimum
value of V7 (as also xg) is higher than Vj (respectively, xs). Furthermore, since
vehicle 8 is unequipped, it re-initiates the trend of decreasing inter-vehicle spacings
and therefore the minimum value of V3 (as also x7) is indeed lower than that of
V7 (respectively, x¢); yet it is higher than that in the case when vehicle 7 was
unequipped (see, Fig. 5). Similarly, since vehicle 9 is equipped, not only is the
minimum value of xg high enough, but also that of xg is higher than what it was
when vehicle 9 was unequipped. Consequently, no crashes occur. This shows that it
is possible that even if a fraction of the vehicles are equipped, they are able to ensure
the safety of not only themselves, but the unequipped vehicles as well.

2.3 Mathematical Definitions and Safety Conditions

We use the following notation : F and f represent the same signal (or sys-
tem) in the frequency and time domain, respectively, i.e., F(s) = L(f) =
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oo
J f(z)e™'dt. s is the Laplace variable. || f'||o, denotes sup;~o ||, while || F |
0

o0
denotes sup,~o | F(jw)|. Both || /||, and || F ||, denote [ | f (t)| dr. Consider a string

0
of N vehicles driving on a single-lane with the dynamics of each vehicle defined by:
Vi(s) = Gi(s)Vi-1(s), 3)

for all i € N, where V; represents the longitudinal velocity of the ith vehicle.
G; (s) is the transfer function connecting the velocity response of the ith vehicle
to that of the (i — 1)th vehicle. While the simulation results of Sect.2.2 (that use
(1)) assume a G; (s) of the form G; (s) = +sf]l(j—75f21(2) ol the statements made
in this subsection are true for arbitrary G;(s). We assume that all the vehicles in
this inter-connected system are driving with equal initial speeds and equal initial

inter-vehicle spacings.

Lemma 1. For an inter-connected system of vehicles in (3), the fluctuation of the
inter-vehicle spacing A (x; — X;+1) can be written as:

AX; — Xit) 1 -Gy ~
- G| =G 4
A(Xi—1 —Xi) [ 1-G; :| @

Also, A (x; — x;+1) can be written in terms of the velocity of the lead vehicle V| as:

[HG}(I_ Git1) |,

where X; is the position of the i th vehicle (x| is the position of the lead vehicle) and
x; are measured in a direction such that x; (0) > x;4+1(0)Vi. The condition for a
pileup crash can be described in terms of @i, as shown in the following theorem,
proved in [18].

A(Xp — Xit1) =

Vig, &)

Theorem 1. Consider an inter-connected system of N vehicles governed by (3),
with all vehicles driving with equal initial speeds and equal initial inter-vehicle
spacing so. Then, if the lead vehicle executes an abrupt deceleration, it is guaranteed
that there will be no pileup crash if

L g, < 1foralli, and
2. 14 (x1 — x2)|leo < S0

Here, g; represents the impulse response of the transfer function G;.

We should note that the condition |g;||, > 1 for some i does not necessarily
imply that there will be a pileup crash in the inter-connected system, because
| A (xi — xi+1)|lo can be smaller than || A (x;i—; — x;)|| o> even when [|g; [, > 1.
At the same time however, if ||g;||, > 1, then in the absence of further knowledge
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of the deceleration profile of the lead vehicle, one cannot guarantee the absence of a
pile-up crash. (This statement is particularly true for large deceleration magnitudes
of the lead vehicle). Note however that the system satisfying the condition in
Theorem 1 will never have a pileup crash in any event.

2.4 Effect of Equipped Vehicles

In this section, we investigate the role of the equipped vehicles (that have advance
sensing capabilities across a wireless communication link) in mitigating the genera-
tion of a pileup crash in a mixed sensing environment. In this context, we therefore
assume that, on receipt of a slowdown warning signal, G; (s) can be either U(s) or
E(s),i.e.,

U(s)V;—1,if ith vehicle has only local sensing capability

V =
' E(s)V;—,,if ith vehicle has advance sensing capability.

(6)

In general, U(s) is characterized by high values of T accompanied by small values
of T; while E(s) is characterized by low values of ¢ accompanied by high values
of T. The differences between U(s) and E(s) (for the driver dynamics presented in
(1) are clearly seen in Fig. 8. In this figure, the frequency response of the vehicle
dynamics is plotted for different values of 7 and 7. It can be seen that for a given
value of 7', as t increases, it has the effect of increasing the magnitude of the
frequency response. At the same time, for a given t, as T increases, this has the
effect of decreasing the frequency response magnitude.

Using the above guidelines, we assume that U(s) and E(s) have the following
characteristics.

1. U)o > 1, and [U(0)] =1 @)
2. lE(S)|loo = |E©)| =1, ande(z) >0Vt >0,

where e(¢) is the impulse response of E(s).

If all the vehicles have only local sensing capabilities, i.e., G; (s) = U(s) Vi,
then G; (s) = U(s) Vi by (4), and therefore, ||g; ||, = [lu(@)|; > 1 Vi. By the
analysis in Sect. 2.3, we have seen that this condition on ||g; ||, is indicative of the
possibility of occurrence of a pileup crash.

On the other hand, when all the vehicles are equipped with advance sensing
capabilities, we have |[g;|l;, = |le(®)|l; = 1Vi (because G, (s) = E(s)Vi), and
therefore, | A (x; — Xi+1)|leo =< So for all i, which satisfies the condition for zero
collisions.

Figure 9a shows an example of a velocity profile, wherein a car decelerates
sharply from an initial velocity of 30 m/s and comes to a complete stop over a
time span of a little more than one second. The corresponding Fourier Transform
of this signal is shown in Fig. 9b, from which it can be seen that there is substantial
magnitude content of the signal at the frequency wy shown in Fig. 8.
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Fig. 8 Frequency responses of U(s) and E(s)

Figure 10 shows the impulse responses of U(s) and E(s) for different values of
T and t. Smaller values of 7', accompanied by larger values of 7 (that characterize
U(s)) lead to oscillatory impulse responses (with the amplitude of oscillation
decreasing with decreasing 7). On the other hand, larger values of 7', accompanied
by smaller values of t (that characterize E(s)) lead to non-oscillatory responses.

Figures 8 and 10 indicate that in the case of an equipped vehicle, the larger
the increase in the time headway 7" that a driver attains (subsequent to the receipt
of a slowdown warning signal), the greater the attenuation that equipped vehicle
exerts on the errors propagating through the mixed string of vehicles. This fact
is also brought out in the following ten car simulation, in which cars 1, 7, and
9 are equipped. In this simulation, three different scenarios of headway increase
are considered, viz., T = 1.65, 1.8, 2s. It can be clearly seen in Figure 11 that
the larger the headway increase, the higher the higher are the minimum values of
velocity and inter-car distance (to the car ahead) of the equipped cars.

We now consider a mixed sensing environment in which only a small number of
vehicles are equipped. The following theorem, proved in [18] provides a sufficient
condition that guarantees the performance metric of this mixed sensing network is
satisfied.

Theorem 2. Consider an inter-connected system of N vehicles governed by (3),
with all vehicles driving at equal initial speeds with equal inter-vehicle spacing s,
and L out of N vehicles are equipped with advance sensing capabilities. Assume
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that the lead vehicle executes an abrupt deceleration, such that when all vehicles are
unequipped, collisions are initiated at the nth vehicle (i.e., | A (x; — Xi+1)|loo > S0
forn <i < N —1). Then, under the same deceleration profile of the lead vehicle,
it is guaranteed that there will be zero collisions if

L>M. ®)

where M = N — n + 1 is the number of vehicles that would have crashed if all
vehicles were unequipped.

In the above theorem, it should be noted that there is no constraint on the distribution
of the equipped vehicles within the N vehicle system. In other words, as long as
L > N —n + 1, the performance metric of this mixed sensing network is always
satisfied for any distribution of the vehicles with advance sensing capabilities.

The theorem in (8) is a sufficient condition to avoid a pileup crash. In other words,
there could be situations where the number of equipped vehicles is smaller than M,
but this is still adequate to avoid the pileup crash completely [20].

In order to investigate the performance metric for L < M and derive a
condition for no pileup crash that is less conservative condition than (8), we make
another assumption on the dynamics of the inter-connected vehicle system and the
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Impulse responses

Time (sec)

Fig. 10 Impulse responses of U(s) and E(s)

deceleration profile of the lead vehicle. That is, we assume that G (s) and V) satisfy
the following inequality,

i
1A (i = xi+)lloo < @ | [ ] G ©)
k=2 0o
where,
t
o= H/ (vi(t) —u(t) *vi(z))de (10)
0 o0
Here, ‘x’ is a convolution integration in the time domain, i.e., (u * v;)(f) =

fot u(t — t)vi(r)dr.

Clearly, the condition in (9) is not guaranteed in general. However, in (9) turns
out to be true [18] for the Gy (s) represented by (1) and a V; representing a typical
deceleration, shown in Fig. 13. Using the assumption in (9) allows us to derive a
much less conservative condition (for satisfying the performance metric) than the
one in (8).

Figure 12 shows the relation between the amplification factor (which is defined
as M), U ||, and ||U || o for varying values of t = 0.2,0.4,0.8, 1s. It can
be seen that with increasing values of 7, the amplification factor increases (as was
also evidenced from Figs. 8 and 10); yet, at the same time, the amplification factor
remains consistently lower than ||U || o
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The less conservative condition (obtained as a consequence of using (9)) is given
in the following theorem, proved in [18].

Theorem 3. Consider N vehicles driving with equal initial speeds and equal
inter-vehicle spacing so, L out of N vehicles are equipped with advance sensing
capabilities, and the lead vehicle decelerates abruptly such that (when all cars are
unequipped) collisions are initiated at the nth vehicle, i.e., | A (X; — Xi+1)|loo > S0
forn <i < N —1. Let L be the number of equipped vehicles between the first and
the (n+k — 1)th vehicle (by definition, L y—,+1 = L). Under the same deceleration
profile of the lead vehicle and the assumption in (9), the performance metric (of zero
collisions) of the mixed sensing network is satisfied, if

Le > |kA] forl <k <N —n+1, (11)
where
_ log B
~logB —logy’ a2

Here, B = || U(5)|loo = |U (wo)| > 1, wy is the frequency at which |U (jo)|
is maximum, y = |E (jwo)| < 1, and | x| denotes the smallest integer greater than
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x. (Figure 8 demonstrates § and y for a representative choice of U(s) and E(s)).
Therefore, the total number of equipped vehicles L should be greater than | M 4] to
guarantee that there will be no pileup crash, where M = N —n + 1 is the number
of vehicles that would have crashed if all vehicles were unequipped.

It should be noted that the new condition L. > | M A] to avoid a pileup crash is
much less conservative than the condition L > M, because A < 1. For example,
the vehicle dynamics used in the simulation in Sect. 2.2 give § = 1.12 and y =
0.85, which yields A = 0.41. Therefore, the number of equipped vehicles that will
enable the performance metric of the mixed sensing network be satisfied when N =
100 and M = 20 is |20 x 0.41] = 9. Furthermore, these 9 vehicles need to be
distributed in a manner so that at least | 0.41k | equipped vehicles need to be present
between the first and the (n + k — 1)th vehicle for1 <k <N —n + 1.

It was found that the probability of satisfying the condition in (11) is quite
acceptable in most cases. This is shown in Fig. 14 as N varies from 10 to 50 and
A = 0.5. In this figure, we assume for each N that 20% of vehicles experience
collisions when none are equipped (i.e.,M=|0.2N |), and we equip L = | M A] of
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the N vehicles. For example, when N = 20, M, and L become M = |0.2N | = 4,
and L = | M A| = 2, respectively, and the probability of satisfying the condition in
(11) can be computed as:

Number of combinations of at least one vehicle equipped
between 1 and 17 and the other one equipped between 1 and 19

Number of combinations of 2 out of 20 vehicles equipped

_ (17x18)/2

= 0.8053, 13
C(20,2) (13)
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where C(n, k) represents the number of combinations of n objects taken k at a
time. Proceeding in the manner outlined in (13), we can compute the probability of
achieving a performance metric of zero collisions for general N, M, and L. It can
be seen from Fig. 14 that there is a high probability (above 65%) of satisfying the
performance metric if about 10% of the total number of vehicles possess advance
sensing capabilities.

3 Macroscopic Models of Mobile Sensor Networks:
Simulations and Analysis

We next look at the use of macroscopic models for analyzing our mobile mixed
sensor network. The use of macroscopic models for studying traffic flows has a fairly
long history. The Lighthill-Whitham—Richards (LWR) model [35, 36] represents
the earliest use of macroscopic models to represent traffic flow. The LWR model
is basically a first order model that is based on a gas dynamic-like continuity
equation. Subsequently, second order models have been developed by Payne—
Whitham [37,38] and also Phillips [40]. There has been some controversy in the past
about the viability of second order models in general [39], and attempts have been
made to address some of them in [41, 44]. Prigogine and Herman [47] developed
traffic flow equations based on the Boltzmann equation, which have been further
refined by Paveri-Fontana [48]. Based on Paveri-Fontana’s equations, Helbing then
derived a (gas dynamic based) third order macroscopic traffic model [44] (this model
included an equation for the velocity variance), and also a second order traffic model
[45], that is anisotropic in nature. Helbing also derived a gas dynamic based two
species traffic model where the two species were cars and trucks [45], as also did
Hoogendoorn and Bovy [46]. There have also been second order models developed
by Aw and Rascle [41] — these models however, are not based on gas dynamic
foundations. There have also been papers on analysis of stability in traffic flows
[49, 50]. In this chapter, we adapt the Helbing model [45] to a situation wherein
the two species comprise vehicles equipped with the ability to receive advance
far-ahead information, interspersed with unequipped vehicles that are capable of
sensing only local information. We also adapt the Helbing model appropriately in
order to account for a finite speed of information propagation among the equipped
vehicles. In other words, the communication speed among the equipped vehicles
is now no longer assumed to be infinite (as it was in the microscopic model case
discussed in the previous section).

Section 3.1 discusses the macroscopic model used and demonstrates simulation
results showing initial conditions under which a shock propagates through the
vehicle network when all vehicles are capable of only local sensing. Section 3.2
then discusses the macroscopic model used in the ‘mixed sensing’ situation, and
with a finite speed of information propagation among the equipped vehicles; and
demonstrates simulation results showing the strength of the shock wave under the
same initial conditions, and for varying equipped vehicle densities.
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3.1 All Vehicles with Only Local Sensing Capabilities:
Model and Simulations

We use the model derived by Helbing [45], which in turn, has been inspired by the
gas kinetic based models derived by Prigogine and Herman [47], and Paveri-Fontana
[48]. The model is briefly reviewed below. The state space vector of a vehicle «, is
defined as X, (1) = [xq(t),ve(t),°4 ()], where x4 (2), vy (t), and v, (t) represent
the position, velocity, and desired velocity, respectively of particle «. Defining
p(x,v, 1) as the phase space density, the following Boltzmann like equation governs
the evolution of p in phase space [45,47,48]:

ap B] 0 o — 1-— ©
Pt o+ 567 = 2 [T au it npcenn
Jat  Ox av T D2 v
1 _ VvV
—M/ dw|w —v|p(x,w, 1)p(x,v,t)
P2 0
9*(pD)
. 14
+ "2 (14)

In the above, p; represents the probability of a vehicle overtaking (by a lane change)
a slower vehicle in front, while p, represents the effects of finite space interaction
between a pair of vehicles. (Helbing assumes p; = p»). Two dimensional represents
the covariance of the acceleration noise of a vehicle (which is assumed to be
gaussian white noise). The dynamics of particle o are governed by the following
state space equations:

dx,
o =V (15)
dv v —y,
5 =t T fup + &), (16)
dv?,

where &, (¢) represents the acceleration noise, for vehicle «, and f,g indicates the
interaction effect of vehicle 8 on «. The noise &, (¢) is assumed to be gaussian white
noise, i.e., it has zero mean with specified co-variance as follows:

(6x (1)) = OV, (18)

(ga(t)Sﬁ(t» = 2D8aﬂ8(t - ":)‘ (19)

By taking moments of the above equation, and defining p(x,7) = [dvp(x,v,1)

as the average density, V(x,t) = (v) = %

O(x,t) = (v — V(x,1)?) = [o=VaDPdvpterd) o the velocity variance, the

(x.1)
following macroscopic equations are obtained [45,47,48]:

as the average velocity,
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dp V)
3t+ ax

0, (20)

a(pV) n ApV24+p0) VIV
ot 0x =
The above hierarchy of equations is closed by assuming that & = A(p)V?

[45]. Furthermore, V, (x, t) represents the average equilibrium velocity and is given
by [45]:

21

Vel(x,t) = V°— P(ps)Bpt0, (22)

where V'° represents the average desired velocity, T represents the average relaxation
time, p, represents the average density computed at the interaction point x, =
x +y( +VT), with [ = 1/pnax representing the average vehicle length (pmax
represents the maximum vehicle density), 7 denotes the average time headway that
vehicles try to maintain in the limit of maximum density, and y € [1, 3] represents
an anticipation factor. The factor P(p) that takes into effect both the probability of
overtaking, as well as the existence of a finite interaction-free space, is defined as

. V()pTZ . . .
P(p) = Ao = The factor B that takes into account the anisotropic

interaction effects, is given as [45]:

e=51/2 ) 8y eV /2
B(,) =6, —— + 1—|—8v/ d , (23

where 6, = (V — V,)/+/6 + 6, with V, and 6, representing the average velocity
and velocity variance computed at the interaction point x,. The following values
have been assumed for the numerical data (when all vehicles are unequipped) :
Average desired velocity V, = 110 km/h (This corresponds to a highway speed limit
that a driver would like to maintain, if the road was empty)

Average relaxation time 7 = 158

Maximum vehicle density pmax = 160 vehicles/km/lane

Average time headway T = 1s

A(p) which is the density-dependent pre-factor has the profile given in Fig. 15b
[45]. Using these values, the following curve representing the variation of average
equilibrium velocity with density, is obtained (Fig. 15a) [45].

A good prototype of an initial condition used to test the influence of the
slowdown warning system in a mixed equipage scenario, is the Reimann Problem.
The Reimann Problem represents an initial condition comprising of a left state and
a right state joined by a discontinuity, in each of the dependent variables, with
the discontinuity occurring at the same spatial location for both variables. The left
states are denoted by p; and V, while the right states are denoted by pr and Vg,
respectively. Schematically, such a condition is represented as shown in Fig. 16.

In the Reimann Problems that we will consider, we will assume that p;, < pgr
and V;, > Vg. It can be seen that a large drop in average velocity, occurring over a
short distance (in other words, a large negative spatial velocity gradient) is indicative
of a potentially unsafe driving situation. We choose p; = 15 vehicles/km/lane and
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pr = 140 vehicles’/km/lane. We assume that p changes from p; to pg over a length
of 200 m, which appears as a shock over a length scale of 10 km. Additionally, we
will assume that the left and right states are both in their respective equilibrium.
From Fig. 15a, it can be seen that this implies that V;, = 105.67kmph and
Vg = 3.17 kmph. Using the representation for velocity variance given above, we
see that at the microscopic level, such a condition is indicative of a driver having
to perform an instantaneous velocity change from an initial value that lies in the
velocity probability density function P(V}) to a final value that lies in the velocity
probability density function P(Vg). P(Vy) and P(Vy) are represented in Fig. 17.
We use boundary conditions as follows : p(0,7) = p(0,0); V(0,¢) = V(0,0).
Figure 18a then shows the average density and average velocity profiles as a
function of space and time, when all the vehicles are unequipped. It can be seen
that the initial large negative velocity gradient propagates, almost unattenuated,
backward along the highway. The wave speed at which it propagates is found as
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% = —9.1kmph. Figure 18b shows the average driver trajectories on a
space-time plane. On this figure too, the shock-like behavior is clearly seen.

In other words, if we consider a situation when there is a large negative velocity
gradient occurring at some point on the highway, then information of the existence
of such a gradient is propagated from car to car in a staggered fashion (Figure 2a), as
the brake-lights of each car come on, one after the other. This mode of information
propagation is often too slow, and as a consequence, these large velocity gradients

travel along the highway, mostly unattenuated.
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The presence of a large negative gradient on an initial velocity condition can also
be seen as a large negative perturbation on ?TZ As can be seen from Fig. 23a, with
all vehicles unequipped, %—Z attenuates in magnitude initially for a short distance,
only very slightly, and then propagates along unattenuated. If we define ”?TK lloo =
max, ?TZ at a given time ¢, then the time history of ”?TZ ||oo is shown in Fig. 23b. In
the next section, we will analyze how the same initial condition evolves in a mixed
sensing environment.

A second initial condition of interest is one that is initially continuous, but
then propagates with time, in a manner such as to eventually form a shock. In
other words, the initial (decreasing) average velocity profile steepens with time.
It is of interest to see how a partial equipage of the slowdown warning system
can help arrest the wave steepening scenario that can exist (when all vehicles are
unequipped), and to then parametrize this effect as a function of varying equipage.

For this purpose, we invoke an initial condition with identical left and right states
as before, i.e., py = 15vehicles/km/lane, pg = 140 vehicles/km/lane and V; =
105.67 kmph, Vg = 3.17 kmph; but instead of joining them by a discontinuity, we
now join py, to pg by a gradual transition, so that the average density increases from
pL to pr over a span of 2 km. The average velocity varies from V, to Vg in a manner
so that the average velocity is in equilibrium with the average density at each x.

Figure 19 then shows the average density and average velocity profiles as
they evolve with time, from the above initial condition. It is seen that the top
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portion of the velocity wave (and the bottom portion of the density wave) move
forward relative to the highway, i.e., they have positive wave velocity; while the
bottom portion of the velocity wave (as also the high density part of the density
wave) move backward, with a negative wave velocity. This kind of wave motion
(wherein different parts of the wave have wave velocities of opposite signs), leads
to further and further steepening of the wave, until eventually a shock is formed,
that then moves backward as a whole. The evolution of || %—Z ||co showing the gradual
steepening of the wave is given in Fig. 26b, while Fig. 26a gives the magnitude of
AV, which represents the velocity change that occurs over the region where the
value of %—Z is less than —100 kmph/km. It is seen that over a span of approximately
5 min, AV increases to almost 100 kmph, which makes it almost identical to the
initial condition of the first case we explored.

3.2 Mixed Sensing Network: Model and Simulations

We now intend to test the above two initial conditions in a mixed sensing
environment, depicted in Fig. 20. To this end, we assume that at t+ = 0, the
average velocity of the equipped vehicles is identical to that of the unequipped
vehicles. py(x,t) and Vy(x,t) are used to represent the average density and
average velocity of the unequipped vehicles, while pg(x, ) and Vg (x,t) represent
the average density and average velocity of the equipped vehicles. To test the
effect of varying equipage, we vary py and pg, so that #(?Em represents the
percentage of equipage at each x, and we keep py (x,0) 4+ pg(x,0) = a constant
which is equal to the density of vehicles when they were all unequipped. In other
words, pyr(x,0) + peL(x,0) = pr(x,0); pyr(x,0) + per(x,0) = pr(x,0);
Vur(x,0) = Ver(x,0); Vyr(x,0) = Veg(x,0), where the values for p;, pr, V1,
and Vy correspond to the values when all vehicles were unequipped (as discussed
in the previous section).

The following macroscopic equations for the mixed equipage scenario are used

[19,20]:
dpu n d(ou Vu) _

o T 0 24
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ook n 0(peVE) _

— 0, 25
ot ox (25)
9 2 92 eq
(pu Vu) + d(pu Vi + putp) _ Vu Vu ’ (26)
ot ox T
d(peV, App V2 0 ViA—_v
(peVE) n (peVi + pEfE) _ Ve £ 27
ot dx T

where ng (x, t) represents the average equilibrium velocity of the equipped vehicles
and is given by:

ng(x,t)= VE—PBEU,OUI’QU—PBEE,OEI’QE, (28)

and where V) (x, 1) represents the average equilibrium velocity of the unequipped
vehicles and is given by:

V;q(x, t) = V[(]) — PBUEPETHE — PBUUPUTHU- 29)

V and Vg denote the average desired velocities of the unequipped and equipped ve-

(pu +PE)T2 Va‘i‘g o __
T (1= 170 o A4 Vide = (ou Vu+pEVE)/ (PU +

pE). Oy and O represent the velocity variances of the unequipped and equipped
vehicles respectively, and it is assumed that Oy = A(py + pg)VE and O =
A(pu + pE)V3.

The above equations are similar to the equations used in [45] when the two
species of vehicles assumed were cars and trucks, and in that context, it was assumed
that the desired vehicles of the cars and trucks remained constant for all time. In
our context however, we assume that the equipped vehicles change their desired
velocities instantaneously on receipt of the communication wave — we therefore
define an additional variable y(x, ¢) and add in the following additional equations:

hicles, respectively. P =

V}_fj) = )/()C, Z‘)Vl_gi‘inal + (1 - )/()C, Z‘))V};“)inilial’ (30)
dy  dy
Y rd o, 31
5 +a8x 3D

where y(x, ) is a Heaviside step function defined such that y(x,¢) = 0 for that x
(Part of the highway that has not received the communication wave by time #), and
y(x,t) = 1 for all other x (30).) thus implies that the moment an equipped vehicle
at x receives the slowdown warning signal at a time ¢, its desired velocity changes
instantaneously from its initial value V7, .. (which is assumed to be the same as
V{ — the desired velocity of the unequipped vehicles) to a final value of Vg, ,
(which is assumed to be approximately equal to the average velocity occurring at the
degraded point far ahead, where a hazard has occurred). Equation 31 is a PDE that
postulates the evolution of y(x, ¢) and in which @ < 0 represents the communication
speed. The boundary condition y(10,¢) = 1 is imposed.
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Fig. 21 (a) Average velocity profiles; (b) average vehicle trajectories of equipped and unequipped
vehicles (5% equipage) for the Reimann Problem

We note that alternative formulations are also possible. For instance, if we assume
that information of the location of the hazard is also broadcasted to the equipped
vehicles (along with the warning signal), then it is reasonable to assume that the
driver of the equipped vehicle will adapt his desired velocity (as a function of
distance to the hazard) so that he attains his final desired velocity by the time he
reaches the location of the hazard. In this case, we could rewrite (30) as:

Vl(f) = )/()C, Z) [(1 —oz(x, Z‘))Vl?ﬁnal + a(xvt)Vl?inilial] + (1 - )/()C, Z‘))Vlginilial’ (32)
where «(x, ¢) is a function that evolves according to the PDE

30{+V 30{_ Vi (33)
o Fox T dy)

with dj representing the average distance of an equipped car to the location of the
hazard, when it first received the warning signal, and the initial condition on « is
specified such that a(x, 0) = 1 for all x to the left of the hazard, and «(x, 0) = O for
all x to the right of the hazard. The boundary condition on o would be «(0,7) = 1.
For the purposes of this chapter, we assume that the change in the desired velocity
of the equipped vehicle occurs instantaneously, i.e., (30) and (31) are employed.
For the first initial condition, we assume an average communication speed of
25kmph. Figure 21a shows the average velocity profiles of the equipped and
unequipped vehicles respectively (for a 5% equipage scenario). It can be seen that as
the communication wave propagates through the equipped vehicles, causing them to
slow down, the unequipped vehicles are also forced to slow down earlier than they
otherwise would have (they thus receive indirect information of the hazard ahead).
The wave velocity of the top portion of the average velocity of the unequipped
vehicles has now become negative (it was formerly positive when they had no
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equipped vehicles among their midst); and this in turn has led to a lower magnitude
of the average velocity shock experienced by the unequipped vehicles. Figure 21b
shows the average vehicle trajectories of the equipped and unequipped vehicles, on
a x — t plane. The propagation of the communication wave is also seen.

Figure 22a demonstrates the magnitude of the velocity shock as a function of
time, for the different equipages. It is seen from Fig. 22b that the largest reduction in
AV that can occur with a 5% increase in equipage, occurs in the 0-5% range. With
10% equipage, the velocity shock magnitude in the unequipped vehicles is reduced
almost by a factor of one-half, for equipages above 15%, the magnitude of benefit
obtained (as measured from the reduction in shock strength of the unequipped
vehicles per unit increase in the density of the equipped vehicles), is not significantly
increased. This behavior is also manifested in Fig. 23b, which demonstrates
||% |lco» as a function of time. Figure 24 demonstrates a manifestation of the
same behavior, when viewed in the spatial frequency domain.
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at ¢t = 320s for different percentages of equipage

After our discussion on the Reimann Problem, we now direct our attention
toward the second initial condition studied earlier, i.e., a situation wherein an
initially continuous condition, evolved with time, to get progressively steeper and
eventually appear like a discontinuity. We then test a scenario wherein we assume
that information of the existence of a velocity gradient is made available to the
equipped vehicles residing to the left of the point x = 6km, at r = 0. Again,
the communication wave is assumed to travel at a constant speed of 25 kmph, in
the backward direction; this time originating from x = 6km, at# = 0. The reason
that this case is interesting is because it enables us to see if and how varying the
percentage of equipped vehicles can arrest the formation of the discontinuity, before
it has developed.

Figure 25 shows the average velocity profiles of the equipped and unequipped
vehicles (assuming a 30% level of equipment). It is seen that the top portion of
the average velocity (which had positive wave velocity when all vehicles were
unequipped, i.e., it was moving forward relative to the highway), now immediately
begins to move backward as the communication wave passes through the equipped
vehicles. This arrests the wave steepening effect that was present in the case of
no equipage; and consequently the equipped vehicles do not experience any abrupt
velocity gradient, while the unequipped vehicles experience a significantly reduced
magnitude of negative velocity gradient, than they otherwise would have.
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Figure 26a shows the magnitude of AV for the unequipped vehicles, with AV
representing the average velocity change of the unequipped vehicles over the region
where W“gﬂ is smaller than —100 kmph/km. It is seen from Fig. 26a that again a
5% equipage causes greatest reduction in AV and that above an equipage of 15%,
the benefit obtained per unit increase in percentage equlpage is not significantly

greater. The same effect is manifested in Fig. 26b that shows ||L‘“”” | 0o-
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4 Conclusions

In this chapter, we look at the problem of mobile mixed sensing networks in an
automotive context. Specifically, we look at scenarios wherein automobiles with
two different levels of sensing capabilities (one type capable of sensing only local,
near-neighbor information, and the other type capable of sensing advance, far-
ahead information through wireless communication) are scattered (or mixed) among
each other. Under these circumstances, we look for conditions on the number and
distribution of the equipped vehicles (which are the ones capable of sensing far
ahead information) that will satisfy a given performance objective of the overall
sensor network. The performance objective considered in this chapter is related to
the safety of the overall network; and the safety metrics considered are those of zero
collisions (in the microscopic modeling case) and weakened shock waves (in the
macroscopic modeling case).
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Abstract This chapter focuses on multi-sensor fusion for navigation in difficult
environments where none of the existing navigation technologies can satisfy
requirements for accurate and reliable navigation if used in a stand-alone mode.
A generic multi-sensor fusion approach is presented. This approach builds the
navigation mechanization around a self-contained inertial navigator, which is used
as a core sensor. Other sensors generally derive navigation-related measurements
from external signals, such as Global Navigation Satellite System (GNSS) signals
and signals of opportunity (SoOP), or external observations, for example, features
extracted from images of laser scanners and video cameras. Depending on a specific
navigation mission, these measurements may or may not be available. Therefore,
externally-dependent sources of navigation information (including GNSS, SoOP,
laser scanners, video cameras, pseudolites, Doppler radars, etc.) are treated as
secondary sensors. When available, measurements of a secondary sensor or sensors
are utilized to reduce drift in inertial navigation outputs. Inertial data are applied
to improve the robustness of secondary sensors’ signal processing. Applications of
the multi-sensor fusion approach are illustrated in detail for two case studies: (1)
integration of Global Positioning System (GPS), laser scanner, and inertial navi-
gation; and, (2) fusion of laser scanner, video camera, and inertial measurements.
Experimental and simulation results are presented to illustrate performance of multi-
sensor fusion algorithms.
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1 Motivation

Many existing and perspective applications of navigation systems would benefit
notably from the ability to navigate accurately and reliably in difficult environments.
Examples of difficult navigation scenarios include urban canyons, indoor applica-
tions, radio-frequency (RF) interference and jamming environments. In addition,
different segments of a mission path can impose significantly different requirements
on the navigation sensing technology and data processing algorithms. To exemplify,
Fig. 1 shows a mission scenario of an autonomous aerial vehicle (UAV).

For this example, the UAV is deployed in an open field; next, the vehicle enters an
urban canyon to perform tasks such as surveillance and reconnaissance; and, finally,
it returns to the deployment point. To enable operation of the UAV at any point
on the flight path, a precision navigation, attitude, and time capability on-board the
vehicle is required. Global Navigation Satellite System (GNSS) generally provides
satisfactory performance in open fields and suburban areas, but has fragmented
availability in urban environments due to satellite blockages by buildings and other
obstacles. Feature-based navigation techniques demonstrate a promising potential
in dense urban areas where enough navigation-related features can be extracted
from images of digital cameras or laser scanners. However, the feature availability
can be limited in relatively open areas. A self-contained inertial navigation system
(INS) can provide navigation solution at any environment; however, the solution
accuracy drifts over time. In a stand-alone mode, none of the existing navigation
technologies has a potential to satisfy the requirements for the navigation accuracy,
continuity, and availability over the entire duration of the UAV flight. Therefore,
multi-sensor fusion techniques are pursued. In other words, to be able to navigate
at any environment at any time, it is beneficial to utilize any potential source of
navigation-related information.

Example applications that involve navigation in difficult environments include
but are not limited to navigation, guidance, and control of autonomous ground
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Fig. 1 UAV mission example
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vehicle (UGV) and UAYV, as well as teams of UGVs and UAVs for urban surveillance
and reconnaissance tasks; geographical information system (GIS) data collection
for mapping applications on open highways and dense urban environments; indoor
search and rescue applications; monitoring of urban infrastructure for situational
awareness; and, precise automotive applications such as automated lane keeping.
Meter-level to decimeter-level reliable positioning capabilities are generally needed
for these application examples. As stated previously, none of the existing navigation
technologies can currently satisfy these requirements or has a potential to provide
these capabilities in a stand-alone mode.

This chapter discusses multi-sensor fusion approaches for navigation in difficult
environments. A generic concept of the multi-sensor fusion is first presented. Next,
the chapter exemplifies applications of the generic multi-sensor fusion concept for
the development of specific multi-sensor mechanizations. Specifically, integrated
Global Positioning System (GPS)/laser scanner/INS and laser scanner/video cam-
era/INS mechanizations are considered.

2 Multi-Sensor Fusion Approach

The generic concept of the multi-sensor navigation utilizes a self-contained inertial
navigator as a core navigation sensor. The INS does not rely on any type of external
information and as a result can operate in any environment. However, inertial
navigation solution drifts over time [1]. To mitigate INS drift, this core sensor is
augmented by reference navigation data sources (such as, for example, GPS or a
laser scanner). Reference data sources generally rely on external observations or
signals that may or may not be available. Therefore, these sources are treated as
secondary sensors. When available, secondary sensors’ measurements are applied
to reduce the drift in inertial navigation outputs. Inertial data are used to bridge
over reference sensor outages. In addition, inertial data can be applied to improve
the robustness of reference sensor signal processing: for instance, to significantly
increase the GPS signal integration interval in order to enable processing of very
weak GPS signals and to reduce the susceptibility of GPS to RF interference [2].
Figure 2 illustrates the multi-sensor fusion approach.

Figure 3 provides a more detailed illustration of the interaction between the INS
and a secondary navigation sensor.

Secondary sensor generally includes a signal processing part and a navigation
solution part. The signal processing part receives navigation-related signals and
measures their parameters. For example, GPS receiver tracking loops [3] or open-
loop batch estimators [17] measure parameters (pseudoranges, Doppler frequency
shift, and carrier phase) of the received GPS signals. Another example is a laser
scanner time-of-flight measurement that is directly related to the distance between
the scanner and a reflecting object. Measurements of signal parameters are then
applied to compute the navigation solution. For example, GPS pseudoranges are
used to compute the GPS receiver position [3], changes in distances to reflecting
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Fig. 3 Data fusion between the INS and a secondary navigation sensor

stationary objects are exploited to compute the change in the position of the laser
scanner [4]. Note that the navigation solution can only be computed if a sufficient
number of signal measurements is made. For example, at least four pseudorange
measurements must be available to compute the GPS-based position; at least two
lines must be extracted from an image of a two-dimensional (2D) laser scanner to
compute a 2D laser position [4].

The multi-sensor fusion architecture above applies secondary sensor’s signal
measurements to estimate drifts in inertial navigation outputs. This approach is
generally referred to as tight coupling. The use of signal measurements for the
INS drift re-calibration is more beneficial as compared to the use of the secondary
sensor’s navigation solution (this form of sensor fusion is referred to as loose
coupling). As opposed to loose coupling, tight coupling still allows for the INS drift
mitigation even for those cases where insufficient number of signal measurements
is available and the complete navigation solution cannot be derived.
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The estimation of the INS drift terms is performed using the mechanism of a
complementary Kalman filter. The idea is that a signal parameter can be generally
represented as a function of position, velocity, and attitude. This function is
computed based on INS navigation outputs and then compared to the actual signal
measurement. A discrepancy between the INS-based signal prediction and the signal
measurement is used by the complementary Kalman filter mechanization to estimate
INS drift terms. A generic Kalman filter measurement observable ¥ is formulated
as follows:

¥ = p(Rins, Vins, @Ns) — P (1)
where:

e Ryngs is the INS position vector

* Vs is the INS velocity vector

e apns is the INS attitude (that can be represented as a direction cosine matrix,
rotation vector, rotation quaternion, or Euler angles [1])

* p(Runs, Vins, @ins) is the signal value predicted based on the inertial output;

e pis the actual signal measurement

The signal measurement herein is denoted by p since the tight coupling approach
was first applied to the GPS/INS integration case in order to fuse GPS pseudorange
measurements and integrated Doppler range measurements with inertial data [5].
For this reason, the INS calibration in the signal measurements’ domain is also often
referred to as the range-domain data fusion. Obviously, the formulation above is not
limited to the GPS/INS integration case and is applicable to any type of navigation-
related signal measurements. It is important to mention that video measurements
serve as an exclusion for this general rule of the observation formulation. For a
vision-based case where the distance to a navigation-related feature is unknown
and cannot be measured (for example, a monocular camera case without any
prior feature information), image features are related to navigation parameters
not in the form of a non-linear function, but rather in the form of a non-linear
motion constraint. This constraint is formulated as f(R,«,m, p) = 0, where m
represents feature homogeneous coordinates (i.e., Cartesian coordinates scaled by
the image depth) and p is the distance to the feature. In this case, non-linear motion
constrains and inertial data are used to formulate Kalman filter observables: i.e.,
f(Rns, oNs, M, p) = 0, where m denotes homogeneous feature coordinates that
are extracted from video images.

To implement a complementary Kalman filter, (1) is linearized as using a Taylor
series expansion:

¥ = p(Rins, Vins, @iNs) — ()
ap ap ap
o~ —35R SR ] —(p— 3
p+ IRy RN + TV s + Bt ans — (0 —np) 3
ap ap ap
= SR ——6R 1) — 4
TRy NS + Vs s + DS QNS — 1 “®
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where:

* pis the true value of the signal parameter

* 1, is the measurement noise

* S6Rins, 6Vins, and Soqns are the INS position, velocity, and attitude errors,
respectively.

Non-linear motion constraints are linearized for the case of video measurements.
These linearized formulations are then utilized by standard Kalman filter routines
(i.e., prediction, estimation, and covariance updates) to estimate INS error states.

For those cases where multiple measurements are available from secondary
navigation sensors, the measurement observation vector is expressed as follows:

{y,(i)} = ,Oz(i)(Rle, Vins, aINs) — ,5;” (%)
I=1,....L (6)
i=1,...,1 (7

In (5), [ is the reference sensor index and i is the measurement index for a
particular reference sensor. For example, reference sensors can include GPS, laser
scanner, and Doppler radar with corresponding indexes 1, 2, and 3. In this case, yg
represents a Sth measurement observable for laser scanner measurements. Specific
formulations of Kalman filter measurement observations are exemplified in Sect. 3
for cases of GPS, laser scanner, and vision reference sensors.

As mentioned previously, while the secondary sensors’ measurements are used to
improve the inertial accuracy, the INS data can be applied to improve the robustness
of the secondary sensor’s signal processing. For example, inertial data can be used
for robust matching of features between different images of a video camera or a laser
scanner. Another example is the use of inertial aiding for GPS signal integration in
order to enable tracking of signals that are attenuated by buildings [6].

Secondary navigation sensors that can be applied for the multi-sensor fusion with
the INS include:

* GNSS and partial GNSS: GPS and GNSS signal measurements can be effi-
ciently integrated with inertial data in open areas and also in difficult GPS signal
environments (such as urban areas) where limited GNSS signals may still be
available [6,7].

* Feature-based navigation sensors: Examples include image-aided inertial nav-
igation [8] and ladar-aided inertial navigation [4].

* Beacon-based navigation (including pseudolites): If the GPS signal is not
adequate for navigation in a particular environment, it is possible to transmit
an additional signal or signals that are specifically designed for navigation
purposes. If the transmitted signals are similar to GPS signals, then such
beacon transmitters are usually called “pseudolites.” Examples of beacon-based
navigation systems for indoor navigation can be found in [9] and [10].
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e Signals of opportunity (SoOP). Signals of opportunity, as defined in this
chapter, are radio-frequency (RF) signals that are not intended for navigation.
Examples from previous research include digital television [11], analog televi-
sion [12], and AM radio [13, 14].

The remainder of this chapter illustrates application of the generic multi-
sensor fusion approach described above GPS/laser/inertial and vision/laser/inertial
integrated mechanizations.

3 Example Multi-Sensor Fusion Mechanizations

3.1 GPS/Laser Scanner/Inertial

Feature-based navigation techniques represent a viable option for navigation in
difficult GPS environments. For example, the integrated laser scanner/INS solution
was demonstrated to provide sub-meter accurate navigation for dense urban envi-
ronments where multiple lines can be extracted from scan images [4]. However,
the feature-based navigation approach clearly has its limitations. Relatively open
streets represent challenging conditions for the line-based navigation due to limited
line availability. To illustrate, Fig. 4 shows a scan image recorded on a relatively
open street. For this example, only one line is extracted from the image and the
system must augment its position computations by the INS coasting option.

In addition, even in dense urban canyons, line geometry observed in scan
images can be insufficient to support complete observability of the navigation states.
Figure 5 illustrates the case where lines in the scan image are created by two nearly
parallel building walls. In this case, lines extracted from laser scans are nearly
collinear. This line geometry allows for the estimation of the cross-track position
component only: i.e., the vehicle motion component in the direction perpendicular

Scan image
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Fig. 4 Example of the laser scan image taken on a relatively open street: only one line is extracted
from the image, which is insufficient to compute the position solution
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Fig. 5 Example of the laser scan in an urban canyon: nearly collinear lines are extracted, which
limits the observability of position states

to the walls can be estimated, while the along-track (parallel to the walls) motion
component is unobservable and INS coasting has to be used to compute vehicle
displacement in this direction.

The use of GPS can efficiently augment the feature-based navigation approach.
Relatively open streets (see, for example, Fig. 4) generally provide enough open
sky visibility to track a number of GPS satellite signals that is sufficient for
navigation computations. In dense urban canyons where only limited feature
geometry is available (see, for example, Fig. 5), a reduced number of satellite
signals can be still trackable through limited portions of an open sky. Combining
line measurements with these additional GPS measurements can complete the
observability of navigation states. To exemplify, the availability of high-elevation
satellites that have line-of-sight (LOS) azimuth angles aligned with the direction
of an urban canyon shown in Fig. 5 can complete the observability for the along-
track position component. In this case, two satellites are required to complete the 2D
position and clock solution. One satellite is sufficient for the case where a reliable
estimate of the GPS receiver clock bias is available: i.e., the receiver clock bias and
clock drift have been previously estimated and the clock stability figures allow for
an accurate propagation of the clock state estimates from the estimation time to the
current measurement epoch.

Integration of GPS, laser scanner, and inertial data is discussed in the remainder
of this subsection. Figure 6 illustrates the integrated system architecture.

This architecture combines GPS, laser scanner, and inertial data for trajectory
reconstruction, i.e., the estimation of changes in the user position (or delta position)
between successive GPS and laser measurement epochs. An open loop software
GPS receiver [17] is exploited for robust carrier phase tracking in difficult envi-
ronments. The integrated solution utilizes INS navigation outputs to improve the
solution robustness. Particularly, inertial data are applied to (1) predict feature
displacements between laser scans for robust feature association between scan
images, and, (2) computationally adjust a 2D scan plane for tilting of the laser
scanner platform.

As shown in Fig. 6, a Kalman filter is used to periodically compute estimates
of inertial error states that are then applied to mitigate the drift in INS navigation
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Fig. 6 Integrated GPS/laser scanner/INS system architecture

outputs. Kalman filter observables are formulated in the measurement domain of
GPS and laser scanner, which is, as mentioned previously, referred to as range-
domain data fusion. Specifically, changes in GPS carrier phase measurements
and changes in ranges to lines extracted from scan images serve as filter mea-
surement observables. A complementary filter formulation [15] is utilized for the
efficient linearization of system state relations: i.e., filter measurement observables
are computed as differences between GPS (and/or laser scanner) measurement
observables and INS navigation outputs transformed into the GPS (and/or laser
scanner) measurement domain. In addition, a dynamic-state filtering approach [16]
is exploited. In this case, the filter implements displacement error states (dynamic
states) rather than absolute position error states.

GPS observables of the Kalman filter are based on carrier phase single differ-
ences (SDs) between the filter update epochs. The SD approach allows exploiting
mm-level accurate carrier phase measurements for trajectory reconstruction without
the need to resolve integer ambiguities. Equation (8) formulates the carrier phase
SD equation [17]:

AQ; = @j(ty) —@j(tm—1) = Arj 4+ Abtweyr + Aerrors; + An; )

where:

* Ag, is the carrier phase SD for satellite j
* @, is the carrier phase measurement for satellite j
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e Ity = to+ M - Atgps is the discrete time and Atgps is the GPS measurement
update interval

e Ar; =rj(ty) —rj(tm—1) is the SD of the range r; between the GPS antenna
and satellite j

e Adtyy, is the SD of the receiver clock bias, or, equivalently, the receiver clock
drift accumulated over the Afgps interval

* the Aerrors; term represents changes in deterministic error components of stand-
alone GPS measurements and includes changes in ionospheric and tropospheric
delays, changes in the satellite clock bias, and drift components of relativistic
corrections

e An; is the joint noise and multi-path term, which includes carrier noise and
multi-path

The SD in satellite/receiver range is expressed as follows:
Arj = SVDoppler; — Ageometry; — (e;(ty), AR) )

where:

¢ SVDoppler; is a change in the range due to the satellite motion along the
line-of-sight (LOS)

* Ageometry; accounts for changes in the relative satellite/receiver geometry

* ¢; is the unit vector pointed from the receiver to the satellite, this vector is
generally referred to as the LOS unit vector

e AR is the receiver position change vector for the interval [ty—1, fa/]

e (,)is the vector dot product

Carrier phase SDs are adjusted for the satellite motion terms, geometry terms,
and delta error terms prior to their exploitation as Kalman filter measurement
observables. For the SD adjustment, satellite motion and geometry terms are
computed as follows [17]:

SVDoppler; = (e, (ts). Rsv; (1)) — (€ (tar—1). Ry, (tar—1)) (10)
Ageometry; = (e;(ty) — € (tyr—1). R(tp—1)) (11)

In (10) and (11):

* Rgy; is the satellite position vector
* Ris the receiver position vector

For geometry compensation, the receiver position vector R at the previous update
(tp—1) 1s estimated based on GPS pseudorange measurements. For those cases
where not enough pseudorange measurements are available, the position estimate
is propagated using inertial data. Note that a sub-hundred-m level accurate position
estimate is generally sufficient to support mm-level accuracy in the carrier phase
SDs [17]. The satellite position Rgy; vector is computed from ephemeris data, and
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the LOS unit vector e; is computed based on ephemeris data and the pseudorange-
based receiver position estimate. Tropospheric drift terms are compensated based on
tropo models [3]. Iono delta errors are normally compensated using dual frequency
measurements [3]. However, generally, iono drift terms stay at a mm/s level or
less unless ionospheric scintillations are present [17]. Thus, for most operational
scenarios, uncompensated iono drift does not significantly influence the accuracy of
carrier phase SDs. For this reason, the system mechanization reported in this chapter
does not implement iono corrections.

From (8) and (9), carrier phase SDs that are adjusted for the satellite motion,
geometry changes, and delta error terms are expressed as follows:

A () = —(e;(tr). AR) + AStreye + An (12)
GPS observables of the Kalman filter are computed as differences between INS-

based predicted values of carrier phase SDs and carrier phase SDs that are actually
measured by the GPS receiver. For satellite j, this difference is formulated as:

u;(alman — A@}NS _ A@;dj (13)
where:
AGPS = — (& (). ARws + AT} LR ) (14)

In (14), ACY = C}])V (tm) — C}])V (tp—1) and LS\}[)[SJ is the lever-arm vector between
the inertial measurement unit (IMU) and GPS antenna with the lever-arm vector
components being resolved in the body frame. Equations (13) and (14) illustrate
the specific implementation of the generic multi-sensor fusion observable, which
is formulated by (1), for the case where GPS carrier phase measurements serve as
reference measurements for the INS drift estimation.

Laser scanner observables of the Kalman filter are computed from navigation-
related features observed in scan images. These observations are illustrated in Fig. 7.

For the laser scanner case, lines are chosen as the basis navigation feature [4].
Kalman filter observables are formulated based on changes in line parameters
between consecutive scans. As illustrated in Fig. 7, changes in the scanner location
between scans create changes in parameters of lines observed in scan images. In
Fig. 7, line is represented by its normal point, where a normal point is defined as a
perpendicular intersection of the line itself and the line originating from the scanner
location. Line normal points are characterized by their polar parameters: range p
and angle «. From the geometry shown in Fig. 7, position change is related to the
line range change as follows [4]:

Apy = pr(tm) — oy (trr—1) (15)

= —ARy cos (ak (lM—1)) — ARy sin (ak(tM_l)) + Ag, (16)
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Fig. 7 Laser scanner motion
and observed change in line
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where:

* Ap, is the line range change for line k

* [, is the line range estimated by a line extraction procedure (e.g., using a
modified iterative split and merge line extraction algorithm described in reference
[18])

e ARy and ARy are position change components

* o is the line angle

* Ag, is the noise in estimated line delta range that is due to line extraction errors;
these errors generally comprise of laser measurement noise and a texture of a
scanned surface

Note equation (15) operates with line parameters that are transformed into the
horizontal plane using the laser tilt compensation procedure described in [4]. Lines
are observed at the laser scanner body frame. This frame can be tilted due to non-
zero pitch and roll angles of the scanner platform. The tilt compensation procedure
exploits INS attitude outputs to project lines observed in the scanner body-frame
onto a horizontal plane of the navigation frame in order to mitigate the influence
of laser tilt angles on the navigation solution accuracy. Thus, (15) relates changes
in line parameters with changes in position vector components that are resolved in
the axes of the navigation frame. For the system implementation considered in this
chapter, navigation is performed at the East-North-Up (ENU) frame. Laser scanner
body-frame and body-frame of the IMU are computationally aligned to the axes
of the navigation frame during the system initialization stage. IMU body-frame is
physically aligned with the laser body-frame and misalignment errors are calibrated
during the system initialization.

Below, (15) is reformulated in a vector form:

Apy = —(nk(tm). AR) + Agy (17)
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where:

T
ng(ty—1) = |:cos (ock(tM_l)) sin (ak(tM_l)) 0j| (18)

A laser scanner observable of the Kalman filter is computed as a difference
between line delta range predicted based on inertial data and a line delta range
extracted from scanner measurements. For line p, this is formalized as follows:

v]lc(alman — Aﬁ]I{NS _ Alak (19)
where:
AR = = (mi(n), ARus + AC) - LER) 20)

and, L{“ﬁsﬁr is the IMU to laser scanner lever arm resolved in the body-frame. Note
that (19) and (20) represent a specific implementation of the generic multi-sensor
fusion observable defined by (1) for the case of laser/inertial data fusion.

GPS and laser observables of the Kalman filter are combined into a joint filter
measurement vector:

¥Kalman = [ull(alman o Ml;alman vll(alman o vl]((alman ]T (21)

As mentioned previously the Kalman filter implements the dynamic-state estima-
tion approach: i.e., the filter does not estimate absolute position; instead, position
changes between GPS and laser scanner measurement updates are estimated. The
state vector for the dynamic-state filter formulation includes twenty states: delta
position error states (three states); velocity error states (three states); attitude error
states (three states); delta attitude error states (three states) — these are attitude
errors accumulated over the filter update interval; gyro bias states (three states);
accelerometer bias states (three states); and, GPS receiver clock states that include
delta bias state and drift state. For this state vector, the filter observation matrix
(Hkalman) 1s derived from the filter observation equations (13), (14), (19), and (20).
Elements of this matrix projections of filter states into the filter observation domain
as illustrated in Fig. 8.

In Fig. 8:

e (’sare 3 x 1 zero rows
e a b,c, dare 3 x 1 rows that account for the transformation of INS attitude error
terms into the filter observables through the lever-arm compensation

These matrices were derived using the approach proposed in [16]. Results of the
derivation are as follows:
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Fig. 8 Kalman filter observation matrix: matrix elements define projection coefficients for
projecting filter states into the filter observation domain

a; = (e x (a0} L))
& % (CY ) LGR))

(
e
o

b;

~ T
e AC) L))
dy

. T
g x (CY (tm—1) - LILﬁSLeJr» (22)

where:
e X is the vector dot product

The filter measurement noise matrix is a diagonal matrix defined by variances in
carrier phase SDs and line delta ranges:

T 2 2 2 2
Rkaiman = diag (aAW s Oy, O Ap s .,GApK) (23)

Carrier phase sigmas (0 ,,, ) are computed as follows:

Uiq),- = Ujj (tm) + Uéj (tm—1) (24)
AL 1 C/Noj(ty)

(ty) = — | — - 107 25

0, (ty) o\ T 10 (25)

j=1.,J (26)



Navigation in Difficult Environments: Multi-Sensor Fusion Techniques 213

where:

e A1 is wavelength of the GPS link 1 (L1) carrier (0.19 cm, approximately)

e Tiy is the GPS receiver signal integration interval

e C/No is the carrier-to-noise ratio that is routinely estimated by the open loop
GPS receiver

Laser delta range sigmas (o0 , pk) are calculated based on (27):

Oy (t) = 0) (tn) + 0, (ty—1) k=1, K (27)

where:

05, are line range sigmas that are estimated using the approach reported in [19].

With the filter states listed above, filter measurements formulated by (13), (14),
(19), and (20), and filter matrices represented in Fig. 8 and defined by (22) and
(23), the INS drift estimation procedure implements a complementary Kalman filter
algorithm for the estimation of the inertial error states and GPS receiver clock
states. The filter formulation is similar to the GPS/INS Kalman filter model found
in [15].

Performance of the GPS/laser scanner/inertial solution is illustrated below using
experimental data collected in real urban environments. A test van was used as a
platform for urban data acquisition. The data were acquired in Athens, OH, USA.
Figure 9 shows a photograph of the data collection setup.

The setup used to acquire and process live GPS, laser scanner, and inertial urban
data includes:

e Laser scanner: SICK LMS-200. A centimeter distance measurement mode was
chosen. For this mode, a standard deviation of the laser ranging noise is specified
as Smm. The maximum measurement range is 80 m. A scan angular range is
from 0 to 180° with an angular resolution of 0.5°. A scanner update rate of one
scan per 0.4 s was used.

e IMU: Systron Donner DQIIMU. This IMU represents a tactical-grade unit whose
main characteristics are summarized in Table 1.

* GPS receivers: A software receiver front-end developed at the Ohio University
Avionics Engineering Center was used for collection of raw GPS signal samples
[20]. A NovAtel Superstar II receiver provided 1 PPS signal for time-stamping
of laser scanner and inertial measurements.

* Synchronization and data collection board: Xilinx Spartan-3 Field Programmable
Gate Arrays (FPGA). The board decodes laser and inertial data from correspond-
ing measurement sensors, time stamps the measurements decoded using 1 PPS
signal, and then sends time-stamped measurements via a Digilent USB board to
a PC that collects the data for post-processing.

* Data processing: Post-processing implemented in Matlab™.
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Fig. 9 Data collection setup used for the acquisition of GPS/Laser scanner/inertial urban test data

Table 1 IMU characteristics

Parameter Value

Gyro bias in-run stability 3°/h (sigma)

Gyro noise 0.035°/+/h (sigma)
Gyro scale factor 350 ppm (sigma)
Accelerometer bias in-run stability 200 pg (sigma)
Accelerometer noise 2 gl /Hz (sigma)
Accelerometer scale-factor 350 ppm (sigma)
Sensor axis non-orthogonality 0.5 mrad

Figure 10 shows test trajectory implemented for the first test scenario. This
figure shows the vehicle trajectory along with images of the environment taken at
select trajectory points. The test trajectory shown is reconstructed by the laser/INS
integration that is described in [4].

As it can be seen from the images represented, the test trajectory includes both
relatively open streets as well as dense urban canyons. Thus, this trajectory allows
testing performance of the integrated solution in a variety of urban environmental
conditions.

Figure 11 illustrates complementary availability of GPS and laser measurements
for the first test scenario. Availability of GPS measurements is represented by



Navigation in Difficult Environments: Multi-Sensor Fusion Techniques 215

-
—

o8 & 8 &

North displacement, m
g 2

white segment of
vehicle path

Fig. 10 Test trajectory: trajectory reconstructed by the laser/INS integration is shown along with
images of the environment taken at select trajectory points

satellite tracking statuses. A particular satellite is designated by its pseudorandom
code number (PRN). The satellite tracking status is shown using a black-to-white
color scheme. Black color indicates satellites with a strong C/No (50 dB-Hz or
higher). White color is used for satellites with a C/No value below the tracking
threshold of 32 dB-Hz: i.e., white color indicates that a satellite is not visible.
The black-to-white color scheme is also applied to illustrate the availability of
features extracted from scan images. Black color indicates that multiple lines are
extracted from scan images and the line geometry allows for complete navigation
computations. White color designates cases where no lines are extracted. As shown
in Fig. 11, GPS and laser scanner measurements exhibit complementary availability.
Limited or no GPS measurements are available in dense canyons where multiple
lines are extracted from scan images: see, for example, a portion of the plot that
corresponds to the urban canyon image. Vice-versa, a sufficient number of visible
satellites is present on open streets where limited or no lines are extracted from
laser scans: see, for example, a portion of the plot that corresponds to the open
street image.
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Fig. 11 Complementary availability of GPS and laser scanner measurements

Delta position residuals are applied to characterize the trajectory estimation
performance. Residual vector (6R) is computed as the difference between the
laser/GPS weighted LMS estimate of the delta position (ARpser/Gps) and inertial
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Fig. 12 Delta position residuals for the GPS/laser/INS urban test example

delta position (ARyns) that is compensated for drift terms using Kalman filter
predictions:

6R = ARierors — ARms — (CN() = C(w-n)) - LGRS (28)

The GPS/Laser LMS delta position solution is computed based on GPS carrier
phase SDs and laser line delta ranges without the use of the inertial. LMS estimation
details are given in [7]. Essentially, delta position residuals characterize the level
of noise in the reconstructed trajectory. This noise is a combined effect of the
GPS carrier phase noise, noise in line ranges, and the noise component of INS
position drift. Figure 12 shows residual plots for East and North components of
delta position.

The standard deviations of East and North residual components are computed
as 3.0 cm and 2.0 cm, respectively. For a similar test trajectory, residual standard
deviations of the laser/INS integrated implementation (i.e., when GPS observables
of the Kalman filter are not used) are at a 7-cm level [4]. GPS/laser/INS residual
noise is generally increased when the LMS solution relies primarily on line ranges
as compared to cases with good satellite availability. This is due to a higher level
of noise in line ranges (caused mostly by the texture of scanned urban surfaces) as
compared to the carrier phase noise. For example, an increased residual noise can
be observed for the time interval starting at approximately 60 s and ending at ap-
proximately 130 s. This interval corresponds to a part of the trajectory that belongs
to dense urban environments where limited satellites are available: for illustration
of the environment, see the third image from the trajectory start in Fig. 10.
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3.2 Vision/Laser Scanner/Inertial Integration

Vision-based navigation techniques serve as a viable option for autonomous,
passive navigation, and guidance in GPS-denied environments [8]. However, vision-
based methods, including stereo-vision, are known to be brittle to signal noise,
particularly in terms of estimating the image depth. Stereo vision suffers from
several disadvantages. The first is synchronization: if the stereo system is moving,
and the two images are not captured at the same time, the time discrepancy between
the two images can invalidate the stereo reconstruction. This timing discrepancy
cannot be completely compensated using the relative motion information (provided,
for example, by the inertial navigation) due to the unknown image depth. A second
problem is “vergence,” i.e., the fact that the area of interest must be in the field of
view (FoV) of both cameras, and must be focused in both cameras. This typically
requires different orientation of the cameras for close targets (e.g., more “cross-
eyed”) and far targets. Differences in the optical response of the two cameras can
also make matching more difficult. Monocular vision methods give a scaled estimate
of camera motion and a scaled estimate of scene structure. This scaled estimate
is the major drawback of monocular methods, and requires additional sensors or
information to recover the correct scale.

The fusion of vision and laser data is applied for efficient resolution of the
scale ambiguity and performance enhancement of the navigation accuracy and
reliability in the face of image noise. Laser scan data are exploited to initialize three-
dimensional (3D) tracking of stationary features and to enhance the feature tracking
performance. Example 3D features include planar surfaces (characterized by range
and normal vector) and point features (characterized by their Cartesian coordinates).
Changes in feature parameters between images are used for navigation. Inertial data
are applied to perform robust feature matching between images and coasting in
environments where insufficient features are available. INS data can also be used
to adjust laser scan range measurements for platform motion in order to compensate
for the time discrepancy between camera images and laser scans. The proposed
integration concept allows for the initialization of 3D feature tracking based on a
limited number of laser scans: two scans are required, after which the system can
operate in a completely passive mode. This serves as an important aspect for many
surveillance, reconnaissance, and navigation missions.

To improve the robustness of the navigation solution, the vision/laser integrated
mechanization is augmented with inertial sensor measurements. INS outputs are
exploited for robust matching of the features that are extracted from vision and laser
data. The use of INS outputs for feature matching in video images is described in [8].
Details of the INS-based feature matching in laser scan images are discussed in [4].
Inertial data are also used to coast through those cases where a limited number of
features is available. Figure 13 shows a high-level diagram of the Vision/Laser/INS
integrated mechanization.

Laser scanner measurements are used to initialize the depth estimate of the
vision-based features. As stated previously, a very limited number of scans (two
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Fig. 13 Vision/Laser/INS integrated solution

scans) is sufficient for the image depth initialization. Following the initialization
step, the system can operate in a complete passive mode using vision-based features
only. Navigation accuracy can be improved considerably if periodic scans at a
limited rate (such as, for example, one scan per 30 s) are applied. This aspect is
explained in more details in the feasibility demonstration discussion below. For
those cases where the active component of the laser measurement mechanism does
not represent a concern (i.e., for the majority of civil use cases), laser scanner
can operate continuously to provide additional feature measurements in order to
improve the navigation performance.

The vision/laser/INS mechanization shown in Fig. 13 estimates the navigation
solution (position, velocity, and attitude) from the INS. Vision and laser feature
measurements are applied to estimate inertial error states in order to mitigate drift in
inertial navigation outputs. Laser-based observables of the Kalman filter are defined
by (17) through (20) above.

Equation (29) formulates vision-based observables of the Kalman filter using
the unit sphere representation of image features that supports multi-aperture camera
cases [21]:

T . - T .
(85) - ACL -B-ARws — () -BT-ACY &y
Kalman —

P (29)

T . T
(ﬁf)) “ACY -D, - AR — (nfvz)) - ACY -n(jL -y

p=1..P (30)
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where:

. ﬁf;), p=1,...,P, s = 1,2 is the unit vectors of the feature p (i.e., the unit

vector pointed from the center of the camera to the feature p) that is extracted
from image s

. ﬁﬁf)p is the unit vector that is perpendicular to the feature unit vector; £ ],(1) is the
estimated feature range for image 1

e ARpgs and Aéf)\’ are INS position and orientation changes between images
1 and2

* Matrices B and D are defined as follows:

[0 -1 0
B=|1 0 0 (31
|0 0 0
i 0 0 —Cos ((p},l))
D, = 0 0 —sin(e}") (32)
cos ((pfvl) ) sin ((pfvl) ) 0

where:

qofpl) is the feature spherical azimuth angle as measured from image 1.

Image 1 is generally the image where the feature was first observed and image 2
is the current image. Equation (29) is linearized to support the linear formulation of
the complementary Kalman filter.

As stated previously the key motivation for combining vision and laser data is the
use of laser scan measurements for the estimation of the unknown depth of video
images. The estimation approach is illustrated in Fig. 14.

The depth estimation exploits two images from a video camera and two laser scan
images that are acquired at two different locations. It is assumed that the camera
and the laser are mounted on the same platform and their measurement frames
are collocated. Parameters of features that are extracted from laser scan images
and video images at two locations of the platform are used to estimate the image
depth. The estimation does not require the camera and the laser to observe the same
features: i.e., video and laser features can be completely unrelated to each other.
The initialization method discussed in this chapter assumes that point features are
extracted from video images and lines are extracted from laser scans. This method
can be generalized to include other types of features.

To provide a conceptual illustration of the depth initialization method, a simpli-
fied 2D case is considered below. This case is illustrated in Fig. 15.

Camera and laser are placed on the same moving platform and their measurement
frames are aligned. The platform moves along the X axis of the XZ navigation
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Fig. 15 Tllustration of the depth initialization method: simplified 2D case

coordinate frame. The camera optical axis is aligned with the Z axis of the frame.
For simplicity, it is assumed that the camera focal length F equals unity. Feature 1
is observed by the camera and feature 2 is observed by the laser scanner. As stated
previously, these features may be completely unrelated. The platform displacement
AX transforms into the displacement of the vision-based feature as:

AxV = Ax/z® (33)

where:
« ZW is the unknown depth

The laser scanner observes feature 2. The distance to this feature is directly
measured by the scanner: 2D scan points are generally represented by their polar
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coordinates that include range and polar angle. Polar coordinates of feature 2 that are
extracted from two scan images are applied to estimate the platform displacement:

AX = — (pf) sin (af)) - pgz) sin (afz))) (34)

where:

. (pgz), 042)) and (pgz), aéz)) are the range and polar angles of feature 2 in the first
and second scan images, accordingly

Platform displacement that is estimated based on scan data is then used to
initialize the depth of the image-based feature:

ZW = AX/AxD (35)

A similar approach is applied to estimate the image depth for a general 3D
case. Equation (36) relates 3D Cartesian feature coordinates M, to its homogeneous
coordinates m, in the 2D image frame:

M) = Zm) (36)
M = ZPm) (37)
p=1..P (38)

where:
e Z ,ij ) is the depth of the kth feature in the jth image

Cartesian feature coordinates in two images are related through the orientation
change matrix and the translational vector:

2 N 1
M = Ac) (M) - AR) (39)
Substituting (36) into (39) then yields:
2 — N 1) 1)
MP = Ac) (2" m)) - AR) (40)

Assuming that the optical axis is aligned with the Z-axis of the camera frame,
the depth of the feature is related to its Cartesian coordinates as follows:

zY) =nj-M{ (41)

where:

e n,=[001]
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From (36) through (41), the following relationship can be derived [22]:

AR
|| o -
H, = A (L - 4¢) -m - (L ac})) [ L -m! ] (43)
p=1,....P (44)
where:
a=[o0]

e I3y3 is the 3-by-3 unit matrix
e 0yx;isa?2 x 1 zerocolumn

Equation (42) formulates vision-based linear equations for the estimation of
the image depth. Note that unknowns include the depth components (Z;,l), p =
1,..., P) and the displacement vector AR. The orientation change matrix is
computed from the inertial data and is not estimated based on the laser/vision fusion.
This allows for the linear formulation of the depth estimation problem. Note that in
this case a correlation between inertial angular errors and initial depth estimates is
created. This correlation must be taken into account in the design of the Kalman
filter that estimates inertial drift states.

The solution of the equation system (42) is not unique. The displacement vector
and depth can only be determined within an ambiguity of a scale-factor y: i.e.,
if AR and 2,(,1) satisfy the system (42), then yAﬁ and yZ},l) satisfy this system
as well. To remove the scale-factor ambiguity, the system (42) is augmented by
laser measurement observables. Line features are extracted from laser images and
applied for the image depth initialization. It is assumed herein that lines are created
in 2D scan images as a result of the intersection of the horizontal laser scanning
plane with vertical planes (such as building walls in urban environments). In this
case, the relationship between changes in line parameters and displacement vector
components is formulated by (15) above, which, in the matrix form, is expressed as
follows:

1 2
nf AR = pi” — p”

s l?) s ()]

k=1,.,K (45)

n;
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Camerai0

Fig. 16 Data collection setup used for demonstrating the feasibility of the laser/vision depth
estimation

Equation (45) provides the laser part of the image depth estimation relations.
Combining (45) with the vision-based part defined by (42) yields:

0/ AR =p" —pP k =1,...K (46)

Equation (46) defines a linear system of equations for the estimation of image
depth. Note that the minimum feature configuration that is required to initialize the
image depth based on (46) includes three vision features and one laser feature. In
this case, seven equations are available (two per vision feature and one for the laser
feature) to estimate six unknowns (three depth values and three components of the
displacement vector).

The image depth initialization method was verified with experimental data.
Indoor experimental data were collected in hallways of the Air Force Research
Laboratory at Eglin Air Force Base. Figure 16 shows a photograph of the data
collection setup.

The data collection setup includes a laser scanner and three video cameras. This
setup was assembled for the development and verification of the laser scanner/multi-
aperture video data fusion. Only one video camera was used for the experiment
discussed herein. A straight motion trajectory was implemented. Two laser scans
were used to initialize the depth of video images. Following the depth initialization,
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Vision/laser trajectory estimation performance
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Fig. 17 Example of the vision/laser trajectory estimation performance: only two laser scans are
applied to initialize the image depth (at the system start-up and at about 5 s after the beginning of
the experiment); following the depth initialization, 3D position components are estimated based on
video images only

the displacement vector was estimated based on vision features only without the
use of laser scan data. Vision-based displacement estimates were compared to
the reference motion trajectory. To construct the reference trajectory, cm-accurate
displacement information was estimated from laser scan images as described in
reference [4]. Figure 17 exemplifies experimental results.

Experimental data presented show that decimeter-level positioning accuracy that
is achieved using video images and two laser scans to initialize the image depth.
These results clearly demonstrate the feasibility of the semi-passive navigation
approach that uses very limited laser scans (two scans for the example case
considered herein) for the initialization of 3D image-based navigation.

Feasibility of the vision/laser/INS mechanization described above was assessed
in an indoor simulated environment that was implemented in Matlab. For the
simulation, the sensor specifications were implemented as follows:

1. Video: a multi-aperture camera head that includes three video cameras (see
Fig. 16 for the illustration of the multi-aperture implementation); the angular
separation between the camera optical axis is 120°; for each camera the
resolution is 640 x 480, the azimuth FoV is 40°, the elevation FoV is 40°, and,
the update rate is 10 Hz;

2. Laser scanner: measurement range is 80 m; angular range: is from 0 to 360°;
range noise is 1 cm (std); and, angular resolution is 0.5°;

3. IMU: accelerometer bias is 1 mg; and, gyro drift is 50°/h.

Figure 18 illustrates a 2D horizontal projection of the simulated indoor envi-
ronment that includes multiple indoor hallways. Hallway walls were simulated as
vertical with the wall height equal to 2.5 m. A horizontal motion trajectory with the
absolute velocity value of 1 m/s was implemented as shown in Fig. 18.
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Fig. 18 Simulated indoor environments
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Fig. 19 Performance of the vision/inertial integration for the indoor simulated environment

Figure 19 shows performance of the vision/inertial integration, i.e., the use of
laser measurements.

In this case, the feature depth is initialized by observing the feature from two
different location of the platform and using inertial displacement and orientation
change measurements for the unambiguous estimation of the image depth as
described in [21]. Simulation results shown in Fig. 19 indicate that position
errors of the vision/INS integration stay in the range from —10m to 20m.
This level of navigation performance is improved significantly if laser scanner
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Fig. 20 Performance of the vision/inertial integration for the indoor simulated environment: 1-s
laser updates

measurements are incorporated into the solution. Figure 20 illustrates performance
of the vision/laser/INS mechanization for the case where a 1-s update rate of laser
images is used.

The use of a 1-s laser updates enables cm-accurate estimation of the 3D position
vector. Figure 21 shows simulation results for the case where periodic laser scans at
a very limited rate are applied. In this case, laser scans are made only once per 30 s.

It is important to note that the system that employs laser scans at this low rate
can be still considered as practically passive since, from the practical point of view,
a laser scanning at this rate cannot be detected. Positioning accuracy is maintained
at a sub-m-level, which provides an order of magnitude performance improvement
as compared to the vision/laser implementation. Therefore, for the vision/laser/INS
integration it is extremely beneficial to use the system implementation that operates
in a semi-passive mode employing periodic scans at a limited scan rate.

4 Summary

Navigating in difficult environments requires the use of multi-sensor fusion tech-
niques. This chapter proposes a generic multi-sensor fusion approach and applies
this approach for developing GPS/laser scanner/inertial and vision/laser/inertial
integrated mechanizations. Simulated data and data collected in various urban in-
door and outdoor environments show that multi-sensor fusion techniques developed
demonstrate a significant potential for enabling reliable and accurate navigation
capabilities for a variety of challenging navigation scenarios.
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Fig. 21 Performance of the vision/inertial integration for the indoor simulated environment: 30-s
laser updates
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The views expressed in this article are those of the authors and do not reflect the
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A Spectral Clustering Approach for Modeling
Connectivity Patterns in Electroencephalogram
Sensor Networks

Petros Xanthopoulos, Ashwin Arulselvan, and Panos M. Pardalos

Abstract Electroencephalography (EEG) is a non-invasive low cost monitoring
exam that is used for the study of the brain in every hospital and research labs.
Time series recorded from EEG sensors can be studied from the perspective of
computational neuroscience and network theory to extract meaningful features of
the brain. In this chapter we present a network clustering approach for studying
synchronization phenomena as captured by cross-correlation in EEG recordings. We
demonstrate the proposed clustering idea in simulated data and in EEG recordings
from patients with epilepsy.

1 Introduction

Sensors are devices that measure a physical quantity and transform it into electrical
measurement that can be processed by a computer. This very broad definition
of sensors includes a vast number of applications in many fields of science and
engineering. Electromagnetic sensors, acoustic sensors, movement sensors, light
sensors to name a few play a very important role in modern technology and
science.

Sensors could be represented as a graph or network with the sensors being the
nodes and their interaction between them as edges. A telecommunication network
is a common example of a sensor network, where the human voice is converted into
electromagnetic pulses and transmitted till they reach the destination device. We
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present another kind of sensor network in this study, in which we utilize the time
series similarity of sensors in a network. In this case, the connection between two
sensors is defined by some time series similarity measure (linear or non-linear).

Graphs are the appropriate mathematical tools to represent and analyze sensor
networks. In addition, much research has been carried over in the area of graph
theory in mathematics and it is closely related to the mathematical theory of
optimization which is well suited to model real life problems such as scheduling,
Internet traffic, biology etc. A well-studied problem in the area of graph theory
with several applications is the clustering problem, where we identify components
or clusters of nodes hidden in a graph based on some well-defined objective
function. A more formal definition is provided later. The study of clusters in graphs
can provide some very useful insights. For instance, clustering in a call graph
could reveal cliques of people who call each other [1] and in a market graph,
clustering helps in detecting dependencies between stocks that are less conspicuous
otherwise [2].

In this chapter, we will focus on the techniques available in spectral graph clus-
tering and use them to visualize and interpret the information recorded in electroen-
cephalogram (EEG) time series. Networks under investigation are constructed using
cross-correlation. Cross-correlation is a well-studied fundamental time-invariant
statistical metric for capturing linear connectivity between time series.

The chapter is organized as follows. In Sect. 2 we review the major min-cut
formulations used in the spectral graph clustering theory and present the most
commonly used algorithms. In Sect. 3 we discuss some of the most commonly used
bivariate measures used in connectivity analysis of EEG. In Sect. 4 we illustrate the
use of the algorithms in real data and we finally conclude with some discussion and
possible future extensions of the current work.

2  Cut Formulations for Graph Clustering

2.1 Graph Preliminaries

In order to introduce the spectral graph clustering techniques we need to define some
preliminary notation first. We define a simple undirected graph G(N, E) as a node
set, N with an edge set, E, which is set of unordered pair of distinct nodes from N.
We define the weighted adjacency matrix W as

w(i,j), (i,j) € E
W = 1
0, otherwise M

The scope of the chapter is restricted to symmetric adjacency matrices dealing
with undirected graphs. If W is not symmetric, either because the graph is directed
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. . . = T
or because of numerical errors, we will be using W = % that possesses the
desired property. We will denote the volume d; of a node a; as the sum of all the

weights of the edges emanating from a;. That is:

d; = vol(a;) = ) w(i, j). )

aj eN
In matrix notation we can write:
d=[didy - dy]=1"W, 3)

where 1 is the column vector that has all of its elements equal to 1. We will denote
the volume of a set of edges S as the sum of the volumes of the nodes contained in
the set:

vol(S) = Z vol(a;). 4

a; €S

Now we are ready to define the most important cut objective function used for
spectral graph clustering.

2.2 Min Cut Formulations

A cutset, cut (A, B), is the set of edges between the node sets A C N and B C N,
such that AU B = N and A N B = @. The minimum cut problem consists in
findings such a cut of minimum cost and more formally

mincut(4, B) = r{l;n Z w(i, j). (®)]

uiGA,uj €B

The minimum cut problem is a well-studied problem in the literature and despite
the existence of exponential number of cuts there are algorithms that solve this
problem efficiently in polynomial time [3].

The problem that arises if we adopt the minimum cut objective function is the
lack of robustness to outlier data and the unbalanced cuts produced especially in
large graphs. It is easy for one to see that edges with low weight that connect single
nodes to the graph are most likely to belong to the optimal cut separating a single
node from the rest of the graph. Therefore some outlier nodes and connections can
influence substantially the quality of our solution. Also, addition of nodes in an
existing network can dramatically change the optimal solution and the set of edges
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that belong to the cut. Therefore, one needs to use cuts that take into account not
only the cost of the cut itself but also the size of the clusters. The first such objective
function was proposed in [4—7]

cut(A,B) cut(A,B)
Rcut(A4, B) = A + Bl (6)

where |A| and | B| the cardinality (number of nodes) of the node sets A and B
respectively. In this formulation, cuts that produce equal sizes are favored. The
problem was proved to be NP-Hard [8]. A heuristic solution for this problem was
provided by solving the following relaxed problem.

Lq = Aq, (N

where L = diag(1W) — W is the Laplacian matrix of the graph G(N, E). Here,
q is relaxed over the set of real numbers as the NP-hardness of the problem was
perceived to be a consequence of the restriction on ¢ to take discrete values [8]. The
solution to the relaxed problem is given by the second smallest eigenvalue of the
Laplacian matrix (the smallest is equal to zero and corresponds to an eigenvector 1).
Now, we divide the nodes into two clusters in the following manner.

A =H{a;i|lg;: <0}, B ={ailq; > 0} (®)
and the cutset is defined as
MC ={(i, j)|a; € A,a; € B} 9

We illustrate the cut algorithm in a randomly generated graph with 1,000 nodes
that has two clusters by construction (strong intra-cluster connection and some
weak inter-cluster connections). The adjacency matrix (without loss of generality
all weights are equal to (1) is shown in Fig. 1).

We decompose the Laplacian of the above graph and sort the eigenvector that
corresponds to the second lowest eigenvalue. The results are shown in Fig. 2.

In [8] Shi & Malik introduced the normalized cut that involves the volume of
each cluster instead of the cardinality of the cluster.

Neut(A, B) = cut(4, B) cut(4, B) _ ( 1

volA vol(B) vol(4) + Vol(B)) cut(4, B) (10)

The problem has been proved to be NP-Hard [8]. It can be proved that
this problem is equivalent to minimizing a Rayleigh quotient subject to binary
constraints, which makes the problem NP-hard.

y'(D—W)y

11
VT Dy (1)

min N Cut(4, B) = min R(L, y) = min
y
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Fig. 1 The adjacency matrix of the 1,000 node example. The nodes are randomly permutated and
one cannot distinguish some clear cluster structure. Black means that there is an edge and white
that is missing
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Fig. 2 This corresponds to the eigenvector of second lowest eigenvalue of the Laplacian matrix. It
is easy to see the two cluster structure of the dataset. By simple thresholding we estimate the two
classes

The most common approach in the image segmentation literature is to relax the

y variable over the set of real numbers and then solve the corresponding eigenvalue

problem. If y € R then the optimal solution is given from the solution of the
following problem.

(D—L)y =ADy (12)
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Fig. 3 Continuing from the previous example we compute, instead of just the second smallest
eigenvector, the 3rd and the 4th also. In the eigenspace the cluster structure is very clear. Using
clustering on the eigenspace we can cluster the data in k clusters (instead of just 2) assuming that
it is meaningful for our problem

Although the second eigenvector is the most important one for the clustering, it
is also common to compute the k first eigenvectors and then cluster the data in the
eigenspace defined by the first k& eigenvectors. Clustering in the eigenspace is used
when we want to cluster the data in more than two clusters. The embedding of data
in the eigenspace is visually demonstrated in Fig. 3.

In [9] Ng, Jordan, and Weiss alternatively use the cheeger constant as the
minimization criterion for producing balanced cuts. Cheeger constant is similar to
the Ncut formulation and defined by

o cut(A4, B)
P(A.B) = v min(vol(A), vol(B)) "

Computing cheeger constant on a graph is again equivalent to minimizing, a
slightly different, eigendecomposition problem subject to binary constraints. More
specifically we are interested in computing the largest eigenvectors of

A=~D-W-VD (14)

In [9], a clustering methodology was proposed using k-means on the eigenspace
spanned by the first k eigenvectors of A.

An alternative approach for solving the eigenvalue problem subject to binary
constraints is through semidefinite programing [10-12]. Semidefinite programing
provides approximations of the exact solution with known bounds, but owing to their
practical limitations they were not actively pursued by researchers and a majority of
clustering algorithms were based on eigendecomposition.
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3 Cross-correlation as a Bivariate Synchronization Measure

Data mining in time series data has always been a very challenging problem, where
one tries to determine the similarities among the time series. There are extensive
literatures on how to define these similarities. It has a great impact on a wide variety
of field from financial time series to earthquake data synchronization. In this chapter,
we will consider networks produced from electrophysiological recordings recorded
from the human scalp (EEG).

Many metrics have been proposed over years in order to define and capture the
notion of time series synchronization in EEG. These metrics range from simple sta-
tistical correlation, cross-correlation, spectral coherence [13,14], wavelet coherence,
phase synchronization [15] to complex non-linear measures such as approximate
entropy [16], non-linear Interdependence [17]. A comprehensive survey discussing
a broad number of synchronization measures applied to EEG signals was provided
in [18]. Synchronization between time series recorded between different electrode
sites might be very important in evaluating effects of drugs prescribed for brain
conditions or investigation of connections between the brain sites could prove
useful in analyzing and predicting the brain activities. It is very difficult to see the
global picture owing to the enormous amount of similarities between the edges that
increases exponentially with the number of nodes despite the useful information we
obtain from the bivariate measure between the two time series.

In this chapter, we suggest graph partitioning based on normalized cut optimiza-
tion criteria to visualize and seek meaningful patterns in clusters. The dimensions
of the graphs that arises in EEG graph partitioning is not significant from a
computational perspective (instances usually are of the order 30 nodes), but it
provides a useful tool for information visualization in the field of computational
neuroscience.

Cross-correlation is a well-studied index used in capturing linear synchronization
between time series. Cross-correlation Cy, between two time series X = {x;}I,
and Y = {y;})_, is given by:

ny(f) = E[xn-i-ry:] = E[xny:—r]v (15)

where E[-] is the expected value of some random variable. A simple observation of
the cross-correlation function reveals its symmetric property (that is Cy, = Cy,)
and hence this construction results in a graph with undirected edges and symmetric
adjacency matrix. For computational purposes, we use the following formula to
estimate the cross-correlation function:

1 Nz_:t (xi =%) (Vitr =)

-7 Oy oy

i=1

Ciy(r) = ¥ (16)

where X and y are the mean values of X and Y, respectively. In order to construct
our network, we considered only the maximum value of cross-correlation for each
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pair of electrodes. The advantage of cross-correlation is that it is a time-invariant
measure. In other words, it can capture correlation even if the time series are not
fully aligned.

4 Computational Results

In order to demonstrate the spectral graph clustering in EEG recordings we used
human EEG recordings from patients with absence epilepsy. Absence epilepsy
is a form of non-convulsive epilepsy. Its main EEG characteristics are spike and
wave discharges appearing in the frequency band of 3 Hz. The international 10—
20 electrode placement system with 19 electrodes were used and the following 16
bipolar channels were chosen: 1:Fpl-F3, 2:F3-C3, 3:C3-P3, 4:P3-O1, 5:Fp2-F4,
6:F4-C4, 7:C4-P4, 8:P4-02, 9:Fp1-F7, 10:F7-T3, 11:T3-T5, 12:T5-01, 13:Fp2-F8,
14:F8-T4, 15:T4-T6, 16:T6- O2. Data points were collected at a sampling rate of
200 Hz for each channel.

We employed the algorithm proposed by Ng, Jordan, and Weiss [9] for clustering
and we embedded the data in the two most important eigenvectors. Heatmap results
can be seen in Fig. 4.

In the eigenspace one can have a clearer view of the clustered components.
We used k-means with two classes to find the clusters (Fig. 5). The electrodes
participating in the strongly connected cluster are 13,5,1,9.

These channels were plotted and we could observe a muscle artifact appearing in
all four of them as shown in Fig. 6. Therefore as expected strong linear correlation
among time series produces well-formed clusters. Detection of such clusters might

b
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18
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Cross correlation heatmap Cross Correlation Clustered
heatmap

Fig. 4 In (a) we can see the cross-correlation heatmap (autocross correlations were not computed).
In (b) we can see the well-formed cluster between four first electrodes. Spectral clustering gives us
some hint that there is something that we need to investigate in these electrode channels
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Fig. 5 If we embed the data into the space spanned by the two first eigenvectors it is easy to see the
two formed clusters. Computationally it is easy to detect the two clusters by running a clustering
algorithm such as k-mean
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Fig. 6 By plotting the electrodes that form the four electrode cluster we find out that there is a
strong muscle artifact appearing in all four channels
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Fig. 7 Correlation adjacency matrix of EEG recordings with absence epilepsy. There is no clear
cluster formation but there is clear connectivity degradation
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Fig. 8 Clustering of the EEG electrodes in the 2D eigenspace using k-means

be important in order to characterize the quality of EEG recording, e.g., we can
use this clustering method in order to mark parts of EEG that carry strong artifacts
and might be inappropriate for further computation analysis. In the second example,
we illustrate the linear connectivity during an actual epileptic seizure. In absence
epilepsy, a seizure is characterized by continuous 3 Hz spike and wave bursts that
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are generalized and can last up to ~15s (Fig. 7). The cross-correlation heatmap and
the clustered by the algorithm heatmap can be shown in Fig. 8.

In these heatmaps, a strong cluster cannot be detected but we can notice an
organization with respect to the linear connectivity that is not spent during normal
EEG. In the eigenspace using k-means we can cluster these electrodes in two
clusters (see Fig. 8).

5 Conclusion

In this chapter we used spectral clustering techniques to partition a sensor graph
based on cross-correlation of EEG time series. From the examples illustrated in
previous section we saw that spectral graph clustering can be useful to identity
artifacts that appear in many channels of the recordings. It can also be useful in order
to visualize the connectivity structure during some special neurological condition,
such as an epileptic seizure.

Further investigation can be done in graphs defined by other bivariate similarity
measures. Some of them, such as mutual information, mean square coherence, phase
locking value, synchronization likelihood, non-linear interdependence measures,
have been proven useful in characterizing synchronization effects in several patho-
logical conditions (e.g., see [19,20]).

In addition, some similarity measures, such as the one based on Lyapunov
exponents (STLmax), are known for being able to predict non-state transition of
the EEG and have been proposed as a basis on some seizure prediction algorithms
[21,22]. The proposed framework can be used in order to describe the global picture
of the interactions in such a network and mine features based on individual clusters.
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