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Preface

Preface to the First Edition
Sequencing and scheduling is a form of decision-making that plays a crucial role
in manufacturing and service industries. In the current competitive environment
effective sequencing and scheduling has become a necessity for survival in the
market-place. Companies have to meet shipping dates that have been committed
to customers, as failure to do so may result in a significant loss of goodwill. They
also have to schedule activities in such a way as to use the resources available
in an efficient manner.
Scheduling began to be taken seriously in manufacturing at the beginning

of this century with the work of Henry Gantt and other pioneers. However, it
took many years for the first scheduling publications to appear in the industrial
engineering and operations research literature. Some of the first publications ap-
peared in Naval Research Logistics Quarterly in the early fifties and contained
results by W.E. Smith, S.M. Johnson and J.R. Jackson. During the sixties a
significant amount of work was done on dynamic programming and integer pro-
gramming formulations of scheduling problems. After Richard Karp’s famous
paper on complexity theory, the research in the seventies focused mainly on the
complexity hierarchy of scheduling problems. In the eighties several different
directions were pursued in academia and industry with an increasing amount
of attention paid to stochastic scheduling problems. Also, as personal comput-
ers started to permeate manufacturing facilities, scheduling systems were being
developed for the generation of usable schedules in practice. This system design
and development was, and is, being done by computer scientists, operations
researchers and industrial engineers.
This book is the result of the development of courses in scheduling theory and

applications at Columbia University. The book deals primarily with machine
scheduling models. The first part covers deterministic models and the second
part stochastic models. The third and final part deals with applications. In this
last part scheduling problems in practice are discussed and the relevance of
the theory to the real world is examined. From this examination it becomes
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clear that the advances in scheduling theory have had only a limited impact
on scheduling problems in practice. Hopefully there will be in a couple of years
a second edition in which the applications part will be expanded, showing a
stronger connection with the more theoretical parts of the text.
This book has benefited from careful reading by numerous people. Reha Uz-

soy and Alan Scheller Wolf went through the manuscript with a fine tooth comb.
Len Adler, Sid Browne, Xiuli Chao, Paul Glasserman, Chung-Yee Lee, Young-
Hoon Lee, Joseph Leung, Elizabeth Leventhal, Rajesh Sah, Paul Shapiro, Jim
Thompson, Barry Wolf, and the hundreds of students who had to take the (re-
quired) scheduling courses at Columbia provided many helpful comments which
improved the manuscript.
The author is grateful to the National Science Foundation for its continued

summer support, which made it possible to complete this project.

Michael L. Pinedo
New York, 1994.

Preface to the Second Edition
The book has been extended in a meaningful way. Five chapters have been
added. In the deterministic part it is the treatment of the single machine, the
job shop and the open shop that have been expanded considerably. In the
stochastic part a completely new chapter focuses on single machine scheduling
with release dates. This chapter has been included because of multiple requests
from instructors who wanted to see a connection between stochastic scheduling
and priority queues. This chapter establishes such a link. The applications part,
Part III, has been expanded the most. Instead of a single chapter on general
purpose procedures, there are now two chapters. The second chapter covers
various techniques that are relatively new and that have started to receive a fair
amount of attention over the last couple of years. There is also an additional
chapter on the design and development of scheduling systems. This chapter
focuses on rescheduling, learning mechanisms, and so on. The chapter with the
examples of systems implementations is completely new. All systems described
are of recent vintage. The last chapter contains a discussion on research topics
that could become of interest in the next couple of years.
The book has a website:

http://www.stern.nyu.edu/~mpinedo

The intention is to keep the site as up-to-date as possible, including links to
other sites that are potentially useful to instructors as well as students.
Many instructors who have used the book over the last couple of years have

sent very useful comments and suggestions. Almost all of these comments have
led to improvements in the manuscript.
Reha Uzsoy, as usual, went with a fine tooth comb through the manuscript.

Salah Elmaghraby, John Fowler, Celia Glass, Chung-Yee Lee, Sigrid Knust,
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Joseph Leung, Chris Potts, Levent Tuncel, Amy Ward, and Guochuan Zhang
all made comments that led to substantial improvements.
A number of students, including Gabriel Adei, Yo Huh, Maher Lahmar, Sonia

Leach, Michele Pfund, Edgar Possani, and Aysegul Toptal, have pointed out
various errors in the original manuscript.
Without the help of a number of people from industry, it would not have

been possible to produce a meaningful chapter on industrial implementations.
Thanks are due to Heinrich Braun and Stephan Kreipl of SAP, Rama Akkiraju
of IBM, Margie Bell of i2, Emanuela Rusconi and Fabio Tiozzo of Cybertec,
and Paul Bender of SynQuest.

New York, 2001.

Preface to the Third Edition

The basic structure of the book has not been changed in this new edition.
The book still consists of three parts and a string of Appendixes. However,
several chapters have been extended in a meaningful way, covering additional
topics that have become recently of interest. Some of the new topics are more
methodological, whereas others represent new classes of models.
The more methodological aspects that are receiving more attention include

Polynomial Time Approximation Schemes (PTAS) and Constraint Program-
ming. These extensions involve new material in the regular chapters as well as
in the Appendixes. Since the field of online scheduling has received an enormous
amount of attention in recent years, a section focusing on online scheduling has
been added to the chapter on parallel machine scheduling.
Two new classes of models are introduced in the chapter on more advanced

single machine scheduling, namely single machine scheduling with batch pro-
cessing and single machine scheduling with job families.
Of course, as in any new edition, the chapter that describes implementations

and applications had to be revamped and made up-to-date. That has happened
here as well. Two new software systems have been introduced, namely a system
that is currently being implemented at AMD (Advanced Micro Devices) and a
generic system developed by Taylor Software.
For the first time, a CD-ROM has been included with the book. The CD-

ROM contains various sets of power point slides, minicases provided by com-
panies, the LEKIN Scheduling system, and two movies. The power point slides
were developed by Julius Atlason (when he taught a scheduling course at the
University of Michigan-Ann Arbor), Johann Hurink (from the University of
Twente in Holland), Rakesh Nagi (from the State University of New York at
Buffalo), Uwe Schwiegelshohn (from the University of Dortmund in Germany),
Natalia Shakhlevich (from the University of Leeds in England).
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A website will be maintained for this book at

http://www.stern.nyu.edu/~mpinedo

The intention is to keep this website as up-to-date as possible, including links
to other sites that are potentially useful to instructors as well as to students.
A hardcopy of a solutions manual is available from the author for instructors

who adopt the book. The solutions provided in this manual have been prepared
by Clifford Stein (Columbia University), Julias Atlason (Michigan), Jim Geelen
(Waterloo), Natalia Shakhlevich (Leeds), Levent Tuncel (Waterloo), and Martin
Savelsbergh (Georgia Tech).
I am very grateful to a number of colleagues and students in academia who

have gone over the new sections and have provided some very useful comments,
namely Alessandro Agnetis (Siena), Ionut Aron (T.J. Watson Research Labo-
ratories, IBM), Dirk Briskhorn (Kiel), John Fowler (Arizona), Jim Geelen (Wa-
terloo), Johann Hurink (TU Twente, the Netherlands), Detlef Pabst (AMD),
Gianluca de Pascale (Siena, Italy), Jacob Jan Paulus (TU Twente, the Nether-
lands), Jiri Sgall (Charles University, Prague), and Gerhard Woeginger (TU
Eindhoven). Gerhard provided me with the chapters he wrote on Polynomial
Time Approximation Schemes. His material has been incredibly useful.
Without the help of a number of people from industry, it would not have

been possible to produce a meaningful chapter on industrial implementations.
Thanks are due to Stephan Kreipl of SAP, Shekar Krishnaswamy and Peng Qu
of AMD, and Robert MacDonald of Taylor Software.
The technical production of the book would not have been possible without

the invalualable help from Adam Lewenberg (Stanford University) and Achi
Dosanjh (Springer). Without the continued support of the National Science
Foundation this book would never have been written.

Spring 2008
New York

Michael L. Pinedo
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Introduction

1.1 The Role of Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Scheduling Function in an Enterprise . . . . . . . . . . 4
1.3 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 The Role of Scheduling

Scheduling is a decision-making process that is used on a regular basis in many
manufacturing and services industries. It deals with the allocation of resources
to tasks over given time periods and its goal is to optimize one or more objec-
tives.
The resources and tasks in an organization can take many different forms.

The resources may be machines in a workshop, runways at an airport, crews at a
construction site, processing units in a computing environment, and so on. The
tasks may be operations in a production process, take-offs and landings at an
airport, stages in a construction project, executions of computer programs, and
so on. Each task may have a certain priority level, an earliest possible starting
time and a due date. The objectives can also take many different forms. One
objective may be the minimization of the completion time of the last task and
another may be the minimization of the number of tasks completed after their
respective due dates.
Scheduling, as a decision-making process, plays an important role in most

manufacturing and production systems as well as in most information processing
environments. It is also important in transportation and distribution settings
and in other types of service industries. The following examples illustrate the
role of scheduling in a number of real world environments.

Example 1.1.1 (A Paper Bag Factory)
Consider a factory that produces paper bags for cement, charcoal, dog food,
and so on. The basic raw material for such an operation are rolls of paper.
The production process consists of three stages: the printing of the logo, the
gluing of the side of the bag, and the sewing of one end or both ends of the

1M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4 1,
c© Springer Science+Business Media, LLC 2008
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2 1 Introduction

bag. Each stage consists of a number of machines which are not necessarily
identical. The machines at a stage may differ slightly in the speed at which
they operate, the number of colors they can print or the size of bag they can
produce. Each production order indicates a given quantity of a specific bag
that has to be produced and shipped by a committed shipping date or due
date. The processing times for the different operations are proportional to
the size of the order, i.e., the number of bags ordered.
A late delivery implies a penalty in the form of loss of goodwill and the

magnitude of the penalty depends on the importance of the order or the client
and the tardiness of the delivery. One of the objectives of the scheduling
system is to minimize the sum of these penalties.
When a machine is switched over from one type of bag to another a

setup is required. The length of the setup time on the machine depends on
the similarities between the two consecutive orders (the number of colors in
common, the differences in bag size and so on). An important objective of the
scheduling system is the minimization of the total time spent on setups. ||
Example 1.1.2 (A Semiconductor Manufacturing Facility)
Semiconductors are manufactured in highly specialized facilities. This is the
case with memory chips as well as with microprocessors. The production
process in these facilities usually consists of four phases: wafer fabrication,
wafer probe, assembly or packaging, and final testing.
Wafer fabrication is technologically the most complex phase. Layers of

metal and wafer material are built up in patterns on wafers of silicon or
gallium arsenide to produce the circuitry. Each layer requires a number of
operations, which typically include: (i) cleaning, (ii) oxidation, deposition
and metallization, (iii) lithography, (iv) etching, (v) ion implantation, (vi)
photoresist stripping, and (vii) inspection and measurement. Because it con-
sists of various layers, each wafer has to undergo these operations several
times. Thus, there is a significant amount of recirculation in the process.
Wafers move through the facility in lots of 24. Some machines may require
setups to prepare them for incoming jobs; the setup time often depends on
the configurations of the lot just completed and the lot about to start.
The number of orders in the production process is often in the hundreds

and each has its own release date and a committed shipping or due date.
The scheduler’s objective is to meet as many of the committed shipping
dates as possible, while maximizing throughput. The latter goal is achieved
by maximizing equipment utilization, especially of the bottleneck machines,
requiring thus a minimization of idle times and setup times. ||
Example 1.1.3 (Gate Assignments at an Airport)
Consider an airline terminal at a major airport. There are dozens of gates
and hundreds of planes arriving and departing each day. The gates are not
all identical and neither are the planes. Some of the gates are in locations
with a lot of space where large planes (widebodies) can be accommodated
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easily. Other gates are in locations where it is difficult to bring in the planes;
certain planes may actually have to be towed to their gates.
Planes arrive and depart according to a certain schedule. However, the

schedule is subject to a certain amount of randomness, which may be weather
related or caused by unforeseen events at other airports. During the time
that a plane occupies a gate the arriving passengers have to be deplaned, the
plane has to be serviced and the departing passengers have to be boarded.
The scheduled departure time can be viewed as a due date and the airline’s
performance is measured accordingly. However, if it is known in advance that
the plane cannot land at the next airport because of anticipated congestion
at its scheduled arrival time, then the plane does not take off (such a policy
is followed to conserve fuel). If a plane is not allowed to take off, operating
policies usually prescribe that passengers remain in the terminal rather than
on the plane. If boarding is postponed, a plane may remain at a gate for an
extended period of time, thus preventing other planes from using that gate.
The scheduler has to assign planes to gates in such a way that the as-

signment is physically feasible while optimizing a number of objectives. This
implies that the scheduler has to assign planes to suitable gates that are avail-
able at the respective arrival times. The objectives include minimization of
work for airline personnel and minimization of airplane delays.
In this scenario the gates are the resources and the handling and servicing

of the planes are the tasks. The arrival of a plane at a gate represents the
starting time of a task and the departure represents its completion time. ||
Example 1.1.4 (Scheduling Tasks in a Central Processing Unit
(CPU))
One of the functions of a multi-tasking computer operating system is to
schedule the time that the CPU devotes to the different programs that have
to be executed. The exact processing times are usually not known in advance.
However, the distribution of these random processing times may be known
in advance, including their means and their variances. In addition, each task
usually has a certain priority level (the operating system typically allows
operators and users to specify the priority level or weight of each task). In
such case, the objective is to minimize the expected sum of the weighted
completion times of all tasks.
To avoid the situation where relatively short tasks remain in the system

for a long time waiting for much longer tasks that have a higher priority, the
operating system “slices” each task into little pieces. The operating system
then rotates these slices on the CPU so that in any given time interval, the
CPU spends some amount of time on each task. This way, if by chance the
processing time of one of the tasks is very short, the task will be able to leave
the system relatively quickly.
An interruption of the processing of a task is often referred to as a pre-

emption. It is clear that the optimal policy in such an environment makes
heavy use of preemptions. ||
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It may not be immediately clear what impact schedules may have on objec-
tives of interest. Does it make sense to invest time and effort searching for a
good schedule rather than just choosing a schedule at random? In practice, it
often turns out that the choice of schedule does have a significant impact on
the system’s performance and that it does make sense to spend some time and
effort searching for a suitable schedule.
Scheduling can be difficult from a technical as well as from an implementa-

tion point of view. The type of difficulties encountered on the technical side are
similar to the difficulties encountered in other forms of combinatorial optimiza-
tion and stochastic modeling. The difficulties on the implementation side are
of a completely different kind. They may depend on the accuracy of the model
used for the analysis of the actual scheduling problem and on the reliability of
the input data that are needed.

1.2 The Scheduling Function in an Enterprise

The scheduling function in a production system or service organization must
interact with many other functions. These interactions are system-dependent
and may differ substantially from one situation to another. They often take
place within an enterprise-wide information system.
A modern factory or service organization often has an elaborate information

system in place that includes a central computer and database. Local area
networks of personal computers, workstations and data entry terminals, which
are connected to this central computer, may be used either to retrieve data from
the database or to enter new data. The software controlling such an elaborate
information system is typically referred to as an Enterprise Resource Planning
(ERP) system. A number of software companies specialize in the development
of such systems, including SAP, J.D. Edwards, and PeopleSoft. Such an ERP
system plays the role of an information highway that traverses the enterprise
with, at all organizational levels, links to decision support systems.
Scheduling is often done interactively via a decision support system that is

installed on a personal computer or workstation linked to the ERP system.
Terminals at key locations connected to the ERP system can give departments
throughout the enterprise access to all current scheduling information. These
departments, in turn, can provide the scheduling system with up-to-date infor-
mation concerning the statuses of jobs and machines.
There are, of course, still environments where the communication between

the scheduling function and other decision making entities occurs in meetings
or through memos.

Scheduling in Manufacturing Consider the following generic manufac-
turing environment and the role of its scheduling. Orders that are released in
a manufacturing setting have to be translated into jobs with associated due
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dates. These jobs often have to be processed on the machines in a workcenter in
a given order or sequence. The processing of jobs may sometimes be delayed if
certain machines are busy and preemptions may occur when high priority jobs
arrive at machines that are busy. Unforeseen events on the shop floor, such as
machine breakdowns or longer-than-expected processing times, also have to be
taken into account, since they may have a major impact on the schedules. In
such an environment, the development of a detailed task schedule helps main-
tain efficiency and control of operations.
The shop floor is not the only part of the organization that impacts the

scheduling process. It is also affected by the production planning process that
handles medium- to long-term planning for the entire organization. This pro-
cess attempts to optimize the firm’s overall product mix and long-term resource
allocation based on its inventory levels, demand forecasts and resource require-
ments. Decisions made at this higher planning level may impact the scheduling
process directly. Figure 1.1 depicts a diagram of the information flow in a man-
ufacturing system.
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In a manufacturing environment, the scheduling function has to interact
with other decision making functions. One popular system that is widely used
is the Material Requirements Planning (MRP) system. After a schedule has
been generated it is necessary that all raw materials and resources are available
at the specified times. The ready dates of all jobs have to be determined jointly
by the production planning/scheduling system and the MRP system.
MRP systems are normally fairly elaborate. Each job has a Bill Of Materials

(BOM) itemizing the parts required for production. The MRP system keeps
track of the inventory of each part. Furthermore, it determines the timing of
the purchases of each one of the materials. In doing so, it uses techniques such
as lot sizing and lot scheduling that are similar to those used in scheduling
systems. There are many commercial MRP software packages available and,
as a result, there are many manufacturing facilities with MRP systems. In the
cases where the facility does not have a scheduling system, the MRP system
may be used for production planning purposes. However, in complex settings it
is not easy for an MRP system to do the detailed scheduling satisfactorily.

Scheduling in Services Describing a generic service organization and a
typical scheduling system is not as easy as describing a generic manufactur-
ing organization. The scheduling function in a service organization may face
a variety of problems. It may have to deal with the reservation of resources,
e.g., the assignment of planes to gates (see Example 1.1.3), or the reservation
of meeting rooms or other facilities. The models used are at times somewhat
different from those used in manufacturing settings. Scheduling in a service en-
vironment must be coordinated with other decision making functions, usually
within elaborate information systems, much in the same way as the scheduling
function in a manufacturing setting. These information systems usually rely
on extensive databases that contain all the relevant information with regard to
availability of resources and (potential) customers. The scheduling system inter-
acts often with forecasting and yield management modules. Figure 1.2 depicts
the information flow in a service organization such as a car rental agency. In
contrast to manufacturing settings, there is usually no MRP system in a service
environment.

1.3 Outline of the Book

This book focuses on both the theory and the applications of scheduling. The
theoretical side deals with the detailed sequencing and scheduling of jobs. Given
a collection of jobs requiring processing in a certain machine environment, the
problem is to sequence these jobs, subject to given constraints, in such a way
that one or more performance criteria are optimized. The scheduler may have to
deal with various forms of uncertainties, such as random job processing times,
machines subject to breakdowns, rush orders, and so on.



1.3 Outline of the Book 7

Scheduling

Status (history)

Prices rules

Customer

Place order,
make reservations

Accept/
reject

(conditions)

Database

Data Forecasts

Yield
management

Forecasting

Fig. 1.2 Information flow diagram in a service system

Thousands of scheduling problems and models have been studied and ana-
lyzed in the past. Obviously, only a limited number are considered in this book;
the selection is based on the insight they provide, the methodology needed for
their analysis and their importance in applications.
Although the applications driving the models in this book come mainly from

manufacturing and production environments, it is clear from the examples in
Section 1.1 that scheduling plays a role in a wide variety of situations. The
models and concepts considered in this book are applicable in other settings as
well.
This book is divided into three parts. Part I (Chapters 2 to 8) deals with

deterministic scheduling models. In these chapters it is assumed that there are
a finite number of jobs that have to be scheduled with one or more objectives to
be minimized. Emphasis is placed on the analysis of relatively simple priority
or dispatching rules. Chapter 2 discusses the notation and gives an overview
of the models that are considered in the subsequent chapters. Chapters 3 to
8 consider the various machine environments. Chapters 3 and 4 deal with the
single machine, Chapter 5 with machines in parallel, Chapter 6 with machines
in series and Chapter 7 with the more complicated job shop models. Chapter 8
focuses on open shops in which there are no restrictions on the routings of the
jobs in the shop.
Part II (Chapters 9 to 13) deals with stochastic scheduling models. These

chapters, in most cases, also assume that a given (finite) number of jobs have
to be scheduled. The job data, such as processing times, release dates and due
dates may not be exactly known in advance; only their distributions are known
in advance. The actual processing times, release dates and due dates become
known only at the completion of the processing or at the actual occurrence of
the release or due date. In these models a single objective has to be minimized,
usually in expectation. Again, an emphasis is placed on the analysis of relatively
simple priority or dispatching rules. Chapter 9 contains preliminary material.
Chapter 10 covers the single machine environment. Chapter 11 also covers the
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single machine, but in this chapter it is assumed that the jobs are released
at different points in time. This chapter establishes the relationship between
stochastic scheduling and the theory of priority queues. Chapter 12 focuses on
machines in parallel and Chapter 13 describes the more complicated flow shop,
job shop, and open shop models.
Part III (Chapters 14 to 20) deals with applications and implementation

issues. Algorithms are described for a number of real world scheduling prob-
lems. Design issues for scheduling systems are discussed and some examples
of scheduling systems are given. Chapters 14 and 15 describe various general
purpose procedures that have proven to be useful in industrial scheduling sys-
tems. Chapter 16 describes a number of real world scheduling problems and how
they have been dealt with in practice. Chapter 17 focuses on the basic issues
concerning the design, the development and the implementation of scheduling
systems, and Chapter 18 discusses the more advanced concepts in the design
and implementation of scheduling systems. Chapter 19 gives some examples of
actual implementations. Chapter 20 ponders on what lies ahead in scheduling.
Appendices A, B, C, and D present short overviews of some of the ba-

sic methodologies, namely mathematical programming, dynamic programming,
constraint programming, and complexity theory. Appendix E contains a com-
plexity classification of the deterministic scheduling problems, while Appendix F
presents an overview of the stochastic scheduling problems. Appendix G lists
a number of scheduling systems that have been developed in industry and
academia. Appendix H provides some guidelines for using the LEKIN schedul-
ing system. The LEKIN system is included on the CD-ROM that comes with
the book.
This book is designed for either a masters level course or a beginning PhD

level course in Production Scheduling. When used for a senior level course, the
topics most likely covered are from Parts I and III. Such a course can be given
without getting into complexity theory: one can go through the chapters of
Part I skipping all complexity proofs without loss of continuity. A masters level
course may cover topics from Part II as well. Even though all three parts are
fairly self-contained, it is helpful to go through Chapter 2 before venturing into
Part II.
Prerequisite knowledge for this book is an elementary course in Operations

Research on the level of Hillier and Lieberman’s Introduction to Operations
Research and an elementary course in stochastic processes on the level of Ross’s
Introduction to Probability Models.

Comments and References

During the last four decades many books have appeared that focus on sequenc-
ing and scheduling. These books range from the elementary to the more ad-
vanced.



Comments and References 9

A volume edited by Muth and Thompson (1963) contains a collection of pa-
pers focusing primarily on computational aspects of scheduling. One of the bet-
ter known textbooks is the one by Conway, Maxwell and Miller (1967) (which,
even though slightly out of date, is still very interesting); this book also deals
with some of the stochastic aspects and with priority queues. A more recent text
by Baker (1974) gives an excellent overview of the many aspects of deterministic
scheduling. However, this book does not deal with computational complexity is-
sues since it appeared just before research in computational complexity started
to become popular. The book by Coffman (1976) is a compendium of papers
on deterministic scheduling; it does cover computational complexity. An intro-
ductory textbook by French (1982) covers most of the techniques that are used
in deterministic scheduling. The proceedings of a NATO workshop, edited by
Dempster, Lenstra and Rinnooy Kan (1982), contains a number of advanced
papers on deterministic as well as on stochastic scheduling. The relatively ad-
vanced book by Blazewicz, Cellary, Slowinski andWeglarz (1986) focuses mainly
on resource constraints and multi-objective deterministic scheduling. The book
by Blazewicz, Ecker, Schmidt and Weglarz (1993) is somewhat advanced and
deals primarily with the computational aspects of deterministic scheduling mod-
els and their applications to manufacturing. The more applied text by Morton
and Pentico (1993) presents a detailed analysis of a large number of scheduling
heuristics that are useful for practitioners. The monograph by Dauzère-Pérès
and Lasserre (1994) focuses primarily on job shop scheduling. A collection of
papers, edited by Zweben and Fox (1994), describes a number of scheduling
systems and their actual implementations. Another collection of papers, edited
by Brown and Scherer (1995) also describe various scheduling systems and their
implementation. The proceedings of a workshop edited by Chrétienne, Coffman,
Lenstra and Liu (1995) contain a set of interesting papers concerning primarily
deterministic scheduling. The textbook by Baker (1995) is very useful for an in-
troductory course in sequencing and scheduling. Brucker (1995) presents, in the
first edition of his book, a very detailed algorithmic analysis of the many deter-
ministic scheduling models. Parker (1995) gives a similar overview and tends to
focus on problems with precedence constraints or other graph-theoretic issues.
Sule (1996) is a more applied text with a discussion of some interesting real
world problems. Blazewicz, Ecker, Pesch, Schmidt and Weglarz (1996) is an
extended edition of the earlier work by Blazewicz, Ecker, Schmidt and Weglarz
(1993). The monograph by Ovacik and Uzsoy (1997) is entirely dedicated to
decomposition methods for complex job shops. The two volumes edited by Lee
and Lei (1997) contain many interesting theoretical as well as applied papers.
The book by Pinedo and Chao (1999) is more application oriented and describes
a number of different scheduling models for problems arising in manufacturing
and in services. The monograph by Baptiste, LePape and Nuijten (2001) covers
applications of constraint programming techniques to job shop scheduling. The
volume edited by Nareyek (2001) contains papers on local search applied to job
shop scheduling. T’kindt and Billaut (2002, 2006) provide an excellent treatise
of multicriteria scheduling. Brucker (2004) is an expanded version of the orig-
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inal first edition that appeared in 1995. The Handbook of Scheduling, edited by
Leung (2004), contains numerous papers on all aspects of scheduling. The text
by Pinedo (2005) is a modified and extended version of the earlier one by Pinedo
and Chao (1999). Dawande, Geismar, Sethi and Sriskandarajah (2007) focus in
their more advanced text on the scheduling of robotic cells; these manufacturing
settings are, in a sense, extensions of flow shops.
Besides these books a number of survey articles have appeared, each one with

a large number of references. The articles by Graves (1981) and Rodammer and
White (1988) review production scheduling. Atabakhsh (1991) presents a sur-
vey of constraint based scheduling systems that use artificial intelligence tech-
niques and Noronha and Sarma (1991) review knowledge-based approaches for
scheduling problems. Smith (1992) focuses in his survey on the development
and implementation of scheduling systems. Lawler, Lenstra, Rinnooy Kan and
Shmoys (1993) give a detailed overview of deterministic sequencing and schedul-
ing and Righter (1994) does the same for stochastic scheduling. Queyranne and
Schulz (1994) provide an in depth analysis of polyhedral approaches to non-
preemptive machine scheduling problems. Chen, Potts and Woeginger (1998)
review computational complexity, algorithms and approximability in determin-
istic scheduling. Sgall (1998) and Pruhs, Sgall and Torng (2004) present surveys
of an area within deterministic scheduling referred to as online scheduling. Even
though online scheduling is often considered a part of deterministic scheduling,
the theorems obtained may at times provide interesting new insights into certain
stochastic scheduling models.
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Over the last fifty years a considerable amount of research effort has been fo-
cused on deterministic scheduling. The number and variety of models considered
is astounding. During this time a notation has evolved that succinctly captures
the structure of many (but for sure not all) deterministic models that have been
considered in the literature.
The first section in this chapter presents an adapted version of this notation.

The second section contains a number of examples and describes some of the
shortcomings of the framework and notation. The third section describes sev-
eral classes of schedules. A class of schedules is typically characterized by the
freedom the scheduler has in the decision-making process. The last section dis-
cusses the complexity of the scheduling problems introduced in the first section.
This last section can be used, together with Appendixes D and E, to classify
scheduling problems according to their complexity.

2.1 Framework and Notation

In all the scheduling problems considered the number of jobs and the number
of machines are assumed to be finite. The number of jobs is denoted by n and
the number of machines by m. Usually, the subscript j refers to a job while the
subscript i refers to a machine. If a job requires a number of processing steps
or operations, then the pair (i, j) refers to the processing step or operation of
job j on machine i. The following pieces of data are associated with job j.

13M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
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Processing time (pij) The pij represents the processing time of job j on
machine i. The subscript i is omitted if the processing time of job j does not
depend on the machine or if job j is only to be processed on one given machine.

Release date (rj) The release date rj of job j may also be referred to as
the ready date. It is the time the job arrives at the system, i.e., the earliest time
at which job j can start its processing.

Due date (dj) The due date dj of job j represents the committed shipping or
completion date (i.e., the date the job is promised to the customer). Completion
of a job after its due date is allowed, but then a penalty is incurred. When a
due date must be met it is referred to as a deadline and denoted by d̄j .

Weight (wj) The weight wj of job j is basically a priority factor, denoting
the importance of job j relative to the other jobs in the system. For example,
this weight may represent the actual cost of keeping the job in the system. This
cost could be a holding or inventory cost; it also could represent the amount of
value already added to the job.
A scheduling problem is described by a triplet α | β | γ. The α field describes

the machine environment and contains just one entry. The β field provides
details of processing characteristics and constraints and may contain no entry
at all, a single entry, or multiple entries. The γ field describes the objective to
be minimized and often contains a single entry.
The possible machine environments specified in the α field are:

Single machine (1) The case of a single machine is the simplest of all pos-
sible machine environments and is a special case of all other more complicated
machine environments.

Identical machines in parallel (Pm) There are m identical machines in
parallel. Job j requires a single operation and may be processed on any one of
the m machines or on any one that belongs to a given subset. If job j cannot
be processed on just any machine, but only on any one belonging to a specific
subset Mj, then the entry Mj appears in the β field.

Machines in parallel with different speeds (Qm) There aremmachines
in parallel with different speeds. The speed of machine i is denoted by vi. The
time pij that job j spends on machine i is equal to pj/vi (assuming job j receives
all its processing from machine i). This environment is referred to as uniform
machines. If all machines have the same speed, i.e., vi = 1 for all i and pij = pj ,
then the environment is identical to the previous one.

Unrelated machines in parallel (Rm) This environment is a further
generalization of the previous one. There are m different machines in parallel.
Machine i can process job j at speed vij . The time pij that job j spends on
machine i is equal to pj/vij (again assuming job j receives all its processing
from machine i). If the speeds of the machines are independent of the jobs, i.e.,
vij = vi for all i and j, then the environment is identical to the previous one.
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Flow shop (Fm) There are m machines in series. Each job has to be
processed on each one of the m machines. All jobs have to follow the same
route, i.e., they have to be processed first on machine 1, then on machine 2,
and so on. After completion on one machine a job joins the queue at the next
machine. Usually, all queues are assumed to operate under the First In First
Out (FIFO) discipline, that is, a job cannot ”pass” another while waiting in
a queue. If the FIFO discipline is in effect the flow shop is referred to as a
permutation flow shop and the β field includes the entry prmu.

Flexible flow shop (FFc) A flexible flow shop is a generalization of the flow
shop and the parallel machine environments. Instead of m machines in series
there are c stages in series with at each stage a number of identical machines in
parallel. Each job has to be processed first at stage 1, then at stage 2, and so on.
A stage functions as a bank of parallel machines; at each stage job j requires
processing on only one machine and any machine can do. The queues between
the various stages may or may not operate according to the First Come First
Served (FCFS) discipline. (Flexible flow shops have in the literature at times
also been referred to as hybrid flow shops and as multi-processor flow shops.)

Job shop (Jm) In a job shop with m machines each job has its own
predetermined route to follow. A distinction is made between job shops in which
each job visits each machine at most once and job shops in which a job may
visit each machine more than once. In the latter case the β-field contains the
entry rcrc for recirculation.

Flexible job shop (FJc) A flexible job shop is a generalization of the job
shop and the parallel machine environments. Instead of m machines in series
there are c work centers with at each work center a number of identical machines
in parallel. Each job has its own route to follow through the shop; job j requires
processing at each work center on only one machine and any machine can do.
If a job on its route through the shop may visit a work center more than once,
then the β-field contains the entry rcrc for recirculation.

Open shop (Om) There are m machines. Each job has to be processed
again on each one of the m machines. However, some of these processing times
may be zero. There are no restrictions with regard to the routing of each job
through the machine environment. The scheduler is allowed to determine a
route for each job and different jobs may have different routes.
The processing restrictions and constraints specified in the β field may in-

clude multiple entries. Possible entries in the β field are:
Release dates (rj) If this symbol appears in the β field, then job j cannot

start its processing before its release date rj . If rj does not appear in the β
field, the processing of job j may start at any time. In contrast to release dates,
due dates are not specified in this field. The type of objective function gives
sufficient indication whether or not there are due dates.
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Preemptions (prmp) Preemptions imply that it is not necessary to keep a
job on a machine, once started, until its completion. The scheduler is allowed
to interrupt the processing of a job (preempt) at any point in time and put a
different job on the machine instead. The amount of processing a preempted job
already has received is not lost. When a preempted job is afterwards put back on
the machine (or on another machine in the case of parallel machines), it only
needs the machine for its remaining processing time. When preemptions are
allowed prmp is included in the β field; when prmp is not included, preemptions
are not allowed.

Precedence constraints (prec) Precedence constraints may appear in a
single machine or in a parallel machine environment, requiring that one or
more jobs may have to be completed before another job is allowed to start its
processing. There are several special forms of precedence constraints: if each
job has at most one predecessor and at most one successor, the constraints are
referred to as chains. If each job has at most one successor, the constraints are
referred to as an intree. If each job has at most one predecessor the constraints
are referred to as an outtree. If no prec appears in the β field, the jobs are not
subject to precedence constraints.

Sequence dependent setup times (sjk) The sjk represents the sequence
dependent setup time that is incurred between the processing of jobs j and k;
s0k denotes the setup time for job k if job k is first in the sequence and sj0 the
clean-up time after job j if job j is last in the sequence (of course, s0k and sj0
may be zero). If the setup time between jobs j and k depends on the machine,
then the subscript i is included, i.e., sijk . If no sjk appears in the β field, all
setup times are assumed to be 0 or sequence independent, in which case they
are simply included in the processing times.

Job families (fmls) The n jobs belong in this case to F different job families.
Jobs from the same family may have different processing times, but they can
be processed on a machine one after another without requiring any setup in
between. However, if the machine switches over from one family to another, say
from family g to family h, then a setup is required. If this setup time depends
on both families g and h and is sequence dependent, then it is denoted by sgh.
If this setup time depends only on the family about to start, i.e., family h,
then it is denoted by sh. If it does not depend on either family, it is denoted
by s.

Batch processing (batch(b)) A machine may be able to process a number of
jobs, say b, simultaneously; that is, it can process a batch of up to b jobs at the
same time. The processing times of the jobs in a batch may not be all the same
and the entire batch is finished only when the last job of the batch has been
completed, implying that the completion time of the entire batch is determined
by the job with the longest processing time. If b = 1, then the problem reduces to
a conventional scheduling environment. Another special case that is of interest
is b = ∞, i.e., there is no limit on the number of jobs the machine can handle
at any time.
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Breakdowns (brkdwn) Machine breakdowns imply that a machine may not
be continuously available. The periods that a machine is not available are, in
this part of the book, assumed to be fixed (e.g., due to shifts or scheduled main-
tenance). If there are a number of identical machines in parallel, the number of
machines available at any point in time is a function of time, i.e., m(t). Machine
breakdowns are at times also referred to as machine availability constraints.

Machine eligibility restrictions (Mj) TheMj symbol may appear in the
β field when the machine environment is m machines in parallel (Pm). When
the Mj is present, not all m machines are capable of processing job j. Set Mj

denotes the set of machines that can process job j. If the β field does not contain
Mj , job j may be processed on any one of the m machines.

Permutation (prmu) A constraint that may appear in the flow shop envi-
ronment is that the queues in front of each machine operate according to the
First In First Out (FIFO) discipline. This implies that the order (or permuta-
tion) in which the jobs go through the first machine is maintained throughout
the system.

Blocking (block) Blocking is a phenomenon that may occur in flow shops.
If a flow shop has a limited buffer in between two successive machines, then it
may happen that when the buffer is full the upstream machine is not allowed to
release a completed job. Blocking implies that the completed job has to remain
on the upstream machine preventing (i.e., blocking) that machine from working
on the next job. The most common occurrence of blocking that is considered in
this book is the case with zero buffers in between any two successive machines.
In this case a job that has completed its processing on a given machine cannot
leave the machine if the preceding job has not yet completed its processing on
the next machine; thus, the blocked job also prevents (or blocks) the next job
from starting its processing on the given machine. In the models with blocking
that are considered in subsequent chapters the assumption is made that the
machines operate according to FIFO. That is, block implies prmu.

No-wait (nwt) The no-wait requirement is another phenomenon that may
occur in flow shops. Jobs are not allowed to wait between two successive ma-
chines. This implies that the starting time of a job at the first machine has to
be delayed to ensure that the job can go through the flow shop without having
to wait for any machine. An example of such an operation is a steel rolling mill
in which a slab of steel is not allowed to wait as it would cool off during a wait.
It is clear that under no-wait the machines also operate according to the FIFO
discipline.

Recirculation (rcrc) Recirculation may occur in a job shop or flexible job
shop when a job may visit a machine or work center more than once.
Any other entry that may appear in the β field is self explanatory. For exam-

ple, pj = p implies that all processing times are equal and dj = d implies that
all due dates are equal. As stated before, due dates, in contrast to release dates,
are usually not explicitly specified in this field; the type of objective function
gives sufficient indication whether or not the jobs have due dates.
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Fig. 2.1 Due date related penalty functions

The objective to be minimized is always a function of the completion times
of the jobs, which, of course, depend on the schedule. The completion time of
the operation of job j on machine i is denoted by Cij . The time job j exits the
system (that is, its completion time on the last machine on which it requires
processing) is denoted by Cj . The objective may also be a function of the due
dates. The lateness of job j is defined as

Lj = Cj − dj ,

which is positive when job j is completed late and negative when it is completed
early. The tardiness of job j is defined as

Tj = max(Cj − dj , 0) = max(Lj, 0).

The difference between the tardiness and the lateness lies in the fact that the
tardiness never is negative. The unit penalty of job j is defined as

Uj =

{
1 if Cj > dj

0 otherwise

The lateness, the tardiness and the unit penalty are the three basic due date
related penalty functions considered in this book. The shape of these functions
are depicted in Figure 2.1.
Examples of possible objective functions to be minimized are:
Makespan (Cmax) The makespan, defined as max(C1, . . . , Cn), is equivalent

to the completion time of the last job to leave the system. A minimum makespan
usually implies a good utilization of the machine(s).
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Maximum Lateness (Lmax) The maximum lateness, Lmax, is defined as
max(L1, . . . , Ln). It measures the worst violation of the due dates.

Total weighted completion time (
∑

wjCj) The sum of the weighted
completion times of the n jobs gives an indication of the total holding or in-
ventory costs incurred by the schedule. The sum of the completion times is in
the literature often referred to as the flow time. The total weighted completion
time is then referred to as the weighted flow time.

Discounted total weighted completion time (
∑

wj(1− e−rCj)) This is
a more general cost function than the previous one, where costs are discounted
at a rate of r, 0 < r < 1, per unit time. That is, if job j is not completed
by time t an additional cost wjre−rtdt is incurred over the period [t, t+ dt]. If
job j is completed at time t the total cost incurred over the period [ 0, t ] is
wj(1 − e−rt). The value of r is usually close to 0, say 0.1 or 10 %.

Total weighted tardiness (
∑

wjTj) This is also a more general cost func-
tion than the total weighted completion time.

Weighted number of tardy jobs (
∑

wjUj) The weighted number of tardy
jobs is not only a measure of academic interest, it is often an objective in practice
as it is a measure that can be recorded very easily.
All the objective functions above are so-called regular performance mea-

sures. A regular performance measure is a function that is nondecreasing in
C1, . . . , Cn. Recently researchers have begun to study objective functions that
are not regular. For example, when job j has a due date dj , it may be subject
to an earliness penalty, where the earliness of job j is defined as

Ej = max(dj − Cj , 0).

This earliness penalty is nonincreasing in Cj . An objective such as the total
earliness plus the total tardiness, i.e.,

n∑
j=1

Ej +
n∑
j=1

Tj ,

is therefore not regular. A more general objective that is not regular is the total
weighted earliness plus the total weighted tardiness, i.e.,

n∑
j=1

w′
jEj +

n∑
j=1

w′′
j Tj.

The weight associated with the earliness of job j (w′
j) may be different from

the weight associated with the tardiness of job j (w′′
j ).
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2.2 Examples

The following examples illustrate the notation:

Example 2.2.1 (A Flexible Flow Shop)

FFc | rj |
∑

wjTj denotes a flexible flow shop. The jobs have release dates
and due dates and the objective is the minimization of the total weighted tar-
diness. Example 1.1.1 in Section 1.1 (the paper bag factory) can be modeled
as such. Actually, the problem described in Section 1.1 has some additional
characteristics including sequence dependent setup times at each of the three
stages. In addition, the processing time of job j on machine i has a special
structure: it depends on the number of bags and on the speed of the ma-
chine. ||
Example 2.2.2 (A Flexible Job Shop)
FJc | rj , sijk, rcrc |

∑
wjTj refers to a flexible job shop with c work centers.

The jobs have different release dates and are subject to sequence dependent
setup times that are machine dependent. There is recirculation, so a job may
visit a work center more than once. The objective is to minimize the total
weighted tardiness. It is clear that this problem is a more general problem
than the one described in the previous example. Example 1.1.2 in Section
1.1 (the semiconductor manufacturing facility) can be modeled as such. ||
Example 2.2.3 (A Parallel Machine Environment)

Pm | rj ,Mj |
∑

wjTj denotes a system with m machines in parallel. Job j
arrives at release date rj and has to leave by the due date dj . Job j may be
processed only on one of the machines belonging to the subset Mj. If job j
is not completed in time a penalty wjTj is incurred. This model can be used
for the gate assignment problem described in Example 1.1.3. ||
Example 2.2.4 (A Single Machine Environment)

1 | rj , prmp | ∑
wjCj denotes a single machine system with job j entering

the system at its release date rj . Preemptions are allowed. The objective to
be minimized is the sum of the weighted completion times. This model can
be used to study the deterministic counterpart of the problem described in
Example 1.1.4. ||
Example 2.2.5 (Sequence Dependent Setup Times)

1 | sjk | Cmax denotes a single machine system with n jobs subject to
sequence dependent setup times, where the objective is to minimize the
makespan. It is well-known that this problem is equivalent to the so-called
Travelling Salesman Problem (TSP), where a salesman has to tour n cities
in such a way that the total distance traveled is minimized (see Appendix D
for a formal definition of the TSP). ||
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Example 2.2.6 (A Project)

P∞ | prec | Cmax denotes a scheduling problem with n jobs subject to
precedence constraints and an unlimited number of machines (or resources)
in parallel. The total time of the entire project has to be minimized. This type
of problem is very common in project planning in the construction industry
and has lead to techniques such as the Critical Path Method (CPM) and the
Project Evaluation and Review Technique (PERT). ||
Example 2.2.7 (A Flow Shop)

Fm | pij = pj |
∑

wjCj denotes a proportionate flow shop environment with
m machines in series; the processing times of job j on all m machines are
identical and equal to pj (hence the term proportionate). The objective is to
find the order in which the n jobs go through the system so that the sum of
the weighted completion times is minimized. ||
Example 2.2.8 (A Job Shop)

Jm || Cmax denotes a job shop problem with m machines. There is no re-
circulation, so a job visits each machine at most once. The objective is to
minimize the makespan. This problem is considered a classic in the schedul-
ing literature and has received an enormous amount of attention. ||
Of course, there are many scheduling models that are not captured by this

framework. One can define, for example, a more general flexible job shop in
which each work center consists of a number of unrelated machines in parallel.
When a job on its route through the system arrives at a bank of unrelated
machines, it may be processed on any one of the machines, but its processing
time now depends on the machine on which it is processed.
One can also define a model that is a mixture of a job shop and an open shop.

The routes of some jobs are fixed, while the routes of other jobs are (partially)
open.
The framework described in Section 2.1 has been designed primarily for mod-

els with a single objective. Most research in the past has concentrated on models
with a single objective. Recently, researchers have begun studying models with
multiple objectives as well.
Various other scheduling features, that are not mentioned here, have been

studied and analyzed in the literature. Such features include periodic or cyclic
scheduling, personnel scheduling, and resource constrained scheduling.

2.3 Classes of Schedules

In scheduling terminology a distinction is often made between a sequence, a
schedule and a scheduling policy. A sequence usually corresponds to a permu-
tation of the n jobs or the order in which jobs are to be processed on a given
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machine. A schedule usually refers to an allocation of jobs within a more com-
plicated setting of machines, allowing possibly for preemptions of jobs by other
jobs that are released at later points in time. The concept of a scheduling policy
is often used in stochastic settings: a policy prescribes an appropriate action
for any one of the states the system may be in. In deterministic models usually
only sequences or schedules are of importance.
Assumptions have to be made with regard to what the scheduler may and

may not do when he generates a schedule. For example, it may be the case that
a schedule may not have any unforced idleness on any machine. This class of
schedules can be defined as follows.

Definition 2.3.1 (Non-Delay Schedule). A feasible schedule is called
non-delay if no machine is kept idle while an operation is waiting for processing.

Requiring a schedule to be non-delay is equivalent to prohibiting unforced
idleness. For many models, including those that allow preemptions and have
regular objective functions, there are optimal schedules that are non-delay. For
many models considered in this part of the book the goal is to find an opti-
mal schedule that is non-delay. However, there are models where it may be
advantageous to have periods of unforced idleness.
A smaller class of schedules, within the class of all non-delay schedules, is the

class of nonpreemptive non-delay schedules. Nonpreemptive non-delay schedules
may lead to some interesting and unexpected anomalies.

Example 2.3.2 (A Scheduling Anomaly)

Consider an instance of P2 | prec | Cmax with 10 jobs and the following
processing times.

jobs 1 2 3 4 5 6 7 8 9 10

pj 8 7 7 2 3 2 2 8 8 15

The jobs are subject to the precedence constraints depicted in Figure 2.2.
The makespan of the non-delay schedule depicted in Figure 2.3.a is 31 and
the schedule is clearly optimal.
One would expect that, if each one of the ten processing times is reduced

by one time unit, the makespan would be less than 31. However, requiring
the schedule to be non-delay results in the schedule depicted in Figure 2.3.b
with a makespan of 32.
Suppose that an additional machine is made available and that there are

now three machines instead of two. One would again expect the makespan
with the original set of processing times to be less than 31. Again, the non-
delay requirement has an unexpected effect: the makespan is now 36. ||
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Fig. 2.2 Precedence constraints graph for Example 2.3.2.
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Fig. 2.4 An active schedule that is not nondelay.

Some heuristic procedures and algorithms for job shops are based on the
construction of nonpreemptive schedules with certain special properties. Two
classes of nonpreemptive schedules are of importance for certain algorithmic
procedures for job shops.

Definition 2.3.3 (Active Schedule). A feasible nonpreemptive schedule
is called active if it is not possible to construct another schedule, through changes
in the order of processing on the machines, with at least one operation finishing
earlier and no operation finishing later.

In other words, a schedule is active if no operation can be put into an empty
hole earlier in the schedule while preserving feasibility. A nonpreemptive non-
delay schedule has to be active but the reverse is not necessarily true. The
following example describes a schedule that is active but not non-delay.

Example 2.3.4 (An Active Schedule)

Consider a job shop with three machines and two jobs. Job 1 needs one time
unit on machine 1 and 3 time units on machine 2. Job 2 needs 2 time units
on machine 3 and 3 time units on machine 2. Both jobs have to be processed
last on machine 2. Consider the schedule which processes job 2 on machine 2
before job 1 (see Figure 2.4). It is clear that this schedule is active; reversing
the sequence of the two jobs on machine 2 postpones the processing of job 2.
However, the schedule is not non-delay. Machine 2 remains idle till time 2,
while there is already a job available for processing at time 1. ||
It can be shown that, when the objective γ is regular, there exists for Jm || γ

an optimal schedule that is active.
An even larger class of nonpreemptive schedules can be defined as follows.

Definition 2.3.5 (Semi-Active Schedule). A feasible nonpreemptive
schedule is called semi-active if no operation can be completed earlier without
changing the order of processing on any one of the machines.

It is clear that an active schedule has to be semi-active. However, the reverse
is not necessarily true.
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Fig. 2.6 Venn diagram of classes of nonpreemptive schedules for job
shops

Example 2.3.6 (A Semi-Active Schedule)

Consider again a job shop with three machines and two jobs. The routing of
the two jobs is the same as in the previous example. The processing times of
job 1 on machines 1 and 2 are both equal to 1. The processing times of job 2
on machines 2 and 3 are both equal to 2. Consider the schedule under which
job 2 is processed on machine 2 before job 1 (see Figure 2.5). This implies
that job 2 starts its processing on machine 2 at time 2 and job 1 starts its
processing on machine 2 at time 4. This schedule is semi-active. However, it
is not active, as job 1 can be processed on machine 2 without delaying the
processing of job 2 on machine 2.
An example of a schedule that is not even semi-active can be constructed

easily. Postpone the start of the processing of job 1 on machine 2 for one time
unit, i.e., machine 2 is kept idle for one unit of time between the processing
of jobs 2 and 1. Clearly, this schedule is not even semi-active. ||
Figure 2.6 shows a Venn diagram of the three classes of nonpreemptive sched-

ules: the nonpreemptive non-delay schedules, the active schedules, and the semi-
active schedules.
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2.4 Complexity Hierarchy

Often, an algorithm for one scheduling problem can be applied to another
scheduling problem as well. For example, 1 || ∑

Cj is a special case of
1 || ∑

wjCj and a procedure for 1 ||
∑

wjCj can, of course, also be used
for 1 || ∑

Cj . In complexity terminology it is then said that 1 ||
∑

Cj reduces
to 1 || ∑wjCj . This is usually denoted by

1 || ∑Cj ∝ 1 || ∑wjCj .

Based on this concept a chain of reductions can be established. For example,

1 || ∑Cj ∝ 1 || ∑wjCj ∝ Pm || ∑wjCj ∝ Qm | prec | ∑wjCj .

Of course, there are also many problems that are not comparable with one
another. For example, Pm || ∑wjTj is not comparable to Jm || Cmax.
A considerable effort has been made to establish a problem hierarchy de-

scribing the relationships between the hundreds of scheduling problems. In the
comparisons between the complexities of the different scheduling problems it
is of interest to know how a change in a single element in the classification of
a problem affects its complexity. In Figure 2.7 a number of graphs are exhib-
ited that help determine the complexity hierarchy of deterministic scheduling
problems. Most of the hierarchy depicted in these graphs is relatively straight-
forward. However, two of the relationships may need some explaining, namely

α | β | Lmax ∝ α | β | ∑Uj

and

α | β | Lmax ∝ α | β | ∑Tj.

It can, indeed, be shown that a procedure for α | β | ∑Uj and a procedure for
α | β | ∑Tj can be applied to α | β | Lmax with only minor modifications (see
Exercise 2.23).
A significant amount of research in deterministic scheduling has been de-

voted to finding efficient, so-called polynomial time, algorithms for scheduling
problems. However, many scheduling problems do not have a polynomial time
algorithm; these problems are the so-called NP-hard problems. Verifying that
a problem is NP-hard requires a formal mathematical proof (see Appendix D).
Research in the past has focused in particular on the borderline between

polynomial time solvable problems and NP-hard problems. For example, in the
string of problems described above, 1 || ∑

wjCj can be solved in polynomial
time, whereas Pm || ∑

wjCj is NP-hard, which implies that Qm | prec |∑
wjCj is also NP-hard. The following examples illustrate the borderlines be-

tween easy and hard problems within given sets of problems.

Example 2.4.1 (A Complexity Hierarchy)
Consider the problems

(i) 1 || Cmax,
(ii) P2 || Cmax,
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(b)
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Fig. 2.7 Complexity hierarchies of deterministic scheduling problems:
(a) Machine environments (b) Processing restrictions and constraints

(c) Objective functions

(iii) F2 || Cmax,
(iv) Jm || Cmax,
(v) FFc || Cmax.

The complexity hierarchy is depicted in Figure 2.8. ||

Example 2.4.2 (A Complexity Hierarchy)
Consider the problems

(i) 1 || Lmax,
(ii) 1 | prmp | Lmax,
(iii) 1 | rj | Lmax,



28 2 Deterministic Models: Preliminaries

FFcCmax

P2Cmax

JmCmax

F 2Cmax

Hard

Easy

1Cmax

Fig. 2.8 Complexity hierarchy of problems in Example 2.4.1

PmLmax 1rjLmax 1rj, prmpLmax

1Lmax 1prmpLmaxHard

Easy

Fig. 2.9 Complexity hierarchy of problems in Example 2.4.2

(iv) 1 | rj , prmp | Lmax,
(v) Pm || Lmax.

The complexity hierarchy is depicted in Figure 2.9. ||

Exercises (Computational)

2.1. Consider the instance of 1 || ∑wjCj with the following processing times
and weights.

jobs 1 2 3 4

wj 6 11 9 5
pj 3 5 7 4

(a) Find the optimal sequence and compute the value of the objective.
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(b) Give an argument for positioning jobs with larger weight more towards
the beginning of the sequence and jobs with smaller weight more towards
the end of the sequence.
(c) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.
(d) Determine which one of the following two generic rules is the most
suitable for the problem:

(i) sequence the jobs in decreasing order of wj − pj ;
(ii) sequence the jobs in decreasing order of wj/pj.

2.2. Consider the instance of 1 || Lmax with the following processing times and
due dates.

jobs 1 2 3 4

pj 5 4 3 6
dj 3 5 11 12

(a) Find the optimal sequence and compute the value of the objective.
(b) Give an argument for positioning jobs with earlier due dates more to-
wards the beginning of the sequence and jobs with later due dates more
towards the end of the sequence.
(c) Give an argument for positioning jobs with smaller processing time
more towards the beginning of the sequence and jobs with larger processing
time more towards the end of the sequence.
(d) Determine which one of the following four rules is the most suitable
generic rule for the problem:

(i) sequence the jobs in increasing order of dj + pj ;
(ii) sequence the jobs in increasing order of djpj ;
(iii) sequence the jobs in increasing order of dj ;
(iv) sequence the jobs in increasing order of pj.

2.3. Consider the instance of 1 || ∑Uj with the following processing times and
due dates.

jobs 1 2 3 4

pj 7 6 4 8
dj 8 9 11 14

(a) Find all optimal sequences and compute the value of the objective.
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(b) Formulate a generic rule based on the due dates and processing times
that yields an optimal sequence for any instance.

2.4. Consider the instance of 1 || ∑Tj with the following processing times and
due dates.

jobs 1 2 3 4

pj 7 6 8 4
dj 8 9 10 14

(a) Find all optimal sequences.
(b) Formulate a generic rule that is a function of the due dates and pro-
cessing times that yields an optimal sequence for any instance.

2.5. Find the optimal sequence for P5 || Cmax with the following 11 jobs.

jobs 1 2 3 4 5 6 7 8 9 10 11

pj 9 9 8 8 7 7 6 6 5 5 5

2.6. Consider the instance of F2 | prmu | Cmax with the following processing
times.

jobs 1 2 3 4

p1j 8 6 4 12
p2j 4 9 10 6

Find all optimal sequences and determine the makespan under an optimal se-
quence.

2.7. Consider the instance of F2 | block | Cmax with the same jobs and the
same processing times as in Exercise 2.6. There is no (zero) buffer between the
two machines. Find all optimal sequences and compute the makespan under an
optimal sequence.

2.8. Consider the instance of F2 | nwt | Cmax with the same jobs and the same
processing times as in Exercise 2.6. Find all optimal sequences and compute the
makespan under an optimal sequence.

2.9. Consider the instance of O2 || Cmax with 4 jobs. The processing times of
the four jobs on the two machines are again as in Exercise 2.6. Find all optimal
schedules and compute the makespan under an optimal schedule.



Exercises 31

2.10. Consider the instance of J2 || Cmax with 4 jobs. The processing times
of the four jobs on the two machines are again as in Exercise 2.6. Jobs 1 and
2 have to be processed first on machine 1 and then on machine 2, while jobs 3
and 4 have to be processed first on machine 2 and then on machine 1. Find all
optimal schedules and determine the makespan under an optimal schedule.

Exercises (Theory)

2.11. Explain why α | pj = 1, rj | γ is easier than α | prmp, rj | γ when all
processing times, release dates and due dates are integer.

2.12. Consider 1 | sjk = ak + bj | Cmax. That is, job j has two parameters
associated with it, namely aj and bj . If job j is followed by job k, there is a
setup time sjk = ak + bj required before the start of job k’s processing. The
setup time of the first job in the sequence, s0k is ak, while the “clean-up” time
at the completion of the last job in the sequence, sj0, is bj . Show that this
problem is equivalent to 1 || Cmax and that the makespan therefore does not
depend on the sequence. Find an expression for the makespan.

2.13. Show that 1 | sjk | Cmax is equivalent to the following Travelling
Salesman Problem: A travelling salesman starts out from city 0, visits cities
1, 2, . . . , n and returns to city 0, while minimizing the total distance travelled.
The distance from city 0 to city k is s0k; the distance from city j to city k is
sjk and the distance from city j to city 0 is sj0.

2.14. Show that 1 | brkdwn, prmp | ∑
wjCj reduces to 1 | rj , prmp |∑

wjCj .

2.15. Show that 1 | pj = 1 |
∑

wjTj and 1 | pj = 1 | Lmax are equivalent
to the assignment problem (see Appendix A for a definition of the assignment
problem).

2.16. Show that Pm | pj = 1 |
∑

wjTj and Pm | pj = 1 | Lmax are equiv-
alent to the transportation problem (see Appendix A for a definition of the
transportation problem).

2.17. Consider P || Cmax. Show that for any non-delay schedule the following
inequalities hold:∑

pj
m

≤ Cmax ≤ 2×max
(
p1, . . . , pn,

∑
pj

m

)
.

2.18. Show how Pm |Mj | γ reduces to Rm || γ.
2.19. Show that F2 | block | Cmax is equivalent to F2 | nwt | Cmax and show
that both problems are special cases of 1 | sjk | Cmax and therefore special cases
of the Travelling Salesman Problem.
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2.20. Consider an instance of Om | β | γ and an instance of Fm | β | γ. The
two instances have the same number of machines, the same number of jobs, and
the jobs have the same processing times on the m machines. The two instances
are completely identical with the exception that one instance is an open shop
and the other instance a flow shop. Show that the value of the objective under
the optimal sequence in the flow shop is at least as large as the value of the
objective under the optimal sequence in the open shop.

2.21. Consider O2 || Cmax. Show that

Cmax ≥ max
( n∑
j=1

p1j ,

n∑
j=1

p2j

)
.

Find an instance of this problem where the optimal makespan is strictly larger
than the RHS.

2.22. Describe the complexity relationships between the problems

(i) 1 || ∑wjCj ,
(ii) 1 | dj = d | ∑wjTj ,
(iii) 1 | pj = 1 |

∑
wjTj ,

(iv) 1 || ∑wjTj,
(v) Pm | pj = 1 |

∑
wjTj ,

(vi) Pm || ∑wjTj .

2.23. Show that α | β | Lmax reduces to α | β |
∑

Tj as well as to α | β |
∑

Uj .
(Hint: Note that if the minimum Lmax is zero, the optimal solution with regard
to

∑
Uj and

∑
Tj is zero as well. It suffices to show that a polynomial time

procedure for α | β | ∑Uj can be adapted easily for application to α | β | Lmax.
This can be done through a parametric analysis on the dj , i.e., solve α | β |

∑
Uj

with due dates dj + z and vary z.)

Comments and References

One of the first classification schemes for scheduling problems appeared in Con-
way, Maxwell and Miller (1967). Lawler, Lenstra and Rinnooy Kan (1982), in
their survey paper, modified and refined this scheme extensively. Herrmann,
Lee and Snowdon (1993) made another round of extensions. The framework
presented here is another variation of the Lawler, Lenstra and Rinnooy Kan
(1982) notation, with a slightly different emphasis.
For a survey of scheduling problems subject to availability constraints

(brkdwn), see Lee (2004) For surveys on scheduling problems with non-regular
objective functions, see Raghavachari (1988) and Baker and Scudder (1990).
For a survey of scheduling problems with job families and scheduling problems
with batch processing, see Potts and Kovalyov (2000).
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The definitions of non-delay, active, and semi-active schedules have been
around for a long time; see, for example, Giffler and Thompson (1960) and
French (1982) for a comprehensive overview of classes of schedules. Exam-
ple 2.3.2, which illustrates some of the anomalies of non-delay schedules, is
due to Graham (1966).
The complexity hierarchy of scheduling problems is motivated primarily by

the work of Rinnooy Kan (1976), Lenstra (1977), Lageweg, Lawler, Lenstra
and Rinnooy Kan (1981, 1982) and Lawler, Lenstra, Rinnooy Kan and Shmoys
(1993). For more on reducibility in scheduling, see Timkovsky (2000).
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Single machine models are important for various reasons. The single machine
environment is very simple and a special case of all other environments. Single
machine models often have properties that neither machines in parallel nor ma-
chines in series have. The results that can be obtained for single machine models
not only provide insights into the single machine environment, they also provide
a basis for heuristics that are applicable to more complicated machine environ-
ments. In practice, scheduling problems in more complicated machine environ-
ments are often decomposed into subproblems that deal with single machines.
For example, a complicated machine environment with a single bottleneck may
give rise to a single machine model.
In this chapter various single machine models are analyzed in detail. The

total weighted completion time objective is considered first, followed by several
due date related objectives, including the maximum lateness, the number of
tardy jobs, the total tardiness and the total weighted tardiness. All objective
functions considered in this chapter are regular.
In most models considered in this chapter there is no advantage in having

preemptions; for these models it can be shown that the optimal schedule in the
class of preemptive schedules is nonpreemptive. However, if jobs are released
at different points in time, then it may be advantageous to preempt. If jobs
are released at different points in time in a nonpreemptive environment, then

35M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
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it may be advantageous to allow for unforced idleness (i.e., an optimal schedule
may not be non-delay).

3.1 The Total Weighted Completion Time

The first objective to be considered is the total weighted completion time, i.e.,
1 || ∑wjCj . The weight wj of job j may be regarded as an importance factor;
it may represent either a holding cost per unit time or the value already added
to job j. This problem gives rise to one of the better known rules in scheduling
theory, the so-called Weighted Shortest Processing Time first (WSPT) rule.
According to this rule the jobs are ordered in decreasing order of wj/pj.

Theorem 3.1.1. The WSPT rule is optimal for 1 || ∑wjCj.

Proof. By contradiction. Suppose a schedule S, that is not WSPT, is optimal.
In this schedule there must be at least two adjacent jobs, say job j followed by
job k, such that

wj
pj

<
wk
pk

.

Assume job j starts its processing at time t. Perform a so-called Adjacent Pair-
wise Interchange on jobs j and k. Call the new schedule S′. While under the
original schedule S job j starts its processing at time t and is followed by job k,
under the new schedule S′ job k starts its processing at time t and is followed
by job j. All other jobs remain in their original position. The total weighted
completion time of the jobs processed before jobs j and k is not affected by
the interchange. Neither is the total weighted completion time of the jobs pro-
cessed after jobs j and k. Thus the difference in the values of the objectives
under schedules S and S′ is due only to jobs j and k (see Figure 3.1). Under S
the total weighted completion time of jobs j and k is

(t+ pj)wj + (t+ pj + pk)wk,

while under S′ it is
(t+ pk)wk + (t+ pk + pj)wj .

It is easily verified that if wj/pj < wk/pk the sum of the two weighted comple-
tion times under S′ is strictly less than under S. This contradicts the optimality
of S and completes the proof of the theorem. 	

The computation time needed to order the jobs according to WSPT is the

time required to sort the jobs according to the ratio of the two parameters. A
simple sort can be done in O(n log(n)) time, see Example D.1.1 in Appendix D.
How is the minimization of the total weighted completion time affected by

precedence constraints? Consider the simplest form of precedence constraints,
i.e., precedence constraints that take the form of parallel chains (see Figure 3.2).
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k

t t + pj + pk

j

Schedule S

Schedule S’

k

t t + pj + pk

j

Fig. 3.1 A pairwise interchange of jobs j and k

Fig. 3.2 Precedence constraints in the form of chains

This problem can still be solved by a relatively simple and very efficient (polyno-
mial time) algorithm. This algorithm is based on some fundamental properties
of scheduling with precedence constraints.
Consider two chains of jobs. One chain, say Chain I, consists of jobs 1, . . . , k

and the other chain, say Chain II, consists of jobs k+1, . . . , n. The precedence
constraints are as follows:

1→ 2→ · · · → k

and
k + 1→ k + 2→ · · · → n.

The next lemma is based on the assumption that if the scheduler decides to
start processing jobs of one chain he has to complete the entire chain before he
is allowed to work on jobs of the other chain. The question is: if the scheduler
wishes to minimize the total weighted completion time of the n jobs, which one
of the two chains should he process first?

Lemma 3.1.2. If ∑k
j=1 wj∑k
j=1 pj

> (<)

∑n
j=k+1 wj∑n
j=k+1 pj

,
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then it is optimal to process the chain of jobs 1, . . . , k before (after) the chain
of jobs k + 1, . . . , n.

Proof. By contradiction. Under sequence 1, . . . , k, k+1, . . . , n the total weighted
completion time is

w1p1 + · · ·+ wk

k∑
j=1

pj + wk+1

k+1∑
j=1

pj + · · ·+ wn

n∑
j=1

pj,

while under sequence k + 1, . . . , n, 1, . . . , k it is

wk+1pk+1 + · · ·+ wn

n∑
j=k+1

pj + w1

( n∑
j=k+1

pj + p1

)
+ · · ·+ wk

n∑
j=1

pj.

The total weighted completion time of the first sequence is less than the total
weighted completion time of the second sequence if∑k

j=1 wj∑k
j=1 pj

>

∑n
j=k+1 wj∑n
j=k+1 pj

The result follows. 	

An interchange between two adjacent chains of jobs is usually referred to as

an Adjacent Sequence Interchange. Such an interchange is a generalization of
an Adjacent Pairwise Interchange.
An important characteristic of chain

1→ 2→ · · · → k

is defined as follows: let l∗ satisfy∑l∗

j=1 wj∑l∗
j=1 pj

= max
1≤l≤k

(∑l
j=1 wj∑l
j=1 pj

)
.

The ratio on the left-hand side is called the ρ-factor of chain 1, . . . , k and is
denoted by ρ(1, . . . , k). Job l∗ is referred to as the job that determines the
ρ-factor of the chain.
Suppose now that the scheduler does not have to complete all the jobs in

a chain before he is allowed to work on another chain. He may process some
jobs of one chain (while adhering to the precedence constraints), switch over to
another chain, and, at some later point in time, return to the first chain. If, in
the case of multiple chains, the total weighted completion time is the objective
function, then the following result holds.
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Lemma 3.1.3. If job l∗ determines ρ(1, . . . , k), then there exists an optimal
sequence that processes jobs 1, . . . , l∗ one after another without any interruption
by jobs from other chains.

Proof. By contradiction. Suppose that under the optimal sequence the process-
ing of the subsequence 1, . . . , l∗ is interrupted by a job, say job v, from another
chain. That is, the optimal sequence contains the subsequence 1, . . . , u, v, u +
1, . . . , l∗, say subsequence S. It suffices to show that either with subsequence
v, 1, . . . , l∗, say S′, or with subsequence 1, . . . , l∗, v, say S′′, the total weighted
completion time is less than with subsequence S. If it is not less with the
first subsequence, then it has to be less with the second and vice versa. From
Lemma 3.1.2 it follows that if the total weighted completion time with S is less
than with S′ then

wv
pv

<
w1 + w2 + . . .+ wu
p1 + p2 + . . .+ pu

.

From Lemma 3.1.2 it also follows that if the total weighted completion time
with S is less than with S′′ then

wv
pv

>
wu+1 + wu+2 + . . .+ wl∗

pu+1 + pu+2 + . . .+ pl∗
.

If job l∗ is the job that determines the ρ-factor of chain 1, . . . , k, then

wu+1 + wu+2 + . . .+ wl∗

pu+1 + pu+2 + . . .+ pl∗
>

w1 + w2 + . . .+ wu
p1 + p2 + . . .+ pu

.

If S is better than S′′, then

wv
pv

>
wu+1 + wu+2 + . . .+ wl∗

pu+1 + pu+2 + . . .+ pl∗
>

w1 + w2 + . . .+ wu
p1 + p2 + . . .+ pu

.

So S′ is therefore better than S. The same argument goes through if the inter-
ruption of the chain is caused by more than one job. 	

The result in Lemma 3.1.3 is intuitive. The condition of the lemma implies

that the ratios of the weight divided by the processing time of the jobs in the
string 1, . . . , l∗ must be increasing in some sense. If one had already decided
to start processing a string of jobs, it makes sense to continue processing the
string until job l∗ is completed without processing any other job in between.
The two previous lemmas contain the basis for a simple algorithm that mini-

mizes the total weighted completion time when the precedence constraints take
the form of chains.

Algorithm 3.1.4 (Total Weighted Completion Time and Chains)
Whenever the machine is freed, select among the remaining chains the one with
the highest ρ-factor. Process this chain without interruption up to and including
the job that determines its ρ-factor. ||
The following example illustrates the use of the algorithm.
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Example 3.1.5 (Total Weighted Completion Time and Chains)

Consider the following two chains:

1→ 2→ 3→ 4

and
5→ 6→ 7

The weights and processing times of the jobs are given in the table below.

jobs 1 2 3 4 5 6 7

wj 6 18 12 8 8 17 18
pj 3 6 6 5 4 8 10

The ρ-factor of the first chain is (6+18)/(3+6) and is determined by job 2.
The ρ-factor of the second chain is (8+17)/(4+8) and is determined by job 6.
As 24/9 is larger than 25/12 jobs 1 and 2 are processed first. The ρ-factor
of the remaining part of the first chain is 12/6 and determined by job 3. As
25/12 is larger than 12/6 jobs 5 and 6 follow jobs 1 and 2. The ρ-factor of
the remaining part of the second chain is 18/10 and is determined by job 7;
so job 3 follows job 6. As the wj/pj ratio of job 7 is higher than the ratio of
job 4, job 7 follows job 3 and job 4 goes last. ||
Polynomial time algorithms have been obtained for 1 | prec | ∑

wjCj with
more general precedence constraints than the parallel chains considered above.
However, with arbitrary precedence constraints, the problem is strongly NP-
hard.
Up to now all jobs were assumed to be available at time zero. Consider the

problem where jobs are released at different points in time and the scheduler
is allowed to preempt, i.e., 1 | rj , prmp | ∑

wjCj . The first question that
comes to mind is whether a preemptive version of the WSPT rule is optimal. A
preemptive version of the WSPT rule can be formulated as follows: At any point
in time the available job with the highest ratio of weight to remaining processing
time is selected for processing. The priority level of a job thus increases while
being processed and a job can therefore not be preempted by another job that
already was available at the start of its processing. However, a job may be
preempted by a newly released job with a higher priority factor. Although this
rule may appear a logical extension of the nonpreemptive WSPT rule, it does
not necessarily lead to an optimal schedule since the problem is strongly NP-
hard (see Appendix E).
If all the weights are equal, then the 1 | rj , prmp | ∑Cj problem is easy (see

Exercise 3.15). On the other hand, the nonpreemptive version of this problem,
i.e., 1 | rj |

∑
Cj , is strongly NP-hard.



3.1 The Total Weighted Completion Time 41

In Chapter 2 the total weighted discounted completion time
∑

wj(1−e−rCj),
with r being the discount factor, is described as an objective that is, in a way,
a generalization of the total weighted (undiscounted) completion time. The
problem 1 || ∑wj(1 − e−rCj) gives rise to a different priority rule, namely the
rule that schedules the jobs in decreasing order of

wje
−rpj

1− e−rpj
.

In what follows this rule is referred to as the Weighted Discounted Shortest
Processing Time first (WDSPT) rule.

Theorem 3.1.6. For 1 || ∑wj(1 − e−rCj) the WDSPT rule is optimal.

Proof. By contradiction. Again, assume that a different schedule, say sched-
ule S, is optimal. Under this schedule there have to be two jobs j and k, job j
followed by job k, such that

wje
−rpj

1− e−rpj
<

wke
−rpk

1− e−rpk
.

Assume job j starts its processing at time t. An Adjacent Pairwise Interchange
between these two jobs results in a schedule S′. It is clear that the only difference
in the objective is due to jobs j and k. Under S the contribution of jobs j and
k to the objective function equals

wj

(
1− e−r(t+pj)

)
+ wk

(
1− e−r(t+pj+pk)

)
.

The contribution of jobs j and k to the objective under S′ is obtained by
interchanging the j’s and k’s in this expression. Elementary algebra then shows
that the value of objective function under S′ is less than under S. This leads
to the contradiction that completes the proof. 	

As discussed in Chapter 2, the total undiscounted weighted completion time

is basically a limiting case of the total discounted weighted completion time∑
wj(1− e−rCj). The WDSPT rule results in the same sequence as the WSPT

rule if r is sufficiently close to zero (note that the WDSPT rule is not properly
defined for r = 0).
Both

∑
wjCj and

∑
wj(1 − e−rCj) are special cases of the more gen-

eral objective function
∑

wjh(Cj). It has been shown that only the functions
h(Cj) = Cj and h(Cj) = 1− e−rCj lead to simple priority rules that order the
jobs in decreasing order of some function g(wj , pj). No such priority function
g, that guarantees optimality, exists for any other cost function h. However,
the objective

∑
hj(Cj) can be dealt with via Dynamic Programming (see Ap-

pendix B).
In a similar way as Lemma 3.1.2 generalizes the Adjacent Pairwise Inter-

change argument for WSPT there exists an Adjacent Sequence Interchange
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result that generalizes the Adjacent Pairwise Interchange argument used in the
optimality proof for the WDSPT rule (see Exercise 3.21).

3.2 The Maximum Lateness

The objectives considered in the next four sections are due date related. The
first due date related model is of a rather general nature, namely the problem
1 | prec | hmax, where

hmax = max
(
h1(C1), . . . , hn(Cn)

)
with hj , j = 1, . . . , n, being nondecreasing cost functions. This objective is
clearly due date related as the functions hj may take any one of the forms
depicted in Figure 2.1. This problem allows for an efficient backward dynamic
programming algorithm even when the jobs are subject to arbitrary precedence
constraints.
It is clear that the completion of the last job occurs at the makespan Cmax =∑
pj, which is independent of the schedule. Let J denote the set of jobs already

scheduled, which are processed during the time interval

[Cmax −
∑
j∈J

pj, Cmax].

The complement of set J , set Jc, denotes the set of jobs still to be scheduled and
the subset J ′ of Jc denotes the set of jobs that can be scheduled immediately
before set J , i.e., the set of jobs all of whose successors are in J . Set J ′ is referred
to as the set of schedulable jobs. The following backward algorithm yields an
optimal schedule.

Algorithm 3.2.1 (Minimizing Maximum Cost)
Step 1.

Set J = ∅, Jc = {1, . . . , n}
and J ′ the set of all jobs with no successors.

Step 2.
Let j∗ be such that

hj∗(
∑
k∈Jc

pk) = min
j∈J′

(
hj(

∑
k∈Jc

pk)
)

Add j∗ to J
Delete j∗ from Jc

Modify J ′ to represent the new set of schedulable jobs.

Step 3.
If Jc = ∅ STOP, otherwise go to Step 2. ||
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Fig. 3.3 Proof of optimality of Theorem 3.2.2

Theorem 3.2.2. Algorithm 3.2.1 yields an optimal schedule for 1 | prec |
hmax.

Proof. By contradiction. Suppose in a given iteration job j∗∗, selected from J ′,
does not have the minimum completion cost

hj∗
( ∑
k∈Jc

pk

)
among the jobs in J ′. The minimum cost job j∗ must then be scheduled in a
later iteration, implying that job j∗ has to appear in the sequence before job j∗∗.
A number of jobs may even appear between jobs j∗ and j∗∗ (see Figure 3.3).
To show that this sequence cannot be optimal, take job j∗ and insert it in

the schedule immediately following job j∗∗. All jobs in the original schedule
between jobs j∗ and j∗∗, including job j∗∗ itself, are now completed earlier.
The only job whose completion cost increases is job j∗. However, its completion
cost now is, by definition, smaller than the completion cost of job j∗∗ under the
original schedule, so the maximum completion cost decreases after the insertion
of job j∗. This completes the proof. 	
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The worst case computation time required by this algorithm can be estab-
lished as follows. There are n steps needed to schedule the n jobs. In each step
at most n jobs have to be considered. The overall running time of the algorithm
is therefore bounded by O(n2).
The following example illustrates the application of this algorithm.

Example 3.2.3 (Minimizing Maximum Cost)
Consider the following three jobs.

jobs 1 2 3

pj 2 3 5
hj(Cj) 1 + C1 1.2 C2 10

The makespan Cmax = 10 and h3(10) < h1(10) < h2(10) (as 10 < 11 < 12).
Job 3 is therefore scheduled last and has to start its processing at time 5.
To determine which job is to be processed before job 3, h2(5) has to be
compared with h1(5). Either job 1 or job 2 may be processed before job 3
in an optimal schedule as h1(5) = h2(5) = 6. So two schedules are optimal:
1, 2, 3 and 2, 1, 3. ||
The problem 1 || Lmax is the best known special case of 1 | prec | hmax. The

function hj is then defined as Cj − dj and the algorithm yields the schedule
that orders the job in increasing order of their due dates, i.e., Earliest Due Date
(EDD) first.
A generalization of 1 || Lmax is the problem 1 | rj | Lmax with the jobs

released at different points in time. This generalization, which does not allow
preemption, is significantly harder than the problem with all jobs available at
time 0. The optimal schedule is not necessarily a non-delay schedule. It may be
advantageous to keep the machine idle just before the release of a new job.

Theorem 3.2.4. The problem 1 | rj | Lmax is strongly NP-hard.

Proof. The proof is based on the fact that 3-PARTITION reduces to 1 | rj | Lmax.
Given integers a1, . . . , a3t, b, such that b/4 < aj < b/2 and

∑3t
j=1 aj = tb, the

following instance of 1 | rj | Lmax can be constructed. The number of jobs, n,
is equal to 4t− 1 and

rj = jb+ (j − 1), pj = 1, dj = jb+ j, j = 1, . . . , t− 1,
rj = 0, pj = aj−t+1, dj = tb+ (t− 1), j = t, . . . , 4t− 1.

Let z = 0. A schedule with Lmax ≤ 0 exists if and only if every job j,
j = 1, . . . , t − 1, can be processed between rj and dj = rj + pj . This can be
done if and only if the remaining jobs can be partitioned over the t intervals
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rt — 1 dt — 1rt — 2 dt — 2r2 d3r2 d2r1 d1

b b + 1 2b + 1 2b + 2 3b + 2 3b + 3
. . .

0 tb + t — 1

Fig. 3.4 1 | rj | Lmax is strongly NP-hard

of length b, which can be done if and only if 3-PARTITION has a solution (see
Figure 3.4). 	

The 1 | rj | Lmax problem is important because it appears often as a subprob-

lem in heuristic procedures for flow shop and job shop problems. It has received
a considerable amount of attention that has resulted in a number of reasonably
effective enumerative branch-and-bound procedures. Branch-and-bound proce-
dures are basically enumeration schemes where certain schedules or classes of
schedules are discarded by showing that the values of the objective obtained
with schedules from this class are larger than a provable lower bound; this
lower bound is greater than or equal to the value of the objective of a schedule
obtained earlier.
A branch-and-bound procedure for 1 | rj | Lmax can be constructed as fol-

lows. The branching process may be based on the fact that schedules are de-
veloped starting from the beginning of the schedule. There is a single node at
level 0 which is the top of the tree. At this node no job has been put yet into
any position in the sequence. There are n branches going down to n nodes at
level 1. Each node at this level has a specific job put into the first position in the
schedule. So, at each one of these nodes there are still n−1 jobs whose position
in the schedule has not yet been determined. There are n − 1 arcs emanating
from each node at level 1 to level 2. There are therefore (n− 1)× (n− 2) nodes
at level 2. At each node at level 2, the jobs in the first two positions are speci-
fied; at level k, the jobs in the first k positions are specified. Actually, it is not
necessary to consider every remaining job as a candidate for the next position.
If at a node at level k− 1 jobs j1, . . . , jk−1 are scheduled as the first k− 1 jobs,
then job jk only has to be considered if

rjk < min
l∈J

(
max(t, rl) + pl

)
,

where J denotes the set of jobs not yet scheduled and t denotes the time job jk
is supposed to start. The reason for this condition is clear: if job jk does not
satisfy this inequality, then selecting the job that minimizes the right-hand side
instead of jk does not increase the value of Lmax. The branching rule is thus
fairly easy.
There are several ways in which bounds for nodes can be obtained. An easy

lower bound for a node at level k − 1 can be established by scheduling the
remaining jobs J according to the preemptive EDD rule. The preemptive EDD
rule is known to be optimal for 1 | rj , prmp | Lmax (see Exercise 3.24) and
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Fig. 3.5 Branch-and-bound procedure for Example 3.2.5

thus provides a lower bound for the problem at hand. If a preemptive EDD rule
results in a nonpreemptive schedule, then all nodes with a higher lower bound
may be disregarded.

Example 3.2.5 (Branch-and-Bound for Minimizing Maximum
Lateness)
Consider the following 4 jobs.

jobs 1 2 3 4

pj 4 2 6 5
rj 0 1 3 5
dj 8 12 11 10

At level 1 of the search tree there are four nodes: (1, ∗, ∗, ∗), (2, ∗, ∗, ∗),
(3, ∗, ∗, ∗) and (4, ∗, ∗, ∗). It is easy to see that nodes (3, ∗, ∗, ∗) and (4, ∗, ∗, ∗)
may be disregarded immediately. Job 3 is released at time 3; if job 2 would
start its processing at time 1, job 3 still can start at time 3. Job 4 is released
at time 5; if job 1 would start its processing at time 0, job 4 still can start
at time 5 (see Figure 3.5).
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Computing a lower bound for node (1, ∗, ∗, ∗) according to the preemptive
EDD rule results in a schedule where job 3 is processed during the time
interval [4,5], job 4 during the time interval [5,10], job 3 (again) during
interval [10,15] and job 2 during interval [15,17]. The Lmax of this schedule,
which provides a lower bound for node (1, ∗, ∗, ∗), is 5. In a similar way a
lower bound can be obtained for node (2, ∗, ∗, ∗). The value of this lower
bound is 7.
Consider node (1, 2, ∗, ∗) at level 2. The lower bound for this node is 6

and is determined by the (nonpreemptive) schedule 1, 2, 4, 3. Proceed with
node (1, 3, ∗, ∗) at level 2. The lower bound is 5 and determined by the
(nonpreemptive) schedule 1,3,4,2. From the fact that the lower bound for
node (1, ∗, ∗, ∗) is 5 and the lower bound for node (2, ∗, ∗, ∗) is larger than 5
it follows that schedule 1, 3, 4, 2 has to be optimal. ||
The problem 1 | rj , prec | Lmax can be handled in a similar way. This prob-

lem, from an enumeration point of view, is easier than the problem without
precedence constraints, since the precedence constraints allow certain schedules
to be ruled out immediately.

3.3 The Number of Tardy Jobs

Another due date related objective is
∑

Uj. This objective may at first appear
somewhat artificial and of no practical interest. However, in the real world it is a
performance measure that is often monitored and according to which managers
are being measured. It is equivalent to the percentage of on time shipments.
An optimal schedule for 1 || ∑

Uj takes the form of one set of jobs that
will meet their due dates and that are scheduled first followed by the set of
remaining jobs that will not meet their due dates and that are scheduled last.
It follows from the results in the previous section that the first set of jobs have
to be scheduled according to EDD in order to make sure that Lmax is negative;
the order in which the second set of jobs is scheduled is immaterial.
The problem 1 || ∑

Uj can be solved easily using a forward algorithm. Re-
order the jobs in such a way that d1 ≤ d2 ≤ · · · ≤ dn. The algorithm goes
through n iterations. In iteration k of the algorithm jobs 1, 2, . . . , k are taken
into consideration. Of these k jobs, the subset J refers to jobs that, in an opti-
mal schedule, may be completed before their due dates and the subset Jd refers
to jobs that already have been discarded and will not meet their due dates in
the optimal schedule. In iteration k the set Jc refers to jobs k+1, k+2, . . . , n.

Algorithm 3.3.1 (Minimizing Number of Tardy Jobs)

Step 1.
Set J = ∅, Jc = {1, . . . , n}, and Jd = ∅.
Set the counter k = 1.
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Step 2.
Add job k to J .
Delete job k from Jc.
Go to Step 3.

Step 3.
If ∑

j∈J
pj ≤ dk,

go to Step 4.
Otherwise, let , denote the job that satisfies

p� = max
j∈J

(pj).

Delete job , from J .
Add job , to Jd.

Step 4.
Set Jk = J .
If k = n STOP,
otherwise set k = k + 1 and go to Step 2. ||
In words the algorithm can be described as follows. Jobs are added to the

set of on-time jobs in increasing order of their due dates. If including job k to
the set of scheduled jobs implies that job k would be completed late, then the
scheduled job with the longest processing time, say job ,, is marked late and
discarded. Since the algorithm basically orders the jobs according to their due
dates, the worst case computation time is that of a simple sort, i.e., O(n log(n)).
Note that the algorithm creates in its last step n job sets J1, . . . , Jn. Set Jk

is a subset of jobs {1, . . . , k}, consisting of those jobs that are candidates for
meeting their due dates in the final optimal schedule. Set Jn consists of all jobs
that meet their due dates in the optimal schedule generated.

Theorem 3.3.2. Algorithm 3.3.1 yields an optimal schedule for 1 || ∑Uj.

Proof. The proof uses the following notation and terminology. A job set J is
called feasible if the jobs, scheduled according to EDD, all meet their due dates.
A job set J is called l−optimal if it is a feasible subset of jobs 1, . . . , l and if it
has, among all feasible subsets of jobs 1, . . . , l, the maximum number of jobs.
The proof consists of three steps. The first step of the proof shows that the

job sets J1, . . . , Jn created in Step 4 of the algorithm are all feasible. This can
be shown by induction (see Exercise 3.27).
The second step of the proof shows that for l > k, there exists an l−optimal

set that consists of a subset of jobs Jk and a subset of jobs k + 1, . . . , l. To
show this, assume it is true for k− 1, i.e., there exists an l−optimal set J ′ that
consists of a subset of jobs from set Jk−1 and a subset of jobs k, k + 1, . . . , l.



3.3 The Number of Tardy Jobs 49

It can be shown that an l−optimal set J ′′ can be created from Jk and jobs
k + 1, . . . , l by considering three cases:

Case 1: Set Jk consists of set Jk−1 plus job k. In order to create set J ′′, just
take set J ′.

Case 2: Set Jk consists of set Jk−1 plus job k minus some job q which is not
an element of set J ′. Again, in order to create set J ′′, just take set J ′.

Case 3: Set Jk is equal to set Jk−1 plus job k minus some job q which is
an element of set J ′. The argument is now a little bit more complicated. Since
Jk−1 plus k is not a feasible set, there must exist in the set that comprises Jk−1

and k a job r that is not an element of J ′. Take any such r. Now, to create set
J ′′, take set J ′, include job r and delete job q. Clearly, set J ′′ is a subset of
set Jk and jobs k + 1, . . . , n. Since the number of jobs in J ′′ is the same as the
number of jobs in J ′, it only remains to be shown that J ′′ is feasible. Since J ′′

differs from J ′ only in its intersection with jobs {1, . . . , k}, it suffices to verify
two properties, namely that the job set which is the intersection of set J ′′ and
set {1, . . . , k} is feasible and that the total processing time of the jobs in the
intersection of J ′′ and {1, . . . , k} is less than or equal to the total processing
time of the jobs in the intersection of J ′ and {1, . . . , k}. The feasibility of the
intersection of J ′′ and set {1, . . . , k} follows from the fact that it is a subset
of Jk, which is feasible because of the first step of the proof. The second property
follows from the fact that pr ≤ pq.
The third and final step of the proof shows that set Jk is k−optimal for

k = 1, . . . , n. It is clearly true for k = 0 and k = 1. Suppose it is true for k− 1.
From the previous step it follows that the set that comprises Jk−1 and k must
contain a k−optimal set. If set Jk contains the entire set Jk−1 plus job k then it
must clearly be k−optimal since Jk−1 is (k − 1)-optimal. If set Jk−1 combined
with job k is not feasible, then the k−optimal set must be a smaller set within
the set that contains Jk−1 and k; however, it must contain at least as many
jobs as set Jk−1. Set Jk clearly satisfies this condition. 	


Example 3.3.3 (Minimizing Number of Tardy Jobs)
Consider the following 5 jobs.

jobs 1 2 3 4 5

pj 7 8 4 6 6
dj 9 17 18 19 21

Jobs 1 and 2 can be positioned first and second in the sequence with both
jobs being completed on time. Putting job 3 into the third position causes
problems. Its completion time would be 19 while its due date is 18. Algo-
rithm 3.3.1 prescribes the deletion of the job with the longest processing time
among the first three jobs. Job 2 is therefore deleted and jobs 1 and 3 remain
in the first two positions. If now job 4 follows job 3, it is completed on time at
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17; however, if job 5 follows job 4, it is completed late. The algorithm then
prescribes to delete the job with the longest processing time among those
already scheduled, which is job 1. So the optimal schedule is 3, 4, 5, 1, 2 with∑

Uj = 2. ||
Note that Algorithm 3.3.1 is an algorithm that goes forward in time. For this

problem there is not any algorithm that goes backward in time. Note also that
there may be many optimal schedules; characterizing the class of all optimal
schedules seems to be a very difficult problem.
The generalization of this problem with weights, i.e., 1 || ∑wjUj is known to

be NP-hard (see Appendix D). The special case with all due dates being equal
is equivalent to the so-called knapsack problem. The due date is equivalent to
the size of the knapsack, the processing times of the jobs are equivalent to the
sizes of the items and the weights are equivalent to the benefits obtained by
putting the items into the knapsack. A popular heuristic for this problem is the
WSPT rule which sequences the jobs in decreasing order of wj/pj . A worst case
analysis shows that this heuristic may perform arbitrarily badly, i.e., that the
ratio ∑

wjUj(WSPT )∑
wjUj(OPT )

may be arbitrarily large.

Example 3.3.4 (The WSPT Rule and a Knapsack)
Consider the following three jobs.

jobs 1 2 3

pj 11 9 90
wj 12 9 89
dj 100 100 100

Scheduling the jobs according to WSPT results in the schedule 1, 2, 3. The
third job is completed late and

∑
wjUj(WSPT ) is 89. Scheduling the jobs

according to 2, 3, 1 results in
∑

wjUj(OPT ) being equal to 12. ||

3.4 The Total Tardiness - Dynamic Programming

The objective
∑

Tj is one that is important in practice as well. Minimizing the
number of tardy jobs,

∑
Uj , in practice cannot be the only objective to measure

how due dates are being met. Some jobs may have to wait for an unacceptably
long time if the number of late jobs is minimized. If instead the sum of the
tardinesses is minimized it is less likely that the wait of any given job will be
unacceptably long.



3.4 The Total Tardiness - Dynamic Programming 51

The model 1 || ∑
Tj has received an enormous amount of attention in the

literature. For many years its computational complexity remained open, until
its NP-hardness was established in 1990. As 1 || ∑

Tj is NP-hard in the ordi-
nary sense it allows for a pseudo-polynomial time algorithm based on dynamic
programming (see Appendix D). The algorithm is based on two preliminary
results.

Lemma 3.4.1. If pj ≤ pk and dj ≤ dk, then there exists an optimal
sequence in which job j is scheduled before job k.

Proof. The proof of this result is left as an exercise. 	

This type of result is useful when an algorithm has to be developed for

a problem that is NP-hard. Such a result, often referred to as a Dominance
Result or Elimination Criterion, often allows one to disregard a fairly large
number of sequences. Such a dominance result may also be thought of as a set
of precedence constraints on the jobs. The more precedence constraints created
through such dominance results, the easier the problem becomes.
In the following lemma the sensitivity of an optimal sequence to the due

dates is considered. Two problem instances are considered, both of which
have n jobs with processing times p1, . . . , pn. The first instance has due dates
d1, . . . , dn. Let C′

k be the latest possible completion time of job k in any op-
timal sequence, say S′, for this instance. The second instance has due dates
d1, . . . , dk−1,max(dk, C′

k), dk+1, . . . , dn. Let S′′ denote the optimal sequence
with respect to this second set of due dates and C′′

j the completion of job j
under this second sequence.

Lemma 3.4.2. Any sequence that is optimal for the second instance is also
optimal for the first instance.

Proof. Let V ′(S) denote the total tardiness under an arbitrary sequence S with
respect to the first set of due dates and let V ′′(S) denote the total tardiness
under sequence S with respect to the second set of due dates. Now

V ′(S′) = V ′′(S′) +Ak

and
V ′(S′′) = V ′′(S′′) +Bk,

where, if C′
k ≤ dk the two sets of due dates are the same and the sequence

that is optimal for the second set is therefore also optimal for the first set. If
C′
k ≥ dk, then

Ak = C′
k − dk

and
Bk = max(0,min(C′′

k , C
′
k)− dk)

It is clear that Ak ≥ Bk. As S′′ is optimal for the second instance V ′′(S′) ≥
V ′′(S′′). Therefore V ′(S′) ≥ V ′(S′′) which completes the proof. 	
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In the remainder of this section it is assumed for purposes of exposition
that (without loss of generality) all processing times are different, if neces-
sary after an infinitesimal perturbation. Assume that d1 ≤ · · · ≤ dn and
pk = max(p1, . . . , pn). That is, the job with the kth smallest due date has
the longest processing time. From Lemma 3.4.1 it follows that there exists an
optimal sequence in which jobs {1, . . . , k − 1} all appear, in some order, before
job k. Of the remaining n− k jobs, i.e., jobs {k + 1, . . . , n}, some may appear
before job k and some may appear after job k. The subsequent lemma focuses
on these n− k jobs.

Lemma 3.4.3. There exists an integer δ, 0 ≤ δ ≤ n− k, such that there
is an optimal sequence S in which job k is preceded by all jobs j with j ≤ k+ δ
and followed by all jobs j with j > k + δ.

Proof. Let C′
k denote the latest possible completion time of job k in any se-

quence that is optimal with respect to the given due dates d1, . . . , dn. Let S′′ be a
sequence that is optimal with respect to the due dates d1, . . . , dk−1,max(C′

k, dk),
dk+1, . . . , dn and that satisfies the condition stated in Lemma 3.4.1. Let C′′

k

denote the completion time of job k under this sequence. By Lemma 3.4.2 se-
quence S′′ is also optimal with respect to the original due dates. This implies
that C′′

k ≤ max(C′
k, dk). One can assume that job k is not preceded in S′′ by

a job with a due date later than max(C′
k, dk) (if this would have been the case

this job would be on time and repositioning this job by inserting it immedi-
ately after job k would not increase the objective function). Also, job k has to
be preceded by all jobs with a due date earlier than max(C′

k, dk) (otherwise
Lemma 3.4.1 would be violated). So δ can be chosen to be the largest integer
such that dk+δ ≤ max(C′

k, dk). This completes the proof. 	

In the dynamic programming algorithm a subroutine is required that gener-

ates an optimal schedule for the set of jobs 1, . . . , l starting with the processing
of this set at time t. Let k be the job with the longest processing time among
these l jobs. From Lemma 3.4.3 it follows that for some δ (0 ≤ δ ≤ l− k) there
exists an optimal sequence starting at t which may be regarded as a concate-
nation of three subsets of jobs, namely

(i) jobs 1, 2, . . . , k − 1, k + 1, . . . , k + δ in some order, followed by
(ii) job k, followed by
(iii) jobs k + δ + 1, k + δ + 2, . . . , l in some order.

The completion time of job k, Ck(δ), is given by

Ck(δ) =
∑
j≤k+δ

pj .

It is clear that for the entire sequence to be optimal the first and third sub-
sets must be optimally sequenced within themselves. This suggests a dynamic
programming procedure that determines an optimal sequence for a larger set of
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jobs after having determined optimal sequences for proper subsets of the larger
set. The subsets J used in this recursive procedure are of a very special type.
A subset consists of all the jobs in a set {j, j + 1, . . . , l − 1, l} with processing
times smaller than the processing time pk of job k. Such a subset is denoted
by J(j, l, k). Let V (J(j, l, k), t) denote the total tardiness of this subset under
an optimal sequence, assuming that this subset starts at time t. The dynamic
programming procedure can now be stated as follows.

Algorithm 3.4.4 (Minimizing Total Tardiness)
Initial Conditions

V (∅, t) = 0,
V ({j}, t) = max(0, t+ pj − dj).

Recursive Relation

V (J(j, l, k), t) = min
δ

(
V (J(j, k′ + δ, k′), t) + max(0, Ck′(δ)− dk′ )

+ V (J(k′ + δ + 1, l, k′), Ck′ (δ))
)

where k′ is such that

pk′ = max
(
pj′ | j′ ∈ J(j, l, k)

)
.

Optimal Value Function

V ({1, . . . , n}, 0). ||
The optimal

∑
Tj value is given by V ({1, . . . , n}, 0). The worst case compu-

tation time required by this algorithm can be established as follows. There are
at most O(n3) subsets J(j, l, k) and

∑
pj points in time t. There are therefore at

most O(n3
∑

pj) recursive equations to be solved in the dynamic programming
algorithm. As each recursive equation takes O(n) time, the overall running time
of the algorithm is bounded by O(n4

∑
pj), which is clearly polynomial in n.

However, because of the term
∑

pj it qualifies only as a pseudopolynomial time
algorithm.

Example 3.4.5 (Minimizing Total Tardiness)
Consider the following 5 jobs.

jobs 1 2 3 4 5

pj 121 79 147 83 130
dj 260 266 266 336 337
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The job with the largest processing time is job 3. So 0 ≤ δ ≤ 2. The recursive
equation yields:

V ({1, 2, . . . , 5}, 0) = min


V (J(1, 3, 3), 0) + 81 + V (J(4, 5, 3), 347)
V (J(1, 4, 3), 0) + 164 + V (J(5, 5, 3), 430)
V (J(1, 5, 3), 0) + 294 + V (∅, 560)

The optimal sequences of the smaller sets can be determined easily. Clearly,
V (J(1, 3, 3), 0) is zero and there are two sequences that yield zero: 1, 2 and
2, 1. The value of

V (J(4, 5, 3), 347) = 94 + 223 = 317

and this is achieved with sequence 4, 5. Also

V (J(1, 4, 3), 0) = 0.

This value is achieved with the sequences 1, 2, 4 and 2, 1, 4. The value of
V (J(5, 5, 3), 430) is equal to 560 minus 337 which is 223. Finally,

V (J(1, 5, 3), 0) = 76.

This value is achieved with sequences 1, 2, 4, 5 and 2, 1, 4, 5.

V ({1, 2, . . . , 5}, 0) = min

0 + 81 + 317
0 + 164 + 223
76 + 294 + 0

 = 370.

Two optimal sequences are 1, 2, 4, 5, 3 and 2, 1, 4, 5, 3. ||
The 1 || ∑

Tj problem can also be solved with a branch-and-bound pro-
cedure. As this branch-and-bound procedure can also be applied to the more
general problem with arbitrary weights, it is presented in Section 3.6.

3.5 The Total Tardiness - An Approximation Scheme

Since 1 || ∑
Tj is NP-hard, neither branch-and-bound nor dynamic program-

ming can yield an optimal solution in polynomial time. It may therefore be of
interest to have an algorithm that yields, in polynomial time, a solution that is
close to optimal.
An approximation scheme A is called fully polynomial if the value of the

objective it achieves, say
∑

Tj(A), satisfies∑
Tj(A) ≤ (1 + ε)

∑
Tj(OPT ),
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where
∑

Tj(OPT ) is the value of the objective under an optimal schedule.
Moreover, for the approximation scheme to be fully polynomial its worst case
running time has to be bounded by a polynomial of a fixed degree in n and
in 1/ε. The remainder of this section discusses how the dynamic programming
algorithm described in the previous section can be used to construct a Fully
Polynomial Time Approximation Scheme (FPTAS).
It can be shown that a given set of n jobs can only be scheduled with zero

total tardiness if and only if the EDD schedule results in a zero total tardi-
ness. Let

∑
Tj(EDD) denote the total tardiness under the EDD sequence and

Tmax(EDD) the maximum tardiness, i.e., max(T1, . . . , Tn), under the EDD se-
quence. Clearly,

Tmax(EDD) ≤
∑

Tj(OPT ) ≤
∑

Tj(EDD) ≤ nTmax(EDD).

Let V (J, t) denote the minimum total tardiness of the subset of jobs J , which
starts processing at time t. For any given subset J , a time t∗ can be computed
such that V (J, t) = 0 for t ≤ t∗, and V (J, t) > 0 for t > t∗. Moreover, it can be
shown easily that

V (J, t∗ + δ) ≥ δ,

for δ ≥ 0. So in executing the pseudopolynomial dynamic programming algo-
rithm described before, one only has to compute V (J, t) for

t∗ ≤ t ≤ n Tmax(EDD).

Substituting
∑

pj in the overall running time of the dynamic programming algo-
rithm by nTmax(EDD) yields a new running time bound of O(n5Tmax(EDD)).
Now replace the given processing times pj by the rescaled processing times

p′j = �pj/K�,

where K is a suitable chosen scaling factor. (This implies that p′j is the largest
integer that is smaller than or equal to pj/K.) Replace the due dates dj by new
due dates

d′j = dj/K

(but without rounding). Consider an optimal sequence with respect to the
rescaled processing times and the rescaled due dates and call this sequence S.
This sequence can be obtained within the time bound O(n5Tmax(EDD)/K).
Let

∑
T ∗
j (S) denote the total tardiness under sequence S with respect to

the processing times Kp′j and the original due dates and let
∑

Tj(S) denote
the total tardiness with respect to the original processing times pj (which may
be slightly larger than Kp′j) and the original due dates. From the fact that

Kp′j ≤ pj < K(p′j + 1),
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it follows that∑
T ∗
j (S) ≤

∑
Tj(OPT ) ≤

∑
Tj(S) <

∑
T ∗
j (S) +K

(n(n+ 1)
2

)
.

From this chain of inequalities it follows that∑
Tj(S)−

∑
Tj(OPT ) < K

(n(n+ 1)
2

)
.

Recall that the goal is for S to satisfy∑
Tj(S)−

∑
Tj(OPT ) ≤ ε

∑
Tj(OPT ).

If K is chosen such that

K =
( 2ε
n(n+ 1)

)
Tmax(EDD),

then the stronger result∑
Tj(S)−

∑
Tj(OPT ) ≤ ε Tmax(EDD)

is obtained. Moreover, for this choice ofK the time bound O(n5Tmax(EDD)/K)
becomes O(n7/ε), making the approximation scheme fully polynomial.
This Fully Polynomial Time Approximation Scheme can be summarized as

follows:

Algorithm 3.5.1 (FPTAS for Minimizing Total Tardiness)

Step 1.
Apply EDD and determine Tmax.
If Tmax = 0, then

∑
Tj = 0 and EDD is optimal; STOP.

Otherwise set
K =

( 2ε
n(n+ 1)

)
Tmax(EDD).

Step 2.
Rescale processing times and due dates as follows:

p′j = � pj/K�,
d′j = dj/K.

Step 3.
Apply Algorithm 3.4.4 to the rescaled data. ||
The sequence generated by this algorithm, say sequence S, satisfies∑

Tj(S) ≤ (1 + ε)
∑

Tj(OPT ).
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The following example illustrates the approximation scheme.

Example 3.5.2. (FPTAS Minimizing Total Tardiness)

Consider a single machine and 5 jobs.

jobs 1 2 3 4 5

pj 1210 790 1470 830 1300
dj 1996 2000 2660 3360 3370

It can be verified (via dynamic programming) that the optimal sequence is
1, 2, 4, 5, 3, and that the total tardiness under this optimal sequence is 3700.
Applying EDD yields Tmax(EDD) = 2230. If ε is chosen 0.02, then K =

2.973. The rescaled data are:

jobs 1 2 3 4 5

pj 406 265 494 279 437
dj 671.38 672.72 894.72 1130.17 1133.54

Solving this instance using the dynamic programming procedure described
in Section 3.4 yields two optimal sequences: 1,2,4,5,3 and 2,1,4,5,3. If se-
quence 2,1,4,5,3 is applied to the original data set, then the total tardiness
is 3704. Clearly,∑

Tj(2, 1, 4, 5, 3) ≤ (1.02)
∑

Tj(1, 2, 4, 5, 3). ||

3.6 The Total Weighted Tardiness

The problem 1 || ∑wjTj is an important generalization of the 1 ||
∑

Tj prob-
lem discussed in the previous sections. Dozens of researchers have worked on
this problem and have experimented with many different approaches. The ap-
proaches range from very sophisticated computer intensive techniques to fairly
crude heuristics designed primarily for implementation in practice.
The dynamic programming algorithm for 1 || ∑Tj described in the previous

section can also deal with agreeable weights, that is, pj ≥ pk =⇒ wj ≤ wk.
Lemma 3.4.1 can be generalized to this case as follows:

Lemma 3.6.1. If there are two jobs j and k with dj ≤ dk, pj ≤ pk and
wj ≥ wk, then there is an optimal sequence in which job j appears before job k.
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b + 1 2b + 2 3b + 30 tb + t — 1(t — 1)b + t — 1(t — 2)b + t — 2
. . .

Fig. 3.6 3-PARTITION reduces to 1 ||
∑

wjTj

Proof. The proof is based on a (not necessarily adjacent) pairwise interchange
argument. 	

Unfortunately, no efficient algorithm can be obtained for 1 || ∑

wjTj with
arbitrary weights.

Theorem 3.6.2. The problem 1 || ∑wjTj is strongly NP-hard.

Proof. The proof is done again by reducing 3-PARTITION to 1 || ∑
wjTj . The

reduction is based on the following transformation. Again, the number of jobs,
n, is chosen to be equal to 4t− 1 and

dj = 0, pj = aj , wj = aj , j = 1, . . . , 3t,
dj = (j − 3t)(b+ 1), pj = 1, wj = 2, j = 3t+ 1, . . . , 4t− 1.

Let
z =

∑
1≤j≤k≤3t

ajak +
1
2
(t− 1)tb.

It can be shown that there exists a schedule with an objective value z if and
only if there exists a solution for the 3-PARTITION problem. The first 3t jobs
have a wj/pj ratio equal to 1 and are due at time 0. There are t− 1 jobs with
wj/pj ratio equal to 2 and their due dates are at b + 1, 2b + 2, and so on. A
solution with value z can be obtained if these t−1 jobs can be processed exactly
during the intervals

[b, b+ 1] , [2b+ 1, 2b+ 2] , . . . , [(t− 1)b+ t− 2, (t− 1)b+ t− 1]

(see Figure 3.6). In order to fit these t− 1 jobs in these t− 1 intervals, the first
3t jobs have to be partitioned into t subsets of three jobs each with the sum
of the three processing times in each subset being equal to b. It can be verified
that in this case the sum of the weighted tardinesses is equal to z.
If such a partition is not possible, then there is at least one subset of which

the sum of the three processing times is larger than b and one other subset of
which the sum of the three processing times is smaller than b. It can be verified
that in this case the sum of the weighted tardinesses is larger than z. 	

Usually a branch-and-bound approach is used for 1 || ∑

wjTj. Most often,
schedules are constructed starting from the end, i.e., backwards in time. At the
jth level of the search tree, jobs are put into the (n− j+1)th position. So from
each node at level j−1 there are n− j+1 branches going to level j. It may not
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be necessary to evaluate all possible nodes. Dominance results such as the one
described in Lemma 3.6.1 may eliminate a number of nodes. The upper bound
on the number of nodes at level j is n!/(n− j)! The argument for constructing
the sequence backwards is that the larger terms in the objective function are
likely to correspond to jobs that are positioned more towards the end of the
schedule. It appears to be advantageous to schedule these ones first.
There are many different bounding techniques. One of the more elementary

bounding techniques is based on a relaxation of the problem to a transportation
problem. In this procedure each job j with (integer) processing time pj is divided
into pj jobs, each with unit processing time. The decision variables xjk is 1 if
one unit of job j is processed during the time interval [k−1, k] and 0 otherwise.
These decision variables xjk must satisfy two sets of constraints:

Cmax∑
k=1

xjk = pj, j = 1, . . . , n

n∑
j=1

xjk = 1, k = 1, . . . , Cmax.

Clearly, a solution satisfying these constraints does not guarantee a feasible
schedule without preemptions. Define cost coefficients cjk that satisfy

l∑
k=l−pj+1

cjk ≤ wj max(l − dj , 0)

for j = 1, . . . , n; l = 1, . . . , Cmax. Then the minimum cost solution provides a
lower bound, since for any solution of the transportation problem with xjk = 1
for k = Cj − pj + 1, . . . , Cj the following holds

Cmax∑
k=1

cjkxjk =
Cj∑

k=Cj−pj+1

cjk ≤ wj max(Cj − dj , 0).

It is fairly easy to find cost functions that satisfy this relationship. For example,
set

cjk =
{
0, for k ≤ dj
wj , for k > dj .

The solution of the transportation problem provides a lower bound for 1 ||∑
wjTj. This bounding technique is applied to the set of unscheduled jobs at

each node of the tree. If the lower bound is larger than the solution of any
known schedule, then the node may be eliminated.

Example 3.6.3 (Minimizing Total Weighted Tardiness)
Consider the following 4 jobs.
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*, *, *, 4*, *, *, 3 Lower bound = 65

Value of
objective function is 67

*, *, 4, 3

1, 2, 3, 4

Lower bound = 112

*, *, *, *

Fig. 3.7 Branch-and-bound procedure for Example 3.5.3

jobs 1 2 3 4

wj 4 5 3 5
pj 12 8 15 9
dj 16 26 25 27

From Lemma 3.6.1 it immediately follows that in an optimal sequence job 4
follows job 2 and job 3 follows job 1. The branch-and-bound tree is con-
structed backwards in time. Only two jobs have to be considered as candi-
dates for the last position, namely jobs 3 and 4. The nodes of the branch-and-
bound tree that need to be investigated are depicted in Figure 3.7. To select
a branch to search first, bounds are determined for both nodes at level 1.
A lower bound for an optimal sequence among the offspring of node

(∗, ∗, ∗, 4) can be obtained by considering the transportation problem de-
scribed before applied to jobs 1, 2 and 3. The cost functions are chosen as
follows

c1k = 0, k = 1, . . . , 16
c1k = 4, k = 17, . . . , 35
c2k = 0, k = 1, . . . , 26
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c2k = 5, k = 27, . . . , 35
c3k = 0, k = 1, . . . , 25
c3k = 3, k = 26, . . . , 35

The optimal allocation of job segments to time slots puts job 1 in the first
12 slots, job 2 into slots 19 to 26 and job 3 in slots 13 to 18 and 27 to 35
(this optimal solution can be found by solving a transportation problem but
can, of course, also be found by trial and error). The cost of this allocation
of the three jobs is 3 × 9 (the cost of allocating job 3 to slots 27 to 35). In
order to obtain a lower bound for the node the tardiness of job 4 has to be
added; this results in the lower bound 27 + 80 which equals 107.
In a similar fashion a lower bound can be obtained for node (∗, ∗, ∗, 3). A

lower bound for an optimal schedule for jobs 1, 2 and 4 yields 8, while the
tardiness of job 3 is 54 resulting in a bound of 62.
As node (∗, ∗, ∗, 3) appears to be the more promising node, the offspring

of this node is considered first. It turns out that the best schedule reachable
from this node is 1, 2, 4, 3 with an objective value of 64.
From the fact that the lower bound for (∗, ∗, ∗, 4) is 107 it follows that

1, 2, 4, 3 is the best overall schedule. ||
There are many heuristic procedures for this problem. Chapter 14 describes a

composite dispatching rule, the so-called Apparent Tardiness Cost (ATC) rule,
in detail.

3.7 Discussion

All the models considered in this chapter have regular objective functions. This
is one of the reasons why most of the models are relatively easy.
Some are solvable via simple priority (dispatching) rules, e.g., WSPT, EDD.

Most of the models that are not solvable via simple priority rules, are still
solvable either in polynomial time or in pseudo-polynomial time. The models
that are solvable in polynomial time are usually dealt with through dynamic
programming, e.g., 1 | prec | hmax, 1 ||

∑
Tj .

One of the strongly NP-hard problems considered in this chapter is 1 ||∑
wjTj. This problem has received an enormous amount of attention in the

literature. There are two approaches for obtaining optimal solutions, namely
branch-and-bound, and dynamic programming. Section 3.6 presents a branch-
and-bound approach, while Appendix B describes a dynamic programming ap-
proach that can be applied to the more general problem 1 || ∑hj(Cj).
This chapter has also shown an application of a Fully Polynomial Time Ap-

proximation Scheme (FPTAS) for a single machine scheduling problem. Over
the last decade Polynomial Time Approximation Schemes (PTAS) and Fully
Polynomial Time Approximation Schemes (FPTAS) have received an enormous
amount of attention. Most of this attention has focused on NP-hard problems
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that are close to the boundaries separating NP-hard problems from polynomial
time problems, e.g., 1 | rj |

∑
Cj .

Most of the problems described in this chapter can be formulated as Mixed
Integer Programs (MIPs). Mixed Integer Programming formulations of several
single machine scheduling problems are presented in Appendix A. This appendix
gives also an overview of the techniques that can be applied to MIPs.
This chapter does not exhibit all the possible procedures and techniques that

can be brought to bear on single machine scheduling problems. One important
class of solution procedures is often referred to as constraint programming.
Appendix C gives a detailed description of this class of procedures and Chapter
15 provides an example of a constraint programming procedure that can be
applied to 1 | rj |

∑
wjUj .

Many heuristic procedures have been developed that can be applied to single
machine scheduling problems. These procedures include the so-called composite
dispatching rules as well as local search techniques. Chapter 14 provides an in-
depth overview of these techniques and their applications to single machine
problems.
The next chapter considers more general and more complicated single ma-

chine problems. It focuses on problems with non-regular objective functions and
on problems with multiple objective functions.

Exercises (Computational)

3.1. Consider 1 || ∑wjCj with the following weights and processing times.

jobs 1 2 3 4 5 6 7

wj 0 18 12 8 8 17 16
pj 3 6 6 5 4 8 9

(a) Find all optimal sequences.
(b) Determine the effect of a change in p2 from 6 to 7 on the optimal
sequence(s).
(c) Determine the effect of the change under (b) on the value of the objec-
tive.

3.2. Consider 1 | chains | ∑
wjCj with the same set of jobs as in Exercise

3.1.(a). The jobs are now subject to precedence constraints which take the form
of chains:

1 → 2

3 → 4 → 5

6 → 7

Find all optimal sequences.
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3.3. Consider 1 || ∑wj(1−e−rCj) with the same set of jobs as in Exercise 3.1.

(a) Assume the discount rate r is 0.05. Find the optimal sequence. Is it
unique?
(b) Assume the discount rate r is 0.5. Does the optimal sequence change?

3.4. Find all optimal sequences for the instance of 1 || hmax with the following
jobs.

jobs 1 2 3 4 5 6 7

pj 4 8 12 7 6 9 9
hj(Cj) 3 C1 77 C2

3 1.5C4 70 +
√
C5 1.6 C6 1.4 C7

3.5. Consider 1 | prec | hmax with the same set of jobs as in Exercise 3.4 and
the following precedence constraints.

1 → 7 → 6

5 → 7

5 → 4

Find the optimal sequence.

3.6. Solve by branch-and-bound the following instance of the 1 | rj | Lmax

problem.

jobs 1 2 3 4 5 6 7

pj 6 18 12 10 10 17 16
rj 0 0 0 14 25 25 50
dj 8 42 44 24 90 85 68

3.7. Consider the same problem as in the previous exercise. However, now the
jobs are subject to the following precedence constraints.

2 → 1 → 4

6 → 7

Find the optimal sequence.

3.8. Find the optimal sequence for the following instance of the 1 || ∑
Tj

problem.

jobs 1 2 3 4 5 6 7 8

pj 6 18 12 10 10 11 5 7
dj 8 42 44 24 26 26 70 75
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Hint: Before applying the dynamic programming algorithm, consider first the
elimination criterion in Lemma 3.4.1.

3.9. Consider a single machine and 6 jobs.

jobs 1 2 3 4 5 6

pj 1190 810 1565 719 1290 482
dj 1996 2000 2660 3360 3370 3375

Apply the FPTAS described in Section 3.5 to this instance with ε = 0.02. Are
all sequences that are optimal for the rescaled data set also optimal for the
original data set?

3.10. Find the optimal sequence for the following instance of the 1 || ∑
wjTj

problem.

jobs 1 2 3 4 5 6 7

pj 6 18 12 10 10 17 16
wj 1 5 2 4 1 4 2
dj 8 42 44 24 90 85 68

Exercises (Theory)

3.11. Consider 1 || ∑wj(1−e−rCj). Assume that wj/pj �= wk/pk for all j and
k. Show that for r sufficiently close to zero the optimal sequence is WSPT.

3.12. Show that if all jobs have equal weights, i.e., wj = 1 for all j, the WDSPT
rule is equivalent to the Shortest Processing Time first (SPT ) rule for any r,
0 < r < 1.

3.13. Consider the problem 1 | prmp | ∑
hj(Cj). Show that if the functions

hj are nondecreasing there exists an optimal schedule that is nonpreemptive.
Does the result continue to hold for arbitrary functions hj?

3.14. Consider the problem 1 | rj |
∑

Cj .

(a) Show through a counterexample that the nonpreemptive rule that se-
lects, whenever a machine is freed, the shortest job among those available
for processing is not always optimal. In part (b) and (c) this rule is referred
to as SPT∗.
(b) Perform a worst case analysis of the SPT∗ rule, i.e., determine the
maximum possible value of the ratio

∑
Cj(SPT ∗)/

∑
Cj(OPT ).
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(c) Design a heuristic for 1 | rj | Cj that performs better than SPT∗.

3.15. Consider the problem 1 | rj , prmp | ∑
Cj . Show that the preemptive

Shortest Remaining Processing Time first (SRPT) rule is optimal.

3.16. Consider the problem 1 | prmp | ∑
Cj with the additional restriction

that job j has to be completed by a hard deadline d̄j . Assuming that there are
feasible schedules, give an algorithm that minimizes the total completion time
and prove that it leads to optimality.

3.17. Consider the following preemptive version of the WSPT rule: if pj(t)
denotes the remaining processing time of job j at time t, then a preemptive
version of the WSPT rule puts at every point in time the job with the highest
wj/pj(t) ratio on the machine. Show, through a counterexample, that this rule
is not necessarily optimal for 1 | rj , prmp | ∑wjCj .

3.18. Give an algorithm for 1 | intree | ∑wjCj and prove that it leads to an
optimal schedule (recall that in an intree each job has at most one successor).

3.19. Give an algorithm for 1 | outtree | ∑wjCj and show that it leads to an
optimal schedule (recall that in an outtree each job has at most one predecessor).

3.20. Consider the problem 1 || Lmax. The Minimum Slack first (MS) rule
selects at time t, when a machine is freed, among the remaining jobs the job
with the minimum slack max(dj − pj − t, 0). Show through a counterexample
that this rule is not necessarily optimal.

3.21. Perform an Adjacent Sequence Interchange for the weighted discounted
flow time cost function. That is, state and prove a result similar to Lemma 3.1.2.

3.22. Consider the problem 1 | chains | ∑
wj(1 − e−rCj). Describe the algo-

rithm that solves this problem and prove that it results in an optimal sequence.

3.23. Consider the problem 1 | prec | max(h1(S1), . . . , hn(Sn)), where Sj de-
notes the starting time of job j. The cost function hj , j = 1, . . . , n is decreasing.
Unforced idleness of the machine is not allowed. Describe a dynamic program-
ming type algorithm for this problem similar to the one in Section 3.2. Why
does one have to use here forward dynamic programming instead of backward
dynamic programming?

3.24. Consider the problem 1 | rj , prmp | Lmax. Determine the optimal sched-
ule and prove its optimality.

3.25. Show that

(a) SPT is optimal for 1 | brkdwn | ∑Cj ,
(b) Algorithm 3.3.1 is optimal for 1 | brkdwn | ∑Uj ,
(c) WSPT is not necessarily optimal for 1 | brkdwn | ∑wjCj .
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3.26. Consider 1 || ∑wjTj . Prove or disprove the following statement: If

wj/pj > wk/pk,

pj < pk,

and
dj < dk,

then there exists an optimal sequence in which job j appears before job k.

3.27. Complete the first step of the proof of Theorem 3.3.2.
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This chapter covers several more advanced topics in single machine scheduling.
Some of these topics are important because of the theoretical insights they
provide, others are important because of their applications in practice.
The first section considers a generalization of the total tardiness problem.

In addition to tardiness costs, there are now also earliness costs; the objective
functions are nonregular. The second section focuses on problems with a primary
objective and a secondary objective. The goal is to first determine the set of
all schedules that are optimal with respect to the primary objective; within
this set of schedules a schedule has to be found then that is optimal with
respect to the secondary objective. The third section also focuses on problems
with two objectives. However, now the two objectives have to be considered
simultaneously with the weights of the objectives being arbitrary. The overall
objective is to minimize the weighted sum of the two objectives. The next
section considers the makespan when there are sequence dependent setup times.
There are two reasons for not having considered the makespan before. First,
in most single machine environments the makespan does not depend on the
sequence and is therefore not that important. Second, when there are sequence
dependent setup times, the algorithms for minimizing the makespan tend to be
complicated. The fifth section also considers sequence dependent setup times.
However, now the jobs belong to a fixed number of different families. If in a
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schedule a job is followed by a job from a different family, then a sequence
dependent setup time is incurred; if a job is followed by another job from the
same family, then no setup is incurred. A number of dynamic programming
approaches are described for various different objective functions. The sixth
section focuses on batch processing. The machine can process now a number of
jobs (a batch) simultaneously. The jobs processed in a batch may have different
processing times and the time to process the batch is determined by the longest
processing time. Various different objective functions are considered.

4.1 The Total Earliness and Tardiness

All objective functions considered in Chapter 3 are regular performance mea-
sures (i.e., nondecreasing in Cj for all j). In practice, it may occur that if job j is
completed before its due date dj an earliness penalty is incurred. The earliness
of job j is defined as

Ej = max(dj − Cj , 0).

The objective function in this section is a generalization of the total tardiness
objective. It is the sum of the total earliness and the total tardiness, i.e.,

n∑
j=1

Ej +
n∑
j=1

Tj .

Since this problem is harder than the total tardiness problem it makes sense
to first analyze special cases that are tractable. Consider the special case with
all jobs having the same due date, i.e., dj = d for all j.
An optimal schedule for this special case has a number of useful properties.

For example, it can be shown easily that after the first job is started, the n jobs
have to be processed without interruption, i.e., there should be no unforced
idleness in between the processing of any two consecutive jobs (see Exercise
4.11). However, it is possible that an optimal schedule does not start processing
the jobs immediately at time 0; it may wait for some time before it starts with
its first job.
A second property concerns the actual sequence of the jobs. Any sequence

can be partitioned into two disjoint sets of jobs and possibly one additional job.
One set contains the jobs that are completed early, i.e., Cj ≤ d, and the other
set contains the jobs that are started late. The first set of jobs is called J1 and
the second set of jobs J2. In addition to these two sets of jobs, there may be
one more job that is started early and completed late.

Lemma 4.1.1. In an optimal schedule the jobs in set J1 are scheduled first
according to LPT and the jobs in set J2 are scheduled last according to SPT.
In between these two sets of jobs there may be one job that is started early and
completed late.
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Proof. The proof is easy and left as an exercise (see Exercise 4.12). 	

Because of the property described in Lemma 4.1.1, it is often said that the

optimal schedule has a V shape.
Consider an instance with the property that no optimal schedule starts pro-

cessing its first job at t = 0, i.e., the due date d is somewhat loose and the
machine remains idle for some time before it starts processing its first job. If
this is the case, then the following property holds.

Lemma 4.1.2. There exists an optimal schedule in which one job is com-
pleted exactly at time d.

Proof. The proof is by contradiction. Suppose there is no such schedule. Then
there is always one job that starts its processing before d and completes its
processing after d. Call this job j∗. Let |J1| denote the number of jobs that are
early and |J2| the number of jobs that are late. If |J1| < |J2|, then shift the
entire schedule to the left in such a way that job j∗ completes its processing
exactly at time d. This implies that the total tardiness decreases by |J2| times
the length of the shift, while the total earliness increases by |J1| times the
shift. So, clearly, the total earliness plus the total tardiness is reduced. The case
|J1| > |J2| can be treated in a similar way.
The case |J1| = |J2| is somewhat special. In this case there are many optimal

schedules, of which only two satisfy the property stated in the lemma. 	

For an instance in which all optimal schedules start processing the first job

some time after t = 0, the following algorithm yields the optimal allocations of
jobs to sets J1 and J2. Assume p1 ≥ p2 ≥ · · · ≥ pn.

Algorithm 4.1.3 (Minimizing Total Earliness and Tardiness with
Loose Due Date)

Step 1.
Assign job 1 to Set J1.
Initialize k = 2.

Step 2.
Assign job k to Set J1 and job k + 1 to Set J2 or vice versa.

Step 3.
If k + 2 ≤ n− 1, increase k by 2 and go to Step 2.
If k + 2 = n, assign job n to either Set J1 or Set J2 and STOP.
If k + 2 = n+ 1, then all jobs have been assigned; STOP. ||
This algorithm is somewhat flexible in its assignment of jobs to sets J1 and

J2. It can be implemented in such a way that in the optimal assignment the
total processing time of the jobs assigned to J1 is minimized. Given the total
processing time of the jobs in J1 and the due date d, it can be verified easily
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whether the machine indeed must remain idle before it starts processing its first
job.
If the due date d is tight and it is necessary to start processing a job im-

mediately at time zero, then the problem is NP-hard. However, the following
heuristic, which assigns the n jobs to the n positions in the sequence, is very
effective. Assume again p1 ≥ p2 ≥ · · · ≥ pn.

Algorithm 4.1.4 (Minimizing Total Earliness and Tardiness with
Tight Due Date)

Step 1.
Initialize τ1 = d and τ2 =

∑
pj − d.

Initialize k = 1.

Step 2.
If τ1 > τ2, assign job k to the first unfilled position in the sequence and
decrease τ1 by pk.
If τ1 < τ2, assign job k to the last unfilled position in the sequence and
decrease τ2 by pk.

Step 3.
If k < n, increase k by 1 and go to Step 2.
If k = n, STOP. ||

Example 4.1.5 (Minimizing Total Earliness and Tardiness with
Tight Due Date)

Consider the following example with 6 jobs and d = 180.

jobs 1 2 3 4 5 6

pj 106 100 96 22 20 2

Applying the heuristic yields the following results.

τ1 τ2 Assignment Sequence

180 166 Job 1 Placed First 1,*,*,*,*,*
74 166 Job 2 Placed Last 1,*,*,*,*,2
74 66 Job 3 Placed First 1,3,*,*,*,2
-22 66 Job 4 Placed Last 1,3,*,*,4,2
-22 44 Job 5 Placed Last 1,3,*,5,4,2
-22 12 Job 6 Placed Last 1,3,6,5,4,2

||
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Cost
function

d Time

Fig. 4.1 Cost functions with common due date and different shapes

Cost
function

d2d1 d3 Time

Fig. 4.2 Cost functions with different due dates and similar shapes

Consider now the objective
∑

w′Ej +
∑

w′′Tj and assume again that all the
due dates are the same, i.e., dj = d, for all j. All jobs have exactly the same
cost function, but the earliness penalty w′ and the tardiness penalty w′′ are not
the same. All previous properties and algorithms can be generalized relatively
easily to take the difference between w′ and w′′ into account (see Exercises 4.13
and 4.14).
Consider the even more general objective

∑
w′
jEj +

∑
w′′
j Tj , with dj = d

for all j. So all jobs have the same due date, but the shapes of their cost
functions are different, see Figure 4.1. The LPT-SPT sequence of Lemma 4.1.1
is in this case not necessarily optimal. The first part of the sequence must now
be ordered in increasing order of wj/pj, i.e., according to Weighted Longest
Processing Time first (WLPT) rule, and the last part of the sequence must be
ordered according to the Weighted Shortest Processing Time first (WSPT) rule.
Consider the model with the objective function

∑
w′Ej +

∑
w′′Tj and with

each job having a different due date (see Figure 4.2). It is clear that this prob-
lem is NP-hard, since it is a more general model than the one considered in
Section 3.4. This problem has an additional level of complexity. Because of
the different due dates, it may not necessarily be optimal to process the jobs
one after another without interruption; it may be necessary to have idle times
between the processing of consecutive jobs. This problem has therefore two as-
pects: one aspect concerns the search for an optimal order in which to sequence
the jobs and the other aspect concerns the computation of the optimal starting
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times and completion times of the jobs. These two optimization problems are
clearly not independent. Determining the optimal schedule is therefore a very
hard problem. Approaches for dealing with this problem are typically based on
dynamic programming or branch-and-bound. However, given a predetermined
and fixed sequence, the timing of the processing of the jobs (and therefore also
the idle times) can be determined via a relatively simple polynomial time al-
gorithm. This polynomial time algorithm is also applicable in a more general
setting that is described next.
The most general setting has as objective

∑
w′
jEj +

∑
w′′
j Tj , where the jobs

have different due dates and different weights. This problem is clearly strongly
NP-hard, since it is harder than the total weighted tardiness problem considered
in Section 3.6. But, given a predetermined ordering of the jobs, the timings of
the processings and the idle times can be computed in polynomial time. Some
preliminary results are necessary to describe the algorithm that inserts the idle
times in a given sequence. Assume that the job sequence 1, . . . , n is fixed.

Lemma 4.1.6. If dj+1−dj ≤ pj+1, then there is no idle time between jobs
j and j + 1.

Proof. The proof is by contradiction. Consider three cases: Job j is early (Cj <
dj), job j is completed exactly at its due date (Cj = dj), and job j is late
(Cj > dj).

Case 1: If job j is completed early and there is an idle time between jobs j
and j + 1, then the objective can be reduced by postponing the processing of
job j and reducing the idle time. The schedule with the idle time can therefore
not be optimal.

Case 2: If job j is completed at its due date and there is an idle time, then
job j+1 is completed late. Processing job j+1 earlier and eliminating the idle
time, reduces the total objective. So the original schedule cannot be optimal.

Case 3: If job j is completed late and there is an idle time, then job j + 1 is
also completed late. Processing job j + 1 earlier reduces the objective. 	

Subsequence u, . . . , v is called a job cluster if for each pair of adjacent jobs j

and j + 1 the inequality
dj+1 − dj ≤ pj+1

holds and if for j = u − 1 and j = v the inequality does not hold. A cluster of
jobs must therefore be processed without interruptions.

Lemma 4.1.7. In each cluster in a schedule the early jobs precede the
tardy jobs. Moreover, if jobs j and j+1 belong to the same cluster and are both
early, then Ej ≥ Ej+1. If jobs j and j + 1 are both late then Tj ≤ Tj+1.

Proof. Assume jobs j and j + 1 belong to the same cluster. Let t denote the
optimal start time of job j. Subtracting t+ pj from both sides of

dj+1 − dj ≤ pj+1
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and rearranging yields

dj+1 − t− pj − pj+1 ≤ dj − t− pj .

This last inequality can be rewritten as

dj − Cj ≥ dj+1 − Cj+1,

which implies the lemma. 	

The given job sequence 1, . . . , n can be decomposed into a set of m clusters

σ1, σ2, . . . , σm with each cluster representing a subsequence. The algorithm that
inserts the idle times starts out with the given sequence 1, . . . , n without idle
times. That is, the completion time of the kth job in the sequence is

Ck =
k∑
j=1

pj .

Since the completion times in the original schedule are the earliest possible
completion times, the algorithm has to determine how much to increase (or
shift) the completion time of each job. In fact, it is sufficient to compute the
optimal shift for each cluster since all its jobs are shifted by the same amount.
Consider a cluster σr that consists of jobs k, k + 1, . . . , ,. Let

∆j =
j∑
l=k

w′
l −

�∑
l=j+1

w′′
l , j = k, . . . , ,.

These numbers can be computed recursively by setting

∆k−1 = −
�∑
l=k

w′′
l ,

and
∆j = ∆j−1 + w′

j + w′′
j , j = k, . . . , ,.

Define a block as a sequence of clusters that are processed without inter-
ruption. Consider block σs, σs+1, . . . , σm. Such a block may have one or more
clusters preceding it, but no clusters following it. Let jr be the last job in cluster
σr that is early, i.e., the job with the smallest earliness. Let

E(r) = Ejr = djr − Cjr .

Clearly
E(r) = min

k≤j≤jr
(dj − Cj).
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Let
∆(r) = ∆jr = max

k≤j≤jr
∆j .

If none of the jobs in cluster σr is early, then E(r) =∞ and ∆(r) = −∑�
l=k w

′′
l .

If djr − Cjr ≥ 1 for the last early job in every cluster σr, r = s, s + 1, . . . ,m,
then a shift of the entire block by one time unit to the right decreases the total
cost by

m∑
r=s

∆(r).

The idea behind the algorithm is to find the first block of clusters that
cannot be shifted. If such a block is found, then this block stays in place and
the procedure is repeated for the set of remaining clusters. If no such block is
found, then all remaining clusters are shifted by an amount that is equal to
the smallest E(r); in one of the shifted clusters the last early job becomes an
on-time job. All the completion times are updated and all the non-early jobs
are removed from the list of each cluster. The procedure is then repeated. The
algorithm terminates once a block involving the last cluster cannot be shifted.
The algorithm can be summarized as follows.

Algorithm 4.1.8 (Optimizing the Timings Given a Sequence)

Step 1.
Identify the clusters and compute ∆(r) for each cluster.

Step 2.
Find the smallest s such that

∑s
r=1 ∆(r) ≤ 0.

Fix the current Ck for each job in the first s clusters.
If s = m then STOP, otherwise go to Step 3.
If no such s exists, then go to Step 4.

Step 3.
Remove the first s clusters from the list.
Reindex all remaining clusters and jobs.
Go to Step 2 to consider the set of remaining clusters.

Step 4.
Find min(E(1), . . . , E(m)).
Increase all Ck by min(E(1), . . . , E(m)).
Eliminate all early jobs that are no longer early.
Update E(r) and ∆(r).
Go to Step 2. ||

Example 4.1.9 (Optimizing the Timings Given a Sequence)
Consider seven jobs. The given sequence is 1, . . . , 7.
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jobs 1 2 3 4 5 6 7

pj 3 2 7 3 6 2 8
dj 12 4 26 18 16 25 30
w′
j 10 20 18 9 10 16 11

w′′
j 12 25 38 12 12 18 15

The set of jobs can be decomposed into the three clusters σ1, σ2, σ3, where
σ1 = 1, 2, σ2 = 3, 4, 5, and σ3 = 6, 7. The initial schedule has job completion
times

3, 5, 12, 15, 21, 23, 31.

The sets of early jobs in clusters σ1, σ2, and σ3 are, respectively, jobs (1),
(3,4), and (6). For each one of these jobs the values of dj − Cj can be com-
puted. Applying Step 1 of the algorithm results in the table presented be-
low.

clusters 1 2 3

E(r) 9 3 2
∆(r) −15 15 1

Step 2 of the Algorithm yields s = 1 and ∆(1) < 0. So cluster σ1 is not
shifted and C1 = 3 and C2 = 5. Step 3 eliminates σ1. Going back to Step 2
yields ∆(2) > 0, ∆(2) + ∆(3) > 0 and no s exists. Going to Step 4 results
in

min(E(2), E(3)) = min(3, 2) = 2.

Increase all completion times in the second and third cluster by 2 time units
and eliminate job 6 from the list of early jobs. Update dk − Ck. The new
values of E(r) and ∆(r) are presented in the table below.

clusters 2 3

E(r) 1 ∞
∆(r) 15 −33

Returning to Step 2 yields ∆(2) > 0 and ∆(2) +∆(3) < 0. It follows that
s = 3 = m. So the second and third cluster should not be shifted and the
algorithm stops. The optimal completion times are

3, 5, 14, 17, 23, 25, 33. ||
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As stated earlier, finding at the same time an optimal job sequence as well as
the optimal starting times and completion times of the jobs is strongly NP-hard.
A branch-and-bound procedure for this problem is more complicated than

the one for the total weighted tardiness problem described in Section 3.6. The
branching tree can be constructed in a manner that is similar to the one for the
1 || ∑

wjTj problem. However, finding good lower bounds for 1 ||
∑

w′
jEj +∑

w′′
j Tj is considerably harder. One type of lower bound can be established

by first setting w′
j = 0 for all j and then applying the lower bound described

in Section 3.6 to the given instance by taking only the tardiness penalties into
account. This lower bound may not be that good, since it is based on two
simplifications.
It is possible to establish certain dominance conditions. For example, if the

due dates of two adjacent jobs both occur before the starting time of the first
one of the two jobs, then the job with the higher w′′

j /pj ratio has to go first.
Similarly, if the due dates of two adjacent jobs both occur after the completion
time of the last one of the two jobs, then the job with the lower w′

j/pj ratio has
to go first.
Many heuristic procedures have been developed for this problem. These pro-

cedures are often based on a combination of decomposition and local search.
The problem lends itself well to time-based decomposition procedures, since
it may be possible to tailor the decomposition process to the clusters and the
blocks.

4.2 Primary and Secondary Objectives

In practice a scheduler is often concerned with more than one objective. For
example, he may want to minimize inventory costs and meet due dates. It would
then be of interest to find, for example, a schedule that minimizes a combination
of

∑
Cj and Lmax.

Often, more than one schedule minimizes a given objective. A decision-maker
may then wish to consider the set of all schedules that are optimal with respect
to such an objective (say, the primary objective), and then search within this set
of schedules for the schedule that is best with regard to a secondary objective.
If the primary objective is denoted by γ1 and the secondary by γ2, then such a
problem can be referred to as α | β | γ(1)

1 , γ
(2)
2 .

Consider the following simple example. The primary objective is the total
completion time

∑
Cj and the secondary objective is the maximum lateness

Lmax, that is, 1 ||
∑

C
(1)
j , L

(2)
max. If there are no jobs with identical processing

times, then there is exactly one schedule that minimizes the total completion
time; so there is no freedom remaining to minimize Lmax. If there are jobs with
identical processing times, then there are multiple schedules that minimize the
total completion time. A set of jobs with identical processing times is preceded
by a job with a strictly shorter processing time and followed by a job with a
strictly longer processing time. Jobs with identical processing times have to be
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processed one after another; but, they may be done in any order. The decision-
maker now must find among all the schedules that minimize the total completion
time the one that minimizes Lmax. So, in an optimal schedule a set of jobs with
identical processing times has to be sequenced according to the EDD rule. The
decision-maker has to do so for each set of jobs with identical processing times.
This rule may be referred to as SPT/EDD, since the jobs are first scheduled
according to SPT and ties are broken according to EDD (see Exercise 4.16 for
a generalization of this rule).
Consider now the same two objectives with reversed priorities, that is, 1 ||

L
(1)
max,

∑
C

(2)
j . In Chapter 3 it was shown that the EDD rule minimizes Lmax.

Applying the EDD rule yields also the value of the minimum Lmax. Assume that
the value of this minimum Lmax is z. The original problem can be transformed
into another problem that is equivalent. Create a new set of due dates d̄j =
dj+z. These new due dates are now deadlines. The problem is to find a schedule
that minimizes

∑
Cj subject to the constraint that every job must be completed

by its deadline, i.e., the maximum lateness with respect to the new due dates
has to be zero or, equivalently, all the jobs have to be completed on time.
The algorithm for finding the optimal schedule is based on the following

result.

Lemma 4.2.1. For the single machine problem with n jobs subject to
the constraint that all due dates have to be met, there exists a schedule that
minimizes

∑
Cj in which job k is scheduled last, if and only if

(i) d̄k ≥
∑n
j=1 pj,

(ii) pk ≥ p�, for all , such that d̄� ≥
∑n
j=1 pj.

Proof. By contradiction. Suppose that job k is not scheduled last. There is a set
of jobs that is scheduled after job k and job , is the one scheduled last. Condition
(i) must hold for job , otherwise job , would not meet its due date. Assume
that condition (ii) does not hold and that p� < pk. Perform a (nonadjacent)
pairwise interchange between jobs k and ,. Clearly, the sum of the completion
times of jobs k and , decreases and the sum of the completion times of all jobs
scheduled in between jobs k and , goes down as well. So the original schedule
that positioned job , last could not have minimized

∑
Cj . 	


In the next algorithm Jc denotes the set of jobs that remain to be scheduled.

Algorithm 4.2.2 (Minimizing Total Completion Time with Deadlines)

Step 1.
Set k = n, τ =

∑n
j=1 pj, Jc = {1, . . . , n}.

Step 2.
Find k∗ in Jc such that d̄k∗ ≥ τ and pk∗ ≥ p�,
for all jobs , in Jc such that d̄� ≥ τ .
Put job k∗ in position k of the sequence.
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Step 3.
Decrease k by 1.
Decrease τ by pk∗ .
Delete job k∗ from Jc.

Step 4.
If k ≥ 1 go to Step 2, otherwise STOP. ||
This algorithm, similar to the algorithms in Sections 3.2 and 3.6, is a back-

ward algorithm. The following example illustrates the use of this algorithm.

Example 4.2.3 (Minimizing the Total Completion Time with
Deadlines)
Consider the following instance with 5 jobs.

jobs 1 2 3 4 5

pj 4 6 2 4 2
d̄j 10 12 14 18 18

Starting out, τ = 18. Two jobs have a deadline larger than or equal to
τ , namely jobs 4 and 5. Job 4 has the longer processing time and should
therefore go last. For the second iteration the value of τ is reduced to 14.
There are two jobs that have a deadline greater than or equal to 14, namely
3 and 5. So either job can occupy the second last position. For the third
iteration the value of τ is reduced further down to 12. Again, there are two
jobs that have a deadline greater than or equal to 12; either jobs 2 and 3
or jobs 2 and 5. Clearly, job 2 (with a processing time of 6) should go in
the third position. Proceeding in this manner yields two optimal schedules,
namely schedules 5, 1, 2, 3, 4 and 3, 1, 2, 5, 4. ||
It can be shown that even when preemptions are allowed, the optimal sched-

ules are nonpreemptive.
A fairly large number of problems of the type 1 | β | γ(1)

1 , γ
(2)
2 have been

studied in the literature. Very few can be solved in polynomial time. However,
problems of the type 1 | β | ∑

wjC
(1)
j , γ

(2)
2 tend to be easy (see Exercises 4.16

and 4.17).

4.3 Multiple Objectives: A Parametric Analysis

Suppose there are two objectives γ1 and γ2. If the overall objective is θ1γ1+θ2γ2,
where θ1 and θ2 are the weights of the two objectives, then a scheduling problem
can be denoted by 1 | β | θ1γ1 + θ2γ2. Since multiplying both weights by the
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�Cj

Lmax(EDD) Lmax(SPT/EDD) Lmax

Fig. 4.3 Trade-offs between total completion time and maximum
lateness

same constant does not change the problem, it is in what follows assumed that
the weights add up to 1, i.e., θ1 + θ2 = 1. The remaining part of this section
focuses on a specific class of schedules.

Definition 4.3.1 (Pareto-Optimal Schedule). A schedule is called
Pareto-optimal if it is not possible to decrease the value of one objective without
increasing the value of the other.

All Pareto-optimal solutions can be represented by a set of points in the
(γ1, γ2) plane. This set of points illustrates the trade-offs between the two ob-
jectives. Consider the two objectives analyzed in the previous section, i.e.,

∑
Cj

and Lmax. The two cases considered in the previous section are the two extreme
points of the trade-off curve. If θ1 → 0 and θ2 → 1, then

1 | β | θ1γ1 + θ2γ2 → 1 | β | γ(1)
2 , γ

(2)
1 .

If θ2 → 0 and θ1 → 1, then

1 | β | θ1γ1 + θ2γ2 → 1 | β | γ(1)
1 , γ

(2)
2 .

So the two extreme points of the trade-off curve in Figure 4.3 correspond to
the problems discussed in the previous section. At one of the extreme points
the total completion time is minimized by the SPT rule and ties are broken
according to EDD; the Lmax of this schedule can be computed easily and is
denoted by Lmax(SPT/EDD). At the other extreme point the schedule is gen-
erated according to a more complicated backward procedure. The Lmax is equal
to Lmax(EDD) and the total completion time of this schedule can be computed
also. Clearly,

Lmax(EDD) ≤ Lmax(SPT/EDD).

The algorithm that generates all Pareto-optimal solutions in the trade-off
curve contains two loops. One series of steps in the algorithm (the inner loop)
is an adaptation of Algorithm 4.2.2. These steps determine, in addition to the
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optimal schedule with a maximum allowable Lmax, also the minimum incre-
ment δ in the Lmax that would allow for a decrease in the minimum

∑
Cj . The

second (outer) loop of the algorithm contains the structure that generates all
the Pareto optimal points. The outer loop calls the inner loop at each Pareto-
optimal point to generate a schedule at that point and also to determine how
to move to the next efficient point. The algorithm starts out with the EDD
schedule that generates the first Pareto-optimal point in the upper left part of
the trade-off curve. It determines the minimum increment in the Lmax needed
to achieve a reduction in

∑
Cj . Given this new value of Lmax, it uses the algo-

rithm in the previous section to determine the schedule that minimizes
∑

Cj ,
and proceeds to determine the next increment. This goes on until the algorithm
reaches Lmax(SPT/EDD).

Algorithm 4.3.2 (Determining Trade-Offs between Total Completion
Time and Maximum Lateness)
Step 1.

Set r = 1.
Set Lmax = Lmax(EDD) and d̄j = dj + Lmax.

Step 2.
Set k = n and Jc = {1, . . . , n}.
Set τ =

∑n
j=1 pj and δ = τ .

Step 3.
Find j∗ in Jc such that d̄j∗ ≥ τ and pj∗ ≥ pl,
for all jobs l in Jc such that d̄l ≥ τ .
Put job j∗ in position k of the sequence.

Step 4.
If there is no job , such that d̄� < τ and p� > pj∗ , go to Step 5.
Otherwise find j∗∗ such that

τ − d̄j∗∗ = min
�
(τ − d̄�)

for all , such that d̄� < τ and p� > pj∗ .
Set δ∗∗ = τ − dj∗∗ .
If δ∗∗ < δ, then δ = δ∗∗.

Step 5.
Decrease k by 1.
Decrease τ by pj∗ .
Delete job j∗ from Jc.
If k ≥ 1 go to Step 3, otherwise go to Step 6.

Step 6.
Set Lmax = Lmax + δ.
If Lmax > Lmax(SPT/EDD), then STOP.
Otherwise set r = r + 1, d̄j = d̄j + δ, and go to Step 2. ||
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The outer loop consists of Steps 1 and 6 while the inner loop consists of Steps
2, 3, 4, and 5. Steps 2, 3 and 5 represent an adaptation of Algorithm 4.2.2
and Step 4 computes the minimum increment in the Lmax needed to achieve a
subsequent reduction in

∑
Cj .

It can be shown that the maximum number of Pareto-optimal solutions is
n(n− 1)/2, which is O(n2) (see Exercise 4.19). Generating one Pareto-optimal
schedule can be done in O(n log(n)). The total computation time of Algo-
rithm 4.3.2 is therefore O(n3 log(n)).

Example 4.3.3 (Determining Trade-Offs between Total Completion
Time and Maximum Lateness)

Consider the following set of jobs.

jobs 1 2 3 4 5

pj 1 3 6 7 9
dj 30 27 20 15 12

The EDD sequence is 5, 4, 3, 2, 1 and Lmax(EDD) = 2. The SPT/EDD
sequence is 1, 2, 3, 4, 5 and Lmax(SPT/EDD) = 14. Application of Algo-
rithm 4.3.2 results in the following iterations.

Iteration (
∑

Cj , Lmax) Pareto-optimal schedule current τ + δ δ

1 96, 2 5, 4, 3, 1, 2 32 29 22 17 14 1
2 77, 3 1, 5, 4, 3, 2 33 30 23 18 15 2
3 75, 5 1, 4, 5, 3, 2 35 32 25 20 17 1
4 64, 6 1, 2, 5, 4, 3 36 33 26 21 18 2
5 62, 8 1, 2, 4, 5, 3 38 35 28 23 20 3
6 60, 11 1, 2, 3, 5, 4 41 38 31 26 23 3
7 58, 14 1, 2, 3, 4, 5 44 41 34 29 26 STOP

However, when one would consider the objective θ1Lmax + θ2

∑
Cj , then

certain Pareto-optimal schedules never may be optimal, no matter what the
weights are (see Exercise 4.8). ||
Consider the generalization 1 || θ1

∑
wjCj + θ2Lmax. It is clear that the

two extreme points of the trade-off curve can be determined in polynomial time
(using WSPT/EDD and EDD). However, even though the two end-points of the
trade-off curve can be analyzed in polynomial time, the problem with arbitrary
weights θ1 and θ2 is NP-hard.
The trade-off curve that corresponds to the example in this section has the

shape of a staircase. This shape is fairly common in a single machine environ-
ment with multiple objectives, especially when preemptions are not allowed.
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However, in other machine environments, e.g., parallel machines, smoother
curves may occur, especially when preemptions are allowed (see Chapter 15).

4.4 The Makespan with Sequence Dependent Setup Times

For single machine scheduling problems with all rj = 0 and no sequence depen-
dent setup times the makespan is independent of the sequence and equal to the
sum of the processing times. When there are sequence dependent setup times
the makespan does depend on the schedule. In Appendix D it is shown that
1 | sjk | Cmax is strongly NP-hard.
However, the NP-hardness of 1 | sjk | Cmax in the case of arbitrary setup

times does not rule out the existence of efficient solution procedures when the
setup times have a special form. And in practice setup times often do have a
special structure.
Consider the following structure. Two parameters are associated with job j,

say aj and bj , and sjk = | ak − bj |. This setup time structure can be described
as follows: after the completion of job j the machine is left in state bj and to be
able to start job k the machine has to be brought into state ak. The total setup
time necessary for bringing the machine from state bj to state ak is proportional
to the absolute difference between the two states. This state variable could be,
for example, temperature (in the case of an oven) or a measure of some other
setting of the machine. In what follows it is assumed that at time zero the state
is b0 and that after completing the last job the machine has to be left in state
a0 (this implies that an additional “clean-up” time is needed after the last job
is completed).
This particular setup time structure does allow for a polynomial time algo-

rithm. The description of the algorithm is actually easier in the context of the
Travelling Salesman Problem (TSP). The algorithm is therefore presented here
in the context of a TSP with n+1 cities; the additional city being called city 0
with parameters a0 and b0. Without loss of generality it may be assumed that
b0 ≤ b1 ≤ · · · ≤ bn. The travelling salesman leaving city j for city k (or, equiva-
lently, job k following job j) is denoted by k = φ(j). The sequence of cities in a
tour is denoted by Φ, which is a vector that maps each element of {0, 1, 2, . . . , n}
onto a unique element of {0, 1, 2, . . . , n} by relations k = φ(j) indicating that
the salesman visits city k after city j (or, equivalently, job k follows job j).
Such mappings are called permutation mappings. Note that not all possible
permutation mappings of {0, 1, 2, . . . , n} constitute feasible TSP tours. For ex-
ample, {0, 1, 2, 3} mapped onto {2, 3, 1, 0} represents a feasible TSP. However,
{0, 1, 2, 3} mapped onto {2, 1, 3, 0} does not represent a feasible tour, since it
represents two disjoint sub-tours, namely subtour 0 → 2 → 3 → 0 and the
subtour 1→ 1 which consists of a single city (see Figure 4.4). Define φ(k) = k
to mean a redundant tour that starts and ends at k.
For the special cost structure of going from city j to k it is clear that this cost

is equal to the vertical height of the arrow connecting bj with ak in Figure 4.5.
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3 1
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1

Fig. 4.4 Permutation mappings: (a) {0, 1, 2, 3} → {2, 3, 1, 0}
(b) {0, 1, 2, 3} → {2, 1, 3, 0}
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Fig. 4.5 Cost of going from j to k

Define the cost of a redundant sub-tour, i.e., φ(k) = k, as the vertical height of
an arrow from bk to ak.
Thus any permutation mapping (which might possibly consist of subtours)

can be represented as a set of arrows connecting bj , j = 0, . . . , n to ak, k =
0, . . . , n and the cost associated with such a mapping is simply the sum of the
vertical heights of the n+ 1 arrows.
Define now a swap I(j, k) as that procedure which when applied to a permu-

tation mapping Φ produces another permutation mapping Φ′ by affecting only
the assignments of j and k and leaving the others unchanged. More precisely,
the new assignment Φ′ = ΦI(j, k) is defined as:
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φ′(k) = φ(j),

φ′(j) = φ(k),

and
φ′(l) = φ(l)

for all l not equal to j or k. This transformation may also be denoted by
φ′(j) = φ(j)I(j, k). Note that this is not equivalent to an adjacent pairwise
interchange within a sequence, since a permutation mapping Φ does not always
represent a sequence (a feasible TSP tour) to begin with. More intuitively, it
only represents a swap of the arrows emanating from bj and bk leaving all other
arrows unchanged. In particular, if these arrows crossed each other before they
will uncross now and vice versa. The implication of such a swap in terms of
the actual tour and subtours is quite surprising though. It can be easily verified
that the swap I(j, k) has the effect of creating two subtours out of one if j and
k belong to the same subtour in Φ. Conversely, it combines two subtours to
which j and k belong otherwise.
The following lemma quantifies the cost of the interchange I(j, k) applied

to the sequence Φ; the cost of this interchange is denoted by cΦI(j, k). In the
lemma, the interval of the unordered pair [a, b] refers to an interval on the real
line and

|| [a, b] ||=
{
2(b− a) if b ≥ a
2(a− b) if b < a

Lemma 4.4.1. If the swap I(j, k) causes two arrows that did not cross
earlier to cross, then the cost of the tour increases and vice versa. The magnitude
of this increase or decrease is given by

cΦI(j, k) =|| [bj , bk] ∩ [aφ(j), aφ(k)] ||

So the change in cost is equal to the length of vertical overlap of the intervals
[bj , bk] and [aφ(j), aφ(k)].

Proof. The proof can be divided into several cases and is fairly straightforward
since the swap does not affect arrows other than the two considered. Hence it
is left as an exercise (see Figure 4.6). 	

The lemma is significant since it gives a visual cue to reducing costs by

uncrossing the arrows that cross and helps quantify the cost savings in terms of
amount of overlap of certain intervals. Such a visual interpretation immediately
leads to the following result for optimal permutation mappings.

Lemma 4.4.2. An optimal permutation mapping Φ∗ is obtained if bj ≤
bk =⇒ aφ∗(j) ≤ aφ∗(k).
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bj

bk

a�(k)

a�( j)

Change in cost
due to swap I( j, k)

Fig. 4.6 Change in cost due to swap I(j, k)

Proof. The statement of the theorem is equivalent to no lines crossing in the
diagram. Suppose two of the lines did cross. Performing a swap which uncrosses
the lines leads to a solution as good or better than the previous. 	

As mentioned before, this is simply an optimal permutation mapping and

not necessarily a feasible tour. It does, however, provide a lower bound for the
optimal cost of any TSP. This optimal Φ∗ may consist of p distinct subtours,
say, TR1, . . . , TRp. As seen before, performing a swap I(j, k) such that j and
k belong to distinct subtours will cause these subtours to coalesce into one and
the cost will increase (since now two previously uncrossed lines do cross) by an
amount cΦ∗I(j, k). It is desirable to select j and k from different subtours in
such a way that this cost of coalescing cΦ∗I(j, k) is, in some way, minimized.
To determine these swaps, instead of considering the directed graph which

represents the subtours of the travelling salesman, consider the undirected ver-
sion of the same graph. The subtours represent distinct cycles and redundant
subtours are simply independent nodes. To connect the disjoint elements (i.e.,
the cycles corresponding to the subtours) and construct a connected graph,
additional arcs have to be inserted in this undirected graph. The costs of the
arcs between cities belonging to different subtours in this undirected graph are
chosen to be equal to the cost of performing the corresponding swaps in the
tour of the travelling salesman in the directed graph. The cost of such a swap
can be computed easily by Lemma 4.4.1. The arcs used to connect the disjoint
subtours are selected according to the Greedy Algorithm: select the cheapest arc
which connects two of the p subtours in the undirected graph; select among the
remaining unused arcs the cheapest arc connecting two of the p− 1 remaining
subtours, and so on. The arcs selected then satisfy the following property.

Lemma 4.4.3. The collection of arcs that connect the undirected graph
with the least cost contain only arcs that connect city j to city j + 1.

Proof. The cost of the arcs (cΦ∗I(j, k)) needed to connect the distinct cycles
of the undirected graph are computed from the optimal permutation mapping
defined in Lemma 4.4.2 in which no two arrows cross. It is shown below that
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the cost of swapping two non-adjacent arrows is at least equal to the cost of
swapping all arrows between them. This is easy to see if the cost is regarded as
the intersection of two intervals given by Lemma 4.4.1. In particular, if k > j+1,

cΦ∗I(j, k) = || [bj , bk] ∩ [aφ∗(j), aφ∗(k)] ||

≥
k−1∑
i=j

|| [bi, bi+1] ∩ [aφ∗(i), aφ∗(i+1)] ||

=
k−1∑
i=j

cΦ∗I(i, i+ 1)

So the arc (j, k) can be replaced by the sequence of arcs (i, i+1), i = j, . . . , k−1
to connect the two subtours to which j and k belong at as low or lower cost. 	

It is important to note that in the construction of the undirected graph,

the costs assigned to the arcs connecting the subtours were computed under
the assumption that the swaps are performed on Φ∗ in which no arrows cross.
However, as swaps are performed to connect the subtours this condition no
longer remains valid. However, it can be shown that if the order in which the
swaps are performed is determined with care, the costs of swaps are not affected
by previous swaps. The following example shows that the sequence in which the
swaps are performed can have an impact on the final cost.

Example 4.4.4 (Sequencing of Swaps)
Consider the situation depicted in Figure 4.7. The swap costs are cΦI(1, 2) =
1 and cΦI(2, 3) = 1. If the swap I(2, 3) is performed followed by the swap
I(1, 2) the overlapping intervals which determine the costs of the interchange
remain unchanged. However, if the sequence of swaps is reversed, i.e., first
swap I(1, 2) is performed followed by swap I(2, 3), then the costs do change:
the cost of the first swap remains, of course, the same but the cost of the
second swap, cΦI(2, 3) now has become 2 instead of 1.
The key point here is that the two swaps under consideration have an

arrow in common, i.e., b2 → aφ(2). This arrow points “up” and any swap
that keeps it pointing “up” will not affect the cost of the swap below it as
the overlap of intervals does not change. ||
The example suggests that if a sequence of swaps needs to be performed,

the swaps whose lower arcs point “up” can be performed starting from the
top going down without changing the costs of swaps below them. A somewhat
similar statement can be made with respect to swaps whose lower arrows point
“down”
In order to make this notion of “up” and “down” more rigorous, classify the

nodes into two types. A node is said to be of Type I if aj ≤ bφ(j), i.e., the
arrow points “up”, and it is of Type II if aj > bφ(j). A swap is of Type I if its
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Fig. 4.7 Situation in Example 4.4.4

lower node is of Type I and of Type II if its lower node is of Type II. From the
previous arguments it is easy to deduce that if the swaps I(j, j + 1) of Type
I are performed in decreasing order of the node indices, followed by swaps of
Type II in increasing order of the node indices, a single tour is obtained without
changing any cΦ∗I(j, j+1) involved in the swaps. The following algorithm sums
up the entire procedure in detail.

Algorithm 4.4.5 (Finding Optimal Tour for TSP)

Step 1.
Arrange the bj in order of size and renumber the jobs so that

b0 ≤ b1 ≤ · · · ≤ bn.

The permutation mapping Φ∗ is defined by

φ∗(j) = k,

k being such that ak is the (j + 1)th smallest of the aj.

Step 2.
Form an undirected graph with n+ 1 nodes and undirected arcs Aj,φ∗(j)

connecting the jth and φ∗(j)th nodes.
If the current graph has only one component, then STOP.
Otherwise go to Step 3.

Step 3.
Compute the interchange costs cΦ∗I(j, j + 1) for j = 0, . . . , n− 1:

cΦ∗I(j, j + 1) = 2max
(
min(bj+1, aφ∗(j+1))−max(bj , aφ∗(j)), 0

)
Step 4.

Select the smallest cΦ∗I(j, j + 1) such that j is in one component and
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j + 1 in another (break ties arbitrarily).
Insert the undirected arc Aj,j+1 into the graph and
repeat this step until all components in the undirected graph are connected.

Step 5.
Divide the arcs selected in Step 4 into two groups.
Those Aj,j+1 for which aφ∗(j) ≥ bj go in Group 1;
the remaining go in Group 2.

Step 6.
Find the largest index j1 such that Aj1,j1+1 is in Group 1.
Find the second largest j2, and so on.
Find the smallest index k1 such that Ak1,k1+1 is in Group 2.
Find the second smallest k2, and so on.

Step 7.
The optimal tour Φ∗∗ is constructed by applying the following
sequence of interchanges to the permutation Φ∗:

Φ∗∗=Φ∗I(j1, j1+1)I(j2, j2+1)...I(jl, jl+1)I(k1, k1+1)I(k2, k2+1)...I(km, km+1).
||

The total cost of the resulting tour may be viewed as consisting of two
components. One is the cost of the unrestricted permutation mapping Φ∗ before
the interchanges are performed. The other is the additional cost caused by the
interchanges.
That this algorithm actually leads to the optimal tour can be shown in two

steps. First, a lower bound is established for the total cost of an arbitrary
permutation mapping. Second, it is shown that this lower bound, in case the
permutation mapping represents an actual tour, is greater than or equal to the
total cost of the tour constructed in the algorithm. These two steps then prove
the optimality of the tour of the algorithm. As this proof is somewhat intricate
the reader is referred to the literature for its details.
A careful analysis of the algorithm establishes that the overall running time

is bounded by O(n2).

Example 4.4.6 (Finding Optimal Tour for TSP)
Consider 7 cities with the parameters given below.

cities 0 1 2 3 4 5 6

bj 1 15 26 40 3 19 31
aj 7 16 22 18 4 45 34

Step 1. Reordering the cities in such a way that bj ≤ bj+1 results in the
ordering below and the φ∗(j) below:
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cities 0 1 2 3 4 5 6

bj 1 3 15 19 26 31 40
aφ∗(j) 4 7 16 18 22 34 45
φ∗(j) 1 0 2 6 4 5 3

Step 2. Form the undirected graph with j connected φ∗(j). Nodes 0 and 1
have to be connected with one another; nodes 3 and 6 have to be connected
with one another; nodes 2, 4 and 5 are independent (each one of these three
nodes is connected with itself).

Step 3. Computation of the interchange costs cΦ∗I(j, j + 1) gives

cΦ∗I(0, 1) = 0
cΦ∗I(1, 2) = 2(15− 7) = 16
cΦ∗I(2, 3) = 2(18− 16) = 4
cΦ∗I(3, 4) = 2(22− 19) = 6
cΦ∗I(4, 5) = 2(31− 26) = 10
cΦ∗I(5, 6) = 2(40− 34) = 12

Step 4. The undirected arcs A1,2, A2,3, A3,4 and A4,5 are inserted into the
graph.

Step 5. The four arcs have to be partitioned into the two groups. In order to
determine this, each bj has to be compared to the corresponding aφ∗(j).

arcs bj aφ∗(j) Group

A1,2 b1 = 3 aφ∗(1) = a0 = 7 1
A2,3 b2 = 15 aφ∗(2) = a2 = 16 1
A3,4 b3 = 19 aφ∗(3) = a6 = 18 2
A4,5 b4 = 26 aφ∗(4) = a4 = 22 2

Step 6. j1 = 2, j2 = 1, k1 = 3 and k2 = 4.

Step 7. The optimal tour is obtained after the following interchanges.

Φ∗∗ = Φ∗I(2, 3)I(1, 2)I(3, 4)I(4, 5).

So the optimal tour is

0→ 1→ 6→ 3→ 4→ 5→ 2→ 0.
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The cost of this tour is

3 + 15 + 5 + 3 + 8 + 15 + 8 = 57 ||

In practice, when the setup times have an arbitrary structure, the myopic
Shortest Setup Time (SST) first rule is often used. This rule implies that when-
ever a job is completed, the job with the smallest setup time is selected to go
next. This SST rule is equivalent to the Nearest Neighbour rule for the TSP.
Applying the SST rule to the instance in Example 4.4.6 results in the tour

0→ 1→ 2→ 6→ 3→ 4→ 5→ 0.

The associated cost is

3 + 13 + 3 + 5 + 3 + 8 + 24 = 59.

This tour is not optimal.
Even though the SST rule usually leads to reasonable schedules, there are

instances where the ratio

Cmax(SST )−
∑n
j=1 pj

Cmax(OPT )−∑n
j=1 pj

is quite large. Nevertheless, the SST rule is often used as an integral component
within more elaborate dispatching rules (see Section 14.2).

4.5 Job Families with Setup Times

Consider n jobs that belong to F different job families. Jobs from the same
family may have different processing times, but they can be processed one
after another without requiring any setup in between. However, if the machine
switches over from one family to another, say from family g to family h, then
a setup is required. If the setup time is sequence dependent, it is denoted by
sgh. If the setup time depends only on the family that is about to start, it is
denoted by sh. If it does not depend on either family, it is denoted by s. In what
follows, sequence dependent setup times satisfy the so-called triangle inequality,
i.e., sfg + sgh ≥ sfh for any three families f, g, and h. (The reverse inequality
would not make sense, since one always would do then two setups instead of
the single longer setup.) If the very first job to be processed in the sequence
belongs to family h, then the setup at time 0 is s0h.
This section does not consider the makespan objective, since it has already

been discussed in a fair amount of detail in the previous section. This section
does cover the total weighted completion time objective, the maximum lateness
objective, and the number of tardy jobs objective.
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Consider the problem 1 | fmls, sgh |
∑

wjCj . Before describing a backward
dynamic programming procedure for this problem it is necessary to establish
some properties of optimal schedules. Any schedule consists of F subsequences
of jobs that are intertwined with one another and each subsequence corresponds
to one family. The next result focuses on the subsequences in optimal schedules.

Lemma 4.5.1. In an optimal schedule for 1 | fmls, sgh |
∑

wjCj jobs
from the same family are ordered according to WSPT.

Proof. Consider an optimal sequence σ∗ = σ1, j, σ2, k, σ3, where jobs j and k
are from the same family and σ1, σ2 and σ3 are arbitrary partial sequences.
The partial sequence σ2 does not contain any job from the family that jobs j
and k belong to. It suffices to show that if wj/pj < wk/pk, then either sequence
σ′ = σ1, k, j, σ2, σ3 or sequence σ′′ = σ1, σ2, k, j, σ3 has a smaller total weighted
completion time. It can be shown that, because of the triangle inequality that
applies to setup times, the interchanges yielding sequences σ′ and σ′′ reduce the
total setup time (subsequence σ3 starts in sequence σ′ as well as in sequence σ′′

earlier than in sequence σ∗). The setup times can therefore be ignored.
It is possible to replace two consecutive jobs u and v in a sequence by a

single composite job r with processing time pr = pu + pv and weight wr =
wu + wv. This increases the total weighted completion time of the sequence
by an amount wupv. Replacing the partial sequence σ2 in σ∗, σ′ and σ′′ by
an accordingly defined composite job , changes all three objective values by
the same constant (independently from the position of σ2 in the sequence). So,
substituting a partial sequence with a composite job changes the overall cost
only by a constant; comparisons of the schedules based on the values of the
objective function will yield the same result.
Now it is easy to see (through a standard adjacent pairwise interchange

argument), that since job k has a higher priority than job j, either the composite
job , has a higher priority than job j implying that σ′′ is better than σ∗ or the
composite job , has a lower priority than job k implying that σ′ is better
than σ∗. 	

In order to describe a backward dynamic programming procedure, some no-

tation has to be introduced. Let ng denote the number of jobs from family g.
Let (j, g) refer to job j from family g, j = 1, . . . , ng; it has a processing time
pjg and a weight wjg . Without loss of generality one can assume that

w1g

p1g
≥ w2g

p2g
≥ · · · ≥ wng,g

png,g

for all g = 1, . . . , F .
Let V (q1, . . . , qF , h) denote the minimum total weighted completion time of

schedules that contain jobs (qg, g), . . . , (ng, g) for g = 1, . . . , F where job (qh, h)
from family h is the first one to be processed starting at time 0. In other words,
V (q1, . . . , qF , h) defines the minimum total weighted completion time among all
schedules that contain for each family g, g = 1, . . . , F , all ng − qg + 1 lowest



94 4 Advanced Single Machine Models (Deterministic)

priority jobs (qg, g), . . . , (ng, g) and that starts at time 0 with a batch of jobs
from family h. Note that qh ≤ nh, and that the setup for the batch of jobs of
family h at the start of the schedule is not included.
A backward dynamic programming algorithm can now be described as fol-

lows.

Algorithm 4.5.2 (Minimizing the Total Weighted Completion Time)
Initial Condition:

V (n1 + 1, . . . , nF + 1, g) = 0, for g = 1, . . . , F.

Recursive Relation:

V (q1, . . . , qF , h) =

min
h′=1,...,F

(
V (q′1, . . . , q

′
F , h

′) + (pqh,h + shh′)
F∑
g=1

ng∑
j=qg

wjg − shh′wqh,h

)
,

where q′h = qh + 1 and q′g = qg if g �= h, and shh′ = 0 if h = h′;
for qg = ng + 1, ng, . . . , 1, g = 1, . . . , F , h = 1, . . . , F .

Optimal Value Function:

min
h=1,...,F

(
V (1, . . . , 1, h) + s0h

F∑
g=1

ng∑
j=1

wjg

)
||

In words, this algorithm can be described as follows. The minimization selects
a previous schedule to which job (qh, h) is appended at the beginning. If the
first job of the previous schedule is also from family h, i.e., h′ = h, then this
previous schedule is only delayed by pqh,h. On the other hand, if the first job
of the previous schedule is from family h′, where h′ �= h, then the delay is
pqh,h + shh′ , because the first job of the previous schedule starts a new batch
requiring a setup between the job from family h and the job from family h′.
It is easy to obtain an upper bound for the makespan of any schedule by

taking the sum of all the processing times plus n times the maximum setup
time. Let U denote this upper bound. The number of states for which the value
function has to be computed recursively is then O(nFF U). The value of each
state can be computed in O(F ) (since the minimum is taken over F values). So
the algorithm operates in O(F 2nF U).

Example 4.5.3 (Dynamic Programming and the Total Weighted
Completion Time)
Consider two families, i.e., F = 2. The sequence dependent setup times
between the families are s12 = s21 = 2 and s01 = s02 = 0. There is one job
in family 1 and two jobs in family 2, i.e., n1 = 1 and n2 = 2. The processing
times are in the table below:
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jobs (1,1) (1,2) (2,2)

pjg 3 1 1
wjg 27 30 1

Applying the WSPT rule to the two jobs of family 2 indicates that job
(1,2) should appear in the schedule before job (2,2).
Applying the dynamic procedure results in the following computations.

The initial conditions are: V (2, 3, 1) = V (2, 3, 2) = 0. These initial conditions
basically represent empty schedules.
The first recursive relation computes an optimal value function by ap-

pending job (1,1) to the empty schedule and then computes an optimal value
function by appending job (2,2) to the empty schedule.

V (1, 3, 1) = min
(
V (2, 3, 1) + (p11 + s11)w11 − s11w11,

V (2, 3, 2) + (p11 + s12)w11 − s12w11

)
= min

(
0 + (3 + 0)27− 0× 27, 0 + (3 + 2)27− 2× 27

)
= 81

and

V (2, 2, 2) = min
(
V (2, 3, 2) + (p22 + s22)w22 − s22w22,

V (2, 3, 1) + (p22 + s21)w22 − s21w22

)
= min

(
0 + (1 + 0)1− 0× 1, 0 + (1 + 2)1− 2× 1

)
= 1

The next value functions to be computed are V (1, 2, 1) and V (1, 2, 2).

V (1, 2, 1) = V (2, 2, 2) + (p11 + s12)(w11 + w22)− s12w11

= 1 + (3 + 2)(27 + 1)− 2× 27 = 87

(Note that it was not necessary here to consider V (2, 2, 1) on the RHS of the
expression above, since state (2, 2, 1) is not a feasible state.) Similarly,

V (1, 2, 2) = V (1, 3, 1) + (p22 + s21)(w11 + w22)− s21w22

= 81 + (1 + 2)(27 + 1)− 2× 1 = 163

(Again, it is not necessary to consider here V (1, 3, 2) since state (1, 3, 2) is
not feasible.)
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Proceeding in a similar fashion yields

V (2, 1, 2) = V (2, 2, 2) + (p12)(w12 + w22) = 1 + 1× (30 + 1) = 32.

Finally,

V (1, 1, 1) = V (2, 1, 2) + (p11 + s12)(w11 + w12 + w22)− s12w11

= 32 + (3 + 2)(27 + 30 + 1)− 2× 27 = 268

and

V (1, 1, 2) = min
(
V (1, 2, 1) + (p12 + s21)(w12 + w22 + w11)− s21w12,

V (1, 2, 2) + (p12)(w12 + w22 + w11)
)

= min
(
87 + 3× (27 + 30 + 1)− 2× 30, 163 + 1× (27 + 30 + 1)

)
= min(201, 221) = 201

The optimal value function is

min
(
V (1, 1, 1), V (1, 1, 2)

)
= min(268, 201) = 201.

Backtracking yields the optimal schedule (1, 2), (1, 1), (2, 2) with a total
weighted completion time of 201. ||
The next objective to be considered is Lmax, i.e., the problem 1 | fmls, sgh |

Lmax. Let djg denote the due date of job (j, g), j = 1, . . . , ng, g = 1, . . . , F .
Before describing the dynamic programming procedure for this problem it is
again necessary to establish some properties pertaining to optimal schedules.
Again, a schedule can be regarded as a combination of F subsequences that are
intertwined with one another, each subsequence corresponding to one family.
The following lemma focuses on these subsequences.

Lemma 4.5.4. There exists an optimal schedule for 1 | fmls, sgh | Lmax

with the jobs from any given family sequenced according to EDD.

Proof. The proof can be constructed in a manner that is similar to the proof of
Lemma 4.5.1 and is left as an exercise. 	

In order to formulate a dynamic programming procedure, first assume that

d1g ≤ d2g ≤ · · · ≤ dng,g,

for g = 1, . . . , F . Let V (q1, . . . , qF , h) denote the minimum value of the maxi-
mum lateness for schedules containing jobs (qg, g), . . . , (ng, g) for g = 1, . . . , F
where job (qh, h) is processed first starting at time zero, and the setup for the
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batch of jobs of family h at the start of the schedule is not included. The fol-
lowing backward dynamic programming procedure can now be applied to this
problem.

Algorithm 4.5.5 (Minimizing the Maximum Lateness)
Initial Condition:

V (n1 + 1, . . . , nF + 1, g) = −∞, for g = 1, . . . , F.

Recursive Relation:

V (q1, . . . , qF , h) =

min
h′=1,...,F

(
max

(
V (q′1, . . . , q

′
F , h

′) + pqh,h + shh′ , pqh,h − dqh,h

))
where q′h = qh + 1, q′g = qg if g �= h, and shh′ = 0 if h = h′;

for qg = ng + 1, ng, . . . , 1, g = 1, . . . , F, h = 1, . . . , F .

Optimal Value Function:

min
h=1,...,F

(
V (1, . . . , 1, h) + s0h

)
||

In words, the minimization in the recursive relationship assumes that if job
(qh, h) (with processing time pqh,h) is appended at the beginning of a schedule
that contains jobs (q′1, 1), . . . , (q

′
F , F ), then the maximum lateness of these jobs

is increased by pqh,h + shh′ , while the lateness of job (qh, h) itself is pqh,h −
dqh,h. In the recursive relationship the maximum of these latenesses has to be
minimized. The time complexity of this algorithm can be determined in the same
way as the time complexity of the algorithm for the total weighted completion
time; it operates also in O(F 2nFU).
Consider now the problem 1 | fmls, sgh |

∑
Uj. Recall that the algorithm that

yields an optimal solution for 1 || ∑Uj operates forward in time. This already
may suggest that it probably would not be that easy to find a backward dynamic
programming algorithm for 1 | fmls, sgh |

∑
Uj ; this problem requires, indeed,

a forward dynamic programming algorithm.
Before describing the dynamic programming algorithm that solves this prob-

lem it is again necessary to establish some properties of optimal schedules. An
optimal schedule can again be regarded as a combination of F subsequences that
are intertwined, with each subsequence corresponding to one family. A subse-
quence from a family contains jobs that are completed early as well as jobs that
are completed late. The early jobs appear in the subsequence before the late
jobs. The following lemma focuses on the structure of such a subsequence.

Lemma 4.5.6. There exists an optimal schedule for 1 | fmls, sgh |
∑

Uj
that has all the on-time jobs from any given family sequenced according to EDD.
In such an optimal schedule the jobs from any given family that are finished late
are processed after all on-time jobs from that family have been completed.
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Proof. The proof is easy and is left as an exercise. 	

Assume again that the jobs within each family g are indexed so that d1g ≤

· · · ≤ dng,g. In order to formulate a dynamic program for 1 | fmls, sgh |
∑

Uj
let V (q1, . . . , qF , u, h) denote the minimum makespan for schedules that contain
early jobs from the sets {(1, g), . . . , (qg, g)}, g = 1, . . . , F , with u being the total
number of late jobs from these sets and a family h job being the last job in
the schedule that is completed early. Note that qh ≥ 1. The following forward
dynamic programming algorithm solves the problem.

Algorithm 4.5.7 (Minimizing the Number of Tardy Jobs)
Initial Condition:

V (q1, . . . , qF , u, 0) =
{
0, for u =

∑F
g=1 qg,

∞, otherwise

for qg = 0, 1, . . . , ng, g = 1, . . . , F, u = 0, 1, . . . ,
∑F
g=1 qg.

Recursive Relation:

V (q1, . . . , qF , u, h) = min
(

min
h′∈G(q1,...,qF ,u,h)

(
V (q′1, . . . , q

′
F , u, h

′) + τ
)
,

V (q′1, . . . , q
′
F , u− 1, h)

)
,

where q′g = qg for g �= h, q′h = qh − 1, τ = sh′h + pqh,h,
sh′h = 0 if h = h′, and where G(q1, . . . , qF , u, h) =
= {h′ | h′ ∈ {0, 1, . . . , g}, V (q′1, . . . , q′g, u, h′) + τ ≤ dqh,h};

for qg = 0, 1, . . . , ng, g = 1, . . . , F, and
u = 0, 1, . . . ,

∑F
g=1 qg and h = 1, . . . , F.

Optimal Value Function:

min
(
u | min

g=0,1,...,F

(
V (n1, . . . , nF , u, g)

)
<∞

)
||

In words, the procedure can be described as follows: the first term in the
minimization of the recursion selects job (qh, h) to be scheduled on time if this
is possible and chooses a batch h′ for the previous on-time job; the second term
selects job qh of batch h to be late.
Note that the optimal value function is equal to the smallest value of u for

which
min

g=0,1,...,F

(
V (n1, . . . , nF , u, g)

)
<∞.

In order to determine the computational complexity of the procedure, note
that the number of states that have to be evaluated is again O(nFn F ). Since
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each recursive step requires O(F ) steps to solve, the time complexity of this
algorithm is O(F 2nF+1), which is polynomial for fixed F .
The more general problem 1 | fmls, sgh | ∑

wjUj can be solved in pseu-
dopolynomial time when F is fixed. This result follows from the fact that Al-
gorithm 4.5.7 can be generalized to minimize the weighted number of late jobs
in O(nFW ) time, where W =

∑n
j=1 wj .

The total tardiness objective
∑

Tj and the total weighted tardiness objective∑
wjTj turn out to be considerably harder than the

∑
Uj objective.

4.6 Batch Processing

Consider a machine that can process a number of jobs simultaneously, i.e., a
machine that can process a batch of jobs at the same time. The processing times
of the jobs in a batch may not be all the same and the entire batch is finished
only when the last job of the batch has been completed, i.e., the completion
time of the entire batch is determined by the job with the longest processing
time. This type of machine is fairly common in industry. Consider, for example,
the ”burn-in” operations in the manufacturing process of circuit boards; these
operations are performed in ovens that can handle many jobs simultaneously.
Let b denote the maximum number of jobs that can be processed in a batch.

Clearly, the case b = 1 refers to the standard scheduling environment considered
in previous sections. It is to be expected that the b = 1 case is easier than the
case b ≥ 2. Another special case that tends to be somewhat easier is the case
b = ∞ (i.e., there is no limit on the batch size). This case is not uncommon
in practice; it occurs frequently in practice when the items to be produced are
relatively small and the equipment is geared for a high volume. In this section
the case b = ∞ (or equivalently, b ≥ n) is considered first; several objective
functions are discussed. Subsequently, the case 2 ≤ b ≤ n − 1 is considered;
several objective functions are discussed.
When b = ∞ the minimization of the makespan is trivial. All jobs are pro-

cessed together and the makespan is the maximum of the n processing times.
However, other objective functions are not that easy. Assume p1 ≤ p2 ≤
· · · ≤ pn. An SPT-batch schedule is defined as a schedule in which adja-
cent jobs in the sequence 1, . . . , n are assembled in batches. For example, a
possible batch schedule for an 8-job problem is a sequence of four batches
({1, 2}, {3, 4, 5}, {6}, {7, 8}). The following result holds for 1 | batch(∞) | γ
when the objective function γ is a regular performance measure.

Lemma 4.6.1. If the objective function γ is regular and the batch size is
unlimited, then the optimal schedule is an SPT-batch schedule.

Proof. The proof is easy and left as an exercise (see Exercise 4.22). 	

Consider the model 1 | batch(∞) | ∑

wjCj . This problem can be solved
via dynamic programming. Let V (j) denote the minimum total weighted com-
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pletion time of an SPT-batch schedule that contains jobs j, . . . , n, assuming
that the first batch starts at t = 0. Let V (n + 1) denote the minimum total
weighted completion time of the empty set, which is zero. A backward dynamic
programming procedure can be described as follows.

Algorithm 4.6.2 (Minimizing Total Weighted Completion Time –
Batch Size Infinite)

Initial Condition:

V (n+ 1) = 0

Recursive Relation:

V (j) = min
k=j+1,...,n+1

(
V (k) + pk−1

n∑
h=j

wh

)
j = n, . . . , 1.

Optimal Value Function:

V (1) ||
The minimization in the recursive relationship of the dynamic program se-

lects the batch of jobs {j, . . . , k − 1} with processing time pk−1 for insertion at
the start of a previously obtained schedule that comprises jobs {k, . . . , n}. It is
clear that this algorithm is O(n2).
Consider now the model 1 | batch(∞) | Lmax. This problem also can be solved

via a backward dynamic programming procedure. Assume again that p1 ≤ p2 ≤
· · · ≤ pn. Let V (j) denote now the minimum value of the maximum lateness for
SPT-batch schedules containing jobs j, . . . , n, assuming their processing starts
at time t = 0.

Algorithm 4.6.3 (Minimizing Maximum Lateness – Batch Size Infi-
nite)
Initial Condition:

V (n+ 1) = −∞
Recursive Relation:

V (j) = min
k=j+1,...,n+1

(
max

(
V (k) + pk−1, max

h=j,...,k−1
(pk−1 − dh)

))
j = n, . . . , 1.
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Optimal Value Function:

V (1) ||
The minimization in the recursive relationship assumes that if a batch of

jobs j, . . . , k − 1 (with processing time pk−1) is inserted at the beginning of a
schedule for jobs k, . . . , n, then the maximum lateness of jobs k, . . . , n increases
by pk−1, while the maximum lateness among jobs j, . . . , k − 1 is

max
h=j,...,k−1

(pk−1 − dh).

This algorithm also operates in O(n2).

Example 4.6.4 (Minimizing Maximum Lateness – Batch Size
Infinite)
Consider the following scheduling with five jobs, i.e., n = 5.

jobs 1 2 3 4 5

pj 2 3 8 10 27
dj 10 7 6 16 43

The initial condition is V (6) = −∞. The recursive relationships result in
the following:

V (5) = max(V (6) + p5, p5 − d5) = −16.

V (4) = min
k=5,6

(
max(V (k) + pk−1, max

h=4,...,k−1
(pk−1 − dh))

)
= min

(
max(−16 + 10, 10− 16) , max(−∞, 11,−16)

)
= min(−6, 11) = −6

V (3) = min
k=4,5,6

(
max(V (k) + pk−1, max

h=3,...,k−1
(pk−1 − dh))

)
= min

(
max(−6 + 8, 8− 6) , max(−16 + 10, 10− 6, 10− 16) ,

max(−∞, 27− 6, 27− 16, 27− 43)
)

= min(2, 4, 21) = 2

V (2) = min
k=3,...,6

(
max(V (k) + pk−1, max

h=2,...,k−1
(pk−1 − dh))

)
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= min
(
max(2 + 3, 3− 7) , max(−6 + 8, 8− 7, 8− 6) ,

max(−16 + 10, 10− 7, 10− 6, 10− 16),
max(−∞, 27− 7, 27− 6, 27− 16, 27− 43)

)
= min(5, 2, 4, 21) = 2

V (1) = min
k=2,...,6

(
max(V (k) + pk−1, max

h=1,...,k−1
(pk−1 − dh))

)
= min

(
max(4,−8) , max(5,−7,−4) , max(2,−2, 1, 2),

max(−6, 0, 3, 4,−6) , max(−∞, 17, 20, 21, 11,−16)
)

= min(4, 5, 2, 4, 21) = 2

Backtracking yields the following schedule: The fact that the minimum for
V (1) is reached for k = 4 implies that the first three jobs are put together
in one batch. The minimum for V (4) is reached for k = 5, implying that job
4 is put in a batch by itself. ||
The 1 | batch(∞) | ∑Uj problem is slightly more complicated. In Chapter 3

it was already observed that there is not any backward algorithm for minimizing
the number of late jobs when b = 1. It turns out that no backward algorithm has
been found for the b =∞ case either. However, the problem can be solved via
a forward dynamic programming algorithm. Let V (j, u, k) denote the minimum
makespan of an SPT-batch schedule for jobs 1, . . . , j, with u being the number
of late jobs among these j jobs and the last batch having a processing time pk
(implying that this last batch will end up containing also jobs j + 1, . . . , k, but
not job k + 1).
The dynamic program operates in a forward manner and distinguishes be-

tween two cases. First, it considers adding job j to the schedule while assuming
that it does not initiate a new batch, i.e., job j is included in the same batch
as job j − 1 and that batch has a processing time pk. This processing time pk
already contributes to the makespan of the previous state, which may be either
V (j − 1, u, k) or V (j − 1, u− 1, k) dependent upon whether job j is on time or
not. If V (j − 1, u, k) ≤ dj , then job j is on time and (j − 1, u, k) is the previous
state; if V (j − 1, u − 1, k) > dj , then job j is late and (j − 1, u − 1, k) is the
previous state.
Second, it considers adding job j to the schedule assuming that it initiates a

new batch. The previous batch ends with job j − 1 and the processing time of
the new batch is pk. After adding the contribution from the previous state, the
makespan becomes either V (j − 1, u, j− 1)+ pk or V (j− 1, u− 1, j− 1)+ pk
dependent upon whether job j is on time or not. If V (j−1, u, j−1)+pk ≤ dj ,
then job j is assumed to be on time and (j − 1, u, j − 1) is the previous state;
if V (j − 1, u − 1, j − 1) + pk > dj , then job j is assumed to be tardy and
(j − 1, u− 1, j − 1) is the previous state.
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Algorithm 4.6.5 (Minimizing Number of Tardy Jobs – Batch Size
Infinite)
Initial Condition:

V (0, 0, k) =
{
0, if k = 0,
∞, otherwise

Recursive Relation:

V (j, u, k) = min


V (j − 1, u, k), if V (j − 1, u, k) ≤ dj ,
V (j − 1, u− 1, k), if V (j − 1, u− 1, k) > dj ,
V (j − 1, u, j − 1) + pk, if V (j − 1, u, j − 1) + pk ≤ dj ,
V (j − 1, u− 1, j − 1) + pk if V (j − 1, u− 1, j − 1) + pk > dj ,
∞, otherwise

for j = 1, . . . , n, u = 0, . . . , j, k = j, . . . , n.

Optimal Value Function:

min { u | V (n, u, n) <∞} ||
Note that the optimal value function is the smallest value of u for which

V (n, u, n) <∞. This algorithm also operates in O(n3).
Other batch scheduling problems with due date related objective functions

and unlimited batch sizes tend to be harder. For example, 1 | batch(∞) | ∑Tj
is NP-Hard in the ordinary sense and can be solved in pseudopolynomial time.
Consider now the class of batch scheduling problems with finite and fixed

batch sizes, i.e., the batch size is b and 2 ≤ b ≤ n − 1. It is to be expected
that scheduling problems with finite and fixed batch sizes are harder than
their counterparts with unlimited batch sizes. For starters, the result regarding
the optimality of SPT-batch schedules when performance measures are regular
(Lemma 4.6.1) does not hold here.
Already, the minimization of the makespan is not as trivial as in the case

of an unlimited batch size. Consider the problem 1 | batch(b) | Cmax. It is
clear that in order to minimize the makespan it suffices to determine how the
n jobs are combined with one another and assembled into batches; the order in
which the batches are processed does not affect the makespan. A schedule that
minimizes the makespan consists of N = �(n/b)� batches. In the next algorithm
J denotes at any point in time the set of jobs that remain to be scheduled.

Algorithm 4.6.6 (Minimizing Makespan – Batch Size Finite)

Step 1. (Initialization)
Set J = {1, . . . , n} and k = N .
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Step 2. (Batch Assembly)
If k > 1, take from Set J the b jobs with the longest
processing times and put them in batch k.
If k = 1, put all jobs still remaining in set J
(i.e., n− (N − 1)b jobs) in one batch and STOP.

Step 3. (Update Counter)
Remove the jobs that have been put in batch k from set J ;
reduce k by 1 and return to Step 2. ||
So the algorithm starts with the assembly of the b longest jobs in the first

batch; it proceeds with selecting among the remaining jobs the b longest ones
and putting them in a second batch, and so on. If n is not a multiple of b, then
the last batch (containing the shortest jobs) will not be a full batch. So there
exists an optimal schedule with all batches, with the exception of one, being
full. This full-batch property applies only to the makespan objective.

Other objective functions tend to be significantly harder than the makespan
objective. The problem 1 | batch(b) | ∑

Cj is already not very easy. However,
some structural results can be obtained. Assume again that the jobs are ordered
such that p1 ≤ p2 ≤ · · · ≤ pn. Two batches are said to be not intertwined if
either the longest job in the first batch is smaller than the shortest job in the
second batch or if the shortest job in the first batch is longer than the longest
job in the second batch.

Lemma 4.6.7. There exists an optimal schedule for 1 | batch(b) | ∑
Cj

with no two batches intertwined.

Proof. The proof is easy and is left as an exercise (see Exercise 4.23). 	

Note that in an SPT-batch schedule for the case b = ∞ (see Lemma 4.6.1)

no two batches are intertwined either. However, it is clear that the property
described in Lemma 4.6.7 is weaker than the property described in Lemma 4.6.1
for unlimited batch sizes. Lemma 4.6.1 implies also that in an optimal schedule
a batch of jobs with smaller processing times must precede a batch of jobs with
longer processing times. If the batch size is finite, then this is not necessarily the
case. Lemma 4.6.7 may still allow a batch of jobs with longer processing times
to precede a batch of jobs with shorter processing times. The batch sequence
depends now also on the numbers of jobs in the batches.
Let p(Bk) denote the maximum processing time of the jobs in batch k, i.e.,

p(Bk) is the time required to process batch k. Let |Bk| denote the number of
jobs in batch k. The following lemma describes an important property of the
optimal batch sequence.

Lemma 4.6.8. A batch schedule for 1 | batch(b) | ∑
Cj is optimal if and

only if the batches are sequenced in decreasing order of |Bk|/p(Bk).
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Proof. The proof is easy and similar to the proof of optimality of the WSPT
rule for the total weighted completion time objective when there are no batches
(see Theorem 3.1.1). A batch now corresponds to a job in Theorem 3.1.1. The
processing time of a batch corresponds to the processing time of a job and the
number of jobs in a batch corresponds to the weight of a job. 	

Clearly, it may be possible for a batch with a long processing time to precede

a batch with a short processing time; the batch with the long processing time
must then contain more jobs than the batch with the short processing time.
A batch is said to be full if it contains exactly b jobs; otherwise it is non-full.

Batch Bk is said to be deferred with respect to batch B� if p(Bk) < p(B�) and
Bk is sequenced after B�.

Lemma 4.6.9. In any optimal schedule, there is no batch that is deferred
with respect to a non-full batch.

Proof. The proof is easy and is left as an exercise (see Exercise 4.24). 	

So this lemma basically says that in an optimal schedule no non-full batch

can precede a batch that has a smaller processing time.
In order to determine the optimal schedule it suffices to consider schedules

that satisfy the properties described above: each batch contains jobs with con-
secutive indices, batches are ordered in decreasing order of |Bk|/p(Bk), and no
batch is deferred with respect to a non-full batch. There exists a rather involved
dynamic program for this problem that runs in O(nb(b−1)), i.e., polynomial as
long as the batch size b is fixed. It is also possible to design fairly effective
heuristics using the theoretical properties shown above. A heuristic must as-
semble the jobs in clusters of at most b. It must try to keep the differences in
the processing times of the jobs in a batch somewhat small and then order the
batches in decreasing order of |Bk|/p(Bk).

Example 4.6.10 (Minimizing Total Completion Time - Batch Size
Finite)
Consider a machine that allows a maximum batch size of b. Assume there
are k (k < b) jobs with processing time 1 and b jobs with processing time p
(p > 1). If the k jobs with processing time 1 are scheduled first as one batch
followed by a second batch containing the b jobs with processing time p, then
the total completion time is k + b(p + 1). If the two batches are reversed,
then the total completion time is bp+ k(p+ 1).
The total completion time of the first sequence is lower than the total

completion time of the second sequence when b < kp. It is, of course, easy
to find numerical examples where the second sequence has a lower total
completion time. ||
A fair amount of research has also been done on finite batch scheduling with

due date related objectives. However, most finite batch scheduling problems
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hj(Cj)

Cj

Fig. 4.8 Cost function with due date range

with due date related objective functions are strongly NP-Hard, including
1 | batch(b) | Lmax, 1 | batch(b) |

∑
Uj , and 1 | batch(b) |

∑
Tj.

4.7 Discussion

Over the last decade problems with earliness and tardiness penalties have re-
ceived a significant amount of attention. Even more general problems than those
considered in this chapter have been studied. For example, some research has
focused on problems with jobs that are subject to penalty functions such as the
one presented in Figure 4.8.
Because of the importance of multiple objectives in practice a considerable

amount of research has been done on problems with multiple objectives. Of
course, these problems are harder than the problems with just a single objective.
So, most problems with two objectives are NP-hard. These types of problems
may attract in the near future the attention of investigators who specialize in
PTAS and FPTAS.
The makespan minimization problem when the jobs are subject to sequence

dependent setup times turns out to be equivalent to the Travelling Salesman
Problem. Many combinatorial problems inspired by real world settings are
equivalent to Travelling Salesman Problems. Another scheduling problem that
is discussed in Chapter 6 is also equivalent to the particular Travelling Salesman
Problem described in Section 4.4.
The models in the section focusing on job families are at times also referred

to as batch scheduling models. Every time the machine has to be set up for a
new family it is said that a batch of a particular family is about to start. This
batch of jobs from that family are processed sequentially. This is in contrast to
the setting in the last section where a batch of jobs is processed in parallel on
the batch processing machine.
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Exercises (Computational)

4.1. Consider the following instance with 6 jobs and d = 156.

jobs 1 2 3 4 5 6

pj 4 18 25 93 102 114

Apply Algorithm 4.1.4 to find a sequence. Is the sequence generated by the
heuristic optimal?

4.2. Consider the following instance with 7 jobs. For each job w′
j = w′′

j = wj .
However, wj is not necessarily equal to wk.

jobs 1 2 3 4 5 6 7

pj 4 7 5 9 12 2 6
wj 4 7 5 9 12 2 6

All seven jobs have the same due date d = 26. Find all optimal sequences.

4.3. Consider again the instance of the previous exercise with 7 jobs. Again, for
each job w′

j = w′′
j = wj . However, wj is not necessarily equal to wk. However,

now the jobs have different due dates.

jobs 1 2 3 4 5 6 7

pj 4 7 5 9 12 2 6
wj 4 7 5 9 12 2 6
dj 6 12 24 28 35 37 42

Find the optimal job sequence.

4.4. Give a numerical example of an instance with at most five jobs for which
Algorithm 4.1.4 does not yield an optimal solution.

4.5. Consider the following instance of the 1 || ∑wjC
(1)
j , L

(2)
max problem.

jobs 1 2 3 4 5

wj 4 6 2 4 20
pj 4 6 2 4 10
dj 14 18 18 22 0
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Find all optimal schedules.

4.6. Consider the following instance of the 1 || L(1)
max,

∑
wjC

(2)
j problem.

jobs 1 2 3 4 5

wj 4 6 2 4 20
pj 4 6 2 4 10
dj 14 18 18 22 0

Find all optimal schedules.

4.7. Apply Algorithm 4.3.2 to the following instance with 5 jobs and generate
the entire trade-off curve.

jobs 1 2 3 4 5

pj 4 6 2 4 2
dj 2 4 6 10 10

4.8. Consider the instance of 1 || θ1Lmax + θ2

∑
Cj in Example 4.3.3. Find

the ranges of θ1 and θ2 (assuming θ1 + θ2 = 1) for which each Pareto-optimal
schedule minimizes θ1Lmax + θ2

∑
Cj .

4.9. Consider an instance of the 1 | sjk | Cmax problem with the sequence
dependent setup times being of the form sjk =| ak − bj |. The parameters aj
and bk are in the table below. Find the optimal sequence.

cities 0 1 2 3 4 5 6

bj 39 20 2 30 17 6 27
aj 19 44 8 34 16 7 23

4.10. Consider the following instance of 1 | fmls , sgh |
∑

wjCj with F = 2.
The sequence dependent setup times between the two families are s12 = s21 = 2
and s01 = s02 = 0. There are two jobs in family 1 and three jobs in family 2,
i.e., n1 = 2 and n2 = 3. The processing times are in the table below:

jobs (1,1) (2,1) (1,2) (2,2) (3,2)

pjg 3 1 1 1 3
wjg 27 2 30 1 1

Apply Algorithm 4.5.2 to find the optimal schedule.
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Exercises (Theory)

4.11. Show that in an optimal schedule for an instance of 1 | dj = d | ∑Ej +∑
Tj there is no unforced idleness in between any two consecutive jobs.

4.12. Prove Lemma 4.1.1.

4.13. Consider the single machine scheduling problem with objective
∑

w′Ej+∑
w′′Tj and all jobs having the same due date, i.e., dj = d. Note that the weight

of the earliness penalty w′ is different from the weight of the tardiness penalty
w′′, but the penalty structure is the same for each job. Consider an instance
where the due date d is so far out that the machine will not start processing any
job at time zero. Describe an algorithm that yields an optimal solution (i.e., a
generalization of Algorithm 4.1.3).

4.14. Consider the same problem as described in the previous exercise. How-
ever, now the due date is not far out and the machine does have to start pro-
cessing a job immediately at time zero. Describe a heuristic that would yield a
good solution (i.e., a generalization of Algorithm 4.1.4).

4.15. Consider an instance where each job is subject to earliness and tardiness
penalties and w′

j = w′′
j = wj for all j. However, wj is not necessarily equal to

wk. The jobs have different due dates. Prove or disprove that EDD minimizes
the sum of the earliness and tardiness penalties.

4.16. Describe the optimal schedule for 1 || ∑
wjC

(1)
j , L

(2)
max and prove its

optimality.

4.17. Describe the optimal schedule for 1 || ∑
wjC

(1)
j ,

∑
U

(2)
j and prove its

optimality.

4.18. Describe the algorithm for 1 || L
(1)
max,

∑
wjC

(2)
j . That is, generalize

Lemma 4.2.1 and Algorithm 4.2.2.

4.19. Show that the maximum number of Pareto-optimal solutions for 1 ||
θ1

∑
Cj + θ2Lmax is n(n− 1)/2.

4.20. Describe the optimal schedule for 1 || θ1

∑
Uj+ θ2Lmax under the agree-

ability conditions

d1 ≤ · · · ≤ dn,

and
p1 ≤ · · · ≤ pn.

4.21. Prove Lemma 4.5.4.

4.22. Prove Lemma 4.6.1.

4.23. Prove Lemma 4.6.7.

4.24. Prove Lemma 4.6.9.
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Comments and References

The survey paper by Baker and Scudder (1990) focuses on problems with ear-
liness and tardiness penalties. The text by Baker (1995) has one chapter ded-
icated to problems with earliness and tardiness penalties. There are various
papers on timing algorithms when the optimal order of the jobs is a given. The
optimal timing Algorithm 4.1.8 is based on the paper by Szwarc and Mukhopad-
hyay (1995). An algorithm to find the optimal order of the jobs as well as their
optimal start times and completion times, assuming w′

j = w′′
j = 1 for all j, is

presented by Kim and Yano (1994). For more results on models with earliness
and tardiness penalties, see Sidney (1977), Hall and Posner (1991), Hall, Kubiak
and Sethi (1991), and Wan and Yen (2002).
A fair amount of research has been done on single machine scheduling with

multiple objectives. Some single machine problems with two objectives allow
for polynomial time solutions; see, for example, Emmons (1975), Van Wassen-
hove and Gelders (1980), Nelson, Sarin and Daniels (1986), Chen and Bulfin
(1994), and Hoogeveen and Van de Velde (1995). Potts and Van Wassenhove
(1983) as well as Posner (1985) consider the problem of minimizing the total
weighted completion time with the jobs being subject to deadlines (this prob-
lem is strongly NP-hard). Chen and Bulfin (1993) present a detailed overview
of the state of the art in multi-objective single machine scheduling. The book by
T’kindt and Billaut (2002, 2006) is entirely focused on multi-objective schedul-
ing.
The material in Section 4.4 dealing with the Travelling Salesman Problem

is entirely based on the famous paper by Gilmore and Gomory (1964). For
more results on scheduling with sequence dependent setup times see Bianco,
Ricciardelli, Rinaldi and Sassano (1988), Tang (1990) and Wittrock (1990).
Scheduling with the jobs belonging to a given (fixed) number of families

has received a fair amount of attention in the literature. At times, these types
of models have also been referred to as batch scheduling models (since the
consecutive processing of a set of jobs from the same family may be regarded as
a batch). Monma and Potts (1989) discuss the complexity of these scheduling
problems. An excellent overview of the literature on this topic is presented in the
paper by Potts and Kovalyov (2000). Brucker (2004) in his book also considers
this class of models and refers to it as s-batching (batching with jobs processed
in series).
When the machine is capable of processing multiple jobs in parallel, the

machine is often referred to as a batching machine. An important paper con-
cerning batch processing and batching machines is the one by Brucker, Gladky,
Hoogeveen, Kovalyov, Potts, Tautenhahn, and van de Velde (1998). Potts and
Kovalyov (2000) provides for this class of models also an excellent survey.
Brucker (2004) considers this class of models as well and refers to them as
p-batching (batching with jobs processed in parallel).
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A bank of machines in parallel is a setting that is important from both a the-
oretical and a practical point of view. From a theoretical point of view it is
a generalization of the single machine, and a special case of the flexible flow
shop. From a practical point of view, it is important because the occurrence of
resources in parallel is common in the real world. Also, techniques for machines
in parallel are often used in decomposition procedures for multi-stage systems.
In this chapter several objectives are considered. The three principal objec-

tives are the minimization of the makespan, the total completion time, and the
maximum lateness. With a single machine the makespan objective is usually
only of interest when there are sequence dependent setup times; otherwise the
makespan is equal to the sum of the processing times and is independent of
the sequence. When dealing with machines in parallel the makespan becomes
an objective of considerable interest. In practice, one often has to deal with
the problem of balancing the load on machines in parallel; by minimizing the
makespan the scheduler ensures a good balance.
One may actually consider the scheduling of parallel machines as a two step

process. First, one has to determine which jobs have to be allocated to which
machines; second, one has to determine the sequence of the jobs allocated to
each machine. With the makespan objective only the allocation process is im-
portant.

111M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
c© Springer Science+Business Media, LLC 2008
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With parallel machines, preemptions play a more important role than with
a single machine. With a single machine preemptions usually only play a role
when jobs are released at different points in time. In contrast, with machines
in parallel, preemptions are important even when all jobs are released at the
same time.
For most models considered in this chapter there are optimal schedules that

are non-delay. However, if there are unrelated machines in parallel and the total
completion time must be minimized without preemptions, then the optimal
schedule may not be non-delay.
Most models considered in this chapter fall in the category of the so-called

offline scheduling problems. In an offline scheduling problem all data (e.g., pro-
cessing times, release dates, due dates) are known in advance and can be taken
into account in the optimization process. In contrast, in an online scheduling
problem, the problem data are not known a priori. The processing time of a
job only becomes known the moment it is completed and a release date only
becomes known the moment a job is released. Clearly, the algorithms for online
scheduling problems tend to be quite different from the algorithms for offline
scheduling problems. The last section in this chapter focuses on online schedul-
ing of parallel machines.
The processing characteristics and constraints considered in this chapter in-

clude precedence constraints as well as the set functions Mj . Throughout this
chapter it is assumed that p1 ≥ · · · ≥ pn.

5.1 The Makespan without Preemptions

First, the problem Pm || Cmax is considered. This problem is of interest because
minimizing the makespan has the effect of balancing the load over the various
machines, which is an important objective in practice.
It is easy to see that P2 || Cmax is NP-hard in the ordinary sense as it is

equivalent to PARTITION (see Appendix D). During the last couple of decades
many heuristics have been developed for Pm || Cmax. One such heuristic is
described below.
The Longest Processing Time first (LPT) rule assigns at t = 0 the m longest

jobs to the m machines. After that, whenever a machine is freed the longest
job among those not yet processed is put on the machine. This heuristic tries
to place the shorter jobs more towards the end of the schedule, where they can
be used for balancing the loads.
In the next theorem an upper bound is presented for

Cmax(LPT )
Cmax(OPT )

,

where Cmax(LPT ) denotes the makespan of the LPT schedule and Cmax(OPT )
denotes the makespan of the (possibly unknown) optimal schedule. This type
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of worst case analysis is of interest as it gives an indication of how well the
heuristic is guaranteed to perform as well as the type of instances for which the
heuristic performs badly.

Theorem 5.1.1. For Pm || Cmax

Cmax(LPT )
Cmax(OPT )

≤ 4
3
− 1
3m

.

Proof. By contradiction. Assume that there exists one or more counterexamples
with the ratio strictly larger than 4/3−1/3m. If more than one such counterex-
ample exist, there must exist an example with the smallest number of jobs.
Consider this “smallest” counterexample and assume it has n jobs. This

smallest counterexample has a useful property: under LPT the shortest job is
the last job to start its processing and also the last job to finish its process-
ing. That this is true can be seen as follows: first, under LPT by definition
the shortest job is the last to start its processing. Also, if this job is not the
last to complete its processing, the deletion of this smallest job will result in a
counterexample with fewer jobs (the Cmax(LPT ) remains the same while the
Cmax(OPT ) may remain the same or may decrease). So for the smallest coun-
terexample the starting time of the shortest job under LPT is Cmax(LPT )−pn.
Since at this point in time all other machines are still busy it follows that

Cmax(LPT )− pn ≤
∑n−1
j=1 pj

m
.

The right hand side is an upper bound on the starting time of the shortest job.
This upper bound is achieved when scheduling the first n− 1 jobs according to
LPT results in each machine having exactly the same amount of processing to
do. Now

Cmax(LPT ) ≤ pn +

∑n−1
j=1 pj

m
= pn(1− 1

m
) +

∑n
j=1 pj

m
.

Since

Cmax(OPT ) ≥
∑n
j=1 pj

m

the following series of inequalities holds for the counterexample:

4
3
− 1
3m

<
Cmax(LPT )
Cmax(OPT )

≤ pn(1− 1/m) +
∑n
j=1 pj/m

Cmax(OPT )

=
pn(1− 1/m)
Cmax(OPT )

+

∑n
j=1 pj/m

Cmax(OPT )
≤ pn(1 − 1/m)

Cmax(OPT )
+ 1.
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Thus
4
3
− 1
3m

<
pn(1 − 1/m)
Cmax(OPT )

+ 1

and
Cmax(OPT ) < 3pn.

Note that this last inequality is a strict inequality. This implies that for the
smallest counterexample the optimal schedule may result in at most two jobs
on each machine. It can be shown that if an optimal schedule is a schedule with
at most two jobs on each machine then the LPT schedule is optimal and the ratio
of the two makespans is equal to one (see Exercise 5.11.b). This contradiction
completes the proof of the theorem. 	


Example 5.1.2 (A Worst Case Example of LPT)
Consider 4 parallel machines and 9 jobs, whose processing times are given in
the table below:

jobs 1 2 3 4 5 6 7 8 9

pj 7 7 6 6 5 5 4 4 4

Scheduling the jobs according to LPT results in a makespan of 15. It can
be shown easily that for this set of jobs a schedule can be found with a
makespan of 12 (see Figure 5.1). This particular instance is thus a worst case
when there are 4 machines in parallel. ||
What would the worst case be, if instead of LPT an arbitrary priority rule

is used? Consider the case where at time t = 0 the jobs are put in an arbitrary
list. Whenever a machine is freed the job that ranks, among the remaining jobs,
highest on the list is put on the machine. It can be shown that the worst case
of this arbitrary list rule satisfies the inequality

Cmax(LIST )
Cmax(OPT )

≤ 2− 1
m

.

(This result can be shown via arguments that are similar to the proof of Theo-
rem 5.6.1 in the section on online scheduling.)
However, there are also several other heuristics for the Pm || Cmax problem

that are more sophisticated than LPT and that have tighter worst-case bounds.
These heuristics are beyond the scope of this book.
Consider now the same problem with the jobs subject to precedence con-

straints, i.e., Pm | prec | Cmax. From a complexity point of view this problem
has to be at least as hard as the problem without precedence constraints. To
obtain some insights into the effects of precedence constraints, a number of
special cases have to be considered. The special case with a single machine
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Fig. 5.1 Worst case example of LPT

is clearly trivial. It is enough to keep the machine continuously busy and the
makespan will be equal to the sum of the processing times. Consider the special
case where there are an unlimited number of machines in parallel, or where
the number of machines is at least as large as the number of jobs, i.e., m ≥ n.
This problem may be denoted by P∞ | prec | Cmax. This is a classical problem
in the field of project planning and its study has led to the development of
the well-known Critical Path Method (CPM) and Project Evaluation and Re-
view Technique (PERT). The optimal schedule and the minimum makespan are
determined through a very simple algorithm.

Algorithm 5.1.3 (Minimizing the Makespan of a Project)

Schedule the jobs one at a time starting at time zero. Whenever a job has been
completed, start all jobs of which all predecessors have been completed (that
is, all schedulable jobs.) ||

That this algorithm leads to an optimal schedule can be shown easily. The
proof is left as an exercise. It turns out that in P∞ | prec | Cmax the start of
the processing of some jobs usually can be postponed without increasing the
makespan. These jobs are referred to as the slack jobs. The jobs that cannot be
postponed are referred to as the critical jobs. The set of critical jobs is referred to
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Fig. 5.2 Precedence constraints graph with critical path in
Example 5.1.4

as the critical path(s). In order to determine the critical jobs, perform the same
procedure applied in Algorithm 5.1.3 backwards. Start at the makespan, which
is now known, and work towards time zero, while adhering to the precedence
relationships. Doing this, all jobs are completed at the latest possible completion
times and therefore started at their latest possible starting times as well. Those
jobs whose earliest possible starting times are equal to their latest possible
starting times are the critical jobs.

Example 5.1.4 (Minimizing the Makespan of a Project)
Consider nine jobs with the following processing times.

jobs 1 2 3 4 5 6 7 8 9

pj 4 9 3 3 6 8 8 12 6

The precedence constraints are depicted in Figure 5.2.
The earliest completion time C′

j of job j can be computed easily.

jobs 1 2 3 4 5 6 7 8 9

C′
j 4 13 3 6 12 21 32 24 30

This implies that the makespan is 32. Assuming that the makespan is 32,
the latest possible completion times C′′

j can be computed.

jobs 1 2 3 4 5 6 7 8 9

C′′
j 7 16 3 6 12 24 32 24 32

Those jobs of which the earliest possible completion times are equal to the
latest possible completion times are said to be on the critical path. So the
critical path is the chain

3→ 4→ 5→ 8→ 7.
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Fig. 5.3 Intree and outtree

The critical path in this case happens to be unique. The jobs that are not
on the critical path are said to be slack. The amount of slack time for job j
is the difference between its latest possible completion time and its earliest
possible completion time. ||
In contrast to 1 | prec | Cmax and P∞ | prec | Cmax, the Pm | prec |

Cmax is strongly NP-hard when 2 ≤ m < n. Even the special case with all
processing times equal to 1, i.e., Pm | pj = 1, prec | Cmax, is not easy. However,
constraining the problem further and assuming that the precedence graph takes
the form of a tree (either an intree or an outtree) results in a problem, i.e.,
Pm | pj = 1, tree | Cmax, that is easily solvable. This particular problem leads
to a well-known scheduling rule, the Critical Path (CP) rule, which gives the
highest priority to the job at the head of the longest string of jobs in the
precedence graph (ties may be broken arbitrarily).
Before presenting the results concerning Pm | pj = 1, tree | Cmax it is

necessary to introduce some notation. Consider an intree. The single job with
no successors is called the root and is located at level 1. The jobs immediately
preceding the root are at level 2; the jobs immediately preceding the jobs at
level 2 are at level 3, and so on. In an outtree all jobs with no successors
are located at level 1. Jobs that have only jobs at level 1 as their immediate
successors are said to be at level 2; jobs that have only jobs at levels 1 and 2 as
their immediate successors are at level 3, and so on (see Figure 5.3). From this
definition it follows that the CP rule is equivalent to the Highest Level first rule.
The number of jobs at level l is denoted by N(l). Jobs with no predecessors are
referred to as starting jobs; the nodes in the graph corresponding to these jobs
are often referred to in graph theory terminology as leaves. The highest level in
the graph is denoted by lmax. Let

H(lmax + 1− r) =
r∑
k=1

N(lmax + 1− k).
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Clearly, H(lmax+1− r) denotes the total number of nodes at level lmax+1− r
or higher, that is, at the highest r levels.

Theorem 5.1.5. The CP rule is optimal for Pm | pj = 1, intree | Cmax

and for Pm | pj = 1, outtree | Cmax.

Proof. The proof for intrees is slightly harder than the proof for outtrees. In
what follows only the proof for intrees is given (the proof for outtrees is left as
an exercise). In the proof for intrees a distinction has to be made between two
cases.

Case I. Assume the tree satisfies the following condition:

max
r

(∑r
k=1 N(lmax + 1− k)

r

)
≤ m.

In this case, in every time interval, all the jobs available for processing can be
processed and at most lmax time units are needed to complete all the jobs under
the CP rule. But lmax is clearly a lower bound for Cmax. So the CP rule results
in an optimal schedule.

Case II. Find for the tree the (smallest) integer c ≥ 1 such that

max
r

(∑r
k=1 N(lmax + 1− k)

r + c

)
≤ m < max

r

(∑r
k=1 N(lmax + 1− k)

r + c− 1
)
.

The c basically represents the smallest amount of time beyond time r needed
to complete all jobs at the r highest levels. Let

max
r

(∑r
k=1 N(lmax + 1− k)

r + c− 1
)
=

(∑r∗

k=1 N(lmax + 1− k)
r∗ + c− 1

)
> m.

The number of jobs completed at time (r∗+ c−1) is at most m(r∗+ c−1). The
number of jobs at levels higher than or equal to lmax+1− r∗ is

∑r∗

k=1 N(lmax+
1− k). As

r∗∑
k=1

N(lmax + 1− k) > (r∗ + c− 1)m

there is at least one job at a level equal to or higher than lmax + 1 − r∗ that
is not processed by time r∗ + c − 1. Starting with this job there are at least
lmax+1− r∗ time units needed to complete all the jobs. A lower bound for the
makespan under any type of scheduling rule is therefore

Cmax ≥ (r∗ + c− 1) + (lmax + 1− r∗) = lmax + c.

To complete the proof it suffices to show that the CP rule results in a makespan
that is equal to this lower bound. This part of the proof is left as an exercise
(see Exercise 5.14). 	
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Fig. 5.4 Worst case example of the CP rule for two machines
(Example 5.1.6)

The question arises: how well does the CP rule perform for arbitrary prece-
dence constraints when all jobs have equal processing times? It has been shown
that for two machines in parallel

Cmax(CP )
Cmax(OPT )

≤ 4
3
.

When there are more than two machines in parallel, the worst case ratio is
larger. That the worst case bound for two machines can be attained is shown
in the following example.

Example 5.1.6 (A Worst-Case Example of CP)

Consider 6 jobs with unit processing times and two machines. The precedence
relationships are depicted in Figure 5.4. Jobs 4, 5 and 6 are at level 1, while
jobs 1, 2 and 3 are at level 2. As under the CP rule ties may be broken
arbitrarily, a CP schedule may prescribe at time zero to start with jobs 1
and 2. At their completion only job 3 can be started. At time 2 jobs 4 and 5
are started. Job 6 goes last and is completed by time 4. Of course, an optimal
schedule can be obtained by starting out at time zero with jobs 2 and 3. The
makespan then equals 3. ||
Example 5.1.6 shows that processing the jobs with the largest number of

successors first may result in a better schedule than processing the jobs at the
highest level first. A priority rule often used when jobs are subject to arbitrary
precedence constraints is indeed the so-called Largest Number of Successors first
(LNS) rule. Under this rule the job with the largest total number of successors
(not just the immediate successors) in the precedence constraints graph has the
highest priority. Note that in the case of intrees the CP rule and the LNS rule
are equivalent; the LNS rule therefore results in an optimal schedule in the case
of intrees. It can be shown fairly easily that the LNS rule is also optimal for
Pm | pj = 1, outtree | Cmax. The following example shows that the LNS rule
may not yield an optimal schedule with arbitrary precedence constraints.
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Fig. 5.5 The LNS rule is not necessarily optimal with arbitrary
precedence constraints (Example 5.1.7)

Example 5.1.7 (Application of the LNS rule)
Consider 6 jobs with unit processing times and two machines. The precedence
constraints are depicted in Figure 5.5. The LNS rule may start at time 0 with
jobs 4 and 6. At time 1 jobs 1 and 5 start. Job 2 starts at time 2 and job
3 starts at time 3. The resulting makespan is 4. It is easy to see that the
optimal makespan is 3 and that the CP rule actually achieves the optimal
makespan. ||
Both the CP rule and the LNS rule have more generalized versions that

can be applied to problems with arbitrary job processing times. Instead of
counting the number of jobs (as in the case with unit processing times), these
more generalized versions prioritize based on the total amount of processing
remaining to be done on the jobs in question. The CP rule then gives the
highest priority to the job that is heading the string of jobs with the largest
total amount of processing (with the processing time of the job itself also being
included in this total). The generalization of the LNS rule gives the highest
priority to that job that precedes the largest total amount of processing; again
the processing time of the job itself is also included in the total. The LNS name
is clearly not appropriate for this generalization with arbitrary processing times,
as it refers to a number of jobs rather than to a total amount of processing.
Another generalization of the Pm || Cmax problem that is of practical interest

arises when job j is only allowed to be processed on subsetMj of the m parallel
machines. Consider Pm | pj = 1,Mj | Cmax and assume that the sets Mj are
nested, that is, one and only one of the following four conditions holds for jobs
j and k.

(i) Mj is equal to Mk (Mj =Mk)
(ii) Mj is a subset of Mk (Mj ⊂Mk)
(iii) Mk is a subset of Mj (Mk ⊂Mj)
(iv) Mj and Mk do not overlap (Mj ∩Mk = ∅)
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Under these conditions a well-known dispatching rule, the Least Flexible Job
first (LFJ) rule, plays an important role. The LFJ rule selects, every time a
machine is freed, among the available jobs the job that can be processed on the
smallest number of machines, i.e., the least flexible job. Ties may be broken
arbitrarily. This rule is rather crude as it does not specify, for example, which
machine should be considered first when several machines become available at
the same time.

Theorem 5.1.8. The LFJ rule is optimal for Pm | pj = 1,Mj | Cmax

when the Mj sets are nested.

Proof. By contradiction. Suppose the LFJ rule does not yield an optimal sched-
ule. Consider a schedule that is optimal, and that differs from a schedule that
could have been generated via the LFJ rule. Without loss of generality, the jobs
on each machine can be ordered in increasing order of |Mj |. Now consider the
earliest time slot that is filled by a job that could not have been placed there by
the LFJ rule. Call this job job j. There exists some job, say job j∗, that is sched-
uled to start later, and that could have been scheduled by LFJ in the position
taken by job j. Note that job j∗ is less flexible than job j (since Mj ⊃ Mj∗).
Job j∗ cannot start before job j, since j is the earliest non-LFJ job. It cannot
start at the same time as job j, for in that case job j is in a position where
LFJ could have placed it. These two jobs, j and j∗, can be exchanged without
altering Cmax, since pj = 1 for all jobs. Note that the slot previously filled by
j is now filled by j∗, which is an LFJ position. By repeating this process of
swapping the earliest non-LFJ job, all jobs can be moved into positions where
they could have been placed using LFJ, without increasing Cmax. So it is pos-
sible to construct an LFJ schedule from an optimal schedule. This establishes
the contradiction. 	

It can be shown easily that the LFJ rule is optimal for P2 | pj = 1,Mj | Cmax

because with two machines the Mj sets are always nested. However, with three
or more machines the LFJ rule may not yield an optimal solution for Pm | pj =
1,Mj | Cmax with arbitrary Mj , as illustrated in the following example.

Example 5.1.9 (Application of the LFJ Rule)

Consider P4 | pj = 1,Mj | Cmax with eight jobs. The eight Mj sets are:

M1 = {1, 2}

M2 =M3 = {1, 3, 4}
M4 = {2}

M5 =M6 =M7 =M8 = {3, 4}
The Mj sets are clearly not nested. Under the LFJ rule the machines can
be considered in any order. Consider machine 1 first. The least flexible job
that can be processed on machine 1 is job 1 as it can be processed on only
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two machines (jobs 2 and 3 can be processed on three machines). Consider
machine 2 next. The least flexible job to be processed on machine 2 is clearly
job 4. Least flexible jobs to be processed on machines 3 and 4 at time 0
could be jobs 5 and 6. At time 1, after jobs 1, 4, 5 and 6 have completed
their processing on the four machines, the least flexible job to be processed
on machine 1 is job 2. However, at this point none of the remaining jobs can
be processed on machine 2; so machine 2 remains idle. The least flexible jobs
to go on machines 3 and 4 are jobs 7 and 8. This implies that job 3 only can
be started at time 2, completing its processing at time 3. The makespan is
therefore equal to 3.
A better schedule with a makespan equal to 2 can be obtained by assigning

jobs 2 and 3 to machine 1; jobs 1 and 4 to machine 2; jobs 5 and 6 to machine 3
and jobs 7 and 8 to machine 4. ||
From Example 5.1.9 one may expect that, if a number of machines are free

at the same point in time, it is advantageous to consider first the least flexible
machine. The flexibility of a machine could be defined as the number of re-
maining jobs that can be processed (or the total amount of processing that can
be done) on that machine. Assigning at each point in time first a job, any job,
to the Least Flexible Machine (LFM), however, does not guarantee an optimal
schedule in the case of Example 5.1.9.
Heuristics can be designed that combine the LFJ rule with the LFM rule,

giving priority to the least flexible jobs on the least flexible machines. That is,
consider at each point in time first the Least Flexible Machine (LFM) (that is,
the machine that can process the smallest number of jobs) and assign to this
machine the least flexible job that can be processed on it. Any ties may be
broken arbitrarily. This heuristic may be referred to as the LFM-LFJ heuristic.
However, in the case of Example 5.1.9 the LFM-LFJ does not yield an optimal
schedule either.

5.2 The Makespan with Preemptions

Consider the same problem as the one discussed in the beginning of the previous
section, but now with preemptions allowed, i.e., Pm | prmp | Cmax. Usually, but
not always, allowing preemptions simplifies the analysis of a problem. This is
indeed the case for this problem where it actually turns out that many schedules
are optimal. First, consider the following linear programming formulation of the
problem.

minimize Cmax

subject to
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m∑
i=1

xij = pj , j = 1, . . . , n

m∑
i=1

xij ≤ Cmax, j = 1, . . . , n

n∑
j=1

xij ≤ Cmax, i = 1, . . . ,m

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

The variable xij represents the total time job j spends on machine i. The
first set of constraints makes sure that each job receives the required amount
of processing. The second set of constraints ensures that the total amount of
processing each job receives is less than or equal to the makespan. The third
set makes sure that the total amount of processing on each machine is less
than the makespan. Since the Cmax basically is a decision variable and not an
element of the resource vector of the linear program, the second and third set
of constraints may be rewritten as follows:

Cmax −
m∑
i=1

xij ≥ 0, j = 1, . . . , n

Cmax −
n∑
j=1

xij ≥ 0, i = 1, . . . ,m

Example 5.2.1 (LP Formulation for Minimizing Makespan with
Preemptions)
Consider two machines and three jobs with p1 = 8, p2 = 7 and p3 = 5.
There are thus 7 variables, namely x11, x21, x12, x22, x13, x23 and Cmax

(see Appendix A). The A matrix is a matrix of 0’s and 1’s. The c̄ vector
contains six 0’s and a single 1. The b̄ vector contains the three processing
times and five 0’s. ||
This LP can be solved in polynomial time, but the solution of the LP does

not prescribe an actual schedule; it merely specifies the amount of time job
j should spend on machine i. However, with this information a schedule can
easily be constructed.
There are several other algorithms for Pm | prmp | Cmax. One of these

algorithms is based on the fact that it is easy to obtain an expression for the
makespan under the optimal schedule. In the next lemma a lower bound is
established.
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Lemma 5.2.2. Under the optimal schedule for Pm | prmp | Cmax

Cmax ≥ max
(
p1,

n∑
j=1

pj/m
)
= C∗

max.

Proof. Recall that job 1 is the job with the longest processing time. The proof
is easy and left as an exercise. 	

Having a lower bound allows for the construction of a very simple algorithm

that minimizes the makespan. The fact that this algorithm actually produces
a schedule with a makespan that is equal to the lower bound shows that the
algorithm yields an optimal schedule.

Algorithm 5.2.3 (Minimizing Makespan with Preemptions)

Step 1.
Take the n jobs and process them one after another on a single machine
in any sequence. The makespan is then equal to the sum of the n
processing times and is less than or equal to mC∗

max.

Step 2.
Take this single machine schedule and cut it into m parts. The first part
constitutes the interval [ 0, C∗

max ] , the second part the interval
[ C∗

max, 2C
∗
max ] , the third part the interval [ 2C∗

max, 3C
∗
max ] , etc.

Step 3.
Take as the schedule for machine 1 in the bank of parallel machines
the processing sequence of the first interval; take as the schedule for
machine 2 the processing sequence of the second interval, and so on. ||
It is obvious that the resulting schedule is feasible. Part of a job may appear

at the end of the schedule for machine i, while the remaining part may appear
at the beginning of the schedule for machine i+ 1. As preemptions are allowed
and the processing time of each job is less than C∗

max such a schedule is feasible.
As this schedule has Cmax = C∗

max, it is also optimal.
Another schedule that may appear appealing for Pm | prmp | Cmax is the

Longest Remaining Processing Time first (LRPT) schedule. This schedule is the
preemptive counterpart of the (nonpreemptive) LPT schedule. It is a schedule
that is structurally appealing, but mainly of academic interest. From a theoret-
ical point of view it is important because of similarities with optimal policies in
stochastic scheduling (see Chapter 12). From a practical point of view it has a
serious drawback. The number of preemptions needed in the deterministic case
is usually infinite.

Example 5.2.4 (Application of the LRPT Rule)
Consider 2 jobs with unit processing times and a single machine. Under
LRPT the two jobs continuously have to rotate and wait for their next turn
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on the machine (that is, a job stays on the machine for a time period ε
and after every time period ε the job waiting preempts the machine). The
makespan is equal to 2 and is, of course, independent of the schedule. But
note that the sum of the two completion times under LRPT is 4, while under
the nonpreemptive schedule it is 3. ||
In the subsequent lemma and theorem a proof technique is used that is

based on a discrete time framework. All processing times are assumed to be
integer and the decision-maker is allowed to preempt any machine only at in-
teger times 1, 2, . . . The proof that LRPT is optimal is based on a dynamic
programming induction technique that requires some special notation. Assume
that at some integer time t the remaining processing times of the n jobs are
p1(t), p2(t), . . . , pn(t). Let p̄(t) denote this vector of processing times. In the
proof two different vectors of remaining processing times at time t, say p̄(t)
and q̄(t), are repeatedly compared to one another. The vector p̄(t) is said to
majorize the vector q̄(t), p̄(t) ≥m q̄(t), if

k∑
j=1

p(j)(t) ≥
k∑
j=1

q(j)(t),

for all k = 1, . . . , n, where p(j)(t) denotes the jth largest element of vector
p̄(t) and q(j)(t) denotes the jth largest element of vector q̄(t).

Example 5.2.5 (Vector Majorization)
Consider the two vectors p̄(t) = (4,8,2,4) and q̄(t) = (3,0,6,6). Rearranging
the elements within each vector and putting these in decreasing order results
in vectors (8,4,4,2) and (6,6,3,0). It can be verified easily that p̄(t) ≥m q̄(t).

||
Lemma 5.2.6. If p̄(t) >m q̄(t) then LRPT applied to p̄(t) results in a

makespan that is larger than or equal to the makespan obtained by applying
LRPT to q̄(t).

Proof. The proof is by induction on the total amount of remaining processing.
In order to show that the lemma holds for p̄(t) and q̄(t), with total remaining
processing time

∑n
j=1 pj(t) and

∑n
j=1 qj(t) respectively, assume as induction

hypothesis that the lemma holds for all pairs of vectors with total remaining
processing less than or equal to

∑n
j=1 pj(t) − 1 and

∑n
j=1 qj(t) − 1 respec-

tively. The induction base can be checked easily by considering the two vectors
1, 0, . . . , 0 and 1, 0, . . . , 0.
If LRPT is applied for one time unit on p̄(t) and q̄(t), respectively, then the

vectors of remaining processing times at time t + 1 are p̄(t + 1) and q̄(t + 1),
respectively. Clearly,

n∑
j=1

p(j)(t+ 1) ≤
n∑
j=1

p(j)(t)− 1
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and
n∑
j=1

q(j)(t+ 1) ≤
n∑
j=1

q(j)(t)− 1.

It can be shown that if p̄(t) ≥m q̄(t), then p̄(t + 1) ≥m q̄(t + 1). So if LRPT
results in a larger makespan at time t+ 1 because of the induction hypothesis,
it also results in a larger makespan at time t.
It is clear that if there are less than m jobs remaining to be processed, the

lemma holds. 	

Theorem 5.2.7. LRPT yields an optimal schedule for Pm | prmp | Cmax

in discrete time.

Proof. The proof is based on induction as well as on contradiction arguments.
The first step of the induction is shown as follows. Suppose not more than

m jobs have processing times remaining and that these jobs all have only one
unit of processing time left. Then clearly LRPT is optimal.
Assume LRPT is optimal for any vector p̄(t) for which

n∑
j=1

p(j)(t) ≤ N − 1.

Consider now a vector p̄(t) for which

n∑
j=1

p(j)(t) = N.

The induction is based on the total amount of remaining processing, N−1, and
not on the time t.
In order to show that LRPT is optimal for a vector of remaining processing

times p̄(t) with a total amount of remaining processing
∑n
j=1 pj(t) = N , assume

that LRPT is optimal for all vectors with a smaller total amount of remaining
processing. The proof of the induction step, showing that LRPT is optimal for
p̄(t), is by contradiction. If LRPT is not optimal, another rule has to be optimal.
This other rule does not act according to LRPT at time t, but from time t+ 1
onwards it must act according to LRPT because of the induction hypothesis
(LRPT is optimal from t + 1 on as the total amount of processing remaining
at time t + 1 is strictly less than N). Call this supposedly optimal rule, which
between t and t + 1 does not act according to LRPT, LRPT′. Now applying
LRPT at time t on p̄(t) must be compared to applying LRPT′ at time t on
the same vector p̄(t). Let p̄(t+1) and p̄′(t+1) denote the vectors of remaining
processing times at time t+1 after applying LRPT and LRPT′. It is clear that
p̄′(t + 1) ≥m p̄(t + 1). From Lemma 5.2.6 it follows that the makespan under
LRPT′ is larger than the makespan under LRPT. This completes the proof of
the induction step and the proof of the theorem. 	
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Fig. 5.6 LRPT with three jobs on two machines with preemptions
allowed at integer points in time (Example 5.2.8)
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Fig. 5.7 LRPT with three jobs on two machines with preemptions
allowed at any time (Example 5.2.9)

Example 5.2.8 (Application of LRPT in Discrete Time)
Consider two machines and three jobs, say jobs 1, 2 and 3, with processing
times 8, 7 and 6. The schedule under LRPT is depicted in Figure 5.6 and
the makespan is 11. ||
That LRPT is also optimal in continuous time (resulting in an infinite num-

ber of preemptions) can be argued easily. Multiply all processing times by K,
K being a very large integer. The problem intrinsically does not change, as the
relative lengths of the processing times remain the same. The optimal policy is,
of course, again LRPT. But now there may be many more preemptions (recall
preemptions must occur at integral time units). Basically, multiplying all pro-
cessing times by K has the effect that the time slots become smaller relative to
the processing times and the decision-maker is allowed to preempt after shorter
intervals. Letting K go to ∞ shows that LRPT is optimal in continuous time
as well.

Example 5.2.9 (Application of LRPT in Continuous Time)
Consider the same jobs as in the previous example. As preemptions may be
done at any point in time, processor sharing takes place, see Figure 5.7. The
makespan is now 10.5. ||
Consider the generalization to uniform machines, that is, m machines in

parallel with machine i having speed vi. Without loss of generality it may be
assumed that v1 ≥ v2 ≥ · · · ≥ vm. Similar to Lemma 5.2.2 a lower bound can
be established for the makespan here as well.
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Lemma 5.2.10. Under the optimal schedule for Qm | prmp | Cmax

Cmax ≥ max
( p1

v1
,
p1 + p2

v1 + v2
, . . . ,

∑m−1
j=1 pj∑m−1
i=1 vi

,

∑n
j=1 pj∑m
i=1 vi

)
Proof. The makespan has to be at least as large as the time it takes for the
fastest machine to do the longest job. This time represents the first term within
the “max” on the R.H.S. The makespan also has to be at least as large as the
time needed for the fastest and second fastest machine to process the longest
and second longest job while keeping the two machines occupied exactly the
same amount of time. This amount of time represents the second term within
the “max” expression. The remainder of the first m−1 terms are determined in
the same way. The last term is a bit different as it is the minimum time needed
to process all n jobs on the m machines while keeping all the m machines
occupied exactly the same amount of time. 	

If the largest term in the lower bound is determined by the sum of the

processing times of the k longest jobs divided by the sum of the speeds of the
k fastest machines, then the n− k smallest jobs under the optimal schedule do
not receive any processing on the k fastest machines; these jobs only receive
processing on the m− k slowest machines.

Example 5.2.11 (Minimizing Makespan on Uniform Machines)

Consider three machines, 1, 2 and 3, with respective speeds 3, 2 and 1. There
are three jobs, 1, 2 and 3, with respective processing times 36, 34 and 12. The
optimal schedule assigns the two longest jobs to the two fastest machines.
Job 1 is processed for 8 units of time on machine 1 and for 6 units of time
on machine 2, while job 2 is processed for 8 units of time on machine 2 and
for 6 units of time on machine 1. These two jobs are completed after 14 time
units. Job 3 is processed only on machine 3 and is completed at time 12. ||
A generalization of the LRPT schedule described before is the so-called

Longest Remaining Processing Time on the Fastest Machine first (LRPT-FM)
rule. This rule assigns, at any point in time, the job with the longest remain-
ing processing time to the fastest machine; the job with the second longest
remaining processing time to the second fastest machine, and so on.
This rule typically requires an infinite number of preemptions. If at time t

two jobs have the same remaining processing time and this processing time is
the longest among the jobs not yet completed by time t, then one of the two
jobs has to go on the fastest machine while the other has to go on the second
fastest. At time t+ ε, ε being very small, the remaining processing time of the
job on the second fastest machine is longer than the remaining processing time
of the job on the fastest machine. So the job on the second fastest machine has
to move to the fastest and vice versa. Thus the LRPT-FM rule often results in
so-called processor sharing. A number of machines, say m∗, process a number
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of jobs, say n∗, n∗ ≥ m∗; the machines allocate their total processing capability
uniformly over the n∗ jobs and ensure that the remaining processing times of
the n∗ jobs remain equal at all times.
It can be shown that the LRPT-FM rule is indeed optimal for Qm | prmp |

Cmax. It is again easier to construct first a proof of optimality in a discrete time
framework and then extend the result to a continuous time setting. Assume
that the processing times as well as the speeds are integers. Replace the original
machine i that operates at speed vi by vi identical, so-called unit-speed, machines
that operate at speed 1. A job may be processed for one time unit on a subset of
the unit-speed machines that correspond to machine i. (It may not be processed
at the same point in time by two unit-speed machines that do not correspond
to the same original machine.)
Assume that preemptions are only allowed at integer times 1, 2, 3, . . . If

at time t job j has a remaining processing time pj , its remaining processing
time at time t + 1 is equal to (pj − l) after being processed for one time unit
on l unit-speed machines corresponding to the original machine i. Lemma 5.2.6
can be shown for this framework as well. Based on this lemma the following
theorem can be shown.

Theorem 5.2.12. LRPT-FM yields an optimal schedule for Qm | prmp |
Cmax in discrete time.

Example 5.2.13 (Application of the LRPT-FM Rule)

Consider again 2 machines and three jobs. The processing times of the three
jobs are again 8, 7 and 6. The two machines have now different speeds: v1 = 2
and v2 = 1. The first machine can be replaced by two machines with speed 1.
Note that a job may be processed simultaneously by machines 1 and 2, but
not simultaneously by machines 1 and 3 or 2 and 3. These three machines may
be scheduled as follows: Job 1 is assigned to the first two unit-speed machines
for one time unit and job 2 is assigned to the third unit-speed machine for
one time unit. At time 1, all three jobs have a remaining processing time
equal to 6. So from time 1 on, each job occupies one unit-speed machine and
the makespan is equal to 7. ||
In order to show that LRPT-FM is also optimal in continuous time two

limits have to be taken. First, all the processing times have to be multiplied
by a large number K. In proportion to the new processing times a time unit
is now very small. The possible number of preemptions goes up significantly
this way, approaching preemptions in continuous time. Second, the speeds of
the machines have to be multiplied with a large number as well. Thus the
number of unit-speed machines for each original machine goes up dramatically.
This implies that a finer partitioning of the processing capabilities of a given
machine can be realized. Through such arguments it can be shown that LRPT-
FM is optimal in continuous time. In addition, it can be shown that applying
LRPT-FM to the available jobs when the jobs have different release dates is
optimal as well (i.e., Qm | rj , prmp | Cmax).
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5.3 The Total Completion Time without Preemptions

Consider m machines in parallel and n jobs. Recall that p1 ≥ · · · ≥ pn. The
objective to be minimized is the total unweighted completion time

∑
Cj . From

Theorem 3.1.1 it follows that for a single machine the Shortest Processing Time
first (SPT) rule minimizes the total completion time. This single machine result
can also be shown in a different way fairly easily.
Let p(j) denote the processing time of the job in the jth position in the

sequence. The total completion time can then be expressed as∑
Cj = np(1) + (n− 1)p(2) + · · ·+ 2p(n−1) + p(n).

This implies that there are n coefficients n, n − 1, . . . , 1 to be assigned to n
different processing times. The processing times have to be assigned in such a
way that the sum of the products is minimized. From the elementary Hardy,
Littlewood and Polya inequality as well as common sense it follows that the
highest coefficient, n, is assigned the smallest processing time, pn, the second
highest coefficient, n− 1, is assigned the second smallest processing time, pn−1,
and so on. This implies that SPT is optimal.
This type of argument can be extended to the parallel machine setting as

well.

Theorem 5.3.1. The SPT rule is optimal for Pm || ∑Cj.

Proof. In the case of parallel machines there are nm coefficients to which pro-
cessing times can be assigned. These coefficients are m n′s, m (n− 1)′s, . . . , m
ones. The processing times have to be assigned to a subset of these coefficients
in order to minimize the sum of the products. Assume that n/m is an integer. If
it is not an integer add a number of dummy jobs with zero processing times so
that n/m is integer (adding jobs with zero processing times does not change the
problem; these jobs would be instantaneously processed at time zero and would
not contribute to the objective function). It is easy to see, in a similar manner
as above, that the set of m longest processing times have to be assigned to the
m ones, the set of second m longest processing times have to be assigned to
the m twos, and so on. This results in the m longest jobs each being processed
on different machines and so on. That this class of schedules includes SPT can
be shown as follows. According to the SPT schedule the smallest job has to go
on machine 1 at time zero, the second smallest one on machine 2, and so on;
the (m+1)th smallest job follows the smallest job on machine 1, the (m+2)th
smallest job follows the second smallest on machine 2, and so on. It is easy to
verify that the SPT schedule corresponds to an optimal assignment of jobs to
coefficients. 	

From the proof of the theorem it is clear that the SPT schedule is not the

only schedule that is optimal. Many more schedules also minimize the total
completion time. The class of schedules that minimize the total completion
time turns out to be fairly easy to characterize (see Exercise 5.21).
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As pointed out in the previous chapter the more general WSPT rule mini-
mizes the total weighted completion time in the case of a single machine. Un-
fortunately, this result cannot be generalized to parallel machines, as shown in
the following example.

Example 5.3.2 (Application of the WSPT Rule)

Consider two machines and three jobs.

jobs 1 2 3

pj 1 1 3
wj 1 1 3

Scheduling jobs 1 and 2 at time zero and job 3 at time 1 results in a total
weighted completion time of 14, while scheduling job 3 at time zero and jobs
1 and 2 on the other machine results in a total weighted completion time
of 12. Clearly, with this set of data any schedule may be considered to be
WSPT. However, making the weights of jobs 1 and 2 equal to 1 − ε shows
that WSPT does not necessarily yield an optimal schedule. ||
It has been shown in the literature that the WSPT heuristic is nevertheless a

very good heuristic for the total weighted completion time on parallel machines.
A worst case analysis of this heuristic yields the lower bound∑

wjCj(WSPT )∑
wjCj(OPT )

<
1
2
(1 +

√
2).

What happens now in the case of precedence constraints? The problem
Pm | prec | ∑

Cj is known to be strongly NP-hard in the case of arbitrary
precedence constraints. However, the special case with all processing times equal
to 1 and precedence constraints that take the form of an outtree can be solved
in polynomial time. In this special case the Critical Path rule again minimizes
the total completion time.

Theorem 5.3.3. The CP rule is optimal for Pm | pj = 1, outtree |
∑

Cj .

Proof. Up to some integer point in time, say t1, the number of schedulable jobs
is less than or equal to the number of machines. Under the optimal schedule, at
each point in time before t1, all schedulable jobs have to be put on the machines.
Such actions are in accordance with the CP rule. Time t1 is the first point in
time when the number of schedulable jobs is strictly larger than m. There are
at least m+ 1 jobs available for processing and each one of these jobs is at the
head of a subtree that includes a string of a given length.
The proof that applying CP from t1 is optimal is by contradiction. Suppose

that after time t1 another rule is optimal. This rule must, at least once, prescribe
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an action that is not according to CP. Consider the last point in time, say t2, at
which this rule prescribes an action not according to CP. So at t2 there are m
jobs, that are not heading the m longest strings, assigned to the m machines;
from t2 + 1 the CP rule is applied. Call the schedule from t2 onwards CP′. It
suffices to show that applying CP from t2 onwards results in a schedule that is
at least as good.
Consider under CP′ the longest string headed by a job that is not assigned

at t2, say string 1, and the shortest string headed by a job that is assigned at
t2, say string 2. The job at the head of string 1 has to start its processing under
CP′ at time t2 + 1. Let C′

1 and C′
2 denote the completion times of the last jobs

of strings 1 and 2, respectively, under CP′. Under CP′ C′
1 ≥ C′

2. It is clear that
under CP′ all m machines have to be busy at least up to C′

2− 1. If C′
1 ≥ C′

2+1
and there are machines idle before C′

1 − 1, the application of CP at t2 results
in less idle time and a smaller total completion time. Under CP the last job of
string 1 is completed one time unit earlier, yielding one more completed job at
or before C′

1 − 1. In other cases the total completion time under CP is equal
to the total completion time under CP′. This implies that CP is optimal from
t2 on. As there is not then a last time for a deviation from CP, the CP rule is
optimal. 	

In contrast to the makespan objective the CP rule is, somewhat surprisingly,

not necessarily optimal for intrees. Counterexamples can be found easily (see
Exercise 5.24).
Consider the problem Pm | pj = 1,Mj |

∑
Cj . Again, if the Mj sets are

nested the Least Flexible Job first rule can be shown to be optimal.

Theorem 5.3.4. The LFJ rule is optimal for Pm | pj = 1,Mj |
∑

Cj
when the Mj sets are nested.

Proof. The proof is similar to the proof of Theorem 5.1.8. 	

The previous model is a special case of Rm || ∑Cj . As stated in Chapter 2,

the machines in the Rm environment are entirely unrelated. That is, machine
1 may be able to process job 1 in a short time and may need a long time for
job 2, while machine 2 may be able to process job 2 in a short time and may
need a long time for job 1. That the Qm environment is a special case is clear.
Identical machines in parallel with job j being restricted to machine set Mj is
also a special case; the processing time of job j on a machine that is not part
of Mj has to be considered very long making it therefore impossible to process
the job on such a machine.
The Rm || ∑

Cj problem can be formulated as an integer program with
a special structure that makes it possible to solve the problem in polynomial
time. Recall that if job j is processed on machine i and there are k − 1 jobs
following job j on this machine i, then job j contributes kpij to the value of
the objective function. Let xikj denote 0 − 1 integer variables, where xikj = 1
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if job j is scheduled as the kth to last job on machine i and 0 otherwise. The
integer program is then formulated as follows:

minimize
m∑
i=1

n∑
j=1

n∑
k=1

kpijxikj

subject to

m∑
i=1

n∑
k=1

xikj = 1, j = 1, . . . , n

n∑
j=1

xikj ≤ 1, i = 1, . . . ,m, k = 1, . . . , n

xikj ∈ {0, 1}, i = 1, . . . ,m, k = 1, . . . , n j = 1, . . . , n

The constraints make sure that each job is scheduled exactly once and each
position on each machine is taken by at most one job. Note that the processing
times only appear in the objective function.
This is a so-called weighted bipartite matching problem with on one side the

n jobs and on the other side nm positions (each machine can process at most n
jobs). If job j is matched with (assigned to) position ik there is a cost kpij . The
objective is to determine the matching in this so-called bipartite graph with
a minimum total cost. It is known from the theory of network flows that the
integrality constraints on the xikj may be replaced by nonnegativity constraints
without changing the feasible set. This weighted bipartite matching problem
then reduces to a regular linear program for which there exist polynomial time
algorithms. (see Appendix A).
Note that the optimal schedule does not have to be a non-delay schedule.

Example 5.3.5 (Minimizing Total Completion Time with Unrelated
Machines)

Consider 2 machines and 3 jobs. The processing times of the three jobs on
the two machines are presented in the table below.

jobs 1 2 3

p1j 4 5 3
p2j 8 9 3

The bipartite graph associated with this problem is depicted in Figure 5.8.
According to the optimal schedule machine 1 processes job 1 first and
job 2 second. Machine 2 processes job 3. This solution corresponds to
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Fig. 5.8 Bipartite graph for Rm ||
∑

Cj with three jobs

x121 = x112 = x213 = 1 and all other xikj equal to zero. This optimal
schedule is not non-delay (machine 2 is freed at time 3 and the waiting job
is not put on the machine). ||

5.4 The Total Completion Time with Preemptions

In Theorem 5.3.1 it is shown that the nonpreemptive SPT rule minimizes
∑

Cj
in a parallel machine environment. It turns out that the nonpreemptive SPT
rule is also optimal when preemptions are allowed. This result is a special case
of the more general result described below.
Consider m machines in parallel with different speeds, i.e., Qm | prmp |∑
Cj . This problem leads to the so-called Shortest Remaining Processing Time

on the Fastest Machine (SRPT-FM) rule. According to this rule at any point
in time the job with the shortest remaining processing time is assigned to the
fastest machine, the second shortest remaining processing time on the second
fastest machine, and so on. Clearly, this rule requires preemptions. Every time
the fastest machine completes a job, the job on the second fastest machine
moves to the fastest machine, the job on the third fastest machine moves to the
second fastest machine, and so on. So, at the first job completion there arem−1
preemptions, at the second job completion there are m − 1 preemptions, and
so on until the number of remaining jobs is less than the number of machines.
From that point in time the number of preemptions is equal to the number of
remaining jobs.
The following lemma is needed for the proof.

Lemma 5.4.1. There exists an optimal schedule under which Cj ≤ Ck
when pj ≤ pk for all j and k.

Proof. The proof is left as an exercise. 	

Without loss of generality it may be assumed that there are as many machines

as jobs. If the number of jobs is smaller than the number of machines then the
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m − n slowest machines are disregarded. If the number of jobs is larger than
the number of machines, then n−m machines are added with zero speeds.

Theorem 5.4.2. The SRPT-FM rule is optimal for Qm | prmp | ∑Cj.

Proof. Under SRPT-FM Cn ≤ Cn−1 ≤ · · · ≤ C1. It is clear that under SRPT-
FM the following equations have to be satisfied:

v1Cn = pn

v2Cn + v1(Cn−1 − Cn) = pn−1

v3Cn + v2(Cn−1 − Cn) + v1(Cn−2 − Cn−1) = pn−2

...
vnCn + vn−1(Cn−1 − Cn) + · · ·+ v1(C1 − C2) = p1

Adding these equations yields the following set of equations.

v1Cn = pn

v2Cn + v1Cn−1 = pn + pn−1

v3Cn + v2Cn−1 + v1Cn−2 = pn + pn−1 + pn−2

...
vnCn + vn−1Cn−1 + · · ·+ v1C1 = pn + pn−1 + · · ·+ p1

Suppose schedule S′ is optimal. From the previous lemma it follows that

C′
n ≤ C′

n−1 ≤ · · · ≤ C′
1.

The shortest job cannot be completed before pn/v1, i.e., C′
n ≥ pn/v1 or

v1C
′
n ≥ pn.

Given that jobs n and n− 1 are completed at C′
n and C′

n−1,

(v1 + v2)C′
n + v1(C′

n−1 − C′
n)

is an upper bound on the amount of processing that can be done on these two
jobs. This implies that

v2C
′
n + v1C

′
n−1 ≥ pn + pn−1.

Continuing in this manner it is easy to show that

vkC
′
n + vk−1C

′
n−1 + · · ·+ v1C

′
n−k+1 ≥ pn + pn−1 + · · ·+ pn−k+1.
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So

v1C
′
n ≥ v1Cn

v2C
′
n + v1C

′
n−1 ≥ v2Cn + v1Cn−1

...
vnC

′
n + vn−1C

′
n−1 + · · ·+ v1C

′
1 ≥ vnCn + vn−1Cn−1 + · · ·+ v1C1

If a collection of positive numbers αj can be found, such that multiplying the jth
inequality by αj and adding all inequalities yields the inequality

∑
C′
j ≥

∑
Cj ,

then the proof is complete. It can be shown that these αj must satisfy the
equations

v1α1 + v2α2 + · · ·+ vnαn = 1
v1α2 + v2α3 + · · ·+ vn−1αn = 1

...
v1αn = 1

As v1 ≥ v2 ≥ · · · ≥ vn such a collection does exist. 	

Example 5.4.3 (Application of the SRPT-FM Rule)

Consider 4 machines and 7 jobs. The machine data and job data are contained
in the two tables below.

machines 1 2 3 4

vi 4 2 2 1

jobs 1 2 3 4 5 6 7

pj 8 16 34 40 45 46 61

Assuming that preemptions are allowed only at integer points in time, the
SRPT-FM rule results in the schedule depicted in Figure 5.9. Under this
optimal schedule the total completion time is 116. ||

5.5 Due Date Related Objectives

Single machine problems with due date related objectives that are solvable in
polynomial time typically have the maximum lateness as objective, e.g., 1 ||
Lmax, 1 | prmp | Lmax and 1 | rj , prmp | Lmax. Single machine problems with
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Fig. 5.9 The SRPT-FM schedule (Example 5.4.3)

the total tardiness or the total weighted tardiness as objective tend to be very
hard.
It is easy to see that from a complexity point of view Pm || Lmax is not

as easy as 1 || Lmax. Consider the special case where all jobs have due date 0.
Finding a schedule with a minimum Lmax is equivalent to Pm || Cmax and is
therefore NP-hard.
Consider Qm | prmp | Lmax. This problem is one of the few parallel machine

scheduling problems with a due date related objective that is solvable in poly-
nomial time. Suppose one has to verify whether there exists a feasible schedule
with Lmax = z. This implies that for job j the completion time Cj has to be
less than or equal to dj + z. Let dj + z be a hard deadline d̄j . Finding a feasi-
ble schedule with all jobs completing their processing before these deadlines is
equivalent to solving the problem Qm | rj , prmp | Cmax. In order to see this,
reverse the direction of time in the due date problem. Apply the LRPT-FM
rule starting with the last deadline and work backwards. The deadlines in the
original problem play the role of the release dates in the reversed problem that
is then equivalent to Qm | rj , prmp | Cmax. If applying the LRPT-FM rule
backwards results in a feasible schedule with all the jobs in the original prob-
lem starting at a time larger than or equal to zero, then there exists a schedule
for Qm | prmp | Lmax with Lmax ≤ z. In order to find the minimum Lmax a
simple search has to be done to determine the appropriate minimum value of z.

Example 5.5.1 (Minimizing Maximum Lateness with Preemptions)
Consider the following instance of P2 | prmp | Lmax with 4 jobs. The pro-
cessing times and due dates are given in the table below. Preemptions are
allowed at integer points in time.

jobs 1 2 3 4

dj 4 5 8 9
pj 3 3 3 8



138 5 Parallel Machine Models (Deterministic)

First, it has to be checked whether there exists a feasible solution with
Lmax = 0. The data of the instance created through time reversal are deter-
mined as follows. The release dates are obtained by determining the max-
imum due date in the original problem which is 9 and corresponds to job
4; the release date of job 4 in the new problem is then set equal to 0. The
release dates of the remaining jobs are obtained by subtracting the original
due dates from 9.

jobs 1 2 3 4

rj 5 4 1 0
pj 3 3 3 8

The question now is: in this new instance can a schedule be created with a
makespan less than 9? Applying LRPT immediately yields a feasible sched-
ule. ||
Consider now Qm | rj , prmp | Lmax. Again a parametric study can be done.

First an attempt is made to find a schedule with Lmax equal to z. Due date
dj is replaced by a deadline dj + z. Reversing this problem does not provide
any additional insight as it results in a problem of the same type with release
dates and due dates reversed. However, this problem still can be formulated as
a network flow problem that is solvable in polynomial time.

5.6 Online Scheduling

In all previous sections the underlying assumptions were based on the fact
that all the problem data (e.g., number of jobs, processing times, release dates,
due dates, weights, and so on) are known in advance. The decision-maker can
determine at time zero the entire schedule while having all the information
at his disposal. This most common paradigm is usually referred to as offline
scheduling.
One category of parallel machine scheduling problems that has not yet been

addressed in this chapter are the so-called online scheduling problems. In an
online scheduling problem the decision-maker does not know in advance how
many jobs have to be processed and what the processing times are. The decision-
maker becomes aware of the existence of a job only when the job is released
and presented to him. Jobs that are released at the same point in time are
presented to the decision-maker one after another. The decision-maker only
knows the number of jobs released at that point in time after the last one has
been presented to him. The processing time of a job becomes known only when
the job has been completed. If the assumption is made that jobs are going to
be released at different points in time, then the decision-maker does not know
at any given point in time how many jobs are still going to be released and
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what their release dates are going to be. (In an offline scheduling problem all
information regarding all n jobs is known a priori.)
An online counterpart of Pm || γ can be described as follows. The jobs are

going to be presented to the decision-maker one after another going down a
list. The decision-maker only knows how long the list is when the end of the list
has been reached. When a job has been presented to the decision-maker (or,
equivalently, when the decision-maker has taken a job from the list), he may
have to wait till one (or more) machines have become idle before he assigns the
job to a machine. After he has assigned the job to a machine, the decision-maker
can consider the next job on the list. After a job has been put on a machine
starting at a certain point in time, the decision-maker is not allowed to preempt
and has to wait till the job is completed. If the objective function is a regular
performance measure, then it may not make sense for the decision-maker to
leave a machine idle when there are still one or more jobs on the list.
The objective functions in online scheduling are similar to those in offline

scheduling. The effectiveness of an online scheduling algorithm is measured by
its competitive ratio with respect to the objective function. An online algorithm
is ρ-competitive if for any problem instance the objective value of the schedule
generated by the algorithm is at most ρ times larger than the optimal objective
value in case the schedule had been created in an offline manner with all data
known beforehand. The competitive ratio is basically equivalent to a worst case
bound.
Consider the following online counterpart of Pm || Cmax. There are a fixed

number of machines (m) in parallel; this number is known to the decision-maker.
The processing time of a job is at time zero not known to the decision-maker; it
only becomes known upon the completion of a job. When a machine is freed the
decision-maker has to decide whether to assign a job to that machine or keep it
idle. He has to decide without knowing the remaining processing times of the
jobs that are not yet completed and without knowing how many jobs are still
waiting for processing. One well-known algorithm for this problem is usually
referred to as the List Scheduling (LIST) algorithm. According to LIST, the
jobs are presented to the decision-maker according to a list and every time the
decision-maker considers the assignment of a job to a machine, he checks the
list and takes the next one from the list. So, every time a machine completes a
job, the decision maker takes the next job from the list and assigns it to that
machine (the decision-maker does not allow for any idle time on the machine).

Theorem 5.6.1. The competitive ratio of the LIST algorithm is 2− 1
m .

Proof. First, it has to be shown that the competitive ratio of LIST cannot be
better (less) than 2− 1/m. Consider a sequence of m(m− 1) jobs with running
time 1 followed by one job with running time m. A LIST schedule following this
sequence finishes by time 2m − 1, while the optimal schedule has a makespan
of m.
In order to show that the competitive ratio cannot be larger than 2− 1/m,

consider the job that finishes last. Suppose it starts at time t and its processing
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time is p. At all times before t all machines must have been busy, otherwise the
last job could have started earlier. Hence the optimal makespan Cmax(OPT )
must satisfy

Cmax(OPT ) ≥ t+
p

m
.

In addition, Cmax(OPT ) > p, as the optimal schedule must process the last job.
From these two inequalities, it follows that the makespan of the online solution,
t+ p, is bounded from above by

t+ p = t+
p

m
+

(
1− 1

m

)
p ≤

(
2− 1

m

)
Cmax(OPT ). 	


Consider now the online counterpart of Pm | prmp | ∑
Cj . The decision-

maker only finds out about the processing time of a job the moment it has been
completed.
The following algorithm for this online scheduling problem is quite different

from the LIST algorithm. The so-called Round Robin (RR) algorithm cycles
through the list of jobs, giving each job a fixed unit of processing time in turn.
The Round Robin algorithm ensures that at all times any two uncompleted jobs
have received an equal amount of processing time or one job has received just
one unit of processing more than the other. If the unit of processing is made
very small, then the Round Robin rule becomes equivalent to the Processor
Sharing rule (see Example 5.2.9). If the total completion time is the objective
to be minimized, then the competitive ratio of RR can be determined.

Theorem 5.6.2. The competitive ratio of the RR algorithm is 2.

Proof. Assume, for the time being, that the number of jobs, n, is known. In
what follows, it will actually be shown that the worst case ratio of RR is 2 −
2m/(n+m).
In order to show that the worst case ratio cannot be better (lower) than

2−2m/(n+m), it suffices to find an example that attains this bound. Consider
n identical jobs with processing time equal to 1 and let n be a multiple of m. It
is clear that under the Round Robin rule all n jobs are completed at time n/m,
whereas under the nonpreemptive scheduling rule (which is also equivalent to
SPT), m jobs are completed at time 1, m jobs at time 2, and so on. So for this
example the ratio is n2/m divided by

m

2

( n

m

( n

m
+ 1

))
,

which equals 2− 2m/(n+m).
It remains to be shown that the worst case ratio cannot be worse (larger) than

2−2m/(n+m). Assume the processing times of the jobs are p1 ≥ p2 ≥ · · · ≥ pn.
Let R(,), , = 1, . . . , �n/m�, denote the subset of jobs j that satisfy

(,− 1)m < j ≤ ,m.
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So R(1) contains jobs 1, . . . ,m (the longest jobs); R(2) contains jobs m+1,m+
2, . . . , 2m, and so on. It can be shown that the schedule that minimizes the total
completion time is SPT and that the total completion time under SPT is

n∑
j=1

Cj(OPT ) =
n∑
j=1

Cj(SPT ) =
�n/m�∑
�=1

∑
j∈R(�)

,pj.

Consider now the total completion time under RR. Note that Cj denotes the
completion time of the jth longest job. It can be shown now that

Cj(RR) = Cj+1(RR) + (j/m)(pj − pj+1)

for j ≥ m, while
Cj(RR) = Cm+1(RR) + pj − pm+1

for j < m. Eliminating the recurrence yields for j ≥ m

Cj(RR) =
j

m
pj +

1
m

n∑
k=j+1

pk

and for j < m

Cj(RR) = pj +
1
m

n∑
k=m+1

pk.

A simple calculation establishes that

n∑
j=1

Cj(RR) =
m∑
j=1

pj +
n∑

j=m+1

2j − 1
m

pj .

The ratio
∑

Cj(RR)/
∑

Cj(OPT ) is maximized when all the jobs in the same
subset have the same processing time. To see this, note that for OPT (SPT)
the coefficient of pj’s contribution to the total completion time is determined
solely by its subset index. On the other hand, for RR, the coefficient is smaller
for the longer jobs within a specific group. Thus, reducing the value of each
pj to be equal to the smallest processing time of any job in its group can only
increase the ratio. By a similar argument, it can be shown that the worst case
ratio is achieved when n is a multiple of m.
Assume now that each subset contains exactly m jobs of the same length.

Let q� denote the common processing time of any job in subset R(,). Then, a
simple calculation shows that

n∑
j=1

Cj(OPT ) =
n/m∑
�=1

m,q�,
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and
n∑
j=1

Cj(RR) =
n/m∑
�=1

m(2,− 1)q�.

Once again, the ratio is maximized when all the q� are equal, implying that the
worst case ratio is exactly 2− 2m/(n+m).
Since in online scheduling a competitive ratio is usually not expressed as a

function of n (since the number of jobs is typically not known in advance), the
competitive ratio has to hold for any value of n. It follows that the competitive
ratio for RR is equal to 2. 	

Actually, there are several other variants of the online scheduling paradigm.

The variant considered in this section assumes that the decision-maker does not
know the processing time of a job when it is released. The decision-maker only
finds out what the processing time is when the job is completed. This form of
online scheduling is at times referred to as non-clairvoyant online scheduling.
In another variant of online scheduling, the processing time of a job becomes
known to the decision-maker immediately upon the job’s release. This variant
is often referred to as clairvoyant online scheduling. However, in clairvoyant
online scheduling the decision-maker still does not know how many jobs are
going to be released and when the releases will occur.
An entirely different class of online algorithms are the so-called randomized

online algorithms. A randomized algorithm allows the decision-maker to make
random choices (for example, instead of assigning a job to the machine with the
smallest load, the decision-maker may assign a job to a machine at random). If
randomization is allowed, then it is of interest to know the expected objective
value, where the expectation is taken over the random choices of the algorithm.
A randomized algorithm is σ-competitive if for each instance this expectation
is within a factor of σ of the optimal objective value.

5.7 Discussion

This chapter focuses primarily on parallel machine problems that either are
polynomial time solvable or have certain properties that are of interest. This
chapter does not address the more complicated parallel machine problems that
are strongly NP-hard and have little structure.
A significant amount of research has been done on parallel machine schedul-

ing problems that are strongly NP-hard. A variety of integer programming
formulations have been developed for Rm || ∑wjCj and Rm || ∑wjUj . These
integer programs can be solved using a special form of branch-and-bound that is
called branch-and-price and that is often referred to as column generation (see
Appendix A). However, there are many other parallel machine problems that
are more complicated and that have not yet been tackled with exact methods.
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An example of such a very hard problem is Qm | sijk |
∑

wjTj. This problem
is extremely hard to solve to optimality. It is already hard to find an optimal
solution for instances with, say, 5 machines and 30 jobs. However, this problem
is of considerable interest to industry and many heuristics have been developed
and experimented with. Part III of this book describes several heuristic methods
that have been applied to this problem.
Online scheduling in a parallel machine environment has received a signif-

icant amount of attention during the last couple of years. Online scheduling
is important for several reasons. In practice, it is often the case that a very
limited amount of information is available when a decision must be made, see
Example 1.1.4. From a theoretical point of view, online scheduling is of interest
because it establishes a bridge between deterministic and stochastic scheduling.
In stochastic scheduling decisions also have to be made with only a limited
amount of information available. However, the stochastic scheduling paradigm
is still quite different from the online paradigm. Nevertheless, the bounds ob-
tained in online scheduling often give rise to bounds in stochastic scheduling.

Exercises (Computational)

5.1. Consider P6 || Cmax with 13 jobs.

jobs 1 2 3 4 5 6 7 8 9 10 11 12 13

pj 6 6 6 7 7 8 8 9 9 10 10 11 11

(a) Compute the makespan under LPT.
(b) Find the optimal schedule.

5.2. Consider P4 | prec | Cmax with 12 jobs.

jobs 1 2 3 4 5 6 7 8 9 10 11 12

pj 10 10 10 12 11 10 12 12 10 10 10 10

The jobs are subject to the precedence constraints depicted in Figure 5.10.

(a) Apply the generalized version of the CP rule: every time a machine is
freed select the job at the head of the string with the largest total amount
of processing.
(b) Apply the generalized version of the LNS rule: every time a machine is
freed select the job that precedes the largest total amount of processing.
(c) Is either one of these two schedules optimal?

5.3. Consider P3 | brkdwn,Mj | Cmax with 8 jobs.
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Fig. 5.10 Precedence constraints graph (Exercise 5.2)

jobs 1 2 3 4 5 6 7 8

pj 10 10 7 7 7 7 7 7

Machines 1 and 2 are available continuously. Machine 3 is not available during
the interval [0, 1]; after time 1 it is available throughout. TheMj sets are defined
as follows:

M1 = {1, 3}
M2 = {2, 3}

M3 =M4 =M5 = {1}
M6 =M7 =M8 = {2}

(a) Apply the LPT rule, i.e., give always priority to the longest job that
can be processed on the machine freed.
(b) Apply the LFJ rule, i.e., give always priority to the least flexible job
while disregarding processing times.
(c) Compute the ratio Cmax(LPT )/Cmax(LFJ).

5.4. Consider P3 | prmp | ∑
Cj with the additional constraint that the com-

pletion of job j has to be less than or equal to a given fixed deadline dj . Pre-
emptions may occur only at integer times 1, 2, 3, . . .



Exercises 145

1 2

7 

3 

4 5

8

10 6

9

11 12

13

Fig. 5.11 Precedence constraints graph (P∞ | prec | Cmax) for
Exercise 5.5

jobs 1 2 3 4 5 6 7 8 9 10 11

pj 2 3 3 5 8 8 8 9 12 14 16
dj ∞ ∞ ∞ ∞ ∞ ∞ 11 12 13 28 29

Find the optimal schedule and compute the total completion time.

5.5. Consider P∞ | prec | Cmax

jobs 1 2 3 4 5 6 7 8 9 10 11 12 13

pj 5 11 9 8 7 3 8 6 9 2 5 2 9

The precedence constraints are depicted in Figure 5.11. Determine the optimal
makespan and which jobs are critical and which jobs are slack.

5.6. Consider P5 || ∑h(Cj) with 11 jobs.

jobs 1 2 3 4 5 6 7 8 9 10 11

pj 5 5 5 6 6 7 7 8 8 9 9

The function h(Cj) is defined as follows.

h(Cj) =
{
0 if Cj ≤ 15
Cj − 15 if Cj > 15
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(a) Compute the value of the objective under SPT.
(b) Compute the value of the objective under the optimal schedule.

5.7. Consider again P5 || ∑
h(Cj) with the 11 jobs of the previous exercise.

The function h(Cj) is now defined as follows:

h(Cj) =
{
Cj if Cj ≤ 15
15 if Cj > 15.

(a) Compute the value of the objective function under SPT.
(b) Compute the value of the objective under the optimal schedule.

5.8. Consider Q2 | prmp | Cmax with the jobs

jobs 1 2 3 4

pj 36 24 16 12

and machine speeds v1 = 2 and v2 = 1.

(a) Find the makespan under LRPT when preemptions can only be made
at the time points 0, 4, 8, 12, and so on.
(b) Find the makespan under LRPT when preemptions can only be made
at the time points 0, 2, 4, 6, 8, 10, 12, and so on.
(c) Find the makespan under LRPT when preemptions can be made at any
time.
(d) Compare the makespans under (a), (b) and (c).

5.9. Consider the following example of P3 | prmp, brkdwn | ∑
Cj with 6

jobs. Three jobs have a processing time of 1, while the remaining three have
a processing time of 2. There are three machines, but two machines are not
available from time 2 onwards. Determine the optimal schedule. Show that
SRPT is not optimal.

5.10. Consider the following instance of P2 | prmp | Lmax with 4 jobs. Pre-
emptions are allowed at integer points in time. Find an optimal schedule.

jobs 1 2 3 4

dj 5 6 9 10
pj 4 5 7 9
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Exercises (Theory)

5.11. Consider Pm || Cmax.

(a) Give an example showing that LPT is not necessarily optimal when
the number of jobs is less than or equal to twice the number of machines
(n ≤ 2m).
(b) Show that if an optimal schedule results in at most two jobs on any
machine, then LPT is optimal.

5.12. Consider Pm || Cmax. Describe the processing times of the instance that
attains the worst case bound in Theorem 5.1.1 (as a function of m). (Hint: see
Exercise 5.1.)

5.13. Show that the CP rule is optimal for Pm | outtree, pj = 1 | Cmax.

5.14. Complete the proof of Theorem 5.1.5. That is, show that the CP rule
applied to Pm | intree, pj = 1 | Cmax results in a makespan that is equal to
lmax + c.

5.15. Consider Pm | rj , prmp | Cmax. Formulate the optimal policy and prove
its optimality.

5.16. Consider Pm | prmp, brkdwn | Cmax with the number of machines avail-
able a function of time, i.e., m(t). Show that for any function m(t) LRPT
minimizes the makespan.

5.17. Consider Pm | brkdwn | ∑Cj with the number of machines available a
function of time, i.e., m(t). Show that if m(t) is increasing the nonpreemptive
SPT rule is optimal.

5.18. Consider Pm | prmp, brkdwn | ∑Cj with the number of machines avail-
able a function of time, i.e., m(t). Show that the preemptive SRPT rule is
optimal if m(t) ≥ m(s)− 1 for all s < t.

5.19. Consider Pm | prmp | ∑Cj with the added restriction that all jobs must
be finished by some fixed deadline d̄, where

d̄ ≥ max
(∑

pj
m

, p1, . . . , pn

)
.

Find the rule that minimizes the total completion time and prove its optimality.

5.20. Consider Pm || ∑
wjCj . Show that in the worst case example of the

WSPT rule wj has to be approximately equal to pj , for each j.

5.21. Give a characterization of the class of all schedules that are optimal for
Pm || ∑Cj . Determine the number of schedules in this class as a function of n
and m.
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5.22. Consider P2 || ∑
Cj . Develop a heuristic for minimizing the makespan

subject to total completion time optimality. (Hint: Say a job is of Rank j if
j − 1 jobs follow the job on its machine. With two machines in parallel there
are two jobs in each rank. Consider the difference in the processing times of the
two jobs in the same rank. Base the heuristic on these differences.)

5.23. Consider Pm | Mj | γ. The setsMj are given. Let Ji denote the set of jobs
that are allowed to be processed on machine i. Show, through a counterexample,
that the setsMj being nested does not necessarily imply that sets Ji are nested.
Give sufficiency conditions on the set structures under which theMj sets as well
as the Ji sets are nested.

5.24. Show, through a counterexample, that the CP rule is not necessarily
optimal for Pm | intree, pj = 1 |

∑
Cj .

5.25. Consider Pm | rj , prmp | Lmax. Show through a counterexample that
the preemptive EDD rule does not necessarily yield an optimal schedule.

5.26. Consider Pm | intree, prmp | Cmax with the processing time of each job
at level k equal to pk. Show that a preemptive version of the generalized CP
rule minimizes the makespan.

5.27. Consider Q∞ | prec, prmp | Cmax. There are an unlimited number of
machines that operate at the same speed. There is one machine that is faster.
Give an algorithm that minimizes the makespan and prove its optimality.

5.28. Consider an online version of Pm | rj , prec | Cmax. An online algorithm
for this problem can be described as follows. The jobs are again presented
in a list; whenever a machine is freed, the job that ranks highest among the
remaining jobs which are ready for processing is assigned to that machine (i.e.,
it must be a job that already has been released and of which all predecessors
already have been completed). Show that the bound presented in Theorem 5.6.1
applies to this more general problem as well.

Comments and References

The worst case analysis of the LPT rule for Pm || Cmax is from the classic
paper by Graham (1969). This paper gives one of the first examples of worst
case analyses of heuristics (see also Graham (1966)). It also provides a worst
case analysis of an arbitrary list schedule for Pm || Cmax. A more sophisticated
heuristic for Pm || Cmax, with a tighter worst case bound, is the so-called MUL-
TIFIT heuristic, see Coffman, Garey and Johnson (1978) and Friesen (1984a).
Lee and Massey (1988) analyze a heuristic that is based on LPT as well as on
MULTIFIT. Hwang, Lee and Chang (2005) perform a worst case analysis of the
LPT rule for Pm | brkdwn | Cmax. For results on heuristics for the more gen-
eral Qm || Cmax, see Friesen and Langston (1983), Friesen (1984b), and Dobson
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(1984). Davis and Jaffe (1981) present an algorithm for Rm || Cmax. The CPM
and PERT procedures have been covered in many papers and textbooks, see for
example, French (1982). The CP result in Theorem 5.1.5 is due to Hu (1961).
See Lenstra and Rinnooy Kan (1978) with regard to Pm | pj = 1, prec | Cmax,
Du and Leung (1989) with regard to P2 | tree | Cmax and Du, Leung and Young
(1991) with regard to P2 | chains | Cmax. Chen and Liu (1975) and Kunde (1976)
analyze the worst case behavior of the CP rule for Pm | pj = 1, prec | Cmax. Lin
and Li (2004) and Li (2006) do a complexity analysis of Pm | pj = 1, Mj | Cmax

and Qm | pj = p, Mj | Cmax. Apparently, no worst case analysis has been done
for the LFJ rule.
For Pm | prmp | Cmax, see McNaughton (1959). For Qm | prmp | Cmax, see

Horvath, Lam and Sethi (1977), Gonzalez and Sahni (1978a) and McCormick
and Pinedo (1995).
Conway, Maxwell and Miller (1967) discuss the SPT rule for Pm ||

∑
Cj; they

also give a characterization of the class of optimal schedules. For a discussion
of Qm ||

∑
Cj, see Horowitz and Sahni (1976). The worst case bound for the

WSPT rule for Pm ||
∑

wjCj is from Kawaguchi and Kyan (1986). Elmaghraby
and Park (1974) and Sarin, Ahn and Bishop (1988) present branch-and-bound
algorithms for this problem. Eck and Pinedo (1993) present a heuristic for
minimizing the makespan and the total completion time simultaneously. The
optimality of the CP rule for Pm | pj = 1, outtree |

∑
Cj is due to Hu (1961).

For complexity results with regard to Pm | prec |
∑

Cj, see Sethi (1977) and
Du, Leung and Young (1990).
For an analysis of the Qm | prmp |

∑
Cj problem, see Lawler and Labetoulle

(1978), Gonzalez and Sahni (1978a), McCormick and Pinedo (1995), Leung and
Pinedo (2003) and Gonzalez, Leung and Pinedo (2006).
A significant amount of work has been done on Qm | rj , pj = p, prmp | γ; see

Garey, Johnson, Simons and Tarjan (1981), Federgruen and Groenevelt (1986),
Lawler and Martel (1989), Martel (1982) and Simons (1983).
For results with regard to Qm | prmp | Lmax, see Bruno and Gonzalez (1976)

and Labetoulle, Lawler, Lenstra and Rinnooy Kan (1984). For other due date
related results, see Sahni and Cho (1979b).
Chen and Powell (1999) and Van den Akker, Hoogeveen and Van de Velde

(1999) applied branch-and-bound methods (including column generation) to
Rm ||

∑
wjCj and Rm ||

∑
wjUj.

The worst case analysis of an arbitrary list schedule for Pm || Cmax is re-
garded as one of the basic results in online scheduling. Theorem 5.6.1 is due to
Graham (1966). The analysis of the Round Robin rule and the total completion
time objective is due to Motwani, Phillips and Torng (1994). Research in online
scheduling has focused on other parallel machine scheduling problems as well;
see, for example, Shmoys, Wein and Williamson (1995). For an overview of on-
line scheduling on parallel machines with the makespan objective, see Fleischer
and Wahl (2000). For comprehensive overviews of online scheduling, see Sgall
(1998) and Pruhs, Sgall and Torng (2004).
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In many manufacturing and assembly facilities each job has to undergo a series
of operations. Often, these operations have to be done on all jobs in the same
order implying that the jobs have to follow the same route. The machines are
then assumed to be set up in series and the environment is referred to as a flow
shop.
The storage or buffer capacities in between successive machines may some-

times be, for all practical purposes, virtually unlimited. This is often the case
when the products that are being processed are physically small (e.g., printed
circuit boards, integrated circuits), making it relatively easy to store large quan-
tities between machines. When the products are physically large (e.g., television
sets, copiers), then the buffer space in between two successive machines may
have a limited capacity, causing blocking. Blocking occurs when the buffer is
full and the upstream machine is not allowed to release a job into the buffer
after completing its processing. If this is the case, then the job has to remain
at the upstream machine, preventing a job in the queue at that machine from
beginning its processing.
A somewhat more general machine environment consists of a number of

stages in series with a number of machines in parallel at each stage. A job
has to be processed at each stage only on one of the machines. This machine
environment is often referred to as a flexible flow shop, compound flow shop,
multi-processor flow shop, or hybrid flow shop.
Most of the material in this chapter concerns the makespan objective. The

makespan objective is of considerable practical interest as its minimization is
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to a certain extent equivalent to the maximization of the utilization of the
machines. The models, however, tend to be of such complexity that makespan
results are already relatively hard to obtain. Total completion time and due
date related objectives tend to be even harder.

6.1 Flow Shops with Unlimited Intermediate Storage

When searching for an optimal schedule for Fm || Cmax the question arises
whether it suffices merely to determine a permutation in which the jobs traverse
the entire system. Physically it may be possible for one job to “pass” another
while waiting in queue for a machine that is busy. The machines may not operate
according to the First Come First Served principle and the sequence in which
the jobs go through the machines may change from one machine to another.
Changing the sequence of the jobs waiting in a queue between two machines
may at times result in a smaller makespan. However, it can be shown that there
always exists an optimal schedule without job sequence changes between the
first two machines and between the last two machines (see Exercise 6.11). This
implies that there are optimal schedules for F2 || Cmax and F3 || Cmax that
do not require sequence changes between machines. One can find examples of
flow shops with four machines in which the optimal schedule does require a job
sequence change in between the second and the third machine.
Finding an optimal schedule when sequence changes are allowed is signifi-

cantly harder than finding an optimal schedule when sequence changes are not
allowed. Flow shops that do not allow sequence changes between machines are
called permutation flow shops. In these flow shops the same sequence, or permu-
tation, of jobs is maintained throughout. The results in this chapter are mostly
limited to permutation flow shops.
Given a permutation schedule j1, . . . , jn for an m machine flow shop, the

completion time of job jk at machine i can be computed easily through a set
of recursive equations:

Ci,j1 =
i∑
l=1

pl,j1 i = 1, . . . ,m

C1,jk =
k∑
l=1

p1,jl k = 1, . . . , n

Ci,jk = max(Ci−1,jk , Ci,jk−1) + pi,jk i = 2, . . . ,m; k = 2, . . . , n

The value of the makespan under a given permutation schedule can also be
computed by determining the critical path in a directed graph that corresponds
to the schedule. For a given sequence j1, . . . , jn this directed graph is constructed
as follows: for each operation, say the processing of job jk on machine i, there
is a node (i, jk) with a weight that is equal to the processing time of job jk
on machine i. Node (i, jk), i = 1, . . . ,m − 1, and k = 1, . . . , n − 1, has arcs
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pi+1, jk+1
pi+1, jk

pi, jk pi, jk+1

p2, j1

p1, j1
p1, j2

pm, j1
pm, jn

p1, jn

Fig. 6.1 Directed Graph for the Computation of the Makespan in
Fm | prmu | Cmax under sequence j1, . . . , jn

going out to nodes (i+ 1, jk) and (i, jk+1). Nodes corresponding to machine m
have only one outgoing arc, as do nodes corresponding to job jn. Node (m, jn)
has no outgoing arcs (see Figure 6.1). The total weight of the maximum weight
path from node (1, j1) to node (m, jn) corresponds to the makespan under the
permutation schedule j1, . . . , jn.

Example 6.1.1 (Graph Representation of Flow Shop)
Consider 5 jobs on 4 machines with the processing times presented in the
table below.

jobs j1 j2 j3 j4 j5

p1,jk 5 5 3 6 3
p2,jk 4 4 2 4 4
p3,jk 4 4 3 4 1
p4,jk 3 6 3 2 5

The corresponding graph and Gantt chart are depicted in Figure 6.2. From
the directed graph it follows that the makespan is 34. This makespan is
determined by two critical paths. ||
An interesting result can be obtained by comparing two m machine permu-

tation flow shops with n jobs. Let p(1)
ij and p

(2)
ij denote the processing time of

job j on machine i in the first and second flow shop, respectively. Assume

p
(1)
ij = p

(2)
m+1−i,j .
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5 5 3 6 3

4 4 2 4 4

4 4 3 4 1

3 6 3 2 5

0 2010 30

3 6 3 2 5

4 4 4 13

4 4 2 4 4

5 5 3 6 3

Fig. 6.2 Directed graph, critical paths and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job

indexes)

This basically implies that the first machine in the second flow shop is identical
to the last machine in the first flow shop; the second machine in the second flow
shop is identical to the machine immediately before the last in the first flow
shop, and so on. The following lemma applies to these two flow shops.

Lemma 6.1.2. Sequencing the jobs according to permutation j1, . . . , jn in
the first flow shop results in the same makespan as sequencing the jobs according
to permutation jn, . . . , j1 in the second flow shop.

Proof. If the first flow shop under sequence j1, . . . , jn corresponds to the dia-
gram in Figure 6.1, then the second flow shop under sequence jn, . . . , j1 corre-
sponds to the same diagram with all arcs reversed. The weight of the maximum
weight path from one corner node to the other corner node does not change if
all arcs are reversed. 	

Lemma 6.1.2 states the following reversibility result: the makespan does not

change if the jobs traverse the flow shop in the opposite direction in reverse
order.
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5 2 3 6 3

1 4 3 4 4

4 4 2 4 4

3 6 3 5 3

0 2010 30

3 6 3 5 5

4 4 42 4

1 4 3 4 4

5 2 3 6 3

Fig. 6.3 Directed graph, critical paths and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job

indexes)

Example 6.1.3 (Graph Representations and Reversibility)

Consider the instance of Example 6.1.1. The dual of this instance is given in
the table below.

jobs j1 j2 j3 j4 j5

p1,jk 5 2 3 6 3
p2,jk 1 4 3 4 4
p3,jk 4 4 2 4 4
p4,jk 3 6 3 5 5

The corresponding directed graph, its critical paths and the Gantt charts are
depicted in Figure 6.3. It is clear that the critical paths are determined by
the same set of processing times and that the makespan, therefore, is 34 as
well. ||
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Consider now the F2 || Cmax problem: a flow shop with two machines in
series with unlimited storage in between the two machines. There are n jobs
and the processing time of job j on machine 1 is p1j and its processing time on
machine 2 is p2j . This was one of the first problems to be analyzed in the early
days of Operations Research and led to a classical paper in scheduling theory
by S.M. Johnson. The rule that minimizes the makespan is commonly referred
to as Johnson’s rule.
An optimal sequence can be described as follows. Partition the jobs into

two sets with Set I containing all jobs with p1j < p2j and Set II all jobs with
p1j > p2j . The jobs with p1j = p2j may be put in either set. The jobs in
Set I go first and they go in increasing order of p1j (SPT); the jobs in Set II
follow in decreasing order of p2j (LPT). Ties may be broken arbitrarily. In what
follows such a schedule is referred to as an SPT(1)-LPT(2) schedule. Of course,
multiple schedules may be generated this way.

Theorem 6.1.4. Any SPT(1)-LPT(2) schedule is optimal for F2 || Cmax.

Proof. The proof is by contradiction. Suppose another type of schedule is op-
timal. In this optimal schedule there must be a pair of adjacent jobs, say job j
followed by job k, that satisfies one of the following three conditions:

(i) job j belongs to Set II and job k to Set I;
(ii) jobs j and k belong to Set I and p1j > p1k;
(iii) jobs j and k belong to Set II and p2j < p2k.

It suffices to show that under any of these three conditions the makespan is
reduced after a pairwise interchange of jobs j and k. Assume that in the orig-
inal schedule job l precedes job j and job m follows job k. Let Cij denote the
completion of job j on machine i under the original schedule and let C′

ij de-
note the completion time of job j on machine i after the pairwise interchange.
Interchanging jobs j and k clearly does not affect the starting time of job m on
machine 1, as its starting time on machine 1 equals C1l + p1j + p1k. However,
it is of interest to know at what time machine 2 becomes available for job m.
Under the original schedule this is the completion time of job k on machine 2,
i.e., C2k, and after the interchange this is the completion time of job j on ma-
chine 2, i.e., C′

2j . It suffices to show that C
′
2j ≤ C2k under any one of the three

conditions described above.
The completion time of job k on machine 2 under the original schedule is

C2k = max
(
max (C2l, C1l + p1j) + p2j , C1l + p1j + p1k

)
+ p2k

= max
(
C2l + p2k + p2j , C1l + p1j + p2j + p2k, C1l + p1j + p1k + p2k

)
,

whereas the completion time of job j on machine 2 after the pairwise interchange
is

C′
2j = max

(
C2l + p2k + p2j , C1l + p1k + p2k + p2j , C1l + p1k + p1j + p2j

)
.
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Under condition (i) p1j > p2j and p1k < p2k. It is clear that the first terms
within the max expressions of C2k and C′

2j are identical. The second term in
the last expression is smaller than the third in the first expression and the third
term in the last expression is smaller than the second in the first expression.
So, under condition (i) C′

2j ≤ C2k.
Under condition (ii) p1j < p2j, p1k < p2k and p1j > p1k. Now the second as

well as the third term in the last expression are smaller than the second term
in the first expression. So, under condition (ii) C′

2j ≤ C2k as well.
Condition (iii) can be shown in a similar way as the second condition. Actu-

ally, condition (iii) follows immediately from the reversibility property of flow
shops. 	

These SPT(1)-LPT(2) schedules are by no means the only schedules that are

optimal for F2 || Cmax. The class of optimal schedules appears to be hard to
characterize and data dependent.

Example 6.1.5 (Multiple Optimal Schedules)
Consider a set of jobs with one job that has a very small processing time
on machine 1 and a very large processing time on machine 2, say K, with
K ≥ ∑n

j=1 p1j . It is clear that under the optimal sequence this job should
go first in the schedule. However, the order of the remaining jobs does not
affect the makespan. ||
Unfortunately, the SPT(1)-LPT(2) schedule structure cannot be generalized

to characterize optimal schedules for flow shops with more than two machines.
However, minimizing the makespan in a permutation flow shop with an arbi-
trary number of machines, i.e., Fm | prmu | Cmax, can be formulated as a
Mixed Integer Program (MIP).
In order to formulate the problem as a MIP a number of variables have to

be defined: The decision variable xjk equals 1 if job j is the kth job in the
sequence and 0 otherwise. The auxiliary variable Iik denotes the idle time on
machine i between the processing of the jobs in the kth position and (k + 1)th
position and the auxiliary variable Wik denotes the waiting time of the job in
the kth position in between machines i and i+1. Of course, there exists a strong
relationship between the variables Wik and the variables Iik. For example, if
Iik > 0, then Wi−1,k+1 has to be zero. Formally, this relationship can be estab-
lished by considering the difference between the time the job in the (k + 1)th
position starts on machine i+ 1 and the time the job in the kth position com-
pletes its processing on machine i. If ∆ik denotes this difference and if pi(k)
denotes the processing time on machine i of the job in the kth position in the
sequence, then (see Figure 6.4)

∆ik = Iik + pi(k+1) +Wi,k+1 =Wik + pi+1(k) + Ii+1,k.
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pi(k)

pi + 1(k)

Wik > 0 and Ii + 1, k = 0

pi + 1(k — 1) pi + 1(k + 1)

pi(k + 1)

�ik

Wik

Machine i

Machine i + 1

Iik Wi, k + 1

Fig. 6.4 Constraints in the integer programming formulation

Note that minimizing the makespan is equivalent to minimizing the total idle
time on the last machine, machine m. This idle time is equal to

m−1∑
i=1

pi(1) +
n−1∑
j=1

Imj ,

which is the idle time that must occur before the job in the first position reaches
the last machine and the sum of the idle times between the jobs on the last
machine. Using the identity

pi(k) =
n∑
j=1

xjkpij ,

the MIP can now be formulated as follows.

min
(m−1∑
i=1

n∑
j=1

xj1pij +
n−1∑
j=1

Imj

)
,

subject to

n∑
j=1

xjk = 1 k = 1, . . . , n,

n∑
k=1

xjk = 1 j = 1, . . . , n,

Iik +
n∑
j=1

xj,k+1pij +Wi,k+1
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−Wik −
n∑
j=1

xjkpi+1,j − Ii+1,k = 0 k = 1, . . . , n− 1; i = 1, . . . ,m− 1,

Wi1 = 0 i = 1, . . . ,m− 1,
I1k = 0 k = 1, . . . , n− 1.

The first set of constraints specifies that exactly one job has to be assigned to
position k for any k. The second set of constraints specifies that job j has to be
assigned to exactly one position. The third set of constraints relate the decision
variables xjk to the physical constraints. These physical constraints enforce the
necessary relationships between the idle time variables and the waiting time
variables. Thus, the problem of minimizing the makespan in an m machine
permutation flow shop is formulated as a MIP. The only integer variables are
the binary (0−1) decision variables xjk. The idle time and waiting time variables
are nonnegative continuous variables.

Example 6.1.6 (Mixed Integer Programming Formulation)

Consider again the instance in Example 6.1.1. Because the sequence is now
not given, the subscript jk in the table of Example 6.1.1 is replaced by the
subscript j and the headings j1, j2, j3, j4 and j5 are replaced by 1, 2, 3, 4,
and 5, respectively.

jobs 1 2 3 4 5

p1,j 5 5 3 6 3
p2,j 4 4 2 4 4
p3,j 4 4 3 4 1
p4,j 3 6 3 2 5

With these data the objective of the MIP is

5x11 + 5x21 + 3x31 + 6x41 + 3x51 + 4x11 + 4x21 + 2x31 + 4x41 + 4x51+

+4x11 + 4x21 + 3x31 + 4x41 + x51 + I41 + I42 + I43 + I44 =

13x11 + 13x21 + 8x31 + 14x41 + 8x51 + I41 + I42 + I43 + I44

The first and second set of constraints of the program contain 5 constraints
each. The third set contains (5 − 1)(4 − 1) = 12 constraints. For example,
the constraint corresponding to k = 2 and i = 3 is

I32 + 4x13 + 4x23 + 3x33 + 4x43 + x53 +W33

−W32 − 3x12 − 6x22 − 3x32 − 2x42 − 5x52 − I42 = 0. ||
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. . .

. . .

. . .

Fig. 6.5 3-PARTITION reduces to F3 || Cmax

The fact that the problem can be formulated as a MIP does not immediately
imply that the problem is NP-hard. It could be that the MIP has a special
structure that allows for a polynomial time algorithm (see, for example, the
integer programming formulation for Rm || ∑

Cj). In this case, however, it
turns out that the problem is hard.

Theorem 6.1.7. F3 || Cmax is strongly NP-hard.

Proof. By reduction from 3-PARTITION. Given integers a1, . . . , a3t, b, under the
usual assumptions, let the number of jobs n equal 4t+ 1 and let

p10 = 0, p20 = b, p30 = 2b,
p1j = 2b, p2j = b, p3j = 2b, j = 1, . . . , t− 1,
p1t = 2b, p2t = b, p3t = 0,

p1,t+j = 0, p2,t+j = aj , p3,t+j = 0, j = 1, . . . , 3t.

Let z = (2t + 1)b. A makespan of value z can be obtained if the first t + 1
jobs are scheduled according to sequence 0, 1, . . . , t. These t+ 1 jobs then form
a framework, leaving t gaps on machine 2. Jobs t + 1, . . . , t + 3t have to be
partitioned into t sets of three jobs each and these t sets have to be scheduled
in between the first t + 1 jobs. A makespan of value z can be obtained if and
only if 3-PARTITION has a solution (see Figure 6.5). 	

This complexity proof applies to permutation flow shops as well as to flow

shops that allow sequence changes midstream (as said before, for three machine
flow shops it is known that a permutation schedule is optimal in the larger class
of schedules).
Even though Fm | prmu | Cmax is strongly NP-hard it is of interest to study

special cases that have nice structural properties. A number of special cases are
important.
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One important special case of Fm | prmu | Cmax is the so-called propor-
tionate permutation flow shop. In this flow shop the processing times of job j
on each of the m machines are equal to pj , i.e., p1j = p2j = · · · = pmj = pj .
Minimizing the makespan in a proportionate permutation flow shop is denoted
by Fm | prmu, pij = pj | Cmax. For a proportionate flow shop an SPT-LPT
sequence can be defined as follows. The jobs are partitioned into two sets; the
jobs in one subset go first according to SPT and the remaining jobs follow ac-
cording to LPT. So a sequence j1, . . . , jn is SPT-LPT if and only if there is a
job jk such that

pj1 ≤ pj2 ≤ · · · ≤ pjk

and
pjk ≥ pjk+1 ≥ · · · ≥ pjn .

From Theorem 6.1.4 it follows that when m = 2 any SPT-LPT sequence must
be optimal. As might be expected, these are not the only sequences that are
optimal. This flow shop has a very special structure.

Theorem 6.1.8. For Fm | prmu, pij = pj | Cmax the makespan equals

Cmax =
n∑
j=1

pj + (m− 1)max(p1, . . . , pn)

and is independent of the schedule.

Proof. The proof is left as an exercise. 	

It can be shown that permutation schedules are also optimal in the larger

class of schedules that allow jobs to pass one another while waiting for a ma-
chine, i.e., Fm | pij = pj | Cmax (see Exercise 6.17).
The result stated in the last theorem indicates that the proportionate flow

shop is in one aspect similar to the single machine: the makespan does not
depend on the sequence. Actually there are many more similarities between the
proportionate flow shop and the single machine. The following results illustrate
this fact.

(i) The SPT rule is optimal for 1 || ∑
Cj as well as for Fm | prmu, pij =

pj |
∑

Cj .
(ii) The algorithm that results in an optimal schedule for 1 || ∑

Uj also
results in an optimal schedule for Fm | prmu, pij = pj |

∑
Uj .

(iii) The algorithm that results in an optimal schedule for 1 || hmax also
results in an optimal schedule for Fm | prmu, pij = pj | hmax.

(iv) The pseudo-polynomial dynamic programming algorithm for 1 || ∑
Tj

can also be applied to Fm | prmu, pij = pj |
∑

Tj .
(v) The elimination criteria that hold for 1 || ∑

wjTj also hold for Fm |
prmu, pij = pj |

∑
wjTj.
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Not all results that hold for the single machine hold for the proportionate flow
shop. For example, WSPT does not necessarily minimize the total weighted
completion time in proportionate flow shops. Counterexamples can be found
easily. However, Fm | pij = pj |

∑
wjCj can still be solved in polynomial time.

The proportionate permutation flow shop model can be generalized to include
machines with different speeds. If the speed of machine i is vi, then the time job j
spends on machine i is pij = pj/vi. The machine with the smallest vi is called
the bottleneck machine. The makespan is now no longer schedule independent.

Theorem 6.1.9. If in a proportionate permutation flow shop with different
speeds the first (last) machine is the bottleneck, then LPT (SPT) minimizes the
makespan.

Proof. From the reversibility property it immediately follows that it suffices to
prove only one of the two results stated in the theorem. Only the case where
the last machine is the bottleneck is shown here.
Consider first the special subcase with

vm ≤ v1 ≤ min (v2, . . . , vm−1);

that is, the last machine is the bottleneck and the first machine requires the
second longest processing times for each one of the n jobs. It is easy to see that
in such a flow shop the critical path only turns to the right at machine m and
therefore turns down only once at some job jk in the sequence j1, . . . , jn. So the
critical path starts out on machine 1 going to the right, turns down at job jk
and goes all the way down to machine m before turning to the right again. That
SPT is optimal can be shown through a standard adjacent pairwise interchange
argument. Consider a schedule that is not SPT. There are two adjacent jobs
of which the first one is longer than the second. Interchanging these two jobs
affects the makespan if and only if one of the two jobs is the job through which
the critical path goes from machine 1 to m. It can be shown that an interchange
then reduces the makespan and that SPT minimizes the makespan.
In order to complete the proof for the general case, call machine h an in-

termediate bottleneck if vh < min (v1, . . . , vh−1). There may be a number of
intermediate bottlenecks in the proportionate flow shop. The arguments pre-
sented above for the case with the only intermediate bottleneck being machine
1 extend to the general case with multiple intermediate bottlenecks. The critical
path now only turns right at intermediate bottleneck machines. This structure
can be exploited again with an adjacent pairwise interchange argument showing
that SPT minimizes the makespan. 	

As Fm | prmu | Cmax is one of the more basic scheduling problems, it has

attracted a great deal of attention over the years. Many heuristics have been
developed for dealing with this problem. One of the first heuristics developed
for this problem is the Slope heuristic. According to this heuristic a slope index
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is computed for each job. The slope index Aj for job j is defined as

Aj = −
m∑
i=1

(
m− (2i− 1)

)
pij .

The jobs are then sequenced in decreasing order of the slope index. The reason-
ing behind this heuristic is simple. From Theorem 6.1.4 it is already clear that
jobs with small processing times on the first machine and large processing times
on the second machine should be positioned more towards the beginning of the
schedule, while jobs with large processing times on the first machine and small
processing times on the second machine should be positioned more towards
the end of the schedule. The slope index is large if the processing times on the
downstream machines are large relative to the processing times on the upstream
machines; the slope index is small if the processing times on the downstream
machines are relatively small in comparison with the processing times on the
upstream machines.

Example 6.1.10 (Application of the Slope Heuristic)
Consider again the instance in Examples 6.1.1 and 6.1.6. Replace the jk by
j and the j1, . . . , j5 by 1, . . . , 5. The slope indices are:

A1 = −(3× 5)− (1× 4) + (1× 4) + (3× 3) = −6

A2 = −(3× 5)− (1× 4) + (1× 4) + (3× 6) = +3

A3 = −(3× 3)− (1× 2) + (1× 3) + (3× 3) = +1

A4 = −(3× 6)− (1 × 4) + (1× 4) + (3 × 2) = −12
A5 = −(3× 3)− (1× 4) + (1× 1) + (3× 5) = +3

The two sequences suggested by the heuristic are therefore 2, 5, 3, 1, 4 and
5, 2, 3, 1, 4. The makespan under both these sequences is 32. Complete enu-
meration verifies that both sequences are optimal. ||
In contrast to the makespan objective, results with regard to the total com-

pletion time objective are harder to obtain. It can be shown that F2 || ∑Cj is
already strongly NP-hard. The proof of this result is somewhat involved and is
therefore not presented here.
However, Theorem 6.1.8 facilitates the analysis of the flow time Fm | pij =

pj |
∑

Cj problem considerably and it can be shown fairly easily that SPT
minimizes the total completion time in a proportionate flow shop.

6.2 Flow Shops with Limited Intermediate Storage

Considermmachines in series with zero intermediate storage between successive
machines. When a machine finishes with the processing of a job, that job cannot
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proceed to the next machine if that machine is busy; the job must remain on
the first machine, which thus cannot start any processing of subsequent jobs.
As stated before, this phenomenon is referred to as blocking.
In what follows only flow shops with zero intermediate storages are consid-

ered, since any flow shop with positive (but finite) intermediate storages between
machines can be modeled as a flow shop with zero intermediate storages. This
follows from the fact that a storage space capable of containing one job may be
regarded as a machine on which the processing times of all jobs are equal to
zero.
The problem of minimizing the makespan in a flow shop with zero interme-

diate storages is referred to in what follows as Fm | block | Cmax.
Let Dij denote the time that job j actually departs machine i. Clearly, Dij ≥

Cij . Equality holds when job j is not blocked. The time job j starts its processing
at the first machine is denoted byD0j . The following recursive relationships hold
under sequence j1, . . . , jn.

Di,j1 =
i∑
l=1

pl,j1

Di,jk = max(Di−1,jk + pi,jk , Di+1,jk−1)
Dm,jk = Dm−1,jk + pm,jk

For this model the makespan under a given permutation schedule can also be
computed by determining the critical path in a directed graph. In this directed
graph node (i, jk) denotes the departure time of job jk from machine i. In
contrast to the graph in Section 6.1 for flow shops with unlimited intermediate
storages, in this graph the arcs, rather than the nodes, have weights. Node
(i, jk), i = 1, . . . ,m− 1; k = 1, . . . , n− 1, has two outgoing arcs; one arc goes
to node (i + 1, jk) and has a weight or distance pi+1,jk , the other arc goes to
node (i− 1, jk+1) and has weight zero. Node (m, jk) has only one outgoing arc
to node (m− 1, jk+1) with zero weight. Node (i, jn) has only one outgoing arc
to node (i+ 1, jn) with weight pi+1,jn . Node (m, jn) has no outgoing arcs (see
Figure 6.6). The Cmax under sequence j1, . . . , jn is equal to the length of the
maximum weight path from node (0, j1) to node (m, jn).

Example 6.2.1 (Graph Representation of Flow Shop with Blocking)
Consider the instance of Example 6.1.1. Assume that the same 5 jobs with
the same processing times have to traverse the same four machines. The
only difference is that now there is zero intermediate storage between the
machines. The directed graph and the Gantt chart corresponding to this
situation is depicted in Figure 6.7. There is now only one critical path that
determines the makespan of 35. ||
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Fig. 6.6 Directed graph for the computation of the makespan

The following lemma shows that the reversibility property extends to flow
shops with zero intermediate storage. Consider two m machine flow shops with
blocking and let p(1)

ij and p
(2)
ij denote the processing times of job j on machine

i in the first and second flow shop respectively.

Lemma 6.2.2. If
p
(1)
ij = p

(2)
m+1−i,j

then sequence j1, . . . , jn in the first flow shop results in the same makespan as
sequence jn, . . . , j1 in the second flow shop.

Proof. It can be shown that there is a one-to-one correspondence between paths
of equal weight in the two directed graphs corresponding to the two flow shops.
This implies that the paths with maximal weights in the two directed graphs
must have the same total weight. 	

This reversibility result is similar to the result in Lemma 6.1.2. Actually,

one can argue that the result in Lemma 6.1.2 is a special case of the result in
Lemma 6.2.2. The unlimited intermediate storages can be regarded as sets of
machines on which all processing is equal to zero.
Consider the F2 | block | Cmax problem with two machines in series and zero

intermediate storage in between. Note that in this flow shop, whenever a job
starts its processing on the first machine, the preceding job starts its processing
on the second machine. The time job jk spends on machine 1, in process or
blocked, is therefore max(p1,jk , p2,jk−1). The first job in the sequence spends
only p1,jk on machine 1. This makespan minimization problem is equivalent to
a Travelling Salesman Problem with n + 1 cities. Let the distance from city j
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Fig. 6.7 Directed graph, critical path and Gantt chart (the numerical
entries represent the processing times of the jobs and not the job

indexes)

to city k be equal to

d0k = p1k

dj0 = p2j

djk = max(p2j , p1k)

The total distance travelled is then equal to the makespan of the flow shop.
Actually, the distance matrix can be simplified somewhat. Instead of minimizing
the makespan, one can minimize the total time between 0 and Cmax that one
of the two machines is either idle or blocked. The two objectives are equivalent
since twice the makespan is equal to the sum of the 2n processing times plus
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the sum of all idle times. Minimizing the sum of all idle times is equivalent to
the following Travelling Salesman Problem with n+ 1 cities:

d0k = p1k

dj0 = p2j

djk = || p2j − p1k ||

The idle time on one of the machines, when job j starts on machine 2 and
job k starts on machine 1, is the difference between the processing times p2j

and p1k. If p2j is larger than p1k job k will be blocked for the time difference
on machine 1, otherwise machine 2 will remain idle for the time difference.
The distance matrix of this Travelling Salesman Problem is identical to the one
discussed in Section 4.5. The values for b0 and a0 in Section 4.5 have to be
chosen equal to zero.
The algorithm for the 1 | sjk | Cmax problem with sjk = ‖ ak − bj ‖ can now

be used for F2 | block | Cmax as well, which implies that there exists an O(n2)
algorithm for F2 | block | Cmax.

Example 6.2.3 (A Two Machine Flow Shop with Blocking and the
TSP)

Consider a 4 job instance with processing times

jobs 1 2 3 4

p1,j 2 3 3 9
p2,j 8 4 6 2

This translates into a TSP with 5 cities. In the notation of Section 4.5 this
instance of the TSP is specified by following aj and bj values.

cities 0 1 2 3 4

bj 0 2 3 3 9
aj 0 8 4 6 2

Applying Algorithm 4.5.5 on this instance results in the tour 0 → 1 → 4→
2 → 3 → 0. Actually, two schedules are optimal for the flow shop with
blocking, namely schedule 1, 4, 2, 3 and schedule 1, 4, 3, 2. These are different
from the SPT(1)-LPT(2) schedules that are optimal in the case of unlimited
buffers. With the same four jobs and unlimited buffers the following three
schedules are optimal: 1, 3, 4, 2 ; 1, 2, 3, 4 and 1, 3, 2, 4. ||



168 6 Flow Shops and Flexible Flow Shops (Deterministic)

The three machine version of this problem cannot be described as a Travelling
Salesman Problem and is known to be strongly NP-hard. The proof, however,
is rather complicated and therefore omitted.
Certain special cases of Fm | block | Cmax are tractable. Consider the pro-

portionate case where p1j = · · · = pmj = pj , for j = 1, . . . ,m. That is, consider
Fm | block, pij = pj | Cmax.

Theorem 6.2.4. A schedule is optimal for Fm | block, pij = pj | Cmax if
and only if it is an SPT-LPT schedule.

Proof. The makespan has to satisfy the inequality

Cmax ≥
n∑
j=1

pj + (m− 1)max(p1, . . . , pn),

as the R.H.S. is the optimal makespan when there are unlimited buffers between
any two successive machines. Clearly, the makespan with limited or no buffers
has to be at least as large. It suffices to show that the makespan under any
SPT-LPT schedule is equal to the lower bound, while the makespan under any
schedule that is not SPT-LPT is strictly larger than the lower bound.
That the makespan under any SPT-LPT schedule is equal to the lower bound

can be shown easily. Under the SPT part of the schedule the jobs are never
blocked. In other words, each job in this first part of the schedule, once started
on the first machine, proceeds through the system without stopping. If in the
SPT-LPT schedule j1, . . . , jn job jk is the job with the longest processing time,
then job jk departs the system at

Cjk =
k−1∑
l=1

pjl +mpjk .

The jobs in the LPT part of the sequence, of course, do experience blocking
as shorter jobs follow longer jobs. However, it is clear that now, in this part of
the schedule, a machine never has to wait for a job. Every time a machine has
completed processing a job from the LPT part of the schedule, the next job is
ready to start (as shorter jobs follow longer jobs). So, after job jk has completed
its processing on machine m, machine m remains continuously busy until it has
completed all the remaining jobs. The makespan under an SPT-LPT schedule
is therefore equal to the makespan under an SPT-LPT schedule in the case of
unlimited buffers. SPT-LPT schedules therefore have to be optimal.
That SPT-LPT schedules are the only schedules that are optimal can be

shown by contradiction. Suppose that another schedule, that is not SPT-LPT, is
also optimal. Again, the job with the longest processing time, job jk, contributes
m times its processing to the makespan. However, there must be some job, say
job jh, (not the longest job) that is positioned in between two jobs that are both
longer. If job jh appears in the schedule before job jk it remains on machine 1 for
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an amount of time that is larger than its processing time, since it is blocked by
the preceding job on machine 2. So its contribution to the makespan is strictly
larger than its processing time, causing the makespan to be strictly larger than
the lower bound. If job jh appears in the schedule after job jk, then the jobs
following job jk on machine m are not processed one after another without any
idle times in between. After job jh there is an idle time on machine m as the
next job has a processing time that is strictly larger than the processing time
of job jh. 	

There exists some similarity between this model and the proportionate flow

shop model with unlimited intermediate storage. For the case with blocking it
also can be shown that the SPT rule minimizes

∑
Cj .

As with flow shops with unlimited intermediate storage, a fair amount of
research has been done in the development of heuristics for the minimization of
the makespan in flow shops with limited intermediate storage and blocking. One
popular heuristic for Fm | block | Cmax is the Profile Fitting (PF) heuristic,
which works as follows: one job is selected to go first, possibly according to
some scheme, e.g., the job with the smallest sum of processing times. This
job, say job j1, does not encounter any blocking and proceeds smoothly from
one machine to the next, generating a profile. The profile is determined by its
departure from machine i. If job j1 corresponds to job k, then

Di,j1 =
i∑
h=1

ph,j1 =
i∑
h=1

phk

To determine which job should go second, every remaining unscheduled job is
tried out. For each candidate job a computation is carried out to determine the
amount of time machines are idle and the amount of time the job is blocked
at a machine. The departure epochs of a candidate for the second position, say
job j2, can be computed recursively:

D1,j2 = max(D1,j1 + p1,j2 , D2,j1)
Di,j2 = max(Di−1,j2 + pi,j2 , Di+1,j1), i = 2, . . . ,m− 1
Dm,j2 = max(Dm−1,j2 , Dm,j1) + pm,j2

The time wasted at machine i, that is, the time the machine is either idle or
blocked, is Di,j2 −Di,j1 −pi,j2 . The sum of these idle and blocked times over all
m machines is then computed. The candidate with the smallest total is selected
as the second job.
After selecting the job that fits best as the job for second position, the new

profile, i.e., the departure times of this second job from the m machines, is
computed and the procedure repeats itself. From the remaining jobs in the set
of unscheduled jobs the best fit is again selected and so on.
In this description the goodness of fit of a particular job was measured by

the total time wasted on all m machines. Each machine was considered equally
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important. It is intuitive that lost time on a bottleneck machine is worse than
lost time on a machine that does not have much processing to do. When mea-
suring the total amount of lost time, it may be appropriate to multiply each of
these inactive time periods on a given machine by a factor that is proportional
to the degree of congestion at that machine. The higher the degree of congestion
at a particular machine, the larger the weight. One measure for the degree of
congestion of a machine that is easy to calculate is simply the total amount of
processing to be done on all the jobs at the machine in question. Experiments
have shown that such a weighted version of the PF heuristic works quite well.

Example 6.2.5 (Application of the PF Heuristic)

Consider again 5 jobs and 4 machines. The processing times of the five jobs
are in the tables in Examples 6.1.1 and 6.1.6. Assume that there is zero
storage in between the successive machines.
Take as the first job the job with the smallest total processing time, i.e.,

job 3. Apply the unweighted PF heuristic. Each one of the four remaining
jobs has to be tried out. If either job 1 or job 2 would go second, the total
idle time of the four machines would be 11; if job 4 would go second the total
idle time of the four machines would be 15 and if job 5 would be second, the
total idle time would be 3. It is clear that job 5 is the best fit. Continuing
in this manner the PF heuristic results in the sequence 3, 5, 1, 2, 4 with a
makespan equal to 32. From the fact that this makespan is equal to the
minimum makespan in the case of unlimited intermediate storage, it follows
that sequence 3, 5, 1, 2, 4 is also optimal in the case of zero intermediate
storage.
In order to study the effect of the selection of the first job, consider the

application of the PF heuristic after selecting the job with the largest total
processing time as the initial job. So job 2 goes first. Application of the
unweighted PF heuristic leads to the sequence 2, 1, 3, 5, 4 with makespan 35.
This sequence is clearly not optimal. ||
Consider now a flow shop with zero intermediate storage that is subject to

different operational procedures. A job, when it goes through the system, is
not allowed to wait at any machine. That is, whenever it has completed its
processing on one machine the next machine has to be idle, so that the job does
not have to wait. In contrast to the blocking case where jobs are pushed down the
line by machines upstream that have completed their processing, in this case the
jobs are actually pulled down the line by machines that have become idle. This
constraint is referred to as the no-wait constraint and minimizing the makespan
in such a flow shop is referred to as the Fm | nwt | Cmax problem. It is easy
to see that F2 | block | Cmax is equivalent to F2 | nwt | Cmax. However, when
there are more than two machines in series the two problems are different. The
Fm | nwt | Cmax problem, in contrast to the Fm | block | Cmax problem, can
still be formulated as a Travelling Salesman Problem. The intercity distances
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are

djk = max
1≤i≤m

( i∑
h=1

phj −
i−1∑
h=1

phk

)
for j, k = 0, . . . , n. When there are more than two machines in series this Trav-
elling Salesman Problem is known to be strongly NP-hard.

6.3 Flexible Flow Shops with Unlimited Intermediate
Storage

The flexible flow shop is a machine environment with c stages in series; at
stage l, l = 1, . . . , c, there are ml identical machines in parallel. There is an
unlimited intermediate storage between any two successive stages. The machine
environment in the first example of Section 1.1 constitutes a flexible flow shop.
Job j, j = 1, . . . , n, has to be processed at each stage on one machine, any one
will do. The processing times of job j at the various stages are p1j , p2j , . . . , pcj.
Minimizing the makespan and total completion time are respectively referred
to as FFc || Cmax and FFc || ∑Cj . The parallel machine environment as well
as the flow shop with unlimited intermediate storages are special cases of this
machine environment. As this environment is rather complex only the special
case with proportionate processing times, i.e., p1j = p2j = · · · = pcj = pj , is
considered here.
Consider FFc | pij = pj | Cmax. One would expect the LPT heuristic to

perform well in the nonpreemptive case and the LRPT heuristic to perform well
in the preemptive case. Of course, the LPT rule cannot guarantee an optimal
schedule; a single stage (a parallel machine environment) is already NP-hard.
The worst case behaviour of the LPT rule when applied to multiple stages in
series may be worse than when applied to a single stage.

Example 6.3.1 (Minimizing Makespan in a Flexible Flow Shop)
Consider two stages with two machines in parallel at the first stage and a
single machine at the second stage. There are two jobs with p1 = p2 = 100
and a hundred jobs with p3 = p4 = · · · = p102 = 1. It is clear that in order
to minimize the makespan one long job should go at time zero on machine 1
and the 100 short jobs should be processed on machine 2 between time 0 and
time 100. Under this schedule the makespan is 301. Under the LPT schedule
the makespan is 400. ||
In a preemptive setting the LRPT rule is optimal for a single stage. When

there are multiple stages this is not true any more. The LRPT schedule has the
disadvantage that at the first stage all jobs are finished very late, leaving the
machines at the second stage idle for a very long time.
Consider now the proportionate flexible flow shop problem FFc | pij =

pj |
∑

Cj . The SPT rule is known to be optimal for a single stage and for
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any number of stages with a single machine at each stage. Consider now the
additional constraint where each stage has at least as many machines as the
previous stage (the flow shop is said to be diverging).

Theorem 6.3.2. The SPT rule is optimal for FFc | pij = pj |
∑

Cj if
each stage has at least as many machines as the preceding stage.

Proof. Theorem 5.3.1 implies that SPT minimizes the total completion time
when the flexible flow shop consists of a single stage. It is clear that SPT not
only minimizes the total completion time in this case, but also the sum of the
starting times (the only difference between the sum of the completion times
and the sum of the starting times is the sum of the processing times, which is
independent of the schedule).
In a proportionate flexible flow shop with c stages, the completion time of

job j at the last stage occurs at the earliest cpj time units after its starting
time at the first stage.
Consider now a flexible flow shop with the same number of machines at

each stage, say m. It is clear that under SPT each job when completed at one
stage does not have to wait for processing at the next stage. Immediately after
completion at one stage it can start its processing at the next stage (as all
preceding jobs have smaller processing times than the current job). So, under
SPT the sum of the completion times is equal to the sum of the starting times
at the first stage plus

∑n
j=1 cpj . As SPT minimizes the sum of the starting

times at the first stage and job j must remain at least cpj time units in the
system, SPT has to be optimal. 	

It is easy to verify that the SPT rule does not always lead to an optimal

schedule for arbitrary proportionate flexible flow shops. A counter-example with
only two stages can be found easily.

6.4 Discussion

This chapter has an emphasis on the makespan objective. In most machine
environments the makespan is usually the easiest objective. In the flow shop
environment, the makespan is already hard when there are three or more ma-
chines in series. Other objectives tend to be even more difficult.
In any case, some research has been done on flow shops with the total comple-

tion time objective. Minimizing the total completion time in a two machine flow
shop, i.e., F2 || ∑

Cj , is already strongly NP-Hard. Several integer program-
ming formulations have been proposed for this problem and various branch-
and-bound approaches have been developed. Still, only instances with 50 jobs
can be solved in a reasonable time. Minimizing the total completion time in
a proportionate flow shop is, of course, very easy and can be solved via the
SPT rule. Even the minimization of the total weighted completion time in a
proportionate flow shop can be solved in polynomial time.
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Flow shops with due date related objective functions have received very little
attention in the literature. On the other hand, more complicated flow shops,
e.g., robotic cells, have received a considerable amount of attention.

Exercises (Computational)

6.1. Consider F4 | prmu | Cmax with the following 5 jobs under the given
sequence j1, . . . , j5.

jobs j1 j2 j3 j4 j5

p1,jk 5 3 6 4 9
p2,jk 4 8 2 9 13
p3,jk 7 8 7 6 5
p4,jk 8 4 2 9 1

Find the critical path and compute the makespan under the given sequence.

6.2. Write the integer programming formulation of F4 | prmu | Cmax with the
set of jobs in Exercise 6.1.

6.3. Apply the Slope heuristic to the set of jobs in Exercise 6.1. Is (Are) the
sequence(s) generated actually optimal?

6.4. Consider F4 | block | Cmax with 5 jobs and the same set of processing
times as in Exercise 6.1. Assume there is no buffer in between any two successive
machines. Apply the Profile Fitting heuristic to determine a sequence for this
problem. Take job j1 as the first job. If there are ties consider all the possibilities.
Is (any one of) the sequence(s) generated optimal?

6.5. Consider F4 | prmu | Cmax with the following jobs

jobs 1 2 3 4 5

p1,j 18 16 21 16 22
p2,j 6 5 6 6 5
p3,j 5 4 5 5 4
p4,j 4 2 1 3 4

(a) Can this problem be reduced to a similar problem with a smaller num-
ber of machines and the same optimal sequence?
(b) Determine whether Theorem 6.1.4 can be applied to the reduced prob-
lem.
(c) Find the optimal sequence.
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6.6. Apply Algorithm 3.3.1 to find an optimal schedule for the proportionate
flow shop F3 | pij = pj |

∑
Uj with the following jobs.

jobs 1 2 3 4 5 6

pj 5 3 4 4 9 3
dj 17 19 21 22 24 24

6.7. Find the optimal schedule for the instance of the proportionate flow shop
F2 | pij = pj | hmax with the following jobs.

jobs 1 2 3 4 5

pj 5 3 6 4 9
hj(Cj) 12

√
C1 72 2C3 54 + .5C4 66 +

√
C5

6.8. Apply a variant of Algorithm 3.4.4 to find an optimal schedule for the
instance of the proportionate flow shop F2 | pij = pj |

∑
Tj with the following

5 jobs.

jobs 1 2 3 4 5

pj 5 3 6 4 9
dj 4 11 2 9 13

6.9. Consider F2 | block | Cmax with zero intermediate storage and 4 jobs.

jobs 1 2 3 4

p1,j 2 5 5 11
p2,j 10 6 6 4

(a) Apply Algorithm 4.4.5 to find the optimal sequence.
(b) Find the optimal sequence when there is an unlimited intermediate
storage.

6.10. Find the optimal schedule for a proportionate flexible flow shop FF2 |
pij = pj |

∑
Cj with three machines at the first stage and one machine at the

second stage. There are 5 jobs. Determine whether SPT is optimal.

jobs 1 2 3 4 5

pj 2 2 2 2 5
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Exercises (Theory)

6.11. Consider the problem Fm || Cmax. Assume that the schedule does allow
one job to pass another while they are waiting for processing on a machine.

(a) Show that there always exists an optimal schedule that does not require
sequence changes between machines 1 and 2 and between machines m − 1
and m. (Hint: By contradiction. Suppose the optimal schedule requires a
sequence change between machines 1 and 2. Modify the schedule in such a
way that there is no sequence change and the makespan remains the same.)
(b) Find an instance of F4 || Cmax where a sequence change between ma-
chines 2 and 3 results in a smaller makespan than in the case where sequence
changes are not allowed.

6.12. Consider Fm | prmu | Cmax. Let

pi1 = pi2 = · · · = pin = pi

for i = 2, . . . ,m− 1. Furthermore, let

p11 ≤ p12 ≤ · · · ≤ p1n

and
pm1 ≥ pm2 ≥ · · · ≥ pmn.

Show that sequence 1, 2, . . . , n, i.e., SPT(1)-LPT(m), is optimal.

6.13. Consider Fm | prmu | Cmax where pij = ai + bj, i.e., the processing
time of job j on machine i consists of a component that is job dependent
and a component that is machine dependent. Find the optimal sequence when
a1 ≤ a2 ≤ · · · ≤ am and prove your result.

6.14. Consider Fm | prmu | Cmax. Let pij = aj + ibj with bj > −aj/m.

(a) Find the optimal sequence.
(b) Does the Slope heuristic lead to an optimal schedule?

6.15. Consider F2 || Cmax.

(a) Show that the Slope heuristic for two machines reduces to sequencing
the jobs in decreasing order of p2j − p1j.
(b) Show that the Slope heuristic is not necessarily optimal for two ma-
chines.
(c) Show that sequencing the jobs in decreasing order of p2j/p1j is not
necessarily optimal either.

6.16. Consider F3 || Cmax. Assume

max
j∈{1,...,n}

p2j ≤ min
j∈{1,...,n}

p1j
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and
max

j∈{1,...,n}
p2j ≤ min

j∈{1,...,n}
p3j .

Show that the optimal sequence is the same as the optimal sequence for F2 ||
Cmax with processing times p′ij where p

′
1j = p1j + p2j and p′2j = p2j + p3j .

6.17. Show that in the proportionate flow shop problem Fm | pij = pj | Cmax a
permutation sequence is optimal in the class of schedules that do allow sequence
changes midstream.

6.18. Show that if in a sequence for F2 || Cmax any two adjacent jobs j and k
satisfy the condition

min(p1j , p2k) ≤ min(p1k, p2j)

then the sequence minimizes the makespan. (Note that this is a sufficiency
condition and not a necessary condition for optimality.)

6.19. Show that for Fm | prmu | Cmax the makespan under an arbitrary
permutation sequence cannot be longer than m times the makespan under the
optimal sequence. Show how this worst case bound actually can be attained.

6.20. Consider a proportionate flow shop with two objectives, namely the total
completion time and the maximum lateness, i.e., Fm | pij = pj |

∑
Cj +Lmax.

Develop a polynomial time algorithm for this problem. (Hint: Parametrize on
the maximum lateness. Assume the maximum lateness to be z; then consider
new due dates dj + z which basically are hard deadlines. Start out with the
SPT rule and modify when necessary.)

6.21. Consider a proportionate flow shop with n jobs. Assume that there are
no two jobs with equal processing times. Determine the number of different
SPT-LPT schedules.

6.22. Consider Fm | prmu, pij = pj |
∑

wjCj . Show that if wj/pj > wk/pk
and pj < pk, then there exists an optimal sequence in which job j precedes
job k.

6.23. Consider the following hybrid between Fm | prmu | Cmax and Fm |
block | Cmax. Between some machines there is no intermediate storage and
between other machines there is an infinite intermediate storage. Suppose a job
sequence is given. Give a description of the graph through which the length of
the makespan can be computed.

Comments and References

The solution for the F2 || Cmax problem is presented in the famous paper by S.M.
Johnson (1954). The integer programming formulation of Fm || Cmax is due to
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Wagner (1959) and the NP-Hardness proof for F3 || Cmax is from Garey, Johnson
and Sethi (1976). A definition of SPT-LPT schedules appears in Pinedo (1982).
Theorem 6.1.9 is from Eck and Pinedo (1988). For results regarding propor-
tionate flow shops see Ow (1985), Pinedo (1985), and Shakhlevich, Hoogeveen
and Pinedo (1998). For an overview of Fm || Cmax models with special struc-
tures that can be solved easily, see Monma and Rinnooy Kan (1983); their
framework includes the results obtained earlier by Smith, Panwalkar and Dudek
(1975, 1976) and Szwarc (1971, 1973, 1978). The slope heuristic for permutation
flow shops is from Palmer (1965). Many other heuristics have been developed
for Fm || Cmax; see, for example, Campbell, Dudek and Smith (1970), Gupta
(1972), Baker (1975), Dannenbring (1977), Widmer and Hertz (1989) and Tail-
lard (1990). For complexity results with regard to various objective functions,
see Gonzalez and Sahni (1978b) and Du and Leung (1993a, 1993b).
The flow shop with limited intermediate storage Fm | block | Cmax is studied

in detail by Levner (1969), Reddy and Ramamoorthy (1972) and Pinedo (1982).
The reversibility result in Lemma 6.2.1 is due to Muth (1979). The Profile Fit-
ting heuristic is from McCormick, Pinedo, Shenker and Wolf (1989). Wismer
(1972) establishes the link between Fm | nwt | Cmax and the Travelling Sales-
man Problem. Sahni and Cho (1979a), Papadimitriou and Kannelakis (1980)
and Röck (1984) obtain complexity results for Fm | nwt | Cmax. Goyal and
Sriskandrajah (1988) present a review of complexity results and approximation
algorithms for Fm | nwt | γ. For an overview of models in the classes Fm || γ,
Fm | block | γ and Fm | nwt | γ, see Hall and Sriskandarajah (1996).
Theorem 6.3.2 is from Eck and Pinedo (1988). For makespan results with

regard to the flexible flow shops see Sriskandarajah and Sethi (1989). Yang,
Kreipl and Pinedo (2000) present heuristics for the flexible flow shop with the
total weighted tardiness as objective. For more applied issues concerning flexible
flow shops, see Hodgson and McDonald (1981a, 1981b, 1981c).
For research concerning the two machine flow shop with the total completion

time objective, see van de Velde (1990), Della Croce, Narayan and Tadei (1996),
Shakhlevich, Hoogeveen and Pinedo (1998), Della Croce, Ghirardi and Tadei
(2002), Akkan and Karabati (2004), and Hoogeveen, van Norden and van de
Velde (2006).
Dawande, Geismar, Sethi and Sriskandarajah (2007) present an extensive

overview of one of the more important application areas of flow shops, namely
robotic cells.
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This chapter deals with multi-operation models that are different from the flow
shop models discussed in the previous chapter. In a flow shop model all jobs
follow the same route. When the routes are fixed, but not necessarily the same
for each job, the model is called a job shop. If a job in a job shop has to visit
certain machines more than once, the job is said to recirculate. Recirculation
is a common phenomenon in the real world. For example, in semiconductor
manufacturing jobs have to recirculate several times before they complete all
their processing.
The first section focuses on representations and formulations of the classical

job shop problem with the makespan objective and no recirculation. It also
describes a branch-and-bound procedure that is designed to find the optimal
solution. The second section describes a popular heuristic for job shops with the
makespan objective and no recirculation. This heuristic is typically referred to as
the Shifting Bottleneck heuristic. The third section focuses on a more elaborate
version of the shifting bottleneck heuristic that is designed specifically for the
total weighted tardiness objective. The fourth section describes an application
of a constraint programming procedure for the minimization of the makespan.
The last section discusses possible extensions.

7.1 Disjunctive Programming and Branch-and-Bound

Consider J2 || Cmax. There are two machines and n jobs. Some jobs have to be
processed first on machine 1 and then on machine 2, while the remaining jobs

179M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
c© Springer Science+Business Media, LLC 2008

7,



180 7 Job Shops (Deterministic)

have to be processed first on machine 2 and then on machine 1. The processing
time of job j on machine 1 (2) is p1j (p2j). The objective is to minimize the
makespan.
This problem can be reduced to F2 || Cmax as follows. Let J1,2 denote the

set of jobs that have to be processed first on machine 1, and J2,1 the set of
jobs that have to be processed first on machine 2. Observe that when a job
from J1,2 has completed its processing on machine 1, postponing its processing
on machine 2 does not affect the makespan as long as machine 2 is kept busy.
The same can be said about a job from J2,1; if such a job has completed its
processing on machine 2, postponing its processing on machine 1 (as long as
machine 1 is kept busy) does not affect the makespan. Hence a job from J1,2

has on machine 1 a higher priority than any job from J2,1, while a job from
J2,1 has on machine 2 a higher priority than any job from J1,2. It remains to
be determined in what sequence jobs in J1,2 go through machine 1 and jobs in
J2,1 go through machine 2. The first of these two sequences can be determined
by considering J1,2 as an F2 || Cmax problem with machine 1 set up first
and machine 2 set up second and the second sequence can be determined by
considering J2,1 as another F2 || Cmax problem with machine 2 set up first and
machine 1 second. This leads to SPT(1)-LPT(2) sequences for each of the two
sets, with priorities between sets as specified above.
This two machine problem is one of the few job shop scheduling problems

for which a polynomial time algorithm can be found. The few other job shop
scheduling problems for which polynomial time algorithms can be obtained
usually require all processing times to be either 0 or 1.
The remainder of this section is dedicated to the Jm || Cmax problem with

arbitrary processing times and no recirculation.
Minimizing the makespan in a job shop without recirculation, Jm || Cmax,

can be represented in a very nice way by a disjunctive graph. Consider a directed
graph G with a set of nodes N and two sets of arcs A and B. The nodes N
correspond to all the operations (i, j) that must be performed on the n jobs.
The so-called conjunctive (solid) arcs A represent the routes of the jobs. If
arc (i, j) → (k, j) is part of A, then job j has to be processed on machine i
before it is processed on machine k, i.e., operation (i, j) precedes operation
(k, j). Two operations that belong to two different jobs and that have to be
processed on the same machine are connected to one another by two so-called
disjunctive (broken) arcs that go in opposite directions. The disjunctive arcs
B form m cliques of double arcs, one clique for each machine. (A clique is
a term in graph theory that refers to a graph in which any two nodes are
connected to one another; in this case each connection within a clique consists
of a pair of disjunctive arcs.) All operations (nodes) in the same clique have to
be done on the same machine. All arcs emanating from a node, conjunctive as
well as disjunctive, have as length the processing time of the operation that is
represented by that node. In addition there is a source U and a sink V , which
are dummy nodes. The source node U has n conjunctive arcs emanating to the
first operations of the n jobs and the sink node V has n conjunctive arcs coming
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Fig. 7.1 Directed graph for job shop with makespan as objective

in from all the last operations. The arcs emanating from the source have length
zero (see Figure 7.1). This graph is denoted by G = (N,A,B).
A feasible schedule corresponds to a selection of one disjunctive arc from

each pair such that the resulting directed graph is acyclic. This implies that a
selection of disjunctive arcs from a clique has to be acyclic. Such a selection
determines the sequence in which the operations are to be performed on that
machine. That a selection from a clique has to be acyclic can be argued as
follows: If there were a cycle within a clique, a feasible sequence of the operations
on the corresponding machine would not have been possible. It may not be
immediately obvious why there should not be any cycle formed by conjunctive
arcs and disjunctive arcs from different cliques. However, such a cycle would
correspond also to a situation that is infeasible. For example, let (h, j) and
(i, j) denote two consecutive operations that belong to job j and let (i, k) and
(h, k) denote two consecutive operations that belong to job k. If under a given
schedule operation (i, j) precedes operation (i, k) on machine i and operation
(h, k) precedes operation (h, j) on machine h, then the graph contains a cycle
with four arcs, two conjunctive arcs and two disjunctive arcs from different
cliques. Such a schedule is physically impossible. Summarizing, if D denotes
the subset of the selected disjunctive arcs and the graph G(D) is defined by
the set of conjunctive arcs and the subset D, then D corresponds to a feasible
schedule if and only if G(D) contains no directed cycles.
The makespan of a feasible schedule is determined by the longest path in

G(D) from the source U to the sink V . This longest path consists of a set of
operations of which the first starts at time 0 and the last finishes at the time of
the makespan. Each operation on this path is immediately followed by either
the next operation on the same machine or the next operation of the same job
on another machine. The problem of minimizing the makespan is reduced to
finding a selection of disjunctive arcs that minimizes the length of the longest
path (that is, the critical path).
There are several mathematical programming formulations for the job shop

without recirculation, including a number of integer programming formulations.
However, the formulation most often used is the so-called disjunctive program-
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ming formulation (see also Appendix A). This disjunctive programming for-
mulation is closely related to the disjunctive graph representation of the job
shop.
To present the disjunctive programming formulation, let the variable yij

denote the starting time of operation (i, j). Recall that set N denotes the set
of all operations (i, j), and set A the set of all routing constraints (i, j) →
(k, j) that require job j to be processed on machine i before it is processed on
machine k. The following mathematical program minimizes the makespan.

minimize Cmax

subject to

ykj − yij ≥ pij for all (i, j)→ (k, j) ∈ A

Cmax − yij ≥ pij for all (i, j) ∈ N

yij − yil ≥ pil or yil − yij ≥ pij for all (i, l) and (i, j), i = 1, . . . ,m
yij ≥ 0 for all (i, j) ∈ N

In this formulation, the first set of constraints ensure that operation (k, j)
cannot start before operation (i, j) is completed. The third set of constraints are
called the disjunctive constraints; they ensure that some ordering exists among
operations of different jobs that have to be processed on the same machine.
Because of these constraints this formulation is referred to as a disjunctive
programming formulation.

Example 7.1.1 (Disjunctive Programming Formulation)

Consider the following example with four machines and three jobs. The route,
i.e., the machine sequence, as well as the processing times are given in the
table below.

jobs machine sequence processing times

1 1, 2, 3 p11 = 10, p21 = 8, p31 = 4
2 2, 1, 4, 3 p22 = 8, p12 = 3, p42 = 5, p32 = 6
3 1, 2, 4 p13 = 4, p23 = 7, p43 = 3

The objective consists of the single variable Cmax. The first set of constraints
consists of seven constraints: two for job 1, three for job 2 and two for job 3.
For example, one of these is

y21 − y11 ≥ 10 (= p11).
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The second set consists of ten constraints, one for each operation. An example
is

Cmax − y11 ≥ 10 (= p11).

The set of disjunctive constraints contains eight constraints: three each for
machines 1 and 2 and one each for machines 3 and 4 (there are three opera-
tions to be performed on machines 1 and 2 and two operations on machines 3
and 4). An example of a disjunctive constraint is

y11 − y12 ≥ 3 (= p12) or y12 − y11 ≥ 10 (= p11).

The last set includes ten nonnegativity constraints, one for each starting
time. ||
That a scheduling problem can be formulated as a disjunctive program does

not imply that there is a standard solution procedure available that will work
satisfactorily. Minimizing the makespan in a job shop is a very hard problem
and solution procedures are either based on enumeration or on heuristics.
To obtain optimal solutions branch-and-bound methods are required. The

branching as well as the bounding procedures that are applicable to this prob-
lem are usually of a special design. In order to describe one of the branching
procedures a specific class of schedules is considered.

Definition 7.1.2 (Active Schedule). A feasible schedule is called active
if it cannot be altered in any way such that some operation is completed earlier
and no other operation is completed later.

A schedule being active implies that when a job arrives at a machine, this job
is processed in the prescribed sequence as early as possible. An active schedule
cannot have any idle period in which the operation of a waiting job could fit.
From the definition it follows that an active schedule has the property that

it is impossible to reduce the makespan without increasing the starting time
of some operation. Of course, there are many different active schedules. It can
be shown that there exists among all possible schedules an active schedule that
minimizes the makespan.
A branching scheme that is often used is based on the generation of all active

schedules. All such active schedules can be generated by a simple algorithm. In
this algorithm Ω denotes the set of all operations of which all predecessors
already have been scheduled (i.e., the set of all schedulable operations) and rij
the earliest possible starting time of operation (i, j) in Ω. The set Ω′ is a subset
of set Ω.

Algorithm 7.1.3 (Generation of all Active Schedules)
Step 1. (Initial Condition)

Let Ω contain the first operation of each job;
Let rij = 0, for all (i, j) ∈ Ω.
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Step 2. (Machine Selection)
Compute for the current partial schedule

t(Ω) = min
(i,j)∈Ω

{rij + pij}

and let i∗ denote the machine on which the minimum is achieved.

Step 3. (Branching)
Let Ω′ denote the set of all operations (i∗, j) on machine i∗ such that

ri∗j < t(Ω).

For each operation in Ω′ consider an (extended) partial schedule
with that operation as the next one on machine i∗.
For each such (extended) partial schedule delete the operation from Ω,
include its immediate follower in Ω and return to Step 2. ||
Algorithm 7.1.3 is the basis for the branching process. Step 3 performs the

branching from the node that is characterized by the given partial schedule;
the number of branches is equal to the number of operations in Ω′. With this
algorithm one can generate the entire tree and the nodes at the very bottom of
the tree correspond to all the active schedules.
So a node V in the tree corresponds to a partial schedule and the partial

schedule is characterized by a selection of disjunctive arcs that corresponds to
the order in which all the predecessors of a given set Ω have been scheduled. A
branch out of node V corresponds to the selection of an operation (i∗, j) ∈ Ω′

as the next one to go on machine i∗. The disjunctive arcs (i∗, j)→ (i∗, k) then
have to be added to machine i∗ for all operations (i∗, k) still to be scheduled
on machine i∗. This implies that the newly created node at the lower level, say
node V ′, which corresponds to a partial schedule with only one more operation
in place, contains various additional disjunctive arcs that are now selected (see
Figure 7.2). Let D′ denote the set of disjunctive arcs selected at the newly
created node. Refer to the graph that includes all the conjunctive arcs and set
D′ as graph G(D′). The number of branches sprouting from node V is equal to
the number of operations in Ω′.
To find a lower bound for the makespan at node V ′, consider graph G(D′).

The length of the critical path in this graph already results in a lower bound
for the makespan at node V ′. Call this lower bound LB(V ′). Better (higher)
lower bounds for this node can be obtained as follows.
Consider machine i and assume that all other machines are allowed to pro-

cess, at any point in time, multiple operations simultaneously (since not all
disjunctive arcs have been selected yet in G(D′), it may be the case that, at
some points in time, multiple operations require processing on the same ma-
chine at the same time). However, machine i must process its operations one
after another. First, compute the earliest possible starting times rij of all the
operations (i, j) on machine i; that is, determine in graph G(D′) the length
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Fig. 7.2 Branching tree for branch-and-bound approach

of the longest path from the source to node (i, j). Second, for each operation
(i, j) on machine i, compute the minimum amount of time needed between the
completion of operation (i, j) and the lower bound LB(V ′), by determining the
longest path from node (i, j) to the sink in G(D′). This amount of time, to-
gether with the lower bound on the makespan, translates into a due date dij for
operation (i, j), i.e., dij is equal to LB(V ′) minus the length of the longest path
from node (i, j) to the sink plus pij . Consider now the problem of sequencing
the operations on machine i as a single machine problem with jobs arriving at
different release dates, no preemptions allowed and the maximum lateness as
the objective to be minimized, i.e., 1 | rj | Lmax (see Section 3.2). Even though
this problem is strongly NP-hard, there are relatively effective algorithms that
generate good solutions. The optimal sequence obtained for this problem im-
plies a selection of disjunctive arcs that can be added (temporarily) to D′. This
then may lead to a longer overall critical path in the graph, a larger makespan
and a better (higher) lower bound for node V ′. At node V ′ this can be done
for each of the m machines separately. The largest makespan obtained this way
can be used as a lower bound at node V ′. Of course, the temporary disjunctive
arcs inserted to obtain the lower bound are deleted as soon as the best lower
bound is determined.
Although it appears somewhat of a burden to have to solve m strongly

NP-hard scheduling problems in order to obtain one lower bound for another
strongly NP-hard problem, this type of bounding procedure has performed rea-
sonably well in computational experiments.
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Fig. 7.3 Precedence graphs at Level 1 in Example 7.1.4

Example 7.1.4 (Application of Branch-and-Bound)
Consider the instance described in Example 7.1.1. The initial graph contains
only conjunctive arcs and is depicted in Figure 7.3.a. The makespan corre-
sponding to this graph is 22. Applying the branch-and-bound procedure to
this instance results in the following branch-and-bound tree.

Level 1: Applying Algorithm 7.1.3 yields

Ω = {(1, 1), (2, 2), (1, 3)},
t(Ω) = min (0 + 10, 0 + 8, 0 + 4) = 4,

i∗ = 1,
Ω′ = {(1, 1), (1, 3)}.

So there are two nodes of interest at level 1, one corresponding to operation
(1, 1) being processed first on machine 1 and the other to operation (1, 3)
being processed first on machine 1.
If operation (1, 1) is scheduled first, then the two disjunctive arcs depicted

in Figure 7.3.b are added to the graph. The node is characterized by the two
disjunctive arcs

(1, 1)→ (1, 2),
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(1, 1)→ (1, 3).

The addition of these two disjunctive arcs immediately increases the lower
bound on the makespan to 24. In order to improve this lower bound one can
generate for machine 1 an instance of 1 | rj | Lmax. The release date of job j
in this single machine problem is determined by the longest path from the
source U to node (1, j) in Figure 7.3.b. The due date of job j is computed by
finding the longest path from node (1, j) to the sink, subtracting p1j from the
length of this longest path, and subtracting the resulting value from 24. These
computations lead to the following single machine problem for machine 1.

jobs 1 2 3

p1j 10 3 4
r1j 0 10 10
d1j 10 13 14

The sequence that minimizes Lmax is 1, 2, 3 with Lmax = 3. This implies that
a lower bound for the makespan at the corresponding node is 24 + 3 = 27.
An instance of 1 | rj | Lmax corresponding to machine 2 can be generated in
the same way. The release dates and due dates also follow from Figure 7.3.b
(assuming a makespan of 24), and are as follows.

jobs 1 2 3

p2j 8 8 7
r2j 10 0 14
d2j 20 10 21

The optimal sequence is 2, 1, 3 with Lmax = 4. This yields a better lower
bound for the makespan at the node that corresponds to operation (1, 1)
being scheduled first, i.e., 24 + 4 = 28. Analyzing machines 3 and 4 in the
same way does not yield a better lower bound.
The second node at Level 1 corresponds to operation (1, 3) being scheduled

first. If (1, 3) is scheduled to go first, two different disjunctive arcs are added
to the original graph, yielding a lower bound of 26. The associated instance
of the maximum lateness problem for machine 1 has an optimal sequence
3, 1, 2 with Lmax = 2. This implies that the lower bound for the makespan at
this node, corresponding to operation (1, 3) scheduled first, is also equal to
28. Analyzing machines 2, 3 and 4 does not result in a better lower bound.
The next step is to branch from node (1,1) at Level 1 and generate the

nodes at the next level.
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Level 0
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No disjunctive arcs
(Figure 7.3a)

(1, 1)
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first on
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(1, 1) scheduled first
on machine 1
(2, 2) scheduled first
on machine 2

(1, 3)
scheduled
first on
machine 1

L.B = 28

Fig. 7.4 Branching tree in Example 7.1.4

Level 2: Applying Algorithm 7.1.3 now yields

Ω = {(2, 2), (2, 1), (1, 3)},
t(Ω) = min (0 + 8, 10 + 8, 10 + 4) = 8,

i∗ = 2,
Ω′ = {(2, 2)}.

There is one node of interest at this part of Level 2, the node corresponding
to operation (2, 2) being processed first on machine 2 (see Figure 7.4). Two
disjunctive arcs are added to the graph, namely (2, 2)→ (2, 1) and (2, 2)→
(2, 3). So this node is characterized by a total of four disjunctive arcs:

(1, 1)→ (1, 2),

(1, 1)→ (1, 3),

(2, 2)→ (2, 1),

(2, 2)→ (2, 3).

This leads to an instance of 1 | rj | Lmax for machine 1 with the following
release dates and due dates (assuming a makespan of 28).

jobs 1 2 3

p1j 10 3 4
r1j 0 10 10
d1j 14 17 18
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Fig. 7.5 Gantt chart for J4 || Cmax (Example 7.1.4)

The optimal job sequence is 1, 3, 2 and Lmax = 0. This implies that the lower
bound for the makespan at the corresponding node is 28+0 = 28. Analyzing
machines 2, 3 and 4 in the same way does not increase the lower bound.
Continuing the branch-and-bound procedure results in the following job

sequences for the four machines.

machine job sequence

1 1, 3, 2 (or 1, 2, 3)
2 2, 1, 3
3 1, 2
4 2, 3

The makespan under this optimal schedule is 28 (see Figure 7.5). ||
The approach described above is based on complete enumeration and is guar-

anteed to lead to an optimal schedule. However, with a large number of machines
and a large number of jobs the computation time is prohibitive. Already with
20 machines and 20 jobs it is hard to find an optimal schedule.
It is therefore necessary to develop heuristics that lead to reasonably good

schedules in a reasonably short time. The next section describes a well-known
heuristic with an excellent track record.

7.2 The Shifting Bottleneck Heuristic and the Makespan

One of the most successful heuristic procedures developed for Jm || Cmax is the
Shifting Bottleneck heuristic.
In the following overview of the Shifting Bottleneck heuristic M denotes the

set of all m machines. In the description of an iteration of the heuristic it is
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assumed that in previous iterations a selection of disjunctive arcs already has
been fixed for a subset M0 of machines. So for each one of the machines in M0

a sequence of operations has already been determined.
An iteration determines which machine in M −M0 has to be included next

in set M0. The sequence in which the operations on this machine have to be
processed is also generated in this iteration. In order to select the machine to
be included next in M0, an attempt is made to determine which one of the
machines still to be scheduled would cause in one sense or another the severest
disruption. To determine this, the original directed graph is modified by deleting
all disjunctive arcs of the machines still to be scheduled (i.e., the machines in
set M −M0) and keeping only the relevant disjunctive arcs of the machines in
setM0 (one from every pair). Call this graph G′. Deleting all disjunctive arcs of
a specific machine implies that all operations on this machine, which originally
were supposed to be done on this machine one after another, now may be done
in parallel (as if the machine has infinite capacity, or equivalently, each one of
these operations has the machine for itself). The graph G′ has one or more
critical paths that determine the corresponding makespan. Call this makespan
Cmax(M0).
Suppose that operation (i, j), i ∈ {M −M0}, has to be processed in a time

window of which the release date and due date are determined by the critical
(longest) paths in G′, i.e., the release date is equal to the longest path in G′ from
the source U to node (i, j) and the due date is equal to Cmax(M0), minus the
longest path from node (i, j) to the sink, plus pij . Consider each of the machines
inM−M0 as a separate 1 | rj | Lmax problem. As stated in the previous section
this problem is strongly NP-hard, but procedures have been developed that
perform reasonably well. The minimum Lmax of the single machine problem
corresponding to machine i is denoted by Lmax(i) and is a measure of the
criticality of machine i.
After solving all these single machine problems, the machine with the largest

maximum lateness is chosen. Among the remaining machines, this machine is
in a sense the most critical or the ”bottleneck” and therefore the one to be
included next in M0. Label this machine k, call its maximum lateness Lmax(k)
and schedule it according to the optimal solution obtained for the single machine
problem associated with this machine. If the disjunctive arcs that specify the
sequence of operations on machine k are inserted in graphG′, then the makespan
of the current partial schedule increases by at least Lmax(k), that is,

Cmax(M0 ∪ k) ≥ Cmax(M0) + Lmax(k).

Before starting the next iteration and determining the next machine to be
scheduled, one additional step has to be done within the current iteration. In
this additional step all the machines in the original set M0 are resequenced in
order to see if the makespan can be reduced. That is, a machine, say machine l,
is taken out of set M0 and a graph G′′ is constructed by modifying graph G′

through the inclusion of the disjunctive arcs that specify the sequence of oper-
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ations on machine k and the exclusion of the disjunctive arcs associated with
machine l. Machine l is resequenced by solving the corresponding 1 | rj | Lmax

problem with the release and due dates determined by the critical paths in
graph G′′. Resequencing each of the machines in the original set M0 completes
the iteration.
In the next iteration the entire procedure is repeated and another machine

is added to the current set M0 ∪ k.
The shifting bottleneck heuristic can be summarized as follows.

Algorithm 7.2.1 (Shifting Bottleneck Heuristic)

Step 1. (Initial Conditions)
Set M0 = ∅.
Graph G is the graph with all the conjunctive arcs and no disjunctive arcs.
Set Cmax(M0) equal to the longest path in graph G.

Step 2. (Analysis of machines still to be scheduled)
Do for each machine i in set M −M0 the following:
generate an instance of 1 | rj | Lmax

(with the release date of operation (i, j) determined by the longest path
in graph G from the source node U to node (i, j);
and the due date of operation (i, j) determined by Cmax(M0) minus
the longest path in graph G from node (i, j) to the sink, plus pij).
Minimize the Lmax in each one of these single machine subproblems.
Let Lmax(i) denote the minimum Lmax in the subproblem
corresponding to machine i.

Step 3. (Bottleneck selection and sequencing)
Let

Lmax(k) = max
i∈{M−M0}

(Lmax(i))

Sequence machine k according to the sequence obtained
in Step 2 for that machine.
Insert all the corresponding disjunctive arcs in graph G.
Insert machine k in M0.

Step 4. (Resequencing of all machines scheduled earlier)
Do for each machine i ∈ {M0 − k} the following:
delete from G the disjunctive arcs corresponding to machine i;
formulate a single machine subproblem for machine i with
release dates and due dates of the operations determined by
longest path calculations in G.
Find the sequence that minimizes Lmax(i) and
insert the corresponding disjunctive arcs in graph G.

Step 5. (Stopping criterion)
If M0 =M then STOP, otherwise go to Step 2. ||
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The structure of the shifting bottleneck heuristic shows the relationship be-
tween the bottleneck concept and more combinatorial concepts such as critical
(longest) path and maximum lateness. A critical path indicates the location
and the timing of a bottleneck. The maximum lateness gives an indication of
the amount by which the makespan increases if a machine is added to the set
of machines already scheduled.
The remainder of this section contains two examples that illustrate the use

of the shifting bottleneck heuristic.

Example 7.2.2 (Application of Shifting Bottleneck Heuristic)
Consider the instance with four machines and three jobs described in Exam-
ples 7.1.1 and 7.1.4. The routes of the jobs, i.e., the machine sequences, and
the processing times are given in the following table:

jobs machine sequence processing times

1 1,2,3 p11 = 10, p21 = 8, p31 = 4
2 2,1,4,3 p22 = 8, p12 = 3, p42 = 5, p32 = 6
3 1,2,4 p13 = 4, p23 = 7, p43 = 3

Iteration 1: Initially, setM0 is empty and graph G′ contains only conjunctive
arcs and no disjunctive arcs. The critical path and the makespan Cmax(∅)
can be determined easily: this makespan is equal to the maximum total
processing time required for any job. The maximum of 22 is achieved in this
case by both jobs 1 and 2. To determine which machine to schedule first,
each machine is considered as a 1 | rj | Lmax problem with the release dates
and due dates determined by the longest paths in G′ (assuming a makespan
of 22).
The data for the 1 | rj | Lmax problem corresponding to machine 1 are

presented in the following table.

jobs 1 2 3

p1j 10 3 4
r1j 0 8 0
d1j 10 11 12

The optimal sequence turns out to be 1, 2, 3 with Lmax(1) = 5.
The data for the subproblem regarding machine 2 are:
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Fig. 7.6 Iteration 1 of shifting bottleneck heuristic (Example 7.2.2)

jobs 1 2 3

p2j 8 8 7
r2j 10 0 4
d2j 18 8 19

The optimal sequence for this problem is 2, 3, 1 with Lmax(2) = 5. Similarly,
it can be shown that

Lmax(3) = 4

and
Lmax(4) = 0.

From this it follows that either machine 1 or machine 2 may be considered a
bottleneck. Breaking the tie arbitrarily, machine 1 is selected to be included
inM0. The graph G′′ is obtained by fixing the disjunctive arcs corresponding
to the sequence of the jobs on machine 1 (see Figure 7.6). It is clear that

Cmax({1}) = Cmax(∅) + Lmax(1) = 22 + 5 = 27.

Iteration 2: Given that the makespan corresponding to G′′ is 27, the critical
paths in the graph can be determined. The three remaining machines have to
be analyzed separately as 1 | rj | Lmax problems. The data for the instance
concerning machine 2 are:

jobs 1 2 3

p2j 8 8 7
r2j 10 0 17
d2j 23 10 24
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The optimal schedule is 2, 1, 3 and the resulting Lmax(2) = 1. The data for
the instance corresponding to machine 3 are:

jobs 1 2

p3j 4 6
r3j 18 18
d3j 27 27

Both sequences are optimal and Lmax(3) = 1. Machine 4 can be analyzed
in the same way and the resulting Lmax(4) = 0. Again, there is a tie and
machine 2 is selected to be included in M0. So M0 = {1, 2} and

Cmax({1, 2}) = Cmax({1}) + Lmax(2) = 27 + 1 = 28.

The disjunctive arcs corresponding to the job sequence on machine 2 are
added to G′′ and graph G′′′ is obtained. At this point, still as a part of iter-
ation 2, an attempt may be made to decrease Cmax({1, 2}) by resequencing
machine 1. It can be checked that resequencing machine 1 does not give any
improvement.

Iteration 3: The critical path in G′′′ can be determined and machines 3 and
4 remain to be analyzed. These two problems turn out to be very simple
with both having a zero maximum lateness. Neither one of the two machines
constitutes a bottleneck in any way.
The final schedule is determined by the following job sequences on the four

machines: job sequence 1, 2, 3 on machine 1; job sequence 2, 1, 3 on machine 2;
job sequence 2, 1 on machine 3 and job sequence 2, 3 on machine 4. The
makespan is 28. ||

The implementation of the shifting bottleneck technique in practice often
tends to be more complicated than the heuristic described above. The solution
procedure for the single machine subproblem must deal with some additional
complications.
The single machine maximum lateness problem that has to be solved repeat-

edly within each iteration of the heuristic may at times be slightly different
and more complicated than the 1 | rj | Lmax problem described in Chapter 3
(which is also the problem used for determining the lower bounds in the previ-
ous section). In the single machine problem that has to be solved in the shifting
bottleneck heuristic, the operations on a given machine may have to be subject
to a special type of precedence constraints. It may be the case that an opera-
tion that has to be processed on a particular machine can only be processed on
that machine after certain other operations have completed their processing on
that machine. These precedence constraints may be imposed by the sequences
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of the operations on the machines that already have been scheduled in earlier
iterations.
It may even be the case that two operations that are subject to such con-

straints not only have to be processed in the given order, they may also have
to be processed a given amount of time apart from one another. That is, in
between the processing of two operations that are subject to these precedence
constraints a certain minimum amount of time (i.e., a delay) may have to elapse.
The lengths of the delays are also determined by the sequences of the op-

erations on the machines already scheduled. These precedence constraints are
therefore referred to as delayed precedence constraints.
The next example illustrates the potential need for delayed precedence con-

straints in the single machine subproblem. Without these constraints the shift-
ing bottleneck heuristic may end up in a situation where there is a cycle in the
disjunctive graph and the corresponding schedule is infeasible. The following
example illustrates how sequences on machines already scheduled (machines in
M0) impose constraints on machines still to be scheduled (machines inM−M0).

Example 7.2.3 (Delayed Precedence Constraints)
Consider the following instance.

jobs machine sequence processing times

1 1,2 p11 = 1, p21 = 1
2 2,1 p22 = 1, p12 = 1
3 3 p33 = 4
4 3 p34 = 4

Applying the shifting bottleneck heuristic results in the following three
iterations.
Iteration 1: The first iteration consists of the optimization of three subprob-
lems. The data for the three subproblems associated with machines 1, 2, and
3 are tabulated below.

jobs 1 2

p1j 1 1
r1j 0 1
d1j 3 4

jobs 1 2

p2j 1 1
r2j 1 0
d2j 4 3

jobs 1 2

p3j 4 4
r3j 0 0
d3j 4 4

The optimal solutions for machines 1 and 2 have Lmax ≤ 0, while that for
machine 3 has Lmax = 4. So machine 3 is scheduled first and arc (3, 4) →
(3, 3) is inserted.
Iteration 2: The new set of subproblems are associated with machines 1
and 2.
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Fig. 7.7 Application of shifting bottleneck heuristic in Example 7.2.3

jobs 1 2

p1j 1 1
r1j 0 1
d1j 7 8

jobs 1 2

p2j 1 1
r2j 1 0
d2j 8 7

The optimal solutions for machines 1 and 2 both have Lmax = −6, so
we arbitrarily select machine 1 to be scheduled next. Arc (1, 2) → (1, 1) is
inserted (see Figure 7.7.a).
Iteration 3: One subproblem remains, and it is associated with machine 2.

jobs 1 2

p2j 1 1
r2j 3 0
d2j 8 5

Any schedule for machine 2 yields an Lmax ≤ 0. If a schedule would be
selected arbitrarily and arc (2, 1)→ (2, 2) would be inserted, then a cycle is
created in the graph, and the overall schedule is infeasible (see Figure 7.7.b).
This situation could have been prevented by imposing delayed precedence

constraints. After scheduling machine 1 (in iteration 2) there is a path from
(2,2) to (2,1) with length 3. After iteration 2 has been completed a delayed
precedence constraint can be generated for subsequent iterations. Operation
(2,2) must precede operation (2,1) and, furthermore, there must be a delay
of 2 time units in between the completion of operation (2,2) and the start
of operation (2,1). With this constraint iteration 3 generates a sequence for
machine 2 that results in a feasible schedule. ||
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Fig. 7.8 Directed graph for job shop with total weighted tardiness
objective

Extensive numerical research has shown that the Shifting Bottleneck heuris-
tic is extremely effective. When applied to a standard test problem with 10
machines and 10 jobs that had remained unsolved for more than 20 years, the
heuristic obtained a very good solution very fast. This solution turned out to
be optimal after a branch-and-bound procedure found the same result and veri-
fied its optimality. The branch-and-bound approach, in contrast to the heuristic,
needed many hours of CPU time. The disadvantage of the heuristic is, of course,
that there is no guarantee that the solution it reaches is optimal.
The Shifting Bottleneck heuristic can be adapted in order to be applied to

more general models than the job shop model considered above, i.e., it can be
applied also to flexible job shops with recirculation.

7.3 The Shifting Bottleneck Heuristic and the Total
Weighted Tardiness

This section describes an approach for Jm || ∑wjTj that combines a variant of
the shifting bottleneck heuristic discussed in the previous section with a priority
rule called the Apparent Tardiness Cost first (ATC) rule.
The disjunctive graph representation for Jm || ∑wjTj is different from that

for Jm || Cmax. In the makespan problem only the completion time of the last
job to leave the system is of importance. There is therefore a single sink in
the disjunctive graph. In the total weighted tardiness problem the completion
times of all n jobs are of importance. Instead of a single sink, there are now n
sinks, i.e., V1, . . . , Vn (see Figure 7.8). The length of the longest path from the
source U to the sink Vk represents the completion time of job k.
The approach can be described as follows. Machines are again scheduled one

at a time. At the start of a given iteration all machines in set M0 have already
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Fig. 7.9 Cost function hij of operation (i, j) in single machine
subproblem

been scheduled (i.e., all disjunctive arcs have been selected for these machines)
and in this iteration it has to be decided which machine should be scheduled
next and how it should be scheduled. Each of the remaining machines has to
be analyzed separately and for each of these machines a measure of criticality
has to be computed. The steps to be done within an iteration can be described
as follows.
In the disjunctive graph representation all disjunctive arcs belonging to the

machines still to be scheduled are deleted and all disjunctive arcs selected for
the machines already scheduled (set M0) are kept in place. Given this directed
graph, the completion times of all n jobs can be computed easily. Let C′

k denote
the completion time of job k. Now consider a machine i that still has to be
scheduled (machine i is an element of set M −M0). To avoid an increase in
the completion time C′

k, operation (i, j), j = 1, . . . , n, must be completed on
machine i by some local due date dkij . This local due date can be computed by
considering the longest path from operation (i, j) to the sink corresponding to
job k, i.e., Vk. If there is no path from node (i, j) to sink Vk, then the local due
date dkij is infinity. So, because of job k, there may be a local due date dkij for
operation (i, j). That is, if operation (i, j) is completed after dkij then job k’s
overall completion time is postponed, resulting in a penalty. If the completion
of job k, C′

k, is already past the due date dk of job k, any increase in the
completion time increases the penalty at a rate wk. Because operation (i, j)
may cause a delay in the completion of any one of the n jobs, one can assume
that operation (i, j) is subject to n local due dates. This implies that operation
(i, j) is subject to a piece-wise linear cost function hij (see Figure 7.9).
Thus a measure of criticality of machine i can be obtained by solving a sin-

gle machine problem with each operation subject to a piece-wise linear cost
function, i.e., 1 || ∑hj(Cj), where hj is a piece-wise linear cost function corre-
sponding to job j. As in the previous section, the operations may be subject to
delayed precedence constraints to ensure feasibility.



7.3 The Shifting Bottleneck Heuristic and the Total Weighted Tardiness 199

This single machine subproblem is a generalization of the 1 || ∑wjTj prob-
lem (see Chapter 3). A well-known priority rule for 1 || ∑wjTj is the so-called
Apparent Tardiness Cost (ATC) rule. This ATC heuristic is a composite dis-
patching rule that combines the WSPT rule and the so-called Minimum Slack
first (MS) rule (under the MS rule the slack of job j at time t, max(dj−pj−t, 0),
is computed and the job with the minimum slack is scheduled). Under the ATC
rule jobs are scheduled one at a time; that is, every time the machine becomes
free a ranking index is computed for each remaining job. The job with the high-
est ranking index is then selected to be processed next. This ranking index is
a function of the time t at which the machine became free as well as of the pj ,
the wj and the dj of the remaining jobs. The index is defined as

Ij(t) =
wj
pj
exp

(
− max(dj − pj − t, 0)

Kp̄

)
,

where K is a scaling parameter, that can be determined empirically, and p̄ is
the average of the processing times of the remaining jobs. The ATC rule is
discussed in detail in Chapter 14.
The piece-wise linear and convex function hij in the subproblem 1 ||∑
hj(Cj) may be regarded as a sum of linear penalty functions, for each of which

an ATC priority index can be computed. One can think of several composite
priority index functions for this more complicated cost function. A reasonably
effective one assigns to operation (i, j) the priority value

Iij(t) =
n∑
k=1

wk
pij
exp

(
− (d

k
ij − pij + (rij − t))+

Kp̄

)
,

where t is the earliest time at which machine i can be used, K is a scaling
parameter and p̄ is the integer part of the average length of the operations to
be processed on machine i. This composite dispatching rule yields a reasonably
good schedule for machine i.
A measure for the criticality of machine i can now be computed in a number

of ways. For example, consider the solutions of all the single machine subprob-
lems and set the measure for the criticality of a machine equal to the corre-
sponding value of the objective function. However, there are more involved and
more effective methods for measuring machine criticality. For example, by se-
lecting the disjunctive arcs implied by the schedule for machine i, one can easily
compute in the new disjunctive graph the new (overall) completion times of all
n jobs, say C′′

k . Clearly, C
′′
k ≥ C′

k. The contribution of job k to the measure of
criticality of machine i is computed as follows. If C′

k > dk, then the contribution
of job k to the measure of criticality of machine i is wk(C′′

k − C′
k). However, if

C′
k < dk, then the penalty due to an increase of the completion of job k is more
difficult to estimate. This penalty would then be a function of C′

k, C
′′
k , and dk.

Several functions have been experimented with and appear to be promising.
One such function is
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wk(C′′
k − C′

k) exp
(
− (dk − C′′

k )
+

K

)
,

where K is a scaling parameter. Summing over all jobs, i.e.,

n∑
k=1

wk(C′′
k − C′

k) exp
(
− (dk − C′′

k )
+

K

)
,

provides a measure of criticality for machine i. This last expression plays a role
that is similar to the one of Lmax(i) in Step 2 of Algorithm 7.2.1. After the
criticality measures of all the machines in M −M0 have been computed, the
machine with the highest measure is selected as the next one to be included in
set M0.
However, this process does not yet complete an iteration. The original shifting

bottleneck approach, as described in Algorithm 7.2.1, suggests that rescheduling
all the machines in the original set M0 is advantageous. This rescheduling may
result in different and better schedules. After this step has been completed, the
entire process repeats itself and the next iteration is started.

Example 7.3.1 (Shifting Bottleneck and Total Weighted Tardiness)
Consider the instance with three machines and three jobs depicted in Fig-
ure 7.8.

job wj rj dj machine sequence processing times

1 1 5 24 1,2,3 p11 = 5, p21 = 10, p31 = 4
2 2 0 18 3,1,2 p32 = 4, p12 = 5, p22 = 6
3 2 0 16 3,2,1 p33 = 5, p23 = 3, p13 = 7

The initial graph is depicted in Figure 7.10.a.
Iteration 1: The first iteration requires the optimization of three subprob-
lems, one for each machine in the job shop. The data for these three sub-
problems, corresponding to machines 1, 2, and 3, are tabulated below.

jobs 1 2 3

p1j 5 5 7
r1j 5 4 8
d1
1j , d

2
1j , d

3
1j 10,−,− −, 12,− −,−, 16

jobs 1 2 3

p2j 10 6 3
r2j 10 9 5
d1
2j , d

2
2j , d

3
2j 20,−,− −, 18,− −,−, 9
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Fig. 7.10 Directed graphs in Example 7.3.1

jobs 1 2 3

p3j 4 4 5
r3j 20 0 0
d1
3j , d

2
3j , d

3
3j 24,−,− −, 7,− −,−, 6

The entry “−” indicates that the corresponding due date dkij is infinite, i.e.,
there is no path from operation (i, j) to the sink corresponding to job k.
The subproblems are solved using a dispatching rule that is based on the
priority index Iij(t) for operation (i, j), where t is the earliest time at which
machine i can be used. Set the scaling parameter K equal to 0.1.
Since no operation has been scheduled yet, the priority indexes for the

operations assigned to machine 1 are (assuming t = 4 and p̄ = 5) I11(4) =
1.23 × 10−6, I12(4) = 3.3 × 10−7 and I13(4) = 1.46 × 10−12. The operation
with the highest priority, i.e., operation (1, 1), is put in the first position and
the remaining indexes are recalculated in order to determine which operation
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should be scheduled next. The solutions obtained for these three subproblems
are:

machine i sequence value

1 (1,1),(1,2),(1,3) 18
2 (2,3),(2,1),(2,2) 16
3 (3,3),(3,2),(3,1) 4

Since the solution of subproblem 1 has the highest value, schedule ma-
chine 1 by inserting the disjunctive arcs (1, 1) → (1, 2) and (1, 2) → (1, 3),
as shown in Figure 7.10.b.

Iteration 2: The data for the new subproblems, corresponding to machines 2
and 3, are tabulated below.

jobs 1 2 3

p2j 10 6 3
r2j 10 15 5
d1
2j , d

2
2j , d

3
2j 20,−,− −, 21,− −,−, 15

jobs 1 2 3

p3j 4 4 5
r3j 20 0 0
d1
3j , d

2
3j , d

3
3j 24,−,− −, 10, 10 −,−, 12

In this iteration operation (3, 2) has two due dates because there is a (di-
rected) path from node (3, 2) to V2 and V3. This makes its index equal to

I32(0) = 1.53× 10−7 + 1.53× 10−7 = 3.06× 10−7,

since t = 0 and p̄ = 4. The solutions obtained for the two subproblems are:

machine i sequence value

2 (2,3),(2,1),(2,2) 10
3 (3,2),(3,3),(3,1) 0

The solution for subproblem 2 has the highest value (10). Schedule machine 2
by inserting the disjunctive arcs (2, 3)→ (2, 1) and (2, 1)→ (2, 2) as shown
in Figure 7.10.c.

Iteration 3: The only subproblem that remains is the one for machine 3.
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Fig. 7.11 Final schedule in Example 7.3.1

jobs 1 2 3

p3j 4 4 5
r3j 20 0 0
d1
3j , d

2
3j , d

3
3j 24,−,− −, 15, 10 7, 7, 12

Its optimal solution is (3, 3), (3, 2), (3, 1) with value equal to zero, so insert
the arcs (3, 3) → (3, 2) and (3, 2) → (3, 1), as shown in Figure 7.10.d. The
final solution is depicted in Figure 7.11, with objective function equal to

3∑
j=1

wjTj = 1× (24− 24)+ + 2× (26− 18)+ + 2× (22− 16)+ = 28.

It happens that in this case the heuristic does not yield an optimal solution.
The optimal solution with a value of 18 can be obtained with more elaborate
versions of this heuristic. These versions make use of backtracking techniques
as well as machine reoptimization (similar to Step 4 in Algorithm 7.2.1). ||

7.4 Constraint Programming and the Makespan

Constraint programming is a technique that originated in the Artificial In-
telligence (AI) community. In recent years, it has often been implemented in
combination with Operations Research (OR) techniques in order to improve its
effectiveness.
Constraint programming, according to its original design, only tries to find a

good solution that is feasible and that satisfies all the given constraints (which
may include different release dates and due dates of jobs). The solutions ob-
tained may not necessarily minimize the objective function. However, it is pos-
sible to embed a constraint programming technique in a framework that is
designed to minimize any due date related objective function.
Constraint programming applied to Jm || Cmax works as follows. Suppose

that in a job shop a schedule has to be found with a makespan Cmax that is
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less than or equal to a given deadline d̄. The constraint satisfaction algorithm
has to produce for each machine a sequence of operations such that the overall
schedule has a makespan less than or equal to d̄.
Before the actual procedure starts, an initialization step has to be done. For

each operation a computation is done to determine its earliest possible start-
ing time and latest possible completion time on the machine in question. After
all the time windows have been computed, the time windows of all the opera-
tions on each machine are compared to one another. When the time windows of
two operations on any given machine do not overlap, a precedence relationship
between the two operations can be imposed; in any feasible schedule the oper-
ation with the earlier time window must precede the operation with the later
time window. Actually, a precedence relationship may be inferred even when
the time windows do overlap. Let S′

ij (S
′′
ij) denote the earliest (latest) possible

starting time of operation (i, j) and C′
ij (C

′′
ij) the earliest (latest) possible com-

pletion time of operation (i, j) under the current set of precedence constraints.
Note that the earliest possible starting time of operation (i, j), i.e., S′

ij , may be
regarded as a local release date of the operation and may be denoted by rij ,
whereas the latest possible completion time, i.e., C′′

ij , may be considered a local
due date denoted by dij . Define the slack between the processing of operations
(i, j) and (i, k) on machine i as

σ(i,j)→(i,k) = S′′
ik − C′

ij

or
σ(i,j)→(i,k) = C′′

ik − S′
ij − pij − pik

or
σ(i,j)→(i,k) = dik − rij − pij − pik.

If
σ(i,j)→(i,k) < 0

then there does not exist, under the current set of precedence constraints, a
feasible schedule in which operation (i, j) precedes operation (i, k) on machine i;
so a precedence relationship can be imposed that requires operation (i, k) to
appear before operation (i, j). In the initialization step of the procedure all
pairs of time windows are compared to one another and all implied precedence
relationships are inserted in the disjunctive graph. Because of these additional
precedence constraints the time windows of each one of the operations can be
adjusted (narrowed) again, i.e., this involves a recomputation of the release date
and the due date of each operation.
Constraint satisfaction techniques in general rely on constraint propagation.

A constraint satisfaction technique typically attempts, in each step, to insert
new precedence constraints (disjunctive arcs) that are implied by the precedence
constraints inserted before and by the original constraints of the problem. With
the new precedence constraints in place the technique recomputes the time
windows of all operations. For each pair of operations that have to be processed
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on the same machine it has to be verified which one of the following four cases
applies.

Case 1:
If σ(i,j)→(i,k) ≥ 0 and σ(i,k)→(i,j) < 0,
then the precedence constraint (i, j)→ (i, k) has to be imposed.

Case 2:
If σ(i,k)→(i,j) ≥ 0 and σ(i,j)→(i,k) < 0,
then the precedence constraint (i, k)→ (i, j) has to be imposed.

Case 3:
If σ(i,j)→(i,k) < 0 and σ(i,k)→(i,j) < 0,
then there is no schedule that satisfies the precedence constraints already in
place.

Case 4:
If σ(i,j)→(i,k) ≥ 0 and σ(i,k)→(i,j) ≥ 0,
then either ordering between the two operations is still possible.

In one of the steps of the algorithm that is described in this section a pair of
operations has to be selected that satisfies Case 4, i.e., either ordering between
the operations is still possible. In this step of the algorithm many pairs of
operations may still satisfy Case 4. If there is more than one pair of operations
that satisfies Case 4, then a search control heuristic has to be applied. The
selection of a pair is based on the sequencing flexibility that this pair still
provides. The pair with the lowest flexibility is selected. The reasoning behind
this approach is straightforward. If a pair with low flexibility is not scheduled
early on in the process, then it may be the case that later on in the process this
pair cannot be scheduled at all. So it makes sense to give priority to those pairs
with a low flexibility and postpone pairs with a high flexibility. Clearly, the
flexibility depends on the amounts of slack under the two orderings. One simple
estimate of the sequencing flexibility of a pair of operations, φ((i, j)(i, k)), is
the minimum of the two slacks, i.e.,

φ((i, j)(i, k)) = min(σ(i,j)→(i,k) , σ(i,k)→(i,j)).

However, relying on this minimum may lead to problems. For example, suppose
one pair of operations has slack values 3 and 100, whereas another pair has slack
values 4 and 4. In this case, there may be only limited possibilities for scheduling
the second pair and postponing a decision with regard to the second pair may
well eliminate them. A feasible ordering with regard to the first pair may not
really be in jeopardy. Instead of using φ((i, j)(i, k)) the following measure of
sequencing flexibility has proven to be more effective:

φ′((i, j)(i, k)) =
√
min(σ(i,j)→(i,k) , σ(i,k)→(i,j))×max(σ(i,j)→(i,k), σ(i,k)→(i,j)).
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So if the max is large, then the flexibility of a pair of operations increases and
the urgency to order the pair goes down. After the pair of operations with the
lowest sequencing flexibility φ′((i, j)(i, k)) has been selected, the precedence
constraint that retains the most flexibility is imposed, i.e., if

σ(i,j)→(i,k) ≥ σ(i,k)→(i,j)

operation (i, j) must precede operation (i, k).
In one of the steps of the algorithm it also can happen that a pair of opera-

tions satisfies Case 3. When this is the case the partial schedule that is under
construction cannot be completed and the algorithm has to backtrack. Back-
tracking typically implies that one or more of the ordering decisions made in
earlier iterations has to be annulled (i.e., precedence constraints that had been
imposed earlier have to be removed). Or, it may imply that there does not
exist a feasible solution for the problem in the way it has been presented and
formulated and that some of the original constraints of the problem have to be
relaxed.
The constraint guided heuristic search procedure can be summarized as fol-

lows.

Algorithm 7.4.1 (Constraint Guided Heuristic Search)
Step 1.

Compute for each unordered pair of operations
σ(i,j)→(i,k) and σ(i,k)→(i,j) .

Step 2.
Check dominance conditions and classify remaining ordering decisions.
If any ordering decision is either of Case 1 or Case 2 go to Step 3.
If any ordering decision is of Case 3, then backtrack;
otherwise go to Step 4.

Step 3.
Insert new precedence constraint and go to Step 1.

Step 4.
If no ordering decision is of Case 4, then solution is found. STOP.
Otherwise go to Step 5.

Step 5.
Compute φ′((i, j)(i, k)) for each pair of operations not yet ordered.
Select the pair with the minimum φ′((i, j)(i, k)).
If σ(i,j)→(i,k) ≥ σ(i,k)→(i,j), then operation (i, k) must follow operation (i, j);
otherwise operation (i, j) must follow operation (i, k).
Go to Step 3. ||
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In order to apply the constraint guided heuristic search procedure to Jm ||
Cmax, it has to be embedded in the following framework. First, an upper bound
du and a lower bound dl have to be found for the makespan.

Algorithm 7.4.2 (Framework for Constraint Guided Heuristic Search)
Step 1.

Set d = (dl + du)/2.
Apply Algorithm 7.4.1.

Step 2.
If Cmax < d, set du = d.
If Cmax > d, set dl = d.

Step 3.
If du − dl > 1 return to Step 1.
Otherwise STOP. ||
The following example illustrates the use of the constraint satisfaction tech-

nique.

Example 7.4.3 (Application of Constraint Programming to the Job
Shop)

Consider the instance of the job shop problem described in Example 7.1.1.

jobs machine sequence processing times

1 1, 2, 3 p11 = 10, p21 = 8, p31 = 4
2 2, 1, 4, 3 p22 = 8, p12 = 3, p42 = 5, p32 = 6
3 1, 2, 4 p13 = 4, p23 = 7, p43 = 3

Consider a due date d = 32 by when all jobs have to be completed.
Consider again the disjunctive graph but disregard all disjunctive arcs (see
Figure 7.12). By doing all longest path computations, the local release dates
and local due dates for all operations can be established (see Table 7.1(a)).
Given these time windows for all the operations, it has to be verified

whether these constraints already imply any additional precedence con-
straints. Consider, for example, the pair of operations (2,2) and (2,3) which
both have to go on machine 2. Computing the slack yields

σ(2,3)→(2,2) = d22 − r23 − p22 − p23

= 18− 4− 8− 7
= −1,

which implies that the ordering (2, 3) → (2, 2) is not feasible. So the dis-
junctive arc (2, 2) → (2, 3) has to be inserted. In the same way, it can be
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Fig. 7.12 Disjunctive graph without disjunctive arcs

(a)

operations rij dij

(1,1) 0 20
(2,1) 10 28
(3,1) 18 32

(2,2) 0 18
(1,2) 8 21
(4,2) 11 26
(3,2) 16 32

(1,3) 0 22
(2,3) 4 29
(4,3) 11 32

(b)

operations rij dij

(1,1) 0 18
(2,1) 10 28
(3,1) 18 32

(2,2) 0 18
(1,2) 10 21
(4,2) 13 26
(3,2) 18 32

(1,3) 0 22
(2,3) 8 29
(4,3) 15 32

(c)

pair φ′((i, j)(i, k))

(1,1)(1,3)
√
4× 8 = 5.65

(1,2)(1,3)
√
5× 14 = 8.36

(2,1)(2,3)
√
4× 5 = 4.47

(3,1)(3,2)
√
4× 4 = 4.00

(4,2)(4,3)
√
3× 11 = 5.74

Table 7.1 (a) Local release and due dates. (b) Local release and due dates after
update. (c) Computing φ′((i, j)(i, k)).
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shown that the disjunctive arcs (2, 2)→ (2, 1) and (1, 1)→ (1, 2) have to be
inserted as well.
These additional precedence constraints require an update of the release

dates and due dates of all operations. The adjusted release and due dates
are presented in Table 7.1(b).
These updated release and due dates do not imply any additional prece-

dence constraints. Going through Step 5 of the algorithm requires the com-
putation of the factor φ′((i, j)(i, k)) for every unordered pair of operations
on each machine (see Table 7.1(c)).
The pair with the least flexibility is (3, 1)(3, 2). Since the slacks are such

that
σ(3,2)→(3,1) = σ(3,1)→(3,2) = 4,

either precedence constraint can be inserted. Suppose the precedence con-
straint (3, 2) → (3, 1) is inserted. This precedence constraint causes major
changes in the time windows during which the operations have to be pro-
cessed (see Table 7.2(a)).

(a)

operations rij dij

(1,1) 0 14
(2,1) 10 28
(3,1) 24 32

(2,2) 0 14
(1,2) 10 17
(4,2) 13 22
(3,2) 18 28

(1,3) 0 22
(2,3) 8 29
(4,3) 15 32

(b)

operations rij dij

(1,1) 0 14
(2,1) 10 28
(3,1) 24 32

(2,2) 0 14
(1,2) 10 17
(4,2) 13 22
(3,2) 18 28

(1,3) 0 22
(2,3) 8 29
(4,3) 18 32

(c)

pair φ′((i, j)(i, k))

(1,1)(1,3)
√
0× 8 = 0.00

(1,2)(1,3)
√
5× 10 = 7.07

(2,1)(2,3)
√
4× 5 = 4.47

Table 7.2 (a) Local release and due dates. (b) Local release and due dates after
update. (c) Computing φ′((i, j)(i, k)).
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Fig. 7.13 Final schedule in Example 7.4.3

However, this new set of time windows imposes an additional precedence
constraint, namely (4, 2) → (4, 3). This new precedence constraint causes
changes in the release dates and due dates of the operations shown in Ta-
ble 7.2(b).
These updated release and due dates do not imply additional precedence

constraints. Step 5 of the algorithm now computes for every unordered pair
of operations on each machine the factor φ′((i, j)(i, k)) (see Table 7.2(c)).
The pair with the least flexibility is (1, 1)(1, 3) and the precedence con-

straint (1, 1)→ (1, 3) has to be inserted.
Inserting this last precedence constraint enforces one more constraint,

namely (2, 1)→ (2, 3). Now only one unordered pair of operations remains,
namely pair (1, 3)(1, 2). These two operations can be ordered in either way
without violating any due dates. A feasible ordering is (1, 3) → (1, 2). The
resulting schedule with a makespan of 32 is depicted in Figure 7.13. This
schedule meets the due date originally set but is not optimal.
When the pair (3, 1)(3, 2) had to be ordered the first time around, it could

have been ordered in either direction because the two slack values were equal.
Suppose at that point the opposite ordering was selected, i.e., (3, 1)→ (3, 2).
Restarting the process at that point yields the release and due dates shown
in Table 7.3(a).
These release and due dates enforce a precedence constraint on the pair

of operations (2, 1)(2, 3) and the constraint is (2, 1)→ (2, 3). This additional
constraint changes the release dates and due dates (see Table 7.3(b)).
These new release dates and due dates have an effect on the pair (4, 2)(4, 3)

and the arc (4, 2) → (4, 3) has to be included. This additional arc does not
cause any additional changes in the release and due dates. At this point only
two pairs of operations remain unordered, namely the pair (1, 1)(1, 3) and
the pair (1, 2)(1, 3) (see Table 7.3(c)).
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(a)

operations rij dij

(1,1) 0 14
(2,1) 10 22
(3,1) 18 26

(2,2) 0 18
(1,2) 10 21
(4,2) 13 26
(3,2) 18 32

(1,3) 0 22
(2,3) 8 29
(4,3) 15 32

(b)

operations rij dij

(1,1) 0 14
(2,1) 10 22
(3,1) 18 26

(2,2) 0 18
(1,2) 10 21
(4,2) 13 26
(3,2) 22 32

(1,3) 0 22
(2,3) 18 29
(4,3) 25 32

(c)

pair φ′((i, j)(i, k))

(1,1)(1,3)
√
0× 8 = 0.00

(1,2)(1,3)
√
5× 14 = 8.36

Table 7.3 (a) Local release and due dates. (b) Local release and due dates after
update. (c) Computing φ′((i, j)(i, k)).

So the pair (1, 1)(1, 3) is more critical and has to be ordered (1, 1)→ (1, 3).
It turns out that the last pair to be ordered, (1, 2)(1, 3), can be ordered either
way.
The resulting schedule turns out to be optimal and has a makespan of 28.

||
As stated before, constraint satisfaction is not only suitable for makespan

minimization. It can also be applied to problems with due date related objectives
and with each job having its own release date.

7.5 Discussion

The disjunctive graph formulation for Jm || Cmax extends to Jm | rcrc |
Cmax. The set of disjunctive arcs for a machine may now not be a clique. If
two operations of the same job have to be performed on the same machine a
precedence relationship is given. These two operations are not connected by a
pair of disjunctive arcs, since they are already connected by conjunctive arcs.
The branch-and-bound approach described in Section 7.1 still applies. However,
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the bounding mechanism is now not based on the solution of a 1 | rj | Lmax

problem, but rather on the solution of a 1 | rj , prec | Lmax problem. The
precedence constraints are the routing constraints on the different operations
of the same job to be processed on the machine.
In the same way that a flow shop can be generalized into a flexible flow shop,

a job shop can be generalized into a flexible job shop. The fact that the flexible
flow shop allows for few structural results gives already an indication that it is
hard to obtain results for the flexible job shop. Even the proportionate cases,
i.e., pij = pj for all i, are hard to analyze.
The Shifting Bottleneck heuristic can be adapted in such a way that it can

be applied to more general models than Jm || Cmax. These more general models
include recirculation as well as multiple machines at every stage. One such vari-
ation of the Shifting Bottleneck heuristic is based on decomposition principles.
This variation is especially suitable for the scheduling of flexible job shops. The
following five phase approach can be applied to flexible job shops.

Phase 1: The shop is divided into a number of workcenters that have to be
scheduled. A workcenter may consist of a single machine or a bank of machines
in parallel.

Phase 2: The entire job shop is represented through a disjunctive graph.
Phase 3: A performance measure is computed in order to rank the workcen-

ters in order of criticality. The schedule of the most critical workcenter, among
the workcenters of which the sequences still have to be determined, is fixed.

Phase 4: The disjunctive graph representation is used to capture the interac-
tions between the workcenters already scheduled and those not yet scheduled.

Phase 5: Those workcenters that already have been sequenced are resched-
uled using the new information obtained in Phase 4. If all workcenters have
been scheduled, stop. Otherwise go to Phase 3.

The subproblem now becomes a nonpreemptive parallel machine scheduling
problem with the jobs subject to different release dates and the maximum late-
ness as objective. A significant amount of computational research has been done
on this parallel machine problem.
This chapter describes an application of constraint programming to minimize

the makespan in job shops. A fair amount of research and development has been
done in recent years with regard to constraint programming techniques. These
techniques have now also been used for minimizing the total weighted tardiness
in job shops.
This chapter has not shown the use of local search in job shop scheduling.

An enormous amount of work has been done on this front. Chapter 14 discusses
the applications of local search to job shops.
It is clear from this chapter that there are a number of completely differ-

ent techniques for dealing with job shops, namely disjunctive programming,
shifting bottleneck, constraint programming and also local search techniques.
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Future research on job shop scheduling may focus on the development of hybrid
techniques incorporating two or more of these techniques in a single framework
that can be adapted easily to any given job shop instance.

Exercises (Computational)

7.1. Consider the following heuristic for Jm || Cmax. Each time a machine is
freed, select the job (among the ones immediately available for processing on the
machine) with the largest total remaining processing (including the processing
on the machine freed). If at any point in time more than one machine is freed,
consider first the machine with the largest remaining workload. Apply this
heuristic to the instance in Example 7.1.1.

7.2. Consider the following instance of Jm || Cmax.

jobs machine sequence processing times

1 1,2,3 p11 = 9, p21 = 8, p31 = 4
2 1,2,4 p12 = 5, p22 = 6, p42 = 3
3 3,1,2 p33 = 10, p13 = 4, p23 = 9

Give the disjunctive programming formulation of this instance.

7.3. Consider the following instance of the Jm || Cmax problem.

jobs machine sequence processing times

1 1,2,3,4 p11 = 9, p21 = 8, p31 = 4, p41 = 4
2 1,2,4,3 p12 = 5, p22 = 6, p42 = 3, p32 = 6
3 3,1,2,4 p33 = 10, p13 = 4, p23 = 9, p43 = 2

Give the disjunctive programming formulation of this instance.

7.4. Apply the heuristic described in Exercise 7.1 to the to the instance in
Exercise 7.3.

7.5. Consider the instance in Exercise 7.2.

(a) Apply the Shifting Bottleneck heuristic to this instance (doing the com-
putation by hand).
(b) Compare your result with the result of the shifting bottleneck routine
in the LEKIN system.

7.6. Consider again the instance in Exercise 7.2.

(a) Apply the branch-and-bound algorithm to this instance of job shop
problem.
(b) Compare your result with the result of the local search routine in the
LEKIN system.
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7.7. Consider the following instance of the two machine flow shop with the
makespan as objective (i.e., an instance of F2 || Cmax, which is a special case
of J2 || Cmax).

jobs 1 2 3 4 5 6 7 8 9 10 11

p1j 3 6 4 3 4 2 7 5 5 6 12
p2j 4 5 5 2 3 3 6 6 4 7 2

(a) Apply the heuristic described in Exercise 7.1 to this two machine flow
shop.
(b) Apply the shifting bottleneck heuristic to this two machine flow shop.
(c) Construct a schedule using Johnson’s rule (see Chapter 6).
(d) Compare the schedules found under (a), (b), and (c).

7.8. Consider the instance of the job shop with the total weighted tardiness
objective described in Example 7.3.1. Apply the Shifting Bottleneck heuristic
again, but now use as scaling parameterK = 5. Compare the resulting schedule
with the schedule obtained in Example 7.3.1.

7.9. Consider the following instance of Jm || ∑wjTj .

job wj rj dj machine sequence processing times

1 1 3 23 1,2,3 p11 = 4, p21 = 9, p31 = 5
2 2 2 17 3,1,2 p32 = 4, p12 = 5, p22 = 5
3 2 0 15 3,2,1 p33 = 6, p23 = 4, p13 = 6

(a) Apply the Shifting Bottleneck heuristic for the total weighted tardiness.
(b) Compare your result with the result of the shifting bottleneck routine
in the LEKIN system.
(c) Compare your result with the result of the local search routine in the
LEKIN system.

7.10. Consider the following instance of F2 || ∑wjTj.

jobs 1 2 3 4 5

p1j 12 4 6 8 2
p2j 10 5 4 6 3
dj 12 32 21 14 28
wj 3 2 4 3 2

Apply the shifting bottleneck heuristic to minimize the total weighted tardiness.
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Exercises (Theory)

7.11. Design a branching scheme for a branch-and-bound approach that is
based on the insertion of disjunctive arcs. The root node of the tree corresponds
to a disjunctive graph without any disjunctive arcs. Each node in the branching
tree corresponds to a particular selection of a subset of the disjunctive arcs.
That is, for any particular node in the tree a subset of the disjunctive arcs
has been fixed in certain directions, while the remaining set of disjunctive arcs
has not been fixed yet. From every node there are two arcs emanating to two
nodes at the next level. One of the two nodes at the next level corresponds to
an additional disjunctive arc being fixed in a given direction while the other
node corresponds to the reverse arc being selected. Develop an algorithm that
generates the nodes of such a branching tree and show that your algorithm
generates every possible schedule.

7.12. Determine an upper and a lower bound for the makespan in an m ma-
chine job shop when preemptions are not allowed. The processing time of job j
on machine i is pij (i.e., no restrictions on the processing times).

7.13. Show that when preemptions are allowed there always exists an optimal
schedule for the job shop that is non-delay.

7.14. Consider J2 | rcrc, pij = 1 | Cmax. Each job has to be processed a
number of times on each one of the two machines. A job always has to alternate
between the two machines, i.e., after a job has completed one operation on one
of the machines it has to go to the other machine for the next operation. The
processing time of each operation is 1. Determine the schedule that minimizes
the makespan and prove its optimality.

Comments and References

Job shop scheduling has received an enormous amount of attention in the re-
search literature as well as in books.
The algorithm for minimizing the makespan in a two machine job shop with-

out recirculation is due to Jackson (1956) and the disjunctive programming
formulation described in Section 7.1 is from Roy and Sussmann (1964).
Branch-and-bound techniques have often been applied in order to minimize

the makespan in job shops; see, for example, Lomnicki (1965), Brown and Lom-
nicki (1966), Barker and McMahon (1985), Carlier and Pinson (1989), Apple-
gate and Cook (1991), Hoitomt, Luh and Pattipati (1993), Brucker, Jurisch
and Sievers (1994) and Brucker, Jurisch and Krämer (1994). For an overview
of branch-and-bound techniques applied to the job shop problem, see Pinson
(1995). Some of the branching schemes of these branch-and-bound approaches
are based on the generation of active schedules (the concept of an active sched-
ule was first introduced by Giffler and Thompson (1960)), while other branching
schemes are based on the directions of the disjunctive arcs to be selected.
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The famous shifting bottleneck heuristic is due to Adams, Balas and Zawack
(1988). Their algorithm makes use of a single machine scheduling algorithm
developed by Carlier (1982). Earlier work on this particular single machine
subproblem was done by McMahon and Florian (1975). Nowicki and Zdrzalka
(1986), Dauzère-Pérès and Lasserre (1993, 1994) and Balas, Lenstra and Vaza-
copoulos (1995) all developed more refined versions of the Carlier algorithm.
The monograph by Ovacik and Uzsoy (1997) presents an excellent treatise of
the application of decomposition methods and shifting bottleneck techniques to
large scale job shops with various objectives, e.g., the makespan and the maxi-
mum lateness. This monograph is based on a number of papers by the authors;
see, for example, Uzsoy (1993) for the application of decomposition methods to
flexible job shops.
Job shops with the total weighted tardiness as objective have been the fo-

cus of a number of studies. Vepsalainen and Morton (1987) developed heuristics
based on priority rules. Singer and Pinedo (1998) developed a branch-and-bound
approach and Pinedo and Singer (1999) developed the shifting bottleneck ap-
proach described in Section 7.3.
For some basic examples of constraint programming applications to job

shops, see the books by Baptiste, Le Pape, and Nuijten (2001) and Van Hen-
tenryck and Michel (2005). For an application of constraint programming for
minimizing the total weighted tardiness, see Van Hentenryck and Michel (2004).
In addition to the procedures discussed in this chapter, job shop problems

have also been tackled with local search procedures; see, for example, Matsuo,
Suh, and Sullivan (1988), Dell’Amico and Trubian (1991), Della Croce, Tadei
and Volta (1992), Storer, Wu and Vaccari (1992), Nowicki and Smutnicki (1996),
and Kreipl (2000). Examples of such local search procedures are presented in
Chapter 14.
For a broader view of the job shop scheduling problem, see Wein and Cheve-

lier (1992). For an interesting special case of the job shop, i.e., a flow shop with
reentry, see Graves, Meal, Stefek and Zeghmi (1983).
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This chapter deals with multi-operation models that are different from the job
shop models considered in the previous chapter. In a job shop each job has a
fixed route that is predetermined. In practice, it often occurs that the route of
the job is immaterial and up to the scheduler to decide. When the routes of the
jobs are open, the model is referred to as an open shop.
The first section covers nonpreemptive open shop models with the makespan

as objective. The second section deals with preemptive open shop models with
the makespan as objective. The third and fourth section focus on nonpreemp-
tive and preemptive models with the maximum lateness as objective. The fifth
section considers nonpreemptive models with the number of tardy jobs as ob-
jective.

8.1 The Makespan without Preemptions

Consider O2 || Cmax; that is, there are two machines and n jobs. Job j may be
processed first on machine 1 and then on machine 2 or vice versa; the decision-
maker may determine the routes. The makespan has to be minimized. It is clear
that

Cmax ≥ max
( n∑
j=1

p1j ,
n∑
j=1

p2j

)
,

since the makespan cannot be less than the workload on either machine. One
would typically expect the makespan to be equal to the RHS of the inequality;
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(b)

(a)

2 1 3 4Machine 2

1 4 2 3Machine 1

2 1 3 4Machine 2

1 4 2 3Machine 1

Fig. 8.1 Idle periods in two machine open shops: (a) idle period causes
unnecessary increase in makespan (b) idle period does not cause an

unnecessary increase in makespan

only in very special cases one would expect the makespan to be larger than the
RHS. It is worthwhile to investigate the special cases where the makespan is
strictly greater than the maximum of the two workloads.
This section considers only non-delay schedules. That is, if there is a job

waiting for processing when a machine is free, then that machine is not allowed
to remain idle. It immediately follows that an idle period can occur on a machine
if and only if one job remains to be processed on that machine and, when that
machine is available, this last job is just then being processed on the other
machine. It can be shown that at most one such idle period can occur on at
most one of the two machines (see Figure 8.1). Such an idle period may cause
an unnecessary increase in the makespan; if this last job turns out to be the
very last job to complete all its processing, then the idle period does cause
an increase in the makespan (see Figure 8.1.a). If this last job, after having
completed its processing on the machine that was idle, is not the very last job
to leave the system, then the makespan is still equal to the maximum of the
two workloads (see Figure 8.1.b).
Consider the following rule: whenever a machine is freed, start processing

among the jobs that have not yet received processing on either machine the one
with the longest processing time on the other machine. This rule is in what
follows referred to as the Longest Alternate Processing Time first (LAPT) rule.
At time zero, when both machines are idle, it may occur that the same job
qualifies to be first on both machines. If that is the case, then it does not matter
on which machine this job is processed first. According to this LAPT rule,
whenever a machine is freed, jobs that already have completed their processing
on the other machine have the lowest, that is, zero, priority on the machine just
freed. There is therefore no distinction between the priorities of two jobs that
both already have been processed on the other machine.
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Theorem 8.1.1. The LAPT rule results in an optimal schedule for O2 ||
Cmax with makespan

Cmax = max
(

max
j∈{1,...,n}

(p1j + p2j),
n∑
j=1

p1j ,
n∑
j=1

p2j

)
.

Proof. Actually, a more general (and less restrictive) scheduling rule already
guarantees a minimum makespan. This more general rule may result in many
different schedules that are all optimal. This class of optimal schedules includes
the LAPT schedule. This general rule also assumes that unforced idleness is not
allowed.
Assume, without loss of generality, that the longest processing time among

the 2n processing times belongs to operation (1, k), that is,

pij ≤ p1k, i = 1, 2, j = 1, . . . , n.

The more general rule can be described as follows. If operation (1, k) is the
longest operation, then job k must be started at time 0 on machine 2. After job
k has completed its processing on machine 2, its operation (1, k) has the lowest
possible priority with regard to processing on machine 1. Since its priority is
then at all times lower than the priority of any other operation available for
processing on machine 1, the processing of operation (1, k) will be postponed
as much as possible. It can only be processed on machine 1 if no other job is
available for processing on machine 1 (this can happen either if it is the last
operation to be done on machine 1 or if it is the second last operation and the
last operation is not available because it is just then being processed on machine
2). The 2(n−1) operations of the remaining n−1 jobs can be processed on the
two machines in any order; however, unforced idleness is not allowed.
That this rule results in a schedule with a minimum makespan can be shown

as follows. If the resulting schedule has no idle period on either machine, then,
of course, it is optimal. However, an idle period may occur either on machine 1
or on machine 2. So two cases have to be considered.

Case 1: Suppose an idle period occurs on machine 2. If this is the case, then
only one more operation needs processing on machine 2 but this operation still
has to complete its processing on machine 1. Assume this operation belongs to
job l. When job l starts on machine 2, job k starts on machine 1 and p1k > p2l.
So the makespan is determined by the completion of job k on machine 1 and
no idle period has occurred on machine 1. So the schedule is optimal.

Case 2: Suppose an idle period occurs on machine 1. An idle period on
machine 1 can occur only when machine 1 is freed after completing all its
operations with the exception of operation (1, k) and operation (2, k) of job k
is at that point still being processed on machine 2. In this case, the makespan
is equal to p2k + p1k and the schedule is optimal. 	
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Another rule that may seem appealing at first sight is the rule that gives,
whenever a machine is freed, the highest priority to the job with the largest
total remaining processing time on both machines. It turns out that there are
instances, even with two machines, when this rule results in a schedule that is
not optimal (see Exercise 8.12). The fact that the priority level of a job on one
machine depends only on the amount of processing remaining to be done on
the other machine is key.
The LAPT rule described above may be regarded as a special case of a more

general rule that can be applied to open shops with more than two machines.
This more general rule may be referred to as the Longest Total Remaining
Processing on Other Machines first rule. According to this rule, again, the pro-
cessing required on the machine currently available does not affect the priority
level of a job. However, this rule does not always result in an optimal schedule
since the Om || Cmax problem is NP-hard when m ≥ 3.

Theorem 8.1.2. The problem O3 || Cmax is NP-hard.

Proof. The proof is based on a reduction of PARTITION to O3 || Cmax. The PAR-

TITION problem can be formulated as follows. Given positive integers a1, . . . , at
and

b =
1
2

t∑
j=1

aj ,

do there exist 2 disjoint subsets S1 and S2 such that∑
j∈S1

aj =
∑
j∈S2

aj = b ?

The reduction is based on the following transformation. Consider 3t + 1 jobs.
Of these 3t+1 jobs there are 3t jobs that have only one nonzero operation and
one job that has to be processed on each one of the three machines.

p1j = aj , p2j = p3j = 0, for 1 ≤ j ≤ t,

p2j = aj , p1j = p3j = 0, for t+ 1 ≤ j ≤ 2t,
p3j = aj , p1j = p2j = 0, for 2t+ 1 ≤ j ≤ 3t,
p1,3t+1 = p2,3t+1 = p3,3t+1 = b,

where
t∑
j=1

aj =
2t∑

j=t+1

aj =
3t∑

j=2t+1

aj = 2b

and z = 3b. The open shop problem now has a schedule with a makespan
equal to z if and only if there exists a partition. It is clear that to have a
makespan equal to 3b job 3t + 1 has to be processed on the three machines
without interruption. Consider the machine on which job 3t + 1 is processed
second, that is, during the interval (b, 2b). Without loss of generality it may
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Fig. 8.2 Reduction of PARTITION to O3 || Cmax

be assumed that this is machine 1. Jobs 1, . . . , t have to be processed only on
machine 1. If there exists a partition of these t jobs in such a way that one set
can be processed during the interval (0, b) and the other set can be processed
during the interval (2b, 3b), then the makespan is 3b (see Figure 8.2). If there
does not exist such a partition, then the makespan has to be larger than 3b. 	

The LAPT rule for O2 || Cmax is one of the few polynomial time algorithms

for nonpreemptive open shop problems. Most of the more general open shop
models within the framework of Chapter 2 are NP-hard, for example, O2 | rj |
Cmax. However, the problem Om | rj , pij = 1 | Cmax can be solved in polynomial
time. This problem is discussed in a more general setting in Section 8.3.

8.2 The Makespan with Preemptions

Preemptive open shop problems tend to be somewhat easier. In contrast to
Om || Cmax the Om | prmp | Cmax problem is solvable in polynomial time.
From the fact that the value of the makespan under LAPT is a lower bound

for the makespan with two machines even when preemptions are allowed, it
follows that the nonpreemptive LAPT rule is also optimal for O2 | prmp | Cmax.
It is easy to establish a lower bound for the makespan with m (m ≥ 3)

machines when preemptions are allowed:

Cmax ≥ max
(

max
j∈{1,...,n}

m∑
i=1

pij , max
i∈{1,...,m}

n∑
j=1

pij

)
.

That is, the makespan is at least as large as the maximum workload on each
of the m machines and at least as large as the total amount of processing to
be done on each of the n jobs. It turns out that it is rather easy to obtain a
schedule with a makespan that is equal to this lower bound.
In order to see how the algorithm works, consider the m × n matrix P of

the processing times pij . Row i or column j is called tight if its sum is equal
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to the lower bound and slack otherwise. Suppose it is possible to find in this
matrix a subset of nonzero entries with exactly one entry in each tight row and
one entry in each tight column and at most one entry in each slack row and
slack column. Such a subset would be called a decrementing set. This subset is
used to construct a partial schedule of length ∆, for some appropriately chosen
∆. In this partial schedule machine i works on job j for an amount of time
that is equal to min(pij , ∆) for each element pij in the decrementing set. In
the original matrix P the entries corresponding to the decrementing set are
then reduced to max(0, pij − ∆) and the resulting matrix is then called P′.
If ∆ is chosen appropriately, the makespan C′

max that corresponds to the new
matrix P′ is equal to Cmax − ∆. This value for ∆ has to be chosen carefully.
First, it is clear that the ∆ has to be smaller than every pij in the decrementing
set that is in a tight row or column, otherwise there will be a row or column in
P′ that is strictly larger than C′

max. For the same reason, if pij is an element in
the decrementing set in a slack row, say row i, it is necessary that

∆ ≤ pij + Cmax −
∑
k

pik,

where Cmax −
∑

pik is the amount of slack time in row i. Similarly, if pij is an
entry in the slack column j, then

∆ ≤ pij + Cmax −
∑
k

pkj ,

where Cmax−
∑

pkj is the amount of slack time in column j. If row i or column
j does not contain an element in the decrementing set, then

∆ ≤ Cmax −
∑
j

pij

or
∆ ≤ Cmax −

∑
i

pij .

If ∆ is chosen to be as large as possible subject to these conditions, then either
P′ will contain at least one less strictly positive element than P or P′ will
contain at least one more tight row or column than P. It is then clear that
there cannot be more than r + m + n iterations where r is the number of
strictly positive elements in the original matrix.
It turns out that it is always possible to find a decrementing set for a nonneg-

ative matrix P. This property is the result of a basic theorem due to Birkhoff
and von Neumann regarding stochastic matrices and permutation matrices.
However, the proof of this theorem is beyond the scope of this book.
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Fig. 8.3 Optimal Schedule for O3 | prmp | Cmax with four jobs
(Example 8.2.1)

Example 8.2.1 (Minimizing Makespan with Preemptions)

Consider 3 machines and 4 jobs with the processing times being the entries
in the matrix

P =

 3 4 0 44 0 6 0
4 0 0 6


It is easily verified that Cmax = 11 and that the first row and first column are
tight. A possible decrementing set comprises the processing times p12 = 4,
p21 = 4 and p34 = 6. If ∆ is set equal to 4, then C′

max = 7. A partial schedule
is constructed by scheduling job 2 on machine 1 for 4 time units; job 1 on
machine 2 for 4 time units and job 4 on machine 3 for 4 time units. The
matrix is now

P′ =

 3 0 0 40 0 6 0
4 0 0 2


Again, the first row and the first column are tight. A decrementing set is
obtained with the processing times p11 = 3, p23 = 6 and p34 = 2. Choosing
∆ = 3, the partial schedule can be augmented by assigning job 1 to machine
1 for 3 time units, job 3 to machine 2 for 3 time units and job 4 again to
machine 3 but now only for 2 time units. The matrix is

P′′ =

 0 0 0 40 0 3 0
4 0 0 0


The last decrementing set is obtained with the remaining three positive pro-
cessing times. The final schedule is obtained by augmenting the partial sched-
ule by assigning job 4 on machine 1 for 4 time units, job 3 to machine 2 for
3 time units and job 1 to machine 3 for 4 time units (see Figure 8.3). ||
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8.3 The Maximum Lateness without Preemptions

The Om || Lmax problem is a generalization of the Om || Cmax problem and is
therefore at least as hard.

Theorem 8.3.1. The problem O2 || Lmax is strongly NP-Hard.

Proof. The proof is done by reducing 3-PARTITION to O2 || Lmax. The 3-

PARTITION problem is formulated as follows. Given positive integers a1, . . . , a3t

and b, such that
b

4
< aj <

b

2
and

3t∑
j=1

aj = tb,

do there exist t pairwise disjoint three element subsets Si ⊂ {1, . . . , 3t} such
that ∑

j∈Si

aj = b

for i = 1, . . . , t ?
The following instance of O2 || Lmax can be constructed. The number of

jobs, n, is equal to 4t and

p1j = 0 p2j = aj dj = 3tb j = 1, . . . , 3t
p1j = 0 p2j = 2b dj = 2b j = 3t+ 1
p1j = 3b p2j = 2b dj = (3(j − 3t)− 1)b j = 3t+ 2, . . . , 4t

There exists a schedule with Lmax ≤ 0 if and only if jobs 1, . . . , 3t can be divided
into t groups, each containing 3 jobs and requiring b units of processing time
on machine 2, i.e., if and only if 3-PARTITION has a solution. 	

It can be shown that O2 || Lmax is equivalent to O2 | rj | Cmax. Consider

the O2 || Lmax problem with deadlines d̄j rather than due dates dj . Let

d̄max = max(d̄1, . . . , d̄n).

Apply a time reversal to O2 || Lmax. Finding a feasible schedule with Lmax = 0
is now equivalent to finding a schedule for O2 | rj | Cmax with

rj = d̄max − d̄j

and a makespan that is less than d̄max. So the O2 | rj | Cmax problem is
therefore also strongly NP-hard.
Consider now the special case Om | rj , pij = 1 | Lmax. The fact that all

processing times are equal to 1 makes the problem considerably easier. The
polynomial time solution procedure consists of three phases, namely
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Fig. 8.4 Network flow problem of Phase 2

Phase 1: Parametrizing and a binary search.
Phase 2: Solving a network flow problem.
Phase 3: Coloring a bipartite graph.

The first phase of the procedure involves a parametrization. Let L be a free
parameter and assume that each job has a deadline dj + L. The objective is to
find a schedule in which each job is completed before or at its deadline, ensuring
that Lmax ≤ L. Let

tmax = max(d1, . . . , dn) + L,

that is, no job should receive any processing after time tmax.
The second phase focuses on the following network flow problem: There is a

source node U that has n arcs emanating to nodes 1, . . . , n. Node j corresponds
to job j. The arc from the source node U to node j has capacity m (equal to
the number of machines and to the number of operations of each job). There is
a second set of tmax nodes, each node corresponding to one time unit. Node t,
t = 1, . . . , tmax, corresponds to the time slot [t−1, t]. Node j has arcs emanating
to nodes rj + 1, rj + 2, . . . , dj + L. Each one of these arcs has unit capacity.
Each node of the set of tmax nodes has an arc with capacity m going to sink V
(see Figure 8.4). The capacity limit on each one of these arcs is necessary to
ensure that no more than m operations are processed in any given time period.
The solution of this network flow problem indicates in which time slots the m
operations of job j are to be processed.
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However, the network flow solution cannot be translated immediately into
a feasible schedule for the open shop, because in the network flow formulation
no distinction is made between the different machines (i.e., in this solution it
may be possible that two different operations of the same job are processed in
two different time slots on the same machine). However, it turns out that the
assignment of operations to time slots prescribed by the network flow solution
can be transformed into a feasible schedule in such a way that each operation
of job j is processed on a different machine.
The third phase of the algorithm generates a feasible schedule. Consider

a graph coloring problem with a bipartite graph that consists of two sets of
nodes N1 and N2 and a set of undirected arcs. Set N1 has n nodes and set N2

has tmax nodes. Each node in N1 is connected to m nodes in N2; a node in
N1 is connected to those m nodes in N2 that correspond to the time slots in
which its operations are supposed to be processed (according to the solution
of the network flow problem in the second phase). So each one of the nodes in
N1 is connected to exactly m nodes in N2, while each node in N2 is connected
to at most m nodes in N1. A result in graph theory states that if each node
in a bipartite graph has at most m arcs, then the arcs can be colored with m
different colors in such a way that no node has two arcs of the same color. Each
color then corresponds to a given machine.
The coloring algorithm that achieves this can be described as follows. Let gj ,

j = 1, . . . , n denote the degree of a node from set N1, and let ht, t = 1, . . . , tmax

denote the degree of a node from set N2. Let

∆ = max(g1, . . . , gn, h1, . . . , htmax)

In order to describe the algorithm that yields a coloring with ∆ colors, let
ajt = 1 if node j from N1 is connected to node t from N2, and let ajt = 0
otherwise. The ajt are elements of a matrix with n rows and tmax columns.
Clearly,

n∑
j=1

ajt ≤ ∆ t = 1, . . . , tmax

and
tmax∑
t=1

ajt ≤ ∆ j = 1, . . . , n

The entries (j, t) in the matrix with ajt = 1 are referred to as occupied cells.
Each occupied cell in the matrix has to be assigned one of the ∆ colors in such
a way that in no row or column the same color is assigned twice.
The assignment of colors to occupied cells is done by visiting the occupied

cells of the matrix row by row from left to right. When visiting occupied cell
(j, t) a color c, not yet assigned in column t, is selected. If c is assigned to
another cell in row j, say (j, t∗), then there exists a color c′ not yet assigned in
row j that can be used to replace the assignment of c to (j, t∗). If another cell
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Fig. 8.5 Network flow problem of Phase 2 (Example 8.3.2)

(j∗, t∗) in column j∗ already has assignment c′, then this assignment is replaced
by c. This conflict resolution process stops when there is no remaining conflict.
If the partial assignment before coloring (j, t) was feasible, then the conflict
resolution procedure yields a feasible coloring in at most n steps.

Example 8.3.2 (Minimizing the Maximum Lateness without
Preemptions)

Consider the following instance of O3 | rj , pij = 1 | Lmax with 3 machines
and 7 jobs.

jobs 1 2 3 4 5 6 7

rj 0 1 2 2 3 4 5
dj 5 5 5 6 6 8 8

Assume that L = 1. Each job has a deadline d̄j = dj + 1. So tmax = 9.
Phase 2 results in the network flow problem described in Figure 8.5. On the
left there are 7 nodes that correspond to the 7 jobs and on the right there
are 9 nodes that correspond to the 9 time units.
The result of the network flow problem is that the jobs are processed

during the time units given in the table below.

jobs 1 2 3 4 5 6 7

time units 1,2,3 2,3,4 4,5,6 4,5,6 5,6,7 7,8,9 7,8,9
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7

Fig. 8.6 Bipartite graph coloring in Phase 3 (Example 8.3.2)

It can be verified easily that at no point in time more than three jobs are
processed simultaneously.
Phase 3 leads to the graph coloring problem. The graph is depicted in

Figure 8.6 and the matrix with the appropriate coloring is

1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

It is easy to find a red (r), blue (b) and white (w) coloring that corresponds
to a feasible schedule.

r b w - - - - - -
- r b w - - - - -
- - - r b w - - -
- - - b w r - - -
- - - - r b w - -
- - - - - - r b w
- - - - - - b w r

Since there is a feasible schedule for L = 1, it has to be verified at this
point whether or not there is a feasible schedule for L = 0. It can be shown
easily that there does not exist a schedule in which every job is completed
on time. ||
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8.4 The Maximum Lateness with Preemptions

In scheduling it is often the case that the preemptive version of a problem is
easier than its nonpreemptive counterpart. That is also the case with Om |
prmp | Lmax and Om || Lmax.
Consider O2 | prmp | Lmax and assume that d1 ≤ · · · ≤ dn. Let

Ak =
k∑
j=1

p1j

and

Bk =
k∑
j=1

p2j .

The procedure to minimize the maximum lateness first considers the due
dates as absolute deadlines and then tries to generate a feasible solution. The
jobs are scheduled in increasing order of their deadlines, i.e., first job 1, then
job 2, and so on. Suppose that jobs 1, . . . , j−1 have been scheduled successfully
and that job j has to be scheduled next. Let xj (yj) denote the total amount
of time prior to dj that machine 1 (2) is idle while machine 2 (1) is busy. Let
zj denote the total amount of time prior to dj that machines 1 and 2 are idle
simultaneously. Note that xj , yj , and zj are not independent, since

xj + zj = dj −Aj−1

and
yj + zj = dj −Bj−1.

The minimum amount of processing that must be done on operation (1, j) while
both machines are available is max(0, p1j − xj) and the minimum amount of
processing on operation (2, j) while both machines are available is max(0, p2j−
yj). It follows that job j can be scheduled successfully if and only if

max(0, p1j − xj) + max(0, p2j − yj) ≤ zj

This inequality is equivalent to the following three inequalities:

p1j − xj ≤ zj

p2j − yj ≤ zj

p1j − xj + p2j − yj ≤ zj

So job j can be scheduled successfully if and only if each one of the following
three feasibility conditions holds:
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Aj ≤ dj

Bj ≤ dj

Aj +Bj ≤ 2dj − zj

These inequalities indicate that in order to obtain a feasible schedule an attempt
has to be made in each iteration to minimize the value of zj . The smallest
possible values of z1, . . . , zn are defined recursively by

z1 = d1

zj = dj − dj−1 +max(0, zj−1 − p1,j−1 − p2,j−1), j = 2, . . . , n.

In order to verify the existence of a feasible schedule, the values of z1, . . . , zn
have to be computed recursively and for each zj it has to be checked whether
it satisfies the third one of the feasibility conditions. There exists a feasible
schedule if all the zj satisfy the conditions.
In order to minimize Lmax a parametrized version of the preceding compu-

tation has to be done. Replace each dj by dj + L, where L is a free parameter.
The smallest value of L for which there exists a feasible schedule is equal to the
minimum value of Lmax that can be achieved with the original due dates dj .
It turns out that there exists also a polynomial time algorithm for the more

general open shop with m machines, even when the jobs have different release
dates, that is, Om | rj , prmp | Lmax. Again, as in the case with 2 machines,
the due dates dj are considered deadlines d̄j , and an attempt is made to find a
feasible schedule where each job is completed before or at its due date. Let

a1 < a2 < · · · < ap+1

denote the ordered collection of all distinct release dates rj and deadlines d̄j .
So there are p intervals [ak, ak+1]. Let Ik denote the length of interval k, that
is,

Ik = ak+1 − ak.

Let the decision variable xijk denote the amount of time that operation (i, j)
is processed during interval k. Consider the following linear program:

max
p∑
k=1

m∑
i=1

n∑
j=1

xijk

subject to
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m∑
i=1

xijk ≤ Ik for all 1 ≤ j ≤ n, 1 ≤ k ≤ p

n∑
j=1

xijk ≤ Ik for all 1 ≤ i ≤ m, 1 ≤ k ≤ p

p∑
k=1

xijk ≤ pij for all 1 ≤ j ≤ n, 1 ≤ i ≤ m

xijk ≥ 0 if rj ≤ ak and dj ≥ ak+1

xijk = 0 if rj ≥ ak+1 or dj ≤ ak

The first inequality requires that no job is scheduled for more than Ik units of
time in interval k. The second inequality requires that the amount of processing
assigned to any machine is not more than the length of the interval. The third
inequality requires that each job is not processed longer than necessary. The
constraints on xijk ensure that no job is assigned to a machine either before its
release date or after its due date. An initial feasible solution for this problem
is clearly xijk = 0. However, since the objective is to maximize the sum of the
xijk , the third inequality is tight under the optimal solution assuming there
exists a feasible solution for the scheduling problem.
If there exists a feasible solution for the linear program, then there exists a

schedule with all jobs completed on time. However, the solution of the linear
program only gives the optimal values for the decision variables xijk . It does not
specify how the operations should be scheduled within the interval [ak, ak+1].
This scheduling problem within each interval can be solved as follows: consider
interval k as an independent open shop problem with the processing time of
operation (i, j) being the value xijk that came out of the linear program. The
objective for the open shop scheduling problem for interval k is equivalent to
the minimization of the makespan, i.e., Om | prmp | Cmax. The polynomial
algorithm described in the previous section can then be applied to each interval
separately.
If the outcome of the linear program indicates that no feasible solution exists,

then (similar to the m = 2 case) a parametrized version of the entire procedure
has to be carried out. Replace each d̄j by d̄j + L, where L is a free parameter.
The smallest value of L for which there exists a feasible schedule is equal to the
minimum value of Lmax that can be achieved with the original due dates dj .

Example 8.4.1 (Minimizing Maximum Lateness with Preemptions)

Consider the following instance of O3 | rj , prmp | Lmax with 3 machines and
5 jobs.
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jobs 1 2 3 4 5

p1j 1 2 2 2 3
p2j 3 1 2 2 1
p3j 2 1 1 2 1

rj 1 1 3 3 3
dj 9 7 6 7 9

There are 4 intervals that are determined by a1 = 1, a2 = 3, a3 = 6, a4 = 7,
a5 = 9. The lengths of the four intervals are I1 = 2, I2 = 3, I3 = 1, and
I4 = 2. There are 4× 3× 5 = 60 decision variables xijk .
The first set of constraints of the linear program has 20 constraints. The

first one of this set, i.e., j = 1, k = 1, is

x111 + x211 + x311 = 2.

The second set of constraints has 12 constraints. The first one of this set,
i.e., i = 1, k = 1, is

x111 + x121 + x131 + x141 + x151 = 2.

The third set of constraints has 15 constraints. The first one of this set, i.e.,
i = 1, j = 1, is

x111 + x112 + x113 + x114 + x115 = 1.

It turns out that this linear program has no feasible solution. Replacing
dj by dj +1 yields another linear program that also does not have a feasible
solution. Replacing the original dj by dj +2 results in the following data set:

jobs 1 2 3 4 5

p1j 1 2 2 2 3
p2j 3 1 2 2 1
p3j 2 1 1 2 1

rj 1 1 3 3 3
d̄j 11 9 8 9 11

There are 4 intervals that are determined by a1 = 1, a2 = 3, a3 = 8,
a4 = 9, a5 = 11. The lengths of the four intervals are I1 = 2, I2 = 5,
I3 = 1, and I4 = 2. The resulting linear program has feasible solutions and
the optimal solution is the following:



8.5 The Number of Tardy Jobs 233

x111 = 1 x211 = 0 x311 = 1
x121 = 1 x221 = 1 x321 = 0
x131 = 0 x231 = 0 x331 = 0
x141 = 0 x241 = 0 x341 = 0
x151 = 0 x251 = 0 x351 = 0

x112 = 0 x212 = 0 x312 = 1
x122 = 1 x222 = 0 x322 = 0
x132 = 2 x232 = 2 x332 = 1
x142 = 1 x242 = 2 x342 = 2
x152 = 1 x252 = 1 x352 = 1

x113 = 0 x213 = 1 x313 = 0
x123 = 0 x223 = 0 x323 = 1
x133 = 0 x233 = 0 x333 = 0
x143 = 1 x243 = 0 x343 = 0
x153 = 0 x253 = 0 x353 = 0

x114 = 0 x214 = 2 x314 = 0
x124 = 0 x224 = 0 x324 = 0
x134 = 0 x234 = 0 x334 = 0
x144 = 0 x244 = 0 x344 = 0
x154 = 2 x254 = 0 x354 = 0

Each one of the four intervals has to be analyzed now as a separate O3 |
prmp | Cmax problem. Consider, for example, the second interval [ 3, 8 ], i.e.,
xij2. The O3 | prmp | Cmax problem for this interval contains the following
data.

jobs 1 2 3 4 5

p1j 0 1 2 1 1
p2j 0 0 2 2 1
p3j 1 0 1 2 1

Applying the algorithm described in Section 8.2 results in the schedule
presented in Figure 8.7 (which turns out to be nonpreemptive). The schedules
in the other three intervals can be determined very easily. ||

8.5 The Number of Tardy Jobs

The Om | pij = 1 |
∑

Uj problem is strongly related to the problems discussed
in the previous sections. In this problem again each job consists ofm operations
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3 4 5 6 7 8

1 4 5 3

3 5 4

4 2 3 5

Fig. 8.7 Schedule for interval [3, 8] in Example 8.4.1

and each operation requires one time unit. Assume, without loss of generality,
that d1 ≤ d2 ≤ · · · ≤ dn.
It can be shown easily that the set of jobs that are completed on time in an

optimal schedule belong to a set k∗, k∗ + 1, . . . , n. So the search for an optimal
schedule has two aspects. First, it has to be determined what the optimal value
of k∗ is, and second, given k∗, a schedule has to be constructed in which each
job of this set finishes on time.
The value of k∗ can be determined via binary search. Given a specific set

of jobs that have to be completed on time, a schedule can be generated as
follows: Consider the problem Om | rj , pij = 1 | Cmax, which is a special case
of the Om | rj , pij = 1 | Lmax problem that is solvable by the polynomial time
algorithm described in Section 8.3. Set rj in this corresponding problem equal to
dmax−dj in the original problem. In essence, theOm | rj , pij = 1 | Cmax problem
is a time reversed version of the original Om | pij = 1 |

∑
Uj problem. If for the

makespan minimization problem a schedule can be found with a makespan less
than dmax, then the reverse schedule is applicable to the Om | pij = 1 |

∑
Uj

problem with all jobs completing their processing on time.

8.6 Discussion

This chapter, as several other chapters in this book, focuses mainly on models
that are polynomial time solvable. Most open shop models tend to be NP-hard.
For example, very little can be said about the total completion time objective.

The Om || ∑
Cj problem is strongly NP-hard when m ≥ 2. The Om | prmp |∑

Cj problem is known to be strongly NP-hard when m ≥ 3. When m = 2 the
Om | prmp | ∑Cj problem is NP-hard in the ordinary sense.
In the same way that a flow shop can be generalized to a flexible flow shop, an

open shop can be generalized to a flexible open shop. The fact that the flexible
flow shop allows for few structural results gives already an indication that it
may be hard to obtain results for the flexible open shop. Even the proportionate
cases, i.e., pij = pj for all i or pij = pi for all j, are hard to analyze.
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Another class of models that are closely related to open shops have received
recently a considerable amount of attention in the literature. This class of mod-
els are typically referred to as concurrent open shops or open shops with job
overlap. In these open shops the processing times of any given job on the dif-
ferent machines are allowed to overlap in time (in contrast to the conventional
open shops where they are not allowed to overlap). This class of models are at
times also referred to as the class of order scheduling models. The motivation is
based on the following: Consider a facility with m different machines in parallel
and each machine being able to produce a specific type of product. A customer
places an order requesting a certain quantity of each product type. After all the
items for a given customer have been produced, the entire order can be shipped
to the customer.

Exercises (Computational)

8.1. Consider the following instance of O2 || Cmax and determine the number
of optimal schedules that are non-delay.

jobs 1 2 3 4

p1j 9 7 5 13
p2j 5 10 11 7

8.2. Consider the following instance ofO5 || Cmax with 6 jobs and all processing
times either 0 or 1. Find an optimal schedule.

jobs 1 2 3 4 5 6

p1j 1 0 0 1 1 1
p2j 1 1 1 0 1 0
p3j 0 1 0 1 1 1
p4j 1 1 1 0 0 1
p5j 1 1 1 1 0 0

8.3. Consider the proportionate open shop O4 | pij = pj | Cmax with 6 jobs.
Compute the makespan under the optimal schedule.

jobs 1 2 3 4 5 6

pj 3 5 6 6 8 9
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8.4. Consider the problem O4 || Cmax and consider the Longest Total Remain-
ing Processing on Other Machines (LTRPOM ) rule. Every time a machine is
freed the job with the longest total remaining processing time on all other ma-
chines, among available jobs, is selected for processing. Unforced idleness is not
allowed. Consider the following processing times.

jobs 1 2 3 4

p1j 5 5 13 0
p2j 5 7 3 8
p3j 12 5 7 0
p4j 0 5 0 15

(a) Apply the LTRPOM rule. Consider at time 0 first machine 1, then
machine 2, followed by machines 3 and 4. Compute the makespan.
(b) Apply the LTRPOM rule. Consider at time 0 first machine 4, then
machine 3, followed by machines 2 and 1. Compute the makespan.
(c) Find the optimal schedule and the minimum makespan.

8.5. Find an optimal schedule for the instance of O4 | prmp | Cmax with 4 jobs
and with the same processing times as in Exercise 8.4.

8.6. Consider the following instance of O4 | rj , pij = 1 | Lmax with 4 machines
and 7 jobs.

jobs 1 2 3 4 5 6 7

rj 0 1 2 2 3 4 5
dj 6 6 6 7 7 9 9

(a) Find the optimal schedule and the minimum Lmax.
(b) Compare your result with the result in Example 8.3.2.

8.7. Solve the following instance of the O2 | prmp | Lmax problem.

jobs 1 2 3 4 5 6 7

p1j 7 3 2 5 3 2 3
p2j 3 4 2 4 3 4 5
dj 5 6 6 11 14 17 20

8.8. Solve the following instance of the proportionate O2 | prmp | Lmax prob-
lem.
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jobs 1 2 3 4 5 6 7

p1j 7 3 2 5 3 2 3
p2j 7 3 2 5 3 2 3
dj 5 6 6 11 14 17 20

Can the algorithm described in Section 8.4 be simplified when the processing
times are proportionate?

8.9. Consider the Linear Programming formulation of the instance in Exer-
cise 8.7. Write out the objective function. How many constraints are there?

8.10. Consider the following instance of Om | pij = 1 |
∑

Uj with 3 machines
and 8 jobs.

jobs 1 2 3 4 5 6 7 8

dj 3 3 4 4 4 4 5 5

Find the optimal schedule and the maximum number of jobs completed on time.

Exercises (Theory)

8.11. Show that non-delay schedules for Om || Cmax have at most m− 1 idle
times on one machine. Show also that if there are m − 1 idle times on one
machine there can be at most m− 2 idle times on any other machine.
8.12. Consider the following rule for O2 || Cmax. Whenever a machine is freed,
start processing the job with the largest sum of remaining processing times on
the two machines. Show, through a counterexample, that this rule does not
necessarily minimize the makespan.

8.13. Give an example of Om || Cmax where the optimal schedule is not non-
delay.

8.14. Consider O2 || ∑
Cj . Show that the rule which always gives priority to

the job with the smallest total remaining processing is not necessarily optimal.

8.15. Consider O2 | prmp | ∑
Cj . Show that the rule which always gives

preemptive priority to the job with the smallest total remaining processing
time is not necessarily optimal.

8.16. Consider Om || Cmax. The processing time of job j on machine i is
either 0 or 1. Consider the following rule: At each point in time select, from
the machines that have not been assigned a job yet, the machine that still has
the largest number of jobs to do. Assign to that machine the job that still has
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to undergo processing on the largest number of machines (ties may be broken
arbitrarily). Show through a counterexample that this rule does not necessarily
minimize the makespan.

8.17. Consider a flexible open shop with two workcenters. Workcenter 1 con-
sists of a single machine and workcenter 2 consists of two identical machines.
Determine whether or not LAPT minimizes the makespan.

8.18. Consider the proportionate open shop Om | pij = pj | Cmax. Find the
optimal schedule and prove its optimality.

8.19. Consider the proportionate open shop Om | prmp, pij = pj |
∑

Cj . Find
the optimal schedule and prove its optimality.

8.20. Consider the following two machine hybrid of an open shop and a job
shop. Job j has processing time p1j on machine 1 and p2j on machine 2. Some
jobs have to be processed first on machine 1 and then on machine 2. Other jobs
have to be processed first on machine 2 and then on machine 1. The routing
of the remaining jobs may be determined by the scheduler. Describe a schedule
that minimizes the makespan.

8.21. Find an upper and a lower bound for the makespan in an m machine
open shop when preemptions are not allowed. The processing time of job j on
machine i is pij (i.e., no restrictions on the processing times).

8.22. Compare Om | pj = 1 | γ with Pm | pj = 1, chains | γ in which there
are n chains consisting of m jobs each. Let Z1 denote the value of the objective
function in the open shop problem and let Z2 denote the value of the objective
function in the parallel machine problem. Find conditions under which Z1 = Z2

and give examples where Z1 > Z2.

Comments and References

The LAPT rule for O2 || Cmax appears to be new. Different algorithms have been
introduced before for O2 || Cmax, see for example, Gonzalez and Sahni (1976).
Gonzalez and Sahni (1976) provide an NP-hardness proof for O3 || Cmax and
Sevastianov and Woeginger (1998) present a Polynomial Time Approximation
Scheme (PTAS) for Om || Cmax.
The polynomial time algorithm for Om | prmp | Cmax is from Lawler and

Labetoulle (1978). This algorithm is based on a property of stochastic matrices
that is due to Birkhoff and Von Neumann; for an organized proof of this prop-
erty, see Marshall and Olkin (1979), Chapter 2, Theorems 2.A.2 and 2.C.1. For
more work on Om | prmp | Cmax, see Gonzalez (1979).
Lawler, Lenstra and Rinnooy Kan (1981) provide a polynomial time algo-

rithm for O2 | prmp | Lmax and show that O2 || Lmax is NP-Hard in the strong
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sense. Cho and Sahni (1981) analyze preemptive open shops with more than two
machines and present the linear programming formulation for Om | prmp | Lmax.
For results on the minimization of the (weighted) number of late jobs in

open shops with unit processing times, see Brucker, Jurisch and Jurisch (1993),
Galambos and Woeginger (1995) and Kravchenko (2000).
Achugbue and Chin (1982) present an NP-hardness proof for O2 ||

∑
Cj

and Liu and Bulfin (1985) provide an NP-hardness proof for O3 | prmp |
∑

Cj.
Tautenhahn and Woeginger (1997) analyze the total completion time when all
the jobs have unit processing times.
Vairaktarakis and Sahni (1995) obtain results for flexible open shop models.
Concurrent open shops and order scheduling models have received a consid-

erable amount of attention recently, see Wagneur and Sriskandarajah (1993),
Sung and Yoon (1998), Ng, Cheng and Yuan (2003), Leung, Li, Pinedo and
Sriskandarajah (2005), Yang and Posner (2005), Leung, Li and Pinedo (2005a,
2005b, 2006), and Roemer (2006).
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Production environments in the real world are subject to many sources of un-
certainty or randomness. Sources of uncertainty that may have a major impact
include machine breakdowns and unexpected releases of high priority jobs. An-
other source of uncertainty lies in the processing times, which are often not
precisely known in advance. A good model for a scheduling problem should
address these forms of uncertainty.
There are several ways in which such forms of randomness can be modeled.

For example, one could model the possibility of machine breakdowns as an inte-
gral part of the processing times. This can be done by modifying the distribution
of the processing times to take into account the possibility of breakdowns. Al-
ternatively, one may model breakdowns as a separate stochastic process, that
determines when a machine is available and when it is not.
The first section of this chapter describes the framework and notation. The

second section deals with distributions and classes of distributions. The third
section goes over various forms of stochastic dominance. The fourth section dis-
cusses the effect of randomness on the expected value of the objective function
given a fixed schedule. The fifth section describes several classes of scheduling
policies.

9.1 Framework and Notation

In what follows, it is assumed that the distributions of the processing times, the
release dates and the due dates are all known in advance, that is, at time zero.
The actual outcome or realization of a random processing time only becomes

243M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4
c© Springer Science+Business Media, LLC 2008

9,



244 9 Stochastic Models: Preliminaries

known upon the completion of the processing; the realization of a release date
or due date becomes known only at that point in time when it actually occurs.
In this part of the book the following notation is used. Random variables

are capitalized, while the actual realized values are in lower case. Job j has the
following quantities of interest associated with it.

Xij = the random processing time of job j on machine i; if job j is only
to be processed on one machine, or if it has the same processing
times on each one of the machines it may visit, the subscript i is
omitted.

1/λij = the mean or expected value of the random variable Xij .
Rj = the random release date of job j.
Dj = the random due date of job j.
wj = the weight (or importance factor) of job j.

This notation is not completely analogous to the notation used for the deter-
ministic scheduling models. The reason why Xij is used as the processing time
in stochastic scheduling is because of the fact that P usually refers to a prob-
ability. The weight wj , similar to that in the deterministic models, is basically
equivalent to the cost of keeping job j in the system for one unit of time. In the
queueing theory literature, which is closely related to stochastic scheduling, cj
is often used for the weight or cost of job j. The cj and the wj are equivalent.

9.2 Distributions and Classes of Distributions

Distributions and density functions may take many forms. In what follows, for
obvious reasons, only distributions of nonnegative random variables are consid-
ered. A density function may be continuous over given intervals and may have
mass concentrated at given discrete points. This implies that the distribution
function may not be differentiable everywhere (see Figure 9.1). In what follows
a distinction is made between continuous time distributions and discrete time
distributions.
A random variable from a continuous time distribution may assume any real

nonnegative value within one or more intervals. The distribution function of a
continuous time distribution is usually denoted by F (t) and its density function
by f(t), i.e.,

F (t) = P (X ≤ t) =
∫ t

0

f(t) dt,

where

f(t) =
dF (t)
dt

provided the derivative exists. Furthermore,
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Fig. 9.1 Example of a density function and a distribution function

F̄ (t) = 1− F (t) = P (X ≥ t).

An important example of a continuous time distribution is the exponential
distribution. The density function of an exponentially distributed random vari-
able X is

f(t) = λe−λt,

and the corresponding distribution function is

F (t) = 1− e−λt,

which is equal to the probability that X is smaller than t (see Figure 9.2). The
mean or expected value of X is

E(X) =
∫ ∞

0

tf(t) dt =
∫ ∞

0

t dF (t) =
1
λ
.

The parameter λ is referred the rate of the exponential distribution.
A random variable from a discrete time distribution may assume only val-

ues on the nonnegative integers, i.e., P (X = t) ≥ 0 for t = 0, 1, 2, . . . and
P (X = t) = 0 otherwise. An important discrete time distribution is the deter-
ministic distribution. A deterministic random variable assumes a given value
with probability one.
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Fig. 9.2 The exponential distribution

Another important example of a discrete time distribution is the geomet-
ric distribution. The probability that a geometrically distributed random vari-
able X assumes the value t, t = 0, 1, 2, . . . , is

P (X = t) = (1− q)qt.

Its distribution function is

P (X ≤ t) =
t∑
s=0

(1− q)qs = 1−
∞∑

s=t+1

(1− q)qs = 1− qt+1

and its mean is
E(X) =

q

1− q
.

The completion rate c(t) of a continuous time random variableX with density
function f(t) and distribution function F (t) is defined as follows:

c(t) =
f(t)

1− F (t)
.

This completion rate is equivalent to the failure rate or hazard rate in relia-
bility theory. For an exponentially distributed random variable c(t) = λ for
all t. That the completion rate is independent of t is one of the reasons why
the exponential distribution plays an important role in stochastic scheduling.
This property is closely related to the so-called memoryless property of the
exponential distribution, which implies that the distribution of the remaining
processing time of a job that already has received processing for an amount of
time t, is exponentially distributed with rate λ and therefore identical to its
processing time distribution at the very start of its processing.
The completion rate of a discrete time random variable is defined as



9.2 Distributions and Classes of Distributions 247

c(t) =
P (X = t)
P (X ≥ t)

.

The discrete time completion rate of the geometric distribution is

c(t) =
P (X = t)
P (X ≥ t)

=
(1 − q)qt

qt
= 1− q, t = 0, 1, 2, . . . ,

which is a constant independent of t. This implies that the probability a job is
completed at t, given it has not been completed before t, is 1−q. So the geometric
distribution has the memoryless property as well. The geometric distribution
is, in effect, the discrete time counterpart of the exponential distribution.
Distributions, either discrete time or continuous time, can be classified based

on the completion rate. An Increasing Completion Rate (ICR) distribution is
defined as a distribution whose completion rate c(t) is increasing in t, while
a Decreasing Completion Rate (DCR) distribution is defined as a distribution
whose completion rate is decreasing in t.
A subclass of the class of continuous time ICR distributions is the class of

Erlang(k,λ) distributions. The Erlang(k, λ) distribution is defined as

F (t) = 1−
k−1∑
r=0

(λt)re−λt

r!
.

The Erlang(k, λ) is a k-fold convolution of the same exponential distribution
with rate λ. The mean of the Erlang(k, λ) distribution is therefore k/λ. If k
equals one, then the distribution is the exponential. If both k and λ go to ∞
while k/λ = 1, then the Erlang(k, λ) approaches the deterministic distribution
with mean 1. The exponential as well as the deterministic distribution are ICR
distributions.
A subclass of the class of continuous time DCR distributions is the class

of mixtures of exponentials. A random variable X is distributed according to
a mixture of exponentials if it is exponentially distributed with rate λj with
probability pj, j = 1, . . . , n, and

n∑
j=1

pj = 1.

The exponential distribution is DCR as well as ICR. The class of DCR distribu-
tions contains other special distributions. For example, let X with probability p
be exponentially distributed with mean 1/p and with probability 1− p be zero.
The mean and variance of this distribution areE(X) = 1 and V ar(X) = 2/p−1.
When p is very close to zero this distribution is in what follows referred to as
an Extreme Mixture of Exponentials (EME) distribution. Of course, similar dis-
tributions can be constructed for the discrete time case as well.
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One way of measuring the variability of a distribution is through its coef-
ficient of variation Cv(X), which is defined as the square root of the variance
(i.e., the standard deviation) divided by the mean, i.e.,

Cv(X) =

√
V ar(X)
E(X)

=

√
E(X2)− (E(X))2

E(X)
.

It can be verified easily that the Cv(X) of the deterministic distribution is
zero and the Cv(X) of the exponential distribution is 1 (see Figure 9.3). The
Cv(X) of an extreme mixture of exponentials may be arbitrarily large (it goes
to ∞ when p goes to 0). One may expect the Cv(X) of the geometric to be 1,
since the geometric is a discrete time counterpart of the exponential distribu-
tion. However, the Cv(X) of the geometric, as it is defined above, is 1/

√
q (see

Exercise 9.16).

9.3 Stochastic Dominance

It occurs often in stochastic scheduling that two random variables have to be
compared to one another. There are many ways in which one can compare ran-
dom variables to one another. Comparisons are based on properties referred to
as stochastic dominance, i.e., a random variable dominates another with respect
to some stochastic property. All forms of stochastic dominance presented in this
section apply to continuous random variables as well as to discrete random vari-
ables. The discrete time and continuous time definitions are only in a few cases
presented separately. Most forms of stochastic dominance can also be applied
in comparisons between a continuous random variable and a discrete random
variable.
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Definition 9.3.1 (Stochastic Dominance Based on Expectation). (i)
The random variable X1 is said to be larger in expectation than the random
variable X2 if E(X1) ≥ E(X2).

(ii) The random variable X1 is said to be stochastically larger than the ran-
dom variable X2 if

P (X1 > t) ≥ P (X2 > t)

or
1− F1(t) ≥ 1− F2(t)

for all t. This ordering is usually referred to as stochastic ordering and is denoted
by X1 ≥st X2.

(iii) The continuous time random variable X1 is larger than the contin-
uous time random variable X2 in the likelihood ratio sense if f1(t)/f2(t) is
nondecreasing in t, t ≥ 0. The discrete time random variable X1 is larger
than the discrete time random variable X2 in the likelihood ratio sense if
P (X1 = t)/P (X2 = t) is nondecreasing in t, t = 0, 1, 2, . . . This form
of stochastic dominance is denoted by X1 ≥lr X2.

(iv) The random variable X1 is almost surely larger than or equal to the
random variable X2 if P (X1 ≥ X2) = 1. This ordering implies that the density
functions f1 and f2 may overlap at most on one point and is denoted by X1 ≥a.s.
X2.

Ordering in expectation is the crudest form of stochastic dominance. Stochas-
tic ordering implies ordering in expectation since

E(X1) =
∫ ∞

0

tf1(t)dt =
∫ ∞

0

(1− F1(t))dt =
∫ ∞

0

F̄1(t)dt

(see Exercise 9.11). It can easily be shown that likelihood ratio ordering implies
stochastic ordering and that the reverse does not hold.

Example 9.3.2 (Stochastically Ordered Random Variables)
Consider two discrete time random variables X1 and X2. Both take values
on 1, 2 and 3:

P (X1 = 1) =
1
8
, P (X1 = 2) =

3
8
, P (X1 = 3) =

1
2
;

P (X2 = 1) =
1
8
, P (X2 = 2) =

5
8
, P (X2 = 3) =

1
4
.

Note that X1 and X2 are stochastically ordered but not likelihood ratio
ordered as the ratio P (X1 = t)/P (X2 = t) is not monotone. ||
It is also easy to find an example of a pair of random variables that are

monotone likelihood ratio ordered but not almost surely ordered.
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Example 9.3.3 (Likelihood Ratio Ordered Random Variables)

Consider two exponential distributions with rates λ1 and λ2. These two dis-
tributions are likelihood ratio ordered as

f1(t)
f2(t)

=
λ1e

−λ1t

λ2e−λ2t
=

λ1

λ2
e−(λ1−λ2)t,

which is monotone in t. Of course, the two exponentials are not almost surely
ordered as their density functions overlap everywhere. ||
The four forms of stochastic dominance described above all imply that the

random variables being compared, in general, have different means. They lead
to the following chain of implications.

almost surely larger =⇒ larger in likelihood ratio sense =⇒
stochastically larger =⇒ larger in expectation

There are several other important forms of stochastic dominance that are based
on the variability of the random variables under the assumption that the means
are equal. In the subsequent definitions three such forms are presented. One of
these is defined for density functions that are symmetric around the mean, i.e.,

f(E(X) + t) = f(E(X)− t)

for all 0 ≤ t ≤ E(X). Such a density function then has an upper bound of
2E(X). A Normal (Gaussian) density function with mean µ that is truncated
at 0 and at 2µ is a symmetric density function.

Definition 9.3.4 (Stochastic Dominance Based on Variance).
(i) The random variable X1 is said to be larger than the random variable X2

in the variance sense if the variance of X1 is larger than the variance of X2.
(ii) The continuous random variable X1 is said to be more variable than the

continuous random variable X2 if∫ ∞

0

h(t)dF1(t) ≥
∫ ∞

0

h(t)dF2(t)

for all convex functions h. The discrete random variable X1 is said to be more
variable than the discrete random variable X2 if

∞∑
t=0

h(t)P (X1 = t) ≥
∞∑
t=0

h(t)P (X2 = t)

for all convex functions h. This ordering is denoted by X1 ≥cx X2.
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(iii) The random variable X1 is said to be symmetrically more variable than
the random variable X2 if the density functions f1(t) and f2(t) are symmetric
around the same mean 1/λ and F1(t) ≥ F2(t) for 0 ≤ t ≤ 1/λ and F1(t) ≤ F2(t)
for 1/λ ≤ t ≤ 2/λ.
Again, the first form of stochastic dominance is somewhat crude. However,

any two random variables with equal means can be compared to one another
in this way.
From the fact that the functions h(t) = t and h(t) = −t are convex, it follows

that if X1 is “more variable” than X2 then E(X1) ≥ E(X2) and E(X1) ≤
E(X2). So E(X1) has to be equal to E(X2). From the fact that h(t) = t2 is
convex it follows that Var(X1) is larger than Var(X2). Variability ordering is
a partial ordering, i.e., not every pair of random variables with equal means
can be ordered in this way. At times, variability ordering is also referred to as
ordering in the convex sense.
It can be shown easily that symmetrically more variable implies more variable

in the convex sense but not vice versa.

Example 9.3.5 (Variability Ordered Random Variables)
Consider a deterministic random variable X1 that always assumes the value
1/λ and an exponentially distributed random variable X2 with mean 1/λ. It
can be verified easily that X2 is more variable, but not symmetrically more
variable than X1. ||
Example 9.3.6 (Symmetric Variability Ordered Random Variables)

Consider X1 with a uniform distribution over the interval [1, 3], i.e., f1(t) =
0.5 for 1 ≤ t ≤ 3, and X2 with a uniform distribution over the interval [0, 4],
i.e., f2(t) = 0.25 for 0 ≤ t ≤ 4. It is easily verified that X2 is symmetrically
more variable than X1. ||
The forms of stochastic dominance described in Definition 9.3.4 lead to the

following chain of implications:

symmetrically more variable =⇒ more variable =⇒ larger in variance

9.4 Impact of Randomness on Fixed Schedules

The stochastic ordering (≥st) as well as the variability ordering (≥cx) described
in the previous section are restricted versions of another form of dominance
known as increasing convex ordering.
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Definition 9.4.1 (Increasing Convex Ordering). A continuous time
random variable X1 is said to be larger than a continuous time random variable
X2 in the increasing convex sense if∫ ∞

0

h(t)dF1(t) ≥
∫ ∞

0

h(t)dF2(t)

for all increasing convex functions h. The discrete time random variable X1 is
said to be larger than the discrete time random variable X2 in the increasing
convex sense if

∞∑
t=0

h(t)P (X1 = t) ≥
∞∑
t=0

h(t)P (X2 = t)

for all increasing convex functions h. This ordering is denoted by X1 ≥icx X2.

Clearly, E(X1) is larger than, but not necessarily equal to, E(X2) and
Var(X1) is not necessarily larger than Var(X2). However, if E(X1) = E(X2)
then indeed Var(X1) ≥ Var(X2). From Definition 9.4.1, it immediately follows
that

stochastically larger =⇒ larger in the increasing convex sense
more variable =⇒ larger in the increasing convex sense

To see the importance of this form of stochastic dominance consider two vectors
of independent random variables, namely X(1)

1 , . . . , X
(1)
n and X(2)

1 , . . . , X
(2)
n . All

2n random variables are independent. Let

Z1 = g(X(1)
1 , . . . , X(1)

n )

and
Z2 = g(X(2)

1 , . . . , X(2)
n ),

where the function g is increasing convex in each one of the n arguments.

Lemma 9.4.2. If X(1)
j ≥icx X

(2)
j , j = 1, . . . , n, then Z1 ≥icx Z2.

Proof. The proof is by induction on n. When n = 1 it has to be shown that

E
(
h(g(X(1)

1 ))
)
≥ E

(
h(g(X(2)

1 ))
)

with both g and h increasing convex and X
(1)
1 ≥icx X

(2)
1 . This follows from the

definition of variability ordering as the function h(g(t)) is increasing and convex
in t since

d

dt
h(g(t)) = h′(g(t))g′(t) ≥ 0
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and
d2

dt2
h(g(t)) = h′′(g(t))(g′(t))2 + h′(g(t))g′′(t) ≥ 0.

Assume as induction hypothesis that the lemma holds for vectors of size n− 1.
Now

E
(
h(g(X(1)

1 , X
(1)
2 , . . . , X(1)

n )) | X(1)
1 = t

)
= E

(
h(g(t,X(1)

2 , . . . , X(1)
n )) | X(1)

1 = t
)

= E
(
h(g(t,X(1)

2 , . . . , X(1)
n ))

)
≥ E

(
h(g(t,X(2)

2 , . . . , X(2)
n ))

)
= E

(
h(g(t,X(2)

2 , . . . , X(2)
n )) | X(1)

1 = t
)
.

Taking expectations yields

E
(
h(g(X(1)

1 , X
(1)
2 , . . . , X(1)

n ))
)
≥ E

(
h(g(X(1)

1 , X
(2)
2 , . . . , X(2)

n ))
)
.

Conditioning on on X
(2)
2 , . . . , X

(2)
n and using the result for n = 1 shows that

E
(
h(g(X(1)

1 , X
(2)
2 , . . . , X(2)

n ))
)
≥ E

(
h(g(X(2)

1 , X
(2)
2 , . . . , X(2)

n ))
)
,

which completes the proof. 	

The following two examples illustrate the significance of the previous lemma.

Example 9.4.3 (Stochastic Comparison of Makespans)

Consider two scenarios, each with two machines in parallel and two jobs. The
makespan in the first scenario is

C(1)
max = max(X

(1)
1 , X

(1)
2 )

and the makespan in the second scenario is

C(2)
max = max(X

(2)
1 , X

(2)
2 ).

The “max” function is increasing convex in both arguments. From Lemma
9.4.2 it immediately follows that if X(1)

j ≥cx X
(2)
j , then X

(1)
j ≥icx X

(2)
j and

therefore C(1)
max ≥icx C

(2)
max. This implies E(C

(1)
max) ≥ E(C(2)

max). ||
Example 9.4.4 (Stochastic Comparison of Total Completion Times)
Consider the problem 1 || ∑

h(Cj) with the function h increasing convex.
Consider two scenarios, each one with a single machine and n jobs. The
processing time of job j in the first (second) scenario is X(1)

j (X(2)
j ). Assume
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that in both cases the jobs are scheduled in the sequence 1, 2, . . . , n. The
objective function in scenario i, i = 1, 2, is therefore

n∑
j=1

h(C(i)
j ) = h(X(i)

1 ) + h(X(i)
1 +X

(i)
2 ) + · · ·+ h(X(i)

1 +X
(i)
2 + · · ·+X(i)

n ).

The objective function is increasing convex in each one of the n arguments.
From Lemma 9.4.2 it follows that if X(1)

j ≥cx X
(2)
j , then X

(1)
j ≥icx X

(2)
j and

therefore E(
∑n
j=1 h(C

(1)
j )) ≥ E(

∑n
j=1 h(C

(2)
j )). Note that if the function h is

linear, the values of the two objectives are equal (since E(X(1)
j ) = E(X(2)

j )).
||

Lemma 9.4.2 turns out to be very useful for determining bounds on per-
formance measures of given schedules when the processing time distributions
satisfy certain properties. In the next lemma four distributions, F1, F2, F3

and F4, are considered, all with mean 1.

Lemma 9.4.5. If F1 is deterministic, F2 is ICR, F3 is exponential and F4

is DCR, then
F1 ≤cx F2 ≤cx F3 ≤cx F4.

Proof. For a proof of this result the reader is referred to Barlow and Proschan
(1975). The result shown by Barlow and Proschan is actually more general than
the result stated here: the distributions F2 and F4 do not necessarily have to
be ICR and DCR respectively. These distributions may belong to larger classes
of distributions. 	

The result in Lemma 9.4.5 can also be extended in another direction. It can

be shown that for any DCR distribution with mean 1, there exists an Extreme
Mixture of Exponentials (EME) distribution with mean 1 that is more variable.
These orderings make it easy to obtain upper and lower bounds on perfor-

mance measures when processing times are either all ICR or all DCR.

Example 9.4.6 (Bounds on the Expected Makespan)

Consider the scenario of two machines in parallel and two jobs (see Exam-
ple 9.4.3). Suppose X1 and X2 are independent and identically distributed
(i.i.d.) according to F with mean 1. If F is deterministic, then the makespan
is 1. If F is exponential, then the makespan is 3/2. If F is an EME distribu-
tion as defined in Section 9.1, then the makespan is 2−(p/2) (that is, if p goes
to 0 the makespan goes to 2). Combining the conclusion of Example 9.4.3
with Lemma 9.4.5 yields, when F is ICR, the inequalities

1 ≤ E(Cmax) ≤ 32
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and, when F is DCR, the inequalities

3
2
≤ E(Cmax) < 2.

It is easy to see that the makespan never can be larger than 2. If both jobs
are processed on the same machine one after another the expected makespan
is equal to 2. ||

9.5 Classes of Policies

In stochastic scheduling, certain conventions have to be made that are not
needed in deterministic scheduling. During the evolution of a stochastic process
new information becomes available continuously. Job completions and occur-
rences of random release dates and due dates represent additional information
that the decision-maker may wish to take into account when scheduling the re-
maining part of the process. The amount of freedom the decision maker has in
using this additional information is the basis for the various classes of decision
making policies. In this section four classes of policies are defined.
The first class of policies is, in what follows, only used in scenarios where all

the jobs are available for processing at time zero; the machine environments con-
sidered are the single machine, parallel machines and permutation flow shops.

Definition 9.5.1 (Nonpreemptive Static List Policy). Under a non-
preemptive static list policy the decision maker orders the jobs at time zero
according to a priority list. This priority list does not change during the evolu-
tion of the process and every time a machine is freed the next job on the list is
selected for processing.

Under this class of policies the decision maker puts at time zero the n jobs
in a list (permutation) and the list does not change during the evolution of the
process. In the case of machines in parallel, every time a machine is freed, the
job at the top of the list is selected as the next one for processing. In the case
of a permutation flow shop the jobs are also put in a list in front of the first
machine at time zero; every time the first machine is freed the next job on the
list is scheduled for processing. This class of nonpreemptive static list policies
is in what follows also referred to as the class of permutation policies. This class
of policies is in a sense similar to the static priority rules usually considered in
deterministic models.

Example 9.5.2 (Application of a Nonpreemptive Static List Policy)

Consider a single machine and three jobs. All three jobs are available at time
zero. All three jobs have the same processing time distributions, which is 2
with probability .5 and 8 with probability .5. The due date distributions are
the same, too. The due date is 1 with probability .5 and 5 with probability .5.
If a job is completed at the same time as its due date, it is considered to
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be on time. It would be of interest to know the expected number of jobs
completed on time under a permutation policy.
Under a permutation policy the first job is completed in time with prob-

ability .25 (its processing time has to be 2 and its due date has to be 5); the
second job is completed in time with probability .125 (the processing times
of the first and second job have to be 2 and the due date of the second job
has to be 5); the third job never will be completed in time. The expected
number of on-time completions is therefore .375 and the expected number of
tardy jobs is 3− 0.375 = 2.625. ||
The second class of policies is a preemptive version of the first class and is in

what follows only used in scenarios where jobs are released at different points
in time.

Definition 9.5.3 (Preemptive Static List Policy). Under a preemptive
static list policy the decision maker orders the jobs at time zero according to a
priority list. This list includes jobs with nonzero release dates, i.e., jobs that
are to be released later. This priority list does not change during the evolution
of the process and at any point in time the job at the top of the list of available
jobs is the one to be processed on the machine.

Under this class of policies the following may occur. When there is a job
release at some time point and the job released is higher on the static list than
the job currently being processed, then the job being processed is preempted
and the job released is put on the machine instead.
Under the third and fourth class of policies, the decision-maker is allowed to

make his decisions during the evolution of the process. That is, every time he
makes a decision, he may take all the information that has become available
up to that point in time into account. The third class of policies does not allow
preemptions.

Definition 9.5.4 (Nonpreemptive Dynamic Policy). Under a non-
preemptive dynamic policy, every time a machine is freed, the decision maker
is allowed to determine which job goes next. His decision at such a point in
time may depend on all the information available, e.g., the current time, the
jobs waiting for processing, the jobs currently being processed on other machines
and the amount of processing these jobs already have received on these machines.
However, the decision maker is not allowed to preempt; once a job has begun its
processing, it has to be completed without interruption.

Example 9.5.5 (Application of a Nonpreemptive Dynamic Policy)

Consider the same problem as in Example 9.5.2. It is of interest to know the
expected number of jobs completed on time under a nonpreemptive dynamic
policy. Under a nonpreemptive dynamic policy the probability the first job is
completed on time is again .25. With probability .5 the first job is completed
at time 2. With probability .25 the due dates of both remaining jobs already
occurred at time 1 and there will be no more on-time completions. With
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probability .75 at least one of the remaining two jobs has a due date at time
5. The probability that the second job put on the machine is completed on
time is 3/16 (the probability that the first job has completion time 2 times
the probability at least one of the two remaining jobs has due date 5 times
the probability that the second job has processing time 2). The expected
number of on-time completions is therefore .4375 and the expected number
of tardy jobs is 2.5625. ||
The last class of policies is a preemptive version of the third class.

Definition 9.5.6 (Preemptive Dynamic Policy). Under a preemptive
dynamic policy the decision maker may decide at any point in time which jobs
should be processed on the machines. His decision at any given point in time
may take into account all information available at that point and may involve
preemptions.

Example 9.5.7 (Application of a Preemptive Dynamic Policy)

Consider again the problem of Example 9.5.2. It is of interest to know the
expected number of jobs completed on time under a preemptive dynamic
policy. Under a preemptive dynamic policy, the probability that the first
job is completed on time is again .25. This first job is either taken off the
machine at time 1 (with probability .5) or at time 2 (with probability .5). The
probability the second job put on the machine is completed on time is 3/8,
since the second job enters the machine either at time 1 or at time 2 and
the probability of being completed on time is 0.75 times the probability it
has processing time 2, which equals 3/8 (regardless of when the first job was
taken off the machine). However, unlike under the nonpreemptive dynamic
policy, the second job put on the machine is taken off with probability .5
at time 3 and with probability 0.5 at time 4. So there is actually a chance
that the third job that goes on the machine will be completed on time. The
probability the third job is completed on time is 1/16 (the probability that
the due date of the first job is 1 (=.5) times the probability that the due
dates of both remaining jobs are 5 (=.25) times the probability that the
processing time of the third job is 2 (=.5)). The total expected number of
on-time completions is therefore 11/16 = 0.6875 and the expected number
of tardy jobs is 2.3125. ||
It is clear that the optimal preemptive dynamic policy leads to the best

possible value of the objective as in this class of policies the decision maker
has the most information available and the largest amount of freedom. No
general statement can be made with regard to a comparison between the optimal
preemptive static list policy and the optimal nonpreemptive dynamic policy.
The static list policy has the advantage that preemptions are allowed while the
nonpreemptive dynamic policy has the advantage that all current information
can be taken into account during the process. However, if all jobs are present
at time zero and the environment is either a bank of machines in parallel or a
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permutation flow shop, then the optimal nonpreemptive dynamic policy is at
least as good as the optimal nonpreemptive static list policy (see Examples 9.5.2
and 9.5.5).
There are various forms of minimization in stochastic scheduling. Whenever

an objective function has to be minimized, it has to be specified in what sense
the objective has to be minimized. The crudest form of optimization is in the
expectation sense, e.g., one wishes to minimize the expected makespan, that
is E(Cmax), and find a policy under which the expected makespan is smaller
than the expected makespan under any other policy. A stronger form of opti-
mization is optimization in the stochastic sense. If a schedule or policy min-
imizes Cmax stochastically, then the makespan under the optimal schedule or
policy is stochastically less than the makespan under any other schedule or
policy. Stochastic minimization, of course, implies minimization in expectation.
In the subsequent chapters the objective is usually minimized in expectation.
Frequently, however, the policies that minimize the objective in expectation
minimize the objective stochastically as well.

Exercises (Computational)

9.1. Determine the completion rate of the discrete Uniform distribution, where
P (X = i) = 0.1, for i = 1, . . . , 10.

9.2. Determine the completion rate of the continuous Uniform distribution,
with density function f(t) = 0.1, for 0 ≤ t ≤ 10, and 0 otherwise.
9.3. Consider two discrete time random variables X1 and X2. Both take values
on 1, 2 and 3:

P (X1 = 1) = .2, P (X1 = 2) = .3, P (X1 = 3) = .5;

P (X2 = 1) = .2, P (X2 = 2) = .6, P (X2 = 3) = .2.

(a) Are X1 and X2 likelihood ratio ordered?
(b) Are X1 and X2 stochastically ordered?

9.4. Consider two discrete time random variables X1 and X2. Both take values
on 1, 2, 3 and 4:

P (X1 = 1) = .125, P (X1 = 2) = .375, P (X1 = 3) = .375, P (X1 = 4) = .125;

P (X2 = 1) = .150, P (X2 = 2) = .400, P (X2 = 3) = .250, P (X2 = 4) = .200.

(a) Are X1 and X2 symmetrically variability ordered?
(b) Are X1 and X2 variability ordered?
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9.5. Consider three jobs on two machines. The processing times of the three
jobs are independent and identically distributed (i.i.d.) according to the discrete
distribution P (Xj = 0.5) = P (Xj = 1.5) = 0.5.

(a) Compute the expected makespan.
(b) Compute the total expected completion time (Hint: note that the sum
of the expected completion times is equal to the sum of the expected starting
times plus the sum of the expected processing times.)
(c) Compare the results of (a) and (b) with the results in case all three
jobs have deterministic processing times equal to 1.

9.6. Do the same as in the previous exercise, but now with two machines and
four jobs.

9.7. Consider a flow shop of two machines with unlimited intermediate storage.
There are two jobs and the four processing times are i.i.d. according to the
discrete distribution

P (Xj = 0.5) = P (Xj = 1.5) = 0.5.

Compute the expected makespan and the total expected completion time.

9.8. Consider a single machine and three jobs. The three jobs have i.i.d. pro-
cessing times. The distribution is exponential with mean 1. The due dates of the
three jobs are also i.i.d. exponential with mean 1. The objective is to minimize
the expected number of tardy jobs, i.e., E(

∑n
j=1 Uj). Consider a nonpreemptive

static list policy.

(a) Compute the probability of the first job being completed on time.
(b) Compute the probability of the second job being completed on time.
(c) Compute the probability of the third job being completed on time.

9.9. Do the same as in the previous exercise but now for a nonpreemptive
dynamic policy.

9.10. Do the same as in Exercise 9.8 but now for a preemptive dynamic policy.

Exercises (Theory)

9.11. Show that
E(X) =

∫ ∞

0

F̄ (t)dt

(recall that F̄ (t) = 1− F (t)).

9.12. Show that

E(min(X1, X2)) =
∫ ∞

0

F̄1(t)F̄2(t)dt,
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with X1 and X2 being independent.

9.13. Show that
E(min(X1, X2)) =

1
λ+ µ

,

when X1 is exponentially distributed with rate λ and X2 exponentially dis-
tributed with rate µ.

9.14. Show that

E(max(X1, X2)) = E(X1) + E(X2)− E(min(X1, X2)),

with X1 and X2 arbitrarily distributed.

9.15. Compute the coefficient of variation of the Erlang(k, λ) distribution (re-
call that the Erlang(k, λ) distribution is a convolution of k i.i.d. exponential
random variables with rate λ).

9.16. Consider the following variant of the geometric distribution:

P (X = t+ a) = (1− q)qt, t = 0, 1, 2, . . . ,

where a = (
√
q− q)/(1− q). Show that the coefficient of variation Cv(X) of this

“shifted” geometric is equal to 1.

9.17. Consider the following partial ordering between random variablesX1 and
X2. The random variable X1 is said to be smaller than the random variable X2

in the completion rate sense if the completion rate of X1 at time t, say λ1(t),
is larger than or equal to the completion rate of X2, say λ2(t), for any t.

(a) Show that this ordering is equivalent to the ratio (1−F1(t))/(1−F2(t))
being monotone decreasing in t.
(b) Show that

monotone likelihood ratio ordering ⇒ completion rate ordering ⇒
stochastic ordering.

9.18. Consider m machines in parallel and n jobs with i.i.d. processing times
from distribution F with mean 1. Show that

n

m
≤ E(Cmax) < n.

Are there distributions for which these bounds are attained?

9.19. Consider a permutation flow shop with m machines in series and n jobs.
The processing time of job j on machine i is Xij , distributed according to F
with mean 1. Show that

n+m− 1 ≤ E(Cmax) ≤ mn.
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Are there distributions for which these bounds are attained?

9.20. Consider a single machine and n jobs. The processing time of job j is
Xj with mean E(Xj) and variance Var(Xj). Find the schedule that minimizes
E(

∑
Cj) and the schedule that minimizes Var(

∑
Cj). Prove your results.

9.21. Assume X1 ≥st X2. Show through a counterexample that

Z1 = 2X1 +X2 ≥st 2X2 +X1 = Z2.

is not necessarily true.

Comments and References

For a general overview of stochastic scheduling problems, see Dempster, Lenstra
and Rinnooy Kan (1982), Möhring and Radermacher (1985b) and Righter
(1994).
For an easy to read and rather comprehensive treatment of distributions

and classes of distributions based on completion (failure) rates, see Barlow and
Proschan (1975) (Chapter 3).
For a lucid and comprehensive treatment of the several forms of stochastic

dominance, see Ross (1995). A definition of the form of stochastic dominance
based on symmetric variability appears in Pinedo (1982). For a scheduling ap-
plication of monotone likelihood ratio ordering see Brown and Solomon (1973).
For a scheduling application of completion rate ordering (Exercise 9.17), see
Pinedo and Ross (1980). For an overview of the different forms of stochastic
dominance and their importance with respect to scheduling, see Chang and Yao
(1993) and Righter (1994).
For the impact of randomness on fixed schedules, see Pinedo and Weber

(1984), Pinedo and Schechner (1985), Pinedo and Wie (1986), Shanthikumar
and Yao (1991) and Chang and Yao (1993).
Many classes of scheduling policies have been introduced over the years; see,

for example, Glazebrook (1981a, 1981b, 1982), Pinedo (1983) and Möhring,
Radermacher and Weiss (1984, 1985).
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Stochastic models, especially with exponential processing times, may often con-
tain more structure than their deterministic counterparts and may lead to re-
sults which, at first sight, seem surprising. Models that are NP-hard in a deter-
ministic setting often allow a simple priority policy to be optimal in a stochastic
setting.
In this chapter single machine models with arbitrary processing times in a

nonpreemptive setting are discussed first. Then the preemptive cases are consid-
ered, followed by models where the processing times are likelihood ratio ordered.
Finally, models with exponentially distributed processing times are analyzed.

10.1 Arbitrary Distributions without Preemptions

For a number of stochastic problems, finding the optimal policy is equivalent
to solving a deterministic scheduling problem. Usually, when such an equiv-
alence relationship exists, the deterministic counterpart can be obtained by
replacing all random variables with their means. The optimal schedule for the
deterministic problem then minimizes the objective of the stochastic version in
expectation.
One such case is when the objective in the deterministic counterpart is linear

in p(j) and w(j), where p(j) and w(j) denote the processing time and weight of
the job in the j-th position in the sequence.

263M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4 10,
c© Springer Science+Business Media, LLC 2008
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This observation implies that it is easy to find the optimal permutation
schedule for the stochastic counterpart of 1 || ∑

wjCj , when the processing
time of job j is Xj , from an arbitrary distribution Fj , and the objective is
E(

∑
wjCj). This problem leads to the stochastic version of the WSPT rule,

which sequences the jobs in decreasing order of the ratio wj/E(Xj) or λjwj .
In what follows this rule is referred to either as the Weighted Shortest Expected
Processing Time first (WSEPT) rule or as the ′′λw′′ rule.

Theorem 10.1.1. The WSEPT rule minimizes the expected sum of the
weighted completion times in the class of nonpreemptive static list policies as
well as in the class of nonpreemptive dynamic policies.

Proof. The proof for nonpreemptive static list policies is similar to the proof
for the deterministic counterpart of this problem. The proof is based on an
adjacent pairwise interchange argument identical to the one used in the proof
of Theorem 3.1.1. The only difference is that the pj’s in that proof have to be
replaced by E(Xj)’s.
The proof for nonpreemptive dynamic policies needs an additional argument.

It is easy to show that it is true for n = 2 (again an adjacent pairwise interchange
argument). Now consider three jobs. It is clear that the last two jobs have to
be sequenced according to the λw rule. These last two jobs will be sequenced in
this order independent of what occurs during the processing of the first job and
of the completion time of the first job. There are then three sequences that may
occur: each of the three jobs starting first and the remaining two jobs sequenced
according to the λw rule. A simple interchange argument between the first job
and the second shows that all three jobs have to sequenced according to the λw
rule. It can be shown by induction that all n jobs have to be sequenced according
to the λw rule in the class of nonpreemptive dynamic policies: suppose it is true
for n− 1 jobs. If there are n jobs, then it follows from the induction hypothesis
that the last n−1 jobs have to be sequenced according to the λw rule. Suppose
the first job is not the job with the highest λjwj . Interchanging this job with
the second job in the sequence, i.e., the job with the highest λjwj , results in
a decrease in the expected value of the objective function. This completes the
proof of the theorem. 	

It can be shown that the nonpreemptive WSEPT rule is also optimal in the

class of preemptive dynamic policies when all n processing time distributions
are ICR. This follows from the fact that at any time when a preemption is
contemplated, the λw ratio of the job currently on the machine is actually higher
than when it was put on the machine (the expected remaining processing time
of an ICR job decreases as processing goes on). If the ratio of the job was the
highest among the remaining jobs when it was put on the machine, it remains
the highest while it is being processed.
The same cannot be said about jobs with DCR distributions. The expected

remaining processing time then increases while a job is being processed. So the
weight divided by the expected remaining processing time of a job, while it is
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being processed, decreases with time. Preemptions may therefore be advanta-
geous when processing times are DCR.

Example 10.1.2 (Optimal Policy with Random Variables that are
DCR)
Consider n jobs with the processing time Xj distributed as follows. The
processing time Xj is 0 with probability pj and it is distributed according to
an exponential with rate λj with probability 1−pj . Clearly, this distribution
is DCR as it is a mixture of two exponentials with rates ∞ and λj . The
objective to be minimized is the expected sum of the weighted completion
times. The optimal preemptive dynamic policy is clear. All n jobs have to
be tried out for a split second at time zero, in order to determine which jobs
have zero processing times. If a job does not have zero processing time, it
is taken immediately off the machine. After having determined in this way
which jobs have nonzero processing times, these remaining jobs are sequenced
in decreasing order of λjwj . ||
Consider the following generalization of the stochastic counterpart of 1 ||∑
wjCj described above. The machine is subject to breakdowns. The “up”

times, i.e., the times that the machine is in operation, are exponentially dis-
tributed with rate ν. The “down” times are independent and identically dis-
tributed (i.i.d.) according to distribution G with mean 1/µ. It can be shown
that even in this case the λw rule is optimal. Actually, it can be shown that
this stochastic problem with breakdowns is equivalent to a similar deterministic
problem without breakdowns. The processing time of job j in the equivalent
deterministic problem is determined as follows. Let Xj denote the original ran-
dom processing time of job j when there are no breakdowns and let Yj denote
the time job j occupies the machine, including the time that the machine is
not in operation. The following relationship can be determined easily (see Ex-
ercise 10.11).

E(Yj) = E(Xj)(1 +
ν

µ
).

This relationship holds because of the exponential uptimes of the machines
and the fact that all the breakdowns have the same mean. So, even with the
breakdown process described above, the problem is still equivalent to the de-
terministic problem 1 || ∑wjCj without breakdowns.
The equivalences between the single machine stochastic models and their

deterministic counterparts go even further. Consider the stochastic counterpart
of 1 | chains | ∑wjCj . If in the stochastic counterpart the jobs are subject to
precedence constraints that take the form of chains, then Algorithm 3.1.4 can
be used for minimizing the expected sum of the weighted completion times (in
the definition of the ρ-factor the pj is again replaced by the E(Xj)).
Consider now the stochastic version of 1 || ∑wj(1− e−rCj) with arbitrarily

distributed processing times. This problem leads to the stochastic version of
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the WDSPT rule which sequences the jobs in decreasing order of the ratio

wjE(e−rXj )
1− E(e−rXj )

.

This rule is referred to as theWeighted Discounted Shortest Expected Processing
Time first (WDSEPT) rule. This rule is, in a sense, a generalization of a number
of rules considered before (see Figure 10.1).

Theorem 10.1.3. The WDSEPT rule minimizes the expected weighted
sum of the discounted completion times in the class of nonpreemptive static list
policies as well as in the class of nonpreemptive dynamic policies.

Proof. The optimality of this rule can be shown again through a straightfor-
ward pairwise interchange argument similar to the one used in the proof of
Theorem 3.1.6. The wje

−r(t+pj) is replaced by the wjE(e−r(t+Xj)). Optimal-
ity in the class of nonpreemptive dynamic policies follows from an induction
argument similar to the one presented in Theorem 10.1.1. 	


Example 10.1.4 (Application of the WDSEPT Rule)
Consider two jobs with equal weights, say 1. The processing time distribution
of the first job is a continuous time uniform distribution over the interval
[0, 2], i.e., f1(t) = .5 for 0 ≤ t ≤ 2. The processing time distribution of the
second job is a discrete time uniform distribution with 0, 1 and 2 as possible
outcomes, i.e.,

P (X2 = 0) = P (X2 = 1) = P (X2 = 2) =
1
3
.
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Clearly, E(X1) = E(X2) = 1. The discount factor r is 1/10. In order to
determine the priority indices of the two jobs E(e−rX1) and E(e−rX2) have
to be computed:

E(e−rX1) =
∫ ∞

0

e−rtf1(t)dt =
∫ 2

0

1
2
e−0.1tdt = .9063

and

E(e−rX2) =
∞∑
t=0

e−rtP (X2 = t) =
1
3
+
1
3
e−0.1 +

1
3
e−0.2 = .9078.

The priority index of job 1 is therefore 9.678 and the priority index of job 2
is 9.852. This implies that job 2 has to be processed first and job 1 second. If
the discount factor would have been zero any one of the two sequences would
have been optimal. Observe that Var(X1) = 1/3 and Var(X2) = 2/3. So in
this case it is optimal to process the job with the larger variance first. ||
In the theorem above the optimality of the WDSEPT rule is shown for the

class of nonpreemptive static list policies as well as for the class of nonpre-
emptive dynamic policies. Precedence constraints can be handled in the same
way as they are handled in the deterministic counterpart (see Exercise 3.22).
The model considered in Theorem 10.1.3, without precedence constraints, will
be considered again in the next section in an environment that allows preemp-
tions.
The remaining part of this section focuses on due date related problems.

Consider the stochastic counterpart of 1 || Lmax with processing times that
have arbitrary distributions and deterministic due dates. The objective is to
minimize the expected maximum lateness.

Theorem 10.1.5. The EDD rule minimizes expected maximum lateness
for arbitrarily distributed processing times and deterministic due dates in the
class of nonpreemptive static list policies, the class of nonpreemptive dynamic
policies and the class of preemptive dynamic policies.

Proof. It is clear that the EDD rule minimizes the maximum lateness for any
realization of processing times (after conditioning on the processing times, the
problem is basically a deterministic problem and Algorithm 3.2.1 applies). If
the EDD rule minimizes the maximum lateness for any realization of processing
times then it minimizes the maximum lateness also in expectation (it actually
minimizes the maximum lateness almost surely). 	


Example 10.1.6 (Application of the EDD Rule)
Consider two jobs with deterministic due dates. The processing time distri-
butions of the jobs are discrete:

P (X1 = 1) = P (X1 = 2) = P (X1 = 4) =
1
3
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and
P (X2 = 2) = P (X2 = 4) =

1
2
.

The due date of the first job is D1 = 1 and the due date of the second job is
D2 = 4. Now

E(max(L1, L2)) = E
(
max(L1, L2) | X1 = 1, X2 = 2

)
× P (X1 = 1, X2 = 2)

+ E
(
max(L1, L2) | X1 = 1, X2 = 4

)
× P (X1 = 1, X2 = 4)

+ E
(
max(L1, L2) | X1 = 2, X2 = 2

)
× P (X1 = 2, X2 = 2)

+ E
(
max(L1, L2) | X1 = 2, X2 = 4

)× P (X1 = 2, X2 = 4)

+ E
(
max(L1, L2) | X1 = 4, X2 = 2

)
× P (X1 = 4, X2 = 2)

+ E
(
max(L1, L2) | X1 = 4, X2 = 4

)
× P (X1 = 4, X2 = 4)

= (0 + 1 + 1 + 2 + 3 + 4)
1
6

=
11
6
.

It can easily be verified that scheduling job 2 first and job 1 second results
in a larger E(max(L1, L2)).
Note, however, that in any given sequence E(Lmax) = E(max(L1, L2))

does not necessarily have to be equal to max(E(L1), E(L2)). Under sequence
1, 2,

E(L1) = 0× 13 + 1×
1
3
+ 3× 1

3
=
4
3
,

while

E(L2) =
1
3

(1
2
× 0 + 1

2
× 1

)
+
1
3

(1
2
× 0 + 1

2
× 2

)
+
1
3

(1
2
× 2 + 1

2
× 4

)
=
3
2
.

So max(E(L1), E(L2)) = 3/2, which is smaller than E(max(L1, L2)). ||
It can be shown that the EDD rule not only minimizes

E(Lmax) = E(max(L1, . . . , Ln)),

but also max(E(L1), . . . , E(Ln)).
It is even possible to develop an algorithm for a stochastic counterpart of the

more general 1 | prec | hmax problem considered in Chapter 3. In this problem
the objective is to minimize the maximum of the n expected costs incurred by
the n jobs, i.e., the objective is to minimize

max
(
E(h1(C1)), . . . , E(hn(Cn))

)
,
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where hj(Cj) is the cost incurred by job j being completed at Cj . The cost
function hj is nondecreasing in the completion time Cj . The algorithm is a
modified version of Algorithm 3.2.1. The version here is also a backward pro-
cedure. Whenever one has to select a schedulable job for processing, it is clear
that the distribution of its completion time is the convolution of the processing
times of the jobs that have not yet been scheduled. Let fJc denote the density
function of the convolution of the processing times of the set of unscheduled
jobs Jc. Job j∗ is then selected to be processed last among the set of jobs Jc if∫ ∞

0

hj∗(t)fJc(t)dt = min
j∈Jc

∫ ∞

0

hj(t)fJc(t)dt.

The L.H.S. denotes the expected value of the penalty for job j∗ if it is the last job
to be scheduled among the jobs in Jc. This rule replaces the first part of Step 2
in Algorithm 3.2.1. The proof of optimality is similar to the proof of optimality
for the deterministic case. However, implementation of the algorithm may be
significantly more cumbersome because of the evaluation of the integrals.

Example 10.1.7 (Minimizing Maximum Expected Cost)
Consider three jobs with random processing times X1, X2 and X3 from
distributions F1, F2 and F3. Particulars of the processing times and cost
functions are given in the table below.

jobs 1 2 3

hj(Cj) 1 + 2C1 38 4C3

E(Xj) 6 18 12

Note that all three cost functions are linear. This makes the evaluations of
all the necessary integrals very easy, since the integrals are a linear function
of the means of the processing times. If job 1 is the last one to be completed,
the expected penalty with regard to job 1 is 1 + 2(6 + 18 + 12) = 73; the
expected penalty with regard to job 2 is 38 and with regard to job 3 is
4(6+ 18+ 12) = 144. The procedure selects job 2 for the last position. If job
1 would go second the expected penalty would be 1 + 2(6 + 12) = 37 and if
job 3 would go second its expected penalty would be 4(6 + 12) = 72. So job
1 is selected to go second and job 3 goes first. If job 3 goes first its expected
penalty is 48. The maximum of the three expected penalties under sequence
3, 1, 2 is max(48, 37, 38) = 48. ||
Note that the analysis in Example 10.1.7 is particularly easy since all three

cost functions are linear. The only information needed with regard to the pro-
cessing time of a job is its mean. If any one of the cost functions is nonlinear,
the expected penalty of the corresponding job is more difficult to compute; its
entire distribution has to be taken into account. The integrals may have to be
evaluated through approximation methods.
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10.2 Arbitrary Distributions with Preemptions: the
Gittins Index

Consider the problem of scheduling n jobs with random processing times
X1, . . . , Xn from discrete time distributions. The scheduler is allowed to pre-
empt the machine at discrete times 0, 1, 2, . . . If job j is completed at the
integer completion time Cj a reward wjβ

Cj is received, where β is a discount
factor between 0 and 1. The value of β is typically close to 1. It is of interest
to determine the policy that maximizes the total expected reward.
Before proceeding with the analysis it may be useful to relate this problem to

another described earlier. It can be argued that this problem is a discrete-time
version of the continuous-time problem with the objective

E
( n∑
j=1

wj(1− e−rCj)
)
.

The argument goes as follows. Maximizing
∑

wjβ
Cj is equivalent to minimizing∑

wj(1 − βCj ). Consider the limiting case where the size of the time unit is
decreased and the number of time units is increased accordingly. If the time
unit is changed from 1 to 1/k with (k > 1), the discount factor β has to be
adjusted as well. The appropriate discount factor, which corresponds to the new
time unit 1/k, is then k

√
β. If β is relatively close to one, then

k
√

β ≈ 1− 1− β

k
.

So
βCj ≈

(
1− 1− β

k

)kCj

and
lim
k→∞

(
1− 1− β

k

)kCj

= e−(1−β)Cj .

This implies that when β is relatively close to one, it is similar to the 1− r used
in earlier models. The current model is then a discrete time stochastic version
of the deterministic problem 1 | prmp | ∑

wj(1 − exp(−rCj)) discussed in
Chapter 3. The stochastic version can be used to model the problem described
in Example 1.1.4 (the problem described in Example 1.1.4 is actually slightly
more general as it assumes that jobs have different release dates).
In order to characterize the optimal policy for this discrete time scheduling

problem with preemptions, it is actually easier to consider a more general reward
process. Let xj(t) denote the state of job j at time t. This state is basically
determined by the amount of processing job j has received prior to time t.
If the decision is made to process job j during the interval [t, t + 1] a random
rewardWj(xj(t)) is received. This random reward is a function of the state xj(t)
of job j. Clearly, this reward process is more general than the one described at
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the beginning of this section under which a (fixed) reward wj is received only
if job j is completed during the interval [t, t + 1]. In what follows the optimal
policy is determined for the more general reward process.
The decision to be made at any point in time has two elements. First, a

decision has to be made with regard to the job selection. Second, if a particular
job is selected, a decision has to be made with regard to the amount of time the
job should remain on the machine. The first point in time at which another job
is considered for processing is referred to as the stopping time and is denoted
by τ .
It is shown in what follows that the solution of this problem can be charac-

terized by functions Gj , j = 1, . . . , n, with the property that processing job j∗

at time t is optimal if and only if

Gj∗(xj∗) = max
1≤j≤n

Gj(xj),

where xj is the amount of processing job j already has received by time t, i.e.,
xj(t) = xj . The function Gj is called the Gittins index and is defined as

Gj(xj) = max
π

Eπ

(∑τ−1
s=0 βs+1Wj(xj(s)) | xj(0) = xj

)
Eπ

(∑τ−1
s=0 βs+1 | xj(0) = xj

) ,

with the stopping time τ being determined by the policy π. However, the value
τ is not necessarily the time at which the processing of job j stops. Job j may
actually be completed before the stopping time.
This is one of the more popular forms in which the Gittins index is presented

in the literature. The Gittins index may be described in words as the largest
value that is obtainable by dividing the total discounted expected reward over
a given time period (determined by the stopping time) by the discounted time
itself.
The next theorem focuses on the optimal policy under the more general

reward process described above.

Theorem 10.2.1. The policy that maximizes the total discounted expected
reward in the class of preemptive dynamic policies prescribes, at each point in
time, the processing of the job with the largest Gittins index.

Proof. Assume that the scheduler has to pay a fixed charge to the machine if he
decides to process job j. Call this charge the prevailing charge. Suppose job j
is the only one in the system and the scheduler has to decide whether or not
to process it. The scheduler has to decide to process the job for a number of
time units, observe the state as it evolves and then stop processing the moment
the prevailing charge does not justify any further processing. If the prevailing
charge is very small, it is advantageous to continue processing whereas if the
prevailing charge is too high, any further processing leads to losses.
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As a function of the state of job j, say xj , the so-called fair charge is defined
as γj(xj), the level of prevailing charge for which the optimal action will neither
be profitable nor cause losses. That is, the fair charge is the level of the prevailing
charge at which the costs to the scheduler are exactly in balance with the
expected outside rewards to be obtained by processing the jobs according to
the optimal policy. So

γj(xj) = max
(
γ : max

π
Eπ

( τ−1∑
s=0

βs+1
(
Wj(xj(s))− γ

)
| xj(0) = xj

)
≥ 0

)
,

where the policy π determines the stopping time τ . Thus the fair charge is
determined by the optimal action which prescribes processing the job for exactly
τ time units or until completion, whichever comes first. Processing the job for
less time causes losses and processing the job for more than τ time units causes
losses also. Suppose the prevailing charge is reduced to the fair charge whenever
the scheduler would have decided to stop processing the job due to the prevailing
charge being too high. Then the scheduler would keep the job on the machine
until completion as the process now becomes a fair game. In this case, the
sequence of prevailing charges for the job is nonincreasing in the number of
time units the job already has undergone processing.
Suppose now that there are n different jobs and at each point in time the

scheduler has to decide which one to process during the next time period. As-
sume that initially the prevailing charge for each job is set equal to its fair
charge and the prevailing charges are reduced periodically afterwards, as de-
scribed above, every time a stopping time is reached. Thus the scheduler never
pays more than the fair charge and can make sure that his expected total dis-
counted profit is nonnegative. However, it is also clear that his total profit
cannot be positive, because it would have to be positive for at least one job and
this cannot happen as the prevailing charges consistently are set equal to the
fair charges. The scheduler only can break even if, whenever he selects a job, he
processes the job according to the optimal policy. That is, he has to continue
processing this job until the optimal stopping time, that determines the level of
the fair charge. If he does not act accordingly, he acts suboptimally and incurs
an expected discounted loss. So the scheduler acts optimally if, whenever he
starts processing a job, he continues to do so as long as the job’s fair charge
remains greater than its prevailing charge.
The sequence of prevailing charges for each job is a nonincreasing function

of the number of time units the job has undergone processing. By definition
it is a sequence that is independent of the policy adopted. If for each job the
sequence of prevailing charges is nonincreasing and if the scheduler adopts the
policy of always processing the job with the largest prevailing charge, then he
incurs charges in a nonincreasing sequence. This intertwining of sequences of
prevailing charges into a single nonincreasing sequence is unique (in terms of
charges, not necessarily in terms of jobs). Thus the policy of processing the
job with the largest prevailing charge maximizes the expected total discounted
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charge paid by the scheduler. This maximum quantity is an upper bound for
the expected total discounted reward obtained by the scheduler. This upper
bound is achieved by the proposed policy, since the policy forces the scheduler
to process a job, without interruption, for the time that its fair charge exceeds
its prevailing charge (this leads to a fair game in which the scheduler’s total
expected discounted profit is zero). This completes the proof of the theorem. 	

From the expression for the fair charge γj(xj) the expression for the Gittins

index immediately follows. For the special case in which a fixed reward wj is
received only upon completion of job j, the Gittins index becomes

Gj(xj) = max
τ>0

∑τ−1
s=0 βs+1wjP (Xj = xj + 1 + s | Xj > xj)∑τ−1
s=0 βs+1P (Xj ≥ xj + 1 + s | Xj > xj)

= max
τ>0

∑τ−1
s=0 βs+1wjP (Xj = xj + 1 + s)∑τ−1
s=0 βs+1P (Xj ≥ xj + 1 + s)

,

The Gittins index is determined by the maximum of the ratio of the R.H.S. over
all possible stopping times. As the expectations of the sums in the numerator
and denominator must take into account that the scheduler does not keep the
job on the machine for τ time units in case the job is completed early, each
element in one of the sums has to be multiplied with the appropriate probability.
As the computation of Gittins indices at first sight may seem somewhat

involved, an example is in order. The following example considers the reward
process where a fixed reward wj is obtained upon completion of job j.

Example 10.2.2 (Application of the Gittins Index)

Consider three jobs with w1 = 60, w2 = 30 and w3 = 40. Let pjk denote the
probability that the processing time of job j takes k time units, i.e.,

pjk = P (Xj = k)

The processing times of the three jobs take only values on the integers 1, 2
and 3.

p11 =
1
6
, p12 =

1
2
, p13 =

1
3
;

p21 =
2
3
, p22 =

1
6
, p23 =

1
6
;

p31 =
1
2
, p32 =

1
4
, p33 =

1
4
;

Assume the discount rate β to be 0.5. If job 1 is put on the machine at
time 0, the discounted expected reward at time 1 is w1p11β which is 5. The
discounted expected reward obtained at time 2 is w1p12β

2 which is 7.5. The
discounted expected reward obtained at time 3 is w1p13β

3 which is 2.5. The
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Gittins index for job 1 at time 0 can now be computed easily.

G1(x1(0)) = G1(0) = max
( 5
0.5

,
5 + 7.5

0.5 + 0.208
,

5 + 7.5 + 2.5
0.5 + 0.208 + 0.042

)
= 20.

Thus, if job 1 is selected as the one to go on the machine at time 0, it will
be processed until it is completed. In the same way the Gittins indices for
jobs 2 and 3 at time zero can be computed.

G2(0) = max
( 10
0.5

,
11.25

0.5 + 0.083
,

11.875
0.5 + 0.083 + 0.021

)
= 20

The computation of the Gittins index of job 2 indicates that job 2, if selected
to go on the machine at time 0, may be preempted before being completed;
processing is only guaranteed for one time unit.

G3(0) = max
( 10
0.5

,
12.5

0.5 + 0.125
,

13.75
0.5 + 0.125 + 0.031

)
= 20.96

If job 3 would be selected for processing at time 0, it would be processed up
to completion.
After comparing the three Gittins indices for the three jobs at time zero a

decision can be made with regard to the job to be selected for processing. The
maximum of the three Gittins indices is 20.96. So job 3 is put on the machine
at time 0 and is kept on the machine until completion. At the completion of
job 3 either job 1 or job 2 may be selected. The values of their Gittins indices
are the same. If job 1 is selected for processing it remains on the machine
until it is completed. If job 2 is selected, it is guaranteed processing for only
one time unit; if it is not completed after one time unit it is preempted and
job 1 is selected for processing. ||
What would happen if the processing times have ICR distributions? It can

be shown that in this case the scheduler never will preempt. The Gittins in-
dex of the job being processed increases continuously, while the indices of the
jobs waiting for processing remain the same. Consider the limiting case where
the length of the time unit goes to 0 as the number of timesteps increases
accordingly. The problem becomes a continuous time problem. When the pro-
cessing times are ICR, the result in Theorem 10.2.1 is equivalent to the result
in Theorem 10.1.3. So, in one sense Theorem 10.1.3 is more general as it cov-
ers the nonpreemptive setting with arbitrary processing time distributions (not
just ICR distributions), while Theorem 10.2.1 does not give any indication of
the form of the optimal policy in a nonpreemptive setting when the processing
times are not ICR. In another sense Theorem 10.2.1 is more general, since The-
orem 10.1.3 does not give any indication of the form of the optimal policy in a
preemptive setting when the processing times are not ICR.
The result in Theorem 10.2.1 can be generalized to include jobs arriving

according to a Poisson process. In a discrete time framework this implies that
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the interarrival times are geometrically distributed with a fixed parameter. The
job selected at any point in time is the job with the largest Gittins index among
the jobs present. The proof of this result lies beyond the scope of this book.
The result can also be generalized to include breakdowns with up times that

are i.i.d. geometrically distributed and down times that are i.i.d. arbitrarily dis-
tributed. For the proof of this result the reader is also referred to the literature.

10.3 Likelihood Ratio Ordered Distributions

Section 10.1 discussed examples of nonpreemptive stochastic models that are
basically equivalent to their deterministic counterparts. In a number of cases
the distributions of the random variables did not matter at all; only their expec-
tations played a role. In this subsection, an example is given of a nonpreemptive
stochastic model that is, to a lesser extent, equivalent to its deterministic coun-
terpart. Its relationship with its deterministic counterpart is not as strong as
in the earlier cases, since some conditions on the distribution functions of the
processing times are required.
Consider n jobs. The processing time of job j is equal to the random variable

Xj with distribution Fj , provided the job is started immediately at time zero.
However, over time the machine “deteriorates”, i.e., the later a job starts its
processing, the longer its processing time. If job j starts with its processing
at time t, its processing time is Xja(t), where a(t) is an increasing concave
function. Thus for any starting time t the processing time is proportional to the
processing time of the job if it had started its processing at time 0. Moreover,
concavity of a(t) implies that the deterioration process in the early stages of
the process is more severe than in the later stages of the process. The original
processing times are assumed to be likelihood ratio ordered in such a way that
X1 ≤lr · · · ≤lr Xn. The objective is to minimize the expected makespan. The
following lemma is needed in the subsequent analysis.

Lemma 10.3.1. If g(x1, x2) is a real valued function satisfying

g(x1, x2) ≥ g(x2, x1)

for all x1 ≤ x2, then
g(X1, X2) ≥st g(X2, X1)

whenever
X1 ≤lr X2.

Proof. Let U = max(X1, X2) and V = min(X1, X2). Condition on U = u and
V = v with u ≥ v. The conditional distribution of g(X1, X2) is concentrated
on the two points g(u, v) and g(v, u). The probability assigned to the smaller
value g(u, v) is then

P (X1 = max(X1, X2) | U = u, V = v)
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=
f1(u)f2(v)

f1(u)f2(v) + f1(v)f2(u)
.

In the same way g(X2, X1) is also concentrated on two points g(u, v) and g(v, u).
The probability assigned to the smaller value g(u, v) in this case is

P (X2 = max(X1, X2) | U = u, V = v)

=
f2(u)f1(v)

f2(u)f1(v) + f2(v)f1(u)
.

As u ≥ v and X2 ≥lr X1,

f1(u)f2(v) ≤ f2(u)f1(v).

Therefore, conditional on U = u and V = v

g(X2, X1) ≤st g(X1, X2).

Unconditioning completes the proof of the Lemma. 	

At first sight this lemma may seem to provide a very fundamental and useful

result. Any pairwise interchange in a deterministic setting can be translated
into a pairwise interchange in a stochastic setting with the random variables
likelihood ratio ordered. However, the usefulness of this lemma appears to be
limited to single machine problems and proportionate flow shops.
The following two lemmas contain some elementary properties of the func-

tion a(t).

Lemma 10.3.2. If 0 < x1 < x2, then for all t ≥ 0

x1a(t) + x2a
(
t+ x1a(t)

)
≥ x2a(t) + x1a

(
t+ x2a(t)

)
.

Proof. The proof is easy and therefore omitted. 	

From Lemmas 10.3.1 and 10.3.2 it immediately follows that if there are only

two jobs, scheduling the job with the larger expected processing time first min-
imizes the expected makespan.

Lemma 10.3.3. The function hx1(t) = t + x1a(t) is increasing in t, for
all x1 > 0.

Proof. The proof is easy and therefore omitted. 	

Theorem 10.3.4. The Longest Expected Processing Time first (LEPT)

rule minimizes the expected makespan in the class of nonpreemptive static list
policies as well as in the class of nonpreemptive dynamic policies.
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Proof. Consider first the class of nonpreemptive static list policies. The proof
is by induction. It has already been shown to hold for two jobs. Assume the
theorem holds for n− 1 jobs. Consider any nonpreemptive static list policy and
let job k be the job that is scheduled last. From Lemma 10.3.3 it follows that
among all schedules that process job k last, the one resulting in the minimum
makespan is the one that stochastically minimizes the completion time of the
first n−1 jobs. Hence, by the induction hypothesis, of all schedules that schedule
job k last, the one with the stochastically smallest makespan is the one which
schedules the first n − 1 jobs according to LEPT. If k is not the smallest job,
then the best schedule is the one that selects the smallest job immediately
before this last job k. Let t′ denote the time that this smallest job starts its
processing and suppose that there are only two jobs remaining to be processed.
The problem at this point is a problem with two jobs and an a function that is
given by at′(t) = a(t′+ t). Because this function is still concave it follows, from
the result for two jobs, that interchanging these last two jobs reduces the total
makespan stochastically. But among all schedules which schedule the smallest
job last, the one stated in the theorem, by the induction hypothesis, minimizes
the makespan stochastically. This completes the proof for nonpreemptive static
list policies.
It remains to be shown that the LEPT rule also stochastically minimizes the

makespan in the class of nonpreemptive dynamic policies. Suppose the decision
is allowed to depend on what has previously occurred, at most l times during
the process (of course, such times occur only when the machine is freed). When
l = 1 it follows from the optimality proof for static list policies that it is optimal
not to deviate from the LEPT schedule. If this remains true when l − 1 such
opportunities are allowed, it follows from the same argument that it remains
true when l such opportunities are allowed (because of the induction hypothesis
such an opportunity would be utilized only once). As the result is true for all l,
the proof for nonpreemptive dynamic policies is complete. 	


Example 10.3.5 (Linear Deterioration Function)
Consider two jobs with exponential processing times. The rates are λ1 and λ2.
The deterioration function a(t) = 1 + t, t ≥ 0, is linear. If the jobs are
scheduled according to sequence 1, 2, then the expected makespan can be
computed as follows. If job 1 is completed at time t, the expected time job 2
will occupy the machine is a(t)/λ2. The probability job 1 is completed during
the interval [t, t+ dt] is λ1e

−λ1tdt. So

E(Cmax) =
∫ ∞

0

(
t+ a(t)

1
λ2

)
λ1e

−λ1tdt =
1
λ1
+
1
λ2
+

1
λ1λ2

.

From this expression it is clear that the expected makespan in this case does
not depend on the sequence. ||
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Example 10.3.6 (Increasing Concave Deterioration Function and
LEPT)
Consider two jobs with discrete processing time distributions.

P (X1 = 1) =
1
8
, P (X1 = 2) =

1
4
, P (X1 = 3) =

5
8
;

P (X2 = 1) =
1
4
, P (X2 = 2) =

1
4
, P (X1 = 3) =

1
2
.

It is clear that X1 ≥lr X2. E(X1) = 2.5 while E(X2) = 2.25. The deterio-
ration function a(t) = 1 + t for 0 ≤ t ≤ 2, and a(t) = 3 for t ≥ 2. Clearly,
a(t) is increasing concave. Consider the LEPT sequence, i.e., sequence 1, 2.
The expected makespan can be computed by conditioning on the processing
time of the first job.

E(Cmax(LEPT )) =
1
8
(1 + 2E(X2)) +

1
4
(2 + 3E(X2)) +

5
8
(3 + 3E(X2))

=
287
32

,

while

E(Cmax(SEPT )) =
1
4
(1 + 2E(X1)) +

1
4
(2 + 3E(X1)) +

1
2
(3 + 3E(X1))

=
292
32

.

Clearly, LEPT is better than SEPT. ||
Intuitively, it does make sense that if the deterioration function is increasing

concave the longest job should go first. It can also be shown that if the dete-
rioration function is increasing convex the Shortest Expected Processing Time
first (SEPT) rule is optimal and if the deterioration function is linear then any
sequence is optimal.
However, if the function a(t) is decreasing, i.e., a form of learning takes place

that makes it possible to process the jobs faster, then it does not appear that
similar results can be obtained.

10.4 Exponential Distributions

This section focuses on models with exponentially distributed processing times.
Consider the stochastic version of 1 | dj = d | ∑

wjUj with job j having an
exponentially distributed processing time with rate λj and a deterministic due
date d. Recall that the deterministic counterpart is equivalent to the knapsack
problem. The objective is the expected weighted number of tardy jobs.
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Theorem 10.4.1. The WSEPT rule minimizes the expected weighted num-
ber of tardy jobs in the classes of nonpreemptive static list policies, nonpreemp-
tive dynamic policies and preemptive dynamic policies.

Proof. First the optimality of the WSEPT rule in the class of nonpreemptive
static list policies is shown. Assume the machine is free at some time t and
two jobs, with weights w1 and w2 and processing times X1 and X2, remain to
be processed. Consider first the sequence 1, 2. The probability that both jobs
are late is equal to the probability that X1 is larger than d − t, which is equal
to exp(−λ(d − t)). The penalty for being late is then equal to w1 + w2. The
probability that only the second job is late corresponds to the event where the
processing time of the first job is x1 < d− t and the sum of the processing times
x1 + x2 > d− t. Evaluation of the probability of this event, by conditioning on
X1 (that is X1 = x), yields

P (X1 < d− t, X1 +X2 > d− t) =
∫ d−t

0

e−λ2(d−t−x)λ1e
−λ1xdx.

If E(
∑

wU(1, 2)) denotes the expected value of the penalty due to jobs 1 and 2,
with job 1 processed first, then

E
(∑

wU(1, 2)
)
= (w1 + w2)e−λ1(d−t) + w2

∫ d−t

0

e−λ2(d−t−x)λ1e
−λ1xdx.

The value of the objective function under sequence 2, 1 can be obtained by inter-
changing the subscripts in the expression above. Straightforward computation
yields

E
(∑

wU(1, 2)
)
− E

(∑
wU(2, 1)

)
=

(λ2w2 − λ1w1)
e−λ1(d−t) − e−λ2(d−t)

λ2 − λ1
.

It immediately follows that the difference in the expected values is positive
if and only if λ2w2 > λ1w1. Since this result holds for all values of d and t,
any permutation schedule that does not sequence the jobs in decreasing order
of λjwj can be improved by swapping two adjacent jobs, where the first has a
lower λw value than the second. This completes the proof of optimality for the
class of nonpreemptive static list policies.
Induction can be used to show optimality in the class of nonpreemptive

dynamic policies. It is immediate that this is true for 2 jobs (it follows from the
same pairwise interchange argument for optimality in the class of nonpreemptive
static list policies). Assume that it is true for n− 1 jobs. In the case of n jobs
this implies that the scheduler after the completion of the first job will, because
of the induction hypothesis, revert to the WSEPT rule among the remaining
n− 1 jobs. It remains to be shown that the scheduler has to select the job with
the highest λjwj as the first one to be processed. Suppose the decision-maker
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selects a job that does not have the highest λjwj . Then, the job with the highest
value of λjwj is processed second. Changing the sequence of the first two jobs
decreases the expected value of the objective function according to the pairwise
interchange argument used for the nonpreemptive static list policies.
To show that WSEPT is optimal in the class of preemptive dynamic policies,

suppose a preemption is contemplated at some point in time. The remaining
processing time of the job is then exponentially distributed with the same rate
as it had at the start of its processing (because of the memoryless property of the
exponential). Since the decision to put this job on the machine did not depend
on the value of t at that moment or on the value of d, the same decision remains
optimal at the moment a preemption is contemplated. A nonpreemptive policy
is therefore optimal in the class of preemptive dynamic policies. 	

This result is in a marked contrast to the result in Chapter 3 that states that

its deterministic counterpart, i.e., the knapsack problem, is NP-hard.
Consider now the discrete time version of Theorem 10.4.1. That is, the pro-

cessing time of job j is geometrically distributed with parameter qj and job j
has weight wj . All jobs have the same due date d. If a job is completed exactly
at its due date it is considered on time. The objective is again E(

∑
wjUj).

Theorem 10.4.2. The WSEPT rule minimizes the expected weighted num-
ber of tardy jobs in the classes of nonpreemptive static list policies, nonpreemp-
tive dynamic policies and preemptive dynamic policies.

Proof. Consider two jobs, say jobs 1 and 2, and sequence 1, 2. The probability
that both jobs are late is qd+1

1 and the penalty is then w1+w2. The probability
that the first job is on time and the second job is late is

d∑
t=0

(1 − q1)qt1q
d+1−t
2 .

The penalty is then w2. So the total penalty under sequence 1, 2 is

(w1 + w2)qd+1
1 + w2(1− q1)qd+1

2

(
1−

(q1
q2

)d+1)
/
(
1− q1

q2

)
The total expected penalty under sequence 2, 1 can be obtained by interchanging
the subscripts 1 and 2. Sequence 1, 2 is better than sequence 2, 1 if

w1q
d+1
1 q2 − w2q

d+2
1 − w2q1q

d+2
2 + w2q

d+2
1 q2

≤ w1q
d+2
2 − w2q1q

d+1
2 + w1q

d+2
1 q2 − w1q1q

d+2
2 .

After some manipulations it turns out that sequence 1, 2 is better than 2, 1 if

w1(1 − q1)/q1 ≥ w2(1− q2)/q2,
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which is equivalent to
w1

E(X1)
≥ w2

E(X2)
.

That WSEPT is also optimal in the class of nonpreemptive dynamic policies
and in the class of preemptive dynamic policies can be shown through the same
arguments as those used in the proof of Theorem 10.4.1. 	

The WSEPT rule does not necessarily yield an optimal schedule when pro-

cessing time distributions are not all exponential (or all geometric).

Example 10.4.3 (Optimal Policy when Random Variables are ICR)

Consider the case where each one of the processing times is distributed ac-
cording to an Erlang(k, λ) distribution. The rate of an exponential phase of
job j is λj . This implies E(Xj) = k/λj . The WSEPT rule in general will not
yield optimal schedules. Job j having a deterministic processing time pj is a
special case (the number of phases of the Erlang for each one of the n jobs
approaches ∞, while the mean of each phase approaches zero). It is clear
how in this manner a counterexample can be constructed for ICR processing
times. ||
Example 10.4.4 (Optimal Policy when Random Variables are DCR)

Consider the case where each one of the processing times is distributed ac-
cording to a mixture of exponentials. Assume that the processing time of
job j is 0 with probability pj and exponentially distributed with rate λj with
probability 1− pj . Clearly,

E(Xj) = (1− pj)
1
λj

.

The optimal preemptive policy can be determined easily. Try each job out
at time zero for an infinitesimal period of time. The jobs with zero process-
ing times are then immediately completed. Immediately after time zero it
is known which jobs have nonzero processing times. The remaining process-
ing times of these jobs are then exponentially distributed with probability
one. The optimal preemptive policy from that point in time on is then the
nonpreemptive policy described in Theorem 10.4.1. ||
Theorems 10.4.1 and 10.4.2 can be generalized to include breakdown and

repair. Suppose the machine goes through “uptimes”, when it is functioning
and “downtimes” when it is being repaired. This breakdown and repair may
form an arbitrary stochastic process. Theorem 10.4.1 also holds under these
more general conditions since no part of the proof depends on the remaining
time till the due date.
Theorem 10.4.1 can also be generalized to include different release dates with

arbitrary distributions. Assume a finite number of releases after time 0, say n∗.
It is clear from the results presented above that at the time of the last release
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the WSEPT policy is optimal. This may actually imply that the last release
causes a preemption (if, at that point in time, the job released is the job with
the highest λjwj ratio in the system). Consider now the time epoch of the
second last release. After this release a preemptive version of the WSEPT rule
is optimal. To see this, disregard for a moment the very last release. All the jobs
in the system at the time of the second to last release (not including the last
release) have to be sequenced according to WSEPT; the last release may in a
sense be considered a random “downtime”. From the previous results it follows
that all the jobs in the system at the time of the second last release should
be scheduled according to preemptive WSEPT, independent of the time period
during which the last release is processed. Proceeding inductively towards time
zero it can be shown that a preemptive version of WSEPT is optimal with
arbitrarily distributed releases in the classes of preemptive static list policies
and preemptive dynamic policies.
The WSEPT rule proves optimal for other objectives as well. Consider the

stochastic counterpart of 1 | dj = d | ∑
wjTj with job j again exponentially

distributed with rate λj . All n jobs are released at time 0. The objective is to
minimize the sum of the expected weighted tardinesses.

Theorem 10.4.5. The WSEPT rule minimizes the expected sum of the
weighted tardinesses in the classes of nonpreemptive static list policies, nonpre-
emptive dynamic policies and preemptive dynamic policies.

Proof. The objective wjTj can be approximated by the sum of an infinite se-
quence of wjUj unit penalty functions, i.e.,

wjTj ≈
∞∑
l=0

wj
K

Ujl.

The first unit penalty Uj0 corresponds to a due date d, the second unit penalty
Uj1 corresponds to a due date d + 1/K, the third corresponds to a due date
d + 2/K and so on (see Figure 10.2). From Theorem 10.4.1 it follows that λw
rule minimizes each one of these unit penalty functions. If the rule minimizes
each one of these unit penalty functions, it also minimizes their sum. 	

This theorem can be generalized along the lines of Theorem 10.4.1 to in-

clude arbitrary breakdown and repair processes and arbitrary release processes,
provided all jobs have due date d (including those released after d).
Actually, a generalization in a slightly different direction is also possible.

Consider the stochastic counterpart of the problem 1 || ∑
wjh(Cj). In this

model the jobs have no specific due dates, but are all subject to the same cost
function h. The objective is to minimize E(

∑
wjh(Cj)). Clearly,

∑
wjh(Cj) is

a simple generalization of
∑

wjTj when all jobs have the same due date d. The
function h can again be approximated by a sum of an infinite sequence of unit
penalties, the only difference being that the due dates of the unit penalties are
not necessarily equidistant as in the proof of Theorem 10.4.5.
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wjUj2

Cj

wjUj1

Cj

wjUj0

Cj

wjTj

Cjd

.

.

.

Fig. 10.2 Superposition of unit penalty functions

Consider now a stochastic counterpart of the problem 1 || ∑wjhj(Cj), with
each job having a different cost function. Again, all jobs are released at time
0. The objective is to minimize the total expected cost. The following ordering
among cost functions is of interest: a cost function hj is said to be steeper than
a cost function hk if

dhj(t)
dt

≥ dhk(t)
dt

for every t, provided the derivatives exist. This ordering is denoted by hj ≥s hk.
If the functions are not differentiable for every t, the steepness ordering requires

hj(t+ δ)− hj(t) ≥ hk(t+ δ)− hk(t),

for every t and δ. Note that a cost function being steeper than another does
not necessarily imply that it is higher (see Figure 10.3).

Theorem 10.4.6. If λjwj ≥ λkwk ⇐⇒ hj ≥s hk, then the WSEPT
rule minimizes the total expected cost in the classes of nonpreemptive static list
policies, nonpreemptive dynamic policies and preemptive dynamic policies.
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hj(t), hk(t)

hj >s hk

t0

hj

hk

Fig. 10.3 One cost function being steeper than another

Proof. The proof follows from the fact that any increasing cost function can
be approximated by an appropriate summation of a (possibly infinite) number
of unit penalties at different due dates. If two cost functions, that may be at
different levels, go up in the same way over an interval [t1, t2], then a series
of identical unit penalties go into effect within that interval for both jobs. It
follows from Theorem 10.4.1 that the jobs have to be sequenced in decreasing
order of λw in order to minimize the total expected penalties due to these unit
penalties. If one cost function is steeper than another in a particular interval,
then the steeper cost function has one or more unit penalties going into effect
within this interval, which the other cost function has not. To minimize the
total expected cost due to these unit penalties, the jobs have to be sequenced
again in decreasing order of λw. 	


Example 10.4.7 (Application of WSEPT when Due Dates are
Agreeable)
Consider n jobs with exponentially distributed processing times with rates
λ1, . . . , λn. The jobs have deterministic due dates d1 ≤ d2 ≤ · · · ≤ dn. First,
consider E(

∑
wjTj) as the objective to be minimized. If λ1w1 ≥ λ2w2 ≥

· · · ≥ λnwn, then sequence 1, 2, . . . , n minimizes the objective, since T1 ≥s
T2 ≥s · · · ≥s Tn.
Second, consider E(

∑
wjUj) with the same due dates d1 ≤ d2 ≤ · · · ≤ dn,

as the objective to be minimized. It can be verified easily that the string of
inequalities U1 ≥s U2 ≥s · · · ≥s Un does not hold. So sequence 1, 2, . . . , n
does not necessarily minimize the objective (see Exercise 10.10). ||
The result of Theorem 10.4.6 can be generalized easily to include an arbitrary

machine breakdown process. It also can be extended, in the case of preemptive
static list policies or in the case of preemptive dynamic policies, to include jobs
with different release dates, as long as the cost functions of the new arrivals
satisfy the stated “agreeability” conditions.
The results in this subsection indicate that scheduling problems with expo-

nentially distributed processing times allow for more elegant structural results
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than their deterministic counterparts. The deterministic counterparts of most
of the models discussed in this section are NP-hard. It is intuitively acceptable
that a deterministic problem may be NP-hard while its counterpart with ex-
ponentially distributed processing times allows for a very simple policy to be
optimal. The reason is the following: all data being deterministic (i.e., perfect
data) makes it very hard for the scheduler to optimize. In order to take advan-
tage of all the information available the scheduler has to spend an inordinately
amount of time doing the optimization. On the other hand when the process-
ing times are stochastic, the data are fuzzier. The scheduler, with less data at
hand, will spend less time performing the optimization. The fuzzier the data,
the more likely a simple priority rule minimizes the objective in expectation.
Expectation is akin to optimizing for the average case.

10.5 Discussion

This chapter has provided only a small sample of the results that have appeared
in the literature with regard to single machine stochastic scheduling with all
jobs released at time zero. Clearly, there are many more results in the literature.
For example, some research has focused on single machine stochastic schedul-

ing with batch processing, i.e., stochastic counterparts of problems described in
Chapter 4. In these stochastic models the batch size is assumed to be fixed (b)
and either the expected makespan or the total expected completion time has
to be minimized. It has been shown that if the n jobs are ordered according to
symmetric variability ordering (i.e., the n jobs have the same mean but differ-
ent variances), then the Smallest Variance First rule minimizes the expected
makespan as well as the total expected completion time under fairly general
conditions.

Exercises (Computational)

10.1. Consider a single machine and three jobs with i.i.d. processing times with
distribution F and mean 1.

(a) Show that when F is deterministic E(
∑

Cj) = 6 under a nonpreemp-
tive schedule and E(

∑
Cj) = 9 under the processor sharing schedule.

(b) Show that when F is exponential E(
∑

Cj) = 6 under a nonpreemptive
schedule and E(

∑
Cj) = 6 under the processor sharing schedule. (Recall

that under a processor sharing schedule all jobs available share the processor
equally, i.e., if there are n jobs available, then each job receives 1/n of the
processing capability of the machine (see Section 5.2)).

10.2. Consider the same scenario as in the previous exercise. Assume F is an
EME distribution (as defined in Section 9.2) with the parameter p very small.
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(a) Show that E(
∑

Cj) = 6 under the nonpreemptive schedule.
(b) Show that E(

∑
Cj) = 3 under the processor sharing schedule.

10.3. Consider a single machine and three jobs. The distribution of job j,
j = 1, 2, 3, is discrete uniform over the set {10− j, 10− j + 1, . . . , 10+ j}. Find
the schedule(s) that minimize E(

∑
Cj) and compute the value of the objective

function under the optimal schedule.

10.4. Consider the same setting as in the previous exercise. Find now the
schedule that minimizes E(

∑
hj(Cj)), where the function h(Cj) is defined as

follows.

h(Cj) =
{
0 if Cj ≤ 20
Cj − 20 if Cj > 20

Is the Largest Variance first (LV) rule or the Smallest Variance first (SV) rule
optimal?

10.5. Consider the same setting as in the previous exercise. Find now the
schedule that minimizes E(

∑
hj(Cj)), where the function h(Cj) is defined as

follows.

h(Cj) =
{
Cj if Cj ≤ 20
20 if Cj > 20

Is the Largest Variance first (LV) rule or the Smallest Variance first (SV) rule
optimal?

10.6. Consider two jobs with discrete processing time distributions:

P (X1 = 1) = P (X1 = 2) = P (X1 = 4) =
1
3

and
P (X2 = 3) = P (X2 = 5) =

1
2
.

The two jobs have deterministic due dates. The due date of the first job is
D1 = 2 and the due date of the second job is D2 = 4. Compute E(max(L1, L2))
and max(E(L1), E(L2)) under EDD.

10.7. Consider the framework of Section 10.2. There are 3 jobs, all having a
discrete uniform distribution. The processing time of job j is uniformly dis-
tributed over the set {5− j, 5− j+1, . . . , 5+ j−1, 5+ j}. The discount factor β
is equal to 0.5. The weight of job 1 is 30, the weight of job 2 is 10 and the
weight of job 3 is 30. Find the optimal preemptive policy. Determine whether
it is necessary to preempt any job at any point in time.

10.8. Redo the instance in Exercise 10.7 with the discount factor β = 1. De-
termine all optimal policies. Give an explanation for the results obtained and
compare the results with the results obtained in Exercise 10.7.
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10.9. Consider Example 10.3.5 with the linear deterioration function a(t) =
1 + t. Instead of the two jobs with exponentially distributed processing times,
consider two jobs with geometrically distributed processing times with param-
eters q1 and q2. Compute the expected makespan under the two sequences.

10.10. Construct a counterexample for the stochastic problem with expo-
nential processing times and deterministic due dates showing that if λjwj ≥
λkwk ⇔ dj ≤ dk the λw rule does not necessarily minimize E(

∑
wjUj).

Exercises (Theory)

10.11. Consider the model in Theorem 10.1.1 with breakdowns. The up-times
are exponentially distributed with rate ν and the down-times are i.i.d. (arbi-
trarily distributed) with mean 1/µ. Show that the expected time job j spends
on the machine is equal to

E(Yj) =
(
1 +

ν

µ

)
E(Xj),

where E(Xj) is the expected processing time of job j. Give an explanation why
this problem is therefore equivalent to the problem without breakdowns (Hint:
only the time-axis changes because of the breakdowns).

10.12. Consider the same model as in Exercise 10.11 but assume now that the
processing time of job j is exponentially distributed with rate λj . Assume that
the repair time is exponentially distributed with rate µ.

(a) Show that the number of times the machine breaks down during the
processing of job j is geometrically distributed with rate

q =
ν

λj + ν
.

(b) Show that the total amount of time spent on the repair of the machine
during the processing of job j is exponentially distributed with rate λjµ/ν,
provided there is at least one breakdown.
(c) Show that the total time job j remains on the machine is a mixture
of an exponential with rate λj and a convolution of two exponentials with
rates λj and λjµ/ν. Find the mixing probabilities.

10.13. Consider the model in Exercise 10.11. Assume that the jobs are sub-
ject to precedence constraints that take the form of chains. Show that Algo-
rithm 3.1.4 minimizes the total expected weighted completion time.

10.14. Consider the discrete time stochastic model described in Section 10.2.
The continuous time version is a stochastic counterpart of the problem 1 |
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prmp | ∑wj(1 − exp(−rCj)). Show that the Gittins index for this problem is

Gj(xj) = max
τ>0

wj
∫ τ
xj

fj(s)e−rsds∫ τ
xj
(1− Fj(s))e−rsds

.

10.15. Consider the stochastic counterpart of 1 | dj = d | ∑
wjUj with the

processing time of job j arbitrarily distributed according to Fj . All jobs have a
common random due date that is exponentially distributed with rate r. Show
that this problem is equivalent to the stochastic counterpart of the problem
1 || ∑

wj(1 − exp(−rCj)) (that is, a problem without a due date but with a
discounted cost function) with all jobs having arbitrary distributions. (Hint:
If, in the stochastic counterpart of 1 | dj = d | ∑

wjUj, job j is completed
at time Cj the probability that it is late is equal to the probability that the
random due date occurs before Cj . The probability that this occurs is 1−e−rCj ,
which is equal to E(Uj)).

10.16. Show that if in the model of Section 10.3 the deterioration function is
linear, i.e., a(t) = c1+ c2t with both c1 and c2 constant, the distribution of the
makespan is sequence independent.

10.17. Show, through a counterexample, that LEPT does not necessarily min-
imize the makespan in the model of Section 10.3 when the distributions are
merely ordered in expectation and not in the likelihood ratio sense. Find a
counterexample with distributions that are stochastically ordered but not or-
dered in the likelihood ratio sense.

10.18. Consider the two processing time distributions of the jobs in Example
10.3.6. Assume the deterioration function a(t) = 1 for 0 ≤ t ≤ 1 and a(t) = t
for t ≥ 1 (i.e., the deterioration function is increasing convex). Show that SEPT
minimizes the makespan.

10.19. Consider the discrete time counterparts of Theorems 10.4.3 and 10.4.4
with geometric processing time distributions. State the results and prove the
optimality of the WSEPT rule.

10.20. Generalize the result presented in Theorem 10.4.6 to the case where the
machine is subject to an arbitrary breakdown process.

10.21. Generalize Theorem 10.4.6 to include jobs which are released at differ-
ent points in time.

10.22. Consider the following discrete time stochastic counterpart of the deter-
ministic model 1 | dj = d, prmp | ∑wjUj . The n jobs have a common random
due date D. When a job is completed before the due date, a discounted re-
ward is obtained. When the due date occurs before its completion, no reward
is obtained and it does not pay to continue processing the job. Formulate the
optimal policy in the class of preemptive dynamic policies.
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10.23. Show that if all weights are equal, i.e., wj = 1 for all j, and X1 ≤st
X2 ≤st · · · ≤st Xn, then the WDSEPT rule is equivalent to the SEPT rule for
any r, 0 ≤ r ≤ 1.

Comments and References

A number of researchers have considered nonpreemptive single machine schedul-
ing problems with arbitrary processing time distributions, see Rothkopf (1966a,
1966b), Crabill and Maxwell (1969), Hodgson (1977) and Forst (1984). For re-
sults with regard to the WSEPT rule, or equivalently the cµ rule, see Cox and
Smith (1961), Harrison (1975a, 1975b), Buyukkoc, Varaiya andWalrand (1985),
and Nain, Tsoucas and Walrand (1989). For models that also include stochastic
breakdowns, see Glazebrook (1984, 1987), Pinedo and Rammouz (1988), Birge,
Frenk, Mittenthal and Rinnooy Kan (1990) and Frenk (1991).
The Gittins index is due to Gittins and explained in his famous paper Gittins

(1979). Many researchers have subsequently studied the use of Gittins indices
in single machine stochastic scheduling problems and other applications; see,
for example, Whittle (1980, 1981), Glazebrook (1981a, 1981b, 1982), Chen and
Katehakis (1986) and Katehakis and Veinott (1987). The proof of optimality of
Gittins indices presented here is due to Weber (1992).
The section on processing time distributions that are likelihood ratio or-

dered and subject to deterioration is entirely based on the paper by Brown
and Solomon (1973). For more results on single machine scheduling subject to
deterioration, see Browne and Yechiali (1990).
For an extensive treatment of single machine scheduling with exponential

processing time distributions, see Derman, Lieberman and Ross (1978), Pinedo
(1983) and Pinedo and Rammouz (1988). For due date related objectives with
processing time distributions that are not exponential, see Sarin, Steiner and
Erel (1990).
For single machine stochastic scheduling with batch processing, see Koole

and Righter (2001) and Pinedo (2007).
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In many stochastic environments job releases occur at random points in time.
This chapter focuses on single machine stochastic models with the jobs having
besides random processing times also random release dates. The objective is the
total expected weighted completion time. Preemptive as well as nonpreemptive
models are considered.
An environment with random release dates is somewhat similar to the models

considered in queueing theory. In a priority queue a server (or a machine) has
to process customers (or jobs) from different classes with each class having it
own priority level (or weight).
There are various similarities between stochastic scheduling with random

release dates and priority queues. One similarity is that different jobs may
have different processing times from different distributions. Another similarity
is that different jobs may have different weights. However, there are also various
differences. One important difference is that in scheduling the goal is typically
to minimize an objective that involves n jobs, whereas in queueing one usually
assumes an infinite stream of customers and the focus is on asymptotic results.
In scheduling the goal is to find a policy that minimizes the total expected
waiting cost of the n jobs, or, equivalently, the average expected waiting cost
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of the n jobs, whereas in queueing the goal is to quantify the expected waiting
time of a typical customer or customer class in steady state and then determine
the policy that minimizes the average expected waiting cost per customer or
customer class. It pays to draw parallels between stochastic scheduling and
priority queues since certain approaches and methodologies are applicable to
both areas of research.
The models considered in this chapter are the stochastic counterparts of

1 | rj |
∑

wjCj and 1 | rj , prmp | ∑wjCj . The objective considered is actually
not E(

∑
wjCj), but rather

E(
n∑
j=1

wj(Cj − Rj)).

However, the term E(
∑

wjRj) is, of course, a constant that does not depend
on the policy. An equivalent objective is

E
(∑n

j=1 wj(Cj −Rj)
n

)
.

If there is an infinite number of customers, then the objective

lim
n→∞E

(∑n
j=1 wj(Cj −Rj)

n

)
is of interest. This last objective is the one typically considered in queueing
theory.
The WSEPT rule is optimal in several settings. This chapter focuses on

the various conditions under which WSEPT minimizes the objectives under
consideration.

11.1 Arbitrary Release Dates and Arbitrary Processing
Times without Preemptions

The model considered in this section is in one sense more general and in another
sense more restricted than the model described in Section 9.1. The generaliza-
tion lies in the fact that now the jobs have different release dates. The restriction
lies in the fact that in Section 9.1 the n jobs have processing times that come
from n different distributions, whereas in this section there are only two job
classes with two different distributions. The processing times of the two job
classes are arbitrarily distributed according to F1 and F2 with means 1/λ1 and
1/λ2. The weights of the two job classes are w1 and w2, respectively. The release
dates of the n jobs have an arbitrary joint distribution. Assume that unforced
idleness is not allowed; that is, the machine is not allowed to remain idle if there
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are jobs waiting for processing. Preemptions are not allowed. This model is a
stochastic counterpart of 1 | rj |

∑
wjCj , or, equivalently, 1 | rj |

∑
wj(Cj−rj).

Theorem 11.1.1. Under the optimal nonpreemptive dynamic policy the
decision-maker follows, whenever the machine is freed, the WSEPT rule.

Proof. The proof is by contradiction and based on a simple adjacent pairwise
interchange. Suppose that at a time when the machine is freed jobs from both
priority classes are waiting for processing. Suppose the decision-maker starts a
job of the lower priority class (even though a job of the higher priority class is
available for processing); he schedules a job of the higher priority class immedi-
ately after the completion of the job of the lower priority class. Now perform an
adjacent pairwise interchange between these two jobs. Note that a pairwise in-
terchange between these two adjacent jobs does not affect the completion times
of any one of the jobs processed after this pair of jobs. However, the pairwise
interchange does reduce the sum of the weighted expected completion times of
the two jobs involved in the interchange. So the original ordering could not have
been optimal. It follows that the decision-maker always must use the WSEPT
rule. 	

The result of Theorem 11.1.1 applies to settings with a finite number of

jobs as well as to settings with an infinite arrival stream. The result cannot
be generalized to more than two priority classes; with three priority classes a
counterexample can be found easily.

Example 11.1.2 (Counterexample to Optimality of WSEPT with
three Priority Classes)
The following counterexample has three jobs and is entirely deterministic.

jobs 1 2 3

pj 1 4 1
rj 0 0 1
wj 1 5 100

At time zero the job with the highest wj/pj ratio is job 2. However, under
the optimal schedule job 1 has to be processed at time 0. After job 1 has
been completed at time 1, job 3 starts its processing. Under this schedule
the total weighted completion time is

1 + 1× 100 + 6× 5 = 131.

If job 2 would have started its processing at time zero, then the total weighted
completion time would be

4× 5 + 4× 100 + 6× 1 = 426. ||

11.1 Arbitrary Releases and Processing Times without Preemptions
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The proof of Theorem 11.1.1, for two priority classes, does not go through
when unforced idleness is allowed. If unforced idleness is allowed, then it may
be optimal to keep the machine idle while a job is waiting, in anticipation of an
imminent release of a high priority job.

Example 11.1.3 (Counterexample to Optimality of WSEPT when
Unforced Idleness is Allowed)
The following counterexample with two jobs is also deterministic.

jobs 1 2

pj 4 1
rj 0 1
wj 1 100

At time 0 there is a job available for processing. However, it is optimal to
keep the machine idle till time 1, process job 2 for one time unit and then
process job 1. Under this optimal schedule the total weighted completion
time is

1× 100 + 6× 1 = 106.
If job 1 would have been put on the machine at time 0, then the total weighted
completion time is

4× 1 + 5× 100 = 504. ||

11.2 Priority Queues, Work Conservation and Poisson
Releases

Assume that at the release of job j, at time Rj , the processing time Xj is
drawn from distribution Fj . This implies that at any time t the total amount
of processing required by the jobs waiting for processing (or, in queueing ter-
minology, the customers waiting in queue), has already been determined. Let
xr(t) denote the remaining processing time of the job that is being processed
on the machine at time t. Let V (t) denote the sum of the processing times of
the jobs waiting for processing at time t plus xr(t). In the queueing literature
this V (t) is typically referred to as the amount of work that is present in the
system at time t.
At each release date the V (t) jumps (increases), and the size of the jump

is the processing time of the job just released. Between jumps, V (t) decreases
continuously with slope −1, as long as the machine is busy processing a job. A
realization of V (t) is depicted in Figure 11.1. As long as unforced idleness of
the machine is not allowed, the function V (t) does not depend on the priorities
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V(t)

Job releases
t

Fig. 11.1 Amount of work in system as function of time

of the different job classes nor on the sequence in which the jobs are processed
on the machine.
Closed form expressions for the performance measures of interest, e.g., the

expected time a typical job spends in the system under a given priority rule,
can only be obtained under certain assumptions regarding the release times of
the jobs. The release processes considered are similar to those typically used in
queueing theory.
Suppose there is a single class of jobs and the jobs have processing times

that are i.i.d. and distributed according to F . There is an infinite stream of
jobs coming in. The jobs are released according to a Poisson process with rate
ν, implying that the probability of the number of jobs released by time t, N(t),
equals , is

P (N(t) = ,) =
e−νt(νt)�

,!
.

The release times of the jobs are, of course, strongly dependent upon one an-
other. The release of any given job occurs a random time after the release of the
previous job. Successive interrelease times are independent and exponentially
distributed with the same mean.
Poisson release processes have a very useful and important property, that

in queueing theory often is referred to as Poisson Arrivals See Time Averages
(PASTA). Consider a single class of jobs that are released according to a Poisson
process. The PASTA property implies that an arbitrary job, at its release,
encounters an expected number of jobs waiting for processing that is equal
to the average number of jobs waiting for processing at any other time that
is selected at random. It also implies that the expected number of jobs an
arbitrary release finds being processed on the machine is equal to the average
number of jobs being processed at any other time selected at random (note
that the number of jobs being processed is a 0 − 1 random variable; so the
expected number being processed is equal to the probability that the machine
is processing a job). It implies also that an arbitrary job finds, at its release,
an expected amount of work waiting in queue that is equal to the expected
amount of work waiting at any other time that is selected at random. The
PASTA property is an important characteristic of the Poisson process.
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Example 11.2.1 (The PASTA Property)

Consider a Poisson release process with the expected time between consec-
utive releases equal to ten minutes, i.e., 1/ν = 10 minutes. Assume the
processing times are deterministic and equal to four minutes. The expected
number of jobs in process, i.e., the time average, is 0.4. The PASTA property
implies that this number is equal to the average number of jobs that a new
release finds in service. So a Poisson release finds the machine busy with
probability 0.4.
Consider now a release process that is not Poisson. A new job is released

exactly every ten minutes, i.e., with deterministic interrelease times. The
processing time of each job is again exactly four minutes (deterministic).
The time average of the number of jobs in the queue is 0 and the time
average of the number of jobs in service is 0.4, since 40% of the time a job
is being processed and 60% of the time the machine is idle. Since the release
process as well as the service times are deterministic, the number of jobs
each new release finds in queue is 0. So this average number in queue seen by
a new release happens to be equal to the time average (since both averages
are zero). However, the average number of jobs that a new release finds in
service is also 0 whereas the time average of the number of jobs in service
is 0.4; so the average number in service seen by a release is not equal to the
time average. ||
The operating characteristics of a machine subject to Poisson releases can

be analyzed within the following framework. Suppose that in each time unit
every job in the system (either in queue or in service) has to pay $1.00 for
every unit of processing time it still needs. So if a job needs processing for x
time units, then for each unit of time it is waiting in queue it has to pay x
dollars. However, while in service, the job’s payout rate steadily declines as its
remaining processing time decreases.
The average rate at which the system is earning its money is the rate at which

the jobs are released, ν, times the expected amount paid by a job. However, the
rate at which the system is earning money is also equal to the expected amount
of work in the system at a random point in time. Let the random variable V
denote the amount of work in the system in steady state. So,

E(V ) = lim
t→∞E(V (t))

and
E(V ) = νE(amount paid by a job).

Let W q and X denote the amount of time the job spends waiting in queue
and the amount of time being processed. So the total time between release and
completion is

W s =W q +X.
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Then, since the job pays at a constant rate of X per unit time while it waits in
queue and at a rate X − x after having spent an amount of time x in service,

E(amount paid by a job) = E
(
XW q +

∫ X

0

(X − x)dx
)
.

So

E(V ) = νE(XW q) +
νE(X2)
2

.

In addition, if a job’s wait in queue is independent of its processing time (this
is the case when the priority rule is not a function of the processing time), then

E(V ) = νE(X)E(W q) +
νE(X2)
2

.

In a queue that operates according to First Come First Served, a job’s wait in
queue is equal to the work in the system at its release. So E(W q) is equal to
the average work seen by a new release. If the release process is Poisson, then
(because of PASTA)

E(W q) = E(V ).

This identity, in conjunction with the identity

E(V ) = νE(X)E(W q) +
νE(X2)
2

yields

E(W q) =
νE(X2)

2(1− νE(X))
,

where E(X) and E(X2) are the first two moments of the processing time distri-
butions. This last expression is well-known in queueing theory and often referred
to as the Pollaczek-Khintchine formula; it is the expected time in an M/G/1
queue.
Poisson releases of jobs make it also possible to derive a closed form expres-

sion for the expected length of a busy period E(B) and the expected length of
an idle period E(I) of the machine. The utilization rate of the machine can be
expressed as

E(B)
E(I) + E(B)

=
ν

λ
.

So
E(B) =

νE(I)
λ− ν

.

From the fact that the idle times are exponentially distributed, it follows that
E(I) = 1/ν and

E(B) =
1

λ− ν
.
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The approach and analysis described above can be applied also to a setting
with a number of different job classes. Let xrk(t) denote the remaining processing
time of the job that is being processed on the machine at time t, if the job is
of class k, k = 1, . . . , n. Let Vk(t) denote the sum of the processing times of all
jobs of class k, k = 1, . . . , n, that are waiting for processing at time t plus xrk(t).
So

V (t) =
n∑
k=1

Vk(t).

If the classes of jobs are ordered according to a given priority list, then an
interchange of priorities between two classes that are adjacent on the list, in
the preemptive case, does not affect the Vk(t) of any one of the classes with
a higher priority nor does it affect the Vk(t) of any one of the classes with a
lower priority. Combining adjacent classes of priorities into a single class, has
no effect on either the Vk(t) of a class with a lower priority or the Vk(t) of a
class with a higher priority under any type of policy.
Closed form expressions for performance measures such as the expected time

a typical job of a given class spends in system under a given priority rule, can
again only be obtained under certain assumptions regarding the release times
of the jobs.
Suppose there are c different classes of jobs and jobs from class k, k = 1, . . . , c,

have processing times that are i.i.d. and distributed according to Fk. There are
c infinite streams of job releases; jobs from class k are released according to a
Poisson process with rate νk, implying that the probability of the number of
class k jobs released by time t, Nk(t), is , is

P (Nk(t) = ,) =
e−νkt(νkt)�

,!
.

Release times of jobs from different classes are independent from one another,
but release times of jobs from the same class are, of course, strongly dependent
upon one another. The release of a given job from any given class occurs a
random time (exponentially distributed) after the release of the previous job of
that class.

11.3 Arbitrary Releases and Exponential Processing
Times with Preemptions

Consider a machine that is subject to random releases of n jobs. The processing
time of job j is Xj, exponentially distributed with rate λj . The weight of job j
is wj and its release date is Rj . The n release dates may have an arbitrary joint
distribution; they may either be independent or have some form of dependence.
If at the release of a new job the machine is processing a job of lower priority,
then the job just released is allowed to preempt the job being processed. The
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goal is to find the optimal preemptive dynamic policy that minimizes the total
expected weighted completion time.
The model considered is a stochastic counterpart of the deterministic model

1 | rj , prmp | ∑wjCj (which is known to be strongly NP-Hard). The model is
also closely related to the so-called G/M/1 priority queue; i.e., a single server
with exponential processing times subject to an arbitrary arrival process that
is not necessarily renewal.

Theorem 11.3.1. The optimal preemptive dynamic policy is the preemp-
tive WSEPT rule. That is, at any point in time, among the jobs available for
processing, the one with the highest λjwj must be processed.

Proof. Consider a fixed (but arbitrary) time t. At time t it is known which jobs
already have been released. Let qj denote the probability that under a certain
policy job j, which was released before time t, has not completed its processing
yet. Let E(V (t)) denote the total expected time that the machine needs at time t
to finish all the jobs that have been released prior to t. Note that, assuming
that preemptions generate no additional work and that the machine is always
kept busy when there are jobs waiting for processing, E(V (t)) is independent
of the policy used.
Clearly, the amount of work still to be done increases at a release date by the

amount of processing the newly released job requires, while at other instances
the amount of work decreases linearly as long as there is still work to be done.
Because of the memoryless property of the exponential distribution, the ex-

pected remaining processing time at time t of the uncompleted job j is 1/λj,
independent of the amount of processing that job j has received prior to t.
Therefore,

E(V (t)) =
n∑
j=1

qj
λj

.

Consider an arbitrary preemptive static list policy. Reverse the priorities be-
tween jobs k and l with adjacent priorities in this static list policy. It is easy
to see why this reversal does not affect the waiting times of other jobs. In-
terchanging the priorities of jobs k and l does not affect the waiting times of
higher priority jobs as these jobs have preemptive rights over both k and l. In
the same way, jobs that have a lower priority than k and l do not depend upon
how jobs k and l are processed.
The expected rate at which the objective function is increasing at time t is

wkqk + wlql +
∑
j �=k,l

wjqj .

This rate has to be minimized. Because of work conservation,

qk
λk
+

ql
λl
= E(V (t)) −

∑
j �=k,l

qj
λj

.
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Rewriting this equation yields

ql = λl

(
E(V (t))−

∑
j �=k,l

qj
λj

− qk
λk

)
.

The expected rate at which the total cost function increases becomes now, after
substitution,

qk

(
wk − wl

λl
λk

)
+ λlwl

(
E(V (t))−

∑
j �=k,l

qj
λj

)
+

∑
j �=k,l

wjqj .

Because reversing the priorities of jobs k and l only affects qk and ql, the last
two terms of this expected rate do not change. The coefficient of qk (the first
term) is positive only when

λlwl ≤ λkwk.

So when this inequality holds, the qk should be kept small. This can only be
achieved by giving job k a higher priority.
So any preemptive static list policy that is not in decreasing order of λjwj

can be improved by a number of adjacent pairwise interchanges. This proves
that the preemptive WSEPT policy of the theorem is optimal in the class of
preemptive static list policies. The policy is optimal in this class for all possible
realizations of release dates.
That this policy is also optimal in the class of preemptive dynamic policies

can be shown as follows. Consider first the class of dynamic policies that only
allow preemption at the release of a new job. That the policy is optimal in this
class of policies can be shown by induction on the number of jobs still to be
released. When zero jobs remain to be released the policy is clearly optimal.
Suppose that only one job remains to be released and before the release of this
last job (but after the release of the second last job) a job is processed that does
not have the highest ratio of λjwj among the jobs available for processing. By
performing pairwise interchanges among the jobs during this time interval, the
expected rate of increase of the objective function can be reduced for all time
epochs after this interval. Proceeding inductively it can be shown that when
n jobs remain to be released the policy of the theorem is optimal within this
particular class of preemptive dynamic policies.
Consider now the class of dynamic policies with preemptions also allowed at

time epochs δ, 2δ, 3δ, . . . That the policy of the theorem is also optimal in
this class of preemptive dynamic policies can be shown by induction as well.
Consider the last time interval when an action is taken that does not conform to
the stated policy. Then a pairwise switch of jobs during this interval decreases
the cost rate for any time epoch after this interval. An inductive argument shows
that the policy of the theorem has to be adopted throughout. A continuity
argument completes the proof of the theorem. 	
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The theorem above applies also to a queueing system subject to an arbitrary
input process and exponential service times, i.e., the G/M/1 queue. Closed
form expressions for the expected waiting times in a G/M/1 queue can only
be obtained for certain specific interrelease time distributions. The following
example illustrates how the expected waiting time can be computed when the
machine is subject to a stationary input process.

Example 11.3.2 (Arbitrary Releases and Exponential Processing
Times with Preemptions)

Consider a machine with two job classes. Both classes have the same expo-
nential processing time distribution with a mean of 2 minutes, i.e., λ = 0.5
jobs per minute. One class arrives at regular (fixed) intervals of 8 minutes
each. The other class also arrives at regular (fixed) intervals of 8 minutes
each. The two classes are synchronized in such a way that every 4 minutes
a new job is released. It is easy to determine the expected waiting time of
a Class 1 job and a Class 2 job in a D/M/1 queue. The expected waiting
times of the two job classes separately and the two job classes together can
either be determined analytically or can be found in tables. From the tables
available in the literature it can be established that E(W q

1 ) = 0.04 minutes,
E(W q

2 ) = 0.98 minutes, and E(W q) = 0.51 minutes.
Consider, for comparison purposes, the following scenario with the same

two job classes. The two job classes are now released according to two inde-
pendent Poisson processes with mean interrelease times 1/ν = 8 minutes. It
is easy to determine the expected waiting time of a Class 1 job and a Class 2
job in such an M/M/1 queue. Class 1 jobs have preemptive priority over
Class 2 jobs. So for Class 1 jobs Class 2 jobs do not even exist. Analyzing
the waiting times of the Class 1 jobs as an M/M/1 queue yields

E(W q
1 ) =

ν

λ(λ − ν)
=

0.125
0.5(0.5− 0.125) = 0.6667.

The total expected waiting time of all jobs can also be analyzed as an M/M/1
queue. The total expected waiting time is

E(W q) =
0.25

0.5(0.5− 0.25) = 2.

From the fact that

E(W q) = 0.5E(W q
1 ) + 0.5E(W

q
2 ),

it follows that E(W q
2 ) = 3.33 min.

Note that the time a Class 2 job spends in queue may not be just a single
uninterrupted period. The processing of a Class 2 job may be interrupted
repeatedly by arrivals of Class 1 jobs.
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Comparing exponential interrelease times to deterministic interrelease
times shows that the expected waiting time of each job class is significantly
shorter when interrelease times are deterministic. ||
In the example above the two job classes have the same processing time

distribution. The optimality of the WSEPT rule holds also when job classes
have different processing time distributions. But, in general it is not easy to
find closed form expressions for the total expected waiting time of each class
when the classes have different distributions. However, it is still fairly easy when
jobs are released according to Poisson processes.

Example 11.3.3 (Poisson Releases and Exponential Processing
Times with Preemptions)

Consider two job classes. Jobs of Class 1 are released according to a Poisson
process with rate ν1 = 1/8, i.e., the mean interrelease time is 8 minutes.
The distribution of the processing times of Class 1 jobs is exponential with
mean and rate 1, i.e., λ1 = 1. The weight of Class 1 jobs is w1 = 1. Class 2
jobs are also released according to a Poisson process with rate ν2 = 1/8.
Their processing times are exponentially distributed with rate λ2 = 1/3.
Their weight is w2 = 3. Because the λjwj values of the two classes are the
same both priority orderings have to be optimal. The fact that the release
processes are Poisson makes it possible to obtain closed form expressions for
all performance measures.
Consider first the case where the Class 1 jobs have a higher priority than

the Class 2 jobs. To compute the expected waiting time of the Class 1 jobs is
relatively easy. Since these jobs have a preemptive priority over the Class 2
jobs, the Class 2 jobs do not have any impact on the waiting times of the
Class 1 jobs. So these waiting times can be computed by just considering an
M/M/1 queue with ν1 = 1/8 and λ1 = 1. From some elementary results in
queueing theory it follows that

E(W q
1 ) =

ν1

λ1(λ1 − ν1)
=

0.125
1(1− 0.125) = 1/7 = 0.1427.

and
E(W s

1 ) = E(W q
1 ) +

1
λ1
=
8
7
= 1.1427.

The expected waiting time of a Class 2 job is harder to compute. From
queueing theory it follows that an arbitrary arrival finds, upon its arrival at
the queue, an amount of work already waiting for the machine that is equal
to the expected waiting time in an M/G/1 queue with Poisson arrivals at a
rate ν = ν1 + ν2, and a service time distribution that is a mixture of two
exponentials with rates 1 and 1/3 and with mixing probabilities of 0.5 and
0.5. An arbitrary release of a Class 2 job may find upon arrival a queue that
contains jobs from both classes. Such an arbitrary arrival will have to wait
at least for all these jobs to be completed before it can even be considered
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for processing. This wait will be equal to the expected wait in an M/G/1
queue and is known to be

νE(X2)
2(1− νE(X))

=
0.25

(
0.5(2/λ2

1) + 0.5(2/λ2
2)

)
2
(
1− 0.25

(
0.5(1/λ1) + 0.5(1/λ2)

)) = 2.5.
So the expected total time a Class 2 job remains in system must be at least
2.5 plus its own processing time which is 1/λ2 = 3 minutes. However, it is
possible that during these 5.5 minutes additional Class 1 jobs are released.
These Class 1 jobs have a preemptive priority over the Class 2 job under
consideration. So these Class 1 jobs that arrive during these 5.5 minutes
have to be taken into account as well. The expected number of Class 1 jobs
released during this period is ν1 × 5.5 = 11/16. How much additional wait
do these releases cause? It is actually more than their own processing times.
Because, while these Class 1 jobs are being processed additional Class 1 jobs
may be released. So instead of looking at just 11/16 jobs released, one has
to look at the busy periods (consisting of only Class 1 jobs) that each one of
these releases generate. The busy period that one such job may generate can
be analyzed by computing the busy period in an M/M/1 queue with arrival
rate ν1 = 1/8 and service rate λ1 = 1. From elementary queueing theory it
follows that the expected length of such a busy period generated by a single
job is

1
(λ1 − ν1)

=
8
7

So the total expected time that an arbitrary Class 2 job spends in the system
before it completes its processing is

E(W s
2 ) =

11
2
+
11
16

× 8
7
=
11
14
=
44
7
= 6.28.

Therefore,

E(W q
2 ) = E(W s

2 )−
1
λ2
= 3.28.

The total objective is

n∑
k=1

wk
νk
ν
E(W q

k ) = 1×
1
2
× 1
7
+ 3× 1

2
× 23
7
= 5.

Consider now the same environment with the priority rule reversed:
Class 2 jobs have a preemptive priority over Class 1 jobs. Now the per-
formance measure with regard to Class 2 jobs is easy. They can be viewed
as a simple M/M/1 queue with ν = 1/8 and λ = 1/3.
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E(W q
2 ) =

ν

λ(λ − ν)
=

0.125
0.33(0.33− 0.125) =

9
5
= 1.8

The computation of the expected waiting time of a Class 1 job, which has a
lower priority, is now harder. The procedure is the same as the one followed
for computing the expected waiting time of a Class 2 job when it has the
lower priority. Consider again an arbitrary release of a Class 1 job. Upon its
release it finds an amount of work waiting in queue that is identical to what
an arbitrary release of Class 1 finds. This amount was computed before and
is equal to 2.5. So the expected total time that a Class 1 job has to remain
in the system is at least 2.5 + 1/λ1 = 3.5. However, during this time there
may be additional releases of Class 2 jobs that all have a preemptive priority
over the Class 1 job under consideration. The expected number of releases of
Class 2 jobs over this period is 3.5× ν2 = 7/16. However, each one of these
Class 2 jobs generates a busy period of Class 2 jobs which all have priority
over the Class 1 job under consideration. The expected length of a Class 2
job busy period is

1
(λ2 − ν2)

=
24
5
.

So the expected time an arbitrary Class 1 job spends in system before it is
completed is

E(W s
1 ) =

7
2
+
7
16

× 24
5
=
56
10
= 5.6.

Therefore,

E(W q
1 ) = E(W s

1 )−
1
λ1
= 4.6.

The total objective is

n∑
k=1

wk
νk
ν
E(W q

k ) = 1×
1
2
× 46
10
+ 3× 1

2
× 9
5
= 5.

As expected, the values of the objective function under the two orderings are
the same. ||

11.4 Poisson Releases and Arbitrary Processing Times
without Preemptions

In contrast to the assumptions in the previous section, preemptions are not
allowed in this section. The results in this section apply to a stochastic coun-
terpart of the deterministic model 1 | rj |

∑
wjCj .

The release times of the jobs in the previous sections were assumed to be
completely arbitrary. The release time of any one job could be completely in-
dependent of the release time of any other job. The release time of job j could
be, for example, an arbitrarily distributed random variable Rj and this time



11.4 Poisson Releases and Arbitrary Processing Times without Preemptions 305

could be measured from time 0. The release processes considered in the pre-
vious sections could also allow for any form of stochastic dependency between
the release times of the various jobs. The results in these sections hold when
there is a finite set of n jobs as well as when there is an infinite arrival stream.
They are therefore valid in a steady state as well as in a transient state. In
contrast to the results in the previous sections, the results in this section apply
only to steady state; the proof of optimality of the WSEPT rule presented in
this section is only valid for the steady state case.
Consider two priority classes with release rates ν1 and ν2. The two release

processes are independent Poisson. The processing time distributions are G1

and G2. Class 1 jobs have nonpreemptive priority over Class 2 jobs. Let E(W
q
1 )

and E(W q
2 ) denote the average wait in queue of a Class 1 job and a Class 2 job,

respectively.
Note that the total work in system at any time does not depend on the

priority rule as long as the machine is always busy when there are jobs waiting
for processing. So the work in the system is the same as it would be if the
machine was processing the jobs according to the First Come First Served rule.
Under the FCFS rule, the system is equivalent to a single class system subject to
a Poisson release process with rate ν = ν1+ν2 and a processing time distribution

G(x) =
ν1

ν
G1(x) +

ν2

ν
G2(x),

which follows from the fact that a combination of two independent Poisson
processes is also Poisson with a rate that is the sum of the rates of the two
underlying processes. The processing time distribution G can be obtained by
conditioning on which priority class the job is from. It follows that the average
amount of work in the system is

E(V ) =
νE(X2)

2(1− νE(X))
,

=
ν
(
ν1
ν E(X

2
1 ) +

ν2
ν E(X

2
2 )

)
2
(
1− ν

(
ν1
ν E(X1) + ν2

ν E(X2)
))

=
ν1E(X2

1 ) + ν2E(X2
2 )

2(1− ν1E(X1)− ν2E(X2))

In order to simplify the notation, let

ρk = νkE(Xk).

So

E(V ) =
ν1E(X2

1 ) + ν2E(X2
2 )

2(1− ρ1 − ρ2)
.
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Note that X andW q, i.e., the processing time and the time waiting for process-
ing, of any given job are not independent of one another. Any information with
regard to the realization of the processing time of a job may give an indication
of the class to which the job belongs and therefore also an indication of its
expected waiting time.
Let V1 and V2 denote the amount of work of Classes 1 and 2 in the system.

E(Vi) = νiE(Xi)E(W
q
i ) +

νiE(X2
i )

2

= ρiE(W
q
i ) +

νiE(X2
i )

2
, i = 1, 2.

Define

E(V qi ) = ρiE(W
q
i ),

E(V si ) = νiE(X2
i )/2.

So one could interpret V qi as the average amount of work of Class i waiting in
queue and V si as the average amount of Class i work in service. To compute the
average amount of waiting time of a Class 1 job (E(W q

1 )), consider an arbitrary
job release of Class 1. Its wait in queue is the amount of Class 1 work in the
system (in queue and in service) at its release plus the amount of Class 2 work
in service at its release. Taking expectations and using the fact that Poisson
Arrivals See Time Averages yields

E(W q
1 ) = E(V1) + E(V s2 )
= ρ1E(W

q
1 ) + ν1E(X2

1 )/2 + ν2E(X2
2 )/2

or

E(W q
1 ) =

ν1E(X2
1 ) + ν2E(X2

2 )
2(1− ρ1)

.

To obtain E(W q
2 ), first note that from the fact that V = V1+V2 it follows that

ν1E(X2
1 ) + ν2E(X2

2 )
2(1− ρ1 − ρ2)

= ρ1E(W
q
1 ) + ρ2E(W

q
2 ) + ν1E(X2

1 )/2 + ν2E(X2
2 )/2

= E(W q
1 ) + ρ2E(W

q
2 ).

From the last three equations it follows that

ρ2E(W
q
2 ) =

ν1E(X2
1 ) + ν2E(X2

2 )
2

( 1
1− ρ1 − ρ2

− 1
1− ρ1

)
or
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E(W q
2 ) =

ν1E(X2
1 ) + ν2E(X2

2 )
2(1− ρ1 − ρ2)(1− ρ1)

=
νE(X2)

2(1− ρ1 − ρ2)(1− ρ1)
.

If there are n different classes of jobs, a solution can be obtained in a similar
way for Vj , j = 1, . . . , n. First, note that the total amount of work in the
system due to jobs of Classes 1, . . . , k is independent of the internal priority
rule concerning classes 1, . . . , k and depends only on the fact that each one of
them has priority over all the jobs from Classes k + 1, . . . , n. So, V1 + · · ·+ Vk
is the same as it would be in case Classes 1, . . . , k are coalesced in a single
macro-class I and Classes k+ 1, . . . , n are coalesced in a single macro-class II.
Using this concept of macro-classes in a repetitive fashion it can be shown

that

E(W q
k ) =

νE(X2)
2(1− ρ1 − · · · − ρk)(1 − ρ1 − · · · − ρk−1)

.

Assume now that a Class k job has weight wk. This implies that each unit of
time a Class k job remains in the system costs wk dollars. In all the scheduling
models considered previously the objective has been the minimization of the
total expected weighted completion time. In the model considered here there is
an infinite arrival stream. The objective cannot be the total expected weighted
completion time, but must be something different. The appropriate objective
now is to minimize the total expected cost per unit time. That is, the average
expected amount of money that has to be paid out per unit time by the jobs
that are in the system. It can be shown that this objective is equivalent to the
objective of minimizing the average cost per job. More formally, this objective
is

n∑
k=1

wk
νk
ν
E(W q

k ).

Minimizing this objective is equivalent to minimizing

n∑
k=1

wkνkE(W
q
k ).

The following theorem specifies the static priority list that minimizes this
objective.

Theorem 11.4.1. Under the optimal nonpreemptive dynamic policy the
decision-maker selects, whenever the machine is freed, from among the waiting
jobs one with the highest value of λjwj. This implies that the jobs are scheduled
according to the WSEPT rule.

Proof. The proof is again based on an adjacent pairwise interchange argument.
Assume n ≥ 3 and that Classes 2 and 3 are not prioritized according to the
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λjwj rule, i.e., Class 2 has priority over Class 3, and

λ2w2 < λ3w3.

Let Σ(2, 3) denote the value of

n∑
k=1

wkνkE(W
q
k ).

under this priority assignment and let Σ(3, 2) denote the value of the objective
after interchanging the priorities of Classes 2 and 3. Now,

Σ(2, 3)−Σ(3, 2) =
(2 − 2ρ1 − ρ2 − ρ3)ρ2ρ3νE(X2)(λ3w3 − λ2w2)

2(1− ρ1)(1− ρ1 − ρ2)(1− ρ1 − ρ3)(1 − ρ1 − ρ2 − ρ3)
≥ 0

The above argument applies to priority Classes k and k + 1 with k > 1. To see
this, combine all classes with priority over Class k as a single macro-class having
priority 1 (with the appropriate arrival rate and service time distribution). Treat
Classes k and k+1 as Classes 2 and 3, respectively. A similar argument handles
the case for Classes 1 and 2.
Thus any assignment of priorities that differs from the λw rule can be im-

proved by pairwise interchanges and so the WSEPT rule is therefore opti-
mal. 	

The following example illustrates the behavior of the WSEPT rule and com-

pares the nonpreemptive setting with the preemptive setting described in the
previous section.

Example 11.4.2 (Poisson Releases and Arbitrary Processing Times
without Preemptions)

Consider a single machine with two job classes. The jobs are released ac-
cording to a Poisson process and a release is a Class 1 job with probability
0.5 and a Class 2 job with probability 0.5. Class 1 jobs have nonpreemptive
priority over Class 2 jobs. Consider first the case where the processing time
distributions of both job classes are exponential with a mean of 2 minutes.
The interrelease times of Class 1 jobs as well as of Class 2 jobs are exponen-
tially distributed with a mean of 8 minutes, i.e., ν1 = ν2 = 1/8 and ν = 1/4.
Working out the expressions in this section yields the following results for
the expected times that the jobs have to wait before their processing can
start:

E(W q
1 ) =

.125× 8 + .125× 8
2(1− .125× 2) = 1.333

and

E(W q
2 ) =

E(W q
1 )

1− ρ1 − ρ2
= 2.667.
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Notice that
E(W q) = 0.5E(W q

1 ) + 0.5E(W
q
2 ) = 2,

which is equal to E(W q) when preemptions are allowed. That the expected
waiting times of all the jobs are equal in the preemptive case and in the non-
preemptive case is to be expected (see Example 11.3.2 and Exercise 11.13).
Consider now the case where both job classes have deterministic process-

ing times with a mean of 2 minutes. Working out the expressions yields
the following results for the expected times that the jobs have to wait for
processing:

E(W q
1 ) =

.125× 4 + .125× 4
2(1− .125× 2) = 0.667

and

E(W q
2 ) =

E(W q
1 )

1− ρ1 − ρ2
= 1.333.

Notice that
E(W q) = 0.5E(W q

1 ) + 0.5E(W
q
2 ) = 1,

which is only half of the total expected waiting time obtained for the case
with exponentially distributed processing times. So a smaller variance in
the processing times causes a significant reduction in the expected waiting
times. ||
Clearly, the example above can be generalized to arbitrary processing time

distributions.

Example 11.4.3 (Poisson Releases and Exponential Processing
Times without Preemptions)

Consider again a single machine and two job classes. The jobs are released
according to a Poisson process with rate ν = 1/4. Each release is a Class 1
job with probability 0.5 and a Class 2 job with probability 0.5. So the releases
of Class 1 jobs are Poisson with rate ν1 = 1/8 and the releases of Class 2
jobs are Poisson with rate ν2 = 1/8. The processing times of the Class 1
jobs are exponentially distributed with mean 1 and the processing times of
the Class 2 jobs are exponentially distributed with mean 3. The weight of a
Class 1 job is 1 and the weight of a Class 2 job is 3.
If Class 1 jobs have a higher priority than Class 2 jobs, then

E(W q
1 ) =

.125× 2 + .125× 18
2(1− .125× 1) = 1.429

and

E(W q
2 ) =

E(W q
1 )

1− ρ1 − ρ2
= 2.857.
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The value of the objective to be minimized is

n∑
k=1

wk
νk
ν
E(W q

k ) = 1× 0.5× 1.429 + 3× 0.5× 2.857 = 5.

Consider now the case where the Class 2 jobs have a higher priority than
the Class 1 jobs:

E(W q
2 ) =

.125× 2 + .125× 18
2(1− .125× 3) = 2

and

E(W q
1 ) =

E(W q
2 )

1− ρ1 − ρ2
= 4.

The value of the objective to be minimized is

n∑
k=1

wk
νk
ν
E(W q

k ) = 1× 0.5× 4 + 3× 0.5× 2 = 5.

Note that the value of the objective to be minimized is the same under
the two orderings. This was to be expected since the λjwj values of the two
job classes are the same. Both priority orderings have to be optimal. ||

11.5 Discussion

Consider the case with many job classes, Poisson releases, and exponential pro-
cessing time distributions (i.e., a model that satisfies the conditions in Sec-
tion 11.3 as well as those in Section 11.4). The results in Section 11.3 imply
that the preemptive WSEPT rule minimizes the total expected weighted com-
pletion time in the class of preemptive dynamic policies, while the results in
Section 11.4 imply that the nonpreemptive WSEPT rule minimizes the total
expected weighted completion time in the class of nonpreemptive dynamic poli-
cies. Clearly, the realizations of the process under the two different rules are
different.
In order to obtain some more insight into the results presented in Sec-

tion 11.4, consider the following limiting case. Suppose that there are many,
say 10,000, different job classes. Each class has an extremely low Poisson re-
lease rate. The total job release rate will keep the machine occupied, say, 40%
of the time. The machine will alternate between busy periods and idle periods,
and during the busy periods it may process on the average, say, 10 jobs. These
10 jobs are most likely jobs from 10 different classes. The process during such a
busy period may be viewed as a nonpreemptive stochastic scheduling problem
(with a random, but finite number of jobs). The results in Section 11.4 imply
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that the nonpreemptive WSEPT rule minimizes the total expected weighted
completion time.
The case not considered in this chapter is a generalization of the case de-

scribed in Section 10.2, i.e., the jobs have arbitrary processing time distributions
and different release dates with preemptions allowed. When all the jobs are re-
leased at the same time, then the Gittins index policy is optimal. It turns out
that when the jobs are released according to a Poisson process, an index policy
is again optimal. However, the index is then not as easy to characterize as the
Gittins index described in Section 10.2. A very special case for which the optimal
preemptive policy can be characterized easily is considered in Exercise 11.7.
Some of the results in this chapter can be extended to machines in parallel.

For example, the results in Section 11.4 can be generalized to machines in
parallel under the condition that the processing time distributions of all classes
are the same.
This chapter mainly focuses on the conditions under which the WSEPT rule

is optimal under the assumption that the jobs are released at different points
in time. It does not appear that similar results can be obtained for many other
priority rules as well.
However, it can be shown that under certain conditions the preemptive EDD

rule minimizes Lmax. Assume that the jobs are released at random times, and
that the processing times are random variables from arbitrary distributions. So
the model is a stochastic counterpart of 1 | rj , prmp | Lmax. If the due dates
are deterministic, then it can be shown fairly easily that the preemptive EDD
rule minimizes Lmax (see Exercise 11.20). If the time between the release date
and the due date of each job is exponentially distributed with mean 1/µ, then
the policy that minimizes E(Lmax) can also be determined.

Exercises (Computational)

11.1. Consider three jobs. The three jobs have exponential processing times
with rates λ1 = λ2 = 1 and λ3 = 2 and the weights are w1 = 1 and w2 = w3 = 2.
Jobs 1 and 2 are released at time zero and job 3 is released after an exponential
time with mean 1. Preemptions are allowed.

(a) Show that the preemptive WSEPT rule minimizes the total expected
weighted completion time.
(b) Compute the total expected weighted completion time under this rule.

11.2. Consider the same three jobs as in Exercise 11.1. However, preemptions
are now not allowed.

(a) Show that the nonpreemptive WSEPT rule minimizes the total ex-
pected weighted completion time.
(b) Compute the total expected weighted completion time under this rule.
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(c) Compare the outcome of part (b) with the outcome of part (b) in the
previous exercise and explain the difference.

11.3. Consider a single machine that is subject to Poisson releases with rate
ν = 0.5. All the jobs are of the same class and the processing time distribution
is a mixture of two exponentials. With probability 1 − p the processing time
is 0 and with probability p the processing time is exponentially distributed with
rate p. So the mean of the mixture is 1. The jobs are served according to the
First In First Out (FIFO) rule and preemptions are not allowed.

(a) Apply the Pollaczek-Khintchine formula and find an expression for
E(Wq).
(b) What happens with E(Wq) when p→ 0 ?

11.4. Consider again a single machine that is subject to Poisson releases with
rate ν = 0.5. All the jobs are of the same class and the processing time distri-
bution is a mixture of two exponentials. With probability 1− p the processing
time is 0 and with probability p it is exponential with rate p. However, now
preemptions are allowed.

(a) Formulate the policy that minimizes the long term average waiting (or
flow) time.
(b) Find an expression for E(Wq) as a function of p under this optimal
policy.
(c) Compare the expression under (b) with the expression found for E(Wq)
in Exercise 11.3. How does the value of p affect the difference?

11.5. Consider a single machine subject to Poisson releases with rate ν =
0.5. All the jobs are of the same class and the processing time distribution is
an Erlang(k, λ) distribution with mean 1, i.e., k/λ = 1. Preemptions are not
allowed.

(a) Find an expression for E(Wq) as a function of k.
(b) How does E(Wq) depend on k?

11.6. Consider the following setting that is somewhat similar to Example
11.4.3. There are two job classes. The two classes are released according to
Poisson processes with rates ν1 = ν2 = 0.25. Preemptions are not allowed. The
processing time distribution of each one of the two job classes is a mixture of two
exponentials with one of the two exponentials having mean 0. The processing
time of a Class 1 job is 0 with probability 1− p1 and exponentially distributed
with rate p1 with probability p1. The processing time of a Class 2 job is 0 with
probability 1 − p2 and exponentially distributed with rate p2 with probability
p2. So the means of the processing times of both job classes are 1. Class 1 jobs
have nonpreemptive priority over Class 2 jobs. Compute the expected waiting
time of a Class 1 job and of a Class 2 job.
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11.7. Consider the same setting as in the previous exercise. However, now
Class 1 jobs have preemptive priority over Class 2 jobs. Compute the expected
waiting time of a Class 1 job and of a Class 2 job and compare your results
with the results obtained for the previous exercise.

11.8. Consider two job classes. The classes are released according to Poisson
processes with rates ν1 = ν2 = 0.25. The processing time distributions of both
job classes are mixtures of two exponentials with one of them having mean 0.
The processing time of a Class 1 job is 0 with probability 0.5 and exponentially
distributed with mean 2 with probability 0.5. The processing time of a Class 2
job is 0 with probability 0.75 and exponentially distributed with mean 4 with
probability 0.25. Assume that the weight of a Class 1 job is w1 = 2 and the
weight of a Class 2 job is w2 = 3. Preemptions are allowed.

(a) Describe the optimal policy when preemptions are not allowed.
(b) Describe the optimal policy when preemptions are allowed.

11.9. Consider a single machine. Jobs are released in batches of two according
to a Poisson process. The arrival rate of the batches is ν = 0.25. Each batch
contains one job of Class 1 and one job of Class 2. The processing times of
all jobs (from both classes) are exponential with mean 1. Class 1 jobs have
preemptive priority over Class 2 jobs. Compute the expected waiting time of
Class 1 jobs and the expected waiting time of Class 2 jobs.

11.10. Consider a single machine and two job classes. The processing times of
Class 1 (2) jobs are exponentially distributed with rate λ1 = 6 (λ2 = 12). The
weight of a Class 1 (2) job is w1 = 4 (w2 = 3). Preemptions are not allowed.
When the machine is processing a job of either one of the two classes it is subject
to breakdowns. The up times of a machine when it is processing a Class 1 (2)
job are exponentially distributed with rate ν1 = 6 (ν2 = 5). The repair times
after a breakdown when processing a Class 1 (2) job are arbitrarily distributed
with mean 1/µ1 = 0.5 (1/µ2 = 1). Which class of jobs should have a higher
priority? (Hint: See Exercise 10.11.)

Exercises (Theory)

11.11. Consider three jobs. Two are available at time zero and the third one
is released after an exponential amount of time. The three processing times are
all deterministic. Preemptions are not allowed. Is it always optimal to start at
time zero the job with the highest wj/pj ratio?

11.12. Consider three jobs. Two are available at time zero and the third one
is released after a deterministic (fixed) amount of time. The three processing
times are all exponential. Preemptions are not allowed. Is it always optimal to
start at time zero the job with the highest λjwj ratio?
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11.13. Compare the numerical results of Examples 11.3.2 and 11.4.2. Explain
why the value of the total objective in the preemptive case is equal to the value
of the total objective in the nonpreemptive case.

11.14. Consider the setting of Exercise 11.6. Assume p1 > p2. Which class
should have nonpreemptive priority if the objective is to minimize the total
expected waiting time over both classes?

11.15. In queueing theory there is a well-known result known as Little’s Law
which establishes a relationship between the long term average of the number
of jobs waiting in queue and the expected waiting time of a job in steady state.
Little’s Law states that

E(N q) = νE(W q).

(a) Give an intuitive argument why this relationship holds.
(b) Present a proof for this relationship.

11.16. Consider an arbitrary release process (not necessarily Poisson). Job j
has with probability pj a processing time that is 0 and with probability 1− pj
a processing time that is exponentially distributed with mean 1/λj . Job j has a
weight wj . Preemptions are allowed. Describe the optimal preemptive dynamic
policy that minimizes the total weighted expected completion time.

11.17. Consider a machine subject to Poisson releases of a single class. The
processing time distribution is Erlang(2, λ).

(a) Describe the optimal preemptive policy.
(b) When do preemptions occur?

11.18. Consider a machine that is subject to breakdowns. Breakdowns can
occur only when the machine is processing a job. The up times of the machine, in
between breakdowns, are i.i.d. exponential. The down times are i.i.d. (arbitrarily
distributed) with mean 1/µ. There are two job classes. Both job classes are
released according to Poisson processes. The processing times of the jobs of
Class 1 (2) are arbitrarily distributed according to G1 (G2). The weight of
Class 1 (2) is w1 (w2). Show that the nonpreemptive WSEPT rule is optimal
in the class of nonpreemptive policies.

11.19. Consider a machine that is subject to breakdowns. The machine can
only break down when it is processing a job. The up times of the machine,
when it is processing jobs, are i.i.d. exponential and the down times are i.i.d.
exponential as well. There are two job classes that are released according to in-
dependent Poisson processes. Class 1 jobs have preemptive priority over Class 2
jobs. The processing times of Class 1 (2) jobs are exponentially distributed with
rate λ1 (λ2).

(a) Can Theorem 11.3.1 be generalized to this setting?
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(b) Can Theorem 11.3.1 be generalized to include the case where the ma-
chine can break down at any time, i.e., also when it is idle.

11.20. Consider the following stochastic counterpart of 1 | rj , prmp | Lmax.
The release dates and due dates are deterministic. The processing time of job
j has an arbitrary distribution Fj . Show that EDD minimizes E(Lmax).

11.21. Consider the following stochastic counterpart of 1 | rj , prmp | Lmax.
The release dates have an arbitrary distribution and the due dateDj = Rj+Xj ,
where Xj is exponentially distributed with rate 1. The processing time of job j
has an arbitrary distribution Fj . Formulate the policy that minimizes E(Lmax).

Comments and References

Most of the results in this chapter have appeared in the queueing literature.
Many queueing books consider priority queues, see Kleinrock (1976), Heyman
and Sobel (1982), Wolff (1989), and Ross (2006). The application of work con-
servation in queueing theory was first considered by Wolff (1970); his paper
contains the results described in Sections 11.1 and 11.2.
The optimality of WSEPT when processing times are exponentially dis-

tributed, release times arbitrarily distributed, and preemptions allowed is due to
Pinedo (1983). The optimality of WSEPT when jobs are released according to
Poisson processes, processing times are arbitrarily distributed, and preemptions
not allowed has been established by Cobham (1954).
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This chapter deals with parallel machine models that are stochastic counterparts
of models discussed in Chapter 5. The body of knowledge in the stochastic case
is somewhat less extensive than in the deterministic case.
The results focus mainly on the expected makespan, the total expected com-

pletion time and the expected number of tardy jobs. In what follows the number
of machines is usually limited to two. Some of the proofs can be extended to
more than two machines, but such extensions usually require more elaborate
notation; since these extensions would not provide any additional insight, they
are not presented here. The proofs for some of the structural properties of the
stochastic models tend to be more involved than the proofs for the correspond-
ing properties of their deterministic counterparts.
The first section deals with nonpreemptive models; the results in this sec-

tion are obtained through interchange arguments. The second section focuses
on preemptive models; the results in this section are obtained via dynamic pro-
gramming approaches. The third section deals with due date related models.
The fourth section shows how bounds obtained for online scheduling models
can lead to bounds for parallel machine stochastic scheduling models.

12.1 The Makespan without Preemptions

This section considers optimal policies in the classes of nonpreemptive static
list policies and nonpreemptive dynamic policies. Since preemptions are not al-
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lowed, the main technique for determining optimal policies is based on pairwise
interchange arguments.
First, the exponential distribution is considered in detail as its special prop-

erties facilitate the analysis considerably.
Consider two machines in parallel and n jobs. The processing time of job j is

equal to the random variable Xj, that is exponentially distributed with rate λj .
The objective is to minimize E(Cmax). Note that this problem is a stochastic
counterpart of P2 || Cmax, which is known to be NP-hard. However, in Sec-
tion 10.4 it already became clear that scheduling processes with exponentially
distributed processing times often have structural properties that their deter-
ministic counterparts do not have. It turns out that this is also the case with
machines in parallel.
A nonpreemptive static list policy is adopted. The jobs are put into a list

and at time zero the two jobs at the top of the list begin their processing on
the two machines. When a machine becomes free the next job on the list is
put on the machine. It is not specified in advance on which machine each job
will be processed, nor is it known a priori which job will be the last one to be
completed.
Let Z1 denote the time when the second to last job is completed, i.e., the

first time a machine becomes free with the job list being empty. At this time
the other machine is still processing its last job. Let Z2 denote the time that the
last job is completed on the other machine (i.e., Z2 equals the makespan Cmax).
Let the difference D be equal to Z2−Z1. It is clear that the random variable D
depends on the schedule. It is easy to see that minimizing E(D) is equivalent
to minimizing E(Cmax). This follows from the fact that

Z1 + Z2 = 2Cmax −D =
n∑
j=1

Xj ,

which is a constant independent of the schedule.
In what follows, a slightly more general two-machine problem is considered

for reasons that will become clear later. It is assumed that one of the machines
is not available at time zero and becomes available only after a random time X0,
distributed exponentially with rate λ0. The random variableX0 may be thought
of as the processing time of an additional job that takes precedence and must
go first. Let D(X0, X1, X2, . . . , Xn) denote the random variable D, under the
assumption that, at time zero, a job with remaining processing time X0 is being
processed on one machine and a job with processing time X1 is being started on
the other. When one of the two machines is freed a job with processing time X2

is started, and so on (see Figure 12.1). The next lemma examines the effect
on D of changing a schedule by swapping the two consecutive jobs 1 and 2.

Lemma 12.1.1. For any λ0 and for λ1 = min(λ1, λ2, . . . , λn)

E(D(X0, X1, X2, . . . , Xn)) ≤ E(D(X0, X2, X1, . . . , Xn)).
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X0 X5 X6X2

X1 X3 X4 X7

D(X0, X1, X2, ..., X7)

Fig. 12.1 The random variable D

Proof. Let qj (rj), j = 0, 1, . . . , n, denote the probability that job j is the last
job to be completed under schedule 1, 2, . . . , n (2, 1, . . . , n). The distribution
of D may be regarded as a mixture of n+1 distributions (all being exponential)
with either mixing probabilities q0, . . . , qn or mixing probabilities r0, . . . , rn. If
the last job to be completed is exponential with rate λj , then (conditioned on
that fact) D is exponentially distributed with rate λj . (Recall that if job j is
still being processed on a machine, while the other machine is idle and no other
job remains to be processed, then the remaining processing time of job j is still
exponentially distributed with rate λj). So

E(D(X0, X1, X2, . . . , Xn)) =
n∑
j=0

qj
1
λj

,

and

E(D(X0, X2, X1, . . . , Xn)) =
n∑
j=0

rj
1
λj

.

In order to prove the lemma it suffices to show that

q0 = r0

q1 ≤ r1

qj ≥ rj

for j = 2, . . . , n. For job 0 to be the last one completed, it has to be larger
than the sum of the other n processing times. Clearly, if this is the case, an
interchange between jobs 1 and 2 does neither affect the probability of job 0
being completed last nor the value of D. In order to establish the necessary
relationships between the mixing probabilities qj and rj consider first the case
n = 2. It can be shown easily that

q0 =
( λ1

λ1 + λ0

)( λ2

λ2 + λ0

)
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q1 =
( λ0

λ0 + λ1

)( λ2

λ1 + λ2

)
q2 = 1− q0 − q1

and

r0 =
( λ1

λ1 + λ0

)( λ2

λ2 + λ0

)
r1 = 1− r0 − r2

r2 =
( λ0

λ0 + λ2

)( λ1

λ1 + λ2

)
.

So
r1 − q1 =

2λ1λ2

λ2
2 − λ2

1

( λ0

λ0 + λ1
− λ0

λ0 + λ2

)
≥ 0.

This proves the lemma for n = 2.
Assume the lemma is true for n− 1 jobs and let q′j and r′j , j = 1, . . . , n− 1,

denote the corresponding probabilities under schedules 0, 1, 2, 3, . . . , n − 1 and
0, 2, 1, 3, . . . , n− 1. Assume as the induction hypothesis that

q′0 = r′0

q′1 ≤ r′1

q′j ≥ r′j ,

for j = 2, . . . , n − 1. Let qj and rj denote now the corresponding probabilities
with one additional job. Then

q0 = r0 = P (X1 +X2 + · · ·+Xn < X0) =
n∏
j=1

λj
λj + λ0

and
qj = q′j

λn
λj + λn

rj = r′j
λn

λj + λn

for j = 1, . . . , n− 1. So, from the induction hypothesis, it follows that

q1 ≤ r1

qj ≥ rj ,

for j = 2, . . . , n − 1. Also, because λ1 ≤ λj for all j = 2, . . . , n − 1, it follows
that

λn
λ1 + λn

≥ λn
λj + λn
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for j = 2, . . . , n− 1. So
n−1∑
j=1

q′j
λn

λj + λn
≤
n−1∑
j=1

r′j
λn

λj + λn
.

Therefore
qn ≥ rn

which completes the proof of the lemma. 	

This lemma constitutes a crucial element in the proof of the following theo-

rem.

Theorem 12.1.2.. If there are two machines in parallel and the processing
times are exponentially distributed, then the LEPT rule minimizes the expected
makespan in the class of nonpreemptive static list policies.

Proof. By contradiction. Suppose that a different rule is optimal. Suppose that
according to this presumably optimal rule, the job with the longest expected
processing time is not scheduled for processing either as the first or the second
job. (Note that the first and second job are interchangeable as they both start
at time zero). Then an improvement can be obtained by performing a pairwise
interchange between this longest job and the job immediately preceding this job
in the schedule; according to Lemma 12.1.1 this reduces the expected difference
between the completion times of the last two jobs. Through a series of inter-
changes it can be shown that the longest job has to be one of the first two jobs
in the schedule. In the same way it can be shown that the second longest job has
to be among the first two jobs as well. The third longest job can be moved into
the third position to improve the objective, and so on. With each interchange
the expected difference, and thus the expected makespan, are reduced. 	

The approach used in proving the theorem is basically an adjacent pairwise

interchange argument. However, this pairwise interchange argument is not iden-
tical to the pairwise interchange arguments used in single machine scheduling.
In pairwise interchange arguments applied to single machine problems, usually
no restrictions are put on the relation between the interchanged jobs and those
that come after them. In Lemma 12.1.1 jobs not involved in the interchange
have to satisfy a special condition, viz., one of the two jobs being interchanged
must have a larger expected processing time than all the jobs following it. Re-
quiring such a condition has certain implications. In general, when no special
conditions are imposed, an adjacent pairwise interchange argument actually
yields two results: it shows that one schedule minimizes the objective while the
reverse schedule maximizes that same objective. With a special condition like
the one in Lemma 12.1.1 the argument works only in one direction. It actu-
ally can be shown that the SEPT rule does not always maximize E(D) among
nonpreemptive static list policies.
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The result presented in Theorem 12.1.2 differs from the results obtained
for its deterministic counterpart considerably. One difference is the following:
minimizing the makespan in a deterministic setting requires only an optimal
partition of the n jobs over the two machines. After the allocation has been
determined, the set of jobs allocated to a specific machine may be sequenced
in any order. With exponential processing times, a sequence is determined in
which the jobs are to be released in order to minimize the expected makespan.
No deviation is allowed from this sequence and it is not specified at time zero
how the jobs will be partitioned between the machines. This depends on the
evolution of the process.
The following example shows that distributions other than exponential may

result in optimal schedules that differ considerably from LEPT.

Example 12.1.3 (Counterexample to Optimality of LEPT with Ar-
bitrary Processing Times)
Consider two machines and n jobs. The processing time of job j is a mixture
of two exponentials. With probability pj it is exponential with rate ∞, i.e.,
it has a zero processing time, and with probability 1 − pj it is exponential
with rate λj . So

E(Xj) =
1− pj
λj

.

Assume λ1 ≤ · · · ≤ λn. Since there are no assumptions on p1, . . . , pn, se-
quence 1, . . . , n may not be LEPT. That the sequence 1, . . . , n still minimizes
the expected makespan can be argued as follows. Note that if a job has zero
processing time, it basically does not exist and does not have any effect on
the process. Suppose it is known in advance which jobs have zero process-
ing times and which jobs are exponentially distributed with processing times
larger than zero. From Theorem 12.1.2 it follows that sequencing the nonzero
jobs in increasing order of their rates, that is, according to LEPT, minimizes
the expected makespan. This implies that the sequence 1, . . . , n is optimal
for any subset of jobs having zero processing times. So, sequence 1, . . . , n,
which is not necessarily LEPT, is always optimal. The p1, . . . , pn can be such
that actually the SEPT rule minimizes the expected makespan. ||
In contrast to the results of Section 10.4, which do not appear to hold for

distributions other than the exponential, the LEPT rule does minimize the
expected makespan for other distributions as well.
Consider the case where the processing time of job j is distributed according

to a mixture of two exponentials, i.e., with probability p1j according to an
exponential with rate λ1 and with probability p2j (= 1 − p1j) according to an
exponential with rate λ2. Assume λ1 < λ2. So

P (Xj > t) = p1je
−λ1t + p2je

−λ2t.
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This distribution can be described as follows: when job j is put on the machine a
(biased) coin is tossed. Dependent upon the outcome of the toss the processing
time of job j is either exponential with rate λ1 or exponential with rate λ2.
After the rate has been determined this way the distribution of the remaining
processing time of job j does not change while the job is being processed. So
each processing time is distributed according to one of the two exponentials
with rates λ1 and λ2.
The subsequent lemma again examines the effect on D of an interchange

between two consecutive jobs 1 and 2 on two machines in parallel. Assume again
that X0 denotes the processing time of a job 0 with an exponential distribution
with rate λ0. This rate λ0 may be different from either λ1 or λ2.

Lemma 12.1.4. For arbitrary λ0, if p11 ≥ p12, i.e., E(X1) ≥ E(X2), then

E(D(X0, X1, X2, . . . , Xn)) ≤ E(D(X0, X2, X1, . . . , Xn)).

Proof. Note that D(X0, X1, X2 . . . , Xn) is exponential with one of three rates,
namely λ0, λ1 or λ2. Denote the probabilities of these three events under sched-
ule 0, 1, 2, . . . , n by q0, q1 and q2, where q0+q1+q2 = 1. Denote by r0, r1 and r2
the probabilities of the same events under schedule 0, 2, 1, 3, . . . , n. It is clear
that q0 is equal to r0 by a similar argument as in Lemma 12.1.1. In order to
prove the lemma it suffices to show that q1 < r1.
For n = 2 there are four cases to be considered in the computation of q1. With

probability p21p22 both jobs 1 and 2 are exponential with rate λ2. In this case
the probability that D(X0, X1, X2) is exponentially distributed with rate λ1 is
zero. With probability p11p22 job 1 is exponentially distributed with rate λ1,
while job 2 is exponentially distributed with rate λ2. In order for D(X0, X1, X2)
to have rate λ1, job 1 has to outlast job 0 and, after job 2 is started on the
machine on which job 0 is completed, job 1 has to outlast job 2 as well. This
happens with probability ( λ0

λ0 + λ1

)( λ2

λ2 + λ1

)
.

The other two cases can also be computed easily. Summarizing,

q1 = p11p12

( λ0

λ0 + λ1
+

( λ1

λ0 + λ1

)( λ0

λ0 + λ1

))
+ p11p22

( λ0

λ0 + λ1

)( λ2

λ1 + λ2

)
+ p21p12

(( λ0

λ0 + λ2

)( λ2

λ1 + λ2

)
+

( λ2

λ0 + λ2

)( λ0

λ0 + λ1

))
+ p21p22

(
0
)
.

So, the first term on the R.H.S. of this expression corresponds to the event where
both jobs 1 and 2 are exponentially distributed with rates λ1, which happens
with probability p11p12; the second term corresponds to the event where job 1
is distributed according to an exponential with rate λ1 and job 2 according
to an exponential with rate λ2 and the third term corresponds to the event
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where job 1 is distributed according to an exponential with rate λ2 and job 2
according to an exponential with rate λ1. The fourth term corresponds to the
event where both jobs 1 and 2 are exponentially distributed with rate λ2. A
similar expression can be obtained for r1. Subtracting yields

r1 − q1 = (p1 − p2)
2λ1λ2

λ2
2 − λ2

1

( λ0

λ0 + λ1
− λ0

λ0 + λ2

)
≥ 0,

which shows that r1 ≥ q1 for n = 2.
Let q′0, q′1 and q′2 and r′0, r′1 and r′2 denote the corresponding probabilities

when there are only n − 1 jobs under schedule 1, 2, 3, . . . , n − 1 and schedule
2, 1, 3, . . . , n− 1, respectively.
Now let n > 2, and assume inductively that r′1 ≥ q′1. Then

q1 = q′1p1n + q′1p2n
λ2

λ1 + λ2
+ q′2p1n

λ2

λ1 + λ2
+ q′0p1n

λ0

λ0 + λ1

where the last term on the R.H.S. is independent of the schedule 1, 2, . . . , n−1.
A similar expression holds for r1, and

r1 − q1 = (r′1 − q′1)
(
p1n

λ1

λ1 + λ2
+ p2n

λ2

λ1 + λ2

)
≥ 0.

This completes the proof of the lemma. 	

Note that there are no conditions on λ0; the rate λ0 may or may not be equal

to either λ1 or λ2. With this lemma the following theorem can be shown easily.

Theorem 12.1.5. The LEPT rule minimizes the expected makespan in
the class of nonpreemptive static list policies when there are two machines in
parallel and when the processing times are distributed according to a mixture of
two exponentials with rates λ1 and λ2.

Proof. Any permutation schedule can be transformed into the LEPT schedule
through a series of adjacent pairwise interchanges between a longer job and a
shorter job immediately preceding it. With each interchange E(D) decreases
because of Lemma 12.1.4. 	

Showing that LEPT minimizes the expected makespan can be done in this

case without any conditions on the jobs that are not part of the interchange.
This is in contrast to Theorem 12.1.2, where the jobs following the jobs in the
interchange had to be smaller than the largest job involved in the pairwise
interchange. The additional condition requiring the other expected processing
times to be smaller than the expected processing time of the larger of the two
jobs in the interchange, is not required in this case.
Just as Example 12.1.3 extends the result of Theorem 12.1.2 to a mixture of

an exponential and zero, Theorem 12.1.5 can be extended to include mixtures
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of three exponentials, with rates λ1, λ2 and ∞. The next example shows that
the LEPT rule, again, does not necessarily minimize the expected makespan.

Example 12.1.6 (Counterexample to Optimality of LEPT with Ar-
bitrary Processing Times)
Let p1j denote the probability job j is exponentially distributed with rate λ1

and p2j the probability it is distributed with rate λ2. Assume λ1 < λ2. The
probability that the processing time of job j is zero is p0j = 1 − p1j − p2j .
Through similar arguments as those used in Lemma 12.1.4 and Theo-
rem 12.1.5 it can be shown that in order to minimize the expected makespan
the jobs in the optimal nonpreemptive static list policy have to be ordered
in decreasing order of p1j/p2j. The jobs with the zero processing times again
do not play a role in the schedule. As in Example 12.1.3, this implies that
the optimal sequence is not necessarily LEPT. ||
The following example is a continuation of the previous example and is an

illustration of the Largest Variance first (LV) rule.

Example 12.1.7 (Application of Largest Variance first (LV) Rule)
Consider the special case of the previous example with

1
λ1
= 2

and
1
λ2
= 1.

Let

p0j = aj

p1j = aj

p2j = 1− 2aj
So

E(Xj) =
p1j

λ1
+

p2j

λ2
= 1,

for all j and
V ar(Xj) = 1 + 4aj .

From the previous example it follows that sequencing the jobs in decreasing
order of p1j/p2j minimizes the expected makespan. This rule is equivalent
to scheduling the jobs in decreasing order of aj/(1 − 2aj). Since 0 ≤ aj ≤
1/2, scheduling the jobs in decreasing order of aj/(1 − 2aj) is equivalent
to scheduling in decreasing order of aj , which in turn is equivalent to the
Largest Variance first rule. ||
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The methodology used in proving that LEPT is optimal for the expected
makespan on two machines does not easily extend to problems with more than
two machines or problems with other processing time distributions. Consider
the following generalization of this approach for m machines. Let Z1 denote the
time that the first machine becomes idle with no jobs waiting for processing,
Z2 the time the second machine becomes idle, and so on, and let Zm denote
the time the last machine becomes idle. Clearly Zm equals the makespan. Let

Di = Zi+1 − Zi i = 1, . . . ,m− 1.

From the fact that the sum of the processing times is

n∑
j=1

Xj =
m∑
i=1

Zi = mCmax −D1 − 2D2 − · · · − (m− 1)Dm−1,

which is independent of the schedule, it follows that minimizing the makespan
is equivalent to minimizing

m−1∑
i=1

iDi.

A limited number of processing time distributions can be handled this way.
For example, the setting of Theorem 12.1.5 can be extended relatively easily
following this approach. However, the scenario of Theorem 12.1.2 cannot be
extended that easily.
So far only the class of nonpreemptive static list policies has been considered

in this section. It turns out, that most optimal policies in the class of non-
preemptive static list policies are also optimal in the classes of nonpreemptive
dynamic policies and preemptive dynamic policies. The proof that a nonpre-
emptive static list policy is optimal in these other two classes of policies as well
is based on induction arguments that are very similar to those used in the sec-
ond and third part of the proof of Theorem 10.4.1. In Section 12.2 an entirely
different approach is presented which first proves optimality in the class of pre-
emptive dynamic policies. As the optimal policy is a nonpreemptive static list
policy, the policy is then also optimal in the classes of nonpreemptive dynamic
policies and nonpreemptive static list policies.
Only the expected makespan has been considered in this section. In a nonpre-

emptive setting the total expected completion time E(
∑

Cj) is more difficult
to deal with than the expected makespan. Indeed, an approach similar to the
one used to show that LEPT minimizes the expected makespan for exponential
processing times, has not been found to show that SEPT minimizes the total
expected completion time. However, if the processing times are distributed as
in Theorem 12.1.5, it can be shown that SEPT minimizes the total expected
completion time and if the processing times are distributed as in Example 12.1.7
it can be shown that LV minimizes the total expected completion time.



12.2 The Makespan and Total Completion Time with Preemptions 327

12.2 The Makespan and Total Completion Time with
Preemptions

Pairwise interchange arguments are basically used for determining optimal poli-
cies in the class of nonpreemptive static list policies. After determining an op-
timal nonpreemptive static list policy, it can often be argued that this policy is
also optimal in the class of nonpreemptive dynamic policies and possibly in the
class of preemptive dynamic policies.
In this section an alternative proof for Theorem 12.1.2 is presented. The

approach is entirely different. A dynamic programming type proof is constructed
within the class of preemptive dynamic policies. After obtaining the result that
the nonpreemptive LEPT policy minimizes the expected makespan in the class
of preemptive dynamic policies, it is concluded that it is also optimal in the class
of nonpreemptive dynamic policies as well as in the class of nonpreemptive static
list policies.
This approach can be used for proving that LEPT minimizes the expected

makespan for m machines in parallel. It will be illustrated for two machines in
parallel since the notation is then much simpler.
Suppose λ1 ≤ λ2 ≤ · · · ≤ λn. Let V (J) denote the expected value of the

minimum remaining time needed (that is, under the optimal policy) to finish
all jobs given that all the jobs in the set J = j1, . . . , jl already have been
completed. If J = ∅, then V (J) is simply denoted by V . Let V ∗(J) denote the
same time quantity under the LEPT policy. Similarly, V ∗ denotes the expected
value of the remaining completion time under LEPT when no job has yet been
completed.

Theorem 12.2.1. The nonpreemptive LEPT policy minimizes the expected
makespan in the class of preemptive dynamic policies.

Proof. The proof is by induction on the number of jobs. Suppose that the result
is true when there are less than n jobs. It has to be shown that it is also true
when there are n jobs. That is, a policy that at time 0 (when there are n jobs
waiting for processing) does not act according to LEPT but at the first job
completion (when there are n − 1 jobs remaining to be processed) switches
over to LEPT results in a longer expected makespan than a policy that acts
according to LEPT starting at time zero. In a sense the structure of this proof
is somewhat similar to the proof of Theorem 5.2.7.
Conditioning on the first job completion yields

V = min
j,k

( 1
λj + λk

+
λj

λj + λk
V ∗({j}) + λk

λj + λk
V ∗({k})

)
.

The expected time until the first job completion is the first term on the RHS.
The second (third) term is equal to the probability of job j (k) being the first job
to be completed, multiplied by the expected remaining time needed to complete
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the n− 1 remaining jobs under LEPT. This last equation is equivalent to

0 = min
j,k

(
1 + λj

(
V ∗({j})− V ∗

)
+ λk

(
V ∗({k})− V ∗

)
+ (λj + λk)

(
V ∗ − V

))
.

Since λ1 and λ2 are the two smallest λj values and supposedly V ∗ ≥ V the
fourth term on the R.H.S. is minimized by {j, k} = {1, 2}. Hence to show that
LEPT is optimal it suffices to show that {j, k} = {1, 2} also minimizes the sum
of the second and third term. In order to simplify the presentation let

Aj = λj

(
V ∗({j})− V ∗

)
and let

Djk = Aj −Ak.

In order to show that

λj

(
V ∗({j})− V ∗

)
+ λk

(
V ∗({k})− V ∗

)
= Aj +Ak

is minimized by {j, k} = {1, 2}, it suffices to show that λj < λk implies Aj ≤ Ak
or, equivalently, Djk ≤ 0. To prove that Djk ≤ 0 is done in what follows by
induction.
Throughout the remaining part of the proof V ∗, Aj and Djk are considered

functions of λ1, . . . , λn. Define Aj(J) and Djk(J), assuming jobs j and k are
not in J , in the same way as Aj and Djk, e.g.,

Aj(J) = λj

(
V ∗(J ∪ {j})− V ∗(J)

)
.

Before proceeding with the induction a number of identities have to be es-
tablished. If j and k are the two smallest jobs not in set J , then LEPT processes
jobs j and k first. Conditioning on the first job completion results in the identity

V ∗(J) =
1

λj + λk
+

λj
λj + λk

V ∗(J ∪ {j}) + λk
λj + λk

V ∗(J ∪ {k})

or
(λj + λk)V ∗(J) = 1 + λjV

∗(J ∪ {j}) + λkV
∗(J ∪ {k}).

Similarly,

(λ1 + λ2 + λ3)A1 = λ1(λ1 + λ2 + λ3)V ∗({1})− λ1(λ1 + λ2 + λ3)V ∗

= λ1

(
1 + λ1V

∗({1}) + λ2V
∗({1, 2}) + λ3V

∗({1, 3})
)

− λ1

(
1 + λ1V

∗({1}) + λ2V
∗({2}) + λ3V

∗
)
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= λ1

(
λ3V

∗({1, 3})− λ3V
∗({1})

)
+ λ2

(
λ1V

∗({1, 2})− λ1V
∗({2})

)
+ λ3A1

or
(λ1 + λ2)A1 = λ1A3({1}) + λ2A1({2}).

The following identities can be established in the same way:

(λ1 + λ2)A2 = λ1A2({1}) + λ2A3({2})

and
(λ1 + λ2)Aj = λ1Aj({1}) + λ2Aj({2}),

for j = 3, . . . , n. Thus, with D12 = A1 −A2, it follows that

D12 =
λ1

λ1 + λ2
D32({1}) + λ2

λ1 + λ2
D13({2}),

and
D2j =

λ1

λ1 + λ2
D2j({1}) + λ2

λ1 + λ2
D3j({2}),

for j = 3, . . . , n.
Assume now as induction hypothesis that if λj < λk, and λ1 ≤ · · · ≤ λn,

then
Djk ≤ 0

and
dD12

dλ1
≥ 0.

In the remaining part of the proof, these two inequalities are shown by induction
on n. When n = 2

Djk =
λj − λk
λj + λk

and the two inequalities can be established easily.
Assume that the two inequalities of the induction hypothesis hold when there

are less than n jobs remaining to be processed. The induction hypothesis now
implies that D13({2}) as well as D23({1}) are nonpositive when there are n jobs
remaining to be completed. It also provides

dD13({2})
dλ1

≥ 0.

This last inequality has the following implication: if λ1 increases then D13({2})
increases. The moment λ1 reaches the value of λ2 jobs 1 and 2 become inter-
changeable. Therefore

D13({2}) ≤ D23({1}) = −D32({1}) ≤ 0.
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From the fact that λ1 < λ2 it follows that D12 is nonpositive. The induction
hypothesis also implies that D2j({1}) and D3j({2}) are nonpositive. So D2j is
nonpositive. This completes the induction argument for the first inequality of
the induction hypothesis. The induction argument for the second inequality can
be established by differentiating

λ1

λ1 + λ2
D32({1}) + λ2

λ1 + λ2
D13({2})

with respect to λ1 and then using induction to show that every term is positive.
	


This proof shows that LEPT is optimal in the class of preemptive dynamic
policies. As the optimal policy is a nonpreemptive static list policy it also has
to be optimal in the class of nonpreemptive static list policies and in the class
of preemptive dynamic policies. In contrast to the first proof of the same result,
this approach also works for an arbitrary number of machines in parallel. The
notation, however, becomes significantly more involved.
The interchange approach described in Section 12.1 is not entirely useless. To

show that the nonpreemptive LEPT policy is optimal when the processing time
distributions are ICR, one must adopt a pairwise interchange type of argument.
The reason is obvious. In a preemptive framework the remaining processing time
of an ICR job that has received a certain amount of processing may become
less (in expectation) than the expected processing time of a job that is waiting
for processing. This then would lead to a preemption. The approach used in
Lemma 12.1.1 and Theorem 12.1.2 can be applied easily to a number of different
classes of distributions for which the approach used in Theorem 12.2.1 does not
appear to yield the optimal nonpreemptive schedule.
Consider minimizing the total expected completion time of the n jobs. The

processing time of job j is exponentially distributed with rate λj . In Chapter 5
it was shown that the SPT rule is optimal for the deterministic counterpart of
this problem. This gives an indication that in a stochastic setting the Shortest
Expected Processing Time first (SEPT) rule may minimize the total expected
completion time under suitable conditions. Consider again two machines in
parallel with n jobs. The processing time of job j is exponentially distributed
with rate λj . Assume now λ1 ≥ λ2 ≥ · · · ≥ λn. An approach similar to the
one followed in Theorem 12.2.1 for the expected makespan can be followed for
the total expected completion time. Let W (J) denote the expected value of the
minimum total remaining completion time needed to finish the jobs still in the
system under the optimal policy, given that the jobs in set J already have been
completed. Again, if J = ∅, then W (J) is simply denoted by W . Let W ∗(J)
denote the same quantity under the SEPT policy.

Theorem 12.2.2. The nonpreemptive SEPT policy minimizes the total
expected completion time in the class of preemptive dynamic policies.
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Proof. The approach is similar to the one used in Theorem 12.2.1. The proof
is again by induction on the number of jobs. Suppose that the result is true
when there are less than n jobs. It has to be shown that it is also true when
there are n jobs. That is, a policy that at time 0 (when there are n jobs waiting
for processing) does not act according to SEPT but at the first job completion
(when there are n− 1 jobs remaining to be processed) switches over to SEPT
results in a larger total expected completion time than when SEPT is adopted
immediately from time zero on.
Conditioning on the event that occurs at the first job completion yields

W = min
j,k

( n

λj + λk
+

λj
λj + λk

W ∗({j}) + λk
λj + λk

W ∗({k})
)
.

The increase in the total expected completion time until the first job completion
is the first term on the RHS. (Recall that if during a time interval [t1, t2] there
are k jobs in the system that have not yet been completed, then the total
completion time increases by an amount k(t2 − t1).) The second (third) term
is equal to the probability of job j (k) being the first job to be completed,
multiplied by the total expected remaining completion time under SEPT. This
last equation is equivalent to

0 = min
j,k

(
n+λj(W ∗({j})−W ∗) +λk(W ∗({k})−W ∗) + (λj +λk)(W ∗ −W )

)
.

It has to be shown now that if λk > λj , λ1 ≥ · · · ≥ λn, then

−1 ≤ Djk ≤ 0

and
dD12

dλ1
≤ 0.

This can be shown, as in Theorem 12.2.1, by induction. If n = 2, then D12 = 0
and the result holds. Doing similar manipulations as in Theorem 12.2.1 yields
the following equations:

D12 =
λ1

λ1 + λ2

(
D32({1})− 1

)
+

λ2

λ1 + λ2

(
D13({2}) + 1

)
,

and
D2j =

λ1

λ1 + λ2
D2j({1}) + λ2

λ1 + λ2
(D3j({2})− 1),

for j = 3, . . . , n. Using these two equations, it is easy to complete the proof. 	

Although the proof of the theorem is presented only for the case of two ma-

chines in parallel, the approach does work for an arbitrary number of machines
in parallel, but again the notation gets more involved.
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More can be said about the total expected completion time on m machines.
Consider n processing times X1, . . . , Xn from arbitrary distributions F1, . . . , Fn
such that X1 ≤st X2 ≤st · · · ≤st Xn. It has been shown in the literature that
SEPT minimizes the total completion time in expectation and even stochasti-
cally. Recall that LEPT does not minimize the expected makespan when the
X1, . . . , Xn are arbitrarily distributed and stochastically ordered.
Consider now the problem of two machines in parallel with i.i.d. job process-

ing times distributed exponentially with mean 1, with precedence constraints
that have the form of an intree, and the expected makespan to be minimized
in the class of preemptive dynamic policies (that is, a stochastic counterpart of
P2 | pj = 1, intree | Cmax). For the deterministic version of this problem the
Critical Path (CP) rule (sometimes also referred to as the Highest Level first
(HL) rule) is optimal. The CP rule is in the deterministic case optimal for an
arbitrary number of machines in parallel, not just for two machines.
For the stochastic version the following notation is needed. The root of the

intree is level 0. A job is at level k if there is a chain of k−1 jobs between it and
the root of the intree. A precedence graph G1 with n jobs is said to be flatter
than a precedence graph G2 with n jobs if the number of jobs at or below any
given level k in G1 is larger than the number of jobs at or below level k in
graph G2. This is denoted by G1 $fl G2. In the following lemma two scenarios,
both with two machines and n jobs but with different intrees, are compared.
Let E(C(i)

max(CP )) denote the expected makespan under the CP rule when the
precedence constraints graph takes the form of intree Gi, i = 1, 2.
In the subsequent lemma and theorem preemptions are allowed. However, it

will become clear afterwards that for intree precedence constraints the CP rule
does not require any preemptions. Also, recall that whenever a job is completed
on one machine, the remaining processing time of the job being processed on
the other machine is still exponentially distributed with mean one.

Lemma 12.2.3. If G1 $fl G2 then

E(C(1)
max(CP )) ≤ E(C(2)

max(CP ))

Proof. The proof is by induction. If n ≤ 2, it is clear that the lemma holds,
since graph G1 must consist of two jobs with no precedence relationship and
graph G2 must consist of a chain of two jobs.
Assume that the lemma holds for graphs of n − 1 jobs. Assume that both

graphs of n jobs allow two jobs to be started simultaneously at time zero on
the two machines. If this is not the case, then graph G2 has to be a chain of n
jobs and in this special case the lemma does hold.
For both graphs the two jobs at the highest levels are selected. Suppose that

in both graphs, the job at the very highest level is put on machine 1 and the
other job is put on machine 2. Clearly, the job from G1 on machine 1 is at a
lower level than the job from G2 on machine 1. The job from G1 on machine 2
can be either at a higher or at a lower level than the job from G2 on machine 2.
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Suppose machine 1 is the first one to complete its job. The remaining time
that the job on machine 2 needs to complete its processing is exponential with
mean 1. So at the completion of the job on machine 1, both remaining graphs
have n − 1 jobs exponentially distributed with mean 1. It is clear that the
remaining graphs are ordered in the same way as they were ordered originally,
i.e., G1 $fl G2 and the expected remaining processing time is less with G1 than
with G2 because of the induction hypothesis for n− 1 jobs.
Suppose machine 2 is the first one to complete its job. In order to show that

the flatness property of the two remaining graphs is maintained consider two
subcases. In the first subcase the job from G2 on machine 2 is either at the same
or at a lower level than the job from G1 on machine 2. It is clear that when
machine 2 is the first one to complete its processing the remaining part of G1

is still flatter than the remaining part of G2. The second subcase is a little bit
more involved. Assume the job of G2 on machine 2 is at level l and the job of
G1 on machine 2 is at level k, k < l. The number of jobs below or at level k (l)
in G1 is larger than the number of jobs below or at level k (l) in G2. It is easy
to see that the number of jobs below or at level k in G1 plus l−k is larger than
or equal to the number of jobs below or at level l in G2. So, at the completion
of the job on machine 2, the number of jobs below or at level k in G1 plus
l− k is still larger than or equal to the number of jobs below or at level l in G2

(k < l). So the remaining graph of G1 is still flatter than the remaining graph
of G2 Thus, because of the induction hypothesis, the expected time remaining
till the completion of the last job is less under G1 than under G2. 	


Theorem 12.2.4. The nonpreemptive CP rule minimizes the expected
makespan in the class of nonpreemptive dynamic policies and in the class of
preemptive dynamic policies.

Proof. The theorem is first shown to hold in the class of preemptive dynamic
policies. The proof is by contradiction as well as by induction. Suppose the CP
rule is optimal with n−1 jobs, but another policy, say policy π, is optimal with
n jobs. This policy, at the first job completion, must switch over to the CP
rule, as the CP rule is optimal with n − 1 jobs. In the comparison between π
and the CP rule, assume that under both policies the job at the higher level is
put on machine 1 and the job at the lower level is put on machine 2. It is easy
to check that, if machine 1 is the first one to complete its job, the remaining
graph under the CP rule is flatter than the remaining graph under policy π.
Because of Lemma 12.2.3 the expected makespan is therefore smaller under the
CP rule than under policy π. It is also easy to check that if machine 2 is the first
one to complete its job, the remaining graph under the CP rule is flatter than
the remaining graph under policy π. Again, the expected makespan is therefore
smaller under CP than under π. This proves the optimality of CP in the class
of preemptive dynamic policies. It is clear that the CP rule even in the class
of preemptive dynamic policies never causes any preemptions. The CP rule is
therefore optimal in the class of nonpreemptive dynamic policies as well. 	
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1 2

3

4

Fig. 12.2 The CP rule is not optimal for three machines
(Example 12.2.5)

As mentioned before, the results presented in Theorems 12.1.2 and 12.2.1,
even though they were only shown for m = 2, hold for arbitrary m. The CP
rule in Theorem 12.2.4 is, however, not necessarily optimal for m larger than
two.

Example 12.2.5 (Counterexample to Optimality of CP Rule with
Three Machines)
Consider three machines and 12 jobs. The jobs are all i.i.d. exponential with
mean 1 and subject to the precedence constraints described in Figure 12.2.
Scheduling according to the CP rule would put jobs 1, 2 and 3 at time
zero on the three machines. However, straightforward algebra shows that
starting with jobs 1, 2 and 4 results in a smaller expected makespan (see
Exercise 12.7). ||
In the deterministic setting discussed in Chapter 5 it was shown that the CP

rule is optimal for Pm | pj = 1, intree | Cmax and Pm | pj = 1, outtree | Cmax,
for any m. One may expect the CP rule to be optimal when all processing times
are exponential with mean 1 and precedence constraints take the form of an
outtree. However, a counterexample can be found easily when there are two
machines in parallel.
Consider once more a problem with two machines in parallel and jobs hav-

ing i.i.d. exponentially distributed processing times subject to precedence con-
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straints that take the form of an intree. But now the total expected completion
time is the objective to be minimized.

Theorem 12.2.6. The nonpreemptive CP rule minimizes the total expected
completion time in the class of nonpreemptive dynamic policies and in the class
of preemptive dynamic policies.

Proof. The proof is similar to the proof of Theorem 12.2.4. A preliminary result
similar to Lemma 12.2.3 is again needed. 	


12.3 Due Date Related Objectives

Problems with due dates are significantly harder in a stochastic setting than in
a deterministic setting. One of the reasons is that in a stochastic setting one
cannot work backwards from the due dates as can be done in a deterministic
setting. The actual realizations of the processing times and the due dates are
now not known a priori and working backwards is therefore not possible.
However, some results can still be obtained. Consider m parallel machines

and n jobs with all processing times being deterministic and equal to 1. The
weight of job j is equal to wj and the distribution of the due date of job j
is Fj (arbitrary). The problem of determining the schedule that minimizes
E(

∑
wjUj) in the class of nonpreemptive static list policies turns out to be

equivalent to a deterministic assignment problem.

Theorem 12.3.1. The nonpreemptive static list policy that minimizes
E(

∑
wjUj) can be obtained by solving a deterministic assignment problem with

the following cost matrix: if job j is assigned to position i in the permuta-
tion schedule, where km + 1 ≤ i ≤ (k + 1)m, then the cost is wjFj(k + 1) for
k = 0, 1, 2, . . . The assignment that minimizes the expected total cost corresponds
to the optimal nonpreemptive static list policy.

Proof. The first batch of m jobs in the list complete their processing at time 1,
the second batch ofm jobs at time 2, and so on. The probability that a job from
the first batch of m jobs is overdue is Fj(1), so the expected cost is wjFj(1).
The expected cost for a job from the second batch of m jobs is wjFj(2), and so
on. 	

Consider now the case where the processing times of the n jobs are i.i.d.

exponential with mean 1. Suppose the due date of job j is exponential with
rate µj , but the due dates are not necessarily independent. Again, the objective
is to minimize E(

∑
wjUj) with m identical machines in parallel.

Theorem 12.3.2. The nonpreemptive static list policy that minimizes
E(

∑
wjUj) can be obtained by solving a deterministic assignment problem with

the following cost matrix: If job j is assigned to position i, i = 1, . . . ,m, on the
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list, then the expected cost is wjµj/(1 + µj). If job j is assigned to position i,
i = m+ 1, . . . , n, then the expected cost is

wj

(
1−

( m

m+ µj

)i−m 1
1 + µj

)
.

The assignment that minimizes the expected total cost corresponds to the optimal
nonpreemptive static list policy.

Proof. Observe that job j in slot i = 1, . . . ,m starts at time zero. The proba-
bility that this job is not completed before its due date is µj/(1 + µj). So its
expected cost is wjµj/(1 + µj). Job j in slot i, i = m+ 1, . . . , n has to wait for
i −m job completions before it starts its processing. Given that all machines
are busy, the time between successive completions is exponentially distributed
with rate m. Thus the probability that a job in position i > m starts its pro-
cessing before its due date is (m/(m + µj))i−m. Consequently, the probability
that it finishes before its due date is( m

m+ µj

)i−m 1
1 + µj

.

So the probability that it is not completed by its due date is

1−
( m

m+ µj

)i−m 1
1 + µj

and thus has expected cost

wj

(
1−

( m

m+ µj

)i−m 1
1 + µj

)
.

	


12.4 Bounds Obtained through Online Scheduling

The online scheduling paradigm was first introduced in Chapter 5. In online
scheduling it is assumed that the decision-maker has an extremely limited
amount of information at his disposal. In the most common online scheduling
paradigm, the decision-maker knows at any time t only the number of machines
available (m), the number of jobs released so far, the number of jobs already
completed, and the amounts of processing the remaining jobs already have re-
ceived. The decision-maker has no information with regard to the future of the
process. He does not know anything about the remaining processing times of
the jobs that are not yet completed. He does not know how many jobs are still
going to be released and what their release dates will be.
The amount of information a decision-maker has in an online scheduling en-

vironment is actually less than the amount of information a decision-maker has
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in a stochastic scheduling environment. In a stochastic scheduling environment,
a decision-maker has at least some information with regard to the distributions
of the processing times and the distributions of the release dates. Also, knowing
the original processing time distributions enables the decision-maker to deter-
mine the distributions of the remaining processing times of jobs that already
have received a certain amount of processing.
This section describes how bounds obtained for online scheduling can be

used to obtain bounds in stochastic scheduling. Consider the stochastic coun-
terpart of Pm || Cmax. Assume there are n jobs with random processing times
X1, . . . , Xn with arbitrary distributions F1, . . . , Fn. Suppose the decision-maker
decides to adopt an arbitrary nonpreemptive dynamic policy π which does not
allow for any unforced idleness. Let E(Cmax(π)) denote the expected makespan
under policy π and let E(Cmax(OPT )) denote the expected makespan if the
decision-maker adopts the optimal nonpreemptive dynamic policy. By extend-
ing the results obtained for online scheduling in Chapter 5, the following result
can be shown for a stochastic scheduling environment withm identical machines
in parallel.

Theorem 12.4.1. For any nonpreemptive dynamic policy π that does not
allow unforced idleness

E(Cmax(π))
E(Cmax(OPT ))

≤ 2− 1
m

.

Proof. Consider any realization x1, . . . , xn of the random variables X1, . . . , Xn.
From Theorem 5.6.1 it follows that for this realization of processing times

Cmax(A)
Cmax(OPT )

≤ 2− 1
m

for any deterministic rule A that does not allow unforced idleness.
Note that the optimal nonpreemptive dynamic policy in the stochastic set-

ting would not necessarily generate for the processing times x1, . . . , xn the same
schedule as the optimal deterministic scheduling rule (which knows the exact
processing times a priori). The schedule generated by the optimal nonpreemp-
tive dynamic policy for x1, . . . , xn may actually result in a makespan that is
strictly larger than the makespan that would be generated by the optimal de-
terministic scheduling rule which knows the processing times x1, . . . , xn a priori.
Unconditioning with regard to the processing times results in the follow-

ing: The numerator is an integral over all realizations of the processing times
with the makespans generated by applying policy π and the denominator is an
integral over all realizations with makespans generated by the optimal nonpre-
emptive dynamic policy. For each realization the ratio satisfies the inequality,
so the inequality is satisfied for the ratio of the integrals as well. 	

Consider now the stochastic counterpart of Pm | prmp | ∑

Cj with the
n jobs having processing times that are arbitrarily distributed according to
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F1, . . . , Fn. The result shown in Section 5.6 with regard to the Round Robin
rule can be used for generating a bound on the total expected completion time
under an arbitrary preemptive dynamic policy π.
The Round Robin rule is in a stochastic setting a well defined preemptive

dynamic policy. Let E(
∑n
j=1 Cj(RR)) denote the total expected completion

time under the Round Robin rule, let E(
∑n
j=1 Cj(OPT )) denote the total ex-

pected completion time under the optimal preemptive dynamic policy, and let
E(

∑n
j=1 Cj(π)) denote the total expected completion time under an arbitrary

preemptive dynamic policy π.

Theorem 12.4.2. For any preemptive dynamic policy π

E(
∑n
j=1 Cj(RR))

E(
∑n
j=1 Cj(π))

≤ 2− 2m
n+m

.

Proof. From Theorem 5.6.2 it follows that for any realization x1, . . . , xn of the
n processing times ∑n

j=1 Cj(RR)∑n
j=1 Cj(OPT )

≤ 2− 2m
n+m

,

where
∑n
j=1 Cj(OPT ) is the total completion under the optimal preemptive

deterministic scheduling rule for the processing times x1, . . . , xn. Again, if the
preemptive dynamic policy that is optimal in the stochastic setting would be
applied to the specific instance x1, . . . , xn, the total completion time most likely
would exceed the total completion time of the optimal preemptive deterministic
scheduling rule applied to the fixed values x1, . . . , xn.
Unconditioning over the processing times yields

E(
∑n
j=1 Cj(RR))

E(
∑n
j=1 Cj(OPT ))

≤ 2− 2m
n+m

.

Since

E(
n∑
j=1

Cj(OPT )) ≤ E(
n∑
j=1

Cj(π))

the theorem follows. 	

Note that the two bounds presented in Theorems 12.4.1 and 12.4.2 are of a

different nature. Theorem 12.4.1 provides an upper bound for the worst case
behaviour of an arbitrary nonpreemptive dynamic policy with respect to the
expected makespan objective. Theorem 12.4.2, on the other hand, compares
the performance of the Round Robin policy with that of an arbitrary preemp-
tive dynamic policy. It provides an upper bound on the performance of the
Round Robin policy relative to any policy. Or, equivalently, it provides a lower
bound for the performance of an arbitrary policy’s performance relative to the
performance of the Round Robin policy.
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Note that with respect to the total expected completion there is no upper
bound on the performance ratio of an arbitrary policy relative to the optimal
policy. To see why there is no upper bound, consider two machines in parallel
and n jobs. Two jobs have a deterministic processing time of p (p being very
large) and n−2 jobs have processing times that are very close to 0. The optimal
rule is clearly the SEPT rule. Consider the performance of the LEPT rule.
The total expected completion time under the LEPT rule divided by the total
expected completion time under the SEPT rule can be made arbitrarily high.

12.5 Discussion

This chapter presents only a small sample of the results that have appeared in
the literature concerning stochastic scheduling on parallel machines.
A significant amount of research has focused on the uniform machine case,

i.e., m machines in parallel with different speeds. Preemptive as well as non-
preemptive models have been considered. The preemptive models tend to be
somewhat easier. It has been shown that under certain conditions the preemp-
tive dynamic policy that always assigns the Longest Expected Remaining Pro-
cessing Time to the Fastest Machine minimizes the expected makespan while
the preemptive dynamic policy that always assigns the Shortest Expected Re-
maining Processing Time to the Fastest Machine minimizes the total expected
completion time.
The nonpreemptive models are considerably harder. A distinction can be

made between models that allow unforced idleness and models that do not
allow unforced idleness. In a model that allows unforced idleness the decision-
maker may decide to keep a slow machine idle and let a job wait for a faster
machine to become available. Under certain conditions it has been shown that
threshold policies are optimal. That is, the decision to let a job wait for a faster
machine to become available depends on the expected processing time of the
job, the differences in the speeds of the machines, the total expected processing
time still to be done by the other machine(s), and so on.

Exercises (Computational)

12.1. Consider two machines in parallel and four jobs with exponentially dis-
tributed processing times with means 1/5, 1/4, 1/3 and 1/2.

(a) Compute the probability of each job being the last one to finish under
the LEPT rule.
(b) Do the same for the SEPT rule.

12.2. Consider the same scenario as in the previous exercise and compute the
expected makespan under LEPT and under SEPT.
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Fig. 12.3 Intree (Exercise 12.4)

12.3. Consider the same scenario as in Exercise 12.1. Compute the total ex-
pected completion time under SEPT and LEPT. (Hint: note that the sum of
the expected completion times is equal to the sum of the expected starting
times plus the sum of the expected processing times. So it suffices to compute
the four expected starting times (two of which being zero)).

12.4. Consider two machines in parallel and 5 jobs under the intree precedence
constraints depicted in Figure 12.3. All processing times are i.i.d. exponential
with mean 1. Compute the expected makespan under the CP rule and under a
different schedule.

12.5. Consider two machines and n jobs. The processing times of the n jobs are
i.i.d. and distributed according to a mixture of exponentials: P (Xj = 0) = 1−p
and with probability p the processing time is exponentially distributed with
rate p (the value p is not necessarily close to 0). Compute the expected makespan
under a nonpreemptive schedule and under a preemptive schedule.

12.6. Consider the same scenario as in the previous exercise.

(a) Compute the total expected completion time for the same set of jobs
under a nonpreemptive schedule and under a preemptive schedule.
(b) Compare the result to the case where all n processing times are deter-
ministic and equal to 1.

12.7. Consider Example 12.2.5 with three machines and 12 jobs. Compute
the expected makespan under the CP rule and under the rule suggested in
Example 12.2.5.

12.8. Find a counterexample showing that the nonpreemptive SEPT rule does
not necessarily minimize the total expected completion time in the class of
nonpreemptive static list policies when the processing times are merely ordered
in expectation and not ordered stochastically.

12.9. Consider the same scenario as in Exercise 12.1. The four jobs are geo-
metrically distributed with means 1/5, 1/4, 1/3, 1/2 (i.e., q is 1/4, 1/3, 1/2, 1).
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(a) Compute the probability of each job being the last one to complete its
processing under LEPT (if two jobs finish at the same time, then no job
finishes last).
(b) Compute the expected makespan and compare it to the expected
makespan obtained in Exercise 12.2.

12.10. Consider 2 machines and 4 jobs. The 4 jobs are i.i.d. according to the
EME distribution with mean 1 (recall that the probability p in the definition of
the EME distribution is very close to zero, so p2 % p). Compute the expected
makespan as a function of p (disregard all terms of p2 and smaller).

Exercises (Theory)

12.11. Consider m machines in parallel and n jobs. The processing times of
the n jobs are i.i.d. exponential with mean 1. Find expressions for E(Cmax) and
E(

∑
Cj).

12.12. Considerm machines in parallel and n jobs. The processing times of the
n jobs are i.i.d. exponential with mean 1. The jobs are subject to precedence
constraints that take the form of chains of different lengths. Find the policy
that minimizes the expected makespan and prove that it results in an optimal
schedule.

12.13. Consider n jobs and 2 machines in parallel. The processing time of job j
is with probability pj exponentially distributed with rate λ. The processing time
is with probability qj distributed according to a convolution of an exponential
with rate µ and an exponential with rate λ. The processing time is zero with
probability 1 − pj − qj . Show that scheduling the jobs in decreasing order of
qj/pj minimizes the expected makespan (Hint: Every time a machine is freed
the other machine can be only in one of two states: the remaining processing
time of the job on that machine is either exponentially distributed with rate λ
or the remaining processing time is distributed according to a convolution of
two exponentials with rates µ and λ).

12.14. Consider the processing time distribution in Example 12.1.7. Show that

V ar(Xj) = 1 + 4aj.

12.15. Consider two machines and n jobs. The processing times of the n jobs
are i.i.d. exponential with mean 1. To process job j, an amount ρj , 0 ≤ ρj ≤ 1,
of an additional resource is needed. The total amount of that resource available
at any point in time is 1. Formulate the policy that minimizes the expected
makespan and show that it leads to the optimal schedule.

12.16. Consider n jobs and 2 machines in parallel. The processing time of
job j is with probability pj exponentially distributed with rate λ1, and with
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probability 1 − pj exponentially distributed with rate λ2. Job j has a weight
wj . Show that if the WSEPT rule results in the same sequence as the LEPT
rule, then the WSEPT rule minimizes the total expected weighted completion
time.

12.17. Consider 2 machines in parallel and 5 jobs. The processing time of job j
is 1 with probability pj and 2 with probability 1− pj .

(a) Show that the random variable D (as defined in Section 12.1, can only
assume values 0, 1 or 2.
(b) Show that the probability that the random variable D assumes the
value 1 is equal to the probability that the sum of the n processing times
is odd and therefore independent of the schedule.
(c) Show that minimizing the expected makespan is equivalent to minimiz-
ing P (D = 2) and maximizing P (D = 0).
(d) Find the optimal sequence.

12.18. Consider two machines in parallel and n jobs. The processing time of
job j is zero with probability p0j , 1 with probability p1j and 2 with probability
p2j = 1− p1j − p0j. Show through a counterexample that the Largest Variance
first (LV) rule is not necessarily optimal.

12.19. Consider the two machine setting in Example 12.1.7. Show that the
Largest Variance first rule minimizes E(

∑
Cj) with two machines in parallel.

12.20. Consider 2 machines and n jobs. Assume all jobs have the same fixed
due date d. Show through counterexamples that there are cases where neither
SEPT nor LEPT stochastically maximize the number of jobs completed in time.

12.21. Consider m machines in parallel and n jobs. The processing times of all
n jobs are i.i.d. according to a mixture of exponentials. The processing time of
job j is zero with probability p and exponential with mean 1 with probability
1 − p. The due date of job j is exponential with rate µj . Show that determin-
ing the optimal nonpreemptive static list policy is identical to a deterministic
assignment problem. Describe the cost structure of this assignment problem.

12.22. Consider the same setting as in the previous problem. However, the
machines are now subject to breakdowns. The up-times are i.i.d. exponentially
distributed with rate ν and the down times are also i.i.d. exponential with a
different rate. Show that determining the optimal permutation schedule is again
equivalent to a deterministic assignment problem. Describe the cost structure
of this assignment problem.

Comments and References

Many researchers have worked on the scheduling of exponential jobs on iden-
tical machines in parallel, see Pinedo and Weiss (1979), Weiss and Pinedo
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(1980), Bruno, Downey and Frederickson (1981), Gittins (1981), Van der Hey-
den (1981), Pinedo (1981a), Weber (1982a, 1982b), Weber, Varaya, Walrand
(1986), Kämpke (1987a, 1987b, 1989) Chang, Nelson and Pinedo (1992) and
Chang, Chao, Pinedo and Weber (1992). Most of these papers deal with both
the makespan and the total completion time objectives.
The interchange approach described here, showing that LEPT minimizes the

expected makespan when the processing times are exponentially distributed, is
based on the paper by Pinedo and Weiss (1979). This paper discusses also hy-
perexponential distributions that are mixtures of two exponentials. An analysis
of the LV rule appears in Pinedo and Weiss (1987).
The dynamic programming type approach showing that LEPT minimizes the

expected makespan and SEPT the total expected completion time in a preemp-
tive setting with two machines is based on the paper by Weber (1982b). More
general results appear in Weiss and Pinedo (1980), Weber(1982a), Kämpke
(1987a, 1987b, 1989), Chang, Chao, Pinedo and Weber (1992) and Righter
(1988, 1992). The most general results with regard to the minimization of the
total (unweighted) completion time are probably the ones obtained by Weber,
Varaya and Walrand (1986). Weiss (1990) analyzes approximation techniques
for parallel machines and Möhring, Schulz and Uetz (1999) study LP-based pri-
ority policies for the total weighted completion time objective. The fact that
the CP rule minimizes the expected makespan in a preemptive as well as a
nonpreemptive setting is shown first by Chandy and Reynolds (1975). Pinedo
and Weiss (1984) obtain more general results allowing processing times at the
different levels of the intree to have different means. Frostig (1988) generalizes
this result even further, allowing distributions other than exponential.
There is an extensive literature on the scheduling of non-identical machines

in parallel, i.e., machines with different speeds, which has not been discussed in
this chapter. This research focuses on preemptive as well as on nonpreemptive
models with as objectives either the makespan or the total completion time. See,
for example, Agrawala, Coffman, Garey and Tripathi (1984), Coffman, Flatto,
Garey and Weber (1987), Righter (1988), Righter and Xu (1991a, 1991b), Xu,
Mirchandani, Kumar and Weber (1990) and Xu (1991a, 1991b).
The due date related results in the last section are based on results in a paper

by Emmons and Pinedo (1990). For other due date related results, see Chang,
Chao, Pinedo and Weber (1992) and Xu (1991b).
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The results for stochastic flow shops, job shops, and open shops are somewhat
less extensive than those for their deterministic counterparts.
This chapter focuses first on nonpreemptive static list policies, i.e., permu-

tation schedules, for stochastic flow shops. The optimal permutation schedules
often remain optimal in the class of nonpreemptive dynamic policies as well as
in the class of preemptive dynamic policies. For open shops and job shops, only
the classes of nonpreemptive dynamic policies and preemptive dynamic policies
are considered.
The results obtained for stochastic flow shops and job shops are somewhat

similar to those obtained for deterministic flow shops and job shops. Stochastic
open shops are, however, very different from their deterministic counterparts.
The first section discusses stochastic flow shops with unlimited intermediate

storage and jobs not subject to blocking. The second section deals with stochas-
tic flow shops with zero intermediate storage; the jobs are subject to blocking.
The third section focuses on stochastic job shops and the last section goes over
stochastic open shops.
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13.1 Stochastic Flow Shops with Unlimited Intermediate
Storage

Consider two machines in series with unlimited storage between the machines
and no blocking. There are n jobs. The processing time of job j on machine 1
is X1j , exponentially distributed with rate λj . The processing time of job j on
machine 2 isX2j , exponentially distributed with rate µj . The objective is to find
the nonpreemptive static list policy or permutation schedule that minimizes the
expected makespan E(Cmax).
Note that this problem is a stochastic counterpart of the deterministic prob-

lem F2 || Cmax. The deterministic two machine problem has a very simple
solution. It turns out that the stochastic version with exponential processing
times has a very elegant solution as well.

Theorem 13.1.1. Sequencing the jobs in decreasing order of λj −µj min-
imizes the expected makespan in the class of nonpreemptive static list policies,
in the class of nonpreemptive dynamic policies, and in the class of preemptive
dynamic policies.

Proof. The proof of optimality in the class of nonpreemptive static list policies
is in a sense similar to the proof of optimality in the deterministic case. It is by
contradiction. Suppose another sequence is optimal. Under this sequence, there
must be two adjacent jobs, say job j followed by job k, such that λj − µj <
λk−µk. It suffices to show that a pairwise interchange of these two jobs reduces
the expected makespan. Assume job l precedes job j and let C1l (C2l) denote
the (random) completion time of job l on machine 1 (2). Let Dl = C2l − C1l.
Perform an adjacent pairwise interchange on jobs j and k. Let C1k and C2k

denote the completion times of job k on the two machines under the original,
supposedly optimal, sequence and let C′

1j and C′
2j denote the completion times

of job j under the schedule obtained after the pairwise interchange. Let m
denote the job following job k. Clearly, the pairwise interchange does not affect
the starting time of job m on machine 1 as this starting time is equal to C1k =
C′

1j = C1l +X1j +X1k. Consider the random variables

Dk = C2k − C1k

and
D′
j = C′

2j − C′
1j .

Clearly, C1k +Dk is the time at which machine 2 becomes available for job m
under the original schedule, while C1k +D′

j is the corresponding time after the
pairwise interchange. First it is shown that the random variable D′

j is stochas-
tically smaller than the random variable Dk. If Dl ≥ X1j + X1k, then clearly
Dk = D′

j . The case Dl ≤ X1j +X1k is slightly more complicated. Now

P (Dk > t | Dl ≤ X1j +X1k) =
µj

λk + µj
e−µkt
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+
λk

λk + µj

( µk
µk − µj

e−µjt − µj
µk − µj

e−µkt
)
.

This expression can be explained as follows. If Dl ≤ X1j +X1k, then, whenever
job j starts on machine 2, job k is either being started or still being processed
on machine 1. The first term on the R.H.S. corresponds to the event where
job j’s processing time on machine 2 finishes before job k’s processing time
on machine 1, which happens with probability µj/(µj + λk). The second term
corresponds to the event where job j finishes on machine 2 after job k finishes on
machine 1; in this case the distribution of Dk is a convolution of an exponential
with rate µj and an exponential with rate µk.
An expression for P (D′

j > t | Dl ≤ X1j + X1k) can be obtained by inter-
changing the subscripts j with the subscripts k. Now

P (D′
j > t | Dl ≤ X1j +X1k)− P (Dk > t | Dl ≤ X1j +X1k)

=
µjµk

(λj + µk)(λk + µj)
e−µjt − e−µkt

µk − µj
(λj + µk − λk − µj) ≤ 0.

So D′
j is stochastically smaller than Dk. It can be shown easily, through a

straightforward sample path analysis (i.e., fixing the processing times of job m
and of all the jobs following job m), that if the realization of D′

j is smaller than
the realization of Dk, then the actual makespan after the interchange is smaller
than or equal to the actual makespan under the original sequence before the
interchange. So, given that D′

j is stochastically smaller than Dk, the expected
makespan is reduced by the interchange. This completes the proof of optimality
in the class of nonpreemptive static list (i.e., permutation) policies.
That the rule is also optimal in the class of nonpreemptive dynamic policies

can be argued as follows. It is clear that the sequence on machine 2 does not
matter. This is because the time machine 2 remains busy processing available
jobs is simply the sum of their processing times and the order in which this
happens does not affect the makespan. Consider the decisions that have to be
made every time machine 1 is freed. The last decision to be made occurs at
that point in time when there are only two jobs remaining to be processed
on machine 1. From the pairwise interchange argument described above, it
immediately follows that the job with the highest λj − µj value has to go first.
Suppose that there are three jobs remaining to be processed on machine 1.
From the previous argument it follows that the last two of these three have to
be processed in decreasing order of λj − µj . If the first one of the three is not
the one with the highest λj −µj value, a pairwise interchange between the first
and the second reduces the expected makespan. So the last three jobs have to
be sequenced in decreasing order of λj − µj . Continuing in this manner it is
shown that sequencing the jobs in decreasing order of λj − µj is optimal in the
class of nonpreemptive dynamic policies.
That the nonpreemptive rule is also optimal in the class of preemptive dy-

namic policies can be shown as follows. It is shown above that in the class of
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nonpreemptive dynamic policies the optimal rule is to order the jobs in decreas-
ing order of λj − µj . Suppose during the processing of a job on machine 1 a
preemption is considered. The situation at this point in time is essentially no
different from the situation at the point in time the job was started (because of
the memoryless property of the exponential distribution). So, every time a pre-
emption is contemplated, the optimal decision is to keep the current job on the
machine. Thus the permutation policy is also optimal in the class of preemptive
dynamic policies. 	

From the statement of the theorem, it appears that the number of optimal

schedules in the exponential case is often smaller than the number of optimal
schedules in the deterministic case.

Example 13.1.2 (Comparison between Exponential and Determin-
istic Processing Times)
Consider n jobs with exponentially distributed processing times. One job
has a zero processing time on machine 1 and a processing time with a very
large mean on machine 2. Assume that this mean is larger than the sum
of the expected processing times of the remaining n− 1 jobs on machine 1.
According to Theorem 13.1.1 these remaining n − 1 jobs still have to be
ordered in decreasing order of λj − µj for the sequence to have a minimum
expected makespan.
If all the processing times were deterministic with processing times that

were equal to the means of the exponential processing times, then it would
not have mattered in what order the remaining n−1 jobs were sequenced. ||
Although at first glance Theorem 13.1.1 does not appear to be very similar

to Theorem 6.1.4, the optimal schedule with exponential processing times is
somewhat similar to the optimal schedule with deterministic processing times.
If job k follows job j in the optimal sequence with exponential processing times,
then

λj − µj ≥ λk − µk

or
λj + µk ≥ λk + µj

or
1

λj + µk
≤ 1

λk + µj
,

which, with exponential processing times, is equivalent to

E(min(X1j , X2k)) ≤ E(min(X1k, X2j))

(see Exercise 9.13). This adjacency condition is quite similar to the condition
for job k to follow job j in a deterministic setting, namely

min(p1j , p2k) ≤ min(p1k, p2j).
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There is another similarity between exponential and deterministic settings. Con-
sider the case where the processing times of job j on both machines are i.i.d.
exponentially distributed with the same rate, λj , for each j. According to the
theorem all sequences must have the same expected makespan. This result is
similar to the one for the deterministic proportionate flow shop, where all se-
quences also have the same makespan.
The remaining part of this section focuses on m machine permutation flow

shops. For these flow shops only the class of nonpreemptive static list policies
is of interest, since the order of the jobs, once determined, is not allowed to
change.
Consider anm machine permutation flow shop where the processing times of

job j on the m machines are i.i.d. according to distribution Fj with mean 1/λj.
For such a flow shop it is easy to obtain a lower bound for E(Cmax).

Lemma 13.1.3. For any sequence

E(Cmax) ≥
n∑
j=1

1
λj
+ (m− 1)max

( 1
λ1

, . . . ,
1
λn

)
Proof. The expected time it takes the job with the longest expected processing
time to traverse the flow shop is at least m × max(1/λ1, . . . , 1/λn). This
longest job starts on machine 1 at a time that is equal to the sum of the
processing times on the first machine of the jobs preceding it. After the longest
job completes its processing on the last machine, this machine remains busy for
a time that is at least as long as the sum of the processing times on the last
machine of the jobs succeeding it. The lemma thus follows. 	

One class of sequences plays an important role in stochastic permutation

flow shops. A sequence j1, . . . , jn is called a SEPT-LEPT sequence, if there is
a job jk in the sequence such that

1
λj1

≤ 1
λj2

≤ · · · ≤ 1
λjk

and
1
λjk

≥ 1
λjk+1

≥ · · · ≥ 1
λjn

.

Both the SEPT and the LEPT sequence are examples of SEPT-LEPT se-
quences.

Theorem 13.1.4. If F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn, then
(i) any SEPT-LEPT sequence minimizes the expected makespan in the class of
nonpreemptive static list policies and

E(Cmax) =
n∑
j=1

1
λj
+ (m− 1) 1

λn
.
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(ii) the SEPT sequence minimizes the total expected completion time in the class
of nonpreemptive static list policies and

E(
n∑
j=1

Cj) = m

n∑
j=1

1
λj
+
n−1∑
j=1

j

λn−j
.

Proof. (i) The first part of the theorem follows from the observation that the
jobs in the SEPT segment of the sequence never have to wait for a machine
while they go through the system. This includes the longest job, i.e., the last
job of the SEPT segment of the sequence. The jobs in the LEPT segment
of the sequence (excluding the first, i.e., the longest job) have to wait for each
machine; that is, they complete their processing on one machine before the next
one becomes available. The machines then never have to wait for a job. The
makespan is therefore equal to the lower bound established in Lemma 13.1.3.

(ii) The second part follows from the fact that the SEPT sequence is one
of the sequences that minimize the expected makespan. In order to minimize
the expected completion time of the job in the kth position in the sequence,
the k smallest jobs have to go first and these k jobs have to be sequenced
according to a sequence that minimizes the expected completion time of this
kth job. So these k smallest jobs may be sequenced according to any SEPT-
LEPT sequence including SEPT. This is true for any k. It is clear that under
SEPT the expected completion time of the job in each one of the n positions
in the sequence is minimized. SEPT therefore minimizes the total expected
completion time. The actual value of the total expected completion time is easy
to compute. 	

It is easy to find examples with F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn, where se-

quences that are not SEPT-LEPT are also optimal. (In Theorem 6.1.8 it was
shown that when F1, F2, . . . , Fn are deterministic all sequences are optimal.)
However, in contrast to deterministic proportionate flow shops, when process-
ing times are stochastic and F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn not all sequences are
optimal.

Example 13.1.5 (Optimality of SEPT-LEPT and Other Sequences)
Consider a flow shop with 2 machines and 3 jobs. Job 1 has a deterministic
processing time of 11 time units. Job 2 has a deterministic processing time
of 10 time units. The processing time of job 3 is zero with probability 0.5
and 10 with probability 0.5. It can be verified easily that only SEPT-LEPT
sequences minimize the expected makespan. If the processing time of job 1 is
changed from 11 to 20, then all sequences have the same expected makespan.

||
The model in Theorem 13.1.4 assumes that the processing times of job j on

the m machines are obtained by m independent draws from the same distribu-
tion Fj . If the m processing times of job j are all equal to the same random
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variable drawn from distribution Fj , then the model resembles the deterministic
proportionate flow shop even more closely. So in this case

X1j = X2j = · · · = Xmj = Xj.

It is easy to see that in this case, just like in the case of a deterministic propor-
tionate flow shop, the makespan is independent of the job sequence (no partic-
ular form of stochastic dominance has to be imposed on the n distributions for
this to be true).
Consider the case where the processing times of job j on each one of the m

machines are equal to the same random variable Xj from distribution Fj and
assume

F1 ≤cx F2 ≤cx · · · ≤cx Fn.

The expectations of the n processing times are therefore all the same, but the
variances may be different. Let the objective to be minimized be the total ex-
pected completion time E(

∑n
j=1 Cj). This problem leads to the application of

the so-called Smallest Variance first (SV) rule, which selects, whenever ma-
chine 1 is freed, among the remaining jobs the one with the smallest variance.

Theorem 13.1.6. The SV rule minimizes the total expected completion
time in the class of nonpreemptive static list policies.

Proof. The proof is by contradiction. Suppose another sequence is optimal. In
this supposedly optimal sequence there has to be a job j followed by a job k
such that Xj ≥cx Xk. Assume job h precedes job j and job l follows job k.
Let Cih denote the completion time of job h on machine i. Let A denote the
sum of the processing times of all the jobs preceding and including job h in
the sequence and let B denote the maximum processing time among the jobs
preceding and including job h. Then

C1h = A

and
Cih = A+ (i− 1)B.

Performing an interchange between jobs j and k does not affect the profile
job l encounters upon entering the system. So an interchange does not affect
the completion times of job l or the jobs following job l in the sequence. The
pairwise interchange only affects the sum of the expected completion times of
jobs j and k. The completion time of job k before the interchange is equal to
the completion time of job j after the interchange. In order to analyze the effect
of the pairwise interchange it suffices to compare the completion time of job j
before the interchange with the completion time of job k after the interchange.
Let Cij denote the completion time of job j before the interchange and C′

ik the
completion time of job k after the interchange. Clearly,

Cmj = A+Xj + (m− 1)max(B,Xj)
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and
C′
mk = A+Xk + (m− 1)max(B,Xk).

The expected completion time of job k after the pairwise interchange is smaller
than the expected completion time of job j before the interchange if∫ ∞

0

(
A+t+(m−1)max(B, t)

)
dFk(t) ≤

∫ ∞

0

(
A+t+(m−1)max(B, t)

)
dFj(t)

The integrand is a function that is increasing convex in t. So the inequality
indeed holds if Fk ≤cx Fj . This implies that the original sequence cannot be
optimal and the proof is complete. 	

This result is in contrast to the result stated in Exercise 12.19, where in the

case of machines in parallel the Largest Variance first rule minimizes the total
expected completion time.

13.2 Stochastic Flow Shops with Blocking

Consider the stochastic counterpart of F2 | block | Cmax with the processing
time of job j on machine 1 (2) being a random variable X1j (X2j) from distri-
bution F1j (F2j). There is zero intermediate storage between the two machines.
The objective is to minimize the expected makespan in the class of nonpreemp-
tive static list policies.
When a job starts its processing on machine 1, the preceding job in the se-

quence starts its processing on machine 2. If job j follows job k in the sequence,
then the expected time that job j remains on machine 1, either being processed
or being blocked, is E(max(X1j , X2k)). If job j is the first job in the sequence
then job j spends only an expected amount of time E(X1j) on machine 1 while
machine 2 remains idle. If job j is the last job in the sequence, then it spends an
expected amount of time E(X2j) on machine 2 while machine 1 remains idle.
In the same way that the deterministic F2 | block | Cmax problem is equivalent
to a deterministic Travelling Salesman Problem, this stochastic model is equiv-
alent to a deterministic Travelling Salesman Problem. However, the efficient
algorithm described in Section 4.4, which is applicable to the deterministic
F2 | block | Cmax problem, is not applicable to the stochastic version of the
model. The distance matrix of the Travelling Salesman Problem is determined
as follows:

d0k = E(X1k)
dj0 = E(X2j)
djk = E(max(X2j , X1k))

= E(X2j) + E(X1k)− E(min(X2j , X1k))

=
∫ ∞

0

F̄2j(t) dt+
∫ ∞

0

F̄1k(t) dt−
∫ ∞

0

F̄2j(t)F̄1k(t) dt
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It is clear that a value for djk can be computed, but that this value is now not
a simple function of two parameters like in Sections 4.4 and 6.2. However, the
Travelling Salesman Problem described above can be simplified somewhat. The
problem is equivalent to a Travelling Salesman Problem with a simpler distance
matrix in which the total distance has to be maximized. The distance matrix is
modified by subtracting the expected sum of the 2n processing times from the
distances and multiplying the remaining parts by −1.

d0k = 0
dj0 = 0
djk = E(min(X2j , X1k))

=
∫ ∞

0

F̄2j(t)F̄1k(t) dt

Example 13.2.1 (Flow Shop with Blocking and Exponential Pro-
cessing Times)

Consider the case where F1j is exponentially distributed with rate λj and
F2j is exponentially distributed with rate µj . The distance

djk = E(min(X2j , X1k)) =
∫ ∞

0

F̄2j(t)F̄1k(t)dt =
1

λk + µj
.

Although this deterministic Travelling Salesman Problem (in which the total
distance must be maximized) still has a fairly nice structure, it has been
shown that it cannot be solved in polynomial time. ||
It is of interest to study special cases of the problem, with additional struc-

ture, in order to obtain more insight. Consider the case where F1j = F2j = Fj .
The random variablesX1j and X2j are independent draws from distribution Fj .
This model is somewhat similar to the deterministic proportionate flow shop
model since the distributions of the processing times of any given job on the two
machines are identical. However, the actual realizations of the two processing
times are not necessarily identical.

Theorem 13.2.2. If F1 ≤st F2 ≤st · · · ≤st Fn then the sequences
1, 3, 5, . . . , n, . . . , 6, 4, 2 and 2, 4, 6, . . . , n, . . . , 5, 3, 1 minimize the expected
makespan in the class of nonpreemptive static list policies.

Proof. Consider the sequence

j1, . . . , jk−1, jk, jk+1, . . . , jl−1, jl, jl+1, . . . , jn.

Partition the sequence into three subsequences, the first being j1, . . . , jk−1, the
second jk, . . . , jl and the third jl+1, . . . , jn. Construct a new sequence by re-
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versing the second subsequence. The new sequence is

j1, . . . , jk−1, jl, jl−1, . . . , jk+1, jk, jl+1, . . . , jn.

If E(Cmax) denotes the expected makespan of the original sequence and
E(C′

max) the expected makespan of the new sequence, then

E(Cmax)− E(C′
max) = E(max(X2,jk−1 , X1,jk)) + E(max(X2,jl , X1,jl+1))

−E(max(X2,jk−1 , X1,jl))− E(max(X2,jk , X1,jl+1))
= −E(min(X2,jk−1 , X1,jk))− E(min(X2,jl , X1,jl+1))
+E(min(X2,jk−1 , X1,jl)) + E(min(X2,jk , X1,jl+1))

So the expected makespan of the second sequence is less than the expected
makespan of the first sequence if∫ ∞

0

(
F̄jk−1(t)F̄jk (t) + F̄jl(t)F̄jl+1 (t)

)
dt

<

∫ ∞

0

(
F̄jk−1(t)F̄jl (t) + F̄jk(t)F̄jl+1 (t)

)
dt

Note that the makespan under an arbitrary sequence does not change if
two jobs are added, both with zero processing times on the two machines, one
scheduled first and the other one last. The processing time distributions of these
two jobs are stochastically less than the distribution of any one of the other n
jobs. So in the proof an assumption can be made that there are two additional
jobs with zero processing times and that one of these jobs goes first and the
other one goes last. In what follows these two jobs are referred to as jobs 0
and 0′.
Consider four processing time distributions Fj ≥st Fk ≥st Fp ≥st Fq. It can

be easily verified that∫ ∞

0

(
F̄j(t)F̄k(t) + F̄p(t)F̄q(t)

)
dt ≥

∫ ∞

0

(
F̄j(t)F̄p(t) + F̄k(t)F̄q(t)

)
dt

≥
∫ ∞

0

(
F̄j(t)F̄q(t) + F̄k(t)F̄p(t)

)
dt.

The remaining part of the proof is based on a contradiction argument. An ar-
bitrary sequence that is not according to the theorem can be improved through
a series of successive subsequence reversals until a sequence of the theorem is
obtained. Consider a sequence

0, j1, . . . , jk, 1, jk+1, . . . , jl, 2, jl+1, . . . , jn−2, 0′,

where j1, . . . , jn−2 is a permutation of 3, 4, . . . , n. From the inequalities above
it follows that a subsequence reversal results in the sequence
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0, 1, jk, . . . , j1, jk+1, . . . , jl, 2, jl+1, . . . , jn−2, 0′

with a smaller expected makespan. The makespan can be reduced even further
through a second subsequence reversal that results in

0, 1, jk, . . . , j1, jk+1, . . . , jl, jn−2, . . . , jl+1, 2, 0′.

Proceeding in this manner it can be shown easily that any sequence can be
improved through a series of subsequence reversals until one of the sequences
in the theorem is obtained. 	

Clearly, 1, 3, 5, . . . , n, . . . , 6, 4, 2 is a SEPT-LEPT sequence. That such a se-

quence is optimal should have been expected. Short jobs should be scheduled
in the beginning of the sequence just to make sure that machine 2 does not
remain idle for too long, while short jobs should also be scheduled towards the
end of the sequence in order to avoid machine 2 being busy for a long time
after machine 1 has completed all its processing. Note that optimal sequences
are slightly different when n is even or odd. If n is even the optimal sequence
is 1, 3, 5, . . . , n − 1, n, n− 2, . . . , 6, 4, 2, and if n is odd the optimal sequence is
1, 3, 5, . . . , n− 2, n, n− 1, . . . , 6, 4, 2.
Theorem 13.2.2 thus gives an indication of the impact of the means of the

processing times on the optimal sequence. Generalizing the result of Theo-
rem 13.2.2 to more than two machines is impossible. Counterexamples can be
found.
Consider now the same model with F1j = F2j = Fj , j = 1, . . . , n, but

with the means of the distributions F1, F2, . . . , Fn being identical and equal
to 1. However, the variances of the distributions are now different. Assume
that the distributions have symmetric probability density functions and that
F1 ≥sv F2 ≥sv · · · ≥sv Fn. This implies that all random variables lie between
0 and 2. For the two machine model with no intermediate buffers the following
theorem holds.

Theorem 13.2.3. If F1 ≥sv F2 ≥sv · · · ≥sv Fn then the sequences
1, 3, 5, . . . , n, . . . , 6, 4, 2 and 2, 4, 6, . . . , n, . . . , 5, 3, 1 minimize the expected
makespan in the class of nonpreemptive static list policies.

Proof. First it is shown that any sequence can be transformed into a better se-
quence (with a smaller expected makespan) of the form 1, j1, . . . , jn−2, 2, where
j1, . . . , jn−2 is a permutation of jobs 3, . . . , n. Compare sequence

j1, . . . , jk, 1, jk+1, . . . , jl, 2, jl+1, . . . , jn−2

with sequence

1, jk, . . . , j1, jk+1, . . . , jl, 2, jl+1, . . . , jn−2.
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Subtracting the makespan of the second sequence from that of the first yields:

E(max(X1, Xjk+1))− E(max(Xj1 , Xjk+1))

= E(min(Xj1 , Xjk+1))− E(min(X1, Xjk+1))

=
∫ 2

0

(
F̄j1 (t)F̄jk+1(t)− F̄1(t)F̄jk+1 (t)

)
dt

=
∫ 2

0

(
F̄jk+1(t)

(
F̄j1(t)− F̄1(t)

))
dt

≥ 0
It is therefore better to schedule job 1 first. A similar argument shows that job 2
has to be scheduled last.
The next step is to show that any sequence can be transformed into a se-

quence of the form 1, 3, j1, . . . , jn−3, 2 with a smaller expected makespan. Com-
pare sequence

1, j1, . . . , jk, 3, jk+1, . . . , jn−3, 2

with sequence
1, 3, jk, . . . , j1, jk+1, . . . , jn−3, 2.

The expected makespan of the first sequence minus the expected makespan of
the second sequence is

E(max(X1, Xj1)) + E(max(X3, Xjk+1))− E(max(X1, X3))− E(max(Xj1 , Xjk+1 ))
= E(min(X1, X3)) + E(min(Xj1 , Xjk+1))− E(min(X1, Xj1))− E(min(X3, Xjk+1

))

=
∫ 2

0

(
F̄1(t)F̄3(t) + F̄j1(t)F̄jk+1 (t)

)
dt−

∫ 2

0

(
F̄1(t)F̄j1 (t) + F̄3(t)F̄jk+1 (t)

)
dt

=
∫ 2

0

(
F̄jk+1(t)− F̄1(t)

)(
F̄j1(t)− F̄3(t)

)
dt

≥ 0.

So the optimal sequence has to be of the form 1, 3, j1, . . . , jn−3, 2. Proceeding
in this manner the optimality of the two sequences stated in the theorem can
be verified easily. 	

This result basically states that the optimal sequence puts jobs with larger

variances more towards the beginning and end of the sequence, and jobs with
smaller variances more towards the middle of the sequence. Such a sequence
could be referred to as an LV-SV sequence.
It is not clear whether similar results hold when there are more than two

machines in series. Results for problems with more machines are extremely
hard to come by, since the complexity of the problem increases considerably
when going from two to three machines.
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Nevertheless, some properties can be shown for m machines in series with
blocking, i.e., Fm | block | Cmax. Assume that F1j = F2j = · · · = Fmj = Fj
with mean 1/λj and that X1j , . . . , Xmj are independent.

Theorem 13.2.4. If F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn, then a sequence
minimizes the expected makespan if and only if it is a SEPT-LEPT sequence.

Proof. As the proof of this theorem is straightforward, only a short outline is
given. The proof is similar to the proof of Theorem 6.2.4 and consists of two
parts. In the first part it is shown that every SEPT-LEPT sequence attains
the lower bound of Lemma 13.1.3 and in the second part it is shown that any
sequence that is not SEPT-LEPT leads to a makespan that is strictly larger
than the lower bound. 	


13.3 Stochastic Job Shops

Consider now the two machine job shop with job j having a processing time
on machine 1 that is exponentially distributed with rate λj and a processing
time on machine 2 that is exponentially distributed with rate µj . Some of the
jobs have to be processed first on machine 1 and then on machine 2, while the
remaining jobs have to be processed first on machine 2 and then on machine 1.
Let J1,2 denote the first set of jobs and J2,1 the second set of jobs. Minimizing
the expected makespan turns out to be an easy extension of the two machine
flow shop model with exponential processing times.

Theorem 13.3.1. The following nonpreemptive policy minimizes the ex-
pected makespan in the classes of nonpreemptive dynamic policies and preemp-
tive dynamic policies: when machine 1 is freed the decision-maker selects from
J1,2 the job with the highest λj−µj; if all jobs from J1,2 already have completed
their processing on machine 1 the decision-maker may take any job from J2,1

that already has completed its processing on machine 2. When machine 2 is freed
the decision-maker selects from J2,1 the job with the highest µj − λj; if all jobs
from J2,1 already have completed their processing on machine 2 the decision-
maker may take any job from J1,2 that already has completed its processing on
machine 1.

Proof. The proof consists of two parts. First, it is shown that jobs from J2,1

have a lower priority on machine 1 than jobs from J1,2 and jobs from J1,2 have
a lower priority on machine 2 than jobs from J2,1. After that, it is shown that
jobs from J1,2 are ordered on machine 1 in decreasing order of λj −µj and jobs
from J2,1 on machine 2 in decreasing order of µj − λj .
In order to show the first part, condition on a realization of all 2n processing

times. The argument is by contradiction. Suppose an optimal schedule puts
at one point in time a job from J2,1 on machine 1 rather than a job from
J1,2. Consider the last job from J2,1 processed on machine 1 before a job from
J1,2. Perform the following change in the schedule: Take this job from J2,1
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and postpone its processing until the last job from J1,2 has been completed.
After this change all jobs from J1,2 are completed earlier on machine 1 and are
available earlier at machine 2. This implies that machine 1 will finish with all its
processing at the same time as it did before the interchange. However, machine 2
may finish with all its processing earlier than before the interchange because
now the jobs from J1,2 are available earlier at machine 2. This completes the
first part of the proof of the theorem.
In order to prove the second part proceed as follows. First, consider J1,2. In

order to show that the jobs from J1,2 should be scheduled in decreasing order
of λj − µj , condition first on the processing times of all the jobs in J2,1 on
both machines. The jobs from J2,1 have a higher priority on machine 2 and a
lower priority on machine 1. Assume that two adjacent jobs from J1,2 are not
scheduled in decreasing order of λj − µj . Performing a pairwise interchange in
the same way as in Theorem 13.1.1 results in a smaller expected makespan. This
shows that the jobs from J1,2 have to be scheduled on machine 1 in decreasing
order of λj − µj . A similar argument shows that the jobs from J2,1 have to be
scheduled on machine 2 in decreasing order of µj − λj . 	

The result described in Theorem 13.3.1 is similar to the result described in

Section 7.1 with regard to J2 || Cmax. In deterministic scheduling the research
on the more general Jm || Cmax problem has focused on heuristics and enumer-
ative procedures. Stochastic job shops with more than two machines have not
received as much attention in the literature.

13.4 Stochastic Open Shops

Consider a two machine open shop where the processing time of job j on ma-
chine 1 is the random variable X1j , distributed according to F1j , and on ma-
chine 2 the random variable X2j , distributed according to F2j . The objective is
to minimize the expected makespan. As before, the exponential distribution is
considered first. In this case, however, it is not known what the optimal policy
is when F1j is exponential with rate λj and F2j exponential with rate µj . It
appears that the optimal policy may not have a simple structure and may even
depend on the values of the λ’s and µ’s. However, the special case with λj = µj
can be analyzed. In contrast to the results obtained for the stochastic flow
shops the optimal policy now cannot be regarded as a permutation sequence,
but rather as a policy that prescribes a given action dependent upon the state
of the system.

Theorem 13.4.1. The following policy minimizes the expected makespan
in the class of preemptive dynamic policies as well as in the class of nonpre-
emptive dynamic policies: whenever a machine is freed, the scheduler selects
from the jobs that have not yet undergone processing on either one of the two
machines, the job with the longest expected processing time. If there are no such
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jobs remaining the decision-maker may take any job that only needs processing
on the machine just freed. Preemptions do not occur.

Proof. Just as in the deterministic case the two machines are continuously busy
with the possible exception of at most a single idle period on at most one
machine. The idle period can be either an idle period of Type I or an idle
period of Type II (see Figure 8.1). In the case of no idle period at all or an idle
period of Type II the makespan is equal to the maximum of the workloads on
the two machines, i.e.,

Cmax = max
( n∑
j=1

X1j ,

n∑
j=1

X2j

)
.

In the case of an idle period of Type I, the makespan is strictly larger than the
R.H.S. of the expression above. Actually, in this case the makespan is

Cmax = max
( n∑
j=1

X1j ,
n∑
j=1

X2j

)
+min(I1, I2),

where I1 is the length of the idle period and I2 is the makespan minus the
workload on the machine that did not experience an idle period. It is clear that
the first term of the R.H.S. of the expression above does not depend on the
policy used. In order to prove the theorem it suffices to show that the described
policy minimizes the expected value of the second term on the R.H.S., i.e.,
E(min(I1, I2)). This term clearly depends on the policy used.
In order to obtain some more insight in this second term, consider the fol-

lowing: Suppose job j is the job causing the idle period, that is, job j is the
last job to be completed. Given that job j causes an idle period of Type I, it
follows from Exercise 9.13 that

E(min(I1, I2)) =
1
2λj

If q′j denotes the probability of job j causing an idle period of Type II under
policy π′, then

E(Cmax(π′)) = E
(
max

( n∑
j=1

X1j ,

n∑
j=1

X2j

))
+ E(H ′),

where

E(H ′) =
n∑
j=1

q′j
1
2λj

.

From the theory of dynamic programming (see Appendix B), it follows that in
order to prove optimality of the policy stated in the theorem, say policy π∗,
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it suffices to show that using π∗ from any time t onwards results in a smaller
expected makespan than acting differently at time t and using π∗ from the next
decision moment onwards. Two types of actions at time t would violate π∗.
First, it is possible to start a job that is not the longest job among the jobs
not processed yet on either machine; second, it is possible to start a job that
already has been processed on the other machine while there are still jobs in
the system that have not yet received processing on either machine.
In the remaining part of the proof, the following notation is used: set J1

represents the set of jobs which, at time t, have not yet completed their first
processing, while set J2 represents the set of jobs which at time t have not yet
started with their second processing. Clearly, set J2 includes set J1, J1 ⊂ J2.

Case 1. Let π′ denote the policy that, at time t, puts job k on the machine
freed, with k ∈ J1 and k not being the largest job in J1, and that reverts back
to π∗ from the next decision moment onwards. Let job 0 be the job that is being
processed, at time t, on the busy machine. Let r′j (r

∗
j ) denote the probability

that job j is the last job to complete its first processing under policy π′ (π∗) and
therefore be a candidate to cause an idle period. Suppose this job j is processed
on machine 1. For job j to cause an idle period of Type I it has to outlast all
those jobs that still have to receive their second processing on machine 2, and
then after job j completes its processing on machine 1 and starts its processing
on machine 2, it has to outlast all those jobs that still have to receive their
second processing on machine 1. So

q∗j = r∗j
∏

l∈{J2−j}

λl
λl + λj

and
q′j = r′j

∏
l∈{J2−j}

λl
λl + λj

.

Also
q′0 = q∗0 .

Note that the expressions for q∗j and q′j indicate that q
∗
j and q′j do not depend

on the machine on which job l, l ∈ {J2 − j}, receives its second processing:
processing job l the second time on the same machine where it was processed
the first time, results in values for q∗j and q′j that are the same as when job l is
processed the second time on the machine it was not processed the first time.
In order to show that E(H∗) ≤ E(H ′) it suffices to show that∑
j∈{J1−0}

(
r∗j

( ∏
l∈{J2−j}

λl
λl + λj

) 1
2λj

)
≤

∑
j∈{J1−0}

(
r′j

( ∏
l∈{J2−j}

λl
λl + λj

) 1
2λj

)
Note that if λa ≤ λb, then
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l∈{J2−a}

λl
λl + λa

) 1
2λa

≥
( ∏
l∈{J2−b}

λl
λl + λb

) 1
2λb

Suppose the sequence in which the jobs in J1 start with their first processing
under π′ is 0, k, 1, 2, . . . , k − 1, k + 1, . . . where

λ1 ≤ λ2 ≤ · · · ≤ λk−1 ≤ λk ≤ λk+1 ≤ · · ·

Performing a pairwise swap in this sequence results in 0, 1, k, 2, . . . , k − 1, k +
1, . . . . Let this new sequence correspond to policy π′′. Now Lemma 12.1.1
can be used whereby π′ (π′′) corresponds to sequence X0, X2, X1, . . . , Xn
(X0, X1, X2, . . . , Xn) and r′j (r

′′
j ) corresponds to the rj (qj) in Lemma 12.1.1.

Using Lemma 12.1.1 and the inequalities above, it is established that E(H ′′) ≤
E(H ′). Proceeding in this manner whereby at each step a pairwise interchange
is performed between job k and the job immediately following it, the sequence
1, 2, . . . , k−1, k, k+1, . . . is obtained. At each step it is shown that the expected
makespan decreases.

Case 2. Let π′ in this case denote the policy that instructs the scheduler
at time t to start job l with rate λl, l ∈ {J2 − J1} and to adopt policy π∗

from the next decision moment onwards. That is, job l starts at time t with
its second processing while there are still jobs in J1 that have not completed
their first processing yet. Let r′j , j ∈ J1, in this case denote the probability that
job j under π′ completes its first processing after all jobs in J1 have completed
their first processing and after job l has completed its second processing. Let r′l
denote the probability that job l under π′ completes its second processing after
all jobs in J1 have completed their first processing. Assume that when using π∗

from t onwards the scheduler may, after having started all jobs in J1, choose
job l as the first job to undergo its second processing and may do this on the
machine that becomes available first (under Case 1 it became clear that the
probability of job j, j �= l, causing a Type I idle period does not depend on the
machine on which job l is processed the second time). Let r∗j now denote the
probability that job j completes its first processing after jobs J1 − j complete
their first processing and after job l completes its second processing. Let r∗l
denote the probability that job l completes its second processing after all jobs
in J1 have completed their first processing. So

q∗j = r∗j
∏

i∈{J2−j−l}

λi
λi + λj

for all j in J1 and

q′j = r′j
∏

i∈{J2−j−l}

λi
λi + λj

for all j in J1. Again
q′0 = q∗0 .
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In order to show that E(H∗) ≤ E(H ′) it suffices to show that∑
j∈{J1−0}

(
q∗j

( ∏
i∈{J2−j−l}

λi
λi + λj

) 1
2λj

)
≤

∑
j∈{J1−0}

(
q′j

( ∏
i∈{J2−j−l}

λi
λi + λj

) 1
2λj

)
.

From Lemma 12.1.1 it follows that r∗l ≥ r′l and r∗i ≤ r′i, i ∈ J1. It then follows
that E(H∗) ≤ E(H ′). This completes the proof of the theorem. 	

It appears to be very hard to generalize this result to include a larger class

of distributions.

Example 13.4.2 (Open Shop with Processing Times that are Mix-
tures of Exponentials)
Let the processing time of job j on machine i, i = 1, 2, be a mixture of an
exponential with rate λj and zero with arbitrary mixing probabilities. The
optimal policy is to process at time 0 all jobs for a very short period of time
on both machines just to check whether their processing times on the two
machines are zero or positive. After the nature of all the processing times
have been determined, the problem is reduced to the scenario covered by
Theorem 13.4.1. ||
Theorem 13.4.1 states that jobs that still have to undergo processing on both

machines have priority over jobs that only need processing on one machine. In
a sense, the policy described in Theorem 13.4.1 is similar to the LAPT rule
introduced in Section 8.1 for the deterministic O2 || Cmax problem.
From Theorem 13.4.1 it follows that the problem is tractable also if the pro-

cessing time of job j on machine 1 as well as on machine 2 is exponentially
distributed with rate 1. The policy that minimizes the expected makespan al-
ways gives priority to jobs that have not yet undergone processing on either
machine. This particular rule does not require any preemptions. In the liter-
ature, this rule has been referred to in this scenario as the Longest Expected
Remaining Processing Time first (LERPT) rule.
Actually, if in the two-machine case all processing times are exponential with

mean 1 and if preemptions are allowed, then the total expected completion time
can also be analyzed. This model is an exponential counterpart of O2 | pij =
1, prmp | ∑Cj . The total expected completion time clearly requires a different
policy. One particular policy in the class of preemptive dynamic policies is
appealing: consider the policy that prescribes the scheduler to process, whenever
possible, on each one of the machines a job that already has been processed on
the other machine. This policy may require the scheduler at times to interrupt
the processing of a job and start with the processing of a job that just has
completed its operation on the other machine. In what follows this policy is
referred to as the Shortest Expected Remaining Processing Time first (SERPT)
policy.
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Theorem 13.4.3. The preemptive SERPT policy minimizes the total ex-
pected completion time in a two machine open shop in the class of preemptive
dynamic policies.

Proof. Let Aij , i = 1, 2, j = 1, . . . , n, denote the time that j jobs have completed
their processing requirements on machine i. An idle period on machine 2 occurs
if and only if

A1,n−1 ≤ A2,n−1 ≤ A1,n

and an idle period on machine 1 occurs if and only if

A2,n−1 ≤ A1,n−1 ≤ A2,n.

Let j1, j2, . . . , jn denote the sequence in which the jobs leave the system, i.e.,
job j1 is the first one to complete both operations, job j2 the second, and so
on. Under the SERPT policy

Cjk = max(A1,k, A2,k) = max
( k∑
l=1

X1l,
k∑
l=1

X2l

)
, k = 1, . . . , n− 1

This implies that the time epoch of the kth job completion, k = 1, . . . , n− 1, is
a random variable that is the maximum of two independent random variables,
both with Erlang(k, λ) distributions. The distribution of the last job completion,
the makespan, is different. It is clear that under the preemptive SERPT policy
the sum of the expected completion times of the first n− 1 jobs that leave the
system are minimized. It is not immediately obvious that SERPT minimizes
the sum of all n completion times. Let

B = max(A1,n−1, A2,n−1).

The random variable B is independent of the policy. At time B, each machine
has at most one more job to complete. A distinction can now be made between
two cases.
First, consider the case where, at B, a job remains to be completed on only

one of the two machines. In this case, neither the probability of this event
occurring nor the waiting cost incurred by the last job that leaves the system (at
max(A1,n, A2,n)) depends on the policy. Since SERPT minimizes the expected
sum of completion times of the first n − 1 jobs to leave the system, it follows
that SERPT minimizes the expected sum of the completion times of all n jobs.
Second, consider the case where, at time B, a job still remains to be processed

on both machines. Either (i) there is one job left that needs processing on both
machines or (ii) there are two jobs left, each requiring processing on one machine
(a different machine for each). Under (i) the expected sum of the completion
times of the last two jobs that leave the system is E(B) + E(B + 2), while
under (ii) it is E(B) + 1 + E(B) + 1. In both subcases the expected sum of
the completion times of the last two jobs is the same. As SERPT minimizes
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the expected sum of the completion times of the first n− 2 jobs that leave the
system, it follows that SERPT minimizes the expected sum of the completion
times of all n jobs. 	

Unfortunately, no results have appeared in the literature concerning stochas-

tic open shops with more than 2 machines.

13.5 Discussion

Among the models discussed in this chapter, the stochastic flow shops tend
to be the easiest. Stochastic job shops and stochastic open shops tend to be
considerably harder.
The stochastic flow shops that are the most tractable are usually counter-

parts of deterministic permutation flow shops and deterministic proportionate
flow shops. The natural relationship between stochastic flow shops and tandem
queues may also yield additional structural insights into stochastic flow shops
(based on known results in queuing theory). One direction that may also lead
to new results in the future lies in the realm of asymptotic analyses. For exam-
ple, what happens with an objective function, e.g.,

∑n
j=1 E(Cj)/n, when the

number of jobs (or the number of machines) goes to ∞?

Exercises (Computational)

13.1. Consider a two machine flow shop with unlimited intermediate storage
and three jobs. Each job has an exponentially distributed processing time with
mean 1 on both machines (the job sequence is therefore immaterial). The six
processing times are i.i.d. Compute the expected makespan and the total ex-
pected completion time.

13.2. Consider an m machine permutation flow shop without blocking. The
processing times of job j on the m machines are identical and equal to the
random variable Xj from an exponential distribution with mean 1. The random
variables X1, . . . , Xn are i.i.d. Determine the expected makespan and the total
expected completion time as a function of m and n.

13.3. Compare the expected makespan obtained in Exercise 13.1 with the ex-
pected makespan obtained in Exercise 13.2 for m = 2 and n = 3. Determine
which one is larger and give an explanation.

13.4. Consider a two machine flow shop with zero intermediate storage and
blocking and n jobs. The processing time of job j on machine i is Xij , expo-
nentially distributed with mean 1. The 2n processing times are i.i.d. Compute
the expected makespan and the total expected completion time as a function
of n.
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13.5. Consider a two machine flow shop with zero intermediate storage and
blocking and n jobs. The processing time of job j on each one of the two
machines is equal to the random variable Xj from an exponential distribution
with mean 1. The variables X1, . . . , Xn are i.i.d. Compute again the expected
makespan and the total expected completion time. Compare the results with
the results obtained in Exercise 13.4.

13.6. Consider the two machine open shop and n jobs. The processing times
Xij are all i.i.d. exponential with mean 1. Assume that the policy in Theo-
rem 13.3.1 is followed, i.e., jobs that still need processing on both machines
have priority over jobs that only need processing on one of the machines.

(a) Show that

E
(
max (

n∑
j=1

X1j ,

n∑
j=1

X2j)
)
= 2n−

2n−1∑
k=n

k

(
k − 1
n− 1

) (1
2

)k
(b) Show that the probability of the jth job that starts its first processing
causing an idle period of Type I is(1

2

)n−1−(j−2−i)(1
2

)n−1−i
=

(1
2

)2n−j
.

(c) Show that the expected makespan is equal to

E(Cmax) = 2n−
2n−1∑
k=n

k

(
k − 1
n− 1

) (1
2

)k
+

(1
2

)n
.

13.7. Consider the same scenario as in Exercise 13.1 with two machines and
three jobs. However, now all processing times are i.i.d. according to the EME dis-
tribution with mean 1. Compute the expected makespan and the total expected
completion time and compare the outcome with the results of Exercise 13.1.

13.8. Consider the same scenario as in Exercise 13.2 with m machines and n
jobs. However, nowX1, . . . , Xn are i.i.d. according to the EME distribution with
mean 1. Compute the expected makespan and the total expected completion
time as a function of m and n. Compare the results obtained with the results
from Exercises 13.2 and 13.7.

13.9. Consider a two machine job shop and three jobs. Jobs 1 and 2 have to be
processed first on machine 1 and then on machine 2. Job 3 has to be processed
first on machine 2 and then on machine 1. Compute the expected makespan
under the assumption that the optimal policy is being followed.

13.10. Consider the following proportionate two machine open shop. The pro-
cessing time of job j on the two machines is equal to the same random vari-
able Xj that is exponentially distributed with mean 1. Assume that the two
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machine open shop is being operated under the nonpreemptive dynamic policy
that always gives priority to a job that has not yet received processing on the
other machine. Compute the expected makespan with two jobs and with three
jobs.

Exercises (Theory)

13.11. Consider the stochastic counterpart of F2 | block | Cmax that is equiv-
alent to a deterministic TSP with a distance matrix that has to be mini-
mized. Verify whether this distance matrix satisfies the triangle inequality (i.e.,
djk + dkl ≥ djl for all j, k and l).

13.12. Consider an m machine flow shop with zero intermediate storages be-
tween machines and n jobs. The processing times of n−1 jobs on each one of the
m machines are 1. Job n has processing time Xin on machine i and the random
variables X1n, X2n, . . . , Xmn are i.i.d. from distribution Fn with mean 1.

(a) Show that the sequence that minimizes the expected makespan puts
the stochastic job either first or last.
(b) Show that the sequence that puts the stochastic job last minimizes the
total expected completion time.

13.13. Consider the two machine flow shop with zero intermediate storage
between the two machines. Of n− 2 jobs the processing times are deterministic
1 on each one of the 2 machines. Of the two remaining jobs the four processing
times are i.i.d. from an arbitrary distribution F with mean 1. Show that in
order to minimize the expected makespan one of the stochastic jobs has to go
first and the other one last.

13.14. Consider a stochastic counterpart of Fm | pij = pj | Cmax. The pro-
cessing time of job j on each one of the m machines is Xj from distribution F
with mean 1.

(a) Find an upper and a lower bound for the expected makespan when F
is ICR.
(b) Find an upper and a lower bound for the expected makespan when F
is DCR.

13.15. Consider a stochastic counterpart of F2 | block | Cmax. The processing
time of job j on machine i is Xij from distribution F with mean 1. The 2n
processing times are independent.

(a) Find an upper and a lower bound for the expected makespan when F
is ICR.
(b) Find an upper and a lower bound for the expected makespan when F
is DCR.
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13.16. Consider a two machine open shop with n jobs. The processing times
of job j on machines 1 and 2 are equal to Xj from distribution F . The random
variables X1, . . . , Xn are i.i.d. Show that in order to minimize the expected
makespan the scheduler, whenever a machine is freed, has to select a job that
has not yet been processed on the other machine.

13.17. Consider an m machine permutation flow shop with finite intermediate
storages and blocking. The processing times of job j on the m machines are
X1j , X2j , . . . , Xmj which are i.i.d. from distribution Fj . Assume that

F1 ≤a.s. F2 ≤a.s. · · · ≤a.s. Fn.

Show that SEPT minimizes the total expected completion time.

13.18. Consider stochastic counterparts of the following five deterministic
problems:

(i) F2 | block | Cmax,
(ii) F2 || Cmax,
(iii) O2 || Cmax,
(iv) J2 || Cmax,
(v) P2 | chains | Cmax

Problems (i), (ii), (iii) and (iv) all have n jobs. Problem (iv) has k jobs that have
to be processed first on machine 1 and then on machine 2 and n− k jobs that
have to be processed first on machine 2 and then on machine 1. Problem (v)
has 2n jobs in n chains of 2 jobs each. All processing times are i.i.d. exponential
with mean 1. Compare the five problems with regard to the expected makespan
and the total expected completion time under the optimal policy.

13.19. Consider a two machine proportionate flow shop with n jobs. If X1j =
X2j = Dj (deterministic) the makespan is sequence independent. If X1j and
X2j are i.i.d. exponential with rate λj , then the expected makespan is sequence
independent as well. Consider now a proportionate flow shop with X1j and X2j

i.i.d. Erlang(2, λj) with each one of the two phases distributed according to an
exponential with rate λj , j = 1, . . . , n. Show via an example that the expected
makespan does depend on the sequence.

13.20. Consider two machines in series with a buffer storage of size b in be-
tween the two machines. The processing times are proportionate. Show that the
makespan is decreasing convex in the buffer size b.

13.21. Consider a stochastic counterpart of Fm || Cmax with machines that
have different speeds, say v1, . . . , vm. These speeds are fixed (deterministic).
Job j requires an amount of work Yj , distributed according to Fj , on each one
of the m machines. The amount of time it takes machine i to process job j is
equal to Xij = Yj/vi. Show that if v1 ≥ v2 ≥ · · · ≥ vn (v1 ≤ v2 ≤ · · · ≤ vn)
and F1 ≤lr F2 ≤lr · · · ≤lr Fn, the SEPT (LEPT) sequence minimizes the
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expected makespan. In other words, show that if the flow shop is decelerating
(accelerating) the SEPT (LEPT) sequence is optimal.

Comments and References
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tal expected completion time is presented in Pinedo and Weber (1984). Frostig
and Adiri (1985) obtain results for flow shops with three machines. Boxma and
Forst (1986) obtain results with regard to the expected weighted number of
tardy jobs.
The material in the section on stochastic flow shops with blocking is based

primarily on the paper by Pinedo (1982). For more results on stochastic flow
shops with blocking, see Pinedo and Weber (1984), Foley and Suresh (1984a,
1984b, 1986), Suresh, Foley and Dickey (1985), and Kijima, Makimoto and
Shirakawa (1990). Kalczynski and Kamburowski (2005) show that the stochastic
counterpart of F2 | block | Cmax with exponentially distributed processing times
(which is equivalent to a deterministic Travelling Salesman Problem) cannot be
solved in polynomial time. The analysis of the two machine job shop is from
the paper by Pinedo (1981b).
The optimal policy for minimizing the expected makespan in two machine

open shops is due to Pinedo and Ross (1982). The result with regard to the
minimization of the total expected completion time in two machine open shops
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This chapter describes a number of general purpose procedures that are useful
in dealing with scheduling problems in practice and that can be implemented
with relative ease in industrial scheduling systems. All the techniques described
are heuristics that do not guarantee an optimal solution; they instead aim at
finding reasonably good solutions in a relatively short time. The heuristics tend
to be fairly generic and can be adapted easily to a large variety of scheduling
problems.
This chapter does not cover exact optimization techniques such as branch-

and-bound or dynamic programming. Applications of such techniques tend to
be more problem specific and are therefore discussed in detail in the coverage
of specific problems in other chapters and in the appendices.
The first section gives a classification and overview of some of the more

elementary priority or dispatching rules such as those described in previous
chapters. The second section discusses a method of combining priority or dis-
patching rules. These composite dispatching rules are combinations of a number
of elementary dispatching rules. The third, fourth and fifth sections deal with
procedures that are based on local search. These techniques tend to be fairly
generic and can be applied to a variety of scheduling problems with only minor
customization. The third section discusses simulated annealing and tabu-search
while the fourth section describes a more general local search procedure, namely
genetic algorithms. The fifth section describes a framework that combines sev-
eral heuristic approaches, including dispatching rules and local search. This
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framework is referred to as Ant Colony Optimization (ACO). The last section
discusses other ways in which to combine the different empirical techniques with
one another in a single framework.

14.1 Dispatching Rules

Research in dispatching rules has been active for several decades and many
different rules have been studied in the literature. These rules can be classified
in various ways. For example, a distinction can be made between static and
dynamic rules. Static rules are not time dependent. They are just a function
of the job and/or of the machine data, for instance, WSPT. Dynamic rules are
time dependent. One example of a dynamic rule is the Minimum Slack (MS)
first rule that orders jobs according to max(dj − pj − t, 0), which is time
dependent. This implies that at some point in time job j may have a higher
priority than job k and at some later point in time jobs j and k may have the
same priority.
A second way of classifying rules is according to the information they are

based upon. A local rule uses only information pertaining to either the queue
where the job is waiting or to the machine where the job is queued. Most of the
rules introduced in the previous chapters can be used as local rules. A global
rule may use information regarding other machines, such as the processing time
of the job on the next machine on its route. An example of a global rule is the
LAPT rule for the two machine open shop.
In the preceding chapters many different rules have come up. Of course,

there are many more besides those discussed. A simple one, very often used
in practice, is the Service In Random Order (SIRO) rule. Under this rule no
attempt is made to optimize anything. Another rule often used is the First
Come First Served rule, which is equivalent to the Earliest Release Date first
(ERD) rule. This rule attempts to equalize the waiting times of the jobs, i.e.,
to minimize the variance of the waiting times. Some rules are only applicable
under given conditions in certain machine environments. For example, consider
a bank of parallel machines, each with its own queue. According to the Shortest
Queue (SQ) first rule every newly released job is assigned to the machine with
the shortest queue. This rule is clearly time dependent and therefore dynamic.
Many global dynamic rules have been designed for job shops. According to the
Shortest Queue at the Next Operation (SQNO) rule, every time a machine is
freed the job with the shortest queue at the next machine on its route is selected
for processing.
In Table 14.1 an overview of some of the better known dispatching rules

is given. A number of these rules yield optimal schedules in some machine
environments and are reasonable heuristics in others. All of these rules have
variations that can be applied in more complicated settings.



14.2 Composite Dispatching Rules 373

RULE DATA ENVIRONMENT SECTION

1 SIRO – – 14.1
2 ERD rj 1 | rj | V ar(

∑
(Cj − rj)/n) 14.1

3 EDD dj 1 || Lmax 3.2
4 MS dj 1 || Lmax 14.1
5 SPT pj Pm || ∑Cj ; Fm | pij = pj |

∑
Cj 5.3; 6.1

6 WSPT wj , pj Pm || ∑wjCj 3.1; 5.3
7 LPT pj Pm || Cmax 5.1
8 SPT-LPT pj Fm | block, pij = pj | Cmax 6.2
9 CP pj , prec Pm | prec | Cmax 5.1
10 LNS pj , prec Pm | prec | Cmax 5.1
11 SST sjk 1 | sjk | Cmax 4.4
12 LFJ Mj Pm |Mj | Cmax 5.1
13 LAPT pij O2 || Cmax 8.1
14 SQ – Pm || ∑Cj 14.1
15 SQNO – Jm || γ 14.1

Dispatching rules are useful when one attempts to find a reasonably good
schedule with regard to a single objective such as the makespan, the total
completion time or the maximum lateness.
However, objectives in the real world are often more complicated. For exam-

ple, a realistic objective may be a combination of several basic objectives and
also a function of time or a function of the set of jobs waiting for processing.
Sorting the jobs on the basis of one or two parameters may not yield acceptable
schedules. More elaborate dispatching rules, that take into account several dif-
ferent parameters, can address more complicated objective functions. Some of
these more elaborate rules are basically a combination of a number of the ele-
mentary dispatching rules listed above. These more elaborate rules are referred
to as composite dispatching rules and are described in the next section.

14.2 Composite Dispatching Rules

To explain the structure and the construction of these composite dispatching
rules, a general framework has to be introduced. Subsequently, two of the more
widely used composite rules are described.
A composite dispatching rule is a ranking expression that combines a number

of elementary dispatching rules. An elementary rule is a function of attributes
of the jobs and/or the machines. An attribute may be any property associated
with either a job or a machine, that may be either constant or time dependent.
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Examples of job attributes are weight, processing time and due date; examples of
machine attributes are speed, the number of jobs waiting for processing and the
total amount of processing that is waiting in queue. The extent to which a given
attribute affects the overall priority of a job is determined by the elementary rule
that uses it as well as a scaling parameter. Each elementary rule in the composite
dispatching rule has its own scaling parameter that is chosen to properly scale
the contribution of the elementary rule to the total ranking expression. The
scaling parameters are either fixed by the designer of the rule, or variable and
a function of time or of the particular job set to be scheduled. If they depend
on the particular job set to be scheduled, they require the computation of some
job set statistics that characterize the particular scheduling instance at hand
as accurately as possible (for example, whether the due dates in the particular
instance are tight or not). These statistics, which are also called factors, usually
do not depend on the schedule and can be computed easily from the given job
and machine attributes.
The functions that map the statistics into the scaling parameters have to

be determined by the designer of the rule. Experience may offer a reasonable
guide, but extensive computer simulation may also be required. These functions
are usually determined only once, before the rule is made available for regular
use.
Each time the composite dispatching rule is used for generating a schedule,

the necessary statistics are computed. Based on the values of these statistics,
the values of the scaling parameters are set by the predetermined functions.
After the scaling parameters have been fixed the dispatching rule is applied to
the job set.
One example of a composite dispatching rule is a rule that is often used for

the 1 || ∑
wjTj problem. As stated in Chapter 3, the 1 ||

∑
wjTj problem is

strongly NP-hard. As branch-and-bound methods are prohibitively time con-
suming even for only 30 jobs, it is important to have a heuristic that provides a
reasonably good schedule with a reasonable computational effort. Some heuris-
tics come immediately to mind; namely, the WSPT rule (that is optimal when
all release dates and due dates are zero) and the EDD rule or the MS rule
(which are optimal when all due dates are sufficiently loose and spread out). It
is natural to seek a heuristic or priority rule that combines the characteristics of
these dispatching rules. The Apparent Tardiness Cost (ATC) heuristic is a com-
posite dispatching rule that combines the WSPT rule and the MS rule. (Recall
that under the MS rule the slack of job j at time t, i.e., max(dj − pj − t, 0), is
computed and the job with the minimum slack is scheduled.) Under the ATC
rule jobs are scheduled one at a time; that is, every time the machine becomes
free a ranking index is computed for each remaining job. The job with the high-
est ranking index is then selected to be processed next. This ranking index is
a function of the time t at which the machine became free as well as of the pj ,
the wj and the dj of the remaining jobs. The index is defined as
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Ij(t) =
wj
pj
exp

(
− max(dj − pj − t, 0)

Kp̄

)
,

where K is the scaling parameter, that can be determined empirically, and p̄ is
the average of the processing times of the remaining jobs. If K is very large the
ATC rule reduces to the WSPT rule. If K is very small the rule reduces to the
MS rule when there are no overdue jobs and to the WSPT rule for the overdue
jobs otherwise.
In order to obtain good schedules, the value of K (sometimes referred to

as the look-ahead parameter) must be appropriate for the particular instance
of the problem. This can be done by first performing a statistical analysis of
the particular scheduling instance under consideration. There are several statis-
tics that can be used to help characterize scheduling instances. The due date
tightness factor τ is defined as

τ = 1−
∑

dj
nCmax

,

where
∑

dj/n is the average of the due dates. Values of τ close to 1 indicate
that the due dates are tight and values close to 0 indicate that the due dates
are loose. The due date range factor R is defined as

R =
dmax − dmin

Cmax
.

A high value of R indicates a wide range of due dates, while a low value indicates
a narrow range of due dates. A significant amount of research has been done to
establish the relationships between the scaling parameter K and the factors τ
and R.
Thus, when one wishes to minimize

∑
wjTj in a single machine or in a more

complicated machine environment (machines in parallel, flexible flow shops), one
first characterizes the particular problem instance through the two statistics.
Then one determines the value of the look-ahead parameter K as a function of
these characterizing factors and of the particular machine environment. After
fixing K, one applies the rule. This rule could be used, for example, in the paper
bag factory described in Example 1.1.1.
Several generalizations of the ATC rule have been developed in order to take

release dates and sequence dependent setup times into account. Such a gener-
alization, the Apparent Tardiness Cost with Setups (ATCS) rule, is designed
for the 1 | sjk |

∑
wjTj problem. The objective is once again to minimize the

total weighted tardiness, but now the jobs are subject to sequence dependent
setup times. This implies that the priority of any job j depends on the job just
completed on the machine freed. The ATCS rule combines the WSPT rule, the
MS rule and the SST rule in a single ranking index. The rule calculates the
index of job j at time t when job l has completed its processing on the machine
as



376 14 General Purpose Procedures for Deterministic Scheduling

Ij(t, l) =
wj
pj
exp

(
− max(dj − pj − t, 0)

K1p̄

)
exp

(
− slj

K2s̄

)
,

where s̄ is the average of the setup times of the jobs remaining to be scheduled,
K1 the due date related scaling parameter andK2 the setup time related scaling
parameter. Note that the scaling parameters are dimensionless quantities to
make them independent of the units used to express various quantities.
The two scaling parameters, K1 and K2, can be regarded as functions of

three factors:

(i) the due date tightness factor τ ,
(ii) the due date range factor R,
(iii) the setup time severity factor η = s̄/p̄.

These statistics are not as easy to determine as in the previous case. Even with
a single machine the makespan is now schedule dependent because of the setup
times. Before computing the τ and R factors the makespan has to be estimated.
A simple estimate for the makespan on a single machine can be

Ĉmax =
n∑
j=1

pj + ns̄.

This estimate most likely will overestimate the makespan as the final schedule
will take advantage of setup times that are shorter than average. The definitions
of τ and R have to be modified by replacing the makespan with its estimate.
An experimental study of the ATCS rule, although inconclusive, has sug-

gested some guidelines for selecting the two parametersK1 andK2 whenm = 1.
The following rule can be used for selecting a proper value of K1:

K1 = 4.5 +R, R ≤ 0.5
K1 = 6− 2R, R ≥ 0.5.

The following rule can be used for selecting a proper value of K2:

K2 = τ/(2
√
η).

Example 14.2.1 (Application of the ATCS Rule)
Consider an instance of 1 | sjk |

∑
wjTj with the following four jobs.

jobs 1 2 3 4

pj 13 9 13 10
dj 12 37 21 22
wj 2 4 2 5
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The setup times s0j of the first job in the sequence are presented in the table
below.

jobs 1 2 3 4

s0j 1 1 3 4

The sequence dependent setup times of the jobs following the first job are
the following:

jobs 1 2 3 4

s1j – 4 1 3
s2j 0 – 1 0
s3j 1 2 – 3
s4j 4 3 1 –

In order to use the ATCS rule the average processing time p̄ and the average
setup time s̄ have to be determined. The average processing time is approx-
imately 11 while the average setup time is approximately 2. An estimate for
the makespan is

Ĉmax =
n∑
j=1

pj + ns̄ = 45 + 4× 2 = 53.

The due date range factor R = 25/53 ≈ 0.47, the due date tightness co-
efficient τ = 1 − 23/53 ≈ 0.57 and the setup time severity coefficient is
η = 2/11 ≈ 0.18. Using the given formulae, the parameter K1 is chosen to
be 5 and the parameter K2 is chosen to be 0.7. In order to determine which
job goes first Ij(0, 0) has to be computed for j = 1, . . . , 4:

I1(0, 0) =
2
13
exp

(
− (12− 13)

+

55

)
exp

(
− 1
1.4

)
≈ 0.15× 1× 0.51 = 0.075

I2(0, 0) =
4
9
exp

(
− (37− 9)

+

55

)
exp

(
− 1
1.4

)
≈ 0.44× 0.6× 0.47 = 0.131

I3(0, 0) =
2
13
exp

(
− (21− 13)

+

55

)
exp

(
− 3
1.4

)
≈ 0.15× 0.86× 0.103 = 0.016

I4(0, 0) =
5
10
exp

(
− (22− 10)

+

55

)
exp

(
− 4
1.4

)
≈ 0.50× 0.80× 0.05 = 0.020.

Job 2 has the highest priority (in spite of the fact that its due date is the
latest). As its setup time is 1, its completion time is 10. So at the second
iteration I1(10, 2), I3(10, 2) and I4(10, 2) have to be computed. To simplify
the computations the values of K1p̄ and K2s̄ can be kept the same. Contin-
uing the application of the ATCS rule results in the sequence 2, 4, 3, 1 with
the total weighted tardiness equal to 98. Complete enumeration shows that
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this sequence is optimal. Note that this sequence always selects, whenever
the machine is freed, one of the jobs with the smallest setup time. ||
The ATCS rule can be applied easily to Pm | sjk |

∑
wjTj as well. Of course,

the look-ahead parameters K1 and K2 have to be determined as a function of
τ , R, η andm. The ATCS rule has been used in a scheduling system for a paper
bag factory such as the one described in Example 1.1.1 (see also Section 16.4).

14.3 Local Search: Simulated Annealing and Tabu-Search

The heuristics described in the first two sections of this chapter are of the
constructive type. They start without a schedule and gradually construct a
schedule by adding one job at a time.
This section as well as the next section consider algorithms of the improve-

ment type. Algorithms of the improvement type are conceptually completely
different from algorithms of the constructive type. They start out with a com-
plete schedule, which may be selected arbitrarily, and then try to obtain a
better schedule by manipulating the current schedule. An important class of
improvement type algorithms are the local search procedures. A local search
procedure does not guarantee an optimal solution. It usually attempts to find a
schedule that is better than the current one in the neighbourhood of the current
one. Two schedules are neighbors, if one can be obtained through a well defined
modification of the other. At each iteration, a local search procedure performs
a search within the neighbourhood and evaluates the various neighbouring so-
lutions. The procedure either accepts or rejects a candidate solution as the next
schedule to move to, based on a given acceptance-rejection criterion.
One can compare the various local search procedures with respect to the

following four design criteria:

(i) The schedule representation needed for the procedure.
(ii) The neighbourhood design.
(iii) The search process within the neighbourhood.
(iv) The acceptance-rejection criterion.

The representation of a schedule may be at times nontrivial. A nonpreemptive
single machine schedule can be specified by a simple permutation of the n jobs.
A nonpreemptive job shop schedule can be specified by m consecutive strings,
each one representing a permutation of n operations on a specific machine.
Based on this information, the starting and completion times of all operations
can be computed. However, when preemptions are allowed the format of the
schedule representation becomes significantly more complicated.
The design of the neighbourhood is a very important aspect of a local search

procedure. For a single machine a neighbourhood of a particular schedule may
be simply defined as all schedules that can be obtained by doing a single ad-
jacent pairwise interchange. This implies that there are n− 1 schedules in the
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neighbourhood of the original schedule. A larger neighbourhood of a single ma-
chine schedule may be defined by taking an arbitrary job in the schedule and
inserting it in another position in the schedule. Clearly, each job can be inserted
in n− 1 other positions. The entire neighbourhood contains less than n(n− 1)
neighbors as some of these neighbors are identical. The neighbourhood of a
schedule in a more complicated machine environment is usually more complex.
An interesting example is a neighbourhood designed for the job shop prob-

lem with the makespan objective. In order to describe this neighbourhood, the
concept of a critical path has to be used. A critical path in a job shop schedule
consists of a set of operations of which the first one starts out at time t = 0 and
the last one finishes at time t = Cmax. The completion time of each operation
on a critical path is equal to the starting time of the next operation on that
path; two successive operations either belong to the same job or are processed
on the same machine (see Chapter 7). A schedule may have multiple critical
paths that may overlap. Finding the critical path(s) in a given schedule for a
job shop problem with the makespan objective is relatively straightforward. It
is clear that in order to reduce the makespan, changes have to be made in the
sequence(s) of the operations on the critical path(s). A simple neighbourhood
of an existing schedule can be designed as follows: the set of schedules whose
corresponding sequences of operations on the machines can be obtained by in-
terchanging a pair of adjacent operations on the critical path of the current
schedule. Note that in order to interchange a pair of operations on the criti-
cal path, the operations must be on the same machine and belong to different
jobs. If there is a single critical path, then the number of neighbors within the
neighbourhood is at most the number of operations on the critical path minus 1.
Experiments have shown that this type of neighbourhood for the job shop

problem is too simple to be effective. The number of neighbouring schedules
that are better than the existing schedule tends to be very limited. More so-
phisticated neighbourhoods have been designed that perform better. One of
these is referred to as the One Step Look-Back Adjacent Interchange.

Example 14.3.1 (Neighbourhood of a job shop schedule)

A neighbor of a current schedule is obtained by first performing an adjacent
pairwise interchange between two operations (i, j) and (i, k) on the critical
path. After the interchange operation (i, k) is processed before operation (i, j)
on machine i. Consider job k to which operation (i, k) belongs and refer to
the operation of job k immediately preceding operation (i, k) as operation
(h, k) (it is processed on machine h). On machine h, interchange operation
(h, k) and the operation preceding (h, k) on machine h, say operation (h, l)
(see Figure 14.1). From the figure it is clear that, even if the first interchange
(between (i, j) and (i, k)) does not result in an improvement, the second
interchange between (h, k) and (h, l) may lead to an overall improvement.
Actually, this design can be made more elaborate by backtracking more

than one step. These types of interchanges are referred to asMulti-Step Look-
Back Interchanges.
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(i, k) (i, j)

(c)

(h, k) (h, l)

(i, k) (i, j)

(b)

(h, l) (h, k)

(i, j) (i, k)

(a)

(h, l) (h, k)

Machine i

Machine h

Machine i

Machine h

Machine i

Machine h

Fig. 14.1 One-step look-back interchange for Jm || Cmax (a) current
schedule, (b) schedule after interchange of (i, j) and (i, k) (c) schedule

after interchange of (h, l) and (h, k)

In exactly the same way, one can construct the One Step Look-Ahead
Interchange and the Multi-Step Look-Ahead Interchanges. ||
The search process within a neighbourhood can be done in a number of ways.

A simple way is to select schedules in the neighbourhood at random, evaluate
these schedules and decide which one to accept. However, it may pay to do
a more organized search and select first schedules that appear promising. One
may want to consider swapping those jobs that affect the objective the most. For
example, when the total weighted tardiness has to be minimized, one may want
to move jobs that are very tardy more towards the beginning of the schedule.
The acceptance-rejection criterion is usually the design aspect that distin-

guishes a local search procedure the most. The difference between the two pro-
cedures discussed in the remaining part of this section, simulated annealing
and tabu-search, lies mainly in their acceptance-rejection criteria. In simulated
annealing the acceptance-rejection criterion is based on a probabilistic process
while in tabu-search it is based on a deterministic process.
Simulated annealing is a search process that has its origin in the fields of

material science and physics. It was first developed as a simulation model for
describing the physical annealing process of condensed matter.
The simulated annealing procedure goes through a number of iterations. In

iteration k of the procedure, there is a current schedule Sk as well as a best
schedule found so far, S0. For a single machine problem these schedules are
sequences (permutations) of the jobs. Let G(Sk) and G(S0) denote the corre-
sponding values of the objective function. Note that G(Sk) ≥ G(S0). The value
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of the best schedule obtained so far, G(S0), is often referred to as the aspiration
criterion. The algorithm, in its search for an optimal schedule, moves from one
schedule to another. At iteration k, a search for a new schedule is conducted
within the neighbourhood of Sk. First, a so-called candidate schedule, say Sc, is
selected from the neighbourhood. This selection of a candidate schedule can be
done at random or in an organized, possibly sequential, way. If G(Sc) < G(Sk),
a move is made, setting Sk+1 = Sc. If G(Sc) < G(S0), then S0 is set equal to Sc.
However, if G(Sc) ≥ G(Sk), a move to Sc is made only with probability

P (Sk,Sc) = exp
(G(Sk)−G(Sc)

βk

)
;

with probability 1 − P (Sk,Sc) schedule Sc is rejected in favor of the current
schedule, setting Sk+1 = Sk. Schedule S0 does not change when it is better than
schedule Sc. The β1 ≥ β2 ≥ β3 ≥ · · · > 0 are control parameters referred to
as cooling parameters or temperatures (in analogy with the annealing process
mentioned above). Often βk is chosen to be ak for some a between 0 and 1.
From the above description of the simulated annealing procedure it is clear

that moves to worse solutions are allowed. The reason for allowing such moves is
to give the procedure the opportunity to move away from a local minimum and
find a better solution later on. Since βk decreases with k, the acceptance proba-
bility for a non-improving move is lower in later iterations of the search process.
The definition of the acceptance probability also ensures that if a neighbor is
significantly worse, its acceptance probability is very low and a move is unlikely
to be made.
Several stopping criteria are used for this procedure. One way is to let the

procedure run for a prespecified number of iterations. Another is to let the
procedure run until no improvement has been achieved during a predetermined
number of iterations.
The method can be summarized as follows:

Algorithm 14.3.2 (Simulated Annealing)

Step 1.
Set k = 1 and select β1.
Select an initial sequence S1 using some heuristic.
Set S0 = S1.

Step 2.
Select a candidate schedule Sc from the neighbourhood of Sk.
If G(S0) < G(Sc) < G(Sk), set Sk+1 = Sc and go to Step 3.
If G(Sc) < G(S0), set S0 = Sk+1 = Sc and go to Step 3.
If G(Sc) > G(Sk) generate a random number Uk from a Uniform(0,1)
distribution;
If Uk ≤ P (Sk,Sc) set Sk+1 = Sc otherwise set Sk+1 = Sk and go to Step 3.
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Step 3.
Select βk+1 ≤ βk.
Increment k by 1.
If k = N then STOP, otherwise go to Step 2. ||
The effectiveness of simulated annealing depends on the design of the neigh-

bourhood as well as on how the search is conducted within this neighbourhood.
If the neighbourhood is designed in a way that facilitates moves to better solu-
tions and moves out of local minima, then the procedure will perform well. The
search within a neighbourhood can be done randomly or in a more organized
way. For example, the contribution of each job to the objective function can be
computed and the job with the highest impact on the objective can be selected
as a candidate for an interchange.
Over the last two decades simulated annealing has been applied to many

scheduling problems, in academia as well as in industry, with considerable suc-
cess.
The remainder of this section focuses on the tabu-search procedure. Tabu-

search is in many ways similar to simulated annealing in that it also moves
from one schedule to another with the next schedule being possibly worse than
the one before. For each schedule, a neighbourhood is defined as in simulated
annealing. The search within the neighbourhood for a potential candidate to
move to is again a design issue. As in simulated annealing, this can be done
randomly or in an organized way. The basic difference between tabu-search
and simulated annealing lies in the mechanism that is used for approving a
candidate schedule. In tabu-search the mechanism is not probabilistic but rather
of a deterministic nature. At any stage of the process a tabu-list of mutations,
which the procedure is not allowed to make, is kept. A mutation on the tabu-list
can be, for example, a pair of jobs that may not be interchanged. The tabu-list
has a fixed number of entries (usually between 5 and 9), that depends upon
the application. Every time a move is made through a certain mutation in the
current schedule, the reverse mutation is entered at the top of the tabu-list;
all other entries in the tabu-list are pushed down one position and the bottom
entry is deleted. The reverse mutation is put on the tabu-list to avoid returning
to a local minimum that has been visited before. Actually, at times a reverse
mutation that is tabu could actually have led to a new schedule, not visited
before, that is better than any one generated so far. This may happen when
the mutation is close to the bottom of the tabu-list and a number of moves
have already been made since the mutation was entered in the list. Thus, if the
number of entries in the tabu-list is too small cycling may occur; if it is too
large the search may be unduly constrained. The method can be summarized
as follows:

Algorithm 14.3.3 (Tabu-Search)
Step 1.

Set k = 1.
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Select an initial sequence S1 using some heuristic.
Set S0 = S1.

Step 2.
Select a candidate schedule Sc from the neighbourhood of Sk.
If the move Sk → Sc is prohibited by a mutation on the tabu-list,
then set Sk+1 = Sk and go to Step 3.
If the move Sk → Sc is not prohibited by any mutation on the tabu-list,
then set Sk+1 = Sc and
enter reverse mutation at the top of the tabu-list.
Push all other entries in the tabu-list one position down and
delete the entry at the bottom of the tabu-list.
If G(Sc) < G(S0), set S0 = Sc;
Go to Step 3.

Step 3.
Increment k by 1.
If k = N then STOP,
otherwise go to Step 2. ||
The following example illustrates the method.

Example 14.3.4 (Application of Tabu-Search)
Consider the following instance of 1 || ∑wjTj .

jobs 1 2 3 4

pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

The neighbourhood of a schedule is defined as all schedules that can be
obtained through adjacent pairwise interchanges. The tabu-list is a list of
pairs of jobs (j, k) that were swapped within the last two moves and cannot
be swapped again. Initially, the tabu-list is empty.
Sequence S1 = 2, 1, 4, 3 is chosen as a first schedule. The value of the

objective function is ∑
wjTj(2, 1, 4, 3) = 500.

The aspiration criterion is therefore 500. There are three schedules in the
neighbourhood of S1, namely 1, 2, 4, 3 ; 2, 4, 1, 3 and 2, 1, 3, 4. The respec-
tive values of the objective function are 480, 436 and 652. Selection of the
best non-tabu sequence results in S2 = 2, 4, 1, 3. The aspiration criterion is
changed to 436. The tabu-list is updated and contains now the pair (1,4).
The values of the objective functions of the neighbors of S2 are:
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sequence 4,2,1,3 2,1,4,3 2,4,3,1∑
wjTj 460 500 608

Note that the second move is tabu. However, the first move is anyhow better
than the second. The first move results in a schedule that is worse than
the best one so far. The best one is the current one, which therefore is a
local minimum. Nevertheless, S3 = 4, 2, 1, 3 and the tabu-list is updated and
contains now {(2, 4), (1, 4)}. Neighbors of S3 with the corresponding values
of the objective functions are:

sequence 2,4,1,3 4,1,2,3 4,2,3,1∑
wjTj 436 440 632

Now, although the best move is to 2, 4, 1, 3 (S2), this move is tabu. Therefore
S4 is chosen to be 4, 1, 2, 3. Updating the tabu-list results in {(1, 2), (2, 4)}
and the pair (1,4) drops from the tabu-list as the length of the list is kept
to 2. Neighbors of S4 and their corresponding objective function values are:

sequence 1,4,2,3 4,2,1,3 4,1,3,2∑
wjTj 408 460 586

The schedule 4, 2, 1, 3 is tabu, but the best move is to the schedule 1, 4, 2, 3.
So S5 = 1, 4, 2, 3. The corresponding value of the objective is better than
the aspiration criterion. So the aspiration criterion becomes 408. The tabu-
list is updated by adding (1,4) and dropping (2,4). Actually, S5 is a global
minimum, but tabu-search, being unaware of this, continues. ||
The information carried along in tabu-search consists of the tabu-list as well

as the best solution obtained so far in the search process. Recently, more pow-
erful versions of tabu-search have been proposed; these versions retain more
information. One version uses a so-called tabu-tree. In this tree each node rep-
resents a solution or schedule. While the search process goes from one solution
to another (with each solution having a tabu-list), the process generates ad-
ditional nodes. Certain solutions that appear promising may not be used as a
take-off point immediately but are retained for future use. If at a certain point
during the search process the current solution does not appear promising as a
take-off point, the search process can return within the tabu-tree to another
node (solution) that had been retained before and take off again, but now in a
different direction.
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14.4 Local Search: Genetic Algorithms

Genetic algorithms are more general and abstract than simulated annealing
and tabu-search. Simulated annealing and tabu-search may, in a certain way,
be viewed as special cases of genetic algorithms.
Genetic algorithms, when applied to scheduling, view sequences or schedules

as individuals or members of a population. Each individual is characterized by
its fitness. The fitness of an individual is measured by the associated value of
the objective function. The procedure works iteratively, and each iteration is re-
ferred to as a generation. The population of one generation consists of survivors
from the previous generation plus the new schedules, i.e., the offspring (chil-
dren) of the previous generation. The population size usually remains constant
from one generation to the next. The offspring is generated through repro-
duction and mutation of individuals that were part of the previous generation
(the parents). Individuals are sometimes also referred to as chromosomes. In
a multi-machine environment a chromosome may consist of sub-chromosomes,
each one containing the information regarding the job sequence on a machine.
A mutation in a parent chromosome may be equivalent to an adjacent pair-
wise interchange in the corresponding sequence. In each generation the fittest
individuals reproduce while the least fit die. The birth, death and reproduction
processes that determine the composition of the next generation can be com-
plex, and usually depend on the fitness levels of the individuals in the current
generation.
A genetic algorithm, as a search process, differs in one important aspect from

simulated annealing and tabu-search. At each iterative step a number of dif-
ferent schedules are generated and carried over to the next step. In simulated
annealing and tabu-search only a single schedule is carried over from one itera-
tion to the next. Hence simulated annealing and tabu-search may be regarded
as special cases of genetic algorithms with a population size that is equal to 1.
This diversification scheme is an important characteristic of genetic algorithms.
In genetic algorithms the neighbourhood concept is also not based on a single
schedule, but rather on multiple schedules. The design of the neighbourhood
of the current population of schedules is therefore based on more general tech-
niques than those used in simulated annealing and tabu-search. A new schedule
can be generated by combining parts of different schedules from the current
population. A mechanism that creates such a new schedule is often referred to
as a crossover operator.

Example 14.4.1 (Linear Order Crossover (LOX) Operator)
One popular crossover operator is often referred to as the linear order
crossover or LOX. This crossover operator, which creates a new member
of the next generation from two members of the current generation, can be
applied to single machine scheduling problems as well as to more complicated
shop scheduling problems. It typically follows four steps, namely:

Step 1: Select at random a subsequence of jobs from one parent.
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1 2 3 4 5 106 7 8 9

8 9 2 4 5 36 7 1 10

4 8 9 6 5 32 1 7 10

PARENT 1

OFFSPRING

PARENT 2

Fig. 14.2 Application of the Linear Crossover Operator

Step 2: Start generating a new offspring by copying the subsequence into
the corresponding positions of the new offspring.

Step 3: Delete the jobs that are already in this subsequence from the
second parent. The remaining subsequence in the second parent contains the
jobs that the new offspring still needs.

Step 4: Place the jobs in this remaining subsequence in the unfilled posi-
tions of the new offspring from left to right in the order that they appeared
in the second parent.

An example of such a crossover operation is depicted in Figure 14.2. ||
Of course, crossover operators have been applied to job shop schedules as

well. In a job shop scheduling problem a new schedule can be generated by
combining the sequence of operations on one machine in one parent’s schedule
with a sequence of operations on another machine in another parent’s schedule.
A very simplified version of a genetic algorithm can now be described as

follows.

Algorithm 14.4.2 (Genetic algorithm)

Step 1.
Set k = 1.
Select , initial sequences S1,1, . . . ,S1,� using some heuristic.

Step 2.
Select the two best schedules among Sk,1, . . . ,Sk,�
and call these S+

k and S++
k .

Select the two worst schedules among Sk,1, . . . ,Sk,�
and call these S−

k and S−−
k .

Generate two offspring S∗ and S∗∗ from parents S+
k and S++

k .
Replace S−

k and S−−
k with S∗ and S∗∗.

Keep all other schedules the same and go to Step 3.
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Step 3.
Increment k by 1.
If k = N then STOP,
otherwise go to Step 2. ||
The use of genetic algorithms has its advantages and disadvantages. One

advantage is that they can be applied to a problem without having to know
much about the structural properties of the problem. They can be very easily
coded and they often give fairly good solutions. However, the computation time
needed to obtain a good solution may be somewhat long in comparison with
the more rigorous problem specific approaches.

14.5 Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms combine local search techniques,
dispatching rules, and other techniques within one framework. The ACO
paradigm is inspired by the trail following behavior of ant colonies. Ants, when
moving along a path to a destination, leave along their path a chemical called
pheromone as a signal for other ants to follow. An ACO algorithm assumes
that a colony of (artificial) ants iteratively construct solutions for the prob-
lem at hand using (artificial) pheromone trails that are related to previously
found solutions as well as to heuristic information. The ants communicate with
one another only indirectly through changes in the amounts of pheromone they
deposit on their trails during the algorithm’s execution. Because the solutions
constructed by the ants may not be locally optimal, many ACO algorithms al-
low the ants to improve their solutions through a local search procedure. The
basic ACO framework consists of four steps.

Algorithm 14.5.1 (Ant Colony Optimization)
Step 1. (Initialization)

Set parameters and initialize pheromone trails.

Step 2. (Generate Solutions)
Generate , solutions using a combination of pheromone trails
and dispatching rules.

Step 3. (Improve Solutions)
Apply a local search procedure to each one of the , solutions.

Step 4. (Update Settings)
If the best of the , solutions produced in Step 3 is better
than the best solution generated so far,
replace best solution obtained so far with the current solution and
store the corresponding value of the objective function.
Update pheromone trail values and return to Step 2 to start next iteration.

||
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An application of an ACO algorithm to 1 || ∑
wjTj can be described as

follows. When an ant constructs a sequence in iteration k, it starts out with an
empty sequence and iteratively appends a job from the set of jobs remaining
to be scheduled to the partial sequence generated so far. With probability Q,
the not yet scheduled job j that maximizes φij(k) · ηβij is put in position i
of the current sequence. Here, φij(k) is the pheromone trail associated with
the assignment of job j to position i, the k indicates the dependence of the
pheromone trail on the iteration count, the ηij is the heuristic desirability of
putting job j in position i, and β is a parameter that determines the influence
of the heuristic desirability. With probability 1−Q, job j is selected randomly
with probability

Pij =
φij(k) · ηβij∑
l∈J φil(k) · ηβil

,

where J refers to the set of jobs that have not yet been scheduled. So, with
probability Q the ant makes the best decision according to pheromone trails
and heuristic desirability, and with probability 1−Q it makes a random selection
with a certain bias. The heuristic desirability ηij may be determined either via
the EDD rule or via the ATC rule. If it is determined via the EDD rule, then
ηij = 1/dj . If it is determined via the ATC rule, then ηij = 1/Ij(t), where

Ij(t) =
wj
pj
exp

(
− max(dj − pj − t, 0)

Kp̄

)
.

The updating of the pheromone trails can be done in two ways, namely
through immediate updating or through delayed updating. Immediate updating
is a form of local updating that is applied every time an ant has added a new job
to a partial sequence. If job j has been put into a position i, then the pheromone
trail is modified as follows: an updated φij(k) is obtained by multiplying the
current φij(k) with ξ and adding (1− ξ)φ0. Or, in a more algorithmic notation,

φij(k)← ξφij(k) + (1− ξ)φ0

The ξ, 0 < ξ ≤ 1, and the φ0 (which is a small number) are the two parameters
in this updating process. The effect of the immediate updating is to make the
decision of putting job j in position i less desirable for the other ants encour-
aging thereby the exploration of other sequences within the same iteration k.
Delayed updating is a form of global updating that is done at the end of

each iteration. At the end of iteration k the delayed updating procedure first
evaporates, for each combination of i and j, some of the pheromone according
to the formula

φij(k + 1) = (1− ρ) · φij(k),
where ρ, 0 < ρ ≤ 1, is a parameter that represents the pheromone evaporation
rate. Then, also at the end of iteration k, it adds more pheromone to some (but
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not all) combinations of i and j, i.e., only to those combinations that correspond
to the best solution found in iteration k. If in the best solution generated in
iteration k job j is put in position i, then

φij(k + 1) = (1− ρ) · φij(k) + ρ ·∆φij(k),

where
∆φij(k) =

1∑
wjT ∗

j

,

and
∑

wjT
∗
j is the total weighted tardiness of the overall best solution found

so far.
Summarizing, an ACO algorithm combines several of the techniques de-

scribed in this chapter within one framework. Dispatching rules as well as local
search procedures play an important role within the framework. An ACO al-
gorithm is, in a sense, also similar to a genetic algorithm since both types of
procedures consider in each iteration multiple schedules (, > 1). However, the
manner in which a population of schedules is generated in an iteration of a ge-
netic algorithm is different from the manner in which a colony of , ants generate
their sequences in an iteration of an ACO algorithm.

14.6 Discussion

For many scheduling problems one can design all kinds of procedures that com-
bine elements of the different techniques presented in this chapter.
For example, the following three phase approach has proven fairly useful

for solving scheduling problems in practice. It combines composite dispatching
rules with simulated annealing or tabu-search.

Phase 1: Values of a number of statistics are computed, such as the due date
tightness, the setup time severity, and so on.

Phase 2: Based on the outcome of Phase 1 a number of scaling parameters
for a composite dispatching rule are determined and the composite dispatching
rule is applied on the scheduling instance.

Phase 3: The schedule developed in Phase 2 is used as an initial solution for
a tabu-search or simulated annealing procedure that tries to generate a better
schedule.

This three phase framework would only be useful if the routine would be used
frequently (a new instance of the same problem has to be solved every day).
The reason is that the empirical procedure that determines the functions that
map values of the job statistics into appropriate values for scaling parameters
constitutes a major investment of time. Such an investment pays off only when
a routine is subject to heavy use.
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Exercises (Computational)

14.1. Consider the instance in Example 14.2.1.

(a) How many different schedules are there?
(b) Compute the value of the objective in case, whenever the machine is
freed, the job with the highest wj/pj ratio is selected to go next.
(c) Compute the value of the objective in case, whenever the machine is
freed, the job with the minimum slack is selected to go next.
(d) Explain why in this instance under the optimal schedule the job with
the latest due date has to go first.

14.2. Consider the instance in Example 14.2.1 and determine the schedule
according to the ATCS rule with

(a) K1 = 5 and K2 =∞;
(b) K1 = 5 and K2 = 0.0001;
(c) K1 =∞ and K2 = 0.7.
(d) K1 = 0.0001 and K2 = 0.7.
(e) K1 =∞ and K2 =∞.

14.3. Consider the instance of P2 || ∑wjTj with the following 5 jobs.

jobs 1 2 3 4 5

pj 13 9 13 10 8
dj 6 18 10 11 13
wj 2 4 2 5 4

(a) Apply the ATC heuristic on this instance with the look-ahead param-
eter K = 1.
(b) Apply the ATC heuristic on this instance with the look-ahead param-
eter K = 5.

14.4. Consider the instance in Example 14.3.4. Apply the tabu-search tech-
nique once more, starting out with the same initial sequence, under the following
conditions.

(a) Make the length of the tabu-list 1, i.e., only the pair of jobs that was
swapped during the last move cannot be swapped again. Apply the tech-
nique for four iterations and determine whether the optimal sequence is
reached.
(b) Make the length of the tabu-list 3, i.e., the pairs of jobs that were
swapped during the last three moves cannot be swapped again. Apply the
technique for four iterations and determine whether the optimal sequence
is reached.
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14.5. Apply the ATC dispatching rule to the following instance of F3 |
prmu, pij = pj |

∑
wjTj.

jobs 1 2 3 4

pj 9 9 12 3
dj 10 8 5 28
wj 14 12 1 12

What is the best value for the scaling parameter?

14.6. Apply tabu-search to the instance of F3 | prmu, pij = pj |
∑

wjTj
in Exercise 14.5. Choose as the neighbourhood again all schedules that can
be obtained through adjacent pairwise interchanges. Start out with sequence
3, 1, 4, 2 and apply the technique for four iterations. Keep the length of the
tabu-list equal to 2. Determine whether the optimal sequence is reached.

14.7. Consider the same instance as in Exercise 14.5. Now apply simulated
annealing to this instance. Adopt the same neighbourhood structure and select
neighbors within the neighbourhood at random. Choose βk = (0.9)k. Start with
3, 1, 4, 2 as the initial sequence. Terminate the procedure after two iterations and
compare the result with the result obtained in the previous exercise. Use the
following numbers as uniform random numbers:

U1 = 0.91, U2 = 0.27, U3 = 0.83, U4 = 0.17.

14.8. Consider the same instance as in Exercise 14.5. Now apply the Genetic
Algorithm 14.4.2 to the instance.

(a) Start with a population of the three sequences 3, 4, 1, 2, 4, 3, 1, 2 and
3, 2, 1, 4 and perform three iterations.
(b) Replace one of the sequences in the initial population under (a) with
the sequence obtained in Exercise 14.5 and perform three iterations.

14.9. Compare the results obtained with the four different approaches in Ex-
ercises 14.5, 14.6, 14.7, and 14.8 with one another.

(a) Which one of the four approaches seems to be the most effective for
this particular problem?
(b) What type of hybrid technique would be the most effective for this
problem?

14.10. Consider the following instance of 1 | sjk | Cmax with 6 jobs. The
sequence dependent setup times are specified in the table below.
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k 0 1 2 3 4 5 6

s0k - 1 1 + ε D 1 + ε 1 + ε D
s1k D - 1 1 + ε D 1 + ε 1 + ε
s2k 1 + ε D - 1 1 + ε D 1 + ε
s3k 1 + ε 1 + ε D - 1 1 + ε D
s4k D 1 + ε 1 + ε D - 1 1 + ε
s5k 1 + ε D 1 + ε 1 + ε D - 1
s6k 1 1 + ε D 1 + ε 1 + ε D -

Assume D to be very large. Define as the neighbourhood of a schedule all
schedules that can be obtained through an adjacent pairwise interchange.

(a) Find the optimal sequence.
(b) Determine the makespans of all schedules that are neighbors of the
optimal schedule.
(c) Find a schedule with a makespan less than D of which all the neighbors
have the same makespan. (The optimal sequence may be described as a
“brittle” sequence, while the last sequence may be described as a more
“robust” sequence.)

Exercises (Theory)

14.11. What does the ATCS rule reduce to

(a) if both K1 and K2 go to ∞,
(b) if K1 is very close to zero and K2 = 1,
(c) and if K2 is very close to zero and K1 = 1?

14.12. Consider Pm || ∑
wjCj and the dispatching rule that releases jobs

in decreasing order of wj/(pkj ). Give an argument for setting the parameter k
between 0.75 and 1. Describe the relationship between an appropriate value of
k and the number of machines m.

14.13. Consider Fm | pij = pj |
∑

wjCj and the dispatching rule that releases
jobs in decreasing order of wj/(pkj ). Give an argument for setting the k larger
than 1. Describe the relationship between an appropriate value of k and the
number of machines m.

14.14. Consider the following basic mutations that can be applied to a se-
quence:

(i) An insertion (a job is selected and put elsewhere in the sequence).
(ii) A pairwise interchange of two adjacent jobs.
(iii) A pairwise interchange of two nonadjacent jobs.
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(iv) A sequence interchange of two adjacent subsequences of jobs.
(v) A sequence interchange of two nonadjacent subsequences of jobs.
(vi) A reversal of a subsequence of jobs.

Some of these mutations are special cases of others and some mutations can
be achieved through repeated applications of others. Taking this into account
explain how these six types of mutations are related to one another.

14.15. Show that if the optimality of a rule can be shown through an adjacent
pairwise interchange argument applied to an arbitrary sequence, then

(a) the sequence that minimizes the objective is monotone in a function of
the parameters of the jobs and
(b) the reverse sequence maximizes that same objective.

14.16. Determine the number of neighbors of a permutation schedule if the
neighbourhood consists of all schedules that can be reached through

(a) any adjacent pairwise interchange;
(b) any pairwise interchange.

14.17. Consider the 1 || ∑w′
jEj +

∑
w′′
j Tj problem. Design a composite dis-

patching rule for the minimization of the sum of the weighted earliness and
tardiness penalties. (Consider first the case where all due dates are equal to
Cmax).

14.18. Describe a neighbourhood and a neighbourhood search technique for a
local search procedure that is applicable to a permutation flow shop scheduling
problem with the makespan as objective.

14.19. Describe a neighbourhood and a neighbourhood search procedure for
the problem 1 | rj , prmp | ∑wjCj .

14.20. Design a multiphase procedure for Fm | block | ∑wjTj . with zero inter-
mediate storage and blocking. Give proper statistics to characterize instances.
Present a composite dispatching rule and design an appropriate neighbourhood
for a local search procedure. (Hint: the goodness of fit of an additional job to
be included in a partial sequence may be considered to be similar to a sequence
dependent setup time; the structure of a composite dispatching rule may in
some respects look like the ATCS rule).

14.21. Design a scheduling procedure for the problem Pm | rj ,Mj |
∑

wjTj .
Let the procedure consist of three basic steps:

(i) a statistics evaluation step,
(ii) a composite dispatching rule step and
(iii) a simulated annealing step.
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Consider the WSPT, LFJ, LFM, EDD and MS rule as rules for possible in-
clusion in a composite dispatching rule. What factors should be defined for
characterization of scheduling instances? What kind of input can the scheduler
provide to the three modules?
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The previous chapter covered the more established and the more widely used
generic procedures. This chapter focuses on techniques that are more specialized
and not as widely used.
The first section focuses on a technique that is a modification of the branch-

and-bound procedure. It is referred to as beam search. It tries to eliminate
branches in an intelligent way so that not all branches have to be examined.
The second section covers decomposition procedures. Chapter 7 already consid-
ered a very well-known decomposition technique, namely the shifting bottleneck
heuristic. The shifting bottleneck technique is a classical example of a so-called
machine-based decomposition procedure. The second section of this chapter
describes several other types of decomposition techniques. The third section
discusses constraint guided heuristic search procedures which have been devel-
oped in the artificial intelligence community. Constraint guided heuristic search
is often also referred to as constraint-based programming. A constraint guided
heuristic search procedure attempts to find a feasible schedule given all the
constraints in the scheduling environment. The fourth section discusses a class
of techniques that also originated in the artificial intelligence community. These
techniques assume that the scheduling process is based on a market mechanism
in which each job has to make bids and pay for machine time. The fifth sec-
tion focuses on procedures for scheduling problems with multiple objectives.
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In practice, most scheduling systems have to deal with multiple objectives and
have to be able to do some form of parametric or sensitivity analysis. The dis-
cussion section explains the role of general purpose procedures in the design
and development of engines for scheduling systems.

15.1 Beam Search

Filtered beam search is based on the ideas of branch-and-bound. Enumerative
branch-and-bound methods are currently the most widely used methods for
obtaining optimal solutions to NP-hard scheduling problems. The main disad-
vantage of branch-and-bound is that it usually is extremely time consuming, as
the number of nodes that have to be considered is very large.
Consider, for example, a single machine problem with n jobs. Assume that

for each node at level k jobs have been selected for the first k positions. There
is a single node at level 0, with n branches emanating to n nodes at level 1.
Each node at level 1 branches out into n − 1 nodes at level 2, resulting in a
total of n(n− 1) nodes at level 2. At level k there are n!/(n− k)! nodes. At the
bottom level, level n, there are n! nodes.
Branch-and-bound attempts to eliminate a node by determining a lower

bound on the objective for all partial schedules that sprout out of that node. If
the lower bound is higher than the value of the objective under a known sched-
ule, then the node may be eliminated and its offspring disregarded. If one could
obtain a reasonably good schedule through some clever heuristic before going
through the branch-and-bound procedure, then it might be possible to elimi-
nate many nodes. Other elimination criteria (see Chapter 3) may also reduce
the number of nodes to be investigated. However, even after these eliminations
there are usually still too many nodes that have to be evaluated. For example,
it may require several weeks on a workstation to find an optimal schedule for
an instance of the 1 || ∑

wjTj problem with 40 jobs. The main advantage of
branch-and-bound is that, after evaluating all nodes, the final solution is known
with certainty to be optimal.
Filtered beam search is an adaptation of branch-and-bound in which not

all nodes at any given level are evaluated. Only the most promising nodes at
level k are selected as nodes to branch from. The remaining nodes at that level
are discarded permanently. The number of nodes retained is called the beam
width of the search. The evaluation process that determines which nodes are
the promising ones is a crucial element of this method. Evaluating each node
carefully, in order to obtain an estimate for the potential of its offspring, is time
consuming. Here a trade-off has to be made: a crude prediction is quick, but
may lead to discarding good solutions, while a more thorough evaluation may
be prohibitively time consuming. Here is where the filter comes in. For all the
nodes generated at level k, a crude prediction is done. Based on the outcome
of these crude predictions a number of nodes are selected for a more thorough
evaluation, while the remaining nodes are discarded permanently. The number
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of nodes selected for a more thorough evaluation is referred to as the filter width.
Based on the outcome of the more thorough evaluation of the nodes that pass
the filter, a subset of these nodes (the number being equal to the beam width
which therefore cannot be greater than the filter width) is selected from where
further branches are generated.
A simple example of a crude prediction is the following. The contribution of

the partial schedule to the objective and the due date tightness or some other
statistic of the jobs that remain to be scheduled are computed; based on these
values the nodes at a given level are compared to one another and an overall
assessment is made.
Every time a node has to undergo a thorough evaluation, all the jobs not

yet scheduled are scheduled according to a composite dispatching rule. Such
a schedule can still be generated reasonably fast as it only requires a sort.
The objective value of such a schedule is an indication of the promise of that
node. If a very large number of jobs are involved, nodes may be filtered out
by examining a partial schedule that is generated by scheduling only a subset
of the remaining jobs with a dispatching rule. This extended partial schedule
may be evaluated and based on its value a node may be discarded or retained.
If a node is retained, it may be analyzed more thoroughly by having all its
remaining jobs scheduled using the composite dispatching rule. The value of
this schedule’s objective then represents an upper bound on the best schedule
among the offspring of that node. The following example illustrates a simplified
version of beam search.

Example 15.1.1 (Application of Beam Search)
Consider the following instance of 1 || ∑

wjTj (which is the same instance
as the one considered in Example 14.3.4).

jobs 1 2 3 4

pj 10 10 13 4
dj 4 2 1 12
wj 14 12 1 12

As the number of jobs is rather small only one type of prediction is made for
the nodes at any particular level. No filtering mechanism is used. The beam
width is chosen to be 2, which implies that at each level only two nodes are
retained. The prediction at a node is made by scheduling the remaining jobs
according to the ATC rule. With the due date range factor R being 11/37
and the due date tightness factor τ being 32/37, the look-ahead parameter
is chosen to be 5.
A branch-and-bound tree is constructed assuming the sequence is devel-

oped starting out from t = 0. So, at the jth level of the tree jobs are put
into the jth position. At level 1 of the tree there are four nodes: (1, ∗, ∗, ∗),
(2, ∗, ∗, ∗), (3, ∗, ∗, ∗) and (4, ∗, ∗, ∗), see Figure 15.1. Applying the ATC rule
to the three remaining jobs at each one of the four nodes results in the four
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1,*,*,*

1,2,*,* 1,3,*,* 1,4,*,* 2,1,*,* 2,3,*,* 2,4,*,*

2,4,3,12,4,1,31,4,3,21,4,2,3

2,*,*,*

*,*,*,*

3,*,*,* 4,*,*,*

Fig. 15.1 Beam search applied to 1 ||
∑

wjTj

sequences: (1,4,2,3), (2,4,1,3), (3,4,1,2) and (4,1,2,3) with objective values
408, 436, 771 and 440. As the beam width is 2, only the first two nodes are
retained.
Each of these two nodes leads to three nodes at level 2. Node (1, ∗, ∗, ∗)

leads to nodes (1, 2, ∗, ∗), (1, 3, ∗, ∗) and (1, 4, ∗, ∗) and node (2, ∗, ∗, ∗) leads
to nodes (2, 1, ∗, ∗), (2, 3, ∗, ∗) and (2, 4, ∗, ∗). Applying the ATC rule to the
remaining two jobs in each one of the 6 nodes at level 2 results in nodes
(1, 4, ∗, ∗) and (2, 4, ∗, ∗) being retained and the remaining four being dis-
carded.
The two nodes at level 2 lead to four nodes at level 3 (the last level),

namely nodes (1,4,2,3), (1,4,3,2), (2,4,1,3) and (2,4,3,1). Of these four se-
quences sequence (1,4,2,3) is the best with a total weighted tardiness equal
to 408. It can be verified through complete enumeration that this sequence
is optimal. ||

15.2 Decomposition Methods and Rolling Horizon
Procedures

There are several classes of decomposition methods. The best known class of
decomposition methods is usually referred to as machine-based decomposition.
A prime example of machine-based decomposition is the shifting bottleneck
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technique described in Chapter 7. Another class of decomposition methods is
referred to as job-based decomposition. A job-based decomposition method is
useful when there are constraints with regard to the timing of the various op-
erations of any given job, e.g., when there are minimum and maximum time
delays between consecutive operations of a job. A third class consists of the
time-based decomposition methods, which are also known as rolling horizon
procedures. According to these methods a schedule is first determined for all
machines up to a given point in time, ignoring everything that could happen
afterwards. After a schedule has been generated up to that given point in time,
a schedule is generated for the next time period, and so on. A fourth class of
decomposition methods consists of the hybrid methods. Hybrid methods may
combine either machine-based or job-based decomposition with time-based de-
composition.
Machine-based decomposition is often used in (flexible) flow shop, (flexible)

job shop, and (flexible) open shop environments. The decomposition procedure
solves the problem by scheduling the machines one at a time, in decreasing order
of their criticality indices. That is, the procedure schedules first the machine
that is the most difficult to schedule; after having scheduled that machine, it
proceeds with scheduling the second most difficult one, and so on. In order to
determine the degree of difficulty in scheduling a machine, i.e., the criticality of
a machine, a subproblem has to be defined and solved for each machine. The
objective of the overall problem determines the type of objective in the single
machine subproblem. However, the objective of the single machine (or parallel
machines) subproblem is typically a more difficult objective than the objective
of the main problem. The single machine subproblem may still be NP-hard.
In Chapter 7, it is shown how the Cmax objective in the main problem leads
to the Lmax objective in the subproblem and how the

∑
wjTj objective in the

main problem leads to the
∑∑

hij(Cij) objective in the subproblem, where
hij is piecewise linear convex. It is often not clear how much of an investment
in computing time one should make in the search for a solution to the single
machine subproblem. It is also not clear how the quality of the solutions of the
subproblems affects the quality of the overall solution.
An important aspect of machine-based decomposition is its so-called con-

trol structure. The control structure is the framework that determines which
subproblem has to be solved when. A control structure may typically lead to
a significant amount of reoptimization: After a schedule for an additional ma-
chine has been generated, the procedure reoptimizes all the machines that had
been scheduled earlier, taking into account the sequence on the machine just
scheduled. The sequence of the operations on the machine just scheduled may
lead to adjustments in the sequences of operations on the machines scheduled
earlier. This reoptimization feature has proven to be crucial with regard to the
effectiveness of machine-based decomposition procedures.
In a job-based decomposition method, a subproblem consists of all the op-

erations associated with a given job. The jobs are prioritized and inserted in
the schedule one at a time. So the solution of a given subproblem involves the
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insertion of the operations of a given job into a partial schedule in such a way
that the new schedule is feasible and that the increase in the overall objective
caused by the insertion of the new job is minimal. If an insertion of the new job
is not feasible, then the jobs inserted before have to be rescheduled.
Time-based decomposition can be applied in any machine environment.

There are various forms of time-based decomposition methods. First, a problem
can be decomposed by introducing time intervals of a fixed length and by con-
sidering in each iteration only jobs that are released during a particular interval.
Or, one can partition the problem by considering each time a fixed number of
jobs that are released consecutively.
However, there are also time-based decomposition methods that are based

on more ”natural” partitioning schemes. A natural partitioning point can be
defined as a time t with the property that the schedule of the jobs completed
before t does not have an effect on (i.e., is independent of) the schedule of
the jobs completed after t. For example, consider an instance of the 1 | rj |∑

Cj problem with a very large number of jobs. This problem is well-known to
be strongly NP-hard. Assume, for the time being, that the machine is always
processing a job when there are jobs available for processing. Suppose that, at
a certain point in time, the machine is idle and there are no jobs waiting for
processing; the machine remains idle until the next job is released. It is clear
that such a point in time is a natural partitioning point. More formally, let
V (t) denote the total amount of processing that remains to be done on the jobs
released prior to t. If V (t) is zero or close to zero for some t, then such a t would
be an appropriate partitioning point.

Example 15.2.1 (Application of Time-Based Decomposition)
Consider the following instance of 1 | rj |

∑
Cj with 9 jobs.

jobs 1 2 3 4 5 6 7 8 9

rj 7 7 9 17 33 35 39 40 42
pj 9 10 6 3 10 8 6 2 2

The graph of V (t) is presented in Figure 15.2. At t = 33 the V (t) jumps from
2 to 12. So just before time 33 the V (t) reaches a minimum. One possible
partition would consider jobs 1, 2, 3, 4 as one problem and jobs 5, 6, 7, 8, 9 as
a second problem. Minimizing

∑
Cj in the first problem results in schedule

1, 3, 4, 2. The second problem starts at time 35 and the optimal schedule is
6, 8, 9, 7, 5.
If the jobs have different weights, i.e., the objective is

∑
wjCj , then the

partitioning scheme is not as straightforward any more. For example, consider
a job with weight 0 (or an extremely low weight). Such a job, most likely,
will appear more towards the end of the schedule. ||
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Fig. 15.2 Total amount of processing remaining to be done in system
(Example 15.2.1)

Partitioning schemes for problems with due dates may be designed com-
pletely differently. Due dates may appear in clusters. Some intervals may have
a large number of due dates while other intervals may have a small number. A
partitioning of the job set may be done immediately at the end of a cluster of
due dates; the subset of jobs to be considered includes all the jobs that have
due dates in that cluster.

Example 15.2.2 (Application of Time-Based Decomposition)
Consider the following instance of 1 || ∑Tj with 9 jobs that are all released
at time 0.

jobs 1 2 3 4 5 6 7 8 9

pj 7 6 7 6 5 5 8 9 4
dj 22 24 24 25 33 51 52 52 55

There are two clusters of due dates. One cluster lies in the range [22, 25],
and the second cluster lies in the range [51, 55]. There is a single due date,
d5, that lies in the middle. According to a partitioning scheme that is based
on clusters of due dates it makes sense to consider jobs 1, 2, 3, 4 as one
subproblem and jobs 5, 6, 7, 8, 9 as a second subproblem.
Any sequence in the first subproblem that schedules job 4 last minimizes∑
Tj . Any sequence in the second subproblem that schedules job 9 last and

either job 7 or job 8 second to last minimizes
∑

Tj in that problem. ||
Control structures can play an important role in time-based decomposition

procedures as well. After a time-based decomposition procedure has generated
a schedule, a post-processing procedure can be done. In such a post-processing
procedure the last couple of jobs of one job set are combined with the first
couple of jobs of the next job set. This new set of jobs is then reoptimized (see
Figure 15.3).
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Fig. 15.3 Set of jobs considered in postprocessing procedure

Example 15.2.3 (Application of Time-Based Decomposition)
Consider the following instance of the 1 || ∑wjTj. The processing times and
due dates are the same as those in Example 15.2.2.

jobs 1 2 3 4 5 6 7 8 9

pj 7 6 7 6 5 5 8 9 4
wj 0 1 1 2 1 1 2 1 4
dj 22 24 24 25 33 51 52 52 55

If the time based decomposition is done in the same way as in Exam-
ple 15.2.2, then the first subproblem consists again of jobs 1, 2, 3, 4 and the
second subproblem of jobs 5, 6, 7, 8, 9.
In the first subproblem, any schedule that puts job 1 in the fourth position

(i.e., the last slot) minimizes the total weighted tardiness. The total weighted
tardiness of the first subproblem is then zero. In the second subproblem any
schedule that puts job 8 in the last position and job 5 in the first position
minimizes the total weighted tardiness.
What happens now on the borderline between the first and the second

subproblem? Job 1 is last in the first subproblem and job 5 is first in the
second subproblem. It is clear that an interchange between these two jobs
results in a schedule with the same objective value. Are these two schedules
optimal? That is clearly not the case. If job 1 is processed all the way at
the end of the schedule, i.e., completing its processing at C1 = 57, then the
total weighted tardiness of the entire schedule is zero. This last schedule is
therefore optimal. ||
Hybrid decomposition methods are more complicated procedures. There are

several types of hybrid methods. Some hybrid methods do a machine-based
decomposition first, and solve the single machine subproblems using a rolling
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horizon procedure. Other hybrid methods do a time-based decomposition first
and then find a schedule for each time interval via a machine decomposition
method.
The type of decomposition that has to be done first depends on the char-

acteristics of the instance. For example, if there are significant differences be-
tween the criticality indices of the different machines, then it may make sense
to do a machine-based decomposition first; the scheduling procedure for the
subproblems within the machine-based decomposition procedure may be done
via time-based decomposition. However, if there are natural partitioning points
that are clear and pronounced, then it may make sense to do a time-based de-
composition first and solve the subproblems via a machine-based decomposition
procedure.
In practice, decomposition methods are often combined with other methods,

e.g., local search procedures (see Section 17.3).

15.3 Constraint Programming

Constraint programming is a technique that originated in the Artificial In-
telligence (AI) community. In recent years, it has often been implemented in
combination with Operations Research (OR) techniques in order to improve its
effectiveness.
Constraint programming, according to its original design, only tries to find

a good solution that is feasible and that satisfies all the given constraints. How-
ever, these solutions may not necessarily be optimal. The constraints typically
include release dates and due dates. It is possible to embed a constraint pro-
gramming technique in a framework that is designed for minimizing a due date
related objective function.
In order to illustrate the use of the technique, consider the problem Pm |

rj |
∑

wjUj. Job j has a weight wj , a release date rj and a due date dj ; there
are m identical machines in parallel. The objective is to minimize the weighted
number of late jobs. This problem can serve as a model for the airport gate
assignment problem described in Example 1.1.3 and can be formulated as a
Mixed Integer Program (MIP). However, because of the size of the MIP it is
impossible to consider instances with more than 20 jobs. Several branch-and-
bound schemes have been designed for the MIP with lower bounds generated
through various forms of relaxations.
From a constraint programming point of view this nonpreemptive scheduling

problem can be described as a search for an assignment of start times for the jobs
such that (i) at each point in time not more thanm jobs are being processed, (ii)
each job starts after its release date, (iii) the weighted number of jobs completed
after their respective due dates is less than or equal to a given value W .
Let U denote an upper bound on the completion times of all jobs. Such an

upper bound can be found by taking the last release date and adding the sum
of all processing times. The initial domains of the start and completion time
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variables can be set equal to [rj ,U − pj ] and [rj + pj ,U ]. The domain of the
value of the objective function can be specified as [0,W ], where

W =
n∑
j=1

wj .

Note that within these domain sets a job may end up either late or on time. If a
given job must be completed on time, then its domain must be made narrower.
The start and completion time variables of such a job must then lie within
[rj , dj − pj ] and [rj + pj , dj ].
The constraint programming procedure generates a schedule in a constructive

manner, one job at a time. After the start and completion times of some jobs
have been determined, the time windows in which the remaining jobs can be
scheduled (i.e., their current domains) can be made narrower by propagating
constraints that are induced by the partial schedules already put in place. So,
after positioning an additional job in the schedule, the domains of the remaining
jobs have to be recomputed. Let S′

j (S
′′
j ) denote in each step of the procedure

the current earliest (latest) possible starting time of job j. Clearly, S′
j ≥ rj

and S′′
j ≤ dj − pj . Let C′

j (C
′′
j ) denote the current earliest (latest) possible

completion time of job j. Clearly, C′
j ≥ rj + pj and C′′

j ≤ dj .
An implementation of constraint programming can usually be made signifi-

cantly more effective through the use of dominance rules. In order to describe
one such rule a definition is needed.

Definition 15.3.1 (Job Preference). Job j is preferred over job k if

pj ≤ pk,

wj ≥ wk,

rj + pj ≤ rk + pk,

dj − pj ≥ dk − pk.

It is clear that this preference ordering is transitive, i.e., if job j is preferred
over job k and job k is preferred over job l, then job j is preferred over job l.

Lemma 15.3.2. If job j is preferred over job k and there exists a feasible
schedule in which job k is on time and job j late, then there exists another
feasible schedule that is at least as good in which job j is on time and job k late.

Proof. By contradiction. Consider an optimal schedule σ∗ with job j being late,
job k on time, and the lemma being violated. Job j is more preferable than job k,
Ck ≤ dk, and Cj > dj . Now, perform an interchange between jobs j and k.
More precisely, job j is started at the starting time of job k in schedule σ∗ and
job k is moved all the way to the end of the schedule (it will be late). It is easy
to see that the new schedule is feasible and still optimal. Job j is now on time
and if wj > wk (strictly), then the value of the objective function is lower. 	
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For other examples of dominance rules, see Lemmas 3.4.1 and 3.6.1. Another
set of rules that are useful in constraint programming are based on problem de-
composition. These rules enable the constraint program to partition the prob-
lem of scheduling the remaining jobs into two or more independent subproblems
that do not affect one another and that therefore can be solved independently.
A decomposition rule may be applied in a constraint guided search procedure
any time after a subset of the jobs already have been put in place. The next
result provides a basis for decomposing and concatenating schedules.

Lemma 15.3.3. Let t∗ be a point in time such that for any job j that
remains to be scheduled either S′′

j + pj ≤ t∗ or S′
j ≥ t∗. Any optimal schedule is

then a concatenation of an optimal schedule for the problem with those jobs that
have due dates less than or equal to t∗ and an optimal schedule for the problem
with those jobs that have release dates larger than or equal to t∗.

Proof. The proof is left as an exercise. 	

It is clear that after each iteration in a constraint guided search procedure

(i.e., after one or more additional jobs have been put in place) the domains of the
remaining jobs become more restricted, thereby creating more opportunities for
decomposing the remaining problem into smaller subproblems that are easier
to solve.
The next result provides a basis for another form of decomposition. In order

to state the result, let [t1, t2] denote an arbitrary time interval and let J[t1,t2]

denote the subset of jobs among those that are not yet late (i.e., S′
j + pj ≤ dj)

and that may end up being processed (at least partially) during [t1, t2] provided
they end up on time (i.e., t1 < dj and t2 > rj).

Lemma 15.3.4. If there exists a feasible schedule σ for the job set J[t1,t2]

with all machines being idle just before t1 and immediately after t2 and all jobs
in J[t1,t2] being on time, then there exists an overall optimal schedule σ∗ for all
n jobs such that between t1 and t2 the schedules σ and σ∗ are the same.

Proof. The proof is easy and left as an exercise. 	

Consider now any point in time t1 and let Jt1 denote a subset of the remaining

jobs that do not have to be late and that can be completed after t1. A schedule
can be generated for set Jt1 . Let t2 (t2 > t1) denote a time point during the
generation of the schedule. If at t2 a job has been completed after its due date,
then t1 cannot serve as a starting point for an application of Lemma 15.3.4;
however, if at t2 Jt2 has become empty, then a valid schedule has been generated
for J[t1,t2] with all jobs completed on-time.
The following algorithm is based on the ideas described above. A search tree

is built. While there are still jobs remaining to be scheduled which may end up
either late or on-time, one of these jobs is selected. When generating a schedule,
it may turn out (with the partial schedule that is already in place) that it is
not possible to generate a complete schedule that is feasible. If that is the case,
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then the algorithm must backtrack, which implies that some segment(s) of the
already established partial schedule have to be annulled.

Algorithm 15.3.5 (Constraint Guided Heuristic Search Procedure)
Step 1. (Job Selection)

Apply a job selection heuristic to choose a job with C′
j ≤ dj .

Constrain job j to be on time.
If no such job is found and
the weighted number of late jobs is larger than W ,
then BACKTRACK
(i.e., annul a segment of the partial schedule and return to Step 1).

Step 2. (Application of Dominance Rules and Propagation of Constraints)
Apply dominance rules and propagate constraints.
Adjust S′

j, S
′′
j , C

′
j and C′′

j .

Step 3. (Feasibility Check)
Check if there still exists a feasible schedule (including all jobs)
that has a weighted number of late jobs less than or equal to W
(by applying decomposition and interval scheduling rules as well as
heuristics on the jobs remaining to be scheduled).
If no feasible schedule is found, then BACKTRACK.

Step 4. (Stopping Criterion)
If there are still jobs remaining that can end up either on time or late,
then return to Step 1;
Otherwise STOP. ||
The job selection heuristic in Step 1 can be designed in many ways. For

example, let J denote the set of jobs remaining to be scheduled, i.e., jobs that
have not been put in the schedule yet and that may end up in the final schedule
either on time or late. Let(wj

pj

)∗
= max{wj/pj | j ∈ J}

Let J ′ denote all jobs from set J that have a wj/pj ratio higher than 0.9 ×
(wj/pj)∗. The heuristic selects among these jobs the job that, if it is completed
on time, has the widest interval [S′

j, C
′′
j ]. Basically, the heuristic ”bets” that it

is better to schedule a job that has a high wj/pj ratio and a wide domain, i.e.,
a more preferred job. The reasoning behind this is that when later on in the
process more jobs are added to the schedule, there is still some freedom that
allows this job to be moved either forward or backward in time.
The feasibility check in Step 3 is a hard problem. A scheduling heuristic has

to be used here. Such a heuristic may work either forward or backward in time.
If such a heuristic works forward in time (from left to right), then it typically
would try to schedule the jobs through a combination of the EDD rule and the
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WSPT rule, e.g., the ATC rule. If it works backwards in time, then it would
try to apply similar rules in a backwards manner.

15.4 Market-Based and Agent-Based Procedures

Consider a flexible job shop with c workcenters. Each workcenter has a number
of identical machines in parallel. The jobs have different release dates and the
objective is to minimize the total weighted tardiness

∑
wjTj . This problem can

be referred to as FJc | rj |
∑

wjTj .
Each job has a Job Agent (JA) who receives a budget at the release of the

job. The budget of the JA is a function of the weight of the job, the tightness of
its due date, and the total amount of processing it requires at the various work-
centers. At each point in time, when an operation of a job has been completed
at a workcenter, the JA sends out a call for bids from the machines at the next
workcenter on the job’s route. The information specified in this call for bids
includes the preferred time frame in which the JA wants the next operation to
be done. The JA determines the desired time frame by taking the job’s final
due date into account, as well as an estimate of the remaining time it needs to
complete all remaining operations.
Each machine has a Machine Agent (MA). The cost structure of the machine

consists of a fixed cost per unit time, that is incurred it all times (whether or
not the machine is processing a job). The cost per unit time of each machine is
known to all parties. If a JA issues a call for bids, then the machines that can
process this particular operation of that job submit their bids. The information
in a bid includes the time that the machine intends to process that operation
as well as the price. The MA, of course, would like the price to be higher than
the fixed cost, because then he makes a profit. A machine is allowed to submit
multiple bids to the same JA for different time periods with different prices.
The rules and heuristics an MA uses to generate bids can be complicated.
It may happen that an MA receives at the same point in time several calls

for bids from different JAs. The MA may bid on any subset as long as the time
periods specified in the different bids do not overlap. The MA’s goal is to make
as much money as possible on all the processing it does.
The JA receives, as a result of his call for bids, a number of bids and compares

them according to a decision rule that takes the timing of the processing as
well as the pricing into account. It then decides to whom to give the award.
The decision rules and heuristics the JA uses when making awards take into
account the times and the prices stated in the bids, as well as the characteristics
of the job (its weight, its due date, and the processing times of all remaining
operations). The goal the JA tries to optimize when making an award is a
composite objective that includes the estimated weighted tardiness of the job
if the next operation is done in the given time frame as well as the amount it
has to pay for that operation and estimates for the amounts it has to pay other
machines for the subsequent operations. The JA cannot spend more on awards
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Fig. 15.4 Overview of bidding and pricing process

than what he has in his budget. The total budget of a JA is the total cost of
processing all the operations on the various machines (including fixed costs as
well as running costs) multiplied by a constant that depends on the weight of
the job.
However, it may occur that a JA, after sending out a call, does not receive

any bid at all. In such a case, the JA must issue a new call for bids, and change
the relevant information in the call. For example, the JA may ask for a time
frame that is later than the time frame originally requested. This implies that
at one point in time, several iterations may take place going back and forth
between the JA and the various MAs. An overview of the bidding and pricing
process is depicted in Figure 15.4.
Scheduling that is based on contract negotiations is characterized by the

rules used by the various Machine Agents to determine their bids as well as
by the rules used by the Job Agents to make the awards. These decision rules
depend strongly on budgetary constraints as well as on the level of information
available to the JA and MA.
Summarizing, each bidding and pricing mechanism has its own characteris-

tics; they are mainly determined by

(i) the Budgetary Constraints,
(ii) the Information Infrastructure, and
(iii) the Bidding and Pricing Rules.

The Budgetary Constraints: The budget of the JA of job j, Bj , is a function
of the total amount of processing of all the operations of the job, the amount
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of slack there is with regard to the due date, and the weight of the job, i.e.,

Bj = f
(
wj , (dj − rj −

n∑
i=1

pij),
n∑
i=1

pij

)
The Bj may also be regarded as a value that is assigned to the job by a higher
level manager or coordinator and that gives an indication regarding the overall
priority of job j.

The Information Infrastructure: A framework with a very high level of infor-
mation assumes that the JA’s as well as the MA’s have complete information:
that is, they know exactly what has happened up to now anywhere in the entire
shop, which jobs are still circulating in the shop, their remaining operations and
their due dates. They also know everything about the job budgets and about
the amounts already spent. However, nobody has any information about future
contracts.
A framework with a very low level of information is a setting where a JA

only has information concerning the processing of its own operations in the past
(pricing, awards, processing times, and so on), but no information concerning
the processing of operations of other jobs. An MA only has information con-
cerning the processing of operations on his own machine in the past, and what
he himself has committed to for the future (including the prices agreed upon).
The MA does not have any detailed information concerning the processing of
operations on other machines. (However, an MA may have some limited in-
formation concerning past processing on other machines; he may have lost a
bid for a job to another machine in the past and may conclude that the other
machine must have processed the operation in question at a lower price than
he himself had quoted in his bid.) In such an environment the levels of the bids
depend on past experiences of both the JA and the MA. This implies that in
the beginning of the scheduling process the prices may not reflect true market
conditions, since little information is available. If the number of jobs is small,
then this could be a problem. It may then be hard to make appropriate deci-
sions since the total level of information is very low. For a problem with a small
number of jobs it makes sense for the JAs and MAs to have more information
already at the outset.
An intermediate level of information is a situation in which the JA and MA

have some general statistics with regard to the problem, i.e., the average amount
of processing, the distribution of the processing times, the distribution of the
weights of the jobs, the due date tightness factors, and so on. If the scheduling
problem has a very large number of jobs and a learning process takes place,
then both the JA and the MA will have, after a while, some forms of estimation
procedures and statistics.

The Bidding and Pricing Rules: If the time frame requested in a call for bids
is such that the MA believes that the machine will end up with idle periods
before and after the processing of this operation (because the idle periods may
not be large enough to accommodate any other operation), then the MA may
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price its bid somewhat higher just to receive some compensation for the an-
ticipated idle periods (see Figure 15.5.a). Or, if the MA expects more calls for
bids that may result in better fitting jobs, he may not bid at all (when the MA
has complete information he may have a pretty good idea about future calls for
bids).
If an MA expects many calls for bids in the immediate future, he may price

his bids on the higher side, because he is not afraid of losing out. In the same
vein, towards the end of the process, when the number of calls for bids dwindles,
prices may come down.
On the other hand, if the requested time period in the call for bids is a time

period that happens to be exactly equal to an idle period in the machine’s
current schedule (see Figure 15.5.b), the MA may submit a bid on the low side
because a perfect fit is advantageous for the machine in question and the MA
would like to be sure that no other MA will come up with a lower bid. So the
pricing in a bid of an MA is determined by a number of factors. The three most
important ones are:

(i) The goodness of fit of the operation in the current machine schedule.
(ii) The anticipated supply of machine capacity and the level of competition.
(iii) The anticipated demand for machine capacity.

Expressions of goodness of fit can be developed for most information infras-
tructure settings. Even in a framework with a very low level of information a
reasonable accurate estimate for the goodness of fit can be made, since the MA
should have, even in such an environment, all the necessary information. On
the other hand, estimates for the anticipated supply of machine capacity and
demand for machine capacity may depend on the information infrastructure.
The accuracy of such an assessment is, of course, higher when more information
is available.
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The selection heuristic a JA uses when receiving multiple bids depends, of
course, on the timing and the cost. Certain simple dominance rules are evident:
a bid at a lower cost at an earlier time dominates a bid at a higher cost at a later
time. The JA makes its selection based on remaining slack and on the expecta-
tion of future delays at subsequent workcenters. When more exact information
is available, the JA may be more willing to postpone the processing.
To determine the optimal decision rules for both the JA’s and the MA’s is not

easy. The decision rules of the MAs depend heavily on the level of information
available to the JAs and MAs. In general, it tends to be easier to determine a
fair price the more information is available.

Example 15.4.1 (Bidding and Pricing in a Flexible Flow Shop)
Consider the last stage in a flexible flow shop. This last stage has two iden-
tical machines. All jobs, after having been processed at that stage, leave the
system. Suppose the current time t is 400. Machine 1 is idle and does not
have any commitments for the future and machine 2 is busy until time 450
(machine 2 is processing a job that started at time 380 and that has a du-
ration of 70). At time 400 a JA sends out a call for bids. The processing
time of the last operation of this job is 10 and the due date of the job is
390 (i.e., it is already overdue) and the job’s weight is 5. So it is incurring
for each additional time unit in the system a penalty of 5. The fixed costs
of operating each machine is 4 dollars per unit time, i.e., a machine has to
charge at least $4 per unit time that it is processing a job. Which price should
machine 1 quote the JA for processing the job starting immediately at time
400, assuming machine 1 has complete information? The only competitor of
machine 1 is machine 2 which only can start processing this operation at
time 450. Machine 2 has to charge at least 4 × 10 = 40 in order to make a
profit. The job would be completed at 460; the tardiness of the job is 70 and
the total penalty of this job is 70× 5 = 350. If machine 1 would process the
job, then the job would be completed at time 410, its penalty being 20× 5 is
100. So processing on machine 1 reduces the penalty by 250. In order to get
the award, the MA of machine 1 has to quote a price that is less than 350 +
40 - 100 = 290.
What happens now if the information is incomplete? The MA of machine 1

has to charge at least 40 to cover its cost. If machine 1 had received at
time 380 a call for bids on the processing of the operation that went at that
point to machine 2, then machine 1 knows that machine 2 has to be busy
till time 450 and the case reduces to the case considered before. However,
if machine 1 did not receive that call for bids at time 380, then it does
not have any idea about what is being processed on machine 2. The price
that machine 1 will charge may depend on completely different factors, for
example, on the prices at which it has been awarded contracts in the past. ||



412 15 More Advanced General Purpose Procedures

0 105 252015

3, 3 3, 2 3, 1Machine 3

2, 3 2, 1 2, 2Machine 2

1, 1 1, 2 1, 3Machine 1

Fig. 15.6 Final schedule in Example 15.4.2

Example 15.4.2 (Application of a Market-Based Procedure to a
Job Shop)

Consider the following instance of Jm | rj |
∑

wjTj .

job wj rj dj machine sequence processing times

1 1 5 24 1,2,3 p11 = 5, p21 = 10, p31 = 4
2 2 0 18 3,1,2 p32 = 4, p12 = 5, p22 = 6
3 2 0 16 3,2,1 p33 = 5, p23 = 3, p13 = 7

At time 0 both jobs 2 and 3 are interested in machine 3. Both jobs have the
same weight and the same total amount of processing. However, job 3 has a
tighter due date than job 2. So it is likely that B3 > B2 and that job 3 would
put in a higher bid and win the bidding contest. The next decision moment
occurs at time 5. Job 3 would like to go on machine 2, job 1 would like to
go on machine 1, and job 2 still wants to go on machine 3. None of the three
jobs faces any competition. So the JAs and the MAs should be able to come
to an agreement. The next decision moment occurs at time 10. Both jobs 3
and 2 want to go on machine 1; job 1 wants to go on machine 2. So jobs 3
and 2 again have to compete with one another, now for machine 1. Since the
remaining slack of job 2 is (18− 10 − 11) = −3 and the remaining slack of
job 3 is (16 − 10 − 7) = −1, it appears that job 2 will win the contest. So
job 2 goes on machine 1 and job 1 goes on machine 2. At subsequent decision
moments there are no contests between jobs for machines. So the resulting
schedule is the one depicted in Figure 15.6. The total weighted tardiness of
this schedule is 28.
Note that this schedule is the same as the one generated by the shifting

bottleneck procedure described in Chapter 7. However, this schedule is not
optimal. The optimal schedule has a total weighted tardiness of 18. ||
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Example 15.4.3 (Application of a Bidding Procedure in Practice)

A simple bidding procedure has been implemented in the paint shop of an
automobile manufacturing facility and the system has been working quite
effectively. There is a dispatcher, which functions as JA, and there are two
paint booths. Each paint booth has its own space where a fixed number of
trucks can queue up. Each one of the paint booths has an MA. The dispatcher
sends out an announcement of a new truck. The dispatcher functions as a
JA and his announcement is equivalent to a Call for Bids. A paint booth
has three bidding parameters, namely, the color of the last truck that has
gone through, whether or not the queue is empty, and (in case the queue is
not empty) whether there is space in the queue. Each MA sends the values
of the three parameters to the dispatcher. The dispatcher uses the following
decision rules when he makes an award: If the color of the last truck at a
paint booth is the same as the color of the truck to be dispatched, then
the dispatcher makes the award. If the last colors at both paint booths are
different, and one of the two queues is empty, the dispatcher makes the award
to the booth with the empty queue. If both queues have trucks waiting, then
the dispatcher makes the award to a booth that has space in the queue. Even
though this bidding process is very simple, it performs well. ||
A careful study of Examples 15.4.2 and 15.4.3 may lead to a conclusion

that the bidding and pricing mechanisms described in this section may behave
somewhat myopically. When a JA sends out a call for bids only for the next
operation to be processed, then the results of the bidding and pricing rules may
be comparable to dispatching rules. Of course, if a bidding and pricing rule is
made more elaborate, then the mechanism performs less myopically. It is easy
to construct a more sophisticated framework. For example, suppose a JA is
allowed to issue simultaneously several calls for bids to various workcenters for
a number of operations that have to be processed one after another. If the JAs
issue calls for bids for a number of their operations the moment they enter the
shop, then the scheduling process of each one of the MAs becomes considerably
more complicated. The bidding and pricing rules will be, of course, significantly
more involved. In such a framework it may be more likely that a JA has to go
back and forth negotiating with several machines at the same time just to make
sure that the time commitments with the various machines do not overlap. In
such frameworks it may also be possible that a job may not be ready at the
time of a commitment.
The mechanisms described in this section can be generalized easily to more

complicated machine environments. Consider a flexible job shop in which each
workcenter does not consist of a bank of identical machines in parallel, but
rather a bank of unrelated machines in parallel. In this case, if a machine makes
a bid for a certain operation, then its pricing may depend on how fast it can
do the operation relative to the other machines in the same workcenter. For
example, if a machine knows it can do an operation much faster than any other
machine in the workcenter, and it can do this operation also much faster than



414 15 More Advanced General Purpose Procedures

other operations that will come up for bidding subsequently, then it may take
this into account in its pricing.
Bidding and pricing mechanisms, when applied to a completely deterministic

problem, cannot perform as well as an optimization technique (e.g., a shifting
bottleneck procedure) that is designed to search for a global optimum. How-
ever, distributed scheduling may play an important role in practice in more
complicated machine environments with a long horizon that are subject to var-
ious forms of randomness (in settings for which it would be hard to develop
optimization algorithms). In settings with long time horizons one more concept
starts playing a role, namely the concept of learning. For both the JA and the
MA the historical information starts playing a more important role in their
decision-making.

15.5 Procedures for Scheduling Problems with Multiple
Objectives

Chapter 4 presents solutions to a few single machine scheduling problems with
two objectives. However, the problems considered in Chapter 4 are relatively
simple. In practice the machine environment is usually more complex and the
scheduler often has to deal with a weighted combination of many objectives.
The weights may be time or situation dependent. Typically, a scheduler may
not know the exact weights and may want to perform a parametric analysis
to get a feeling for the trade-offs. When a scheduler creates a schedule that is
better with respect to one objective, he may want to know how other objectives
are affected.
When there are multiple objectives the concept of Pareto-optimality plays a

role. A schedule is Pareto-optimal if it is impossible to improve on one of the
objectives without making at least one other objective worse (see Chapter 4).
Usually, only Pareto-optimal schedules are of interest. (However, in practice a
schedule may be Pareto-optimal only with respect to the set of schedules gener-
ated by the heuristic but not with respect to the set of all possible schedules.)
When there are multiple objectives, the scheduler may want to view a set of
Pareto-optimal schedules before deciding which schedule to select. So a system
must retain at all times multiple schedules in memory.
There are major differences between multi-objective problems that allow

preemptions and those that do not allow preemptions. Problems that allow
preemptions are often mathematically easier than those that do not allow pre-
emptions. In a preemptive environment there are typically an infinite number
of feasible schedules, whereas in a nonpreemptive environment there are usually
only a finite number of feasible schedules. The trade-off curve in a preemptive
environment is often a continuous function that is piece-wise linear and convex.
The trade-off curve in a nonpreemptive environment consists of a set of points;
the envelope of such a set of points is always decreasing.
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Efficient (polynomial time) algorithms exist only for the simplest multi-
objective scheduling problems. Most multi-objective scheduling problems are
NP-hard. However, in practice it is still necessary to find good schedules in a
fast and effective manner. Various adaptations of conventional heuristic proce-
dures can be applied to multi-objective problems. The conventional approaches
that can be used include:

(i) procedures based on dispatching rules,
(ii) branch-and-bound and filtered beam search, and
(iii) local search techniques.

One approach that is particularly useful for a parametric analysis of a multi-
objective problem is

(iv) perturbation analysis.

The remaining part of this section discusses these four approaches in more
detail.

Procedures based on dispatching rules. It is often the case that a dispatching
rule that is effective with regard to one objective does not perform particularly
well with regard to a second objective, while a different dispatching rule that
is effective with regard to the second objective does not perform particularly
well with regard to the first one. There are many ways of combining different
dispatching rules within a single framework.
One way is described in Chapter 14 and is exemplified by the composite

ATC and ATCS dispatching rules. A composite dispatching rule combines two
(or more) dispatching rules within a single framework. Job j has a single index
function Ij(t) to which each rule contributes in a certain way. Every time a
machine is freed a job is selected based on the values of the indices of the
waiting jobs. Adjustments of the scaling parameters may result in different
Pareto-optimal schedules. This is to be expected, since a particular combination
of scaling parameters will emphasize a certain subset of the basic rules within
the composite rule and each one of the basic rules within the composite rule
may favor a different objective. So by adjusting the scaling parameters it may
be possible to generate schedules for different parts of the trade-off curve.
Another approach for building a procedure that is based on dispatching rules

is by analyzing the partial schedule and the status of the scheduling process.
Through such an analysis it can be determined at any point in time which dis-
patching rule is the most appropriate one to use. The following example illus-
trates how two dispatching rules can be combined in a preemptive environment
with multiple objectives.

Example 15.5.1 (A Trade-Off Curve in a Preemptive Environment)
Consider the following instance of P3 | prmp | θ1Cmax + θ2

∑
Cj with three

identical machines in parallel and five jobs. The processing times of the jobs
are 5, 6, 8, 12, and 14. Preemptions are allowed and there are two objectives:
the makespan and the total completion time.
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Fig. 15.7 Trade-off curve in a preemptive environment
(Example 15.5.1)

The trade-off curve is piece-wise linear decreasing convex, see Figure 15.7.
The minimum total completion time is 56. The minimum makespan when the
total completion time is 56 is 17 (see Exercise 5.22). The overall minimum
makespan is 15. The minimum total completion time when the makespan
is 15 is 58 (see Exercise 5.19). The coordinates (56, 17) and (58, 15) are
breakpoints in the trade-off curve. One endpoint of the trade-off curve is
achieved with a nonpreemptive schedule while the other endpoint is achieved
with a preemptive schedule. All the points on the trade-off curve can be
obtained by switching, in an appropriate manner, back and forth between
the SPT and LRPT rules. Actually, the algorithm for generating a schedule
that corresponds to any given point on the trade-off curve is polynomial (see
Exercise 5.19).
From Figure 15.7 it is clear that if θ1 = θ2 = 0.5, both breakpoints (and

all the points in between) are optimal.
From a mathematical point of view, a scheduler can limit himself to those

schedules that correspond to the breakpoints in the trade-off curve. However,
it may be the case that other considerations also play a role. For example, the
scheduler may prefer a nonpreemptive schedule over a preemptive one. ||
As stated before, nonpreemptive problems are usually harder than their pre-

emptive counterparts. The following example illustrates the application of a
procedure that is based on dispatching rules in a nonpreemptive environment.

Example 15.5.2 (Two Objectives in a Nonpreemptive Setting)

Consider an instance of Pm || θ1

∑
wjTj + θ2Cmax. There are m machines

in parallel and n jobs. Job j has a processing time pj, a due date dj , and a
weight wj . The objectives are the total weighted tardiness

∑
wjTj and the

makespan Cmax. The composite objective is θ1

∑
wjTj + θ2Cmax, where θ1

and θ2 are the weights of the two objectives. An appropriate rule for the first
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objective is the Apparent Tardiness Cost first (ATC) rule, which, when a
machine is freed at time t, selects the job with the highest index

Ij(t) =
wj
pj
exp

(
− max(dj − pj − t, 0)

Kp̄

)
,

where p̄ is the average of the remaining processing times and K is a scaling
parameter (see Chapter 14). On the other hand, a rule suitable for minimizing
the makespan is the Longest Processing Time first (LPT) rule. Clearly, it is
better to balance the m machines at the end of the process with shorter jobs
than with longer jobs.
Combining the two rules for the joint objective can be done as follows.

Since the makespan is determined mainly by the assignment of the jobs to
the machines at the end of the process, it makes sense to schedule the jobs
early in the schedule according to the ATC rule and switch at some point in
time (or after a certain number of jobs) to the LPT rule. The timing of the
switch-over depends on several factors, including the relative weights of the
two objectives (θ1 and θ2), the number of machines and the number of jobs.
So a rule can be devised that schedules the jobs in the beginning according
to ATC and then switches over to LPT. ||
Examples 15.5.1 and 15.5.2 are, of course, very stylized illustrations of how

different dispatching rules can be combined within a single framework. A proce-
dure that is based on dispatching rules is usually more complicated than those
described above.

Branch-and-bound and filtered beam search. These methods are applicable to
problems with multiple objectives in the same way as they are applicable to
problems with a single objective. The manner in which the branching tree is
constructed is similar to the way it is constructed for problems with a single
objective. However, the bounding techniques are often different. In filtered beam
search the subroutines at each one of the nodes in the branching tree may use
either composite dispatching rules or local search techniques.

Local search techniques. The four most popular local search techniques, i.e.,
simulated annealing, tabu-search, genetic algorithms, and Ant Colony Opti-
mization are discussed in Chapter 14. These techniques are just as suitable for
multi-objective problems as they are for single objective problems. However,
there are differences. With a single objective a local search procedure must
retain in memory only the very best schedule found so far. With multiple ob-
jectives a procedure must keep in memory all schedules that are Pareto-optimal
among the schedules generated so far. The criteria according to which a new
schedule is accepted depends on whether the new schedule is Pareto-optimal
among the set of retained schedules. If a new schedule is found that is Pareto-
optimal with respect to the set of schedules that are currently in memory, then
all current schedules have to be checked whether they remain Pareto-optimal
after the new schedule has been included. Genetic algorithms are particularly
well suited for multi-objective problems, since a genetic algorithm is already
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designed to carry a population of solutions from one iteration to the next. The
population could include Pareto-optimal schedules as well as other schedules.
The way the children of a population of schedules are generated may depend
on the weights of the various individual objectives within the overall objective.
The procedure may focus on those schedules that are the best with respect to
the objectives with the greatest weight and use those schedules for cross-overs
and other manipulations.

Perturbation analysis. Perturbation analysis is important when a parametric
analysis has to be done. The weights of the various objectives may not be fixed
and may be allowed to vary. In practice this may happen when a scheduler
simply does not know the exact weights of the objectives, and would like to see
optimal schedules that correspond to various sets of weights. Suppose that a
scheduler has a schedule that is very good with respect to one set of weights but
would like to increase the weight of one objective and decrease the weight of
another. He may want to consider the contribution that each job makes to the
objective that now has been assigned a larger weight and select those jobs that
contribute the most to this objective. The positions of these jobs can now be
changed via a local search heuristic in such a way that their contribution to the
objective that has become more important decreases, while attempting to ensure
that their contributions to the objectives that have become less important do
not increase substantially.
The next example illustrates the effectiveness of combining dispatching rules

with local search or perturbation analysis in a nonpreemptive environment.

Example 15.5.3 (Three Objectives in a Nonpreemptive Setting)

Consider the nonpreemptive scheduling problem described in Example 14.2.1.
However, consider now three objectives: the total weighted tardiness, the
makespan, and the maximum lateness, i.e.,

1 | sjk | θ1

∑
wjTj + θ2Cmax + θ3Lmax.

One can plot the Pareto-optimal points for any two of the three objectives.
The trade-offs between the total weighted tardiness and the makespan objec-
tive are particularly simple. Sequence 2, 4, 3, 1 minimizes both the makespan
and the total weighted tardiness; there are no trade-offs. The trade-offs be-
tween the total weighted tardiness and the maximum lateness are some-
what more complicated. If these two objectives are considered, there are five
Pareto-optimal schedules, namely

(2, 4, 3, 1), (2, 4, 1, 3), (1, 3, 4, 2), (1, 4, 3, 2), (1, 4, 2, 3)

(see Figure 15.8). However, note that even though schedule 2, 4, 1, 3 is Pareto-
optimal, it can never be optimal when the objective is θ1Lmax + θ2

∑
wjTj .

For any set of weights θ1 and θ2, either schedule 1, 4, 3, 2 or schedule 1, 4, 2, 3
dominates schedule 2, 4, 1, 3.
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sequence rule
∑

wjTj Cmax Lmax Pareto-optimal

1,2,3,4 204 54 32 no
1,2,4,3 139 51 30 no
1,3,2,4 (SST) 162 49 27 yes
1,3,4,2 (MS, EDD) 177 53 19 yes
1,4,2,3 101 53 32 yes
1,4,3,2 129 52 20 yes
2,1,3,4 (SST) 194 50 28 no
2,1,4,3 150 50 29 yes
2,3,1,4 203 51 29 no
2,3,4,1 165 54 42 no
2,4,1,3 (SPT) 110 51 30 yes
2,4,3,1 (SPT, SST, ATCS) 98 48 36 yes
3,1,2,4 215 53 31 no
3,1,4,2 213 55 21 no
3,2,1,4 211 53 31 no
3,2,4,1 159 54 42 no
3,4,1,2 191 59 34 no
3,4,2,1 135 54 42 no
4,1,2,3 140 58 37 no
4,1,3,2 162 56 24 no
4,2,1,3 (WSPT) 118 53 32 no
4,2,3,1 (WSPT) 122 54 42 no
4,3,1,2 146 55 30 no
4,3,2,1 102 52 40 no

�wjTj
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Fig. 15.8 Trade-off curve in a nonpreemptive environment
(Example 15.5.3)
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If the objectives Cmax and Lmax are considered, then there are four Pareto-
optimal schedules, namely

(2, 4, 3, 1), (1, 3, 4, 2), (1, 4, 3, 2), (1, 3, 2, 4).

From the two sets of Pareto-optimal schedules it is clear how useful local
search techniques and perturbation analysis are in conjunction with dispatch-
ing rules. Each set of Pareto-optimal schedules contains schedules that can
be obtained via dispatching rules. All other schedules in these two sets are
either one or at most two adjacent pairwise interchanges away from one of
the schedules obtained via a dispatching rule. ||
In practice, the best approach for handling multi-objective problems may be

a combination of several of the four approaches described above. For example,
consider a two phase procedure where in the first phase several (composite)
dispatching rules are used to develop a number of reasonably good initial feasible
schedules that are all different. One schedule may have a very low value of one
objective while a second may have a very low value of another objective. These
schedules are then fed into a genetic algorithm that attempts to generate a
population of even better schedules. Any schedule obtained in this manner
can also be used in either a branch-and-bound approach or in a beam search
approach, where a good initial feasible schedule reduces the number of nodes
to be evaluated.

15.6 Discussion

The heuristic approaches described in this chapter are all different. They tend to
work well only on certain problems and then often only on instances with certain
characteristics. However, their usefulness lies often in their contribution to the
overall performance when put in a framework in which they have to operate with
one or more other heuristic approaches. For example, in the shifting bottleneck
procedure many different approaches have been used in the optimization of the
single machine subproblem, namely

(i) composite dispatching rules,
(ii) dynamic programming, and
(iii) local search.

There is another class of techniques that is based on machine pricing and
time pricing principles; this class is somewhat similar to the market-based and
agent-based procedures. Complicated job shop scheduling problems can be for-
mulated as mathematical programs. These mathematical programs usually have
several sets of constraints. For example, one set of constraints may enforce the
fact that two jobs cannot be assigned to the same machine at the same point
in time. Such a set may be regarded as machine capacity constraints. Another
set of constraints may have to ensure that certain precedence constraints are
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enforced. Disregarding or relaxing one or more sets of constraints may make the
solution of the scheduling problem significantly easier. It is possible to incorpo-
rate such a set of constraints in the objective function by multiplying it with
a so-called Lagrangean multiplier. This Lagrangean multiplier is in effect the
penalty one pays for violating the constraints. If the solution of the modified
mathematical program violates any one of the relaxed constraints, the value
of the Lagrangean multiplier has to be changed at the next iteration of the
scheduling process in order to increase the penalty of violation and encourage
the search for a solution that does not violate the relaxed constraints.
The third section of Chapter 18 focuses on the design of scheduling engines

and algorithm libraries. The scheduling engine has to be designed in such a
way that the scheduler can easily build a framework by combining a number
of different techniques in the way that is the most suitable for the particular
problem (or instance) at hand.

Exercises (Computational)

15.1. Consider the following instance of 1 | rj |
∑

wjCj .

jobs 1 2 3 4 5 6 7 8 9

rj 7 7 9 17 33 35 39 40 42
wj 1 5 1 5 5 1 5 1 5
pj 9 10 6 3 10 8 6 2 2

Design a job-based decomposition procedure for this problem and apply the
procedure to the given instance. Compare your result with the result in Exam-
ple 15.2.1 when all weights are equal.

15.2. Consider 1 | rj , prmp | ∑wjTj .

jobs 1 2 3 4 5 6 7 8 9

pj 7 6 7 6 5 5 8 9 4
wj 6 7 7 6 5 6 8 9 6
rj 2 8 11 11 27 29 31 33 45
dj 22 25 24 24 42 51 53 52 55

Design a job-based decomposition technique when the jobs are subject to release
dates and preemptions are allowed. Apply your procedure to the instance above.

15.3. Apply the constraint guided heuristic search technique to the following
instance of Jm || Lmax
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jobs machine sequence dj processing times

1 1, 2, 3 28 p11 = 10, p21 = 8, p31 = 4
2 2, 1, 4, 3 22 p22 = 8, p12 = 3, p42 = 5, p32 = 6
3 1, 2, 4 21 p13 = 4, p23 = 7, p43 = 3

15.4. Consider the instance of Jm | rj |
∑

wjTj described in Example 15.4.2.

job wj rj dj machine sequence processing times

1 1 5 24 1,2,3 p11 = 5, p21 = 10, p31 = 4
2 2 0 18 3,1,2 p32 = 4, p12 = 5, p22 = 6
3 2 0 16 3,2,1 p33 = 5, p23 = 3, p13 = 7

Apply the constraint guided heuristic search technique to this instance. (Hint:
In contrast to the Lmax objective, the different jobs now may have completely
different tardinesses. The following heuristic may be used. Assume that all the
jobs end up with approximately the same amount of tardiness penalty wjTj .
Parametrize on this tardiness penalty: Assume that each job has the same
weighted tardiness penalty wjTj = z. The z together with the weight wj and
the due date dj translates into a deadline, i.e., d̄j = dj + z/wj.)

15.5. Consider a flexible flow shop with a number of stages. The last stage is a
bank of two unrelated machines in parallel. At time 400 only one more job has
to be processed at the last stage. This job has a due date of 390 and a weight
of 5. Both machines are idle at time 400 and if machine 1 would process the job
its processing time is 10 and if machine 2 would process the job its processing
time is 40. The cost of operating machine 1 is $4 per unit time and the cost of
operating machine 2 is $1 per unit time. Each MA has all information.
What prices should the two machines submit and which machine ends up pro-
cessing the job?

15.6. Consider the following instance of 1 || θ1

∑
wjCj + θ2Lmax with 6 jobs.

The objectives are
∑

wjCj and Lmax and the weights are θ1 and θ2, respectively.

jobs 1 2 3 4 5 6

dj 7 7 9 17 33 35
wj 9 15 12 3 20 24
pj 9 10 6 3 10 8

(a) Show that the optimal preemptive schedule is nonpreemptive.
(b) Describe a heuristic that gives a good solution with any given combi-
nation of weights θ1 and θ2.
(c) Describe a branch-and-bound approach for this problem.
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15.7. Apply the constraint guided heuristic search procedure to the following
instance of Jm || Cmax.

jobs machine sequence processing times

1 1,2,3,4 p11 = 9, p21 = 8, p31 = 4, p41 = 4
2 1,2,4,3 p12 = 5, p22 = 6, p42 = 3, p32 = 6
3 3,1,2,4 p33 = 10, p13 = 4, p23 = 9, p43 = 2

Compare your result with the result of Exercise 7.3.

15.8. Consider again the instance of Jm | rj |
∑

wjTj described in Exam-
ple 15.4.2 and in Exercise 15.4. Apply a bidding and pricing heuristic, in which
each JA has to negotiate (whenever an operation has been completed) for the
operation that comes after the next one (not for the next one as in Exam-
ple 15.4.2). Note that while the scheduling process goes on, the JA has, when
an operation has been completed, already a contract in place for the next op-
eration; the JA then only has to negotiate for the operation after the next one
(however, when a job enters the shop for the first time the JA has to negotiate
for both the first and the second operation on the job’s route).
Compare your results with the results in Example 15.4.2.

15.9. Consider the instance in Example 15.5.3.

(a) Consider the objective θ1Lmax+ θ2

∑
wjTj (assume θ1+ θ2 = 1). Find

the ranges of θ1 and θ2 for which any one of the schedules is optimal.
(b) Consider the objective θ1Lmax+θ3Cmax (assume θ1+θ3 = 1). Find the
ranges of θ1 and θ3 for which any one of the schedules is optimal.

15.10. Consider again the instance in Example 15.5.3. Consider now the ob-
jective θ1Lmax+θ2

∑
wjTj+θ3Cmax (assume θ1+θ2+θ3 = 1). Find the ranges

of θ1, θ2 and θ3 for which any one of the schedules is optimal.

Exercises (Theory)

15.11. Consider Example 15.2.1 and Exercise 15.1. Design a hybrid decompo-
sition scheme for 1 | rj |

∑
wjCj , that takes the function V (t) into account as

well as the different weights of the jobs.

15.12. Consider Example 15.2.3 and Exercise 15.2. Design a hybrid decompo-
sition scheme for 1 | rj , prmp | ∑wjTj that takes into account V (t), due date
clusters and the weights of the jobs.

15.13. Consider the problem 1 | rj |
∑

Tj. Design a time-based decomposition
method that is based on both the release dates and the due dates of the jobs.
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15.14. Consider the market-based procedure described in Section 15.4. In the
heuristic that the MA uses, he may wish to have an estimate for the future
supply and demand for machine capacity. Describe methods to estimate future
supply and demand for the two information infrastructures described in Section
15.4.

15.15. Consider the market-based procedure described in Section 15.4. De-
scribe a goodness of fit measure assuming the MA knows the frequency of the
calls for bids that are about to come in as well as the distribution of the corre-
sponding processing times (i.e., the mean and the variance).

15.16. Consider the market-based procedure described in Section 15.4. Sup-
pose a JA receives multiple bids after sending out a call for bids. Design a
heuristic for the JA to select a bid.

15.17. Consider a machine environment with two uniform machines in parallel
with different speeds. Preemptions are allowed. There are two objectives: the
makespan and the total completion time. Prove or disprove that the trade-off
curve is decreasing convex.

Comments and References

Beam search and filtered beam search were first applied to scheduling by Ow
and Morton (1988). For more details on this method, see the text by Morton
and Pentico (1993).
An excellent treatise on decomposition methods is given by Ovacik and Uzsoy

(1997). For some more recent results, see the papers by Chand, Traub and Uzsoy
(1996, 1997), Szwarc (1998), and Elkamel and Mohindra (1999).
Constraint guided heuristic search (constraint-based programming) is a de-

velopment that originated among computer scientists and artificial intelligence
experts; see Fox and Smith (1984), and Fox (1987). The example of constraint
guided heuristic search presented in Section 15.3 is an adaptation of Chapter
8 in the book by Baptiste, Le Pape and Nuijten (2001). For more applications
of constraint-based programming to scheduling, see Nuijten (1994), Baptiste,
Le Pape, and Nuijten (1995), Nuijten and Aarts (1996) and Cheng and Smith
(1997).
Market-Based and Agent-Based procedures have been a topic of significant

research interest in the scheduling community as well as in other communities.
Some of the early papers in the scheduling field are by Shaw (1987, 1988a,
1989), Ow, Smith, and Howie (1988) and Roundy, Maxwell, Herer, Tayur and
Getzler (1991). For examples of auction and bidding protocols, see the paper
by Sandholm (1993), Kutanoglu and Wu (1999) and Wellman, Walsh, Wurman
and MacKie-Mason (2000). Sabuncuoglu and Toptal (1999a, 1999b) present a
clear overview of the concepts in distributed scheduling and bidding algorithms.
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A significant amount of research has been done on multi-objective scheduling.
Most of it focuses on single machine scheduling, see Chapter 4 and its refer-
ences. Less research has been done on parallel machine problems with multiple
objectives. Eck and Pinedo (1993) consider a nonpreemptive parallel machine
scheduling problem with makespan and total completion time as objectives. Mc-
Cormick and Pinedo (1995) consider a preemptive parallel machine scheduling
problem with makespan and total completion time as objectives and obtain a
polynomial time algorithm. The book by Deb (2001) focuses on the application
of genetic algorithms to multi-objective optimization problems.
The pricing procedure described in the discussion section is due to Luh,

Hoitomt, Max and Pattipati (1990), Hoitomt, Luh and Pattipati (1993) and
Luh and Hoitomt (1993).



Chapter 16

Modeling and Solving Scheduling
Problems in Practice

16.1 Scheduling Problems in Practice . . . . . . . . . . . . . . . . . . 428
16.2 Cyclic Scheduling of a Flow Line . . . . . . . . . . . . . . . . . . 431
16.3 Scheduling of a Flexible Flow Line with Limited

Buffers and Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
16.4 Scheduling of a Flexible Flow Line with Unlimited

Buffers and Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
16.5 Scheduling a Bank of Parallel Machines with Jobs

having Release Dates and Due Dates . . . . . . . . . . . . . . 448
16.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

In Parts I and II a number of stylized and (supposedly) elegant mathematical
models are discussed in detail. The deterministic models have led to a number
of simple priority rules as well as to many algorithmic techniques and heuristic
procedures. The stochastic models have provided some insight into the robust-
ness of the priority rules. The results for the stochastic models have led to the
conclusion that the more randomness there is in a system, the less advisable it
is to use very sophisticated optimization techniques. Or, equivalently, the more
randomness the system is subject to, the simpler the scheduling rules ought to
be.
It is not clear how all this knowledge can be applied to scheduling problems

in the real world. Such problems tend to differ considerably from the stylized
models studied by academic researchers. The first section of this chapter focuses
on the differences between the real world problems and the theoretical models.
The subsequent four sections deal with examples of scheduling problems that
have appeared in industry and for which algorithmic procedures have been
developed. The second section illustrates the use of the Profile Fitting heuristic
(described in Section 6.2). The third section discusses an application of the LPT
heuristic (described in Section 5.1) within an algorithmic framework for flexible
flow shops with bypass. The next section illustrates an application of the ATCS
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heuristic (described in Section 14.2) within a framework for flexible flow shops
without bypass. The fifth section contains an application of constraint guided
heuristic search (described in Section 15.3). In the last section a number of
modelling issues are discussed.
The applications described in this chapter illustrate the fact that the rules

and the techniques introduced and analyzed in Parts I and II can be very
useful. However, these rules and techniques usually have to be embedded in a
more elaborate framework that deals with all aspects of the problem.

16.1 Scheduling Problems in Practice

Real world scheduling problems are usually very different from the mathemat-
ical models studied by researchers in academia. It is not easy to list all the
differences between the real world problems and the theoretical models, as ev-
ery real world problem has its own particular idiosyncrasies. Nevertheless, a
number of differences are common and therefore worth mentioning.
(i) Theoretical models usually assume that there are n jobs to be scheduled

and that after scheduling these n jobs the problem is solved. In the real world
there may be at any point in time n jobs in the system, but new jobs are added
continuously. Scheduling the current n jobs has to be done without a perfect
knowledge of the near future. Hence, some provisions have to be made in order to
be prepared for the unexpected. The dynamic nature may require, for example,
that slack times are built into the schedule to accommodate unexpected rush
jobs or machine breakdowns.
(ii) Theoretical models usually do not emphasize the resequencing problem.

In practice the following problem often occurs: there exists a schedule, which was
determined earlier based on certain assumptions, and an (unexpected) random
event occurs that requires either major or minor modifications in the existing
schedule. The rescheduling process, which is sometimes referred to as reactive
scheduling, may have to satisfy certain constraints. For example, one may wish
to keep the changes in the existing schedule at a minimum, even if an optimal
schedule cannot be achieved this way. This implies that it is advantageous to
construct schedules that are in a sense “robust”. That is, resequencing brings
about only minor changes in the schedule. The opposite of robust is often re-
ferred to as “brittle”.
(iii) Machine environments in the real world are often more complicated

than the machine environments considered in previous chapters. Processing
restrictions and constraints may also be more involved. They may be either
machine dependent, job dependent or time dependent.
(iv) In the mathematical models the weights (priorities) of the jobs are as-

sumed to be fixed, i.e., they do not change over time. In practice, the weight of
a job often fluctuates over time and it may do so as a random function. A low
priority job may become suddenly a high priority job.
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Fig. 16.1 A Penalty Function in Practice

(v) Mathematical models often do not take preferences into account. In a
model a job either can or cannot be processed on a given machine. That is,
whether or not the job can be scheduled on a machine is a 0− 1 proposition. In
reality, it often occurs that a job can be scheduled on a given machine, but for
some reason there is a preference to process it on another one. Scheduling it on
the first machine would only be done in case of an emergency and may involve
additional costs.
(vi) Most theoretical models do not take machine availability constraints

into account; usually it is assumed that machines are available at all times.
In practice machines are usually not continuously available. There are many
reasons why machines may not be in operation. Some of these reasons are based
on a deterministic process, others on a random process. The shift pattern of the
facility may be such that the facility is not in operation throughout. At times
preventive maintenance may be scheduled. The machines may be also subject
to a random breakdown and repair process.
(vii) Most penalty functions considered in research are piecewise linear, e.g.,

the tardiness of a job, the unit penalty, and so on. In practice there usually does
exist a committed shipping date or due date. However, the penalty function is
usually not piecewise linear. In practice, the penalty function may take, for
example, the shape of an “S” (see Figure 16.1). Such a penalty function may be
regarded as a function that lies somewhere in between the tardiness function
and the unit penalty function.
(viii) Most theoretical research has focused on models with a single objec-

tive. In the real world there are usually a number of objectives. Not only are
there several objectives, their respective weights may vary over time and may
even depend on the particular scheduler in charge. One particular combination
of objectives appears to occur very often, especially in the process industry,
namely the minimization of the total weighted tardiness and the minimization
of the sum of the sequence dependent setup times (especially on bottleneck
machines). The minimization of the total weighted tardiness is important since
maintaining quality of service is usually an objective that carries weight. The
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minimization of the sum of the sequence dependent setup times is important
as, to a certain extent, it increases the throughput. When such a combination is
the overall objective, the weights given to the two objectives may not be fixed.
The weights may depend on the time as well as on the current status of the
production environment. If the workload is relatively heavy, then minimization
of the sequence dependent setup times is more important; if the workload is
relatively light, minimization of the total weighted tardiness is more important.
(ix) The scheduling process is in practice often strongly connected with the

assignment of shifts and the scheduling of overtime. Whenever the workload
appears to be excessive and due dates appear to be too tight, the decision-
maker may have the option to schedule overtime or put in extra shifts in order
to meet the committed shipping dates.
(x) The stochastic models studied in the literature usually assume very spe-

cial processing time distributions. The exponential distribution, for example, is
a distribution that has been studied in depth. In reality, processing times are
usually not exponentially distributed. Some measurements have shown that pro-
cessing times may have a density function like the one depicted in Figure 16.2.a.
One can think of this density function as the convolution of a deterministic
(fixed value) and an Erlang(k, λ). The number of phases of the Erlang(k, λ)
tends to be low, say 2 or 3. This density function tends to occur in the case of
a manual performance of a given task. That processing times may have such
a density function is plausible. One can imagine that there is a certain mini-
mum time that is needed to perform the task to be done. Even the best worker
cannot get below this minimum (which is equal to the fixed value). However,
there is a certain amount of variability in the processing times that may de-
pend on the person performing the task. The density function may have a tail
at the right which represents those processing times during which something
went wrong. One can easily show that this density function has an Increasing
Completion Rate. Another type of density function that does occur in practice
is the one depicted in Figure 16.2.b. The processing time is a fixed value with
a very high probability, say .98, and with a very low probability, say .02, it is
an additional random time that is exponentially distributed with a very large
mean. This type of density function occurs often in automated manufacturing
or assembly. If a robot performs a task, the processing time is always fixed (de-
terministic); however, if by accident something goes wrong the processing time
becomes immediately significantly larger.
(xi) Another important aspect of random processing times is correlation.

Successive processing times on the same machine tend to be highly positively
correlated in practice. In the stochastic models studied in the literature usually
all processing times are assumed to be independent draws from (a) given distri-
bution(s). One of the effects of a positive correlation is an increase the variance
of the performance measures.
(xii) Processing time distributions may be subject to change due to learning

or deterioration. When the distribution corresponds to a manual operation, then
the possibility of learning exists. The human performing the operation may be
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able to reduce the average time he needs for performing the operation. If the
distribution corresponds to an operation in which a machine is involved, then
the aging of the machine may have as effect that the average processing time
increases.
In spite of the many differences between the real world and the mathematical

models discussed in the previous sections, the general consensus is that the
theoretical research done in past years has not been a complete waste of time. It
has provided valuable insights into many scheduling problems and these insights
have proven to be useful in the development of the algorithmic framework for
a large number of real world scheduling systems.
The remaining part of this chapter deals with examples of real world problems

for which scheduling theory has turned out to be useful. In practice scheduling
problems are often tackled with seemingly crude heuristics. The reason for not
applying more sophisticated procedures is usually based on the relatively high
frequency of random events. Such events often cause schedule changes during
the execution of an existing schedule.

16.2 Cyclic Scheduling of a Flow Line

Consider a number of machines in series with a limited buffer between each two
successive machines. When a buffer is full, the machine that feeds that buffer
cannot release any more jobs; this machine is then blocked. Serial processing
is common in assembly lines for physically large items, such as television sets,
copiers and automobiles, whose size makes it difficult to keep many items wait-
ing in front of a machine. Also, the material handling system does not permit
a job to bypass another so that each machine serves the jobs according to the
First In First Out (FIFO) discipline. These flow lines with blocking are often
used in Flexible Assembly Systems.
Since different jobs may correspond to different product types, the processing

requirements of one job may be different from those of another. Even if jobs are
from the same product family, they may have different option packages. The
timing of job releases from a machine may be a function of the queue at the
machine immediately downstream as well as of the queue at the machine itself.
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This machine environment with limited buffers is mathematically equivalent
to a system of machines in series with no buffers between any machines. Within
such a system a buffer space can be modeled as a machine at which all pro-
cessing times are zero. So any number of machines with limited buffers can
be transformed mathematically into a system with a (larger) number of ma-
chines in series and zero buffers in between the machines. Such a model, with
all buffers equal to zero, is mathematically easier to formulate because of the
fact that there are no differences in the buffer sizes.
Sequences and schedules used in flow lines with blocking are often periodic

or cyclic. That is, a number of different jobs are scheduled in a certain way and
this schedule is repeated over and over again. It is not necessarily true that a
cyclic schedule has the maximum throughput. Often, an acyclic schedule has
the maximum throughput. However, cyclic schedules have a natural advantage
because of their simplicity; they are easy to keep track of and impose a certain
discipline. In practice, there is often an underlying basic cyclic schedule from
which minor deviations are allowed, depending upon current orders.
In order to discuss this class of schedules further, it is useful to define the

Minimum Part Set (MPS). Let Nk denote the number of jobs that correspond
to product type k in the overall production target. Suppose there are l different
product types. If q is the greatest common divisor of the integers N1, . . . ,Nl,
then the vector

N̄ =
(N1

q
, . . . ,

Nl
q

)
represents the smallest set having the same proportions of the different product
types as the production target. This set is usually referred to as the Minimum
Part Set (MPS). Given the vector N̄ , the items in an MPS may, without loss
of generality, be regarded as n jobs, where

n =
1
q

l∑
k=1

Nk.

The processing time of job j, j = 1, . . . , n, on machine i is pij . Cyclic schedules
are specified by the sequence of the n jobs in the MPS. The fact that some jobs
within an MPS may correspond to the same product type and have identical
processing requirements does not affect the approach described below.
The Profile Fitting (PF) heuristic described in Chapter 6 for Fm | block |

Cmax is well suited for the machine environment described above and appears
to be a good heuristic for minimizing the cycle time in steady state. The cycle
time is the time between the first jobs of two consecutive MPS’s entering the
system. Minimizing the cycle time is basically equivalent to maximizing the
throughput. The following example illustrates the cycle time concept.

Example 16.2.1 (MPS Cycle Time)
Consider an assembly line with four machines and no buffers between ma-
chines. There are three different product types and they have to be produced
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in equal amounts, i.e.,
N̄ = (1, 1, 1).

The processing times of the three jobs in the MPS are:

jobs 1 2 3

p1j 0 1 0
p2j 0 0 0
p3j 1 0 1
p4j 1 1 0

The second “machine” (that is, the second row of processing times), with
zero processing times for all three jobs, functions as a buffer between the
first and third machines. The Gantt charts for this example under the two
different sequences are shown in Figure 16.3. Under both sequences steady
state is reached during the second cycle. Under sequence 1, 2, 3 the cycle time
is three, whereas under sequence 1, 3, 2 the cycle time is two. ||
Heuristics that attempt to minimize the makespan in a flow shop with block-

ing and a finite number of jobs (Fm | block | Cmax), also tend to minimize the
cycle time of a cyclic schedule for a flow environment with blocking. A variation
of the Profile Fitting (PF) heuristic suitable for the problem described above
works as follows: one job is selected to go first. The selection of the first job in
the MPS sequence may be done arbitrarily or according to some scheme. This
first job generates a profile. For the time being, it is assumed that the job does
not encounter any blocking and proceeds smoothly from one machine to the
next (in steady state the first job in an MPS may be blocked by the last job
from the previous MPS). The profile is determined by the departure time of
this first job, job j1, from machine i.

Di,j1 =
i∑
h=1

ph,j1

In order to determine which is the most appropriate job to go second, every
remaining job in the MPS is tried out. For each candidate job a computation
has to be made to determine the times that the machines are idle and the
times that the job is blocked at the various machines. The departure times of
a candidate job for the second position, say job c, can be computed recursively
as follows:

D1,j2 = max(D1,j1 + p1c, D2,j1)
Di,j2 = max(Di−1,j2 + pic, Di+1,j1), i = 2, . . . ,m− 1
Dm,j2 = Dm−1,j2 + pmc
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Fig. 16.3 Gantt charts for Example 16.2.1

If candidate c is put into the second position, then the time wasted at machine i,
because of either idleness or blocking, is Di,j2 −Di,j1 − pic. The sum of these
idle and blocked times over all m machines is computed for candidate c. This
procedure is repeated for all remaining jobs in the MPS. The candidate with
the smallest total wasted time is then selected for the second position.
After the best fitting job is added to the partial sequence, the new profile

(the departure times of this job from all the machines) is computed and the
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procedure is repeated. From the remaining jobs in the MPS again the best
fitting is selected and so on.
Observe that in Example 16.2.1 after job 1, the PF heuristic would select job 3

to go next, as this would cause only one unit of blocking time (on machine 2)
and no idle times. If job 2 were selected to go after job 1, one unit of idle time
would be incurred at machine 2 and one unit of blocking on machine 3, resulting
in two units of time wasted. So in this example the heuristic would lead to the
optimal sequence.
Experiments have shown that the PF heuristic results in schedules that are

close to optimal. However, the heuristic can be refined and made to perform
even better. In the description presented above the goodness of fit of a particular
job was measured by summing all the times wasted on the m machines. Each
machine was considered equally important. Suppose one machine is a bottleneck
machine, at which more processing has to be done than on any one of the other
machines. It is intuitive that lost time on a bottleneck machine is more damaging
than lost time on a machine that on the average does not have much processing
to do. When measuring the total amount of lost time, it may be appropriate
to weight each inactive time period by a factor proportional to the degree of
congestion at the particular machine. The higher the degree of congestion at a
machine, the larger the weight. One measure for the degree of congestion of a
machine is easy to calculate; simply determine the total amount of processing
to be done on all jobs in an MPS at the machine in question. In the numerical
example presented above the third and the fourth machines are more heavily
used than the first and second machines (the second machine was not used at
all and basically functioned as a buffer). Time wasted on the third and fourth
machines is therefore less desirable than time wasted on the first and second
machines. Experiments have shown that such a weighted version of the PF
heuristic works exceptionally well.

Example 16.2.2 (Application of Weighted Profile Fitting)

Consider three machines and an MPS of four jobs. There are no buffers
between machines 1 and 2 and between machines 2 and 3. The processing
times of the four jobs on the three machines are in the following table.

jobs 1 2 3 4

p1j 2 4 2 3
p2j 4 4 0 2
p3j 2 0 2 0

All three machines are actual machines and none are buffers. The workloads
on the three machines are not entirely balanced. The workload on machine 1
is 11, on machine 2 it is 10 and on machine 3 it is 4. So, time lost on machine 3
is less detrimental than time lost on the other two machines. If a weighted
version of the Profile Fitting heuristic is used, then the weight applied to
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the time wasted on machine 3 must be smaller than the weights applied to
the time wasted on the other two machines. In this example the weights for
machines 1 and 2 are chosen to be 1 while the weight for machine 3 is chosen
to be 0.
Assume job 1 is the first job in the MPS. The profile can be determined

easily. If job 2 is selected to go second, then there will be no idle times
or times blocked on machines 1 and 2; however machine 3 will be idle for
2 time units. If job 3 is selected to go second, machines 1 and 2 are both
blocked for two units of time. If job 4 is selected to go second, machine 1
will be blocked for one unit of time. As the weight of machine 1 is 1 and of
machine 3 is 0, the weighted PF selects job 2 to go second. It can easily be
verified that the weighted PF results in the cycle 1, 2, 4, 3, with a cycle time
of 12. If the unweighted version of the PF heuristic were applied and job 1
again was selected to go first, then job 4 would be selected to go second. The
unweighted PF heuristic would result in the sequence 1, 4, 3, 2 with a cycle
time of 14. ||

16.3 Scheduling of a Flexible Flow Line with Limited
Buffers and Bypass

Consider a number of stages in series with a number of machines in parallel at
each stage. A job, which in this environment often is equivalent to a batch of
relatively small identical items such as Printed Circuit Boards (PCB’s), needs to
be processed at every stage on only one machine. Usually, any of the machines
will do, but it may be that not all the machines at a given stage are identical
and that a given job has to be processed on a specific machine. A job may not
need to be processed at a stage at all; in this case the material handling system
that moves jobs from one stage to the next will usually allow a job to bypass
a stage and all the jobs residing at that stage (see Figure 16.4). The buffers at
each stage may have limited capacity. If this is the case and the buffer is full,
then either the material handling system must come to a standstill, or, if there
is the option to recirculate, the job bypasses that stage and recirculates. The
manufacturing process is repetitive and it is of interest to find a cyclic schedule
(similar to the one in the previous section).
The Flexible Flow Line Loading (FFLL) algorithm was designed at IBM

for the machine environment described above. The algorithm was originally
conceived for an assembly system used for the insertion of components in PCB’s.
The two main objectives of the algorithm are

(i) the maximization of throughput and
(ii) the minimization of WIP.

With the goal of maximizing the throughput an attempt is made to minimize
the makespan of a whole day’s mix. The FFLL algorithm actually attempts to
minimize the cycle time of a Minimum Part Set (MPS). As the amount of



16.3 Scheduling of a Flexible Flow Line with Limited Buffers and Bypass 437

Material
handling
system

Stage 1 Stage 2

Fig. 16.4 Flexible flow shop with bypass

buffer space is limited, it is recommended to minimize the WIP in order to
reduce blocking probabilities. The FFLL algorithm consists of three phases:

Phase 1: machine allocation,
Phase 2: sequencing,
Phase 3: timing of releases.

The machine allocation phase assigns each job to a particular machine in
each bank of machines. Machine allocation is done before sequencing and tim-
ing because in order to perform the last two phases the workload assigned to
each machine must be known. The lowest conceivable maximum workload at a
bank would be obtained if all the machines in that bank were given the same
workload. In order to obtain balanced, or nearly balanced, workloads over the
machines in a bank, the Longest Processing Time first (LPT) heuristic, de-
scribed in Section 5.1, is used. According to this heuristic all the jobs are, for
the time being, assumed to be available at the same time and are allocated
to a bank one at a time on the next available machine in decreasing order of
their processing time. After the allocation is determined in this way, the items
assigned to a machine may be resequenced, which does not alter the workload
balance over the machines in a given bank. The output of this phase is merely
the allocation of jobs and not the sequencing of the jobs or the timing of the
processing.
The sequencing phase determines the order in which the jobs of the MPS are

released into the system, which has a strong effect on the cycle time. The FFLL
algorithm uses a Dynamic Balancing heuristic for sequencing an MPS. This
heuristic is based on the intuitive observation that jobs tend to queue up in the
buffer of a machine if a large workload is sent to that machine within a short
time interval. This occurs when there is an interval in the loading sequence that
contains many jobs with large processing times going to the same machine. Let
n be the number of jobs in an MPS and m the number of machines in the entire
system. Let pij denote the processing time of job j on machine i. Note that
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pij = 0 for all but one machine in a bank. Let

Wi =
n∑
j=1

pij ,

that is, the workload in an MPS destined for machine i. Let

W =
m∑
i=1

Wi,

represent the entire workload of an MPS. For a given sequence, let Sj denote
the set of jobs loaded into the system up to and including job j. Let

αij =
∑
k∈Sj

pik
Wi

.

The αij represent the fraction of the total workload of machine i that has
entered the system by the time job j is loaded. Clearly, 0 ≤ αij ≤ 1. The
Dynamic Balancing heuristic attempts to keep the α1j , α2j , . . . , αmj as close to
one another as possible, i.e., as close to an ideal target α∗

j , which is defined as
follows:

α∗
j =

∑
k∈Sj

m∑
i=1

pik/

n∑
k=1

m∑
i=1

pik

=
∑
k∈Sj

pk/W,

where

pk =
m∑
i=1

pik,

which represents the workload on the entire system due to job k. So α∗
j is the

fraction of the total system workload that is released into the system by the
time job j is loaded. The cumulative workload on machine i,

∑
k∈Sj

pik, should
be as close as possible to the target α∗

jWi. Now let oij denote a measure of
overload at machine i due to job j entering the system

oij = pij − pjWi/W.

Clearly, oij may be negative (in which case there is actually an underload).
Now, let

Oij =
∑
k∈Sj

oik =
( ∑
k∈Sj

pik

)
− α∗

jWi.
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That is, Oij denotes the cumulative overload (or underload) on machine i due
to the jobs in the sequence up to and including job j. To be exactly on target
means that machine i is neither overloaded nor underloaded when job j enters
the system, i.e., Oij = 0. The Dynamic Balancing heuristic now attempts to
minimize

m∑
i=1

n∑
j=1

max(Oij , 0).

The procedure is basically a greedy heuristic, that selects from among the re-
maining items in the MPS the one that minimizes the objective at that point
in the sequence.
The timing of releases phase works as follows. From the allocation phase the

MPS workloads at each machine are known. The machine with the greatest
MPS workload is the bottleneck since the cycle time of the schedule cannot
be smaller than the MPS workload at the bottleneck machine. It is easy to
determine a timing mechanism that results in a minimum cycle time schedule.
First, let all jobs in the MPS enter the system as rapidly as possible. Consider
the machines one at a time. At each machine the jobs are processed in the order
in which they arrive and processing starts as soon as the job is available. The
release times are now modified as follows. Assume that the starting times and
the completion times on the bottleneck machine are fixed. First, consider the
machines that are positioned before the bottleneck machine (that is, upstream
of the bottleneck machine) and delay the processing of all jobs on each one
of these machines as much as possible without altering the job sequences. The
delays are thus determined by the starting times on the bottleneck machine.
Second, consider the machines that are positioned after the bottleneck machine.
Process all jobs on these machines as early as possible, again without altering
job sequences. These modifications in release times tend to reduce the number
of jobs waiting for processing, thus reducing required buffer space.
This three-phase procedure attempts to find the cyclic schedule with mini-

mum cycle time in steady state. If the system starts out empty at some point
in time, it may take a few MPS’s to reach steady state. Usually, this transient
period is very short. The algorithm tends to achieve short cycle times during
the transient period as well.
Extensive experiments with the FFLL algorithm indicates that the method

is a valuable tool for scheduling flexible flow lines.

Example 16.3.1 (Application of the FFLL Algorithm)
Consider a flexible flow shop with three stages. At stages 1 and 3 there are
two machines in parallel. At stage 2, there is a single machine. There are
five jobs in an MPS. If p′kj denotes the processing time of job j at stage k,
k = 1, 2, 3, then
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jobs 1 2 3 4 5

p′1j 6 3 1 3 5
p′2j 3 2 1 3 2
p′3j 4 5 6 3 4

The first phase of the FFLL algorithm performs an allocation procedure
for stages 1 and 3. Applying the LPT heuristic to the five jobs on the two
machines in stage 1 results in an allocation of jobs 1 and 4 to one machine
and jobs 5, 2 and 3 to the other machine. Both machines have to perform
a total of 9 time units of processing. Applying the LPT heuristic to the
five jobs on the two machines in stage 3 results in an allocation of jobs 3
and 5 to one machine and jobs 2, 1 and 4 to the other machine (the LPT
heuristic actually does not result in an optimal balance in this case). Note
that machines 1 and 2 are at stage 1, machine 3 is at stage 2 and machines 4
and 5 are at stage 3. If pij denotes the processing time of job j on machine i,
then

jobs 1 2 3 4 5

p1j 6 0 0 3 0
p2j 0 3 1 0 5

p3j 3 2 1 3 2

p4j 4 5 0 3 0
p5j 0 0 6 0 4

The workload of machine i due to a single MPS, Wi, can now be computed
easily. The workload vector Wi is (9, 9, 11, 12, 10) and the entire workload
W is 51. The workload imposed on the entire system due to job k, pk, can
also be computed easily. The pk vector is (13, 10, 8, 9, 11). Based on these
numbers all values of the oij can be computed, for example,

o11 = 6− 13× 9/51 = +3.71
o21 = 0− 13× 9/51 = −2.29
o31 = 3− 13× 11/51 = +0.20
o41 = 4− 13× 12/51 = +0.94
o51 = 0− 13× 10/51 = −2.55

and computing the entire oij matrix yields
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+3.71 −1.76 −1.41 +1.41 −1.94
−2.29 +1.23 −0.41 −1.59 +3.06
+0.20 −0.16 −0.73 +1.06 −0.37
+0.94 +2.64 −1.88 +0.88 −2.59
−2.55 −1.96 +4.43 −1.76 +1.84

Of course, the solution also depends on the initial job in the MPS. If the initial
job is chosen according to the Dynamic Balancing heuristic, then job 4 is the
job that goes first. The Oi4 vector is then (+1.41,−1.59,+1.06,+0.88,−1.76).
There are four jobs that then qualify to go second, namely jobs 1, 2, 3 and 5.
If job j goes second, then the respective Oij vectors are:

Oi1 = (+5.11,−3.88,+1.26,+1.82,−4.31)
Oi2 = (−0.35,−0.36,+0.90,+3.52,−3.72)
Oi3 = (+0.00,−2.00,+0.33,−1.00,+2.67)
Oi5 = (−0.53,+1.47,+0.69,−1.71,+0.08)

It is clear that the Dynamic Balancing heuristic then selects job 5 to go
second. Proceeding in the same manner the Dynamic Balancing heuristic
selects job 1 to go third and

Oi1 = (+3.18,−0.82,+0.89,−0.77,−2.47).

In the same manner it is determined that job 3 goes fourth. Then

Oi3 = (+1.76,−1.23,+0.16,−2.64,+1.96).

The final cycle is thus 4, 5, 1, 3, 2.
Applying the release timing phase on this cycle results initially in the

schedule depicted in Figure 16.5. The cycle time of 12 is actually determined
by machine 4 (the bottleneck machine) and there is therefore no idle time
allowed between the processing of jobs on this machine. It is clear that the
processing of jobs 3 and 2 on machine 5 can be postponed by three time
units. ||

16.4 Scheduling of a Flexible Flow Line with Unlimited
Buffers and Setups

In this section the environment of Example 1.1.1 in Chapter 1 is considered (the
paper bag factory). As in the previous section, there are a number of stages in
series with a number of machines in parallel at each stage. The machines at
a particular stage may be different for various reasons. For example, the more
modern machines can accommodate a greater variety of jobs and can operate at
a higher speed than the older machines. One stage (sometimes two) constitutes
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Fig. 16.5 Gantt charts for the FFLL algorithm

a bottleneck. The scheduler is usually aware which stage this is. However, unlike
the environments considered in Sections 16.2 and 16.3, this is not a repetitive
manufacturing process. The set of jobs to be scheduled at one point in time is
usually different from the set of jobs to be scheduled at any other point in time.
The jobs that have to be processed are characterized by their processing

times, their due dates (committed shipping dates) as well as by their physical
characteristics. The physical characteristics of a job are usually determined by
one or more parameters. In the paper bag factory described in Example 1.1.1
the parameters of a job are the size and shape of the bags as well as the colors
that are used in the printing process. When one job is completed on a given
machine and another has to start, a setup is required. The duration of the setup
depends on both jobs; in particular, on the similarities (or differences) between
the physical characteristics of the two jobs.
The machine configuration is a flexible flow shop (see Figure 16.6). The

scheduler has to keep three basic objectives in mind. The primary objective
is to meet the due dates (committed shipping dates). This objective is more
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Stage 1 Stage 3Stage 2

Fig. 16.6 Flexible flow shop with unlimited buffers

or less equivalent to minimizing the total weighted tardiness
∑

wjTj. Another
important objective is the maximization of throughput. This objective is some-
what equivalent to the minimization of the sum of setup times, especially with
regard to the machines at the bottleneck stage. A third objective is the mini-
mization of the Work-In-Process inventory. The decision making process is not
that easy. For example, suppose the decision-maker can schedule a job on a
particular machine at a particular time in such a way that the setup time is
zero. However, the job’s committed shipping date is six weeks from now. His
decision depends on the machine utilization, the available storage space and
other factors. Clearly, the final schedule is the result of compromises between
the three objectives.
The setup time between two consecutive jobs on a machine at any one of

the stages is a function of the physical characteristics of the two jobs. As said
before, the physical characteristics of the jobs are determined by one or more
parameters. For simplicity it is assumed here that only a single parameter is
associated with the setup time of job j on machine i, say aij . If job k follows
job j on machine i, then the setup time in between jobs j and k is

sijk = hi(aij , aik).

The function hi may be machine dependent.
The algorithmic framework consists of five phases:

Phase 1: Bottleneck Identification,
Phase 2: Computation of Time Windows at Bottleneck Stage,
Phase 3: Computation of Machine Capacities at Bottleneck Stage,
Phase 4: Scheduling of Bottleneck Stage,
Phase 5: Scheduling of Non-Bottleneck Stages.

The first phase constitutes the bottleneck identification, which works as fol-
lows. At least one of the stages has to be the bottleneck. The scheduler usually
knows in advance which stage is the bottleneck and schedules this stage first. If
two stages are bottlenecks, then the scheduler starts with the bottleneck that
is the most downstream. If it is not clear which stage is the bottleneck, then
it can be determined from the loading, the number of shifts assigned and the
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estimates of the amounts of time that machines are down due to setups. The
phenomenon of a moving bottleneck is not taken into account in this phase, as
the planning horizon is assumed to be short; the bottleneck therefore does not
have sufficient time to move.
The second phase computes the time windows for the jobs at the bottleneck

stage. For each job a time window is computed, i.e., a release date and a due
date, during which the job should be processed at the bottleneck stage. The
due date of the job is computed as follows. The shipping date is the due date
at the last stage. We assume that no job, after leaving the bottleneck stage,
has a long wait at any one of the subsequent stages. That is, the length of
their stay at any one of these stages equals their processing time multiplied by
some safety factor. Under this assumption a (local) due date for a job at the
bottleneck stage can be obtained. The release date for a job at the bottleneck
stage is computed as follows. For each job the status is known. The status of
job j, σj , may be 0 (the raw material for this job has not yet arrived), 1 (the
raw material has arrived but no processing has yet taken place), 2 (the job has
gone through the first stage but not yet through the second), or 3 (the job has
gone through the second but not yet through the third), and so on. If

σj = l, l = 0, 1, 2, . . . , s− 1,

then the release date of job j at the bottleneck stage b is rbj = f(l), where the
function f(l) is decreasing in the status l of job j. A high value of σj implies
that job j already has received some processing and is expected to have an
early release at the bottleneck stage b. The function f has to be determined
empirically.
The third phase computes the machine capacities at the bottleneck stage.

The capacity of each machine over the planning horizon is computed based on
its speed, the number of shifts assigned to it and an estimate of the amount of
time spent on setups. If the machines at the bottleneck stage are not identical,
then the jobs that go through this stage are partitioned into buckets. For each
type of machine it has to be determined which jobs must be processed on
that type and which jobs may be processed on that type. These statistics are
gathered for different time frames, e.g., one week ahead, two weeks ahead, etc.
Based on these statistics, it can be determined which machine(s) at this stage
have the largest loads and are the most critical.
The fourth phase does the scheduling of the jobs at the bottleneck stage. The

jobs are scheduled one at a time. Every time a machine is freed, a job is selected
to go next. This job selection is based on various factors, namely the setup time
(which depends on the job just completed), the due date, and the machine
capacity (in case the machines at the bottleneck stage are not identical), and
so on. The rule used may be, in its simplest form, equivalent to the ATCS rule
described in Section 14.2.
The fifth and last phase does the scheduling of the jobs at the non-bottleneck

stages. The sequence in which the jobs go through the bottleneck stage more
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or less determines the sequence in which the jobs go through the other stages.
However, some minor swaps may still be made in the sequences at the other
stages. A swap may be able to reduce the setup times on a machine.
The following example illustrates the algorithm.

Example 16.4.1 (A Flexible Flow Shop with Setups)

Consider a flexible flow shop with three stages. Stages 1 and 3 consist of a
single machine, while stage 2 consists of two machines in parallel. The speed
of the machine at stage 1, say machine 1, is 4, i.e., v1 = 4. The two machines
at stage 2, say machines 2 and 3, both have speed 1, i.e., v2 = v3 = 1. The
speed of the machine at stage 3 is 4, i.e., v4 = 4. There are 6 jobs to be
processed. Job j is characterized by a processing requirement pj and the
time it spends on machine i is pj/vi. All the relevant data regarding job j
are presented in the table below.

jobs 1 2 3 4 5 6

pj 16 24 20 32 28 22
rj 1 5 9 7 15 6
dj 30 35 60 71 27 63
wj 2 2 1 2 2 1

There are sequence dependent setup times on each one of the four machines.
These sequence dependent setup times are determined by machine settings
aij which have to be in place for job j when it is processed on machine i. If
job k follows job j on machine i, then the setup time

sijk = | aik − aij | .

(This setup time structure is a special case of the setup time structure dis-
cussed in Section 4.4). The initial setup times on each one of the machines
is zero. The machine settings are presented in the table below.

jobs 1 2 3 4 5 6

a1j 4 2 3 1 4 2
a2j 3 4 1 3 1 3
a3j 3 4 1 3 1 3
a4j 2 2 4 1 2 3

Applying the five-phase procedure to minimize the total weighted tardiness
results in the following steps:
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The bottleneck identification process is easy. It is clear that the second
stage is the bottleneck as its throughput rate is only half the throughput
rate of the first stage and the third stage.
The second phase requires a computation of time windows at the bottle-

neck stage. In order to compute these time windows local release times and
local due times for stage 2 have to be computed. In order to compute these
times, suppose the total time a job spends at either stage 1 or stage 3 is equal
to twice its processing time, i.e., the time waiting for a machine at stage 1
or 3 is at most equal to its processing time. These local release dates and
due dates are presented in the table below.

job 1 2 3 4 5 6

r2j 9 17 19 23 29 18
d2j 22 23 50 55 13 52

The third phase of the procedure is not applicable here as both machines
are assumed to be identical and all jobs can be processed on either one of
the two machines.
The fourth phase requires the scheduling of the jobs at the bottleneck

stage by the ATCS rule described in Section 14.2. Applying the ATCS rule
results in the following sequence: as jobs 1 and 2 are supposedly the first
two jobs to be released at stage 2, they start their processing on machines 2
and 3 at their estimated (local) release times 9 and 17, respectively. The
estimated completion time of job 1 on machine 2 is 9 + 16 = 25 and of job 2
on machine 3 is 17 + 24 = 41. The ATCS rule has to be applied at time 25.
There are three jobs to be considered then, namely jobs 3, 4 and 6. The ATCS
indices have to be computed for these three jobs. The average processing time
of the remaining jobs is approximately 25 and the setup times are between 0
and 3. Assume a K1 value of 2 and a K2 value of 0.7. Computing the ATCS
indices results in job 4 being started on machine 2 at time 25. The setup
time in between the processing of jobs 1 and 4 on machine 2 is zero. So the
estimated completion time of job 4 on machine 2 is 25 + 32 = 57. The next
time a machine is freed occurs at the completion of job 2 on machine 3 and
the estimated time is 41. Three jobs have to be considered as candidates
at time 41, namely jobs 3, 5 and 6. Computing the indices results in the
selection of job 5. The setup time in between the processing of jobs 2 and 5
on machine 3 is equal to 3. So the estimated completion time of job 5 on
machine 3 is 41 + 3 + 28 = 72. Machine 2 is the next one to be freed at the
estimated time 57. Jobs 3 and 6 remain. The ATCS routine selects job 6,
with the larger processing time and the smaller setup time, for processing
on machine 2. So job 3 goes on machine 3, starting its processing at 72 and
completing it at 92 (see Figure 16.7).
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Fig. 16.7 Gantt chart for flexible flow shop with six jobs (Example
16.4.1)

In the fifth and last phase the schedules on machines 1 and 4 are deter-
mined. The sequence in which the jobs start their processing at the first stage
is basically identical to the sequence in which they start their processing at
the second stage. So the jobs are processed on machine 1 in the sequence
1, 2, 4, 5, 6, 3. After the completion times of the jobs on machine 1 have been
determined, the starting times and completion times on machines 2 and 3
have to be recomputed. The sequence in which the jobs start their process-
ing at the third stage is basically identical to the sequence in which the jobs
complete their processing at the second stage. After computing the comple-
tion times at stage 2, the starting times and completion times on machine 4
are computed. The completion times on machine 4 and the tardinesses are
presented in the table below.

jobs 1 2 3 4 5 6

Cj 25 43 93 62 75 81.5
wjTj 0 16 33 0 96 18.5

The total weighted tardiness is 163.5. The final schedule on the four machines
is depicted in Figure 16.7. ||
In more elaborate models the third and fourth phases of the algorithm can be

quite complicated. Suppose that at the bottleneck stage there are a number of
nonidentical machines in parallel. The jobs may then be partitioned according
to theirMj sets. Jobs which have the sameMj set are put into the same bucket.
If there are two jobs in the same bucket with exactly the same combination of
parameters (which implies a zero setup time), the two jobs may be combined
to form a single macro job (provided the due dates are not too far apart).
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Whenever a machine at the bottleneck stage is freed, various machine statis-
tics may be considered and possibly updated, in order to determine which job
goes next. First, it has to be determined what the remaining capacity of the
machine is over the planning horizon. Second, it has to be determined how much
must be produced on this machine over the planning horizon. If this number
is less than the remaining capacity, other jobs (which can be processed on this
machine as well as on others) may be considered as well, i.e., the pool of jobs
from which a job can be selected may be enlarged. The job selection process
may be determined by rules that are more elaborate than the ATCS rule. The
rules may be based on the following criteria:

(i) the setup time of the job;
(ii) the due date of the job;
(iii) the flexibility of the job (the number of machines it can go on);
(iv) the processing time of the job.

The shorter the setup of a job and the earlier its due date, the higher its
priority. The more machines a job can be processed on, the lower its priority. If
a machine usually operates at a very high speed (relative to other machines),
there is a preference to put larger jobs on this machine. After a job is selected,
the statistics with regard to the machine, as well as those with regard to the
buckets, have to be updated, i.e., remaining capacity of the machine, contents
of the buckets, and so on. In the case of two bottlenecks, the same procedure
still applies. The procedure starts with the bottleneck that is most downstream.
After scheduling the jobs at this bottleneck, it proceeds with scheduling the jobs
at the second bottleneck.

16.5 Scheduling a Bank of Parallel Machines with Jobs
having Release Dates and Due Dates

This section focuses on the gate assignments at an airport, as described in
Example 1.1.3 in Chapter 1 and Example 2.2.3 in Chapter 2.
Considerm machines in parallel and n jobs. Job j has a processing time pj, a

release date rj and a due date dj . Job j may be processed on any machine that
belongs to setMj . The goal is to find a feasible assignment of jobs to machines.
At times, one can make in the problem formulation a distinction between

hard constraints and soft constraints. A hard constraint has to be satisfied at
all cost. A soft constraint basically refers to a preference. For example, it may
be the case that it is preferable to process job j on a machine that belongs to a
set Mj, but if necessary, job j can be processed on anyone of the m machines.
There may be additional constraints as well. For example, job j may be

processed on machine i ∈ Mj only if it is started after rij and completed
before dij .
The entire algorithmic procedure consists of three phases.
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Phase 1: Constraint guided heuristic search;
Phase 2: Constraint relaxation;
Phase 3: Assignment adjustment.

The constraint guided heuristic search phase uses a generalization of the
procedure described in Section 15.3 to search for a feasible schedule or an as-
signment that meets all due dates. More often than not, this phase does not
yield immediately a feasible schedule with an assignment of all jobs. It often
occurs that after a first pass through Phase 1 only a subset of the jobs are as-
signed and with this partial assignment there does not exist a feasible schedule
for the remaining jobs. If this is indeed the case, then the procedure has to go
through the second phase.
The constraint relaxation phase attempts to find a feasible schedule by re-

laxing some of the constraints. Constraint relaxation can be done in various
ways. First, due dates of jobs that could not be assigned in the first phase
may be postponed and/or the processing times of these jobs may be shortened.
Second, in the first pass a particular assignment of a job to a machine may
have been labelled impossible, whereas in reality this assignment would have
been considered only less preferable because the machine in question was not
perfectly suited for the particular job (i.e., a soft constraint was being violated).
However, such an assignment can be made possible in a second pass through
Phase 1 by relaxing the soft constraint. Third, one of the additional constraints
may be relaxed. Constraint relaxation usually yields a complete schedule, with
all jobs assigned to machines.
The assignment adjustment phase attempts to improve the schedule via pair-

wise swaps. Even though the main goal is to obtain a feasible schedule, other
objectives may still play a role. Such objectives can include the balancing of
the workloads over the various machines and the maximization of the idle times
between the processing of consecutive jobs on the various machines (this last
objective may be important in order to be prepared for potential fluctuations
in the processing times).
Note that the second phase in this framework, the constraint relaxation

phase, is different from the backtracking that may occur in the execution of
a constraint program. When a program backtracks, it annuls some segments
of the partial schedule it had already created; however, it does not make any
changes in the formulation or the statement of the scheduling problem. Con-
straint relaxation, on the other hand, refers to changes that are made in the
actual formulation of the problem.
The approach described in this section has at times also been referred to as

the reformulative approach. The idea is simple: the model has to be reformulated
until a feasible schedule is found.
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16.6 Discussion

In all four cases described the scheduling procedures are based on heuristics and
not on procedures that aim for an optimal solution. There are several reasons
for this. First, the model is usually only a crude representation of the actual
problem; so an optimal solution for the model may not actually correspond to
the best solution for the real problem. Second, almost all scheduling problems
in the real world are strongly NP-hard; it would take a very long time to find
an optimal solution on a PC, or even on a workstation. Third, in practice the
scheduling environment is usually subject to a significant amount of random-
ness; it does not pay therefore to spend an enormous amount of computation
time to find a supposedly optimal solution when within a couple of hours, be-
cause of some random event, either the machine environment or the job set
changes.
The solution procedure in each one of the last three sections consisted of a

number of phases. There are many advantages in keeping the procedure seg-
mented or modular. The programming effort can be organized more easily and
debugging is made easier. Also, if there are changes in the environment and
the scheduling procedures have to be changed, a modular design facilitates the
reprogramming effort considerably.

Exercises (Computational)

16.1. Consider in the model of Section 16.2 an MPS of 6 jobs.

(a) Show that when all jobs are different the number of different cyclic
schedules is 5!
(b) Compute the number of different cyclic schedules when two jobs are
the same (i.e., there are five different job types among the 6 jobs).

16.2. Consider the model discussed in Section 16.2 with 4 machines and an
MPS of 4 jobs.

jobs 1 2 3 4

p1j 3 2 3 4
p2j 1 5 2 3
p3j 2 4 0 1
p4j 4 1 3 3

(a) Apply the unweighted PF heuristic to find a cyclic schedule. Choose
job 1 as the initial job and compute the cycle time.
(b) Apply again the unweighted PF heuristic. Choose job 2 as the initial
job and compute the cycle time.
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(c) Find the optimal schedule.

16.3. Consider the same problem as in the previous exercise.

(a) Apply a weighted PF heuristic to find a cyclic schedule. Choose the
weights associated with machines 1, 2, 3, 4 as 2, 2, 1, 2, respectively. Select
job 1 as the initial job.
(b) Apply again a weighted PF heuristic but now with weights 3, 3, 1, 3.
Select again job 1 as the initial job.
(c) Repeat again (a) and (b) but select job 2 as the initial job.
(d) Compare the impact of the weights on the heuristic’s performance with
the effect of the selection of the first job.

16.4. Consider again the model discussed in Section 16.2. Assume that a sys-
tem is in steady state if each machine is in steady state. That is, at each machine
the departure of job j in one MPS occurs exactly the cycle time before the de-
parture of job j in the next MPS. Construct an example with 3 machines and
an MPS of a single job that takes more than 100 MPS’s to reach steady state,
assuming the system starts out empty.

16.5. Consider the application of the FFLL algorithm in Example 16.3.1. In-
stead of letting the Dynamic Balancing heuristic minimize

m∑
i=1

n∑
j=1

max(Oij , 0),

let it minimize
m∑
i=1

n∑
j=1

| Oij | .

Redo Example 16.3.1 and compare the performances of the two Dynamic Bal-
ancing heuristics.

16.6. Consider the application of the FFLL algorithm to the instance in Ex-
ample 16.3.1. Instead of applying LPT in the first phase of the algorithm, find
the optimal allocation of jobs to machines (which leads to a perfect balance of
machines 4 and 5). Proceed with the sequencing phase and release timing phase
based on this new allocation.

16.7. Consider again the instance in Example 16.3.1.

(a) Compute in Example 16.3.1 the number of jobs waiting for processing
at each stage as a function of time and determine the required buffer size
at each stage.
(b) Consider the application of the FFLL algorithm to the instance in Ex-
ample 16.3.1 with the machine allocation as prescribed in Exercise 16.6.
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Compute the number of jobs waiting for processing at each stage as a func-
tion of time and determine the required buffer size.
(Note that with regard to the machines before the bottleneck, the release
timing phase in a sense postpones the release of each job as much as possible
and tends to reduce the number of jobs waiting for processing at each stage.)

16.8. Consider Example 16.4.1. In the second phase of the procedure the time
windows at the bottleneck stage have to be computed. In the example, job j is
estimated to spend twice its processing time at a non-bottleneck stage.

(a) Repeat the procedure and estimate job j’s sojourn time as 1.5 times
its processing time.
(b) Repeat the procedure and estimate job j’s sojourn time as 3 times its
processing time.
(c) Compare the results obtained.

16.9. Consider again the instance in Example 16.4.1. Instead of applying the
ATCS rule in the fourth phase, select every time a machine is freed a job with
the shortest setup time. Compare again the sum of the weighted tardinesses
under the two rules.

16.10. Consider again the instance in Example 16.4.1. Instead of applying the
ATCS rule in the fourth phase, select every time a machine is freed the job
with the earliest estimated local due date. Compare the sum of the weighted
tardinesses under the two rules.

Exercises (Theory)

16.11. Consider a distribution which is a convolution of a deterministic (i.e., a
fixed value) D and an Erlang(k, λ) with parameters k and λ (see Figure 16.2.a).
Determine its coefficient of variation as a function of D, k, and λ.

16.12. Consider a random variable X with the following distribution:

P (X = D) = p

and
P (X = D + Y ) = 1− p,

where D is a fixed value and the random variable Y is exponentially distributed
with rate λ (see Figure 16.2.b). Determine the coefficient of variation as a
function of p, D and λ. Show that this distribution is neither ICR nor DCR.

16.13. Consider a single machine and n jobs. The processing time of job j is
a random variable from distribution F . Compare the following two scenarios.
In the first scenario the n processing times are i.i.d. from distribution F and
in the second scenario the processing times of the n jobs are all equal to the
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same random variable X from distribution F . Show that the expected total
completion time is the same in the two scenarios. Show that the variance of the
total completion time is larger in the second scenario.

16.14. Show that the cyclic scheduling problem described in Section 16.2 with
two machines and zero intermediate buffer is equivalent to the TSP. Describe
the structure of the distance matrix. Determine whether the structure fits the
TSP framework considered in Section 4.4.

16.15. Consider the model in Section 16.2. Construct an example where no
cyclic schedule of a single MPS maximizes the long term average throughput
rate. That is, in order to maximize the long term average throughput rate one
has to find a cyclic schedule of k MPS’s, k ≥ 2.
16.16. The selection of the first job in an MPS in the model of Section 16.2
can be done by choosing the job with the largest total amount of processing.
List the advantages and disadvantages of such a selection.

16.17. Consider an MPS with n jobs which includes jobs j and k where pij =
pik = 1 for all i. Show that there exists an optimal cyclic schedule with jobs j
and k adjacent.

16.18. Consider an MPS with n jobs. For any pair of jobs j and k either
pij ≥ pik for all i or pij ≤ pik for all i. Describe the structure of the optimal
cyclic schedule.

16.19. Consider the FFLL algorithm. Determine whether or not the longest
makespan that could be obtained in Phase 2 always would end up to be equal
to the cycle time of the cyclic schedule generated by the algorithm.

16.20. Describe an approach for the model in Section 16.4 with two stages
being the bottleneck. List the advantages and disadvantages of scheduling the
upstream bottleneck first. Do the same with regard to the downstream bottle-
neck.

16.21. Consider the scheduling problem discussed in Section 16.4. Design alter-
nate ways for computing the time windows, i.e., determining the local release
dates and due dates (estimates of the amount of time downstream and the
amount of time upstream, and so on). Explain how to take setup times into
account.

16.22. Consider the scheduling problem discussed in Section 16.4. If a non-
linear function of the congestion is used for estimating the transit time through
one or more stages, should the function be increasing concave or increasing
convex? How does the amount of randomness in the system affect the shape of
the function?

16.23. Consider the scheduling problem considered in Section 16.5. Design a
composite dispatching rule for this problem (Hint: Try to integrate the LFJ



454 16 Modeling and Solving Scheduling Problems in Practice

or LFM rule with the ATC rule). Determine the number of scaling parame-
ters and determine the factors or statistics necessary to characterize scheduling
instances.
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Analyzing a scheduling problem and developing a procedure for dealing with it
on a regular basis is, in the real world, only part of the story. The procedure has
to be embedded in a system that enables the decision-maker to actually use it.
The system has to be integrated into the information system of the enterprise,
which can be a formidable task. This chapter focuses on system design and
implementation issues.
The first section presents an overview of the infrastructure of the informa-

tion systems and the architecture of the decision support systems in an enter-
prise. We focus on scheduling systems in particular. The second section covers
database, object base, and knowledge-base issues. The third section describes
the modules that generate the schedules, while the fourth section discusses is-
sues concerning user interfaces and interactive optimization. The fifth section
describes the advantages and disadvantages of generic systems and application-
specific systems, while the last section discusses implementation and mainte-
nance issues.
It is, of course, impossible to cover everything concerning the topics men-

tioned above. Many books have been written on each of these topics. This chap-
ter focuses only on some of the more important issues concerning the design,
development and implementation of scheduling systems.
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Fig. 17.1 Simplified version of reference model

17.1 Systems Architecture

To visualize the information flows throughout an enterprise one often uses a
reference model, which depicts all the relevant information flows. An example
of a simplified reference model is presented in Figure 17.1
Nowadays, there are companies that specialize in the design and development

of software that can serve as a backbone for an enterprise-wide information
system. Each decision support system, at any level of the company, can then be
linked to such a backbone. Such a framework facilitates the connectivity of all
the modules in an enterprise-wide information system. A company that is very
active in this type of software development is SAP, which has its headquarters
in Walldorf (Germany).
As described in Section 1.2, a scheduling system usually has to interact with a

number of different systems in an organization. It may receive information from
a higher level system that provides guidelines for the actions to be taken with
regard to long term plans, medium term plans, short term schedules, workforce
allocations, preventive maintenance, and so on. It may interact with a Mate-
rial Requirements Planning (MRP) system in order to determine proper release
dates for the jobs. A system may also interact with a shop floor control sys-
tem that provides up-to-date information concerning availability of machines,
statuses of jobs, and so on (see Figures 1.1 and 17.1).
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A scheduling system typically consists of a number of different modules (see
Figure 17.2). The various types of modules can be categorized as follows:

(i) database, object base, and knowledge-base modules,
(ii) modules that generate the schedules and
(iii) user interface modules.

These modules play a crucial role in the functionality of the system. Signif-
icant effort is required to make a factory’s database suitable for input to a
scheduling system. Making a database accurate, consistent, and complete often
involves the design of a series of tests that the data must pass before it can
be used. A database management module may also be able to manipulate the
data, perform various forms of statistical analysis and allow the decision-maker,
through some user interface, to see the data in graphical form. Some systems
have a knowledge-base that is specifically designed for scheduling purposes. A
knowledge-base may contain, in one format or another, a list of rules that have
to be followed in specific situations and maybe also a list of objects represent-
ing orders, jobs, and resources. A knowledge-base may at times also take the
form of a constraint store that contains the constraints that have to be satis-
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fied by the schedules. However, few systems have a separate knowledge-base; a
knowledge-base is often embedded in the module that generates the schedules.
The module that generates the schedules typically contains a suitable model

with objective functions, constraints and rules, as well as heuristics and algo-
rithms.
User interface modules are important, especially in the implementation pro-

cess. Without an excellent user interface there is a good chance that, regardless
of its capabilities, the system will be too unwieldy to use. User interfaces often
take the form of an electronic Gantt chart with tables and graphs that enable a
user to edit a schedule generated by the system and take last minute information
into account (see Figure 17.2). After a user has adjusted the schedule manu-
ally, he is usually able to see the impact his changes have on the performance
measures, compare different solutions, and perform ”what if” analyses.

17.2 Databases, Object Bases, and Knowledge-Bases

The database management subsystem may be either a custom-made or a com-
mercial system. Various commercial database systems that are available on the
market have proven to be useful for scheduling systems. They are typically re-
lational databases incorporating Structured Query Language (SQL). Examples
of such database management systems are Oracle and Sybase.
Whether a database management subsystem is custom made or commercial,

it needs a number of basic functions, that include multiple editing, sorting and
searching routines. Before generating a schedule, a decision-maker may want
to see certain segments of an order masterfile and collect some statistics with
regard to the orders and the related jobs. Actually, at times, he may not want
to feed all the jobs into the scheduling routines, but only a subset.
Within the database a distinction can be made between static and dynamic

data. Static data include job data and machine or resource data that do not
depend on the schedule. Some job data may be specified in the customer’s or-
der form, such as the ordered quantity (which is proportional to the processing
times of all the operations associated with the job), the committed shipping
date (the due date), the time at which all necessary material is available (the
release date) and possibly some processing (precedence) constraints. The pri-
orities (weights) of the jobs are also static data as they do not depend on the
schedule. Having different weights for different jobs is usually a necessity, but
determining their values is not that easy. In practice, it is seldom necessary to
have more than three priority classes; the weights are then, for example, 1, 2
and 4. The three priority classes are sometimes described as “hot”, “very hot”
and “hottest” dependent upon the level of manager pushing the job. These
weights actually have to be entered manually by the decision-maker into the
database. To determine the priority level, the person who enters the weight
may use his own judgment, or may use a formula that takes into account cer-
tain data from the information system (for instance, total annual sales to the
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customer or some other measure of customer criticality). The weight of a job
may also change from one day to another; a job that is not urgent today, may be
urgent tomorrow. The decision-maker may have to go into the file and change
the weight of the job before generating a new schedule. Static machine data
include machine speeds, scheduled maintenance times, and so on. There may
also be static data that are both job and machine dependent, e.g., the setup
time between jobs j and k assuming the setup takes place on machine i.
The dynamic data consists of all the data that are dependent upon the

schedule: the starting times and completion times of the jobs, the idle times of
the machines, the times that a machine is undergoing setups, the sequences in
which the jobs are processed on the machines, the number of jobs that are late,
the tardinesses of the late jobs, and so on.
The following example illustrates some of these notions.

Example 17.2.1 (Order Master File in a Paper Bag Factory)
Consider the paper bag factory described in Example 1.1.1. The order master
file may contain the following data:

ORDER CUSTOMER CMT FC GS FBL QTY DDT PRDT

DVN01410 CHEHEBAR CO 16.0 5.0 29.0 55.0 05/25 05/24
DVN01411 CHEHEBAR CO 16.0 4.0 29.0 20.0 05/25 05/25
DVN01412 CHEHEBAR CO 16.0 4.0 29.0 35.0 06/01
DXY01712 LANSBERG LTD PR 14.0 3.0 21.0 7.5 05/28 05/23
DXY01713 LANSBERG LTD 14.0 3.0 21.0 45.0 05/28 05/23
DXY01714 LANSBERG LTD 16.0 3.0 21.0 50.0 06/07
EOR01310 DERMAN INC HLD 16.0 3.0 23.0 27.5 06/15

Each order is characterized by an 8 digit alphanumeric order number. A
customer may place a number of different orders, each one representing a
different type of bag. A bag is characterized by three physical parameters, the
so-called face width (FC), the gusset (GS) and the finished bag length (FBL),
which correspond to machine settings for a bag of that size. The quantities
of bags ordered (QTY) are in multiples of a thousand, e.g., the first order
represents 55,000 bags. The month and day of the committed shipping date
are specified in the DDT column. The month and day of the completion date
of the order are specified in the PRDT column; the days specified in this
column can be either actual completion dates or planned completion dates.
The comments (CMT) column is often empty. If a customer calls and puts an
order an hold, then HLD is entered in this column and the scheduler knows
that this order should not yet be scheduled. If an order has a high priority,
then PR is entered in this column. The weights will be a function of these
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entries, i.e., a job on hold has a low weight, a priority job has a high weight
and the default value corresponds to an average weight. ||
Setup times may be regarded either as static or as dynamic data, depending

on how they are generated. Setup times may be stored in a table so that when-
ever a particular setup time needs to be known, the necessary table entry is
retrieved. However, this method is not very efficient if the set is very large and
if relatively few table look-ups are required. The size of the matrix is n2 and
all entries of the matrix have to be computed beforehand, which may require
considerable CPU time as well as memory. An alternative way to compute and
retrieve setup times, that is more efficient in terms of storage space and may
be more efficient in terms of computation time, is the following. A number of
parameters, say

a
(1)
ij , . . . , a

(l)
ij ,

may be associated with job j and machine i. These parameters are static data
and may be regarded as given machine settings necessary to process job j on
machine i. The setup time between jobs j and k on machine i, sijk, is a known
function of the 2l parameters

a
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(l)
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(l)
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The setup time usually is a function of the differences in machine settings for
jobs j and k and is determined by production standards.

Example 17.2.2 (Sequence Dependent Setup Times)
Assume that, in order to start a job on machine i, three machine settings
have to be fixed (for example, the face, the gusset and the finished bag length
of a bag in the factory of Example 1.1.1). So the total setup time sijk depends
on the time it takes to perform these three changeovers and is a function of
six parameters, i.e.,
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If the three changeovers have to be done sequentially, then the total setup
time is

sijk = h
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If the three changeovers can be done in parallel, then the total setup time is

sijk = max
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h
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Of course, there may be situations where some of the changeovers can be
done in parallel while others have to be done in series. ||
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If the setup times are computed this way, they may be considered dynamic
data. The total time needed for computing setup times in this manner depends
on the type of algorithm. If a dispatching rule is used to determine a good
schedule, this method, based on (static) job parameters, is usually more efficient
than the table look-up method mentioned earlier. However, if some kind of local
search routine is used, the table look-up method will become more time efficient.
The decision on which method to use depends on the relative importance of
memory versus CPU time.
The calendar function is often a part of the database system. It contains

information with regard to holidays, number of shifts available, scheduled ma-
chine maintenance, and so on. Calendar data are sometimes static, e.g., fixed
holidays, and sometimes dynamic, e.g., preventive maintenance shutdowns.
Some of the more advanced scheduling systems may rely on an object base in

addition to (or instead of) a database. One of the main functions of the object
base is to store the definitions of all object types, i.e., it functions as an object
library and instantiates the objects when needed. In a conventional relational
database, a data type can be defined as a schema of data; for example, a data
type “job” can be defined as in Figure 17.3.a and an instance can be as in
Figure 17.3.b. Object types and corresponding instances can be defined in the
same way. For example, an object type “job” can be defined and corresponding
job instances can be created. All the job instances have then the same type of
attributes.
There are two crucial relationships between object types, namely, the “is-a”

relationship and the “has-a” relationship. An is-a relationship indicates a gener-
alization and the two object types have similar characteristics. The two object
types are sometimes referred to as a subtype and a supertype. For example, a
“machine” object type may be a special case of a “resource” object type and
a “tool” object type may be another special case of a resource object type. A
“has-a” relationship is an aggregation relationship; one object type contains
a number of other object types. A “workcenter” object may consist of several
machine objects and a “plant” object may comprise a number of workcenter ob-
jects. A “routing table” object may consist of job objects as well as of machine
objects.
Object types related by is-a or has-a relationships have similar characteristics

with regard to their attributes. In other words, all the attributes of a supertype
object are used by the corresponding subtypes. For example, a machine object
has all the attributes of a resource object and it may also have some additional
attributes. This is often referred to as inheritance. A hierarchical structure that
comprises all object types can be constructed. Objects can be retrieved through
commands that are similar to SQL commands in relational databases.
While virtually every scheduling system relies on a database or an ob-

ject base, not that many systems have a module that serves specifically as
a knowledge-base. However, knowledge-bases, at times also referred to as con-
straint stores, may become more and more important in the future.
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ID Name Type Quantity Priority Ready Due
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Fig. 17.3 Job data type, job instance, and job object type

The overall architecture of a system, in particular the module that generates
the schedules, influences the design of a knowledge-base. The most important
aspect of a knowledge-base is the knowledge representation. One form of knowl-
edge representation is through rules. There are several formats for stating rules.
A common format is through an IF-THEN statement. That is, IF a given con-
dition holds, THEN a specific action has to be taken.

Example 17.2.3 (IF-THEN Rule for Parallel Machines)
Consider a setting with machines in parallel. The machines have different
speeds; some are fast and others are slow. The jobs are subject to sequence
dependent setup times that are independent of the machines, i.e., setups take
the same amount of time on a fast machine as they take on a slow machine.
Because of the setup times it is advisable to assign the longer jobs to the

faster machines while keeping the shorter jobs on the slower machines. One
could establish a threshold rule that assigns the longer jobs to the faster
machine as follows.

IF a job’s processing time is longer than a given value,
THEN the job may be assigned to a fast machine.
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It is easy to code such a rule in a programming language such as C++. ||
Another format for stating rules is through predicate logic that is based on

propositional calculus. An appropriate programming language for the imple-
mentation of such rules is Prolog.

Example 17.2.4 (Logic Rule for Parallel Machines)
Consider the rule in the previous example. A Prolog version of this rule may
be:

MACHINEOK(M,L) : − long job(L) , fast machines(F) ,member(M,F).

The M refers to a specific machine, the L to a long job, and the F to a list
of all fast machines. The “: −” may be read as “if”and the “,” may be read
as “and”. A translation of the rule would be: machine M is suitable for job
L if L is a long job, if set F is the set of fast machines and if machine M is a
member of F. ||
As stated before, the design of the module that generates the schedules affects

the design of the knowledge-base and vice versa. This is discussed in more detail
in the next section.

17.3 Modules for Generating Schedules

Current scheduling techniques are an amalgamation of several schools of thought
that have been converging in recent years. One school of thought, predomi-
nantly followed by industrial engineers and operations researchers, is sometimes
referred to as the algorithmic or the optimization approach. A second school
of thought, that is often followed by computer scientists and artificial intel-
ligence experts, include the knowledge-based and the constraint programming
approaches. Recently, the two schools of thought have been converging and the
differences have become blurred. Some hybrid systems combine a knowledge
base with fairly sophisticated heuristics; other systems have one segment of
the procedure designed according to the optimization approach and another
segment according to the constraint programming approach.

Example 17.3.1 (Architecture of a Scheduling System)

A hybrid scheduling system has been designed for a particular semiconductor
wafer fabrication unit as follows. The system consists of two levels. The higher
level operates according to a knowledge-based approach. The lower level is
based on an optimization approach; it consists of a library of algorithms.
The higher level performs the first phase of the scheduling process. At

this level, the current status of the environment is analyzed. This analysis
takes into consideration due date tightness, bottlenecks, and so on. The rules
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embedded in this higher level determine then for each situation the type of
algorithm to be used at the lower level. ||
The algorithmic approach usually requires a mathematical formulation of the

problem that includes objectives and constraints. The algorithm could be based
on any one or a combination of techniques. The ”quality” of the solution is based
on the values of the objectives and performance criteria of the given schedule.
This form of solution method often consists of multiple phases. In the first
phase, a certain amount of preprocessing is done, where the problem instance is
analyzed and a number of statistics are compiled, e.g., the average processing
time, the maximum processing time, the due date tightness. The second phase
consists of the actual algorithms and heuristics, whose structure may depend on
the statistics compiled in the first phase (for example, in the way the look-ahead
parameter K in the ATC rule may depend on the due date tightness and due
date range factors). The third phase may contain a postprocessor. The solution
that comes out of the second phase is fed into a procedure such as simulated
annealing or tabu-search, in order to see if improvements can be obtained.
This type of solution method is usually coded in a procedural language such as
Fortran, Pascal or C.
The knowledge-based and constraint programming approaches are quite dif-

ferent from the algorithmic approach. These approaches are often more con-
cerned with underlying problem structures that cannot be described easily in
an analytical format. In order to incorporate the decisionmaker’s knowledge
into the system, objects, rules or constraints are used. These approaches are
often used when it is only necessary to find a feasible solution given the many
rules or constraints; however, as some schedules are ranked ”more preferable”
than others, heuristics may be used to obtain a ”more preferred” schedule.
Through a so-called inference engine, such an approach tries to find solutions
that do not violate the prescribed rules and satisfy the stated constraints as
much as possible. The logic behind the schedule generation process is often a
combination of inferencing techniques and search techniques as described in
Appendixes C and D. The inferencing techniques are usually so-called forward
chaining and backward chaining algorithms. A forward chaining algorithm is
knowledge driven. It first analyzes the data and the rules and, through inferenc-
ing techniques, attempts to construct a feasible solution. A backward chaining
algorithm is result oriented. It starts out with a promising solution and at-
tempts to verify whether it is feasible. Whenever a satisfactory solution does
not appear to exist or when the system’s user thinks that it is too difficult to
find, the user may want to reformulate the problem by relaxing some of the
constraints. The relaxation of constraints may be done either automatically (by
the system itself) or by the user. Because of this aspect, the knowledge-based
and constraint programming approaches have at times also been referred to as
reformulative approaches.
The programming style used for the development of these systems is dif-

ferent from the ones used for systems based on algorithmic approaches. The
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programming style may depend on the form of the knowledge representation.
If the knowledge is represented in the form of IF-THEN rules, then the system
can be coded using an expert system shell. The expert system shell contains an
inference engine that is capable of doing forward chaining or backward chaining
of the rules in order to obtain a feasible solution. This approach may have diffi-
culties with conflict resolution and uncertainty. If the knowledge is represented
in the form of logic rules (see Example 17.2.4), then Prolog may be a suitable
language. If the knowledge is represented in the form of frames, then a language
with object oriented extensions is required, e.g., C++. These languages empha-
size user-defined objects that facilitate a modular programming style. Examples
of systems that are designed according to a constraint programming approach
are described in Chapters 16 and 19 and in Appendix C.
Algorithmic approaches as well as knowledge-based and constraint program-

ming approaches have their advantages and disadvantages. An algorithmic ap-
proach has an edge if

(i) the problem allows for a crisp and precise mathematical formulation,
(ii) the number of jobs involved is large,
(iii) the amount of randomness in the environment is minimal,
(iv) some form of optimization has to be done frequently and in real time

and
(v) the general rules are consistently being followed without too many ex-

ceptions.

A disadvantage of the algorithmic approach is that if the operating envi-
ronment changes (for example, certain preferences on assignments of jobs to
machines), the reprogramming effort may be substantial.
The knowledge-based and constraint programming approaches may have an

edge if only feasible schedules are needed. Some system developers believe that
changes in the environment or in the rules or constraints can be more easily
incorporated in a system that is based on such an approach than in a system
that is based on the algorithmic approach. Others, however, believe that the
effort required to modify any system is mainly a function of how well the code
is organized and written; the effort required to modify should not depend that
much on the approach used.
A disadvantage of the knowledge-based and constraint programming ap-

proaches is that obtaining reasonable schedules may require in some settings
substantially more computer time than an algorithmic approach. In practice
certain scheduling systems have to operate in near-real time (it is very common
that schedules have to be created in minutes).
The amount of available computer time is an important factor in the selec-

tion of a schedule generation technique. The time allowed to generate a schedule
varies from application to application. Many applications require real time per-
formance: a schedule has to be generated in seconds or minutes on the available
computer. This may be the case if rescheduling is required many times a day be-
cause of schedule deviations. It would also be true if the scheduling engine runs
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iteratively, requiring human interaction between iterations (perhaps for adjust-
ments of workcenter capacities). However, some applications do allow overnight
number crunching. For example, a user may start a program at the end of the
day and expect an output by the time he or she arrives at work the next day.
Some applications do require extensive number crunching. When, in the airline
industry, quarterly flight schedules have to be determined, the investments at
stake are such that a week of number crunching on a mainframe is fully justified.
As stated before, the two schools of thought have been converging and many

scheduling systems that are currently being designed have elements of both.
One language of choice is C++ as it is an easy language for coding algorithmic
procedures and it also has object-oriented extensions.

17.4 User Interfaces and Interactive Optimization

The user interfaces are very important parts of the system. The interfaces usu-
ally determine whether the system is actually going to be used or not. Most user
interfaces, whether the system is based on a workstation or PC, make extensive
use of window mechanisms. The user often wants to see several different sets
of information at the same time. This is the case not only for the static data
that is stored in the database, but also for the dynamic data that are schedule
dependent.
Some user interfaces allow for extensive user interaction; a decision-maker

may be allowed to modify the current status or the current information. Other
user interfaces may not allow any modifications. For example, an interface that
displays the values of all the relevant performance measures may not allow the
user to change any of these values. However, a decision-maker may be allowed
to modify the schedule in another interface which then automatically would
change the values of the performance measures.
User interfaces for database modules often take a fairly conventional form and

may be determined by the particular database package used. These interfaces
must allow for some user interaction, because data such as due dates often have
to be changed during a scheduling session.
There are often a number of interfaces that exhibit general data concerning

the plant or enterprise. Examples of such interfaces are:

(i) the plant layout interface,
(ii) the resource calendar interface, and
(iii) the routing table interface.

The plant layout interface may depict graphically the workcenters and ma-
chines in a plant as well as the possible routes between the workcenters. The
resource calendar displays shift schedules, holidays and preventive maintenance
schedules of the machines. In this interface the user can assign shifts and sched-
ule the servicing of the resources. The routing table typically may show static
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Fig. 17.4 Gantt chart interface

data associated with the jobs. It specifies the machines and/or the operators
who can process a particular job or job type.
The module that generates the schedules may provide the user with a number

of computational procedures and algorithms. Such a library of procedures within
this module will require its own user interface, enabling the user to select the
appropriate algorithm or even design an entirely new procedure.
User interfaces that display information regarding the schedules can take

many different forms. Interfaces for adjusting or manipulating the schedules
basically determine the character of the system, as these are used most exten-
sively. The various forms of interfaces for manipulating solutions depend on the
level of detail as well as on the scheduling horizon being considered. In what
follows four such interfaces are described in more detail, namely:

(i) the Gantt Chart interface,
(ii) the Dispatch List interface,
(iii) the Capacity Buckets interface, and
(iv) the Throughput Diagram interface.

The first, and probably most popular, form of schedule manipulation interface
is the Gantt chart (see Figure 17.4). The Gantt chart is the usual horizontal
bar chart, with the horizontal axis representing the time and the vertical axis
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the various machines. A color and/or pattern code may be used to indicate a
characteristic or an attribute of the corresponding job. For example, jobs that
in the current schedule are completed after their due date may be colored red.
The Gantt chart usually has a number of scroll capabilities that allow the user
to go back and forth in time or focus on particular machines, and is usually
mouse driven. If the user is not entirely satisfied with the generated schedule,
he may wish to perform some manipulations on his own. With the mouse, the
user can “click and drag” an operation from one position to another. Providing
the interface with a click, drag, and drop capability is not a trivial task for the
following reason. After changing the position of a particular operation on a ma-
chine, other operations on that machine may have to be pushed either forward
or backward in time to maintain feasibility. The fact that other operations have
to be processed at different times may have an effect on the schedules of other
machines. This is often referred to as cascading or propagation effects. After
the user has repositioned an operation of a job, the system may call a reopti-
mization procedure that is embedded in the scheduling engine to deal with the
cascading effects in a proper manner.

Example 17.4.1 (Cascading Effects and Reoptimization)

Consider a three machine flow shop with unlimited storage space between the
successive machines and therefore no blocking. The objective is to minimize
the total weighted tardiness. Consider a schedule with 4 jobs as depicted
by the Gantt chart in Figure 17.5.a. If the user swaps jobs 2 and 3 on ma-
chine 1, while keeping the order on the two subsequent machines the same,
the resulting schedule, because of cascading effects, takes the form depicted
in Figure 17.5.b. If the system has reoptimization algorithms at its disposal,
the user may decide to reoptimize the operations on machines 2 and 3, while
keeping the sequence on machine 1 frozen. A reoptimization algorithm then
may generate the schedule depicted in Figure 17.5.c. To obtain appropri-
ate job sequences for machines 2 and 3, the reoptimization algorithm has to
solve an instance of the two machine flow shop with the jobs subject to given
release dates at the first machine. ||
Gantt charts do have disadvantages, especially when there are many jobs and

machines. It may then be hard to recognize which bar or rectangle corresponds
to which job. As space on the screen (or on the printout) is rather limited, it
is hard to attach text to each bar. Gantt chart interfaces usually provide the
capability to click on a given bar and open a window that displays detailed data
regarding the corresponding job. Some Gantt charts also have a filter capability,
where the user may specify the job(s) that should be exposed on the Gantt chart
while disregarding all others. The Gantt chart interface depicted in Figure 17.4
is from the LEKIN system that is described in more detail in Chapter 19.
The second form of user interface for displaying schedule information is the

dispatch-list interface (see Figure 17.6). Schedulers often want to see a list of
the jobs to be processed on each machine in the order in which they are to
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Fig. 17.5 Cascading and reoptimization after swap: (a) original
schedule, (b) cascading effects after swap of jobs on machine 1,

(c) schedule after reoptimization of Machines 2 and 3.
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Fig. 17.6 The dispatch list interface of the LEKIN system

be processed. With this type of display schedulers also want to have editing
capabilities so they can change the sequence in which jobs are processed on a
machine or move a job from one machine to another. This sort of interface does
not have the disadvantage of the Gantt chart, since the jobs are listed with
their job numbers and the scheduler knows exactly where each job is in the
sequence. If the scheduler would like more attributes (e.g., processing time, due
date, completion time under the current schedule, and so on) of the jobs to be
listed, then more columns can be added next to the job number column, each
one with a particular attribute. The disadvantage of the dispatch-list interface
is that the scheduler does not have a clear view of the schedule relative to
time. The user may not see immediately which jobs are going to be late, which
machine is idle most of the time, etc. The dispatch-list interface in Figure 17.6
is also from the LEKIN system.
The third form of user interface is the capacity buckets interface (see Fig-

ure 17.7). The time axis is partitioned into a number of time slots or buckets.
Buckets may correspond to either days, weeks or months. For each machine the
processing capacity of a bucket is known. The creation of a schedule may in
certain environments be accomplished by assigning jobs to machines in given
time segments. After such assignments are made, the capacity buckets inter-
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Fig. 17.7 The capacity buckets interface of the Cyberplan system

face displays for each machine the percentage of the capacity utilized in each
time segment. If the decision-maker sees that in a given time period a machine
is overutilized, he knows that some jobs in the corresponding bucket have to
be rescheduled. The capacity buckets interface contrasts, in a sense, with the
Gantt chart interface. A Gantt chart indicates the number of late jobs as well
as their respective tardinesses. The number of late jobs and the total tardiness
give an indication of the deficiency in capacity. The Gantt chart is thus a good
indicator of the available capacity in the short term (days or weeks) when there
are a limited number of jobs (twenty or thirty). Capacity buckets are useful
when the scheduler is performing medium or long term scheduling. The bucket
size may be either a week or a month and the total period covered three or four
months. Capacity buckets are, of course, a cruder form of information as they
do not indicate which jobs are completed on time and which ones are late. The
capacity buckets interface depicted in Figure 17.7 is from the Cyberplan system
developed by Cybertec.
The fourth form of user interface is the input-output diagram or throughput

diagram interface, which are often of interest when the production is made to
stock. These diagrams describe the total amount of orders received, the total
amount produced and the total amount shipped, cumulatively over time. The
difference, at any point in time, between the first two curves is the total amount
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of orders waiting for processing and the difference between the second and the
third curves equals the total amount of finished goods in inventory. This type
of interface specifies neither the number of late jobs nor their respective tardi-
nesses. It does provide the user with information concerning machine utilization
and Work-In-Process (WIP).
Clearly, the different user interfaces for the display of information regarding

schedules have to be strongly linked to one another. When a user makes changes
in either the Gantt chart interface or the dispatch-list interface, the dynamic
data may change considerably because of cascading effects or the reoptimiza-
tion process. Changes made in one interface, of course, have to be displayed
immediately in the other interfaces as well.
User interfaces for the display of information regarding the schedules have

to be linked to other interfaces also, e.g., database management interfaces and
interfaces of a scheduling engine. For example, a user may modify an existing
schedule in the Gantt chart interface by clicking, dragging, and dropping; then
he may want to freeze certain jobs in their respective positions. After doing this,
he may want to reoptimize the remaining (unfrozen) jobs using an algorithm in
the scheduling engine. These algorithms are similar to the algorithms described
in Parts II and III for situations where machines are not available during given
time periods (because of breakdowns or other reasons). The interfaces that allow
the user to manipulate the schedules have to be, therefore, strongly linked to
the interfaces for algorithm selection.
User interfaces may also have a separate window that displays the values of

all relevant performance measures. If the user has made a change in a schedule
the values before and after the change may be displayed. Typically, performance
measures are displayed in plain text format. However, more sophisticated graph-
ical displays may also be used.
Some user interfaces are sophisticated enough to allow the user to split a

job into a number of smaller segments and schedule each of these separately.
Splitting an operation is equivalent to (possibly multiple) preemptions. The
more sophisticated user interfaces also allow different operations of the same job
to overlap in time. In practice, this may occur in many settings. For example, a
job may start at a downstream machine of a flow shop before it has completed
its processing at an upstream machine. This occurs when a job represents a
large batch of identical items. Before the entire batch has been completed at
an upstream machine, parts of the batch may already have been transported to
the next machine and may have already started their processing there.

17.5 Generic Systems vs. Application-Specific Systems

Dozens of software houses have developed systems that they claim can be imple-
mented in many different industrial settings after only some minor customiza-
tion. It often turns out that the effort involved in customizing such systems is
quite substantial. The code developed in the customization process may end up
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to be more than half the total code. However, some systems have very sophisti-
cated configurations that allow them to be tailored to different types of indus-
tries without much of a programming effort. These systems are highly modular
and have an edge with regard to the adjustments to specific requirements. A
generic system, if it is highly modular, can be changed to fit a specific environ-
ment by adding specific modules, e.g., tailor-made scheduling algorithms. Ex-
perts can develop such algorithms and the generic scheduling software supplies
standard interfaces or “hooks” that allow integration of the special functions in
the package. This concept allows the experts to concentrate on the scheduling
problem, while the generic software package supplies the functionalities that
are less specific, e.g., user interfaces, data management, standard scheduling
algorithms for less complex areas, and so on.
Generic systems may be built either on top of a commercial database system,

such as Sybase or Oracle, or on top of a proprietary database system developed
specifically for the scheduling system. Generic systems use processing data sim-
ilar to the data presented in the framework described in Chapter 2. However,
the framework in such a system may be somewhat more elaborate than the
framework presented in Chapter 2. For example, the database may allow for
an alphanumeric order number that refers to the name of a customer. The or-
der number then relates to several jobs, each one with its own processing time
(which often may be referred to as the quantity of a batch) and a routing vector
that determines the precedence constraints the operations are subject to. The
order number has its own due date (committed shipping date), weight (priority
factor) and release date (which may be determined by a Material Requirements
Planning (MRP) system that is connected to the scheduling system). The sys-
tem may include procedures that translate the due date of the order into due
dates for the different jobs at the various workcenters. Also, the weights of the
different jobs belonging to an order may not be exactly equal to the weight
of the order itself. The weights of the different jobs may be a function of the
amount of value already added to the product. The weight of the last job per-
taining to an order may be larger than the weight of the first job pertaining to
that order.
The way the machine or resource environment is represented in the database

is also somewhat more elaborate than the way it is described in Chapter 2. For
example, a system typically allows a specification of workcenters and, within
each workcenter, a specification of machines.
Most generic scheduling systems have routines for generating a “first” sched-

ule for the user. Of course, such an initial solution rarely satisfies the user.
That is why scheduling systems often have elaborate user interfaces that allow
the user to manually modify an existing schedule. The automated scheduling
capabilities generally consist of a number of different dispatching rules that are
basically sorting routines. These rules are similar to the priority rules discussed
in the previous chapters (SPT, LPT, WSPT, EDD and so on). Some generic
systems rely on more elaborate procedures, such as forward loading or back-
ward loading. Forward loading implies that the jobs are inserted one at the
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time starting at the beginning of the schedule, that is, at the current time.
Backward loading implies that the schedule is generated starting from the back
of the schedule, that is, from the due dates, working its way towards the current
time (again inserting one job at the time). These insertions, either forward or
backward in time, are done according to some priority rule. Some of the more
sophisticated automated procedures first identify the bottleneck workcenter(s)
or machine(s); they compute time windows during which jobs have to be pro-
cessed on these machines and then schedule the jobs on these machines using
some algorithmic procedure. After the bottlenecks are scheduled, the procedure
schedules the remaining machines through either forward loading or backward
loading.
Almost all generic scheduling systems have user interfaces that include Gantt

charts and enable the user to manipulate the solutions manually. However, these
Gantt chart interfaces are not always perfect. For example, most of them do
not take into account the cascading and propagation effects referred to in the
previous section. They may do some automatic rescheduling on the machine or
workcenter where the decision maker has made a change, but they usually do
not adapt the schedules on other machines or workcenters to this change. The
solutions generated may at times be infeasible. Some systems give the user a
warning in case, after the modifications, the schedule turns out to be infeasible.
Besides the Gantt chart interface, most systems have at least one other type

of interface that either displays the actual schedule or provides important data
that is related. The second interface is typically one of those mentioned in the
previous section.
Generic systems usually have fairly elaborate report generators, that print

out the schedule with alphanumeric characters; such printouts can be done
fast and on an inexpensive printer. The printout may then resemble what is
displayed, for example, in the dispatch-list interface described in the previous
section. It is possible to list the jobs in the order in which they will be processed
at a particular machine or workcenter. Besides the job number, other relevant
job data may be printed out as well. There are also systems that print out entire
Gantt charts. But Gantt charts have the disadvantage mentioned before, namely
that it may not be immediately obvious which rectangle or bar corresponds to
which job. Usually the bars are too small to append any information to.
Generic systems have a number of advantages over application-specific sys-

tems. If the scheduling problem is a fairly standard one and only minor cus-
tomization of a generic system suffices, then this option is usually less expensive
than developing an application-specific system from scratch. An additional ad-
vantage is that an established company will maintain the system. On the other
hand, most software houses that develop scheduling systems do not provide the
source code. This makes the user of the system dependent on the software house
even for very minor changes.
In many instances generic systems are simply not suitable and application-

specific systems (or modules) have to be developed. There are several good
reasons for developing application-specific systems. One reason may be that
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the scheduling problem is simply so large (because of the number of machines,
jobs, or attributes) that a PC-based generic system simply would not be able to
handle it. The databases may be very large and the required interface between
the shopfloor control system and the scheduling system has to be of a kind that
a generic system cannot handle. An example of an environment where this is
often the case is semiconductor manufacturing.
A second reason to opt for an application-specific system is that the environ-

ment may have so many idiosyncrasies that no generic system can be modified
in such a way that it can address the problem satisfactorily. The processing en-
vironment may have certain restrictions or constraints that are hard to attach
to or build into a generic system. For example, certain machines at a work-
center have to start with the processing of different jobs at the same time (for
one reason or another) or a group of machines may have to sometimes act as
a single machine and, at other times, as separate machines. The order portfo-
lio may also have many idiosyncrasies. That is, there may be a fairly common
machine environment used in a fairly standard way (that would fit nicely into
a generic system), but with too many exceptions on the rules as far as the jobs
are concerned. Coding in the special situations represents such a large amount
of work that it may be advisable to build a system from scratch.
A third reason for developing an application-specific system is that the user

may insist on having the source code in house and on being able to maintain
the system within his own organization.
An important advantage of an application-specific system is that manipulat-

ing a solution is usually considerably easier than with a generic system.

17.6 Implementation and Maintenance Issues

During the last two decades a large number of scheduling systems have been
developed, and many more are under development. These developments have
made it clear that a certain proportion of the theoretical research done over
the last couple of decades is of very limited use in real world applications.
Fortunately, the system development that is going on in industry is currently
encouraging theoretical researchers to tackle scheduling problems that are more
relevant to the real world. At various academic institutions in Europe, Japan
and North America, research is focusing on the development of algorithms as
well as on the development of systems; significant efforts are being made in
integrating these developments.
Over the last two decades many companies have made large investments

in the development and implementation of scheduling systems. However, not
all the systems developed or installed appear to be used on a regular basis.
Systems, after being implemented, often remain in use only for a limited time;
after a while they may be ignored altogether.
In those situations where the systems are in use on a more or less perma-

nent basis, the general feeling is that the operations do run smoother. A system
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that is in place often does not reduce the time the decision-maker spends on
scheduling. However, a system usually does enable the user to produce better
solutions. Through an interactive Graphics User Interface (GUI) a user is often
able to compare different solutions and monitor the various performance mea-
sures. There are other reasons for smoother operations besides simply better
schedules. A scheduling system imposes a certain ”discipline” on the operations.
There are now compelling reasons for keeping an accurate database. Schedules
are either printed out neatly or displayed on monitors. This apparently has an
effect on people, encouraging them to actually even follow the schedules.
The system designer should be aware of the reasons why some systems have

never been implemented or are never used. In some cases, databases are not suf-
ficiently accurate and the team implementing the system does not have the pa-
tience or time to improve the database (the people responsible for the database
may be different from those installing the scheduling system). In other cases,
the way in which workers’ productivity is measured is not in agreement with the
performance criteria the system is based upon. User interfaces may not permit
the user of the system to reschedule sufficiently fast in the case of unexpected
events. Procedures that enable rescheduling when the main user is absent (for
example, if something unexpected happens during the night shift) may not be in
place. Finally, systems may not be given sufficient time to ”settle” or ”stabilize”
in their environment (this may require many months, if not years).
Even if a system gets implemented and used, the duration during which it

remains in use may be limited. Every so often, the organization may change
drastically and the system is not flexible enough to provide good schedules for
the new environment. Even a change in a manager may derail a system.
In summary, the following points should be taken into consideration in the

design, development, and implementation of a system.

1. Visualize how the operating environment will evolve over the lifetime of the
system before the design process actually starts.

2. Get all the people affected by the system involved in the design process. The
development process has to be a team effort and all involved have to approve
the design specifications.

3. Determine which part of the system can be handled by off-the-shelf software.
Using an appropriate commercial code may speed up the development process
considerably.

4. Keep the design of the software modular. This is necessary not only to
facilitate the entire programming effort, but also to facilitate changes in the
system after its implementation.

5. Make the objectives of the algorithms embedded in the system consistent
with the performance measures by which people who must act according to the
schedules are being judged.
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6. Do not take the data integrity of the database for granted. The system
has to be able to deal with faulty or missing data and provide the necessary
safeguards.

7. Capitalize on potential side benefits of the system, e.g., spin-off reports for
distribution to key people. This enlarges the supporters base of the system.

8. Make provisions to ensure easy rescheduling, not only by the main scheduler
but also by others, in case the main user is absent.

9. Keep in mind that installing the system requires a considerable amount of
patience. It may take months or even years before the system runs smoothly.
This period should be a period of continuous improvement.

10. Do not underestimate the necessary maintenance of the system after its
installation. The effort required to keep the system in use on a regular basis is
considerable.

It appears that in the near future, an even larger effort will be made in the
design, development and implementation of scheduling systems and that such
systems will play an important role in Computer Integrated Manufacturing.

Exercises

17.1. Consider a job shop with machines in parallel at each workcenter (i.e.,
a flexible job shop). Hard constraints as well as soft constraints play a role in
the scheduling of the machines. More machines may be installed in the near
future. The scheduling process does not have to be done in real time, but can
be done overnight. Describe the advantages and disadvantages of an algorithmic
approach and of a knowledge-based approach.

17.2. Consider a factory with a single machine with sequence dependent setup
times and hard due dates. It does not appear that changes in the environment
are imminent in the near future. Scheduling and rescheduling has to be done in
real time.

(a) List the advantages and disadvantages of an algorithmic approach and
of a knowledge-based approach.
(b) List the advantages and disadvantages of a commercial system and of
an application-specific system.

17.3. Design a schedule generation module that is based on a composite dis-
patching rule for a parallel machine environment with the jobs subject to se-
quence dependent setup times. Job j has release date rj and may only be
processed on a machine that belongs to a given set Mj. There are three ob-
jectives, namely

∑
wjTj , Cmax and Lmax. Each objective has its own weight

and the weights are time dependent; every time the scheduler uses the system
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he puts in the relative weights of the various objectives. Design the composite
dispatching rule and explain how the scaling parameters depend on the relative
weights of the objectives.

17.4. Consider the following three measures of machine congestion over a given
time period.

(i) the number of late jobs during the period;
(ii) the average number of jobs waiting in queue during the given period.
(iii) the average time a job has to wait in queue during the period.

How does the selection of congestion measure depend on the objective to be
minimized?

17.5. Consider the following scheduling alternatives:

(i) forward loading (starting from the current time);
(ii) backward loading (starting from the due dates);
(iii) scheduling from the bottleneck stage first.

How does the selection of one of the three alternatives depend on the following
factors:

(i) degree of uncertainty in the system.
(ii) balanced operations (not one specific stage is a bottleneck).
(iii) due date tightness.

17.6. Consider the ATC rule. The K factor is usually determined as a function
of the due date tightness factor τ and the due date range factor R. However, the
process usually requires extensive simulation. Design a learning mechanism that
refines the function f that maps τ and R into K during the regular (possibly
daily) use of the system’s schedule generator.

17.7. Consider an interactive scheduling system with a user interface for sched-
ule manipulation that allows “freezing” of jobs. That is, the scheduler can click
on a job and freeze the job in a certain position. The other jobs have to be
scheduled around the frozen jobs. Freezing can be done with tolerances, so that
in the optimization process of the remaining jobs the frozen jobs can be moved a
little bit. This facilitates the scheduling of the unfrozen jobs. Consider a system
that allows freezing of jobs with specified tolerances and show that freezing in
an environment that does not allow preemptions requires tolerances of at least
half the maximum processing time in either direction in order to avoid machine
idle times.

17.8. Consider an interactive scheduling system with a user interface that only
allows for freezing of jobs with no (zero) tolerances.

(a) Show that in a nonpreemptive environment the machine idle times
caused by frozen jobs are always less than the maximum processing time.
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(b) Describe how procedures can be designed that minimize in such a sce-
nario machine idle times in conjunction with other objectives, such as the
total completion time.

17.9. Consider a user interface of an interactive scheduling system for a bank
of parallel machines. Assume that the reoptimization algorithms in the system
are designed in such a way that they optimize each machine separately while
they keep the current assignment of jobs to machines unchanged. A move of
a job (with the mouse) is said to be reversible if the move, followed by the
reoptimization procedure, followed by the reverse move, followed once more by
the reoptimization procedure, results in the original schedule. Suppose now a job
is moved with the mouse from one machine to another. Show that such a move is
reversible if the reoptimization algorithm minimizes the total completion time.
Show that the same is true if the reoptimization algorithm minimizes the sum
of the weighted tardinesses.

17.10. Consider the same scenario as in the previous exercise. Show that with
the type of reoptimization algorithms described in the previous exercise moves
that take jobs from one machine and put them on another are commutative.
That is, the final schedule does not depend on the sequence in which the moves
are done, even if all machines are reoptimized after each move.
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This chapter focuses on a number of issues that have come up in recent years in
the design, development, and implementation of scheduling systems. The first
section discusses issues concerning uncertainty, robustness and reactive decision
making. In practice, schedules often have to be changed because of random
events. The more robust the original schedule is, the easier the rescheduling
is. This section focuses on the generation of robust schedules as well as on the
measurement of their robustness. The second section considers machine learning
mechanisms. No system can consistently generate good solutions that are to the
liking of the user. The decision-maker often has to tweak the schedule generated
by the system in order to make it usable. A well-designed system can learn from
past adjustments made by the user; the mechanism that enables the system to
do this is called a learning mechanism. The third section focuses on the design
of scheduling engines. An engine often contains an entire library of algorithms.
One procedure may be more appropriate for one type of instance or data set,
while another procedure may be more appropriate for another type of instance.
The user should be able to select, for each instance, which procedure to apply.
It may even be the case that a user would like to tackle an instance using a
combination of various procedures. This third section discusses how a scheduling
engine should be designed in order to enable the user to adapt and combine
algorithms in order to achieve maximum effectiveness. The fourth section goes
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into reconfigurable systems. Experience has shown that system development
and implementation is very time consuming and costly. In order to reduce the
costs, efforts have to be made to maintain a high level of modularity in the
design of the system. If the modules are well designed and sufficiently flexible,
they can be used over and over again without any major changes. The fifth
section focuses on design aspects of web-based scheduling systems. This section
discusses the effects of networking on the design of such systems. The sixth
and last section discusses a number of other issues and presents a view of how
scheduling systems may look like in the future.

18.1 Robustness and Reactive Decision Making

In practice, it often happens that soon after a schedule has been generated,
an unexpected event happens that forces the decision-maker to make changes.
Such an event may, for example, be a machine breakdown or a rush job that
suddenly has to be inserted. Many schedulers believe that in practice, most
of the time, the decision making process is a reactive process. In a reactive
process, the scheduler tries to accomplish a number of objectives. He tries to
accommodate the original objectives, and also tries to make the new schedule
look, as much as possible, like the original one in order to minimize confusion.
The remaining part of this section focuses primarily on reactive decision mak-

ing in short term scheduling processes. The number of random events that can
occur in a short term may, in certain environments, be very high. Rescheduling
is in many environments a way of life. One way of doing the rescheduling is
to put all the operations not yet started back in the hopper, and generate a
new schedule from scratch while taking into account the disruptions that just
occurred. The danger is that the new schedule may be completely different from
the original schedule, and a big difference may cause confusion.
If the disruption is minor, e.g., the arrival of just one unexpected job, then

a simple change may suffice. For example, the scheduler may insert the unex-
pected arrival in the current schedule in such a way that the total additional
setup is minimized and no other high priority job is delayed. A major disrup-
tion, like the breakdown of an important machine, often requires substantial
changes in the schedule. If a machine goes down for an extended period of time,
then the entire workload allocated to that machine for that period has to be
transferred to other machines. This may cause extensive delays.
Another way of dealing with the rescheduling process is to somehow an-

ticipate the random events. In order to do so, it is necessary for the original
schedule to be robust so that the changes after a disruption are minimal.
Schedule robustness is a concept that is not easy to measure or even define.

Suppose the completion time of a job is delayed by δ (because of a machine
breakdown or the insertion of a rush job). Let C′

j(δ) denote the new completion
time of job j (i.e., the new time when job j leaves the system), assuming the
sequences of all the operations on all the machines remain the same. Of course,
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the new completion times of all the jobs are a function of δ. Let Z denote the
value of the objective function before the disruption occurred and let Z ′(δ)
denote the value of the objective function after the disruption. So Z ′(δ)− Z is
the difference due to the disruption. One measure of schedule robustness is

Z ′(δ)− Z

δ
,

which is a function of δ. For small values of δ the ratio may be low whereas
for larger values of δ the ratio may get progressively worse. It is to be expected
that this ratio is increasing convex in δ.
A more accurate measure of robustness can be established when the proba-

bilities of certain events can be estimated in advance. Suppose a perturbation
of a random size ∆ may occur and the probability that the random variable ∆
assumes the value δ, i.e., P (∆ = δ), can be estimated. If ∆ can assume only
integer values, then

∞∑
δ=0

(
Z ′(δ)− Z

)
P (∆ = δ)

is an appropriate measure for the robustness. If the random variable ∆ is a
continuous random variable with a density function f(δ), then an appropriate
measure is ∫ ∞

δ=0

(Z ′(δ)− Z)f(δ)dδ.

In practice, it may be difficult to make a probabilistic assessment of random
perturbations and one may want to have more practical measures of robustness.
For example, one measure could be based on the amount of slack between
the completion times of the jobs and their respective due dates. So a possible
measure for the robustness of schedule S is

R(S) =
∑n
j=1 wj(dj − Cj)∑

wjdj
.

The larger R(S), the more robust the schedule. Maximizing this particular
measure of robustness is somewhat similar to maximizing the total weighted
earliness.
When should a decision-maker opt for a more robust schedule? This may

depend on the probability of a disruption as well as on his or her ability to
reschedule.

Example 18.1.1 (Measures of Robustness)

Consider a single machine and three jobs. The job data are presented in the
table below.



484 18 Design of Scheduling systems: More Advanced Concepts

�w jT j

10 20 �

1000

(1, 2, 3) (2, 3, 1)

2000

Fig. 18.1 Increase in objective value as function of disruption level
(Example 18.1.1)

jobs 1 2 3

pj 10 10 10
dj 10 22 34
wj 1 100 100

The schedule that minimizes the total weighted tardiness is schedule 1, 2, 3
with a total weighted tardiness of 0. It is clear that this schedule is not that
robust, since two jobs with very large weights are scheduled for completion
very close to their respective due dates. Suppose that immediately after the
decision-maker has decided upon schedule 1, 2, 3 (i.e., at time 0+ ε) a disrup-
tion occurs and the machine goes down for δ = 10 time units. The machine
can start processing the three jobs at time t = 10. If the original job sequence
1, 2, 3 is maintained, then the total weighted tardiness is 1410. The manner
in which the total weighted tardiness of sequence 1, 2, 3 depends on the value
of δ is depicted in Figure 18.1.
If the original schedule is 2, 3, 1, then the total weighted tardiness, with no

disruptions, is 20. However, if a disruption does occur at time 0+ ε, then the
impact is considerably less severe than with schedule 1, 2, 3. If δ = 10, then
the total weighted tardiness is 30. The way the total weighted tardiness under
sequence 2, 3, 1 depends on δ is also depicted in Figure 18.1. From Figure 18.1
it is clear that schedule 2, 3, 1 (even though originally suboptimal) is more
robust than schedule 1, 2, 3.
Under schedule 1, 2, 3 the robustness is

R(1, 2, 3) =
∑n
j=1 wj(dj − Cj)∑

wjdj
=
600
5610

= 0.11,
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whereas
R(2, 3, 1) = 2580

5610
= 0.46.

So according to this particular measure of robustness schedule 2, 3, 1 is con-
siderably more robust.
Suppose that with probability 0.01 a rush job with processing time 10

arrives at time 0+ ε and that the decision-maker is not allowed, at the com-
pletion of this rush job, to change the original job sequence. If at the outset
he had selected schedule 1, 2, 3, then the total expected weighted tardiness is

0× 0.9 + 1410× 0.1 = 141.

If he had selected schedule 2, 3, 1, then the total expected weighted tardiness
is

20× 0.9 + 30× 0.1 = 21.
So with a 10% probability of a disruption it is better to go for the more
robust schedule.
Even if a scheduler is allowed to reschedule after a disruption, he still may

not choose at time 0 a schedule that is optimal with respect to the original
data. ||
Several other measures of robustness can be defined. For example, assume

again that the completion of one job is delayed by δ. However, before com-
puting the effect of the disruption on the objective, each machine sequence is
reoptimized separately, i.e., the machine sequences are reoptimized one by one
on a machine by machine basis. After this reoptimization the difference in the
objective function is computed. The measure of robustness is then a similar
ratio as the one defined above. The impact of the disruption is now harder to
compute, since different values of δ may result in different schedules. This ratio
is, of course, less than the ratio without reoptimization. An even more compli-
cated measure of robustness assumes that after a disruption a reoptimization
is done on a more global scale rather than on a machine by machine basis,
e.g., under this assumption a disruption may cause an entire job shop to be
reoptimized. Other measures of robustness may even allow preemptions in the
reoptimization process.
Totally different measures of robustness can be defined based on the capacity

utilization of the bottleneck machines (i.e., the percentages of time the machines
are utilized) and on the levels of WIP inventory that are kept in front of these
machines.
How can one generate robust schedules? Various rules can be followed when

creating schedules, for example,

(i) insert idle times,
(ii) schedule less flexible jobs first,
(iii) do not postpone the processing of any operation unnecessarily, and
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(iv) keep always a number of jobs waiting in front of highly utilized ma-
chines.

The first rule prescribes the insertion of idle periods on given resources at
certain points in time. This is equivalent to scheduling the machines below
capacity. The durations of the idle periods as well as their timing within the
schedule depend on the expected nature of the disruptions. One could argue that
the idle periods in the beginning of the schedule may be kept shorter than the
idle periods later in the schedule, since the probability of an event occurring
in the beginning may be smaller than later on. In practice, some schedulers
follow a rule whereby at any point in time in the current week the machines
are utilized up to 90% of capacity, the next week up to 80% and the week
after that up to 70%. However, one reason for keeping the idle periods in the
beginning of the schedule at the same length may be the following: even though
the probability of a disruption is small, its relative impact is more severe than
that of a disruption that occurs later on in the process.
The second rule suggests that less flexible jobs should have a higher priority

than more flexible jobs. If a disruption occurs, then the more flexible jobs remain
to be processed. The flexibility of a job is determined, for example, by the
number of machines that can do its processing (e.g., the machine eligibility
constraints described in Chapter 2). However, the flexibility of a job may also
be determined by the setup time structure. Some jobs may require setups that
do not depend on the sequence. Other jobs may have sequence dependent setup
times that are highly variable. The setup times are short only when they follow
certain other jobs; otherwise the setup times are very long. Such jobs are clearly
less flexible.
The third rule suggests that the processing of a job should not be postponed

unnecessarily. Because of inventory holding costs and earliness penalties, it may
be desirable to start operations as late as possible. However, from a robustness
point of view, it may be desirable to start operations as early as possible. So
there is a trade-off between robustness and earliness penalties or inventory
holding costs.
The fourth rule tries to make sure that a bottleneck machine never starves

because of random events that occur upstream. It makes sense to have always
a number of jobs waiting for processing at a bottleneck machine. The reason is
the following: if no inventory is kept in front of the bottleneck and the machine
feeding the bottleneck suddenly breaks down, then the bottleneck may have to
remain idle and may not be able to make up for the lost time later on.

Example 18.1.2 (Starvation Avoidance)
Consider a two machine flow shop with 100 identical jobs. Each job has a pro-
cessing time of 5 time units on machine 1 and of 10 time units on machine 2.
Machine 2 is therefore the bottleneck. However, after each job completion
on machine 1, machine 1 may have to undergo a maintenance service for
a duration of 45 time units during which it cannot do any processing. The
probability that such a service is required is 0.01.
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The primary objective is the minimization of the makespan and the sec-
ondary objective is the average amount of time a job remains in the system,
i.e., the time in between the start of a job on machine 1 and its completion on
machine 2 (this secondary objective is basically equivalent to the minimiza-
tion of the Work-In-Process). However, the weight of the primary objective
is 1000 times the weight of the secondary objective.
Because of the secondary objective it does not make sense to let machine 1

process the 100 jobs one after another and finish them all by time 500. In an
environment in which machine 1 never requires any servicing, the optimal
schedule processes the jobs on machine 1 with idle times of 5 time units in
between. In an environment in which machine 1 needs servicing with a given
probability, it is necessary to have at all times some jobs ready for processing
on machine 2. The optimal schedule is to keep consistently 5 jobs waiting
for processing on machine 2. If machine 1 has to be serviced, then machine 2
does not lose any time and the makespan does not go up unnecessarily.
This example illustrates the trade-off between capacity utilization and

minimization of Work-In-Process. ||
Robustness and rescheduling have a strong influence on the design of the user

interfaces and on the design of the scheduling engine (multi-objective scheduling
where one of the performance measures is robustness). Little theoretical research
has been done on these issues. This topic may become an important research
area in the near future.

18.2 Machine Learning Mechanisms

In practice, the algorithms embedded in a scheduling system often do not yield
schedules that are acceptable to the user. The inadequacy of the algorithms is
based on the fact that scheduling problems (which often have multiple objec-
tives) are inherently intractable. It is extremely difficult to develop algorithms
that can provide for any instance of a problem a reasonable and acceptable
solution in real time.
New research initiatives are focusing on the design and development of learn-

ing mechanisms that enable scheduling systems which are in daily use to im-
prove their solution generation capabilities. This process requires a substantial
amount of experimental work. A number of machine learning methods have
been studied with regard to their applicability to scheduling. These methods
can be categorized as follows:

(i) rote learning,
(ii) case-based reasoning,
(iii) induction methods and neural networks,
(iv) classifier systems.
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These four classes of learning mechanisms are in what follows described in some
more detail.
Rote learning is a form of brute force memorization. The system saves old

solutions that gave good results together with the instances on which they were
applied. However, there is no mechanism for generalizing these solutions. This
form of learning is only useful when the number of possible scheduling instances
is limited, i.e., a small number of jobs of very few different types. It is not very
effective in a complex environment, when the probability of a similar instance
occurring again is very small.
Case-based reasoning attempts to exploit experience gained from similar

problems solved in the past. A scheduling problem requires the identification
of salient features of past schedules, an interpretation of these features, and a
mechanism that determines which case stored in memory is the most useful in
the current context. Given the large number of interacting constraints inherent
in scheduling, existing case indexing schemes are often inadequate for building
the case base and subsequent retrieval, and new ways have to be developed.
The following example shows how the performance of a composite dispatching
rule can be improved using a crude form of case-based reasoning; the form of
case-based reasoning adopted is often referred to as the parameter adjustment
method.

Example 18.2.1 (Case-Based Reasoning: Parameter Adjustment)
Consider the 1 | sjk |

∑
wjTj problem (i.e., there is a single machine with n

jobs and the total weighted tardiness
∑

wjTj has to be minimized). More-
over, the jobs are subject to sequence dependent setup times sjk. This prob-
lem has been considered in Example 14.2.1. A fairly effective composite
dispatching rule for this scheduling problem is the ATCS rule. When the
machine has completed the processing of job l at time t, the ATCS rule
calculates the ranking index of job j as

Ij(t, l) =
wj
pj
exp

(
− max(dj − pj − t, 0)

K1p̄

)
exp

(
− slj

K2s̄

)
,

where s̄ is the average setup time of the jobs remaining to be scheduled, K1

the scaling parameter for the function of the due date of job j and K2 the
scaling parameter for the setup time of job j. As described in Chapter 14,
the two scaling parameters K1 and K2 can be regarded as functions of three
factors:

(i) the due date tightness factor τ ,
(ii) the due date range factor R,
(iii) the setup time severity factor η = s̄/p̄.

However, it is difficult to find suitable functions that map the three factors
into appropriate values for the scaling parameters K1 and K2.
At this point a learning mechanism may be useful. Suppose that in the

scheduling system there are functions that map combinations of the three
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factors τ , R and η onto two values for K1 and K2. These do not have to be
algebraic functions; they may be in the form of tables. When a scheduling
instance is considered, the system computes τ , R and η and looks in the
current tables for the appropriate values of K1 and K2. (These values for
K1 and K2 may then have to be determined through an interpolation). The
instance is then solved using the composite dispatching rule with these values
for K1 and K2. The objective value of the schedule generated is computed
as well. However, in that same step, without any human intervention, the
system also solves the same scheduling instance using values K1+ δ, K1− δ,
K2+δ, K2−δ (various combinations). Since the dispatching rule is very fast,
this can be done in real time. The performance measures of the schedules
generated with the perturbed scaling parameters are also computed. If any of
these schedules turns out to be substantially better than the one generated
with the original K1 and K2, then there may be a reason for changing the
mapping from the characteristic factors onto the scaling parameters. This
can be done internally by the system without any input from the user of the
system. ||
The learning mechanism described in the example above is an online mecha-

nism that operates without supervision. This mechanism is an example of case-
based reasoning and can be applied to multi-objective scheduling problems as
well, even when a simple index rule does not exist.
The third class of learning mechanisms are of the induction type. A very

common form of an induction type learning mechanism is a neural network.
A neural net consists of a number of interconnected neurons or units. The
connections between units have weights, which represent the strengths of these
connections. A multi-layer feedforward net is composed of input units, hidden
units and output units (see Figure 18.2). An input vector is processed and
propagated through the network starting at the input units and proceeding
through the hidden units all the way to the output units. The activation level of
input unit i is set to the ith component of the input vector. These values are then
propagated to the hidden units via the weighted connections. The activation
level of each hidden unit is then computed by summing these weighted values,
and by transforming the sum through a function f , that is,

al = f(ql,
∑
k

wklak),

where al is the activation level of unit l, ql is the bias of unit l, and wkl is the
connection weight between nodes k and l. These activation levels are propagated
to the output units via the weighted connections between the hidden units and
the output units and transformed again by means of the function f above. The
neural net’s response to a given input vector is composed of the activation levels
of the output units which is referred to as the output vector. The dimension of
the output vector does not have to be the same as the dimension of the input
vector.
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Fig. 18.2 A three-layer neural network

The knowledge of the net is stored in the weights and there are well known
methods for adjusting the weights of the connections in order to obtain appropri-
ate responses. For each input vector there is a most appropriate output vector.
A learning algorithm computes the difference between the output vector of the
current net and the most appropriate output vector and suggests incremental
adjustments to the weights. One such method is called the backpropagation
learning algorithm.
The next example illustrates the application of a neural net to machine

scheduling.

Example 18.2.2 (Neural Net for Parallel Machine Scheduling)
Consider the problem Qm | rj , sjk |

∑
wjTj . Machine i has speed vi and if

job j is processed on machine i, then its processing time is pij = pj/vi. The
jobs have different release dates and due dates. The jobs on a machine are
subject to sequence dependent setup times sjk. The objective is to minimize
the total weighted tardiness (note that the weights in the objective function
are not related to the weights in the neural net).
Suppose that for each machine there is already a partial schedule in place

that consists of jobs that already have been assigned. New jobs come in as
time goes on. At each new release it has to be decided to which machine the
job should be assigned. The neural net has to support this decision-making
process.
Typically, the encoding of the data in the form of input vectors is crucial

to the problem solving process. In the parallel machines application, each
input pattern represents a description of the attributes of a sequence on one
of the machines. The values of the attributes of a sequence are determined
as follows. Each new job is first positioned where its processing time is the
shortest (including the setup time immediately preceding it and the setup
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time immediately following it). After this insertion the following attributes
are computed with regard to that machine:

(i) the increase in the total weighted completion time of all jobs already
scheduled on the machine;

(ii) the average increase in tardiness of the jobs already scheduled on the
machine;

(iii) the number of additional jobs that are tardy on the machine;
(iv) the current number of jobs on the machine.

However, the importance of each individual attribute is relative. For ex-
ample, knowing that the number of jobs on a machine is five does not mean
much without knowing the number of jobs on the other machines. Let Nil
be attribute l with respect to machine i. Two transformations have to be
applied to Nil.

Translation: The Nil value of attribute l under a given sequence on ma-
chine i is transformed as follows.

N ′
il = Nil −min(N1l, . . . , Nml) i = 1, . . . ,m, l = 1, . . . , k.

In this way, N ′
i∗l = 0 for the best machine, machine i∗, with respect to

attribute l and the value N ′
il corresponds to the difference with the best

value.
Normalization: The N ′

il value is transformed by normalizing over the max-
imum value in the context.

N ′′
il =

N ′
il

max(N ′
1l, . . . , N

′
ml)

i = 1, . . . ,m, l = 1, . . . , k.

Clearly,
0 ≤ N ′′

il ≤ 1.
These transformations make the comparisons of the input patterns corre-
sponding to the different machines significantly easier. For example, if the
value of attribute l is important in the decision making process, then a ma-
chine with a low l-th attribute is more likely to be selected.
A neural net architecture to deal with this problem can be of the structure

described in Figure 18.2. This is a three layer network with four input nodes
(equal to the number of attributes k), four hidden nodes and one output
node. Each input node is connected to all the hidden nodes as well as to the
output node. The four hidden nodes are connected to the output node as
well.
During the training phase of this network an extensive job release process

has to be considered, say 1000 jobs. Each job release generates m input
patterns (m being the number of machines) which have to be fed into the
network. During this training process the desired output of the net is set
equal to 1 when the machine associated with the given input is selected
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by the expert for the new release and equal to 0 otherwise. For each input
vector there is a desired output and the learning algorithm has to compute
the error or difference between the current neural net output and the desired
output in order to make incremental changes in the connection weights. A
well-known learning algorithm for the adjustment of connection weights is
the backpropagation learning algorithm; this algorithm requires the choice
of a so-called learning rate and a momentum term. At the completion of the
training phase the connection weights are fixed.
Using the network after the completion of the training phase requires that

every time a job is released the m input patterns are fed into the net; the
machine associated with the output closest to 1 is then selected for the given
job. ||
In contrast to the learning mechanism described in Example 18.2.1 the mech-

anism described in Example 18.2.2 requires off-line learning with supervision,
i.e., training.
The fourth class of learning mechanisms are the so-called classifier systems.

A common form of classifier system can be implemented via a genetic algorithm
(see Chapter 14). However, a chromosome (or string) in such a algorithm now
does not represent a schedule, but rather a list of rules (e.g., priority rules) that
are to be used in the successive steps (or iterations) of an algorithmic framework
designed to generate schedules for the problem at hand. For example, consider
a framework for generating job shop schedules similar to Algorithm 7.1.3. This
algorithm can be modified by replacing its Step 3 with a priority rule that selects
an operation from set Ω′. A schedule for the job shop can now be generated by
doing nm successive iterations of this algorithm where nm is the total number
of operations. Every time a new operation has to be scheduled, a given priority
rule is used to select the operation from the current set Ω′. The information that
specifies the priority rule that should be used in each iteration can be stored
in a string of length nm for a genetic algorithm. The fitness of such a string
is the value of the objective function obtained when all the (local) rules are
applied successively in the given framework. This representation of a solution
(by specifying rules), however, requires relatively intricate cross-over operators
in order to get feasible off-spring. The genetic algorithm is thus used to search
over the space of rules and not over the space of actual schedules. The genetic
algorithm serves as a meta-strategy that optimally controls the use of priority
rules.

18.3 Design of Scheduling Engines and Algorithm
Libraries

A scheduling engine in a system often contains a library of algorithmic proce-
dures. Such a library may include basic dispatching rules, composite dispatching
rules, shifting bottleneck techniques, local search techniques, branch-and-bound



18.3 Design of Scheduling Engines and Algorithm Libraries 493

procedures, beam search techniques, mathematical programming routines, and
so on. For a specific instance of a problem one procedure may be more suitable
than another. The appropriateness of a procedure may depend on the amount
of CPU time available or the length of time the user is willing to wait for a
solution.
The user of such a scheduling system may want to have a certain flexibility in

the usage of the various types of procedures in the library. The desired flexibility
may simply imply an ability to determine which procedure to apply to the given
instance of the problem, or it may imply more elaborate ways of manipulating
a number of procedures. A scheduling engine may have modules that allow the
user

(i) to analyze the data and determine algorithmic parameters,
(ii) to set up algorithms in parallel,
(iii) to set up algorithms in series,
(iv) to integrate algorithms.

For example, an algorithm library allows a user to do the following: he may
have statistical procedures at hand which he can apply to the data set in order
to generate some statistics, such as average processing time, range of process-
ing times, due date tightness, setup time severity, and so on. Based on these
statistics the user can select a procedure and specify the appropriate levels
for its parameters (e.g., scaling parameters, lengths of tabu-lists, beam widths,
number of iterations, and so on).
If a user has more than one computer or processor at his disposal, he may

want to apply different procedures concurrently (i.e., in parallel), since he may
not know in advance which one is the most suitable for the instance being
considered. The different procedures function then completely independently
from one another.
A user may also want to concatenate procedures i.e., set various procedures

up in series. That is, he or she would set the procedures up in such a way
that the output of one serves as an input to another, e.g., the outcome of a
dispatching rule serves as the initial solution for a local search procedure. The
transfer of data from one procedure to the next is usually relatively simple. For
example, it may be just a schedule, which, in the case of a single machine, is
a permutation of the jobs. In a parallel machine environment or in a job shop
environment it may be a collection of sequences, one for each machine.

Example 18.3.1 (Concatenation of Procedures)
Consider a scheduling engine that allows a user to feed the outcome of a
composite dispatching rule into a local search procedure. This means that
the output of the first stage, i.e., the dispatching rule, is a complete schedule.
The schedule is feasible and the starting times and completion times of all
the operations are determined. The output data of this procedure (and the
input data for the next procedure) may contain the following information:

(i) the sequence of operations on each machine;
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(ii) the start time and completion time of each operation;
(iii) the values of specific objective functions.

The output data does not have to contain all the data listed above; for
example, it may include only the sequence of operations on each machine.
The second procedure, i.e., the local search procedure, may have a routine
that can compute the start and completion times of all operations given the
structure of the problem and the sequences of the operations. ||
Another level of flexibility allows the user not only to set procedures up in

parallel or in series, but to integrate the procedures in a more complex manner.
When different procedures are integrated within one framework, they do not
work independently from one another; the effectiveness of one procedure may
depend on the input or feedback received from another. Consider a branch-
and-bound procedure or a beam search procedure for a scheduling problem.
At each node in the search tree, one has to obtain either a lower bound or an
estimate for the total penalty that will be incurred by the jobs that have not
yet been scheduled. A lower bound can often be obtained by assuming that
the remaining jobs can be scheduled while allowing preemptions. A preemptive
version of a problem is often easier to solve than its nonpreemptive counterpart
and the optimal solution of the preemptive problem provides a lower bound for
the optimal solution of the nonpreemptive version.
Another example of an integration of procedures arises in decomposition

techniques. A machine-based decomposition procedure is typically a heuris-
tic designed for a complicated scheduling problem with many subproblems.
A framework for a procedure that is applicable to the main problem can be
constructed. However, the user may want to be able to specify, knowing the
particular problem or instance, which procedure to apply to the subproblem.
If procedures have to be integrated, then one often has to work within a

general framework (sometimes also referred to as a control structure) in which
one or more specific types of subproblems have to be solved many times. The
user may want to have the ability to specify certain parameters within this
framework. For example, if the framework is a search tree for a beam search,
then the user would like to be able to specify the beam width as well as the filter
width. The subproblem that has to be solved at each node of the search tree has
to yield (with little computational effort) a good estimate for the contribution
to the objective by those jobs that have not yet been scheduled.
The transfer of data between procedures in an integrated framework may be

complicated. It may be the case that data concerning a subset of jobs or a subset
of operations has to be transferred. It may also be the case that the machines
are not available at all times. The positions of the jobs already scheduled on
the various machines may be fixed, implying that the procedure that has to
schedule the remaining jobs must know when the machines are still available. If
there are sequence dependent setup times, then the procedure also has to know
which job was the last one processed on each machine, in order to compute the
sequence dependent setup time for the next job.
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Example 18.3.2 (Integration of Procedures in a Branching Scheme)

Consider a branch-and-bound approach for 1 | sjk, brkdwn | ∑
wjTj . The

jobs are scheduled in a forward manner, i.e., a partial schedule consists of a
sequence of jobs that starts at time zero. At each node of the branching tree
a bound has to be established for the total weighted tardiness of the jobs
still to be scheduled. If a procedure is called to generate a lower bound for
all schedules that are descendants from a particular node, then the following
input data has to be provided:

(i) the set of jobs already scheduled and the set of jobs still to be sched-
uled;

(ii) the time periods that the machine remains available;
(iii) the last job in the current partial schedule (in order to determine the

sequence dependent setup time).

The output data of the procedure may contain a sequence of operations as
well as a lower bound. The required output may be just a lower bound; the
actual sequence may not be of interest.
If there are no setup times then a schedule can also be generated in a

backward manner (since the value of the makespan is then known in ad-
vance). ||
Example 18.3.3 (Integration of Procedures in a Decomposition
Scheme)
Consider a shifting bottleneck framework for a flexible job shop with at each
workcenter a number of machines in parallel.
At each iteration a subset of the workcenters has already been scheduled

and an additional workcenter must be scheduled. The sequences of the oper-
ations at the workcenters already scheduled imply that the operations of the
workcenter to be scheduled in the subproblem is subject to delayed prece-
dence constraints. When the procedure for the subproblem is called, a certain
amount of data has to be transferred. These data may include:

(i) the release date and due date of each operation;
(ii) the precedence constraints between the various operations;
(iii) the necessary delays that go along with the precedence constraints.

The output data consists of a sequence of operations as well as their start
times and completion times. It also contains the values of given performance
measures.
It is clear that the type of information and the structure of the information

is more complicated than in a simple concatenation of procedures. ||
These forms of integration of procedures have led to the development of so-

called scheduling description languages. A description language is a high level
language that enables a scheduler to write the code for a complex integrated al-
gorithm using only a limited number of concise statements or commands. Each
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statement in a description language involves the application of a relatively pow-
erful procedure. For example, a statement may carry the instruction to apply a
tabu-search procedure on a given set of jobs in a given machine environment.
The input to such a statement consists of the set of jobs, the machine environ-
ment, the processing restrictions and constraints, the length of the tabu-list, an
initial schedule, and the total number of iterations. The output consists of the
best schedule obtained with the tabu-search procedure. Other statements may
be used to set up various different procedures in parallel or concatenate two
different procedures.

18.4 Reconfigurable Systems

The last two decades have witnessed the development of a large number of
scheduling systems in industry and in academia. Some of these systems are
application-specific, others are generic. In implementations application-specific
systems tend to do somewhat better than generic systems that are customized.
However, application-specific systems are often hard to modify and adapt to
changing environments. Generic systems are usually somewhat better designed
and more modular. Nevertheless, any customization of such systems typically
requires a significant investment.
Considering the experience of the last two decades, it appears useful to pro-

vide guidelines that facilitate and standardize the design and the development
of scheduling systems. Efforts have to be made to provide guidelines as well as
system development tools. The most recent designs tend to be highly modular
and object-oriented.
There are many advantages in following an object-oriented design approach

for the development of a scheduling system. First, the design is modular, which
makes maintenance and modification of the system relatively easy. Second, large
segments of the code are reusable. This implies that two systems that are inher-
ently different still may share a significant amount of code. Third, the designer
thinks in terms of the behavior of objects, not in lower level detail. In other
words, the object-oriented design approach can speed up the design process and
separate the design process from its implementation.
Object oriented systems are usually designed around two basic entities,

namely objects and methods. Objects refer to various types of entities or con-
cepts. The most obvious ones are jobs and machines or activities and resources.
However, a schedule is also an object and so are user-interface components, such
as buttons, menus and canvasses. There are two basic relationships between ob-
ject types, namely the is-a relationship and the has-a relationship. According
to an is-a relationship one object type is a special case of another object type.
According to a has-a relationship an object type may consist of several other
object types. Objects usually carry along static information, referred to as at-
tributes, and dynamic information, referred to as the state of the object. An
object may have several attributes that are descriptors associated with the ob-
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ject. An object may be in any one of a number of states. For example, a machine
may be busy, idle, or broken down. A change in the state of an object is referred
to as an event.
A method is implemented in a system by means of one or more operators.

Operators are used to manipulate the attributes corresponding to objects and
may result in changes of object states, i.e., events. On the other hand, events
may trigger operators as well. The sequence of states of the different objects
can be described by a state-transition or event diagram. Such an event diagram
may represent the links between operators and events. An operator may be
regarded as the way in which a method is implemented in the software. Any
given operator may be part of several methods. Some methods may be very
basic and can be used for simple manipulations of objects, e.g., a pairwise
interchange of two jobs in a schedule. Others may be very sophisticated, such
as an intricate heuristic that can be applied to a given set of jobs (objects) in
a given machine environment (also objects). The application of a method to an
object usually triggers an event.
The application of a method to an object may cause information to be trans-

mitted from one object to another. Such a transmission of information is usually
referred to as a message. Messages represent information (or content) that are
transmitted from one object (for example, a schedule) via a method to another
object (for example, a user interface display). A message may consist of simple
attributes or of an entire object. Messages are transmitted when events occur
(caused by the application of methods to objects). Messages have been referred
to in the literature also as memos. The transmission of messages from one ob-
ject to another can be described by a transition event diagram, and requires
the specification of protocols.
A scheduling system may be object-oriented in its basic conceptual design

and/or in its development. A system is object-oriented in its conceptual design if
the design of the system is object-oriented throughout. This implies that every
concept used and every functionality of the system is either an object or a
method of an object (whether it is in the data or knowledge base, the algorithm
library, the scheduling engine or the user interfaces). Even the largest modules
within the system are objects, including the algorithm library and the user
interface modules. A system is object-oriented in its development if only the
more detailed design aspects are object-oriented and the code is based on a
programming language with object-oriented extensions such as C++.
Many scheduling systems developed in the past have object-oriented aspects

and tend to be object-oriented in their development. A number of these systems
also have conceptual design aspects that are object-oriented. Some rely on in-
ference engines for the generation of feasible schedules and others are constraint
based relying on constraint propagation algorithms and search. These systems
usually do not have engines that perform very sophisticated optimization.
Not many systems have been designed from top to bottom according to an

object-oriented philosophy. Some of the aspects that are typically not object-
oriented include:
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(i) the design of scheduling engines,
(ii) the design of the user interfaces and
(iii) the specification of the precedence, routing and layout constraints.

Few existing engines have extensive libraries of algorithms at their disposal
that are easily reconfigurable and that would benefit from a modular object-
oriented design (an object-oriented design would require a detailed specification
of operators and methods). Since most scheduling environments would benefit
from highly interactive optimization, schedule generators have to be strongly
linked to interfaces that allow schedulers to manipulate schedules manually.
Still, object-oriented design has not had yet a major impact on the design of
user interfaces for scheduling systems. The precedence constraints, the routing
constraints, and the machine layout constraints are often represented by rules in
a knowledge base and an inference engine must generate a schedule that satisfies
the rules. However, these constraints can be modeled conceptually easily using
graph and tree objects that then can be used by an object oriented scheduling
engine.

18.5 Web-Based Scheduling Systems

With the ongoing development in information technology, conventional single-
user stand-alone systems have become available in networks and on the Internet.
Basically there are three types of web-based systems:

(i) information access systems,
(ii) information coordination systems,
(iii) information processing systems.

In information access systems, information can be retrieved and shared through
the Internet, through EDI or through other electronic systems. The server acts
as an information repository and distribution center, such as a homepage on
the Internet.
In information coordination systems, information can be generated as well as

retrieved by many users (clients). The information flows go in many directions
and the server can synchronize and manage the information, such as in project
management and in electronic markets.
In information processing systems the servers can process the information

and return the results of this processing to the clients. In this case, the servers
function as application programs that are transparent to the users.
Web-based scheduling systems are information processing systems that are

very similar to the interactive scheduling systems described in previous sections,
except that a web-based scheduling system is usually a strongly distributed sys-
tem. Because of the client-server architecture of the Internet, all the important
components of a scheduling system, i.e., the database, the engine, and the user
interface, may have to be adapted. The remaining part of this section focuses
on some of the typical design features of web-based scheduling systems.
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The advantages of having servers that make scheduling systems available
on the web are the following. First, the input-output interfaces (used for the
graphical displays) can be supported by local hosts rather than by servers at
remote sites. Second, the server as well as the local clients can handle the data
storage and manipulation. This may alleviate the workload at the server sites
and give local users the capability and flexibility to manage the database. Third,
multiple servers can collaborate on the solution of large-scale and complicated
scheduling problems. A single server can provide a partial solution and the
entire problem can be solved using distributed computational resources.
In order to retain all the functions inherent in an interactive scheduling

system, the main components of a system have to be restructured in order to
comply with the client-server architecture and to achieve the advantages listed
above. This restructuring affects the design of the database, the engine as well
as the user interface.
The design of the database has the following characteristics: The process

manager as well as the scheduling manager reside at the servers. However,
some data can be kept at the client for display or further processing. Both the
Gantt chart and the dispatch lists are representations of the solution generated
by the engine. The local client can cache the results for fast display and further
processing, such as editing. Similarly, both the server and the client can process
the information. Figure 18.3 exhibits the information flow between the server
and local clients. A client may have a general purpose database management
system (such as Sybase or Excel) or an application-specific scheduling database
for data storage and manipulation.
The design of the scheduling engine has the following characteristics: A local

client can select for a problem he has to deal with an algorithm from a library
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that resides at a remote server. Often, there is no algorithm specifically designed
for his particular scheduling problem and he may want to create a composite
procedure using some of the algorithms that are available in the library. The
server or client algorithm generator may function as a workplace for users to
create new procedures. Figure 18.4 shows how a new composite procedure can
result in a new algorithm that then can be included in both the server and the
client libraries. This local workplace can speed up the process of constructing
intermediate and final composite methods and extend the server and client
libraries at the same time.
The Internet also has an effect on the design of the user interfaces. Using

existing Internet support, such as HTML (HyperText Markup Language), Java,
Java script, Perl and CGI (Common Gateway Interface) functions, the graphical
user interfaces of scheduling systems can be implemented as library functions
at the server sites. Through the use of appropriate browsers, users can enter
data or view schedules with a dynamic hypertext interface. Moreover, a user
can also develop interface displays that link server interface functions to other
applications. In Figure 18.3 it is shown how display functions can be supported
either by remote servers or by local clients.
Thus it is clear that servers can be designed in such a way that they can help

local clients solve their scheduling problems. The local clients can manipulate
data and construct new scheduling methods. The servers function as regular
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interactive scheduling systems except that now they can be used in a multi-
user environment on the Internet.
Web-based scheduling systems can be used in several ways. One way is based

on personal customization and another on unionization. Personal customization
implies that a system can be customized to satisfy an individual user’s needs.
Different users may have different requirements, since each has his own way
of using information, applying scheduling procedures, and solving problems.
Personalized systems can provide shortcuts and improve system performance.
Unionization means that a web-based scheduling system can be used in a dis-
tributed environment. A distributed system can exchange information efficiently
and collaborate effectively in solving hard scheduling problems.
With the development of Internet technology and client-server architectures,

new tools can be incorporated in scheduling systems for solving large-scale and
complicated problems. It appears that web-based systems may well lead to
viable personalized interactive scheduling systems.

18.6 Discussion

Many teams in industry and academia are currently developing scheduling sys-
tems. The database (or object base) management systems are usually off-the-
shelf, developed by companies that specialize in these systems, e.g., Oracle.
These commercial databases are typically not specifically geared for scheduling
applications; they are of a more generic nature.
Dozens of software development and consulting companies specialize in

scheduling applications. They may specialize even in certain niches, e.g., schedul-
ing applications in the process industries or in the microelectronics industries.
Each of these companies has its own systems with elaborate user interfaces and
its own way of doing interactive optimization.
Research and development in scheduling algorithms and in learning mecha-

nisms will most likely only take place in academia or in large industrial research
centers. This type of research needs extensive experimentation; software houses
often do not have the time for such developments.
In the future, the Internet may allow for the following types of interaction

between software companies and universities that develop systems and com-
panies that need scheduling services (clients). A client may use a system that
is available on the web, enter its data and run the system. The system gives
the client the values of the performance measures of the solution generated.
However, the client cannot yet see the schedule. If the performance measures of
the solution are to the liking of the client, then he may decide to purchase the
solution from the company that generated the schedule.
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Exercises

18.1. One way of constructing robust schedules is by inserting idle times. De-
scribe all the factors that influence the timing, the frequency and the duration
of the idle periods.

18.2. Consider all the nonpreemptive schedules on a single machine with n
jobs. Define a measure for the ”distance” (or the ”difference”) between two
schedules.

(a) Apply the measure when the two schedules consist of the same set of
jobs.
(b) Apply the measure when one set of jobs has one more job than the
other set.

18.3. Consider the same set of jobs as in Example 18.1.1. Assume that there
is a probability p that the machine needs servicing starting at time 2. The
servicing takes 10 time units.

(a) Assume that neither preemption nor resequencing is allowed (i.e., after
the servicing has been completed, the machine has to continue processing
the job it was processing before the servicing). Determine the optimal se-
quence(s) as a function of p.
(b) Assume preemption is not allowed but resequencing is allowed. That
is, after the first job has been completed the scheduler may decide not to
start the job he originally scheduled to go second. Determine the optimal
sequence(s) as a function of p.
(c) Assume preemption as well as resequencing are allowed. Determine the
optimal sequence(s) as a function of p.

18.4. Consider two machines in parallel that operate at the same speed and
two jobs. The processing times of each one of the two jobs is equal to one time
unit. At each point in time each machine has a probability 0.5 of breaking
down for one time unit. Job 1 can only be processed on machine 1 whereas job
2 can be processed on either one of the two machines. Compute the expected
makespan under the Least Flexible Job first (LFJ) rule and under the Most
Flexible Job first (MFJ) rule.

18.5. Consider a single machine scheduling problem with the jobs being subject
to sequence dependent setup times. Define a measure of job flexibility that is
based on the setup time structure.

18.6. Consider the following instance of a single machine with sequence depen-
dent setup times. The objective to be minimized is the makespan. There are 6
jobs. The sequence dependent setup times are specified in the table below.
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k 0 1 2 3 4 5 6

s0k - 1 1 + ε K 1 + ε 1 + ε K
s1k K - 1 1 + ε K 1 + ε 1 + ε
s2k 1 + ε K - 1 1 + ε K 1 + ε
s3k 1 + ε 1 + ε K - 1 1 + ε K
s4k K 1 + ε 1 + ε K - 1 1 + ε
s5k 1 + ε K 1 + ε 1 + ε K - 1
s6k 1 1 + ε K 1 + ε 1 + ε K -

Assume K to be very large. Define as the neighbourhood of a schedule all
schedules which can be obtained through an adjacent pairwise interchange.

(a) Find the optimal sequence.
(b) Determine the makespans of all schedules that are neighbors of the
optimal schedule.
(c) Find a schedule, with a makespan less than K, of which all neighbors
have the same makespan. (The optimal sequence may be described as a
“brittle” sequence, while the last sequence may be described as a more
“robust” sequence.)

18.7. Consider a flow shop with limited intermediate storages that is subject
to a cyclic schedule as described in Section 16.2. Machine i now has at the
completion of each operation a probability pi that it goes down for an amount
of time xi.

(a) Define a measure for the congestion level of a machine.
(b) Suppose that originally there are no buffers between machines. Now a
total of k buffer spaces can be inserted between the m machines and the
allocation has to be done in such a way that the schedules are as robust
as possible. How does the allocation of the buffer spaces depend on the
congestion levels at the various machines?

18.8. Explain why rote learning is an extreme form of case-based reasoning.

18.9. Describe how a branch-and-bound approach can be implemented for a
scheduling problem with m identical machines in parallel, the jobs subject to
sequence dependent setup times and the total weighted tardiness as objective.
That is, generalize the discussion in Example 18.3.2 to parallel machines.

18.10. Consider Example 18.3.3 and Exercise 18.9. Integrate the ideas pre-
sented in an algorithm for the flexible job shop problem.

18.11. Consider a scheduling description language that includes statements
that can call different scheduling procedures for a scheduling problem with m
identical machines in parallel, the total weighted tardiness objective and the n
jobs released at different points in time. Write the specifications for the input
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and the output data for three statements that correspond to three procedures of
your choice. Develop also a statement for setting the procedures up in parallel
and a statement for setting the procedures up in series. Specify for each one of
these last two statements the appropriate input and output data.

18.12. Suppose a scheduling description language is used for coding the shifting
bottleneck procedure. Describe the type of statements that are required for such
a code.

Comments and References

There is an extensive literature on scheduling under uncertainty (i.e., stochastic
scheduling). However, the literature on stochastic scheduling, in general, does
not address the issue of robustness per se. But robustness concepts did receive
special attention in the literature; see, for example, the work by Leon and Wu
(1994), Leon, Wu and Storer (1994), Mehta and Uzsoy (1999), Wu, Storer and
Chang (1991), Wu, Byeon and Storer (1999), and Policella, Cesta, Oddi and
Smith (2005, 2007). For an overview of research in reactive scheduling, see
the excellent survey by Smith (1992) and the framework presented by Vieira,
Herrmann and Lin (2003). For more detailed work on reactive scheduling and
rescheduling in job shops, see Bierwirth and Mattfeld (1999) and Sabuncuoglu
and Bayiz (2000). For applications of robustness and reactive scheduling in the
real world, see Elkamel and Mohindra (1999) and Oddi and Policella (2005).
Research on learning mechanisms in scheduling systems started in the late

eighties; see, for example, Shaw (1988), Shaw and Whinston (1989), Yih (1990),
Shaw, Park, and Raman (1992), and Park, Raman and Shaw (1997). The para-
metric adjustment method for the ATCS rule in Example 18.2.1 is due to Chao
and Pinedo (1992). The book by Pesch (1994) focuses on learning in scheduling
through genetic algorithms (classifier systems). For a description of the rein-
forcement approach applied to job shop scheduling, see Zhang and Dietterich
(1995). For more general overviews of machine learning in production schedul-
ing, see Aytug, Bhattacharyya, Koehler and Snowdon (1994) and Priore, de la
Fuente, Gomez and Puente (2001).
A fair amount of development work has been done recently on the design

of adaptable scheduling engines. Akkiraju, Keskinocak, Murthy and Wu (1998,
2001) discuss the design of an agent based approach for a scheduling system
developed at IBM. Feldman (1999) describes in detail how algorithms can be
linked and integrated and Webster (2000) presents two frameworks for adapt-
able scheduling algorithms.
The design, development and implementation of modular or reconfigurable

scheduling systems is often based on objects and methods. For objects and
methods, see Booch (1994), Martin (1993), and Yourdon (1994). For modular
design with regard to databases and knowledge bases, see, for example, Collinot,
LePape and Pinoteau (1988), Fox and Smith (1984), Smith (1992), and Smith,
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Muscettola, Matthys, Ow and Potvin (1990)). For an interesting design of a
scheduling engine, see Sauer (1993). A system design proposed by Smith and
Lassila (1994) extends the modular philosophy for scheduling systems farther
than any previous system. This is also the case with the approach by Yen (1995)
and Pinedo and Yen (1997).
The paper by Yen (1997) contains the material concerning web-based schedul-

ing systems presented in Section 18.5.
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From the previous chapters it is evident that there are many different types of
scheduling problems. It is not likely that a system can be designed in such a way
that it could be made applicable to any scheduling problem with only minor
customization. This suggests that there is room as well as a need for many differ-
ent scheduling systems. The variety of available platforms, databases, Graphic
User Interfaces (GUI’s) and networking capabilities enlarges the number of pos-
sibilities even more.
This chapter describes the architectures and implementations of seven schedul-

ing systems. The first section describes the Production Planning and Detailed
Scheduling System (PP/DS) that is part of the Advanced Planning and Opti-
mization (APO) software developed by SAP, which is a company headquartered
in Germany. The PP/DS system is a flexible system that can be adapted easily
to many industrial settings. The second system had been developed at IBM’s
T.J. Watson Research Center. This system had been installed at a number
of sites, primarily in the paper industry. The third system is the Production
Scheduler system developed by i2 Technologies, which is based in Dallas, Texas.
Currently, the i2 Production Scheduler is one of the more widely used systems
in industry. The fourth system is a commercial system developed by Taylor
Scheduling Software. This system is quite generic and can be adapted to many

507M.L. Pinedo, Scheduling, DOI: 10.1007/978-0-387-78935-4 19,
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different manufacturing settings. The fifth section describes a scheduling archi-
tecture developed by Advanced Micro Devices for their semiconductor manu-
facturing plants. The sixth system is an application-specific system developed
by Cybertec in Italy for a facility that produces jars of yogurt. The seventh
and last system is an academic system that has been developed at New York
University (NYU) for educational purposes. This system has been in use for
several years at many universities all over the world.

19.1 SAP’s Production Planning and Detailed Scheduling
System

SAP has been from the outset a company that specializes in the development
of Enterprise Resource Planning (ERP) systems. The ERP2005 system is still
one of their most important products. In 1998 the company started to develop
decision support systems for manufacturing as well as for service industries.
For example, they decided to develop their own supply chain planning and
scheduling software rather than depend on alliances with third parties. This
development resulted ultimately in a division that creates a suite of business
solutions for Supply Chain Management (SCM) applications. This suite of so-
lutions is referred to as SAP SCM. The supply chain planning and scheduling
software is referred to in SAP as Applied Planning and Optimization (APO).
APO provides a set of specially tailored optimization routines that can be

applied to all aspects of supply chain planning and scheduling. APO offers the
following planning and scheduling steps:

(i) Supply Network Planning,
(ii) Production Planning and Material Requirements Planning, and
(iii) Detailed Scheduling.

The Supply Network Planning step (which is equivalent to a crude form of
production planning) generates a production plan across the different produc-
tion facilities (including subcontractors) in order to meet (customer) demand
in the required time frames and according to the standards expected by the
customer. This is accomplished either through their Capable-To-Match (CTM)
planning procedure or through their optimizer. The CTM procedure uses con-
straint based heuristics to conduct multi-site checks of production capacities
and transportation capabilities based on predefined supply categories and de-
mand priorities. The objective of a CTM planning run is to generate a feasible
solution that meets all the demands. The CTM planning run is powered by the
CTM engine, which matches the prioritized demands to the available supplies
in two phases. First, it builds the CTM application model based on the master
data that have been entered. Second, it matches the demands to the supplies
on a first come first served basis, taking production capacities and transporta-
tion capabilities into account. The Optimizer does a rough cut planning over a
medium and long term horizon, based on time buckets; it specifies the demands
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Fig. 19.1 SAP Supply Network Planning User Interface

on the resources (machines, people, production resource tools) and material re-
quirements. Real-time data, solvers, and high supply chain visibility support the
planner’s decision-making process. The medium term planning problem can, for
example, be solved through a Linear Programming relaxation. This LP relax-
ation can be solved with the CPLEX LP solver of the ILOG library. In order to
deal with integrality constraints it has a discretization heuristic that can take
into account the actual meaning of each one of the integer decision variables.
After solving the LP relaxation, the variables are stepwise discretized using
again in each step an LP relaxation. The discretization process is done gradu-
ally: lot sizes for later time buckets are discretized later. The planning problem
may include linear constraints as well as integer constraints. Linear constraints
may be necessary because of due date constraints, maximum delay constraints,
storage capacity constraints, and so on. The integer constraints may be neces-
sary because of minimal lot sizes, full truck loads, and so on. Such optimization
problems are modeled as Mixed Integer Programs (MIPs). A user interface for
the Supply Network Planning is depicted in Figure 19.1.
The Production Planning and Material Requirements Planning step is an

important part of the production planning process. It generates replenishment
schedules for all manufactured components, intermediates, purchased parts, and
raw materials. This step sets due dates for production orders and purchase req-
uisitions through lead time scheduling, depending on buffers, processing times,
lot-sizing rules, and so on.
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The Detailed Scheduling step generates good (and perhaps even optimal) job
schedules that can be released for production. Scheduling heuristics and solvers
take into account constraints and costs to optimally schedule the set of jobs un-
der consideration, based on the business objectives. The most popular solvers
in this step are Genetic Algorithms (GA). What-if simulations and evaluations
of the order sequences provide the scheduler with a certain amount of flexibility
and control. Critical resource situations can be adjusted either automatically
or manually via a well-designed user interface, see Figure 19.2. The detailed
scheduling step can be applied in process industries as well as in discrete man-
ufacturing industries. Customer-specific scheduling needs can be served with
individual heuristics and optimizers to extend the standard scheduling tools
with user and industry-specific components (like for example trim optimization
algorithms in mill industries). These individual heuristics and algorithms can
be called directly from the Detailed Scheduling user interfaces. Combined with
the standard optimizers and heuristics, they form an integrated scheduling sys-
tem. The detailed scheduling problem is modeled in its most generic form as a
so-called Multi-Mode Resource Constrained Project Scheduling Problem with
minimum and maximum time lags. Maximum time constraints such as deadlines
or shelf life (expiration dates), storage capacities, sequence dependent setup
times, precedence constraints, processing interruptions due to breakdowns, and
objectives such as the minimization of setup times, setup costs, due date delays
can all be included.
The Production Planning and Detailed Scheduling steps are typically con-

sidered one module and are referred to as the APO-PP/DS module.
APO has at its disposal a tool kit that contains a suite of algorithms and

heuristics, namely:

(i) Genetic Algorithms,
(ii) Multi-Level Planning Heuristics, and
(iii) Manual Planning Heuristics (including drag and drop).

The Genetic Algorithms (GA) are based on the evolutionary approach. The
genetic representation contains the schedule information that is used by a fast
scheduler for generating new solutions. Because its scheduler uses no dynamic
constraint propagation and only limited backtracking this approach has limita-
tions on the use of maximal time constraints.
The performance of each type of algorithm depends on the setting as well

as on the instance under consideration. The user of the system may select the
most appropriate algorithm after some experimental analysis.
In its generic framework APO provides an option to combine the algorithms

and heuristics above while applying at the same time one or more decomposi-
tion techniques. The decomposition techniques enable the user to partition a
problem instance according to

(i) time,
(ii) workcenter or machine,
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Fig. 19.2 SAP Detailed Scheduling User Interface

(iii) product type or job,
(iv) job priority.

The decomposition techniques enable a user also to scale the neighbourhood up
or down, i.e., the user can adjust the decomposition width. APO has a feature
that allows fine-tuning of the decomposition width.
Furthermore, there is a parallelization option, either through grid computing

or through multi-threading. This is often required because of the size of the
problems and the tightness of the time constraints. There is also an explanation
tool that tries to explain to the user some of the characteristics of the schedule
that had been generated (why there is a delay, etc.).
The biggest problem size solved with APO-PP/DS involved an instance with

more than 1,000,000 jobs and 1,000 resources. The procedure used for this
instance was based on a Genetic Algorithm.

19.2 IBM’s Independent Agents Architecture

Production scheduling and distribution of paper and paper products is an ex-
tremely complex task that must take into account numerous objectives and
constraints. The complexity of the problem is compounded by the interactions
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between the schedules of consecutive stages in the production process. Often, a
good schedule for the jobs at one stage is a terrible one at the next stage. This
makes the overall optimization problem hard.
IBM developed a cooperative multi-objective decision-support system for the

paper industry. The system generates multiple scheduling alternatives using
several types of algorithms that are based on linear and integer programming,
network flow methods and heuristics. In order to generate multiple solutions
and facilitate interactions within the scheduler, IBM’s system has been imple-
mented using the agent-based Asynchronous Team (A-Team) architecture in
which multiple scheduling methods cooperate in generating a shared popula-
tion of schedules (see Figures 19.3 and 19.4).
There are three types of agents in an A-Team:

(i) Constructors,
(ii) Improvers, and
(iii) Destroyers.

Constructors have as input a description of the problem. Based on this de-
scription they generate new schedules. Improvers attempt to improve upon the
schedules in the current population by modifying and combining existing sched-
ules. Destroyers attempt to keep the population size in check by removing bad
schedules from the population. A human scheduler can interact with the A-
Team by assuming the role of an agent; the scheduler can add new schedules,
modify and improve existing schedules, or remove existing schedules.
One of the more important algorithms in the system considers a set of jobs in

an environment with a number of non-identical machines in parallel. The jobs
have due dates and tardiness penalties and are subject to sequence dependent
setup times. The problem setting is similar to the Rm | rj , sjk |

∑
wjTj model.

For this particular problem IBM’s algorithmic framework provides constructor
agents as well as improver agents.
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There are basically two types of constructor agents for this problem, namely:
(i) Agents that allocate jobs to machines and do an initial sequencing.
(ii) Agents that do a thorough sequencing of all the jobs on a given machine.
The algorithmic framework used for the job-machine allocation and initial

sequencing is called Allocate-and-Sequence. The objective is to optimize the
allocation of the jobs to the machines based on due dates, machine load bal-
ance, and transportation costs considerations (the machines may be at various
different locations).
The main ideas behind the Allocate-and-Sequence heuristic include a sorting

of all the jobs according to various criteria, e.g., due date, processing time,
tardiness penalty. The job at the top of the list of remaining jobs is allocated
to the machine with the lowest index I1(i, j, k) of the machine-job (i, j) pair.
The index I1(i, j, k) of job j on machine i is computed by considering several
combinations of job properties and machine properties (assuming that job j will
be processed on machine i immediately after job k). Some examples of indices
used in actual implementations are:

(i) The processing time of job j on machine i plus the setup time required
between jobs k and j.

(ii) The completion time of job j.
(iii) The weighted tardiness of job j.
(iv) The absolute difference between the due date of job j and its completion

time on machine i.
The Allocate-and-Sequence heuristic can be summarized as follows.
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Algorithm 19.2.1 (Allocate and Sequence Heuristic)
Step 1.

Rank the jobs according to the given sort criteria.

Step 2.
Select the next job on the list.
Compute the machine-job index for all machines that can process this job.
Assign the job to the machine with the lowest machine-job index. ||
The goal of the second type of constructor agent is to sequence the jobs on

a given machine based on their due dates and then group jobs of the same kind
in batches (in the case of paper machine scheduling this is analogous to the
aggregation of orders for items of the same grade). The algorithmic framework
used for sequencing jobs on a given machine is called Single-Dispatch. Assume
the set of jobs allocated to machine i is already known (as an output of Allocate-
and-Sequence). Call this set Ui.
An index I2(j, k) for a job j in Ui can be computed by considering several

combinations of job properties. Some of the index computations use the slack,
which is defined as the difference between the due date of the job and the
earliest possible completion time. Other examples of this index used in imple-
mentations of the Single-Dispatch framework include the processing time of job
j on machine i, the setup time required between jobs k and j, the tardiness
of job j, and a weighted combination of any of these measures with the setup
time.
The Single-Dispatch heuristic can be summarized as follows.

Algorithm 19.2.2 (Single-Dispatch Heuristic)
Step 1.

Let the set Ui initially be equal to all jobs allocated to machine i.

Step 2.
For each job in Ui, compute the index I2(j, k) that corresponds to
the scheduling of job j as the next one on machine i.

Step 3.
Schedule the job with the smallest index as the next job and
remove the job from Ui.
If Ui is empty, then STOP;
otherwise go to Step 2. ||
Improver agents consider the schedules in the current population and attempt

to improve on them in various different ways. For example, an improver agent
may either move a single job to improve its tardiness, or aggregate batches of
jobs in order to decrease the number of batches and reduce the total setup time.
A job can be moved to a new position on the same machine, or it can be

moved to a different machine. The goal of any exchange may be to improve one
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Fig. 19.5 IBM Decision Support User Interface

particular objective, such as the total weighted tardiness, or a combination of
several objectives such as machine load balance and total weighted tardiness.
Each agent selectively picks a solution to work on based on certain criteria. For
example, a tardiness improver agent picks a schedule from the population that
needs an improvement with regard to tardiness. A load balancing agent picks
a schedule of which the load is unevenly balanced and attempts to rebalance,
and so on.
This scheduling system has been implemented in several paper mills. Fig-

ure 19.5 shows a user interface of such an implementation.

19.3 i2’s Production Scheduler

This section describes the i2 Production Scheduler, which is a commercial
scheduling system developed by i2 Technologies. This product has in the past
also been referred to as the i2 Tradematrix Production Scheduler. The i2 Pro-
duction Scheduler is one of several solutions in the Scheduler suite of products
offered by i2 to meet the scheduling needs of various different manufacturing
industries. The Scheduler suite includes Sequencer and Master Scheduler for
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automotive and industrial companies, Mill Scheduler for the metals industries
and Paper Mill Manager for the paper and board industries. All these prod-
ucts are part of a complete and integrated supply chain management solution.
These products are designed to capture the specific needs and complexities of
the different manufacturing environments and use a patented Genetic Algo-
rithm (GA) technology to generate optimized manufacturing schedules. This
technology has been licensed for hundreds of implementations and enables rep-
resentation of a wide range of production situations, easily adapting to new and
changing constraints. This section describes the elements of the i2 Production
Scheduler model, the key functionalities and system requirements of Production
Scheduler, the functionalities of the user interfaces and some implementation
examples.
Production Scheduler is a configurable scheduling system that can produce

detailed schedules for multi-stage manufacturing processes. The patented tech-
nology combines a fast constraint calculation engine and an optimization al-
gorithm (GA) to schedule all manufacturing stages simultaneously. Production
Scheduler has the capability to model either discrete (batch) or continuous pro-
cesses, with multiple resources at each stage. The core product is Java-based,
with an easily customizable, proprietary optimal scheduler language defining
much of its functionality. The manufacturing model data is maintained in a
database, typically MS Access or Oracle. The product is configured to run in
client-server mode, with a Windows NT client and either a Windows NT or
Unix operating system for the server. Demand data may be entered directly
into Production Scheduler’s database, or imported from an ERP or customer
order entry system.
Production Scheduler is a tool for detailed scheduling that is appropriate

for a variety of manufacturing industries, including consumer goods, textile,
apparel, footwear, automotive stamping plants, gear and transmission shops,
pharmaceuticals and chemicals. A given manufacturing process can be modeled
in such a way that the various business rules, or constraints, that specify how the
process is run, are captured. Typical constraints include capacity limits, setup
times and costs, due date requirements, Work-In-Process (WIP) minimization,
labor restrictions and material availability. The Production Scheduler generates
optimal schedules that balance all of these different constraints while generating
the best feasible solution.
A model is basically a data representation of the rules that govern the given

manufacturing process. This representation includes:

(i) the products and component parts that the factory produces (items and
item families);

(ii) the physical process of production (Bills of Material (BOMs), routings,
operations, and manufacturing resources);

(iii) production preferences, policies and requirements (constraints).

Given the basic building blocks of the model, Production Scheduler generates
production schedules that satisfy the demand (in the form of work orders),
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Fig. 19.6 Relationships between the Modeling Elements in i2’s
Production Scheduler

subject to the operating constraints specified. The basic Production Scheduler
model contains the following elements:

Items: An item is a part, component, subassembly or finished good that
is produced or consumed by the factory. In a Production Scheduler model an
item can be a finished part, an intermediate part, or raw material. The Bill Of
Material is a list of intermediate items that are needed for producing a given
item.

Operations: An operation is a production activity that is carried out by one
or more resources (e.g., a mixing tank and the labor resource required in the
mixing process). It is one step in a route that produces an item. An operation
may be partitioned into time segments that all share a common resource (e.g.,
the mixing tank is the common resource used throughout the mixing process,
but the labor is used just initially to fill the tank).

Resources: A resource can be a machine, a tool, a labor pool or a storage
container that is needed for processing an item during an operation.

Routes: A route is a sequence of one or more operations that produce one
or more items.

Capacity Profiles: A capacity profile specifies the capacity of a resource
over time.

Calendars: A calendar specifies the days and times a resource is unavailable
for processing an item. It specifies which regions of the defined capacity calendar
are unavailable for processing. If this unavailability calendar is not defined,
then the resource is assumed to be available all day every day throughout the
scheduling horizon.
Figure 19.6 depicts the relationships between the modelling elements de-

scribed above. To generate a good schedule, Production Scheduler uses a set of
scheduling criteria and constraints that enforce preferences and policies and im-
pose physical limitations on the operations of the factory. Production Scheduler
maintains a suite of common constraints to handle requirements such as:

(i) tardiness objectives,
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(ii) minimization of WIP,
(iii) enforcement of routing constraints,
(iv) selection of resources for given operations,
(v) setup times and resource costs due to changeovers.

Production Scheduler has the flexibility to capture process limitations and
constraints across a range of diverse industries from automotive to, for example,
pharmaceutical. This may include upper bounds on the number of product
changeovers on a set of resources within a given time period, or constraints
on the amount of time a certain item may be held in a storage vessel before
it begins to spoil. The list above is only a small sample of the large library
of common constraints maintained within Production Scheduler, enabling easy
implementation of many detailed and complex manufacturing constraints.
Constraints may be regarded as either hard or soft. Hard constraints rep-

resent rules that, if violated, could result in a production problem. Soft con-
straints, when violated, results in a feasible schedule that is less than ideal (see
Appendix C).
Given a set of constraints with associated penalties Production Scheduler

uses a genetic algorithm (GA) to generate schedules. For a given model, Pro-
duction Scheduler finds the best scheduling strategy by determining trade-offs
among soft constraints. Therefore, while Production Scheduler never violates
a hard constraint when it schedules a task, it will invariably violate one or
more soft constraints. However, the optimizer typically generates a schedule
that minimizes the total number of soft constraint violations. Assigning viola-
tion penalties to constraints is an important aspect of the fine-tuning of a given
model and gives an indication of the relative priorities of the various conflicting
rules in a typical manufacturing environment.
In addition to the basic set of constraints, Production Scheduler is configured

for incorporating customized constraints easily in order to model the unique
characteristics of any particular implementation.
Production Scheduler has two User Interfaces (UIs). The first is the Mod-

elling UI, through which most of the model can be specified (resources, resource
calendars, capacity profiles, items, operations, routes, and constraints). While
defining modelling elements, Production Scheduler provides the flexibility to
customize the names of the resources and the constraints, as well as the vi-
olation messages displayed when constraints are violated. Once a satisfactory
model has been built and the demand has been imported, all interactions with
the model occur through the Scheduling UI, presented in Figure 19.7.
The Scheduling UI consists of three grids (shown on the left of the screen),

three display panes (shown at the bottom of the screen) and the schedule board
(Gantt chart). This part of the UI is quite frequently used in practice and is
highly interactive. It contains a lot of useful information and tools designed to
make the job of coming up with a good schedule easy and intuitive.
The three grids display the following three types of information:
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Fig. 19.7 i2’s Production Scheduler User Interface

Demand Line Items: A list of all the current demand, along with promised
quantities, current inventory levels, due dates and priorities.

Work Orders: The production scheduler aggregates demand based on the
model-defined manufacturing quantity. Each demand line item may be broken
down into a number of work orders, or aggregated with other demand line
items (depending on the relative size of the demand quantity compared with
the manufacturing quantity).

Tasks: Each work order has a number of tasks that must be scheduled in
order to satisfy the demand. Each individual task represents an operation in
the routing which produces the final item.
Each one of the grids can be manipulated (through sorting and filtering

mechanisms) to help the user organize and display information as necessary.
The three display panes also provide an abundance of information: The first

display pane can provide selected details concerning any element; when one
clicks on a demand line item, work order or task, this pane displays information
about that element. The second display pane provides details concerning the
current element; this pane provides details regarding the object (demand line
item, work order, task, etc.) on which the cursor is positioned. The third dis-
play pane shows constraint violations associated with the manual or automatic
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scheduling of a given task. The violation message consists of the penalty points
associated with the constraint, violation information, the constraint type and
the specific constraint name.
The Schedule Board (or Gantt Chart) is the standard two dimensional grid

with time on the X-axis and resources on the Y-axis. The time increments are
defined by the model. For example, the time line may be divided into 15 minute
intervals, i.e., 4 time slots per hour. The Schedule Board can be configured to
zoom out to various coarser granularities (for example, 30 minutes, 1 hour, etc.).
Tasks are assigned to slots that correspond to resources and time intervals.
The Schedule Board can be configured to display both a frozen history of

scheduled tasks that have been released to the shop floor, as well as the current
scheduling horizon. This enables the user to view previously scheduled tasks as
they relate to the current schedule. In addition, Production Scheduler supports
defining an end buffer in which tasks that start within the scheduling horizon
may be completed. The Schedule Board may be in either one of two modes: the
Manual Scheduling may be either “on” or “off”. The current mode is indicated
in the bottom right corner of the Schedule Window. When the Manual Schedul-
ing is “off”, the user has a view of the current schedule with certain tasks having
violation colors. So, for example, if two tasks of differently flavored items are
scheduled one after another in a mixing tank, the second task appears in yellow
if there is a changeover penalty associated with a change in flavor in the mixing
tank. When the Manual Scheduling mode is ”on”, the user can, after selecting a
task in the tasks pane or on the Schedule Board, consider “What if?” scenarios
associated with the manual scheduling of the selected task. That is, the user
can see potential violations on the Schedule Board when he places the task on
a particular resource in a given time slot. This is accomplished by a unique
dynamic constraint checking environment, which provides instantaneous feed-
back when the Schedule Board is in the interactive manual scheduling mode.
The color Red indicates that a hard constraint violation occurs if the task is
moved into that position. Yellow indicates a soft violation and white indicates
no violations. Again, as the user moves the cursor over the highlighted area in
the Gantt chart, the Constraint Violations pane provides feedback with regard
to the associated violations (based on the customized messages created in the
modelling UI).
Any schedule generated by the system can be manipulated manually. The

“What If?” mode provides the necessary guidance and feedback with regard to
the consequences of scheduling a particular task on a particular resource at a
particular time. The Scheduling UI provides simple drag-and-drop capabilities
to move tasks that still have to be scheduled from the Task Grid to the Schedule
Board, or to move tasks from resource to resource, or from one time slot to
another on the Schedule Board. Production Scheduler also has the ability to
pin (or freeze) certain tasks within a time range or on a specific resource. This
gives the end user the flexibility to reschedule a set of tasks, while keeping the
pinned tasks in their positions.
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Fig. 19.8 i2’s Production Scheduler Capacity Buckets Interface

The Scheduling UI also provides a number of performance measures and
metrics with respect to the schedule (number of tasks and work orders sched-
uled versus number not yet scheduled; a summary of hard and soft constraint
violations; resource utilization information; number of late work orders, etc.).
The Scheduling UI provides an item production grid that displays the demand
versus the produced quantities. The UI also provides time-varying charts that
display resource capacity and item inventory over the scheduling horizon (see
the Figure 19.8).
The remaining part of this section describes two implementations of the

Production Scheduler.

Example 19.3.1 (An Implementation at Ford Motor Co.)
Production Scheduler has been installed at the Woodhaven Stamping Plant
of the Ford Motor Co. This stamping plant has over 175 production lines
in three basic stages of operation: Blanking, Die Pressing, and Assembly.
The final products are fenders, roofs and doors used in the final assembly
of Ford cars and trucks. The sheet metal (coils) are converted into blanks
in the Blanking stage or Press stage (for direct coil feed lines). The Press
lines shape the blanks into a form that is ready for Assembly. These parts
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are either sent to the Assembly line or to other assembly plants. The goals
of the scheduling implementation are:

(i) better utilization of plant resources (both labor and machine) in order
to reduce direct overtime and increase throughput,

(ii) reduction of premium freight charges,
(iii) improved customer service,
(iv) schedules that minimize the number of die setups, and
(v) reduction of end item inventory.

Production Scheduler is used at the Woodhaven Stamping Plant to do
cycle planning as well as detailed scheduling. The cycle planning lays out a
month long production plan for each line with the goal of maintaining a min-
imal WIP and utilizing staffing levels optimally. It does this by considering
due-dates, die-sets, labor requirements, storage rack availability, etc. The end
result of the planning is a series of manufacturing codes denoting frequency
of production of each part and the run days. This information is uploaded to
the Ford MRP system on a monthly basis. The detailed scheduling lays out
a detailed week long schedule for all three stages at a finer time granularity,
considering the same constraints outlined above and a few additional con-
straints related to the finer time granularity. The schedule is uploaded daily
into the Ford MRP system.
Since i2’s inception at Ford Woodhaven, the plant has seen a significant

reduction in average daily WIP inventories and has achieved further sav-
ings through increased throughput and reduced overhead from unplanned
overtime, and a tighter control on inventories and cycle times. ||
Example 19.3.2 (An Implementation of Production Scheduler in a
Gear Manufacturing Facility)
Production Scheduler has also been installed in a gear manufacturing facility
of one of the world’s leading heavy equipment manufacturers, with plans for
implementation in other facilities of the company.
This gear manufacturing facility is based on cellular manufacturing. A

typical route consists of seven primary operations: Heat treatment, gear cell,
heat treatment, grinding, heat treatment, washing and checkout. This route
is a generic one, as some parts could skip some of these operations and others
can go through additional operations. The goal of the Production Scheduler
implementation was to schedule the gear shop, minimizing the number of
changeovers and taking into consideration runtimes, demand priorities and
the flexibility of alternate resource choices. The implementation went live in
less than 6 months, including both the initial knowledge acquisition sessions
and complete end-to-end testing of the solution. Since implementing Pro-
duction Scheduler, the company has realized an increased productivity and
improved its service levels.
An increase in the productivity was achieved as follows. Prior to imple-

menting Production Scheduler, the plant required 4-5 foremen to schedule
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their shop floor area. Now a dedicated scheduler uses Production Scheduler
and generates detailed schedules, freeing up resources for other productive
uses in the plant.
The improvement in the service levels were a result of an increased visi-

bility. Prior to implementing Production Scheduler, each foreman only had
access to information about his/her shop floor and not upstream and down-
stream operations. With Production Scheduler, the dedicated scheduler has
visibility across different areas of the plant, resulting in more efficient uti-
lization of resources and, as a result, improved customer service levels. ||

19.4 Taylor Scheduling Software

Taylor Scheduling Software is one of the few remaining companies that are still
exclusively in the business of providing scheduling solutions to manufacturers
worldwide. In 1989 Taylor released the first version of its current scheduler for
manufacturing.
The company has been focusing on batch manufacturing (e.g., chemicals,

pharmaceuticals), on discrete manufacturing (e.g., aerospace parts), as well as
on “mixed mode” manufacturing (i.e., combinations of batch and discrete man-
ufacturing). The software lends itself to these different types of manufacturing,
because it can be reconfigured fairly easily to reflect the types of conditions
that are prevalent in the environment under consideration. In general, if it is
possible to describe the manufacturing process clearly and accurately, then the
Taylor software should be able to do the scheduling.
Currently, the system enables the user to specify independent calendars for

machines as well as resources; the resources may be people, tools or materials.
The system also enables the user to specify operating conditions and rules
for the equipment as a function of the products being manufactured. Also, the
Taylor Scheduler allows for completely different products to be “related” to one
another through the use of attribute relationships (e.g., color, size, chemistry,
and so on).
All these functionalities are built in the engine that generates the sched-

ules. The engine automatically sequences the operations while minimizing setup
times, cleanup times and other performance measures. It is also possible to spec-
ify a “preferred” machine for an operation with an alternate machine only being
used when necessary in order to complete a job on time. When a partial sched-
ule has been created, it can be frozen and released immediately to the people
on the plant level, while the scheduler continues his work with regard to the
jobs or operations that fall outside the frozen range.
A schedule is considered “good” if it satisfies all manufacturing rules and

constraints. A schedule is considered “great” if it not only satisfies the manufac-
turing rules, but also the business needs of the plant (e.g., setup time reduction,
and so on).
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Fig. 19.9 Taylor Scheduler Gantt Chart Interface

The Taylor Scheduling Engine has a number of generic optimization proce-
dures and heuristics built in, including priority rules (e.g., Earliest Due Date
first, Shortest Processing Time first, etc.) and local search procedures (e.g., sim-
ulated annealing, genetic algorithms). The rules and procedures can be used in
various different modes, namely in a forward scheduling mode, in a backward
scheduling mode, or in a multi-pass mode.
The user interface allows the decision-maker to schedule interactively in a

sophisticated manner. The schedule generated by the engine can be displayed in
the form of a Gantt chart (see Figure 19.9), allowing the user to drag and drop
operations in order to fine-tune the schedule. Moving an operation causes the
automatic rescheduling of every other operation that is affected by the change;
the system also deals with the changes in the resource requirements caused
by the move. The user interface is quick to schedule and quick to respond to
a user’s request for a change and can show the impact of the change as it is
occurring.
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Example 19.4.1 (An Implementation in a Large Pharmaceutical
Company)
The Taylor Scheduler has been implemented in a large pharmaceutical man-
ufacturer based in Europe. The pharmaceutical company was going through
the process of reducing the number of manufacturing facilities worldwide.
This consolidation was putting pressure on the remaining plants which were
now required to increase their output in order to compensate for the loss in
production capacity. The burden was actually two-fold: it implied an increase
in production volume as well as an increase in product variety.
The first facility targeted for the implementation of the Taylor Scheduler

was supposedly the most complex manufacturing site. This site was respon-
sible for the management of the so-called “presentations” for more than 80
countries (a presentation is a specific configuration of an end product for
a specific market; it affects the packaging, the inserts, the language require-
ments, as well as the legal chemical make-up of the product.) The site had 900
different product/packaging configurations (SKU’s) that had to go through
37 workcenters and 42 machines. Prior to the consolidation, the facility was
responsible for only 150 presentations. If the installation of the software at
this site would turn out successful, then it should be possible to install the
system in every facility of the manufacturing division.
The manner in which the manual scheduling was done before the system

was installed was clearly not satisfactory. It was time consuming and one
could update the schedules only once a week. There were no simulation tools
available that would enable the scheduler to consider what-if scenarios. Fre-
quent changes on the shop floor added more time to the production process
which in turn caused delivery delays for the end-products. There was clearly
a disconnect between planning and execution.
For these reasons it had been decided that the scheduling process had to

be automated. A number of goals were stated with regard to the selection
and implementation of the scheduling system, namely

(i) a reduction in the number of employees needed by the facility’s plan-
ning group.

(ii) a reduction in manufacturing labor.
(iii) a reduction in Work-In-Process (WIP).
(iv) a reduction in total setup time.
(v) an increase in production capacity.
(vi) a high conformance to planned schedules.
(vii) a high conformance to established short term plans.
(viii) a reduction in throughput time.

All these objectives were meticulously quantified by the plant’s manage-
ment. Figure 19.10 depicts the work flow of the daily activities on the shop
floor level and the role of the scheduling system in this process. Figure 19.11
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Fig. 19.11 Process Flow of Production Planning by Workcenter
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describes the semi-monthly planning process for each workcenter and the role
of the scheduling system in this process.
Several major tasks in the implementation process involved the company’s

ERP system. The data in the ERP system had to be cleaned up in order to
ensure a perfect Bill of Materials and a clean router for every product. Also,
an interface had to be designed between the ERP system and the Taylor
Scheduler.
After the system had become operational it turned out that the Taylor

scheduling system not only met most of the plant management’s expecta-
tions, it also provided several unexpected benefits. The scheduling system
enabled the planning group to

(i) consider alternative routings for the 900 products;
(ii) consider process constraints such as labor, materials and tooling;
(iii) improve the tracking of in-process orders. ||

Besides implementations in the pharmaceutical industry, Taylor Scheduling
Software has been implemented in various other industries as well. For exam-
ple, Taylor implemented a scheduling system in a Lexmark plant in Boulder
(Colorado) that produces toner cartridges for laser printers and it implemented
a scheduling system in a plant belonging to Fountain Set Holdings in Dongguan
City (China) that produces dyed yarns, sewing threads, and garments.

19.5 Real Time Dispatching and Agent Scheduling
at AMD

Scheduling plays a very important role in semiconductor manufacturing. All
major semiconductor manufacturing enterprises, including Advanced Micro De-
vices (AMD), Intel, and Samsung, make consistently major investments in their
planning and scheduling processes. The characteristics of semiconductor manu-
facturing (e.g., lengthy process flows, recirculation, equipment subject to break-
downs, multiple job families, and so on) make the scheduling process inherently
very complicated and of critical importance. The manufacturing environment
resembles a flexible job shop. Some of the details of the manufacturing pro-
cess are described in Example 1.1.2 and a corresponding scheduling problem is
described in Example 2.2.2.
While scheduling is considered to be an integral component of AMD’s Auto-

mated Precision Manufacturing (APM) philosophy and a key to predictability
as well as an enabler to the control of a synchronized manufacturing environ-
ment, there are many impediments in realizing these goals. Factors that make
the scheduling process complicated include:

Manufacturing complexity: Fab manufacturing is a complex process that
involves hundreds of processing steps on a shopfloor with hundreds of machines.



19.5 Real Time Dispatching and Agent Scheduling at AMD 529

Randomness and variability: The fab environment is subject to a signif-
icant amount of randomness and has a high variability due to potential failures
in manufacturing equipment and automated delivery systems.

Long time horizons: The complexity of the process brings about schedules
that are very extended. The variability in the process renders such a schedule
obsolete triggering rescheduling rather quickly.

Data Inconsistency and Availability: In some instances certain key data
may not be available in time or in the right form for schedule or reschedule
generation. (While the industry is showing an improving trend in this area,
there are still some parts of the fab where manual insertion and overrides are
necessary to ensure that schedules are consistent and achievable.)

Lack of execution mechanisms: In many plants there is not a mecha-
nism in place that ensures that schedules generated by the system are actually
being adopted and followed. Good schedules that are not implemented or are
overridden are useless.

Lack of a framework: A good framework is necessary as the scheduling
objectives and algorithms change with the manufacturing and business climate.
As characteristics change, they should not necessitate wholesale changes or
major developmental activities.
In 1997, Advanced Micro Devices spearheaded an industry effort in the use

of a commercial tool called “Real Time Dispatch”. The Real Time Dispatch
(RTD) tool functions as a dynamic dispatching rule based on priority rules
such as Earliest Release Date first (ERD), Earliest Due Date first (EDD), Min-
imum Slack first (MS), and so on. There were several reasons why the RTD tool
became so popular in semiconductor fabs. First, the automation level of this
mechanism is fairly minimal (there is a significant amount of manual involve-
ment in the movement of lots within a bay: from stockers or WIP racks to tools,
from tools to stockers or WIP racks, the checking whether tools are qualified
to run existing lots, and so on). Second, while the physical steps followed by
the lots are manual (as described above) the decision-making processes are un-
derstandably even more manual. However, it was observed that RTD had some
drawbacks as well, namely

(i) a lack of comprehension of the time element (implying a lack of visibility
of events that need to happen at scheduled times);

(ii) an inability to react to changes or unforeseen events such as lot shuffling
at loadports;

(iii) a lack of compliance tracking;
(iv) an insufficient capability to assess the impact of the rules;
(v) an inability to comprehend relevant factory events and act or react.

At the beginning of the 21st century, the semiconductor industry started to
migrate from 150mm and 200mm wafers to a 300mm wafers. This transition
had, for various reasons, a significant impact on the scheduling process.
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RTD had worked very well in the 150mm - 200mm wafer environment, in
spite of the fact that it is based on a very myopic form of decision-making.
However, it became clear that the ability to consider a longer time horizon and
the ability to schedule tasks ahead of time are necessary conditions for ensuring
an effective utilization of the resources in a 300mm manufacturing environment.
Several semiconductor manufacturing companies had noticed this and started
to experiment with other scheduling architectures (see Example 17.3.1).
So, taking future needs into consideration as well as the limitations encoun-

tered in past dispatch implementations, AMD embarked upon a path that it
referred to as “Active Scheduling”. Active scheduling refers to a pre-assignment
of manufacturing resources to resource consumers and the setting up of calen-
dar appointments in advance. Active scheduling also refers to the capability of
enforcing schedules by executing tasks according to the calendar appointments.
In order to satisfy these requirements, AMD started (in conjunction with

the National Institute of Standards (NIST)) working on the development of a
new scheduling technology that is based on “agents”. In AMD’s agent based
scheduling system, software agents representing different types of fab entities
and events interact with one another to schedule, to react to events, and to
perform other necessary functions, see Figures 19.12 and 19.13. An important
function is to react to events that impact the schedule and reschedule when nec-
essary. Mechanisms have been designed that build robustness in to the schedule
so that “small” disruptions need not trigger rescheduling. Some important agent
types are:

Tool agents: they represent the tools in the factory and are considered to be
the service providers for lots and other “event” agents such as PMs (preventive
maintenances), setups, and so on.

Resource agents: they represent other peripheral resources that are re-
quired for a service in addition to the tools. They may represent reticles for
steppers, probe cards for testers, dummy wafers in furnaces, etc.

Lot agents: they represent the lots in the factory and schedule themselves
while interacting with tool agents and other resource agents when needed. They
are considered consumers of the services provided by the tool agents and re-
source agents.

Preventive maintenance (PM) agents: this is another class of resource
consumers similar to the lot agents that interact with tool agents and resource
agents.

Setup agents: This is another class (similar to the PM agents) which are
also resource consumers that interact with tool agents and resource agents.
The agents themselves are autonomous, intelligent, state-aware, and goal-

seeking and can react to a high frequency and variety of factory events and
exceptions. Each agent maintains its own appointment calendar. Alarm mech-
anisms are built in to trigger or notify the start or the end of an appointment.
The ability to schedule tasks ahead of time is a necessary requirement for en-
abling an effective utilization of the automation resources. Tasks that can be
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Fig. 19.12 Processing Agents in AMD’s Agent Based Scheduling

“scheduled-ahead” include normal processing as well as exceptional processing,
material and resource handling, loadport reservations, setups and opportunistic
PMs and quals.
The system, as built, is capable of autonomous scheduling using a “market-

based” approach that relies on budgets, costs and bids (similar to the approach
described in Section 15.4). In this mechanism, resources or service providers and
consumers of resources negotiate with each other in order to develop a schedule.
Consumers of resources, such as lots, have budgets that are based on factors
such as priority, due date, and so on. They try to minimize their payouts while
staying on schedule. Service providers such as machines tender their services
and ask resource consumers for bids that satisfy their conditions; they try to
maximize their income. The negotiation between the resource consumers and
resource providers resemble a market that is governed by the economic forces
of supply and demand. Examples of differential bidding include open slot ap-
pointments, postponements of existing appointments, appointments for lots to
join existing batches, and so on. The reactive scheduling/exception handling
nature of this system means that it responds to factory events, factory defini-
tion changes, time deviations, and other unexpected events. This implies that
schedules can be renegotiated based on events that will affect the start or end
times of appointments. This rescheduling function is an important aspect of
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Fig. 19.13 Scheduling Agents in AMD’s Agent Based Scheduling

the system, since the enforcement or execution systems cannot work with out-
dated schedules. The tasks, the events, and the exceptions are handled through
configurable scripts with the ability to invoke factory system functions within
the Manufacturing Execution System (MES), Automated Material Handling
System (AMHS) and notification systems. A key component of the system is
the metrics module that continuously monitors and tracks actual durations of
tasks and appointments. This module provides the system also with a learning
function.
As designed, the agent based scheduling system can maintain an efficient,

high-volume, fully automated factory as it is geared to support massively-
parallel operations in a timely and robust manner.
For the initial implementation of the new system, the end-users in the fabs

requested a gradual approach that would allow the scheduling logic to be coded
using the existing expertise in Real Time Dispatching. The open architecture
of the new framework allowed this request to be handled in a matter of days.
So, prior to using the built-in negotiation mechanisms and the market based
approach, the transitionary approach is based on the RTD framework for as-
signing lots to tools and sequencing the lots for a particular tool. The agents
handle the schedule, the calendar creation, the necessary automation, and the
task execution. The execution component is integrated within the MES in such
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a way that it is transparent to the end-user. It may seem to the end-user that
the automation modes of the MES are defined in the same manner as if the
agents did not exist even though the automation is actually handled by the
agents. This enables a seamless migration to either environment (MES based
automation or agent based automation) without the user having to switch from
one system to another.
AMD’s agent based scheduling architecture is currently being evaluated in

a pilot mode at a wafer fab. This system has been developed while taking into
consideration the transitions in wafer manufacturing from manual to automated
processing and delivery to lean manufacturing with small lots and minimal
queueing. The agent architecture is expected to comprehend and address these
transitions.

19.6 An Implementation of Cybertec’s Cyberplan

Cybertec is the largest planning and scheduling software house in Italy. It is
based in Trieste. Its main product is a software system called Cyberplan, which
is a suite of six software modules, namely

(i) Supply Chain Design,
(ii) Capacity Requirements Planning,
(iii) Material Requirements Planning,
(iv) Master Production Scheduling,
(v) Finite Capacity Planning and
(vi) Finite Capacity Scheduling.

Many different combinations of the various modules have been implemented
in numerous companies. All modules have elaborate user interfaces, not only
the usual interfaces such as Gantt charts (see Figure 19.14), but also the less
common interfaces such as capacity buckets (see Figure 17.5). The optimiza-
tion techniques used include constraint programming, local search (genetic al-
gorithms), and mathematical programming procedures.
The remaining part of this section describes an implementation of Cybertec’s

Finite Capacity Planning and Finite Capacity Scheduling Modules

Example 19.6.1 (Scheduling a Yogurt Production Facility)
The Finite Capacity Planning and Scheduling modules have been imple-
mented in a facility that produces jars of yogurt. The plant consists of three
basic areas, namely the preparation area (in which the so-called white masses
are prepared), the production area (in which the yogurt is produced in bulk),
and the packaging area (in which the yogurt is packaged in jars).
The incoming milk (light and fat) are stored in the preparation area. From

this storage the milk goes to the concentration area where it is condensed.
The condensed milk enters the production area that consists of two separate
flexible flow lines that are identical. The production process consists of four
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Fig. 19.14 Gantt Chart Interface of Cyberplan

stages: mixing, pasteurization, fermentation, and cooling (see Figure 19.15).
The mixing stage in each one of the two flow lines has two mixers. The
pasteurization stage in each one of the lines has a single pasteurizer. The
fermentation stage of each line has ten tanks. Each fermentation stage is
followed by a cooling center.
Both lines feed into a buffer area. There are two buffer areas and each

area has four buffers. The yogurt may remain in a buffer for a maximum of
6 hours.
The two buffer areas feed into the packaging line. The input of the pack-

aging line consists of the white mass, the fruit and other raw material. The
output consists of the “packages”, each of which containing a number of yo-
gurt jars. There are almost 100 different finished products. The differences
in packaging are due to the number of jars in a package, the weight of the
jar, the flavor, and so on.
The production plan is established as follows. Sales forecasts and orders

arrive at the plant on a weekly basis. This information is incorporated in
the Master Production Schedule. Planning and scheduling is done on a daily
basis. The daily input into the production scheduling module includes the
following information:
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(i) machines availability;
(ii) milk availability;
(iii) personnel availability.

There are several objectives that the scheduling system takes into consid-
eration. The primary objective is to meet the due dates of the orders. An
important secondary objective is the minimization of the number of different
pieces of equipment used, since this helps control energy costs. The sched-
ules are subject to several classes of constraints, an important class being
the environmental constraints. The daily output of the scheduling system
includes, besides the schedules, also the data that are needed to maintain
quality control.
The scheduling procedure is a backwards procedure (see Figure 19.16).

Based on the orders and their delivery dates (the finished products require-
ments), the net material requirements are determined. The basic input to the
scheduling module is the delivery data and the material availability; the out-
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put is a packaging schedule. The packaging scheduling problem is basically a
parallel machine scheduling problem. There are certain heuristic rules that
have to be followed. Each packaging line has to follow a preferred sequence:
natural yogurt, white puree, dark puree, white pieces, dark pieces. The rea-
son for following such a sequence on a packaging line is obvious: this way
the number of jars rejected because of quality considerations is minimized.
This problem is comparable to the Pm | rj , sjk |

∑
wjTj problem that is

considered in Example 18.2.2.
The solution of the packaging scheduling problem is an input to the pro-

duction process scheduling problem. The production process is a form of
continuous production (in contrast to the packaging which is a form of dis-
crete production). In the production process the quantities are measured in
weights or volumes rather than in units. The process has a large number of
constraints and a limited amount of data (the number of different types of
products to be produced is significantly smaller than the number of different
items to be produced on the packaging line). The scheduling of the produc-
tion process is done via a constraint-guided heuristic search procedure.
The system is used on a daily basis in the following manner:

Phase 1: Every day, before scheduling the production, the machine avail-
abilities are entered into the program.
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Phase 2: The packaging program function is selected and after the packag-
ing schedule has been determined, the final result is displayed on the screen.

Phase 3: Before calling the procedure for scheduling the production, the
settings of the pasteurizer are verified and set, i.e., the number of washing
machines, the duration of the washing, the minimum time between washing,
and the maximum pasteurization time.

Phase 4: After setting the parameters of the pasteurizer, the production
scheduling procedure is called. The resulting schedules for the pasteurizers
and fermenters are displayed on the screen separately.

Before the installation of the Cybertec system, schedules were generated
manually after determining the daily requirements of finished products, tak-
ing into consideration the scheduled arrivals of milk, the amount of milk on-
hand, and the personnel present. The resulting orders, still without a starting
time and finishing time, were assigned to the packaging lines taking into ac-
count the product types. For each line a sequence was generated manually,
subject to production sequence constraints. This resulted then in a packag-
ing sequence with corresponding starting times and completion times. This
information was then entered into a scheduler that generated a Gantt chart
and determined the total requirements of white mass. The quantities of white
mass were divided in different lots and a manual schedule of the production
process mixes was done. This manual scheduling took into account the daily
recipes, the fermenter and pasteurizer capacities, and the constraints on the
time and on the buffers. The recipes could change every day because of the
different protein contents of the milk. When the fermentation of the mix-
tures on the fermentation lines had to be scheduled, constraints with regard
to milk preservation had to be taken into account.
Manual scheduling was a complicated process. It took at least two hours a

day, and was error-prone. Also, constraints were at times violated, resulting
in quality problems, reduced plant capacity utilization, and environmental
problems.
After the installation of the Cybertec system the situation improved con-

siderably. Schedules are generated in less than 2 or 3 minutes and no human
errors are made. The pasteurizers and fermenters are used at capacity and
the utilization of the plant capacity and the energy consumption are opti-
mized. ||

19.7 LEKIN - A System Developed in Academia

The LEKIN system contains a number of scheduling algorithms and heuristics
and is designed to allow the user to link and test his or her own heuristics
and compare their performances with heuristics and algorithms that are em-
bedded in the system. The system can handle a number of different machine
environments, namely:
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(i) single machine
(ii) parallel machines
(iii) flow shop
(iv) flexible flow shop
(v) job shop
(vi) flexible job shop

Furthermore, it is capable of dealing with sequence dependent setup times in
all the environments listed above. The system can handle up to 50 jobs, up to
20 workcenters or workstations, and up to 100 machines.
The educational version of the LEKIN system is a teaching tool for job shop

scheduling and is available on the CD that comes with this book. The system has
been designed for use in either a Windows 98 or a Windows NT environment.
Installation on a network server in a Windows NT environment may require
some (minor) system adjustments. The program will attempt to write in the
directory of the network server (which is usually read-only). The program can
be installed in one of the following two ways. The system administrator can
create a public directory on the network server where the program can write.
Or, a user can create a new directory on a local drive and write a link routine
that connects the new directory to the network server.
When LEKIN is run for the first time a “Welcome” page appears. Closing

the welcome page makes the main menu appear. The main menu can also be
accessed during a scheduling session by clicking on “start over” under “file”.
The main menu allows the user to select the machine environment he is

interested in. If the user selects a machine environment, he has to enter all the
necessary machine data and job data manually. However, the user also has the
option of opening an existing file in this window. An existing data file contains
data with regard to one of the machine environments and a set of jobs. The
user can open such an existing file, make changes in the file and work with the
modified file. At the end of the session the user may save the modified file under
a new name.
If the user wants to enter a data set that is completely new, he first must

select a machine environment, and then a dialog box appears where he has
to enter the most basic information, i.e., the number of workstations and the
number of jobs to be scheduled. After the user has done this, a second dialog box
appears and he has to enter the more detailed workstation information, i.e., the
number of machines at the workstation, their availability, and the details needed
to determine the setup times on each machine (if there are setup times). In the
third dialog box the user has to enter the detailed information with regard to the
jobs, i.e., release dates, due dates, priorities or weights, routing and processing
times of the various operations. If the jobs require sequence dependent setup
times, then the machine settings that are required for the processing have to
be entered. The structure of the setup times is similar to the one described
in Example 16.4.1. However, in the LEKIN system every job has just a single
parameter, in contrast to the three parameters in Example 16.4.1.



19.7 LEKIN - A System Developed in Academia 539

Fig. 19.17 LEKIN’s four main windows

After all the data has been entered four windows appear simultaneously,
namely,

(i) the machine park window,
(ii) the job pool window,
(iii) the sequence window, and
(iv) the Gantt chart window,

(see Figure 19.17).
The machine park window displays all the information regarding the work-

stations and the machines. This information is organized in the format of a tree.
This window first shows a list of all the workstations. If the user clicks on a
workstation, the individual machines of that workstation appear.
The job pool window contains the starting time, completion time, and more

information with regard to each job. The information with regard to the jobs is
also organized in the form of a tree. First, the jobs are listed. If the user clicks
on a specific job, then immediately a list of the various operations that belong
to that job appear.
The sequence window contains the lists of jobs in the order in which they

are processed on each one of the various machines. The presentation here also
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Fig. 19.18 LEKIN’s Gantt Chart Window

has a tree structure. First all the machines are listed. If the user clicks on a
machine, then all the operations that are processed on that machine appear
in the sequence in which they are processed. This window is equivalent to the
dispatch list interface described in Chapter 17. At the bottom of this sequence
window there is a summary of the various performance measures of the current
schedule.
The Gantt chart window contains a conventional Gantt chart. This Gantt

chart window enables the user to do a number of things. For example, the
user can click on an operation and a window pops up displaying the detailed
information with regard to the corresponding job (see Figure 19.18). The Gantt
chart window also has a button that activates a window where the user can see
the current values of all the objectives.
The windows described above can be displayed simultaneously on the screen

in a number of ways, e.g., in a quadrant style (see Figure 19.17), tiled hor-
izontally, or tiled vertically. Besides these four windows there are two other
windows, which will be described in more detail later on. These two windows
are the log book window and the objective chart window. The user can print
out the windows separately or all together by selecting the print option in the
appropriate window.
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The data set of a particular scheduling problem can be modified in a number
of ways. First, information with regard to the workstations can be modified in
the machine park window. When the user double-clicks on the workstation the
relevant information appears. Machine information can be accessed in a similar
manner. Jobs can be added, modified, or deleted in the job list window. Double
clicks on the job displays all the relevant information.
After the user has entered the data set, all the information is displayed in the

machine park window and the job pool window. However, the sequence window
and the Gantt chart window remain empty. If the user in the beginning had
opened an existing file, then the sequence window and the Gantt chart window
may display information pertaining to a sequence that had been generated in
an earlier session.
The user can select a schedule from any window. Typically the user would do

so either from the sequence window or from the Gantt chart window by clicking
on schedule and selecting a heuristic or algorithm from the drop-down menu.
A schedule is then generated and displayed in both the sequence window and
the Gantt chart window. The schedule generated and displayed in the Gantt
chart is a semi-active schedule. A semi-active schedule is characterized by the
fact that the start time of any operation of any given job on any given machine
is determined by either the completion of the preceding operation of the same
job on a different machine or the completion of an operation of a different job
on the same machine (see Definition 2.3.5).
The system contains a number of algorithms for several of the machine en-

vironments and objective functions. These algorithms include

(i) dispatching rules,
(ii) heuristics of the shifting bottleneck type,
(iii) local search techniques, and
(iv) a heuristic for the flexible flow shop with the total weighted tardiness

as objective (SB-LS).

The dispatching rules include EDD and WSPT. The way these dispatching
rules are applied in a single machine environment and in a parallel machine
environment is standard. However, they also can be applied in the more com-
plicated machine environments such as the flexible flow shop and the flexible
job shop. They are then applied as follows: each time a machine is freed the
system checks which jobs have to go on that machine next. The system then
uses the following data for the priority rules: the due date of a candidate job
is then the due date at which the job has to leave the system. The processing
time that is plugged in the WSPT rule is the sum of the processing times of all
the remaining operations of that job.
The system also has a general purpose routine of the shifting bottleneck

type that can be applied to each one of the machine environments and to every
objective function. Since this routine is quite generic and designed for many dif-
ferent machine environments and objective functions, it cannot compete against
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a shifting bottleneck heuristic that is tailor-made for a specific machine envi-
ronment and a specific objective function.
The system also contains a neighbourhood search routine that is applicable

to the flow shop and job shop (but not to the flexible flow shop or flexible job
shop) with either the makespan or the total weighted tardiness as objective. If
the user selects the shifting bottleneck or the local search option, then he must
select also the objective he wants to minimize. When the user selects the local
search option and the objective, a window appears in which the user has to
enter the number of seconds he wants the local search to run.
The system has also a specialized routine for the flexible flow shop with

the total weighted tardiness as objective; this routine is a combination of a
shifting bottleneck routine and a local search (SB-LS). This routine tends to
yield schedules that are reasonably good.
If the user wants to construct a schedule manually, he can do so in one of

two ways. First, he can modify an existing schedule in the Gantt chart window
as much as he wants by clicking, dragging and dropping operations. After such
modifications the resulting schedule is, again, semi-active. However, the user
can also construct this way a schedule that is not semi-active. To do this he has
to activate the Gantt chart, hold down the shift button and move the operation
to the desired position. When the user releases the shift button, the operation
remains fixed.
A second way of creating a schedule manually is the following. After clicking

on schedule, the user must select “manual entry”. The user then has to enter
for each machine a job sequence. The jobs in a sequence are separated from one
another by a “;”.
Whenever the user generates a schedule for a particular data set, the schedule

is stored in a log book. The system automatically assigns an appropriate name
to every schedule generated. If the user wants to compare the different schedules
he has to click on “logbook”. The user can change the name of each schedule
and give each schedule a different name for future reference. The system can
store and retrieve a number of different schedules (see Figure 19.19).
The schedules stored in the log book can be compared to one another by

clicking on the “performance measures” button. The user may then select one
or more objectives. If the user selects a single objective, a bar chart appears
that compares the schedules stored in the log book with respect to the objec-
tive selected. If the user wants to compare the schedules with regard to two
objectives, an x−y coordinate system appears and each schedule is represented
by a dot. If the user selects three or more objectives, then a multi-dimensional
graph appears that displays the performance measures of the schedules stored
in the log book.
Some users may want to incorporate the concept of setup times. If there are

setup times, then the relevant data have to be entered together with all the
other job and machine data at the very beginning of a session. (However, if
at the beginning of a session an existing file is opened, then such a file may
already contain setup data.) The structure of the setup times is as described
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Fig. 19.19 Logbook and comparisons of different schedules

in Example 16.4.1. Each operation has a single parameter or attribute, which
is represented by a letter, e.g., A, B, and so on. This parameter represents the
machine setting required for processing that operation. When the user enters
the data for each machine, he has to fill in a setup time matrix for that machine.
The setup time matrix for a machine specifies the time that it takes to change
that machine from one setting to another, i.e., from B to E (see Figure 19.20).
The setup time matrices of all the machines at any given workstation have to
be the same (the machines at a workstation are assumed to be identical).
This setup time structure does not allow the user to implement arbitrary

setup time matrices.
A more advanced user also can link his own algorithms to the system. This

feature allows the developer of a new algorithm to test his algorithm using
the interactive Gantt chart features of the system. The process of making such
an external program recognizable by the system consists of two steps, namely,
the preparation of the code (programming, compiling and debugging), and the
linking of the code to the system.
The linking of an external program is done by clicking on “Tools” and select-

ing “Options”. A window appears with a button for a New Folder and a button
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Fig. 19.20 Setup time matrix window

for a New Item. Clicking on New folder creates a new submenu. Clicking on a
New Item creates a placeholder for a new algorithm. After the user has clicked
on a New Item, he has to enter all the data with respect to the New Item.
Under “Executable” he has to enter the full path to the executable file of the
program. The development of the code can be done in any environment under
Win3.2.

19.8 Discussion

This chapter presents an overview of the architectural designs of the IBM and
SAP systems. A comparison of the IBM and the SAP-APO systems already
makes it clear that there can be major differences in the main design character-
istics of scheduling systems. The descriptions of the i2 and the Taylor Software
systems highlight the importance of the role of the interfaces in scheduling sys-
tems. The evolution of the scheduling philosophy at AMD clearly illustrates
the importance of scheduling in the semiconductor environment and the diffi-
culties encountered in implementation. The description of the Cybertec system
focuses on an actual implementation. From the setting of this implementation
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it is clear that an implementation can have many peculiarities that may make
it very hard to install a system just of the shelf. Customization seems to be
always necessary.
The various systems described in this chapter clearly show how popular Ge-

netic Algorithms are in practice. SAP-APO, i2, and Cybertec consider Genetic
Algorithms an important element of their algorithm library.

Comments and References

Braun (2000) gives an overall description of the SAP-APO system. Akkiraju,
Keskinocak, Murthy and Wu (1998a, 1998b) describe IBM’s A-Team architec-
ture and an application of this architecture in the paper industry. Bell (2000)
gives a detailed description of i2’s Production Scheduler. The scheduling systems
developed and implemented at Advanced Micro Devices (AMD) are described
by Krishnaswamy and Nettles (2005). Marchesi, Rusconi and Tiozzo (1999)
describe the implementation of the Cybertec system in the yogurt factory. A
detailed description of The LEKIN system is discussed in Feldman in Pinedo
(1998).
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This chapter describes various research and development topics that are likely
to receive attention in the near future. A distinction is made between theoretical
research, applied research, and developments in system design.
The first section focuses on avenues for theoretical research. It describes the

types of models that may become of interest as well as the types of results to be
expected. The second section considers research areas that are more applied and
more oriented towards real world scheduling problems. This section discusses
some specific types of problems that may be investigated as well as the results to
be expected. The third section focuses on systems development and integration
issues. It analyzes the functional links between the scheduling algorithms, the
system components, and the user.
There are many other research avenues that are not being considered. This

chapter is not meant to be exhaustive; it merely tries to discuss some of the
possible research directions.

20.1 Theoretical Research

In the future, theoretical research may well focus on theory and models that
have not been covered in Parts I and II of this book. This section considers

(i) theoretical underpinnings of scheduling,
(ii) new scheduling formats and assumptions, and
(iii) theoretical properties of specific models.

Theoretical underpinnings of scheduling. The theoretical underpinnings will
always receive a certain amount of research attention. One theoretical research
area within deterministic scheduling deals with polyhedral combinatorics and
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cutting planes. This research area has already generated for some of the ba-
sic scheduling models exact solution methods of the branch-and-cut type (see
Appendix A) and also approximation algorithms with good performance guar-
antees. It is likely that this research will be extended to more general scheduling
models. Another form of branch-and-bound, namely branch-and-price, has re-
cently been applied successfully to several parallel machine scheduling problems.
Another research direction in deterministic scheduling is the area of Polyno-

mial Time Approximation Schemes (PTAS) for NP-hard problems; this area has
received a significant amount of attention in the recent past (see Appendix D).
It is likely that this area will receive even more attention in the future and
that schemes will be developed for models that are more complicated than
those that have been considered up to now. However, it is not clear when these
developments will start contributing to the effectiveness of heuristics used in
practice. Other types of approximation methods will also be investigated; one
very promising class of approximation algorithms is based on Linear Program-
ming relaxations.

New scheduling formats and assumptions. The classical scheduling format,
covering most models discussed in Part I, can be described as follows: In a given
machine environment there are n jobs and all the information concerning the n
jobs is available at time zero; a specific objective function has to be minimized
and an optimal (or at least a very good) schedule has to be generated from
scratch. There are several new and interesting research directions that concern
models based on scheduling assumptions that differ significantly from those in
Part I of this book.
One of the new scheduling formats concerns online scheduling. Online

scheduling is important since it is in a way very different from the conventional
(offline) deterministic models which assume that all information is known a
priori, i.e., before any decision is made. In online scheduling, decisions have
to be made based on information regarding the jobs that already have been
released and not on information regarding jobs that are to be released in the
future. In semi-online scheduling some, but not all, information regarding future
job releases is known. The relationships between online scheduling, semi-online
scheduling, and stochastic scheduling may receive some attention in the future
as well. This seems to be a relatively open research area.
Another new format concerns scheduling with multiple agents. In a multi-

agent scheduling problem each agent is responsible for a set of jobs and has
his own objective function. The objective functions of the different agents may
not be the same. The agents have to share the machine(s) with one another.
A multi-agent problem is different from a multi-objective problem: in a multi-
objective problem each job contributes to all objectives whereas in a multi-agent
problem each job contributes to only one of the objectives (i.e., the objective
of his agent). Multi-agent problems have several important applications. For
example, maintenance scheduling problems can be formulated as multi-agent
problems.



20.1 Theoretical Research 549

A third format comprises sequencing and scheduling games. In a scheduling
game there are multiple players who have to share one (or more) machine(s)
with each other; each player is responsible for a set of jobs and has his own ob-
jective function. Research in sequencing and scheduling games typically focuses
on issues that are different from those studied in other classes of scheduling
problems. When analyzing a scheduling game, one tends to be interested in
certain structural properties of the game (e.g., the conditions under which a
game is balanced or convex), whereas in most other types of scheduling prob-
lems one is interested in algorithms that generate optimal schedules for specific
objective functions. There are various different types of scheduling games. One
important class of scheduling games are the so-called cooperative scheduling
games. In a cooperative scheduling game an initial schedule is given. Players
can form coalitions and the players within a coalition may reschedule (or swap)
their jobs among themselves; however, jobs belonging to players outside the
coalition may not be completed later than they did in the initial schedule. In
the new schedule, some players in the coalition may have a lower penalty cost,
while others may have a higher penalty cost. A distribution mechanism has to
be designed that allocates the benefits of the rescheduling over all the players
within the coalition. Certain distribution mechanisms are referred to as core
allocations. A cooperative scheduling game actually exhibits some similarities
to competitive agent scheduling problems. The jobs that belong to a coalition
may be regarded as jobs that belong to an agent and the sequence of the jobs
within each coalition has to be optimized. Two coalitions can form a grand
coalition and develop thus a joint schedule. The formation of a grand coalition
can be compared to two competitive agents creating a joint schedule for their
two sets of jobs.
A fourth, entirely different format, is based on the rescheduling concept.

Rescheduling has been touched upon briefly in Chapter 18. However, a for-
mal theoretical framework for the analysis of rescheduling problems has not
yet been established. A rescheduling problem may have multiple objectives: the
objective of the original problem (e.g., the total weighted tardiness) and the
minimization of the difference between the new schedule (after rescheduling)
and the old schedule (before rescheduling). It may be necessary to have for-
mal definitions or functions that measure the ”difference” or the ”similarity”
between two schedules for the same job set or between two schedules for two
slightly different job sets, e.g., one job set having all the jobs of a second set
plus one additional job (a rush job). The rescheduling process may also have to
deal with ”frozen” jobs, i.e., jobs that have been assigned earlier to certain time
slots and that may not be moved. Sometimes the constraints on the frozen jobs
do allow the scheduler to make some minor adjustments in the timing of the
processing of these jobs. A frozen job may be started slightly earlier or slightly
later. That is, there may be a time range in which a frozen job can be processed
(there may be a limited amount of slack). Scheduling around frozen jobs tends
to be similar to dealing with machine breakdowns or with preventive mainte-
nance schedules (i.e., scheduling subject to availability constraints). However,
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there may be a difference due to the fact that data regarding frozen jobs tend
to be deterministic, whereas data concerning machine breakdowns tend to be
stochastic.
The concept of robustness is closely related to rescheduling and deserves more

attention in the future as well. Chapter 18 gives a relatively short treatment
of this topic. It presents a number of robustness measures as well as several
practical rules for constructing robust schedules. However, very little theoretical
research has been done with regard to these rules. At this point it is not clear
how useful these rules are in the various different scheduling environments.

Theoretical properties of specific models. One such research area deals with
models that combine deterministic features with stochastic features. For exam-
ple, consider a model with jobs that have deterministic processing times and
due dates, and machines that are subject to a random breakdown process. Such
a model may be quite realistic in many environments. Only very special cases
are tractable. For example, a single machine with up times that are i.i.d. ex-
ponential and down times that all have the same mean can be analyzed. The
WSPT rule then minimizes the total expected weighted completion time. How-
ever, it may be of interest to study more complicated machine environments in
which the machines are subject to more general forms of breakdown processes.
Since such models tend to be more complicated than the more classical mod-

els described in Parts I and II of this book, the types of results one can expect
may be of a more structural nature. Structural results may, for example, include
proofs for dominance criteria or proofs for monotonicity results.

20.2 Applied Research

Applied research may go a little bit deeper into some of the topics covered in
Part III of this book. The applied topics described in this section include

(i) performance analyses of heuristics,
(ii) robustness and reactive scheduling, and
(iii) integrated scheduling models.

Performance analysis of heuristics is a very important area of empirical and
experimental research. Currently, many job shop problems can only be dealt
with on a small scale. For example, it is still very hard to find an optimal
solution for an instance of Jm || ∑wjTj with, say, 10 machines and 30 jobs. If
there are multiple objectives and a parametric analysis has to be done, then the
problem becomes even harder. Many different types of heuristics are available,
but it is not clear how effective they are in dealing with large scale scheduling
problems, e.g., job shop scheduling problems with two or three objectives and
with, say, 50 machines and 1000 jobs. The heuristics for these large scale job
shops may require continuous improvement and fine-tuning in the future.
Heuristics can be compared to one another with respect to several criteria. In

practice, three criteria are important. First, the quality of the solution obtained;
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second, the amount of computer time needed to generate a good solution; third,
the time required to develop and implement the heuristic. Comparative studies
of heuristics conducted in academic environments typically take only the first
two criteria into account. However, in an industrial environment the third cri-
terion is of critical importance. In industry it is important that the time needed
to develop a heuristic be short. This is one of the reasons why in practice local
search heuristics are often more popular than very sophisticated decomposition
techniques such as the shifting bottleneck heuristic.
The performance of any heuristic depends, of course, on the structure of

the scheduling problem, e.g., the type of routing constraints in job shops. The
performance may even depend on the particular data set. Often, when one deals
with a unary NP-hard problem, it turns out that most instances can be solved
to optimality in a reasonably short time; however, some instances may turn out
be very hard to solve and may require an enormous amount of computing time
before reaching optimality. It is of interest to find out why such instances are
hard to solve. Empirical studies indicate that a heuristic often may perform
quite well when the data of an instance are generated randomly, whereas that
heuristic may perform quite poorly when it is applied to an instance of that same
problem with data from an industrial setting. (It may be the case that industrial
data have certain dependencies and correlations that make such instances hard
to solve.) It would be useful to establish rules that indicate the type of algorithm
that is most suitable for the type of instance under consideration.
In order to characterize a problem instance properly, one may want to have

a number of suitable descriptive factors, such as, for example, the due date
tightness factor τ defined in Chapter 14. One may also have to assess proper
weights to each one of the factors. It would be useful to know which type of
algorithm is most suitable for a given instance when the following is known:
the size of the instance (the scale), the values of characteristic factors, and the
computer time available.
An important class of heuristic methods comprises local search procedures.

The last two decades have seen an enormous amount of work on applications
and implementations of local search procedures. This research has yielded in-
teresting results with regard to neighbourhood structures. However, most of
this research has focused on nonpreemptive scheduling. Preemptive scheduling
has received very little attention from researchers specializing in local search
procedures. One reason is that it tends to be more difficult to design an effective
neighbourhood structure for a preemptive environment than for a nonpreemp-
tive environment. It may be of interest to focus attention first on problems that
allow preemptions only at certain well-defined points in time, e.g., when new
jobs are released.
It is likely that in the future there will be a certain demand for industrial

strength heuristics that are applicable to scheduling problems common in indus-
try. Consider, for example, the problem Qm | rj , sjk | θ1

∑
wjTj+θ2Cmax. This

scheduling problem is typical in many process industries. The two objectives
are quite common: One objective focuses on the due dates and the other tries
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to balance the loads over the machines and minimize setup times. In the future,
heuristics may be developed that are problem-specific and that can be linked
easily to a variety of scheduling systems. These industrial strength heuristics
may be hybrids that make use of Operations Research (OR) techniques as well
as Artificial Intelligence (AI) techniques. For example, such a hybrid may com-
bine an integer programming procedure with a constraint-based local search
procedure.

Robustness and reactive scheduling. A completely different line of empiri-
cal research involves robustness and rescheduling. As stated in the previous
section, the concepts of robustness and rescheduling may lead to interesting
theoretical research. However, they may lead to even more interesting empirical
and experimental research. New measures for robustness have to be developed.
The definition of these measures may depend on the machine environment.
Rescheduling procedures may be based on some very specific general purpose
procedures that may have similarities to the procedures described in Chapters
14 and 15.

Integrated Scheduling models. More practical models often combine machine
scheduling aspects with other aspects, such as inventory control, workforce
scheduling, maintenance scheduling, capacity control or pricing. For example,
in supply chains the production scheduling function is often tied to inventory
control and to transportation scheduling. The models that are useful for the
analysis of such real world environments tend to be more involved than the
simpler machine scheduling models considered in this book. However, in the
analysis of these more complicated models one may often have to resort to
decomposition methods that partition the problem into a number of different
modules. The smaller modules can then be tackled more easily using procedures
that are described in this book.
For example, in the airline industry, planes and crews have to be scheduled

in a coherent way. An extensive amount of research has been done on pure per-
sonnel scheduling (independent of machine scheduling), but little research has
been done on models that combine personnel scheduling with machine schedul-
ing. Some more theoretical research has been done in other areas related to
these types of problems, namely resource constrained scheduling (i.e., a limited
number of personnel may be equivalent to a constraining resource). However,
research in resource constrained scheduling has typically focused on complexity
analysis and on worst case analysis of heuristics. It may be of interest in the
future to study more specific models that combine machine scheduling with
personnel scheduling.
There are many scheduling applications in the information systems world.

Nowadays, distributed computer systems are connected to one another in so-
called grid environments in which users can submit jobs that are automatically
assigned to appropriate resources. The performance of a grid computing system
depends heavily on the underlying scheduling procedures. A grid scheduling
system operates on the premise that a new job that is in need of processing
must make itself known to the ”resource selector”. In current systems, the
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resource selector acts as a gateway to the grid. It will select resources from a
global directory and then allocates the job to one of the nodes on the grid.
Typically, a job allocation is done in two phases. First, a job is allocated to
a node on the grid, and second, within that node, the job is scheduled onto
the processor. The first phase is referred to as resource allocation, whereas
the second phase is referred to as job scheduling. The last decade has seen a
fair amount of development and implementation of grid scheduling systems.
However, it seems that less attention has been paid to the more theoretical and
algorithmic aspects of these systems.

20.3 Systems Development

Systems development may focus in the future a little bit more on some of the
topics covered in Part III of this book. In this section the topics discussed
include

(i) problem decomposition and distributed scheduling,
(ii) user interfaces and interactive optimization,
(iii) scheduling description languages, and
(iv) integration within supply chain management systems.

Problem decomposition and distributed scheduling. Dealing with large scale
scheduling problems may lead to implementations of distributed scheduling.
Many industrial problems are so large that they cannot be solved on a sin-
gle workstation. The computational effort has to be divided over a number of
workstations or computers that may reside at different locations. With certain
procedures the computational effort can be divided up rather easily whereas
with other procedures it may not be that easy. For example, when a problem
is solved via branch-and-bound it may be relatively easy to decompose the
branching tree and partition the computational work involved. At periodic in-
tervals the different workstations still have to compare their progress and share
information (e.g., compare their best solutions found so far). If a problem is
solved via time based decomposition, then distributed scheduling may also be
applicable (as long as the schedules of the different periods are somewhat in-
dependent of one another). With the latest Internet technologies, distributed
scheduling may become increasingly more important in the future.

User interfaces and interactive optimization. The development of user in-
terfaces and interactive optimization may face some interesting hurdles in the
future. The designs of the user interfaces have to be such that interactive op-
timization can be done easily and effectively. A scheduler must maintain at all
times a good overview of the schedule, even when the schedule contains over a
thousand jobs. The user interface must have abilities to zoom in and out of a
schedule easily. In order to allow for interactive optimization the user interface
must have provisions for clicking, dragging and dropping operations, freezing
operations, dealing with cascading and propagation effects, and rescheduling.
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After the user makes some manual changes in the system, the system may
reschedule automatically in order to maintain feasibility (without any user in-
put). The (internal) algorithms that are used to maintain schedule feasibility
may be relatively simple; they may only postpone some operations. However,
internal algorithms may also be more involved and may perform some internal
reoptimization (that is done automatically). On the other hand, the reopti-
mization process may also be managed by the user; he may want to specify the
appropriate objective functions for the reoptimization process. Reoptimization
algorithms may be very different from optimization algorithms that generate
schedules from scratch. The main reason why reoptimizing is harder than opti-
mizing from scratch is because an algorithm that reoptimizes has to deal with
boundary conditions and constraints that are dictated by the original schedule.
Embedding rescheduling algorithms in a user interface that enables the user to
optimize schedules interactively is not easy.

Scheduling description languages. Composition and integration of procedures
have led to the development of so-called scheduling description languages. A
scheduling description language is a high level language that enables a scheduler
to write the code for a complex algorithm with only a limited number of concise
statements or commands. Each statement in a description language involves
the application of a relatively powerful procedure. For example, a statement
may give an instruction to apply a tabu search procedure on a given set of
jobs in a given machine environment. The input to such a statement consists
of the set of jobs, the machine environment, the processing restrictions and
constraints, the length of the tabu-list, an initial schedule, and the maximum
number of iterations. The output consists of the best schedule obtained with the
procedure. Other statements may be used to set up various different procedures
in parallel or to concatenate two different procedures. Scheduling description
languages are not yet very popular. However, the existing languages are still
somewhat cumbersome and need streamlining. It is likely that there will be
some improvement in the future.

Integration within supply chain management systems. Many companies had
started out initially with developing scheduling software for the manufacturing
industry. However, they soon realized that in order to compete in the market
place they had to offer software dealing with all aspects of supply chain man-
agement. The types of modules that are required in supply chain optimization
include, besides planning and scheduling, forecasting, demand management,
inventory control, and so on. Scheduling problems in supply chain manage-
ment have to take forecasts, inventory levels and routings into consideration.
These integrated scheduling problems are considerably harder than the more
elementary problems studied in the research literature. The structure and the
organization of the software must be well designed and modular.



Comments and References 555

Comments and References

Some research has already been done on polyhedral combinatorics of schedul-
ing problems. Queyranne and Wang (1991) analyze the polyhedra of scheduling
problems with precedence constraints and Queyranne (1993) studies the struc-
ture of another simple scheduling polyhedron. Queyranne and Schulz (1994)
present a general overview of polyhedral approaches to machine scheduling.
Chen, Potts and Woeginger (1998) discuss approximation algorithms. Schuur-
man and Woeginger (1999) present ten open problems with regard to Polyno-
mial Time Approximation Schemes.
Pruhs, Sgall and Torng (2004) present a survey of online and semi-online

scheduling and refer to some open problems. Research on multi-agent schedul-
ing has begun only recently; see, for example, Baker and Smith (2003), Agnetis,
Mirchandani, Pacciarelli and Pacifici (2004), and Cheng, Ng, and Yuan (2006).
Research on sequencing and scheduling games started already in the 1980s; how-
ever, this research has tended to be game theory oriented rather than scheduling
oriented. For a fairly recent overview on sequencing games, see Curiel, Hamers
and Klijn (2002). Rescheduling has received lately a significant amount of at-
tention, see Vieira, Herrmann and Lin (2003), and Hall and Potts (2004). As
stated in the text, rescheduling is also closely related to scheduling subject to
availability constraints; for an overview on this class of scheduling problems,
see Lee (2004).
For very good overviews of heuristic design as well as performance analysis

of heuristics, see Morton and Pentico (1993), Ovacik and Uzsoy (1997), Aarts
and Lenstra (1997), van Hentenryck and Michel (2005), and Hoos and Stützle
(2005). For a relatively new class of local search procedures, the so-called dy-
nasearch algorithms, see Congram, Potts and Van de Velde (2002). Recently,
some research has focused on the scheduling issues that are of importance in
supply chain management. This research area is at times referred to as supply
chain scheduling; see, for example, Hall and Potts (2003), Chen and Vairak-
tarakis (2005), and Chen and Pundoor (2006). For some recent papers on grid
scheduling, see Kurowski, Nabrzyski, Oleksiak and Weglarz (2006) and Deng,
Chen, Wang, and Deng (2006).
McKay, Pinedo andWebster (2002) present a comprehensive practice-focused

agenda for scheduling research.
An enormous amount of research and development is going on in user inter-

faces and interactive decision-making in general. For some general results on
interactive decision-making, see, for example, Kerpedjiev and Roth (2000). For
some more recent papers on user interfaces for interactive scheduling, see Chi-
mani, Lesh, Mitzenmacher, Sidner and Tanaka (2005) and Derthick and Smith
(2007).
Some research groups have already started to develop scheduling description

languages; see, for example, Smith and Becker (1997).
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This appendix gives an overview of the types of problems that can be formulated
as mathematical programs. All the applications discussed concern scheduling
problems. In order to understand these examples the reader should be familiar
with the notation introduced in Chapter 2.
This appendix is aimed at people who are already familiar with elementary

Operations Research techniques. It makes an attempt to put various notions
and problem definitions in perspective. Relatively little will be said about the
standard solution techniques for dealing with such problems.

A.1 Linear Programming Formulations

The most basic mathematical program is the Linear Program (LP). The LP
refers to an optimization problem in which the objective and the constraints
are linear in the decision variables. It can be formulated as follows:

minimize c1x1+c2x2+ · · ·+cnxn

subject to

559
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a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

xj ≥ 0 for j = 1, . . . , n.

The objective is the minimization of costs. The c1, . . . , cn vector is usually re-
ferred to as the cost vector. The decision variables x1, . . . , xn have to be deter-
mined in such a way that the objective function c1x1+ · · ·+ cnxn is minimized.
The column vector a1j , . . . , amj is referred to as activity vector j. The value
of the variable xj refers to the level at which this activity j is utilized. The
b1, . . . , bm is usually referred to as the resources vector. The fact that in linear
programming n denotes the number of activities has nothing to do with the
fact that in scheduling theory n refers to the number of jobs; that m denotes
the number of resources in linear programming also has nothing to do with the
fact that m refers to the number of machines in scheduling theory. Usually the
representation above is given in the following matrix form:

minimize c̄x̄

subject to

Ax̄ ≤ b̄

x̄ ≥ 0.

There are several algorithms or classes of algorithms for dealing with an LP.
The two most important ones are

(i) the simplex methods and
(ii) the interior point methods.

Although simplex methods work very well in practice, it is not known if there
is any version that solves the LP problem in polynomial time. The best known
example of an interior point method is Karmarkar’s Algorithm, which is known
to solve the LP problem in polynomial time. There are many texts that cover
these subjects in depth.
A special case of the linear program is the so-called transportation problem.

In the transportation problem the matrix A takes a special form. The matrix
has mn columns and m+ n rows and takes the form

A =


1̄ 0 · · · 0
0 1̄ · · · 0
...
...
. . .
...

0 0 · · · 1̄
I I · · · I
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where 1̄ denotes a row vector with n 1’s and I denotes an n×n identity matrix.
All but two entries in each column (activity) of this A matrix are zero; the
two nonzero entries are equal to 1. This matrix is associated with the following
problem. Consider a situation in which items have to be shipped fromm sources
to n destinations. A column (activity) in the A matrix represents a route from
a given source to a given destination. The cost associated with this column
(activity) is the cost of transporting one item from the given source to the
given destination. The first m entries in the b1, . . . , bm+n vector represent the
supplies at the m sources, while the last n entries of the b1, . . . , bm+n vector
represent the demands at the n destinations. Usually it is assumed that the sum
of the demands equals the sum of the supplies and the problem is to transport
all the items from the sources to the demand points and minimize the total cost
incurred. (When the sum of the supplies is less than the sum of the demands
there is no feasible solution and when the sum of the supplies is larger than the
sum of the demands an artificial destination can be created where the surplus
is sent at zero cost).
The matrix A of the transportation problem is an example of a matrix with

the so-called total unimodularity property. A matrix has the total unimodular-
ity property if the determinant of every square submatrix within the matrix has
value −1, 0 or 1. It can be easily verified that this is the case with the matrix
of the transportation problem. This total unimodularity property has an im-
portant consequence: if the values of the supplies and demands are all integers,
then there is an optimal solution x1, . . . , xn, which is a vector of integers and
the simplex method will find such a solution.
The transportation problem is important in scheduling theory for a number

of reasons. First, there are many scheduling problems that can be formulated
as transportation problems. Second, transportation problems can be used for
obtaining bounds in branch-and-bound procedures that are applied to NP-hard
problems (see Section 3.6).
In the following example a scheduling problem is described that can be for-

mulated as a transportation problem.

Example A.1.1 (A Transportation Problem)

Consider Qm | pj = 1 |
∑

hj(Cj). The speed of machine i is vi. The variable
xijk is 1 if job j is scheduled as the kth job on machine i and 0 otherwise.
So the variable xijk is associated with an activity. The cost of operating this
activity at unit level is

cijk = hj(Cj) = hj(k/vi).

Assume that there are a total of n×m positions (a maximum of n jobs can
be assigned to any one machine). Clearly, not all positions will be filled. The
n jobs are equivalent to the n sources in the transportation problem and the
n×m positions are the destinations. The problem can be formulated easily
as an LP.
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minimize
m∑
i=1

n∑
j=1

n∑
k=1

cijkxijk

subject to∑
i

∑
k

xijk = 1 for j = 1, . . . , n,∑
j

xijk ≤ 1 for i = 1, . . . ,m, k = 1, . . . , n,

xijk ≥ 0 for i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , n.

The first set of constraints ensures that job j is assigned to one and only
one position. The second set of constraints ensures that each position i, k
has at most one job assigned to it. Actually from the LP formulation it is
not immediately clear that the optimal values of the variables xijk have to
be either 0 or 1. From the constraints it may appear at first sight that an
optimal solution of the LP formulation may result in xijk values between 0
and 1. Because of the total unimodularity property, the constraints do not
specifically have to require the variables to be either 0 or 1. ||
An important special case of the transportation problem is the weighted

bipartite matching problem. This problem can be described as follows. Let
G = (N1, N2, A) be an undirected bipartite graph. This implies that there are
two sets of nodes N1 and N2 with arcs connecting nodes from N1 with nodes
from N2. There are m nodes in N1 and n nodes in N2. The set A denotes a set
of undirected arcs. The arc (j, k) ∈ A, that connects node j ∈ N1 with node
k ∈ N2, has a weight wjk. The objective is to find a matching for which the
sum of the weights of the arcs is minimum. Let the variable xjk correspond to
arc (j, k). The variable xjk equals 1 if the arc (j, k) is selected for the match-
ing and 0 otherwise. The relationship with the transportation problem is clear.
Without loss of generality it may be assumed that m > n (if this is not the
case, then sets N1 and N2 can be interchanged). The nodes in N1 then corre-
spond to the sources while the nodes in N2 correspond to the destinations. At
each source there is exactly one item available and at each destination there
is a demand for exactly one item. The cost of transporting one item from one
source to one destination is equal to the weight of the matching. The problem
can be formulated as the following LP.

minimize
m∑
j=1

n∑
k=1

wjkxjk

subject to
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n∑
k=1

xjk ≤ 1 for j = 1, . . . ,m,

m∑
j=1

xjk ≤ 1 for k = 1, . . . , n,

xjk ≥ 0 for j = 1, . . . ,m, k = 1, . . . , n.

Again, it is not necessary to explicitly require integrality for the xjk variables.
The internal structure of the problem is such that the solution of the linear
program is integral. The weighted bipartite matching problem is also important
from the point of view of scheduling.

Example A.1.2 (A Weighted Bipartite Matching Problem)

Consider Rm || ∑
Cj . Position (i, 1) now refers to the position of the last

job scheduled on machine i; position (i, 2) refers to the position of the job
immediately before the last on machine i. Position (i, k) refers to that job
on machine i which still has k − 1 jobs following it. So, in contrast to Ex-
ample A.1.1, the count of job positions starts at the end and not at the
beginning. The variable xijk is 1 if job j is the kth last job on machine i
and 0 otherwise. One set of nodes consists of the n jobs, while the second set
of nodes consists of the n ×m positions. The arc that connects job j with
position (i, k) has a weight kpij . ||
A special case of the weighted bipartite matching problem is the assignment

problem. A weighted bipartite matching problem is referred to as an assign-
ment problem when n = m (the number of sources is equal to the number
of destinations). The assignment problem is also important in scheduling the-
ory. Deterministic as well as stochastic single machine problems with the n jobs
having identically distributed processing times can be formulated as assignment
problems.

Example A.1.3 (An Assignment Problem)
Consider a special case of the problem discussed in Example A.1.1, namely
1 | pj = 1 |

∑
hj(Cj). There are n jobs and n positions, and the assignment

of job j to position k has cost hj(k) associated with it. ||

A.2 Integer Programming Formulations

An Integer Program (IP) is basically a linear program with the additional re-
quirement that the variables x1, . . . , xn have to be integers. If only a subset
of the variables are required to be integer and the remaining ones are allowed
to be real, the problem is referred to as a Mixed Integer Program (MIP). In
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contrast to the LP, an efficient (polynomial time) algorithm for the IP or MIP
does not exist (see Appendix D).
Many scheduling problems can be formulated as integer programs. In what

follows, two examples of integer programming formulations are given. The first
example describes an integer programming formulation for 1 || ∑

wjCj . Even
though the 1 || ∑

wjCj problem is quite easy and can be solved by a simple
priority rule, the problem still serves as an illustrative and useful example.
This formulation is a generic one and can be used for scheduling problems with
multiple machines as well.

Example A.2.1 (An Integer Programming Formulation with Time-
Indexed Variables)
In order to formulate 1 || ∑

wjCj as an integer program let the integer
variable xjt be 1 if job j starts at the integer time t and 0 otherwise. Let
l = Cmax − 1.

minimize
n∑
j=1

l∑
t=0

wj(t+ pj)xjt

subject to

l∑
t=0

xjt = 1 for j = 1, . . . , n,

n∑
j=1

t−1∑
s=max(t−pj ,0)

xjs = 1 for t = 0, . . . , l,

xjt ∈ {0,1} for j = 1, . . . , n, t = 0, . . . , l.

The first set of constraints ensures that a job can start only at one point in
time. The second set of constraints ensures that only one job can be processed
at any point in time, while the last set contains the integrality constraints
on the variables. The major disadvantage of this formulation is the number
of variables required. There are nCmax variables xjt. ||
Often, there is more than one integer programming formulation of the same

problem. In the next example a different integer programming formulation is
given for 1 || ∑wjCj . This second formulation can also be applied to 1 | prec |∑

wjCj .

Example A.2.2 (An Integer Programming Formulation with Se-
quencing Variables)

Consider 1 | prec | ∑
wjCj . Let xjk denote a 0 − 1 decision variable that

assumes the value 1 if job j precedes job k in the sequence and 0 otherwise.
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The values xjj have to be 0 for all j. The completion time of job j is then equal
to

∑n
k=1 pkxkj + pj . The integer programming formulation of the problem

without precedence constraints thus becomes

minimize
n∑
j=1

n∑
k=1

wjpkxkj +
n∑
j=1

wjpj

subject to

xkj + xjk = 1 for j, k = 1, . . . , n, j �= k,

xkj + xlk + xjl ≥ 1 for j, k, l = 1, . . . , n, j �= k, j �= l, k �= l,

xjk ∈ {0,1} for j, k = 1, . . . , n,
xjj = 0 for j = 1, . . . , n.

The third set of constraints can be replaced by a combination of (i) a set of
linear constraints that require all xj to be nonnegative, (ii) a set of linear
constraints requiring all xj to be less than or equal to 1 and (iii) a set of
constraints requiring all xj to be integer. Constraints requiring certain prece-
dences between the jobs can be added easily by specifying the corresponding
xjk values. ||
There are several ways for dealing with Integer Programs. The best known

approaches are:

(i) cutting plane (polyhedral) techniques and
(ii) branch-and-bound techniques.

The first class of techniques focuses on the linear program relaxation of the in-
teger program. They aim at generating additional linear constraints that have
to be satisfied for the variables to be integer. These additional inequalities con-
strain the feasible set more than the original set of linear inequalities without
cutting off integer solutions. Solving the LP relaxation of the IP with the addi-
tional inequalities then yields a different solution, which may be integer. If the
solution is integer, the procedure stops as the solution obtained is an optimal
solution for the original IP. If the variables are not integer, more inequalities
are generated. As this method is not used in the main body of the book it is
not further discussed here.
The second approach, branch-and-bound, is basically a sophisticated way of

doing complete enumeration that can be applied to many combinatorial prob-
lems. The branching refers to a partitioning of the solution space. Each part
of the solution space is then considered separately. The bounding refers to the
development of lower bounds for parts of the solution space. If a lower bound on
the objective in one part of the solution space is larger than a solution already
obtained in a different part of the solution space, the corresponding part of the
former solution space can be disregarded.
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Branch-and-bound can easily be applied to integer programs. Suppose that
one solves the LP relaxation of an IP (that is, solves the IP without the inte-
grality constraints). If the solution of the LP relaxation happens to be integer,
say x̄0, then this solution is optimal for the original integer program as well. If
x̄0 is not integer, then the value of the optimal solution of the LP relaxation,
c̄x̄0, still serves as a lower bound for the value of the optimal solution for the
original integer program.
If one of the variables in x̄0 is not integer, say xj = r, then the branch-

and-bound procedure proceeds as follows. The integer programming problem
is split into two subproblems by adding two mutually exclusive and exhaustive
constraints. In one subproblem, say Problem (1), the original integer program
is modified by adding the additional constraint

xj ≤ �r�,

where �r� denotes the largest integer smaller than r, while in the other sub-
problem, say Problem (2), the original integer program is modified by adding
the additional constraint

xj ≥ �r�
where �r� denotes the smallest integer larger than r. It is clear that the optimal
solution of the original integer program has to lie in the feasible region of one
of these two subproblems.
The branch-and-bound procedure now considers the LP relaxation of one of

the subproblems, say Problem (1), and solves it. If the solution is integer, then
this branch of the tree does not have to be explored further, as this solution is
the optimal solution of the original integer programming version of Problem (1).
If the solution is not integer, Problem (1) has to be split into two subproblems,
say Problem (1.1) and Problem (1.2) through the addition of mutually exclusive
and exhaustive constraints.
Proceeding in this manner a tree is constructed. From every node that corre-

sponds to a noninteger solution a branching occurs to two other nodes, and so
on. The procedure stops when all nodes of the tree correspond to problems of
which the linear program relaxations have either an integer solution or a frac-
tional solution that is higher than a feasible integer solution found elsewhere.
The node with the best solution is the optimal solution of the original integer
program.
An enormous amount of research and experimentation has been done on

branch-and-bound techniques. For example, the bounding technique described
above based on LP relaxations is relatively simple. There are other bounding
techniques that generate lower bounds that are substantially better (higher)
than the LP relaxation bounds and better bounds typically cut down the overall
computation time substantially. One of the most popular bounding techniques
is referred to as Lagrangean relaxation. This strategy, instead of dropping the
integrality constraints, relaxes some of the main constraints. However, the re-
laxed constraints are not totally dropped. Instead, they are dualized or weighted
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in the objective function with suitable Lagrange multipliers to discourage vio-
lations.
Two ways of applying branch-and-bound have proven to be very useful in

practice, namely:

(i) branch-and-cut and
(ii) branch-and-price (also known as column generation).

Branch-and-cut combines branch-and-bound with cutting plane techniques.
Branch-and-cut uses in each subproblem of the branching tree a cutting plane
algorithm to generate a lower bound. That is, a cutting plane algorithm is
applied to the problem formulation that includes the additional constraints in-
troduced at that node.
Branch-and-price, also referred to as column generation, is often used to

solve integer programs with a huge number of variables (columns). A branch-
and-price algorithm always works with a restricted problem in a sense that
only a subset of the variables is taken into account; the variables outside the
subset are fixed at 0. From the theory of Linear Programming it is known
that after solving this restricted problem to optimality, each variable that is
included has a nonnegative so-called reduced cost. If each variable that is not
included in the restricted problem has a nonnegative reduced cost, then an
optimal solution for the original problem is found. However, if there are variables
with a negative reduced cost, then one or more of these variables should be
included in the restricted problem. The main idea behind column generation
is that the occurrence of variables with negative reduced cost is not verified
by enumerating all variables, but rather by solving an optimization problem.
This optimization problem is called the pricing problem and is defined as the
problem of finding the variable with minimum reduced cost. To apply column
generation effectively it is important to find a good method for solving the
pricing problem. A branch-and-bound algorithm in which the lower bounds
are computed by solving LP relaxations through column generation is called a
branch-and-price algorithm.
Column generation has been applied successfully to various parallel machine

scheduling problems.

A.3 Bounds, Approximations and Heuristics Based on
Linear Programming

Since Linear Programming formulations can be solved fairly efficiently, a certain
amount of research has focused on the use of LP in the development of bounds,
approximations, and heuristics for NP-Hard scheduling problems. One obvious
way to obtain a lower bound on the objective function of an NP-hard scheduling
problem that can be formulated as a 0−1 Mixed Integer Program is by relaxing
the integer 0−1 variables and replacing them with linear constraints that force
these variables to be nonnegative and also less than or equal to 1.
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Consider the following Mixed Integer Programming formulation for 1 | rj |∑
wjCj . This MIP is a more general version of the formulation for 1 ||

∑
wjCj

presented in Example A.2.1. Again, let the integer variable xjt be 1 if job j
starts at the integer time t and 0 otherwise. Let l denote the planning horizon.
An upper bound on the planning horizon can be obtained by adding the sum
of the processing times to the last release date.

minimize
n∑
j=1

l∑
t=0

wj(t+ pj)xjt

subject to

l∑
t=0

xjt = 1 for j = 1, . . . , n,

n∑
j=1

t−1∑
s=max(t−pj ,0)

xjs ≤ 1 for t = 0, . . . , l,

xjt ∈ {0,1} for j = 1, . . . , n; t = 0, . . . , l,
xjt = 0 for j = 1, . . . , n; t = 0, . . . ,max(rj − 1, 0).

The first set of constraints ensures that a job can start only at one point in time.
The second set of constraints ensures that at most one job can be processed
at any point in time (since the jobs have different release dates, it may be the
case that at certain points in time the machine may have to remain idle). The
third set contains the integrality constraints on the variables. The last set of
constraints ensures that a job cannot start before its release date.
The LP relaxation of this problem is obtained by relaxing the integrality

constraints on xjt and replacing them with the constraint set

0 ≤ xjt ≤ 1 j = 1, . . . , n; t = 0, . . . , l.

This LP relaxation has been observed to give very strong lower bounds. How-
ever, it is somewhat difficult to solve because of its size (there are n × (l + 1)
variables xjt). The relaxation yields solutions in which the jobs are sliced in
horizontal pieces. For example, if a job in the original problem requires 6 time
units of uninterrupted processing, then a feasible solution in the relaxation may
require this job to occupy, say, 0.4 of the machine capacity for one uninterrupted
period of 6 time units and 0.6 of the machine capacity for another uninterrupted
period of 6 time units. These two periods of 6 time units may partially overlap.
A feasible solution of the relaxation may, of course, slice a job in more than two
horizontal pieces.
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Clearly, the solutions obtained with the relaxation will be useful for any
branch-and-bound approach that is applied to the original MIP. However, the
solution obtained with the relaxation may also form the basis for a heuristic
solution to the original problem. Let

l−1∑
t=0

(t+ pj)xjt

denote the so-called ”average completion time” of job j in the relaxed problem.
One solution for the original MIP can now be generated by ordering the jobs
nonpreemptively in increasing order of their average completion times. It has
been shown that, from a theoretical point of view, the objective value using
this heuristic can be at most three times larger than the objective value of the
optimal solution. Empirical research has shown that in practice the heuristic
solution will typically be within 2-4% of optimality.
The heuristic above consists thus of several phases. It requires a MIP for-

mulation, an LP relaxation of the MIP and a transformation of the solution of
the LP into a feasible schedule for the original problem. It has already been
observed earlier that for any given scheduling problem there may be several
MIP formulations and each such formulation may lead to a different type of LP
relaxation. Moreover, for any specific LP relaxation there may be a number of
ways of translating the LP solution into a feasible nonpreemptive schedule for
the original problem (a fair amount of research has been done on this last phase
as well).
If it is desirable to have solutions that are guaranteed to be very close to

optimality, then a Polynomial Time Approximation Scheme (PTAS) may have
to be used. These approximation schemes are described in Appendix D.

A.4 Disjunctive Programming Formulations

There is a large class of mathematical programs in which the constraints can be
divided into a set of conjunctive constraints and one or more sets of disjunctive
constraints. A set of constraints is called conjunctive if each one of the con-
straints has to be satisfied. A set of constraints is called disjunctive if at least
one of the constraints has to be satisfied but not necessarily all.
In the standard linear program all constraints are conjunctive. The mixed

integer program described in Example A.2.1 in essence contains pairs of dis-
junctive constraints. The fact that the integer variable xjk has to be either 0
or 1 can be enforced by a pair of disjunctive linear constraints: either xjk = 0
or xjk = 1. This implies that the problem 1 | prec |

∑
wjCj can be formulated

as a disjunctive program as well.
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Example A.4.1 (A Disjunctive Programming Formulation)

Before formulating 1 | prec | ∑wjCj as a disjunctive program it is of interest
to represent the problem by a disjunctive graph model. Let N denote the set
of nodes that correspond to the n jobs. Between any pair of nodes (jobs) j
and k in this graph exactly one of the following three conditions has to hold:

(i) job j precedes job k,
(ii) job k precedes job j and
(iii) jobs j and k are independent with respect to one another.

The set of directed arcs A represent the precedence relationships between
the jobs. These arcs are the so-called conjunctive arcs. Let set I contain
all the pairs of jobs that are independent of one another. Each pair of jobs
(j, k) ∈ I are now connected with one another by two arcs going in opposite
directions. These arcs are referred to as disjunctive arcs. The problem is to
select from each pair of disjunctive arcs between two independent jobs j and
k one arc that indicates which one of the two jobs goes first. The selection of
disjunctive arcs has to be such that these arcs together with the conjunctive
arcs do not contain a cycle. The selected disjunctive arcs together with the
conjunctive arcs determine a schedule for the n jobs.
Let the variable xj in the disjunctive program formulation denote the

completion time of job j. The set A denotes the set of precedence constraints
j → k that require job j to be processed before job k.

minimize
n∑
j=1

wjxj

subject to
xk − xj ≥ pk for all j → k ∈ A,

xj ≥ pj for j = 1, . . . , n,
xk − xj ≥ pk or xj − xk ≥ pj for all (j, k) ∈ I.

The first and second set of constraints are sets of conjunctive constraints.
The third set is a set of disjunctive constraints. ||
The same techniques that are applicable to integer programs are also ap-

plicable to disjunctive programs. The application of branch-and-bound to a
disjunctive program is straightforward. First the LP relaxation of the disjunc-
tive program has to be solved (i.e., the LP obtained after deleting the set of
disjunctive constraints). If the optimal solution of the LP by chance satisfies
all disjunctive constraints, then the solution is optimal for the disjunctive pro-
gram as well. However, if one of the disjunctive constraints is violated, say the
constraint

(xk − xj) ≥ pk or (xj − xk) ≥ pj,
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then two additional LP’s are generated. One has the additional constraint (xk−
xj) ≥ pk and the other has the additional constraint (xj − xk) ≥ pj. The
procedure is in all other respects similar to the branch-and-bound procedure
for integer programming.

Comments and References

Many books have been written on linear programming, integer programming
and combinatorial optimization. Examples of some relatively recent ones are
Papadimitriou and Steiglitz (1982), Parker and Rardin (1988), Nemhauser and
Wolsey (1988), Du and Pardalos (1998), Schrijver (1998), Wolsey (1998), and
Schrijver (2003).
Blazewicz, Dror and Weglarz (1991) give an overview of mathematical pro-

gramming formulations of machine scheduling problems. The thesis by Van de
Velde (1991) contains many examples (and references) of integer programming
formulations for scheduling problems. Dauzère-Pérès and Sevaux (1998) present
an interesting comparison of four different integer programming formulations
for 1 | rj |

∑
Uj.

The first example of branch-and-bound with Lagrangean relaxation ap-
plied to scheduling is due to Fisher (1976); he develops a solution method for
1 ||

∑
wjTj. Fisher (1981) presents an overview of the Lagrangean Relaxation

method for solving integer programming problems in general. Dauzère-Pérès
and Sevaux (2002) and Baptiste, Peridy and Pinson (2003) apply Lagrangean
relaxation to 1 | rj |

∑
wjUj . Barnhart, Johnson, Nemhauser, Savelsbergh and

Vance (1998) provide an excellent general overview of branch-and-price (column
generation) and Van den Akker, Hoogeveen and Van de Velde (1999) as well as
Chen and Powell (1999) apply this technique specifically to scheduling.
Savelsbergh, Uma, and Wein (2005) have done a thorough experimental

study of LP-based approximation algorithms for scheduling problems.
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Dynamic programming is one of the more widely used techniques for dealing
with combinatorial optimization problems. Dynamic Programming can be ap-
plied to problems that are solvable in polynomial time, as well as problems that
cannot be solved in polynomial time (see Appendix C). It has proven to be very
useful for stochastic problems as well.

B.1 Deterministic Dynamic Programming

Dynamic programming is basically a complete enumeration scheme that at-
tempts, via a divide and conquer approach, to minimize the amount of com-
putation to be done. The approach solves a series of subproblems until it finds
the solution of the original problem. It determines the optimal solution for each
subproblem and its contribution to the objective function. At each iteration it
determines the optimal solution for a subproblem, which is larger than all pre-
viously solved subproblems. It finds a solution for the current subproblem by
utilizing all the information obtained before in the solutions of all the previous
subproblems.
Dynamic programming is characterized by three types of equations, namely

(i) initial conditions;
(ii) a recursive relation and
(iii) an optimal value function.

In scheduling, a choice can be made between forward dynamic programming and
backward dynamic programming. The following example illustrates the use of
forward dynamic programming.

573
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Example B.1.1 (A Forward Dynamic Programming Formulation)

Consider 1 || ∑hj(Cj). This problem is a very important problem in schedul-
ing theory as it comprises many of the objective functions studied in Part
I of the book. The problem is, for example, a generalization of 1 || ∑

wjTj
and is therefore NP-hard in the strong sense. Let J denote a subset of the n
jobs and assume the set J is processed first. Let

V (J) =
∑
j∈J

hj(Cj),

provided the set of jobs J is processed first. The dynamic programming for-
mulation of the problem is based on the following initial conditions, recursive
relation and optimal value function.

Initial Conditions:

V ({j}) = hj(pj), j = 1, . . . , n

Recursive Relation:

V (J) = min
j∈J

(
V (J − {j}) + hj(

∑
k∈J

pk)
)

Optimal Value Function:

V ({1, . . . , n})
The idea behind this dynamic programming procedure is relatively straight-
forward. At each iteration the optimal sequence for a subset of the jobs (say
a subset J which contains l jobs) is determined, assuming this subset goes
first. This is done for every subset of size l. There are n!/(l!(n− l)!) subsets.
For each subset the contribution of the l scheduled jobs to the objective func-
tion is computed. Through the recursive relation this is expanded to every
subset which contains l+1 jobs. Each one of the l+1 jobs is considered as a
candidate to go first. When using the recursive relation the actual sequence
of the l jobs of the smaller subset does not have to be taken into consider-
ation; only the contribution of the l jobs to the objective has to be known.
After the value V ({1, . . . , n}) has been determined the optimal sequence is
obtained through a simple backtracking procedure.
The computational complexity of this problem can be determined as fol-

lows. The value of V (J) has to be determined for all subsets that contain l
jobs. There are n!/l!(n− l)! subsets. So the total number of evaluations that
have to be done are

n∑
l=1

n!
l!(n− l)!

= O(2n). ||
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Example B.1.2 (An Application of Forward Dynamic
Programming)
Consider the problem described in the previous example with the following
jobs.

jobs 1 2 3

pj 4 3 6
hj(Cj) C1 + C2

1 3 + C3
2 ; 8C3

So V ({1}) = 20, V ({2}) = 30 and V ({3}) = 48. The second iteration of
the procedure considers all sets containing two jobs. Applying the recursive
relation yields

V ({1, 2}) = min
(
V ({1}) + h2(p1 + p2), V ({2}) + h1(p2 + p1)

)
= min(20 + 346, 30 + 56) = 86

So if jobs 1 and 2 precede job 3, then job 2 has to go first and job 1 has
to go second. In the same way it can be determined that V ({1, 3}) = 100
with job 1 going first and job 3 going second and that V ({2, 3}) = 102 with
job 2 going first and job 3 going second. The last iteration of the procedure
considers set {1, 2, 3}.

V ({1, 2, 3}) = min
(
V ({1, 2})+h3(p1+p2+p3), V ({2, 3})+h1(p1+p2+p3),

V ({1, 3}) + h2(p1 + p2 + p3)
)
.

So
V ({1, 2, 3}) = min

(
86 + 104, 102 + 182, 100+ 2200

)
= 190.

It follows that jobs 1 and 2 have to go first and job 3 last. The optimal
sequence is 2, 1, 3 with objective value 190. ||
In the following example the same problem is handled through the backward

dynamic programming procedure. In scheduling problems the backward version
typically can be used only for problems with a makespan that is schedule in-
dependent (e.g., single machine problems without sequence dependent setups,
multiple machine problems with jobs that have identical processing times).
The use of backward dynamic programming is nevertheless important as it

is somewhat similar to the dynamic programming procedure discussed in the
next section for stochastic scheduling problems.
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Example B.1.3 (A Backward Dynamic Programming Formulation)

Consider again 1 || ∑hj(Cj). It is clear that the makespan Cmax is schedule
independent and that the last job is completed at Cmax which is equal to the
sum of the n processing times.
Again, J denotes a subset of the n jobs and it is assumed that J is pro-

cessed first. Let JC denote the complement of J . So set JC is processed last.
Let V (J) denote the minimum contribution of the set JC to the objective
function. In other words, V (J) represent the minimum additional cost to
complete all remaining jobs after all jobs in set J already have been com-
pleted.
The backward dynamic programming procedure is now characterized by

the following initial conditions, recursive relation and optimal value function.

Initial Conditions:

V ({1, . . . , j − 1, j + 1, . . . , n}) = hj(Cmax) j = 1, . . . , n

Recursive Relation:

V (J) = min
j∈JC

(
V (J ∪ {j}) + hj(

∑
k∈J∪{j}

pk)
)

Optimal Value Function:

V (∅)
Again, the procedure is relatively straightforward. At each iteration, the
optimal sequence for a subset of the n jobs, say a subset JC of size l, is
determined, assuming this subset goes last. This is done for every subset of
size l. Through the recursive relation this is expanded for every subset of size
l + 1. The optimal sequence is obtained when the subset comprises all jobs.
Note that, as in Example B.1.1, subset J goes first; however, in Example
B.1.1 set J denotes the set of jobs already scheduled while in this example
set J denotes the set of jobs still to be scheduled. ||
Example B.1.4 (An Application of Backward Dynamic Program-
ming)
Consider the same instance as in Example B.1.2. The makespan Cmax is 13.
So

V ({1, 3}) = h2(Cmax) = 2200

V ({1, 2}) = h3(Cmax) = 104

V ({2, 3}) = h1(Cmax) = 182

The second iteration of the procedure results in the following recursive rela-
tions.
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V ({1}) = min
(
V ({1, 2}) + h2(p1 + p2), V ({1, 3}) + h3(p1 + p3)

)
= min(104 + 346, 2200+ 80) = 450.

In the same way V ({2}) and V ({3}) can be determined: V ({2}) = 160 and
V ({3}) = 914. The last iteration results in the recursive relation

V (∅) = min
(
V ({1}) + h1(p1), V ({2}) + h2(p2), V ({3}) + h3(p3)

)
= min

(
450 + 20, 160 + 30, 914 + 48

)
= 190. ||

Of course, dynamic programming can also be used for problems that are
polynomial time solvable. Examples of such dynamic programming algorithms
are the O(n2) procedure for 1 | prec | hmax and the pseudopolynomial time
O(n4

∑
pj) procedure for 1 ||

∑
Tj described in Chapter 3.

Dynamic programming concepts can also be used to prove the optimality of
certain rules, e.g., LRPT for Pm | prmp | Cmax.
The proofs are then done through a combination of induction and contra-

diction. The induction argument assumes that the priority rule is optimal for
k − 1 jobs. In order to show that the rule is optimal for k jobs a contradiction
argument is used. Assume that at time zero an action is taken that is not pre-
scribed by the priority rule. At the first job completion there is one less job,
i.e., k−1 jobs, and the scheduler has to revert back to the priority rule because
of the induction hypothesis.
It has to be shown now that starting out at time zero following the priority

rule results in a lower objective than not acting according to the priority rule
at time zero and switching over to the priority rule at the first job completion.
This proof technique is usually applied in a preemptive setting. The proof of
optimality of the LRPT rule for Pm | prmp | Cmax in Section 5.2 is an example
of this technique.

B.2 Stochastic Dynamic Programming

Dynamic programming is often used in stochastic sequential decision processes,
especially when the random variables are exponentially distributed. This class
of decision processes is usually referred to as Markovian Decision Processes
(MDP’s). An MDP can be characterized, in the same way as a deterministic
dynamic program, by

(i) initial conditions;
(ii) a recursive relation and
(iii) an optimal value function.

The setup of an MDP formulation of a scheduling problem is fairly similar to
the setup of a backward dynamic program as described in Example B.1.3.
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Example B.2.1 (An MDP Formulation of a Stochastic Scheduling
Problem)
Consider the following stochastic counterpart of Pm | prmp | Cmax with m
machines in parallel and n jobs. The processing time of job j is exponentially
distributed with rate λj . Consider a particular time t. Let J denote the set
of jobs already completed and let JC the set of jobs still in the process. Let
V (J) denote the expected value of the remaining completion time under the
optimal schedule when the set of jobs J already have been completed. In
this respect notation V (J) is somewhat similar to notation used in Example
B.1.3. The following initial conditions, recursive relation and optimal value
function characterize this Markov Decision Process.

Initial Conditions:

V ({1, . . . , j − 1, j + 1, . . . , n}) = 1
λj

Recursive Relation:

V (J) = min
j,k∈JC

( 1
λj + λk

+
λj

λj + λk
V (J ∪ {j}) + λk

λj + λk
V (J ∪ {k})

)
Optimal Value Function:

V (∅)
The initial conditions are clear. If only job j remains to be completed, then
the expected time till all jobs have completed their processing is, because
of the memoryless property, 1/λj . The recursive relation can be explained
as follows. Suppose two or more jobs remain to be completed. If jobs j and
k are selected for processing, then the expected remaining time till all jobs
have completed their processing can be computed by conditioning on which
one of the two jobs finishes first with its processing. The first completion
occurs after an expected time 1/(λj + λk). With probability λj/(λj + λk)
it is job j that is completed first; the expected remaining time needed to
complete remaining jobs is then V (J ∪ {j}). With probability λk/(λj + λk)
it is job k that is completed first; the expected time needed to complete then
all remaining jobs is V (J ∪ {k}). ||
Dynamic programming is also used for stochastic models as a basis to verify

the optimality of certain priority rules. The proofs are then also done through
a combination of induction and contradiction, very much in the same way as
they are done for the deterministic models.
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Comments and References

Many books have been written on deterministic as well as on stochastic dynamic
programming. See, for example, Denardo (1982), Ross (1983) and Bertsekas
(1987).
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In contrast to mathematical programming, which has its roots in the Operations
Research community, constraint programming has its origins in the Artificial
Intelligence and Computer Science communities. Constraint programming can
be traced back to the constraint satisfaction problems studied in the 1970’s.
A constraint satisfaction problem requires a search for a feasible solution that
satisfies all given constraints. To facilitate the search for a solution to such a
problem various special purpose languages have been developed, e.g., Prolog.
However, during the last decade of the twentieth century, constraint program-
ming has not only been used for solving feasibility problems, but also for solving
optimization problems. Several approaches have been developed that facilitate
the application of constraint programming to optimization problems. One such
approach is via the Optimization Programming Language (OPL), which was de-
signed for modeling and solving optimization problems through both constraint
programming techniques and mathematical programming procedures.

C.1 Constraint Satisfaction

To describe the constraint programming framework, it is necessary to first define
the constraint satisfaction problem. In order to be consistent with the mathe-
matical programming material presented in Appendix A, it is advantageous to
present the constraint satisfaction problem using mathematical programming
terminology. Assume n decision variables x1, . . . , xn and let Dj denote the set
of allowable values for decision variable xj . This set is typically referred to as
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the domain of the variable xj . Decision variables can take integer values, real
values, as well as set elements.
Formally, a constraint is a mathematical relation that implies a subset S of

the set D1 ×D2 × · · · ×Dn such that if (x1, . . . , xn) ∈ S, then the constraint is
said to be satisfied. One can also define a mathematical function f such that

f(x1, . . . , xn) = 1

if and only if the constraint is satisfied. Using this notation, the Constraint
Satisfaction Problem (CSP) can be defined as follows:

fi(x1, . . . , xn) = 1, i = 1, . . . ,m
xj ∈ Dj j = 1, . . . , n

Since the problem is only a feasibility problem, no objective function has to
be defined. The constraints in the constraint set may be of various different
types: they may be linear, nonlinear, logical combinations of other constraints,
cardinality constraints, higher order constraints or global constraints.
One basic difference between the constraints in a mathematical program-

ming formulation and the constraints in a constraint satisfaction problem lies
in the fact that the constraints in a mathematical programming formulation
are typically either linear or nonlinear, whereas the constraints in a constraint
programming formulation can be of a more general form.
Constraint Satisfaction is typically solved via a tree search algorithm. Each

node in the search tree corresponds to a set of domains D′
1×D′

2×· · ·×D′
n such

that D′
j ⊂ Dj . In other words, a node is nothing more than a contraction of the

original domains that has not yet proven infeasible. The tree search algorithm
can branch from one node to another by assigning a value to a problem variable.
At each node, the following operations have to be performed:

WHILE not solved AND not infeasible DO
consistency checking (domain reduction)
IF a dead-end is detected THEN

try to escape from dead-end (backtrack)
ELSE

select variable
assign value to variable

ENDIF
ENDWHILE

The selection of the next variable and the assignment of its value is done by vari-
able selection heuristics and value assignment heuristics. In job shop scheduling
a variable typically corresponds to an operation and the value corresponds to
its starting time. After a value is assigned to a variable, inconsistent values of
unassigned variables are deleted. The process of removing inconsistent values is
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often referred to as consistency checking or domain reduction. One well-known
technique of consistency checking is constraint propagation. For a variable x, the
current domain δ(x) is the set of values for which no inconsistency can be found
with the available consistency checking techniques. If, after removing inconsis-
tent values from the current domains, a current domain has become empty, a
so-called dead-end has been reached. A dead-end means that either the original
problem is infeasible or that some of the branching decisions made from the
root of the tree down to this point has created an infeasibility. In such a case,
the algorithm has to backtrack; that is, one or more assignments of variables
have to be undone and alternatives have to be tried out. An instance is solved
if every variable is assigned a value; an instance is shown to be infeasible if for
a variable in the root of the tree no values are remaining to be tried.
If constraint satisfaction is applied to the job shop problem in Chapter 7,

then the problem is to verify whether there exists a feasible job shop schedule
with a makespan Cmax that is less than a given value z∗.
Domain reduction in job shop scheduling boils down to the following: Given

the partial schedule already constructed, each operation yet to be scheduled
has an earliest possible starting time and a latest possible completion time
(which are basically equivalent to a release date and a due date). Whenever
the starting time and completion time of an operation are fixed, some form of
checking has to be done on how the newly scheduled (fixed) operation affects
the earliest possible starting times and latest possible completion times of all
the operations that still remain to be scheduled. The earliest possible starting
time of a yet to be scheduled operation may now have to be set later while
the latest possible completion time of that operation may now have to be set
earlier.
Note that constraint satisfaction requires the specification of an actual

makespan; this allows the procedure to construct a schedule going forward in
time as well as backward in time. A branch-and-bound approach, on the other
hand, often constructs a schedule going forward in time whenever the makespan
is not known a priori (see, for example, Sections 3.2 and 7.1).

C.2 Constraint Programming

Originally, constraint satisfaction was used only to find feasible solutions for
problems. However, the constraint satisfaction structure, when embedded in a
more elaborate framework, can be applied to optimization (e.g., minimization)
problems as well. An optimization problem may be formulated as follows:

minimize g(x1, . . . , xn)
subject to

fi(x1, . . . , xn) = 1, i = 1, . . . ,m
xj ∈ Dj j = 1, . . . , n
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The standard search procedure for finding the optimal solution is to first find
a feasible solution to the Constraint Satisfaction Problem, while ignoring the
objective function. Let y1, . . . , yn represent such a feasible solution. Let z∗ =
g(y1, . . . , yn) and add the constraint

g(x1, . . . , xn) < z∗

to the constraint set and solve this modified Constraint Satisfaction Problem.
The additional constraint forces the new feasible solution to have a better objec-
tive value than the current one. Constraint propagation may cause the domains
of the decision variables to be narrowed, thus reducing the size of the search
space. As the search goes on, new solutions must have progressively better ob-
jective values. The algorithm terminates when no feasible solution is found;
when this happens, the last feasible solution found is optimal.
A more sophisticated and efficient search procedure, often referred to as

dichotomic search, requires at the outset a good lower bound L on the objective
g(x1, . . . , xn). The procedure must also find an initial feasible solution that
represents an upper bound U on the objective function. The dichotomic search
procedure essentially performs a binary search on the objective function. The
procedure computes the midpoint

M =
(U + L)
2

of the two bounds and then solves the constraint satisfaction problem with the
added constraint

g(x1, . . . , xn) <M
If it finds a feasible solution, then the new upper bound is set equal to M
and the lower bound is kept the same; a new midpoint is computed and the
search continues. If it does not find a feasible solution, then the lower bound
is set equal to M and the upper bound is kept the same; a new midpoint is
computed and the search continues.
Dichotomic search is effective when the lower bound is strong, because the

computational time that is needed to show that a constraint satisfaction prob-
lem does not have a feasible solution may be very long.
Constraint programming can be described as a two-level architecture that at

one level has a list of constraints (sometimes referred to as a constraint store)
and at the other level a programming language component that specifies the
organization and the sequence in which the basic operations are executed. One
fundamental feature of the programming language component is its ability to
specify a search procedure.
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C.3 An Example of a Constraint Programming Language

The Optimization Programming Language (OPL) was developed during the last
decade of the twentieth century to deal with optimization problems through a
combination of constraint programming techniques and mathematical program-
ming techniques.
This section describes a constraint program designed for the job shop problem

Jm || Cmax that is considered in Chapter 7.

Example C.3.1 (An OPL Program for a Job Shop)

An OPL program for the job shop problem Jm || Cmax can be written as
follows:

01. int nbMachines = . . .;
02. range Machines 1..nbMachines;
03. int nbJobs = . . .;
04. range Jobs 1..nbJobs;
05. int nbOperations = . . .;
06. range Operations 1..nbOperations;
07. Machines resource[Jobs,Operations]= . . .;
08. int+ duration[Jobs,Operations] = . . . ;
09. int totalDuration=sum(j in Jobs, o in Operations)duration[j,o];
10. scheduleHorizon=totalDuration;
11. Activity operation[j in Jobs, o in Operations](duration[j,o]);
12. Activity makespan(0);
13. UnaryResource tool[Machines];
14. minimize
15. Makespan.end
16. subject to {
17. forall(j in Jobs)
18. Operation[j,nbOperations] precedes makespan;
19. forall(j in Jobs)
20. forall(o in 1,..nbOperations-1)
21. Operation[j,o] precedes Operation[j,o+1];
22. forall(j in Jobs)
23. forall(o in Operations)
24. Operation[j,o] requires tool[resource[j,o]];
25. };
The first six lines define the input data of the problem, consisting of the

number of machines, the number of jobs, and the number of operations. The
array resource contains input data that consists of the identity and the
characteristics of the machine needed for processing a particular operation
of a job. The array duration specifies the time required for processing each
operation of a job. The keyword Activity implicitly indicates a decision
variable. An activity consists of three elements: a start time, an end time



586 C Constraint Programming

and a duration. In the declaration given here, the durations of each activity
are given as data. When an activity is declared, the constraint

operation[j,o].start + operation[j,o].duration =
operation[j,o].end

is automatically included in the program. The makespan activity is a dummy
activity with zero processing time that will be the very last operation in the
schedule. Unaryresource implies also a decision variable; decisions have
to be made which activities have to be assigned to which resources at any
given time.
The remaining part of the program states the problem: first the objective

and then all the constraints. The statement precedes is a keyword of the
language. So one of the constraints is internally immediately translated into

operation[j,o].end <= operation[j,o+1].start

The word requires is also a keyword of the language. Declaring a set of
requirements causes the creation of a set of so-called disjunctive constraints
(see Appendix A). For example, let the resource tool[i] denote a given
machine i and let operation[j1,o1] and operation[j2,o2] denote two
operations which both require machine i, i.e., the data include

resource[j1,o1]=resource[j2,o2]=i

The following disjunctive constraint is now created automatically by the
system, ensuring that the two operations cannot occupy machine i at the
same time:

operation[j1,o1].end<= operation[j2,o2].start
or

operation[j2,o2].end<= operation[j1,o1].start

These disjunctive constraints imply that operation[j1,o1] either precedes
or follows operation[j2,o2]. ||

C.4 Constraint Programming vs. Mathematical
Programming

Constraint programming, as a modelling tool, is more flexible than mathemati-
cal programming. The objective functions as well as the constraints can be of a
more general nature, since the decision variables may represent besides integer
values and real values also set elements and even subsets of sets.
The ways in which searches for optimal solutions can be conducted in math-

ematical programming and in constraint programming have similarities as well
as differences. One similarity between constraint programming and the branch-
and-bound method applied to integer programming is based on the fact that
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both approaches typically search through a tree of which each one of the nodes
represent a partial solution of a schedule. Both approaches have to deal with
issues such as how to examine the search space effectively and how to evaluate
all the alternatives as efficiently as possible (i.e., how to prune the tree).
One of the differences between the dichotomic search used in constraint pro-

gramming and a branch-and-bound procedure for a mixed-integer programming
problem lies in the fact that the dichotomic search stresses a search for feasible
solutions, whereas a branch-and-bound procedure emphasizes improvements in
lower bounds.
Constraint programming techniques and mathematical programming tech-

niques can be embedded within one framework. Such an integrated approach
has already proven useful for a variety of scheduling problems.
Consider, for example, the application of a branch-and-price approach to the

parallel machine problem Pm || ∑
wjCj . Such a problem is usually of the set

partitioning type and the solution techniques are typically based on column
generation. A column in this parallel machine problem represents a schedule
for one machine, which is a feasible combination of a subset of the jobs. Since
the potential number of columns is rather huge, it is important to be able to
start the optimization with an initial subset of columns that is appropriate.
The solution strategy uses constraint programming in two ways. First, it

is used when generating the initial subset of columns. Second, it is used as a
subproblem algorithm for generating new columns during the optimization pro-
cess. Thus, the master problem must find a set of appropriate single machine
scheduling problems. The main program alternates between solving the linear
programming relaxation of the set covering problem and solving a column gen-
eration problem that generates new columns for the master problem. Once the
columns are satisfactory, the columns are fixed and the set covering problem is
solved to find the integer optimal solution.
The constraint programming subproblem is interesting. Constraint program-

ming is used to enumerate the potential single machine schedules. In the initial-
ization stage a set of single machine schedules are generated that are guaranteed
to cover every job. In the column generation phase the constraint program is
used twice. First, the optimal single machine schedules with the current set of
dual multipliers are determined. After this has been determined, a search is
done for all single machine schedules with a reduced cost of at least half of the
optimal schedule. This provides a large set of entering columns and eliminates
one of the major weaknesses of column generation, namely the large number of
iterations needed to improve the objective value in the master problem.
Constraint programming turns out to be also suitable for this preprocessing

stage. A constraint programming routine can detect columns that are infeasible
and reduce this way the number of columns to start out with.
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Comments and References

There is an enormous literature on constraint satisfaction and on constraint
programming. Even the part of the literature that focuses on scheduling is
extensive. For general treatises on constraint programming, see Van Hentenryck
and Michel (2005), Van Hentenryck and Lustig (1999), Hooker (2000), and
Lustig and Puget (2001). The presentation in this appendix is mainly based on
the paper by Lustig and Puget (2001).
A number of papers have focused on the application of constraint program-

ming to scheduling; see, for example, Nuijten and Aarts (1996), Jain and Gross-
mann (2001), and Lustig and Puget (2001). Various papers considered the in-
tegration of constraint programming techniques with mathematical program-
ming; see, for example, Grönkvist (2002) and the conference proceedings edited
by Régin and Rueher (2004).
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Complexity theory is based on a mathematical framework developed by logi-
cians and computer scientists. This theory was developed to study the intrinsic
difficulty of algorithmic problems and has proven very useful for combinatorial
optimization. This appendix presents a brief overview of this theory and its
ramifications for scheduling.
The applications discussed again concern scheduling problems. In order to

understand these examples the reader should be familiar with the notation
introduced in Chapter 2.

D.1 Preliminaries

In complexity theory the term “problem” refers to the generic description of a
problem. For example, the scheduling problem Pm || Cmax is a problem, as is
the linear programming problem described in the first section of Appendix A.
The term “instance” refers to a problem with a given set of numerical data. For
example, the setting with two machines, five jobs with processing times 2, 3, 5,
5, 8, and the makespan as objective is an instance of the Pm || Cmax problem.
With each instance there is a “size” associated. The size of an instance refers

to the length of the data string necessary to specify the instance. It is also
referred to as the length of the encoding. For example, consider instances of the
problem Pm || Cmax and assume that a convention is made to encode every
instance in a certain way. First the number of machines is specified, followed
by the number of jobs and then the processing times of each one of n jobs. The
different pieces of data may be separated from one another by comma’s which
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perform the functions of separators. The instance of the Pm || Cmax problem
described above is then encoded as

2, 5, 2, 3, 5, 5, 8.

One could say that the size of the instance under this encoding scheme is 7 (not
counting the separators). Of course, the length of the encoding depends heavily
on the encoding conventions. In the example above the processing times were
encoded using the decimal system. If all the data were presented in binary form
the length of the encoding changes. The example then becomes

10, 101, 10, 11, 101, 101, 1000.

The length of the encoding is clearly larger. Another form of encoding is the
unary encoding. Under this encoding the integer number n is represented by n
ones. According to this encoding the example above becomes

11, 11111, 11, 111, 11111, 11111, 11111111.

Clearly, the size of an instance under unary encoding is larger than that under
binary encoding. The size of an instance depends not only on the number of
jobs but also on the length of the processing times of the jobs. One instance is
larger than another instance with an equal number of jobs if all the processing
times in the first instance are larger than all the processing times in the second
instance.
However, in practice, the size of an instance is often simply characterized

by the number of jobs (n). Although this may appear at first sight somewhat
crude, it is sufficiently accurate for making distinctions between the complexities
of different problems. In this book the size of an instance is measured by the
number of jobs.
The efficiency of an algorithm for a given problem is measured by the maxi-

mum (worst-case) number of computational steps needed to obtain an optimal
solution as a function of the size of the instance. This, in turn, requires a def-
inition of a computational step. In order to define a computational step, a
standard model of computing is used, the Turing machine. Any standard text
on computational complexity contains the assumptions of the Turing machine;
however, these assumptions are beyond the scope of this appendix. In practice
however, a computational step in an algorithm is either a comparison, a mul-
tiplication or any data manipulation step concerning one job. The efficiency of
an algorithm is then measured by the maximum number of computational steps
needed to obtain an optimal solution (as a function of the size of the instance,
i.e., the number of jobs). The number of computational steps may often be just
the maximum number of iterations the algorithm has to go through. Even this
number of iterations is typically approximated.
For example, if careful analysis of an algorithm establishes that the maximum

number of iterations needed to obtain an optimal solution is 1500 + 100n2 +
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5n3, then only the term which, as a function of n, increases the fastest is of
importance. This algorithm is then referred to as an O(n3) algorithm. In spite of
the fact that for small n the first two terms have a larger impact on the number
of iterations, these first two terms are not of interest for large scale problems.
For large numbers of n the third term has the largest impact on the maximum
number of iterations required. Even the coefficient of this term (the 5) is not
that important. An O(n3) algorithm is usually referred to as a polynomial time
algorithm; the number of iterations is polynomial in the size (n) of the problem.
Such a polynomial time algorithm is in contrast to an algorithm that is either
O(4n) or O(n!). The number of iterations in an O(4n) or an O(n!) algorithm
is, in the worst case, exponential in the size of the problem.
Some of the easiest scheduling problems can be solved through a simple

priority rule, e.g., WSPT, EDD, LPT and so on. To determine the optimal order
then requires a simple sorting of the jobs based on one or two parameters. In
the following example it is shown that a simple sort can be done in O(n log(n))
time.

Example D.1.1 (MERGESORT)
The input of the algorithm is a sequence of numbers x1, . . . , xn and the de-
sired output is the sequence y1, . . . , yn, a permutation of the input, satisfying
y1 ≤ y2 ≤ · · · ≤ yn. One procedure for this problem is in the literature re-
ferred to as MERGESORT . This method takes two sorted sequences S1 and
S2 of equal size as its input and produces a single sequence S containing
all elements of S1 and S2 in sorted order. This algorithm repeatedly selects
the larger of the largest elements remaining in S1 and S2 and then deletes
the element selected. This recursive procedure requires for n elements the
following number of comparisons:

T (1) = 0

T (n) = 2T
(n

2

)
+ (n− 1)

It can be shown easily that if n is a power of 2, the total number of compar-
isons is O(n log(n)). Examples of problems that can be solved this way in
polynomial time are 1 || ∑wjCj and 1 || Lmax. ||
Example D.1.2 (Complexity of the Assignment Problem)

The assignment problem described in the first part of Appendix A can be
solved in polynomial time; actually in O(n3). ||
Actually, any LP can be solved in polynomial time. However, in contrast to

the linear program, there exists no polynomial time algorithm for the integer
program.
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D.2 Polynomial Time Solutions versus NP-Hardness

In complexity theory a distinction is made between optimization problems and
decision problems. The question raised in a decision problem requires either a
yes or a no answer. These decision problems are therefore often also referred to
as yes-no problems. With every optimization problem one can associate a deci-
sion problem. For example, in the problem Fm || Cmax the makespan has to be
minimized. In the associated decision problem the question is raised whether
there exists a schedule with a makespan less than a given value z. It is clear
that the optimization problem and the related decision problem are strongly
connected. Actually, if there exists a polynomial time algorithm for the opti-
mization problem, then there exists a polynomial time algorithm for the deci-
sion problem and vice versa. A fundamental concept in complexity theory is
the concept of problem reduction. Very often it occurs that one combinatorial
problem is a special case of another problem, or equivalent to another problem,
or more general than another problem. Often, an algorithm that works well for
one combinatorial problem works as well for another after only minor modifi-
cations. Specifically, it is said that problem P reduces to problem P′ if for any
instance of P an equivalent instance of P′ can be constructed. In complexity
theory usually a more stringent notion is used. Problem P polynomially reduces
to problem P′ if a polynomial time algorithm for P′ implies a polynomial time
algorithm for P. Polynomial reducibility of P to P′ is denoted by P ∝ P′. If it
is known that if there does not exist a polynomial time algorithm for problem
P, then there does not exist a polynomial time algorithm for problem P′ either.
Some formal definitions of problem classes are now in order.

Definition D.2.1 (Class P). The class P contains all decision problems
for which there exists a Turing machine algorithm that leads to the right yes-
no answer in a number of steps bounded by a polynomial in the length of the
encoding.

The definition of the class P is based on the time it takes a Turing machine
to solve a decision problem. There exists a larger class of problems that is based
on the time it takes a Turing machine to verify whether a given solution of a
decision problem is correct or not. This solution may be in the form of a clue,
e.g., for a scheduling problem a clue may be a sequence or a schedule.

Definition D.2.2 (Class NP). The class NP contains all decision prob-
lems for which the correct answer, given a proper clue, can be verified by a
Turing machine in a number of steps bounded by a polynomial in the length of
the encoding.

For example, if the decision problem associated with the F3 || Cmax problem
is considered, then a proper clue could be an actual schedule or permutation
of jobs which results in a certain makespan, which is less than the given fixed
value z. In order to verify whether the correct answer is yes, the algorithm takes
the given permutation and computes the makespan under this permutation in
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order to verify that it is less than the given constant z. Verifying that a sequence
satisfies such a condition is, of course, simpler than finding a sequence that
satisfies such a condition. The class P is, clearly, a subclass of the class NP .
One of the most important open issues in mathematical logic and combina-

torial optimization is the question whether or not P = NP . If P were equal to
NP , then there would exist polynomial time algorithms for a very large class
of problems for which up to now no polynomial time algorithm has been found.

Definition D.2.3 (NP-hardness). A problem P, either a decision prob-
lem or an optimization problem, is called NP-hard if the entire class of NP
problems polynomially reduces to P.

Actually, not all problems within the NP-hard class are equally difficult.
Some problems are more difficult than others. For example, it may be that
a problem can be solved in polynomial time as a function of the size of the
problem in unary encoding, while it cannot be solved in polynomial time as
a function of the size of the problem in binary encoding. For other problems
there may not exist polynomial time algorithms under either unary or binary
encoding. The first class of problems are not as hard as the second class of
problems. The problems in this first class are usually referred to as NP-hard in
the ordinary sense or simply NP-hard. The algorithms for this class of problems
are called pseudo-polynomial. The second class of problems are usually referred
to as strongly NP-hard.
A great variety of decision and optimization problems have been shown to

be either NP-hard or strongly NP-hard. Some of the more important decision
problems in this class are listed below.
The most important NP-hard decision problem is a problem in Boolean logic,

the so-called SATISFIABILITY problem. In this problem there are n Boolean
variables x1, . . . , xn. These variables may assume either the value 0 (false) or
the value 1 (true). A so-called clause is a function of a subset of these variables.
A variable xj may appear in a clause as xj or as its negation �xj . If xj = 0,
then its negation �xj = 1 and vice versa. The clause (x2+�x5 + x1) is 1 (true)
if at least one of the elements in the clause gives rise to a true value, i.e.,
x2 = 1 and/or x5 = 0 and/or x1 = 1. An expression can consist of a number of
clauses. For the entire expression to be true, there must exist an assignment of
0’s and 1’s to the n variables which makes each clause true. More formally, the
SATISFIABILITY problem is defined as follows.

Definition D.2.4 (SATISFIABILITY). Given a set of variables and a col-
lection of clauses defined over the variables, is there an assignment of values to
the variables for which each one of the clauses is true?

Example D.2.5 (SATISFIABILITY)
Consider the expression

(x1+�x4+x3+�x2)(�x1+�x2+x4+�x3)(�x2+�x3+x1+x5)(�x5+�x1+x4+x2)
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It can be verified easily that the assignment x1 = 0, x2 = 0, x3 = 0, x4 = 0
and x5 = 0 gives a truth assignment to each one of the four clauses. ||
The following four NP-hard problems are very important from the scheduling

point of view.

Definition D.2.6 (PARTITION). Given positive integers a1, . . . , at and

b = (1/2)
t∑
j=1

aj,

do there exist two disjoint subsets S1 and S2 such that∑
j∈Si

aj = b

for i = 1, 2 ?

Definition D.2.7 (3-PARTITION). Given positive integers a1, . . . , a3t, b
with

b

4
< aj <

b

2
, j = 1, . . . , 3t,

and
3t∑
j=1

aj = tb,

do there exist t pairwise disjoint three element subsets Si ⊂ {1, . . . , 3t} such
that ∑

j∈Si

aj = b

for i = 1, . . . , t ?

Definition D.2.8 (HAMILTONIAN CIRCUIT). For a graph G = (N,A)
with node set N and arc set A, does there exist a circuit (or tour) that connects
all nodes in N exactly once?

Definition D.2.9 (CLIQUE). For a graph G = (N,A) with node set N
and arc set A, does there exist a clique of size c? That is, does there exist a
set N∗ ⊂ N , consisting of c nodes, such that for each distinct pair of nodes
u, v ∈ N∗, the arc {u, v} is an element of A?

Problems of which the complexity is established through a reduction from
PARTITION typically allow for pseudo-polynomial time algorithms and are
therefore NP-hard in the ordinary sense.
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D.3 Examples

This section contains a number of examples illustrating several simple problem
reductions.

Example D.3.1 (The Knapsack Problem)
Consider the so-called knapsack problem, which is equivalent to the schedul-
ing problem 1 | dj = d | ∑

wjUj . It is clear why this problem is usually
referred to as the knapsack problem. The value d refers to the size of the
knapsack and the jobs are the items that have to be put into the knapsack.
The size of item j is pj and the benefit obtained by putting item j into the
knapsack is wj . It can be shown that PARTITION reduces to the knapsack
problem by taking

n = t,

pj = aj ,

wj = aj ,

d =
1
2

t∑
j=1

aj = b,

z =
1
2

t∑
j=1

aj = b.

It can be verified that there exists a schedule with an objective value less
than or equal to 1/2

∑n
j=1 wj if and only if there exists a solution for the

PARTITION problem. ||
Example D.3.2 (Minimizing Makespan on Parallel Machines)
Consider P2 || Cmax. It can be shown that PARTITION reduces to this
problem by taking

n = t,

pj = aj ,

z =
1
2

t∑
j=1

aj = b.

It is trivial to verify that there exists a schedule with an objective value less
than or equal to 1/2

∑n
j=1 pj if and only if there exists a solution for the

PARTITION problem. ||
The following example illustrates how P2 || Cmax can be solved in pseudo-

polynomial time via a simple dynamic programming algorithm.
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Example D.3.3 (Application of a Pseudo-Polynomial Time Algo-
rithm)
Consider P2 || Cmax with 5 jobs.

jobs 1 2 3 4 5

pj 7 8 2 4 1

The question is: does there exist a partition with a makespan equal to 11
(half of the sum of the processing times)? The following dynamic program
(see Appendix B) results in an optimal partition. Let the indicator variable
I(j, z) be 1 if there is a subset of jobs {1, 2, . . . , j−1, j} for which the sum of
the processing times is exactly z and 0 otherwise. The values of I(j, z) have
to be determined for j = 1, . . . , 5 and z = 0, . . . , 11. The procedure basically
fills in 0-1 entries in the I(j, z) matrix row by row.

z 0 1 2 3 4 5 6 7 8 9 10 11

j = 1 1 0 0 0 0 0 0 1 0 0 0 0
j = 2 1 0 0 0 0 0 0 1 1 0 0 0
j = 3 1 0 1 0 0 0 0 1 1 1 1 0
j = 4 1 0 1 0 1 0 1 1 1 1 1 1
j = 5 1 1 1 1 1 1 1 1 1 1 1 1

From the table entries it follows that there is a partition of the jobs which
results in a makespan of 11. From simple backtracking it follows that jobs 4
and 1 have a total processing time of 11. Clearly, this table entry algorithm
is polynomial in n

∑
pj/2. If the instance is encoded according to the unary

format the length of the encoding is O(
∑

pj). The algorithm is polynomial
in the size of the problem. However, if the instance is encoded according
to the binary format, the length of the encoding is O(log(

∑
pj)) and the

algorithm, being of O(n
∑

pj), is not bounded by any polynomial function
of O(log(

∑
pj)). The algorithm is therefore pseudo-polynomial. ||

NP-hard problems of which the complexity is established via a reduction
from SATISFIABILITY, 3-PARTITION, HAMILTONIAN CIRCUIT or CLIQUE are
strongly NP-hard.

Example D.3.4 (Minimizing Makespan in a Job Shop)

Consider J2 | rcrc, prmp | Cmax. It can be shown that 3-PARTITION reduces
to J2 | rcrc, prmp | Cmax. The reduction to the scheduling problem is based
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on the following transformation. The number of jobs, n, is chosen to be equal
to 3t+ 1. Let

p1j = p2j = aj j = 1, . . . , 3t.

Each one of these 3t jobs has to be processed first on machine 1 and then on
machine 2. These 3t jobs do not recirculate. The last job, job 3t+ 1, has to
start its processing on machine 2 and then has to alternate between machines
1 and 2. It has to be processed this way t times on machine 2 and t times
on machine 1 and each one of these 2t processing times is equal to b. For a
schedule to have a makespan

Cmax = 2tb,

this last job has to be scheduled without interruption. The remaining time
slots can be filled without idle times by jobs 1, . . . , 3t if and only if 3-

PARTITION has a solution. ||
Example D.3.5 (Sequence Dependent Setup Times)
Consider the Travelling Salesman Problem or, in scheduling terms, the 1 |
sjk | Cmax problem. That HAMILTONIAN CIRCUIT can be reduced to 1 |
sjk | Cmax can be shown as follows. Let each node in the HAMILTONIAN

CIRCUIT correspond to a city in the travelling salesman problem. Let the
distance between two cities equal to 1 if there exists an arc between the
two corresponding nodes in the HAMILTONIAN CIRCUIT. Let the distance
between two cities equal to 2 if there does not exist an arc between the two
corresponding nodes. The bound on the objective is equal to the number of
nodes in the HAMILTONIAN CIRCUIT. It is easy to see that the two problems
are equivalent. ||
Example D.3.6 (Scheduling with Precedence Constraints)
Consider 1 | pj = 1, prec |

∑
Uj . That CLIQUE can be reduced to 1 | pj =

1, prec | ∑
Uj can be shown as follows. Given a graph G = (N,A) and an

integer c. Assume there are l nodes, i.e., N = {1, . . . , l}. Let a denote the
number of arcs, i.e., a =| A |, and let

, =
c(c− 1)
2

.

So a clique of size c has exactly , arcs.
The reduction involves two types of jobs: a node-job j correspond to node

j ∈ N and an arc-job (j, k) corresponds to arc {j, k} ∈ A. Each arc-job
(j, k) is subject to the constraint that it must follow the two corresponding
node-jobs j and k.
Consider the following instance of 1 | pj = 1, prec |

∑
Uj. Let the number

of jobs be n = l+a. All node-jobs have the same due date l+a, i.e., due date
dj = l + a for j = 1, . . . , l. All arc-jobs (j, k) have the same due date c + ,,
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i.e., due date d(j,k) = c+ , for all {j, k} ∈ A. The precedence constraints are
such that j → (j, k) and k → (j, k) for all {j, k} ∈ A. Let z = a− ,.
A schedule with at least l + , early jobs and at most z late jobs exists if

and only if CLIQUE has a solution. If G has a clique of size c on a subset
N∗, the corresponding node-jobs j ∈ N∗ have to be scheduled first. The ,
corresponding arc-jobs can then be completed before their due dates by time
c+ ,. The remaining a− , arc-jobs are late and

∑
Uj = a− , = z.

If G has no clique of size c, then at most , − 1 arc jobs can be on time
and the treshold cannot be met. So the two problems are equivalent. ||

D.4 Approximation Algorithms and Schemes

Many scheduling problems are either NP-hard in the ordinary sense or strongly
NP-hard. For these problems it will be clearly very hard to find an optimal
solution in a time effective manner. It is of interest to develop for these problems
polynomial time algorithms that can deliver, with some form of a guarantee,
solutions close to optimal. This need has led to a significant amount of research
in an area that is referred to as Approximation Algorithms or as Approximation
Schemes. In order to state some necessary definitions, let ε be a small positive
number and let ρ = 1 + ε.

Definition D.4.1 (Approximation Algorithm). An algorithm A is
called a ρ-approximation algorithm for a problem, if for any instance I of that
problem the algorithm A yields a feasible solution with objective value A(I) such
that

| A(I)−OPT (I) | ≤ ε ·OPT (I).

The ρ value is usually referred to as the performance guarantee or the worst
case ratio of the approximation algorithm A.
The definition above includes, of course, many approximation algorithms,

including algorithms that are not very effective. The following definition fo-
cuses on more special classes of approximation algorithms, taking also their
effectiveness into consideration.

Definition D.4.2 (Approximation Scheme).
(i) An Approximation Scheme for a given problem is a family of (1 + ε)-

approximation algorithms Aε for that problem.
(ii) A Polynomial Time Approximation Scheme (PTAS) for a problem is an

approximation scheme with a time complexity that is polynomial in the input
size (e.g., the number of jobs n).

(iii) A Fully Polynomial Time Approximation Scheme (FPTAS) for a prob-
lem is an approximation scheme with a time complexity that is polynomial in
the input size as well as in 1/ε.

So, it would be acceptable for a PTAS to have a time complexity O(n2/ε),
even though this time complexity is exponential in 1/ε (it is polynomial in
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the size of the input which is exactly what is required in the definition of a
PTAS). An FPTAS cannot have a time complexity that grows exponentially in
1/ε, but a time complexity O(n8/ε3) would be fine. With regard to worst case
approximations, an FPTAS is the strongest possible result that one can obtain
for an NP-hard problem.
A common approach for the design of approximation schemes is a technique

that adds more structure to the input data. The main idea is to turn a difficult
instance into a more simplified instance that is easier to handle. The optimal
solution for the simplified instance can then be used to get a handle on the
original instance. The approach basically consists of three steps: the first step
involves a simplification of the instance at hand. The level of simplification
depends on the desired precision ε. The second step involves the solution of
the simplified instance. Solving the simplified instance typically can be done
in polynomial time. In the third step the optimal solution of the simplified in-
stance is translated back into an approximate solution for the original instance.
This translation exploits the similarity between the original instance and the
simplified instance.
Of course, finding the right simplification in the first step is more an art than

a science. The following approaches for simplifying the input tend to work well,
namely
(i) Rounding: the simplest way of adding structure to the input is to round

some of the numbers of the input. For example, we may round non-integral due
dates up to the closest integers.
(ii) Merging: a second way of adding structure is to merge small pieces into

larger pieces of a primitive shape. For example, a huge number of tiny jobs can
be merged into a single job with processing time equal to the total processing
time of the tiny jobs.
(iii) Aligning: a third way of adding structure is to align the processing times

of similar jobs. For example, we can replace 48 different jobs of roughly equal
length with 48 identical jobs of the average length.
In order to illustrate the design of a PTAS following this approach consider

the P2 || Cmax problem. In the previous section it was already shown that P2 ||
Cmax is NP-hard in the ordinary sense since it is equivalent to PARTITION.
This problem turns out to be a nice candidate to illustrate the design of a
PTAS.
In order to describe the PTAS some terminology and notation needs to be

introduced. It is clear that

Cmax(OPT ) ≥ max
(
pmax,

∑n
j=1 pj

2

)
Denote this lower bound by L. The jobs in an instance of P2 || Cmax can now be
classified as being either big or small. This classification depends on a precision
parameter 0 < ε < 1. A job is referred to as big if its processing time is larger
than εL and as small if its processing time is less than or equal to εL. Let
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P s denote the sum of the processing times of all small jobs and let P s1 (P
s
2 )

denote the total processing time of the small jobs that in the optimal schedule
are assigned to machine 1 (2).
The PTAS consists of three steps. In the first step the instance of the schedul-

ing problem is transformed in a certain way into a new, more simplified, in-
stance. The new instance will contain all the big jobs of the original instance
with exactly the same processing times. However, it does not contain the orig-
inal small jobs. Instead, the new instance contains �P s/(εL)� small jobs with
all having the same length εL. Note that the number of small jobs in the new
instance is smaller than the number of small jobs in the original instance; the
total processing of all the small jobs in the new instance may be slightly less
than P s.
It can be argued that the optimal makespan in the new instance, C′

max(OPT )
is fairly close to the optimal makespan of the original instance Cmax(OPT ). The
schedule for the new instance can be created as follows. Assign all the big jobs
to the same machine as in the original instance. However, replace the original
small jobs on machine i, i = 1, 2, by �P si /(εL)� small pieces of length εL. Since

�P s1 /(εL)�+ �P s2 /(εL)� ≥ �P s1 /(εL) + P s2 /(εL)� = �P s/(εL)�,

this process assigns all small pieces of length εL. By assigning the small pieces
the load of machine i is increased by at most

�P si /(εL)�εL− P si ≤ (P si /(εL) + 1)εL− P si = εL.

The resulting schedule is feasible for the new instance and it can be concluded
that

C′
max(OPT ) ≤ Cmax(OPT ) + εL ≤ (1 + ε)Cmax(OPT ).

Note that the stronger inequality C′
max(OPT ) ≤ Cmax(OPT ) does not hold in

general. Consider for example an instance that consists of six jobs of length 1
with ε = 2/3. Then Cmax(OPT ) = 3 and all the jobs are small. In the mod-
ified instance they are replaced by 3 small pieces of length 2, resulting in a
C′

max(OPT ) = 4.
The second step involves the solution of the modified instance. When the

small jobs in the original instance were replaced by small pieces of length εL,
the total processing time was not increased. Hence the total processing time of
the new instance is at most 2L. Since each job in the new instance has a length of
at least εL, there can be at most 2L/(εL) = 2/ε small jobs in the new instance.
The number of jobs in the new instance is bounded by a finite constant that
only depends on ε and thus is completely independent of the number of jobs
in the original instance (n). The new instance can now be solved very easily.
One simply can try all possible schedules! Since each of the 2/ε jobs is assigned
to one of the two machines, there are at most 22/ε possible schedules and the
makespan of each one of these schedules can be determined in O(2/ε) time. So
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the new instance can be solved in constant time. (Clearly, this constant is huge
and grows exponentially in 1/ε, but is still a constant.)
A third and last step remains to be done. The solution for the new instance

has to be translated back into a solution for the original instance. Consider
an optimal schedule σ′ for the new instance. Let P ′

i , i = 1, 2, denote the total
processing on machine i under this optimal schedule. Let P b

′
i denote the total

processing time of the big jobs and P s
′
i the total processing of the small pieces

on machine i under schedule σ′. Clearly, P ′
i = P b

′
i + P s

′
i and

P s
′

1 + P s
′

2 = εL · �P s/(εL)� > P s − εL.

The following schedule σ can now be constructed for the original instance. Every
big job is put onto the same machine as in schedule σ′. In order to assign the
small pieces to the two machines, reserve an interval of length P s

′
1 + 2εL on

machine 1 and an interval of length P s
′

2 on machine 2. The small jobs are now
inserted greedily into these reserved intervals. First, start packing small jobs
into the reserved interval on machine 1 until some job is encountered that does
not fit any more. Since the size of a small job is at most εL, the total size of the
packed small jobs on machine 1 is at least P s

′
1 + εL. Then the total size of the

unpacked jobs is at most P s − P s
′

1 − εL, which is bounded from above by P s
′

2 .
So all remaining unpacked small jobs will fit together into the reserved interval
on machine 2. This completes the description of schedule σ for the original
instance.
Compare the loads P1 and P2 of the two machines in σ to the machine

completion times P ′
1 and P ′

2 in schedule σ
′. Since the total size of the small jobs

on machine i is at most P s
′
i + 2εL, it follows that

Pi ≤ P b
′
i + (P

s′
i + 2 εL)

= P ′
i + 2 εL

≤ (1 + ε)Cmax(OPT ) + 2 ε Cmax(OPT )
= (1 + 3 ε)Cmax(OPT ).

Hence the makespan of the schedule σ is at most a factor 1+3ε larger than the
minimum makespan. Since 3ε can be made arbitrarily close to 0, the procedure
serves as a PTAS for P2 || Cmax.
Summarizing, the algorithm can be described more formally as follows.

Algorithm D.4.3 (PTAS for Minimizing Makespan without Preemp-
tions)
Step 0. (Initial Conditions)

Set L = max(pmax,
∑n
j=1 pj). Choose ε between 0 and 1.

Partition the original job set into a subset of big jobs with pj > εL
and a subset of small jobs with pj ≤ εL.
Set P s equal to the total processing of all small jobs.
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Step 1. (Problem Modification)
Construct a new instance and include each big job in the new instance.
Add �P s/εL� small jobs of length εL.

Step 2. (Solution of Modified Problem)
Find an optimal schedule of the new instance via complete enumeration.
Let P s

′
1 (P s

′
2 ) denote the total amount of processing of the small pieces

that are assigned to machine 1 (2).

Step 3. (Solution of Original Problem)
Construct the schedule of the original instance by assigning the big jobs
to the same machine as in the schedule obtained in Step 2.
Assign the small jobs in the original instance one after another
on machine 1 in a reserved space of size P s

′
1 + 2εL.

As soon as one of the small jobs does not fit
in the remaining reserved space on machine 1,
assign the remaining small jobs to machine 2. ||
The PTAS described above is based on the approach of adding more structure

to the input. There are two other approaches that are also very popular in the
development of PTASs. The second approach is based on adding more structure
to the output. The main idea here is to partition the output space, i.e., the set
of all feasible solutions, into many smaller regions over which the optimization
problem is easy to approximate. Tackling the problem for each such small region
and taking the best approximate solution over all regions will then yield a
globally good approximate solution.
The third approach for constructing approximation schemes is based on

adding more structure to the execution of an algorithm. The main idea is to
take an exact but slow algorithm, and interact with it while it is working. If the
algorithm accumulates a lot of auxiliary data during its execution, then part
of this data may be removed and the algorithm’s memory may be cleaned. As
a result the algorithm becomes faster (since there is less data to process) and
generates an incorrect output (since the removal of data introduces errors). In
the ideal case, the time complexity of the algorithm becomes polynomial and
the incorrect output constitutes a good approximation of the true optimum.

Comments and References

The classic on computational complexity is Garey and Johnson (1979). A num-
ber of books have chapters on this topic; see, for example, Papadimitriou
and Steiglitz (1982), Parker and Rardin (1988), Papadimitriou (1994), Schri-
jver (1998), and Wolsey (1998). The section on approximation algorithms and
schemes is based on the tutorial by Schuurman and Woeginger (2007).



Appendix E

Complexity Classification of
Deterministic Scheduling
Problems

In scheduling theory it is often of interest to determine the borderline between
polynomial time problems and NP-hard problems. In order to determine the
exact boundaries it is necessary to find the “hardest” or the “most general”
problems that still can be solved in polynomial time. These problems are char-
acterized by the fact that any generalization, e.g., the inclusion of precedence
constraints, results in NP-hardness, either in the ordinary sense or strongly. In
the same vein it is of interest to determine the “simplest” or “least general”
problems that are NP-hard, either in the ordinary sense or strongly. Making
such a strongly NP-hard problem easier in any respect, e.g., setting all wj
equal to 1, results in a problem that is either solvable in polynomial time or
NP-hard in the ordinary sense. In addition, it is also of interest to determine the
most general problems that are NP-hard in the ordinary sense, but not strongly
NP-hard.
A significant amount of research has focused on these boundaries. However,

the computational complexity of a number of scheduling problems has not yet
been determined and the borderlines are therefore still somewhat fuzzy.
In the following problem classification it is assumed throughout that the

number of machines (m) is fixed. If an algorithm is said to be polynomial,
then the algorithm is polynomial in the number of jobs n but not necessarily
polynomial in the number of machines m. If a problem is said to be NP-Hard,
either in the ordinary sense or strongly, then the assumption is made that the
number of machines is fixed.
Table E.1 presents a sample of fairly general problems that are solvable in

polynomial time. The table is organized according to machine environments.
Some of the problems in this table are, however, not the most general problems
solvable in polynomial time, e.g., 1 || ∑Uj is a special case of the proportionate
flow shop problem Fm | pij = pj |

∑
Uj . Also, the fact that Fm | pij = pj |

603
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SINGLE MACHINE PARALLEL MACHINES SHOPS

1 | rj , pj = 1, prec |
∑

Cj P2 | pj = 1, prec | Lmax O2 || Cmax

1 | rj , prmp | ∑Cj P2 | pj = 1, prec |
∑

Cj
1 | tree | ∑wjCj Om | rj , prmp | Lmax

Pm | pj = 1, tree | Cmax

1 | prec | Lmax Pm | prmp, tree | Cmax F2 | block | Cmax

1 | rj , prmp, prec | Lmax Pm | pj = 1, outtree |
∑

Cj F2 | nwt | Cmax

Pm | pj = 1, intree | Lmax

1 || ∑Uj Pm | prmp, intree | Lmax Fm | pij = pj |
∑

Cj
1 | rj , prmp | ∑Uj Fm | pij = pj | Lmax

1 | rj , pj = 1 |
∑

wjUj Q2 | prmp, prec | Cmax Fm | pij = pj |
∑

Uj
Q2 | rj , prmp, prec | Lmax

1 | rj , pj = 1 |
∑

wjTj J2 || Cmax

Qm | rj , pj = 1 | Cmax

Qm | pj = 1,Mj | Cmax

Qm | rj , pj = 1 |
∑

Cj
Qm | prmp | ∑Cj
Qm | pj = 1 |

∑
wjCj

Qm | pj = 1 | Lmax

Qm | prmp | ∑Uj
Qm | pj = 1 |

∑
wjUj

Qm | pj = 1 |
∑

wjTj

Rm || ∑Cj
Rm | rj , prmp | Lmax

Table E.1 Polynomial Time Solvable Problems

∑
Uj can be solved in polynomial time implies that Fm | pij = pj | Lmax can

be solved in polynomial time as well.
Table E.2 presents a number of problems that are NP-hard in the ordinary

sense. This table contains some of the simplest as well as some of the most
general problems that fall in this class. The complexity of these problems is
determined through a reduction from PARTITION. However, not for every one
of these problems a pseudo-polynomial algorithm is known. For the problems
followed by a (∗) there exists a pseudopolynomial time algorithm. For example,
as no pseudo-polynomial time algorithm is known for O2 | prmp | ∑

Cj , this
problem may still turn out to be strongly NP-hard, even though there is a
reduction from PARTITION.

Table E.3 contains problems that are strongly NP-hard. The problems tend
to be the simplest problems that are strongly NP-hard. However, in this table
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SINGLE MACHINE PARALLEL MACHINES SHOPS

1 ||
∑

wjUj (*) P2 || Cmax (*) O2 | prmp |
∑

Cj

1 | rj , prmp |
∑

wjUj (*) P2 | rj , prmp |
∑

Cj

P2 ||
∑

wjCj (*) O3 || Cmax

1 ||
∑

Tj (*) P2 | rj , prmp |
∑

Uj O3 | prmp |
∑

wjUj

Pm | prmp |
∑

wjCj

Qm ||
∑

wjCj (*)

Rm | rj | Cmax (*)
Rm ||

∑
wjUj (*)

Rm | prmp |
∑

wjUj

Table E.2 NP-Hard Problems in the Ordinary Sense

SINGLE MACHINE PARALLEL MACHINES SHOPS

1 | sjk | Cmax P2 | chains | Cmax F2 | rj | Cmax

P2 | chains |
∑

Cj F2 | rj , prmp | Cmax

1 | rj |
∑

Cj P2 | prmp, chains |
∑

Cj F2 ||
∑

Cj

1 | prec |
∑

Cj P2 | pj = 1, tree |
∑

wjCj F2 | prmp |
∑

Cj

1 | rj , prmp, tree |
∑

Cj F2 || Lmax

1 | rj , prmp |
∑

wjCj R2 | prmp, chains | Cmax F2 | prmp | Lmax

1 | rj , pj = 1, tree |
∑

wjCj

1 | pj = 1, prec |
∑

wjCj F3 || Cmax

F3 | prmp | Cmax

1 | rj | Lmax F3 | nwt | Cmax

1 | rj |
∑

Uj O2 | rj | Cmax

1 | pj = 1, chains |
∑

Uj O2 ||
∑

Cj

O2 | prmp |
∑

wjCj

1 | rj |
∑

Tj O2 || Lmax

1 | pj = 1, chains |
∑

Tj

1 ||
∑

wjTj O3 | prmp |
∑

Cj

J2 | rcrc | Cmax

J3 | pij = 1, rcrc | Cmax

Table E.3 Strongly NP-Hard Problems
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also there are some exceptions. For example, the fact that 1 | rj | Lmax is
strongly NP-hard implies that 1 | rj |

∑
Uj and 1 | rj |

∑
Tj are strongly

NP-hard as well.
These tables have to be used in conjunction with the figures presented in

Chapter 2. When attempting to determine the status of a problem that does
not appear in any one of the three tables, it is necessary to search for related
problems that are either easier or harder in order to determine the complexity
status of the given problem.

Comments and References

The complexity classification of scheduling problems has its base in the work of
Lenstra and Rinnooy Kan (1979), and Lageweg, Lawler, Lenstra and Rinnooy
Kan (1981, 1982). Timkovsky (2000) discusses reducibility among scheduling
problems and Brucker (2004) presents a very thorough and up-to-date com-
plexity classification of scheduling problems.
A significant amount of research attention has focused on the complexity

statuses of scheduling problems that are close to the boundaries; see, for exam-
ple, Du and Leung (1989, 1990, 1993a, 1993b), Du, Leung and Wong (1992),
Du, Leung and Young (1990, 1991), Leung and Young (1990), Timkovski (1998)
and Baptiste (1999).



Appendix F

Overview of Stochastic
Scheduling Problems

No framework or classification scheme has ever been introduced for stochastic
scheduling problems. It is more difficult to develop such a scheme for stochastic
scheduling problems than for deterministic scheduling problems. In order to
characterize a stochastic scheduling problem more information is required. For
example, the distributions of the processing times have to be specified as well as
the distributions of the due dates (which may be different). It has to be specified
whether the processing times of the n jobs are independent or correlated (e.g.,
equal to the same random variable) and also which class of policies is considered.
For these reasons no framework has been introduced in this book either.
Table F.1 outlines a number of scheduling problems of which stochastic ver-

sions are tractable. This list refers to most of the problems discussed in Part 2
of the book. In the distribution column the distribution of the processing times
is specified. If the entry in this column specifies a form of stochastic dominance,
then the n processing times are arbitrarily distributed and ordered according
to the form of stochastic dominance specified. The due dates in this table are
considered fixed (deterministic).
However, the list in Table F.1 is far from complete. For example, it is men-

tioned that the stochastic counterpart of Pm || ∑
Cj leads to the SEPT rule

when the processing times are exponentially distributed. However, as stated in
Chapter 12, a much more general result holds: if the processing times (from
distributions F1, . . . , Fn) are independent, then SEPT is optimal provided the
n distributions can be ordered stochastically.
Comparing Table F.1 with the tables in Appendix E reveals that there are a

number of stochastic scheduling problems that are tractable while their deter-
ministic counterparts are NP-Hard. The four NP-Hard deterministic problems
are:

(i) 1 | rj , prmp | ∑wjCj ,
(ii) 1 | dj = d | ∑wjUj ,
(iii) 1 | dj = d | ∑wjTj ,
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DETERMINISTIC DISTRIBUTIONS OPTIMAL POLICY SECTION

COUNTERPART

1 || ∑wjCj arbitrary WSEPT 10.1
1 | rj , prmp | ∑wjCj exponential WSEPT (preemptive) 10.4
1 || ∑wj(1− e−rCj) arbitrary DWSEPT 10.1
1 | prmp | ∑wj(1− e−rCj) arbitrary Gittins Index 10.2
1 || Lmax arbitrary EDD 10.1
1 | dj = d | ∑wjUj exponential WSEPT 10.4
1 | dj = d | ∑wjTj exponential WSEPT 10.4

Pm || Cmax exponential LEPT 12.1, 12.2
Pm | prmp | Cmax exponential LEPT 12.1, 12.2
Pm || ∑Cj exponential SEPT 12.2
Pm | prmp | ∑Cj exponential SEPT 12.2
P2 | pj = 1, intree | Cmax exponential CP 12.2
P2 | pj = 1, intree |

∑
Cj exponential CP 12.2

F2 || Cmax exponential (λj − µj) ↓ 13.1
Fm | pij = pj | Cmax ≥as SEPT-LEPT 13.1
Fm | pij = pj |

∑
Cj ≥as SEPT 13.1

F2 | block | Cmax arbitrary TSP 13.2
F2 | pij = pj , block | Cmax ≥st SEPT-LEPT 13.2
F2 | pij = pj , block | Cmax ≥sv LV-SV 13.2
Fm | pij = pj, block | Cmax ≥as SEPT-LEPT 13.2
Fm | pij = pj, block |

∑
Cj ≥as SEPT 13.2

J2 || Cmax exponential Theorem 13.3.1 13.3

O2 | pij = pj | Cmax exponential Theorem 13.4.1 13.4
O2 | pij = 1, prmp | ∑Cj exponential SERPT 13.4

Table F.1 Tractable Stochastic Scheduling Problems

(iv) Pm || Cmax.

The first problem allows for a nice solution when the processing times are
exponential and the release dates are arbitrarily distributed. The optimal policy
is then the preemptive WSEPT rule. When the processing time distributions
are anything but exponential it appears that the preemptive WSEPT rule is
not necessarily optimal. The stochastic counterparts of the second and third
problem also lead to the WSEPT rule when the processing time distributions
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are exponential and the jobs have a common due date which is arbitrarily
distributed. Also here, if the processing times are anything but exponential the
optimal rule is not necessarily WSEPT.
The stochastic counterparts of Pm || Cmax are slightly different. When

the processing times are exponential the LEPT rule minimizes the expected
makespan in all classes of policies. However, this holds for other distributions
also. If the processing times are DCR (e.g., hyperexponentially distributed) and
satisfy a fairly strong form of stochastic dominance, the LEPT rule remains op-
timal. Note that when preemptions are allowed, and the processing times are
DCR, the nonpreemptive LEPT rule remains optimal. Note also, that if the n
processing times have the same mean and are hyperexponentially distributed
as in Example 12.1.7, then the LV rule minimizes the expected makespan.
There are many problems of which the stochastic versions exhibit very strong

similarities to their deterministic counterparts. Examples of such problems are

(i) 1 | rj , prmp | Lmax,
(ii) 1 | prec | hmax,
(iii) F2 || Cmax,
(iv) J2 || Cmax.

It can be shown that the preemptive EDD rule is optimal for the deterministic
problem 1 | rj , prmp | Lmax and that it remains optimal when the processing
times are random variables that are arbitrarily distributed. In Chapter 10 it is
shown that the algorithm for the stochastic counterpart of 1 | prec | hmax is
very similar to the algorithm for the deterministic version. The same can be
said with regard to F2 || Cmax and J2 || Cmax when the processing times are
exponential.
Of course, there are also problems of which the deterministic version is easy

and the version with exponential processing times is hard. Examples of such
problems are

(i) Pm | pj = 1, tree | Cmax,
(ii) F2 | block | Cmax,
(iii) O2 || Cmax.

For the deterministic problem Pm | pj = 1, tree | Cmax the CP rule is
optimal. For the version of the same problem with all processing times i.i.d.
exponential the optimal policy is not known and may depend on the structure
of the tree. The F2 | block | Cmax problem with deterministic processing times
is equivalent to a TSP with a special structure that allows for a polynomial
time algorithm (see Section 6.2). However, when the processing time of job j on
the first (second) machine is exponentially distributed with rate λj (µj), then
the problem also reduces to a TSP (see Example 13.2.1); however, the structure
of this TSP does not allow for a polynomial time solution. For the O2 || Cmax

problem the LAPT rule is optimal; when the processing times are exponential
the problem appears to be very hard.
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Comments and References

For an early overview of stochastic scheduling on parallel machines, see Weiss
(1982). For a discussion of tractable stochastic scheduling problems of which the
deterministic counterparts are NP-hard, see Pinedo (1983). For a more recent
and comprehensive overview of stochastic scheduling, see Righter (1994).
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Selected Scheduling Systems

Over the last two decades hundreds of scheduling systems have been developed.
These developments have taken place in industry and academia in various coun-
tries. An up-to-date list or annotated bibliography of all systems most likely
does not exist. However, several survey papers have been written describing a
number of systems.
In this appendix a distinction is made between commercial generic systems,

industrial systems that are application-specific, and academic prototypes (re-
search systems). The considerations in the design and the development of the
various classes of systems are usually quite different. In this appendix systems
are not categorized according to the approach used for generating schedules, i.e.,
whether it is knowledge-based or based on algorithms (since most knowledge-
based systems also have algorithmic components).
Commercial generic systems are designed for implementation in a wide vari-

ety of settings with only minor customization. The software houses that develop
generic systems are usually not associated with a single company. However, they
may focus on a specific industry. Examples of such systems are presented in Ta-
ble G.1.

SYSTEM COMPANY WEBSITE

Cyberplan Cybertec www.cybertec.it
SKEP DynaSys Group www.adaptasolutions.com
Production Scheduler i2 Technologies, Inc. www.i2.com
Quintiq Scheduler Quintiq www.quintiq.com
APO SAP AG www.sap.com
SSA Manufacturing

Scheduling SSA Global www.ssaglobal.com

Table G.1 Commercial Generic Systems
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Application-specific systems are designed for either a single installation or a
single type of installation. The algorithms embedded in these systems are typi-
cally quite elaborate. A number of the application-specific systems in industry
have been developed in collaboration with an academic partner. Examples of
application-specific systems are listed in Table G.2.

SYSTEM COMPANY REFERENCE

BPSS International Paper Adler et al. (1993)
GATES Trans World Airways Brazile and Swigger (1988)
Jobplan Siemens Kanet and Sridharan (1990)
LMS IBM Sullivan and Fordyce (1990)
MacMerl Pittsburgh Plate & Glass Hsu et al. (1993)
SAIGA Aeroports de Paris Ilog (1999)

Table G.2 Application-Specific Systems

Academic prototypes are usually developed for research and teaching. The
programmers are typically graduate students who work part-time on the system.
The design of these systems is often completely different from the design of
commercial systems. Some attempts have been made to commercialize academic
prototypes. Examples of such academic systems are presented in Table G.3.

SYSTEM INSTITUTION REFERENCE

LEKIN New York University Feldman and Pinedo (1998)
OPIS Carnegie-Mellon University Smith (1994)
TORSCHE Czech Technical University Stibor and Kutil (2006)
TOSCA University of Edinburgh Beck (1993)
TTA Universidad Catolica de Chile Nussbaum and Parra (1993)

Table G.3 Academic Systems



Comments and References 613

Comments and References

Several reviews and survey papers have been written on scheduling systems, see
Steffen (1986), Adelsberger and Kanet (1991), Smith (1992), Arguello (1994),
and Yen and Pinedo (1994).
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The Lekin System

H.1 Formatting of Input and Output Files . . . . . . . . . . . . . . 615
H.2 Linking Scheduling Programs . . . . . . . . . . . . . . . . . . . . . 617

This appendix provides examples of the formats of files that contain workstation
information and job information. It also gives an example that illustrates how
input data are read and how output data are written by a program that is
linked to the LEKIN system.

H.1 Formatting of Input and Output Files

This section focuses on the formats of the input and output files.

Example H.1.1 (File Containing Workstation Information)
The following file contains the information pertaining to various worksta-
tions. The first workstation consists of two machines in parallel.

Actual line Comments

Flexible: Defines “flexible” environment. If the
word is “single”, then this is an Uni-m/c
environment.

Workstation: Wks000 Defines the first workstation. Wks000 is
the name of the workstation.

Setup: A;B;1 B;A;2 Setup matrix for this workstation. The
setup time between a status A operation
and a status B operation is 1, whereas if
you switch the order to B,A the setup time
becomes 1. All other setup times are 0.

Machine: Wks000.000 Defines a machine with name Wks000.000
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Machine: Wks000.001 Defines another machine with name
Wks000.001

Workstation: Wks001 Defines the next workstation named
Wks001

Setup: Even when there are no setups the system
requires a line for setups.

Machine: Wks001.000

..... (more machines in Wks001)

||
Example H.1.2 (File Containing Information Pertaining to Jobs)

The following file contains the data pertaining to a job with multiple opera-
tions and arbitrary routes.

Actual line Comments

Shop: Job Defines the job shop environment. “Flow”
would indicate a flow shop, and “single”
would indicate a single workstation or ma-
chine.

Job: Job000 Defines the first job, named Job000.
Release: 0 Release date of Job000
Due: 8 Due date of Job000
Weight: 4 Weight of Job000
Oper: Wks000;2;B The first operation on Job000 route. It re-

quires 2 time units at Wks000 and a ma-
chine setting B.

Oper: Wks004;1;A The second operation on Job000 route.
..... (More operations of Job000)
Job: Job001 Defines the second job, named Job001.
Release: 0 Release date of Job001
Due: 10 Due date of Job001
Weight: 2 Weight of Job001
Oper: Wks001;3;C The first operation on Job001 route. It re-

quires 3 time units at Wks001 and a ma-
chine setting C.

Oper: Wks003;1;A The second operation on Job001 route.

..... (More operations of Job001)

||
The following example describes the format of the output file.
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Example H.1.3 (Format of Output File)

The output file has a very easy format. Only the sequences of the operations
on the various machines have to be specified. It is not necessary to provide
starting times and completion times in the output.

Actual line Comments

Schedule: SB for Cmax Provides the name “SB for Cmax”
for the first schedule in the file.

Machine: Wks000.000 This is the proper name for the machine
Wks000.000 at the workstation Wks000.

Oper: Job01 This is the first operation scheduled
on the machine above. Since recirculation is
not allowed the pair (Job01, Wks000)
uniquely defines the operation.

Oper: Job06 Second operation on this machine.
...... More operations on this machine.
Machine: Wks000.001 This is the second machine of workstation

Wks000.
Oper: Job06 This is the first operation scheduled

on machine Wks000.001
...... More operations on this machine.

Schedule: SB for Lmax provides the name “SB for Lmax”
for the second schedule in the file.

....... Data with regard to the second schedule.

||

H.2 Linking Scheduling Programs

The following example contains a program written in C++ that schedules a
number of jobs on a single machine. This example illustrates how input data
are read and how output data are written.

Example H.2.1 (Scheduling Jobs on a Single Machine)
This example illustrates how input files and output files are used in an actual
program. In this program a set of jobs are scheduled on a single machine
according to the WSPT rule.

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdio.h>
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#include <stdlib.h>
// We need a data structure to store information about job.
struct Tjob
{
int id;
int release;
int due;
int weight;
int proc;
double wp; // weight divided by processing time
};
Tjob jobArray[100];
int jobCount;
// a string buffer.
char buffer[1024];
// ————————————————————–
// For the single machine setting, we do not have to read
// the machine file. But we will do it here anyhow just to
// verify that it actually represents a single machine.
void ReadMch()
{
// No need to use the qualified path. Just ” user.mch”.
ifstream Fmch(" user.mch", ios::nocreate);
// Check the first line in the file.
// If it is not ”Single:”, too bad.
Fmch.getline(buffer, 1024);
if (strcmp(buffer, "Single:"))
{
cout << "we do not support flexible workstations!\n";
exit(1);
}
// Now we skip several lines. There are two ways to skip:
// Getline or ignore. Getline allows you to check what you are skipping.
Fmch.getline(buffer, 1024);
// buffer = ”Workstation: Wks000”,
// but we do not care.
Fmch.ignore(1024, ’\n’); //skip ”Setup:”
Fmch.ignore(1024, ’\n’); //skip ”Machine:”
// We do not need the availability time or the starting status for the
// machine, but we will read it just to show how it is done.
Fmch.ignore(20); // skip ”Release:”
int avail: Fmch >> avail;
Fmch.ignore(20) // skip ”Status:”
// Counting spaces is not a good idea, so just read till the first character.
Fmch.eatwhite();
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char status=Fmch.get();
// Now the rest of the file must contain only white-space characters.
Fmch.eatwhite();
if (!Fmch.eof())
{
cout << "The file must contain at least two workstations!\n";
exit(1);
}
//—————————————————————
// With the job file it is less easy; a stream of jobs have to be read.
void readJob()
{
ifstream Fjob(" user.job", ios::nocreate);
Fjob >> buffer; // buffer = ”Shop:”, ignore
Fjob >> buffer; // check if single machine
if (strcmp(buffer, "Single"))
{
cout << "This is not a single machine file!\n";
exit(1);
}
while(1)
{
Fjob >> buffer; // buffer = ”Job:”
if (strcmp(buffer, "Job:")) // if not, must be the end of the file
break;
Fjob >> buffer; // buffer = ”Job###”, ignore
jobarray[jobCount].id=jobCount;
Fjob >> buffer; // buffer = ”release:’
Fjob >> jobArray[jobCount].release;
Fjob >> buffer; // buffer = ”due:’
Fjob >> jobArray[jobCount].due;
Fjob >> buffer; // buffer = ”weight:’
Fjob >> jobArray[jobCount].weight;
Fjob >> buffer; // buffer = ”Oper:’
Fjob >> buffer; // buffer = ”Wks000;#;A” and we need the #
char* ss = strchr(buffer, ’;’);
if (!ss) break;
if (sscanf(ss+1, "%d", & jobArray[jobCount].proc) < 1) break;
jobArray[jobCount].wp=
double(jobArray[jobCount].weight/jobArray[jobCount].proc);
jobcount++;
}
if (jobCount == 0 )
{
cout << "No jobs defined!\n";
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exit(1);
}
}
//——————————————————————
// Compare function for sorting
int compare(const void* j1, const void* j2)
{
TJob* jb1= (TJob*)j1;
TJob* jb2= (TJob*)j2;
double a = jb1 − >wp - jb2− >wp;
return a<0 ? -1 : a>0 ? 1: 0;
}
// Since this is just a single machine,
// we can implement any rule by sorting on the job array.
// We use that C standard qsort function.
void SortJobs()
{ qsort(jobArray, jobCount, sizeof(TJob), compare); }
// Output the schedule file.
void WriteSeq()
{
ofstream Fsch(" user.seq");
Fsch << "Schedule: WSPT rule\n"; // schedule name
Fsch << "Machine: Wks000.000\n"; // Name of the first and last

machine
// Now enumerate the operations.
for (int i=0; i<jobCount; i++)
Fsch << "Oper: Job" << JobArray[i].id << "\n";
}
//—————————————————————–
int main (int argc. char* argv[])
{
// We have to have exactly 2 command line segments:
// objective function and time limit.
if (argc !=3)
{
cout << "illegal call!\n";
exit(1)
}
// Check the objective function.
// The WSPT rule is for the total weighted completion time.
// Do not bother to use sscanf
if (strcmp(argv[1], "3"))
{
cout << "The only objective supported is
total weighted completion time.\n’;
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exit(1);
}
ReadMch();
ReadJob();
SortJobs();
WriteSeq();
cout << "Success\n";
return 0;
}

||

Comments and References

The LEKIN system is due to Asadathorn (1997) and Feldman and Pinedo
(1998). The general purpose routine of the shifting bottleneck type that is
embedded in the system is due to Asadathorn (1997). The local search routines
that are applicable to the flow shop and job shop are due to Kreipl (2000). The
more specialized SB-LS routine for the flexible flow shop is due to Yang, Kreipl
and Pinedo (2000).
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