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Foreword

It is my great pleasure to welcome a new book on ‘‘Scalable Pattern Recognition
Algorithms: Applications in Computational Biology and Bioinformatics’’ by
Prof. Pradipta Maji and Dr. Sushmita Paul.

This book is unique in its character. Most of the methods presented in it are
based on profound research results obtained by the authors. These results are
closely related to the main research directions in bioinformatics. The existing
conventional/traditional approaches and techniques are also presented, wherever
necessary. The effectiveness of algorithms that are proposed by the authors is
thoroughly discussed along with both quantitative and qualitative comparisons
with other existing methods in this area. These results are derived through
experiments on real-life data sets. In general, the presented algorithms display
excellent performance. One of the important aspects of the methods proposed by
the authors is their ability to scale well with the inflow data. It shall be mentioned
that the authors provide in each chapter the directions for future research in the
corresponding area.

The main aim of bioinformatics is the development and application of com-
putational methods in pursuit of biological discoveries. Among the hot topics in
this field are: sequence alignment and analysis, gene finding, genome annotation,
protein structure alignment and prediction, classification of proteins, clustering and
dimensionality reduction of gene expression data, protein–protein docking or
interactions, and modeling of evolution. From a more general view, the aim is to
discover unifying principles of biology using tools of automated knowledge
discovery. Hence, knowledge discovery methods that rely on pattern recognition,
machine learning, and data mining are widely used for analysis of biological data,
in particular for classification, clustering, and feature selection.

The book is structured according to the major phases of a pattern recognition
process (clustering, classification, and feature selection) with a balanced mixture
of theory, algorithms, and applications. Special emphasis is given to applications
in computational biology and bioinformatics.

The reader will find in the book a unified framework describing applications of
soft computing, statistical, and machine learning techniques in construction of
efficient data models. Soft computing methods allow us to achieve high quality
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solutions for many real-life applications. The characteristic features of these
methods are tractability, robustness, low-cost solution, and close resemblance with
humanlike decision making. They make it possible to use imprecision, uncertainty,
approximate reasoning, and partial truth in searching for solutions. The main
research directions in soft computing are related to fuzzy sets, neurocomputing,
genetic algorithms, probabilistic reasoning, and rough sets. By integration or
combination of the different soft computing methods, one may improve the
performance of these methods.

The authors of the book present several newly developed methods and
algorithms that combine statistical and soft computing approaches, including:
(i) neural network tree (NNTree) used for identification of splice-junction and
protein coding region in DNA sequences; (ii) a new approach for selecting
miRNAs from microarray expression data integrating the merit of rough set-based
feature selection algorithm and theory of B. 632? bootstrap error rate; (iii) a robust
thresholding technique for segmentation of brain MR images based on the fuzzy
thresholding technique; (iv) an efficient method for selecting set of bio-basis
strings for the new kernel function, integrating the Fisher ratio and a novel concept
of degree of resemblance; (v) a rough set-based feature selection algorithm for
selecting sets of effective molecular descriptors from a given quantitative structure
activity relationship (QSAR) data set.

Clustering is one of the important analytic tools in bioinformatics. There are
several new clustering methods presented in the book. They achieve very good
results on various biomedical data sets. That includes, in particular: (i) a method
based on Pearson’s correlation coefficient that selects initial cluster centers, thus
enabling the algorithm to converge to optimal or nearly optimal solution and
helping to discover co-expressed gene clusters; (ii) a method based on Dunn’s
cluster validity index that identifies optimal parameter values during initialization
and execution of the clustering algorithm; (iii) a supervised gene clustering
algorithm based on the similarity between genes measured with use of the new
quantitative measure, whereby redundancy among the attributes is eliminated;
(iv) a novel possibilistic biclustering algorithm for finding highly overlapping
biclusters having larger volume and mean squared residue lower than a predefined
threshold.

The reader will also find several other interesting methods that may be applied in
bioinformatics, such as: (i) a computational method for identification of disease-
related genes, judiciously integrating the information of gene expression profiles,
and the shortest path analysis of protein–protein interaction networks; (ii) a method
based on f-information measures used in evaluation criteria for gene selection
problem.

This book will be useful for graduate students, researchers, and practitioners in
computer science, electrical engineering, system science, medical science, bioin-
formatics, and information technology. In particular, researchers and practitioners
in industry and R&D laboratories working in the fields of system design, pattern
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recognition, machine learning, computational biology and bioinformatics, data
mining, soft computing, computational intelligence, and image analysis may
benefit from it.

The authors and editors deserve the highest appreciation for their outstanding
work.

Warsaw, Poland, December 2013 Andrzej Skowron
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Preface

Recent advancement and wide use of high-throughput technologies for biological
research are producing enormous size of biological data distributed worldwide.
With the rapid increase in size of biological data banks, understanding
the biological data has become critical. Such an understanding could lead us to the
elucidation of the secrets of life or ways to prevent certain currently non-curable
diseases. Although laboratory experiment is the most effective method for
investigating the biological data, it is financially expensive and labor intensive.
A deluge of such information coming in the form of genomes, protein sequences,
and microarray expression data has led to the absolute need for effective and
efficient computational tools to store, analyze, and interpret these multifaceted data.

Bioinformatics is the conceptualizing biology in terms of molecules and
applying informatics techniques to understand and organize the information
associated with the molecules, on a large scale. It involves the development and
advancement of algorithms using techniques including pattern recognition,
machine learning, applied mathematics, statistics, informatics, and biology to solve
biological problems usually on the molecular level. Major research efforts in this
field include sequence alignment and analysis, gene finding, genome annotation,
protein structure alignment and prediction, classification of proteins, clustering and
dimensionality reduction of microarray expression data, protein–protein docking or
interactions, modeling of evolution, and so forth. In other words, bioinformatics can
be described as the development and application of computational methods to make
biological discoveries. The ultimate attempt of this field is to develop new insights
into the science of life as well as creating a global perspective, from which the
unifying principles of biology can be derived. As classification, clustering, and
feature selection are needed in this field, pattern recognition tools and machine
learning techniques have been widely used for analysis of biological data as they
provide useful tools for knowledge discovery in this field.

Pattern recognition is the scientific discipline whose goal is the classification of
objects into a number of categories or classes. It is the subject of researching object
description and classification method. It is also a collection of mathematical,
statistical, heuristic, and inductive techniques of the fundamental role in executing
the tasks like human beings on computers. In a general setting, the process of
pattern recognition is visualized as a sequence of a few steps: data acquisition; data
preprocessing; feature selection; and classification or clustering. In the first step,
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data are gathered via a set of sensors depending on the environment within which
the objects are to be classified. After data acquisition phase, some preprocessing
tasks such as noise reduction, filtering, encoding, and enhancement are applied on
the collected data for extracting pattern vectors. Afterward, a feature space is
constituted to reduce the space dimensionality. However, in a broader perspective
this stage significantly influences the entire recognition process. Finally, the
classifier is constructed, or in other words, a transformation relationship is
established between features and classes.

Pattern recognition, by its nature, admits many approaches, sometimes
complementary, sometimes competing, to provide the appropriate solution for a
given problem. For any pattern recognition system, one needs to achieve robust-
ness with respect to random noise and failure of components and to obtain output
in real time. It is also desirable for the system to be adaptive to the changes in the
environment. Moreover, a system can be made artificially intelligent if it is able to
emulate some aspects of the human reasoning system. Soft computing and
machine learning approaches to pattern recognition are attempts to achieve these
goals. Artificial neural network, genetic algorithms, fuzzy sets, and rough sets are
used as the tools in these approaches. The challenge is, therefore, to devise
powerful pattern recognition methodologies by symbiotically combining these
tools for analyzing biological data in more efficient ways. The systems should have
the capability of flexible information processing to deal with real-life ambiguous
situations and to achieve tractability, robustness, and low-cost solutions.

Various scalable pattern recognition algorithms using soft computing and
machine learning approaches, and their real-life applications, including those in
computational biology and bioinformatics, have been reported during the last
5–7 years. These are available in different journals, conference proceedings, and
edited volumes. This scattered information causes inconvenience to readers,
students, and researchers. The current volume is aimed at providing a treatise in a
unified framework describing how soft computing and machine learning techniques
can be judiciously formulated and used in building efficient pattern recognition
models. Based on the existing as well as new results, the book is structured
according to the major phases of a pattern recognition system (classification, feature
selection, and clustering) with a balanced mixture of theory, algorithm, and
applications. Special emphasis is given to applications in computational biology
and bioinformatics.

The book consists of 11 chapters. Chapter 1 provides an introduction to pattern
recognition and bioinformatics, along with different research issues and challenges
related to high-dimensional real-life biological data sets. The significance of
pattern recognition and machine learning techniques in computational biology and
bioinformatics is also presented in Chap. 1. Chapter 2 presents the design of a
hybrid learning model, termed as neural network tree (NNTree), for identification
of splice-junction and protein coding region in DNA sequences. It incorporates the
advantages of both decision tree and neural network. An NNTree is a decision tree,
where each non-terminal node contains a neural network. The versatility of this
method is illustrated through its application in splice-junction and gene
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identification problems. Extensive experimental results establish that the NNTree
produces more accurate classifier than that previously obtained for a range of
different sequence lengths, thereby indicating a cost-effective alternative in
splice-junction and protein coding region identification problem.

The prediction of protein functional sites is an important issue in protein
function studies and drug design. In order to apply the powerful kernel-based
pattern recognition algorithms such as support vector machine to predict functional
sites in proteins, amino acids need encoding prior to input. In this regard, a new
string kernel function, termed as the modified bio-basis function, is presented in
Chap. 3. It maps a nonnumerical sequence space to a numerical feature space using
a bio-basis string as its support. The concept of zone of influence of bio-basis
string is introduced in the new kernel function to take into account the influence of
each bio-basis string in nonnumerical sequence space. An efficient method is
described to select a set of bio-basis strings for the new kernel function, integrating
the Fisher ratio and the concept of degree of resemblance. The integration enables
the method to select a reduced set of relevant and nonredundant bio-basis strings.
Some quantitative indices are described for evaluating the quality of selected
bio-basis strings. The effectiveness of the new string kernel function and bio-basis
string selection method, along with a comparison with existing bio-basis function
and related bio-basis string selection methods, is demonstrated on different protein
data sets using the new quantitative indices and support vector machine.

Quantitative structure activity relationship (QSAR) is one of the important
disciplines of computer-aided drug design that deals with the predictive modeling
of properties of a molecule. In general, each QSAR data set is small in size with a
large number of features or descriptors. Among the large amount of descriptors
present in the QSAR data set, only a small fraction of them is effective for
performing the predictive modeling task. Chapter 4 presents a rough set-based
feature selection algorithm to select a set of effective molecular descriptors from a
given QSAR data set. The new algorithm selects the set of molecular descriptors
by maximizing both relevance and significance of the descriptors. The perfor-
mance of the new algorithm is studied using the R2 statistic of support vector
regression method. The effectiveness of the new algorithm, along with a
comparison with existing algorithms, is demonstrated on several QSAR data sets.

Microarray technology is one of the important biotechnological means that
allows to record the expression levels of thousands of genes simultaneously within
a number of different samples. An important application of microarray gene
expression data in functional genomics is to classify samples according to their
gene expression profiles. Among the large amount of genes present in microarray
gene expression data, only a small fraction of them is effective for performing a
certain diagnostic test. In this regard, mutual information has been shown to be
successful for selecting a set of relevant and nonredundant genes from microarray
data. However, information theory offers many more measures such as the
f-information measures that may be suitable for selection of genes from microarray
gene expression data.
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Chapter 5 presents different f-information measures as the evaluation criteria
for gene selection problem. The performance of different f-information measures is
compared with that of mutual information based on the predictive accuracy
of naive Bayes classifier, k-nearest neighbor rule, and support vector machine.
An important finding is that some f-information measures are shown to be effective
for selecting relevant and nonredundant genes from microarray data. The effec-
tiveness of different f-information measures, along with a comparison with mutual
information, is demonstrated on several cancer data sets.

One of the most important and challenging problems in functional genomics is
how to select the disease genes. In Chap. 6, a computational method is reported to
identify disease genes, judiciously integrating the information of gene expression
profiles and shortest path analysis of protein–protein interaction networks. While
the gene expression profiles have been used to select differentially expressed genes
as disease genes using mutual information-based maximum relevance-maximum
significance framework, the functional protein association network has been used
to study the mechanism of diseases. Extensive experimental study on colorectal
cancer establishes the fact that the genes identified by the integrated method have
more colorectal cancer genes than the genes identified from the gene expression
profiles alone. All these results indicate that the integrated method is quite
promising and may become a useful tool for identifying disease genes.

The microRNAs or miRNAs regulate expression of a gene or protein. It has
been observed that they play an important role in various cellular processes and
thus help in carrying out normal functioning of a cell. However, dysregulation of
miRNAs is found to be a major cause of a disease. Various studies have also
shown the role of miRNAs in cancer and utility of miRNAs for the diagnosis of
cancer. In this regard, Chap. 7 presents a new approach for selecting miRNAs from
microarray expression data. It integrates the merit of rough set-based feature
selection algorithm reported in Chap. 4 and theory of B. 632? bootstrap error rate.
The effectiveness of the new approach, along with a comparison with other
algorithms, is demonstrated on several miRNA data sets.

Clustering is one of the important analyses in functional genomics that
discovers groups of co-expressed genes from microarray data. In Chap. 8, different
partitive clustering algorithms such as hard c-means, fuzzy c-means, rough-fuzzy
c-means, and self-organizing maps are presented to discover co-expressed gene
clusters. One of the major issues of the partitive clustering-based microarray data
analysis is how to select initial prototypes of different clusters. To overcome this
limitation, a method is reported based on Pearson’s correlation coefficient to select
initial cluster centers. It enables the algorithm to converge to an optimum or near
optimum solutions and helps to discover co-expressed gene clusters. In addition, a
method is described to identify optimum values of different parameters of the
initialization method and the clustering algorithm. The effectiveness of different
algorithms is demonstrated on several yeast gene expression time-series data sets
using different cluster validity indices and gene ontology-based analysis.

In functional genomics, an important application of microarray data is to
classify samples according to their gene expression profiles such as to classify
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cancer versus normal samples or to classify different types or subtypes of cancer.
Hence, one of the major tasks with the gene expression data is to find groups of
co-regulated genes whose collective expression is strongly associated with the
sample categories or response variables. In this regard, a supervised gene
clustering algorithm is presented in Chap. 9 to find groups of genes. It directly
incorporates the information about sample categories into the gene clustering
process. A new quantitative measure, based on mutual information, is reported that
incorporates the information about sample categories to measure the similarity
between attributes. The supervised gene clustering algorithm is based on
measuring the similarity between genes using the new quantitative measure. The
performance of the new algorithm is compared with that of existing supervised and
unsupervised gene clustering and gene selection algorithms based on the class
separability index and the predictive accuracy of naive Bayes classifier, k-nearest
neighbor rule, and support vector machine on several cancer and arthritis micro-
array data sets. The biological significance of the generated clusters is interpreted
using the gene ontology.

The biclustering method is another important tool for analyzing gene expression
data. It focuses on finding a subset of genes and a subset of experimental conditions
that together exhibit coherent behavior. However, most of the existing biclustering
algorithms find exclusive biclusters, which is inappropriate in the context of
biology. Since biological processes are not independent of each other, many genes
may participate in multiple different processes. Hence, nonexclusive biclustering
algorithms are required for finding overlapping biclusters. In Chap. 10, a novel
possibilistic biclustering algorithm is presented to find highly overlapping biclus-
ters of larger volume with mean squared residue lower than a predefined threshold.
It judiciously incorporates the concept of possibilistic clustering algorithm into
biclustering framework. The integration enables efficient selection of highly
overlapping coherent biclusters with mean squared residue lower than a given
threshold. The detailed formulation of the new possibilistic biclustering algorithm,
along with a mathematical analysis on the convergence property, is presented.
Some quantitative indices are reported for evaluating the quality of generated
biclusters. The effectiveness of the algorithm, along with a comparison with other
algorithms, is demonstrated on yeast gene expression data set.

Finally, Chap. 11 reports a robust thresholding technique for segmentation of
brain MR images. It is based on the fuzzy thresholding techniques. Its aim is to
threshold the gray level histogram of brain MR images by splitting the image
histogram into multiple crisp subsets. The histogram of the given image is
thresholded according to the similarity between gray levels. The similarity is
assessed through a second-order fuzzy measure such as fuzzy correlation, fuzzy
entropy, and index of fuzziness. To calculate the second-order fuzzy measure, a
weighted co-occurrence matrix is presented, which extracts the local information
more accurately. Two quantitative indices are reported to determine the multiple
thresholds of the given histogram. The effectiveness of the algorithm, along with a
comparison with standard thresholding techniques, is demonstrated on a set of
brain MR images.
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The relevant existing conventional/traditional approaches or techniques are also
included wherever necessary. Directions for future research in the concerned topic
are provided in each chapter. Most of the materials presented in the book are
from our published works. For the convenience of readers, a comprehensive
bibliography on the subject is also appended in each chapter. It might have
happened that some works in the related areas have been omitted due to oversight
or ignorance.

The book, which is unique in its character, will be useful to graduate students
and researchers in computer science, electrical engineering, system science,
medical science, bioinformatics, and information technology both as a textbook
and as a reference book for some parts of the curriculum. The researchers and
practitioners in industry and R&D laboratories working in the fields of system
design, pattern recognition, machine learning, computational biology and bioin-
formatics, data mining, soft computing, computational intelligence, and image
analysis will also be benefited.

Finally, the authors take this opportunity to thank Mr. Wayne Wheeler and
Mr. Simon Rees of Springer-Verlag, London, for their initiative and encourage-
ment. The authors also gratefully acknowledge the support provided by
Dr. Chandra Das of Netaji Subhash Engineering College, Kolkata, India and the
members of Biomedical Imaging and Bioinformatics Lab, Indian Statistical
Institute, Kolkata, India for preparation of a few chapters of the manuscript.
The book has been written when one of the authors, Dr. S. Paul, held a CSIR
Fellowship of the Government of India. This work is partially supported by the
Indian National Science Academy, New Delhi (grant no. SP/YSP/68/2012).

Kolkata, India, January 2014 Pradipta Maji
Sushmita Paul
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Chapter 1
Introduction to Pattern Recognition
and Bioinformatics

1.1 Introduction

With the gaining of knowledge in different branches of biology such as molecular
biology, structural biology, and biochemistry, and the advancement of technologies
lead to the generation of biological data at a phenomenal rate [286]. The enormous
quantity and variety of information are being produced from the data of the myriad
of projects that study gene expression, determine the protein structures encoded by
the genes, and detail how these products interact with one another. This deluge of
biological information has, in turn, led to an absolute need for computerized databases
to store, organize, and index the data, and for specialized tools to view and analyze
the data. Hence, computers have become indispensable to biological research. Such
an approach is ideal due to the ease with which computers can handle large quantities
of data and probe the complex dynamics observed in nature.

Bioinformatics is a multidisciplinary research area that conceptualizes biology
in terms of molecules and applies information techniques to understand and orga-
nize the information associated with these molecules on a large scale. It involves
the development and advancement of algorithms using techniques including pat-
tern recognition, machine learning, applied mathematics, statistics, informatics, and
biology to analyze the complete collection of DNA (the genome), RNA (the tran-
scriptome), and protein (the proteome) of an organism [275]. Major research efforts
in this field include sequence alignment and analysis, gene finding, genome annota-
tion, protein structure alignment and prediction, classification of proteins, clustering
and dimensionality reduction of microarray expression data, protein–protein docking
or interactions, modeling of evolution, and so forth. In other words, bioinformatics
can be described as the development and application of computational methods to
make biological discoveries. The ultimate attempt of this field is to develop new
insights into the science of life as well as creating a global perspective, from which
the unifying principles of biology can be derived [20, 22, 209, 302, 377, 391].

Pattern recognition is the scientific discipline whose goal is the classification
of objects into a number of categories or classes. It is the subject of researching
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object description and classification method. It is also a collection of mathematical,
statistical, heuristic, and inductive techniques of fundamental role in executing the
tasks like human being on computers [209, 260, 263]. As classification, clustering,
and feature selection are needed in bioinformatics, pattern recognition and machine
learning techniques have been widely used for analysis of biological data as they
provide useful tools for knowledge discovery in this field. The massive biological
databases are generally characterized by the numeric as well as textual, symbolic,
and pictorial data. They may contain redundancy, errors, and imprecision. The pat-
tern recognition is aimed at discovering natural structures within such massive and
often heterogeneous biological data. It is visualized as being capable of knowledge
discovery using generalizations and magnifications of existing and new algorithms.
Therefore, pattern recognition plays a significant role in bioinformatics [20, 22, 209,
302, 377, 391]. It deals with the process of identifying valid, novel, potentially use-
ful, and ultimately understandable patterns in voluminous, possibly heterogeneous
biological data sets.

One of the main problems in biological data analysis is uncertainty. Some of the
sources of this uncertainty include imprecision in computations and vagueness in
class definition. Pattern recognition, by its nature, admits many approaches, some-
times complementary, sometimes competing, to provide the appropriate solution of
a given problem. An efficient pattern recognition system for bioinformatics tasks
should possess several characteristics such as online adaptation to cope with the
changes in the environment, handling nonlinear class separability to tackle real-life
problems, handling of overlapping classes or clusters for discriminating almost sim-
ilar but different objects, real-time processing for making a decision in a reasonable
time, generation of soft and hard decisions to make the system flexible, verifica-
tion and validation mechanisms for evaluating its performance, and minimizing the
number of parameters in the system that have to be tuned for reducing the cost and
complexity. The property to emulate some aspects of the human processing system
can be helpful for making a system artificially intelligent.

Soft computing and machine learning approaches to pattern recognition are
attempts to achieve these goals. Artificial neural network, genetic algorithms, infor-
mation theory, fuzzy sets, and rough sets are used as the tools in these approaches.
The challenge is, therefore, to devise powerful pattern recognition methodologies by
symbiotically combining these tools for analyzing biological data in more efficient
ways. The systems should have the capability of flexible information processing
to deal with real-life ambiguous situations and to achieve tractability, robustness,
and low-cost solutions. Various scalable pattern recognition algorithms using soft
computing and machine learning approaches have been developed to successfully
address different problems of computational biology and bioinformatics [33, 56, 68,
83, 89, 98, 107, 131, 198, 210, 211, 318, 324, 350, 357, 363–365, 375, 376, 380].

The objective of this book is to provide some results of investigations, both theoret-
ical and experimental, addressing the relevance of information theory, artificial neural
networks, fuzzy sets, and rough sets to bioinformatics with real-life applications. Var-
ious methodologies are presented based on information theoretic measures, artificial
neural networks, fuzzy sets, and rough sets for classification, feature selection, and
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clustering. The emphasis of these methodologies is given on (a) handling biological
data sets which are large, both in size and dimension, and involve classes that are
overlapping, intractable, and/or having nonlinear boundaries, (b) demonstrating the
significance of pattern recognition and machine learning for dealing with the biolog-
ical knowledge discovery aspect, and (c) demonstrating their success in certain tasks
of bioinformatics and medical imaging as examples. Before describing the scope of
the book, a brief overview of molecular biology and pattern recognition is provided.

The structure of the rest of this chapter is as follows: Section 1.2 briefly presents
a description of the basic concept of molecular biology. In Sect. 1.3, several bioin-
formatics problems are reported, which are important to retrieve useful biological
information from large data sets using pattern recognition and machine learning
techniques. In Sect. 1.4, the pattern recognition aspect is elaborated, discussing its
components, tasks involved, and approaches, along with the role of soft computing
in bioinformatics and computational biology. Finally, Sect. 1.5 discusses the scope
and organization of the book.

1.2 Basics of Molecular Biology

The molecular biology deals with the formation, structure, and function of macro-
molecules essential to life, such as carbohydrates, nucleic acids, and proteins, includ-
ing their roles in cell replication and the transmission of genetic information [190].
This field overlaps with other areas of biology and chemistry, particularly genetics
and biochemistry. This section presents the basic concepts of nucleic acids and pro-
teins.

1.2.1 Nucleic Acids

The weakly acidic substance present inside a nuclei is known as nucleic acids. They
are large biological molecules essential for all known forms of life. They include
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) [190].

1.2.1.1 DNA

It contains the instructions needed by the cell to carry out its functions [190]. DNA
consists of two long interwoven strands that form the famous double helix. Each
strand is built from a small set of constituent molecules called nucleotides. The first
two parts of the nucleotides are used to form the ribbon-like backbone of the DNA
strand, and are identical in all nucleotides. These two parts are a phosphate group
and a sugar called deoxyribose. The third part of the nucleotide is the base. There
are four different bases, which define the four different nucleotides, namely, thymine
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(T), cytosine (C), adenine (A), and guanine (G). The base pair complementarity
makes a DNA molecule double stranded. If specific bases of one strand are aligned
with specific bases on the other strand, the aligned bases can hybridize via hydrogen
bonds, weak attractive forces between hydrogen and either nitrogen or oxygen. The
specific complementary pairs are A with T and G with C. Two hydrogen bonds occur
between A and T, whereas three bonds are formed between C and G. This makes
C–G bonds stronger than A–T bonds.

DNA is the genetic material, used in development and functioning of all known
living organisms and many viruses. It contains informations that are required to
construct other important components of a cell like protein and RNA molecules.
This biological information of DNA is decoded with the help of ribosomes, which
links amino acids in an order specified by messenger RNA (mRNA), using transfer
RNA molecules to carry amino acids and to read the mRNA three nucleotides at a
time. The genetic code is highly similar among all organisms, and can be expressed
in a simple table with 64 entries. These 64 codons code for 20 different amino acids.
The code defines how sequences of these nucleotide triplets, called codons, specify
which amino acid will be added next during protein synthesis. Amino acids play
central roles both as building blocks of proteins and as intermediates in metabolism.
The DNA sequences that code for protein are known as genes, other part of DNA is
known as junk DNA. Much of this DNA has no known biological function. However,
many types of it do have known biological functions, including the transcriptional and
translational regulation of protein coding sequences. A brief description of important
components and processes of DNA is as follows [190]:

• Gene is a molecular unit of heredity of a living organism. Living beings depend
on genes, as they specify all proteins and functional RNA chains. Genes hold the
information to build and maintain an organism’s cells and pass genetic traits to
offspring. All organisms have many genes corresponding to various biological
traits, some of which are immediately visible, such as eye color or number of
limbs, and some of which are not, such as blood type, increased risk for specific
diseases, or the thousands of basic biochemical processes that comprise life.

• Gene expression is the process by which information from a gene is used in the
synthesis of a functional gene product. These products are often proteins, but in
nonprotein coding genes such as ribosomal RNA genes or transfer RNA genes, the
product is a functional RNA. The process of gene expression is used by all known
life—eukaryotes (including multicellular organisms), prokaryotes (bacteria and
archaea), and viruses—to generate the macromolecular machinery for life.

• Transcription is the process of making an RNA copy of a gene sequence. In
a eukaryotic cell, this copy, called mRNA molecule, leaves the cell nucleus and
enters the cytoplasm, where it directs the synthesis of the protein, which it encodes.
However, in a prokaryotic cell there is no nucleus, so the transcription as well as
translation take place in cytoplasm.

• Translation is the process of translating the sequence of a mRNA molecule to a
sequence of amino acids during protein synthesis. The genetic code describes the
relationship between the sequence of base pairs in a gene and the corresponding



1.2 Basics of Molecular Biology 5

amino acid sequence that it encodes. In the cell cytoplasm, the ribosome reads the
sequence of the mRNA in groups of three bases to assemble the protein.

1.2.1.2 RNA

The mRNA and other types of RNAs are single-stranded nucleic acids made up of
ribose sugar, phosphate group, and nucleobases (G, A, uracil (U), C). The genetic
information stored in DNA is transferred into RNA through transcription by DNA
polymerase, and the information is decoded when RNA is translated into proteins.
The proteins largely constitute the machinery that makes life live. They carry out all
structural, catalytic, and regulatory functions. Hence, RNAs mostly play the passive
role of a messenger. RNAs can be divided into two classes, namely, coding RNA and
noncoding RNA.

The RNAs that code for proteins are known as coding RNA. The transcribed
coding RNAs, that is, mRNAs are further translated into proteins. The mRNA serves
as a template for protein synthesis. It is transcribed from a gene and then translated by
ribosomes in order to manufacture a protein. Hence, it is known as coding RNA. The
sequence of a strand of mRNA is based on the sequence of a complementary strand
of DNA. The RNAs those do not translated into proteins are known as noncoding
RNAs. The noncoding RNAs have been found to carry out very diverse functions,
from mRNA splicing and RNA modification to translational regulation. MicroRNA
(miRNA) is one type of noncoding RNAs. The miRNAs are small noncoding RNAs
of length around 22 nucleotides, present in animal and plant cell. They regulate the
expression of mRNAs posttranscriptionally, resulting in translational repression and
gene silencing. Hence, miRNAs are related to diverse cellular processes and regarded
as important components of the gene regulatory network [275].

1.2.2 Proteins

Proteins are organic compounds made of amino acids arranged in a linear chain
and folded into a globular or fibrous form [185]. The amino acids in a polymer are
joined together by the peptide bonds between the carboxyl and amino groups of adja-
cent amino acid residues. The sequence of amino acids in a protein is defined by the
sequence of a gene, which is encoded in the genetic code. Amino acids can be divided
into two groups, namely, essential amino acids and nonessential amino acids. The
liver, and to a much lesser extent the kidneys, can convert amino acids used by cells
in protein biosynthesis into glucose by a process known as gluconeogenesis. The
essential amino acids, which must be obtained from external sources such as food,
are leucine, isoleucine, valine, lysine, threonine, tryptophan, methionine, phenylala-
nine, and histidine. On the other hand, nonessential amino acids are synthesized in
our body from other amino acids. The nonessential amino acids are arginine, ala-
nine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, proline,
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serine, and tyrosine. In the form of skin, hair, callus, cartilage, muscles, tendons,
and ligaments, proteins hold together, protect, and provide structure to the body of a
multicelled organism. In the form of enzymes, hormones, antibodies, and globulins,
they catalyze, regulate, and protect the body chemistry. In the form of hemoglobin,
myoglobin, and various lipoproteins, they effect the transport of oxygen and other
substances within an organism.

1.3 Bioinformatics Tasks for Biological Data

This section presents the major biological problems and associated tasks involved in
computational biology and bioinformatics.

1.3.1 Alignment and Comparison of DNA, RNA,
and Protein Sequences

An alignment is a mutual placement of two or more sequences which exhibit where
the sequences are similar, and where they differ. These include alignment and predic-
tion of DNA, RNA, protein sequences, and fragment assembly of DNA. An optimal
alignment is the one that exhibits the most correspondences and the fewest differ-
ences. There are mainly two types of alignment methods, namely, global alignment
and local alignment. Global alignment [239] maximizes the number of matches
between the sequences along the entire length of the sequence, while local align-
ment [325] gives a highest scoring to local match between two sequences. Global
alignment includes all the characters in both sequences from one end to the other, and
is excellent for sequences that are known to be very similar. If the sequences being
compared are not similar over their entire lengths, but have short stretches within
them that have high levels of similarity, a global alignment may miss the alignment
of these important regions, and local alignment is then used to find these internal
regions of high similarity.

Pairwise comparison and alignment of protein or nucleic acid sequences is the
foundation upon which most other bioinformatics tools are built. Dynamic program-
ming is an algorithm that allows for efficient and complete comparison of two or more
biological sequences, and the technique is known as the Smith–Waterman algorithm
[325]. It refers to a programmatic technique or algorithm which, when implemented
correctly, effectively makes all possible pairwise comparisons between the charac-
ters (nucleotide or amino acid residues) in two biological sequences. Spaces may
need to be inserted within the sequences for alignment. Consecutive space is defined
as a gap. The final result is a mathematical, but not necessarily biological, optimal
alignment of the two sequences. A similarity score is also generated to describe how
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similar the two sequences are, given the specific parameters used. A few of the many
popular alignment techniques are BLAST [7], FASTA [272], and PSI-BLAST [8].

A multiple alignment [242] arranges a set of sequences in a manner that posi-
tions homologous sequences in a common column. There are different conventions
regarding the scoring of a multiple alignment. In one approach, the scores of all the
induced pairwise alignments contained in a multiple alignment are simply added. For
a linear gap penalty, this amounts to scoring each column of the alignment by the sum
of pair scores in this column [308]. Although it would be biologically meaningful,
the distinctions between global, local, and other forms of alignment are rarely made
in a multiple alignment. A full set of optimal pairwise alignments among a given set
of sequences will generally overdetermine the multiple alignment. If one wishes to
assemble a multiple alignment from pairwise alignments, one has to avoid closing
loops, that is, one can put together pairwise alignments as long as no new pairwise
alignment is included to a set of sequences which is already part of the multiple
alignment.

1.3.2 Identification of Genes and Functional Sites
from DNA Sequences

Gene finding is concerned with identifying stretches of sequence, usually genomic
DNA, that are biologically functional. This especially includes identification of pro-
tein coding genes, but may also include identification of other functional elements
such as noncoding RNA genes and regulatory regions. Since in human body the
protein coding regions account for only a few percent of the total genomic sequence,
identifying protein coding genes within large regions of uncharacterized DNA is a
difficult task. In bacterial DNA, each protein is encoded by a contiguous fragment
called an open reading frame, beginning with a start codon and ending with a stop
codon. In eukaryotes, especially in vertebrates, the coding region is split into several
fragments called exons, and the intervening fragments are called introns. So, finding
eukaryotic protein coding genes in uncharacterized DNA sequences is essentially
predicting exon–intron structures. Different works related to identification of protein
coding genes are discussed in [99, 101, 102, 348].

Another important problem in bioinformatics is the identification of several func-
tional sites in genomic DNA such as splice sites or junctions, start and stop codons,
branch points, promoters and terminators of transcription, polyadenylation sites,
topoisomerase II binding sites, topoisomerase I cleavage sites, and various tran-
scription factor-binding sites. Such local sites are called signals, and the methods
for detecting them are called signal sensors. Genomic DNA signals can be con-
trasted with extended and variable length regions such as exons and introns, which
are recognized by different methods called content sensors. Identification of splice
sites, introns, exons, start and stop codons, and branch points constitutes the major
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subtask in gene prediction and is of key importance in determining the exact structure
of genes in genomic sequences.

In order to study gene regulation and have a better interpretation of microarray
expression data, promoter prediction, and transcription factor-binding site’s (TFBS)
discovery have become important. A cell mechanism recognizes the beginning of
a gene or gene cluster with the help of a promoter and is necessary for the initia-
tion of transcription. The promoter is a region before each gene in the DNA that
serves as an indication to the cellular mechanism that a gene is ahead. There exist
a number of approaches that find differences between sets of known promoter and
nonpromoter sequences [171, 189]. Due to the lack of robust protein coding signa-
tures, current promoter predictions are much less reliable than protein coding region
predictions. Once regulatory regions, such as promoters, are obtained, finding the
TFBS motifs within these regions may proceed either by enumeration or by align-
ment to find the enriched motifs. Recognition of regulatory sites in DNA fragments
has become particularly popular because of the increasing number of completely
sequenced genomes and mass application of DNA chips. Experimental analyses
have identified fewer than 10 % of the potential promoter regions, assuming that
there are at least 30,000 promoters in the human genome, one for each gene.

1.3.3 Prediction of Protein Functional Sites

The prediction of functional sites in proteins is another important problem in bioin-
formatics. It is an important issue in protein function studies and hence, drug design.
The problem of functional sites prediction deals with the subsequences; each subse-
quence is obtained through moving a fixed length sliding window residue by residue.
The residues within a scan form a subsequence. If there is a match between a sub-
sequence and a consensus pattern of a specific function, a functional site is then
identified within the subsequence or the subsequence is labeled as functional, oth-
erwise nonfunctional. To analyze protein sequences, BLAST [7], FASTA [272],
PSI-BLAST [8], suffix-tree based algorithms [4], regular expression matching rep-
resentations [337], and finite state machines [304, 305] are a few of the many pattern
recognition algorithms that use characters or strings as their primitive type.

However, it has been found that the relation between functional sites and con-
sensus patterns may not be always simple and the development and the use of more
complicated and hence, more powerful pattern recognition algorithms is a neces-
sity. The artificial neural networks trained with backpropagation [55, 236, 280],
Kohonen’s self-organizing map [13], feedforward and recurrent neural networks
[19, 20], biobasis function neural networks [38, 338, 376, 378–380], and support
vector machine [56, 226, 375] have been widely used to predict different functional
sites in proteins such as protease cleavage sites of HIV (human immunodeficiency
virus) and Hepatitis C Virus, linkage sites of glycoprotein, enzyme active sites, post-
translational phosphorylation sites, immunological domains, Trypsin cleavage sites,
protein–protein interaction sites, and so forth.
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1.3.4 DNA and RNA Structure Prediction

DNA structure plays an important role in a variety of biological processes. Dif-
ferent dinucleotide and trinucleotide scales have been described to capture various
aspects of DNA structure including base stacking energy, propeller twist angle, pro-
tein deformability, bendability, and position preference [19]. Three dimensional DNA
structure and its organization into chromatin fibers are essential for its functions, and
are applied in protein binding sites, gene regulation, and triplet repeat expansion
diseases.

An RNA molecule is considered as a string of n characters R = r1r2 · · · rn such
that ri ∈ {A, C, G, U}. Typically, n is in the hundreds, but could also be in thousands.
The secondary structure of the RNA molecule is a collection S of a set of stems and
each stem consisting of a set of consecutive base pairs (rir j ) (for example, GU, GC,
AU). Here, 1 ≤ i ≤ j ≤ n and (ri and r j ) are connected through hydrogen bonds.
If (ri , r j ) ∈ S, in principle, we should require that ri be a complement to r j and that
j − i > t , for a certain threshold t as it is known that an RNA molecule does not
fold too sharply on itself.

Attempts to automatically predict the RNA secondary structure can be divided
in essentially two general approaches. The first involves the overall free energy
minimization by adding contributions from each base pair, bulged base, loop, and
other elements [1]. The second type of approach [360] is more empirical and it
involves searching for the combination of nonexclusive helices with a maximum
number of base pairings, satisfying the condition of a tree-like structure for the
biomolecule. Within the latter, methods using dynamic programming are the most
common [360, 395]. The methods for simulating the folding pathway of an RNA
molecule [312, 313, 366] and locating significant intermediate states are important
for the prediction of RNA structure [29, 127, 311] and its associated function.

1.3.5 Protein Structure Prediction and Classification

Identical protein sequences result in identical 3D structures. So, it follows that simi-
lar sequences may result in similar structures, and this is usually the case. However,
identical 3D structures do not necessarily indicate identical sequences as there is a
distinction between homology and similarity. There are a few examples of proteins in
the databases that have nearly identical 3D structures, and are therefore homologous,
but do not exhibit significant or detectable sequence similarity. Pairwise comparisons
do not readily show positions that are conserved among a whole set of sequences
and tend to miss subtle similarities that become visible when observed simultane-
ously among many sequences. Hence, one wants to simultaneously compare several
sequences. Structural genomics is the prediction of the 3D structure of a protein from
the primary amino acid sequence [21, 60, 70, 73, 112, 128, 150, 166, 175, 219,
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220, 245, 268, 280, 287, 294, 295, 297, 329]. This is one of the most challenging
tasks in bioinformatics as a protein’s function is a consequence of its structure.

There are five levels of protein structure. While the primary structure is the
sequence of amino acids that compose the protein, the secondary structure of a
protein is the spatial arrangement of the atoms constituting the main protein back-
bone. The supersecondary structure or motif is the local folding pattern built up from
particular secondary structures. On the other hand, tertiary structure is formed by
packing secondary structural elements linked by loops and turns into one or sev-
eral compact globular units called domains, that is, the folding of the entire protein
chain. A final protein may contain several protein subunits arranged in a quaternary
structure.

Protein sequences almost always fold into the same structure in the same envi-
ronment. Hydrophobic interaction, hydrogen bonding, electrostatic, and other van
der Waals type interactions also contribute to determine the structure of the protein.
Many efforts are underway to predict the structure of a protein, given its primary
sequence. A typical computation of protein folding would require computing all the
spatial coordinates of atoms in a protein molecule, starting with an initial configura-
tion and working up to a final minimum-energy folding configuration [31, 74, 174,
176, 273, 284, 303, 349]. Sequence similarity methods can predict the secondary
and tertiary structures based on homology to known proteins. Secondary structure
prediction methods include the methods proposed by Chou and Fasmann [70], and
Garnier et al. [112]. Artificial neural networks [280, 287] and nearest neighbor meth-
ods [294, 295] are also used for this purpose. Tertiary structure prediction methods
[349] are based on energy minimization, molecular dynamics, and stochastic searches
of conformational space.

1.3.6 Molecular Design and Molecular Docking

When two molecules are in close proximity, it can be energetically favorable for them
to bind together tightly. The molecular docking problem is the prediction of energy
and physical configuration of binding between two molecules. A typical application
is in drug design, in which one might dock a small molecule that is a described drug
to an enzyme one wishes to target. For example, HIV protease is an enzyme in the
AIDS virus that is essential to its replication. The chemical action of the protease
takes place at a localized active site on its surface. HIV protease inhibitor drugs are
small molecules that bind to the active site in HIV protease and stay there, so that
the normal functioning of the enzyme is prevented. Docking software allows us to
evaluate a drug design by predicting whether it will be successful in binding tightly
to the active site in the enzyme. Based on the success of docking, and the resulting
docked configuration, designers can refine the drug molecule [63, 188, 232, 374].

On the other hand, quantitative structure–activity relationship deals with estab-
lishing a mathematical correlation between calculated properties of molecules and
their experimentally determined biological activity. These relationships may further
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help in predicting the activity of new analogs that can be used as a drug for specific
target [124, 154, 332].

1.3.7 Phylogenetic Trees for Studying Evolutionary Relationship

All species on earth undergo a slow transformation process called evolution. To
explain the evolutionary history of today’s species and how species relate to one
another in terms of common ancestors, trees are constructed whose leaves represent
the present-day species and intermediate nodes represent the hypothesized ancestors.
These kind of labeled binary trees are called phylogenetic trees [163, 186, 191,
218, 308, 315]. Phylogenetic analysis is used to study the evolutionary relationship.
Phylogenies are reconstructed based on comparisons between present-day objects.
Given data for a set of objects, the phylogenetic tree reconstruction problem is to
find the particular permutation of objects that optimize the given criteria. A number
of algorithms are available to solve this problem [218, 308, 315].

1.3.8 Analysis of Microarray Expression Data

Microarray is one of the high throughput screening methods [281]. It measures the
amount of mRNA in a sample that corresponds to a given gene or probe DNA
sequence. Probe sequences are immobilized on a solid surface and allowed to
hybridize with fluorescently-labeled target mRNA. The intensity of fluorescence
of a spot is proportional to the amount of target sequence that has hybridized to that
spot, and therefore, to the abundance of that mRNA sequence in the sample. Microar-
rays allow for identification of candidate genes involved in a given process based
on variation between transcript levels for different conditions and shared expression
patterns with genes of known function. A microarray data can be represented by a
real-valued expression table [275]. A large amount of mRNA and miRNA profiling
have been done and deposited in databases like Gene Expression Omnibus [94] and
ArrayExpress [267]. Lot of works have been done using expression data to under-
stand the activity of genes or nongenic elements like miRNA in several important
cellular functions.

1.3.8.1 Clustering Genes or mRNAs

Clustering is one of the major tasks in gene expression data analysis [17, 157]. To
understand gene function, gene regulation, cellular processes, and subtypes of cells,
clustering techniques have proven to be helpful. The genes with similar expression
patterns are likely to be involved in the same cellular processes, and a strong corre-
lation of expression patterns between those genes indicates coregulation [95, 335].
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Searching for common DNA sequences at the promoter regions of genes within the
same cluster allows regulatory motifs specific to each gene cluster to be identified
and cis-regulatory elements to be proposed [48, 335]. The inference of regulation
through gene expression data clustering also gives rise to hypotheses regarding the
mechanism of transcriptional regulatory network [87].

The conventional clustering methods such as hierarchical clustering [139],
k-means algorithm [141], self-organizing map [334], principal component analysis
[223], graph theoretical approaches [30, 36, 135, 310, 372, 373, 381, 384], model-
based clustering [66, 103, 114, 145, 222, 224, 341, 352, 371, 382, 383], density-
based approaches [156], fuzzy clustering algorithms [50, 83, 113], and rough–fuzzy
clustering algorithms [212, 213] group coexpressed genes from microarray data.
Different supervised gene clustering algorithms are also developed in [84, 136, 204,
205] to find coregulated gene clusters by incorporating the information of sample
categories in gene clustering process. After clustering genes, a reduced set of genes
can be selected for further analysis.

1.3.8.2 Clustering miRNAs

Recent genome wide surveys on noncoding RNAs have revealed that a substantial
fraction of miRNAs is likely to form clusters. The genes of miRNAs are often orga-
nized in clusters in the genome. Expression analyses have showed strong positive
correlations among the closely located miRNAs, indicating that they may be con-
trolled by common regulatory elements. In fact, experimental evidence has demon-
strated that clustered miRNA loci form an operon-like gene structure and that they are
transcribed from common promoter [9]. Existence of coexpressed miRNAs is also
demonstrated using expression profiling analysis in [28]. Several miRNA clusters
have been experimentally shown by RT-PCR or Northern blotting [54, 183]. These
findings suggest that members of a miRNA cluster, which are at a close proximity
on a chromosome, are highly likely to be processed as cotranscribed units.

Expression data of miRNAs can be used to detect clusters of miRNAs as it is
suggested that coexpressed miRNAs are cotranscribed, so they should have simi-
lar expression pattern. The complex miRNA–mRNA networks greatly increase the
challenges of comprehending and interpreting the resulting mass of data. A first step
toward addressing this challenge is the use of clustering techniques, which is essential
in the pattern recognition process to reveal natural structures and identify interesting
patterns in the underlying data [157]. Applying cluster techniques, miRNAs hav-
ing similar cellular activities can be grouped together. In this background, several
authors used hierarchical clustering in order to group miRNAs having similar func-
tion [96, 201, 354]. In [25], the self-organizing map has been used to cluster miRNA
expression profile. Recently, Maji and Paul introduced rough–fuzzy clustering for
identification of coexpressed miRNA clusters [212].
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1.3.8.3 Selection of Genes or mRNAs

An important application of gene expression data in functional genomics is to classify
samples according to their gene expression profiles, such as to classify cancer versus
normal samples or to classify different types or subtypes of cancer [119]. However,
among the large number of genes present in a microarray data set, only a small fraction
of them is effective for classifying samples into different classes. Hence, one of the
relevant and challenging problems in gene expression-based disease classification
is the selection of effective genes from microarray data [326]. This is an important
problem in machine learning and referred to as feature selection. In this regard,
different feature selection methods have been used to select differentially expressed
genes [6, 35, 119, 288, 291]. The small subset of genes is desirable in developing gene
expression-based diagnostic tools for delivering precise, reliable, and interpretable
results. With the gene selection results, the cost of biological experiment and decision
can also be greatly reduced by analyzing only the marker genes.

1.3.8.4 Selection of miRNAs

Multiple reports have noted the utility of miRNAs for the diagnosis of cancer and
other diseases [201]. The functions of miRNAs appear to be different in different
cellular functions. Just as miRNA is involved in the normal functioning of eukaryotic
cells, so has dysregulation of miRNA been associated with disease [184]. Different
methods have been developed to identify potential miRNAs involved in a particular
disease. In this background, the method called significance analysis of microarrays
has been used to select potential miRNAs from expression data [151, 192, 238, 247,
274, 285]. Studies have also been conducted using various statistical tests like t-test
and F-test for identifying differentially expressed miRNAs [129, 301, 355, 392]. The
pattern recognition and machine learning techniques have been successfully used in
[269, 270] to select differentially expressed miRNAs. The miRNA selection helps
to infer about the miRNA–mRNA endogenous correlation associated in a disease.

1.3.8.5 Integration of mRNA and miRNA Expression Data

The high throughput techniques are used to generate a huge amount of mRNA and
miRNA expression data. Individually, gene or mRNA expression data has been used
to identify potential biomarkers for a wide ranges of diseases. However, gene or
mRNA expression data alone often does not reflect robust molecular subtypes in
many diseases. The small sample size and high number of features in the expression
data put a challenge to extract meaningful information [275]. In order to generate
a robust predictive model, few studies have been conducted by integrating different
kinds of omics data [216, 221, 339]. While carrying out these types of integrated
analyses, properties and scales have to be taken into account as well as the relations
between different types of features.
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The miRNA regulates gene expression at the posttranscriptional level. Hence,
expression data of miRNA can provide information that is complementary to mRNA
expression data. In this regard, data fusion could lead to improved classification
accuracy [359]. It also helps to infer about the miRNA–mRNA endogenous correla-
tion associated in a disease. Hence, combining miRNA and mRNA expression data,
several methods have been developed that can clearly differentiate expression data
into different types or subtypes and can reveal the correlation between miRNA and
mRNA in a particular disease [90, 347].

1.3.8.6 Inference of Gene Regulatory Networks

One of the most challenging problems in the field of bioinformatics is inferring a
gene regulatory network (GRN) from gene expression data [5]. An important and
interesting question in biology, regarding the variation of gene expression levels,
is how genes are regulated. Since almost all cells in a particular organism have
an identical genome, differences in gene expression, and not the genome content,
are responsible for cell differentiation during the life of the organism. For gene
regulation, an important role is played by a type of proteins called transcription
factors [308]. The transcription factors bind to specific parts of the DNA, called
TFBS, which are specific, relatively short combinations of A, T, C, or G, and located
in promoter regions. Transcription factors control gene expression by binding to the
gene’s promoter and either activating the gene or repressing it. They are gene products
and therefore, in turn, can be controlled by other transcription factors. Transcription
factors can control many genes, and some genes are controlled by combinations of
transcription factors. Feedback loops are also possible.

Gene expression data can be used to infer regulatory relationships. This approach
is known as reverse engineering of regulatory networks. Segal et al. [306] and Timo-
thy et al. [340] highlighted that expression data can be used to make predictions about
the transcriptional regulators for a given gene or sets of genes. Segal et al. [306] have
developed a probabilistic model to identify modules of coregulated genes, their tran-
scriptional regulators, and conditions that influence regulation. Timothy et al. [340]
described a method to infer regulatory relationships which uses nonlinear differen-
tial equations to model regulatory networks. In this method, a model of connections
between genes in a network is inferred from measurements of system dynamics,
for example, response of genes and proteins to perturbations. Greenfield et al. [121]
developed a hybrid method for incorporating structure priors into global regulatory
networks inference. A new model for the GRNs has been developed in [346], which
builds upon existing models by adding an epigenetic control layer. An approach for
network inference by integrating expression plasticity into Shannon’s mutual infor-
mation is described in [356] for reconstruction of the GRNs. An integrated method
has been developed for reconstructing the GRNs [88], utilizing both temporal infor-
mation arriving from time-series gene expression profiles and topological properties
of protein networks.
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Reverse engineering based on differential equations and Bayesian networks was
used by Cantone et al. [57] to identify regulatory interactions from time-series and
steady-state expression data. A GRN inference algorithm from gene expression data
based on differential equation model has been developed in [393]. Path consistency
algorithm based on conditional mutual information has been employed for inferring
the GRNs from gene expression data considering the nonlinear dependence and
topological structure of the GRNs [390]. Liang and Wang [193] proposed a relevance
network model for the GRN inference. Both mutual information and conditional
mutual information have been used to determine the interactions between genes.
Liang et al. [194] also developed a mutual information based REVerse Engineering
ALgorithm, called REVEAL, for understanding interaction of genes. Later, Baladoni
et al. [18] provided a new definition of mutual information using concepts from fuzzy
set theory and extended the model on which the REVEAL algorithm for reverse
engineering of the GRNs is based and they designed a new flexible version of it,
called FuzzyREVEAL.

Microarrays have also been used in drug discovery [53], and its applications
include basic research and target discovery, biomarker determination, pharmacol-
ogy, toxicogenomics, target selectivity, development of prognostic tests, and disease-
subclass determination. It is also used for gene set enrichment analysis [328]. Other
potential bioinformatics tasks for biological problems are as follows: characterization
of protein content and metabolic pathways between different genomes; identifica-
tion and analysis of interacting proteins; characterization of repeats from genomes;
gene mapping on chromosomes; analysis of genomic-scale censuses; assignment
and prediction of gene products; large-scale analysis of gene expression levels; map-
ping expression data to sequence, structural, and biochemical data; development of
digital libraries for automated bibliographical searches; development of knowledge
bases of biological information from the literature; and development of DNA analysis
methods in forensics [12, 77, 100, 137, 331, 353].

1.4 Pattern Recognition Perspective

Pattern recognition and machine learning tools and techniques have been widely used
for analysis of biological data as classification, clustering, and feature selection are
needed to analyze large biological data sets. Pattern recognition is the multidiscipli-
nary research area that is concerned with the classification or description of objects.
It aims to classify data or patterns based on either a prior knowledge or statistical
information extracted from the data. Hence, in pattern recognition, mathematical,
statistical, heuristic, and inductive techniques are utilized to execute the tasks like
human being on computers [22, 85, 92, 108, 155, 209, 258, 260, 261, 263, 343].

At present, pattern recognition and machine learning provide the most fruit-
ful framework for bioinformatics [20, 22, 209, 302, 377, 391]. They provide a
wide range of linear and nonlinear, comprehensible and complex, predictive and
descriptive, instance and rule-based models for different data mining tasks such as
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dimensionality reduction, clustering, classification, and rule discovery. Also, the
methods for modeling probabilistic and fuzzy uncertainties, vagueness, and incom-
pleteness in the discovered patterns form a part of pattern recognition research.
Another aspect that makes pattern recognition algorithms attractive for computa-
tional biology and bioinformatics is their capability of learning or induction. As
opposed to many statistical techniques that require the user to have a hypothesis
in mind first, pattern recognition algorithms and machine learning techniques auto-
matically analyze the data and identify relationships among attributes and entities
in the data to build models that allow domain experts to understand the relation-
ship between the attributes and the class. Several data preprocessing tasks such as
instance selection, data cleaning, dimensionality reduction, and handling missing
data are also extensively studied in pattern recognition framework. Besides these,
other data mining issues addressed by pattern recognition methodologies include
handling of relational, sequential, and symbolic biological data, knowledge encod-
ing and extraction, knowledge evaluation, and visualization.

Pattern recognition is at the core of data mining systems. However, pattern recog-
nition and data mining are not equivalent considering their original definitions. There
exists a gap between the requirements of a data mining system and the goals achieved
by present-day pattern recognition algorithms. Development of new generation pat-
tern recognition algorithms is expected to encompass more massive biological data
sets involving diverse sources and types of data that will support mixed initiative data
mining, where human experts collaborate with the computer to form hypotheses and
test them.

1.4.1 Pattern Recognition

Pattern recognition is a two step procedure. The first step consists of learning the
invariant and common properties of a set of samples characterizing a class. While in
second step, it is decided whether a new sample is a possible member of the class or
not, by noting that it has properties common to those of the set of samples. The task
of pattern recognition can be described as a transformation from the measurement
space M to the feature space F and finally to the decision space D ; that is,

M → F → D,

where the mapping δ : F → D is the decision function, and the elements d ∈ D
are termed as decisions [92, 209, 336].

A pattern recognition process can be decomposed into a series of few steps: data
acquisition; data preprocessing; feature selection; and classification or clustering.
The data acquisition phase includes gathering of data via a set of sensors depending
on the environment within which the objects are to be classified. A raw data contains
noise, so some preprocessing tasks such as noise reduction, filtering, encoding, and
enhancement are applied on the collected data for extracting pattern vectors. The
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dimension of the preprocessed data is then reduced by retaining or measuring only
some characteristic features or properties. However, in a broader perspective, this
stage significantly influences the entire recognition process. The last phase comprises
the construction of classifier, in that a transformation relationship is established
between features and classes [22, 92, 155, 209, 260, 336].

1.4.1.1 Data Acquisition and Preprocessing

Data acquisition is the process of gathering data via a set of sensors depending on
the environment within which the objects are to be classified. Pattern recognition
techniques are applicable in a wide domain, where the data may be qualitative, quan-
titative, or both; they may be numerical, linguistic, pictorial, or any combination
thereof. Generally, the data structures that are used in bioinformatics are of two
types: object data vectors such as microarray expression data and relational data
such as DNA or protein sequences. Object data, sets of numerical vectors of m fea-
tures, are represented as X = {x1, · · · , xi , · · · , xn}, a set of n feature vectors in the
m-dimensional measurement space ⊂m . The i th object observed in the process has
vector xi as its numerical representation; xi j is the j th ( j = 1, · · · ,m) feature asso-
ciated with the i th object. On the other hand, relational data are a set of n2 numerical
relationships, say ri j , between pairs of objects. In other words, ri j represents the
extent to which objects xi and x j are related in the sense of some binary relationship
ρ. If the objects that are pairwise related by ρ are called O = {o1, · · · , oi , · · · , on},
then ρ : O × O → ⊂.

After data acquisition, a number of data preprocessing techniques [134] are
applied on the collected data for extracting pattern vectors. Today’s real-world bio-
logical databases are highly susceptible to noisy, missing, and inconsistent data due to
their typically huge size and their likely origin from multiple, heterogeneous sources.
Low-quality data may lead to low-quality mining results. The methods for data pre-
processing are organized into following three categories, namely, data cleaning, data
integration, and transformation. While data cleaning can be applied to remove noise
and correct inconsistency in the data, the data integration merges data from multiple
sources into a coherent data store. In data transformation, the data are transformed
into forms appropriate for mining. For example, normalization may improve the
accuracy and efficiency of mining algorithms involving distance measurements.

1.4.1.2 Feature Selection and Extraction

The process of feature selection or extraction includes selection of a map by which
a sample in an m-dimensional measurement space is transformed into a point in
a d-dimensional feature space, where d < m [85, 343]. Mathematically, it finds
a mapping of the form y = f (x), by which a sample x = [x1, · · · , x j , · · · , xm]
in an m-dimensional measurement space M is transformed into an object y =
[y1, · · · , y j , · · · , yd ] in a d-dimensional feature space F . The objective of feature
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selection or extraction is two fold: to retain or generate the optimum salient charac-
teristics necessary for the recognition process and to reduce the dimensionality of
the measurement space so that effective and easily computable algorithms can be
devised for efficient classification.

In feature selection or extraction, a suitable criterion is formulated first to evalu-
ate the goodness of a feature set and then an optimal set is searched in terms of the
criterion. Features having potential to maximize (respectively, minimize) interclass
(respectively, intraclass) distances, are considered to have optimal saliencies. The
criterion of a good feature is that it should be unchanging with any other possible
variation within a class, while emphasizing differences that are important in discrim-
inating between patterns of different types. The major mathematical measures so far
devised for the estimation of feature quality are mostly statistical in nature, and can be
broadly classified into two categories, namely, feature selection in the measurement
space [44, 130, 159, 172] and feature selection in a transformed space [34, 58, 86,
149]. The techniques in the first category generally reduce the dimensionality of the
measurement space by discarding redundant or least information carrying features.
On the other hand, those in the second category utilize all the information contained
in the measurement space to obtain a new transformed space, thereby mapping a
higher dimensional pattern to a lower dimensional one. This is referred to as feature
extraction [85, 92, 343].

The relationship between a feature selection algorithm and the inducer or classifier
chosen to evaluate the usefulness of the feature selection process can take three main
forms, namely, embedded, filter, and wrapper. In embedded scheme, the inducer
or classifier has its own feature selection algorithm, either explicit or implicit. The
methods to induce logical conjunctions [367] and traditional machine learning tools
such as decision trees and artificial neural networks [227] are a few examples of the
embedded technique. The filter schemes are independent of the induction algorithm.
If the feature selection process takes place before the induction step, the former
can be seen as a filter of nonrelevant features prior to induction. The filter methods
evaluate the goodness of the feature subset looking only at the intrinsic characteristics
of the data, based on the relationship of each single feature with the class label by
the calculation of simple statistics computed from the empirical distribution [79,
80, 133]. In wrapper approach [172], a search is conducted in the feature space,
evaluating the goodness of each feature subset by estimating the accuracy of the
specific classifier to be used [159].

The generation procedure of candidate feature subsets can be categorized into
individual feature ranking [79, 80, 133] and feature subset selection [44, 130]. The
former measures the relevance of each feature to the class and selects the top-ranked
ones, and is commonly used due to its simplicity, scalability, and good empirical
success [130]. Recently, different deterministic heuristic search methods such as
sequential forward selection, sequential backward selection, sequential floating for-
ward selection, and sequential floating backward selection [279] and nondetermin-
istic heuristic search methods such as simulated annealing [169], genetic algorithm
[143], and tabu search [117] are also used in feature selection.
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The feature extraction methods determine an appropriate subspace of dimension
d from the original feature space of dimension m, either in a linear or a nonlinear
way. The linear transforms such as principal component analysis (PCA) [92], inde-
pendent component analysis [34, 58, 72, 182], linear discriminant analysis [109],
and projection pursuit [104] have been widely used in pattern recognition for feature
extraction and dimensionality reduction. On the other hand, kernel PCA [138, 300]
and multidimensional scaling [45, 241, 296] are two examples of nonlinear feature
extraction techniques. The artificial neural networks have also been used for feature
extraction [78, 110, 173, 200].

1.4.1.3 Classification and Clustering

In classification and clustering, a feature space is partitioned into regions, where each
region represents a category of input. Accordingly, it attempts to assign every data
object in the entire feature space to one of the possible classes or clusters. In real
life, the classes of samples are not properly described. Instead, a finite and usually
smaller number of samples are available, which often provide partial information for
optimal design of feature selection algorithm or classification or clustering system.
Under such circumstances, it is assumed that these samples are representative of
the classes or clusters. Such a set of typical patterns is called a training set. On the
basis of the information gathered from the samples in the training set, the pattern
recognition systems are designed, that is, the values of the parameters of various
pattern recognition methods are decided.

A classification (respectively, clustering) scheme is designed using labeled (respec-
tively, unlabeled) data. In supervised learning, an algorithm is developed using
objects with known classifications, and later it is asked to classify an unknown object
based on the information acquired by it during training. Supervised learning is used
for classifying different objects. Some of the well-known classifiers are Bayesian
classifier [92, 343], naive Bayesian classifier [92, 343], decision tree [49, 62, 69,
225, 231, 234, 282, 292, 309, 333], multilayer perceptron [138, 140, 197], radial
basis function network [138, 299], support vector machine [52, 298, 299, 351], and
k-nearest neighbor method [92, 343].

On the other hand, clustering is performed through unsupervised learning. In
cluster analysis, a given data set is divided into a set of clusters in such a way that
two objects from the same cluster are as similar as possible and the objects from
different clusters are as dissimilar as possible. In effect, it tries to mimic the human
ability to group similar objects into classes and categories. A number of clustering
algorithms have been proposed to suit different requirements [41, 59, 92, 106, 152,
153, 160]. There are mainly two types of clustering approaches, namely, partitive
clustering algorithms like k-means [199, 202], k-modes [146], PAM, CLARA [164],
and CLARANS [97, 240]; and hierarchical methods like AGNES [81, 164], DIANA
[164], Chameleon [162], ROCK [126], CURE [125], and BIRCH [389]. Aside from
the above two categories, there are also two classes of clustering tasks that require
special attention, namely, clustering high-dimensional data (for example, CLIQUE
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[3] and PROCLUS [2]) and constraint-based clustering [344, 345]. Many tools and
concepts of statistical physics have also been used in pattern recognition such as
fractals [91, 168, 170], renormalization group [115], Ising models [144, 327], bond
percolation [148], and Gibbs–Markov random fields [147].

1.4.2 Relevance of Soft Computing

One of the important problems in bioinformatics is uncertainty. Imprecision in com-
putations and vagueness in class definition are some of the sources of this uncertainty.
The uncertainty may also be probabilistic and fuzzy in nature. Pattern recognition,
by its nature, admits many approaches, to provide the appropriate solution of a given
problem. For any pattern recognition system, one needs to achieve robustness with
respect to random noise and failure of components and to obtain output in real time.
It is also desirable for the system to be adaptive to the changes in environment. More-
over, a system can be made artificially intelligent if it is able to emulate some aspects
of the human reasoning system. The system should also be able to handle nonlinear
and/or overlapping classes to tackle real-life problems, and generate soft and hard
decisions to make the system flexible.

Soft computing and machine learning approaches to pattern recognition are
attempts to achieve these goals. Artificial neural network, decision tree, genetic
algorithms, fuzzy sets, and rough sets are used as the tools in these approaches.
The challenge is, therefore, to devise powerful pattern recognition methodologies by
symbiotically combining these tools for analyzing biological data in more efficient
ways. The systems should have the capability of flexible information processing to
deal with real-life ambiguous situations and to achieve tractability, robustness, and
low-cost solutions [209]. Connectionist or artificial neural network based approaches
to pattern recognition are attempts to achieve some of these goals because of their
major characteristics such as adaptivity, robustness or ruggedness, speed and optimal-
ity [42, 65, 138, 197, 276]. They are also suitable in data rich environments and are
typically used for extracting embedded knowledge in the form of rules, quantitative
evaluation of these rules, clustering, self-organization, classification, and regression.
They have an advantage, over other types of machine learning algorithms, for scal-
ing [37, 56, 89, 107, 131, 198, 210, 357, 375, 376, 380]. Investigations have also
been made in the area of pattern recognition using genetic algorithms [22, 266]. Like
neural networks, genetic algorithms [118] are also based on powerful metaphors from
the natural world. They mimic some of the processes observed in natural evolution,
which include crossover, selection, and mutation, leading to a stepwise optimization
of organisms.

The fuzzy set theoretic classification approach is developed based on the real-
ization that a pattern may belong to more than one class, with varying degrees of
class membership. Accordingly, fuzzy decision theoretic, fuzzy syntactic, and fuzzy
neural approaches are developed [40, 51, 258, 261]. These approaches can handle
uncertainties, arising from vague, incomplete, linguistic, and overlapping patterns
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at various stages of pattern recognition systems [40, 161, 258, 385]. The fuzzy set
theory has greater flexibility to capture various aspects of incompleteness, imprecise-
ness, or imperfection in information about a situation as it is a generalization of the
classical set theory [385]. The relevance of fuzzy set theory in the realm of pattern
recognition is adequately justified in [39, 40, 161, 258, 386]. Fuzzy sets have been
successfully applied in pattern classification [179], clustering [39, 40, 93, 161, 178,
217, 248, 258], and image processing [23, 105, 165, 206, 252, 253, 255, 257, 342,
370]. In addition to pattern recognition, fuzzy sets find widespread applications in
solving different problems in association rule mining [16, 203, 361], fuzzy infor-
mation storage and retrieval [132], functional dependency [47], data summarization
[67, 181], web mining [177, 237], granular computing [26, 27], microarray data
analysis [33, 83], and so forth.

The theory of rough sets [265, 271, 316] has gained popularity in modeling and
propagating uncertainty. It also deals with vagueness and incompleteness. Hence,
rough sets have emerged as a potential pattern recognition tool. The main idea of
rough sets is to construct or synthesize approximations, in terms of upper and lower
bounds of concepts, properties, or relations from the acquired data. Here, the infor-
mation granules and reducts form the key notions. Information granules formalize
the concept of finite precision representation of objects in real-life situations, and
the reducts represent the core of an information system, both in terms of objects and
features, in a granular universe. It also provides a mathematical framework to capture
uncertainties associated with human cognition process [208]. It is turning out to be
methodologically significant to the domains of artificial intelligence and cognitive
sciences, especially in the representation of and reasoning with vague and/or impre-
cise knowledge, data classification, data analysis, machine learning, and knowledge
discovery [246, 277, 278, 316]. This approach is relatively new as compared to
connectionist and fuzzy set theoretic approaches. Rough set theory has been applied
successfully to pattern classification [10, 32, 122, 123, 289, 314, 320, 322, 323],
clustering [15, 82, 142, 196, 207, 208, 256], feature selection [71, 75, 211, 214,
319, 321, 323], microarray data analysis [68, 98, 211, 318, 324, 350], prediction
of biological activity of molecules [210], and image processing [158, 235, 259,
363–365].

There have been several attempts over the last two decades to evolve new
approaches to pattern recognition and deriving their hybrids by judiciously com-
bining the merits of several techniques [249, 261] involving mainly fuzzy logic,
artificial neural networks, genetic algorithms, and rough set theory, for developing
an efficient new paradigm called soft computing [387]. Here integration is done in
a cooperative, rather than a competitive, manner. The result is a more intelligent
and robust system providing a human interpretable, low-cost, approximate solu-
tion, as compared to traditional techniques. Neuro-fuzzy approach is perhaps the
most visible hybrid paradigm [51, 228–230, 254, 261], realized so far, in soft com-
puting framework. Besides the generic advantages, the neuro-fuzzy approach pro-
vides the corresponding application specific merits [76, 111, 120, 330, 368, 388,
394]. Rough–fuzzy [209, 250, 265] and neuro-rough [68, 158, 264] hybridizations
are also proving to be fruitful frameworks for modeling human perceptions and
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providing means for computing with words. The rough–fuzzy computing provides a
powerful mathematical framework to capture uncertainties associated with the data.
Other hybridized models for pattern recognition and data mining include neuro-
genetic [46, 215, 251, 293, 362], rough-genetic [43, 317, 369], fuzzy-genetic [14,
61, 64, 116, 180, 233], rough-neuro-genetic [167], rough-neuro-fuzzy [11, 24, 243,
244, 262], and neuro-fuzzy-genetic [187, 195, 283, 290, 307, 358] approaches.

1.5 Scope and Organization of the Book

This book has 11 chapters describing various theories, methodologies, and algo-
rithms, along with extensive experimental results, addressing certain tasks of com-
putational biology, and bioinformatics in pattern recognition paradigm with real-life
applications. Various methodologies are described using information theoretic and
soft computing approaches, for classification, feature selection, and clustering. The
emphasis of the methodologies is given on handling both object and relational bio-
logical data sets that are large both in size and dimension, and involve classes that are
overlapping, intractable, and/or having nonlinear boundaries. The effectiveness of
the algorithms is demonstrated on different real-life biological data sets taken from
varied domains of bioinformatics and medical imaging such as DNA and protein
sequence data analysis, microarray data analysis, and medical imagery.

Chapter 2 presents the design of a hybrid learning model, termed as neural net-
work tree (NNTree) for identification of splice-junction and protein coding region
in DNA sequences. It incorporates the advantages of both decision tree and artificial
neural network. An NNTree is a decision tree, where each nonterminal node con-
tains a neural network. The idea is to use the framework of multilayer perceptron
to design tree-structured pattern classifier. At each nonterminal node, the multilayer
perceptron partitions the data set into m subsets; m being the number of classes in
the data set present at that node. The NNTree is designed by splitting the nonterminal
nodes of the tree by maximizing classification accuracy of the multilayer perceptron.
In effect, it produces a reduced height m-ary tree. The versatility of this method is
illustrated through its application in diverse fields. The effectiveness of the hybrid
algorithm, along with a comparison with other related algorithms, is demonstrated
on a set of benchmark data sets. Simulation results show that the NNTree achieves
excellent performance in terms of classification accuracy, size of the tree, and clas-
sification time. Demonstrating its success in splice-junction and gene identification
problems provides the effectiveness of this approach. Extensive experimental results
establish that the NNTree classifier produces more accurate classifier than that have
previously been obtained for a range of different sequence lengths, thereby indicating
a cost-effective alternative in splice-junction and protein coding region identification
problems.

The prediction of protein functional sites is an important issue in protein func-
tion studies and drug design. In order to apply the powerful kernel-based pattern
recognition algorithms such as support vector machine to predict functional sites



1.5 Scope and Organization of the Book 23

in proteins, amino acids need encoding prior to input. In this regard, a new string
kernel function, termed as the modified bio-basis function, is presented in Chap. 3.
It maps a nonnumerical sequence space to a numerical feature space. The new string
kernel function is developed based on the conventional bio-basis function and needs
a bio-basis string as a support like conventional kernel function. The concept of zone
of influence of bio-basis string is introduced in the new kernel function to take into
account the influence of each bio-basis string in nonnumerical sequence space. An
efficient method is described to select a set of bio-basis strings for the new kernel
function, integrating the Fisher ratio, and a novel concept of degree of resemblance.
The integration enables the method to select a reduced set of relevant and nonre-
dundant bio-basis strings. Some quantitative indices are described for evaluating the
quality of selected bio-basis strings. The effectiveness of the new string kernel func-
tion and bio-basis string selection method, along with a comparison with existing
bio-basis function and related bio-basis string selection methods, is demonstrated on
different protein data sets using the support vector machine.

Quantitative structure activity relationship (QSAR) is one of the important dis-
ciplines of computer-aided drug design that deals with the predictive modeling of
properties of a molecule. In general, each QSAR data set is small in size with large
number of features or descriptors. Among the large amount of descriptors present
in the QSAR data set, only a small fraction of them is effective for performing the
predictive modeling task. Chapter 4 presents a rough set-based feature selection
algorithm to select a set of effective molecular descriptors from a given QSAR data
set. The new algorithm selects the set of molecular descriptors by maximizing both
relevance and significance of the descriptors. An important finding is that the new
feature selection algorithm is shown to be effective in selecting relevant and signif-
icant molecular descriptors from the QSAR data set for predictive modeling. The
performance of the new algorithm is studied using the R2 statistic of support vector
regression method. The effectiveness of the new algorithm, along with a comparison
with existing algorithms, is demonstrated on several QSAR data sets.

Microarray technology is one of the important biotechnological means that allows
to record the expression levels of thousands of genes simultaneously within a number
of different samples. An important application of microarray gene expression data
in functional genomics is to classify samples according to their gene expression pro-
files. Among the large amount of genes present in microarray gene expression data,
only a small fraction of them is effective for performing a certain diagnostic test. In
this regard, mutual information has been shown to be successful for selecting a set of
relevant and nonredundant genes from microarray data. However, information theory
offers many more measures such as the f -information measures that may be suitable
for selection of genes from microarray gene expression data. Chapter 5 presents dif-
ferent f -information measures as the evaluation criteria for gene selection problem.
To compute the gene–gene redundancy (respectively, gene-class relevance), these
information measures calculate the divergence of the joint distribution of two genes’
expression values (respectively, the expression values of a gene and the class labels of
samples) from the joint distribution when two genes (respectively, the gene and class
label) are considered to be completely independent. The performance of different
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f -information measures is compared with that of mutual information based on the
predictive accuracy of naive Bayes classifier, k-nearest neighbor rule, and support
vector machine. An important finding is that some f -information measures are shown
to be effective for selecting relevant and nonredundant genes from microarray data.
The effectiveness of different f -information measures, along with a comparison with
mutual information, is demonstrated on several cancer data sets.

One of the most important and challenging problems in functional genomics is
how to select the disease genes. In Chap. 6, a computational method is reported
to identify disease genes, judiciously integrating the information of gene expression
profiles and the shortest path analysis of protein–protein interaction networks. While
the gene expression profiles have been used to select differentially expressed genes
as disease genes using mutual information based maximum relevance–maximum
significance framework, the functional protein association network has been used
to study the mechanism of diseases. Extensive experimental study on colorectal
cancer establishes the fact that the genes identified by the integrated method have
more colorectal cancer genes than the genes identified from the gene expression
profiles alone, irrespective of any gene selection algorithm. Also, these genes have
greater functional similarity with the reported colorectal cancer genes than the genes
identified from the gene expression profiles alone. All these results indicate that the
integrated method is quite promising and may become a useful tool for identifying
disease genes.

The miRNAs regulate expression of a gene or protein. It has been observed that
they play an important role in various cellular processes and thus help in carrying
out normal functioning of a cell. However, dysregulation of miRNAs is found to be
a major cause of a disease. Various studies have also shown the role of miRNAs
in cancer and utility of miRNAs for the diagnosis of cancer. A large number of
works have been conducted to identify differentially expressed miRNAs as unlike
with mRNA expression, a modest number of miRNAs might be sufficient to clas-
sify human cancers. In this regard, Chap. 7 presents a new approach for selecting
miRNAs from microarray expression data. It integrates the merit of rough set-based
feature selection algorithm reported in Chap. 4, theory of B.632+ bootstrap error
rate, and support vector machine. The effectiveness of the new approach, along with
a comparison with other algorithms, is demonstrated on several miRNA data sets.

Clustering is one of the important analysis in functional genomics that discovers
groups of coexpressed genes from microarray data. In Chap. 8, the application of a
new partitive clustering algorithm, termed as rough-fuzzy c-means, is presented to
discover coexpressed gene clusters. One of the major issues of rough-fuzzy c-means
based microarray data clustering is how to select initial prototypes of different clus-
ters. To overcome this limitation, a method is reported based on Pearson’s correlation
coefficient to select initial cluster centers. It enables the algorithm to converge to an
optimum or near optimum solutions and helps to discover coexpressed gene clusters.
A method is also presented based on cluster validity index to identify optimum values
of different parameters of the initialization method and the clustering algorithm. The
effectiveness of rough-fuzzy c-means algorithm, along with a comparison with other
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clustering algorithms, is demonstrated on several yeast gene expression time-series
data sets using different cluster validity indices and gene ontology based analysis.

In functional genomics, an important application of microarray data is to clas-
sify samples according to their gene expression profiles such as to classify cancer
versus normal samples or to classify different types or subtypes of cancer. Hence,
one of the major tasks with the gene expression data is to find groups of coregulated
genes whose collective expression is strongly associated with the sample categories
or response variables. In this regard, a supervised gene clustering algorithm is pre-
sented in Chap. 9 to find groups of genes. It directly incorporates the information
of sample categories into the gene clustering process. A new quantitative measure,
based on mutual information, is introduced that incorporates the information of sam-
ple categories to measure the similarity between attributes. The supervised gene
clustering algorithm is based on measuring the similarity between genes using the
new quantitative measure, whereby redundancy among the attributes is removed. The
clusters are then refined incrementally based on sample categories. The performance
of the new algorithm is compared with that of existing supervised and unsupervised
gene clustering and gene selection algorithms based on the class separability index
and the predictive accuracy of naive Bayes classifier, k-nearest neighbor rule, and
support vector machine on several cancer and arthritis microarray data sets. The
biological significance of the generated clusters is interpreted using the gene ontol-
ogy. An important finding is that the supervised gene clustering algorithm is shown
to be effective for identifying biologically significant gene clusters with excellent
predictive capability.

The biclustering method is another important tool for analyzing gene expression
data. It focuses on finding a subset of genes and a subset of experimental conditions
that together exhibit coherent behavior. However, most of the existing biclustering
algorithms find exclusive biclusters, which is inappropriate in the context of biology.
Since biological processes are not independent of each other, many genes may partic-
ipate in multiple different processes. Hence, nonexclusive biclustering algorithms are
required for finding overlapping biclusters. In Chap. 10, a novel possibilistic biclus-
tering algorithm is presented to find highly overlapping biclusters of larger volume
with mean squared residue lower than a predefined threshold. It judiciously incorpo-
rates the concept of possibilistic clustering algorithm into biclustering framework.
The integration enables efficient selection of highly overlapping coherent biclusters
with mean squared residue lower than a given threshold. The detailed formulation
of the new possibilistic biclustering algorithm, along with a mathematical analysis
on the convergence property, is presented. Some quantitative indices are reported
for evaluating the quality of generated biclusters. The effectiveness of the algorithm,
along with a comparison with other algorithms, is demonstrated both qualitatively
and quantitatively on yeast gene expression data set. In general, the new algorithm
shows excellent performance at finding patterns in gene expression data.

Finally, Chap. 11 reports a robust thresholding technique for segmentation of brain
MR images. It is based on the fuzzy thresholding techniques. Its aim is to threshold
the gray level histogram of brain MR images by splitting the image histogram into
multiple crisp subsets. The histogram of the given image is thresholded according to
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the similarity between gray levels. The similarity is assessed through a second-order
fuzzy measure such as fuzzy correlation, fuzzy entropy, and index of fuzziness.
To calculate the second-order fuzzy measure, a weighted cooccurrence matrix is
presented, which extracts the local information more accurately. Two quantitative
indices are introduced to determine the multiple thresholds of the given histogram.
The effectiveness of the algorithm, along with a comparison with standard thresh-
olding techniques, is demonstrated on a set of brain MR images.
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Classification



Chapter 2
Neural Network Tree for Identification
of Splice Junction and Protein Coding
Region in DNA

2.1 Introduction

The internetworked society has been experiencing an explosion of biological data.
However, the explosion is paradoxically acting as an impediment in acquiring knowl-
edge. The meaningful interpretation of this large volume of biological data is increas-
ingly becoming difficult. Consequently, researchers, practitioners, and entrepreneurs
from diverse fields are trying to develop sophisticated techniques to store, analyze,
and interpret this biological data for knowledge extraction, which leads to evolve
the new field called bioinformatics. This field has arised in parallel with the devel-
opment of automated high-throughput methods of pattern recognition and machine
learning. The development of high-throughput methods for biological and biochem-
ical discovery yields a variety of experimental data such as DNA sequences, gene
expression patterns, chemical structures, and so forth. Hence, bioinformatics encom-
passes everything from data storage and retrieval to the identification and presentation
of features within data such as finding genes within DNA sequence, finding simi-
larities between sequences, structural predictions, and correlation between sequence
variation and clinical data [1, 4–6, 25].

Two of the important problems in bioinformatics are splice-site or splice-junction
prediction and identification of protein coding regions in DNA sequences. Genes
contain their information as a specific sequence of nucleotides or bases that are
found in DNA molecules. These specific sequences of bases encode instructions on
how to make proteins. The regions of a gene that code for proteins are termed as
exons . These exons occupy only a small region of the gene. Whereas in prokaryotic
gene, the mRNA (messenger ribonucleic acid) is a mere transcribed copy of the
DNA, in eukaryotic gene, the RNA copy of the DNA contains noncoding segments,
which are termed as introns, and they should be precisely spliced out to produce
the mRNA. This means that introns are parts of a gene that are not used in protein
synthesis and exons are the protein coding regions in that gene. The points at which
DNA is removed are known as splice sites. The splice-site identification problem is
to determine into which of the following three categories a specified location in a
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DNA sequence falls: (1) exon/intron borders, referred to as donors; (2) intron/exon
borders, referred to as acceptors; and (3) neither. Another important problem is the
identification of protein coding region, that is, exon in anonymous sequences of DNA.
Identifying the coding regions and splice sites is of vital importance in understanding
the processing of genes.

Many new mathematical or computational approaches are being introduced as well
as existing ones getting refined, but the search for new and better solutions continues
specifically to analyze large volume of DNA data sets generated in the internetworked
society of cyber-age. To address these problems, a new neural network tree (NNTree)
based pattern classifier [11, 12] is presented in this chapter for finding the splice-site
and protein coding regions in DNA sequences. The idea of this new method is to use
the framework of decision tree and neural network.

Over the years, the decision trees (DT) are successfully used in many diverse areas
such as radar signal classification, character recognition, remote sensing, medical
diagnosis, expert system, speech recognition, and also in other different fields [18].
The decision tree classifier is one of the possible approaches in multistage decision
making. The most important feature of DT is their capability to break up a complex
decision into a union of several simpler decisions hoping the final solution obtained
this way would resemble the intended desired solution. On the other hand, the subject
of artificial neural network (ANN) has become very popular in many areas such
as signal processing and pattern recognition [8, 10, 23, 26]. Additionally, neural
networks are models of nonsymbolic approaches. However, nonsymbolic learners
are usually black boxes. It is not known what has been learned ever if correct answers
are got. Another key problem in using neural networks is that the number of free
parameters is usually too large to be determined efficiently.

Even though neural networks and DT are two very different techniques for pat-
tern recognition or classification, both are capable of generating arbitrarily complex
decision boundaries from a given set of training samples or training examples, and
usually neither has to make any assumptions about the distribution of the underlying
processes. The neural networks are usually more capable of providing incremental
learning than DT, whereas decision trees are sequential in nature, compared to mas-
sive parallelism usually present in neural networks. Thus, DT are typical models for
symbolic approaches, and neural networks are models for nonsymbolic approaches.
Basically, symbolic approaches can provide comprehensive rules but cannot adapt
to changing environments efficiently. On the contrary, nonsymbolic approaches can
adapt to changing environments but cannot provide comprehensible rules.

In this background, many pattern classifiers have been proposed, integrating the
advantages of decision tree and neural network. One of the early pattern classifiers
based on this concept is Entropy Nets due to Sethi [20]. It derives a multilayer
feedforward neural network from a decision tree. The knowledge represented by the
decision tree is translated into the architecture of a neural network whose connections
can be retrained by a back propagation algorithm. On the other hand, the ANN-DT
[19] uses neural network to generate outputs for examples interpolated from the
training data set and then extracts a univariate binary decision tree from the network.
Another method which also extracts decision tree from neural network is reported
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in [24]. The design of a tree-structured neural network using genetic programming
is proposed in [9]. In [7, 22, 27–29], designs of NNTrees have been introduced. The
NNTree is a decision tree with each nonterminal node being a neural network. In [21],
Sethi and Yoo have proposed a decision tree whose hierarchy of splits is determined
in a global fashion by a neural learning algorithm. Recently, Zhou and Chen [30]
have introduced a hybrid learning approach named HDT that embeds neural network
in some leaf nodes of a binary decision tree.

To design an NNTree, the most important and time-consuming step is splitting
the nonterminal nodes of the tree. There are many criteria for splitting nonterminal
nodes. One of the most popular criteria is the information gain ratio which is used
in C4.5 [18]. Designs of NNTree have so far mostly concentrated around binary tree
with information gain ratio used to partition the available data set at each nonterminal
node [7, 22, 27–29]. However, this structure generates larger height of the tree. In
effect, it increases classification time and error rate in classifying test samples. Also
none of the work has so far dealt with the application of the NNTree to biological
data set.

In the above background, this chapter presents the design and applications of an
NN-based tree-structured pattern classifier (NNTree) to address the problem of find-
ing splice-site and protein coding region in DNA sequences [11, 12]. The NNTree
reported here adopts an approach which is completely different from the methods
mentioned in [7, 22, 24, 27–30]. The neural networks used in this design are mul-
tilayer perceptrons (MLP) with m output nodes; m being the number of classes in
the given data set. Unlike [7, 22, 27–30], the NNTree designed here splits each
nonterminal node by maximizing (respectively, minimizing) classification accuracy
(respectively, classification error) of the MLP rather than using information gain ratio.
So, the current design always generates a reduced height m-ary tree. The backprop-
agation algorithm is used recursively at each nonterminal node to find a multilayer
perceptron. The effectiveness of the new algorithm, along with a comparison with
individual components of the hybrid scheme as well as other related algorithms, has
been demonstrated on several benchmark data sets.

The structure of the rest of this chapter is as follows: Sect. 2.2 presents the design of
a neural network based tree-structured pattern classifier, called NNTree. Sections 2.3
and 2.4 present the application of the NNTree in splice-junction and protein coding
region identification problems, respectively. In order to validate the design of current
model, extensive experimental results are also reported in these sections. Concluding
remarks are given in Sect. 2.5.

2.2 Neural Network Based Tree-Structured Pattern Classifier

A neural network tree (NNTree) is a decision tree with each intermediate or nonter-
minal node being a MLP. It is constructed by partitioning the training set consisting
of feature vectors and their corresponding class labels in such a way as to recursively
generate the tree. This procedure involves three steps: splitting nodes, determining
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Fig. 2.1 MLP-based tree-structured pattern classifier

which nodes are terminal nodes, and assigning class labels to terminal nodes. In this
tree, a leaf or terminal node covers the set or subset of elements of only one class.
By contrast, an intermediate node covers the set or subset of elements belonging to
more than one class. Thus, the NNTrees are class discriminators which recursively
partition the training set to get nodes belonging to a single class. Figure 2.1 shows
an MLP-based NNTree.

To classify a training set S = {S1, . . . , Si , . . . , Sm} consisting of m classes, an
MLP has to be designed with m neurons in output layer. If a pattern belongs to i th
class, i th output neuron is selected. That is, the content of the i th neuron is 1. At this
moment, the content of all other output neurons are 0s. So, the output layer represents
m distinct m-dimensional vectors, each representing a unique location or node. Thus,
the training set S gets distributed into m locations or nodes using an MLP.

Let, Ś be the set of elements in a node. If Ś belongs to only one class, then label
that node as that class. Otherwise, this process is repeated recursively for each node
until all the patterns in each node or location belong to only one class. Single or
multiple nodes of the tree may form a leaf or terminal node representing a class, or it
may be an intermediate or nonterminal node. A leaf node represents a location that
contains the set or subset of elements of only one class. By contrast, an intermediate
node refers to a location that contains the elements belonging to more than one class.
In effect, an intermediate node represents the decision to build a new MLP for the
elements of multiple classes covered by the location of the earlier level. The above
discussions are formalized next.
Input: Training set S = {S1, . . . , Si , . . . , Sm}
Output: NNTree (set of MLPs)

Partition(S, m);

Partition(S̃, m̃)
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1. Generate an MLP with m̃ output neurons.
2. Distribute the training set S̃ into m̃ locations (nodes).
3. Evaluate the distribution of patterns in each node.
4. If all the patterns (Ś) of a location (node) belong to one particular class, then label

the location (leaf node) for that class.
5. If for the set of patterns (Ś) of a location belonging to ḿ classes, Partition(Ś, ḿ).
6. End.

In Fig. 2.1, the node A00 is the root node. So, the MLP1 corresponding to node
A00 distributes the training set S = {S1, . . . , Si , . . . , Sm} into m locations denoted
by A11, A12, . . . , A1m . Now, A11 is an intermediate node as the elements covered
by this location belong to multiple classes (here m) which are distributed again by
MLP2 into m number of locations - A21, A22, . . . , A2m . A13 is also an intermediate
node, but it covers the elements of classes II and III only. So, MLP3 corresponding
to node A13 generates two locations or nodes to distribute these elements. Whereas
A12 is a leaf or terminal node as it contains the elements of only one class (here class
II). Similarly, A21, A2m, A31, A32, . . . , are the leaf or terminal nodes as they cover
the elements of single class.

In designing an NNTree for a given data set, there are two options:

1. design an NNTree that correctly classifies all the training samples (referred to as
a perfect tree), and select the smallest perfect tree; and

2. construct an NNTree that is not perfect but has the smallest possible error rate in
classification of test samples.

The second type of tree is of greater interest for real life pattern recognition task.
Regardless of the type of tree (perfect or otherwise), it is usually desirable to keep
the size of the tree as small as possible. Because, smaller trees are more efficient
both in terms of tree storage requirements and test time; and tend to generalize better
for the unseen test samples that are less sensitive to the statistical irregularities and
idiosyncrasies of the training data. So, the basic criteria for the NNTree design are
as follows:

1. minimize error rate that would lead to maximum classification accuracy;
2. less number of nodes in the tree, that is, minimum number of locations of the

selected NNTree; and
3. least height of the NNTree.

2.2.1 Selection of Multilayer Perceptron

Following two steps are implemented at each intermediate node to pick up the best
possible NNTree:

1. evaluation of candidate MLPs, that is, evaluation of distribution of the elements
of different classes in different locations of an MLP; and
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2. selection of a location using the best distribution in the intermediate nodes ensur-
ing maximum classification accuracy.

The complexity lies in determining the best distribution for each intermediate node.
The optimal NNTree is evolved through the application of back propagation algo-
rithm [8, 10] recursively at each intermediate node.

2.2.2 Splitting and Stopping Criteria

Splitting an intermediate node involves the design of a new MLP to classify the subset
of input elements of different classes covered by the node or location of the MLP
of earlier level of the tree. A location is considered as a leaf node if all the training
examples falling into the current location belong to the same class. In other words,
a node (location) is split as long as there are class elements that belong to different
classes.

To avoid overfitting, a prepruning strategy is needed. Let, Ci j be the number
of elements of class j covered by i th location, where i = 1, 2, . . . , m and j =
1, 2, . . . , m; and βi indicates the uniformity of the distribution of class elements in
the i th location. The value of βi corresponding to i th node (location) is given by

βi = A

B
; (2.1)

where A = max j {Ci j }; and B =
m∑

j=1

Ci j . (2.2)

The diversity of the current node is measured as

δi = 1 − βi = 1 − A

B
. (2.3)

When current node (location) is to split, its βi value is measured and compared with
a threshold value ε (= 0.9988).

1. If βi < ε, then current node is split. That is, partition the examples of i th location.
2. If βi > ε, that is, δi ∈ 0, then the learning process terminates and the i th location

indicates the class j for which Ci j is maximum. The future class elements falling
into current node (location) are classified to the most probable class of current
node, that is, the class that has the maximum number of training examples in
current location.

3. In some cases, even βi < ε, there exists a possibility where desired MLP is not
available. That is, it is not possible to find an MLP which can distribute the given
training examples into multiple locations. This occurs when the training examples
of different classes are highly correlated. In that case, the learning process is
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terminated. The future class elements are classified as class j for which Ci j is
maximum, that is, the most probable class of the current node.

Suppose, after evaluating the distribution of patterns of each class, the pattern set
S is partitioned into Sa and Sb, where Sa and Sb represent the pattern set belonging
to leaf nodes and intermediate nodes, respectively. The goodness of the splitting or
partition is given by the figure of merit (FM), where

FM = | Sa |
| S | = 1 − | Sb |

| S | ; (2.4)

where Sa ≤ Sb = S and | S | represent the cardinality of the set S. The value of FM
indicates the classification accuracy of an intermediate or nonterminal node.

For ease of discussions, in the rest of the chapter, following terminologies are
used:

• η and α represent the learning rate and momentum constant of back propagation
algorithm.

• Hn is the number of neurons in the hidden layer of MLP.
• L is the depth of the NNTree, which is equal to the number of levels from the root

to the leaf nodes.
• B represents the breadth of the NNTree, which is the number of intermediate nodes

in each level of the tree.
• Classification accuracy is defined as the percentage of samples that are correctly

classified.
• Classification time is defined as the time required to classify all the samples.

The NNTree is implemented in C language and run in LINUX environment having
machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM.

2.3 Identification of Splice-Junction in DNA Sequence

In this section, the application of the NNTree in finding the splice junction in anony-
mous sequences of DNA is presented. The performance of the NNTree is evaluated
for benchmark data set analyzing classification accuracy.

In bioinformatics, one of the major tasks is the recognition of certain DNA subse-
quences those are important in the expression of genes. Basically, a DNA sequence
is a string over alphabet D = {A, C, G, T}. DNA contains the information by which
a cell constructs protein molecules. The cellular expression of protein proceeds by
the creation of a messenger ribonucleic acid (mRNA) copy from the DNA template.
This mRNA is then translated into a protein. One of the most unexpected findings in
molecular biology is that large pieces of the mRNA are removed before it is translated
further [2]. The utilized sequences are known as exons while the removed sequences
are known as introns, or intervening sequences. The points at which DNA is removed
are known as splice junctions. The splice-junction problem is to determine into which
of the following three categories a specified location in a DNA sequence falls: (1)
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Table 2.1 Classification accuracy for η = 0.50 and α = 0.70

Depth of Tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 99.2 91.4 1 98.7 91.6 1
2 99.6 93.5 3 99.7 94.2 2
3 99.9 93.5 1 99.9 94.2 2

Table 2.2 Classification accuracy for α = 0.70

Depth of Tree η = 0.90 and Hn = 10 η = 0.80 and Hn = 15
Training Testing Breadth Training Testing Breadth

1 84.2 81.6 1 82.3 82.6 1
2 89.3 84.3 3 87.6 84.9 3
3 91.7 84.6 6 90.3 85.6 6
4 93.7 84.8 8 93.5 85.6 8
5 95.0 84.9 5 95.3 85.7 8
6 96.4 85.1 6 96.5 85.7 7

exon/intron borders, referred to as donors; (2) intron/exon borders, referred to as
acceptors; and (3) neither.

2.3.1 Description of Data Set

The data set used in this problem is a processed version of the Irvine Primate splice-
junction database [14]. Each of the 3,186 examples in the database consists of a
window of 60 nucleotides, each represented by one of four symbolic values ({A, C,
G, T}) and the classification of the middle point in the window as one of intron–exon
boundary, or neither of these. Processing involved the removal of four examples,
conversion of the original 60 symbolic attributes to 180 binary attributes and the
conversion of symbolic class labels to numeric labels. The training set of 2,000 is
chosen randomly from the data set and the remaining 1,186 examples are used as the
test set.

2.3.2 Experimental Results

The experimental results on data set reported in earlier subsection are presented in
Tables 2.1, 2.2, 2.3, 2.4, Figs. 2.2, 2.3. Tables 2.1 and 2.2 represent the classification
accuracy of both training and test samples for different values of
η, α, and Hn . The classification accuracy of training and testing confirms that the
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Table 2.3 Performance of
NNTree and C4.5 on
splice-junction database

Algorithms/ Classification Total Height Classification
methods accuracy (%) nodes of tree time (ms)

NNTree 94.2 5 3 517
C4.5 93.3 127 12 655

Table 2.4 Classification
accuracy for splice-junction
database

Algorithms Accuracy (%)

NNTree 94.2
MLP 91.4
Bayesian 90.3
C4.5 93.3
CA 87.9

NNTree can generalize the splice-junction database irrespective of the values of η, α,
and Hn . From Figs. 2.2 and 2.3, it is seen that the standard deviations of both training
and testing accuracy reduce with the increase in L .

For splice-junction database, at η = 0.50 and α = 0.70, most of the nodes of the
NNTree have βi values greater than ε. So, the learning process terminates at L = 3
irrespective of the value of Hn . Whereas, for other values of η and α, the values of
βi for most of the nodes of the NNTree are less than ε when L → 6. So, for L → 6,
most of the nodes are intermediate nodes. At L = 7, though βi < ε for most of
the nodes, the training examples of different classes are so correlated that an MLP
cannot be found corresponding to each node, which can classify the data set present
at that node. Hence, the NNTree stops to grow.

Table 2.3 compares the performance of the NNTree with C4.5, a popular decision
tree algorithm [18], with respect to classification accuracy, total number of intermedi-
ate nodes, height of the tree, and classification time. For splice-junction database, the
classification accuracy of the NNTree is higher than that of the C4.5, while the num-
ber of intermediate nodes, height of the tree, and classification time of the NNTree
are significantly smaller than C4.5.

Finally, Table 2.4 compares the classification accuracy of the NNTree with that of
different classification algorithms, namely, Bayesian [3], C4.5 [18], MLP [8, 10], and
cellular automata (CA) [13]. The experimental results of Table 2.4 clearly establish
the fact that the classification accuracy of the NNTree is higher than that of several
other classification algorithms.

2.4 Identification of Protein Coding Region in DNA Sequence

This section presents the application of the NNTree for finding protein coding (exon)
regions in anonymous sequences of DNA. The performance of the NNTree is evalu-
ated for few sequences and an analysis regarding the accuracy of the method is also
presented.



54 2 Neural Network Tree for Identification

Fig. 2.2 Performance of
NNTree on splice-junction
database for η = 0.50 and
α = 0.70. a Hn = 10; b
Hn = 15
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Over the past 20 years, researchers have identified a number of features of exonic
DNA that appear to be useful in distinguishing between coding and noncoding regions
[1, 4, 5, 25]. These features include both statistical and information-theoretic mea-
sures, and in many cases are based on knowledge of the biology underlying DNA
sequences and transcription processes. These features are summarized in a survey
by Fickett and Tung [6], who also have developed several benchmark features and
databases for future experiments on this problem.
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Fig. 2.3 Performance of the
NNTree on splice-junction
database for α = 0.70. a
η = 0.90 and Hn = 10; b
η = 0.80 and Hn = 15
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Previous research on automatic identification of protein coding regions has con-
sidered methods such as linear discriminants [5, 6] and neural networks [4, 25].
These systems have used measures such as codon frequencies, dicodon frequencies,
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Table 2.5 Benchmark data
sets proposed by Fickett and
Tung

Data Set Human 54 Human 108 Human 162

Training set—coding 20,456 7,086 3,512
Training set—noncoding 125,132 58,118 36,502
Training set total 145,588 65,204 40,014
Test set—coding 22,902 8,192 4,226
Test set—noncoding 122,138 57,032 35,602
Test set total 145,040 65,224 39,868

fractal dimensions, repetitive hexamers, and other features to identify exons in rel-
atively short DNA sequences. The standard experimental study considers a limited
window (that is, a subsequence) of a fixed length, for example 100 base pairs, and
computes features based on that window alone. The goal is to identify the window
as either all-coding or all-noncoding.

2.4.1 Data and Method

The data used for this study are the human DNA data collected by Fickett and Tung
[6]. All the sequences are taken from GenBank in May 1992. Fickett and Tung
have provided the 21 different coding measures that they surveyed and compared.
The benchmark human data includes three different data sets. For the first data
set, nonoverlapping human DNA sequences of length 54 have been extracted from
all human sequences, with shorter pieces at the ends discarded. Every sequence is
labeled according to whether it is entirely coding, entirely noncoding, or mixed, and
the mixed sequences (that is, overlapping the exon–intron boundaries) are discarded.
The data set also includes the reverse complement of every sequence. This means
that one-half of the data is guaranteed to be from the nonsense strand of the DNA,
which makes the problem of identifying coding regions somewhat harder. For the
current study, the same division into training and test data have been used as in the
benchmark study [6]. The training set is used exclusively to construct an MLP-based
tree-structured pattern classifier (NNTree), and the tree is then used to classify the test
set. In addition to the 54-base data set, the data sets containing 108 and 162 bases
have been used. The sizes of these data sets are shown in Table 2.5, which gives
the number of nonoverlapping windows in each set. No information about reading
frames is used in this study. Every window is either all-coding or all-noncoding, but
the reading frame of each window is unknown. This choice of window length and
experimental method follows that used by Fickett and Tung [6] and the problem here
is what they defined as a protein coding region.
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2.4.2 Feature Set

All of the features that have been used are derived from the 21 protein coding mea-
sures, which are proposed by Fickett and Tung [6]. A single coding measure is not
necessarily the same thing as a single measure. Typically, a coding measure is a
vector of measurements on a DNA subsequence.

2.4.2.1 Dicodon Measure

A dicodon is a subsequence of six consecutive nucleotides such as TAGGAC. The
dicodon measure is the list of the 4,096 frequencies of every possible dicodon (six
consecutive bases from the 4 letter alphabet). The dicodon frequency feature is a
vector of the 4,096 dicodon frequencies across the input sequence, where the dicodon
counts are accumulated only at locations whose starting point is a multiple of 3 (that
is, starting at the 0th, 3rd, 6th, . . . nucleotides in the sequence). To convert the dicodon
measure to a single number, the 4,096 dicodon frequencies are computed on each
window and plugged into the hyperplane equation. This gives a single number that
becomes the dicodon discriminant.

2.4.2.2 Hexamer-1 and Hexamer-2 Measures

The hexamer-1 and hexamer-2 measures are identical to dicodons, except that 1 and 2
offsets them. The hexamer-1 frequency feature is likewise a vector of 4,096 dicodon
frequencies, except that the counts are accumulated at positions 1, 4, 7, . . . .; the
hexamer-2 frequency feature is defined analogously.

2.4.2.3 Open Reading Frame Measure

The open reading measure is simply the longest sequence of codons in the window
that does not contain a stop codon. That is, the open reading frame feature is the
length, in codons, of the longest sequence of codons (aligned with locations 0, 3,
. . .) in the data string which does not contain a stop codon.

2.4.2.4 Run Measure

The run measure is a vector of length 14; for each nontrivial subset S ⊂ {A, C, T,
G}, the run feature contains an entry that gives the length of the longest contiguous
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subsequence having all entries from S. For example, if the entry of the run feature,
which corresponds to {C, G}, is 4, then it means that the longest consecutive substring
containing only C and G is of length 4. The run measure counts the number of repeats
or runs of a single base or any set of bases from the set (A, C, T, G). Thus, it includes
14 nontrivial subsets of the four bases, and for each subset runs are counted separately.

2.4.2.5 Position Asymmetry Measure

The asymmetry feature is a vector of length four which measures, for each nucleotide
A, C, G, and T, the extent to which the nucleotide is asymmetrically distributed over
the three codon positions. The position asymmetry measure counts for each of the
four bases, the frequency of the base in each of the three codon positions. Thus,
f (b, i) is the frequency of base b in position i and

μ(b) =
∑

i

f (b, i)

3
. (2.5)

Asymmetry is then defined as

asymm(b) =
∑

i

( f (b, i) − μ(b))2. (2.6)

2.4.2.6 Codon Usage Measure

The codon usage feature is a vector of the 64 codon frequencies. The codon usage
measure is simply the frequencies of the 64 possible codons in the test window. The
counts are accumulated only at locations 0, 3, . . ..

2.4.2.7 Diamino Acid Usage Measure

The diamino acid frequency is a vector of the 441 amino acid frequencies which are
obtained by translating from the nucleotide sequence to an amino acid string (stop
codons are treated as a 21st amino acid); like the dicodon frequency feature, counts
are accumulated only at locations 0, 3, . . ..

2.4.2.8 Fourier Measure

Let E(x, y) be the equality predicate that has value 1 if x = y and 0 otherwise. The
nth Fourier coefficient for a window W of length 2M is then defined as:
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Table 2.6 Human DNA 54bp at η = 0.50 and α = 0.70

Depth of tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 57.2 54.7 1 57.5 54.9 1
2 84.6 82.5 2 84.5 81.8 2
3 85.2 82.6 4 85.4 82.0 4
4 86.0 82.7 8 86.0 82.1 8
5 86.5 82.9 16 86.4 82.2 16
6 86.5 82.9 16 86.7 82.4 32

F(n) =
∑

p

∑

m

E(Wm, Wm−p) exp

(
ωinp

M

)
(2.7)

where Wm represents the mth base in the window. The Fourier measure is then just
F(2M/2), F(2M/3), . . . , F(2M/9), which corresponds to the Fourier coefficients
for periods 2 through 9.

After generating all protein coding measures, all the attributes in a data set are
normalized to facilitate the NNTree learning. Suppose, the possible value range of
an attribute Ai is (Ai,min, Ai,max), and the real value that class element j takes at Ai

is Ai j , then the normalized value of Ai j is given as follows:

A i j = Ai j − Ai,min

Ai,max − Ai,min
. (2.8)

Next subsection presents extensive experimental analysis regarding the classifi-
cation accuracy of the NNTree, an MLP-based tree-structured classifier.

2.4.3 Experimental Results

In this subsection, the results of the NNTree for three Fickett and Tung’s data sets are
presented. Values are given for the percentage accuracy on both training and test set.
Results of the NNTree on each of the data set are given in Tables 2.6, 2.7. 2.8, 2.9,
2.10, and 2.11. The mean accuracy of training and testing confirm that the evolved
NNTree can generalize the data sets presented in Table 2.5 irrespective of the number
of attributes, tuples, α, η, and Hn .

In case of Fickett and Tung database, for L → 6, the values of βi for all possible
nodes or locations of the NNTree are less than ε. So, all the nodes are intermediate or
nonterminal nodes for L → 6. Hence, the NNTree has been grown by splitting all these
nonterminal nodes. At L = 7, though the value of βi < ε for each nonterminal node,
the training samples of two classes in each nonterminal node are highly correlated.
So, at L = 7, an MLP cannot be found, corresponding to an intermediate node,
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Table 2.7 Human DNA 54bp at η = 0.70 and α = 0.70

Depth of tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 55.6 53.2 1 53.6 50.2 1
2 77.3 75.5 2 76.1 71.3 2
3 80.0 78.0 4 83.3 78.7 4
4 82.2 79.9 8 85.2 82.4 8
5 83.5 80.9 16 85.3 82.4 16
6 84.4 81.3 32 85.7 82.6 32

Table 2.8 Human DNA 108bp at η = 0.50 and α = 0.70

Depth of tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 58.4 55.7 1 59.0 56.1 1
2 86.8 82.5 2 87.1 81.0 2
3 88.3 82.6 4 87.8 81.8 4
4 89.6 82.7 8 89.3 82.9 8
5 90.2 82.8 16 90.1 83.5 16
6 90.7 83.1 32 92.2 83.5 32

Table 2.9 Human DNA 108bp at η = 0.70 and α = 0.70

Depth of tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 55.3 52.5 1 57.4 55.0 1
2 78.9 76.3 2 77.6 74.4 2
3 82.5 79.7 4 85.2 79.3 4
4 84.9 81.9 8 90.8 82.7 8
5 86.5 82.6 16 93.5 82.9 16
6 87.7 83.4 32 93.7 83.5 32

Table 2.10 Human DNA 162bp at η = 0.50 and α = 0.70

Depth of Tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 59.1 56.9 1 61.0 57.5 1
2 83.5 77.3 2 81.1 71.5 2
3 85.1 78.8 4 84.9 79.6 4
4 88.0 82.9 8 89.9 83.7 8
5 91.4 84.2 16 91.2 84.3 16
6 91.7 84.4 32 91.3 84.3 32



2.4 Identification of Protein Coding Region in DNA Sequence 61

Table 2.11 Human DNA 162bp at η = 0.70 and α = 0.70

Depth of tree Hn = 10 Hn = 15
Training Testing Breadth Training Testing Breadth

1 55.2 53.3 1 58.3 52.8 1
2 82.8 72.5 2 77.8 70.1 2
3 88.1 77.6 4 85.9 76.8 4
4 90.9 83.9 8 89.9 82.3 8
5 93.1 84.2 16 92.7 84.0 16
6 93.1 84.2 32 93.2 84.2 32

Fig. 2.4 Performance of
NNTree on 54bp human DNA
sequence for α = 0.70 and
Hn = 10. a η = 0.50; b
η = 0.70
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Fig. 2.5 Performance of
NNTree on 108bp human
DNA sequence for α = 0.70
and Hn = 10. a η = 0.50; b
η = 0.70
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which can classify the training samples. So, the learning process terminates at this
stage, and the nodes are considered as leaf nodes indicating the class that has the
maximum number of training examples in the current location.

Figures 2.4, 2.5, and 2.6 show the classification accuracy with error bar of the
NNTree on different DNA sequences. All the results reported in Figs. 2.4, 2.5, and 2.6
establish the fact that the NNTree can generalize a DNA sequence data set irrespective
of its sequence length. Also, the standard deviations of training and testing accuracy
are very small.
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Fig. 2.6 Performance of
NNTree on 162bp human
DNA sequence for η = 0.50
and α = 0.70. a Hn = 10; b
Hn = 15
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Finally, Table 2.12 compares the classification accuracy of the NNTree with that
of OC1 [15, 16], MLP, and other related algorithms. The OC1, proposed by Murty
et al. [15, 16], is an oblique decision tree algorithm that combined deterministic
hill-climbing with two forms of randomization to find a good oblique split at each
intermediate node of a decision tree. All the results reported in Table 2.12 establish
the fact that the classification accuracy of the NNTree is higher than that of existing
algorithms. Also, the results reported here establish the fact that the NNTree can
generalize a DNA data set irrespective of its sequence length.
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Table 2.12 Classification
accuracy for human DNA 54,
108, and 162bp

Algorithms 54bp 108bp 162bp

NNTree 82.9 83.5 84.4
OC1 73.9 83.7 84.2
MLP 54.9 56.1 57.5
Position asymmetry 70.7 77.6 81.7
Fourier 69.5 77.4 82.0
Hexamer 69.8 71.4 73.8
Dicodon usage 69.8 71.2 73.7

2.5 Conclusion and Discussion

This chapter presents the design of a hybrid learning algorithm, termed as an NNTree.
It uses MLP for designing a tree-structured pattern classifier. Instead of using the
information gain ratio as a splitting criterion, a new criterion is presented in this
chapter for the NNTree design. This criterion captures well the intuitive goal of
reducing the rate of misclassification.

The performance of the NNTree is evaluated through its applications in splice-
junction and protein coding region identification. Experimental comparisons with
other related algorithms provide better or comparable classification accuracy with
significantly smaller trees and fast classification times. Extensive experimental results
reported in this chapter confirm that the NNTree is crucial over conventional tech-
niques for classification. Also, the sizes of the trees produced by both C4.5 and
NNTree have been compared in terms of total number of nodes and height of the
trees. A smaller tree is desirable since it provides more compact class descriptions,
unless the smaller tree size leads to a loss in accuracy. The results show that the
NNTree achieves trees that are significantly smaller than the trees generated by the
C4.5.

However, both DNA and protein sequences are nonnumeric variables as they
are strings of nucleotides and amino acids, respectively. Hence, for most pattern
recognition algorithms, they cannot be used as direct inputs. They, therefore, have
to be encoded prior to input. To convert a DNA sequence into numeric values, two
methods are reported in this chapter: one is distributed encoding method [17] and
the other one is the feature extraction method proposed by Fickett and Tung [6]. In
the next chapter, a new encoding method is reported to encode the DNA or protein
sequences into numeric values for directly applying different pattern recognition
algorithms on them.
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Chapter 3
Design of String Kernel to Predict Protein
Functional Sites Using Kernel-Based
Classifiers

3.1 Introduction

The prediction of functional sites in proteins is another important problem in bioin-
formatics. It is an important issue in protein function studies and hence, drug design.
As a result, most researchers use protein sequences for the analysis or the prediction
of protein functions in various ways [6, 37]. Thus, one of the major tasks in bioinfor-
matics is the classification and prediction of protein sequences. There are two types
of analysis of protein sequences. The first is to analyze whole sequences aiming to
annotate novel proteins or classify proteins. In this method, the protein function is
annotated through aligning a novel protein sequence with a known protein sequence.
If the similarity between a novel sequence and a known sequence is very high, the
novel protein is believed to have the same or similar function as the known protein.
The second is to recognize functional sites within a sequence. The latter normally
deals with subsequences [37].

The problem of functional sites prediction deals with the subsequences; each
subsequence is obtained through moving a fixed length sliding window residue by
residue. The residues within a scan form a subsequence. If there is a functional site
within a subsequence, the subsequence is labeled as functional, otherwise it is labeled
as nonfunctional. Therefore, protein subsequence analysis problem is to classify a
subsequence whether it is functional or nonfunctional [37]. The major objective in
classification analysis is to train a classification model based on the labeled data. The
trained model is then used for classifying novel data. Classification analysis requires
two descriptions of an object: one is the set of features that are used as inputs to train
the model and the other is referred to as the class label. Classification analysis aims
to find a mapping function from the features to the class label.

To analyze protein sequences, BLAST [3], suffix-tree-based algorithms [1], reg-
ular expression matching representations [34], and finite state machines [30, 31]
are a few of the many pattern recognition algorithms that use characters or strings
as their primitive type. However, some other pattern recognition algorithms, such
as artificial neural networks trained with back-propagation [9, 26, 28], Kohonen’s
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self-organizing map [4], feed-forward and recurrent neural networks [6, 7], bio-basis
function (BBF) neural networks [8, 35, 39–42], and support vector machines [10, 25,
37], work with numerical inputs to predict different functional sites in proteins such
as protease cleavage sites of human immunodeficiency virus (HIV) and Hepatitis
C Virus, linkage sites of glycoprotein, enzyme active sites, posttranslational phos-
phorylation sites, immunological domains, Trypsin cleavage sites, protein-protein
interaction sites, and so forth. Hence, in order to apply the powerful kernel-based
pattern recognition algorithms such as support vector machines to predict functional
sites in proteins, the biological data, therefore, have to be encoded prior to input. The
objective of coding biological information in sequences is to provide a method for
converting nonnumerical attributes in sequences to numerical attributes.

There are two main methods for coding a subsequence, distributed encoding
technique [28] and BBF method [8, 35, 41]. The most commonly used method in
subsequence analysis is distributed encoding, which encodes each of the 20 amino
acids using a 20-bit binary vector [28]. In this method, the input space for modeling
is expanded unnecessarily [26]. Also, the ratio of the number of parameters in a
model is significantly decreased, which degenerates the statistical significance of the
available data for modeling. Moreover, the use of the Euclidean distance may not be
able to encode biological content in sequences efficiently [26].

In this background, the concept of BBF has been proposed in [8, 35, 41] for ana-
lyzing biological subsequences. The BBF is a string kernel function that transforms
nonnumerical biological subsequences to the numerical feature vectors. Transforma-
tion of an input biological subsequence to a numerical feature vector is performed
based on the similarity of the input subsequence and a set of reference strings. These
reference strings are termed as the bio-basis strings and the similarity is calculated
using an amino acid mutation matrix. The bio-basis strings are the sections of biologi-
cal sequences that are used for the transformation of biological data into a numerical
feature space with dimension equal to the number of bio-basis strings. The BBF
has been successfully applied to predict different functional sites in proteins [8, 35,
39–42].

The most important issue for BBF is how to select a reduced set of most relevant
and nonredundant bio-basis strings. Berry et al. [8] used the Fisher ratio for selection
of bio-basis strings. Yang and Thomson [41] proposed a method to select bio-basis
strings using mutual information. In principle, the bio-basis strings in nonnumerical
sequence space should be such that the degree of resemblance between pairs of bio-
basis strings would be as minimum as possible. Each of them would then represent
a unique feature in numerical feature space. However, the methods proposed in [8,
41] have not adequately addressed this problem. Also, it has not been paid much
attention earlier. Moreover, the BBF proposed in [8, 35, 41] does not take into
account the impact or influence of each bio-basis string in nonnumerical sequence
space. Recently, Maji and Pal [20] proposed a relational clustering algorithm, termed
as rough-fuzzy c-medoids, to select a set of bio-basis strings for amino acid sequence
analysis. The comparative performance analysis of different relational clustering
algorithms on bio-basis string selection problem is also reported in [19, 23].
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In this chapter, a new string kernel function, termed as novel BBF [21, 22],
is reported. It modifies existing BBF and is developed based on the principle of
asymmetricity of biological dissimilarity. The dissimilarity is measured using an
amino acid mutation matrix. The concept of zone of influence of the bio-basis string
is introduced in the novel kernel function to normalize the asymmetric dissimilarity.
It takes into account the influence or impact of each bio-basis string in nonnumerical
sequence space. An efficient method, introduced in [21] is presented, which integrates
the Fisher ratio and the concept of degree of resemblance to select most relevant
and distinct bio-basis strings for the novel string kernel function. Instead of using
symmetric similarity measure, the asymmetric biological dissimilarity is used to
calculate the Fisher ratio, which is more effective for selection of most relevant
bio-basis strings. The degree of resemblance enables efficient selection of a set of
distinct bio-basis strings. In effect, it reduces the redundant features in numerical
feature space. Some quantitative measures are presented to evaluate the quality of
selected bio-basis strings. The effectiveness of the novel string kernel function and
the new bio-basis string selection method, along with a comparison with existing
BBF and related bio-basis string selection methods, is demonstrated on different
protein data sets.

The structure of the rest of this chapter is as follows: Sect. 3.2 briefly introduces
necessary notions of BBF, and the bio-basis string selection methods proposed by
Berry et al. [8] and Yang and Thomson [41]. In Sect. 3.3, a novel string kernel func-
tion is presented, integrating the concepts of asymmetricity of biological dissimilarity
and the zone of influence of bio-basis string. In Sect. 3.4, an efficient bio-basis string
selection method is reported based on the Fisher ratio and the degree of resemblance.
Some quantitative performance measures are presented in Sect. 3.5 to evaluate the
quality of selected bio-basis strings. A few case studies and a comparison with exist-
ing string kernel function and related methods are presented in Sect. 3.6. Concluding
remarks are given in Sect. 3.7.

3.2 String Kernel for Protein Functional Site Identification

In this section, the basic notion in the theory of bio-basis function is reported, along
with the bio-basis string selection methods proposed by Yang and Thomson [41] and
Berry et al. [8].

3.2.1 Bio-Basis Function

A widely used method in sequence analysis is the sequence alignment [2, 3]. In this
method, the function of a sequence is annotated through aligning a novel sequence
with known sequences. If the alignment between a novel sequence and a known
sequence gives a very high similarity (homology) score, the novel sequence is
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Table 3.1 Dayhoff mutation matrix: 1 point mutation is accepted per 100 residues (PAM1)

A C D E F G H I K L M N P Q R S T V W Y

A 40 24 32 32 16 36 28 28 28 24 28 32 36 32 24 36 36 32 8 20
C 24 80 12 12 16 20 20 24 12 8 12 16 20 12 16 32 24 24 0 32
D 32 12 48 44 8 36 36 24 32 16 20 40 28 40 28 32 32 24 4 16
E 32 12 44 48 12 32 36 24 32 20 24 36 28 40 28 32 32 24 4 16
F 16 16 8 12 68 12 24 36 12 40 32 16 12 12 16 20 20 28 32 60
G 36 20 36 32 12 52 24 20 24 16 20 32 28 28 20 36 32 28 4 12
H 28 20 36 36 24 24 56 24 32 24 24 40 32 44 40 28 28 24 20 32
I 28 24 24 24 36 20 24 52 24 40 40 24 24 24 24 28 32 48 12 28
K 28 12 32 32 12 24 32 24 52 20 32 36 28 36 44 32 32 24 20 16
L 24 8 16 20 40 16 24 40 20 56 48 20 20 24 20 20 24 40 24 28
M 28 12 20 24 32 20 24 40 32 48 56 24 24 28 32 24 28 40 16 24
N 32 16 40 36 16 32 40 24 36 20 24 40 28 36 32 36 32 24 16 24
P 36 20 28 28 12 28 32 24 28 20 24 28 56 32 32 36 32 28 8 12
Q 32 12 40 40 12 28 44 24 36 24 28 36 32 48 36 28 28 24 12 16
R 24 16 28 28 16 20 40 24 44 20 32 32 32 36 56 32 28 24 40 16
S 36 32 32 32 20 36 28 28 32 20 24 36 36 28 32 40 36 28 24 20
T 36 24 32 32 20 32 28 32 32 24 28 32 32 28 28 36 44 32 12 20
V 32 24 24 24 28 28 24 48 24 40 40 24 28 24 24 28 32 48 8 24
W 8 0 4 4 32 4 20 12 20 24 16 16 8 12 40 24 12 8 100 32
Y 20 32 16 16 60 12 32 28 16 28 24 24 12 16 16 20 20 24 32 72

believed to have the same or similar function as the known sequence. In this method,
an amino acid mutation matrix is commonly used. Each mutation matrix has 20
columns and 20 rows. A value at the nth row and mth column is a probability or a
likelihood value that the nth amino acid mutates to the mth amino acid after a par-
ticular evolutionary time [15, 17]. The mutation probabilities as similarities among
amino acids are, therefore, metrics. The Dayhoff matrix (Table 3.1) was the first muta-
tion matrix developed in 1978 [13] and many new mutation matrices were developed
later on, for instance, the Blosum62 matrix [15]. However, the above method may
not be useful directly for subsequence analysis. Because, a subsequence may not
contain enough information for conventional alignment.

To alleviate this problem, the concept of BBF is introduced in [8, 35, 41] for
subsequence analysis, which is based on the principle of conventional alignment
technique. Using a table look-up technique, a homology score as a similarity value
can be obtained for a pair of subsequences. The nongapped pairwise alignment
technique is used to calculate this similarity value, where no deletion or insertion is
used to align two subsequences [8, 35, 41]. For ease of discussions, in rest of the
chapter, the following terminology is used.

• A = {A, C, . . . , W, Y} be the set of 20 amino acids.
• n represents the total number of subsequences.
• X = {x1, . . . , x j , . . . , xn} be the set of n subsequences with m residues, ∈x j ≤ A

m .
• c represents the total number of bio-basis strings.
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• V = {v1, . . . , vi , . . . , vc} be the set of c bio-basis strings and ∈vi ≤ X .
• x j [k] ≤ A, vi [k] ≤ A, ∈m

k=1.

The definition of BBF is as follows [35, 41]:

f (x j , vi ) = exp

{
γb

h(x j , vi ) − h(vi , vi )

h(vi , vi )

}
(3.1)

• h(x j , vi ) is the homology score between a subsequence x j and a bio-basis string
vi calculated using an amino acid mutation matrix [8, 35, 41];

• h(vi , vi ) denotes the maximum homology score of the i th bio-basis string vi ; and
• γb is a constant and typically chosen to be 1 [8, 35].

Suppose both xj and vi have m residues, the homology score between x j and vi is
then defined as

h(xj , vi ) =
m∑

k=1

M(x j [k], vi [k]) (3.2)

where M(x j [k], vi [k]) can be obtained from an amino acid mutation matrix through
a table look-up method. Note that x j [k], vi [k] ≤ A and A is a set of 20 amino acids
(Table 3.1).

Consider two bio-basis strings v1 = KPRT and v2 = YKAE, and a subsequence
x1 = IPRS having m = 4 residues. The nongapped pairwise homology score is
calculated between the subsequence x1 and each bio-basis string considering the
mutation probabilities as in Table 3.1. For the first bio-basis string v1, four mutation
probabilities are

M(x1[1], v1[1]) = M(I, K) = 24; M(x1[2], v1[2]) = M(P, P) = 56;
M(x1[3], v1[3]) = M(R, R) = 56; M(x1[4], v1[4]) = M(S, T) = 36.

Hence, the homology score between the subsequence x1 and the bio-basis string v1
is given by

h(x1, v1) =
4∑

k=1

M(x1[k], v1[k]) = 172.

Similarly, for the second bio-basis string v2, four mutation probabilities are 28, 28,
24, and 32. Thus, the value of h(x1, v2) between the subsequence x1 and the bio-basis
string v2 is as follows:

h(x1, v2) =
4∑

k=1

M(x1[k], v2[k]) = 112.

The maximum homology scores of two bio-basis strings v1 and v2 are given by
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h(v1, v1) = 208 and h(v2, v2) = 212.

Considering the value of γb = 1

f (x1, v1) = exp

{
γb

h(x1, v1) − h(v1, v1)

h(v1, v1)

}
= 0.633334;

f (v1, v1) = exp

{
γb

h(v1, v1) − h(v1, v1)

h(v1, v1)

}
= 1.000000;

f (x1, v2) = exp

{
γb

h(x1, v2) − h(v2, v2)

h(v2, v2)

}
= 0.287988;

f (v2, v2) = exp

{
γb

h(v2, v2) − h(v2, v2)

h(v2, v2)

}
= 1.000000.

Hence, the value of BBF f (xi , x j ) is high if two subsequences xi and x j are similar
or close to each other. The function value is one if two subsequences are identical,
and small if they are distinct. The function needs a subsequence as a support (bio-
basis string). Each bio-basis string is a feature dimension in a numerical feature
space. If A is used to denote a collection of 20 amino acids, an input space of all
potential subsequences with m residues is A

m . Then, a collection of c bio-basis
strings formulates a numerical feature space R

c, to which a nonnumerical sequence
space Am is mapped for analysis. More importantly, the BBF can transform various
homology scores to a real number as a similarity within the interval [0, 1], that is,

0 → f (x j , vi ) → 1. (3.3)

After the mapping using BBF, a nonnumerical subsequence spaceAm will be mapped
to a c-dimensional numerical feature space R

c, that is, Am ⊂ R
c.

3.2.2 Selection of Bio-Basis Strings Using Mutual Information

In [41], Yang and Thomson proposed a method for bio-basis string selection using
mutual information [32]. The necessity for a bio-basis string to be an independent
and informative feature can be determined by the shared information between the
bio-basis string and the rest as well as the shared information between the bio-basis
string and class label [41].

The mutual information is quantified as the difference between the initial uncer-
tainty and the conditional uncertainty. Let β = {vi } be a set of selected bio-basis
strings, δ = {vk} a set of candidate bio-basis strings. β = φ (empty) at the begin-
ning. A prior probability of a bio-basis string vk is referred as p(vk). The initial
uncertainty of vk is defined as
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H(vk) = −p(vk) ln p(vk). (3.4)

Similarly, the joint entropy of two bio-basis strings vk and vi is given by

H(vk, vi ) = −p(vk, vi ) ln p(vk, vi ) (3.5)

where vi ≤ β and vk ≤ δ. The mutual information between vk and vi is, therefore,
given by

I (vk, vi ) =H(vk) + H(vi ) − H(vk, vi )

={−p(vk) ln p(vk) − p(vi ) ln p(vi )

+ p(vk, vi ) ln p(vk, vi )}. (3.6)

However, the mutual information of vk with respect to all the bio-basis strings in
β is

I (vk,β) =
∑

vi ≤β

I (vk, vi ). (3.7)

Combining (3.6) and (3.7), we get [41]

I (vk,β) =
∑

vi ≤β

p(vk, vi ) ln

{
p(vk, vi )

p(vk)p(vi )

}
. (3.8)

Replacing β with the class label ε = {ε1, . . . , ε j , . . . , εM }, the mutual informa-
tion

I (vk,ε) =
∑

ε j ≤ε

p(vk,ε j ) ln

{
p(vk,ε j )

p(vk)p(ε j )

}
(3.9)

measures the mutual relationship between vk and ε. A bio-basis string whose
I (vk,ε) value is the largest will be selected as vk and will make the largest contribu-
tion to modeling (discrimination using ε) among all the remaining bio-basis strings
in δ. Therefore, there are two mutual information measurements for vk , the mutual
information between vk and ε (I (vk,ε)) and the mutual information between vk

and β (I (vk,β)). In this method, the following criterion is used for the selection of
bio-basis strings [38, 41]

J(vk) = αYT I(vk,ε) − (1 − αYT)I(vk,β) (3.10)

where αYT is a constant. In the current study, the value of αYT is set at 0.7 to give more
weightage in discrimination [38, 41]. The major drawback of the method proposed
by Yang and Thomson [41] is a huge number of prior and joint probabilities are to
be calculated, which makes the method computationally expensive.
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3.2.3 Selection of Bio-Basis Strings Using Fisher Ratio

In [8], Berry et al. proposed a method to select a set V = {v1, . . . , vi , . . . , vc} of c bio-
basis strings from the whole set X = {x1, . . . , x j , . . . , xn} of n subsequences based
on their discriminant capability. The discriminant capability of each subsequence
is calculated using the Fisher ratio [14]. The Fisher ratio is used to maximize the
discriminant capability of a subsequence in terms of interclass separation (as large
as possible) and intraclass spread between subsequences (as small as possible). The
larger the Fisher ratio value, the larger the discriminant capability of the subsequence.
Based on the values of the Fisher ratio, n subsequences of X can be ranked from
the strongest discriminant capability to the weakest one. The method yields a set V
of c subsequences from X as the bio-basis strings which possess good discriminant
capability between two classes, having evolved from original data set.

However, the n subsequences of X would have different compositions of amino
acids. Hence, they should have different pairwise alignment scores with the other
subsequences of X . As the class properties of these training subsequences are known,
these similarity values can be partitioned into two groups or classes (functional
and nonfunctional), which are denoted as X A ⊆ X and X B ⊆ X , respectively.
Denoting the similarity between two subsequences xi and x j as h(x j , xi ), the mean
and standard deviation values for these two groups with respect to the subsequence
xi are as follows:

UAi = E A[h(x j , xi )] = 1

n A

∑
h(x j , xi ); ∈x j ≤ X A (3.11)

UBi = EB[h(xk, xi )] = 1

nB

∑
h(xk, xi ); ∈xk ≤ X B (3.12)

σ2
Ai

= E A[h2(x j , xi )] − [E A[h(x j , xi )]]2

= 1

n A

∑
{h(x j , xi ) − UAi }2; ∈x j ≤ X A (3.13)

σ2
Bi

= EB[h2(xk, xi )] − [EB[h(xk, xi )]]2

= 1

nB

∑
{h(xk, xi ) − UBi }2; ∈xk ≤ X B (3.14)

where n A and nB are the number of similarity values in X A and X B , respec-
tively. E[h(x j , xi )] and E[h2(xk, xi )] represent the zero-mean, first and second order
moment of similarity, that is, expectation of h(x j , xi ) and h2(x j , xi ), respectively.
Based on these four quantities, the discriminant capability of each subsequence can
be measured using the Fisher ratio



3.2 String Kernel for Protein Functional Site Identification 75

F(xi ) = |UAi − UBi |√
σ2

Ai
+ σ2

Bi

(3.15)

where
|UAi − UBi | = |E A[h(x j , xi )] − EB[h(xk, xi )]|; (3.16)

and

σ2
Ai

+ σ2
Bi

= {E A[h2(x j , xi )] + EB [h2(xk , xi )]} − {[E A[h(x j , xi )]]2 + [EB [h(xk , xi )]]2}.
(3.17)

The basic steps of this method follows next:

1. Calculate the discriminant capabilities of all subsequences of X using the Fisher
ratio as in (3.15).

2. Rank all subsequences of X based on the values of Fisher ratio in descending
order.

3. Select first c subsequences from X as the set V of bio-basis strings.

However, the bio-basis strings in nonnumerical sequence space should be such that
the similarity between pairs of bio-basis strings would be as minimum as possible.
Each of them would then represent a unique feature in numerical feature space. The
methods proposed in [8, 41] have not adequately addressed this problem. Also, not
much attention has been paid to it earlier.

3.3 Novel String Kernel Function

In this section, a novel string kernel function is presented [21] based on the concepts
of biological dissimilarity and zone of influence of bio-basis string. Next, an efficient
method is reported for selection of bio-basis strings integrating the Fisher ratio and
the principle of degree of resemblance.

3.3.1 Asymmetricity of Biological Dissimilarity

Here, we define two asymmetric dissimilarities between two subsequences xi and x j

as follows [21]:

dxi ⊂x j = d(x j , xi ) = {h(xi , xi ) − h(x j , xi )}
dx j ⊂xi = d(xi , x j ) = {h(x j , x j ) − h(xi , x j )} (3.18)
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where dxi ⊂x j denotes the dissimilarity of subsequence x j from the subsequence xi

and h(xi , x j ) = h(x j , xi ) is the nongapped homology score between two subse-
quences xi and xj .
Consider two subsequences xi = KPRT and x j = YKAE with 4 residues. Accord-
ing to the Dayhoff mutation matrix (Table 3.1), the nongapped pairwise homology
score between two subsequences xi and xj is, therefore, h(xi , x j ) = h(x j , xi ) =
100, while the maximum homology scores of two subsequences xi and x j are given
by h(xi , xi ) = 208 and h(x j , x j ) = 212, respectively. Hence, the dissimilarity of
subsequence x j from subsequence xi is given by

d(x j , xi ) = {h(xi , xi ) − h(x j , xi )} = 208 − 100 = 108,

whereas the dissimilarity of xi from x j is as follows:

d(xi , x j ) = {h(x j , x j ) − h(xi , x j )} = 212 − 100 = 112.

Thus, the dissimilarity is asymmetric in nature, that is,

d(x j , xi ) �= d(xi , x j ). (3.19)

The asymmetricity reflects domain organizations of two subsequences xi and x j .
When two subsequences xi and x j consist of the same single domain, d(x j , xi ) and
d(xi , x j ) will be similar small values. However, suppose that xi has one extra domain,
then d(x j , xi ) becomes large even if d(xi , x j ) is small. These dissimilarities may be
used for clustering of protein sequences or subsequences so that domain organizations
are well reflected. The asymmetric property of the biological dissimilarity was also
observed by Stojmirovic [33] and Itoh et al. [16]. The asymmetric dissimilarity might
be a powerful tool to cluster sequences or subsequences and to explore gene/protein
universe.

3.3.2 Novel Bio-Basis Function

The design of novel string kernel function is based on the principle of asymmetric
biological dissimilarity [21]. Using a table look-up technique, a biological dissimilar-
ity is calculated for a pair of subsequences based on an amino acid mutation matrix.
The nongapped pairwise alignment method is used to calculate this dissimilarity,
where no deletion or insertion is used to align two subsequences. The definition of
the novel bio-basis function (nBBF) is as follows [21]:
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fnovel(x j , vi ) = exp

{ {h(x j , vi ) − h(vi , vi )}
ηi

}

that is, fnovel(x j , vi ) = exp

{−d(x j , vi )

ηi

}
(3.20)

The parameter ηi in (3.20) represents the zone of influence of the i th bio-basis
string vi . It represents the variance of the bio-basis string vi with respect to the
subsequences nearest to it. In other words, if each bio-basis string is considered as a
cluster prototype, then the zone of influence of it represents the radius of that cluster.
The value of ηi could be the same for all bio-basis strings if all of them are expected
to form similar clusters in nonnumerical sequence space. In general, it is desirable
that ηi should relate to the overall size and shape of the cluster associated with the
bio-basis string vi . In the present research work, the following definition is used:

ηi = 1

ni

∑

x j

d(x j , vi ) = 1

ni

∑

x j

{h(vi , vi ) − h(x j , vi )} (3.21)

where ni is the total number of subsequences having minimum dissimilarity from
the i th bio-basis string vi among all the bio-basis strings and {h(vi , vi ) − h(x j , vi )}
is the dissimilarity of the subsequence x j from the i th bio-basis string vi . In other
words, the value of ηi represents the average dissimilarity of the input subsequences
from their nearest bio-basis string vi .

Hence, the novel string kernel function normalizes the asymmetric dissimilarity
using the zone of influence or variance of the bio-basis string, rather than using
maximum homology score of the bio-basis string as in (3.1).

3.4 Biological Dissimilarity Based String Selection Method

One of the main problem in BBF is how to select a reduced set of most relevant bio-
basis strings. The bio-basis strings are the sections of biological sequences that are
used for the transformation of biological data into a numerical feature space. Hence,
the problem of selecting a set V = {v1, . . . , vi , . . . , vc} of c subsequences as the
bio-basis strings from the whole set X = {x1, . . . , x j , . . . , xn} of n subsequences,
where V ⊆ X , is a feature selection problem.

In real biological data analysis, the data set may contain a number of similar or
redundant subsequences with low discriminant capability or relevance to the classes.
The selection of such similar and nonrelevant subsequences as the bio-basis strings
may lead to a reduction in the useful information in numerical feature space. Ideally,
the selected bio-basis strings should have high discriminant capability with the classes
while the similarity among them would be as low as possible. The subsequences
with high discriminant capability are expected to be able to predict the classes of the
subsequences. However, the prediction capability may be reduced if many similar
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subsequences are selected as the bio-basis strings. In contrast, a data set that contains
subsequences not only with high relevance with respect to the classes but with low
mutual redundancy is more effective in its prediction capability. Hence, to assess the
effectiveness of the subsequences as the bio-basis strings, both the relevance and the
redundancy or similarity need to be measured quantitatively. The bio-basis string
selection method, reported in [21], addresses the above issues through following
three phases:

1. computation of the discriminant capability or relevance of each subsequence;
2. determination of the nonrelevant subsequences; and
3. computation of the similarity or redundancy among subsequences.

An asymmetric biological dissimilarity based Fisher ratio is chosen here to com-
pute the discriminant capability or relevance of each subsequence to the classes,
while a novel concept of the degree of resemblance is used to calculate the mutual
redundancy or similarity among subsequences. The nonrelevant subsequences are
discarded using a nearest mean classifier [14]. Next the calculation of the Fisher
ratio using asymmetric biological dissimilarity is provided along with the concept
of degree of resemblance and the principle of nearest mean classifier.

3.4.1 Fisher Ratio Using Biological Dissimilarity

In the method reported in [21], the Fisher ratio [14] is used to measure the discriminant
capability or relevance of each subsequence xi ≤ X . The Fisher ratio is calculated
based on the asymmetric biological dissimilarity. As the class labels of all training
subsequences are known, the set X can be partitioned into two groups or classes X A

and X B , respectively, where

X A ∩ X B = ∅; X A ⇒ X B = X; (3.22)

|X A| = n A; |X B | = nB; n A + nB = n. (3.23)

Hence, each subsequence xi ≤ X should have n A and nB dissimilarity values with
the subsequences of X A and X B , respectively. Denoting the dissimilarity of the sub-
sequence x j from the subsequence xi as d(x j , xi ), the mean and standard deviation
values for the two classes X A and X B with respect to the subsequence xi are as
follows:

�UAi = 1

n A

∑
d2(x j , xi ); ∈x j ≤ X A (3.24)

�UBi = 1

nB

∑
d2(xk, xi ); ∈xk ≤ X B (3.25)
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�σ2
Ai

= 1

n A

∑
{d2(x j , xi ) − �UAi }2; ∈x j ≤ X A (3.26)

�σ2
Bi

= 1

nB

∑
{d2(xk, xi ) − �UBi }2; ∈xk ≤ X B (3.27)

where �UAi , �UBi , �σAi , and �σBi represent the mean and standard deviation values of
the subsequence xi for two groups X A and X B , respectively. These four quantities
are calculated based on the square of biological dissimilarity with respect to the
subsequence xi . Based on these four quantities, the discriminant capability of each
subsequence xi is computed using the Fisher ratio that is as follows:

�F(xi ) = |�UAi − �UBi |√
�σ2

Ai
+�σ2

Bi

. (3.28)

Let κi = h(xi , xi ) be the maximum homology score of the subsequence xi . The
above four quantities can then be written using κi as

�UAi = {κ2
i + E A[h2(x j , xi )] − 2κi E A[h(x j , xi )]}; (3.29)

�UBi = {κ2
i + EB[h2(xk, xi )] − 2κi EB[h(xk, xi )]}; (3.30)

�σ2
Ai

= {4κ2
i (E A[h2(x j , xi )] − [E A[h(x j , xi )]]2)

− 4κi (E A[h3(x j , xi )] − E A[h(x j , xi )]E A[h2(x j , xi )])
− [E A[h2(x j , xi )]]2 + E A[h4(x j , xi )]}; (3.31)

and

�σ2
Bi

= {4κ2
i (EB[h2(xk, xi )] − [EB[h(xk, xi )]]2)

− 4κi (EB[h3(xk, xi )] − EB[h(xk, xi )]EB[h2(xk, xi )])
− [EB[h2(xk, xi )]]2 + EB[h4(xk, xi )]}; (3.32)

where E[hr (x j , xi )] represents the zero-mean, r th order moment of similarity
h(x j , xi ) between two subsequences xi and x j . Now, the numerator of (3.28) is
given by

|�UAi − �UBi | = |{E A[h2(x j , xi )] − EB[h2(xk, xi )]}
− 2κi {E A[h(x j , xi )] − EB[h(xk, xi )]}|. (3.33)

Hence, the numerator of (3.28) not only depends on the difference of zero-mean,
first-order moment of similarity of two groups as in (3.15), it also takes into account
the difference of zero-mean, second-order moment of similarity as well as the maxi-
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mum homology score of the subsequence xi . That is, the numerator of (3.28) depends
on following three factors:

• difference of zero-mean, first order moment of similarity of two groups,
{E A[h(x j , xi )] − EB[h(xk, xi )]};

• difference of zero-mean, second-order moment of similarity of two groups,
{E A[h2(x j , xi )] − EB[h2(xk, xi )]};

• maximum homology score of the subsequence xi , that is, κi = h(xi , xi ).

Similarly, the denominator of (3.28) contains the following terms:

�σ2
Ai

+�σ2
Bi

= [4κ2
i {E A[h2(x j , xi )] + EB[h2(xk, xi )]}

− 4κ2
i {[E A[h(x j , xi )]]2 + [EB[h(xk, xi )]]2}

− 4κi {E A[h3(x j , xi )] + EB[h3(xk, xi )]}
+ 4κi {E A[h(x j , xi )]E A[h2(x j , xi )]
+ EB[h(xk, xi )]EB[h2(xk, xi )]}
− {[E A[h2(x j , xi )]]2 + [EB[h2(xk, xi )]]2}
+ {E A[h4(x j , xi )] + EB[h4(xk, xi )]}]. (3.34)

Hence, the denominator of (3.28) considers the zero-mean, higher order (upto
fourth order) moment of similarity of two groups as well as the maximum homol-
ogy score of the subsequence xi , while that of (3.15) only takes into account the
zero-mean, first- and second-order moment of similarity of two groups and does
not consider the maximum homology score of the subsequence xi . In effect, (3.28)
calculates the discriminant capability of each subsequence xi more accurately.

3.4.2 Nearest Mean Classifier

After computing the discriminant capability or relevance �F(xi ) of each subsequence
xi ≤ X using the Fisher ratio according to (3.28), the nonrelevant subsequences are
discarded based on a threshold value δ. The subsequences those have the Fisher ratio
values larger than or equal to the threshold value δ are considered as the candidate
bio-basis strings. The value of δ is obtained using the concept of nearest mean
classifier.

The current technique assumes at least one bio-basis string in the set X . If the
Fisher ratio value �F(xt ) of the subsequence xt is the maximum, then xt is declared
to be the first bio-basis string. In order to find other candidate bio-basis strings, the
threshold value δ is calculated using the nearest mean classifier. To obtain the reliable
arithmetic mean, the subsequence xt and those have the Fisher ratio values less than
�F(xt )/10 are removed [18]. The mean M of the Fisher ratio values of the remaining
subsequences is then calculated. Finally, the minimum mean distance is calculated
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as follows:
D(xs) = min |�F(xi ) − M | : 1 < i < n (3.35)

where the Fisher ratio value �F(xs) of the subsequence xs has the minimum distance
with M . To make the threshold value noise-insensitive, the Fisher ratio value �F(xs)

that is closest to the mean M is set as δ, rather than the mean itself, that is,

δ = �F(xs). (3.36)

The basic steps of this approach follows next:

1. Compute the mean M of the Fisher ratio values of the subsequences without
considering the best and below one tenth best Fisher ratio values.

2. Find out the Fisher ratio �F(xs) of the subsequence xs that has the minimum
distance with M and set the threshold value δ = �F(xs).

3. Remove those subsequences with Fisher ratio values below the threshold δ.

After eliminating nonrelevant subsequences using the principle of nearest mean
classifier, the redundancy among existing subsequences (candidate bio-basis strings)
is calculated in terms of nongapped homology score. A quantitative measure is
reported next to compute the similarity or redundancy between two subsequences.

3.4.3 Degree of Resemblance

The degree of resemblance of the subsequence x j with respect to the subsequence
xi is defined as follows [20, 21]:

DOR(x j , xi ) = h(x j , xi )

h(xi , xi )
. (3.37)

It is the ratio between the nongapped pairwise homology score of two input subse-
quences xi and x j to the maximum homology score of the subsequence xi . It is used
to quantify the similarity in terms of homology score between pairs of subsequences.
Combining (3.18) and (3.37), the relation between the degree of resemblance and
the asymmetric dissimilarity of the subsequence x j with respect to the subsequence
xi is

d(x j , xi ) = h(xi , xi )[1 − DOR(x j , xi )]. (3.38)

Let us consider two subsequences xi = KPRT and x j = YKAE with 4
residues. The nongapped homology score between xi and x j is given by h(xi , x j ) =
h(x j , xi ) = 100, while the maximum homology scores of two subsequences xi and
x j are given by h(xi , xi ) = 208 and h(x j , x j ) = 212, respectively. Hence, the degree
of resemblance of subsequence x j with respect to the subsequence xi is given by
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DOR(x j , xi ) = h(x j , xi )

h(xi , xi )
= 100

208
= 0.480769,

while that of xi with respect to x j is as follows:

DOR(xi , x j ) = h(xi , x j )

h(x j , x j )
= 100

212
= 0.471698.

Hence, the degree of resemblance is asymmetric in nature, that is,

DOR(xi , x j ) �= DOR(x j , xi ). (3.39)

This asymmetric property makes a reference subsequence different from the sub-
sequence under study. It helps to find out redundant subsequences with respect to a
selected bio-basis string. If two subsequences are different, the degree of resemblance
between them is small. A high value of DOR(xi , x j ) between two subsequences xi

and x j asserts that the similarity between them is high. If two subsequences are same,
the degree of resemblance between them is maximum, that is, 1. Thus,

0 < DOR(xi , x j ) → 1. (3.40)

3.4.4 Details of the Algorithm

While the Fisher ratio is used to calculate the discriminant capability or relevance
of each subsequence, the degree of resemblance takes into account the similarity or
redundancy between two subsequences. Based on the concept of degree of resem-
blance as in (3.37) and the Fisher ratio as in (3.28), the method for selecting a reduced
set of most relevant bio-basis strings is described next.

• Input: X = {x1, . . . , x j , . . . , xn} be the set of n subsequences with m residues,
where x jk ≤ A and A = {A, C, . . . , W, Y} be the set of 20 amino acids.

• Output: V = {v1, . . . , vi , . . . , vc} be the set of c bio-basis strings with m residues,
where vi ≤ X and vik ≤ A.

1. Initialize �V ← X and V ← ∅.
2. Calculate the discriminant capabilities of all subsequences of �V using the Fisher

ratio as in (3.28).
3. Compute the threshold value δ using (3.36).
4. Remove the subsequences from �V those have Fisher ratio values below the thresh-

old δ.
5. Repeat steps (a) and (b) for all the remaining subsequences of �V .

a. Select a subsequence from �V as the candidate bio-basis string of V that has
the highest Fisher ratio value (maximum discriminant capability).
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b. Remove the subsequences from �V those have the DOR values with respect to
the selected bio-basis string of step (a) above threshold ξ.

6. End.

Note that the main motive of introducing the concepts of degree of resemblance
and nearest mean classifier lies in reducing the number of bio-basis strings. That is,
both attempt to eliminate nonrelevant and redundant bio-basis strings from the whole
subsequences. The whole approach is, therefore, data-dependent.

3.4.5 Computational Complexity

The time required to compute the Fisher ratio for each subsequence is O(nm), where
n and m are the total number of subsequences and size of each subsequence, respec-
tively. Hence, the complexity to calculate the Fisher ratio of n subsequences is
O(n2m). Among n subsequences, c subsequences are selected as the c bio-basis
strings. The time required to select a bio-basis string from the available n subse-
quences based on Fisher ratio is O(n) and to discard subsequences with the DOR
values greater than ξ with respect to the currently selected bio-basis string is also
O(n). These two steps are repeated c times to generate c bio-basis strings. So, the
time complexity of this phase is O(cn). Hence, the overall time complexity of the
string selection algorithm is O(n2m + cn), that is, O(n2), as both c, m  n.

3.5 Quantitative Measure

In this section, some quantitative indices are reported to evaluate the quality of
selected bio-basis strings incorporating the concept of biological dissimilarity. Based
on this concept, three indices, α, β, and γ [21], are presented next for evaluating
quantitatively the quality of selected bio-basis strings. In this regard, it should be
noted that some other quantitative indices are reported in [20, 23] to evaluate the
quality of selected bio-basis strings incorporating the concept of nongapped pairwise
homology alignment score and mutual information.

3.5.1 Compactness: α Index

It is defined as

α = 1

c

c∑

i=1

1

ni

∑

x j

{h(vi , vi ) − h(x j , vi )} (3.41)



84 3 Design of String Kernel to Predict Protein Functional Sites

where ni is the total number of subsequences having minimum dissimilarity val-
ues from the i th bio-basis string vi among all the bio-basis strings and {h(vi , vi ) −
h(x j , vi )} is the dissimilarity of the subsequence x j from the bio-basis string vi . The
α index represents the average dissimilarity of the input subsequences from their
corresponding bio-basis strings. In other words, the α index measures the compact-
ness of input subsequences with respect to their corresponding bio-basis strings. A
good bio-basis string selection method should make all input subsequences as close
to their bio-basis strings as possible. The value of α index increases with the increase
in dissimilarity of all the subsequences from their corresponding bio-basis strings.
Therefore, for a given data set and c value, the lower the average dissimilarity, the
lower would be the α value. The α value decreases with the increase in compactness
of subsequences with respect to their corresponding bio-basis strings.

3.5.2 Cluster Separability: β Index

The β index symmetrizes two asymmetric dissimilarities between two bio-basis
strings so that the difference can be evaluated with a single value. It is defined as the
minimum of the dissimilarity values between two bio-basis strings and is as follows:

β = min
i, j

{
1

2
{d(v j , vi ) + d(vi , v j )}

}
: 1 < i, j < c

= min
i, j

{
1

2
{h(vi , vi ) + h(v j , v j ) − 2h(v j , vi )}

}
. (3.42)

A good bio-basis string selection procedure should make the asymmetric dissimilarity
between all bio-basis strings as high as possible. In other words, the β index measures
how the bio-basis strings are separated from each other. The β index increases with
the increase of dissimilarity between bio-basis strings.

3.5.3 Class Separability: γ Index

It is defined as

γ = min
i

{
ÚAi − ÚBi

}
: 1 < i < c (3.43)

where ÚAi and ÚBi are the average dissimilarity values of the i th bio-basis string vi

from all bio-basis strings of two classes εA and εB , respectively and are as follows:
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ÚAi = 1

c1

c1∑

j=1

d(v j , vi ); ÚBi = 1

c2

c2∑

k=1

d(vk, vi )

where
∈v j ≤ εA; ∈vk ≤ εB; and c1 + c2 = c.

The value of γ index is the minimum of the differences between average dissimilarity
values of two different class bio-basis strings. A good bio-basis string selection
procedure should make the asymmetric dissimilarity between two different class
bio-basis strings as high as possible. Actually, the γ index measures how much two
different class bio-basis strings are separated. The γ index increases with the increase
of separation between the bio-basis strings of two different classes.

3.6 Experimental Results

The performance of the nBBF is compared with that of the existing BBF, while
the performance of the new FRDissimilarity+DOR-based bio-basis string selection
method (using the concepts of asymmetric dissimilarity-based Fisher ratio, nearest
mean classifier, and degree of resemblance) [21] is compared extensively with that
of various other related ones. These involve different combinations of the individual
components of the hybrid scheme, as well as other related schemes. The algorithms
compared are

1. MInformation: the mutual information based method as in (3.10) introduced by
Yang and Thomson [41];

2. FRSimilarity: using the similarity-based Fisher ratio as in (3.15) proposed by
Berry et al. [8];

3. FRDissimilarity: using the asymmetric dissimilarity-based Fisher ratio as in
(3.28); and

4. FRSimilarity+DOR: integration of the FRSimilarity [8] and the concepts of near-
est mean classifier and degree of resemblance.

All the algorithms are implemented in C language and run in LINUX environment
having machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM. To
compare the performance of bio-basis string selection methods, α, β, and γ indices
are used. The Dayhoff amino acid mutation matrix (Table 3.1) is used to calculate the
nongapped pairwise homology score between two subsequences. The performance
of two string kernel functions is evaluated based on the prediction accuracy of support
vector machine (SVM). The source code of the SVM is obtained from http://svmlight.
joachi\discretionary-ms.org/. Details of the SVM and the prediction accuracy are
reported next.

http://svmlight.joachidiscretionary {-}{}{}ms.org/
http://svmlight.joachidiscretionary {-}{}{}ms.org/
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3.6.1 Support Vector Machine

The essence in classification is to minimize the probability of error in using the
trained classifier, which is refereed to as the structural risk. It has been shown that
the SVM [36] is able to minimize the structural risk through finding a unique hyper-
plane with maximum margin to separate data from two classes. Because of this, the
SVM provides best generalization ability on unseen data compared with the other
classifiers.

A classification algorithm aims to find a mapping function between input features
x̂ and a class membership t ≤ −1, 1: η = f̂ (x̂, w), where w is the parameter vector,
f̂ (x̂, w) the mapping function and η the output. With other classification algorithms,
the Euclidean distance (error) between η and t is minimized to optimize w. This can
lead to a biased hyperplane for discrimination.

In search for the best hyperplane, the SVM finds a set of data points that are
most difficult training points to classify. These data points are referred to as support
vectors. In constructing an SVM classifier, the support vectors are closed in the
hyperplane and are located on the boundaries of the margin between two classes. The
advantage of using the SVM is that the hyperplane is searched through maximizing
the margin. Because of this, the SVM classifier is the most robust, and hence has the
best generalization ability. The trained SVM classifier is a linear combination of the
similarity between an input and the support vectors. The similarity between an input
and the support vectors is quantified by a kernel function defined as: ψ(x̂, vi ), where
vi is the i th support vector. The decision is made using the following equation:

η = sign
∑

ai tiψ(x̂, vi ) (3.44)

where ti is the class label of the i th support vector and ai is the positive parameter
of the i th support vector determined by an SVM algorithm.

However, the kernel function must be specially designed to deal with a data set
having nonnumerical attributes such as protein or DNA sequences. In this chapter, a
novel string kernel function, termed as the nBBF, is used in the SVM for handling
biological subsequences. The performance of the new and the existing string kernel
functions is compared by measuring the classification accuracy of the SVM. Four
parameters used for this comparison are total accuracy, sensitivity, true positive
fraction (TPf), and true negative fraction (TNf) as follows:

Total Accuracy = TP + TN

TP + FP + TN +FN
; (3.45)

Sensitivity = TP

TP + FP
; (3.46)

TPf = TP

TP + FN
; TNf = TN

TN + FP
(3.47)
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Table 3.2 Five Whole HIV
Protein Sequences from the
NCBI

Accession no Length Cleavage sites at P1

AAC82593 500 132(MA/CA), 363(CA/p2),
377(p2/NC), 432(NC/p1), 448(p1/p6)

AAG42635 498 132(MA/CA), 363(CA/p2),
376(p2/NC), 430(NC/p1), 446(p1/p6)

AAO40777 500 132(MA/CA), 363(CA/p2),
377(p2/NC), 432(NC/p1), 448(p1/p6)

NP_057849 1435 488(TF/PR), 587(PR/RT),
1027(RT/RH), 1147(RH/IN)

NP_057850 500 132(MA/CA), 363(CA/p2),
377(p2/NC), 432(NC/p1), 448(p1/p6)

where TP is the number of true positive predictions, TN is the number of true nega-
tive predictions, FP is the number of false positive predictions, and FN is the number
of false negative predictions. Hence, the values of TPf and TNf represent the pre-
cision measures of the positive class and negative class, respectively. To compute
the classification accuracy, sensitivity, TPf , and TNf of the SVM, the leave-one-out
cross-validation (LOOCV) is performed on each data set.

3.6.2 Description of Data Set

To analyze the performance of two string kernel functions and different bio-basis
string selection methods, the five whole HIV protein sequences, Cai-Chou HIV data
set [9], and caspase cleavage protein sequences are used.

3.6.2.1 Five Whole HIV Protein Sequences

The HIV protease belongs to the family of aspartyl proteases, which have been
well-characterized as proteolytic enzymes. The catalytic component is composed
of carboxyl groups from two aspartyl residues located in both NH2- and COOH-
terminal halves of the enzyme molecule in the HIV protease [27]. They are strongly
substrate-selective and cleavage-specific demonstrating their capability of cleaving
large, virus-specific polypeptides called polyproteins between a specific pair of amino
acids. Miller et al. showed that the cleavage sites in the HIV polyprotein can extend to
an octapeptide region [24]. The amino acid residues within this octapeptide region are
represented by P4-P3-P2-P1-P1∼ -P2∼ -P3∼-P4∼ , where P4-P3-P2-P1 is the NH2-terminal
half and P1∼ -P2∼ -P3∼ -P4∼ the COOH-terminal half. Their counterparts in the HIV pro-
tease are represented by S4-S3-S2-S1-S1∼ -S2∼ -S3∼-S4∼ [11]. The HIV protease cleavage
site is exactly between P1 and P1∼ .
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The five whole HIV protein sequences have been downloaded from the NCBI
(National Center for Biotechnology Information, www.ncbi.nlm.nih.gov). The acces-
sion numbers are AAC82593, AAG42635, AAO40777, NP_057849, and
NP_057850. Details of these five sequences are included in Table 3.2. Note that
MA, CA, NC, TF, PR, RT, RH, and IN are matrix protein, capsid protein, nucleo-
capsid core protein, transframe peptide, protease, reverse transcriptase, RNAse, and
integrase, respectively. They are all cleavage products of the HIV protease. p1, p2,
and p6 are also cleavage products [12]. For instance, 132 (MA/CA) means that the
cleavage site is between the residues 132 (P1) and 133 (P1∼ ) and the cleavage split
the polyprotein producing two functional proteins, the matrix protein and the capsid
protein. The subsequences from each of five whole protein sequences are obtained
through moving a sliding window with 8 residues. Once a subsequence is produced,
it is considered as functional if there is a cleavage site between P1-P1∼ , otherwise
it is labeled as nonfunctional. The total number of subsequences with 8 residues in
AAC82593, AAG42635, AAO40777, NP_057849, and NP_057850 are 493, 491,
493, 1428, and 493, respectively.

3.6.2.2 Cai-Chou HIV Data Set

In [9], Cai and Chou have described a benchmark data set of the HIV. It consists of
114 positive oligopeptides and 248 negative oligopeptides, in total 362 subsequences
with 8 residues. The data set has been collected from University of Exeter, United
Kingdom.

3.6.2.3 Caspase Cleavage Data Set

The programmed cell death, also known as apoptosis, is a gene-directed mechanism,
which serves to regulate and control both cell death and tissue homeostasis during
the development and the maturation of cells. The importance of apoptosis study
is that many diseases such as cancer and ischemic damage result from apoptosis
malfunction. A family of cysteine proteases called caspases, which are expressed
initially in the cell as proenzymes, is the key to apoptosis [29]. As caspase cleavage
is the key to programmed cell death, the study of caspase inhibitors could represent
effective drugs against some disease where blocking apoptosis is desirable. Without a
careful study of caspase cleavage specificity effective drug design could be difficult.

The 13 protein sequences containing various experimentally determined caspase
cleavage sites have been downloaded from the NCBI (www.ncbi.nih.gov). Table 3.3
represents the information of these sequences. Ci depicts the i th caspase. The total
number of noncleaved subsequences is about 8,340, while the number of cleaved
subsequences is only 18. In total, there are 8,358 subsequences with 8 residues.

www.ncbi.nlm.nih.gov
www.ncbi.nih.gov
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Table 3.3 Thirteen caspase cleavage proteins from the NCBI

Proteins Gene Length Cleavage sites

O00273 DFFA 331 117(C3), 224(C3)
Q07817 BCL2L1 233 61(C1)
P11862 GAS2 314 279(C1)
P08592 APP 770 672(C6)
P05067 APP 770 672(C6), 739(C3/C6/C8/C9)
Q9JJV8 BCL2 236 64(C3 and C9)
P10415 BCL2 239 34(C3)
O43903 GAS2 313 278(C)
Q12772 SREBF2 1141 468(C3 and C7)
Q13546 RIPK1 671 324(C8)
Q08378 GOLGA3 1498 59(C2), 139(C3), 311(C7)
O60216 RAD21 631 279(C3/C7)
O95155 UBE4B 1302 109(C3/C7), 123(C6)

3.6.3 Illustrative Example

Consider the data set AAG42635 with sequence length 498. The number of sub-
sequences obtained through moving a sliding window with 8 residues is 491. The
parameters used as well as generated in the FRDissimilarity+DOR-based method for
selection of bio-basis strings are shown in Table 3.4 only for AAG42635 data, as an
example.

In the FRDissimilarity+DOR-based method, the discriminant capability of each
subsequence in original set is calculated in terms of the Fisher ratio as in (3.28).
The Fisher ratio of each subsequence in original set and reduced set is shown in
Fig. 3.1 for this method. While Fig. 3.1a represents the Fisher ratio of the subse-
quences in original set, Fig. 3.1c shows the same in reduced set considering the
values of δ = 0.135 and ξ = 0.75. The value of δ is calculated using (3.36). The
86 subsequences present in the reduced set are considered as the bio-basis strings
in the FRDissimilarity+DOR-based method. For the purpose of comparison, the 86
subsequences with maximum discriminant capability are selected from the original
491 subsequences of Fig. 3.1a considering the values of δ = 0.00 and ξ = 1.00.
These subsequences are the bio-basis strings for the FRDissimilarity-based method
and shown in Fig. 3.1b. Similarly, the 86 bio-basis strings are selected using the
methods proposed by Berry et al. (FRSimilarity) [8] and Yang and Thomson (MIn-
formation) [41], and the FRSimilarity+DOR-based method. In the FRSimilarity [8]
based method, the Fisher ratio of each subsequence in original set is calculated
using (3.15). Figure 3.2a represents the Fisher ratio of the subsequences in original
set, while the bio-basis strings corresponding to the FRSimilarity-based method are
shown in Fig. 3.2b. In this case, the 86 subsequences are selected from the original set
of Fig. 3.2a as the bio-basis strings which possess strongest discriminant capability.
Figure 3.2c represents the results related to the FRSimilarity+DOR, that is, if the
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Table 3.4 Comparative analysis of different methods for AAG42635

Sequence length = 498; Number of subsequences, n = 491
Value of ξ = 0.75; Value of δ = 0.135
Number of bio-basis strings, c = 86

Quantitative measures
MInformation [41]: α = 67.03; β = 317.66; γ = 48.49
FRSimilarity [8]: α = 68.85; β = 314.00; γ = 46.37
FRDissimilarity: α = 67.39; β = 314.00; γ = 46.42
FRSimilarity+DOR: α = 60.81; β = 350.00; γ = 45.60
FRDissimilarity+DOR: α = 54.11; β = 366.00; γ = 57.33

Prediction accuracy assessment
BBF/MInformation: Accuracy = 0.83; Sensitivity = 0.74; TPf = 0.95; TNf = 0.81
BBF/FRSimilarity: Accuracy = 0.81; Sensitivity = 0.76; TPf = 0.94; TNf = 0.85
BBF/FRDissimilarity: Accuracy = 0.81; Sensitivity = 0.77; TPf = 0.95; TNf = 0.85
BBF/FRSimilarity+DOR: Accuracy = 0.83; Sensitivity = 0.76; TPf = 0.95; TNf = 0.86
BBF/FRDissimilarity+DOR: Accuracy = 0.85; Sensitivity = 0.80; TPf = 1.00; TNf = 0.91

nBBF/MInformation: Accuracy = 0.84; Sensitivity = 0.76; TPf = 0.97; TNf = 0.87
nBBF/FRSimilarity: Accuracy = 0.84; Sensitivity = 0.78; TPf = 0.97; TNf = 0.92
nBBF/FRDissimilarity: Accuracy = 0.84; Sensitivity = 0.79; TPf = 0.97; TNf = 0.93
nBBF/FRSimilarity+DOR: Accuracy = 0.85; Sensitivity = 0.81; TPf = 0.97; TNf = 0.93
nBBF/FRDissimilarity+DOR: Accuracy = 0.92; Sensitivity = 0.87; TPf = 1.00; TNf = 0.96

concepts of nearest mean classifier and degree of resemblance are incorporated in
the existing method FRSimilarity [8]. In this case, the value of δ = 0.035 computed
using (3.36) and ξ = 0.75.

The performance of the nBBF and the FRDissimilarity+DOR-based method for
AAG42635 data is shown in Table 3.4, along with the results obtained using the
BBF, the existing FRSimilarity [8] and MInformation [41] based bio-basis string
selection methods, and the FRDissimilarity and FRSimilarity+DOR-based meth-
ods. All the results reported in Table 3.4 establish the superiority of the nBBF and
FRDissimilarity+DOR-based bio-basis string selection method over the existing
BBF and the bio-basis string selection methods reported in [8, 41] in terms of the α,
β, and γ indices as well as the accuracy, sensitivity, TPf , and TNf of the SVM.

3.6.4 Performance of Different String Selection Methods

The performance of the FRDissimilarity+DOR-based bio-basis string selection
method, along with a comparison with related algorithms, is reported in Tables 3.5,
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Fig. 3.1 Discriminant capability of subsequences in FRDissimilarity and FRDissimilarity+DOR
based methods. a Original data set. b Reduced set for δ = 0.000; ξ = 1.00. c Reduced set for
δ = 0.135; ξ = 0.75

3.6, 3.7, 3.8. Subsequent discussions analyze the results presented in these tables
with respect to α, β, γ, and execution time.

The LOOCV is performed on each data set. The means and standard deviations
of the α, β, and γ indices are computed for all data sets. Tests of significance are
performed for the inequality of means (of the α, β, or γ) obtained using the new bio-
basis string selection method and the other related algorithms compared. Since both
mean pairs and the variance pairs are unknown and different, a generalized version
of t-test is used here. The above problem is the classical Behrens-Fisher problem in
hypothesis testing. The test statistic, which is described and tabled in [5], is of the
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Fig. 3.2 Discriminant capability of subsequences in FRSimilarity [8] and FRSimilarity+DOR-
based methods. a Original data set. b Reduced set for δ = 0.000; ξ = 1.00. c Reduced set for
δ = 0.035; ξ = 0.75

form
t̂ = μ1 − μ2√

λ1σ1
2 + λ2σ2

2
(3.48)

where μ1, μ2 are the means, σ1, σ2 the standard deviations, and λ1 = 1/n1,
λ2 = 1/n2, n1, n2 are the number of observations. Tables 3.6, 3.7 and 3.8 report
the individual means and standard deviations, and the value of test statistic com-
puted and the corresponding tabled values at an error probability level of 0.001.
Figures in parentheses indicate the computed value of test statistic and tabled value,
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Table 3.5 Performance of FRDissimilarity+DOR based method for different values of ξ

Value of Description of Different Data Sets
ξ Index AAC82593 AAG42635 AAO40777 NP_057849 NP_057850 Cai-Chou Caspase

cleavage

0.60 c 14 11 16 22 14 14 37
α 105.96 86.96 113.53 122.51 105.97 110.63 105.56
β 352.00 310.00 352.00 350.00 352.00 292.00 380.00
γ 193.54 92.00 193.00 119.80 193.54 84.26 155.56

0.65 c 34 28 33 56 34 32 75
α 93.68 82.60 93.14 95.98 93.68 91.95 93.20
β 332.00 398.00 324.00 384.00 332.00 332.00 346.00
γ 80.86 89.00 79.59 110.96 80.86 69.28 142.86

0.70 c 58 42 59 101 58 36 166
α 72.52 66.23 70.03 77.42 72.53 98.50 76.11
β 350.00 354.00 350.00 362.00 350.00 326.00 354.00
γ 70.51 74.66 67.67 127.95 70.518 68.79 137.45

0.75 c 88 86 93 211 88 58 393
α 52.23 54.11 52.61 51.61 53.23 67.89 46.20
β 350.00 366.00 360.00 370.00 350.00 320.00 376.10
γ 61.57 57.33 62.80 128.01 61.57 58.68 85.03

0.80 c 97 86 97 278 97 30 863
α 53.43 54.83 53.43 51.90 53.44 75.49 46.25
β 318.00 328.00 322.00 322.00 318.00 268.00 376.00
γ 60.49 56.197 61.49 90.97 60.49 58.66 54.98

0.85 c 40 34 46 146 40 15 1628
α 59.289 61.76 55.93 55.68 105.97 67.37 33.65
β 286.00 286.00 322.00 350.00 300.00 266.00 376.00
γ 69.48 60.96 61.49 119.80 88.61 78.80 48.87

respectively. If the computed value is greater than the tabled value, the means are
significantly different.

3.6.4.1 Optimum Value of ξ

The threshold ξ has an influence on the performance of the FRDissimilarity+DOR-
based bio-basis string selection method. It controls the degree of redundancy between
two subsequences. To find out the optimum value of ξ, extensive experiments are
carried out for different values of ξ. It may be noted that the optimum choice of c
(the number of bio-basis strings) is a function of ξ. Table 3.5 represents the mean
values of α, β, and γ along with the number of bio-basis strings c obtained using
the FRDissimilarity+DOR-based method for all the data sets reported in Sect. 3.6.2.
Results are reported for different values of ξ. It is seen from the results of Table 3.5
that as the value of ξ increases, the FRDissimilarity+DOR-based method consistently
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Table 3.6 Comparative performance analysis of FRDissimilarity and FRDissimilarity+DOR

Data sets Methods/Algorithms α Index β Index γ Index Time
Mean Standard Mean Standard Mean Standard (ms)

Deviation Deviation Deviation

AAC FRDissimilarity+DOR 52.23 5.273 350.00 7.100 61.57 3.177 2732
82593 FRDissimilarity 66.68 10.036 318.00 11.624 52.70 7.033 2378

(28.30 3.1068) (52.16 3.1068) (25.52 3.1068)
AAG FRDissimilarity+DOR 54.11 2.301 366.00 6.153 57.33 3.807 2724
42635 FRDissimilarity 67.39 4.802 314.00 10.611 46.42 6.174 2335

(55.26 3.1069) (93.94 3.1069) (33.33 3.1069)
AAO FRDissimilarity+DOR 52.61 3.274 360.00 6.041 62.80 2.816 2768
40777 FRDissimilarity 64.86 7.029 348.00 9.642 53.80 9.020 2389

(35.08 3.1068) (23.42 3.1068) (21.15 3.1068)
NP_O FRDissimilarity+DOR 51.61 6.317 370.00 5.161 128.01 4.007 7749
57849 FRDissimilarity 67.90 9.186 368.00 9.117 97.00 9.877 7425

(55.22 3.0959) (7.21 3.0959) (109.94 3.0959)
NP_O FRDissimilarity+DOR 53.23 5.013 350.00 7.100 61.57 3.161 2778
57850 FRDissimilarity 66.57 9.134 310.80 11.607 52.75 7.013 2356

(28.43 3.1068) (63.97 3.1068) (25.46 3.1068)
Cai-Chou FRDissimilarity+DOR 67.89 3.104 320.00 5.106 58.68 3.007 2487
HIV Data FRDissimilarity 77.89 6.809 300.00 9.174 48.74 9.004 2172

(25.43 3.1129) (36.24 3.1129) (19.92 3.1129)
Caspase FRDissimilarity+DOR 46.20 2.361 376.10 7.674 85.03 4.166 48529
Cleavage FRDissimilarity 58.09 5.116 376.00 9.827 84.00 10.627 43819

(192.92 3.0912) (0.73 3.0912) (8.25 3.0912)

achieves better performance. That is, the value of α decreases, and the values of β
and γ increase with the increase in ξ. The best performance with respect to α, β, and
γ is achieved with ξ = 0.75. However, for ξ > 0.75, the performance decreases with
the increase in ξ. That is, the best performance of the FRDissimilarity+DOR-based
bio-basis string selection method is obtained when one subsequence x j is considered
to contain redundant information of another subsequence xi if the homology score
between them is greater than or equal to 75 % of the maximum homology score of xi .
Hence, to achieve best performance using the FRDissimilarity+DOR-based bio-basis
string selection method, the subsequence x j is considered as a redundant one of the
subsequence xi if h(x j , xi ) ≥ 0.75 × h(xi , xi ), where h(x j , xi ) and h(xi , xi ) repre-
sent the homology score between x j and xi , and the maximum homology score of xi ,
respectively. In other words, the degree of resemblance between two subsequences
selected as two nonredundant bio-basis strings must be less than 0.75.
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Table 3.7 Comparative performance analysis of biological similarity and dissimilarity

Data sets Methods/Algorithms α Index β Index γ Index Time
Mean Standard Mean Standard Mean Standard (ms)

Deviation Deviation Deviation

AAC FRDissimilarity+DOR 52.23 5.273 350.00 7.100 61.57 3.177 2732
82593 FRSimilarity+DOR 60.00 7.318 340.00 9.034 54.89 6.820 2721

(19.13 3.1068) (19.32 3.1068) (19.71 3.1068)
AAG FRDissimilarity+DOR 54.11 2.301 366.00 6.153 57.33 3.807 2724
42635 FRSimilarity+DOR 60.81 3.174 350.00 8.805 45.60 5.924 2711

(37.87 3.1069) (33.01 3.1069) (36.91 3.1069)
AAO FRDissimilarity+DOR 52.61 3.274 360.00 6.041 62.80 2.816 2768
40777 FRSimilarity+DOR 60.00 5.945 354.00 8.113 60.00 5.117 2745

(24.18 3.1068) (13.17 3.1068) (10.64 3.1068)
NP_O FRDissimilarity+DOR 51.61 6.317 370.00 5.161 128.01 4.007 7749
57849 FRSimilarity+DOR 55.48 7.103 342.00 8.081 98.38 7.821 7689

(15.38 3.0959) (110.35 3.0959) (127.41 3.0959)
NP_O FRDissimilarity+DOR 53.23 5.013 350.00 7.100 61.57 3.161 2778
57850 FRSimilarity+DOR 60.20 6.819 341.23 9.016 55.68 7.008 2756

(18.29 3.1068) (16.97 3.1068) (17.01 3.1068)
Cai-Chou FRDissimilarity+DOR 67.89 3.104 320.00 5.106 58.68 3.007 2487
HIV Data FRSimilarity+DOR 60.46 4.713 286.78 6.117 50.67 5.192 2429

(−25.05 3.1129) (79.32 3.1129) (25.40 3.1129)
Caspase FRDissimilarity+DOR 46.20 2.361 376.10 7.674 85.03 4.166 48529
Cleavage FRSimilarity+DOR 58.09 2.813 290.00 8.130 79.08 7.314 46537

(295.99 3.0912) (704.08 3.0912) (64.62 3.0912)

3.6.4.2 Degree of Resemblance and Nearest Mean Classifier

The main objective of introducing the concepts of degree of resemblance and nearest
mean classifier in the FRDissimilarity+DOR-based bio-basis string selection method
is to reduce the number of bio-basis strings from the whole set of subsequences. While
the concept of degree of resemblance is introduced to eliminate the redundant sub-
sequences, the principle of nearest mean classifier is used to discard the nonrelevant
subsequences [21].

In order to establish the importance of both degree of resemblance and nearest
mean classifier, extensive experiments are carried out. Table 3.6 provides comparative
results of the bio-basis string selection methods with and without considering the
above two concepts. The discriminant capability of each subsequence in both cases
(FRDissimilarity+DOR and FRDissimilarity) is calculated using the Fisher ratio as
in (3.28), while the value of ξ is set to 0.75 and the value of δ is computed according
to (3.36) for the FRDissimilarity+DOR based method. The FRDissimilarity+DOR-
based method is found to improve the performance of the FRDissimilarity-based
method in terms of α, β, and γ. Regarding statistical significance tests, it can be
seen from Table 3.6 that out of 21 comparisons, the FRDissimilarity+DOR-based
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Table 3.8 Comparative performance analysis of different methods

Data sets Methods/Algorithms α Index β Index γ Index Time
Mean Standard Mean Standard Mean Standard (ms)

Deviation Deviation Deviation

AAC8 FRDissimilarity+DOR 52.23 5.273 350.00 7.100 61.57 3.177 2732
2593 FRSimilarity [8] 67.13 12.149 312.68 13.183 52.70 7.017 2217

(24.98 3.1068) (55.34 3.1068) (25.57 3.1068)
MInformation [41] 62.18 6.928 322.60 9.615 52.81 6.801 2561

(25.38 3.1068) (50.90 3.1068) (25.91 3.1068)
AAG4 FRDissimilarity+DOR 54.11 2.301 366.00 6.153 57.33 3.807 2724
2635 FRSimilarity [8] 68.85 5.003 314.00 13.081 46.37 6.890 2192

(59.31 3.1069) (79.71 3.1069) (30.85 3.1069)
MInformation [41] 67.03 3.018 317.66 9.013 48.49 5.800 2568

(75.44 3.1069) (98.15 3.1069) (28.23 3.1069)
AAO4 FRDissimilarity+DOR 52.61 3.274 360.00 6.041 62.80 2.816 2768
0777 FRSimilarity [8] 65.17 7.813 328.10 11.081 52.33 8.724 2120

(32.92 3.1068) (56.12 3.1068) (25.36 3.1068)
MInformation [41] 63.19 7.008 351.30 9.001 54.10 9.007 2412

(30.37 3.1068) (17.82 3.1068) (20.47 3.1068)
NP_O5 FRDissimilarity+DOR 51.61 6.317 370.00 5.161 128.01 4.007 7749
7849 FRSimilarity [8] 70.12 12.823 317.50 10.629 93.70 11.066 7108

(28.75 3.0959) (167.90 3.0959) (110.16 3.0959)
MInformation [41] 64.18 9.672 332.70 8.728 98.30 10.092 7468

(41.12 3.0959) (139.01 3.0959) (103.40 3.0959)
NP_O5 FRDissimilarity+DOR 53.23 5.013 350.00 7.100 61.57 3.161 2778
7850 FRSimilarity [8] 68.13 11.940 304.84 13.004 52.75 6.898 2071

(25.55 3.1068) (67.68 3.1068) (25.81 3.1068)
MInformation [41] 62.75 7.004 337.10 10.012 55.11 6.054 2683

(24.54 3.1068) (23.34 3.1068) (21.00 3.1068)
Cai-Chou FRDissimilarity+DOR 67.89 3.104 320.00 5.106 58.68 3.007 2487
HIV Data FRSimilarity [8] 77.17 7.002 285.90 12.188 48.60 10.361 2026

(23.05 3.1129) (49.10 3.1129) (17.78 3.1129)
MInformation [41] 71.63 6.624 306.10 8.103 50.65 9.882 2216

(9.73 3.1129) (27.61 3.1129) (14.79 3.1129)
Caspase FRDissimilarity+DOR 46.20 2.361 376.10 7.674 85.03 4.166 48529
Cleavage FRSimilarity [8] 61.08 8.025 288.50 11.628 78.06 13.160 40173

(162.62 3.0912) (574.83 3.0912) (46.16 3.0912)
MInformation [41] 57.10 6.138 328.40 9.713 80.33 5.381 46119

(151.53 3.0912) (352.28 3.0912) (63.14 3.0912)

method is found to provide significantly better results in 20 comparisons. Only for
caspase cleavage data set, the value of β of the FRDissimilarity+DOR-based method
is found to be better, but not significantly. The corresponding entry is marked bold
in Table 3.6.
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The execution time required for the FRDissimilarity+DOR-based method is
higher compared to that of the FRDissimilarity-based method. However, the
FRDissimilarity+DOR-based method selects the bio-basis strings that are more
relevant and distinct or nonredundant. Hence, to improve the performance of the
FRDissimilarity-based method by eliminating similar and nonrelevant bio-basis
strings, the degree of resemblance and the nearest mean classifier should be incorpo-
rated with the FRDissimilarity-based method. In effect, the FRDissimilarity+DOR-
based method selects a reduced set of relevant and nonredundant bio-basis strings
that helps to generate distinct and useful features in numerical feature space.

3.6.4.3 Importance of Asymmetricity of Biological Dissimilarity

The FRDissimilarity+DOR-based method calculates the relevance or discriminant
capability of each subsequence based on the principle of asymmetric biological
dissimilarity as in (3.28), while the existing method FRSimilarity considers the bio-
logical similarity to compute the discriminant capability as in (3.15). As a result,
the FRDissimilarity+DOR-based method takes into account the zero-mean, higher
order (upto fourth order) moment of similarity as well as the maximum homology
score of the subsequence, while the existing FRSimilarity-based method does not
consider the maximum homology score and considers only the zero-mean, first- and
second-order moment of similarity.

In order to establish the importance of biological dissimilarity over biological
similarity, extensive experiments are carried out. Table 3.7 provides comparative
results of the FRDissimilarity+DOR and FRSimilarity+DOR-based bio-basis string
selection methods considering ξ = 0.75. The dissimilarity based method is found
to improve the performance in terms of α, β, and γ with comparable time. Statis-
tical significance tests are also presented for all the comparisons, and in 20 of 21
comparisons, the FRDissimilarity+DOR-based method performs significantly better
than the FRSimilarity+DOR based method. Hence, the FRDissimilarity+DOR based
method selects the relevant and distinct bio-basis strings more accurately compared
to the FRSimilarity+DOR-based method. Only, in case of Cai-Chou HIV data set,
the value of α is significantly better in similarity-based approach, while the values of
β and γ are higher in dissimilarity-based approach. This case is denoted by bolded
entry in Table 3.7.

3.6.4.4 Comparative Analysis of Different Methods

Finally, Table 3.8 provides the comparative results of the FRDissimilarity+DOR
and existing (FRSimilarity and MInformation) algorithms for the protein sequences
reported in Sect. 3.6.2. It is seen that the FRDissimilarity+DOR-based method pro-
duces bio-basis strings having the lowest α value and highest β and γ values for
all the cases. Table 3.8 also reports the execution time (in milli second) of dif-
ferent algorithms for all protein data sets. The execution time required for the
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FRDissimilarity+DOR-based method is higher compared to that of the existing meth-
ods. For the FRSimilarity, although the execution time is less, the performance is
significantly poorer than that of the MInformation and FRDissimilarity+DOR. From
the statistical significance tests presented in Table 3.8, it can be seen that in all 42
comparisons, the FRDissimilarity+DOR-based bio-basis string selection method is
found to provide significantly better results compared to existing methods.

3.6.5 Performance of Novel Bio-Basis Function

The performance of the nBBF (novel bio-basis function) is presented with respect to
the prediction accuracy of the SVM (support vector machine). The nBBF normalizes
the asymmetric dissimilarity between a bio-basis string and a subsequence using the
zone of influence or variance of that bio-basis string as in (3.20), rather than using
the maximum homology score of that bio-basis string as in the existing BBF [8, 41].

Table 3.9 provides the comparative results of these two kernel functions for the
protein sequences reported in Sect. 3.6.2. The bio-basis strings for each data sets
are generated using the FRDissimilarity+DOR-based method. The zone of influence
of each bio-basis string is calculated using (3.21) for the nBBF. The LOOCV is
performed to compute the prediction accuracy of the SVM. From the results reported
in Table 3.9 with respect to TNf , TPf , sensitivity, and accuracy, it is seen that the
nBBF provides better results for all protein data sets. That is, the nBBF transforms
nonnumerical sequence space to numerical feature space more accurately than the
existing BBF. All the results reported in Table 3.9 establish that the concept of zone of
influence introduced in the nBBF efficiently normalizes the asymmetric dissimilarity
taking into account the influence (impact) of each bio-basis string in nonnumerical
sequence space.

The following conclusions can be drawn from the results reported in Tables 3.5,
3.6, 3.7, 3.8, 3.9:

1. It is seen that the FRDissimilarity+DOR-based bio-basis string selection method
is superior to the existing FRSimilarity [8] and MInformation [41] based meth-
ods. However, the FRSimilarity and MInformation methods require slightly lesser
time compared to that of the FRDissimilarity+DOR-based method. But, the per-
formance of existing methods is significantly poorer than the new method.

2. The FRDissimilarity+DOR-based method is found to improve the performance
of the existing methods (in terms of α, β, and γ) significantly.

The best performance of the FRDissimilarity+DOR-based method in terms of α,
β, and γ is achieved due to the following reasons:

1. The asymmetric biological dissimilarity is more effective compared to the sym-
metric similarity measure to calculate the discriminant capability or relevance of
the subsequences in terms of the Fisher ratio.
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Table 3.9 Comparative performance of two kernel functions

Data Sets Functions TNf TPf Sensitivity Accuracy

AAC8 nBBF 0.99 1.00 0.95 0.93
2593 BBF 0.97 1.00 0.88 0.86
AAG4 nBBF 0.96 1.00 0.87 0.92
2635 BBF 0.91 1.00 0.80 0.85
AAO4 nBBF 0.96 0.99 0.91 0.92
0777 BBF 0.92 0.99 0.85 0.86
NP_05 nBBF 0.97 0.94 0.91 0.89
7849 BBF 0.88 0.93 0.90 0.83
NP_O5 nBBF 0.99 1.00 0.91 0.91
7850 BBF 0.98 1.00 0.88 0.90
Cai-Chou nBBF 0.94 0.96 0.91 0.90
HIV Data BBF 0.87 0.90 0.76 0.88
Caspase nBBF 0.95 0.90 0.89 0.92
Cleavage BBF 0.94 0.91 0.86 0.91

2. The principle of nearest mean classifier and the concept of degree of resemblance
enable efficient selection of relevant and distinct bio-basis strings. As a result, it
reduces the nonrelevant and redundant features in numerical feature space.

In effect, a reduced set of most relevant and nonredundant bio-basis strings is
obtained using the FRDissimilarity+DOR-based bio-basis string selection method.
The concept of zone of influence introduced in novel bio-basis function (nBBF) nor-
malizes the biological dissimilarity. As it takes into account the influence of each
bio-basis string in nonnumerical sequence space, the nBBF transforms nonnumerical
sequence space to numerical feature space more accurately. Hence, the best perfor-
mance of the nBBF in terms of the prediction accuracy of the SVM is achieved.

3.7 Conclusion and Discussion

The major contribution of this chapter is to present a novel string kernel function
based on the principle of asymmetricity of dissimilarity and the concept of zone of
influence of bio-basis string. An efficient method is reported for selection of a reduced
set of most relevant and nonredundant bio-basis strings. Some new measures based
on homology score are also presented to evaluate the quality of selected bio-basis
strings. Moreover, the current chapter demonstrates the effectiveness of the new string
kernel function and the bio-basis string selection method, along with a comparison
with existing string kernel function and related bio-basis string selection methods,
on different protein data sets.

Some of the indices (for example, α, β, and γ) used for evaluating the quality
of selected bio-basis strings may be used in a suitable combination to act as the
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objective function of an evolutionary algorithm, for generating a reduced set of most
relevant bio-basis strings. This formulation is geared toward maximizing the utility
of the biological content with respect to bio-basis string selection task.

So far we have described in Chap. 2 and in this chapter different classification
methodologies with extensive experimental results demonstrating their characteris-
tic features. The next four chapters deal with different feature selection approaches,
along with some of the specific real-life problems in computational biology and
bioinformatics, namely, selection of effective molecular descriptors to predict bio-
logical activity of molecules, selection of discriminative genes from high dimensional
microarray data, identification of disease-related genes, and selection of discrimina-
tive microRNAs from expression data.
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Part II
Feature Selection



Chapter 4
Rough Sets for Selection of Molecular
Descriptors to Predict Biological Activity
of Molecules

4.1 Introduction

In conventional drug design, the drug discovery proceeds largely by trial and error
synthesizing thousands of molecules. Although this approach is the most effective
method to discover drugs, it is very financially expensive and labor intensive. The
conventional drug design method is improved by a nonconventional method, termed
as computer-aided drug design (CADD) [2]. The CADD helps in predicting bio-
logical activity of a hypothetical molecule and guides scientists toward a specific
direction to develop a drug by predicting a molecule with effective biological activ-
ity or molecular property against a target molecule. In effect, it minimizes both time
and cost. Two well-known approaches are generally taken for prediction: structure-
based method and quantitative structure activity relationship (QSAR) method [29].
In structure-based method, the procedure starts with the known three-dimensional
structure of a target molecule, where the goal is to design a ligand or drug that can
enhance or decrease the activity of the target molecule. Whereas the QSAR method
predicts the activity of hypothetical compounds based on the assayed activity of
previously synthesized one [13].

The QSAR is the process by which chemical structure is quantitatively correlated
with a well-defined process such as biological activity or other molecular prop-
erty. Biological activity can be expressed quantitatively as in the concentration of a
substance required to give a certain biological response. Additionally, when physio-
chemical properties or structures are expressed by numbers, one can form a mathe-
matical relationship or quantitative structure activity relationship between the two.
The mathematical expression can then be used to predict the biological response of
other unknown chemical structures. The properties that describe the molecule quan-
titatively are known as molecular descriptors. Molecular descriptors can be obtained
by calculated methods or experimental methods. In calculated method, a mathemat-
ical procedure is used that transforms chemical information into a number such as
surface areas (polar, non-polar), dipole moment, and volume. On the other hand,
in experimental method, some standardized experiments are conducted to measure

P. Maji and S. Paul, Scalable Pattern Recognition Algorithms, 105
DOI: 10.1007/978-3-319-05630-2_4,
© Springer International Publishing Switzerland 2014



106 4 Rough Sets for Selection of Molecular Descriptors

a molecular descriptor such as melting point, partition coefficients, and refractive
index. The molecular descriptors describe different aspects of a molecule, compare
different molecular structures, different conformations of same molecule, and data-
base storage, and relate structure to activity [24, 29, 31, 54].

Many approaches have been proposed to generate a error free method for pre-
dicting biological activity or other chemical property of a molecule. Ozdemir et al.
[40] used genetic algorithm to select a subset of molecular descriptors and the sig-
nificance of these descriptors has been evaluated by a multilayer perceptron. Guha
and Jurs [13, 14] used correlation, simulated annealing, and genetic algorithm to
obtain the best subset of descriptors. Both linear and nonlinear predictive models
have been used to establish the significance of selected descriptors. Similar type of
work has been done by Leardi and Gonzalez [30], where genetic algorithm has been
used for descriptor selection and partial least square method for prediction. Sventik
et al. [53] used the concept of ensemble method for compound classification and
biological activity prediction. In [19], Jain et al. have used steric and polar descrip-
tors to predict the biological activity. Tuppurainen et al. [56] and Turner et al. [57]
have used an electronic eigenvalue molecular descriptor and a molecular vibration
based descriptor, respectively, to relate structure and activity of steroid data. Different
three-dimensional molecular descriptors have been proposed in [5, 47] to forecast the
biological activity. A different approach based on fuzzy regression has been used to
predict the biological activity of persistent organic pollutants [58]. Kumar et al. [28]
used a method based on fuzzy mappings for the QSAR modeling, while a neural and
neuro-fuzzy model have been used in [39] for prediction of toxic action of phenols.
On the other hand, Zhou et al. [64] have developed a robust boosting partial least
square method for modeling the antagonisms of angiotensin II antagonists.

However, among the large amount of descriptors, only a small fraction is effective
for performing the predictive modeling task. Also, a small subset of descriptors is
desirable in developing QSAR data based predicting tools for delivering precise,
reliable, and interpretable results. With the descriptor selection results, the cost of
biological experiment and decision can be greatly reduced by analyzing only the
effective descriptors. Hence, identifying a reduced set of most relevant descriptors is
the goal of descriptor selection. The small number of molecules and a large number
of descriptors make this problem a more relevant and challenging problem in the
QSAR method. This is an important problem in pattern recognition and machine
learning and referred to as feature selection [10].

Feature selection or dimensionality reduction of a data set is an essential pre-
processing step used for pattern recognition, data mining, and machine learning. It
is an important problem related to mining large data sets, both in dimension and
size. Prior to analysis of the data set, preprocessing the data to obtain a smaller set
of representative features and retaining the optimal salient characteristics of the data
not only decrease the processing time but also lead to more compactness of the mod-
els learned and better generalization. Hence, the general criterion for reducing the
dimension is to preserve most relevant information of the original data according to
some optimality criteria.
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Conventional methods of feature selection involve evaluating different feature
subsets using some index and selecting the best among them. Depending on the way
of computing the feature evaluation index, feature selection methods are generally
divided into two broad categories, namely, filter approach [10, 26] and wrapper
approach [10, 25]. In filter approach, the algorithms do not perform classification of
the data in the process of feature evaluation. Before application of the actual learning
algorithm, the best subset of features is selected in one pass by evaluating some
predefined criteria, which are independent of the actual generalization performance
of the learning machine. Hence, the filter approach is computationally less expensive
and more general [10, 26].

On the other hand, in its most general formulation, the wrapper approach con-
sists of using the prediction performance of a given learning machine to assess the
relative usefulness of different subsets of features. Since the wrapper approach uses
the learning machine as a black box, it generally outperforms the filter approach in
the aspect of final predictive accuracy of the learning machine. However, it is com-
putationally more expensive than that of the filter approach [10, 25]. An efficient
but less universal version of the wrapper approach is the embedded method, which
performs feature selection in the process of training and is usually specific to given
learning machine. However, the embedded approach is much intricate and limited to
a specific learning machine [15, 44–46].

Rough set theory is a new paradigm to deal with uncertainty, vagueness, and
incompleteness. It is proposed for indiscernibility in classification according to some
similarity. The rough set theory has been applied successfully to feature selection of
discrete valued data [42, 49, 51]. Given a data set with discretized attribute values,
it is possible to find a subset of the original attributes using rough set theory that
are the most informative; all other attributes can be removed from the data set with
minimal information loss. From the dimensionality reduction perspective, informa-
tive features are those that are most useful in determining classifications from their
values [7, 62].

One of the popular rough set-based feature selection algorithms is quick reduct
algorithm [8, 9] in which the dependency or quality of approximation of single
attribute is first calculated with respect to the class labels or decision attribute. After
selecting the best attribute, other attributes are added to it to produce better quality.
Additions of attributes are stopped when the final subset of attributes has the same
quality as that of maximum possible quality of the data set or the quality of the
selected attributes remains same.

A reduct with effective attributes can also be obtained from the discernibil-
ity matrix-based method [27, 50]. The matrix is developed by considering those
attributes which differentiate objects. A discernibility function can then be defined
for discernibility matrix data. This function generates all the minimal reducts. How-
ever, this approach is computationally very costly. On the other hand, the variable
precision rough set-based attribute selection algorithm [65] is an important method
with better generalization ability to produce effective reducts. The main idea here is
to classify objects with minimal error. In this method, the relative classification error
is calculated between the equivalence classes of condition and decision attributes.
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The dynamic reduct-based method [3] is another rough set-based attribute reduction
algorithm, which is based on the idea that the reducts obtained from an information
system are sensitive to changes in the system. This method generates a large num-
ber of reducts by randomly removing objects from the original data. The reducts
whose proportion of occurrence is more than a defined threshold are considered as
the dynamic reducts. The main drawback of this method is that a predefined thresh-
old value is required. Also, the generation of all reducts is computationally very
costly. Recently, a distance measure-based approach is reported in [41] to explore
the rough set boundary region for feature selection. However, all these approaches
are computationally very costly. Different heuristic approaches based on rough set
theory are also developed for feature selection [38, 63]. Combining rough sets and
genetic algorithms, different algorithms have been proposed in [4, 52, 60] to discover
optimal or close to optimal subset of features. However, most of the rough set-based
feature selection methods proposed in [3, 4, 8, 50, 52, 60, 65] select the relevant or
predictive features of a data set without considering the redundancy among them.

This chapter presents the rough set-based maximum relevance-maximum signifi-
cance (RSMRMS) method, proposed by Maji and Paul in [37], to select a set of mole-
cular descriptors for predicting biological activity of molecules. It employs rough
sets to provide a means by which discrete valued data can be effectively reduced
without the need for user-specified information. The RSMRMS method selects a
subset of molecular descriptors from the whole feature set by maximizing both rele-
vance and significance of the selected descriptors. The relevance and significance of
the descriptors are calculated based on rough set theory. Hence, the only information
required in the new feature selection method is in the form of equivalence partitions
for each attribute, which can be automatically derived from the given data set. This
avoids the need for domain experts to provide information on the data involved and
ties in with the advantage of rough sets is that it requires no information other than
the data set itself. The performance of the RSMRMS approach is compared with that
of existing approaches using the R2 statistic of support vector regression method.
An important finding is that the RSMRMS approach is shown to be effective for
selecting relevant and significant molecular descriptors from the QSAR data sets.
The effectiveness of the RSMRMS method, along with a comparison with other
related methods, is demonstrated on three QSAR data sets.

The structure of the rest of this chapter is as follows: Sect. 4.2 introduces the neces-
sary notions of rough sets. The new feature selection method is described in Sect. 4.3
for predicting biological activity of molecules. A few case studies and a comparison
with other related methods are presented in Sect. 4.4. Concluding remarks are given
in Sect. 4.5.

4.2 Basics of Rough Sets

The theory of rough sets begins with the notion of an approximation space, which is
a pair < U,A >, where U = {x1, . . . , xi , . . . , xn} be a nonempty set, the universe
of discourse, and A is a family of attributes, also called knowledge in the universe.
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V is the value domain of A and f is an information function f : U × A ∈ V . An
approximation space is also called an information system [42].

Any subset P of knowledge A defines an equivalence, also called indiscernibility,
relation I N D(P) on U

I N D(P) = {(xi , x j ) ≤ U × U|→a ≤ P, f (xi , a) = f (x j , a)}. (4.1)

If (xi , x j ) ≤ I N D(P), then xi and x j are indiscernible by attributes from P. The
partition of U generated by I N D(P) is denoted as

U/I N D(P) = {[xi ]P : xi ≤ U} (4.2)

where [xi ]P is the equivalence class containing xi . The elements in [xi ]P are indis-
cernible or equivalent with respect to knowledge P. Equivalence classes, also termed
as information granules, are used to characterize arbitrary subsets of U. The equiva-
lence classes of I N D(P) and the empty set ⊂ are the elementary sets in the approx-
imation space < U,A >.

Given an arbitrary set X ⊆ U, in general, it may not be possible to describe
X precisely in < U,A >. One may characterize X by a pair of lower and upper
approximations defined as follows [42]:

P(X) =
⋃

{[xi ]P | [xi ]P ⊆ X}; (4.3)

and

P(X) =
⋃

{[xi ]P | [xi ]P ∩ X ∩= ⊂}. (4.4)

Hence, the lower approximationP(X) is the union of all the elementary sets which
are subsets of X , and the upper approximationP(X) is the union of all the elementary
sets which have a nonempty intersection with X . The tuple < P(X),P(X) > is
the representation of an ordinary set X in the approximation space < U,A > or
simply called the rough set of X . The lower (respectively, upper) approximation
P(X) (respectively, P(X)) is interpreted as the collection of those elements of U that
definitely (respectively, possibly) belong to X . The lower approximation is also called
positive region sometimes, denoted as P O SP(X). A set X is said to be definable or
exact in < U,A > iff P(X) = P(X). Otherwise X is indefinable and termed as a
rough set. B NP(X) = P(X) \ P(X) is called a boundary set.

Definition 4.1 An information system < U,A > is called a decision table if the
attribute setA = C∅D, whereC andD represent the condition and decision attribute
sets, respectively. The dependency between C and D can be defined as

γC(D) = |P O SC(D)|
|U| (4.5)
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where P O SC(D) = ∅CXi , Xi is the i th equivalence class induced by D and | · |
denotes the cardinality of a set.

Let I =< U,A > be a decision table, where U = {x1, . . . , x7} is a nonempty set
of finite objects, the universe, and A = C ∅ D is a nonempty finite set of attributes.
Here,C = {A1,A2} andD ={Walk} are the sets of condition and decision attributes,
respectively.

xi ≤ U A1 A2 Walk
x1 16 − 30 50 yes
x2 16 − 30 0 no
x3 31 − 45 1 − 25 no
x4 31 − 45 1 − 25 yes
x5 46 − 60 26 − 49 no
x6 16 − 30 26 − 49 yes
x7 46 − 60 26 − 49 no

I N D({A1}) creates the following partition of U:

U/I N D({A1}) = {{x1, x2, x6}, {x3, x4}, {x5, x7}}

as the objects x1, x2, and x6 are indiscernible with respect to the condition attribute
set {A1}. Similarly, the partition of U generated by the condition attribute set {A2}
is given by:

U/I N D({A2}) = {{x1}, {x2}, {x3, x4}, {x5, x6, x7}}

and the partition of U generated by the condition attribute set {A1, A2} is as follows:

U/I N D({A1,A2}) = {{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}}.

Similarly, the partition ofU generated by the decision attribute set {Walk} is given
by:

U/I N D(D) = U/I N D({Walk}) = {{x1, x4, x6}, {x2, x3, x5, x7}}.

The positive region contains all objects of U that can be classified to classes of
U/I N D(D) using the knowledge in attributes C. Hence, for the above example, the
positive region is as follows:

P O SC(D) =
⋃

{φ, {x1}, {x2}, {x5, x7}, {x6}} = {x1, x2, x5, x6, x7}.

The dependency between the attributes C and D is, therefore, given by

γC(D) = 5

7
.
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An important issue in data analysis is discovering dependency between attributes.
Intuitively, a set of attributes D depends totally on a set of attributes C, denoted as
C ⇒ D, if all attribute values from D are uniquely determined by values of attributes
from C. If there exists a functional dependency between values of D and C, then D

depends totally on C. Dependency can be defined in the following way:

Definition 4.2 For C,D ⊆ A, it is said that D depends on C in a degree κ (0 ≤ κ ≤
1), denoted as C ⇒κ D, if

κ = γC(D) = |P O SC(D)|
|U| . (4.6)

If κ = 1, D depends totally on C, if 0 < κ < 1, D depends partially (in a degree
κ) on C, and if κ = 0, then D does not depend on C.

To what extent an attribute is contributing to calculate the dependency on decision
attribute can be calculated by the significance of that attribute. The change in depen-
dency when an attribute is removed from the set of condition attributes, is a measure
of the significance of the attribute. The higher the change in dependency, the more
significant the attribute is. If the significance is 0, then the attribute is dispensable.

Definition 4.3 Given C,D and an attribute A ≤ C, the significance of the attribute
A is defined as follows:

σC(D,A ) = γC(D) − γC−A (D). (4.7)

Considering the above example, let C = {A1,A2} and D = {Walk}. The signifi-
cance values of two attributes A1 and A2 are as follows:

σC(D,A1) = γC(D) − γC−A1(D) = 5

7
− 2

7
= 3

7
,

σC(D,A2) = γC(D) − γC−A2(D) = 5

7
− 2

7
= 3

7
.

4.3 Rough Set-Based Molecular Descriptor Selection Algorithm

The main objective of the current research is to build a method that can effectively find
out biological activity values of molecules provided with their molecular descriptors.
In effect, it can help to decide which features of a molecule give rise to its overall
activity and help to make modified compounds with enhanced properties.

In general, the QSAR data set may contain a number of insignificant molecular
descriptors. The presence of such irrelevant and insignificant molecular descriptors
can produce inappropriate information. A standard descriptor set is the one that
has high relevance with the activity values and high significance in the feature set.
The molecular descriptors with high relevance are expected to predict the biological
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activity effectively. However, if insignificant descriptors are present in the subset,
they may reduce the prediction capability. A feature set with high relevance and high
significance enhances the predictive capability. Accordingly, a measure is required
that can enhance the effectiveness of descriptors. In this chapter, the theory of rough
sets is used to select the relevant and significant molecular descriptors from the QSAR
data set based on maximum relevance-maximum significance (MRMS) criterion.

4.3.1 Maximum Relevance-Maximum Significance Criterion

Let U = {x1, . . . , xi , . . . , xn} be the set of n molecules and M = {M1, . . . ,M j , . . . ,

Mm} is the set of m molecular descriptors of a QSAR data set. These molecules and
descriptors form a table T = {wi j |i = 1, . . . , n, j = 1, . . . , m}, where wi j ≤ ←
is the measured value of the molecular descriptor M j in the molecule xi . Let B =
{B1, . . . ,Bi , . . . ,Bn} be the set of biological activity values of n molecules, where
Bi ≤ ← is the activity value of the molecule xi . Hence, in terms of rough set theory,
a QSAR data set can be considered as a decision table I =< U,M ∅ B >, where M
and B play the role of condition and decision attribute sets, respectively. However,
the continuous values are discretized to compute the relevance and significance of
descriptors using rough sets.

LetS be the set of selected descriptors with cardinality d < m. Define f̂ (Mi ,B) as
the relevance of the descriptor Mi with respect to the response variable or biological
activity value B while f̃ (Mi ,M j ) as the significance of the descriptor M j with
respect to the already selected descriptor Mi . The total relevance of all selected
descriptors is, therefore, given by

Jrelev =
∑

Mi ≤S
f̂ (Mi ,B). (4.8)

The task of descriptor or feature selection is to find a descriptor subset S ⊆ M that
maximizes the objective function Jrelev. In terms of rough set theory, the relevance
f̂ (Mi ,B) of a molecular descriptor Mi with respect to the biological activity B can
be calculated using (4.6), that is,

Jrelev =
∑

Mi ≤S
γMi (B). (4.9)

However, it is likely that descriptors selected according to the above criterion
could have rich redundancy, that is, the dependency among these descriptors could be
large. When two molecular descriptors highly depend on each other, the respective
biological activity prediction power would not change much if one of them were
removed. It follows that one descriptor is dispensable with respect to other. The
significance criterion defined in (4.7) is able to find out the dispensable descriptors.
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If the significance of a descriptor with respect to another descriptor is 0, then the
descriptor is dispensable [42]. Therefore, the significance criterion can be added
to select mutually exclusive descriptors. The total significance among the selected
descriptors is

Jsignf =
∑

Mi ∩=M j ≤S
f̃ (Mi ,M j ). (4.10)

In the RSMRMS method, the significance f̃ (Mi ,M j ) of the descriptor M j with
respect to the already selected descriptor Mi is computed using (4.7). That is,

Jsignf =
∑

Mi ∩=M j ≤S
σMi ∅M j (B,M j ). (4.11)

Therefore, the problem of selecting a set S of d relevant and significant descriptors
from the whole set M of m descriptors is equivalent to maximize both Jrelev and
Jsignf , that is, to maximize the objective function J , where

J = Jrelev + Jsignf , (4.12)

that is,
J =

∑

Mi ≤S
γMi (B) +

∑

Mi ∩=M j ≤S
σMi ∅M j (B,M j ). (4.13)

Obviously, when d equals 1, the solution is the molecular descriptor that maxi-
mizes f̂ (Mi ,B); (1 ≤ i ≤ m). When d > 1, a simple incremental search scheme
is to add one descriptor at one time. This type of selection is called the first-order
incremental search. By definition of first-order search, it is assumed that the set of
(d − 1) descriptors has already been obtained. The task is to select the optimal dth
descriptor M j from the remaining descriptors of the set M that contributes to the
largest increase of the following condition:

f̂ (M j ,B) + 1

|S|
∑

Mi ≤S
f̃ (Mi ,M j ), where |S| = d − 1. (4.14)

Hence, the following greedy algorithm is used to select relevant and significant
descriptors from a QSAR data set.

1. Initialize M ← {M1, . . . ,Mi , . . . ,Mm},S ← ⊂.
2. Calculate the relevance value f̂ (Mi ,B) of each descriptor Mi ≤ M with respect

to the biological activity B.
3. Select the descriptor Mi as the most relevant descriptor that has highest relevance

f̂ (Mi ,B). In effect, Mi ≤ S and M = M \ Mi .
4. Repeat the following two steps until the desired number of descriptors is selected.
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5. Calculate the significance of each of the remaining descriptors of M with respect
to the already selected descriptors of S.

6. From the remaining descriptors of M, select descriptor M j that maximizes

f̂ (M j ,B) + 1

|S|
∑

Mi ≤S
f̃ (Mi ,M j ). (4.15)

As a result of that, M j ≤ S and M = M \ M j .
7. Stop.

In the RSMRMS method, the relevance f̂ (Mi ,B) of a molecular descriptor Mi

with respect to the biological activity B is calculated using (4.6), while the signifi-
cance f̃ (Mi ,M j ) of the descriptorM j with respect to the already selected descriptor
Mi is computed using (4.7).

4.3.2 Computational Complexity

The rough set theory-based feature selection method (RSMRMS) has low compu-
tational complexity with respect to the number of descriptors in the original data
set. The computation of the relevance of m descriptors is carried out in step 2 of
the RSMRMS algorithm, which has O(m) time complexity. The selection of most
relevant descriptor from the set of m descriptors, that is step 3, has also a complexity
O(m). There is only one loop in the RSMRMS method, which is executed (d − 1)

times, where d represents the number of selected features. Each iteration of the loop
takes only a constant amount of time. The complexity to calculate the significance of
a descriptor with respect to the already selected descriptors is O(ḿ), where ḿ is the
cardinality of the already selected descriptor set. In effect, the selection of a set of
d relevant and significant descriptors from the whole set of m descriptors using the
new first-order incremental search method has an overall computational complexity
of (O(m) + O(dḿ)) = O(m) as d, ḿ << m.

4.3.3 Generation of Equivalence Classes

In QSAR data set, the molecular descriptor values as well as the biological activity
values of different molecules are continuous. Hence, to measure both relevance and
significance of molecular descriptors using rough set theory, the continuous descrip-
tor values of a molecule are usually divided into several discrete partitions to generate
equivalence classes. The discretization method reported in [34] is employed to dis-
cretize the continuous descriptor values. The values of a descriptor or an attribute are
discretized using mean μ and standard deviation σ computed over n values of that
attribute: any value larger than (μ + σ

2 ) is transformed to state 1; any value between
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(μ − σ
2 ) and (μ + σ

2 ) is transformed to state 0; any value smaller than (μ − σ
2 ) is

transformed to state −1 [34]. The equivalence classes are then generated to compute
both relevance and significance of molecular descriptors.

4.4 Experimental Results

The performance of the rough set-based maximum relevance-maximum significance
(RSMRMS) [37] method is extensively studied and compared with that of some
existing algorithms. The source code of the RSMRMS algorithm, written in C lan-
guage, is available at http://www.isical.ac.in/~bibl/results/rsmrms/rsmrms.html. All
other algorithms are also implemented in C language and run in LINUX environment
having machine configuration Pentium IV, 2.8 GHz, 1 MB cache, and 512 MB RAM.
To analyze the performance of different algorithms, the experimentation is done on
three QSAR data sets. The major metric for evaluating the performance of different
algorithms is the R2 statistic of support vector regression method.

4.4.1 Description of QSAR Data Sets

In this chapter, following three QSAR data sets are used that are available at http://
www.cheminformatics.org.

4.4.1.1 Steroid Data Set

This data set contains 31 steroid molecules presented in MOL format, which is
used in cheminformatics applications for storing atomic coordinates, chemical bond
information, and metadata of the 3D structure of a single chemical compound in plain
text tabular format. The log(1/k) values of these molecules are also given. All these
molecules are categorized into three activity classes. Among them, 11 are reported
as high activity molecules, 9 moderate and rest 11 as lowest activity molecules.

4.4.1.2 Small Dopamine Data Set

It contains 26 dopamine molecules given in MOL format. The biological activity of
these molecules is also available.

http://www.isical.ac.in/~bibl/results/rsmrms/rsmrms.html
http://www.cheminformatics.org
http://www.cheminformatics.org
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4.4.1.3 Large Dopamine Data Set

This data set consists of 116 dopamine molecules that are given along with their
molecular descriptors in binary form. The continuous valued biological activity of
each molecule is also given.

Both steroid and small dopamine data sets are available in MOL format. The
molecular descriptors of these data sets are obtained using MODEL software [31],
which calculates approximately 4000 molecular descriptors for each molecule. The
calculated descriptors cover different aspects of the molecular structure including
topological, electronic, constitutional, geometrical, and physical descriptors.

4.4.2 Support Vector Regression Method

The support vector machine (SVM) [59] is a relatively new and promising classifica-
tion and regression method. It is a margin classifier that draws an optimal hyperplane
in the feature vector space; this defines a boundary that maximizes the margin between
data samples in different classes, therefore leading to good generalization properties.
A key factor in the SVM is to use kernels to construct nonlinear decision boundary.
In this work, radial basis function kernels are used. The source code of the SVM is
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm. A brief introduction of
the SVM is also reported in Chap. 3.

The performance of the SVM is analyzed using R2 statistic or coefficient of
determination value. The R2 statistic tells about the goodness of fit of a model and
how well a regression approximates its attributes. The value of R2 statistic ranges
from 0 to 1. The near the value reaches to 1, the better is the approximation. The R2

statistic can be calculated as follows:

R2 = 1 − SSerr

SStot
; (4.16)

where
SStot = Σi (yi − ȳ)2 (4.17)

and
SSerr = Σi (yi − fi )

2 (4.18)

represent the total sum of squares, which is proportional to the sample variance, and
the sum of squared errors, also called the residual sum of squares, respectively. Here,
ȳ represents the mean of the observed data, while yi and fi are the i th observed and
modeled or predicted values, respectively.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 4.1 Performance for
different number of
equivalence classes

Data Set Experiment c = 2 c = 3 c = 5

Steroid 10-fold CV 0.12 0.89 0.84
LOOCV 0.33 0.88 0.84

Small 10-fold CV 0.18 0.37 0.24
Dopamine LOOCV 0.39 0.45 0.27
Large 10-fold CV 0.52 0.52 0.52
Dopamine LOOCV 0.53 0.53 0.53

4.4.3 Optimum Number of Equivalence Classes

In QSAR data set, both molecular descriptors and biological activity values are con-
tinuous. Hence, to measure the relevance and significance of descriptors using rough
set theory, the continuous values have to be divided into several discrete partitions
to generate equivalence classes. In the RSMRMS method, the continuous values are
discretized into three (c = 3) states as per the procedure reported in Sect. 4.3.3.

In order to establish the effectiveness of three (c = 3) state discretization pro-
cedure, the extensive experiments are carried out on different QSAR data sets. The
performance of the RSMRMS method for c = 3 is compared with that for c = 2 and
5. For c = 2, any value larger than mean is transformed to one state, while others to
another state. On the other hand, for c = 5, the intermediate state of c = 3 is par-
titioned into three states, while other two states remain unaltered, therefore leading
to total five states. Table 4.1 reports the comparative performance of the RSMRMS
method for c = 2, 3, and 5 with respect to the R2 statistic of the SVM. To compute
the R2 statistic, both leave-one-out cross-validation (LOOCV) and 10-fold cross-
validation (CV) are performed on each QSAR data set. All the results reported in
Table 4.1 establish the fact that the performance of the rough set-based feature selec-
tion method, that is, RSMRMS method, is significantly better in case of c = 3 than
that of c = 2 and 5.

4.4.4 Performance Analysis

The experimental results on three QSAR data sets are presented in Figs. 4.1, 4.2,
4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. Subsequent discussions analyze the results with
respect to the R2 statistic of the SVM. To compute the R2 statistic of the SVM,
both LOOCV and 10-fold CV are performed on each QSAR data set. The number
of molecular descriptors selected ranges from 1 to 50.

Figure 4.1 presents the performance of the RSMRMS method on steroid molecules
obtained by both 10-fold CV and LOOCV, while Figs. 4.2 and 4.3 depict that for
small and large dopamine molecules, respectively. From Fig. 4.1, it is seen that as
the number of selected descriptors of steroid molecules ranges from 1 to 15, the R2

statistic of the SVM fluctuates in case of both 10-fold CV and LOOCV. It indicates
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Fig. 4.1 Results on steroid
molecules obtained by 10-fold
CV and LOOCV
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that the RSMRMS method gets stuck into local minima of the search space for this
range. However, the R2 statistic continuously increases with the increase in number
of selected descriptors for more than 15. Finally, the RSMRMS method attains its
maximum R2 statistic of 0.88 and 0.89 using only 44 descriptors for the LOOCV
and 10-fold CV, respectively. That is, the RSMRMS method is able to find out an
optimum or near to optimum solution using 44 descriptors for both 10-fold CV
and LOOCV. On the other hand, from Fig. 4.2, it can be seen that in case of small
dopamine molecules, two most relevant and significant descriptors are sufficient to
achieve the maximum R2 statistic values of 0.45 and 0.37 of the RSMRMS method
for the LOOCV and 10-fold CV, respectively. Finally, Fig. 4.3 depicts the results for
large dopamine molecules. From the results presented in Fig. 4.3, it is seen that the
RSMRMS method attains maximum R2 statistic of 0.53 with 9 descriptors using
the LOOCV, while for 10-fold CV, the best R2 statistic is 0.52 with same number
of descriptors. In other words, the RSMRMS method is able to find out optimum or
near to optimum solutions using 2 and 9 molecular descriptors for small and large
dopamine molecules, respectively.

Figures 4.4, 4.5 and 4.6 present the comparative performance analysis of the
RSMRMS method and one of the most popular rough set-based algorithms, called
quick reduct algorithm [8]. All the results are reported for three QSAR data sets
based on the LOOCV. The actual and obtained biological activity values of different
molecules for three QSAR data sets are reported for comparison. The R2 statistic
values of quick reduct algorithm are 0.82, 0.45, and 0.56 for steroid, small dopamine,
and large dopamine molecules, respectively. For 10-fold CV, the R2 statistic values of
quick reduct algorithm are 0.83, 0.37, and 0.52 on steroid, small dopamine, and large
dopamine, respectively. From the results reported in Figs. 4.4, 4.5 and 4.6, it is seen
that the performance of the RSMRMS method is better than quick reduct algorithm
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Fig. 4.2 Results on small
dopamine obtained by 10-fold
CV and LOOCV
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Fig. 4.3 Results on large
dopamine obtained by 10-fold
CV and LOOCV
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in case of steroid data set and comparable with quick reduct algorithm for both
small and large dopamine molecules. In this regard, it should be noted that another
rough set-based algorithm, called discernibility matrix-based method [50], attains
the R2 statistic values of 0.79, 0.43, and 0.39 for steroid, small dopamine, and large
dopamine molecules, respectively, using 10-fold CV, while the corresponding values
for the LOOCV are 0.79, 0.61, and 0.41, respectively. However, as the computational
complexity of both quick reduct method [8] and discernibility matrix-based method
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Fig. 4.4 Results for steroid
molecules obtained by
leave-one-out
cross-validation. a
RSMRMS method. b Quick
reduct algorithm
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[50] is very high, they require significantly higher execution time compared to that
of the RSMRMS algorithm.

Table 4.2 compares the execution time, in milli second, of the RSMRMS algo-
rithm and that of quick reduct algorithm [8] and discernibility matrix-based method
[50] for three QSAR data sets. From the results reported in Table 4.2, it is seen
that the execution time required for the RSMRMS algorithm is significantly lower
than that of other two algorithms, irrespective of the data sets used. As the compu-
tational complexity of both quick reduct algorithm and discernibility matrix-based
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Fig. 4.5 Results for small
dopamine molecules obtained
by leave-one-out cross-
validation. a RSMRMS
method. b Quick reduct algo-
rithm
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method is exponential in nature [8, 50], they require significantly higher execution
time compared to that of the RSMRMS algorithm. The significantly lesser exe-
cution time of the RSMRMS algorithm is achieved due to its low computational
complexity.
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Fig. 4.6 Results for large
dopamine molecules obtained
by leave-one-out cross-
validation. a RSMRMS
method. b Quick reduct algo-
rithm
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4.4.5 Comparative Performance Analysis

The RSMRMS method performs significantly better than different existing QSAR
methods. To establish the superiority of the RSMRMS method, extensive exper-
imentation is carried out on different QSAR data sets. Figure 4.7 presents the
predicted biological activity values of the RSMRMS method and Compass [19],
an well-known existing QSAR model, along with the actual activity values. Results
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Fig. 4.7 Results of
RSMRMS and compass
on steroid molecules using
LOOCV
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Fig. 4.8 Results of RSMRMS
and compass on 21 training
steroid molecules
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are reported based on the LOOCV. The R2 statistic values corresponding to the RSM-
RMS method and Compass are 0.89 and 0.79, respectively. Next, the steroid data set
is divided into two sets: training set of 21 molecules and test set of 10 molecules.
The LOOCV results of 21 molecules obtained by the RSMRMS method as well as
two well-known existing approaches, namely, Compass [19] and CoMFA [57] are
reported in Table 4.3. Figures 4.8 and 4.9 depict the actual and predicted values of the
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Fig. 4.9 Results of RSMRMS
and compass on 10 test steroid
molecules
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Table 4.2 Execution time of
different algorithms

Data Set Quick reduct Discernibility matrix RSMRMS

Steroid 383253 55061 3498
Small dopamine 350015 54044 4299
Large dopamine 487735 35027 1755

Table 4.3 Result on training
set of steroid data

Methods R2 statistic

Existing CoMFA 0.69
Models Compass 0.89
RSMRMS RSMRMS 0.97

RSMRMS method and Compass [19] for 21 training and 10 test steroid molecules,
respectively. A detailed comparison of the RSMRMS method with other existing 3D
QSAR methods, namely, Compass [19], MS-WHIM [5], PARM [6], TQSAR [47],
SOMFA [48], EVA [57], CoMFA [57], COMSA [43], MEDV [33], QS-SM [1], and
EEVA [56], is presented in Table 4.4 on test set of steroid data, that is, molecules 22
to 31.

From the R2 statistic reported in Tables 4.3 and 4.4, along with the results reported
in Figs. 4.7, 4.8 and 4.9, it can be seen that the RSMRMS method outperforms
different existing QSAR approaches in case of steroid data set. Also, the RSMRMS
method predicts biological activity of 21 training and 10 test molecules significantly
better than the Compass [19]. Moreover, the model building phase of Compass takes
about 1 minute per molecule for steroid data set [19], which is significantly higher
than that of the RSMRMS method.
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Table 4.4 Result on test set
of steroid data

Methods R2 statistic

Compass 0.16
MS-WHIM 0.28
PARM 0.33
TQSAR 0.16
SOMFA 0.20

Existing EVA 0.36
Models CoMFA 0.25

COMSA 0.09
MEDV 0.45
QS-SM 0.36
EEVA 0.36

RSMRMS RSMRMS 0.67

Among 2901 molecular descriptors of steroid data set, 44 relevant and significant
descriptors obtained using the RSMRMS method can predict biological activity val-
ues of steroid molecules accurately. All these 44 descriptors can be grouped into one
of the following four descriptor types, namely, topological, geometrical, electronic,
and charge. By analyzing the R2 statistic values of steroid data set, one can deduce
that topological, geometrical, electronic, and charge descriptors are favorably affect
the biological activities of these molecules, while thermodynamic and constitutional
descriptors can make adverse affect on biological activities.

Finally, the 10-fold CV result of the RSMRMS method for large dopamine data
is compared with the existing approach Boosting of Sventik et al. [53]. While the
RSMRMS method achieves the R2 value of 0.52 with 9 attributes, the best result
obtained by the Boosting method is 0.48, that is, the RSMRMS method performs
significantly better than the existing method.

4.5 Conclusion and Discussion

This chapter introduces a new feature selection algorithm based on rough set theory,
called RSMRMS, in order to identify relevant and significant molecular descriptors
from high dimensional QSAR data sets. It presents the results of selecting effective
molecular descriptors for predicting biological activity of molecules. The maximum
relevance-maximum significance (MRMS) criterion is used to select the molecular
descriptors. The performance of the RSMRMS method is evaluated by the R2 statistic
of support vector regression method. For all data sets, significantly better results are
found for the RSMRMS method compared to different existing QSAR models. The
results obtained on real data sets demonstrate that the RSMRMS method can bring a
remarkable improvement on descriptor selection problem, and therefore, it can be a
promising alternative to existing QSAR models for prediction of biological activity
of molecules. All the results reported in this chapter demonstrate the feasibility and
effectiveness of the RSMRMS method. The RSMRMS method is capable of iden-
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tifying effective molecular descriptors that may contribute to revealing underlying
molecular structures, providing a useful tool for exploratory analysis of QSAR data
sets.

However, there are usually real-valued data and fuzzy information in real-world
applications. In rough set theory, the real-valued features are divided into several
discrete partitions and the dependency or quality of approximation of a feature is
calculated. The inherent error that exists in discretization process is of major con-
cern in the computation of the dependency of real-valued features. A fuzzy set-based
discretization method is reported in Chap. 7 to generate equivalence classes for con-
tinuous valued features required to compute the dependency using rough set theory.
Combining fuzzy sets and rough sets provides an important direction in reasoning
with uncertainty for real-valued data sets. Both fuzzy sets and rough sets provide a
mathematical framework to capture uncertainties associated with the data [11, 12].
They are complementary in some aspects. The generalized theories of rough-fuzzy
sets and fuzzy-rough sets have been applied successfully to feature selection of real
valued data [20, 21, 23, 55, 61]. Both fuzzy-rough sets [16, 22] and neighborhood
rough sets [17, 32] can handle continuous valued attributes or features without any
discretization. Jensen and Shen [20, 21] introduced the fuzzy-rough quick reduct
algorithm for feature selection or dimensionality reduction of real-valued data sets.
In [18], Hu et al. have used the concept of fuzzy equivalence relation matrix to
compute entropy and mutual information in fuzzy approximation spaces, which can
be used for feature selection of real-valued data sets. A feature selection method is
proposed in [36], which employs fuzzy-rough sets and f -information measures to
provide a means by which discrete or real-valued noisy data, or a mixture of both,
can be effectively reduced without the need for user-specified information. Recently,
Maji and Garai introduced a feature selection method in [35], integrating judiciously
the merits of MRMS criterion and fuzzy-rough sets, to select relevant and significant
real-valued features from high dimensional noisy data set.

Through the current investigations and experiments, the potential utility of rough
sets and MRMS criterion for molecular descriptor selection from QSAR data sets are
demonstrated. Another real-life application of this methodology in bioinformatics is
described in Chap. 7 where the problem of selecting discriminative microRNAs from
microarray expression data sets is addressed. In the next chapter, another important
task of bioinformatics, namely, selection of discriminative genes from microarray
gene expression, is handled, where different f -information measures are used as the
evaluation criteria for gene selection problem.
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Chapter 5
f -Information Measures for Selection
of Discriminative Genes from Microarray Data

5.1 Introduction

The wide use of high-throughput technology produces an explosion in using gene
expression phenotype for identification and classification in a variety of diagnostic
areas. An important application of gene expression data in functional genomics is to
classify samples according to their gene expression profiles such as to classify cancer
versus normal samples or to classify different types or subtypes of cancer [11, 17,
46].

A microarray gene expression data set can be represented by an expression table,
T = {wi j |i = 1, . . . , m, j = 1, . . . , n}, where wi j ∈ ≤ is the measured expression
level of gene Ai in the j th sample, m and n represent the total number of genes and
samples, respectively. Each row in the expression table corresponds to one particular
gene and each column to a sample [17]. However, for most gene expression data, the
number of training samples is still very small compared to the large number of genes
involved in the experiments [17]. For example, the colon cancer data set consists of
62 samples and 2,000 genes and the leukemia data set contains 72 samples and 7,129
genes. The number of samples is likely to remain small for many areas of investi-
gation, especially for human data, due to the difficulty of collecting and processing
microarray samples [17]. When the number of genes is significantly greater than the
number of samples, it is possible to find biologically relevant correlations of gene
behavior with the sample categories [37].

However, among the large amount of genes, only a small fraction is effective for
performing a certain task. Also, a small subset of genes is desirable in developing gene
expression-based diagnostic tools for delivering precise, reliable, and interpretable
results. With the gene selection results, the cost of biological experiment and decision
can be greatly reduced by analyzing only the marker genes. Hence, identifying a
reduced set of most relevant genes is the goal of gene selection. The small number of
training samples and a large number of genes make gene selection a more relevant
and challenging problem in gene expression-based classification. This is an important
problem in machine learning and referred to as feature selection [9, 31].
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In this regard, different feature selection methods [4, 9, 10, 31, 32, 34, 39, 55,
60] can be used to select discriminative genes from microarray data sets. A detailed
survey on different feature selection algorithms is reported in Chap. 4. There are
also lots of gene selection algorithms developed to select differentially expressed
genes [58]. One of the popular gene selection method is significance analysis of
microarrays [64], which assigns a score to each gene on the basis of change in gene
expression relative to the standard deviation of repeated measurements. Other notable
gene selection algorithms are reported in [38, 40, 48, 52, 59, 72].

Due to the high dimensionality of microarray data set, fast, scalable, and efficient
feature selection techniques such as univariate filter methods [3, 13, 25, 33, 36, 62]
have attracted most attention. Univariate methods can be both parametric [2, 15, 49,
63] and non-parametric [14, 41, 51, 53, 54, 64]. The simplicity of the univariate
techniques has made it dominant in the field of gene selection using microarray data.
However, the univariate selection methods have certain restrictions and may lead to
less accurate classifiers as they do not take into account the gene-gene interactions.
Also, the gene sets obtained by these methods contain redundant or similar genes.

The application of multivariate filter methods ranges from simple bivariate inter-
actions [5] to more advanced solutions exploring higher order interactions such as
correlation-based feature selection [20, 61, 68, 73] and several variants of the Markov
blanket filter method [16, 45, 70]. There also exist a number of feature selection algo-
rithms that group correlated features to reduce the redundancy among the selected
features [7, 8, 20, 21, 26, 30, 47]. The uncorrelated shrunken centroid [74] and
minimum redundancy-maximum relevance (mRMR) [10, 55] algorithms are two
important multivariate filter procedures, highlighting the advantage of using mul-
tivariate methods over univariate procedures in the gene expression domain. The
mRMR method selects a subset of genes from the whole gene set by maximizing the
relevance and minimizing the redundancy of the selected genes. An f -information
measure-based method has been reported in [43] for selection of discriminative genes
from microarray data using the mRMR criterion. In this regard, it should be noted
that the mRMR criterion is also used in [23] and [44] for gene selection, based on the
concepts of neighborhood mutual information and fuzzy-rough sets, respectively.

Gene selection using wrapper or embedded methods offers an alternative way to
perform a multivariate gene subset selection, incorporating the classifiers; bias into
the search and thus offering an opportunity to construct more accurate classifiers.
In the context of microarray analysis, most wrapper methods use population-based,
randomized search heuristics [4, 29, 35, 50], although some methods use sequential
search techniques [24, 71]. An interesting hybrid filter-wrapper approach is intro-
duced in [57], integrating a univariately preordered gene ranking with an incremen-
tally augmenting wrapper method. The embedded capacity of several classifiers to
discard input features and thus propose a subset of discriminative genes, has been
exploited by several authors. Examples include the use of random forests, a classi-
fier that combines many single decision trees, in an embedded way to calculate the
importance of each gene [6, 28, 65]. Another line of embedded feature selection
techniques uses the weights of each feature in linear classifiers such as support vec-
tor machine [19] and logistic regression [42]. These weights are used to reflect the
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relevance of each gene in a multivariate way, and thus allow for the removal of genes
with very small weights.

In gene selection process, an optimal gene subset is always relative to a certain
criterion. In general, different criteria may lead to different optimal gene subsets.
However, every criterion tries to measure the discriminating ability of a gene or
a subset of genes to distinguish different class labels. To measure the gene-class
relevance, different statistical and information theoretic measures such as the F-test,
t-test [10, 34], entropy, information gain, mutual information [10, 55], normalized
mutual information [39], and f -information measures [43] are typically used, and the
same or a different metric-like mutual information, f -information, the L1 distance,
Euclidean distance, and Pearson’s correlation coefficient [10, 27, 55] is employed
to calculate the gene-gene redundancy. However, as the F-test, t-test, Euclidean
distance, and Pearson’s correlation depend on the actual gene expression values of
the microarray data, they are very much sensitive to noise or outlier of the data set
[10, 22, 27, 55]. On the other hand, as information measures depend only on the
probability distribution of a random variable rather than on its actual values, they are
more effective to evaluate both gene-class relevance and gene-gene redundancy [18,
39, 55].

However, measures of the distance between a joint probability distribution and
product of the marginal distributions are information measures [43, 56, 66]. Informa-
tion measures constitute a subclass of the divergence measures, which are measures
of the distance between two arbitrary distributions. A specific class of information
(respectively, divergence) measures, of which mutual information is a member, is
formed by the f -information (respectively, f -divergence) measures [43, 56, 66]. In
this chapter, several f -information measures are compared with mutual information
by applying them to the selection of genes from microarray data. The performance
of different information measures is studied using the predictive accuracy of naive
Bayes classifier, K-nearest neighbor rule, and support vector machine. The effec-
tiveness of different f -information measures, along with a comparison with mutual
information, is demonstrated on three cancer microarray data sets, namely, breast
cancer, leukemia, and colon cancer data sets.

The structure of the rest of this chapter is as follows: The problem of gene selection
from microarray data sets using several information theoretic measures is described
in Sect. 5.2, along with a brief description of different f -information measures. A few
case studies and a comparison among different f -information measures are reported
in Sect. 5.3. Concluding remarks are given in Sect. 5.4.

5.2 Gene Selection Using f -Information Measures

In microarray data analysis, the data set may contain a number of redundant genes
with low relevance to the classes. The presence of such redundant and nonrelevant
genes leads to a reduction in the useful information. Ideally, the selected genes should
have high relevance with the classes while the redundancy among them should be
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as low as possible. The genes with high relevance are expected to be able to predict
the classes of the samples. However, the prediction capability is reduced if many
redundant genes are selected. In contrast, a data set that contains genes not only with
high relevance with respect to the classes but with low mutual redundancy is more
effective in its prediction capability. Hence, to assess the effectiveness of the genes,
both relevance and redundancy need to be measured quantitatively. In this chapter,
the minimum redundancy-maximum relevance framework of Ding and Peng [10,
55] is used to select a set of relevant and nonredundant genes from microarray gene
expression data sets.

5.2.1 Minimum Redundancy-Maximum Relevance Criterion

Let C = {A1, . . . ,Ai , . . . ,A j , . . . ,Am} be the set of m genes of a given microarray
gene expression data set and S is the set of selected genes. Define f̂ (Ai ,D) as the
relevance of the gene Ai with respect to the class label D while f̃ (Ai ,A j ) as the
redundancy between two genes Ai and A j . The total relevance of all selected genes
is, therefore, given by

Jrelev =
∑

Ai ∈S
f̂ (Ai ,D) (5.1)

while the total redundancy among the selected genes is

Jredun =
∑

Ai ,A j ∈S
f̃ (Ai ,A j ). (5.2)

Therefore, the problem of selecting a set S of relevant and nonredundant genes
from the whole set C of m genes is equivalent to maximize Jrelev and minimize
Jredun, that is, to maximize the objective function J , where

J = Jrelev − Jredun; (5.3)

that is, =
∑

i

f̂ (Ai ,D) −
∑

i, j

f̃ (Ai ,A j ). (5.4)

To solve the above problem, a greedy algorithm is widely used that follows next
[10, 55]:

1. Initialize C → {A1, . . . ,Ai , . . . ,A j , . . . ,Am},S → ⊂.
2. Calculate the relevance f̂ (Ai ,D) of each gene Ai ∈ C.
3. Select gene Ai as the most relevant gene that has the highest relevance f̂ (Ai ,D).

In effect, Ai ∈ S and C = C \ Ai .
4. Repeat the following two steps until the desired number of genes is selected.
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5. Calculate the redundancy between already selected genes of S and each of the
remaining genes of C.

6. From the remaining genes of C, select gene A j that maximizes

f̂ (A j ,D) − 1

|S|
∑

Ai ∈S
f̃ (Ai ,A j ). (5.5)

As a result of that, A j ∈ S and C = C \ A j .
7. Stop.

5.2.2 f -Information Measures for Gene Selection

In this chapter, different f -information measures are reported to compute both gene-
class relevance and gene-gene redundancy for selection of genes from microarray
data. The f -information measures calculate the distance between a given joint prob-
ability pi j and the joint probability when the variables are independent pi p j . In the
following analysis, it is assumed that all probability distributions are complete, that
is,

∑

i

pi =
∑

j

p j =
∑

i, j

pi j = 1.

The extent to which two probability distributions differ can be expressed by a
so-called measure of divergence. Such a measure will reach a minimum value when
the two probability distributions are identical and the value increases with increasing
disparity between the two distributions. A specific class of divergence measures is
the set of f -divergence measures [56, 66]. For two discrete probability distributions
P = {pi | i = 1, 2, . . . , n} and Q = {qi | i = 1, 2, . . . , n}, the f -divergence is
defined as

f (P||Q) =
∑

i

qi f

(
pi

qi

⎜
. (5.6)

The demands on the function f are that

1. f : [0,⊆) → (−⊆,⊆];
2. f is continuous and convex on [0,⊆);
3. finite on (0,⊆); and
4. strictly convex at some point x ∈ (0,⊆).

The following definition completes the definition of f -divergence for the two cases
for which (5.6) is not defined:

qi f

(
pi

qi

⎜
=

⎡
0, if pi = qi = 0

pi lim
x→⊆

f (x)

x
, if pi > 0, qi = 0.

(5.7)
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A special case of f -divergence measures is the f -information measures. These are
defined similarly to f -divergence measures, but apply only to specific probability
distributions; namely, the joint probability of two variables P and their marginal
probabilities’ product P1 × P2. Thus, the f -information is a measure of dependence:
it measures the distance between a given joint probability and the joint probability
when the variables are independent [56, 66]. The frequently used functions that can be
used to form f -information measures include V -information, Iβ-information, Mβ-
information, and δβ-information. On the other hand, the Renyi’s distance measure
does not fall in the class of f -divergence measures as it does not satisfy the definition
of f -divergence. However, it is divergence measure in the sense that it measures the
distance between two distributions and it is directly related to f -divergence.

5.2.2.1 V-Information

One of the simplest measures of dependence can be obtained using the function
V = |x − 1|, which results in the V -information [56, 66]

V (P||P1 × P2) =
∑

i, j

|pi j − pi p j | (5.8)

where P1 = {pi | i = 1, 2, . . . , n}, P2 = {p j | j = 1, 2, . . . , n}, and P = {pi j | i =
1, 2, . . . , n; j = 1, 2, . . . , n} represent two marginal probability distributions and
their joint probability distribution, respectively. Hence, the V -information calculates
the absolute distance between joint probability of two variables and their marginal
probabilities’ product.

5.2.2.2 Iα-Information

The Iβ-information is defined as [56, 66]

Iβ(P||P1 × P2) = 1

β(β − 1)

⎛

⎝
∑

i, j

(pi j )
β

(pi p j )
β−1 − 1

⎞

⎠ (5.9)

for β ∩= 0, β ∩= 1. The class of Iβ-information includes mutual information, which
equals Iβ for the limit β → 1. That is,

I1(P||P1 × P2) =
∑

i, j

pi j log

(
pi j

pi p j

⎜
for β → 1. (5.10)
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5.2.2.3 Mα-Information

The Mβ-information, defined by Matusita [56, 66], is as follows:

Mβ(x) = |xβ − 1| 1
β , 0 < β ∅ 1. (5.11)

When applying this function in the definition of an f -information measure, the
resulting Mβ-information measures are

Mβ(P||P1 × P2) =
∑

i, j

|(pi j )
β − (pi p j )

β| 1
β (5.12)

for 0 < β ∅ 1. These constitute a generalized version of V -information. That is, the
Mβ-information is identical to V -information for β = 1.

5.2.2.4 χα-Information

The class of δβ-information measures, proposed by Liese and Vajda [66], is as
follows:

δβ(x) =
⎨ |1 − xβ| 1

β for 0 < β ∅ 1
|1 − x |β for β > 1.

(5.13)

For 0 < β ∅ 1, this function equals to the Mβ function. The δβ-information and
Mβ-information measures are, therefore, also identical for 0 < β ∅ 1. For β > 1,
δβ-information can be written as

δβ(P||P1 × P2) =
∑

i, j

|pi j − pi p j |β
(pi p j )β−1 . (5.14)

5.2.2.5 Renyi Distance

The Renyi distance, a measure of information of order β [56, 66], can be defined as

Rβ(P||P1 × P2) = 1

β − 1
log

∑

i, j

(pi j )
β

(pi p j )β−1

for β ∩= 0, β ∩= 1. It reaches its minimum value when pi j and pi p j are identical, in
which case the summation reduces to

⎩
pi j . As complete probability distribution is

assumed, the sum is one and the minimum value of the measure is, therefore, equal
to zero. The limit of Renyi’s measure for β approaching 1 equals I1(P||P1 × P2),
which is the mutual information.
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5.2.3 Discretization

In microarray gene expression data sets, the class labels of samples are represented
by discrete symbols, while the expression values of genes are continuous. Hence, to
measure both gene-class relevance of a gene with respect to class labels and gene-
gene redundancy between two genes using information theoretic measures such as
mutual information [10, 55], normalized mutual information [39], and f -information
measures [43], the continuous expression values of a gene are divided into several
discrete partitions. The a prior (marginal) probabilities and their joint probabilities
are then calculated to compute both gene-class relevance and gene-gene redundancy
using the definitions for discrete cases. In this chapter, the discretization method
reported in [10, 43, 55] is employed to discretize the continuous gene expression
values. The expression values of a gene are discretized using mean μ and standard
deviation ε computed over n expression values of that gene: any value larger than
(μ + ε/2) is transformed to state 1; any value between (μ − ε/2) and (μ + ε/2) is
transformed to state 0; any value smaller than (μ − ε/2) is transformed to state −1.
These three states correspond to the over-expression, baseline, and under-expression
of genes.

5.3 Experimental Results

The performance of different f -information measures is extensively compared with
that of mutual information and normalized mutual information. Based on the argu-
mentation given in Sect. 5.2.2, the following information measures are chosen to
include in the study:

1. Iβ- and Rβ-information measures for β ∩= 0 and β ∩= 1;
2. mutual information (I1.0- and R1.0-information);
3. Mβ-information measure for 0 < β ∅ 1;
4. δβ-information measure for β > 1; and
5. normalized mutual information U .

In this chapter, these measures are applied to calculate both gene-class rele-
vance and gene-gene redundancy. The minimum redundancy-maximum relevance
(mRMR) criterion [10, 55] is used for gene selection. The source code of the f -
information based mRMR ( f -mRMR) algorithm [43], written in C language, is avail-
able at http://www.isical.ac.in/~bibl/results/fmRMR/fmRMR.html. All the informa-
tion measures are implemented in C language and run in LINUX environment having
machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM.

To analyze the performance of different f -information measures, the experimen-
tation is done on three microarray gene expression data sets. The major metric for
evaluating the performance of different measures is the classification accuracy of sup-
port vector machine (SVM) [67], K-nearest neighbor (K-NN) rule [12], and naive
Bayes (NB) classifier [12].

http://www.isical.ac.in/~bibl/results/fmRMR/fmRMR.html
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5.3.1 Gene Expression Data Sets

In this chapter, three public data sets of cancer microarrays are used. Since binary
classification is a typical and fundamental issue in diagnostic and prognostic pre-
diction of cancer, different f -information measures are compared using following
binary-class data sets.

5.3.1.1 Breast Cancer Data Set

The breast cancer data set contains expression levels of 7,129 genes in 49 breast
tumor samples [69]. The samples are classified according to their estrogen receptor
(ER) status: 25 samples are ER positive while the other 24 samples are ER negative.

5.3.1.2 Leukemia Data Set

The leukemia data set is an Affymetrix high-density oligonucleotide array that con-
tains 7,070 genes and 72 samples from two classes of leukemia: 47 acute lymphoblas-
tic leukemia and 25 acute myeloid leukemia [17]. The data set is publicly available
at http://www.broad.mit.edu/cgibin/cancer/datasets.cgi.

5.3.1.3 Colon Cancer Data Set

The colon cancer data set contains expression levels of 2,000 genes and 62 samples
from two classes [1]: 40 tumor and 22 normal colon tissues. The data set is available
at http://microarray.princeton.edu/oncology/affydata/index.html.

5.3.2 Class Prediction Methods

The SVM [67], K-NN rule [12], and NB classifier [12] are used to evaluate the
performance of different f -information measures. A brief introduction of the SVM
is reported in Chaps. 3 and 4. In this work, linear kernels are used in the SVM to
construct the nonlinear decision boundary. On the other hand, descriptions of both
K-NN rule and NB classifier are reported next.

5.3.2.1 K-Nearest Neighbor Rule

The K-nearest neighbor (K-NN) rule [12] is used for evaluating the effectiveness of
the reduced feature set for classification. It classifies samples based on its closest

http://www.broad.mit.edu/cgibin/cancer/datasets.cgi
http://microarray.princeton.edu/oncology/affydata/index.html
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training samples in the feature space. A sample is classified by a majority vote of
its K-neighbors, with the sample being assigned to the class most common amongst
its K-nearest neighbors. The value of K, chosen for the K-NN, is the square root of
number of samples in training set.

5.3.2.2 Naive Bayes Classifier

The naive Bayes (NB) classifier [12] is one of the oldest classifiers. It is obtained
by using the Bayes rule and assuming features or variables are independent of
each other given its class. For the j th sample x j with m gene expression levels
{w1 j , . . . , wi j , . . . , wmj } for the m genes, the posterior probability that x j belongs
to class c is

p(c|x j ) ⇒
m∏

i=1

p(wi j |c) (5.15)

where p(wi j |c) are conditional tables or conditional density estimated from training
examples.

5.3.3 Performance Analysis

The experimental results on three microarray data sets are presented in Tables 5.1,
5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9. Subsequent discussions analyze the results
with respect to the prediction accuracy of the NB, SVM, and K-NN classifiers. Tables
5.1, 5.2, 5.4, 5.5, 5.7, and 5.8 provide the performance of different f -information
measures using the NB and SVM, respectively, while Tables 5.3, 5.6 and 5.9 shows the
results using the K-NN rule. The values of β for f -information measures investigated
are 0.2, 0.5, 0.8, 1.5, 2.0, 3.0, and 4.0. Some measures resemble mutual information
for β = 1.0 (Iβ and Rβ) and some resemble another measure (M1.0 and δ1.0 equal
V ). To compute the prediction accuracy of the NB, SVM, and K-NN, the leave-one-
out cross-validation is performed on each gene expression data set. The number of
genes selected ranges from 2 to 50 and each data set is preprocessed by standardizing
each sample to zero mean and unit variance.

Tables 5.1, 5.4 and 5.7 shows that, for three microarray data sets, genes selected
by I0.2-, M0.2-, and R0.2-information measures lead to higher classification accuracy
than those selected by mutual information and other f -information measures. With
the NB, a classification accuracy of 100 % is obtained for I0.2- and R0.2-information
measures considering 15 or more genes in case of breast cancer data, eight or ten genes
in case of leukemia data, and 25 or more genes in case of colon cancer data, while in
case of M0.2-information measure 15 or more genes for breast cancer data, eight or
more genes for leukemia data, and 30 or more genes for colon cancer data are required
to achieve this accuracy. Similarly, 100 % accuracy for breast cancer data is obtained
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Table 5.1 Performance on breast cancer data set using NB classifier

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 95.9 98.0 98.0 98.0 100 100 100 100 100 100 98.0 98.0
I0.5 95.9 98.0 98.0 98.0 100 100 100 98.0 98.0 98.0 98.0 98.0
I0.8 95.9 100 95.9 98.0 98.0 98.0 95.9 93.9 91.8 91.8 89.8 89.8
I1.0 95.9 98.0 95.9 100 98.0 93.9 93.9 89.8 87.8 87.8 87.8 87.8
I1.5 95.9 98.0 95.9 93.9 93.9 91.8 91.8 89.8 85.7 83.7 83.7 81.6
I2.0 95.9 95.9 95.9 93.9 91.8 91.8 91.8 87.8 87.8 83.7 83.7 81.6
I3.0 95.9 95.9 95.9 93.9 91.8 91.8 89.8 87.8 87.8 83.7 83.7 81.6
I4.0 95.9 95.9 95.9 91.8 91.8 89.8 87.8 87.8 85.7 83.7 81.6 81.6
M0.2 85.7 95.9 95.9 98.0 100 100 100 100 98.0 98.0 98.0 98.0
M0.5 95.9 98.0 98.0 98.0 100 100 100 98.0 98.0 98.0 98.0 98.0
M0.8 95.9 93.9 95.9 98.0 93.9 91.8 91.8 87.8 85.7 85.7 85.7 79.6
M1.0 87.8 89.8 83.7 85.7 89.8 87.8 87.8 83.7 85.7 85.7 83.7 83.7
δ1.5 95.9 98.0 95.9 98.0 93.9 89.8 89.8 85.7 83.7 81.6 79.6 79.6
δ2.0 95.9 95.9 95.9 93.9 91.8 91.8 91.8 87.8 87.8 83.7 83.7 81.6
δ3.0 95.9 95.9 95.9 93.9 93.9 93.9 93.9 89.8 87.8 85.7 83.7 83.7
δ4.0 95.9 98.0 100 95.9 95.9 93.9 93.9 89.8 85.7 85.7 85.7 85.7
R0.2 95.9 98.0 98.0 98.0 100 100 100 100 100 100 98.0 98.0
R0.5 95.9 98.0 98.0 98.0 100 100 100 98.0 98.0 98.0 98.0 98.0
R0.8 95.9 100 95.9 95.9 98.0 98.0 95.9 93.9 91.8 91.8 89.8 89.8
R1.0 95.9 98.0 95.9 100 98.0 93.9 93.9 89.8 87.8 87.8 87.8 87.8
R1.5 95.9 98.0 95.9 93.9 91.8 91.8 91.8 89.8 87.8 83.7 83.7 83.7
R2.0 95.9 91.8 95.9 95.9 91.8 91.8 91.8 89.8 85.7 83.7 83.7 81.6
R3.0 93.9 89.8 93.9 93.9 93.9 91.8 91.8 91.8 89.8 85.7 83.7 79.6
R4.0 93.9 93.9 91.8 91.8 91.8 91.8 89.8 89.8 87.8 83.7 83.7 81.6
U 95.9 98.0 98.0 100 95.9 93.9 93.9 91.8 91.8 89.8 89.8 89.8

for I0.8- and R0.8-information measures using only five genes. However, both mutual
information and normalized mutual information provide maximum 98.6 % accuracy
for leukemia data, 93.6 and 95.2 % accuracy for colon cancer data, and 100 % for
breast cancer data using 10 genes.

The results reported in Tables 5.2, 5.5 and 5.8 are based on the predictive accuracy
of the SVM. The results show that in case of breast cancer data set, the f -information
measures along with mutual information and normalized mutual information achieve
100 % classification accuracy. While at least 8 genes are required for mutual infor-
mation and normalized mutual information to attain this accuracy, I0.2-, I0.5-, M0.5-,
R0.2-, and R0.5-information measures need only 5 genes. On the other hand, both
mutual information and normalized mutual information provide maximum 98.6 %
accuracy for leukemia data using 25 genes, while I1.5-, M0.8-, and V - (that is, M1.0-)
information measures give 100 % accuracy using only 15, 15, and 20 genes, respec-
tively. Similarly, for colon cancer data set, while mutual information and normalized
mutual information attain maximum 88.7 and 85.5 % accuracy, respectively, M1.0-,
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Table 5.2 Performance on breast cancer data set using SVM

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 81.6 100 95.9 98.0 98.0 100 95.9 95.9 98.0 98.0 98.0 95.9
I0.5 81.6 100 100 100 95.9 95.9 100 95.9 95.9 95.9 98.0 98.0
I0.8 81.6 98.0 100 100 98.0 95.9 95.9 98.0 98.0 95.9 98.0 95.9
I1.0 81.6 98.0 100 100 98.0 95.9 95.9 93.9 93.9 93.9 95.9 95.9
I1.5 85.7 91.8 98.0 100 98.0 100 95.9 95.9 95.9 95.9 93.9 93.9
I2.0 85.7 95.9 98.0 100 100 100 95.9 95.9 95.9 93.9 93.9 93.9
I3.0 85.7 95.9 98.0 100 100 95.9 95.9 95.9 95.9 95.9 93.9 93.9
I4.0 85.7 89.8 100 98.0 100 95.9 95.9 95.9 95.9 95.9 95.9 95.9
M0.2 77.6 95.9 91.8 89.8 87.8 93.9 93.9 95.9 95.9 95.9 95.9 98.0
M0.5 81.6 100 100 100 95.9 95.9 100 95.9 95.9 95.9 98.0 98.0
M0.8 85.7 89.8 93.9 89.8 93.9 95.9 93.9 93.9 93.9 91.8 93.9 93.9
M1.0 83.7 81.6 87.8 91.8 87.8 83.7 83.7 83.7 85.7 83.7 87.8 85.7
δ1.5 85.7 87.8 91.8 89.8 93.9 91.8 95.9 95.9 93.9 93.9 93.9 93.9
δ2.0 85.7 95.9 98.0 100 100 100 95.9 95.9 95.9 93.9 93.9 93.9
δ3.0 85.7 89.8 100 95.9 98.0 95.9 98.0 93.9 93.9 93.9 93.9 93.9
δ4.0 85.7 91.8 100 100 98.0 95.9 95.9 95.9 95.9 95.9 95.9 95.9
R0.2 81.6 100 95.9 98.0 98.0 98.0 95.9 95.9 95.9 98.0 98.0 98.0
R0.5 81.6 100 100 100 95.9 95.9 100 95.9 95.9 93.9 98.0 98.0
R0.8 81.6 98.0 100 100 98.0 95.9 95.9 98.0 98.0 95.9 98.0 95.9
R1.0 81.6 98.0 100 100 98.0 95.9 95.9 93.9 93.9 93.9 95.9 95.9
R1.5 85.7 91.8 98.0 100 98.0 100 95.9 95.9 95.9 95.9 93.9 93.9
R2.0 85.7 89.8 95.9 95.9 98.0 100 95.9 95.9 95.9 95.9 93.9 93.9
R3.0 87.8 87.8 100 100 93.9 95.9 93.9 95.9 95.9 95.9 95.9 95.9
R4.0 87.8 89.8 89.8 93.9 98.0 100 100 98.0 98.0 95.9 95.9 93.9
U 81.6 98.0 100 100 98.0 95.9 98.0 95.9 95.9 95.9 95.9 93.9

δ1.5-, and R2.0-information measures provide maximum 91.9 % accuracy, and both
I2.0- and δ2.0-information measures provide maximum 90.3 % accuracy.

For breast cancer data set using the K-NN, 100 % accuracy is obtained in case
of mutual information as well as Iβ- (β = 1.5, 2.0, 3.0), δβ- (β = 2.0, 3.0, 4.0),
and Rβ- (β = 1.5, 3.0, 4.0) information measures, although normalized mutual
information provides maximum 98.0 % accuracy. For the K-NN, while mutual
information and normalized mutual information achieve maximum 97.2 and 98.6 %
accuracy using at least 15 and 30 genes in case of leukemia data set, the V - or
M1.0-information measure provides 98.6 % accuracy using only eight genes. Simi-
larly, the I4.0- and δ3.0-information measures achieve 90.3 % predictive accuracy for
colon cancer data set while mutual information and normalized mutual information
provide maximum 88.7 % accuracy. However, in case of the K-NN-based results
for both leukemia and colon cancer data sets, the majority of f -information mea-
sures produces results similar to those of mutual information and normalized mutual
information.
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Table 5.3 Performance on breast cancer data set using K-NN rule

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 89.8 93.9 93.9 95.9 98.0 95.9 95.9 93.9 95.9 98.0 98.0 98.0
I0.5 89.8 93.9 95.9 95.9 98.0 98.0 95.9 95.9 98.0 98.0 95.9 98.0
I0.8 89.8 98.0 95.9 95.9 98.0 95.9 95.9 98.0 98.0 98.0 98.0 98.0
I1.0 89.8 98.0 100 98.0 100 95.9 93.9 98.0 95.9 95.9 98.0 98.0
I1.5 85.7 93.9 100 100 98.0 95.9 93.9 95.9 98.0 95.9 95.9 95.9
I2.0 85.7 91.8 100 100 98.0 95.9 95.9 98.0 98.0 98.0 95.9 95.9
I3.0 85.7 91.8 100 100 98.0 93.9 95.9 98.0 98.0 95.9 95.9 95.9
I4.0 85.7 91.8 95.9 98.0 98.0 95.9 98.0 95.9 95.9 95.9 98.0 93.9
M0.2 83.7 93.9 85.7 83.7 87.8 89.8 85.7 85.7 85.7 87.8 89.8 89.8
M0.5 89.8 93.9 95.9 95.9 98.0 98.0 95.9 95.9 98.0 98.0 95.9 98.0
M0.8 85.7 89.8 85.7 91.8 95.9 95.9 95.9 93.9 93.9 93.9 93.9 93.9
M1.0 71.4 89.8 89.8 89.8 89.8 91.8 91.8 91.8 93.9 93.9 91.8 91.8
δ1.5 85.7 89.8 93.9 91.8 95.9 93.9 95.9 93.9 93.9 93.9 93.9 93.9
δ2.0 85.7 91.8 100 100 98.0 95.9 95.9 98.0 98.0 98.0 95.9 95.9
δ3.0 85.7 91.8 95.9 98.0 98.0 98.0 100 98.0 98.0 98.0 98.0 98.0
δ4.0 85.7 98.0 100 100 98.0 98.0 100 100 98.0 98.0 98.0 98.0
R0.2 89.8 93.9 93.9 95.9 98.0 98.0 95.9 93.9 91.8 98.0 98.0 98.0
R0.5 89.8 93.9 95.9 95.9 98.0 98.0 95.9 95.9 98.0 98.0 95.9 98.0
R0.8 89.8 98.0 95.9 95.9 98.0 95.9 95.9 98.0 98.0 98.0 98.0 98.0
R1.0 89.8 98.0 100 98.0 100 95.9 93.9 98.0 95.9 95.9 98.0 98.0
R1.5 85.7 93.9 100 100 95.9 95.9 95.9 93.9 95.9 95.9 98.0 93.9
R2.0 85.7 91.8 98.0 95.9 95.9 95.9 95.9 93.9 95.9 95.9 95.9 98.0
R3.0 91.8 98.0 100 95.9 93.9 95.9 98.0 100 100 98.0 98.0 95.9
R4.0 91.8 89.8 95.9 95.9 93.9 95.9 100 100 98.0 100 100 98.0
U 89.8 98.0 98.0 98.0 98.0 95.9 93.9 93.9 95.9 93.9 93.9 93.9

From the results reported here, it is seen that, for a particular number of selected
genes, the predictive accuracy for some f -information measures is higher compared
to that of mutual information and normalized mutual information, irrespective of
the classification models and microarray data sets used. Also, the Iβ-, Mβ-, and Rβ-
information measures attain 100 % prediction accuracy using the NB for β = 0.2
in all three data sets. In all cases, the M0.5- and I0.5-information measures provide
same results as well as the δ2.0- and I2.0-information measures show exactly same
performance as they are related by the following relations:

I0.5(P||P1 × P2) = 2M0.5(P||P1 × P2) (5.16)

δ2.0(P||P1 × P2) = 2I2.0(P||P1 × P2). (5.17)

For both colon cancer data set and leukemia data set, 50 top-ranked genes selected
by I0.2-, M0.2- and R0.2-information measures based on mRMR criterion are available
at http://www.isical.ac.in/~bibl/results/fmRMR/fmRMR.html.

http://www.isical.ac.in/~bibl/results/fmRMR/fmRMR.html
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Table 5.4 Performance on leukemia data set using NB classifier

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 97.2 98.6 100 100 97.2 97.2 95.8 95.8 95.8 94.4 94.4 93.1
I0.5 98.6 97.2 97.2 95.8 95.8 95.8 94.4 93.1 93.1 93.1 93.1 90.3
I0.8 98.6 98.6 97.2 95.8 94.4 93.1 90.3 87.5 87.5 86.1 86.1 84.7
I1.0 98.6 98.6 95.8 95.8 94.4 90.3 87.5 86.1 86.1 86.1 84.7 84.7
I1.5 94.4 97.2 95.8 95.8 91.7 87.5 84.7 84.7 84.7 84.7 84.7 84.7
I2.0 94.4 97.2 95.8 95.8 91.7 88.9 84.7 84.7 84.7 84.7 84.7 84.7
I3.0 94.4 97.2 97.2 94.4 94.4 87.5 84.7 83.3 84.7 84.7 84.7 84.7
I4.0 94.4 95.8 97.2 95.8 90.3 86.1 83.3 83.3 83.3 84.7 84.7 84.7
M0.2 87.5 95.8 100 100 100 100 100 100 100 100 100 98.6
M0.5 98.6 97.2 97.2 95.8 95.8 95.8 94.4 93.1 93.1 93.1 93.1 90.3
M0.8 100 97.2 97.2 95.8 91.7 88.9 86.1 86.1 84.7 84.7 83.3 83.3
M1.0 94.4 95.8 94.4 94.4 88.9 90.3 87.5 84.7 83.3 81.9 81.9 81.9
δ1.5 94.4 97.2 97.2 95.8 90.3 87.5 86.1 86.1 84.7 84.7 84.7 84.7
δ2.0 94.4 97.2 95.8 95.8 91.7 88.9 84.7 84.7 84.7 84.7 84.7 84.7
δ3.0 94.4 97.2 97.2 94.4 90.3 87.5 84.7 84.7 84.7 84.7 84.7 84.7
δ4.0 95.8 98.6 95.8 94.4 91.7 88.9 86.1 86.1 84.7 84.7 84.7 84.7
R0.2 97.2 98.6 100 100 98.6 97.2 95.8 95.8 94.4 94.4 93.1 93.1
R0.5 98.6 97.2 97.2 95.8 95.8 95.8 94.4 93.1 93.1 93.1 93.1 90.3
R0.8 98.6 97.2 95.8 95.8 94.4 91.7 90.3 87.5 87.5 86.1 86.1 86.1
R1.0 98.6 98.6 95.8 95.8 94.4 90.3 87.5 86.1 86.1 86.1 84.7 84.7
R1.5 98.6 98.6 97.2 97.2 93.1 88.9 86.1 86.1 84.7 84.7 84.7 84.7
R2.0 98.6 97.2 95.8 94.4 93.1 88.9 86.1 84.7 84.7 84.7 84.7 84.7
R3.0 98.6 97.2 95.8 94.4 91.7 88.9 87.5 84.7 84.7 84.7 84.7 84.7
R4.0 98.6 97.2 97.2 94.4 93.1 91.7 88.9 87.5 86.1 84.7 84.7 84.7
U 98.6 97.2 95.8 94.4 93.1 90.3 88.9 87.5 86.1 86.1 86.1 84.7

5.3.4 Analysis Using Class Separability Index

In case of leukemia and colon cancer data sets, Iβ-, Mβ- and Rβ-information measures
provide significantly better results for β = 0.2 compared to mutual information and
normalized mutual information. In order to analyze the results of these measures
further, the class separability index is used next. The class separability index S [9]
of a data set is defined as follows:

S = trace(V −1
B VW ), (5.18)

where VW is the within class scatter matrix and VB is the between class scatter matrix,
defined as follows:

VW =
C∑

j=1

η j E{(X − μ j )(X − μ j )
T |c j } =

C∑

j=1

η jα j ; (5.19)
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Table 5.5 Performance on leukemia data set using SVM

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 94.4 94.4 94.4 94.4 93.1 94.4 97.2 97.2 97.2 95.8 94.4 97.2
I0.5 94.4 95.8 95.8 95.8 97.2 95.8 95.8 97.2 97.2 98.6 98.6 98.6
I0.8 94.4 94.4 95.8 95.8 95.8 98.6 97.2 98.6 97.2 97.2 97.2 97.2
I1.0 94.4 94.4 93.1 95.8 95.8 98.6 98.6 98.6 98.6 97.2 95.8 97.2
I1.5 93.1 97.2 97.2 95.8 100 97.2 97.2 97.2 97.2 98.6 98.6 97.2
I2.0 93.1 95.8 95.8 94.4 98.6 97.2 97.2 97.2 98.6 98.6 98.6 97.2
I3.0 93.1 95.8 97.2 95.8 97.2 97.2 97.2 95.8 95.8 97.2 97.2 98.6
I4.0 93.1 97.2 97.2 97.2 98.6 95.8 97.2 95.8 95.8 97.2 98.6 98.6
M0.2 93.1 97.2 97.2 95.8 95.8 94.4 93.1 94.4 94.4 93.1 94.4 98.6
M0.5 94.4 95.8 95.8 95.8 97.2 95.8 95.8 97.2 97.2 98.6 98.6 98.6
M0.8 90.3 97.2 94.4 95.8 100 98.6 98.6 95.8 95.8 97.2 95.8 95.8
M1.0 90.3 97.2 98.6 98.6 98.6 100 97.2 97.2 95.8 97.2 97.2 95.8
δ1.5 93.1 95.8 97.2 98.6 97.2 97.2 95.8 97.2 98.6 97.2 97.2 95.8
δ2.0 93.1 95.8 95.8 94.4 98.6 97.2 97.2 97.2 98.6 98.6 98.6 97.2
δ3.0 93.1 97.2 97.2 95.8 98.6 94.4 98.6 98.6 97.2 97.2 97.2 98.6
δ4.0 93.1 97.2 97.2 97.2 97.2 98.6 98.6 97.2 97.2 97.2 97.2 98.6
R0.2 94.4 95.8 94.4 94.4 93.1 94.4 97.2 97.2 97.2 95.8 95.8 95.8
R0.5 94.4 95.8 95.8 95.8 97.2 95.8 95.8 97.2 97.2 98.6 98.6 98.6
R0.8 94.4 95.8 95.8 95.8 95.8 98.6 97.2 98.6 98.6 97.2 97.2 98.6
R1.0 94.4 94.4 93.1 95.8 95.8 98.6 98.6 98.6 98.6 97.2 95.8 97.2
R1.5 94.4 94.4 98.6 97.2 97.2 98.6 97.2 97.2 98.6 98.6 98.6 97.2
R2.0 94.4 93.1 95.8 94.4 97.2 98.6 97.2 97.2 98.6 98.6 98.6 98.6
R3.0 94.4 93.1 95.8 97.2 97.2 98.6 95.8 95.8 94.4 97.2 98.6 98.6
R4.0 94.4 94.4 95.8 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2 98.6
U 94.4 95.8 95.8 95.8 95.8 95.8 98.6 97.2 98.6 98.6 97.2 95.8

VB =
C∑

j=1

η j (μ j − μ̄)(μ j − μ̄)T ; (5.20)

and μ̄ = E{X} =
C∑

j=1

η jμ j ; (5.21)

where C is the number of classes, η j is a priori probability that a pattern belongs to
class c j , X is a feature vector, μ̄ is the sample mean vector for the entire data points,
μ j and α j represent the sample mean and covariance matrix of class c j , respectively
and E{·} is the expectation operator. A lower value of S ensures that classes are
well separated by their scatter means.

Figure 5.1 represents the variation of class separability index S with respect to
the number of selected genes for colon cancer data set as an example. For I0.2-,
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Table 5.6 Performance on leukemia data set using K-NN rule

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 91.7 94.4 95.8 94.4 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2
I0.5 94.4 94.4 95.8 95.8 95.8 95.8 97.2 97.2 97.2 97.2 97.2 98.6
I0.8 94.4 94.4 94.4 94.4 97.2 97.2 97.2 97.2 97.2 97.2 97.2 94.4
I1.0 94.4 94.4 94.4 94.4 97.2 97.2 97.2 95.8 97.2 94.4 94.4 97.2
I1.5 93.1 95.8 94.4 95.8 97.2 95.8 97.2 97.2 95.8 97.2 97.2 97.2
I2.0 93.1 93.1 95.8 95.8 97.2 98.6 97.2 97.2 97.2 97.2 97.2 97.2
I3.0 93.1 93.1 95.8 94.4 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2
I4.0 93.1 94.4 95.8 97.2 97.2 97.2 97.2 97.2 97.2 97.2 98.6 97.2
M0.2 93.1 94.4 95.8 95.8 95.8 95.8 97.2 97.2 97.2 97.2 97.2 98.6
M0.5 94.4 94.4 95.8 95.8 95.8 95.8 97.2 97.2 97.2 97.2 97.2 98.6
M0.8 90.3 95.8 94.4 95.8 97.2 97.2 98.6 98.6 98.6 98.6 98.6 98.6
M1.0 88.9 94.4 98.6 97.2 97.2 97.2 97.2 98.6 97.2 97.2 98.6 98.6
δ1.5 93.1 93.1 95.8 95.8 97.2 98.6 95.8 98.6 98.6 97.2 97.2 97.2
δ2.0 93.1 93.1 95.8 95.8 97.2 98.6 97.2 97.2 97.2 97.2 97.2 97.2
δ3.0 93.1 95.8 95.8 95.8 97.2 97.2 97.2 95.8 97.2 97.2 97.2 97.2
δ4.0 93.1 94.4 95.8 94.4 94.4 95.8 95.8 97.2 97.2 97.2 97.2 97.2
R0.2 91.7 94.4 95.8 94.4 97.2 97.2 97.2 97.2 97.2 97.2 97.2 98.6
R0.5 94.4 94.4 95.8 95.8 95.8 95.8 97.2 97.2 97.2 97.2 97.2 98.6
R0.8 94.4 94.4 94.4 95.8 95.8 95.8 97.2 97.2 95.8 97.2 98.6 98.6
R1.0 94.4 94.4 94.4 94.4 97.2 97.2 97.2 95.8 97.2 94.4 94.4 97.2
R1.5 94.4 94.4 94.4 95.8 98.6 97.2 97.2 97.2 97.2 95.8 97.2 97.2
R2.0 94.4 93.1 94.4 93.1 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2
R3.0 94.4 94.4 94.4 97.2 94.4 97.2 97.2 97.2 97.2 97.2 97.2 97.2
R4.0 94.4 91.7 94.4 95.8 97.2 94.4 95.8 95.8 95.8 97.2 97.2 98.6
U 94.4 94.4 94.4 94.4 95.8 95.8 97.2 98.6 98.6 94.4 97.2 97.2

R0.2-, and M0.2-information measures, the index S varies similarly, while mutual
information and normalized mutual information provide similar values of this index.
The results also establish the fact that as the number of selected genes increases,
the class separability index S decreases in case of Iβ-, Rβ-, and Mβ-information
measures for β = 0.2, and ultimately it saturates. However, for a fixed number of
selected genes, the values of S index in case of these three measures are lower than
that of mutual information and normalized mutual information.

Finally, Table 5.10 reports the comparative performance of several information
theoretic measures with respect to the class separability indexS . From all the results
reported in Table 5.10, it can be seen that the class separability index S obtained
using I0.2-, M0.2-, and R0.2-information measures are better than those obtained
using I1.0 (mutual information) and U (normalized mutual information) for breast
cancer, leukemia, and colon cancer data sets.
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Table 5.7 Performance on colon cancer data set using NB classifier

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 72.6 85.5 90.3 91.9 96.8 98.4 100 100 100 100 100 100
I0.5 83.9 93.6 93.6 91.9 95.2 93.6 93.6 96.8 96.8 96.8 95.2 95.2
I0.8 83.9 90.3 93.6 91.9 93.6 93.6 93.6 93.6 91.9 93.6 93.6 93.6
I1.0 83.9 90.3 90.3 91.9 93.6 93.6 93.6 91.9 93.6 93.6 91.9 91.9
I1.5 83.9 90.3 91.9 90.3 93.6 93.6 93.6 93.6 91.9 91.9 90.3 88.7
I2.0 83.9 93.6 90.3 90.3 93.6 93.6 93.6 91.9 91.9 90.3 88.7 88.7
I3.0 83.9 93.6 91.9 91.9 93.6 91.9 91.9 91.9 90.3 88.7 88.7 88.7
I4.0 83.9 93.6 91.9 93.6 91.9 91.9 93.6 91.9 91.9 91.9 88.7 87.1
M0.2 72.6 80.7 91.9 91.9 95.2 95.2 98.4 100 100 100 100 100
M0.5 83.9 93.6 93.6 91.9 95.2 93.6 93.6 96.8 96.8 96.8 95.2 95.2
M0.8 85.5 85.5 90.3 88.7 88.7 90.3 91.9 93.6 90.3 90.3 90.3 90.3
M1.0 85.5 85.5 90.3 93.6 87.1 90.3 88.7 90.3 88.7 87.1 88.7 90.3
δ1.5 77.4 88.7 91.9 91.9 91.9 90.3 95.2 91.9 90.3 91.9 90.3 88.7
δ2.0 83.9 93.6 90.3 90.3 93.6 93.6 93.6 91.9 91.9 90.3 88.7 88.7
δ3.0 83.9 93.6 91.9 91.9 93.6 93.6 95.2 93.6 95.2 91.9 88.7 87.1
δ4.0 83.9 93.6 95.2 93.6 95.2 95.2 95.2 93.6 91.9 93.6 91.9 90.3
R0.2 72.6 85.5 90.3 93.6 95.2 98.4 100 100 100 100 100 98.4
R0.5 83.9 93.6 93.6 91.9 95.2 93.6 95.2 96.8 96.8 96.8 95.2 95.2
R0.8 83.9 90.3 93.6 91.9 93.6 93.6 93.6 93.6 91.9 93.6 93.6 93.6
R1.0 83.9 90.3 90.3 91.9 93.6 93.6 93.6 91.9 93.6 93.6 91.9 91.9
R1.5 83.9 90.3 91.9 90.3 93.6 93.6 93.6 93.6 91.9 93.6 90.3 90.3
R2.0 83.9 93.6 90.3 91.9 91.9 93.6 93.6 93.6 91.9 91.9 90.3 88.7
R3.0 83.9 93.6 91.9 91.9 90.3 95.2 93.6 91.9 91.9 91.9 88.7 88.7
R4.0 83.9 93.6 88.7 91.9 90.3 90.3 90.3 91.9 91.9 91.9 90.3 88.7
U 83.9 90.3 87.1 90.3 93.6 93.6 93.6 95.2 93.6 93.6 93.6 93.6

Table 5.8 Performance on colon cancer data set using SVM

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 83.9 80.7 80.7 82.3 80.7 80.7 80.7 80.7 77.4 77.4 80.7 77.4
I0.5 83.9 79.0 87.1 85.5 87.1 80.7 82.3 80.7 79.0 79.0 79.0 79.0
I0.8 83.9 83.9 85.5 83.9 80.7 80.7 80.7 79.0 74.2 77.4 79.0 80.6
I1.0 83.9 83.9 83.9 88.7 80.7 82.3 75.8 79.0 80.7 79.0 83.9 83.9
I1.5 83.9 80.7 87.1 87.1 88.7 88.7 83.9 79.0 77.4 79.0 80.7 79.0
I2.0 83.9 87.1 87.1 87.1 90.3 87.1 82.3 80.7 75.8 77.4 80.7 80.7
I3.0 83.9 87.1 88.7 85.5 88.7 80.7 80.7 75.8 75.8 79.0 80.7 77.4
I4.0 83.9 87.1 88.7 87.1 85.5 75.8 85.5 80.7 77.4 79.0 75.8 77.4
M0.2 83.9 75.8 77.4 87.1 82.3 80.7 80.7 77.4 79.0 75.8 71.0 71.0
M0.5 83.9 79.0 87.1 85.5 87.1 80.7 82.3 80.7 79.0 79.0 79.0 79.0
M0.8 79.0 83.9 87.1 82.3 82.3 88.7 79.0 75.8 72.6 80.7 75.8 80.7
M1.0 79.0 83.9 87.1 85.5 91.9 83.9 82.3 75.8 71.0 69.4 77.4 77.4
δ1.5 77.4 91.9 85.5 85.5 90.3 83.9 82.3 79.0 75.8 77.4 80.7 80.7

(continued)
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Table 5.8 (continued)

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

δ2.0 83.9 87.1 87.1 87.1 90.3 87.1 82.3 80.7 75.8 77.4 80.7 80.7
δ3.0 83.9 87.1 85.5 88.7 85.5 82.3 87.1 75.8 87.1 79.0 77.4 77.4
δ4.0 83.9 87.1 83.9 80.7 83.9 80.7 87.1 77.4 79.0 75.8 74.2 79.0
R0.2 83.9 83.9 74.2 79.0 82.3 80.7 80.7 75.8 80.7 77.4 80.7 75.8
R0.5 83.9 79.0 87.1 85.5 87.1 80.7 83.9 80.7 79.0 79.0 79.0 75.8
R0.8 83.9 83.9 85.5 83.9 80.7 80.7 80.7 79.0 74.2 77.4 79.0 82.3
R1.0 83.9 83.9 83.9 88.7 80.7 82.3 75.8 79.0 80.7 79.0 83.9 83.9
R1.5 83.9 80.7 87.1 87.1 88.7 88.7 83.9 79.0 75.8 77.4 80.7 80.7
R2.0 83.9 87.1 87.1 88.7 91.9 87.1 80.7 77.4 77.4 79.0 80.7 80.7
R3.0 83.9 87.1 88.7 88.7 85.5 83.9 83.9 72.6 75.8 77.4 77.4 82.3
R4.0 83.9 87.1 87.1 85.5 80.7 77.4 83.9 74.2 75.8 72.6 83.9 79.0
U 83.9 83.9 77.4 85.5 83.9 82.3 82.3 85.5 80.7 75.8 82.3 82.3

Table 5.9 Performance on colon cancer data set using K-NN rule

f -Information measures Number of selected genes
2 5 8 10 15 20 25 30 35 40 45 50

I0.2 82.3 82.3 77.4 74.2 79.0 82.3 75.8 75.8 82.3 85.5 83.9 83.9
I0.5 83.9 77.4 75.8 79.0 83.9 87.1 88.7 85.5 85.5 85.5 87.1 83.9
I0.8 83.9 74.2 85.5 85.5 85.5 85.5 87.1 87.1 87.1 88.7 88.7 85.5
I1.0 83.9 74.2 82.3 88.7 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1
I1.5 83.9 87.1 85.5 85.5 88.7 88.7 88.7 88.7 87.1 87.1 87.1 87.1
I2.0 83.9 85.5 85.5 85.5 88.7 88.7 88.7 88.7 87.1 88.7 88.7 87.1
I3.0 83.9 85.5 87.1 85.5 87.1 88.7 87.1 87.1 88.7 88.7 88.7 88.7
I4.0 83.9 85.5 87.1 88.7 90.3 87.1 88.7 88.7 88.7 87.1 88.7 87.1
M0.2 82.3 80.7 79.0 77.4 79.0 80.7 74.2 75.8 75.8 74.2 79.0 77.4
M0.5 83.9 77.4 75.8 79.0 83.9 87.1 88.7 85.5 85.5 85.5 87.1 83.9
M0.8 83.9 83.9 85.5 85.5 83.9 88.7 82.3 87.1 83.9 85.5 87.1 87.1
M1.0 83.9 83.9 88.7 87.1 87.1 87.1 85.5 83.9 83.9 83.9 85.5 88.7
δ1.5 79.0 88.7 88.7 85.5 87.1 85.5 83.9 85.5 85.5 88.7 88.7 88.7
δ2.0 83.9 85.5 85.5 85.5 88.7 88.7 88.7 88.7 87.1 88.7 88.7 87.1
δ3.0 83.9 85.5 85.5 88.7 90.3 88.7 88.7 88.7 87.1 90.3 85.5 85.5
δ4.0 83.9 85.5 88.7 88.7 87.1 87.1 87.1 85.5 85.5 85.5 85.5 85.5
R0.2 82.3 75.8 82.3 82.3 74.2 79.0 75.8 75.8 75.8 85.5 83.9 82.3
R0.5 83.9 77.4 75.8 79.0 83.9 83.9 88.7 87.1 85.5 85.5 87.1 83.9
R0.8 83.9 74.2 85.5 85.5 85.5 85.5 87.1 87.1 87.1 88.7 88.7 88.7
R1.0 83.9 74.2 82.3 88.7 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1
R1.5 83.9 87.1 85.5 85.5 88.7 88.7 88.7 88.7 87.1 87.1 88.7 87.1
R2.0 83.9 85.5 85.5 88.7 87.1 88.7 87.1 87.1 87.1 88.7 88.7 87.1
R3.0 83.9 85.5 87.1 88.7 87.1 88.7 87.1 87.1 87.1 88.7 88.7 88.7
R4.0 83.9 85.5 85.5 85.5 87.1 85.5 88.7 87.1 87.1 88.7 88.7 87.1
U 83.9 74.2 82.3 83.9 85.5 87.1 85.5 87.1 85.5 88.7 85.5 87.1
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Table 5.10 Performance on
three cancer data sets using
class separability index

Data Set I1.0/R1.0 U I0.2 R0.2 M0.2

Breast cancer 3.302 3.314 3.285 3.308 3.297
Leukemia 2.000 2.194 1.906 1.876 1.871
Colon cancer 0.718 0.716 0.463 0.449 0.547
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Fig. 5.1 Variation of class separability index with respect to number of selected genes for colon
cancer data set

5.4 Conclusion and Discussion

This chapter introduces different f -information measures in order to identify dis-
criminative genes from high dimensional gene expression data. It presents the results
of selecting relevant and nonredundant genes from microarray data using different
measures from information theory. The popular and extensively researched measure
of mutual information is compared with V -, Iβ-, δβ-, and Rβ-information measures.
All information theoretic measures denote the divergence of the joint distribution of
the genes’ expression values from the joint distribution for complete independence
of the genes.

The minimum redundancy-maximum relevance framework is used as the gene
selection method for different f -information measures. The performance of dif-
ferent measures is evaluated by the predictive accuracy of naive Bayes classifier,
K-nearest neighbor rule, and support vector machine. For all data sets, signifi-
cantly better results are found for several measures, compared to mutual information.
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The results obtained on real data sets demonstrate that the reported f -information
measures can bring a remarkable improvement on gene selection problem, and there-
fore, the f -information measures can be a promising alternative to mutual informa-
tion for gene selection. They are capable of identifying discriminative genes that
may contribute to revealing underlying class structures, providing a useful tool for
the exploratory analysis of biological data.

The application of different information measures other than mutual information
shows promise in achieving better gene selection results. Although some measures
are more difficult to optimize, Iβ-, Rβ-, and Mβ-information measures are shown to
produce more accurate results for the selection of relevant and nonredundant genes
from microarray gene expression data. The smoothness of the gene selection function,
that is, the function to be optimized in order to find the relevant and nonredundant
genes, is influenced by the value of β. However, Iβ and Rβ equal mutual information
for the limitβ → 1, it may be beneficial to start selection withβ = 1 to take advantage
of the smoothness of the function and to adapt the value of β in subsequent iterations
for better accuracy. The optimal value of β may differ per microarray data set.

The various f -information measures are only used to one representative gene
selection method, that is, minimum redundancy-maximum relevance framework. In
future, these measures can be extended to other gene selection methods and further
their merits and limitations may be evaluated. In order to address the problem of
multiplicity of marker genes, a detailed analysis of the biological relevance of the
selected genes can be conducted. The gene interactions can be studied in detail to see
whether incorporation of the gene interaction information can improve the diagnostic
test.

Both Chaps. 4 and 5 present feature selection algorithms based on maximum
relevance-maximum significance (MRMS) and minimum redundancy-maximum rel-
evance (mRMR) criteria, respectively. However, the theory of rough sets is used in
Chap. 4 to compute the MRMS criterion, while mutual information and several
other f -information measures are used to calculate the mRMR criterion in the cur-
rent chapter. Next two chapters report the comparative performance analysis of both
MRMS and mRMR criteria for feature selection. In Chap. 6, mutual information is
used for computing both mRMR and MRMS criteria. On the other hand, the MRMS
criterion is calculated using rough set theory in Chap. 7, while mutual information
is used for the mRMR criterion.
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Chapter 6
Identification of Disease Genes Using
Gene Expression and Protein–Protein
Interaction Data

6.1 Introduction

Genetic diseases are caused by abnormalities in genes or chromosomes. Most genetic
disorders are quite rare. A genetic disease may be heritable disorder or may not be.
While some genetic diseases are passed down from the parent’s genes, others are
frequently caused by new mutations or changes to the DNA. In other instances,
the same disease, for example, some forms of cancer, may stem from an inherited
genetic condition in some people, from new mutations in some people, and from
nongenetic causes in other people. As their name suggests, these diseases are caused
by the dysfunction of some genes. Therefore, these genes are better known as disease
genes [2]. Examples of diseases caused by dysfunction of a gene include Alzheimer’s
disease, breast cancer, leukemia, colorectal cancer, down syndrome, heart disease,
and so forth.

The colorectal cancer, commonly known as colon cancer or bowel cancer, is a
cancer from uncontrolled cell growth in the colon or rectum, a part of the large
intestine. Globally, grater than 1 million people get affected by colorectal cancer
yearly, resulting in about 0.5 million deaths. The colorectal cancer is the second
most common cause of cancer in women and the third most common in men with
it being the forth most common cause of cancer death. Therefore, early detection
of colorectal cancer can help in increasing the patient survival chance and may also
help to improve the prognosis. Hence, it is important to identify colon cancer-related
genes in order to improve and develop the diagnostic tools.

Recent advancement and wide use of high-throughput biotechnologies have been
producing huge amount of data such as yeast two-hybrid system, protein complex,
gene expression profile, and so forth. These data sets have been widely used in
different studies to understand the function of disease genes [6, 8, 21–24]. Analyz-
ing the difference of gene expression levels in particular cell types may provide
an idea about the propensity of a disease. Specifically, if a set of genes shows
a consistent pattern of different expression levels in sick subjects and a control
group, then that gene set is likely a strong candidate of playing a pathogenic role.
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Differences in expression levels can be detected primarily by microarray studies
[14, 36, 37, 42, 46]. In this background, microarray gene expression data has been
widely used for identification of disease genes. Different feature selection algorithms,
discussed in Chaps. 4 and 5, can be used to identify disease genes from microarray
gene expression data.

In [4, 19, 52], it has been shown that the genes associated with the same disorder
tend to share common functional features, reflecting that their protein products have
a tendency to interact with each other. Hence, another indicative trait of a disease
gene is that its protein product is strongly linked to other disease-gene proteins. In
this background, the protein–protein interaction (PPI) data have been used in various
studies to identify disease genes [7, 30, 39, 43]. Individually microarray data or the
PPI network data can be used to identify potential disease genes, although there is a
limited chance of finding novel disease genes from such an analysis. In this regard,
data integration methods have been developed to identify pleiotropic genes involved
in the physiological cellular processes of many diseases.

The integrated approaches assume that the protein products of disease genes tend
to be in close to differentially expressed genes in the protein interaction network. This
type of problem has been observed as equivalent to the set cover problem in graph the-
ory, which is NP-complete [28]. Hence, such a large-scale protein networks can only
be analyzed with approximate, greedy algorithms. Nitsch et al. [41] developed the
concept of soft neighborhood, where each gene is given a contributing weight, which
decreases with the distance from the candidate gene on the protein network. Wu et al.
[51] developed a method by integrating gene expression data and the PPI network
data to prioritize cancer-associated genes. Zhao et al. [53] also proposed an approach
by integrating gene expression data and the PPI network data to select disease genes.
Jia et al. [26] developed a dense module searching method to identify disease genes
for complex diseases by integrating the association signal from genome wide asso-
ciation studies data sets into the human PPI network. Li and Li [34] developed
another approach to identify candidate disease genes, where heterogeneous genomic
and phenotype data sets are used. In this method, separate gene networks are first
developed using different types of data sets. The various genomic networks are then
merged into a single graph, and disease genes are identified using random walk. In
[33], minimum redundancy-maximum relevance (mRMR) [16, 17] approach has
been used to select a set of genes from expression data. The selected gene set is
then used for identification of intermediate genes between a pair of selected genes
using the PPI network data. However, the mRMR method selects a set of genes by
maximizing the relevance and minimizing the redundancy among the selected genes.
As the redundancy measure does not take into account the supervised information
of class labels, the mRMR method may not be always effective for identification of
disease genes.

In this regard, this chapter describes an insilico approach to identify disease genes
associated with colorectal cancer. It uses both the gene expression and PPI data.
A set of differentially expressed genes is first identified using a new gene selec-
tion algorithm, termed as MIMRMS, from microarray gene expression data. The
MIMRMS algorithm judiciously integrates the merits of maximum relevance-
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Fig. 6.1 Schematic flow diagram of the insilico approach for identification of disease genes

maximum significance (MRMS) criterion, mentioned in Chap. 4, and mutual infor-
mation (MI). It selects a set of differentially expressed genes from microarray gene
expression data by maximizing the relevance and significance of genes. Both rele-
vance and significance are calculated using mutual information. The selected genes
are then used to construct a protein association network using the PPI data. The Dijk-
stra’s algorithm [15] is used to construct the shortest paths between a pair of genes
selected by the MIMRMS method. Finally, a set of genes is identified as disease
genes. The statistical analysis of the gene set, obtained from both gene expression
and PPI data, establishes the fact that the identified genes are significantly linked
with colorectal cancer.

The rest of the chapter is organized as follows: Sect. 6.2 presents the detailed
description of the integrated approach. Experimental results, a brief description of
expression data and protein–protein interaction data, and comparison among different
algorithms are mentioned in Sect. 6.3. The statistical significance analysis of the
identified disease genes with respect to the known disease genes are also reported in
this section. Concluding remarks are given in Sect. 6.4.

6.2 Integrated Method for Identifying Disease Genes

In order to understand the etiology of a disease, identification of disease genes is a
vital task. In this regard, this chapter presents a method, integrating judiciously both
gene expression and PPI data. The integrated method has three main operational
steps as illustrated in Fig. 6.1.

Selection of Differentially Expressed Genes

The first step of the integrated method selects a set S of differentially expressed
genes from the whole gene set C of the given microarray gene expression data set.
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The gene set S is selected using the MIMRMS method by maximizing both relevance
and significance of genes present in S. In general, the microarray data may contain a
number of irrelevant and insignificant genes. The presence of such genes may lead to a
reduction in the useful information. On the other hand, a gene set with high relevance
and high significance enhances the predictive capability. The current method uses
maximum relevance-maximum significance criterion, reported in Chap. 4, to select
the relevant and significant genes from high dimensional microarray gene expression
data sets.

LetC = {A1, . . . ,Ai , . . . ,A j , . . . ,Am} be the set of m genes of a given microar-
ray gene expression data set and S is the set of selected genes. Define γAi (D) as the
relevance of the gene Ai with respect to the class labels D while σ{Ai ,A j }(D,A j )

as the significance of the gene A j with respect to the set {Ai ,A j }. The total rel-

evance of all selected genes is Jrelev =
∑

Ai ∈S
γAi (D), while the total significance

among the selected genes is Jsignf =
∑

Ai ≤=A j ∈S
σ{Ai ,A j }(D,A j ). Hence, the prob-

lem of selecting a set S of relevant and significant genes from the whole set C of m
genes, as reported in Chap. 4, is equivalent to maximize both Jrelev and Jsignf , that
is, to maximize the objective function J = Jrelev + βJsignf , where β is a weight
parameter. To solve the above problem, the greedy algorithm, reported in Chap. 4, is
used in the current study. Both the relevance and significance of a gene are calculated
based on the theory of mutual information [50], as described in Chap. 5, while the
definition of significance is exactly same as (4.7) of Chap. 4 or (9.7) of Chap. 9.

Selection of Effective Gene Set I

In the second step, a set of effective genes are identified as disease genes. The
effective gene set I, as mentioned in Fig. 6.1 and denoted by SGE, is a subset of S,
and defined as the gene set for which the prediction model or classifier attains its
maximum classification accuracy. The K-nearest neighbor (K-NN) rule [18] is used
here for evaluating the effectiveness of the reduced gene set for classification. A
brief description of the K-NN rule is reported in Chap. 5. The value of K, chosen for
the current study, is 1, while the dissimilarity between two samples is calculated as
follows:

D(xi , x j ) = 1 − xi · x j

||xi || · ||x j || (6.1)

where xi and x j are two vectors representing two tissue samples, xi · x j is their dot
product, and ||xi || and ||x j || are their moduli. The smaller the D(xi , x j ), the more
similar the two samples are.

To calculate the classification accuracy of the K-NN rule, the jackknife test [45] is
used, although both independent data set test and subsampling test can also be used.
However, jackknife estimators allow to correct for a bias and its statistical error. In
the jackknife test, all the samples in the given data set are singled out one-by-one

http://dx.doi.org/10.1007/978-3-319-05630-2_4
http://dx.doi.org/10.1007/978-3-319-05630-2_9
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and tested by the classifier trained by the remaining samples. During the process
of jackknifing, both the training and testing data sets are actually open, and each
sample is in turn moved between the two. The jackknife method is recommended
as the standard for error bar calculation. In unbiased situation, the jackknife and
the usual error bars agree. Otherwise, the jackknife estimates are improvements, so
that one cannot loose. In particular, the jackknife method solves the question of error
propagation elegantly and with little efforts involved. Also, it is very much applicable
for the data sets with small number of training samples and large number of features
or genes. Therefore, in this work, jackknife test is used to evaluate the prediction
capability of the K-NN rule.

Selection of Effective Gene Set II

Finally, the effective gene set II, denoted by SGE+PPI, is obtained from the PPI data
based on the set SGE, the effective gene set I. It has been observed that proteins with
short distances to each other in the network are more likely to involve in the common
biological functions [5, 31, 40, 48], and that interactive neighbors are more likely to
have identical biological function than noninteractive ones [27, 32]. This is because
the query protein and its interactive proteins may form a protein complex to perform
a particular function or involved in a same pathway.

The Search Tool for the Retrieval of Interacting Genes (STRING) [49] is an online
database resource that provides both experimental as well as predicted interaction
information with a confidence score. In general, the graph is a very useful tool
for studying complex biological systems as it can provide intuitive insights and the
overall structure property, as demonstrated by various studies on a series of important
biological topics [1, 3, 9–13, 54, 55]. In this work, after selecting the gene set SGE, a
graph G(V, E) is constructed with the PPI data from the STRING using the gene set
SGE. In between each pair of genes, an edge is assigned in the graph. The weight of
the edge E in graph G is derived from the confidence score according to the relation
ωG = 1000×(1−ω0), where ωG is the weight in graph G while ω0 is the confidence
score between two proteins concerned. Accordingly, a functional protein association
network with edge weight is generated. In order to identify the shortest path from
each of the selected differentially expressed genes of SGE to remaining genes of the
set SGE in the graph, Dijkstra’s algorithm [15] is used. Finally, the genes present in
the shortest path are picked up and ranked according to their betweenness value. Let
this set of genes be SPPI. The effective gene set II, that is, SGE+PPI, is the union of
sets SGE and SPPI, that is, SGE+PPI = SGE → SPPI.

6.3 Experimental Results

In the current integrated method, the disease genes are identified by using both gene
expression and PPI data sets. The mutual information-based maximum relevance-
maximum significance (MIMRMS) method is used to select differentially expressed
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genes from microarray data. On the other hand, the method proposed by Li et al.
[33] uses minimum redundancy-maximum relevance (mRMR) framework [16, 17].
However, one may also use maximum relevance (MR) method. This section presents
the comparative performance analysis of the MIMRMS, mRMR, and MR algorithms.
The effectiveness of different algorithms are shown using integrated data consisting
of both colorectal gene expression and PPI data.

For colorectal cancer expression data set, 50 top-ranked genes are selected by
each gene selection algorithm for further analysis. The jackknife test is used to
compute the classification accuracy of the K-NN rule. Based on the accuracy, the
effective gene set SGE is identified for each gene selection algorithm. Next, the PPI
network is constructed using the gene set SGE, and the effective gene set SGE+PPI is
obtained based on the shortest path analysis of the constructed PPI network. Finally,
the statistical significance analysis is performed on each identified gene set with
respect to both known cancer and colorectal cancer genes.

6.3.1 Gene Expression Data Set Used

In this study, the gene expression data from the colorectal cancer study of Hinoue
et al. [20] is used. The gene expression profiling of 26 colorectal tumors and matches
histologically normal adjacent colonic tissue samples were retrieved from the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with the accession
number of GSE25070. The number of genes and samples in this data set are 24526
and 52, respectively. The data set is preprocessed by standardizing each sample to
zero mean and unit variance.

6.3.2 Identification of Differentially Expressed Genes

Figure 6.2 represents the predictive accuracy of the K-NN rule obtained using the
MR, mRMR, and MIMRMS algorithms. From the figure, it can be seen that the
MR and mRMR methods attain 100 % classification accuracy with 8 and 6 genes,
respectively, while the MIMRMS method achieves this accuracy with 20 genes.
The statistical significance analysis report next confirms that both MR and mRMR
methods overestimate the classification accuracy of the K-NN rule compared to the
MIMRMS method. In effect, the MIMRMS method is able to find more significant
effective gene set compared to both MR and mRMR methods.

6.3.3 Overlap with Known Disease-Related Genes

The gene set SGE selected by the MIMRMS method is compared with the gene
sets SGE obtained by both the MR and mRMR methods, in terms of the degree of

http://www.ncbi.nlm.nih.gov/geo/
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overlapping with three gene lists, namely, LIST-1, LIST-2, and LIST-3. The LIST-
1 contains 742 cancer-related genes, which are collected from the Cancer Gene
Census of the Sanger Centre, Atlas of Genetics and Cytogenetic in Oncology [25],
and Human Protein Reference Database [29]. On the other hand, both LIST-2 and
LIST-3 consist of colorectal cancer-related genes. While the LIST-2 is retrieved
from the study of Sabatas-Bellver et al. [47], the LIST-3 is prepared from the work
of Nagaraj and Reverter [38]. While LIST-2 contains 438 colorectal cancer genes,
LIST-3 consists of 134 colorectal cancer genes.

The MR method attains highest predictive accuracy with eight genes. Hence, the
selected gene set SGE of the MR method contains eight genes, namely, GUCA2B,
BEST2, TMIGD, CLDN8, PI16, SCNN1B, CLCA4, and ADH1B. Out of these
eight genes, only SCNN1B overlaps with the LIST-1. On the other hand, five genes,
namely, GUCA2B, CLDN8, SCNN1B, CLCA4, and ADH1B, overlap with the
LIST-2, while only GUCA2B overlaps with the LIST-3. Similarly, the gene set
SGE of the mRMR method consists of six genes, namely, CDH3, PI16, GUCA2B,
HMGCLL1, BEST2, and SPIB, as the mRMR method achieves highest predictive
accuracy with these genes. However, none of them overlaps with the LIST-1. Out
of six genes, three genes, namely, CDH3, GUCA2B, and SPIB, overlap with the
LIST-2, while two genes, namely, GUCA2B and SPIB, overlap with the LIST-3.

On the other hand, the MIMRMS method provides 100 % classification accuracy
of the K-NN rule with 20 genes. Hence, the gene set SGE corresponding to the
MIMRMS method consists of 20 genes, namely, GUCA2B, PI16, CILP, SCNN1B,
IL8, CA4, BCHE, BEST2, CLCA4, PECI, TMEM37, AFF3, CLDN8, ADH1B,
CA1, GNG7, NR3C2, SCARA5, WISP2, and TMIGD. Out of these 20 genes, three
genes, namely, CA4, AFF3, and NR3C2, overlap with the LIST-1. On the other hand,
eleven genes, namely, GUCA2B, SCNN1B, IL8, CA4, BCHE, CLCA4, AFF3,
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Table 6.1 Overlap with LIST-1

Methods Yes No Total

MR Yes 1 7 8
No 741 17742 18483

mRMR Yes 0 6 6
No 742 17743 18485

MIMRMS Yes 3 17 20
No 739 17732 18471
Total 742 17749 18491

Table 6.2 Overlap with LIST-2

Methods Yes No Total

MR Yes 5 3 8
No 433 20386 20819

mRMR Yes 3 3 6
No 435 20386 20821

MIMRMS Yes 11 9 20
No 427 20380 20807
Total 438 20389 20827

CLDN8, ADH1B, CA1, and SCARA5, overlap with the LIST-2, while GUCA2B,
SCNN1B, IL8, and BCHE overlap with the genes of the LIST-3.

Tables 6.1, 6.2, and 6.3 represent the statistical significance test of the gene sets
SGE selected by the MR, mRMR, and MIMRMS methods with respect to the genes
of LIST-1, LIST-2, and LIST-3, respectively. In Table 6.1, the LIST-1 contains 742
cancer-related genes and the total number of genes in Illumina Ref-8 whole-genome
expression Bead-Chip is 18491. Using the Fisher’s exact test, statistical analysis of
the overlapped genes is done. The p-values of the MR and MIMRMS methods are
0.2794 and 0.04412, respectively. However, in case of the mRMR method, not a
single gene is overlapped with the LIST-1.

For the LIST-2, the results are reported in Table 6.2. While 11 genes selected
by the MIMRMS method are related to colorectal cancer, only 5 and 3 colorectal
cancer-related genes are identified by the MR and mRMR methods, respectively.
Hence, the p-value obtained using the MIMRMS method is 4.452e-014 with respect
to the LIST-2, while the MR and mRMR methods generate p-values 2.466e-12 and
0.0001762, respectively. For the LIST-2, the total number of genes analyzed in the
study of Sabates-Bellver et al. [47] is 20827.

Finally, Table 6.3 represents the statistical significance test of overlapped genes
of the MR, mRMR, and MIMRMS methods with respect to the genes of the LIST-
3. In this case, the Fisher’s exact test generates a lower p-value of 6.026e-006 for
the MIMRMS method, which is significantly better than the p-values of 0.04794
and 0.0005489 obtained by the MR and mRMR methods, respectively. Total 21892
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Table 6.3 Overlap with LIST-3

Methods Yes No Total

MR Yes 1 7 8
No 133 21751 21884

mRMR Yes 2 4 6
No 132 21754 21886

MIMRMS Yes 4 16 20
No 130 21742 21872
Total 134 21758 21892

genes are analyzed in the study of Nagaraj and Reverter [38]. All the results reported
in Tables 6.1, 6.2, and 6.3 demonstrate that the overlap between the effective gene
set SGE obtained by the MIMRMS method and the three gene lists is significantly
high as compared to both MR and mRMR methods.

6.3.4 PPI Data and Shortest Path Analysis

The PPI network is generated for each gene selected by three gene selection algo-
rithms, namely, MR, mRMR, and MIMRMS. These networks are generated using
the STRING database. The level of interaction between the selected set SGE of genes
and the proteins of the STRING database is measured by their confidence score. For
the MIMRMS method, among the 20 genes of SGE, one gene, namely, TMIGD, does
not have any interaction with any other genes; hence 19 networks are generated in
this case using the STRING database. These 19 networks or subnetworks are further
merged. The shortest path analysis is conducted on this merged PPI network. Total
342 shortest paths are calculated between each of the gene pairs of SGE set generated
by the MIMRMS method using the Dijkstra’s algorithm.

Figure 6.3 shows the PPI network for 20 genes obtained by the MIMRMS method,
along with their confidence scores. The nodes marked yellow represent the 20 genes
of SGE set identified by the MIMRMS method, while other 77 genes of SPPI are
existing in the shortest paths. The values on the edges represent the edge weights to
quantify the interaction confidence. The smaller value indicates the stronger inter-
action between the two nodes. These 77 genes are further ranked according to their
betweenness value. Among the 77 genes, AR has the largest betweenness value of
90, indicating that there are 90 shortest paths going through this gene. Accordingly,
AR may play an important role to connect the 19 candidate genes and hence this
gene may be related to colorectal cancer. Similarly, Figs. 6.4 and 6.5 represent the
PPI networks for the MR and mRMR methods, respectively.



164 6 Identification of Disease Genes

Fig. 6.3 PPI network for 20 genes obtained by the MIMRMS method, along with their confidence
scores

Fig. 6.4 PPI network for 8 genes obtained by the MR method, along with their confidence scores
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Fig. 6.5 PPI network for 6 genes obtained by the mRMR method, along with their confidence
scores

6.3.5 Comparative Performance Analysis of Different Methods

This section presents the comparative performance analysis of the MR, mRMR,
and MIMRMS methods, in terms of the statistical analysis. Statistical significance
analysis of gene sets SGE+PPI obtained by three approaches are discussed. The set
SGE+PPI generated by the MIMRMS method contains 97 genes, whereas that of both
the MR and mRMR methods contains 41 genes. Tables 6.4, 6.5, and 6.6 represent
the statistical significance analysis of the disease genes sets SGE+PPI obtained by the
MR, mRMR, and MIMRMS methods.

Table 6.4 represents the degree of overlapping of the gene sets SGE+PPI generated
by the MR, mRMR, MIMRMS methods with the genes of LIST-1. Out of 97 genes
of the set SGE+PPI generated by the MIMRMS method, 22 genes are overlapped
with the LIST-1, so the corresponding p-value is 2.792e-11. On the other hand, out
of 41 genes of SGE+PPI, 8 genes generated by both MR and mRMR methods are
overlapped with the LIST-1, generating a p-value 0.0001908.

Table 6.5 depicts the overlapping of genes of the set SGE+PPI generated by three
gene selection methods with the genes of the LIST-2. Out of 97 genes of the set
SGE+PPI selected by the MIMRMS method, 15 genes are found to be overlapped
with the LIST-2, and the corresponding p-value is 1.758e-09. On the other hand,
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Table 6.4 Overlap with LIST-1

Methods Yes No Total

MR Yes 8 33 41
No 734 17716 18450

mRMR Yes 8 33 41
No 734 17716 18450

MIMRMS Yes 22 75 97
No 720 17674 18394
Total 742 17749 18491

Table 6.5 Overlap with LIST-2

Methods Yes No Total

MR Yes 7 34 41
No 431 20355 20786

mRMR Yes 4 37 41
No 434 20352 20786

MIMRMS Yes 15 82 97
No 423 20307 20730
Total 438 20389 20827

Table 6.6 Overlap with LIST-3

Methods Yes No Total

MR Yes 5 36 41
No 129 21722 21851

mRMR Yes 3 38 41
No 131 21720 21851

MIMRMS Yes 9 88 97
No 125 21670 21795
Total 134 21758 21892

only 7 and 4 genes of the set SGE+PPI of the MR and mRMR methods, respectively,
are found to be overlapped with the LIST-2. Hence, the corresponding p-values
are 2.102e-05 and 0.01057 for the MR and mRMR methods, respectively. Finally,
Table 6.6 shows the overlapping of genes of the set SGE+PPI with the LIST-3. Out of
97 genes, 9 genes selected by the MIMRMS method are overlapped with the LIST-3,
and the corresponding p-value is 8.338e-09. On the other hand, 5 and 3 genes of the
MR and mRMR methods, respectively, overlap with the genes of the LIST-3, and
generate p-values 5.005e-06 and 0.002017, respectively.

All the results reported in Tables 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 establish the fact
that the MIMRMS method selects more number of disease-related genes than both
MR and mRMR methods. The better performance of the MIMRMS algorithm over
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mRMR algorithm is achieved due to the fact that the mRMR algorithm selects a subset
of genes from the whole gene set by maximizing the relevance and minimizing the
redundancy of the selected genes. The redundancy measure of the mRMR method
does not take into account the supervised information of class labels, while both
relevance and significance criteria of the MIMRMS method are computed based on
the class labels. In effect, the MIMRMS method provides better performance than the
mRMR method. Extensive experimental study on colorectal cancer also establishes
the fact that the genes identified by the integrated method have more colorectal cancer
genes than the genes identified from the gene expression profiles alone. All these
results indicate that the integrated method is quite promising and may become a
useful tool for identifying disease genes.

6.4 Conclusion and Discussion

The problem of identification of disease genes is addressed in this chapter. Sev-
eral existing approaches are discussed, along with their merits and demerits. Next,
a new approach is presented, integrating judiciously colorectal gene expression
data and protein–protein interaction (PPI) data, to identify disease genes of col-
orectal cancer. First, a set of differentially expressed genes are selected using
mutual information-based maximum relevance-maximum significance (MRMS)
framework. The selected gene set is then used to construct a graph using the PPI
data from the STRING database. Finally, the shortest path in the graph is identified
and genes on these paths are considered as disease genes. The statistical analysis of
the gene set is performed to observe whether the identified gene set is significantly
related to colorectal cancer or not. A highly statistical significant set of colorectal
cancer genes are selected by the new method compared to other related methods.

In this regard, it should be mentioned that the rough set-based MRMS (RSMRMS)
method, reported in Chap. 4, can also be used to identify differentially expressed
genes from microarray gene expression data sets [35, 44]. Next chapter presents
the application of the RSMRMS method for selection of differentially expressed
miRNAs from microarray data.
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Chapter 7
Rough Sets for Insilico Identification
of Differentially Expressed miRNAs

7.1 Introduction

The microRNAs or miRNAs, a class of short approximately 22-nucleotide non-
coding RNAs found in many plants and animals, often act posttranscriptionally to
inhibit gene or mRNA expression. Hence, the miRNAs are related to diverse cellular
processes and regarded as important components of the gene regulatory network.
Multiple reports have noted the utility of miRNAs for the diagnosis of cancer and
other diseases. Unlike with mRNAs, a modest number of miRNAs, 200 in total, might
be sufficient to classify human cancers [16]. Moreover, the bead-based miRNA detec-
tion method has the attractive property of being not only accurate and specific, but
also easy to implement in a routine clinical setting. In addition, unlike mRNAs, miR-
NAs remain largely intact in routinely collected, formalin-fixed, paraffin-embedded
clinical tissues [4]. Recent studies have also shown that miRNAs can be detected in
serum. These studies offer the promise of utilizing miRNA screening via less invasive
blood-based mechanisms. In addition, mature miRNAs are relatively stable. These
phenomena make miRNAs superior molecular markers and targets for interrogation
and as such, miRNA expression profiling can be utilized as a tool for cancer diagnosis
and other diseases.

The functions of miRNAs appear to be different in various cellular functions.
Just as miRNA is involved in the normal functioning of eukaryotic cells, so has
dysregulation of miRNA been associated with disease [14]. It indicates that the
miRNAs can prove to be potential biomarkers for developing a diagnostic tool.
Hence, insilico identification of differentially expressed miRNAs that target genes
involved in diseases is necessary. These differentially expressed miRNAs can be
further used in developing effective diagnostic tools. Recently, few studies are carried
out to identify differentially expressed miRNAs [3, 5, 9, 38, 45]. However, absence
of robust method makes it an open problem. Hence, the data sets are needed to be
explored for understanding the complex biological activities of miRNAs.
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A miRNA expression data set can be represented by an expression table or matrix,
where each row corresponds to one particular miRNA, each column to a sample, and
each entry of the matrix is the measured expression level of a particular miRNA in a
sample, respectively. However, for microarray data, the number of training samples
is typically very small, while the number of miRNAs is in the thousands. Hence, the
prediction rule formed by support vector machine or any other classifier may not be
able to be formed by using all available miRNAs. Even if all the miRNAs can be used,
the use of all the miRNAs allows the noise associated with miRNAs of little or no
discriminatory power, which inhibits and degrades the performance of the prediction
rule in its application to unclassified or test samples. In other words, although the
apparent error rate, which is the proportion of the training samples misclassified by
the prediction rule, will decrease as it is formed from more and more miRNAs, its
error rate in classifying samples outside the training set eventually will increase. That
is, the generalization error of the prediction rule will be increased if it is formed from
a sufficiently large number of miRNAs. Hence, in practice, consideration has to be
given to implement some procedure of feature selection for reducing the number of
miRNAs to be used in constructing the prediction rule [1].

The method called significance analysis of microarrays is used in several works
[10, 15, 27, 28, 36, 37] to identify differentially expressed miRNAs. Different sta-
tistical tests are also employed to identify differentially expressed miRNAs [2, 3, 5,
9, 16, 26, 38, 42, 45, 46]. Rui et al. [43] used particle swarm optimization technique
for selecting important miRNAs that contribute to the discrimination of different
cancer types. Different feature selection algorithms such as mutual information [6]
or f -information [17] based minimum redundancy-maximum relevance framework
, reported in Chap. 5, can also be used to select a set of nonredundant and relevant
miRNAs for sample classification. A detailed survey on several feature selection
algorithms is reported in Chap. 4.

One of the main problems in miRNA expression data analysis is uncertainty. Some
of the sources of this uncertainty include imprecision in computations and vagueness
in class definition. In this background, the rough set theory has gained popularity in
modeling and propagating uncertainty. It deals with vagueness and incompleteness
and is proposed for indiscernibility in classification according to some similarity [35].
A brief survey on different rough set-based feature selection algorithms is reported
in Chap. 4. The theory of rough sets has also been successfully applied to microarray
data analysis in [8, 18, 21, 23–25, 31, 32, 39, 40].

In general, the performance of the prediction rule generated by a classifier for a
subset of selected miRNAs is evaluated by leave-one-out cross-validation (LOOCV)
error. Given that the entire set of available samples is relatively small, in practice,
one would like to make full use of all available samples in the miRNA selection and
training of the prediction rule. But, if the LOOCV is calculated within the miRNA
selection process, there is a selection bias in it when it is used as an estimate of
the prediction error. The LOOCV error of the prediction rule obtained during the
selection of the miRNAs provides a too optimistic estimate of the prediction error
rate. Hence, an external cross-validation should be undertaken subsequent to the
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miRNA selection process to correct for this selection bias. Alternatively, the bootstrap
procedure can be used [7, 19].

Although, the LOOCV error with external cross-validation is nearly unbiased, it
can be highly variable in the sense that there is no guarantee that the same subset
of miRNAs will be obtained as during the original training of the rule on all the
training samples. Indeed, with the huge number of miRNAs available, it generally
will yield a subset of miRNAs that has at most only a few miRNAs in common with
the subset selected during the original training of the rule. Suitably defined bootstrap
procedures can reduce the variability of the LOOCV error in addition to providing
a direct assessment of variability for estimated parameters in the prediction rule.
However, the bootstrap approach overestimates the error. To reduce the weakness
of both these approaches, Efron and Tibshirani introduced the concept of B.632+
error for correcting the upward bias in bootstrap error with the downwardly biased
apparent error [7], which is very much applicable for the data sets with small number
of training samples and large number of miRNAs.

In this regard, this chapter presents a novel approach, proposed by Paul and Maji
in [34], for insilico identification of differentially expressed miRNAs from expres-
sion data sets. It integrates the merit of rough set-based feature selection algorithm
using maximum relevance-maximum significance criterion (RSMRMS), reported in
Chap. 4, and the concept of so-called B.632+ error rate [7]. The RSMRMS algo-
rithm selects a subset of miRNAs from a data set by maximizing both relevance and
significance of the selected miRNAs. It employs rough set theory to compute both
relevance and significance of the miRNAs. Hence, the only information required in
the feature selection method is in the form of equivalence partitions for each miRNA,
which can be automatically derived from the given microarray data set. A fuzzy set-
based discretization method is presented to generate equivalence classes required to
compute both relevance and significance of miRNAs using rough set theory. This
avoids the need for domain experts to provide information on the data involved and
ties in with the advantage of rough sets is that it requires no information other than
the data set itself. On the other hand, the B.632+ error rate minimizes the variability
and biasedness of the derived results. The support vector machine is used to compute
the B.632+ error rate as well as several other types of error rates as it maximizes
the margin between data samples in different classes. The effectiveness of the new
approach, along with a comparison with other related approaches, is demonstrated
on a set of miRNA expression data sets.

The chapter is organized as follows: Sect. 7.2 presents the miRNA selection
method reported in [34], which covers the basics of the RSMRMS algorithm, and
the concepts of fuzzy discretization and B.632+ error rate. Implementation details, a
brief description of several miRNA data sets used in this study, experimental results,
and a comparison among different algorithms are presented in Sect. 7.3. Concluding
remarks are given in Sect. 7.4.
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Fig. 7.1 Schematic flow diagram of the insilico approach for identification of differentially
expressed miRNAs

7.2 Selection of Differentially Expressed miRNAs

The rough set-based insilico approach is illustrated in Fig. 7.1. It mainly consists of
rough set-based feature selection method (RSMRMS) described in Chap. 4, support
vector machine (SVM) [41], and several types of error analysis parts, namely, appar-
ent error (AE), bootstrap error (B1), no-information error (γ ), and B.632+ error.
The RSMRMS algorithm selects a set of miRNAs from a given miRNA expression
data. The selected set of miRNAs is then used to design the SVM classifier, and the
effectiveness of the build up SVM classifier is further tested by using unseen data.
In order to calculate B.632+ error, at first, apparent error (AE) is calculated. This
error is generated, when the same data set is used to train and test a classifier. Next,
B1 error is calculated from k bootstrap samples. Finally, by randomly perturbing the
class label of a given data set, no-information error (γ ) is calculated. The mutated
data set is used for miRNA selection and the generated set of miRNAs is used to
build the SVM. Then, the trained SVM is tested using the original data set. The error
generated by this procedure is known as no-information error (γ ). Using apparent
error (AE), B1 error, and γ error, lastly B.632+ error is calculated. The RSMRMS
method is discussed in Chap. 4, while a brief introduction of the SVM is reported in
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Chaps. 3 and 4. Hence, this section presents only the concepts of fuzzy equivalence
classes used to generate equivalence classes for rough sets and different types of
errors, along with a brief overview of the RSMRMS algorithm.

7.2.1 RSMRMS Algorithm

In real data analysis such as microarray data, the data set may contain a number of
insignificant features. The presence of such irrelevant and insignificant features may
lead to a reduction in the useful information. Ideally, the selected features should
have high relevance with the classes and high significance in the feature set. The
features with high relevance are expected to be able to predict the classes of the
samples. However, if insignificant features are present in the subset, they may reduce
the prediction capability and may contain similar biological information. A feature
set with high relevance and high significance enhances the predictive capability.
Accordingly, a measure is required that can enhance the effectiveness of feature set.
In this work, the rough set theory is used to select the relevant and significant miRNAs
from high dimensional microarray data sets.

Let C = {A1, · · · ,Ai , · · · ,A j , · · · ,Am} be the set of m miRNAs of a given
microarray data set and S is the set of selected miRNAs. Define γAi (D) as the
relevance of the miRNA Ai with respect to the class labels D while σ{Ai ,A j }(D,A j )

as the significance of the miRNA A j with respect to the set {Ai ,A j }. The total
relevance of all selected miRNAs is as follows:

Jrelev =
∑

Ai ∈S
γAi (D) (7.1)

while the total significance among the selected miRNAs is

Jsignf =
∑

Ai ≤=A j ∈S
σ{Ai ,A j }(D,A j ). (7.2)

Therefore, the problem of selecting a set S of relevant and significant miRNAs from
the whole set C of m miRNAs is equivalent to maximize both Jrelev and Jsignf ,
that is, to maximize the objective function J , where

J = Jrelev + βJsignf (7.3)

that is,
J =

∑

Ai ∈S
γAi (D) + β

∑

Ai ≤=A j ∈S
σ{Ai ,A j }(D,A j ) (7.4)
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where β is a weight parameter. To solve the above problem, a greedy algorithm is
used in [24]. The relevance and significance of a miRNA are calculated based on the
theory of rough sets using (4.6) and (4.7), respectively. The weight parameter β in
the rough set-based MRMS (RSMRMS) algorithm regulates the relative importance
of the significance of the candidate miRNA with respect to the already-selected
miRNAs and the relevance with the output class. If β is zero, only the relevance with
the output class is considered for each miRNA selection. If β increases, this measure
is incremented by a quantity proportional to the total significance with respect to
the already-selected miRNAs. The presence of a β value larger than zero is crucial
in order to obtain good results. If the significance between miRNAs is not taken
into account, selecting the miRNAs with the highest relevance with respect to the
output class may tend to produce a set of redundant miRNAs that may leave out
useful complementary information. Details of the RSMRMS algorithm are available
in Chap. 4.

7.2.2 Fuzzy Discretization

In miRNA expression data, the class labels of samples are represented by discrete
symbols, while the expression values of miRNAs are continuous. Hence, to measure
both relevance and significance of miRNAs using rough set theory, the continuous
expression values of a miRNA have to be divided into several discrete partitions to
generate equivalence classes. In this regard, a fuzzy set-based discretization method
is used to generate equivalence classes required to compute both relevance and sig-
nificance of the miRNAs.

Fuzzy set was introduced by Zadeh [44] as a generalization of the classical set
theory. A fuzzy set A in a space of objects U = {xi } is a class of events with a
continuum of grades of membership and is characterized by a membership function
μA(xi ) that associates with each element inU a real number in the interval [0, 1] with
the value of μA(xi ) at xi representing the grade of membership of xi in A. Formally,
a fuzzy set A with its finite number of supports x1, · · · , xi , · · · , xn is defined as a
collection of ordered pairs A = {μA(xi )/xi , i = 1, · · · , n}, where the support of A
is an ordinary subset of U and is defined as

S(A) = {xi |xi ∈ U and μA(xi ) > 0}. (7.5)

Here μA(xi ) represents the degree to which an object xi may be a member of A
or belong to A. If the support of a fuzzy set is only a single object x1 ∈ U, then
A = μA(x1)/x1 is called a fuzzy singleton. Hence, if μA(x1) = 1, A = 1

x1
denotes

a nonfuzzy singleton. In terms of the constituent singletons, the fuzzy set A with its
finite number of supports x1, · · · , xi , · · · , xn can also be expressed in union form as

A = {μA(x1)/x1 + · · · + μA(xi )/xi + · · · + μA(xn)/xn} (7.6)

http://dx.doi.org/10.1007/978-3-319-05630-2_4
http://dx.doi.org/10.1007/978-3-319-05630-2_4
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where the sign + denotes the union [13]. Assignment of membership functions of a
fuzzy subset is subjective in nature, and reflects the context in which the problem is
viewed.

The family of normal fuzzy sets produced by a fuzzy partitioning of the universe
of discourse can play the role of fuzzy equivalence classes. Given a finite set U, C
is a fuzzy condition attribute set in U, which generates a fuzzy equivalence partition
on U. If c denotes the number of fuzzy equivalence classes generated by the fuzzy
equivalence relation and n is the number of objects in U, then c-partitions of U

are sets of (cn) values {μC

i j } that can be conveniently arrayed as a (c × n) matrix

MC = [μC

i j ], which is denoted by

MC =



⎜⎜⎜⎡

μC

11 μC

12 · · · μC

1n

μC

21 μC

22 · · · μC

2n· · · · · · · · · · · ·
μC

c1 μC

c2 · · · μC
cn

⎛

⎝⎝⎝⎞ (7.7)

where μC

i j ∈ [0, 1] represents the membership of object x j in the i th fuzzy equiva-
lence partition or class Fi [20, 21].

Each row of the matrix MC is a fuzzy equivalence partition or class. In the rough
set-based feature selection method, the π function in one dimensional form is used
to assign membership values to different fuzzy equivalence classes for the input
miRNAs. A fuzzy set with membership function π(x; c̄, σ ) represents a set of points
clustered around c̄, where

π(x; c̄, σ ) =
⎠
⎨

⎩

2(1 − ||x−c̄||
σ

)2 for σ
2 → ||x − c̄|| → σ

1 − 2(
||x−c̄||

σ
)2 for 0 → ||x − c̄|| → σ

2
0 otherwise

(7.8)

where σ > 0 is the radius of the π function with c̄ as the central point and || · ||
denotes the Euclidean norm. When the pattern x lies at the central point c̄ of a class,
then ||x − c̄|| = 0 and its membership value is maximum, that is, π(c̄; c̄, σ ) = 1.
The membership value of a point decreases as its distance from the central point c̄,
that is, ||x − c̄|| increases. When ||x − c̄|| = ( σ

2 ), the membership value of x is 0.5
and this is called a crossover point [30]. The (c × n) matrix MAi , corresponding to
the i th miRNA Ai , can be calculated from the c-fuzzy equivalence classes of the
objects x = {x1, · · · , x j , · · · , xn}, where

μ
Ai
k j = π(x j ; c̄k, σk)

c∑

l=1

π(x j ; c̄l , σl)

. (7.9)
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In effect, each position μ
Ai
k j of the matrix MAi must satisfy the following condi-

tions:

μ
Ai
k j ∈ [0, 1];

c∑

k=1

μ
Ai
k j = 1,⊂ j and for any value of k,

if s = arg max
j

{μAi
k j }, then max

j
{μAi

k j } = max
l

{μAi
ls } > 0.

After the generation of the matrixMAi corresponding to the miRNAAi , the object
x j is assigned to one of the c equivalence classes based on the maximum value of
memberships of the object in different equivalence classes that follows next:

x j ∈ Fp, where p = arg max
k

{μAi
k j }. (7.10)

Each input real-valued miRNA in quantitative form can be assigned to different fuzzy
equivalence classes in terms of membership values using the π fuzzy set with appro-
priate c̄ and σ . The centers and radii of the π functions along each miRNA axis are
determined automatically from the distribution of the training patterns. In the RSM-
RMS algorithm, three fuzzy equivalence classes (c = 3), namely, low, medium, and
high are considered. These three equivalence classes correspond to under-expression,
baseline, and over-expression of continuous valued miRNAs, respectively. Corre-
sponding to three fuzzy sets low, medium, and high, the following relations hold:

c̄1 = c̄low(Ai ); c̄2 = c̄medium(Ai ); c̄3 = c̄high(Ai ); (7.11)

σ1 = σlow(Ai ); σ2 = σmedium(Ai ); σ3 = σhigh(Ai ). (7.12)

The parameters c̄ and σ of each π fuzzy set are computed according to the following
procedure [29]. Let m̄i be the mean of the objects x = {x1, · · · , x j , · · · , xn} along
the i th miRNA Ai . Then m̄il and m̄ih are defined as the mean along the i th miRNA
of the objects having co-ordinate values in the range [Aimin , m̄i ) and (m̄i ,Aimax ],
respectively, whereAimax andAimin denote the upper and lower bounds of the dynamic
range of miRNA Ai for the training set. For three fuzzy sets low, medium, and high,
the centers and corresponding radii are computed as follows:

c̄low(Ai ) = m̄il ; c̄medium(Ai ) = m̄i ; c̄high(Ai ) = m̄ih (7.13)

σlow(Ai ) = 2(c̄medium(Ai ) − c̄low(Ai )); (7.14)

σhigh(Ai ) = 2(c̄high(Ai ) − c̄medium(Ai )); (7.15)

σmedium(Ai ) = η × A

B
; (7.16)
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A = σlow(Ai )(Aimax − cmedium(Ai )) + σhigh(Ai )(cmedium(Ai ) − Aimin); (7.17)

and
B = {Aimax − Aimin} (7.18)

where η is a multiplicative parameter controlling the extent of the overlapping. The
distribution of the patterns or objects along each miRNA axis is taken into account,
while computing the corresponding centers and radii of the fuzzy sets. Also, the
amount of overlap between the three fuzzy sets can be different along the different
axis, depending on the distribution of the objects or patterns.

7.2.3 B.632+ Error Rate

In order to minimize variability and biasedness of derived result, the so-called
B.632+ bootstrap approach [7] is used, which is defined as follows:

B.632+ = (1 − ω)AE + ωB1 (7.19)

where AE denotes the proportion of the original training samples misclassified,
termed as apparent error rate, and B1 is the bootstrap error, defined as follows:

B1 = 1

n

n∑

j=1

M∑

k=1

I jk Q jk

M∑

k=1

I jk

(7.20)

where n is the number of original samples and M is the number of bootstrap samples.
If the sample x j is not contained in the kth bootstrap sample, then I jk = 1, otherwise
0. Similarly, if x j is misclassified, Q jk = 1, otherwise 0. The weight parameter ω is
given by

ω = 0.632

1 − 0.368r
; (7.21)

where

r = B1 − AE

γ − AE
; (7.22)

and

γ =
K∑

i=1

pi (1 − qi ); (7.23)
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where K is the number of classes, pi is the proportion of the samples from the i th
class, and qi is the proportion of them assigned to the i th class. Also, γ is termed as the
no-information error rate that would apply if the distribution of the class-membership
label of the sample x j did not depend on its feature vector.

7.3 Experimental Results

In this section, the performance of the rough sets-based maximum relevance-
maximum significance (RSMRMS) algorithm is compared with that of mutual
information-based minimum redundancy-maximum relevance (mRMR) algorithm
[6] on three miRNA microarray data sets. The fuzzy set-based discretization method
is also compared with several other discretization methods [17, 22]. The source code
of the RSMRMS algorithm and fuzzy discretization method, written in C language, is
available at http://www.isical.ac.in/~bibl/results/rsmrms/rsmrms.html. The margin
classifier support vector machine (SVM) [41] is used to evaluate the performance
of different algorithms. To compute different types of error rates obtained using the
SVM, bootstrap approach is performed on each miRNA expression data set. For
each training set, a set of differential miRNAs is first generated, and then the SVM
is trained with the selected miRNAs. After the training, the information of miRNAs
those were selected for the training set is used to generate test set and then the class
label of the test sample is predicted using the SVM. For each data set, 50 top-ranked
miRNAs are selected for the analysis. Each data set is preprocessed by standardizing
each sample to zero mean and unit variance.

7.3.1 Data Sets Used

In this chapter, publicly available three miRNA expression data sets are used to
establish the effectiveness of the approach. Three miRNA expression data sets with
accession number GSE17681, GSE17846, and GSE29352 are downloaded from
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/).

7.3.1.1 GSE17681

This data set has been generated to detect specific patterns of miRNAs in peripheral
blood samples of lung cancer patients. As controls, blood of donors without known
affection have been tested. The number of miRNAs, samples, and classes in this data
set are 866, 36, and 2, respectively [12].

http://www.isical.ac.in/~bibl/results/rsmrms/rsmrms.html
www.ncbi.nlm.nih.gov/geo/
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7.3.1.2 GSE17846

This data set represents the analysis of miRNA profiling in peripheral blood samples
of multiple sclerosis and in blood of normal donors. It contains 864 miRNAs, 41
samples, and 2 classes [11].

7.3.1.3 GSE29352

In this data set, miRNA expression profiles in pancreatic cystic tumors with low
malignant potential (serous microcystic adenomas) and high malignant potential
(mucinous cystadenoma and intraductal papillary mucinous neoplasm (IPMN)) have
been generated. These expression profiles are further compared in pancreatic ductal
adenocarcinoma and carcinoma-ex-IPMN. It contains 43 samples, 885 miRNAs, and
3 classes.

7.3.2 Optimum Values of Different Parameters

The rough set-based miRNA selection algorithm uses weight parameter β to control
the relative importance of significance of a miRNA with respect to its relevance. On
the other hand, the multiplicative parameter η controls the degree of overlapping
between the three fuzzy sets those are used to generate fuzzy equivalence classes.
Hence, the performance of the RSMRMS approach very much depends on both the
parameters β and η.

The value of β is varied from 0.0 to 1.0, while the parameter η varies from 0.5
to 2.0. Extensive experimental results are obtained for all values of β and η on three
miRNA expression data sets. Figure 7.2 presents the variation of the B.632+ error
rate obtained using the RSMRMS algorithm for different values of β and η on three
miRNA data sets. From the results reported in Fig. 7.2, it is seen that as the value of
β increases, the B.632+ error of the SVM decreases.

On the other hand, the error rate increases for very high or very low values of η.
Table 7.1 presents the optimum values of β and η for which minimal B.632+ error
rate of the SVM is achieved. From the results reported in Table 7.1, it is seen that
the RSMRMS algorithm with β ≤= 0.0 provides better result than that of β = 0.0
in all three cases, which justifies the importance of both relevance and significance
criteria. The corresponding values of η indicate that very large or very small amounts
of overlapping among the three fuzzy equivalence classes of input miRNAs are found
to be undesirable for β > 0.0.
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Fig. 7.2 Variation of B.632+ error rate of the SVM with respect to multiplicative parameter η and
weight parameter β. a GSE17681, b GSE17846, c GSE29352

7.3.3 Importance of B.632+ Error Rate

This section establishes the importance of using B.632+ error rate over other types of
errors such as apparent error (AE), no-information error rate (γ ), and bootstrap error
(B1). Different types of errors on each miRNA expression data set are calculated
using the SVM for the RSMRMS method. Figure 7.3 represents the various types of
errors obtained by the RSMRMS algorithm on three miRNA expression data sets.
From Fig. 7.3, it is seen that different types of errors decrease as the number of
selected miRNAs increases.

For all three miRNA data sets, the AE attains consistently lowest value, while γ

has highest value. On the other hand, the B1 has smaller error rate than γ but it is
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Table 7.1 Optimum values
of two parameters for three
miRNA data sets

Parameter / Data Set GSE17681 GSE17846 GSE29352

Weight parameter β 1.0 0.5 1.0
Multiplicative parameter η 1.7 1.0 1.7
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Fig. 7.3 Error rate of the SVM obtained using the RSMRMS algorithm averaged over 50 random
splits. a GSE17681, b GSE17846, c GSE29352

higher than the AE . Moreover, the B.632+ estimate has smaller error rate than the
B1 but higher than the AE .

Table 7.2 reports the minimum values of different errors, along with the number of
required miRNAs to attain these values. From all the results reported in this table, it
can be seen that the B.632+ estimator corrects the upward bias of B1 and downward
bias of AE . Also, it puts more weight on B1 in situation where the amount of
overfitting as measured by (B1 − AE) is relatively large. It is thus applicable in the
present context where the prediction rule generated by the SVM is overfitted.



184 7 Rough Sets for Insilico Identification of Differentially Expressed miRNAs

Table 7.2 Comparative performance analysis of different errors

Different errors Error/No. of miRNA Microarray data sets
GSE17681 GSE17846 GSE29352

AE Error 0.000 0.000 0.000
miRNA 8 2 17

B1 Error 0.142 0.093 0.429
miRNA 24 39 20

γ Error 0.423 0.441 0.455
miRNA 4 1 23

B.632+ Error 0.103 0.064 0.413
miRNA 24 39 20
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Fig. 7.4 Error rates of the SVM obtained using different discretization methods averaged over 50
random splits for GSE17681
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Fig. 7.5 Error rates of the SVM obtained using different discretization methods averaged over 50
random splits for GSE17846

7.3.4 Role of Fuzzy Discretization Method

In the current study, the fuzzy set-based discretization method is used to generate
equivalence classes or information granules for computing relevance and significance
of miRNAs using the theory of rough sets. To establish the effectiveness of fuzzy
set-based discretization method over other discretization methods, extensive exper-
imentation is done on three miRNA data sets. The methods compared are mean and
standard deviation-based method (Mean-Stddev) [17] reported in Chaps. 4 and 5,
supervised discretization method (Supervised) [22], and unsupervised discretization
method (Unsupervised) [22]. Figures 7.4, 7.5, and 7.6 report the variation of sev-
eral errors with respect to number of selected miRNAs, while Table 7.3 presents the
minimum error values obtained using different discretization methods. From all the
results reported in Figs. 7.4, 7.5, 7.6 and Table 7.3, it can be seen that the fuzzy
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Fig. 7.6 Error rates of the SVM obtained using different discretization methods averaged over 50
random splits for GSE29352

set-based discretion method performs better than other discretization methods, irre-
spective of the types of errors and miRNA data sets used. However, in case of γ error,
the unsupervised discretization method for GSE17681 and GSE29352 data sets and
supervised discretization method for GSE29352 data set perform better than the
fuzzy set-based discretization method.

7.3.5 Comparative Performance Analysis

This section compares the performance of mRMR and RSMRMS algorithms with
respect to various types of errors. Figures 7.7, 7.8, and 7.9 present different error
rates obtained by the mRMR and RSMRMS algorithms on three miRNA expression
data sets. From all the results reported in Fig. 7.7, 7.8, and 7.9, it is seen that in most
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Table 7.3 Comparative performance analysis of different discretization methods

Microarray Discretization AE B1 γ B.632+
data sets methods Error miRNAs Error miRNAs Error miRNAs Error miRNAs

Mean-Stddev 0.000 9 0.153 21 0.424 11 0.110 21
GSE17681 Supervised 0.139 20 0.351 17 0.423 3 0.319 17

Unsupervised 0.000 26 0.190 40 0.420 8 0.143 40
Fuzzy set based 0.000 8 0.142 24 0.423 4 0.103 24
Mean-Stddev 0.000 2 0.098 41 0.462 17 0.067 41

GSE17846 Supervised 0.338 1 0.394 1 0.445 1 0.429 1
Unsupervised 0.000 15 0.129 43 0.450 4 0.091 43
Fuzzy set based 0.000 2 0.093 39 0.441 1 0.064 39
Mean-Stddev 0.023 25 0.454 25 0.455 25 0.454 25

GSE29352 Supervised 0.000 23 0.454 22 0.454 22 0.454 22
Unsupervised 0.000 19 0.450 27 0.450 27 0.450 27
Fuzzy set based 0.000 17 0.429 20 0.455 23 0.413 20

Table 7.4 Comparative performance analysis of mRMR and RSMRMS algorithms

Different Error/No. of GSE17681 GSE17846 GSE29352
errors miRNAs mRMR RSMRMS mRMR RSMRMS mRMR RSMRMS

AE Error 0.00 0.00 0.00 0.00 0.00 0.00
miRNAs 10 8 3 2 21 17

B1 Error 0.18 0.14 0.10 0.09 0.43 0.43
miRNAs 28 24 48 39 43 20

γ Error 0.41 0.42 0.44 0.46 0.45 0.46
miRNAs 13 4 1 5 32 23

B.632+ Error 0.13 0.10 0.07 0.06 0.42 0.41
miRNAs 28 24 48 39 43 20

of the cases different types of error rates are consistently lower for the RSMRMS
algorithm compared to the mRMR method.

Finally, Table 7.4 compares the performance of the RSMRMS method with the
best performance of the mRMR method. The results are presented based on the error
rate of the SVM classifier obtained on three miRNA microarray data sets. From the
results reported in Table 7.4, it is seen that although the best AE for each miRNA
data set is same for both algorithms, the RSMRMS achieves this value with lower
number of selected miRNAs than that obtained by the mRMR method. Also, the
RSMRMS attains lowest B.632+ bootstrap error rate, as well as B1 error rate, of
the SVM classifier for all three miRNA data sets with lesser number of selected
miRNAs.

The better performance of the RSMRMS algorithm is achieved due to the fact that
it uses rough sets for computing both miRNA-class relevance and miRNA-miRNA
significance to select differentially expressed miRNAs. The lower and upper approx-
imations of rough sets can effectively deal with incompleteness, vagueness, and



188 7 Rough Sets for Insilico Identification of Differentially Expressed miRNAs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30  35  40  45  50

A
E

Number of Selected miRNAs

mRMR
RSMRMS

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  5  10  15  20  25  30  35  40  45  50

B
1

 E
rr

o
r

Number of Selected miRNAs

mRMR
RSMRMS

 0.41

 0.415

 0.42

 0.425

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0  5  10  15  20  25  30  35  40  45  50

γ 
E

rr
o

r

Number of Selected miRNAs

mRMR
RSMRMS

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  5  10  15  20  25  30  35  40  45  50

B
.6

3
2

+
 E

rr
o

r

Number of Selected miRNAs

mRMR
RSMRMS

Fig. 7.7 Error rates of the SVM obtained using the mRMR and RSMRMS algorithms averaged
over 50 random splits for GSE17681

uncertainty of the data set. The fuzzy set-based discretization method can efficiently
handle the overlapping equivalence classes. Also, the mRMR algorithm selects a
subset of miRNAs from the whole miRNA set by maximizing the relevance and
minimizing the redundancy of the selected miRNAs. The redundancy measure of
the mRMR method does not take into account the supervised information of class
labels, while both relevance and significance criteria of the RSMRMS method are
computed based on the class labels. In effect, the RSMRMS method provides better
performance than the mRMR method.
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Fig. 7.8 Error rates of the SVM obtained using the mRMR and RSMRMS algorithms averaged
over 50 random splits for GSE17846

7.4 Conclusion and Discussion

This chapter addresses the problem of insilico identification of differentially
expressed miRNAs. Several existing approaches have been reported along with their
merits and demerits. A novel approach is then presented, integrating judiciously the
merits of rough set-based maximum relevance-maximum significance (RSMRMS)
algorithm, support vector machine, and the B.632+ error rate. It selects relevant and
significant miRNAs, which can classify samples into different classes with minimum
error rate.

All the results reported in this chapter demonstrate the feasibility and effectiveness
of the RSMRMS method. The results obtained on three miRNA data sets demonstrate
that the RSMRMS method can bring a remarkable improvement on miRNA selec-
tion problem, and therefore, it can be a promising alternative to existing models for
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Fig. 7.9 Error rates of the SVM obtained using the mRMR and RSMRMS algorithms averaged
over 50 random splits for GSE29352

prediction of class labels of samples. The method is capable of identifying effective
miRNAs that may contribute to revealing underlying etiology of a disease, provid-
ing a useful tool for exploratory analysis of miRNA data. Recently, Paul and Maji
introduced an algorithm using rough hypercuboid equivalence partition matrix for
identification of differentially expressed miRNAs [33].

While in Chaps. 4, 5, 6, and 7, we have discussed different feature selection
methodologies with extensive experimental results demonstrating their effectiveness
in several problems of computational biology and bioinformatics, the next four chap-
ters deal with different clustering approaches, along with some important problems
of bioinformatics and medical imaging, namely, grouping functionally similar genes
from microarray data, supervised gene clustering for microarray sample classifica-
tion, possibilistic biclustering for discovering value-coherent overlapping biclusters
of genes, and segmentation of brain magnetic resonance images.

http://dx.doi.org/10.1007/978-3-319-05630-2_7
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Part III
Clustering



Chapter 8
Grouping Functionally Similar Genes
From Microarray Data Using
Rough–Fuzzy Clustering

8.1 Introduction

Microarray technology is one of the important biotechnological means that has made
it possible to simultaneously monitor the expression levels of thousands of genes
during important biological processes and across collections of related samples
[9, 14, 37]. An important application of microarray data is to elucidate the pat-
terns hidden in gene expression data for an enhanced understanding of functional
genomics.

A microarray time-series gene expression data set can be represented by an expres-
sion table, where each row corresponds to one particular gene, each column to a time
point, and each entry of the matrix is the measured expression level of a partic-
ular gene in a time point, respectively [9, 14, 37]. However, the large number of
genes and the complexity of biological networks greatly increase the challenges of
comprehending and interpreting the resulting mass of data, which often consists of
millions of measurements. A first step toward addressing this challenge is the use
of clustering techniques, which is essential in pattern recognition process to reveal
natural structures and identify interesting patterns in the underlying data [28].

Cluster analysis is a technique for finding natural groups present in the data. It
divides a given data set into a set of clusters in such a way that two objects from
the same cluster are as similar as possible and the objects from different clusters
are as dissimilar as possible. In effect, it tries to mimic the human ability to group
similar objects into classes and categories [25]. Clustering techniques have been
effectively applied to a wide range of engineering and scientific disciplines such
as pattern recognition, machine learning, psychology, biology, medicine, computer
vision, web intelligence, communications, and remote sensing. A number of cluster-
ing algorithms have been proposed to suit different requirements [25, 26].

The purpose of gene clustering is to group together coexpressed genes which indi-
cate cofunction and coregulation. Due to the special characteristics of gene expression
data, and the particular requirements from the biological domain, gene clustering
presents several new challenges and is still an open problem. To understand gene
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function, gene regulation, cellular processes, and subtypes of cells, clustering tech-
niques have proven to be helpful. The coexpressed genes, that is, genes with similar
expression patterns, can be clustered together with similar cellular functions. This
approach may further help to understand the functions of many genes for which
information has not been previously available [17, 54]. Furthermore, coexpressed
genes in the same cluster are likely to be involved in the same cellular processes, and
a strong correlation of expression patterns between those genes indicates coregula-
tion. Searching for common DNA sequences at the promoter regions of genes within
the same cluster, allows regulatory motifs specific to each gene cluster to be identi-
fied and cis-regulatory elements to be proposed [8, 54]. The inference of regulation
through gene expression data clustering also gives rise to hypotheses regarding the
mechanism of transcriptional regulatory network [13].

Different clustering techniques such as hierarchical clustering [22], hard c-means
or k-means algorithm [23], self organizing map [53], principal component analysis
[42], graph theoretical approaches [5, 21, 51, 58], model-based clustering [18, 20,
41, 59], and density-based approach [27] have been widely applied to find groups of
coexpressed genes from microarray data. A comprehensive survey on various gene
clustering algorithms can be found in [8, 28]. One of the most widely used prototype-
based partitional clustering algorithms is hard c-means [43]. In hard c-means, each
gene is assigned to exactly one cluster. However, one of the main problems in gene
expression data analysis is uncertainty. Some of the sources of this uncertainty include
incompleteness and vagueness in cluster definitions. Also, the empirical study has
demonstrated that gene expression data are often highly connected, and the clusters
may be highly overlapping with each other or even embedded one in another [27].
Therefore, gene clustering algorithms should be able to effectively handle this situa-
tion. Moreover, gene expression data often contains a huge amount of noise due to the
complex procedures of microarray experiments [29]. Hence, clustering algorithms
for gene expression data should be capable of extracting useful information from a
high level of background noise.

In this background, the possibility concept introduced by fuzzy set theory [60]
and rough set theory [46] have gained popularity in modeling and propagating uncer-
tainty. Both fuzzy sets and rough sets provide a mathematical framework to capture
uncertainties associated with the data. One of the most notable prototype-based par-
titional clustering algorithms is fuzzy c-means [6, 16]. It assigns each gene to every
cluster by allowing gradual memberships. In effect, it offers the opportunity to deal
with the data that belong to more than one cluster at the same time. It assigns mem-
berships to a gene which are inversely related to the relative distance of the gene to
cluster prototypes. Also, it can deal with the uncertainties arising from overlapping
cluster boundaries and reveal additional information concerning gene coexpression
[12, 15, 19, 57]. In particular, information regarding overlapping clusters and over-
lapping cellular pathways has been identified from fuzzy clustering results [4, 19].
However, the resulting membership values of fuzzy c-means do not always corre-
spond well to the degrees of belonging of the data, and it may be inaccurate in a
noisy environment [30]. To reduce this weakness and to produce memberships that
have a good explanation of the degrees of belonging for the data, Krishnapuram
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and Keller [30] proposed possibilistic c-means algorithm. However, it sometimes
generates coincident clusters [37].

On the other hand, two of the early rough clustering algorithms are those due
to Hirano and Tsumoto [24] and De [11]. Other notable algorithms include rough
c-means [33], rough self organizing map [44], and rough support vector clustering
[2]. In [45], the indiscernibility relation of rough sets has been used to initialize the
expectation maximization algorithm. In [33], Lingras and West introduced a rough
clustering method, called rough c-means, which describes a cluster by a prototype or
center and a pair of lower and upper approximations. The lower and upper approx-
imations are weighted different parameters to compute the new centers. Asharaf
et al. [1] extended rough c-means algorithm that may not require specification of the
number of clusters.

Integrating the merits of rough sets and fuzzy sets, different rough–fuzzy clus-
tering algorithms such as rough–fuzzy c-means [35], rough-possibilistic c-means
[36], and rough–fuzzy-possibilistic c-means [36] have been proposed, where each
cluster is represented by a cluster prototype, a crisp lower approximation and a
probabilistic and/or possibilistic fuzzy boundary. The cluster prototype is computed
based on the weighted average of crisp lower approximation and fuzzy boundary. All
these algorithms can be used for clustering coexpressed genes from microarray gene
expression data sets [37, 38]. Recently, a robust rough–fuzzy clustering algorithm is
proposed in [40] to group functionally similar genes. Also, fuzzy–rough supervised
gene clustering algorithm is proposed in [34] to find groups of coregulated genes
whose collective expression is strongly associated with sample categories.

This chapter presents the application of rough–fuzzy c-means for clustering func-
tionally similar genes from microarray time-series gene expression data sets. An
efficient method, proposed by Maji and Paul [39], is reported to select initial pro-
totypes of different gene clusters; thereby circumventing the initialization and local
minima problems of different c-means algorithms. A parameter optimization method
is also presented based on cluster validity index to identify optimum values of dif-
ferent parameters of the initialization method and the clustering algorithms. The
effectiveness of different partitive clustering algorithms is demonstrated on a set of
five yeast microarray gene expression data sets using some cluster validity indices
and gene ontology-based analysis.

The rest of this chapter is organized as follows: Sect. 8.2 presents a survey on
different gene clustering algorithms and several quantitative measures for evaluat-
ing the clustering solutions. Section 8.3 presents rough–fuzzy c-means algorithm,
along with a new initialization method for selection of initial cluster prototypes
of different partitive clustering algorithms and a parameter optimization technique
based on cluster validity index. Experimental results, a brief description of different
yeast microarray gene expression data sets, and a comparison among several gene
clustering algorithms are presented in Sect. 8.4. The biological importance of each
clustering solution is evaluated using gene ontology. Concluding remarks are given
in Sect. 8.5.
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8.2 Clustering Algorithms and Validity Indices

Clustering is one of the major tasks in gene expression data analysis. When applied to
gene expression data, clustering algorithms can be applied on both gene and sample
dimensions [3, 28]. The conventional clustering methods group a subset of genes
that are interdependent or correlated with each other. In other words, genes in a
cluster are more correlated with each other, whereas genes in different clusters are
less correlated [3]. After clustering genes, a reduced set of genes can be selected for
further analysis. The conventional gene clustering methods allow genes with similar
expression patterns, that is, coexpressed genes, to be identified [28].

8.2.1 Different Gene Clustering Algorithms

This section presents a brief overview on different clustering algorithms, which can
be used to group coexpressed genes from microarray expression data sets.

8.2.1.1 Hard C-Means

The hard c-means [43] is one of the simplest unsupervised learning algorithms. Let
X = {x1, . . . , x j , . . . , xn} and V = {β1, . . . , βi , . . . , βc} be the set of n objects and
c centroids, respectively, having m dimensions where x j ∈ ≤m and vi ∈ ≤m . The
objective of hard c-means algorithm is to assign n objects to c clusters. Each of the
clusters δi is represented by a centroid vi , which is the cluster representative for
that cluster. The process begins by randomly choosing c objects as the centroids or
means. The objects are assigned to one of the c clusters based on the similarity or
dissimilarity between the object x j and the centroid vi . After the assignment of all
the objects to various clusters, the new centroids are calculated as follows:

vi = 1

ni

∑

x j ∈δi

x j , (8.1)

where ni represents the number of objects in cluster δi . The main steps of hard
c-means algorithm are as follows:

1. Assign initial means or centroids vi , i = 1, 2, . . . , c.
2. For each object x j , calculate distance di j between itself and the centroid vi of

cluster δi .
3. If di j is minimum for 1 → i → c, then x j ∈ δi .
4. Compute new centroid as per (8.1).
5. Repeat steps 2 to 4 until no more new assignments can be made.



8.2 Clustering Algorithms and Validity Indices 201

8.2.1.2 Fuzzy C-Means

The fuzzy c-means provides a fuzzification of the hard c-means [6]. It partitions X
into c clusters by minimizing the following objective function

JF =
n∑

j=1

c∑

i=1

(μi j )
ḿ1 ||x j − vi ||2 (8.2)

where ḿ1 ∈ [1,⊂) is the fuzzifier, vi is the i th centroid corresponding to cluster δi ,
μi j ∈ [0, 1] is the probabilistic membership of the pattern x j to cluster δi , and ||.||
is the distance norm such that

vi = 1

ni

n∑

j=1

(μi j )
ḿ1 x j ; (8.3)

where

ni =
n∑

j=1

(μi j )
ḿ1 (8.4)

and

μi j =


⎜
c∑

k=1

⎡
d2

i j

d2
k j

⎛ 1
ḿ1−1

⎝

⎞
−1

; (8.5)

where

d2
i j = ||x j − vi ||2 (8.6)

subject to

c∑

i=1

μi j = 1,⊆ j, and 0 <

n∑

j=1

μi j < n,⊆i. (8.7)

The process begins by randomly choosing c objects as the centroids or means
of the c clusters. The memberships are calculated based on the relative distance of
the object x j to the centroids {vi } by (8.5). After computing memberships of all the
objects, the new centroids of the clusters are calculated as per (8.3). The process
stops when the centroids stabilize. That is, the centroids from the previous iteration
are identical to those generated in the current iteration. The basic steps are outlined
as follows:
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1. Assign initial means vi , i = 1, 2, . . . , c. Choose values for ḿ1 and threshold ε.
Set iteration counter t = 1.

2. Compute memberships μi j by (8.5) for c clusters and n objects.
3. Update mean or centroid vi by (8.3).
4. Repeat steps 2 and 3, by incrementing t , until |μi j (t) − μi j (t − 1)| > ε.

8.2.1.3 Possibilistic C-Means

In fuzzy c-means, the memberships of an object are inversely related to the relative
distance of the object to the cluster centroids. In effect, it is very sensitive to noise
and outliers. Also, from the standpoint of compatibility with the centroid, the mem-
berships of an object x j in a cluster δi should be determined solely by how close it is
to the mean or centroid vi of the class, and should not be coupled with its similarity
with respect to other classes.

To alleviate this problem, Krishnapuram and Keller [30, 31] introduced possi-
bilistic c-means, where the objective function can be formulated as

JP =
c∑

i=1

n∑

j=1

(βi j )
ḿ2 ||x j − vi ||2 +

c∑

i=1

ηi

n∑

j=1

(1 − βi j )
ḿ2 (8.8)

where ḿ2 ∈ [1,⊂) is the fuzzifier and ηi represents the scale parameter. The mem-
bership matrix β generated by possibilistic c-means is not a partition matrix in the
sense that it does not satisfy the constraint

c∑

i=1

βi j = 1,⊆ j. (8.9)

The update equation of βi j is given by

βi j = 1

1 + D
; (8.10)

where

D =
⎠ ||x j − vi ||2

ηi

⎨ 1
ḿ2−1

(8.11)

subject to

βi j ∈ [0, 1],⊆i, j; 0 <

n∑

j=1

βi j → n,⊆i; and max
i

βi j > 0,⊆ j. (8.12)
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The scale parameter ηi represents the zone of influence or size of the cluster δi .
The update equation for ηi is given by

ηi = K · P

Q
(8.13)

where

P =
n∑

j=1

(βi j )
ḿ2 ||x j − vi ||2; (8.14)

and

Q =
n∑

j=1

(βi j )
ḿ2 . (8.15)

Typically K is chosen to be one. In each iteration, the updated value of βi j depends
only on the similarity between the object x j and the centroid vi . The resulting partition
of the data can be interpreted as a possibilistic partition, and the membership values
may be interpreted as degrees of possibility of the objects belonging to the classes,
that is, the compatibilities of the objects with the means or centroids. The updating of
the means proceeds exactly the same way as in the case of fuzzy c-means algorithm.

8.2.1.4 Self Organizing Map

The self organizing map (SOM) creates a set of prototype vectors representing the
data set and carries out a topology preserving projection of the prototypes from the
d-dimensional input space onto a low-dimensional grid. This ordered grid represents
the cluster structures. The main issue associated with the SOM is that it requires a
prespecified number and an initial spatial structure of clusters [53]. However, it is
difficult to prior estimate these values. Furthermore, if the data set is abundant with
irrelevant data points such as genes with invariant patterns, the SOM may produce
an output in which this type of data will populate the vast majority of clusters. In
this case, the SOM is not effective because most of the interesting patterns may be
merged into only one or two clusters and cannot be identified [28].

8.2.1.5 Graph Theoretical Approaches

Graph theoretical clustering techniques are explicitly presented in terms of a graph,
where each gene corresponds to a vertex, while for some clustering methods, each
pair of genes is connected by an edge with weight assigned according to the proximity
value between the genes [51, 58]. For other methods, proximity is mapped only to
either zero or one on the basis of some threshold [5, 21]. Hence, this approach
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converts the problem of clustering a gene set into graph theoretical problems as
finding minimum cut or maximal cliques in the proximity graph.

The CLICK (CLuster Identification via Connectivity Kernels) [51] seeks to iden-
tify highly connected components in the proximity graph as clusters. It makes
the probabilistic assumption that after standardization, pairwise similarity values
between elements are normally distributed, no matter if they are in the same clus-
ter or not. Under this assumption, the weight of an edge between two vertices is
defined as the probability that two vertices are in the same cluster. The clustering
process of the CLICK iteratively finds the minimum cut in the proximity graph and
recursively splits the gene set into a set of connected components from the minimum
cut. The CLICK also takes two postpruning steps, namely, adoption and merging, to
refine the clustering results. The adoption step handles the remaining singletons and
updates the current clusters, while the merging step iteratively merges two clusters
with similarity exceeding a predefined threshold.

8.2.1.6 Hierarchical, Model, and Density-Based Approaches

The partition-based clustering such as k-means algorithm directly decomposes the
data set into a set of disjoint clusters. In contrast, hierarchical clustering generates
a hierarchical series of nested clusters that can be graphically represented by a tree,
called dendrogram. The branches of a dendrogram not only record the formation of
the clusters but also indicate the similarity between the clusters. By cutting the den-
drogram at some level, one can obtain a specified number of clusters. By reordering
the objects such that the branches of the corresponding dendrogram do not cross,
the data set can be arranged with similar objects placed together [28]. The hierar-
chical clustering identifies sets of correlated genes with similar behavior across the
samples, but yields thousands of clusters in a tree-like structure, which makes the
identification of functional groups very difficult [22].

The CAST (Cluster Affinity Search Technique) [5] has been found to be an attrac-
tive clustering procedure for cluster detection in gene expression data. The CAST is
a sequential procedure that defines clusters one at a time. After detecting a cluster,
the CAST removes the corresponding genes from consideration and initializes the
next cluster. Cluster detection proceeds by adding and removing genes based on a
similarity measure between the genes and the cluster members. A gene is added if
its similarity to the cluster exceeds a user-defined threshold, that suggests, that the
gene cluster has high affinity for the cluster. At each iteration, the low affinity gene
will be dropped if its similarity to the cluster falls below the threshold. Note that
the threshold is constant for the whole clustering procedure, thus it is referred to as
global affinity threshold. However, the CAST has the usual difficulty of determining
a good value for the global affinity threshold [28].

The model-based clustering approaches [18, 20, 41, 59] provide a statistical
framework to model the cluster structure of gene expression data. The data set is
assumed to come from a finite mixture of underlying probability distributions with
each component corresponding to a different cluster. The goal is to estimate the
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parameters that maximize the likelihood. Usually, the parameters are estimated by
the expectation maximization (EM) algorithm. The EM algorithm iterates between
Expectation (E) and Maximization (M) steps. In the E step, hidden parameters are
conditionally estimated from the data with the current estimated model parameter.
In the M step, model parameters are estimated so as to maximize the likelihood
of complete data given the estimated hidden parameters. When the EM algorithm
converges, each gene is assigned to the component or cluster with the maximum
conditional probability [28].

A density-based hierarchical clustering method, called the DHC, is proposed in
[27] to identify the coexpressed gene groups from gene expression data. The DHC
is developed based on the notions of density and attraction of data objects. The basic
idea is to consider a cluster as a high-dimensional dense area, where objects are
attracted with each other. At the core part of the dense area, objects are crowded
closely with each other and thus have high density. Objects at the peripheral area
of the cluster are relatively sparsely distributed and are attracted to the core part of
the dense area. Once the density and attraction of data objects are defined, the DHC
organizes the cluster structure of the data set in two-level hierarchical structures [28].

8.2.2 Quantitative Measures

Following quantitative indices are generally used, along with other measures [28],
to evaluate the performance of different gene clustering algorithms for grouping
functionally similar genes from microarray gene expression data sets.

8.2.2.1 Silhouette Index

Let an object xi ∈ δr , i = 1, . . . , nr and nr is the cardinality of cluster δr . For each
object xi let ai be the average distance between object xi and rest of the objects of
δr , that is,

ai = davg(xi , δr − {xi }) (8.16)

where davg(., .) denotes the average distance measure between an object and a set of
objects. For any other cluster δp �= δr , let davg(xi , δp) denote the average distance of
object xi to all objects of δp. The scalar bi is the smallest of these davg(xi , δp), p =
1, . . . , c, p �= r , that is,

bi = min
p=1,...,c,p �=r

⎩
davg(xi , δp)

}
. (8.17)

The Silhouette width of object xi is then defined as [48]
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s(xi ) = bi − ai

max{bi , ai } (8.18)

where −1 → s(xi ) → 1. The value of s(xi ) close to 1 implies that the distance of object
xi from the cluster δr where it belongs is significantly less than the distance between
xi and its nearest cluster excluding δr , which indicates that xi is well clustered. On
the other hand, the value of s(xi ) close to −1 implies that the distance between xi

and δr is significantly higher than the distance between xi and its nearest cluster
excluding δr , which indicates that xi is not well clustered. Finally, the values of
s(xi ) close to 0 indicate that xi lies close to the border between the two clusters.
Based on the definition of s(xi ), the Silhouette of the cluster δk (k = 1, . . . , c) is
defined as

S(δk) = 1

nk

∑

xi ∈δk

s(xi ) (8.19)

where nk is the cardinality of the cluster δk . The global Silhouette index is
defined as

Ŝc = 1

c

c∑

k=1

S(δk) (8.20)

where Ŝc ∈ [−1, 1]. Also, the higher the value of Ŝc, the better the corresponding
clustering is.

8.2.2.2 Davies-Bouldin Index

The Davies-Bouldin (DB) index [10] is a function of the ratio of sum of within-cluster
distance to between-cluster separation and is given by

DB = 1

c

c∑

i=1

max
k �=i

⎠
S(vi ) + S(vk)

d(vi , vk)

⎨
(8.21)

for 1 → i, k → c. The DB index minimizes the within-cluster distance S(vi ) and
maximizes the between-cluster separation d(vi , vk). Therefore, for a given data set
and c value, the higher the similarity values within the clusters and the between-
cluster separation, lower would be the DB index value. A good clustering procedure
should make the value of DB index as low as possible.
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8.2.2.3 Dunn Index

Dunn’s index [16] is also designed to identify sets of clusters that are compact and
well separated. Dunn’s (D) index maximizes

D = min
i

⎠
min
k �=i

⎠
d(vi , vk)

maxl S(vl)

⎨⎨
(8.22)

for 1 → i, k, l → c. A good clustering procedure should make the value of Dunn
index as high as possible.

8.3 Grouping Functionally Similar Genes Using Rough–Fuzzy
C-Means Algorithm

This section presents a new c-means algorithm based on both fuzzy and rough sets,
termed as rough–fuzzy c-means [35, 36]. It adds the concept of fuzzy membership
of fuzzy sets, and lower and upper approximations of rough sets into c-means algo-
rithm. While the membership of fuzzy sets enables efficient handling of overlapping
partitions, the rough sets deal with uncertainty, vagueness, and incompleteness in
class definition. An initialization method is reported based on Pearson’s correla-
tion coefficient to select initial cluster centers, along with a parameter optimization
technique based on Dunn’s cluster validity index.

8.3.1 Rough–Fuzzy C-Means

In rough–fuzzy c-means [35, 36], each cluster δi is represented by a centroid vi , a
crisp lower approximation A(δi ), and a fuzzy boundary B(δi ). The lower approx-
imation influences the fuzziness of final partition. According to the definitions of
lower approximations and boundary of rough sets, if an object x j ∈ A(δi ), then
x j /∈ A(δk),⊆k �= i , and x j /∈ B(δi ),⊆i . That is, the object x j is contained in clus-
ter δi definitely. Thus, the weights of the objects in lower approximation of a cluster
should be independent of other centroids and clusters, and should not be coupled with
their similarity with respect to other centroids. Also, the objects in lower approx-
imation of a cluster should have similar influence on the corresponding centroid
and cluster. Whereas, if x j ∈ B(δi ), then the object x j possibly belongs to δi and
potentially belongs to another cluster. Hence, the objects in boundary regions should
have different influence on the centroids and clusters. So, in rough–fuzzy c-means,
the membership values of objects in lower approximation are μi j = 1, while those
in boundary region are the same as fuzzy c-means. In other word, the rough–fuzzy
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c-means first partitions the data into two classes: lower approximation and boundary.
Only the objects in boundary are fuzzified.

The rough–fuzzy c-means algorithm partitions a set of n objects into c clusters
by minimizing the following objective function

JRF =
⎫
⎬

⎭

α × A1 + (1 − α) × B1 if A(δi ) �= ∩, B(δi ) �= ∩
A1 if A(δi ) �= ∩, B(δi ) = ∩
B1 if A(δi ) = ∩, B(δi ) �= ∩

(8.23)

where

A1 =
c∑

i=1

∑

x j ∈A(δi )

||x j − vi ||2; (8.24)

and

B1 =
c∑

i=1

∑

x j ∈B(δi )

(μi j )
ḿ1 ||x j − vi ||2. (8.25)

The parameter α corresponds to the relative importance of lower and boundary
region. Note that μi j has the same meaning of membership as that in fuzzy c-means.
Solving (8.23) with respect to μi j , we get

μi j =


⎜
c∑

k=1

⎡
d2

i j

d2
k j

⎛ 1
ḿ1−1

⎝

⎞
−1

; (8.26)

where

d2
i j = ||x j − vi ||2. (8.27)

The new centroid is calculated based on the weighting average of the crisp lower
approximation and fuzzy boundary. The centroid calculation for rough–fuzzy c-
means is obtained by solving (8.23) with respect to vi :

vRF
i =

⎫
⎬

⎭

α × C1 + (1 − α) × D1 if A(δi ) �= ∩, B(δi ) �= ∩
C1 if A(δi ) �= ∩, B(δi ) = ∩
D1 if A(δi ) = ∩, B(δi ) �= ∩

(8.28)

C1 = 1

|A(δi )|
∑

x j ∈A(δi )

x j ; (8.29)

where |A(δi )| represents the cardinality of A(δi ), and
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D1 = 1

ni

∑

x j ∈B(δi )

(μi j )
ḿ1 x j ; (8.30)

where

ni =
∑

x j ∈B(δi )

(μi j )
ḿ1 . (8.31)

Thus, the cluster prototypes or centroids depend on the parameter α and fuzzifier
ḿ1 rule their relative influence. The correlated influence of both weight parameter
and fuzzifier makes it somewhat difficult to determine their optimal values. Since the
objects lying in lower approximation definitely belong to a cluster, they are assigned
a higher weight α compared to (1 − α) of the objects lying in boundary region.
Hence, for rough–fuzzy c-means, the value is given by 0.5 < α < 1.

Approximate optimization of JRF (8.23) by the rough–fuzzy c-means is based on
Picard iteration through (8.26) and (8.28). The process starts by randomly choosing
c objects as the centroids of the c clusters. The fuzzy memberships of all the objects
are calculated using (8.26). Let ui = (μi1, . . . , μi j , . . . , μin) be the fuzzy cluster
δi associated with the centroid vi . After computing μi j for c clusters and n objects,
the values of μi j for each object x j are sorted and the difference of two highest
memberships of x j is compared with a threshold value ω. Let μi j and μk j be the
highest and second highest memberships of x j . If (μi j − μk j ) > ω, then x j ∈
A(δi ), otherwise x j ∈ B(δi ) and x j ∈ B(δk). After assigning each object in lower
approximations or boundary regions of different clusters based on ω, membership
value μi j of the objects are modified. The values of μi j are set to 1 for the objects
in lower approximations, while those in boundary regions are remain unchanged.
The new centroids of the clusters are calculated as per (8.28). The main steps of the
rough–fuzzy c-means algorithm proceed as follows:

1. Assign initial centroids vi , i = 1, 2, . . . , c. Choose values for fuzzifier ḿ1, and
calculate threshold ω. Set iteration counter t = 1.

2. Compute μi j by (8.26) for c clusters and n objects.
3. If μi j and μk j be the two highest memberships of x j and (μi j − μk j ) → ω, then

x j ∈ B(δi ) and x j ∈ B(δk). Furthermore, x j is not part of any lower bound.
4. Otherwise, x j ∈ A(δi ).
5. Modify μi j considering lower and boundary regions for c clusters and n objects.
6. Compute new centroid as per (8.28).
7. Repeat steps two to six, by incrementing t , until no more new assignments can

be made.

The performance of rough–fuzzy c-means depends on the value of ω, which deter-
mines the class labels of all the objects. In other word, the rough–fuzzy c-means
partitions the data set into two classes: lower approximation and boundary, based on
the value of ω. The ω represents the size of granules of rough–fuzzy clustering. In
practice, the following definition works well:
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ω = 1

n

n∑

j=1

(μi j − μk j ) (8.32)

where n is the total number of objects, μi j and μk j are the highest and second highest
memberships of x j . That is, the value of ω represents the average difference of two
highest memberships of all the objects in the data set. A good clustering procedure
should make the value of ω as high as possible.

8.3.2 Initialization Method

A limitation of any c-means algorithm is that it can only achieve a local optimum
solution that depends on the initial choice of the cluster prototype. Consequently,
computing resources may be wasted in that some initial centers get stuck in regions of
the input space with a scarcity of data points and may, therefore, never have the chance
to move to new locations where they are needed. To overcome this limitation of the
c-means algorithm, next the method proposed by Maji and Paul [39] is described to
select initial cluster prototype, which is based on a similarity measure using Pearson’s
correlation coefficient. It enables the algorithm to converge to an optimum or near
optimum solutions.

Prior to describe the new method for selecting initial centers, Pearson’s correlation
coefficient is described next to quantify similarity between two objects. It is the ratio
between the covariance of two vectors (xi , x j ) of expression values of two objects
and product of their standard deviations and is given by

ρ(xi , x j ) = Cov(xi , x j )

σ xi σ x j

; (8.33)

that is,

ρ(xi , x j ) =

m∑

k=1

(xik − x̄i )(x jk − x̄ j )

⎥√√√
m∑

k=1

(xik − x̄i )2

⎥√√√
m∑

k=1

(x jk − x̄ j )2

, (8.34)

where x̄i and x̄ j are the means of xik and x jk , respectively. It considers each gene
as a random variable with m observations and measures the similarity between the
two genes by calculating the linear relationship between the distributions of the two
corresponding random variables.

Based on the concept of Pearson’s correlation, next the method is described for
selecting initial cluster centers. The main steps of this method proceed as follows:

1. For each object xi , calculate ρ(x j , xi ) between itself and the object x j , ⊆n
j=1.
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2. Calculate similarity score between objects xi and x j as

S(x j , xi ) =
⎠

1 if |ρ(x j , xi )| > λ

0 otherwise
(8.35)

where 0.5 → λ → 1.
3. Calculate total number of similar objects of xi as

N(xi ) =
n∑

j=1

S(x j , xi ). (8.36)

4. Sort n objects according to their values of N(xi ) such that N(x1) > N(x2) >

. . . > N(xn).
5. If N(xi ) > N(x j ) and ρ(x j , xi ) > λ, then x j cannot be considered as an initial

center, resulting in a reduced object set to be considered for initial cluster centers.

Finally, c initial centers are selected from the reduced set as potential initial
centers. The main motive of introducing this initialization method lies in identifying
different dense regions present in the data set. The identified dense regions ultimately
lead to discover natural groups present in data set. The whole approach is, therefore,
data dependent.

8.3.3 Identification of Optimum Parameters

The threshold λ in (8.35) plays an important role to generate the initial cluster centers.
It controls the degree of similarity among the genes present in microarray data. In
effect, it has a direct influence on the performance of the initialization method.

Also, the parameter α has an influence on the performance of rough–fuzzy
c-means algorithm. Since the objects lying in lower approximation definitely belong
to a cluster, they are assigned a higher weight α compared to (1 − α) of the objects
lying in boundary regions. On the other hand, the performance of the rough–fuzzy
c-means significantly reduces when α ∅ 1.00. In this case, since the clusters cannot
see the objects of boundary regions, the mobility of the clusters and the centroids
reduces. As a result, some centroids get stuck in local optimum. Hence, to have the
clusters and the centroids a greater degree of freedom to move, 0.5 < α < 1.

Let S = {λ, α} be the set of parameters and S 	 = {λ	, α	} is the set of optimal
parameters. To find out the optimum set S 	, containing optimum values of λ	 and
α	, the Dunn’s cluster validity index [16], reported in Sect. 8.2.2, is used. For each
microarray data set, the value of λ is varied from 0.50 to 1.0, while the value of α

is varied from 0.51 to 0.99. The optimum values of λ	 and α	 for each microarray
data set is obtained using the following relation:

S 	 = arg max
S

{Dunn Index}. (8.37)
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8.4 Experimental Results

In this section, the performance of different algorithms, namely, hard c-means (HCM)
[25], fuzzy c-means (FCM) [6], possibilistic c-means (PCM) [30], rough–fuzzy
c-means (RFCM) [36, 35], self organizing map (SOM) [53], and CLICK [51] is
presented for clustering functionally similar genes from five yeast microarray data
sets. The major metrics for evaluating the performance of different algorithms are
Silhouette index [48], Davies-Bouldin (DB) index [10], Dunn index [16], and Eisen
plot [17]. Also, the biological significance of the gene clusters generated by different
methods is analyzed using the gene ontology Term Finder [7, 50]. For each microar-
ray gene expression data set, the number of gene clusters c is decided by using the
CLICK [51] algorithm. The input parameters used, which are held constant across
all runs, are the values of fuzzifiers ḿ1 = 2.0 and ḿ2 = 2.0. All the algorithms
are implemented in C language and run in LINUX environment having machine
configuration Pentium D, 2.66 GHz, 2 MB cache, and 4 GB RAM. The source code
of the RFCM algorithm, written in C language, is available at http://www.isical.ac.
in/~bibl/results/rfpcm/rfpcm.html.

8.4.1 Gene Expression Data Sets Used

In this chapter, publicly available five yeast microarray gene expression data sets are
used to compare the performance of different gene clustering methods. This section
gives a brief description of the following five yeast microarray data sets, which are
downloaded from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/).

8.4.1.1 GDS608

It is a temporal analysis of wild type diploid cells shifted from yeast-form growth
in SHAD liquid (plentiful glucose and ammonium) to filamentous-form growth on
SLAD agar (low ammonium). The filamentous-form cells were collected hourly for
10 h. The number of genes and time points of this data are 6303 and 10, respec-
tively [47].

8.4.1.2 GDS759

This data set is related to analysis of gene expression in temperature sensitive pre-
mRNA splicing factor mutants prp17 null, prp17-1, and prp22-1 at various time
points following a shift from the permissive temperature of 23 ⇒C to the restrictive
temperature of 37 ⇒C. The number of genes and time points of this data are 6350 and
24, respectively [49].

http://www.isical.ac.in/~bibl/results/rfpcm/rfpcm.html
http://www.isical.ac.in/~bibl/results/rfpcm/rfpcm.html
http://www.ncbi.nlm.nih.gov/geo/
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8.4.1.3 GDS2003

It is the analysis of catabolite-derepressed (galactose) wildtype JM43 and isogenic
msn2/4 mutant KKY8 cells shifted to short-term anaerobiosis (2 generations). The
Msn2 and 4 are key stress factors. The number of genes and time points are 5617
and 30, respectively [32].

8.4.1.4 GDS2267

It contains the analysis of nutrient-limited continuous-culture cells at twelve 25 min
intervals for three cycles. The cells grown under such conditions exhibit robust,
periodic cycles in the form of respiratory bursts. The number of genes and time
points are 9275 and 36, respectively [55].

8.4.1.5 GDS2712

It represents analysis of Saccharomyces cerevisiae BY4743 cells subjected to con-
trolled air-drying and subsequent rehydration (I) for up to 360 min. The data contains
9275 genes and 21 time points [52].

8.4.2 Optimum Values of Different Parameters

Figure 8.1 presents the variation of Dunn index with respect to different values of
λ and α for the RFCM algorithm on GDS608, GDS759, GDS2003, GDS2267, and
GDS2715 data sets. From the results reported in Fig. 8.1, it is seen that as the threshold
λ increases, the Dunn index value also increases and attains its maximum value at a
particular value of λ	. After that the Dunn index value decreases with the increase
in the value of λ. On the other hand, the Dunn index attains higher values for higher
values of α.

In case of the RFCM algorithm, the optimum values of λ obtained using (8.37)
are 1.00, 0.95, 0.85, 0.95, and 1.00 for GDS608, GDS759, GDS2003, GDS2267,
and GDS2712 data sets, respectively, while the optimum values of α obtained using
(8.37) are 0.95 for GDS759 and 0.99 for all other data sets. On the other hand,
the optimum values of λ for the HCM, obtained using (8.37), are 0.55, 0.90, 0.85,
0.65, and 0.95 for GDS608, GDS759, GDS2003, GDS2267, and GDS2712 data sets,
respectively, while the optimum values of λ for the FCM, obtained using (8.37), are
0.95, 0.85, 1.00, 0.95, and 0.50 for GDS608, GDS759, GDS2003, GDS2267, and
GDS2712 data sets, respectively. For all data sets, the PCM has failed to produce
desired number of gene clusters as it generates coincident clusters even when it has
been initialized with the final prototypes of the FCM.
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Fig. 8.1 Variation of Dunn index for different values of threshold λ and weight parameter α. a
GDS608, b GDS759, c GDS2003, d GDS2267, e GDS2712

8.4.3 Importance of Correlation-Based Initialization Method

Table 8.1 provides the comparative results of different c-means algorithms with ran-
dom initialization of centroids and correlation-based initialization method described
in Sect. 8.3.2 for five yeast microarray data sets. The results of each c-means cluster-
ing algorithm are reported for their optimal λ and α values. In most of the cases, the
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Table 8.1 Performance analysis of random and correlation-based initialization methods

Data Initial Silhouette index DB index Dunn index
Sets Centers HCM FCM RFCM HCM FCM RFCM HCM FCM RFCM

GDS608 Random 0.078 0.005 0.110 1.931 2.082 1.608 0.256 0.000 0.272
Correlation based 0.080 −0.003 0.101 1.983 2.865 1.850 0.278 0.000 0.251

GDS759 Random 0.082 0.017 0.121 2.392 2.898 1.779 0.035 0.000 0.081
Correlation based 0.130 −0.004 0.150 2.135 2.615 1.968 0.070 0.000 0.078

GDS2003 Random 0.082 0.014 0.128 2.033 2.975 1.672 0.045 0.000 0.056
Correlation based 0.073 −0.158 0.102 1.973 2.486 1.957 0.050 0.000 0.069

GDS2267 Random 0.230 0.197 0.233 0.888 2.402 1.006 0.011 0.008 0.016
Correlation based 0.237 0.194 0.249 0.859 2.591 0.743 0.015 0.008 0.025

GDS2712 Random 0.250 0.208 0.251 0.806 1.760 0.790 0.031 0.012 0.038
Correlation based 0.251 0.193 0.255 0.795 1.952 0.734 0.032 0.012 0.053

Table 8.2 Performance of different C-means algorithms

Microarray Silhouette index DB index Dunn index
Data sets HCM FCM RFCM HCM FCM RFCM HCM FCM RFCM

GDS608 0.080 −0.003 0.101 1.983 2.865 1.850 0.278 0.000 0.254
GDS759 0.130 −0.004 0.150 2.135 2.615 1.968 0.070 0.000 0.078
GDS2003 0.073 0.028 0.102 1.973 2.486 1.957 0.050 0.000 0.069
GDS2267 0.237 0.194 0.249 0.859 2.401 0.743 0.015 0.008 0.025
GDS2712 0.251 0.193 0.255 0.795 1.952 0.734 0.032 0.012 0.057

correlation-based initialization method is found to improve the performance in terms
of Silhouette index, DB index, and Dunn index for all c-means algorithms. Out of 45
comparisons, the correlation-based initialization method is found to provide signifi-
cantly better results in 32 cases compared to the random initialization method. From
Table 8.1, it is seen that the RFCM algorithm with correlation-based initialization
method performs better in eight cases than any other c-means clustering algorithms
irrespective of the initialization method.

However, it can also be seen that the HCM algorithm with the correlation-based
initialization method outperforms the RFCM algorithm with random initialization
method in three cases in terms of Silhouette index and in one case each for DB
index and Dunn index, respectively. The better performance of the correlation-based
initialization method is achieved due to the fact that it enables the algorithm to
converge to an optimum or near optimum solutions.
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Table 8.3 Performance of CLICK, SOM, and RFCM

Microarray Silhouette index DB Index Dunn index
Data sets CLICK SOM RFCM CLICK SOM RFCM CLICK SOM RFCM

GDS608 −0.040 −0.030 0.101 11.520 18.030 1.85 0.060 0.020 0.254
GDS759 −0.080 −0.020 0.15 27.910 19.030 1.968 0.020 0.010 0.078
GDS2003 −0.090 −0.060 0.102 17.610 15.220 1.957 0.050 0.010 0.069
GDS2267 −0.420 0.020 0.249 759.380 5.760 0.743 0.000 0.000 0.025
GDS2712 −0.420 0.070 0.255 293.570 2.070 0.734 0.000 0.000 0.057

8.4.4 Performance Analysis of Different C-Means Algorithms

Table 8.2 presents the performance of different c-means algorithms for their optimum
values of λ and α. For all data sets, the PCM has failed to produce desired number of
gene clusters as it generates coincident clusters even when it has been initialized with
the final prototypes of the FCM. The results and subsequent discussions are presented
with respect to Silhouette index, DB index, and Dunn index. From Table 8.2, it is seen
that the RFCM generates better result in most of the cases. However, only for GDS608
data set, the HCM generates better result in terms of Dunn index than that of the FCM
and RFCM. All the results establish the fact that the RFCM algorithm is superior to
other c-means clustering algorithms. The better performance of the RFCM, in terms
of Silhouette, DB, and Dunn indices, is achieved due to the following reasons:

1. the fuzzy membership function of the RFCM algorithm handles efficiently over-
lapping partitions; and

2. the concept of crisp lower bound and fuzzy boundary of the RFCM algorithm
deals with uncertainty, vagueness, and incompleteness in class definition.

8.4.5 Comparative Performance of CLICK, SOM, and RFCM

Table 8.3 presents the comparative performance of CLICK, SOM, and RFCM in
terms of Silhouette, DB, and Dunn indices. The RFCM generates better results in
all the cases in terms of different cluster validity indices. All the results reported in
this table establish the fact that the RFCM algorithm can identify compact groups of
coexpressed genes.

8.4.6 Eisen Plots

In Eisen plot [17], the expression value of a gene at a specific time point is represented
by coloring the corresponding cell of the data matrix with a color similar to the
original color of its spot on the microarray. The shades of red color represent higher
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expression level, the shades of green color represent low expression level and the
colors toward black represent absence of differential expression values. In the present
representation, the genes are ordered before plotting so that the genes that belong to
the same cluster are placed one after another. The cluster boundaries are identified
by white colored blank rows.

The Eisen plot gives a visual representation of the clustering result. The clustering
results produced by the HCM, FCM, and RFCM algorithms on four yeast microarray
time-series data sets are visualized by TreeView software, which is available at http://
rana.lbl.gov/EisenSoftware and reported in Figs. 8.2 and 8.3. Here in each subfigure,
the first image represents the Eisen plots of clusters obtained by the HCM algorithm,
while the second and third images are generated by the FCM and RFCM algorithms,
respectively. From the Eisen plots presented in Figs. 8.2 and 8.3, it is evident that
the expression profiles of the genes in a cluster are similar to each other and they
produce similar color pattern, whereas the genes from different clusters differ in color
patterns. Also, the results obtained by the RFCM algorithm are more promising than
that obtained by both HCM and FCM algorithms.

8.4.7 Biological Significance Analysis

To interpret the biological significance of the generated clusters, the gene ontology
(GO) Term Finder is used [7]. It finds the most significantly enriched GO terms
associated with the genes belonging to a cluster. The GO project aims to build tree
structures and controlled vocabularies, also called ontologies, that describe gene
products in terms of their associated biological processes (BPs), molecular functions
(MFs), or cellular components (CCs).

The GO term finder determines whether any GO term annotates a specified list
of genes at a frequency greater than that would be expected by chance, calculating
the associated p-value by using the hypergeometric distribution and the Bonferroni
multiple-hypothesis correction [7, 50]:

p = 1 −
k−1∑

i=0

(
M
i

)(
N − M

n − i

)

(
N
n

) (8.38)

where N is the total number of genes in the background distribution, M is the num-
ber of genes within that distribution that are annotated, either directly or indirectly,
to the node of interest, n is the size of the list of genes of interest and k is the number
of genes within that list which are annotated to the node. The closer the p-value is to
zero, the more significant the particular GO term associated with the group of genes
is, that is, the less likely the observed annotation of the particular GO term to a group
of genes occurs by chance.

http://rana.lbl.gov/EisenSoftware
http://rana.lbl.gov/EisenSoftware
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Fig. 8.2 Eisen plots of different clusters for GDS608 and GDS759 (top to bottom: HCM, FCM
and RFCM). a GDS608 (n = 6303, m = 10, c = 26), b GDS759 (n = 6350, m = 24, c = 25)

Fig. 8.3 Eisen plots of different clusters for GDS2267 and GDS2712 (top to bottom: HCM, FCM
and RFCM). a GDS2267 (n = 9275, m = 36, c = 14), b GDS2712 (n = 9275, m = 21, c = 15)
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Fig. 8.4 Number of significant gene clusters generated by different algorithms. a Molecular func-
tion, b biological process, c cellular component

The GO term finder is used to determine the statistically significant gene clusters
produced by the CLICK, SOM, HCM, FCM, and RFCM algorithms for all the
GO terms from the BP, MF, and CC ontology. If any cluster of genes generates
a p-value smaller than 0.05, then that cluster is considered as a significant cluster.
Figure 8.4 presents the number of significant clusters generated by different clustering
algorithms for the MF, BP, and CC for all data sets. From Fig. 8.4, it is seen that the
RFCM outperforms other clustering algorithms in most of the cases. The RFCM
generates more or comparable number of significant gene clusters in most of the
cases. However, the HCM generates more number of significant gene clusters in one
case each for three ontologies, that is, MF, BP, and CC, respectively. On the other
hand, the FCM generates more number of significant gene clusters in one case for
BP ontology. All the results reported in Fig. 8.4 establish the fact that rough sets
and fuzzy sets-based RFCM algorithm discovers groups of coexpressed genes more
efficiently.
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Fig. 8.5 Biological annotation ratios obtained using different algorithms on five gene expression
data sets. a Molecular function, b biological process, c cellular component

8.4.8 Functional Consistency of Clustering Result

In order to evaluate the functional consistency of the gene clusters produced by
different algorithms, the biological annotations of the gene clusters are considered in
terms of the GO. The annotation ratios of each gene cluster in three GO ontologies
are calculated using the GO Term Finder [7]. The GO term is searched in which most
of the genes of a particular cluster are enriched. The annotation ratio, also termed
as cluster frequency, of a gene cluster, is defined as the number of genes in both the
assigned GO term and the cluster divided by the number of genes in that cluster. A
higher value of annotation ratio indicates that the majority of genes in the cluster are
functionally more closer to each other, while a lower value signifies that the cluster
contains much more noises or irrelevant genes. After computing the annotation ratios
of all gene clusters for a particular ontology, the sum of all annotation ratios is treated
as the final annotation ratio. A higher value of final annotation ratio represents that
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the corresponding clustering result is better than other, that is, the genes are better
clustered by function, indicating a more functionally consistent clustering result [56].

Figure 8.5 presents the comparative results of different gene clustering algorithms,
in terms of final annotation ratio or cluster frequency, for the MF, BP, and CC ontolo-
gies on five yeast microarray data sets. All the results reported here confirm that
the RFCM provides higher or comparable final annotation ratios than that obtained
using other clustering algorithms in most of the cases. However, the HCM provides
higher final annotation ratios than the RFCM in one and two cases for the MF and CC
ontology, respectively. On the other hand, the FCM generates higher final annotation
ratio than the RFCM only in one case for the CC ontology.

8.5 Conclusion and Discussion

This chapter addresses the problem of clustering functionally similar genes from
microarray time-series gene expression data sets. Different existing gene clustering
algorithms have been discussed, along with their merits and demerits. Finally, the
application of a new partitive clustering algorithm, termed as rough–fuzzy c-means,
has been reported to group functionally similar genes. An initialization method is
reported, based on Pearson’s correlation coefficient, which is found to be successful
in effectively circumventing the initialization and local minima problems of iterative
refinement clustering algorithms like c-means. The effectiveness of rough–fuzzy
c-means, along with a comparison with existing clustering algorithms, is demon-
strated on five yeast microarray data sets. The analysis to identify optimum values of
different parameters narrows down the search space and generates better results in
terms of different cluster validity indices. The extensive experimental results show
that rough–fuzzy c-means algorithm produces better clustering results than do the
conventional algorithms in terms of Silhouette index, DB index, Dunn index, Eisen
plots, number of biologically significant gene clusters, and final annotation ratio.

The algorithms described in this chapter group genes according to similarity
measures computed from the gene expressions, without using any information about
the response variables. The information of response variables may be incorporated
in gene clustering to find groups of coregulated genes with strong association to
the response variables. In this regard, next chapter addresses another important task
of gene expression data sets, namely, supervised gene clustering, to reveal various
groups of coregulated genes with strong association to the response variables.
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Chapter 9
Mutual Information Based Supervised
Attribute Clustering for Microarray
Sample Classification

9.1 Introduction

Recent advancement and wide use of high-throughput technology are producing an
explosion in using gene expression phenotype for identification and classification
in a variety of diagnostic areas. An important application of gene expression data in
functional genomics is to classify samples according to their gene expression profiles
[9, 13]. For most gene expression data, the number of training samples is generally
very small compared to the large number of genes involved in the experiments. When
the number of genes is significantly greater than the number of samples, it is possible
to find biologically relevant correlations of gene behavior with the sample categories
or response variables [27].

However, among the large amount of genes, only a small fraction is effective for
performing a certain task. Also, a small subset of genes are desirable in developing
gene expression-based diagnostic tools for delivering precise, reliable, and inter-
pretable results [43]. With the gene selection results, the cost of biological experi-
ment and decision can be greatly reduced by analyzing only the marker genes. Hence,
identifying a reduced set of most relevant genes is the goal of gene selection . The
small number of training samples and a large number of genes make gene selection
a more relevant and challenging problem in gene expression-based classification.
As this is a feature selection problem [6, 24, 25], the clustering method can be
used, which partitions the given gene set into subgroups, each of which should be as
homogeneous as possible [2, 10, 20, 21, 41].

When applied to gene expression data analysis, the conventional clustering meth-
ods such as Bayesian clustering [22, 34], hierarchical clustering [14, 17], k-means
algorithm [18], self-organizing map [14, 40], and principal component analysis [33,
45] group a subset of genes that are interdependent or correlated with each other.
In other words, genes or attributes in a cluster are more correlated with each other,
whereas genes in different clusters are less correlated [2, 21, 41]. The attribute
clustering is able to reduce the search dimension of a classification algorithm and
constructs the model using a tightly correlated subset of genes rather than using the

P. Maji and S. Paul, Scalable Pattern Recognition Algorithms, 225
DOI: 10.1007/978-3-319-05630-2_9,
© Springer International Publishing Switzerland 2014



226 9 Mutual Information Based Supervised Attribute Clustering

entire gene space. After clustering genes, a reduced set of genes can be selected for
further analysis [2, 21, 41]. A brief survey on various gene clustering algorithms is
reported in Chap. 8.

However, all these algorithm group genes according to unsupervised similarity
measures computed from the gene expressions, without using any information about
the sample categories or response variables. The information of response variables
should be incorporated in attribute clustering to find groups of co-regulated genes
with strong association to the sample categories [5]. In this background, some super-
vised attribute clustering algorithms such as supervised gene clustering [5], gene
shaving [16], tree harvesting [15], and partial least square procedure [35] have been
reported to reveal groups of co-regulated genes with strong association to the sample
categories. The supervised attribute clustering is defined as the grouping of genes or
attributes, controlled by the information of sample categories or response variables.

In general, the quality of generated clusters is always relative to a certain crite-
rion. Different criteria may lead to different clustering results. However, every cri-
terion tries to measure the similarity among the subset of genes present in a cluster.
While tree harvesting [15] uses an unsupervised similarity measure to group a set of
co-regulated genes, other supervised algorithms such as supervised gene clustering
[5], gene shaving [16], and partial least square procedure [35] do not use any similar-
ity measure to cluster genes; rather use different predictive scores such as Wilcoxon
test [5] and Cox model score test [16] to measure gene-class relevance. Moreover,
all these measures depend on the actual values of the training data. Hence, they may
be sensitive to noise or outlier of the data set [8, 18, 21, 36]. On the other hand, as
mutual information [3, 8, 19, 36] depends only on the probability distribution of a
random variable, it has been widely used for computing both gene-class relevance
and gene-gene redundancy or similarity [2, 3, 7, 8, 19, 28, 36].

This chapter presents a mutual information-based supervised attribute cluster-
ing (MISAC) algorithm [31] to find co-regulated clusters of genes whose collective
expression is strongly associated with the sample categories or class labels. A new
quantitative measure, based on mutual information, is introduced to compute the
similarity between attributes. The new measure incorporates the information of sam-
ple categories while measuring the similarity between attributes. In effect, it helps
to identify functional groups of genes that are of special interest in sample classifi-
cation. The new supervised attribute clustering method uses this measure to reduce
the redundancy among genes. It involves partitioning of the original gene set into
some distinct subsets or clusters so that the genes within a cluster are highly co-
regulated with strong association to the sample categories while those in different
clusters are as dissimilar as possible. A single gene from each cluster having the
highest gene-class relevance value is first selected as the initial representative of
that cluster. The representative of each cluster is then modified by averaging the
initial representative with other genes of that cluster whose collective expression
is strongly associated with the sample categories. Finally, the modified represen-
tative of each cluster is selected to constitute the resulting reduced feature set. In
effect, the MISAC algorithm yields biologically significant gene clusters, whose
coherent average expression levels allow perfect discrimination of sample categories.
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Also, the MISAC algorithm avoids the noise sensitivity problem of existing super-
vised gene clustering algorithms. The performance of the MISAC algorithm, along
with a comparison with existing algorithms, is studied both qualitatively and quanti-
tatively on three cancer and two arthritis data sets using the class separability index
and the predictive accuracy of naive Bayes classifier, K-nearest neighbor rule, and
support vector machine.

The structure of the rest of this chapter is as follows: Sect. 9.2 briefly introduces
existing supervised and unsupervised gene clustering algorithms, along with dif-
ferent existing criteria used for computing the relevance and redundancy. The new
supervised attribute clustering algorithm is presented in Sect. 9.3. A few case studies
and a comparison with existing algorithms are presented in Sect. 9.4. Concluding
remarks are given in Sect. 9.5.

9.2 Clustering Genes for Sample Classification

In this section, some existing supervised and unsupervised gene clustering algorithms
are reported, along with different widely used criteria for computing gene-class
relevance and gene-gene redundancy.

9.2.1 Gene Clustering: Supervised Versus Unsupervised

Clustering is one of the major tasks in gene expression data analysis. To find groups
of co-regulated genes from microarray data, different unsupervised clustering tech-
niques such as hierarchical clustering [14, 17], k-means algorithm [18], self organiz-
ing map [14, 40], and principal component analysis [33, 45] have been widely used.
The hierarchical clustering identifies sets of correlated genes with similar behavior
across the samples, but yields thousands of clusters in a tree-like structure, which
makes the identification of functional groups very difficult [14, 17]. In contrast, self
organizing map [14, 40] and k-means algorithm [18] require a prespecified number
and an initial spatial structure of clusters, but this may be hard to come up with in
real problems. However, these algorithms usually fail to reveal functional groups of
genes that are of special interest in sample classification as the genes are clustered by
similarity only, without using any information about the sample categories or class
labels [5].

To reveal groups of co-regulated genes with strong association to the sample
categories, different supervised attribute clustering algorithms have been proposed
recently [5, 15, 16, 35]. One notable work in this field encompasses tree harvesting
[15], a two step method which consists first of generating numerous candidate groups
by unsupervised hierarchical clustering. Then, the average expression profile of each
cluster is considered as a potential input variable for a response model and the few
gene groups that contain the most useful information for tissue discrimination are
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identified. Only this second step makes the clustering supervised, as the selection
process relies on external information about the tissue types. Another supervised
clustering method, called gene shaving, identifies subsets of genes with coherent
expression patterns and large variation across the conditions [16]. The technique can
be unsupervised, where the genes and samples are treated as unlabeled, or partially
or fully supervised by using known properties of the genes or samples to assist in
finding meaningful groupings.

An interesting supervised clustering approach that directly incorporates the
response variables in the grouping process is the partial least squares procedure [35],
which in a supervised manner constructs weighted linear combinations of genes that
have maximal covariance with the outcome. However, it has the drawback that the
fitted components involve all (usually thousands of) genes, which makes them very
difficult to interpret. Moreover, partial least squares for every component yields a
linear combination of gene expressions which completely lacks the biological inter-
pretation of having a cluster of genes acting similarly in the same pathway.

A direct approach to combine gene selection, clustering, and supervision in one
single step is reported in [5]. A similar single step approach is also pursued by
Jornsten and Yu [23]. The supervised attribute clustering algorithm proposed in [5]
is a combination of gene selection for cluster membership and formation of a new
predictor by possible sign flipping and averaging the gene expressions within a clus-
ter. The cluster membership is determined with a forward and backward searching
technique that optimizes the Wilcoxon test-based predictive score and margin crite-
rion defined in [5], which both involve the supervised response variables from the
data. However, as both predictive score and margin criterion depend on the actual
gene expression values, they are very much sensitive to noise or outlier of the data
set.

9.2.2 Criteria for Gene Selection and Clustering

As reported in Chap. 5, the t-test, F-test [8, 26], information gain, mutual information
[8, 36], normalized mutual information [28], and f -information [29] are typically
used to measure the relevance of a gene with respect to the class labels or sample
categories and the same or a different metric such as mutual information, the L1
distance, Euclidean distance, and Pearson’s correlation coefficient [8, 21, 36] is
employed to calculate the similarity or redundancy between genes.

To measure the relevance of a gene, the t-test is widely used, assuming that there
are two classes of samples in a gene expression data set. When there are multiple
classes of samples, the t-test is typically computed for one class versus all the other
classes. For multiple classes of samples, an F-test between a gene and the class label
can be used to calculate the relevance score of that gene. The F-test reduces to the
t-test for two class problem with the relation F = t2. In [5], the Wilcoxon’s test
statistic is used to compute the relevance of a gene assuming two classes of samples
in microarray data set.
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On the other hand, the Euclidean distance measures the difference in the individual
magnitudes of each gene. However, the genes regarded as similar by the Euclidean
distance may be very dissimilar in terms of their shapes. Similarly, the Euclidean
distance between two genes having an identical shape may be large if they differ from
each other by a large scaling factor. But, the overall shapes of genes are of the primary
interest for gene expression data [21]. Hence, the Euclidean distance may not be able
to yield a good proximity measurement of genes [21]. The Pearson’s correlation
coefficient considers each gene as a random variable and measures the similarity
between two genes by calculating the linear relationship between distributions of
two corresponding random variables. An empirical study has shown that Pearson’s
correlation coefficient is not robust to outliers and it may assign high similarity score
to a pair of dissimilar genes [18].

However, as the t-test, F-test, Wilcoxon’s test, Euclidean distance, and Pearson’s
correlation depend on the actual gene expression values of microarray data, they are
very much sensitive to noise or outlier of the data set. On the other hand, as the infor-
mation theoretic measure such as entropy, mutual information, and f -information
depends only on the probability distribution of a random variable rather than on its
actual values, it is more effective to evaluate the gene-class relevance as well as
gene-gene redundancy [8, 29, 36].

In principle, the mutual information is used to quantify the information shared by
two objects. If two independent objects do not share much information, the mutual
information value between them is small. While two highly correlated objects will
demonstrate a high mutual information value [39]. The objects can be the class label
and the genes. The necessity for a gene to be an independent and informative can,
therefore, be determined by the shared information between the gene and the rest
as well as the shared information between the gene and class label [8, 36]. If a
gene has expression values randomly or uniformly distributed in different classes,
its mutual information with these classes is zero. If a gene is strongly differentially
expressed for different classes, it should have large mutual information. Thus, the
mutual information can be used as a measure of relevance of genes. Similarly, the
mutual information may be used to measure the level of similarity or redundancy
between two genes.

9.3 Supervised Gene Clustering Algorithm

In this section, a mutual information-based supervised attribute clustering (MISAC)
algorithm [31] is presented for grouping co-regulated genes with strong association
to the class labels. It is based on a supervised similarity measure that follows next.

9.3.1 Supervised Similarity Measure

In real-data analysis, one of the important issues is computing both relevance and
redundancy of attributes by discovering dependencies among them. Intuitively, a set
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of attributes Q depends totally on a set of attributes P, if all attribute values from Q

are uniquely determined by values of attributes from P. If there exists a functional
dependency between values of Q and P, then Q depends totally on P.

Let U = {x1, . . . , xi , . . . , xn} be the set of n samples and A = {A1, . . . ,Ai , . . . ,

Am} denotes the set of m attributes of a given data set T = {wi j |i = 1, . . . , m, j =
1, . . . , n}, where wi j ∈ ≤ is the measured value of the attribute Ai in the sample
x j . Let D = {D1, . . . , Di , . . . , Dn} be the set of class labels or sample categories
of n samples. Define RAi (D) as the relevance of the attribute Ai with respect to the
class label D while S(Ai ,A j ) as the redundancy or similarity between two attributes
Ai and A j . The mutual information can be used to calculate both relevance and
redundancy among attributes.

The relevance RAi (D) of the attribute Ai with respect to the class label D using
mutual information can be calculated as follows:

RAi (D) = I (Ai , D) (9.1)

where I (Ai , D) represents the mutual information between attribute Ai and class
label D that is given by

I (Ai ,D) = H(Ai ) − H(Ai |D). (9.2)

Here, H(Ai ) and H(Ai |D) represent the entropy of attribute Ai and the condi-
tional entropy ofAi given class labelD, respectively. The entropy H(Ai ) is known to
be a measure of the amount of uncertainty about the attribute Ai , while H(Ai |D) is
the amount of uncertainty left in Ai when knowing D. Hence, the quantity I (Ai ,D)

is the reduction in the uncertainty of the attribute Ai by the knowledge of class label
D. In other words, it represents the amount of information that the class label D
contains about the attribute Ai .

Definition 9.1 For continuous random variables such as gene expression values, the
entropy, conditional entropy, and mutual information can be defined as follows:

H(Y ) = −
∫

p(y) log p(y)dy; (9.3)

H(Y |Z ) = −
∫

p(y, z) log p(y|z)dydz; (9.4)

I (Y ,Z ) =
∫ ∫

p(y, z) log
p(y, z)

p(y)p(z)
dydz (9.5)

where p(y) is the true probability density function of the attribute or variable Y ,
while p(y|z) and p(y, z) represent the conditional probability density function of
Y given the variable Z and the joint probability density function of Y and Z ,
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respectively. Usually, the Gaussian function is used to approximate the true density
function [12].

The redundancy or similarity between two attributesAi andA j , in terms of mutual
information, can also be calculated as follows:

S(Ai ,A j ) = I (Ai ,A j ). (9.6)

However, the term S(Ai ,A j ) does not incorporate the information of sample cat-
egories or class labels D while measuring the similarity and it is considered as unsu-
pervised similarity measure. Hence, a new quantitative measure, called supervised
similarity measure, is reported here based on mutual information for measuring the
similarity between two random variables. It incorporates the information of sample
categories or class labels while measuring the similarity between attributes.

Definition 9.2 The significance of an attribute A j with respect to another attribute
Ai can be defined as follows:

σ{Ai ,A j }(D,A j ) = R{Ai ,A j }(D) − RAi (D). (9.7)

That is, the significance of an attribute A j is the change in dependency when the
attribute A j is removed from the set {Ai ,A j }. The higher the change in dependency,
the more significant the attribute A j is. If the significance is 0, then the attribute A j

is dispensable.
Based on the concept of significance of an attribute, the supervised similarity

measure between two attributes is defined next.

Definition 9.3 The supervised similarity between two attributes Ai and A j is
defined as follows [31]:

Ψ (Ai ,A j ) = 1

1 + κ2 , (9.8)

where κ =
{

σ{Ai ,A j }(D,A j ) + σ{Ai ,A j }(D,Ai )

2

⎜
(9.9)

that is, κ = R{Ai ,A j }(D) −
{RAi (D) + RA j (D)

2

⎜
. (9.10)

Hence, the supervised similarity measure Ψ (Ai ,A j ) directly takes into account
the information of sample categories or class labels D while computing the similarity
between two attributes Ai and A j . If attributes Ai and A j are completely correlated
with respect to class labels D, then κ = 0 and so Ψ (Ai ,A j ) is 1. If Ai and A j are
totally uncorrelated, Ψ (Ai ,A j ) → 0. Hence, Ψ (Ai ,A j ) can be used as a measure
of supervised similarity between two attributes Ai and A j . The following properties
can be stated about the measure:



232 9 Mutual Information Based Supervised Attribute Clustering

1. 0 < Ψ (Ai ,A j ) ⊂ 1.
2. Ψ (Ai ,A j ) = 1 if and only if Ai and A j are completely correlated.
3. Ψ (Ai ,A j ) → 0 if and only if Ai and A j are totally uncorrelated.
4. Ψ (Ai ,A j ) = Ψ (A j ,Ai ) (symmetric).

The supervised similarity between two attributes Ai and A j , in terms of entropy,
is given by

Ψ (Ai ,A j ) = ⎡
1 + ⎡

H(AiA j |D) − 1

2

⎛
H(Ai |A j )

+ H(A j |Ai ) + H(Ai |D) + H(A j |D)
⎝ ⎞2⎞−1

. (9.11)

Combining (9.6) and (9.11), the term Ψ (Ai ,A j ) can be expressed as follows:

Ψ (Ai ,A j ) = ⎡
1 + ⎡

S(Ai ,A j ) + H(AiA j |D)

− 1

2

⎛
H(Ai ) + H(A j ) + H(Ai |D) + H(A j |D)

⎝ ⎞2⎞−1
. (9.12)

Hence, the supervised similarity measure Ψ (Ai ,A j ) not only considers the infor-
mation of sample categories or class labels D, it also takes into account the unsuper-
vised similarity between two attributes S(Ai ,A j ).

9.3.2 Gene Clustering Algorithm

The mutual information-based supervised attribute clustering algorithm [31], termed
as MISAC, relies on mainly two factors, namely, determining the relevance of each
attribute and growing the cluster around each relevant attribute incrementally by
adding one attribute after the other. One of the important property of this clustering
approach is that the cluster is augmented by the attributes those satisfy following two
conditions:

1. suit best into the current cluster in terms of a supervised similarity measure defined
above; and

2. improve the differential expression of the current cluster most, according to the
relevance of the cluster representative or prototype.

The growth of a cluster is repeated until the cluster stabilizes, and then the MISAC
algorithm starts to generate a new cluster.

Let RAi (D) be the relevance of attribute Ai ∈ A with respect to class label D.
The relevance uses information about the class labels and is thus a criterion for
supervised clustering. The MISAC algorithm starts with a single attribute Ai that
has the highest relevance value with respect to class labels. An initial cluster Vi is
formed by selecting the set of attributes {A j } from the whole set A considering the
attribute Ai as the representative of cluster Vi , where



9.3 Supervised Gene Clustering Algorithm 233

Fig. 9.1 Representation of a
supervised attribute cluster
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Vi = {A j |Ψ (Ai ,A j ) ⊆ δ;A j �= Ai ∈ A}. (9.13)

Hence, the clusterVi represents the set of attributes ofA those have the supervised
similarity values with the attributeAi greater than a predefined threshold value δ. The
cluster Vi is the coarse cluster corresponding to the attribute Ai , while the threshold
δ is termed as the radius of cluster Vi (Fig. 9.1).

After forming the initial coarse cluster Vi , the cluster representative is refined
incrementally. By searching among the attributes of cluster Vi , the current cluster
representative is merged and averaged with one single attribute such that the aug-
mented cluster representative ¯Ai increases the relevance value. The merging process
is repeated until the relevance value can no longer be improved. Instead of averaging
all attributes of Vi , the augmented attribute ¯Ai is computed by considering a subset
of attributes V̄i ∩ Vi those increase the relevance value of cluster representative

¯Ai . The set of attributes V̄i represents the finer cluster of the attribute Ai (Fig. 9.1).
While the generation of coarse cluster reduces the redundancy among attributes of
the set A, that of finer cluster increases the relevance with respect to class labels.
After generating the augmented cluster representative ¯Ai from the finer cluster V̄i ,
the process is repeated to find more clusters and augmented cluster representatives
by discarding the set of attributes Vi from the whole set A.

To compute the set Vi corresponding to the attribute Ai , one may consider the
conventional unsupervised similarity measure S(Ai ,A j ) as defined in (9.6). How-
ever, as it does not take into account the information of sample categories or class
labels, the attributes are clustered by similarity only, without using any information
about the sample categories. In effect, it fails to reveal functional groups of attributes
that are of special interest in classification. On the other hand, as the supervised
similarity measure Ψ (Ai ,A j ) defined in (9.8) incorporates the class information
directly while computing the similarity between two attributes Ai and A j , it can
identify functional groups present in the attribute set.

The main steps of the mutual information-based supervised attribute clustering
(MISAC) algorithm are reported next.

• Let C be the set of attributes of the original data set, while S and S̄ are the set of
actual and augmented attributes, respectively, selected by the MISAC algorithm.



234 9 Mutual Information Based Supervised Attribute Clustering

• Let Vi be the coarse cluster associated with the attribute Ai and V̄i , the finer
cluster of Ai (Fig. 9.1), represents the set of attributes of Vi those are merged and
averaged with the attribute Ai to generate the augmented cluster representative

¯Ai .

1. Initialize C ∅ A = {A1, . . . ,Ai , . . . ,A j , . . . ,Am}, S ∅ ⇒, and S̄ ∅ ⇒.
2. Calculate the relevance value RAi (D) of each attribute Ai ∈ C.
3. Repeat the following nine steps (steps 4–12) until C = ⇒ or desired number of

attributes is selected.
4. Select attribute Ai from C as the representative of cluster Vi that has highest

relevance value. In effect, Ai ∈ S, Ai ∈ Vi , Ai ∈ V̄i , and C = C \ Ai .
5. Generate coarse cluster Vi from the set of existing attributes of C satisfying the

following condition:

Vi = {A j |Ψ (Ai ,A j ) ⊆ δ;A j �= Ai ∈ C}.

6. Initialize ¯Ai ∅ Ai .
7. Repeat following four steps (steps 8–11) for each attribute A j ∈ Vi .
8. Compute two augmented cluster representatives by averaging A j and its com-

plement with the attributes of V̄i as follows:

¯A +
i+ j = 1

|V̄i | + 1

⎠
⎨

⎩
∑

Ak∈V̄i

Ak + A j

⎫
⎬

⎭ ; (9.14)

¯A −
i+ j = 1

|V̄i | + 1

⎠
⎨

⎩
∑

Ak∈V̄i

Ak − A j

⎫
⎬

⎭ . (9.15)

9. The augmented cluster representative ¯Ai+ j after averagingA j or its complement
with V̄i is as follows:

¯Ai+ j =
⎥ ¯A +

i+ j if R ¯A +
i+ j

(D) ⊆ R ¯A −
i+ j

(D)

¯A −
i+ j otherwise.

(9.16)

10. The augmented cluster representative ¯Ai of cluster Vi is ¯Ai+ j if R ¯Ai+ j
(D) ⊆

R ¯Ai
(D), otherwise ¯Ai remains unchanged.

11. Select attribute A j or its complement as a member of the finer cluster V̄i of
attribute Ai if R ¯Ai+ j

(D) ⊆ R ¯Ai
(D).

12. In effect, ¯Ai ∈ S̄ and C = C \ Vi .
13. Sort the set of augmented cluster representatives S̄ = { ¯Ai } according to their

relevance value R ¯Ai
(D) with respect to the class labels D.

14. Stop.
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9.3.3 Fundamental Property

From the above discussions, the following properties corresponding to each cluster
Vi can be derived:

1. Ψ (Ai ,A j ) ⊆ δ; ∀A j ∈ Vi .
2. RAi (D) ⊆ RA j (D); ∀A j ∈ Vi .

3. R ¯Ai+ j
(D) ⊆ R ¯Ai

(D); ∀A j ∈ V̄i .

4. R ¯Ai+ j
(D) < R ¯Ai

(D); ∀A j ∈ Vi \ V̄i .
5. Vi ← Vk = ⇒,∀i �= k.

The property 1 says that if an attribute A j ∈ Vi ⇒ Ψ (Ai ,A j ) ⊆ δ. That
is, the supervised similarity between the attribute A j of coarse cluster Vi and the
initial cluster representative Ai is greater than a predefined threshold value δ. The
property 2 establishes the fact that if A j ∈ Vi ⇒ RAi (D) ⊆ RA j (D), that is,
the relevance of the cluster representative Ai is the maximum among that of all
attributes of the clusterVi . The properties 3 and 4 are of great importance in increasing
the relevance of augmented cluster representative with respect to the class labels
and reducing the redundancy among the attribute set. The property 3 says that if
A j ∈ V̄i ⇒ R ¯Ai+ j

(D) ⊆ R ¯Ai
(D). It means an attribute A j belongs to the finer

cluster V̄i if and only if it increases the relevance value of the augmented cluster
representative ¯Ai . On the other hand, property 4 says that the attributes those belong
to only coarse cluster Vi , not to finer cluster V̄i , are not responsible to increase
the relevance of augmented cluster representative. Hence, the set of attributes V̄i

increases the relevance value of the attribute Ai as well as reduces the redundancy of
the whole set, while the set of attributes Vi \ V̄i is only responsible for reducing the
redundancy. Finally, property 5 says that if an attributeAi ∈ Vi ⇒ Ai /∈ Vk,∀k �= i ,
that is, the attributeAi is contained inVi only. Hence, the MISAC algorithm generates
nonoverlapping attribute clusters.

9.3.4 Computational Complexity

The computation of the relevance of m attributes is carried out in step 2 of the
MISAC algorithm, which has O(m) time complexity. The cluster generation steps,
that is steps 4–12, are executed c times to generate c clusters and corresponding
augmented cluster representatives. There are three loops in the cluster generation
steps, which are executed m, m, and mi times, respectively, where mi < m represents
the cardinality of the cluster Vi . Each iteration of the loops takes only a constant
amount of time. Hence, the complexity to generate c clusters using steps 4–12 is
O(c(m +mi )). The computing time of O(c(m +mi )) becomes O(cm) for any value
of mi . Finally, step 13 performs the sorting of c augmented cluster representatives
according to their relevance values, which has a computational complexity of O(c2).
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Hence, the overall time complexity of the MISAC algorithm is O(m + cm + c2),
that is, O(cm + c2). However, as the number of desired clusters c is constant and
sufficiently small compared to the total number of attributes m, the MISAC algorithm
has an overall O(m) time complexity.

9.4 Experimental Results

The performance of the mutual information-based supervised attribute clustering
(MISAC) algorithm [31] is extensively compared with that of some existing super-
vised and unsupervised gene clustering and gene selection algorithms, namely, ACA
(attribute clustering algorithm) [2], MBBC (model-based Bayesian clustering) [22],
SGCA (supervised gene clustering algorithm) [5], GS (gene shaving) [16], mRMR
(minimum redundancy-maximum relevance framework) [8], and the method pro-
posed by Golub et al. [13]. To analyze the performance of different algorithms, the
experimentation is done on five microarray gene expression data sets. The major met-
rics for evaluating the performance of different algorithms are the class separability
index [6] and classification accuracy of naive Bayes (NB) classifier [10], K-nearest
neighbor (K-NN) rule [10], and support vector machine (SVM) [42], which are
briefly described in Chap. 5. To compute the classification accuracy, the leave-one-
out cross-validation is performed on each gene expression data set.

The MISAC algorithm is implemented in C language and run in LINUX envi-
ronment having machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB
RAM. The kernel-based method is used to approximate probability density functions
by combining basis functions [12]. It consists in superposing a Gaussian function
to each point of the feature. The final probability density function approximation is
obtained by taking the envelope of all the basis functions superposed at each point.
The gnu scientific library is used to implement the kernel-based approach.

9.4.1 Gene Expression Data Sets Used

In this chapter, publicly available three cancer and two arthritis data sets are used.
Since binary classification is a typical and fundamental issue in diagnostic and prog-
nostic prediction of cancer and arthritis, different methods are compared using five
binary-class data sets, namely, breast cancer [44], leukemia [13], colon cancer [1],
RAOA [37], and RAHC [38]. Details of breast cancer, leukemia, and colon can-
cer data sets are reported in Chap. 5. Descriptions of remaining two data sets are
presented next.

9.4.1.1 Rheumatoid Arthritis Versus Osteoarthritis (RAOA)

The RAOA data set consists of gene expression profiles of thirty patients: 21 with
RA and 9 with OA [37]. The Cy5-labeled experimental cDNA and the Cy3 labeled
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common reference sample were pooled and hybridized to the lymphochips containing
∼18,000 cDNA spots representing genes of relevance in immunology [37].

9.4.1.2 Rheumatoid Arthritis Versus Healthy Controls (RAHC)

The RAHC data set consists of gene expression profiling of peripheral blood cells
from 32 patients with RA, 3 patients with probable RA, and 15 age and sex-matched
healthy controls performed on microarrays with a complexity of ∼26 K unique genes
(43 K elements) [38].

9.4.2 Optimum Value of Threshold

The threshold δ in (9.13) plays an important role to form the initial coarse cluster.
It controls the degree of similarity among the attributes of a cluster. In effect, it
has a direct influence on the performance of the MISAC algorithm. If δ increases,
the number of attributes in a cluster decreases, but the similarity among them with
respect to sample categories increases. On the other hand, the similarity among the
attributes of a cluster decreases with the decrease in the value of δ.

To find out the optimum value of δ, the class separability index S [6] is used,
which is reported in Chap. 5. For five microarray data sets, the value of δ is varied
from 0.80 to 1.0 and the class separability index is computed only for best cluster
(c = 1). Figure 9.2 represents the variation of class separability index with respect to
different values of threshold δ on colon cancer, RAHC, and RAOA data sets. From
the results reported in Fig. 9.2, it is seen that as the threshold δ increases, the class
separability index decreases and attains its minimum value at a particular value of
δ. After that the class separability index increases with the increase in the value of
δ. Hence, the optimum value of δ for each microarray data set is obtained using the
following relation:

δoptimum = arg min
δ

{S }. (9.17)

The optimum values of δ obtained using (9.17) are 0.97, 0.96, 0.93, 0.98, and
0.96 for breast, leukemia, colon, RAHC, and RAOA data sets, respectively. Finally,
Tables 9.1 and 9.2 present the performance of the MISAC algorithm for different
values of δ. The results and subsequent discussions are presented with respect to the
classification accuracy of the SVM, K-NN rule, and NB classifier. The results are
reported for three best clusters (c = 3) obtained using the MISAC algorithm. From
the results reported in Tables 9.1 and 9.2, it is also seen that the MISAC algorithm
achieves its best performance at δ = δoptimum, irrespective of the classifiers used.
However, the performance of the MISAC algorithm at δ = 0.98 is same as that
at δoptimum for RAOA data set with respect to the classification accuracy of three
classifiers.
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Fig. 9.2 Variation of class separability index for different values of threshold δ a Colon b RAHC
c RAOA

9.4.3 Qualitative Analysis of Supervised Clusters

For three cancer and two arthritis data sets, the best clusters generated by the MISAC
algorithm are analyzed using the Eisen plot [11]. In Figs. 9.3 and 9.4, the results of
best cluster obtained using the MISAC algorithm are reported for colon cancer and
RAHC data sets considering the values of δ as 0.93 and 0.98, respectively. Figures 9.3
and 9.4a show the expression values of the actual genes or attributes of the best cluster
over the samples for two data sets. Figures 9.3 and 9.4b represent the Eisen plot of
corresponding finer cluster with actual gene expression values, while Figs. 9.3 and
9.4c show the expression values of the augmented cluster representatives of the best
cluster for two data sets. In Figs. 9.5, 9.6, and 9.7, the expression values of the actual
and augmented cluster representatives of the best cluster are presented for breast,
leukemia, and RAOA data sets considering δ as 0.97, 0.96, and 0.96, respectively.
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Table 9.1 Performance of the MISAC algorithm on three cancer microarray data sets for different
values of threshold δ

Data Value Measure Different values of threshold δ

sets of c 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Breast 1 SVM 91.8 89.8 91.8 87.8 91.8 83.7 91.8 93.9 95.9 85.7 91.8 95.9 100 95.9 87.8
K-NN 98.0 95.9 100 95.9 98.0 95.9 98.0 93.9 98.0 98.0 98.0 95.9 100 95.9 91.8
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 98.0 91.8

2 SVM 91.8 91.8 93.9 89.8 91.8 91.8 93.9 100 98.0 98.0 98.0 98.0 100 95.9 87.8
K-NN 95.9 95.9 93.9 95.9 100 95.9 95.9 100 98.0 95.9 98.0 100 100 95.9 89.8
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 98.0 89.8

3 SVM 100 91.8 91.8 91.8 91.8 91.8 93.9 100 98.0 100 100 100 100 95.9 93.9
K-NN 100 93.9 93.9 95.9 93.9 93.9 95.9 100 100 100 100 100 100 95.9 93.9
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 98.0 91.8

Leukemia 1 SVM 93.1 91.7 94.4 97.2 97.2 95.8 94.4 95.8 97.2 95.8 97.2 98.6 97.2 98.6 90.3
K-NN 98.6 98.6 98.6 97.2 98.6 95.8 95.8 98.6 100 100 97.2 100 98.6 98.6 93.1
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 94.4

2 SVM 91.7 97.2 94.4 98.6 98.6 97.2 95.8 100 98.6 98.6 98.6 100 100 100 94.4
K-NN 97.2 97.2 98.6 98.6 98.6 97.2 95.8 100 100 98.6 98.6 100 100 100 94.4
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98.6

3 SVM 93.1 97.2 93.1 98.6 98.6 100 100 100 100 98.6 100 100 100 100 93.1
K-NN 97.2 97.2 100 98.6 98.6 98.6 100 100 98.6 98.6 100 100 100 100 94.4
NB 100 100 100 100 98.6 100 100 100 100 100 100 100 100 100 98.6

Colon 1 SVM 96.8 96.8 100 100 100 96.8 98.4 96.8 100 98.4 88.7 98.4 100 98.4 90.3
K-NN 98.4 98.4 100 100 96.8 96.8 98.4 98.4 100 98.4 95.2 100 96.8 96.8 90.3
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 98.4 91.9

2 SVM 98.4 98.4 100 100 98.4 95.2 98.4 100 100 100 98.4 100 98.4 98.4 90.3
K-NN 98.4 98.4 98.4 98.4 100 95.2 98.4 100 100 100 100 100 96.8 98.4 90.3
NB 100 100 100 100 100 100 100 100 100 100 100 100 98.4 98.4 93.6

3 SVM 100 100 100 100 100 100 98.4 100 100 100 100 100 96.8 96.8 88.7
K-NN 100 100 100 100 100 100 98.4 100 100 100 100 100 96.8 98.4 91.9
NB 100 100 100 100 100 100 100 100 100 100 100 100 96.8 96.8 91.9

All the results reported in Figs. 9.3, 9.4, 9.5, 9.6, and 9.7 establish the fact that the
MISAC algorithm can identify groups of co-regulated genes with strong association
to the sample categories or class labels.

9.4.4 Importance of Supervised Similarity Measure

The supervised similarity measure based on mutual information, defined in (9.8),
takes into account the information of sample categories or class labels while comput-
ing the similarity between two genes. It also incorporates the unsupervised similarity
measure among genes. On the other hand, mutual information-based conventional
similarity measure of (9.6) does not consider the class labels or sample categories.
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Table 9.2 Performance of the MISAC algorithm on two arthritis microarray data sets for different
values of threshold δ

Data Value Measure Different values of threshold δ

sets of c 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

RAHC 1 SVM 82.0 78.0 82.0 80.0 78.0 76.0 80.0 82.0 90.0 82.0 70.0 84.0 86.0 100 94.0
K-NN 96.0 94.0 92.0 98.0 94.0 92.0 96.0 96.0 94.0 92.0 90.0 98.0 98.0 100 94.0
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 94.0

2 SVM 78.0 98.0 78.0 78.0 78.0 98.0 78.0 98.0 100 88.0 84.0 90.0 100 100 98.0
K-NN 96.0 98.0 94.0 94.0 94.0 98.0 92.0 98.0 100 94.0 92.0 98.0 100 100 98.0
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.0

3 SVM 98.0 98.0 98.0 98.0 100 98.0 98.0 98.0 100 100 86.0 100 100 100 98.0
K-NN 96.0 98.0 98.0 96.0 96.0 96.0 100 98.0 100 100 92.0 100 100 100 100
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.0

RAOA 1 SVM 73.3 73.3 73.3 76.7 80.0 80.0 76.7 80.0 76.7 76.7 96.7 100 70.0 100 93.3
K-NN 86.7 96.7 100 93.3 93.3 100 96.7 90.0 96.7 100 96.7 100 83.3 100 96.7
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.7

2 SVM 73.3 76.7 73.3 76.7 80.0 80.0 76.7 80.0 80.0 80.0 96.7 100 96.7 100 93.3
K-NN 96.7 96.7 93.3 93.3 93.3 90.0 100 86.7 90.0 100 100 100 100 100 93.3
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 96.7

3 SVM 70.0 70.0 66.7 73.3 76.7 76.7 53.3 83.3 80.0 73.3 96.7 100 96.7 100 96.7
K-NN 96.7 96.7 93.3 90.0 93.3 90.0 90.0 90.0 100 93.3 100 100 100 100 93.3
NB 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90.0

In order to establish the importance of supervised similarity measure over existing
conventional unsupervised similarity measure, the extensive experimentation is car-
ried out on three cancer and two arthritis data sets. Finally, the best results obtained
using unsupervised similarity measure are compared with that of new supervised
measure in Table 9.3 with respect to the class separability (CS) index and classifica-
tion accuracy of the SVM, K-NN rule, and NB classifier. From all the results reported
in Table 9.3, it is seen that the performance of the new supervised similarity mea-
sure is better compared to that of the unsupervised measure for all microarray data
sets. That is, the new supervised similarity measure can identify functional groups
of genes present in the microarray, while the unsupervised similarity fails to reveal
that. However, the unsupervised similarity measure performs better than supervised
similarity with respect to the class separability index for c = 2 in case of leukemia
and RAHC data sets, and for c = 3 in case of leukemia, RAHC, and RAOA data sets.

9.4.5 Importance of Augmented Genes

Each coarse cluster represents the set of genes or attributes those have the super-
vised similarity values with the initial cluster representative greater than a predefined
threshold value δ. In fact, the relevance of the initial cluster representative is greater



9.4 Experimental Results 241

-2

-1

 0

 1

 2

 3

 4

 5

 0  10  20  30  40  50  60  70

E
xp

re
ss

io
n 

V
al

ue

Samples

Tumor
Normal

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  10  20  30  40  50  60  70

E
xp

re
ss

io
n 

V
al

ue

Samples

Tumor
Normal

(a)

(b) (c)

Fig. 9.3 Results obtained using the MISAC algorithm on colon cancer data set for δ = 0.93
a Initial expression value b Eisen plot c Augmented expression value

than that of other genes of that cluster. After forming the initial coarse cluster, the
cluster representative is refined incrementally in the MISAC algorithm. By search-
ing among the genes of coarse cluster, the current cluster representative is merged
and averaged with one single gene such that the augmented cluster representative
increases the relevance value. The merging process is repeated until the relevance
value can no longer be improved.

In order to establish the importance of augmented cluster representative over initial
cluster representative, that is, actual gene, extensive experiments are carried out on
five microarray data sets. Table 9.4 reports the comparative performance of actual
and augmented genes of different clusters. Results are reported for c = 3 considering
supervised similarity measure. The performance of actual and augmented genes is
compared with respect to the class separability index and classification accuracy of
the SVM, K-NN rule, and NB classifier. All the results reported in Table 9.4 establish
the fact that the MISAC algorithm performs significantly better in case of augmented
gene than the actual gene. Only in case of leukemia data for c = 2 and 3, and RAOA
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Fig. 9.4 Results obtained using the MISAC algorithm on RAHC data set for δ = 0.98 a Initial
expression value b Eisen plot c Augmented expression value
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Fig. 9.7 Results obtained for RAOA data considering δ = 0.96 a Initial representative b Aug-
mented representative

data for c = 3, the actual gene performs better than augmented one with respect to
the class separability index.

9.4.6 Performance of Coarse and Finer Clusters

In the MISAC algorithm, the augmented cluster representative is computed by aver-
aging the genes of finer cluster, rather than all genes of corresponding coarse cluster.
That is, instead of averaging all genes of coarse cluster, the augmented gene is com-
puted by considering a subset of genes of coarse cluster, which is termed as the finer
cluster, those increase the relevance value of initial cluster representative.
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Table 9.5 Comparative performance analysis of means of coarse and finer clusters

Value Measure Breast Leukemia Colon RAHC RAOA
of c Finer Coarse Finer Coarse Finer Coarse Finer Coarse Finer Coarse

1 SVM 100 63.3 98.6 66.7 100 64.5 100 70.0 100 70.0
K-NN 100 69.4 100 66.7 100 62.9 100 64.0 100 66.7
NB 100 63.3 100 73.6 100 61.3 100 60.0 100 80.0
CS 0.53 5.38 0.49 7.69 0.82 68.47 0.70 11.14 0.70 119.53

2 SVM 100 59.2 100 72.2 100 64.5 100 70.0 100 70.0
K-NN 100 55.1 100 68.1 100 61.3 100 58.0 100 66.7
NB 100 59.2 100 68.1 100 61.3 100 66.0 100 80.0
CS 0.50 7.63 0.98 13.66 0.94 70.62 0.87 12.74 0.99 118.23

3 SVM 100 59.2 100 73.6 100 64.5 100 82.0 100 70.0
K-NN 100 55.1 100 65.3 100 61.3 100 82.0 100 66.7
NB 100 67.4 100 75.0 100 61.3 100 62.0 100 80.0
CS 0.61 8.85 1.12 20.95 0.97 72.95 0.88 12.62 1.96 138.51

Table 9.5 presents the comparative performance of means computed from coarse
cluster and that from finer cluster. The comparison is reported for c = 3 with respect
to the class separability index and classification accuracy of the SVM, K-NN rule, and
NB classifier. The results reported in Table 9.5 establish the fact that the augmented
cluster representative obtained from finer cluster performs significantly better than
that of coarse cluster, irrespective of the data sets and quantitative indices used.
The attributes those present in the coarse cluster, but not in the corresponding finer
cluster, are not responsible to increase the relevance value with respect to the class
labels or response variables. Also, they degrade the quality of solution. Hence, the
augmented cluster representatives should be computed by considering only genes of
finer clusters, not all genes of coarse clusters.

9.4.7 Comparative Performance Analysis

Finally, Table 9.6 compares the best performance of the MISAC algorithm [31] with
that of some existing algorithms such as ACA [2], MBBC [22], SGCA [5], GS [16],
and mRMR [8]. The results are presented based on the best classification accuracy
of the SVM, K-NN rule, and NB classifier for five microarray data sets. The values
of δ for the MISAC algorithm are considered as 0.97, 0.96, 0.93, 0.98, and 0.96 for
breast cancer, leukemia, colon cancer, RAHC, and RAOA data sets, respectively.
From the results reported in Table 9.6, it is seen that the MISAC algorithm generates
a set of clusters having highest classification accuracy of the SVM, K-NN rule, and
NB classifier, and lowest class separability index values for all the cases. The better
performance of the MISAC algorithm is achieved due to the fact that it can identify
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Table 9.6 Comparative performance analysis of different methods on five microarray data sets

Data Methods / c = 1 c = 2 c = 3
sets Algorithms SVM K-NN NB CS SVM K-NN NB CS SVM K-NN NB CS

Breast MISAC 100 100 100 0.53 100 100 100 0.50 100 100 100 0.61
ACA 81.6 81.6 81.6 2.07 81.6 83.7 81.6 2.92 89.8 83.7 83.7 1.03
MBBC 79.6 79.6 85.7 1.04 79.6 81.6 85.7 1.18 81.6 81.6 89.8 0.94
SGCA 100 100 100 1.74 100 100 100 1.29 100 100 100 1.83
GS 75.5 79.6 79.6 1.68 85.7 85.7 83.7 2.60 89.8 87.8 85.7 3.75
mRMR 85.7 89.8 89.8 1.16 81.6 89.8 95.9 1.70 93.9 95.9 100 1.54

Leukemia MISAC 98.6 100 100 0.49 100 100 100 0.98 100 100 100 1.12
ACA 82.4 82.4 88.2 1.69 88.2 82.4 88.2 1.19 88.2 91.2 88.2 3.25
MBBC 88.2 88.2 90.3 0.94 94.4 91.7 93.1 1.89 94.4 93.1 95.8 1.63
SGCA 93.1 94.4 94.4 1.16 94.4 94.4 94.4 2.01 94.4 95.8 94.4 1.76
GS 97.2 94.4 91.7 0.43 97.2 97.2 95.8 1.67 100 100 94.4 1.90
mRMR 90.3 93.1 94.4 1.00 94.4 94.4 98.6 1.46 94.4 95.8 100 1.08

Colon MISAC 100 100 100 0.82 100 100 100 0.94 100 100 100 0.97
ACA 72.6 77.4 64.5 3.08 72.6 83.9 75.8 1.46 77.4 83.9 64.5 2.59
MBBC 64.5 64.5 72.6 1.68 75.8 72.6 72.6 1.69 75.8 75.8 82.3 3.05
SGCA 72.6 72.6 75.8 5.10 75.8 77.4 77.4 3.80 77.4 77.4 77.4 4.25
GS 83.9 82.3 82.3 1.41 82.3 83.9 79.0 2.70 87.1 87.1 85.5 4.10
mRMR 83.9 83.9 83.9 1.83 83.9 83.9 83.9 2.51 75.8 83.9 83.9 3.89

RAHC MISAC 100 100 100 0.70 100 100 100 0.87 100 100 100 0.88
ACA 90.0 88.0 88.0 2.79 90.0 96.0 92.0 4.81 92.0 92.0 92.0 3.02
MBBC 86.0 84.0 84.0 1.15 84.0 88.0 90.0 2.09 90.0 92.0 90.0 1.77
SGCA 92.0 92.0 92.0 1.76 90.0 96.0 92.0 3.08 90.0 96.0 92.0 2.17
GS 64.0 68.0 62.0 5.26 84.0 82.0 72.0 8.78 88.0 88.0 66.0 13.23
mRMR 88.0 88.0 68.0 4.38 84.0 90.0 96.0 3.57 92.0 90.0 98.0 3.35

RAOA MISAC 100 100 100 0.70 100 100 100 0.99 100 100 100 1.96
ACA 86.7 83.3 83.3 1.90 86.7 83.3 83.3 2.11 86.7 86.7 86.7 1.54
MBBC 86.7 86.7 83.3 1.91 86.7 86.7 90.0 2.06 86.7 86.7 86.7 3.88
SGCA 93.3 90.0 90.0 1.71 93.3 93.3 96.7 3.04 93.3 93.3 96.7 1.67
GS 80.0 73.3 83.3 1.46 93.3 96.7 80.0 2.94 86.7 93.3 83.3 4.61
mRMR 93.3 90.0 93.3 0.87 96.7 96.7 90.0 1.26 96.7 100 90.0 2.01

functional groups of genes present in the microarray data sets more accurately than
the existing algorithms. However, with respect to the class separability index, mRMR
[8] for c = 3 and GS [16] for c = 1 perform better than the MISAC algorithm in case
of leukemia data and for RAOA data at c = 3, both ACA [2] and SGCA [5] attain
lower class separability index values than the MISAC algorithm. In this regard, it
should be noted that the method proposed by Golub et al. [13] achieves maximum
accuracy of 98.0, 98.6, 91.9, 98.0, and 96.7 % for breast, leukemia, colon, RAHC,
and RAOA data sets, respectively.
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9.4.8 Biological Significance Analysis

To interpret the biological significance of the generated clusters, the gene ontology
(GO) Term Finder is used [4]. As described in Chap. 8, the GO Term Finder finds the
most significantly enriched GO terms associated with the genes belonging to a cluster.
It determines whether any GO term annotates a specified list of genes at a frequency
greater than that would be expected by chance, calculating the associated p-value by
using the hypergeometric distribution and the Bonferroni multiple-hypothesis cor-
rection [4]. The closer the p-value is to zero, the more significant the particular GO
term associated with the group of genes is, that is, the less likely the observed anno-
tation of the particular GO term to a group of genes occurs by chance. On the other
hand, the false discovery rate (FDR) is a multiple-hypothesis testing error measure
indicating the expected proportion of false positives among the set of significant
results. The FDR is particularly useful in the analysis of high-throughput data such
as microarray gene expression.

Hence, the GO Term Finder is used to determine the statistical significance of the
association of a particular GO term with the genes of best cluster produced by the
MISAC algorithm. The GO Term Finder is used to compute both p-value and FDR
(%) for all the GO terms from the biological processes (BP), molecular functions
(MF), and cellular components (CC) ontology, and the most significant term, that
is, the one with the lowest p-value, is chosen to represent the set of genes of best
cluster. Table 9.7 presents the significant shared GO terms for the BP, along with
the p-values and FDR for the BP, MF, and CC on different data sets. The results
corresponding to the best clusters of some existing algorithms such as GS [16] and
SGCA [5] are also provided on same data sets for the sake of comparison. The ‘*’
in Table 9.7 represents that no significant shared term is found considering p-value
cutoff as 0.05. From the results reported in Table 9.7, it is seen that the best cluster
generated by the MISAC algorithm can be assigned to the GO biological processes
with high reliability in terms of p-value and FDR. That is, the MISAC algorithm
describes accurately the known classification, the one given by the GO, and thus
reliable for extracting new biological insights.

9.5 Conclusion and Discussion

The problem of supervised gene clustering is addressed in this chapter. After explain-
ing the merits and demerits of unsupervised gene clustering and existing supervised
attribute clustering algorithms for microarray sample classification, a new mutual
information-based supervised attribute clustering (MISAC) algorithm is presented
to find co-regulated clusters of genes whose collective expression is strongly asso-
ciated with the sample categories. It is based on a new quantitative measure, which
incorporates the information of sample categories or class labels to calculate the
similarity between two genes. Finally, the performance of the MISAC algorithm and
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some existing methods is compared using the class separability index and predic-
tive accuracy of support vector machine, K-nearest neighbor rule, and naive Bayes
classifier.

For five microarray data, significantly better results are found for the MISAC
algorithm compared to existing methods, irrespective of the classifiers used. All the
results reported in this chapter demonstrate the feasibility and effectiveness of the
MISAC algorithm. It is capable of identifying co-regulated clusters of genes whose
average expression is strongly associated with the sample categories. The identified
gene clusters may contribute to revealing underlying class structures, providing a
useful tool for the exploratory analysis of biological data. Recently, a fuzzy-rough
supervised attribute clustering algorithm [30] and a mutual information-based super-
vised gene clustering algorithm [32] have been reported to reveal various groups of
co-regulated genes with strong association to the response variables.

While Chaps. 8 and 9 address the problems of unsupervised and supervised gene
clustering, respectively, Chap. 10 discusses another important problem of microarray
gene expression data sets, called biclustering.
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Chapter 10
Possibilistic Biclustering for Discovering
Value-Coherent Overlapping
δ-Biclusters

10.1 Introduction

The advent of DNA microarray technologies has revolutionized the experimental
study of gene expression. Microarrays have been used to study different kinds of
biological processes. It enables monitoring the transcription levels of many thou-
sands of genes, while the cell undergoes specific conditions or processes [20]. The
applications of such technology range from gene functional annotation and genetic
network reconstruction to diagnosis of disease conditions and characterizing effects
of medical treatment.

Clustering is one of the most popular approaches for analyzing gene expression
data [15, 25] and has proved to be successful in many applications such as discovering
gene pathway, gene classification, and function prediction [15, 20, 25]. Traditional
clustering methods such as hierarchical clustering [23], k-means algorithm [22], and
self organizing map [40] assume that genes in a cluster behave similarly over all the
conditions. These methods produce reliable results for microarray experiments per-
formed on homogeneous conditions. However, when the conditions of an experiment
vary greatly, the assumption is no longer appropriate. In this regard, it is desirable to
develop approaches that can detect those relevant conditions under which the behav-
ior similarity between genes of a potential group exists. This leads to a promising
paradigm of clustering, called biclustering.

The term biclustering [21] refers to a distinct class of clustering algorithms that
performs simultaneous row–column clustering. The difference between clustering
and biclustering is that clustering can be applied to either rows or columns of the
data matrix separately. Biclustering, on the other hand, performs clustering in these
two dimensions simultaneously. This means that clustering derives a global model
while biclustering produces a local model. When clustering algorithms are used, each
gene in a given gene cluster is defined using all conditions. Similarly, each condition
in a condition cluster is characterized by the activity of all the genes that belong to
it. However, each gene in a bicluster is selected using only a subset of the conditions
and each condition in a bicluster is selected using only a subset of the genes. The
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goal of biclustering techniques is thus to identify subgroups of genes and subgroups
of conditions, by performing simultaneous clustering of both rows and columns of
gene expression matrix, instead of clustering these two dimensions separately.

Hence, unlike clustering algorithms, biclustering algorithms identify groups of
genes that show similar activity patterns under a specific subset of the experimental
conditions. Therefore, biclustering approach is the key technique to use when one or
more of the following situations applies: (i) only a small set of the genes participates
in a cellular process of interest; (ii) an interesting cellular process is active only in
a subset of conditions; and (iii) a single gene may participate in multiple pathways
that may or may not be coactive under all conditions. For these reasons, biclustering
should identify groups of genes and conditions, obeying the following restrictions:
(i) a cluster of genes should be defined with respect to only a subset of conditions; (ii)
a cluster of conditions should be defined with respect to only a subset of genes; and
(iii) the clusters should not be exclusive and/or exhaustive: a gene or condition should
be able to belong to more than one cluster or to no cluster at all and be grouped using
a subset of conditions or genes. Additionally, robustness in biclustering algorithms
is especially relevant because of two additional characteristics of the systems under
study. The first characteristic is the sheer complexity of gene regulation processes
that require powerful analysis tools. The second characteristic is the level of noise in
actual gene expression experiments that makes the use of intelligent statistical tools
indispensable.

The term biclustering was initially introduced by Hartigan [21] as a way to clus-
ter rows and columns of a matrix simultaneously for finding biclusters with min-
imum row variance. Based on the row variance, Tibshirani et al. [43] proposed a
permutation-based method to induce the optimal number of biclusters. In addition
to use the row variance defined by Hartigan [21], Cho et al. [12] also used the total
squared residue to quantify the homogeneity of a bicluster. Therefore, their frame-
work is applicable for finding both constant biclusters and value-coherent biclusters.
However, the term biclustering was first used by Cheng and Church in gene expres-
sion data analysis [11] and an additive biclustering model was proposed in [11], for
gene expression data by introducing the residue of an element in the bicluster and the
mean squared residue of a submatrix. In addition, this method adjusts that measure
to reject trivial biclusters by means of row variance. Yang et al. [51] generalized this
additive biclustering model to incorporate null values and proposed a probabilistic
algorithm, called flexible overlapped biclustering algorithm, that can discover a set of
possibly overlapping biclusters simultaneously. Getz et al. [19] presented a coupled
two-way clustering algorithm that uses hierarchical clustering applied separately to
each dimension and then combines both results to get final biclusters. Tang et al. [42]
presented an interrelated two-way clustering algorithm that combines the results of
one-way clustering on both gene and sample dimensions to produce biclusters. Obvi-
ously, the quality of biclusters produced by these methods depends on the clusters
generated at each dimension.

To discover row-constant or column-constant biclusters hidden in noisy data,
several approaches have been proposed such as the model proposed by Califano et al.
[7], Bayesian-based approach of Sheng et al. [37], probabilistic model of Segal et al.
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[36], Gibbs sampling-based scheme of Wu et al. [49], plaid model of Lazzeroni
and Owen [28], order preserving submatrix model of Ben-Dor et al. [1] and Liu and
Wang [30], model of Murali and Kasif [33], and bipartite graph-based model of Tanay
et al. [41]. To address the biclustering problem, recently several stochastic search
techniques such as simulated annealing [6], evolutionary algorithm [14], and genetic
algorithm [9] have also been employed. In [14], Divina and Aguilar-Ruiz proposed
a biclustering method based on evolutionary algorithms that searches for biclusters
following a sequential covering strategy. The main objective of this approach is
to find biclusters of maximum size with mean squared residue lower than a given
threshold. It also looks for biclusters with a relatively high row variance and with a
low level of overlapping among biclusters. Lee et al. [29] and Sill et al. [38] used
sparse singular value decomposition method to address the biclustering problem,
while Sutheeworapong et al. [39] proposed a biclustering approach to analyze gene
expression data with iterative optimization technique. Some other notable works are
reported in [10, 35]. A survey on different biclustering algorithms for biological data
analysis is reported in [31]. Also, the comparative analysis of different biclustering
algorithms can be found in [17].

However, most of the algorithms reported earlier find exclusive biclusters, which
is inappropriate in the biological context. Since biological processes are not indepen-
dent of each other, many genes participate in multiple different processes. Each gene,
therefore, should be assigned to multiple biclusters whenever biclusters are identi-
fied with processes. Hence, one of the main problems with biclustering technique
is the uncertainty. Some of the sources of this uncertainty include incompleteness
and vagueness in bicluster definitions of microarray data. In this background, two
major soft computing techniques, namely, fuzzy sets theory [52] and rough sets the-
ory [34], have gained popularity in modeling and propagating uncertainty. Recently,
using rough sets and fuzzy sets, some biclustering algorithms have been proposed
to discover value-coherent overlapping biclusters [8, 18, 44–48]. In these methods,
the memberships of an entire row or column in different biclusters are computed
directly to find out overlapping biclusters without considering the membership of
each element or point of the gene expression data. The membership of an element
is obtained either by multiplying or averaging the memberships of corresponding
row and column of that element. In effect, there is no direct relation between the
membership of an element and its residue value. However, the membership of each
element must be dependent on its residue value directly to generate highly coherent
biclusters.

In this chapter, a novel possibilistic biclustering (PBC) algorithm [13] is pre-
sented. The PBC is based on the concept of possibilistic clustering algorithm of
Krishnapuram and Keller [27]. The PBC algorithm employs an iterative process
to find biclusters of larger volume with stronger coherence and particularly with a
high degree of overlapping. During each iteration of the PBC algorithm, the pos-
sibilistic memberships of all elements or points with respect to every bicluster are
calculated and finally, the membership of an entire row or column is calculated from
the memberships of the elements present in that row or column. Depending on that
membership value, the biclusters are enlarged or degenerated. The main difference
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between the PBC method and other existing overlapping methods is that the PBC
method offers an efficient way to calculate the membership of every point rather than
the membership of an entire row or column, which is desirable to generate value-
coherent biclusters. Also, instead of taking contribution of all rows and columns, the
PBC method considers only those rows and columns whose membership values are
greater than a given threshold. Based on this criterion, a novel possibilistic bicluster-
ing algorithm is presented in this chapter to discover a set of overlapping biclusters
with mean squared residue lesser than a predefined threshold δ. A mathematical
analysis on the convergence property of the PBC algorithm is also reported. Some
quantitative measures are presented for evaluating the quality of selected overlapping
biclusters. The effectiveness of the PBC algorithm, along with a comparison with
the existing algorithms, is demonstrated on yeast microarray data.

The structure of the rest of this chapter is as follows: Sect. 10.2 briefly introduces
necessary definitions related to biclustering method. In Sect. 10.3, a new possibilistic
biclustering algorithm, termed as the PBC, is presented. Some quantitative perfor-
mance measures are introduced in Sect. 10.4, along with some existing measures,
to evaluate the quality of selected biclusters. In Sect. 10.5, extensive experimental
results of the PBC algorithm are discussed and compared to those generated by the
algorithms of Cheng and Church [11], Divina and Aguilar-Ruiz [14], and Yang et el.
[51]. Concluding remarks are given in Sect. 10.6.

10.2 Biclustering and Possibilistic Clustering

This section presents a brief introduction to the basic notions of possibilistic
clustering and biclustering method.

10.2.1 Basics of Biclustering

Let G = {g1, · · · , gi , · · · , gM } and E = {c1, · · · , c j , · · · , cN } be the set of genes
and set of experimental conditions involved in gene expression data measurement,
respectively. The result can be represented by a matrix D with the set of rows G and
set of columns E . Each element ai j ∈ D corresponds to the expression information
of gene gi in experiment c j . A bicluster of a gene expression data is defined to
be a subset of genes that exhibit similar behavior under a subset of experimental
conditions, and vice versa. Thus, in the gene expression data matrix D, a bicluster
will appear as a submatrix of D. This submatrix is denoted by the pair (I, J ), where
|I | ≤ |G| and |J | ≤ |E |. The volume of a bicluster is defined as the number of
elements ai j such that i ∈ I and j ∈ J that will appear as a submatrix of D.

Example 10.1 Suppose the expression matrix D consists of 10 genes and 8 condi-
tions as shown in Fig. 10.1, where the rows of the matrix represent the genes and
the columns represent the conditions. Then, a bicluster defined over the matrix D
could be ({1, 3, 5}, {2, 4, 7}), thus consisting of genes {g1, g3, g5} and of conditions
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Fig. 10.1 Expression matrix:
row and column repre-
sent gene and condition,
respectively

9 1 10 1 5 7 3 8

0 2 3 9 5 3 2 5

3 2 6 1 8 6 1 2

3 8 3 4 1 5 3 1

4 1 3 2 2 5 2 2

5 7 2 4 2 6 7 2

11 3 2 7 3 8 4 3

4 2 12 5 7 0 4 6

4 2 6 4 2 7 8 2

3 7 3 7 5 2 4 6

{c2, c4, c7}. The volume of this bicluster is 9. In Fig. 10.1, the elements belonging
to the bicluster are highlighted.

Definition 10.1 Let (Ik, Jk) be the kth bicluster Bk , then the base of a gene gi is
defined as [11]

ai Jk = 1

|Jk |
∑

j∈Jk

ai j , (10.1)

while the base of a condition c j is defined as [11]

aIk j = 1

|Ik |
∑

i∈Ik

ai j . (10.2)

The base of the bicluster Bk is the mean of all entries contained in (Ik, Jk), that is,

aIk Jk = 1

|Ik |.|Jk |
∑

i∈Ik

∑

j∈Jk

ai j . (10.3)

Note that in the above definitions, ai Jk and aIk j correspond to the means of the
i th row and j th column of the bicluster (Ik, Jk), respectively.

Definition 10.2 The residue of an entry ai j of a bicluster (Ik, Jk) is given by

ri j = (ai j − ai Jk − aIk j + aIk Jk ). (10.4)

In order to quantify the difference between the actual value and expected value of
an entry predicted from the corresponding gene base, condition base, and bicluster
base, the concept of residue is used. The residue is an indicator of the degree of
coherence of an element with respect to the remaining ones in the bicluster, given
the tendency of the relevant gene and the relevant condition. The lower the residue,
the stronger the coherence.
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Definition 10.3 The mean squared residue of a bicluster (Ik, Jk) is defined as
follows [11]:

Hk = 1

|Ik |.|Jk |
∑

i∈Ik

∑

j∈Jk

r2
i j . (10.5)

The mean squared residue is the variance of the set of all elements in the bicluster,
plus the mean row variance and the mean column variance. The lower the mean
squared residue, the stronger the coherence exhibited by the bicluster, and the better
the quality of the bicluster. If a bicluster has a mean squared residue lower than a
given threshold δ, then the bicluster is termed as a δ-bicluster.

Definition 10.4 Let (Ik, Jk) be a bicluster, then the row variance of (Ik , Jk) is defined
as follows:

VAR Ik Jk = 1

|Ik |.|Jk |
∑

i∈Ik

∑

j∈Jk

(ai j − ai Jk )
2. (10.6)

The row variance may be referred to be relatively large to reject trivial bicluster.
By using row variance as an accompanying score, one wants to guarantee that the
bicluster captures genes exhibiting fluctuating yet coherent trends under some set of
conditions.

10.2.2 Possibilistic Clustering

One of the most widely used prototype-based fuzzy partitional clustering algorithms
is fuzzy c-means [4]. It offers the opportunity to deal with the data that belongs to
more than one cluster at the same time. It assigns memberships to an object which
are inversely related to the relative distance of the object to cluster prototypes. Also,
it can deal with the uncertainties arising from overlapping cluster boundaries.

However, the fuzzy c-means may be inaccurate in a noisy environment [27] as
the resulting membership values do not always correspond well to the degrees of
belonging of the data. In real data analysis, noise and outliers are unavoidable. Hence,
to reduce this weakness, and to produce memberships that have a good explanation
of the degrees of belonging for the data, Krishnapuram and Keller [27] proposed the
possibilistic c-means algorithm that uses a possibilistic type of membership function
to describe the degree of belonging. It partitions a set of objects X into c clusters by
minimizing the objective function

J =
c∑

i=1

n∑

j=1

(νi j )
m ||x j − vi ||2 +

c∑

i=1

ηi

n∑

j=1

(1 − νi j )
m (10.7)

where ηi represents the scale parameter, m is a weighting exponent called the
fuzzifier, ν = [νi j ]c × n is the membership matrix, and the value of νi j depends only
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on the similarity between the object x j and the centroid vi . The resulting partition
of the data can be interpreted as a possibilistic partition, and the membership values
may be interpreted as degrees of possibility of the objects belonging to the classes,
that is, the compatibilities of the objects with the centroids. A brief description of
both fuzzy c-means and possibilistic c-means algorithms is available in Chap 8.

10.3 Possibilistic Biclustering Algorithm

In this section, a new possibilistic biclustering (PBC) algorithm, proposed by Das and
Maji [13], is presented, incorporating the concept of possibilistic clustering algorithm
of Krishnapuram and Keller [27] into biclustering framework. The integration of the
possibilistic membership of fuzzy sets and biclustering algorithm makes the PBC
algorithm effective for generating value-coherent overlapping biclusters with mean
squared residue lower than a predefined threshold.

10.3.1 Objective Function

The PBC algorithm partitions a set of elements or points {ai j } of a gene expression
data D into K biclusters by minimizing the following objective function

J =
K∑

k=1

∑

i∈Ik

∑

j∈Jk

U m
ki j r

2
ki j +

K∑

k=1

Hk

∑

i∈Ik

∑

j∈Jk

(1 − Uki j )
m (10.8)

where Uki j ∈ [0, 1] represents the possibilistic membership of the element or point
ai j ∈ D into the kth bicluster Bk represented as (Ik, Jk), m ∈ [1,∞) is the fuzzifier,
and K is the total number of biclusters. The term rki j is the residue of the element ai j

in the kth bicluster, which has the similar expression as that in (10.4) and is given by

rki j = (ai j − ai Jk − aIk j + aIk Jk ) (10.9)

where ai Jk , aIk j , and aIk Jk represent the means or bases of the i th gene, j th condition,
and kth bicluster, respectively. Hence, the first term (U m

ki j r
2
ki j ) of (10.8) is the fuzzy

squared residue of the element ai j in the kth bicluster. Note that the term (1−Uki j )
m

in (10.8) is monotone decreasing function of Uki j . This forces Uki j to be as large as
possible to avoid the trivial solutions.

The parameter Hk determines the residue value for which the membership value
of a point or element becomes 0.5. Hence, it needs to be chosen depending on the
desired bandwidth of the possibility (membership) distribution for each bicluster.
This value could be the same for all biclusters if all biclusters are expected to be
similar. In general, it is desirable that Hk relates to the overall size and shape of
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bicluster Bk . Also, it is to be noted that Hk determines the relative degree to which
the second term in the objective function of (10.8) is important compared with the
first. If the two terms are to be weighted roughly equally, then Hk should be of the
order of r2

ki j . In this work, the following definition is used:

Hk = P.

∑

i∈Ik

∑

j∈Jk

U m
ki j r

2
ki j

∑

i∈Ik

∑

j∈Jk

U m
ki j

. (10.10)

This choice makesHk proportional to the fuzzy mean squared residue of bicluster
Bk . The denominator ofHk represents the fuzzy cardinality of bicluster Bk . Typically,
P is chosen to be 1.

Solving the objective function of (10.8) with respect to Uki j , we get the possi-
bilistic membership of an element ai j ∈ D into kth bicluster that follows next:

Uki j = 1

1 +
(

r2
ki j

Hk

⎜ 1
m−1

. (10.11)

Hence, in each iteration, the updated value of Uki j depends only on the residue
rki j of the element ai j with respect to the kth bicluster Bk . If the value of rki j is zero,
then the membership of that point with respect to the kth bicluster is 1.0. If the value
of rki j is greater than zero, then the membership value of that point is less than 1.0
and 0.0 when rki j → ∞. Hence, 0.0 ≤ Uki j ≤ 1.0.

After computing the membership of each point ai j ∈ D with respect to all biclus-
ters, the memberships of all rows and columns are computed with respect to all
biclusters. If the kth bicluster Bk has |Ik | rows and |Jk | columns, then the member-
ship of the i th row in the kth bicluster Bk is defined as follows:

Uki J =
⎡

⎛ 1

|Jk |
∑

j∈Jk

U m
ki j

⎝

⎞

1
m

(10.12)

and the membership of the j th column in the kth bicluster is

Uk I j =
⎡

⎛ 1

|Ik |
∑

i∈Ik

U m
ki j

⎝

⎞

1
m

. (10.13)

In each iteration, if the maximum membership value of the i th row (respectively,
j th column) is greater than a threshold ξ and if the difference between the maximum
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membership and the membership with respect to a particular bicluster of that row
(respectively, column), which is greater than ξ, is less than a threshold η, then this
row (respectively, column) will be selected for insertion into that particular bicluster.
In this way, all rows and columns are examined with respect to all biclusters and
are inserted successfully into the biclusters. Hence, the rows and columns, which
are inserted in this process, have the membership values greater than ξ. Here, the
threshold ξ is used to generate highly coherent biclusters. On the other hand, if the
membership of a row or column is very high in some biclusters, then the row or
column is inserted into only those biclusters. This is adjusted using the predefined
threshold η.

After all insertion, the mean squared residue of each bicluster is computed and
compared with a given threshold δ. If the mean squared residue value of the kth
bicluster Bk is greater than δ, then the row or column with least membership value in
that bicluster is deleted and the process is repeated until the value becomes less than
δ. In this way, the PBC algorithm generate highly coherent overlapping biclusters
with lower mean squared residue value.

10.3.2 Bicluster Means

In each iteration, the means or bases of the i th gene, j th condition, and kth bicluster
are calculated to compute the mean squared residue of each bicluster based on the
possibilistic membership values of all rows and columns in different biclusters. The
means or bases of the i th gene, j th condition, and kth bicluster for the PBC algorithm
are obtained by solving (10.8) with respect to ai Jk , aIk j , and aIk Jk , respectively:

ai Jk = 1

|Jk |U m
ki J

⎠
⎨

⎩
∑

j∈Jk

U m
ki j (ai j − aIk j )


⎫

⎬ + aIk Jk (10.14)

aIk j = 1

|Ik |U m
k I j

⎠
⎨

⎩
∑

i∈Ik

U m
ki j (ai j − ai Jk )


⎫

⎬ + aIk Jk (10.15)

aIk Jk =

∑

i∈Ik

U m
ki J ai Jk

∑

i∈Ik

U m
ki J

+

∑

j∈Jk

U m
k I j aIk j

∑

j∈Jk

U m
k I j

−

∑

i∈Ik

∑

j∈Jk

U m
ki j ai j

∑

i∈Ik

∑

j∈Jk

U m
ki j

. (10.16)

Hence, the base of the i th gene ai Jk in the kth bicluster Bk depends on the means of
all conditions present in that bicluster as well as the base of that bicluster. Similarly,
the base of the j th condition aIk j in the Bk bicluster depends on the means of all
genes present in the Bk and the base of Bk .
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10.3.3 Convergence Condition

In this subsection, a mathematical analysis on the convergence property of the PBC
algorithm is presented. In the PBC algorithm, the means or bases of the i th gene,
j th condition, and kth bicluster are calculated using (10.14), (10.15), and (10.16),
respectively. However, these three equations can be written as

∑

j∈Jk

U m
ki j · ai Jk =

∑

j∈Jk

U m
ki j (ai j − aIk j + aIk Jk ) (10.17)

∑

i∈Ik

U m
ki j · aIk j =

∑

i∈Ik

U m
ki j (ai j − ai Jk + aIk Jk ) (10.18)

∑

i∈Ik

∑

j∈Jk

U m
ki j · aIk Jk =

∑

i∈Ik

∑

j∈Jk

U m
ki j (ai Jk + aIk j − ai j ) (10.19)

Hence, (10.17) represents a set of linear equations in terms of ai Jk if Uki j , aIk j ,
and aIk Jk are kept constant. Similarly, (10.18) and (10.19) represent a set of lin-
ear equations in terms of aIk j and aIk Jk , respectively. A simple way to analyze the
convergence property of the algorithm is to view (10.14), (10.15), and (10.16) as
the Gauss-Seidel iterations for solving the set of linear equations. The Gauss-Seidel
algorithm is guaranteed to converge if the matrix representing each equation is diag-
onally dominant [24]. This is a sufficient condition, not a necessary one. The iteration
may or may not converge if the matrix is not diagonally dominant [24]. The matrix
corresponding to (10.14) is given by:

Ã =

⎡

⎭⎭⎛

ã1 0 · · · · · · 0
0 ã2 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · · · · ãIk

⎝

⎥⎥⎞ ; ãi =
∑

j∈Jk

U m
ki j (10.20)

Similarly, the matrices corresponding to (10.15) and (10.16) are given by

B̃ =

⎡

⎭⎭⎛

b̃1 0 · · · · · · 0
0 b̃2 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · · · · b̃Jk

⎝

⎥⎥⎞ ; b̃ j =
∑

i∈Ik

U m
ki j (10.21)

C̃ =

⎡

⎭⎭⎛

c̃1 0 · · · · · · 0
0 c̃2 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · · · · c̃K

⎝

⎥⎥⎞ ; c̃k =
∑

i∈Ik

∑

j∈Jk

U m
ki j (10.22)
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For Ã, B̃, and C̃ to be diagonally dominant, we must have

ãi ≥ 0; b̃ j ≥ 0; c̃k ≥ 0. (10.23)

This is the sufficient condition for matrices Ã, B̃, and C̃ to be diagonally dominant.
Under this condition, the iteration would converge if (10.14–10.16) are, repetitively,
applied with Uki j kept constant. In practice, (10.11–10.13) and (10.14–10.16) are
applied alternatively in the iterations. The condition in (10.23) is still correct accord-
ing to Bezdek’s convergence theorem of fuzzy c-means algorithm [2, 3] and Yan’s
convergence analysis of the fuzzy curve-tracing algorithm [50]. All three matrices
Ã, B̃, and C̃ are also the Hessian (second order derivative) of J with respect to ai Jk ,
aIk j , and aIk Jk . As all three matrices Ã, B̃, and C̃ are diagonally dominant, all their
eigenvalues are positive. Also, the Hessian of J with respect to Uki j can be easily
shown to be diagonal matrix and are positive definite. Thus, according to the theo-
rem derived by Bezdek [2, 3] and the analysis done by Yan [50], it can be concluded
that the PBC algorithm converges, at least along a subsequence, to a local optimum
solution as long as the condition in (10.23) is satisfied. Intuitively, the objective func-
tion J reduces in all steps corresponding to (10.11–10.13) and (10.14–10.16), so the
compound procedure makes the function J descent strictly.

10.3.4 Details of the Algorithm

Approximate optimization of J by the PBC algorithm is based on Picard iteration
through (10.11–10.13) and (10.14–10.16). The process starts with a set of seeds or
initial biclusters. The initial bases or means of a gene, condition, and bicluster are
calculated using (10.1), (10.2), and (10.3), respectively. These bases serve as the ini-
tial solutions for the PBC algorithm. The possibilistic memberships of all elements
or points are calculated using (10.11). The scale parameters Hk for K biclusters are
obtained using (10.10), while (10.12) and (10.13) are used to compute the member-
ships of all rows and columns with respect to different biclusters, respectively. Let

U max
i J = max

1≤k≤K
{Uki J } (10.24)

U max
I j = max

1≤k≤K
{UkI j } (10.25)

be the maximum memberships of the i th row and j th column, respectively. For any
row i and for any bicluster Bk , if U max

i J < ξ, then the i th row will not be inserted
into any bicluster. Otherwise, compute the member set S , where

S = {k|Uki J ≥ ξ and (U max
i J − Uki J ) ≤ η : 1 ≤ k ≤ K }. (10.26)
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After computing the set S , the i th row is inserted into the kth bicluster present in the
set S . That is, the i th row is not inserted into any other biclusters that are not present
in this set. Similar decision is taken for any column j . The parameters ξ and η are two
predefined thresholds. After assigning each row and column in different biclusters,
the new means of the genes, conditions, and biclusters are calculated as per (10.14),
(10.15), and (10.16), respectively. Also, the mean squared residue of each bicluster is
computed as per (10.5) and compared with a given threshold δ. If the mean squared
residue value of the kth bicluster Bk is greater than δ, then the row or column with
least membership value in that bicluster is deleted and the process is repeated until the
value becomes less than δ. In this way, the PBC algorithm generates highly coherent
overlapping biclusters with lower mean squared residue value. Based on the above
discussions, the PBC algorithm is outlined next.

• Input: {Bk : 1 ≤ k ≤ K }, a set of K seeds or initial biclusters.
• Output: {Bk : 1 ≤ k ≤ K }, a set of K overlapping biclusters.

1. For each object (gene or condition) v, do:

a. Calculate the membership of each point of the object v with respect to every
bicluster using (10.11).

b. Calculate the membership of the object v with respect to every bicluster using
(10.12) or (10.13) and find the maximum memberships using (10.24) or (10.25).

c. If the maximum membership is less than ξ, then goto step 1.
d. If the maximum membership is greater than ξ, then compute the set S using

(10.26) and do:
e. Insert object v into all those biclusters that are present in set S .

2. For each bicluster Bk , do:

a. Compute new means for genes, conditions, and bicluster using (10.14), (10.15),
and (10.16), respectively.

b. Calculate mean squared residue Hk of bicluster Bk as per (10.5).
c. If Hk > δ, then

i. Compute the membership of every object.
ii. Delete the object with minimum membership value and repeat this step

until the condition becomes false.

3. Goto step 1 until the termination condition for adjustment is satisfied.
4. For each bicluster Bk , do:

a. Calculate the row variance of every row.
b. If the row variance of a particular row is 0, then delete this row that may lead

to a constant bicluster.

5. Output the best solution.
6. End.
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10.3.5 Termination Condition

The process iterates until the termination condition is met. In order to terminate
the PBC algorithm, the overall mean squared residue per total volume is used that
follows next:

Overall(H/V ) = H

V
; (10.27)

where

V =
K∑

k=1

Vk =
K∑

k=1

|Ik |.|Jk |; (10.28)

and

H =
K∑

k=1

Hk =
K∑

k=1

1

|Ik |.|Jk |
∑

i∈Ik

∑

j∈Jk

(ai j − ai J − aI j + aI J )2. (10.29)

Here Hk represents the mean squared residue of the kth bicluster Bk and Vk represents
the volume of that bicluster. The value of Overall(H/V) reflects the overall quality of
the biclusters generated by the PBC algorithm. The lower the Overall(H/V) value is,
the higher the coherence of biclusters exhibits. The algorithm will terminate when
the Overall(H/V) in last iteration is less than or equal to the Overall(H/V) in the
current iteration.

10.3.6 Selection of Initial Biclusters

The PBC algorithm starts with a set of seeds as initial biclusters and carries out an
iterative process to improve the overall quality of the biclusters. Intuitively, seeds that
demonstrate higher coherence will facilitate refining biclusters with lesser iteration
steps. This concern is addressed here within the framework of two-way clustering
[19, 42].

In this work, the k-medoids algorithm [26] is used on the gene or row and condition
or column dimensions of the expression data matrix separately and then the results
are combined to obtain a set of seeds that are basically small coregulated submatrices.
Given a gene expression data matrix D with M rows and N columns, let kg be the
number of clusters in gene dimension and kc be the number of clusters in condition
dimension after using k-medoids algorithm. Let Cg be the set of gene clusters and
Cc denotes the set of condition clusters. Let cg

i ∈ Cg (1 ≤ i ≤ kg) and cc
j ∈ Cc

(1 ≤ j ≤ kc). The pair (cg
i , cc

j ) denotes a submatrix of D. Therefore, by combining
the results of gene-dimensional k-medoids clustering and condition-dimensional k-
medoids clustering, total (kg × kc) seeds are obtained.
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The two-way clustering results exhibit similarity on either gene dimension or
condition dimension. However, they may not well capture the overall coherence of
both a subset of genes and a subset of conditions. To improve the quality of seeds
obtained by two-way k-medoids algorithm, the single node deletion algorithm of
Cheng and Church [11] is used. If the mean squared residue Hk of each bicluster
(seed) Bk is greater than a predefined threshold δ, then remove the row or column
whichever with the larger residue value and this step is repeated until the mean
squared residue of each seed becomes less than or equal to the threshold δ. Among
these refined seeds, the best K ≤ (kg × kc) seeds those exhibit relatively higher
coherence and larger size are chosen as inputs for the PBC algorithm. The algorithm
to generate highly coherent seeds using k-medoids algorithm is described next.

• Input: Gene expression matrix D with M rows and N columns.
• Output: A set of K -initial biclusters.

1. Perform k-medoids clustering on gene dimension.
2. Perform k-medoids clustering on condition dimension.
3. Combine gene clusters and condition clusters to get K initial biclusters.
4. For each initial bicluster Bk , (1 ≤ k ≤ K ), do:

a. Calculate the mean squared residue Hk of each bicluster Bk .
b. If mean squared residue Hk of bicluster Bk is greater than the threshold δ, then

delete row or column whichever with larger residue value and repeat this step
until the mean squared residue Hk ≤ δ.

5. End.

10.4 Quantitative Indices

In this section, a new quantitative index R called degree of overlapping is presented,
along with some existing indices, to evaluate quantitatively the quality of generated
biclusters.

10.4.1 Average Number of Genes

The average number of genes Iavg is defined as follows:

Iavg = 1

K

K∑

k=1

|Ik |, (10.30)

where K is the total number of biclusters and |Ik | represents the number of genes
present in the kth bicluster.
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10.4.2 Average Number of Conditions

The average number of conditions Javg is defined as:

Javg = 1

K

K∑

k=1

|Jk |, (10.31)

where |Jk | represents the number of experiments or conditions present in the kth
bicluster Bk .

10.4.3 Average Volume

The average volume Vavg can be defined as follows:

Vavg = 1

K

K∑

k=1

Vk = 1

K

K∑

k=1

|Ik |.|Jk |. (10.32)

Here Vk represents the volume of the kth bicluster Bk , which is equal to the number
of elements ai j such that i ∈ Ik and j ∈ Jk .

10.4.4 Average Mean Squared Residue

The average mean squared residue Havg is defined as:

Havg = 1

K

K∑

k=1

Hk; (10.33)

where

Hk = 1

|Ik |.|Jk |
∑

i∈Ik

∑

j∈Jk

(ai j − ai J − aI j + aI J )2. (10.34)

Here Hk represents the mean squared residue of the kth bicluster Bk . The lower the
value of Havg is, the higher the coherence of biclusters exhibits and the better the
quality of the generated bicluster.
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10.4.5 Degree of Overlapping

The degree of overlapping R among all biclusters is defined as follows:

R = 1

|G|.|E |
|G|∑

i=1

|E |∑

j=1

Γi j (10.35)

and Γi j = 1

(K − 1)

{
K∑

k=1

wk(ai j ) − 1

}
(10.36)

where K is the total number of biclusters, |G| represents the total number of genes,
and |E | represents the total number of experiments or conditions in the expression
data matrix D. The value of wk(ai j ) is either 0 or 1. If the element or point ai j ∈
D is present in the kth bicluster, then wk(ai j ) = 1, otherwise 0. Hence, the R
index represents the degree of overlapping among the biclusters. As the degree of
overlapping increases, the value of R index also increases. Therefore, for a given
data matrix and δ value, the higher the R index value, the higher would be the degree
of overlapping of the generated biclusters. Also, 0.0 ≤ R ≤ 1.0.

10.5 Experimental Results

In order to assess the performance of the PBC algorithm, the method is compared
with the existing methods of Cheng and Church (henceforth termed as CC) [11], Yang
et al. (henceforth termed as FLOC) [51], and Divina and Aguilar-Ruiz (henceforth
termed as SEBI) [14]. The major metrics for evaluating the performance of different
algorithms are the indexR introduced in Sect. 10.4, as well as some existing measures
such as Iavg, Javg, Vavg, and Havg.

The experiments are conducted on the well-known yeast microarray data set.
It is the yeast Saccharomyces cerevisiae cell cycle expression data set, where the
expression matrix consists of 2884 genes and 17 experimental conditions. This data
set is taken from [11], where the original data is processed, replacing missing values
with random values. The value of δ for the yeast data set is taken from [11] and the
number of clusters for two-way k-medoids algorithm is set as the square root of the
number of objects. In the current study, the parameters used are as follows: δ = 300,
kg = 54, and kc = 5. The PBC algorithm is implemented in C language and run
in LINUX environment having machine configuration Pentium IV, 3.2 GHz, 1 MB
cache and 1 GB RAM.
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Table 10.1 Performance of the PBC for Different Values of m, ξ, and η

m ξ η Havg Vavg Iavg Javg R

1.2 0.55 0.15 180.10 1737.48 256.17 7.81 0.029
0.20 185.07 2351.75 356.45 7.41 0.042
0.25 187.84 2674.53 409.44 7.17 0.047

0.60 0.15 172.24 1666.22 251.38 8.14 0.028
0.20 180.66 2195.17 321.15 7.87 0.039
0.25 183.67 2742.18 436.02 7.41 0.051

0.65 0.15 167.36 1616.34 230.79 8.72 0.027
0.20 154.12 1047.64 139.15 8.95 0.011
0.25 164.74 1767.66 267.29 8.63 0.029

1.6 0.55 0.15 180.69 1889.13 276.21 7.41 0.032
0.20 184.11 2104.63 308.15 7.56 0.039
0.25 189.57 2187.09 319.25 7.53 0.041

0.60 0.15 183.13 2019.30 294.80 7.72 0.035
0.20 185.03 2117.16 387.12 7.72 0.039
0.25 189.27 2089.56 392.05 7.74 0.038

0.65 0.15 172.78 1629.83 234.94 8.01 0.026
0.20 174.58 2138.95 320.66 8.28 0.038
0.25 179.20 2037.59 322.52 8.08 0.036

2.0 0.55 0.15 191.83 1934.76 311.17 6.70 0.033
0.20 197.01 2068.34 389.15 6.74 0.035
0.25 199.67 2083.51 392.17 6.81 0.033

0.60 0.15 181.89 1966.40 313.42 6.89 0.034
0.20 187.08 2063.10 376.44 6.70 0.041
0.25 194.51 2114.25 382.37 6.85 0.039

0.65 0.15 179.82 1852.22 282.45 7.68 0.031
0.20 181.52 2132.42 331.44 7.49 0.037
0.25 183.17 2169.06 342.11 7.67 0.037

10.5.1 Optimum Values of Different Parameters

This section presents the performance of the PBC algorithm on yeast microarray gene
expression data set for different parameter values. The fuzzifier m, and thresholds
ξ and η play an important role in the PBC algorithm. The addition or deletion of a
particular row or column is done based on the values of these two thresholds. The row
and columns having membership values less than ξ are not considered for addition
in any bicluster. If a bicluster contains rows and columns with membership values
larger than ξ, then the bicluster will be highly coherent depending on the value of ξ.
That is, the threshold ξ controls the degree of coherence of the bicluster. The higher
the value of ξ, the higher would be the coherence of the biclusters. On the other
hand, the contribution of each row or column in multiple biclusters is controlled by
both parameters ξ and η. If the value of ξ is small and the value of η is high, then
the degree of overlapping of the generated biclusters will be high with lesser degree
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Fig. 10.2 Eisen plots of best ten biclusters and corresponding mean squared residue values obtained
using the PBC algorithm

of coherence. Hence, both ξ and η control the degree of overlapping among the
biclusters as well as the degree of coherency.

In order to find out the optimum values of m, ξ, and η, extensive experiments are
carried out for yeast microarray data set. Table 10.1 presents the performance of the
PBC algorithm, in terms of the average mean squared residue Havg, average volume
Vavg, average dimensions of the biclusters (Iavg and Javg), and degree of overlapping
R, for different values of m, ξ and η. Results are presented only for yeast data set.
From the results reported in Table 10.1, it is seen that

1. for fixed values of m and η, as the value of ξ increases, the values of Havg, Vavg,
and R index decrease;

2. for fixed values of m and ξ, as the value of η increases, the values of these three
indices also increase; and

3. for fixed values of ξ and η, as the value of m increases, the values of these three
indices also increase.

However, the PBC algorithm provides best result in terms of all these measures for
m = 1.2, ξ = 0.60, and η = 0.25.

10.5.2 Analysis of Generated Biclusters

For yeast microarray data set, the best ten biclusters generated by the PBC algorithm
are analyzed using the Eisen plot [16]. Figure 10.2 (a–j) presents the Eisen plots of
best ten biclusters obtained using the PBC algorithm, along with their mean squared
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Table 10.2 Functional Enrichment of the PBC Algorithm for BP

Significant GO Term FDR (%) False positive Corrected P-Value

Ribosome biogenesis 0.00 0.00 8.34E−22
Ribonucleoprotein complex biogenesis 0.00 0.00 2.53E−20
Cellular component 0.00 0.00 1.54E−13
Biogenesis translation 0.00 0.00 8.58E−12
Ribosome biogenesis 0.00 0.00 1.45E−11
Ribosome biogenesis 0.00 0.00 6.22E−11
ncRNA processing 0.00 0.00 6.51E−11
Ribonucleoprotein complex biogenesis 0.00 0.00 1.06E−09
Ribosome biogenesis 0.00 0.00 5.80E−08
Oxidation reduction 0.00 0.00 8.40E−08

Table 10.3 Functional Enrichment of the PBC Algorithm for MF

Significant GO Term FDR (%) False Positive Corrected P-Value

Structural constituent of ribosome 0.00 0.00 4.86E−30
0.00 0.00 2.76E−26
0.00 0.00 1.55E−21
0.00 0.00 1.03E−16
0.00 0.00 1.05E−12
0.00 0.00 1.37E−12
0.00 0.00 6.62E−10
0.00 0.00 5.61E−08
0.00 0.00 9.87E−08

Oxidoreductase activity 0.00 0.00 9.26E−08

Table 10.4 Functional Enrichment of the PBC Algorithm for CC

Significant GO Term FDR (%) False Positive Corrected P-Value

Cytosolic ribosome 0.00 0.00 6.27E−40
Cytosolic ribosome 0.00 0.00 1.34E−36
Cytosolic ribosome 0.00 0.00 2.64E−27
Ribonucleoprotein complex 0.00 0.00 3.18E−24
Preribosome 0.00 0.00 2.34E−20
Cytosolic ribosome 0.00 0.00 7.76E−17
Cytosolic ribosome 0.00 0.00 1.77E−16
Cytosolic ribosome 0.00 0.00 7.51E−16
Macromolecular complex 0.00 0.00 1.08E−12
Cytosolic ribosome 0.00 0.00 7.55E−12

residue values. All the results reported in Fig. 10.2 (a–j) establish the fact that the PBC
algorithm can efficiently identify groups of genes and conditions of coherent values.

To interpret the biological significance of the generated biclusters, the gene ontol-
ogy (GO) Term Finder is used [5], which is described in Chap. 8. In Tables 10.2,
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Table 10.5 Performance of different biclustering algorithms

Algorithms Havg Vavg Iavg Javg
Havg
Vavg

PBC 183.67 2742.18 436.02 7.42 0.067
FLOC 187.54 1825.78 195.00 12.80 0.103
CC 204.29 1576.98 166.71 12.09 0.129
SEBI 205.18 209.92 13.61 15.25 0.977

10.3, and 10.4, details of functional enrichment of best ten biclusters obtained by
the PBC algorithm for different ontologies are given. From the results reported in
Tables 10.2, 10.3, and 10.4, it is seen that the best ten biclusters generated by the
PBC algorithm can be assigned to the gene ontology (GO) biological processes
(BP), molecular functions (MF), and cellular components (CC) with high reliability
in terms of p-value, false discovery rate (FDR), and expected false positives. That is,
the PBC algorithm describes accurately the known classification, the one given by
the GO, and thus reliable for extracting new biological insights.

10.5.3 Comparative Analysis of Different Methods

In Table 10.5, the performance of the PBC algorithm is compared with that of CC
[11], FLOC [51], and SEBI [14], in terms of the average mean squared residue Havg,
the average dimensions of the biclusters found (Vavg, Iavg, and Javg) and the ratio
between Havg and Vavg.

From the results reported in Table 10.5, it can be seen that the PBC method
is capable of finding biclusters with a higher volume than the ones found by the
CC, FLOC, and SEBI. This is due to the possibilistic concept adopted by the PBC
algorithm. As far as the mean squared residue is concerned, the PBC method is able
to find biclusters of relatively lower mean squared residue than that of the CC and
SEBI, and comparable mean squared residue with that of the FLOC. Hence, the
novel possibilistic biclustering algorithm provides better performance with respect
to average mean squared residue as well as average volume of the biclusters found.
Also, the ratio between Havg and Vavg is minimum in case of the PBC method.

Finally, the performance of three algorithms, namely, PBC, FLOC, and CC is
analyzed with respect to gene annotation on yeast microarray data set. The results
of best ten biclusters with respect to p-value of different ontology types obtained by
three methods are reported in Table 10.6. The results reported in Table 10.6 indicate
that the PBC algorithm provides better selectivity compared to that of the FLOC and
CC for all of the cases. Only in case of biological processes for tenth bicluster, the
CC provides better result than the PBC algorithm.
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Table 10.6 Functional enrichment analysis of different methods

Gene Different algorithms
Ontology PBC Cheng and Church Yang et al. (FLOC)

Biological processes 8.34E−22 2.49E−20 8.76E−10
2.53E−20 2.16E−14 2.60E−09
1.54E−13 1.24E−11 6.24E−09
8.58E−12 1.34E−10 5.27E−08
1.45E−11 1.06E−09 1.12E−07
1.06E−09 3.44E−08 3.25E−07
5.80E−08 5.50E−08 3.85E−07
8.40E−08 8.93E−08 4.10E−07
1.07E−07 9.64E−08 5.33E−07

Molecular functions 4.85E−30 2.09E−15 1.09E−12
2.76E−26 6.74E−13 1.67E−10
1.55E−21 1.25E−06 2.83E−09
1.03E−16 1.79E−06 9.51E−09
1.05E−12 2.53E−05 1.52E−08
1.37E−12 5.23E−05 2.43E−07
6.62E−10 6.00E−05 1.50E−05
5.61E−08 1.02E−04 5.08E−05
9.26E−08 1.99E−04 1.02E−04
9.87E−08 4.00E−04 6.81E−04

Cellular components 6.27E−40 5.00E−21 1.01E−20
1.34E−36 4.16E−18 1.29E−11
2.64E−27 1.42E−14 4.43E−11
3.18E−24 4.90E−12 1.08E−09
2.34E−20 8.12E−11 1.37E−09
7.76E−17 2.32E−10 2.14E−08
1.77E−16 5.13E−10 6.91E−08
7.51E−16 1.15E−09 1.33E−07
1.08E−12 1.34E−09 1.84E−07
7.55E−12 5.77E−09 2.47E−07

10.6 Conclusion and Discussion

In this chapter, the problem of biclustering gene expression data has been addressed.
The main difference between conventional clustering and biclustering, and a brief
survey on different existing biclustering algorithms have been reported, along with
their merits and demerits. A possibilistic biclustering (PBC) algorithm is presented
for discovering value-coherent overlapping δ-biclusters. A new quantitative measure
is described, along with some existing measures, to evaluate the quality of generated
biclusters. Finally, the effectiveness of the PBC algorithm, along with a compari-
son with existing biclustering algorithms, is demonstrated on yeast gene expression
data set.
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The concept of possibilistic memberships of an element in different biclusters is
found to be successful in efficient selection of highly coherent overlapping biclusters
compared to the existing methods. The two-way k-medoids clustering algorithm,
based on mutual information, provides a set of small coregulated submatrices as
initial biclusters, which facilitates refining biclusters with lesser iteration steps in
the final phase. Some of the quantitative indices used for evaluating the quality of
selected biclusters may be used in a suitable combination to act as the objective
function of an evolutionary algorithm, for generating value-coherent overlapping
δ-biclusters.

However, one of the important limitations of the PBC approach, like other biclus-
tering methods, is its execution time. To reduce this weakness, one can integrate
the PBC algorithm and theory of rough sets as the incorporation of rough sets into
fuzzy and possibilistic clustering reduces the execution time drastically [32]. In the
current work, the PBC method is only applied on yeast microarray data set. However,
this method can also be applied on other high dimensional microarray data sets and
further its merits and limitations can be evaluated.
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Chapter 11
Fuzzy Measures and Weighted Co-Occurrence
Matrix for Segmentation of Brain MR Images

11.1 Introduction

In medical imaging technology, a number of complementary diagnostic tools such as
X-ray computer tomography, position emission tomography, and magnetic resonance
imaging (MRI) are available. The MRI is an important diagnostic imaging technique
for the early detection of abnormal changes in tissues and organs. Its unique advantage
over other modalities is that it can provide multispectral images of tissues with a
variety of contrasts based on three MR parameters, namely, β, T1, and T2. Therefore,
majority of research in medical image analysis concerns the MR images [36].

Conventionally, these images are interpreted visually and qualitatively by radiol-
ogists. Advanced research requires quantitative information such as the size of the
brain ventricles after a traumatic brain injury or the relative volume of ventricles
to brain. Fully automatic methods sometimes fail, producing incorrect results and
requiring the intervention of a human operator. This is often true due to restric-
tions imposed by image acquisition, pathology, and biological variation. Hence, it is
important to have a faithful method to measure various structures in the brain. One of
such methods is the segmentation of images to isolate objects and regions of interest.

Image segmentation is an indispensable process in the visualization of human
tissues, particularly during clinical analysis of medical images. In the analysis of
medical images for computer-aided diagnosis and therapy, segmentation is often
required as a preliminary stage. The success of an image analysis system depends
on the quality of segmentation [32, 33, 36]. Medical image segmentation is a com-
plex and challenging task due to the intrinsic nature of the images. The brain has
a particularly complicated structure and its precise segmentation is very important
for detecting tumors, edema, and necrotic tissues, in order to prescribe appropriate
therapy [32, 33, 36].

Segmentation is a process of partitioning an image space into some nonoverlap-
ping meaningful homogeneous regions. If the domain of the image is given by δ,
then the segmentation problem is to determine the sets Sk ∈ δ, whose union is the
entire domain δ. The sets that make up a segmentation must satisfy
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δ =
k⋃

k=1

Sk, (11.1)

where Sk ≤ S j = → for k ⊂= j , and each Sk is connected. Hence, a segmentation
method is supposed to find those sets that correspond to distinct anatomical structures
or regions of interest in the image.

Many image processing techniques have been proposed for the MR image seg-
mentation [2, 7], most notably thresholding [10, 14, 34], region-growing [18], edge
detection [35], pixel classification [25, 31], and clustering [1, 11, 40]. Some algo-
rithms using the neural network approach have been investigated in the MR image
segmentation problems [5, 6]. The segmentation of the MR images using fuzzy c-
means has been reported in [1, 4, 6, 12, 28, 45]. Image segmentation using rough
sets has also been done in [8, 16, 17, 19, 30, 42–44]. Recently, a review is reported
in [9] on the application of rough sets and near sets in medical imaging.

Thresholding is one of the old, simple, and popular techniques for image seg-
mentation. It can be done based on global (for example, gray level histogram of
the entire image) or local information (for example, co-occurrence matrix) extracted
from the image. A series of algorithms for image segmentation based on histogram
thresholding can be found in the literature [2, 7, 10, 14, 20, 25, 34, 37]. Entropy-
based thresholding algorithms have been proposed in [21–23, 29]. One of the main
problems in medical image segmentation is uncertainty. Some of its sources include
imprecision in computations and vagueness in class definitions. In this background,
the possibility concept introduced by the fuzzy set theory has gained popularity in
modeling and propagating uncertainty in medical imaging applications [15, 16].
Also, since the fuzzy set theory is a powerful tool to deal with linguistic concepts
such as similarity, several segmentation algorithms based on fuzzy set theory are
reported in the literature [3, 13, 26, 29, 38].

In general, all histogram thresholding techniques based on fuzzy set theory work
very well when the image gray level histogram is bimodal or multimodal. On the
other hand, a great deal of medical images are usually unimodal, where the conven-
tional histogram thresholding techniques perform poorly or even fail. In this class of
histograms, unlike the bimodal case, there is no clear separation between object and
background pixel occurrences. Hence, to find a reliable threshold, some adequate
criteria for splitting the image histogram should be used. In [38], an approach to
threshold the histogram according to the similarity between gray levels has been
proposed.

This chapter presents a new algorithm, termed as the FMWCM [13, 14], to thresh-
old the image histogram. It is based on a fuzzy measure and the concept of weighted
co-occurrence matrix. The second order fuzzy measures such as fuzzy correlation,
fuzzy entropy, and index of fuzziness, are used for assessing such a concept. The
local information of the given image is extracted through a modified co-occurrence
matrix. The FMWCM technique consists of two linguistic variables {bright, dark}
modeled by two fuzzy subsets and a fuzzy region on the gray level histogram. Each
of the gray levels of the fuzzy region is assigned to both defined subsets one by one
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and the second order fuzzy measure using weighted co-occurrence matrix is calcu-
lated. The ambiguity of each gray level is determined from the fuzzy measures of two
fuzzy subsets. Finally, the strength of ambiguity for each gray level is computed. The
multiple thresholds of the image histogram are determined according to the strength
of ambiguity of the gray levels using a nearest mean classifier. Experimental results
reported in this chapter confirm that the FMWCM method is robust in segmenting
brain MR images compared to existing popular thresholding techniques.

The rest of this chapter is as follows: In Sect. 11.2, some basic definitions
about fuzzy sets and second order fuzzy measures along with co-occurrence matrix
are reported. The FMWCM algorithm for histogram thresholding is presented in
Sect. 11.3. Experimental results and a comparison with other thresholding methods
are presented in Sect. 11.4. Concluding remarks are given in Sect. 11.5.

11.2 Fuzzy Measures and Co-Occurrence Matrix

This section presents the basic notions in the theory of fuzzy sets and the concept of
co-occurrence matrix, along with different second order fuzzy measures and fuzzy
membership function.

11.2.1 Fuzzy Set

A fuzzy subset A of the universe X is defined as a collection of ordered pairs

A = {(μA(x), x),⊆x ∈ X} (11.2)

where μA(x) denotes the degree of belonging of the element x to the fuzzy set A
and 0 ∩ μA(x) ∩ 1. The support of fuzzy set A is the crisp set that contains all the
elements of X that have a nonzero membership value in A [46].

Let X = [xmn] be an image of size M × N and L gray levels, where xmn is the
gray value at location (m, n) in X , xmn ∈ GL , GL = {0, 1, 2, ....., L − 1} is the set
of the gray levels, m = 0, 1, 2, · · · , M −1, n = 0, 1, 2, · · · , N −1, and μX (xmn) be
the value of the membership function in the unit interval [0, 1], which represents the
degree of possessing some brightness property μX (xmn) by the pixel intensity xmn .
By mapping an image X from xmn into μX (xmn), the image set X can be written as

X = {μX (xmn), xmn}. (11.3)

Then, X can be viewed as a characteristic function and μX is a weighting coeffi-
cient that reflects the ambiguity in X . A function mapping all the elements in a crisp
set into real numbers in [0, 1] is called a membership function. The larger value of
the membership function represents the higher degree of the membership. It means
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how closely an element resembles an ideal element. Membership functions can rep-
resent the uncertainty using some particular functions. These functions transform
the linguistic variables into numerical calculations by setting some parameters. The
fuzzy decisions can then be made. The standard S-function, that is, S(xmn; a, b, c),
of Zadeh is as follows [46]:

μX (xmn) =


⎜⎜⎜⎜⎡

⎜⎜⎜⎜⎛

0 xmn ∩ a

2
⎝

xmn−a
c−a

⎞2
a ∩ xmn ∩ b

1 − 2
⎝

xmn−c
c−a

⎞2
b ∩ xmn ∩ c

1 xmn ∅ c

(11.4)

where b = (a+c)
2 is the crossover point for which the membership value is 0.5. The

shape of S-function is manipulated by the parameters a and c.

11.2.2 Co-Occurrence Matrix

The co-occurrence matrix or the transition matrix of the image X is an L × L dimen-
sional matrix that gives an idea about the transition of intensity between adjacent
pixels. In other words, the (i, j)th entry of the matrix gives the number of times the
gray level j follows the gray level i , that is, the gray level j is an adjacent neighbor of
the gray level i , in a specific fashion. Let a be the (m, n)th pixel in X and b denotes
one of the eight neighboring pixels of a, that is,

b ∈ a8 = {(m, n − 1), (m, n + 1), (m + 1, n), (m − 1, n), (m − 1, n − 1),

(m − 1, n + 1), (m + 1, n − 1), (m + 1, n + 1)}

then ti j =
⎠

a∈X
b∈a8

ε; (11.5)

where ε =
⎨

1 if gray level value of a is i and that of b is j
0 otherwise.

(11.6)

Obviously, ti j gives the number of times the gray level j follows gray level i in any
one of the eight directions. The matrix T = [ti j ]L×L is, therefore, the co-occurrence
matrix of the image X .
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11.2.3 Second Order Fuzzy Correlation

The correlation between two local properties μ1 and μ2 (for example, edginess,
blurredness, and texture) can be expressed in the following ways [27]:

C(μ1, μ2) = 1 −
4

L⎠

i=1

L⎠

j=1

[μ1(i, j) − μ2(i, j)]2ti j

Y1 + Y2
(11.7)

where ti j is the frequency of occurrence of the gray level i followed by j , that is,
T = [ti j ]L×L is the co-occurrence matrix defined earlier, and

Yk =
L⎠

i=1

L⎠

j=1

[2μk(i, j) − 1]2ti j ; k = 1, 2. (11.8)

To calculate the correlation between a gray-tone image and its two-tone version, μ2
is considered as the nearest two-tone version of μ1, that is,

μ2(x) =
⎨

0 if μ1(x) ∩ 0.5
1 otherwise.

(11.9)

11.2.4 Second Order Fuzzy Entropy

Out of the n pixels of the image X , consider a combination of r elements. Let Sr
i

be the i th such combination and μ(Sr
i ) denotes the degree to which the combination

Sr
i , as a whole, possesses the property μ. There are

⎩
n
r

)
such combinations. The

entropy of order r of the image X is defined as [24]

H (r) = − 1

N

N⎠

i=1

⎫
μ(Sr

i )ln{μ(Sr
i )} + {1 − μ(Sr

i )}ln{1 − μ(Sr
i )}⎬ (11.10)

with logarithmic gain function and N =
⎩

n
r

)
. It provides a measure of the average

amount of difficulty or ambiguity in making a decision on any subset of r elements
as regards to its possession of an imprecise property. Normally, these r pixels are
chosen as adjacent pixels. For the present investigation, the value of r is chosen as 2.
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11.2.5 Second Order Index of Fuzziness

The quadratic index of fuzziness of an image X of size M × N reflects the average
amount of ambiguity or fuzziness present in it by measuring the distance (quadratic)
between its fuzzy property plane μ1 and the nearest two-tone version μ2. In other
words, the distance between the gray-tone image and its nearest two-tone version
[29]. If we consider spatial information in the membership function, then the index
of fuzziness takes the form

I (μ1, μ2) =
2


⎡

⎛

L⎠

i=1

L⎠

j=1

[μ1(i, j) − μ2(i, j)]2ti j

⎭
⎥



1
2

⇒
M N

(11.11)

where ti j is the frequency of occurrence of the gray level i followed by j .
For computing the second order fuzzy measures such as correlation, entropy, and

index of fuzziness of an image, represented by a fuzzy set, one needs to choose two
pixels at a time and to assign a composite membership value to them. Normally these
two pixels are chosen as adjacent pixels.

11.2.6 2D S-Type Membership Function

This section presents a two dimensional S-type membership function that repre-
sents fuzzy bright image plane assuming higher gray value corresponds to object
region. The 2D S-type membership function reported in [28] assigns a composite
membership value to a pair of adjacent pixels as follows: For a particular threshold
b,

1. (b, b) is the most ambiguous point, that is, the boundary between object and
background. Therefore, its membership value for the fuzzy bright image plane is
0.5.

2. If one object pixel is followed by another object pixel, then its degree of belonging
to object region is greater than 0.5. The membership value increases with increase
in pixel intensity.

3. If one object pixel is followed by one background pixel or vice versa, the mem-
bership value is less than or equal to 0.5, depending on the deviation from the
boundary point (b, b).

4. If one background pixel is followed by another background pixel, then its degree
of belonging to object region is less than 0.5. The membership value decreases
with decrease of pixel intensity.

Instead of using fixed bandwidth (ηb), the parameters of S-type membership
function are taken as follows [38]:
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b =

q⎠

i=p

xi · h(xi )

q⎠

i=p

h(xi )

; (11.12)

ηb = max{|b − (xi )min|, |b − (xi )max|}; (11.13)

c = b + ηb; (11.14)

a = b − ηb; (11.15)

where h(xi ) denotes the image histogram, and x p and xq are the limits of the subset
being considered. The quantities (xi )min and (xi )max represent the minimum and
maximum gray levels in the current set for which h((xi )min) ⊂= 0 and h((xi )max) ⊂= 0,
respectively. Basically, the crossover point b is the mean gray level value of the
interval [x p, xq ]. With the function parameters computed in this way, the S-type
membership function adjusts its shape as a function of the set elements.

11.3 Thresholding Algorithm

The FMWCM method, proposed by Maji et al. [13, 14] for segmentation of brain
MR images, consists of three phases, namely,

1. modification of co-occurrence matrix;
2. measure of ambiguity for each gray level xi ; and
3. measure of strength of ambiguity.

Each of the three phases is elaborated next one by one.

11.3.1 Modification of Co-Occurrence Matrix

In general, for a given image consisting of object on a background, the object and
background each have a unimodal gray level population. The gray levels of adjacent
points interior to the object, or to the background, are highly correlated, while across
the edges at which object and background meet, adjacent points differ significantly
in gray level. If an image satisfies these conditions, its gray level histogram will
be primarily a mixture of two unimodal histograms corresponding to the object
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and background populations, respectively. If the means of these populations are
sufficiently far apart, their standard deviations are sufficiently small, and they are
comparable in size, the image histogram will be bimodal.

In medical imaging, the histogram of the given image is in general unimodal. One
side of the peak may display a shoulder or slope change, or one side may be less
steep than the other, reflecting the presence of two peaks that are close together or
that differ greatly in height. The histogram may also contain a third, usually smaller,
population corresponding to points on the object-background border. These points
have gray levels intermediate between those of the object and background; their
presence raises the level of the valley floor between the two peaks, or if the peaks
are already close together, makes it harder to detect the fact that they are not a single
peak.

As the histogram peaks are close together and very unequal in size, it may be
difficult to detect the valley between them. This chapter presents a method of pro-
ducing a transformed co-occurrence matrix in which the valley is deeper and is thus
easier to detect. In determining how each point of the image should contribute to the
transformed co-occurrence matrix, the FMWCM method takes into account the rate
of change of gray level at the point, as well as the point’s gray level (edge value);
that is, the maximum of differences of average gray levels in pairs of horizontally
and vertically adjacent 2-by-2 neighborhoods [41]. If η is the edge value at a given
point, then

η = 1

4
max{|xm−1,n + xm−1,n+1 + xm,n + xm,n+1 − xm+1,n − xm+1,n+1

− xm+2,n − xm+2,n+1|, |xm,n−1 + xm,n + xm+1,n−1

+ xm+1,n − xm,n+1 − xm,n+2 − xm+1,n+1 − xm+1,n+2|}. (11.16)

According to the image model, points interior to the object and background should
generally have low edge values, since they are highly correlated with their neighbors,
while those on the object-background border should have high edge values. Hence,
if we produce a co-occurrence matrix of the gray levels of points having low edge
values only, the peaks should remain essentially same, since they correspond to
interior points, but valley should become deeper, since the intermediate gray level
points on the object-background border have been eliminated.

More generally, we can compute a weighted co-occurrence matrix in which points
having low edge values are counted heavily, while points having high values are
counted less heavily. If |η| is the edge value at a given point, then (11.5) becomes

ti j =
⎠

a∈X
b∈a8

ε

(1 + |η|2) . (11.17)

This gives full weight, that is 1, to points having zero edge value and negligible
weight to high edge value points.
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11.3.2 Measure of Ambiguity

The aim of the FMWCM method is to threshold the gray level histogram by splitting
the image histogram into multiple crisp subsets using a second order fuzzy measure
such as fuzzy correlation, fuzzy entropy, or index of fuzziness. First, let us define two
linguistic variables {dark, bright} modeled by two fuzzy subsets of X , denoted by
A and B, respectively. The fuzzy subsets A and B are associated with the histogram
intervals [xmin, x p] and [xq , xmax], respectively, where x p and xq are the final and
initial gray level limits for these subsets, and xmin and xmax are the lowest and highest
gray levels of the image, respectively. Then, the ratio of the cardinalities of two fuzzy
subsets A and B is given by

α = n A

nB
= |{xmin, xmin+1, · · · , x p−1, x p}|

|{xq , xq+1, · · · , xmax−1, xmax}| . (11.18)

Next, we calculate FA(xmin : x p) and FB(xq : xmax), where FA(xmin : x p) is
the second order fuzzy measure of fuzzy subset A and its two-tone version; and
FB(xq : xmax) is the second order fuzzy measure of fuzzy subset B and its two-tone
version using the weighted co-occurrence matrix. Since the key of the FMWCM
method is the comparison of fuzzy measures, we have to normalize those measures.
This is done by computing a normalizing factor ω according to the following relation:

ω = FA(xmin : x p)

FB(xq : xmax)
. (11.19)

To obtain the segmented version of the gray level histogram, we add to each of the
subsets A and B a gray level xi picked up from the fuzzy region and form two fuzzy
subsets Á and B́ which are associated with the histogram intervals [xmin, xi ] and
[xi , xmax], where x p < xi < xq . Then, we calculate FÁ(xmin : xi ) and FB́(xi : xmax).
The ambiguity of the gray value of xi is calculated as follows:

A (xi ) = 1 − |FÁ(xmin : xi ) − ω · FB́(xi : xmax)|
(1 + ω)

. (11.20)

Finally, applying this procedure for all gray levels of the fuzzy region, we calculate
the ambiguity of each gray level. The process is started with xi = x p + 1, and xi is
incremented one by one until xi > xq . The ratio of the cardinalities of two modified
fuzzy subsets Á and B́ at each iteration is being modified accordingly

ά = n Á

n B́

= |{xmin, xmin+1, · · · , xi−1, xi }|
|{xi , xi+1, · · · , xmax−1, xmax}| > α. (11.21)

Unlike [38], in the FMWCM method as xi is incremented one by one, the value
of ά also increases. Figure 11.1 represents the ambiguity A (xi ) of the gray level xi
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Fig. 11.1 Ambiguity A of
the gray level xi as a function
of fuzzy measures of two
fuzzy subsets for ω = 1.0
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as a function of fuzzy measures of two modified fuzzy subsets Á and B́ for ω = 1.0.
In other words, we calculate the ambiguity by observing how the introduction of a
gray level xi of the fuzzy region affects the similarity measure among gray levels in
each of the modified fuzzy subsets Á and B́. The ambiguity A is maximum for the
gray level xi in which the fuzzy measures of two modified fuzzy subsets are equal.
The threshold level (T ) for segmentation corresponds to gray value with maximum
ambiguity A . That is,

A (T ) = max arg{A (xi )}; ⊆ x p < xi < xq . (11.22)

To find out multiple thresholds corresponding to multiple segments, the concept
of strength of ambiguity is reported next.

11.3.3 Strength of Ambiguity

In this subsection, the strength of ambiguity (S ) of each gray level xi is calculated
as follows. Let, the difference of the gray levels between the current gray level xi and
the gray level x j , i.e., the closest gray level on the left-hand side whose ambiguity
value is larger than or equal to the current ambiguity value is given by

ηL(xi ) =
⎨

xi − x j if A (x j ) ∅ A (xi )

0 otherwise.
(11.23)

Similarly, the difference of the gray levels between the current gray level xi and the
gray level xk , i.e., the closest gray level on the right-hand side whose ambiguity value
is larger than or equal to current ambiguity value is given by
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Fig. 11.2 a Image I-733; b Histogram of given image; and c Correlations of two modified fuzzy
subsets

ηR(xi ) =
⎨

xk − xi if A (xk) ∅ A (xi )

0 otherwise.
(11.24)

The strength of ambiguity of the gray level xi is given by

S (xi ) = D(xi ) × ηA (xi ) (11.25)

whereD(xi ) is the absolute distance of the gray level xi and ηA (xi ) is the difference
of ambiguities of gray levels xi and xm , which is given by

ηA (xi ) = A (xi ) − A (xm) (11.26)
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Fig. 11.3 a Measure of ambiguity; b Strength of ambiguity; and c Segmented image obtained
using the FMWCM

1. If ηL(xi ) = 0 and ηR(xi ) = 0, it means that the current gray level xi has the
highest ambiguity value; then

D(xi ) = max(xi − xmin, xmax − xi ) (11.27)

and xm is the gray level with smallest ambiguity value between xmin and xmax.
2. If ηL(xi ) ⊂= 0 and ηR(xi ) = 0, then

D(xi ) = ηL(xi ) (11.28)

and xm is the gray level with smallest ambiguity value between xi and x j .
3. If ηR(xi ) ⊂= 0 and ηL(xi ) = 0, then
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Fig. 11.4 a Image I-734; b Histogram of given image; and c Correlations of two modified fuzzy
subsets

D(xi ) = ηR(xi ) (11.29)

and xm is the gray level with smallest ambiguity value between xi and xk .
4. If ηL(xi ) ⊂= 0 and ηR(xi ) ⊂= 0, then

D(xi ) = min(ηL(xi ),ηR(xi )), (11.30)

and xm is the gray level with smallest ambiguity value between xi and x p, where
x p is the adjacent peak location of the current gray level xi , where

x p =
⎨

xk if A (x j ) ∅ A (xk)

x j otherwise.
(11.31)
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Fig. 11.5 a Measure of ambiguity; b Strength of ambiguity; and c Segmented image obtained
using the FMWCM

The thresholds are determined according to the strengths of ambiguity of the gray
levels using a nearest mean classifier [39]. If the strength of ambiguity of gray level
xt is the strongest, then xt is declared to be the first threshold. In order to find other
thresholds, S (xt ) and those strengths of ambiguity which are less than S (xt )/10
are removed. Then, the mean (M) of strengths of ambiguity is calculated. Finally,
the minimum mean distance is calculated as follows:

D(xs) = min |S (xi ) − M |; x p < xi < xq (11.32)

where xs is the location that has the minimum distance with M . The strengths that
are larger than or equal to S (xs) are also declared to be thresholds.
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Fig. 11.6 a Image I-761; b Histogram of given image; and c Correlations of two modified fuzzy
subsets

11.4 Experimental Results

In this section, the results of different thresholding methods for segmentation of
brain MR images are presented. Above 100 MR images with different size and 16 bit
gray levels are tested with different methods. All the methods are implemented in C
language and run in LINUX environment having machine configuration Pentium IV,
3.2 GHz, 1 MB cache, and 1 GB RAM. All the medical images are brain MR images,
which are collected from Advanced Medicare and Research Institute, Kolkata, India.

From (11.18), it is seen that the choice of n A, nB , and α is critical. If n A and nB

increase, the computational time decreases, resulting in nonacceptable segmentation.
However, extensive experimentation shows that the typical value of α is 1.0 and
n A = nB = 10 for obtaining acceptable segmentation.
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Fig. 11.7 a Measure of ambiguity; b Strength of ambiguity; and c Segmented image obtained
using the FMWCM

The FMWCM method is explained using Figs. 11.2–11.7. Figures 11.2, 11.4, and
11.6 show three brain MR images (I-733, I-734, and I-761) and their gray value
histograms, along with the second order fuzzy correlations CÁ(xmin : xi ) and

CB́(xi : xmax) of two modified fuzzy subsets Á and B́ with respect to the gray
level xi of the fuzzy region. The values of ω and α are also given in these figures. In
Figs. 11.3, 11.5, and 11.7a and b depict the ambiguity and strength of ambiguity of
each gray level xi . The thresholds are determined according to the strength of ambi-
guity. Finally, Figs. 11.3c, 11.5c, and 11.7c show the segmented images obtained
using the FMWCM method. The multiple thresholds obtained using three fuzzy
measures such as fuzzy correlation (2-DFC), fuzzy entropy (2-DEntropy), and index
of fuzziness (2-DIOF) for these three images (I-733, I-734, and I-761) are reported
in Table 11.1. The results reported in Table 11.1 establish the fact that the FMWCM
method is independent of the fuzzy measures used such as fuzzy correlation, fuzzy
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(a) (b) (c) (d) (e) (f) (g)

Fig. 11.8 Brain MR images (top to bottom: I-629, I-647, I-677, I-704, I-734) along with the
segmented images a Image ; b FMWCM ; c IOAC ; d 1-DFC ;e 2-DFC ; f Entropy and g Otsu

Table 11.1 Results on I-733, I-734, and I-761

Image Size Gray Gray value Thresholds
Index (M × N ) Level Maximum Minimum 2-DFC 2-DEntropy 2-DIOF

I-733 512 × 360 843 842 0 280, 746 278, 743 280, 746
I-734 512 × 360 730 729 0 138, 642 137, 640 134, 640
I-761 512 × 360 540 2244 1705 1929, 2067 1930, 2064 1930, 2067

entropy, and index of fuzziness. In all these cases, the number of thresholds are same
and the threshold values are very close to each other.

The comparative segmentation results of different thresholding techniques are
presented next. Table 11.2 represents the description of some brain MR images.
Figures 11.8 and 11.9 show some brain MR images, along with the segmented images
obtained using the FMWCM method, index of area coverage (IOAC) [26], 1D fuzzy
correlation (1-DFC) [27], 2D fuzzy correlation (2-DFC) [27], conditional entropy
[21–23], and the method proposed by Otsu [20]. While Fig. 11.8 represents the results
for I-629, I-647, I-677, I-704, and I-734, Fig. 11.9 depicts the results of I-760, I-761,
I-763, I-768, and I-788. In Table 11.2, the details of these brain MR images are
provided and Table 11.3 shows the values of the thresholds obtained using different
methods. Unlike existing thresholding methods, the FMWCM scheme can detect
multiple segments of the objects if there exists. All the results reported in this chapter
clearly establish the fact that the FMWCM method is robust in segmenting brain MR
images compared to existing thresholding methods. None of the existing thresholding
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(a) (b) (c) (d) (e) (f) (g)

Fig. 11.9 Brain MR images (top to bottom: I-760, I-761, I-763, I-768, I-788) along with the
segmented images a Image ; b FMWCM ; c IOAC ; d 1-DFC ;e 2-DFC ; f Entropy and g Otsu

Table 11.2 Description of some brain MR images

Image Size Gray Gray value
Index (M × N ) Level Maximum Minimum

I-629 256 × 256 115 114 0
I-647 256 × 256 515 514 0
I-677 512 × 512 375 374 0
I-704 640 × 448 1378 1377 0
I-734 512 × 360 730 729 0
I-760 512 × 360 557 2239 1683
I-761 512 × 360 540 2244 1705
I-763 512 × 360 509 2217 1709
I-768 512 × 360 501 2188 1688
I-788 512 × 360 593 2242 1650

methods could generate as consistently good segments as the FMWCM algorithm.
Also, some of the existing methods have failed to detect the object regions.
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Table 11.3 Threshold values for different algorithms

Image Threshold values
Index FMWCM Otsu Entropy 1-DFC 2-DFC IOAC

I-629 13, 62, 103 32 25 58 55 25
I-647 37, 81, 342 94 150 12 18 20
I-677 70, 216, 313 82 216 350 342 31
I-704 97, 297, 926 266 264 924 922 70
I-734 138, 642 207 240 226 238 197
I-760 1777, 2064 1842 1904 1958 1952 2065
I-761 1929, 2067 2045 1928 1965 1954 2070
I-763 1946, 2069 1822 1924 1959 1949 2104
I-768 1896, 2065 2134 1933 1948 1948 2120
I-788 1905, 2069 1841 1928 1935 1951 2154

11.5 Conclusion and Discussion

The problem of segmentation of brain MR images has been addressed in this chapter.
The importance of histogram thresholding for MR image segmentation problem and
a brief survey on different existing thresholding methods have also been reported,
along with their merits and demerits. Finally, a robust thresholding technique based
on the fuzzy set theory is presented for segmentation of brain MR images. The
histogram threshold is determined according to the similarity between gray levels.
The fuzzy framework is used to obtain a mathematical model of such a concept. The
edge information of each pixel location is incorporated to modify the co-occurrence
matrix. The threshold determined in this way avoids local minima. This characteristic
represents an attractive property of the FMWCM method. From the experimental
results, it is seen that the FMWCM algorithm produces segmented images more
promising than do the conventional methods.
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Symbols
B.632+ error, 173, 174, 179
F-test, 228
Iα-information, 136
Mα-information, 137
R2 statistic, 116
V -information, 136
α index, 83
χα-information, 137
δ-bicluster, 258
f -divergence measures, 135
f -information measures, 135, 136
k-means, see hard c-means, 227
p-value, 217
t-test, 228

A
Acceptors, 46
Accuracy, 86
Alignment, 6
Amino acid mutation matrix, 70
Annotation ratio, 220
Apoptosis, 88
Apparent error, 172, 174, 179
Approximation space, 108
Artificial neural network, 20, 46
Attribute clustering, 225

B
Bicluster, 256
Biclustering, 253, 254

base of bicluster, 257
base of condition, 257
base of gene, 257
coherent bicluster, 261

degree of overlapping, 268
mean squared residue, 258
residue, 257
row variance, 258

Bio-basis function, 68, 69, 71
Bio-basis strings, 68
Bioinformatics, 1
Biological dissimilarity, 75
Biological process, 217
Bonferroni multiple-hypothesis

correction, 217
Bootstrap error, 174, 179

C
Cellular component, 217
Class separability, 84
Class separability index, 144, 237

between class scatter matrix, 144
within class scatter matrix, 144

Classification, 19
Cluster frequency, 220
Cluster separability, 84
Clustering, 19, 197, 253

density-based clustering, 205
DHC, 205

graph theoretical approach, 203
CAST, 204
CLICK, 204

hierarchical clustering, 204
model based clustering, 204
partitional clustering, 198

Co-occurrence matrix, 280
Codon, 4
Coefficient of determination, 116
Compactness, 83
Computer aided drug design
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CADD, 105
Computer-aided drug design, 105
Conditional entropy, 230

D
Data acquisition, 17
Data preprocessing, 17
Davies-Bouldin index, 206
Decision tree, 46
Degree of resemblance, 69, 81

DOR, 81
Deoxyribonucleic acid, 3
Dijkstra’s algorithm, 157
Dimensionality reduction, see feature

selection
Disease genes, 155
Distributed encoding, 68
DNA, 1, 3
DNA structure prediction, 9
Donors, 46
Drug design, 105
Dunn index, 207

E
Eisen plot, 216
Entropy, 230
Equivalence classes, 109
Equivalence relation, 109
Euclidean distance, 229
Exons, 7, 45, 51
Expectation maximization algorithm, 205,

see model-based clustering
EM algorithm, 205

F
False discovery rate, 249
Feature extraction, 17, 19
Feature selection, 17, 18, 106, 131, 225

embedded method, 18, 107
filter approach, 18, 107
fuzzy-rough sets, 126
multivariate filter method, 132
neighborhood rough sets, 126
univariate filter method, 132
wrapper approach, 18, 107

Fisher ratio, 78
Fisher’s exact test, 162
Functional site identification, 7
Fuzzy c-means, 198, 201, 258
Fuzzy clustering, 201
Fuzzy correlation, 281

Fuzzy entropy, 281
Fuzzy equivalence classes, 177
Fuzzy membership, 176, 201

possibilistic membership, 202
probabilistic membership, 201

Fuzzy pattern recognition, 21
Fuzzy set, 20, 176, 279

fuzzy singleton, 176
membership function, 176, 280, 282

Fuzzy-rough sets, 126

G
Gene, 4
Gene clustering, 11, 197, 200, 227

supervised, 227
unsupervised, 227

Gene expression, 4
Gene ontology, 217, 249
Gene ontology Term Finder, 217, 249
Gene regulatory network, 14
Gene selection, 13, 131, 225
Gene selection criteria, 133
Genetic algorithm, 20
Global alignment, 6

H
Hard c-means, 198, 200
Hierarchical clustering, 227
Histogram, 278
Homology score, 70
Hypergeometric distribution, 217

I
Index of fuzziness, 282
Indiscernibility relation, 109
Information granules, 109
Information system, 109
Introns, 7, 45, 51

J
Jackknife test, 158

K
K-nearest neighbor rule, 139

K-NN, 139

L
Learning
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supervised, 19
unsupervised, 19

Local alignment, 6

M
Max relevance-max significance

criterion, 112, 157
MRMS, 112, 157

Measure of ambiguity, 285
Medical imaging, 277
Messenger RNA, 4

mRNA, 4
Microarray data, 11, 131, 197
MicroRNA, 5, 171

miRNA, 5, 171
MIMRMS method, 156
Min redundancy-max relevance

criterion, 132, 156, 172
mRMR, 132, 156

MiRNA clustering, 12
MiRNA selection, 13
Model-based clustering, 204
Molecular descriptors, 105
Molecular design, 10
Molecular docking, 10
Molecular function, 217
Multiple alignment, 7
Mutual information, 229, 230

N
Naive Bayes classifier, 140

NB, 140
Nearest mean classifier, 80, 290
Neighborhood rough sets, 126
Neural network tree, 46, 47
NNTree, 47

diversity, 50
figure of merit, 51
splitting criterion, 50
stopping criterion, 50
uniformity of distribution, 50

No-information error, 174, 180
Non-gapped pair-wise alignment, 70
Novel bio-basis function, 69, 76
Nucleic acids, 3
Nucleotides, 3

adenine, 4
cytosine, 4
guanine, 4
thymine, 3
uracil, 5

O
Object data, 17
Open reading frame, 7

P
Pairwise alignment, 6
Pattern recognition, 1, 15, 16
Pearson’s correlation coefficient, 210, 229
Phylogenetic tree, 11
Possibilistic c-means, 199, 202
Possibilistic biclustering, 255, 259

base of bicluster, 261
base of condition, 261
base of gene, 261
fuzzy mean squared residue, 260
PBC, 255, 259

Possibilistic clustering, 258
Protein, 1, 5
Protein coding genes, 7
Protein coding measure, 57

codon usage measure, 58
diamino acid usage measure, 58
dicodon measure, 57
Fourier measure, 58
hexamer-1 measure, 57
hexamer-2 measure, 57
open reading frame measure, 57
position asymmetry measure, 58
run measure, 57

Protein coding region, 45, 53
Protein functional sites, 8, 67
Protein structure prediction, 9
Protein subsequence analysis, 67
Protein-protein interaction, 156

PPI, 156

Q
Quantitative structure activity

relationship, 105
QSAR, 105

Quick reduct, 118

R
Redundancy, 231
Relational data, 17
Relevance, 230
Renyi distance, 137
Ribonucleic acid, 3
RNA, 1, 5

coding RNA, 5
noncoding RNA, 5
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transfer RNA, 4
RNA structure prediction, 9
Rough c-means, 199
Rough clustering, 199
Rough sets, 21, 107, 109

boundary set, 109
clustering, 199
decision table, 109
dependency, 109
discernibility matrix, 107
dynamic reduct, 108
feature selection, 107
lower approximation, 109
positive region, 109
quick reduct algorithm, 107
RSMRMS, 108, 113
significance, 111
upper approximation, 109
variable precision rough sets, 107

Rough–fuzzy c-means, 199, 207
Rough–fuzzy clustering, 207
Rough–fuzzy-possibilistic c-means, 199
Rough-possibilistic c-means, 199
RSMRMS method, 113, 173

S
Segmentation, 277

FMWCM, 278
Self organizing map, 203, 227

SOM, 203
Sensitivity, 86
Sequence alignment, 69
Significance, 231
Significance analysis of microarrays, 132,

172
Silhouette index, 205
Similarity, 231
Soft computing, 2, 20, 21

fuzzy-genetic, 22
neuro-fuzzy, 21
neuro-fuzzy-genetic, 22
neuro-genetic, 22
neuro-rough, 21
rough-fuzzy, 21

rough-genetic, 22
rough-neuro-fuzzy, 22
rough-neuro-genetic, 22

Splice junction, 51
Splice site, 45
Strength of ambiguity, 286
STRING, 159
Supervised attribute clustering, 226

coarse cluster, 233
finer cluster, 233
gene shaving, 226, 228
MISAC, 226, 229
partial least squares, 228
supervised gene clustering, 226
tree harvesting, 226, 227
Wilcoxon test, 228

Supervised gene clustering, 229
Supervised similarity, 229, 231
Support vector machine, 86, 116

SVM, 116
Support vector regression method, 115

T
Thresholding, 278
Transcription, 4
Translation, 4
True negative fraction, 86
True positive fraction, 86

U
Unsupervised similarity, 226

V
Volume of bicluster, 256

W
Weighted co-occurrence matrix, 283

Z
Zone of influence, 69, 203
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