
Lecture Notes in Electrical Engineering

Volume 118

For further volumes:
http://www.springer.com/series/7818

http://www.springer.com/series/7818

Ahmed Abdelgawad l Magdy Bayoumi

Resource-Aware Data Fusion
Algorithms for Wireless
Sensor Networks

Ahmed Abdelgawad
54 Lavoie Drive
Essex Junction

VT 05452, USA
ama1916@cacs.louisiana.edu

Magdy Bayoumi
University of Louisiana
at Lafayette

Lafayette, Louisiana, USA
mab@cacs.louisiana.edu

ISSN 1876-1100 e-ISSN 1876-1119
ISBN 978-1-4614-1349-3 e-ISBN 978-1-4614-1350-9
DOI 10.1007/978-1-4614-1350-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012930002

Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not they
are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

WSN (Wireless Sensors Networks) is intended to be deployed in environments

where sensors can be exposed to circumstances that might interfere with measure-

ments provided. Such circumstances include strong variations of pressure, temper-

ature, radiation, and electromagnetic noise. Thus, measurements may be imprecise

in such scenarios. Data fusion is used to overcome sensor failures, technological

limitations, and spatial and temporal coverage problems.

Not many books addressed the real life problem in WSN applications. In this

book, we are proposing real implementation of data fusion algorithms; taking into

consideration the resource constrains of WSN. In addition, we are introducing some

real applications, as case study, in the industry.

The data fusion can be implemented in both centralized and distributed systems.

In the centralized fusion case, we propose four algorithms to be implemented in

WSN. As a case study, we propose a remote monitoring framework for sand

production in pipelines. Our goal is to introduce a reliable and accurate sand

monitoring system. The framework combines two modules: a Wireless Sensor

Data Acquisition (WSDA) module and a Central Data Fusion (CDF) module.

The CDF module is implemented using four different proposed fusion methods;

Fuzzy Art (FA), Maximum Likelihood Estimator (MLE), Moving Average Filter

(MAF), and Kalman Filter (KF). All the fusion methods are evaluated throughout

simulation and experimental results. The results show that FA, MLE and MAF

methods are very optimistic, to be implemented in WSN, but Kalman filter algo-

rithm does not lend itself for easy implementation; this is because it involves many

matrix multiplications, divisions, and inversions. The computational complexity of

the centralized KF is not scalable in terms of the network size. Thus, we propose to

implement the Kalman filter in a distributed fashion. The proposed DKF is based on

a fast polynomial filter to accelerate distributed average consensus. The idea is to

apply a polynomial filter on the network matrix that will shape its spectrum in order

to increase the convergence rate by minimizing its second largest eigenvalue.

Fast convergence can contribute to significant energy savings. In order to imple-

ment the DKF in WSN, more power saving is needed. Since multiplication is the

v

atomic operation of Kalman filter, saving power at the multiplication level can

significantly impact the energy consumption of the DKF. This work also proposes a

novel light-weight and low-power multiplication algorithm. Experimental results

show that the TelosB mote can run DKF with up to seven neighbors.

This book is based on Abdelgawad PHD dissertation. The work presented was

carried out through a large scale research project titled UCoMS (Ubiquitous

Computing and Monitoring System) supported by DoE and State of Louisiana.

We appreciate the support, the project team, and the working environment of

UCoMS. The VLSI group infrastructure, stimulating and challenging environment,

and the weakly presentation and discussion have been an asset to the presented work.

Abdelgawad offers all praise to the almighty God, Allah, the Most Gracious, and

the Most Merciful for his blessings bestowed upon him and for giving him the

strength to achieve what he has accomplished in his life. Abdelgawad dedicates this

book to his family which has played an important role in his life and study. Their

support and encouragement has made this book a reality. He would like to thank his

mother for her prayers, love, and faith in him. Ahmed’s deepest appreciation goes to

his lovely wife, Dalia Aboelfadl, his precious daughter, Salma, his handsome son,

Mohamed, and his little son, Ali for their unlimited encouragement, sacrifices, and

for being by his side.

Bayoumi would like to dedicate this book to his smart, energetic, and dedicated

students.

Lafayette, Louisiana Ahmed Abdelgawad

Magdy Bayoumi

vi Preface

Contents

1 Introduction . 1

1.1 Wireless Sensor Network Applications. 3

1.2 Sensor Node Evaluation Metrics . 6

1.3 Sensor Network Architecture . 9

1.4 Wireless Sensor Network Challenges . 12

Bibliography . 14

2 Data Fusion in WSN . 17

2.1 Introduction . 17

2.2 Information Fusion, Sensor Fusion, and Data Fusion 19

2.3 Data Fusion Classification . 21

2.3.1 Classification Based on Relationship

Among the Sources . 22

2.3.2 Classification Based on Levels of Abstraction 23

2.3.3 Classification Based on Input and Output . 24

2.4 Data Fusion: Techniques, Methods, and Algorithms. 24

2.4.1 Inference . 24

2.4.2 Estimation . 26

2.5 Data Fusion: Architectures and Models . 27

2.5.1 Data-Based Models . 27

2.5.2 Activity-Based Models. 29

2.5.3 Role-Based Model . 31

Bibliography . 34

3 Proposed Centralized Data Fusion Algorithms . 37

3.1 Introduction . 37

3.2 Sand Measuring in Pipelines. 38

3.2.1 The Intrusive Devices. 39

3.2.2 The Non-intrusive Devices . 39

vii

3.3 Proposed Remote Measuring for Sand in Pipelines 40

3.3.1 Sensors Used in the Proposed System . 40

3.3.2 WSDA Framework. 42

3.3.3 Proposed Centralized Fusion Methods . 50

3.4 Simulation and Experimental Results . 54

Bibliography . 56

4 Kalman Filter . 59

4.1 Wireless Sensor Network Representation . 60

4.2 Introduction to Graph Theory. 61

4.3 Graphs and Their Plane Figures . 62

4.3.1 Direct Graph . 62

4.3.2 Undirected Graph . 62

4.3.3 Network Representations . 63

4.3.4 Node Degree . 63

4.3.5 Distance Matrix . 63

4.3.6 Incidence Matrix . 64

4.3.7 Adjacency Matrix . 64

4.3.8 Degree Matrix . 64

4.3.9 Laplacian Matrix . 64

4.4 Central Kalman Filter in Wireless Sensor Network 65

4.5 Distributed Kalman Filter (DKF) Literature Work. 67

4.6 Olfati-Saber’s Distributed Kalman Filter . 68

4.7 Consensus Filters. 69

4.7.1 Information Consensus in Networked Systems. 70

4.7.2 Distributed Kalman Filter with Embedded

Consensus Filters. 71

Bibliography . 75

5 Proposed Distributed Kalman Filter . 77

5.1 Distributed Kalman Filter (DKF) in WSN and Related Work 77

5.2 Network Representations . 79

5.3 Asymptotic Average Consensus with Polynomial Filter 80

5.4 Proposed Distributed Kalman Filter . 81

5.5 Simulation Results . 85

Bibliography . 89

6 Proposed Multiplication Algorithm for DKF. 91

6.1 Introduction . 91

6.2 Overview of Multiplication Algorithms . 92

6.3 Proposed Method. 94

6.4 Simulation Result . 94

6.5 Case Study . 95

6.6 Counter Example Power Measurement . 97

Bibliography . 99

viii Contents

7 Experimental Results for the Proposed DKF. 101

7.1 Test Bed . 101

7.2 Experimental Results . 102

Bibliography . 104

Index . 105

Contents ix

List of Figures

Fig. 1.1 Sensor network architecture . 2

Fig. 1.2 Sensor node architecture . 9

Fig. 2.1 The relationship among the fusion terms: multisensor/sensor

fusion, multisensor integration, data aggregation, information

fusion and data fusion. 21

Fig. 2.2 Types of data fusion based on the relationship

among the sources . 22

Fig. 2.3 The JDL model. 28

Fig. 2.4 The DFD model . 29

Fig. 2.5 The OODA loop . 30

Fig. 2.6 The intelligence cycle. 30

Fig. 2.7 Omnibus model . 31

Fig. 2.8 The object-oriented model for data fusion . 32

Fig. 2.9 The Frankel-Bedworth architecture. 33

Fig. 3.1 (a) Intrusive device. (b) Non-intrusive devices. 39

Fig. 3.2 Proposed platform. 40

Fig. 3.3 Senaco AS100 sensor . 41

Fig. 3.4 The MC-II flow analyzer . 42

Fig. 3.5 EJA110A differential pressure. 42

Fig. 3.6 WSDA framework . 43

Fig. 3.7 ReT component design. 45

Fig. 3.8 CoD component design . 46

Fig. 3.9 Voltage amplification diagram. 47

Fig. 3.10 Voltage divider diagram . 47

Fig. 3.11 Current-to-voltage converting circuit . 48

Fig. 3.12 Voltage-to-current converting circuit . 49

Fig. 3.13 Sand rate module. 49

Fig. 3.14 FuzzyART decision tree . 51

Fig. 3.15 Moving window of n data . 54

Fig. 3.16 The testbed platform . 55

xi

Fig. 4.1 The town of Konigsberg and its seven bridges . 61

Fig. 4.2 The graph G with VG ¼ {v1, v2, v3, v4, v5, v6}
and EG ¼ {v1v2, v1v3, v2v3, v2v4, v5v6} . 62

Fig. 4.3 The direct graph . 63

Fig. 4.4 The undirected graph . 63

Fig. 4.5 The Kalman filter cycle . 67

Fig. 4.6 Schematic representation of the m-Kalman filter 74

Fig. 5.1 Nodes representation of distributed Kalman filter

for m neighbors. 85

Fig. 5.2 Convergence time for different network sizes . 86

Fig. 5.3 Network topology for n ¼ 100 sensor nodes . 86

Fig. 5.4 Estimation obtained through the CKF (xch) and the real

signal (x). 87

Fig. 5.5 Estimation obtained through DKF (node 5)

and the real signal (x) . 88

Fig. 5.6 Average MSE for DKF versus MSE for CKF . 88

Fig. 5.7 Average MSE for proposed and Olfati’s DKF algorithm. 89

Fig. 6.1 Absolute average multiplication error for both methods 95

Fig. 6.2 Box-and-whisker diagram of the proposed

multiplication error . 96

Fig. 6.3 FIR filter response using the Horner and the proposed

multiplication algorithms. (a) Magnitude response,

(b) phase response . 97

Fig. 6.4 IIR filter response using the Horner and the proposed

multiplication algorithms. (a) Magnitude response,

(b) phase response . 98

Fig. 6.5 Current, speed, and error both methods . 99

Fig. 7.1 Power measurement with shunt resistor . 102

Fig. 7.2 Power traces for DKF using proposed and Horner

multiplication methods . 103

Fig. 7.3 Energy consumption of the proposed DKF and Olfatis’ DKF. 104

xii List of Figures

List of Tables

Table 3.1 Average percentage error for scenario I . 55

Table 3.2 Average percentage error for scenario II . 55

Table 3.3 Comparison between fusion methods for scenario I 56

Table 3.4 Comparison betweenmethods for scenario II . 56

Table 6.1 Comparison of speed, accuracy and memory requirements

for both methods . 96

Table 7.1 Energy and time for the proposed polynomial filter. 103

xiii

List of Abbreviations

ADC Analog-to-digital converter

ASIC Application specific integrated circuits

CCA Clear channel assessment

CDF Central data fusion

CKF Central Kalman filters

CMOS Complementary metal–oxide–semiconductor

CoD Conditioning and digitizing

CPU Central processing unit

CSMA Carrier sense multiple access

CTS Clear to send

DC Direct current

DEM Decentralized expectation maximization

DKF Distributer Kalman filter

DoD Department of Defense

DP Differential pressure

DPM Dynamic power management

DSP Digital signal processors

DVS Dynamic voltage scaling

EEPROM Electrically erasable programmable read-only memory

FA Fuzzy art

FIR Finite impulse response

FPGA Field programmable gate array

GUI Graphical user interface

HCI Human computer interaction

I/O Input/output

IIR Impulse response filter

xv

IP Internet protocol

ISM Industrial scientific and medical

JDL Joint directors of laboratories

KCF Kalman-consensus filters

KF Kalman filter

LAN Local area network

LCD Liquid crystal display

LMI Linear matrix inequality

LPL Low power listening

MaC Management and control

MAC Medium access control

MAC Multiply accumulate unit

MAF Moving average filter

Max Maximum

MIMO Multiple-input and multiple-output

ML Maximum likelihood

MLE Maximum likelihood estimator

NiCd Nickel-cadmium

Nimh Nickel metal hydride

NiZn Nickel-zinc

NP Nondeterministic polynomial

P2P Peer-to-peer

QoS Quality of service

RAM Random-access memory

ReT Receiving and transmission

RF Radio frequency

RISC Reduced instruction set computing

RTS Request to send

SPI Serial peripheral interface

TCP Transmission control protocol

TDMA Time division multiple access

UAV Unmanned aerial vehicle

WSDA Wireless sensor data acquisition

WSN Wireless sensor network

xvi List of Abbreviations

Chapter 1

Introduction

Abstract AWireless Sensor Network (WSN) is a network comprised of numerous

small autonomous sensor nodes called motes. It combines a broad range of

networking, hardware, software, and programming methodologies. Each node is a

computer with attached sensors that can process and exchange sensed data, as well

as communicates wirelessly among them to complete various tasks. Sensors

attached to this node allow them to sense various phenomena within the surround-

ings.WSN has received momentous attention in recent years because of its titanic

potential in applications. In this chapter, we introduced many applications of WSN,

explained the sensor node evaluation metrics, brought in the sensor network

architecture, and finally we discussed the WSN’s challenges and constraints.

A Wireless Sensor Network (WSN) is a network comprised of numerous small

autonomous sensor nodes called motes. It combines a broad range of networking,

hardware, software, and programming methodologies. Each node is a computer

with attached sensors that can process and exchange sensed data, as well as

communicates wirelessly among them to complete various tasks. Sensors attached

to this node allow them to sense various phenomena within the surroundings.

Characteristics of a wireless sensor network include the capability to make autono-

mous actions based on surrounding observations. Motes need to be self-organizing,

self-regulated, self-repairing, and programmable. The mote technology is rather

constrained in order to provide a low-cost, reusable deployment into varying

environments. Although each node is able to deal with a variety of jobs, it has

many limitations as well. Memory capacity of a node is limited. Furthermore, most

of the nodes currently available in the market are battery-operated; hence they have

a limited life-time. These limitations are a major factor and must be addressed when

designing and implementing a WSN. As an example, a routing algorithm for WSN

must be memory and energy efficient. Since radio transmissions use a significant

amount of energy, researchers seek ways to reduce radio communication as much

as possible. However, when more information is stored and more computation is

done to reduce the communication costs, energy consumption of the processor and

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_1, # Springer Science+Business Media, LLC 2012

1

memory components are becoming an important issue. Design choices have to be

made, and these also depend on the intended application. Figure 1.1 shows the

sensor network architecture.

The power of wireless sensor networks lies in the capability to install large

numbers of tiny nodes that configure themselves. Usage scenarios for these devices

range from real-time tracking, to ubiquitous computing environments, to monitor-

ing of environmental conditions. While often referred to as wireless sensor

networks, they can also control actuators that extend control from cyberspace into

the world. The simplest application of wireless sensor network technology is to

monitor remote environments for low frequency data trends. For example, a

chemical plant could be simply monitored for leaks by hundreds of sensors that

automatically form a wireless interconnection network and instantly report the

detection of any chemical leaks. Unlike traditional wired systems, installation

costs would be minimal. Instead of having to install thousands of feet of wire

routed through protective conduit, installers simply have to place quarter-sized

devices [1].

In addition to radically reducing the installation costs, the wireless sensor

network has the ability to dynamically adjust with the changing of the

environments. Adjustment mechanisms can respond to changes in network

topologies or can cause the network to shift between radically different modes of

operation. For example, the same embedded network performing leak monitoring in

a chemical factory might be reconfigured into a network designed to localize the

source of a leak and track the flow of poisonous gases. The network could then

direct workers to the safest route for emergency evacuation.

Unlike traditional wireless devices, wireless sensor nodes do not need to

communicate directly with the nearest high-power control base station, but only

with their local peers. Instead of relying on a pre-deployed communications, each

individual sensor becomes part of the overall communications. Peer-to-peer net-

working protocols provide a mesh-like interconnect to transfer data between the

Internet

Remote
Controller

Sink

Fig. 1.1 Sensor network architecture

2 1 Introduction

thousands of tiny embedded devices in a multi-hop fashion. The flexible mesh

architectures envisioned animatedly adapt to support introduction of new nodes or

expand to cover a larger geographic area. As well, the system can automatically

adjust to compensate for node failures. The vision of mesh networking is based on

strength in numbers. Unlike cell phone schemes that deny service when too many

phones are active in a small area, the interconnection of a wireless sensor network

only grows faster as nodes are added. As long as there is enough density, a single

network of nodes can grow to cover limitless area. With each node having a

communication range of 150 ft and costing less that $1 a sensor network that

surrounded the equator of the earth will cost less than $1 M.

The wireless sensor network architecture includes both a hardware platform

and an operating system designed specifically to meet with the needs of wireless

sensor networks. TinyOS is a component-based operating system designed to run

in resource constrained wireless devices. It provides an extremely efficient com-

munication primitives and fine-grained concurrency mechanisms to application

and protocol developers. A key concept in TinyOS is the use of event-based

programming in conjunction with a highly professional component model.

TinyOS enables system-wide optimization by providing a tense coupling between

hardware and software, as well as flexible mechanisms for building application-

specific modules. TinyOS has been designed to run on a generalized architecture,

where a single Central Processing Unit (CPU) is shared between application and

protocol processing.

1.1 Wireless Sensor Network Applications

The applications for WSNs are varied, typically involving some kind of monitoring,

tracking, or controlling. Specific applications include habitat monitoring, object

tracking, nuclear reactor control, fire detection, and traffic monitoring. In a typical

application, a WSN is scattered in a region where it is meant to collect data through

its sensor nodes [2].

1. Area monitoring: Area monitoring is a regular application of WSNs. In area

monitoring, the WSN is deployed over an area where some phenomenon is to be

monitored. For example, a large quantity of sensor nodes could be deployed over

a battlefield to sense enemy intrusion instead of using landmines. When the

sensors sense the event being monitored, i.e., pressure, light, electro-magnetic

field, sound, vibration, heat, etc., the event needs to be reported to one of the base

stations, which can do appropriate action, e.g., send a message on the internet or

to a satellite. Depending on the application, different objective functions will

require different data-propagation strategies, depending on things such as need

for real-time response, redundancy of the data, which can be done via data

aggregation and information fusion techniques, need for security, etc. [3].

1.1 Wireless Sensor Network Applications 3

2. Environmental data collection: An environmental data collection application is

one where a research scientist wants to collect several sensor readings from a set

of points in an environment over a period of time in order to detect styles and

interdependencies. This scientist would want to collect data from hundreds of

points extending throughout the area and then analyze the data later offline.

The scientist would be interested in collecting data over several weeks, months

or years in order to look for long-term and seasonal trends. For the data to be

significant it would have to be collected at regular intervals and the nodes would

remain at known locations. At the network level, the environmental data collec-

tion application is differentiated by having a large number of nodes continually

sensing and transmitting data back to a set of base stations that store the data

using traditional methods. These networks generally need very low data rates

and extremely long lifetimes. In typical usage scenario, the nodes will be evenly

distributed over an outdoor environment. This distance between nearby nodes

will be minimal yet the distance across the entire network will be significant.

After deployment, the nodes must discover the topology of the network first and

then estimate optimal routing strategies. The routing strategy can then be used to

direct data to a central collection points. In environmental monitoring

applications, it is not necessary that the nodes develop the optimal routing

strategies on their own. Instead, it may be possible to determine the optimal

routing topology outside of the network and then communicate the necessary

information to the nodes as required. This is possible because the physical

topology of the network is relatively stable. While the time variant nature of

Radio Frequency (RF) communication may cause connectivity between two

nodes to be alternating, the overall topology of the network will be relatively

stable. Environmental data collection applications typically use tree-based rout-

ing topologies where each routing tree is rooted at high-capability nodes that

sink data. Data is periodically transmitted from child node to parent node up the

tree-structure until it reaches the sink. With tree-based data collection each node

is in charge of forwarding the data of all its descendants. Nodes with a large

number of descendants transmit significantly more data than leaf nodes. These

nodes can quickly become energy bottlenecks. The most essential characteristics

of the environmental monitoring requirements are long lifetime, precise syn-

chronization, low data rates and relatively static topologies. Additionally it is not

important that the data be transmitted in real-time back to the central collection

point. The data transmissions can be delayed inside the network as necessary in

order to improve network efficiency [4].

3. Landfill ground well level monitoring and pump counter: Wireless sensor

networks can be used to evaluate and monitor the water levels within all ground

wells in the landfill site and monitor leachate accumulation and removal.

A wireless device and submersible pressure transmitter monitors the leachate

level. The sensor information is wirelessly transmitted to a central data logging

system to store the level data, make calculations, or inform personnel when a

service vehicle is needed at a specific well. It is typical for leachate removal

pumps to be installed with a totalizing counter mounted at the top of the well to

4 1 Introduction

monitor the pump cycles and to determine the total volume of leachate removed

from the well. For most current installations, this counter is read physically.

Instead of physically collecting the pump count data, wireless devices can send

data from the pumps back to a central control location to save time and get rid of

errors. The control system uses this count information to determine when the

pump is in process, to determine leachate extraction volume, and to schedule

maintenance on the pump [5].

4. Security monitoring: Security monitoring networks are composed of nodes that

are placed at fixed locations all over an environment that continually monitor

one or more sensors to detect an irregularity. A difference between security

monitoring and environmental monitoring is that security networks are not

actually collecting any data. This has a significant impact on the optimal network

architecture. Each node has to regularly check the status of its sensors but it only

has to transmit a data report when there is a security violation. The immediate

and reliable communication of alarm messages is the main system requirement.

These are reported by exception networks. Additionally, it is essential that it is

confirmed that each node is still there and functioning. If a node were to be

disabled or fail, it would represent a security violation that should be reported.

For security monitoring applications, the network must be configured so that

nodes are in charge of confirming the status of each other.

5. Vehicle detection: If traffic controls are implemented on the whole traffic

network, transportation capability could be maximized. The controls are greatly

dependent on the data from traffic surveillance systems, which have a high

installation and repairs costs. In view of this, researchers offer a very attractive,

low-cost solution, which applies wireless sensor networks for traffic surveil-

lance. A traffic surveillance system requires four components: a sensor to catch

the signals made by vehicles, a processor to process the sensed data, a commu-

nication unit to transfer the processed data to the base station, and an energy

source. Thanks to sensor technology, all of these components could now be

integrated into a single tiny device.

6. Agriculture: Using wireless sensor networks within the agricultural industry are

more and more common. Gravity-fed water systems can be monitored using

pressure transmitters to monitor water tank levels, pumps can be controlled

using wireless I/O devices, and water use can be measured and wirelessly

transmitted back to a central control center for billing. Irrigation automation

enables more professional water use and reduces waste.

7. Windrow composting: Composting is the aerobic decomposition of biodegradable

organic matter to produce compost, a nutrient-rich mulch of organic soil formed

using food, wood, manure, and/or other organic material. One of the key methods

of composting involves using windrows. To ensure efficient and useful

composting, the temperatures of the windrows must be measured and logged

frequently. With accurate temperature measurements, facility managers can deter-

mine the best time to turn the windrows for quicker compost production. Manually

collecting data is time wasting, cannot be done frequently, and may expose the

person collecting the data to harmful pathogens. Automatically collecting the data

1.1 Wireless Sensor Network Applications 5

and wirelessly transmitting the data back to a centralized location allows

composting temperatures to be continually recorded and logged, reducing the

time needed to complete a composting cycle, improving efficiency, and

minimizing human exposure and potential risk. An industrial wireless I/O device

mounted on a stake with two thermocouples, each at different depths, can automat-

ically monitor the temperature at two depths within a compost windrow or stack.

Temperature sensor readings are wirelessly transmitted back to the host system for

data collection, analysis, and logging. Because the temperatures are measured and

recorded continuously, the composting rows can be turned as soon as the tempera-

ture reaches the best point. Continuously monitoring the temperature may also

provide an early warning to possible fire hazards by notifying personnel when

temperatures exceed recommended ranges.

8. Node tracking: There are many situations where one would like to track the

location of an important asset or personnel. Current inventory control systems

attempt to track objects by recording the last checkpoint that an object passed

through. However, with these systems it is not possible to determine the current

location of an object. For example, UPS tracks every shipment by scanning it

with a barcode whenever it passes through a routing center. The system breaks

down when objects do not flow from checkpoint to checkpoint. In typical work

environments it is not practical to expect objects to be continually passed

through checkpoints. With wireless sensor networks, object can be tracked by

simply tagging it with a small sensor node. The sensor node will be tracked as it

moves through a field of sensor nodes that are deployed in the environment at

known locations. Instead of sensing environmental data, these nodes will be

deployed to sense the RF messages of the nodes attached to various objects. The

nodes can be used as active tags that announce the existence of a device.

A database can be used to record the location of tracked objects relative to the

set of nodes at known locations.

9. Greenhouse monitoring: Wireless sensor networks are also used to control the

temperature and humidity levels inside greenhouses. When the temperature and

humidity goes down below specific levels, the greenhouse manager must be

notified via e-mail or cell phone text message, or host systems can trigger

misting systems, turn on fans, open vents, or control a wide variety of system

responses. Because some wireless sensor networks are easy to install, they are

also easy to move as the needs of the application change [6].

1.2 Sensor Node Evaluation Metrics

The key evaluationmetrics forwireless sensor nodes are power, flexibility, robustness,

security, communication, computation, Time Synchronization, size and cost. Their

importance is discussed below [7].

1. Power: To meet the multi-year application requirements, individual sensor nodes

must be incredibly low-power. This ultra-low-power operation can only be

6 1 Introduction

completed by combining both low-power hardware components and low

duty-cycle operation procedures. During active operation, radio communication

will constitute a major fraction of the node’s total energy budget. Algorithms and

protocols must be developed to reduce radio activity whenever possible. This can

be achieved by using localized computation to reduce the streams of data being

generated by sensors and through application-specific protocols. For example,

events from multiple sensor nodes can be combined together by a local group of

nodes before transmitting a single result across the sensor network.

2. Flexibility: The broad range of usage scenarios being considered means that the

node architecture must be flexible and adaptive. Each application scenario will

require a slightly different mix of lifetime, sample rate, response time, and

in-network processing. Wireless sensor network architecture must be flexible

enough to accommodate a wide range of applications. Additionally, for cost

reasons each device will have only the hardware and software it really needs for

a given application. The architecture must make it easy to assemble just the right

set of software and hardware components. Thus, these devices require an

abnormal degree of hardware and software modularity while simultaneously

maintaining efficiency.

3. Robustness: In order to support the lifetime requirements demanded, each node

must be created to be as robust as possible. In a typical deployment, hundreds of

nodes will have to work in harmony for years. To accomplish this, the system

must be constructed so that it can tolerate and adjust to individual node failure.

Additionally, each node must be designed to be as robust as possible. System

modularity is a powerful tool that can be used to develop a robust system.

By dividing system functionality into isolated sub-pieces, each function can be

fully tested in isolation earlier to combining them into a complete application.

To facilitate this, system components should be as independent as possible and

have interfaces that are narrow, in order to prevent unexpected interactions.

In addition to increasing the system’s robustness to node failure, a wireless

sensor network must also be robust to external interference. As these networks

will often coexist with other wireless systems, they need the talent to adjust their

behavior consequently. The robustness of wireless links to external interference

can be really increased through the use of multi-channel and spread spectrum

radios. It is common for facilities to have existing wireless devices that work on

one or more frequencies. The talent to avoid congested frequencies is essential in

order to guarantee a successful deployment.

4. Security: In order to meet the application level security requirements, the

individual nodes must be able to perform complex encrypting and validation

algorithms. Wireless data communication is easily susceptible to interception.

The only method to maintain data carried by these networks confidential and

authentic is to encrypt all data transmissions. The CPU must be able to perform

the required cryptographic operations itself or with the help of included crypto-

graphic accelerators. In addition to securing all data transmission, the nodes

themselves must secure the data that they have. While they will not have large

amounts of application data stored internally, they will have to store secret

1.2 Sensor Node Evaluation Metrics 7

encryption keys used in the network. If these keys are exposed, the security of

the network could collapse. To provide true security, it must be difficult to

extract the encryption keys from any node.

5. Communication: A key evaluation metric for any wireless sensor network is

its communication rate, power consumption, and range. While we have made

the argument that the coverage of the network is not limited by the transmission

range of the individual nodes, the transmission range does have a significant

impact on the minimal acceptable node density. If nodes are placed too far apart

it may not be possible to create an interconnected network or one with enough

redundancy to maintain a high level of reliability. Most applications have natural

node densities that correspond to the granularity of sensing that is desired. If the

radio communications range demands a higher node density, extra nodes

must be added to the system in to increase node density to a tolerable level.

The communication rate also has a major impact on node performance.

Higher communication rates turn into the ability to achieve higher effective

sampling rates and lower network power consumption. As bit rates increase,

transmissions take less time and therefore potentially require less energy.

However, an increase in radio bit rate is often accompanied by an increase in

radio power consumption. All things being equal, a higher transmission bit rate

will result in higher system performance.

6. Computation: The two most computationally intensive operations for a wire-

less sensor node are the in-network data processing and the management of the

low-level wireless communication protocols. There are strict real-time

requirements associated with both communication and sensing. As data is

arriving over the network, the CPU must concurrently control the radio and

record/decode the incoming data. Higher communication rates required faster

computation. The same is true for processing being performed on sensor data.

Analog sensors can produce thousands of samples per second. Common sensor

processing operations include digital filtering, threshold detection, averaging,

correlation and spectral analysis. It may even be necessary to perform a real-

time FFT on incoming data in order to detect a high-level event. In addition to

being able to process, refine and discard sensor readings, it can be beneficial to

combine data with neighboring sensors before transmission across a network.

Just as complex sensor waveforms can be reduced to key events, the results

from multiple nodes can be synthesized together. This in-network processing

requires additional computational resources. Beyond that, the application data

processing can consume an arbitrary amount of computation depending on the

calculations being performed.

7. Time synchronization: In order to support time correlated sensor readings and

low-duty cycle operation of data collection application, nodes must be able to

keep precise time synchronization with other members of the network. Nodes

need to sleep and awake together so that they can once in a while communicate.

Errors in the timing mechanism will create inefficiencies that result in increased

duty cycles. In distributed systems, clocks drift apart over time due to

inaccuracies in timekeeping mechanisms. Depending on temperature, voltage,

8 1 Introduction

and humidity, time keeping oscillators operate at slightly different frequencies.

High-precision synchronization mechanisms must be provided to continually

compensate for these inaccuracies.

8. Size and cost: The physical size and cost of each individual sensor node has a

considerable and direct impact on the ease and cost of deployment. Total cost of

ownership and initial deployment cost are two key factors that will drive the

implementation of wireless sensor network technologies. In data collection

networks, researchers will often be operating off of a fixed budget. Their primary

goal will be to collect data from as many locations as possible without exceeding

their fixed budget. A reduction in per-node cost will result in the ability to

purchase more nodes, deploy a collection network with higher density, and

collect more data. Physical size also impacts the ease of network deployment.

Smaller nodes can be placed in more locations and used in more scenarios. In the

node tracking scenario, smaller, lower cost nodes will result in the ability to

track more objects.

1.3 Sensor Network Architecture

The main components of a sensor node are microcontroller, transceiver, external

memory, power source and one or more sensors as shown in Fig. 1.2.

1. Microcontroller: Microcontroller processes data and controls the functionality of

other components in the sensor node. Other alternatives that can be used as a

controller are: General purpose desktop microprocessor, Digital Signal

Processors (DSP), Field Programmable Gate Array (FPGA) and Application-

Specific Integrated Circuit (ASIC). Microcontrollers are the most suitable choice

for a sensor node. Each of the four choices has its own advantages and

disadvantages. Microcontrollers are the best choices for embedded systems.

Because of their flexibility to connect to other devices, programmable, power

consumption is less, as these devices can go into a sleep mode and part of the

controller can be active. In a general purpose microprocessor the power con-

sumption is more than the microcontroller, therefore it is not a suitable choice for

sensor node. Digital Signal Processors are suitable for broadband wireless

B
at

te
ry

D
C

-C
D

Se
ns

or
s

A
D

C

M
C

U

R
ad

io

Memory

Fig. 1.2 Sensor node

architecture

1.3 Sensor Network Architecture 9

communication. But in WSNs, the wireless communication should be reserved

i.e., simpler, easier to process modulation and signal processing tasks of actual

sensing of data is less complicated. Therefore the advantages of DSP are not of

that much importance to wireless sensor node. FPGA can be reprogrammed and

reconfigured according to requirements, but it takes time and energy. Therefore,

FPGA is not advisable. ASIC is specialized processor designed for a given

application. ASIC provides the functionality in the form of hardware, but

microcontrollers provide it through software [8].

2. Transceiver: Transceiver makes use of Industrial, Scientific and Medical (ISM)

band which gives free radio, massive spectrum allocation and universal avail-

ability. The various choices of wireless transmission media are RF, optical

communication and infrared. Optical communication requires less energy, but

needs line-of-sight for communication and is also sensitive to atmospheric

conditions. Infrared like optical communication, needs no antenna but is limited

in its broadcasting capacity. RF based communication is the most relevant that

fits to most of the WSN applications. WSN uses the communication frequencies

between about 433 MHz and 2.4 GHz. The functionality of both transmitter and

receiver, combined into a single device know as transceivers, are used in sensor

nodes. Transceivers lack a unique identifier. The operational states are transmit,

receive, idle and sleep. Current generation radios have a built-in state machine

that performs this operation automatically.

3. External memory: From an energy point of view, the most relevant kinds of

memory are on-chip memory of a microcontroller and flash memory. Flash

memories are used due to their cost and storage capacity. Memory requirements

are very much application-dependent.

4. Power source: Power consumption in the sensor node is for the communication,

data processing and sensing. More energy is required for data communication in

the sensor node. Energy overhead is less for data processing and sensing.

The energy cost of transmitting 1 Kb a distance of 300 ft is approximately the

same as that for the executing 3 million instructions by 100 million instructions

per second/W processor. Power is stored either in batteries or capacitors.

Batteries are the main source of power supply for sensor nodes. Namely, the

two types of batteries used are chargeable and non-rechargeable. They are also

classified according to electrochemical material used for electrode such as NiCd

(nickel–cadmium), NiZn (nickel–zinc), Nimh (nickel metal hydride), and Lith-

ium-Ion. Current sensors are developed which are able to renew their energy

from solar, vibration, or temperature. Two major power saving policies used are

Dynamic Power Management (DPM) and Dynamic Voltage Scaling (DVS).

DPM takes care of shutting down parts of the sensor node which are not

currently used or active. DVS scheme varies the power levels depending on

the non-deterministic workload. By varying the voltage along with the fre-

quency, it is possible to obtain quadratic reduction in power consumption [9].

5. Sensors: Sensors are hardware devices that produce measurable response to a

change in a physical condition like temperature, humidity and pressure. Sensors

sense or measure physical data of the area to be monitored. The continual analog

10 1 Introduction

signal sensed by the sensors is digitized by an Analog-to-Digital Converter

(ADC) and sent to controllers for further processing. Characteristics and

requirements of the sensor node should be small size, consume extremely low

energy, operate in high volumetric densities, be autonomous and operate unat-

tended, and be adaptive to the environment. As wireless sensor nodes are micro-

electronic sensor device, can only be equipped with a limited power source of

less than 0.5 Ah and 1.2 V. Sensors are classified into three categories:

(a) Passive sensors: They sense the data without actually manipulating the

environment by active probing. They are self powered, i.e., energy is needed

only to amplify their analog signal. There is no notion of direction involved

in these measurements. A typical example is the camera.

(b) Active sensors: These groups of sensors actively probe the environment; for

example, a sonar or radar sensor or some type of seismic sensor, which

generate shock waves by small explosions.

(c) Omni-directional sensors: Each sensor node has a certain area of coverage

for which it can reliably and accurately report the particular quantity that it is

observing.

6. MAC: A Medium Access Control (MAC) protocol coordinates actions over a

shared communication channel. The most commonly used solutions are conten-

tion-based. One general contention-based strategy is for a node which has a

message to transmit to test the channel to see if it is busy, if not busy then it

transmits; otherwise it waits and tries again later. After colliding, nodes wait a

random amount of time trying to avoid re-colliding. If two or more nodes

transmit at the same time there is a collision and all the nodes colliding try to

transmit again later. Many wireless MAC protocols also have a dozen modes

where nodes not involved with sending or receiving a packet in a given

timeframe go into sleep mode to save energy. An effective MAC protocol for

wireless sensor networks must avoid collisions, consume little power, be

implemented with a small code size and memory requirements, be efficient for

a single application, and be tolerant to changing radio frequency and networking

conditions. One example of a good MAC protocol for wireless sensor networks

is B-MAC [10]. B-MAC is highly configurable and can be implemented with a

small code and memory size. It has an interface that allows choosing various

functionality and only that functionality as needed by a particular application.

B-MAC consists of four main parts: Clear Channel Assessment (CCA), packet

backoff, link layer acts, and low power listening. For CCA, B-MAC uses a

weighted moving average of samples when the channel is idle in order to assess

the background noise and better be able to detect valid packets and collisions.

The packet backoff time is configurable and is chosen from a linear range as

opposed to an exponential backoff scheme typically used in other distributed

systems. This reduces delay and works because of the typical communication

patterns found in a wireless sensor network. B-MAC also supports a packet by

packet link layer acknowledgement. In this way only important packets need pay

the extra cost. A low power listening scheme is employed where a node cycles

1.3 Sensor Network Architecture 11

between awake and sleep cycles. While awake it listens for a long enough

preamble to assess if it needs to stay awake or can return to sleep mode.

This scheme saves significant amounts of energy. Many MAC protocols use

a Request To Send (RTS) and Clear To Send (CTS) style of interaction.

This works well for ad hoc mesh networks where packet sizes are large

(thousands of bytes). However, the overhead of RTS-CTS packets to set up a

packet transmission is not acceptable in wireless sensor networks where packet

sizes are on the order of 50 bytes. B-MAC, therefore, does not use a RTS-CTS

scheme. Another example of a good MAC protocol for wireless sensor networks

is Z-MAC [11]. Z-MAC is a hybrid MAC protocol for wireless sensor networks.

It combines the strengths of Time Division Multiple Access (TDMA) and

Carrier Sense Multiple Access (CSMA) while offsetting their weaknesses.

Unlike TDMA, where a node is allowed to transmit only during its own assigned

slots, a node can transmit in both its own time slots and slots assigned to other

nodes. Owners of the current time slot always have priority in accessing the

channel over non-owners. Therefore, under low contention where not all owners

have data to send, non-owners can steal time slots from owners. This has the

effect of switching between CSMA and TDMA depending on contention.

Z-MAC is robust to topology changes and clock synchronization errors; in the

worst case its performance falls back to that of CSMA. Synchronized protocols,

such as S-MAC [12] and T-MAC [13], negotiate a schedule that specifies when

nodes are awake and asleep within a frame. Specifying the time when nodes

must be awake in order to communicate reduces the time and energy wasted in

idle listening. Asynchronous protocols such as WiseMAC [14], rely on Low

Power Listening (LPL), also called preamble sampling. Standard MAC

protocols developed for duty-cycled WSNs employ an extended preamble and

preamble sampling. While this “low power listening” approach is simple, asyn-

chronous, and energy-efficient, the long preamble introduces excess latency at

each hop, is suboptimal in terms of energy consumption, and suffers from excess

energy consumption at receivers. X-MAC [15] proposes solutions to each of

these problems by employing a shortened preamble approach that retains the

advantages of low power listening, namely low power communication, simplic-

ity and a decoupling of transmitter and receiver sleep schedules.

1.4 Wireless Sensor Network Challenges

In this section we present some of the major WSNs’ challenges. Challenges for

WSNs may be categorized as follows: resource constraints, platform heterogeneity,

dynamic network topology and mixed traffic.

1. Resource constraints: As in WSNs, sensor nodes are usually low-cost, low-power,

small devices that are equipped with only limited data processing capability,

transmission rate, battery energy, and memory. For example, the MICAz mote

12 1 Introduction

from Crossbow is based on the Atmel ATmega128L 8-bit microcontroller that

provides only up to 8 MHz clock frequency, 128-KB flash program memory and

4-KB Electrically Erasable Programmable Read-Only Memory (EEPROM); the

transmit data rate is limited to 250 kbps. Due to the limitation on transmission

power, the available bandwidth and the radio range of the wireless channel are

often limited. In particular, energy conservation is critically important for

extending the lifetime of the network, because it is often unfeasible or undesirable

to recharge or replace the batteries attached to sensor nodes once they are deployed.

In the presence of resource constraints, the network Quality of Service (QoS) may

suffer from the unavailability of computing and/or communication resources. For

instance, a number of nodes that want to transmit messages over the same WSN

have to compete for the limited bandwidth that the network is able to provide. As a

consequence, some data transmissions will possibly experience large delays,

resulting in low level of QoS. Due to the limited memory size, data packets may

be dropped before the nodes successfully send them to the destination. Therefore,

it is of critical importance to use the available resources in WSNs in a very

efficient way.

2. Platform heterogeneity: WSNs are designed using different technologies and

with different goals; they are different from each other in many aspects such as

computing/communication capabilities, functionality, and number. In a large-

scale system of systems, the hardware and networking technologies used in the

WSNs may differ from one subsystem to another. This is true because of the lack

of relevant standards dedicated to WSNs and hence commercially available

products often have disparate features. This platform heterogeneity makes it

very difficult to make full use of the resources available in the integrated system.

Consequently, resource efficiency cannot be maximized in many situations.

In addition, the platform heterogeneity also makes it challenging to achieve

real-time and reliable communication between different nodes.

3. Dynamic network topology: Unlike LANs, where nodes are typically stationary,

the WSNs may be mobile. In fact, node mobility is an intrinsic nature of many

applications such as, among others, intelligent transportation, assisted living,

urban warfare, planetary exploration, and animal control. During runtime, new

sensor nodes may be added; the state of a node is possibly changed to or from

sleeping mode by the employed power management mechanism; some nodes

may even die due to exhausted battery energy. All of these factors may poten-

tially cause the network topologies of WSNs to change dynamically. Dealing

with the inherent dynamics of WSNs requires QoS mechanisms to work in

dynamic and even unpredictable environments. In this context, QoS adaptation

becomes necessary; that is, WSNs must be adaptive and flexible at runtime with

respect to changes in available resources. For example, when an intermediate

node dies, the network should still be able to guarantee real-time and reliable

communication by exploiting appropriate protocols and algorithms.

4. Mixed traffic: Diverse applications may need to share the same WSN, inducing

both periodic and aperiodic data. This feature will become increasingly evident

as the scale of WSNs grows. Some sensors may be used to create the

1.4 Wireless Sensor Network Challenges 13

measurements of certain physical variables in a periodic manner for the purpose

of monitoring and/or control. Meanwhile, some others may be deployed to detect

critical events. For instance, in a smart home, some sensors are used to sense the

temperature and lighting, while some others are responsible for reporting events

like the entering or leaving of a person. Furthermore, disparate sensors for

different kinds of physical variables, e.g., temperature, humidity, location, and

speed, generate traffic flows with different characteristics (e.g. message size and

sampling rate).

Bibliography

1. S. Petersen and S. Carlsen, “Wireless Sensor Networks: Introduction to Installation and

Integration on an Offshore Oil & Gas Platform,” in Proceeding of the 19th Australian
Conference on Software Engineering, Washington DC, USA, March 2008, pp. 53–53.

2. M. Galetzka, J. Haufe, M. Lindig, U. Eichler, and P. Schneider, “Challenges of simulating

robust wireless sensor network applications in building automation environments,” in

Proceeding of the IEEE Conference on Emerging Technologies and Factory Automation,
Bilbao, Spain, September 2010, pp. 1–8.

3. W. You-Chiun, H. Yao-Yu, and T. Yu-Chee, “Multiresolution Spatial and Temporal Coding in

a Wireless Sensor Network for Long-Term Monitoring Applications,” IEEE Transactions on
Computers, vol. 58, pp. 827–838, April 2009.

4. P. M. Glatz, L. B. Hormann, C. Steger, and R. Weiss, “Implementing autonomous network

coding for wireless sensor network applications,” in Proceeding of the 18th International
Conference on Telecommunications, Graz, Austria, June 2011, pp. 9–14.

5. S. A. Butt, P. Sayyah, and L. Lavagno, “Model-based hardware/software synthesis for wireless

sensor network applications,” in Proceeding of the Saudi International Electronics,
Communications and Photonics Conference, Riyadh, Saudi Arabia, April 2011, pp. 1–6.

6. P. A. Morreale, “Wireless Sensor Network Applications in Urban Telehealth,” in 21st Inter-
national Conference on Advanced Information Networking and Applications Workshops,
Niagara Falls, Ontario, Canada, May 2007, pp. 810–814.

7. L. Barolli, T. Yang, G.Mino, A. Durresi, F. Xhafa, andM. Takizawa, “Performance Evaluation

of Wireless Sensor Networks for Mobile Sensor Nodes Considering Goodput and Depletion

Metrics,” in Proceeding of the 9th IEEE International Symposium on Parallel and Distributed
Processing with Applications, Dresden, Germany, August, 2011, pp. 63–68.

8. W. Fenhua, L. Fang, W. Zhiliang, and G. Jingjing, “Wireless sensor network architecture

design and implementation,” in Proceeding of the 3rd IEEE International Conference on
Broadband Network and Multimedia Technology, Beijing, China, October 2010,

pp. 1068–1073.

9. D. Benhaddou, M. Balakrishnan, and X. Yuan, “Remote Healthcare Monitoring System

Architecture using Sensor Networks,” in IEEE Region 5 Conference, Fayetteville, Arkansas,
USA, April 2008, pp. 1–6.

10. J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks,” in Proceeding of the 2nd ACM International Conference on Embedded Networked
Sensor Systems, Baltimore, MD, USA, November 2004, pp. 95–107.

11. I. Rhee, A. Warrier, M. Aia, and J. Min, “ZMAC: a Hybrid MAC for Wireless Sensor

Networks,” in Proceeding of the SenSys, San Diego, California, USA, November 2005,

pp. 56–61.

14 1 Introduction

12. Y. Wei, J. Heidemann, and D. Estrin, “Medium access control with coordinated adaptive

sleeping for wireless sensor networks,” IEEE/ACM Transactions on Networking, vol. 12,
pp. 493–506, June 2004.

13. T. V. Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for wireless sensor

networks,” in Proceeding of the 1st ACM Conf. on Embedded Networked Sensor Systems,
Los Angeles, California, USA, November 2003, pp. 171–180.

14. A. El-Hoiydi and J. D. Decotignie, “WiseMAC: an ultra low power MAC protocol for the

downlink of infrastructure wireless sensor networks,” in Proceeding of the 9th International
Symposium on Computers and Communications, Alexandria, Egypt, June 2004, pp. 244–251.

15. E. A. M. Buettner, G. Yee, and R. Han, “X-mac: A short preamble mac protocol for duty-

cycled wireless sensor networks,” in Proceeding of the 4th ACM Conference on Embedded
Sensor Systems, New York, NY, USA, April 2006, pp. 307–320.

Bibliography 15

Chapter 2

Data Fusion in WSN

Abstract WSN is intended to be deployed in environments where sensors can be

exposed to circumstances that might interfere with measurements provided.

Such circumstances include strong variations of pressure, temperature, radiation,

and electromagnetic noise. Thus, measurements may be imprecise in such scenarios.

Data fusion is used to overcome sensor failures, technological limitations, and

spatial and temporal coverage problems. Data fusion is generally defined as the

use of techniques that combine data from multiple sources and gather this informa-

tion in order to achieve inferences, which will be more efficient and potentially more

accurate than if they were achieved by means of a single source. The term efficient,

in this case, can mean more reliable delivery of accurate information, more com-

plete, and more dependable. The data fusion can be implemented in both centralized

and distributed systems. In a centralized system, all raw sensor data would be sent to

one node, and the data fusion would all occur at the same location. In a distributed

system, the different fusion modules would be implemented on distributed

components. Data fusion occurs at each node using its own data and data from the

neighbors. This chapter briefly discusses the data fusion and a comprehensive survey

of the existing data fusion techniques, methods and algorithms.

2.1 Introduction

A Wireless Sensor Network (WSN) may be designed with different objectives.

It may be designed to gather and process data from the environment in order to have

a better understanding of the behavior of the monitored area. It may also be

designed to watch an environment for the occurrence of a set of possible events,

thus the proper action may be taken whenever needed. A fundamental issue inWSN

is the way to process the collected data. In this situation, data fusion arises as a

discipline that is concerned with how data collected by sensors can be processed to

increase the significance of such a mass of data [1]. Thus, data fusion can be defined

as the combination of multiple sources to obtain improved data i.e., cheaper, greater

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_2, # Springer Science+Business Media, LLC 2012

17

quality, or greater relevance. Data fusion is commonly used in detection and

classification tasks in different application domains, such as military applications

and robotics [2]. Within the WSN domain, simple aggregation techniques i.e.,

maximum, minimum, and average have been used to reduce the overall data traffic

to save energy [3, 4]. Additionally, data fusion techniques have been applied to

WSNs to improve location estimates of sensor nodes, detect routing failures, and

collect link statistics for routing protocols [5].

WSN is intended to be deployed in environments where sensors can be

exposed to circumstances that might interfere with measurements provided.

Such circumstances include strong variations of pressure and temperature, radiation

and electromagnetic noise. Thus, measurements may be imprecise in such

scenarios. Even when environmental conditions are ideal, sensors may not give

perfect measurements. Basically, a sensor is a measurement device, and vagueness

is usually associated with its observation. Such imprecision represents the

imperfections of the technology and methods used to measure a physical incident.

Failures are not an exception in WSN. For example, consider a WSN that monitors

a jungle to detect an event, such as fire or the presence of an animal. Sensor nodes

can be destroyed by fire, animals, or even human beings; they might present

manufacturing problems; and they might stop working due to a lack of energy.

Each node that becomes inoperable might compromise the overall perception and/

or the communication capability of the network. Here, perception ability is equiva-

lent to the exposure concept. Both spatial and temporal coverage also pose

limitations to WSN. The sensing capability of a node is restricted to a limited

area. For example, a thermometer in a room reports the temperature near the device

but it might not represent fairly the overall temperature inside the room. Spatial

coverage inWSN has been explored in different scenarios, such as node scheduling,

target tracking, and sensor placement. Temporal coverage can be understood as the

ability to fulfill the network purpose during its lifetime. For example, in a WSN

for event detection, temporal coverage aims at assuring that no relevant event will

be missed because there was no sensor perceiving the region at the specific time

the event occurred. Thus, temporal coverage depends on the sensor’s sampling

rate, node’s duty cycle, and communication delays. To overcome sensor failures,

technological limitations, and spatial and temporal coverage problems, three

properties must be ensured:

1. Cooperation.

2. Redundancy

3. Complementarily

Usually, the area of interest can only be completely covered by the use of several

sensor nodes, each cooperating with a partial view of the scene; and data fusion can be

used to create the complete view from the pieces provided by each node. Redundancy

makes the WSN less vulnerable to failure of a single node, and overlapping

measurements can be fused to obtain more precise data. Complementarily can be

achieved by using sensors that observe different properties of the environment; data

fusion can be used to combine complementary data so the resultant data allows

18 2 Data Fusion in WSN

inferences thatmight be not possible to be obtained from the individualmeasurements,

e.g., angle and distance of an imminent threat can be fused to obtain its position.Due to

redundancy and cooperation properties, WSN is often composed of a large number of

sensor nodes posing a new scalability challenge caused by possible collisions and

transmissions of redundant data. Regarding the energy restrictions, communication

should be reduced to increase the lifetime of the sensor nodes. Hence, data fusion is

also important to reduce the overall communication load in the network by avoiding

the transmission of redundant messages. In addition, any task in the network that

handles signals or needs to make inferences can potentially use data fusion.

Data fusion should be considered a critical step in designing awireless sensor network.

The reason is that data fusion can be used to extend the network lifetime and is

commonly used to fulfill the application objectives, such as event detection, target

tracking, and decision making. Hence, careless data fusion may result in waste of

resources and misleading assessments. Therefore, we must be aware of possible

limitations of data fusion to avoid blundering situations. Because of the resource

rationalization needs of WSN, data processing is commonly implemented as

in-network algorithms. Hence, data fusion should be performed in a distributed

fashion to extend the network lifetime. Even so, we must be aware of the limitations

of distributed implementations of data fusion. Thus, regarding the communication

load, a centralized fusion systemmay outperform a distributed one. The reason is that

centralized fusion has a global knowledge in the sense that all measured data is

available, whereas distributed fusion is incremental and localized since it fuses

measurements provided by a set of neighbor nodes and the result might be further

fused by intermediate nodes until a sink node is reached. Such a drawback of

decentralized fusion might often be present in WSN wherein, due to resource

limitations, distributed and localized algorithms are preferable to centralized ones.

Data fusion has established itself as an independent research area over the last

decades, but a general formal theoretical framework to describe data fusion systems

is still missing. One reason for this is the huge number of disparate research areas

that utilize and illustrate some form of data fusion in their context of theory.

For example, the concept of data or feature fusion, which forms together with

classifier and decision fusion the three main divisions of fusion levels, initially

occurred in multi-sensor processing. By now several other research fields found its

application useful. Besides the more classical data fusion approaches in statistics,

control, robotics, computer vision, geosciences and remote sensing, artificial intel-

ligence, and digital image/signal processing, the data retrieval community discov-

ered some years ago its power in combining multiple data sources.

2.2 Information Fusion, Sensor Fusion, and Data Fusion

Several different terms have been used to illustrate the aspects regarding the

fusion subject, e.g. information fusion, sensor fusion, and data fusion. The

expressions related to systems, applications, methods, architectures, and theories

2.2 Information Fusion, Sensor Fusion, and Data Fusion 19

about the fusion of data from multiple sources are not unified yet. Different terms

have been adopted, usually associated with particular aspects that characterize the

fusion i.e., sensor fusion is commonly used to specify that sensors provide the data

being fused. Despite the theoretical issues about the difference between informa-

tion and data, the terms information fusion and data fusion are usually accepted as

overall terms. Many definitions of data fusion have been provided along the years,

most of them were found in military and remote sensing fields. The data fusion

work group of the Joint Directors of Laboratories (JDL) organized an effort to

define a dictionary with some terms of reference for data fusion [6]. They define

data fusion as a multilevel process dealing with the automatic detection, estima-

tion, association, correlation, and combination of data and data from several

sources. The JDL data fusion model deals with quality improvement. Hall defines

data fusion as a combination of data from multiple sensors to accomplish

improved accuracy and more specific inferences that could be achieved by the

use of a single sensor alone [7]. All the previous definitions are focused on means,

methods and sensors. Wald in [8] changes the attention of fuse data to the used

framework. He defines data fusion as a formal framework in which is expressed

means and tools for the alliance of data originating from different sources. He

considers data taken from the same source at different instants as separate sources.

For WSN, data can be fused with at least two objectives: accuracy improvement

and energy saving.

Multisensor integration is another expression used in computer vision and

industrial automation. Luo [9] defines multisensor integration as a synergistic use

of data provided by multiple sensory devices to help in the accomplishment of a

task by a system. However, multisensor fusion deals with the combination of

different sources of sensory data into one representational format during any

stage in the integration process. Multisensor integration is a broader term than

multisensor fusion. It makes clear how the fused data is used by the whole system to

interact with the environment. However, it might suggest that only sensory data is

used in the fusion and integration processes.

The term data aggregation term has become popular in the wireless sensor

network community as a synonym for information fusion [10]. Data aggregation

comprises the collection of raw data from pervasive data sources, the flexible,

programmable composition of the raw data into less voluminous refined data, and

the timely delivery of the refined data to data consumers. Aggregation is the

ability to summarize data i.e., the amount of data is reduced. However, for

applications that require original and accurate measurements, such summariza-

tion may represent an accuracy loss [11]. Although many applications might be

interested only in summarized data, we cannot always state whether or not the

summarized data is more precise than the original data set. Because of that, the

use of data aggregation as a general term should be avoided because it also refers

to one example of data fusion, which is summarization. Figure 2.1 shows the

relationship among the concepts of multisensor/sensor fusion, multisensor inte-

gration, data aggregation, information fusion, and data fusion. Here, we under-

stand that both terms, information fusion and data fusion, can be used with the

20 2 Data Fusion in WSN

same meaning. Multisensor/sensor fusion is the subset that operates with sensory

sources. Data aggregation defines another subset of information fusion that means

to reduce the data volume, which can manipulate any type of information/data,

including sensory data. Thus, multisensor integration is a slightly different term in

the sense that it applies information fusion to make inferences using sensory

devices and associated information to interact with the environment. Thus,

multisensor/sensor fusion is fully contained in the intersection of multisensor

integration and information/data fusion.

2.3 Data Fusion Classification

Data fusion can be classified based on several features. Relationships among the

input data can be used to divide data fusion into:

1. Cooperative data

2. Redundant data

3. Complementary data.

The abstraction level of the manipulated data during the fusion process can be

used to distinguish among fusion processes as:

1. Measurement

2. Signal

3. Feature

4. Decision

Another general classification considers the abstraction level, and it makes

explicit the abstraction level of the input and output of a fusion process.

Fig. 2.1 The relationship

among the fusion terms:

multisensor/sensor fusion,

multisensor integration, data

aggregation, information

fusion and data fusion

2.3 Data Fusion Classification 21

2.3.1 Classification Based on Relationship Among the Sources

Data fusion can be classified, according to the relationship among the sources [9].

Thus, data fusion can be:

1. Complementary: Data provided by the sources represents different portions of a

broader scene; data fusion can be applied to obtain a piece of data that is more

complete. In Fig. 2.2, sources S1 and S2 provide different pieces of data (a and b)

that can be fused to achieve a complete data (a + b) composed of non-redundant

pieces a and b that refer to different parts of the environment. In general,

complementary fusion searches for completeness by compounding new data

from different pieces. Hoover [12] applies complementary fusion by using

several cameras to observe different parts of the environment; then the video

streams are fused into an occupancy map that is used to guide a mobile robot.

An example of complementary fusion consists in fusing data from sensor nodes,

e.g., a sample from the sensor field, into a feature map that describes the whole

sensor field [13].

2. Redundant: If two or more independent sources provide the same piece of data,

these pieces can be fused to increase the associated confidence. Sources S2 and

S3 in Fig. 2.2 provide the same data (b). S2 and S3 are fused to obtain more

accurate data (b). Redundant fusion might be used to increase the reliability,

accuracy, and confidence of the data. In WSN, redundant fusion can provide

high quality data and prevent sensor nodes from transmitting redundant data.

3. Cooperative: Independent sources are cooperative when the data provided by

them is fused into new data that represents the reality. Sources S4 and S5 in

Fig. 2.2, provide different data, c and c*, that are fused into (c), which better

describes the scene compared to c and c* individually. A traditional example of

Fig. 2.2 Types of data fusion based on the relationship among the sources

22 2 Data Fusion in WSN

cooperative fusion is the computation of a target location based on angle and

distance data. Cooperative fusion should be carefully applied since the resultant

data is subject to the inaccuracies and imperfections of all participating sources.

2.3.2 Classification Based on Levels of Abstraction

Luo in [14] applied four levels of abstraction to classify data fusion:

1. Signal level fusion: It deals with single sensors and can be used in real-time

applications or as an intermediate step for further fusions.

2. Pixel level fusion: It operates on images and can be used to improve image-

processing tasks.

3. Feature level fusion: Deals with features or attributes extracted from signals or

images, such as speed and shape.

4. Symbol level fusion: Data is a symbol that represents a decision, and it is also

referred to a decision level.

In general, the feature and symbol fusions are used in object recognition

applications. This classification presents some disadvantages and is not suitable

for all data fusion applications. First, both images and signals are considered raw

data and are usually provided by sensors, so they should be included in the same

class. Second, raw data may not be only from sensors, because data fusion systems

might also fuse data provided by databases or human interaction. Third, it proposes

that a fusion process cannot deal with all levels at the same time.

According to the level of abstraction of the manipulated data, data fusion can be

classified into four categories:

1. Low-level fusion: Raw data are provided as inputs and combined into new data

that are more accurate than the individual inputs. Polastre in [15] gave an

example of low-level fusion by applying a moving average filter to estimate

ambient noise and determine whether or not the communication channel is clear.

2. Medium-level fusion: Features and attributes of an entity are fused to obtain a

feature map that may be used for other tasks. It is also known as feature/attribute

level fusion.

3. High-level fusion: It is known as symbol or decision level fusion. It takes

decisions or symbolic representations as input and combines them to obtain a

more confident and/or a global decision. An example of high-level fusion is the

Bayesian approach for binary event detection proposed by Krishnamachari in

[16] that detects and corrects measurement faults.

4. Multilevel fusion: Fusion process encompasses data of different abstraction

levels and both input and output of fusion can be of any level. For example, a

measurement is fused with a feature to provide a decision.

2.3 Data Fusion Classification 23

2.3.3 Classification Based on Input and Output

Dasarathy introduced another classification that considers the abstraction level.

Data fusion processes are categorized based on the level of abstraction of

the input and output data [17]. He identifies five categories:

1. Data in – data out (DAI-DAO): In this class, data fusion deals with raw data and

the result is also raw data, possibly more accurate or reliable.

2. Data in – feature out (DAI-FEO): Data fusion uses raw data from sources to

extract features or attributes that describe an entity. Entity here means any

object, situation, or world abstraction.

3. Feature in – feature out (FEI-FEO): It works on a set of features to improve/

refine a feature, or extract new ones.

4. Feature in – decision out (FEI-DEO): Data fusion takes a set of features of an

entity generating a symbolic representation or a decision.

5. Decision in – decision out (DEI-DEO): Decisions can be fused in order to obtain

new decisions or give emphasis on previous ones.

In comparison to the classification presented before, this classification

can be seen as an extension of the earlier one with a finer granularity where

DAI-DAO corresponds to Low Level Fusion, FEI-FEO to Medium Level Fusion,

DEI-DEO to High Level Fusion, DAI-FEO and FEI-DEO are included in Multi-

level Fusion.

2.4 Data Fusion: Techniques, Methods, and Algorithms

Techniques, methods, and algorithms used to fuse data can be classified based on

several criteria, such as the data abstraction level, parameters, mathematical foun-

dation, purpose, and type of data. Data fusion can be performed with different

objectives such as inference, estimation, feature maps, aggregation, abstract

sensors, classification, and compression.

2.4.1 Inference

Inference method is applied in decision fusion. The decision is taken based on

the knowledge of the perceived situation. At this point, inference refers to

the transition from one likely true proposition to another, which its truth is

believed to result from the previous one. Classical inference methods are based

on the Bayesian inference and the Dempster-Shafer belief about accumulation

theory.

24 2 Data Fusion in WSN

1. Bayesian inference: Data fusion based on Bayesian Inference provides a

formalism to merge evidence according to rules of probability theory.

The uncertainty is represented in terms of conditional probabilities describing

the belief, and it can assume values in the [0, 1] interval, where 0 is the

absolute disbelief and 1 is the absolute belief. Within the WSN domain,

Bayesian inference has been used to solve the localization problem. Sichitiu

in [18] uses the Bayesian inference to process data from a mobile beacon

and determine the most likely geographical location of each node, as an

alternative of finding a unique point for each node location.

2. Dempster-Shafer inference: The Dempster-Shafer inference is based on the

Dempster-Shafer belief accumulation, which is a mathematical theory

introduced by Dempster [19] and Shafer [20] that generalizes the Bayesian

theory. It deals with beliefs or mass functions just as Bayes’ rule does with

probabilities. The Dempster-Shafer theory introduced a formalism that can be

used for incomplete knowledge representation and evidence combination.

Pinto discussed in-network implementations of the Dempster-Shafer

and the Bayesian inference in such a way that event detection and data routing

are combined into a single algorithm [21]. By using a WSN composed of

Unmanned Aerial Vehicle (UAV) as sensor nodes, Yu uses the Dempster-

Shafer inference to build dynamic operational pictures of battlefields for

situation evaluation. However, the particular challenges of in-network fusion

in such a mobile network are not evaluated [22].

3. Fuzzy logic: Fuzzy logic generalizes probability and, therefore, is able to deal

with approximate reasoning to draw conclusions from imprecise premises.

Each quantitative input is fuzzyfied by a membership function. The fuzzy

rules of an inference system generate fuzzy outputs which, in turn, are

defuzzyfied by a set of output rules. This structure has been successfully

used in real world situations that defy exact modeling, from rice cookers to

complex control systems. Gupta uses fuzzy reasoning for deciding the best

cluster-heads in a WSN [23].

4. Neural networks: Neural Networks represent an alternative to Bayesian

and Dempster-Shafer theories, being used by classification and recognition

tasks in the data fusion domain. A key feature of neural networks is the

capability of learning from examples of input/output pairs in a supervised

fashion. For that reason, neural networks can be used in learning systems

while fuzzy logic is used to control its learning rate. Neural networks have

been applied to data fusion mainly for automatic target recognition using

multiple complementary sensors.

5. Semantic data fusion: In semantic data fusion, raw sensor data is processed so

that nodes exchange only the resulting semantic interpretations. The semantic

abstraction allows a WSN to optimize its resource utilization when storing,

collecting, and processing data. Semantic data fusion usually comprises two

phases: pattern matching and knowledge-base construction. Friedlander [24]

introduced the concept of semantic data fusion, which was applied for target

classification.

2.4 Data Fusion: Techniques, Methods, and Algorithms 25

2.4.2 Estimation

Estimation method was inherited from control theory and used the laws of

probability to compute a process state vector from a measurement vector or a

sequence of measurement vectors. We present, in this section, the estimation

methods known as: Least Squares, Maximum Likelihood (ML), Moving Average

filter, Kalman filter, and Particle filter.

1. Least squares: Least Squares method is a mathematical optimization technique

that searches for a function that best fits a set of input measurements. This is

accomplished by minimizing the sum of the square error between points

generated by the function and the input measurements. The Least Squares

method is suitable when the parameter to be estimated is considered fixed.

Least Square method does not assume any prior probability.

2. Maximum likelihood: Estimation methods based on Likelihood are suitable

when the state being estimated is not the outcome of a random variable. Xiao

proposes a distributed and localized Maximum Likelihood that is robust to the

unreliable communication links of WSN. In this method, every node computes a

local unbiased estimate that converges towards the global Maximum Likelihood

solution [25]. Xiao further extended this method to support asynchronous and

timely delivered measurements, i.e., measurements taken at different time steps

that happen asynchronously in the network. Other distributed implementations

of ML for WSN include the Decentralized Expectation Maximization (DEM)

algorithm and the local Maximum Likelihood estimator that relax the require-

ment of sharing all the data [26].

3. Moving average filter: Moving average filter is broadly adopted in digital

signal processing (DSP) solutions as it is simple to understand and use.

Moreover, this filter is optimal for reducing random white noise while retaining

a sharp step response. This is the reason that makes the moving average the

major filter for processing encoded signals in the time domain. As the name

suggests, this filter computes the arithmetic mean of a number of input

measurements to produce each point of the output signal. Yang uses the

Moving Average filter on target locations to reduce errors of tracking

applications in WSNs [27].

4. Kalman filter: Kalman filter is a very popular fusion method. It was originally

proposed in 1960 by Kalman [28] and it has been extensively studied since then.

Kalman filter is used to fuse low-level redundant data. If a linear model can

describe the system and the error can be modeled as Gaussian noise, the Kalman

filter recursively retrieves statistically optimal estimates. On the other hand, to

deal with non-linear dynamics and non-linear measurement models other

methods should be adopted. In WSN, we can find schemes to approximate

distributed Kalman filter, in which the solution is computed based on reaching

an average consensus among sensor nodes [29].

5. Particle filter: The Particle filter is a recursive implementation of a statistical

signal processing known as sequential Monte Carlo methods. Although

26 2 Data Fusion in WSN

Kalman filter is a classical approach for state estimation, particle filters repre-

sent an alternative for applications with non-Gaussian noise, especially when

computational power is rather cheap and sampling rate is slow. The particles

are propagated over time, sequentially combining, sampling, and resampling

steps. At each time step, the resampling is used to discard some particles,

increasing the relevance of regions with high posterior probability. Target

tracking is currently the principal research problem wherein particle filters

have been used.

2.5 Data Fusion: Architectures and Models

Many architectures and models have been introduced to serve as guidelines to

design data fusion systems. These models evolved from data-based models to role-

based models. These models are useful for guiding the specification, proposal, and

usage of data fusion in WSN. Some of these models, such as the JDL and Frankel-

Bedworth, provide a systemic view of data fusion, whereas others, such as the

Intelligent Cycle and the Boyd Control Loop, provide a task view of data fusion.

2.5.1 Data-Based Models

Models proposed to design data fusion systems can be centered on the abstraction

of the data generated during fusion. This section introduces the models that

specify their stages based on the abstraction levels of data manipulated by the

fusion system [1].

1. JDL model: JDL is a well-known model in the fusion research area. It was

originally proposed by the U.S. Joint Directors of Laboratories (JDL) and the

U.S. Department of Defense (DoD). The model consists of five processing

levels, an associated database, and a data bus connecting all components as

shown in Fig. 2.3. Its components are described as follows:

• Sources: It is responsible for providing the input data and can be sensors,

a prior knowledge, databases, or human input.

• Database management system: It supports the maintenance of the data

used and provided by the data fusion system. This is a critical function,

as it supposedly handles a large and varied amount of data. In WSNs, this

function might be simplified to fit the sensors’ restrictions of resources.

• Human computer interaction (HCI): It is a mechanism that allows human

input, such as commands and queries, and the notification of fusion results

through alarms, displays, graphics, and sounds. Commonly, human interac-

tion with WSNs occurs through the query-based interfaces.

2.5 Data Fusion: Architectures and Models 27

• Level 0 (source preprocessing): It is also referred to as process alignment, this

level aims to reduce the processing load by allocating data to appropriate

processes and selecting appropriate sources.

• Level 1 (object refinement): It converts the data into a consistent structure.

Source localization, and therefore, all tracking algorithms are in Level 1,

since they transform different types of data, such as images, angles, and

acoustic data, into a target location.

• Level 2 (situation refinement): It attempts to provide a contextual description

of the relationship between objects and observed events. It uses a prior

knowledge and environmental data to identify a situation.

• Level 3 (threat refinement): It estimates the current situation, projecting it in

the future to identify possible threats, vulnerabilities, and opportunities for

operations. This is a difficult task because it deals with computation

complexities and enemies intent assessment.

• Level 4 (process refinement): It is responsible for monitoring the system

performance and allocating the sources according to the specified goals.

This function may be outside the domain of specific data fusion functions.

2. Dasarathy model: The Dasarathy model [17] is a fine-grained data-centered

model in which the elements of data fusion are specified based on their inputs

and outputs. It is known also as Data-Feature-Decision (DFD) [17]. Figure 2.4

depicts the DFD model.

The primary input is raw data and the main output is a decision. The components

responsible for the several fusion stages are the elements DAI-DAO, DAI-FEO,

FEIFEO, FEI-DEO and DEI-DEO, described before. The DFD model is successful

in specifying the main types of fusion regarding their input and output data. For this

reason it is also used to classify data fusion. In contrast to the JDL model, the DFD

model does not provide a systemic view; instead it provides a fine-grained way to

Fig. 2.3 The JDL model

28 2 Data Fusion in WSN

specify fusion tasks by means of the expected input and output data. Therefore, the

DFD model is useful for specifying and designing fusion algorithms in WSNs with

different purposes such as ambient noise estimation.

2.5.2 Activity-Based Models

Some models are specified based on the activities that must be performed by the

data fusion system. The activities and their correct sequence of execution, in such

models, are explicitly specified.

1. Boyd control loop: The Boyd Control Loop is a cyclic model composed of four

stages. It is known also as the Observe, Orient, Decide, Act (OODA) Loop.

This model is a representation of the classic decision-support mechanism of

military data systems, and because such systems are strongly coupled with

fusion systems, the OODA loop has been used to design data fusion systems.

The stages of the OODA loop define the major activities related to the fusion

process as shown in Fig. 2.5, which are:

• Observe: Data gathering from the available sources. It corresponds to level

0 of the JDL model.

• Orient: Gathered data is fused to obtain an interpretation of the current

situation. It encompasses levels 1, 2, and 3 of the JDL model.

• Decide: Specify an action plan in response to the understanding of the

situation. It matches level 4 of JDL model.

• Act: The plan is executed. It is not dealt by the JDL model.

The OODA loop is a wide model that allows the specification and visualization

of the system tasks in an ample way. It allows the modeling of the main tasks of a

system. The OODA fails to provide a proper representation of specific tasks of a

data fusion system.

Fig. 2.4 The DFD model

2.5 Data Fusion: Architectures and Models 29

2. Intelligence cycle: The intelligence process is a four-stage cycle, which is called

Intelligence Cycle. Figure 2.6, shows the process of developing raw data into

finished intelligence used in decision-making and action. The activities of the

Intelligence Cycle are:

• Collection: Raw data is collected from the environment. It matches level 0 of

the JDL model.

• Collation: Collected data is compared, analyzed, and correlated. Irrelevant

and unreliable data is discarded. Includes level 1 of the JDL model.

• Evaluation: Collated data is fused and analyzed. It comprises levels 2 and 3 of

the JDL model.

• Dissemination: Fusion results are delivered to users who utilize the fused data

to produce decisions and actions in response to the detected situation.

It corresponds to level 4 of the JDL model.

The Intelligence Cycle does not make explicit the planning (Decide) and the

execution (Act) phases, which are most likely included in the Evaluation and

Dissemination phases. The OODA and Intelligence Cycle are general and can be

employed in any application domain. They do not fulfill the specific aspects of

the fusion domain demanding, thus, experience and expertise to model fine-

grained fusion tasks.

Fig. 2.6 The intelligence

cycle

Fig. 2.5 The OODA loop

30 2 Data Fusion in WSN

3. Omnibus model: The Omnibus model organizes the stages of a data fusion

system in a cyclic sequence, just as the Intelligence Cycle and the OODA loop

do [30]. The Omnibus model should be applied during the design phase of a data

fusion system. Initially, it should be used to model the framework providing a

general perception of the system. Then, the model can be used to design the

subtasks, providing a fine-grained understanding of the system. Figure 2.7 shows

the Omnibus model. The Omnibus model was originally proposed to deal with

data collected by sensor devices. Some modifications can be suggested to make

it more broad and suitable for other data fusion systems such as:

• Sensing and signal processing can be replaced by data gathering and data

preprocessing, respectively.

• Sensor data fusion should be stated as raw data fusion.

• Instead of Sensor management we should adopt source management.

In this way, the Omnibus model will be suitable for data systems that deal with

any kind of sources, including sensors.

2.5.3 Role-Based Model

Role-based model represents a change of focus on how data fusion systems can be

modeled and designed. Data fusion systems are specified based on the fusion roles

and the relationships among them providing a more fine-grained model for the

fusion system. The two members of this generation are the Object-Oriented Model

and the Frankel-Bedworth architecture [31]. The role-based model provides a

systemic view of data fusion like the JDL model. However, it does not specify

fusion tasks or activities. Instead, it provides a set of roles and specifies the

relationships among them.

Fig. 2.7 Omnibus model

2.5 Data Fusion: Architectures and Models 31

1. Object-oriented model: Kokar proposes an object-oriented model for data fusion

systems. Figure 2.8 is a simplification of the object-oriented model in which four

roles are identified as:

• Actor: It is responsible for the interaction with the world, collecting data and

acting on the environment.

• Perceiver: After data is gathered, the perceiver assesses such data providing a

contextualized analysis to the director.

• Director: The director builds an action plan specifying the system’s goals,

based on the analysis provided by the perceiver.

• Manager: It controls the actors to execute the plans formulated by the

director.

2. Frankel-Bedworth architecture: Frankel described an architecture for human

fusion composed of two self regulatory processes:

• Local: The local estimation process manages the execution of the current

activities based on goals and timetables provided by the global process.

• Global: The global process updates the goals and timetables according to the

feedback provided by the local process.

Figure 2.9 shows the Frankel-Bedworth architecture. The local and global

processes have different objectives and, consequently, different roles.

The local process tries to achieve the specified goals and maintain the specified

standards. The local process has the estimator role, which is similar to the

previous fusion models and includes the following tasks:

• Sense: Data is gathered by the data sources.

• Perceive: Stimuli retrieved by sensing are dealt according to its relevance

(focus), and the Controller is informed which stimuli are being used

(awareness).

Fig. 2.8 The object-oriented

model for data fusion

32 2 Data Fusion in WSN

• Direct: Based on the comprehension of the perception (semantics), the

Estimator can provide a feedback (alert) to the Controller. The disparity

between current situation and desired situation is evaluated. Then, the

Estimator is fed forward with desires that specify new goals and timetables.

• Manage: Based on the objectives, the Controller is activated to define what is

practical (pragmatics) so the Estimator can provide an appropriate response.

Then, the Estimator provides a feedback to the Controller by reporting the

expectations about the provided decision (sensitivity).

• Effect selected decisions (responses) are applied and the control loop is

closed by sensing the changes in the environment.

Global control process manages the goals of the system during the execution of

the local process. The global process has the Controller role; it is responsible for

controlling and managing the Estimator role and includes the following tasks:

• Orient: The relevance of sensed stimuli is configured.

• Prefer: Priority is given to the aspects that are most relevant to the goal-

achieving behavior, detailing the local goals.

• Expect: Prediction is made and the intentional objective is filtered, determin-

ing what is practical to the estimator pragmatics.

The Frankel-Bedworth architecture introduces the notion of a global process

separated from the local process. The global control process rules the local

process by monitoring its performance and controlling its goals. Moreover, the

local process is supposed to perform and implement fusion methods and

algorithms to accomplish the system’s objectives. This architecture expands

the previous models that were concerned only with the local process aspects.

In WSN, the global control process will most likely be performed by human

beings who feed the network with operation guidelines, whereas the local

estimation process should be implemented within the computational system.

Fig. 2.9 The Frankel-Bedworth architecture

2.5 Data Fusion: Architectures and Models 33

Although these models provide a clear understanding of the fusion task, they do

not explicitly consider the particularities of the WSN.

Bibliography

1. F. Nakamura, A.F. Loureiro, and C. Frery, “Data Fusion for Wireless Sensor Networks:

Methods, Models, and Classifications,” ACM Computing Surveys, vol. 39, No. 3, Article 9,

2007, August 2007.

2. R.R. Brooks and S. Iyengar, Multi-Sensor Fusion: Fundamentals and Applications with
Software: Prentice Hall PTR, Upper Saddle River, NJ, 2003.

3. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and robust

communication paradigm for sensor networks,” in Proceeding of the 6th ACM Annual
International Conference on Mobile Computing and Networking, Boston, MA, USA, August

2000, pp. 56–67.

4. L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation in wireless

sensor networks,” in Proceeding of the 22nd International Conference on Distributed
Computing Systems Workshops, Vienna, Austria, July 2002, pp. 575–578.

5. A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of reliable multihop

routing in sensor networks,” in Proceeding of the 1st International Conference on Embedded
Network Sensor Systems, Los Angeles, November 2003, pp. 14–27.

6. “Data fusion lexicon,” U. S. D. o. Defence, Ed.: Data Fusion Subpanel of the Joint Directors of

Laboratories 1991.

7. J. Llinas and D.L. Hall, “An introduction to multi-sensor data fusion,” in Proceeding of the
IEEE International Symposium on Circuits and Systems, Monterey, CA, USA, May 1998,

pp. 537–540.

8. L. Wald, “Some terms of reference in data fusion,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 37, pp. 1190–1193, May 1999.

9. R.C. Luo and M.G. Kay, “Multisensor integration and fusion in intelligent systems,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, pp. 901–931, October 1989.

10. K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient algorithms for maximum lifetime data

gathering and aggregation” The International Journal of Computer and Telecommunications
Networking, vol. 42, pp. 697–716, August 2003.

11. A. Boulis, S. Ganeriwal, and M.B. Srivastava, “Aggregation in sensor networks: an energy-

accuracy trade-off,” in Proceeding of the 1st IEEE International Workshop on Sensor Network
Protocols and Applications, Anchorage, AK, USA, May 2003, pp. 128–138.

12. A. Hoover and B.D. Olsen, “A real-time occupancy map from multiple video streams,”

in Proceeding of the IEEE International Conference on Robotics and Automation, Detroit,
MI, USA, May 1999, pp. 2261–2266.

13. Y.J. Zhao, R. Govindan, and D. Estrin, “Residual energy scan for monitoring sensor

networks,” in Proceeding of the IEEE Wireless Communications and Networking Conference,
Orlando, Florida, USA, March 2002, pp. 356–362.

14. X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detection in wireless sensor

networks,” IEEE Transactions on Computers, vol. 55, pp. 58–70, January 2006.

15. J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks,” in the 2nd ACM International Conference on Embedded Networked Sensor
Systems, Baltimore, USA, November 2004, pp. 95–107.

16. B. Krishnamachari and S. Iyengar, “Distributed Bayesian algorithms for fault-tolerant event

region detection in wireless sensor networks,” IEEE Transactions on Computers, vol. 53,
pp. 241–250, March 2004.

34 2 Data Fusion in WSN

17. B.V. Dasarathy, “Sensor fusion potential exploitation-innovative architectures and illustrative

applications,” in Proceedings of the IEEE, vol. 85, pp. 24–38, January 1997.

18. M.L. Sichitiu and V. Ramadurai, “Localization of wireless sensor networks with a mobile

beacon,” in Proceeding of the IEEE International Conference on Mobile Ad-hoc and Sensor
Systems, Pasadena, CA, USA, May 2004, pp. 174–183.

19. A.P. Dempster, “A generalization of Bayesian inference,” Journal of the Royal Statistical
Society, pp. 205–247, March 1968.

20. G. Shafer, A Mathematical Theory of Evidence Princeton University Press, 1976.

21. A.J. Pinto, J.M. Stochero, and J.F. Rezende, “Aggregation-aware routing on wireless sensor

networks,” in Proceeding of the 9th International Conference on Personal Wireless
Communications, Netherlands, September 2004, pp. 238–247.

22. B. Yu, J. Giampapa, S. Owens, and K. Sycara, “An evidential model of multisensor decision

fusion for force aggregation and classification,” in Proceeding of the 8th International
Conference on Information Fusion, Philadelphia, USA. 25–29 July 2005, pp. 8–13.

23. G. Indranil, D. Riordan, and S. Srinivas, “Cluster-head election using fuzzy logic for wireless

sensor networks,” in Proceeding of the 3rd Annual Communication Networks and Services
Research Conference, Halifax, Novia Scotia, Canada, May 2005, pp. 255–260.

24. D.S. Friedlander and S. Phoha, “Semantic data fusion for coordinated signal processing in

mobile sensor networks,” International Journal of High Performance Computing
Applications, vol. 14, pp. 235–241, April 2002.

25. L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average

consensus,” in Proceeding of the 4th International Symposium on Information Processing in
Sensor Networks, Los Angeles, California, USA, April 2005, pp. 63–70.

26. L. Xiao, S. Boyd, and S. Lai, “A space-time diffusion scheme for peer-to-peer least-squares

estimation,” in Proceeding of the 5th International Conference on Information Processing in
Sensor Networks, Nashville, TN, USA, April 2006, pp. 168–176.

27. Y. Chin-Lung, S. Bagchi, and W. J. Chappell, “Location tracking with directional antennas in

wireless sensor networks,” in Proceeding of the IEEE International Microwave Symposium
Digest, Long Beach, CA, USA, June 2005, pp. 4–10.

28. R.E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic
Engineering, vol. 3, pp. 35–45, May 1960.

29. R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus Filters,” in Proceeding
of the 44th IEEE Conference on Decision and Control, Seville, Spain, December 2005,

pp. 8179–8184.

30. M. Bedworth and J. O’Brien, “The Omnibus model: a new model of data fusion?,” IEEE
Aerospace and Electronic Systems Magazine, pp. 30–36, April 2000.

31. B. Frankel, “Control, estimation and abstraction in fusion architectures: Lessons from human

data processing,” in Proceeding of the 3rd International Conference on Data Fusion, Paris,
France, May 2000, pp. 3–10.

Bibliography 35

Chapter 3

Proposed Centralized Data Fusion Algorithms

Abstract The trend in oil companies nowadays is to integrate the entire well

sensors (modern and legacy sensors) with wireless sensor network (WSN). In this

work, we introduced a new framework from such sensors using a heterogeneous

network of sensors taking in our consideration the WSN’s constraints.

The framework combined two modules: a Wireless Sensor Data Acquisition

(WSDA) module and a Central Data Fusion (CDF) module. A test bed was

established from ten acoustic sensors mounted on a closed loop pipeline.

The flow rate and the differential pressure were monitored as well. The CDF

module was implemented in the gateway using four fusion methods; Fuzzy Art

(FA), Maximum Likelihood Estimator (MLE), Moving Average Filter (MAF) and

Kalman Filter (KF). The results show that the KF fusion method is the most

accurate method. Unlike the other methods, Kalman filter algorithm does not lent

itself for easy implementation; this is because it involves many matrix multiplica-

tion, division and inversion. Among these 17 matrix operations, there are 10 matrix

multiplications, 2 matrix inversions, 4 matrix additions and 1 matrix subtraction.

Moreover, these tasks are computationally intensive and strain the energy resources

of any single computational node in a WSN. In other words, most sensor nodes do

not have the computational resources to complete a central KF task repeatedly.

Furthermore, the computational complexity of the centralized KF is not scalable in

terms of the network size.

3.1 Introduction

In a centralized fusion system, all data to be combined is sent to a central fusion

node that performs the complete fusion task. All data processing is performed in

a central unit. In this work, we proposed four centralized fusion algorithms to be

implemented in WSN. As a case of study, we propose a remote monitoring

framework for sand production in pipelines. Our goal is to introduce a reliable

and accurate sand monitoring system.

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_3, # Springer Science+Business Media, LLC 2012

37

Produced sand in oil pipelines is a major problem in many production situations

since a small amount of sand in the produced fluid can result in significant erosion.

In high velocity oil wells erosion is a serious problem since it can erode holes

in the pipe in a very short time period [1]. It may cause considerable erosion

damage in the well tubing, fittings, separators, valves and other equipments.

Produced sand also can result in serious damage to the reservoir, where in some

cases the reservoir collapses as a result of the sand production. The most commonly

used practice for controlling sand erosion in a gas and oil producing well is simply

to limit the production. It can cause poor performance in injection wells, and can

lead to lost production. It arises in the case of failure of sand control measures. Sand

screening also is a critical part of the mining process [2].

Every year, cleaning and repair operations related to sand production and

restricted production rates cost the industry millions of dollars. Quite often

producers worry over the consequences of sand production that limits the oil and

gas production seriously. Sand usually comes in batches, in other words in large or

small quantities. However, the time period for the batches can vary both for the

individual well itself as from well to well. When sand has been constantly produced

over a period of time one should be aware of the conditions within the reservoir

itself. However, a reliable sand monitor system is essential to decide whether sand

control measures need to be installed during well operations or not. Sand monitor-

ing allows timely actions to be taken to handle sand production such as:

1. Increasing inspection to detect erosion.

2. Reducing the flow rate or stop the production in some of the extreme cases.

3. Installation of sand handling systems [3, 4].

In order to prevent a high potential incident from occurring, several fields have

installed a sand detection system. Installation of a system to monitor and quantify

sand production from a well would be valuable to assist in optimizing well

productivity and to detect sand as early as possible. Early detection would then

lead to possible remedial action that could prevent incidents due to erosion and

improve production. By using an efficient monitoring device with a high degree

of repeatability and sensitivity, the producers are capable of not only avoiding

erosion–corrosion or reservoir damages, but also increasing the oil & gas produc-

tion. However to be able to do this you need repeatability, sensitivity and also real

time measurement. Design to prevent sand erosion is often done by ad-hoc methods

that are independent of the sand production rate.

3.2 Sand Measuring in Pipelines

Some sand monitoring devices are located down hole on the production tubing.

More commonly, monitoring is undertaken on the topsides pipe work. Two generic

types of devices are used to monitor sand production: the intrusive devices and

non-intrusive devices.

38 3 Proposed Centralized Data Fusion Algorithms

3.2.1 The Intrusive Devices

The intrusive devices can be intrusive sensors, tuning forks or they can be erodible

resistance probes as shown in Fig. 3.1a. These are probes inserted through the pipe

wall into the flow path. Erodible resistance probes are the most commonly used

today among the intrusive types. This type uses the Whetstone Bridge as a principle

for measurement techniques, and is a well proven and working principle. However

all the intrusive systems have some disadvantages due to their intrusiveness i.e., it is

not real time measurement device, as they are not able to give the user a quick

respond. Moreover, sand and particles in the flow causes erosion on the probe and it

has to be replaced. One type of sand probe is used to detect erosion. Other types are

used for continuous monitoring. One type uses an acoustically sensitive crystal to

generate an electrical pulse when the inserted portion of the sand probe is struck by

a particle of sand. Operation is at ultrasonic frequency to control interference from

background flow noise. The energy of the pulse is processed to estimate the amount

of sand in the flow stream. The other type is based on measuring the change in

electrical resistance of sensing elements, which are eroded by the sand.

The measured metal loss is processed to indicate a sand production rate. Sand

probes can be periodically polled by a main processor, the data on the quantity of

produced sand being transmitted to a data acquisition unit for display and trending.

3.2.2 The Non-intrusive Devices

The non-intrusive devices are clamped onto the pipe wall as shown in Fig. 3.1b.

They are acoustic devices that detect the sound of particles impacting the pipe wall.

However careful positioning of the device is essential; usually they are installed

after a bend. When the flow is passing the bend, particles will be forced out and hit

the inside of the pipe wall and generate an ultrasonic pulse. The ultrasonic signal is

transmitted through the pipe wall and picked up by the acoustic sensor itself. It may

also be necessary to monitor the accumulation of sand within production separators

or sand accumulators to determine when water-jetting or flushing needs to be

undertaken. Nucleonic level detection devices are typically used.

Fig. 3.1 (a) Intrusive device.

(b) Non-intrusive devices

3.2 Sand Measuring in Pipelines 39

3.3 Proposed Remote Measuring for Sand in Pipelines

We propose a remote monitoring system for sand in pipelines. Our goal is to

introduce a reliable, accurate and low cost sand monitoring system. Figure 3.2

shows the proposed system. The framework combines two modules: a Wireless

Sensor Data Acquisition (WSDA)module and a Central Data Fusion (CDF) module.

Each of the two modules has a wireless Receiving and Transmission (ReT) module

for communication between each others. The framework is designed to collect data

from oil pipeline using acoustic sensors (SENACOAS100), Flow Analyzer (MC-II)

and Differential Pressure Transmitter (EJA110A) in real time. The data is collected

in the gateway i.e., laptop in our case. CDF module is implemented in the gateway

using four fusionmethods; FuzzyArt (FA),MaximumLikelihood Estimator (MLE),

Moving Average Filter (MAF) and Kalman Filter (KF).

3.3.1 Sensors Used in the Proposed System

1. Acoustic sensor: The Senaco AS100 Sensor monitors high-frequency acoustic

emissions. Acoustic emissions travel readily through solid materials such as

metal, but are strongly attenuated when traveling through air. As such, the

Sensor is immune to airborne interferences and provides a non-invasive method

of monitoring process activities [5].The Senaco AS100 Sensor provides an

analog output for use. It is primarily used for solids flow detection. However,

this device can be used in pump cavitations and fluid leak detection, provided

sufficient noise levels are generated. Figure 3.3 shows the AS100 acoustic

sensor. Because the AS100 is mounted outside the process, it is completely

non-invasive. In hazardous or hygienic environments, this is a great advantage as

Fig. 3.2 Proposed platform

40 3 Proposed Centralized Data Fusion Algorithms

there is no need for constant cleaning, and concerns about product contamination

are eliminated. The Senaco AS100 is also unaffected by abrasive applications.

2. MC-II flow analyzer specifications: The NuFlo Measurement System’s Model

MC-II Flow Analyzer receives an electronic pulse stream from a turbine flow

meter and provides a registration of the totalized flow and an indication of flow

rate by utilizing its microprocessor-based circuitry[6]. The totalized flow and the

flow rate are displayed on two six-digit Liquid Crystal Display (LCD’s). Both

displays are properly labeled with respective measurement units. The low

current draw of its Complementary Metal–Oxide–Semiconductor (CMOS)

microprocessor-based circuitry permits MC-II to run for 3–5 years on single

battery. MC-II has the advantage of being battery powered and enclosed in

non-corrosive weatherproof housing, deemed ideal for use in remote locations.

Figure 3.4 shows the MC-II Flow Analyzer.

3. EJA110A differential pressure transmitter: The accurate measurement of

Differential Pressure (DP) is required at many points in the oilfield. In general,

DP is defined as a measurement of fluid force subtracted from a higher measure-

ment of fluid force (in terms of pounds per square inch).Yokogawa Electric

Cooperation Model EJA110A differential pressure features high performance,

durability, and reliability. The pressure detector, the core of the transmitter, uses

a silicon resonant sensor that has proven to be highly reliable in the field and

offers a complete product lineup. Figure 3.5 shows the EJA110A differential

pressure transmitter. The EJA series uses a silicon resonant sensor formed from

monocrystal silicon, a perfect material which has no hysterics in pressure or

temperature changes. The sensor minimizes overpressure, temperature change,

and static pressure effects, and thus offers unmatched long-term stability.

EJA110A is a compact and light-weight design. It has also field bus communi-

cation capability. Field bus is a digital two-way communication system. It is a

revolutionary technology for configuring instrumentation control systems and a

promising successor to the standard 4–20 mA analog communications used in

most field instruments today [7].

Fig. 3.3 Senaco AS100

sensor

3.3 Proposed Remote Measuring for Sand in Pipelines 41

3.3.2 WSDA Framework

Our proposed WSDA framework includes three components: a signal Conditioning

and Digitizing (CoD) module, a wireless Receiving and Transmission (ReT)

module, and a Management and Control (MaC) module. While different

implementations of the ReT module are possible, this paper discusses in detail an

implementation based on TinyOS [8] and Crossbow MICA2 motes [9]. The CoD

module has been implemented to work with three legacy sensors: acoustic sensor,

flow meter and differential pressure transmitter. These devices produce different

types of analog signals: the acoustic sensor and the flow meter generate Direct

current (DC) voltages while the differential pressure generates DC current outputs

Fig. 3.4 The MC-II flow

analyzer

Fig. 3.5 EJA110A

differential pressure

42 3 Proposed Centralized Data Fusion Algorithms

proportional to the measured differential pressure. Figure 3.6 shows the proposed

WSDA. The CoD module permits: (a) various legacy sensors to provide their data

readings in a unified way to the ReT module for transmission. (b) Received

data/control signals to be converted back to their respective analog signal forms

and ranges (in voltages or DC currents) native to those legacy sensors involved.

Upon reception, it interfaces with the CoD module, which converts the received

values before forwarding to corresponding legacy sensors. In addition, it conditions

and digitizes the analogous sensor readings to the given resolution for transmission.

The MaC module serves to manage and control, in a unified manner, the sensor

network formed and the sensor data acquisition rates. The proposed WSDA frame-

work is readily applicable to various engineering applications where legacy and

modern sensors are co-exist.

As it is responsible for wireless signal reception and transmission, the ReT

module may be implemented in various fashions. For example, one may build it

using a Crossbow’s mote which is governed by the XMesh communication protocol

implemented in TinyOS. Alternatively, one may choose to implement it by means

of a different RF gear set following Zigbee. Another option is to employ a pair of

SAW-based RF transmitter and receivers with an integrated encoder and decoder

logics, suitable for remote control/command, security, and automation.

The CoD module provides a linkage between legacy sensors and the ReT

module. It includes multiple components: a hardware circuit that conditions and

normalizes analogous signals from legacy sensors, a logic unit to convert

conditioned signals to digital forms, and software which processes digitized values

into ones ready for transmission by ReT. The same components are charged to deal

Fig. 3.6 WSDA framework

3.3 Proposed Remote Measuring for Sand in Pipelines 43

with received values by processing them back to proper forms before converting

them into proper analog signals for use by corresponding legacy sensors. CoD does

not need to be aware of the details of the radio transmission but need only know how

to pass the data to/from ReT on transmission. Similarly, ReT knows nothing about

the details of the analog to digital conversion process, the native analog signals

(in voltages or DC currents), or the signal values ranges. It only needs to know that a

CoD has registered with it and is to provide the data in a normalized format.

As management and control of sensor data are basic to WSDA, the proposed

framework includes a MaC module to facilitate sensor data readings to be logged

and displayed in a uniform fashion, no matter whether they are from legacy sensors

or modern ones. The MaC module also enables quick additions and modifications to

data collection types and amounts when involved sensors and devices change.

The WSDA framework allows a level of interchangeability between

components. The hardware circuits used to condition and normalize a 4–20 mA

signal can be reused with different ReTs that use entirely different communication

protocols. Thus, CoDs that operate with ReTs that use the default TinyOS protocols

can be used with other ReTs that implement standard Zigbee application protocols.

While certain modern sensors incorporate the functionality of CoD, this framework

integrates data acquisition over those modern sensors together with their legacy

counterparts through ReT with acquired data managed and controlled MaC. As can

be seen in Fig. 3.6, the proposed framework is suitable for any engineering

application where various types of sensors co-exist because its ReT interfaces

seamlessly with legacy sensors via CoD and with modern sensors directly.

1. ReT module: As a proof-of-concept attempt, one implementation of the ReT

module has been accomplished by using Crossbow Technologies MICA2 motes

and the TinyOS operating system. As the hardware component of our ReT

implementation, MICA2 motes employ the Chipcon CC1000 FSK modulated

radio and come in three models, according to their RF frequency bands: the

MPR400 (915MHz), MPR410 (433MHz), andMPR420 (315MHz). All models

utilize an Atmega128L micro-controller and a frequency-tunable radio with an

extended range. A variety of modern sensors and data acquisition boards can be

connected to a MICA2 mote. Communication is two-way between the ReT and

connected CoD. The ReT provides an interface that can be used to pass

commands to the ReT and any connected sensors. For example, radio transmis-

sion power can be adjusted by sending a command to the ReT. The interface

between the ReT and other components in the framework reduces the effort

required to link with existing industrial control systems. The application pro-

grammer needs only to implement the ReT to CoD interface in order to link a

new device into the ReT’s network. In a similar fashion, it is possible to replace

an existing ReT with a ReT that communicates to an entirely different network.

Software reusability has long been sought for improved productivity and

lowered development and testing costs. It can be enhanced through a set of

proven solutions for recurrent problems. In general, software design patterns do

not specify implementation details, making it possible to accommodate various

44 3 Proposed Centralized Data Fusion Algorithms

scenarios via reusing their high-level abstractions [10]. ReT is implemented to

consist of three software design patterns: the Facade, ServiceInstance, and

Dispatcher patterns [11], as illustrated in Fig. 3.7. The Facade design pattern is

used when one needs a single, unified interface to a collection of sub-services.

In our case, the entry point to ReT for other applications is the ReTFacade

application interface.

Applications use this interface to post requests for launching data acquisition

from the devices, initiating data transmission/reception, and registering new

devices. The ReTFacade component passes these messages either to the

SensorServiceProvider for administrative requests or to the MessageDispatcher

for all other messages. The SensorServiceProvider is responsible for keeping

track of each instance of the CoD or ModernSensor acquiring data.

The MessageDispatcher is aware of each sensor connected to the system via a

registration interface in the dispatcher which is called when SensorService-

Provider instantiates a new sensor instance. Messages are then routed directly

to the sensor by the MessageDispatcher component. ReT is aware only of a

Proxy object for each sensor. This instance of the Proxy pattern handles the

interface between ReT and the devices. A single proxy will be in place for CoD

while multiple instances may exist for each ModernSensor to which the ReT

communicates.

2. CoD module: CoD may collect data from more than one instance of either a

Voltage Signals device or Current Signals component, as depicted in Fig. 3.8.

Here, a variation of the ServiceInstance pattern is developed, with CoDFacade

also serving as the ServiceProvider component of a multi-to-multi resource

multiplexer/demultiplexer. The ServiceProvider component realizes the service

type of corresponding sensors, and it varies with the type of sensors. As legacy

sensors and measurement devices usually produce analog outputs in the form of

Fig. 3.7 ReT component design

3.3 Proposed Remote Measuring for Sand in Pipelines 45

voltage or direct current (4–20 mA) signals, our CoD module includes circuits

for output conditioning and amplification to a specified voltage range before

ADC conversion is applied [12]. Three sets of circuit design have been devised

and implemented: one for voltage conditioning and amplification, another for

direct current signal conditioning and conversion to voltage, and one to calculate

the sand production rate (i.e., sand rate module) as follows.

• Voltage outputs: An amplifier circuit is designed to amplify the flow

analyzer’s output from 1 to 2.5 V before digitized. As illustrated in

Fig. 3.9, an LMC6484 CMOS quad rail-to-rail input and output op-amp is

used in the amplifier circuit, providing a common-mode range that extends to

both supply rails [13]. This rail-to-rail performance, combined with excellent

accuracy, makes it unique among rail-to-rail input amplifiers. It is ideal for

systems, such as data acquisition, that require a large input signal range.

Maximum dynamic signal range is assured in low voltage and single supply

systems by the LMC6484’s rail-to-rail output swing, which is guaranteed for

loads down to 600 Ω. This guaranteed low load characteristic and its low

power dissipation make LMC6484 especially well-suited for battery-operated

systems.

Given the gain of the circuit is calculated by the next equation, the values

of resistors R1 and R2 equal to 10 and 15 KΩ respectively. The circuit brings

the input voltage Vin of 1 V to the output voltage Vout of 2.5 V, as required:

Vout

Vin
¼ 1þ R2

R1

(3.1)

Fig. 3.8 CoD component design

46 3 Proposed Centralized Data Fusion Algorithms

It should be noted that this designed circuit is universal for conditioning and

amplifying voltage outputs of any legacy sensor, no matter what its output

voltage value might be. As the ADC converter takes 2.5 V as its input,

a legacy sensor’s voltage output can always be rectified to the proper range

before conversion through choosing appropriate R1 and R2 [14].

• Voltage inputs: For a legacy sensor with voltage inputs to receive control

information or data wirelessly, CoD employs a voltage dividing circuit shown

in Fig. 3.10, with R1 and R2 governed by the equation below:

Vout ¼ Vin
R2

R1þ R2
(3.2)

The received information and data, after being converted to an analogous

form, can be conditioned to match the voltage range suitable for the sensor

input.

• Current outputs: The 4–20 mA current loop has been a popular sensor output

form for industrial and process sectors alike. Its popularity comes from

its ease of use, its performance, and its simple wiring. Both the supply voltage

and the measuring current are over the same two wires. This current loop

makes cable break detection simple: if the current drops to zero, a cable break

happens. Additionally, the current signal is immune to any stray electrical

interference, deemed particularly important to sensors applied to harsh

Fig. 3.9 Voltage amplification diagram

Fig. 3.10 Voltage divider

diagram

3.3 Proposed Remote Measuring for Sand in Pipelines 47

environments. Those advantages make the current loop output common to

many legacy sensors.

A current-to-voltage converter translates current signals to proportional

voltage outputs. It includes an operational amplifier for simple linear signal

processing and a resistor for dissipating current, as depicted in Fig. 3.11.

The resistance between the operational amplifier’s input and output determines

the voltage range for specific current signals. In current-to-voltage converters

that handle a range of currents, design consideration accounts for the DC offset

caused by both the input device and the operational amplifier. The output

voltage of the circuit is calculated by the equation of Vout ¼ R1 � Iin, giving

rise to Vout in the range of 0.4–2 V, for R1 ¼ 100 Ω when the current loop of

4–20 mA is applied. To minimize the bias current, R2 is chosen to equal R1.

This circuit yields a desirable voltage range for ADC conversion, according to

the current loop reading produced by a legacy sensor. The circuit shown in

Fig. 3.11 is base on the LM741 op-amplifier [15]. Since the 4–20 mA current

loop is the most popular output form of sensors deployed in many engineering

applications, this CoD circuit is generally suitable for those applications.

• Current inputs: For a legacy sensor with current loops as its inputs,

a companion circuit to Fig. 3.12 is needed for converting voltages which are

obtained from digitalized data or control information received wirelessly to

4–20 mA DC currents. A voltage-to-current converting circuit can be included

in the CoD module. The circuit was an application example given in the

AM422 op-amplifier data sheet [16]. The AM422 is a low cost monolithic

voltage–to–current converter specially designed for analog signal transmission.

In order to get an output current (Iout) range of 4–20 mA with the input DC

voltage (Vin) ranging from 0.4 to2.0 V, the circuit discrete components of

Fig. 3.12 are specified as follows: R0 ¼ 25 Ω, R3 ¼ R4 ¼ 33 KΩ,

RSET ¼ 2.64 KΩ, R5 ¼ 40 Ω, R1/R2 ¼ 2.25, RL ¼ 0–500 Ω,

C1 ¼ 2.2 mF.

Fig. 3.11 Current-to-voltage converting circuit

48 3 Proposed Centralized Data Fusion Algorithms

• Sand rate module: The output of the acoustic sensor is used to calculate the

sand production rate using a PIC18F8720 microcontroller [17]. Data is

analyzed using descriptive statistic algorithm. Descriptive statistic is used

to describe or summarize the data. Descriptive statistic is used throughout

data analysis in a number of different ways. Simply stated, they refer

to Minimum, Maximum, Mean, and Standard Deviation and numbers of

valid cases of one variable. Descriptive statistic is important in data

cleaning. It is regularly used during analysis to keep an eye on the variables

being used, especially when a considerable number are being studied.

Descriptive analysis can often be presented more accurately for the contin-

uous variables than for categorical variables because of lost information

from collapsing it into categories. Figure 3.13 shows the block diagram of

the sand rate module.

3. MaC module: Data values collected from sensors and measurement devices are

transmitted over a WSDA system normally to one or multiple designated sink

Fig. 3.12 Voltage-to-current converting circuit

Fig. 3.13 Sand rate module

3.3 Proposed Remote Measuring for Sand in Pipelines 49

node. To facilitate management and control on data acquisition, a generic

management portal is developed as part of our WSDA framework. The MaC

module enables quick additions and modifications to data collection types and

amounts when involved sensors and devices change. It interfaces with an

application server, called XSERVE, which is responsible for collected data

logging into an archival database, to permit data displays and processing.

MaC consists of three units: (a) The well data sensor portlet, (b) The charts

portlet, and (c) the sensor network configuration portlet that together realize

required functions to manage WSDA. The three portlets are constructed using

Gridsphere, which is an open-source Java-based web portal [18], and its

accompanying GridPortlets. Gridsphere eases the development and deployment

of portlet web applications for efficient administration. It provides the tools

needed for fast development and prototyping of the MaC portlets. The sensor

network configuration portlet enables one to modify the communication

parameters governing connections to XSERVE and the database server.

For example, the user can select the server Internet Protocol (IP) address,

Transmission Control Protocol (TCP) port used to connect to the database, and

the TCP port used to connect to the sensors. It can also be used to specify

the appearance of other portlets; e.g., the number of raw data packets shown in

the Xsensor porlet.

3.3.3 Proposed Centralized Fusion Methods

In our proposed platform, we have ten acoustic sensors distributed on the pipeline.

Each sensor has a sand rate interface to calculate the sand production rate, the flow

rate and differential pressure are monitored as well. At the gateway, we are

receiving ten different values from each sensor. In order to increase the associated

confidence, we need to fuse all the data coming from the sensors. In this work we

propose four different fusion algorithms: Fuzzy Art (FA), Maximum Likelihood

Estimator (MLE), Moving Average Filter (MAF) and Kalman Filter (KF).

1. Fuzzy art: FuzzyART data fusion technique [19] employs FuzzyART neural

network modules to fuse measurements into a coherent estimate. FuzzyART

modules are a class of unsupervised neural network systems where training

is performed without the presence of a teacher. Moreover, training is done

online, which makes the system highly adaptive to changes in the input vector.

Neural network modules fit in typical sensor network systems since it shares

similar characteristics, such as, distributed processing and data storage, adaption

to changes in environment, and resilience to noise and corrupted data. After

the input vector is presented to the FuzzyART fusion center, it will cluster

the information into categories. The weight vector of the trained network has

a geometric meaning where each category is bounded by a rectangle that

contains all the inputs that are close to each other. FuzzyART fuses

50 3 Proposed Centralized Data Fusion Algorithms

measurements by assigning a probabilistic weight according to two metrics,

spatial correlation and consensus vote. That is, measurements that are geometri-

cally close to each other should be given high probabilistic weight and the more

estimates we have in a group the more confident we are with this group.

Furthermore, FuzzyART detect erroneous measurements and assign them a

zero weight to prohibit them from contaminating the estimation process.

To automate this process probabilistic weight is assigned according to a decision

tree shown in Fig. 3.14.

If all measurements reside in a single category then a fixed probabilistic of

one will be assigned to this category which is divided evenly among the

candidates of this category. If measurements are divided into two categories

where one category contains two measurements and the other contains only one

measurement, then we cannot rule out the fact that the category with one

measurement contains an erroneous measurement. In this case, the category

with two measurements is assigned a weight of 0.75 which is divided evenly

between the two measurements. The category with one estimate is assigned a

weight of 0.25. If a category or more contains more than two measurements and

if zero or more categories contain one measurement, then we definitely can

assume that categories with one measurement are faulty and should be assigned

a zero weight. On the other hand, categories with two measurements or more will

be assigned a probabilistic weight following the methodology listed below.

FuzzyART assigns probabilistic weights according to spatial correlation and

consensus vote. For case number 3 the probabilistic weight assignment is

performed according to the following methodology: The higher number of

measurements belonging to the same category (consensus vote) the higher the

weight should be (Eq. 3.3). Moreover, lower standard deviation between

Fig. 3.14 FuzzyART decision tree

3.3 Proposed Remote Measuring for Sand in Pipelines 51

the measurements (spatial correlation) belonging to the same group should be

given also a higher probability (eq).

Pm ¼ nmesscat
totninputs

(3.3)

Ps ¼ 1� STDcat

totSTD
(3.4)

where n_mess_cat is the number of measurements in a category and tot_n_input

is the total number of inputs, and STD_cat is the standard deviation of the

measurements in the same category and tot_STD is the total standard deviation

of all categories. Furthermore since Pa and Pm are independent their joint

probability is given by the following:

P s;mð Þ ¼ Pm � Ps ¼ nmesscat
totninputs

� �
� 1� STDcat

totSTD

� �
(3.5)

The final weight given to each category is the normalization of Eq. 3.5 given by

(3.6) where n_comm is the number of committed categories:

Pj ¼ Pj m; sð ÞPncomm
i Pi m; sð Þ (3.6)

The final estimate is given by multiplying each measurement by its

corresponding weight and summing them all up as given by Eq. 3.7.

~x ¼
XN
i¼0

xðiÞ � Pi (3.7)

2. Maximum likelihood estimator (MLE): Maximum Likelihood Estimator is a

method for choosing estimator of parameters that avoids using prior distributions

and loss functions. It is also a statistical estimator that can be used to estimate a

model’s unknown parameter values from data [20]. Suppose that x1, . . ., xn are

the observed data coming from n sensors. And suppose that X1, . . ., Xn are

following a random sample from a normal distribution with unknown mean m
and variance s2. The parameter set is then y ¼ (m, s2). For all observed values

x1, . . ., xn, the likelihood function

fn ðxjm; s2Þ ¼ 1=ð2ps2Þðn=2Þ exp½�1=ð2s2Þ Sn
ði�1ÞðXi � mÞ2� (3.8)

This function must now be maximized over all possible values of m and s2.

52 3 Proposed Centralized Data Fusion Algorithms

Where �1<m<1 and s2>0. Instead of maximizing the likelihood function

fn xjm; s2ð Þ directly, it is easier to maximized log fn xjm; s2ð Þ.

L yð Þ ¼ log fn xjm; s2
� � ¼ � n

2
log 2pð Þ � n

2
log s2 � 1

2s2
Xn
i¼1

xi � mð Þ2 (3.9)

Therefore, in principle, it is possible to derive the sampling distribution of each

estimator of y. For example, if X1, . . ., Xn form a random sample from a normal

distribution with mean m, and variance s2, then it is known that the sample mean
�Xn is the MLE of m. Furthermore, it was found that the distribution of �Xn is a

normal distribution with mean m, and variance s2/n [21].

3. Moving average filter (MAF): The Moving Average Filter (MAF) is broadly

implemented in fusion. It is optimal for reducing random white noise at the same

time as retaining a sharp step response. This filter computes the arithmetic mean

of a number of input measurements to produce each point of the output signal.

A slight improvement in computational efficiency can be achieved if we perform

the calculation of the mean in a recursive fashion. A recursive solution is one

which depends on a previously calculated value. To illustrate this, consider the

following development: Suppose that at any instant k, the average of the latest n

samples of a data sequence, Xi, is given by:

�Xk ¼ 1

n

Xk
i¼k�nþ1

Xi (3.10)

Similarly, at the previous time instant, k�1, the average of the latest n samples is:

�Xk ¼ 1

n

Xk�1

i¼k�n

Xi (3.11)

Therefore,

�Xk � �Xk�1 ¼ 1

n

Xk
i¼k�nþ1

Xi �
Xk�1

i¼k�n

Xi

 !

¼ 1

n
Xk � Xk�nð Þ (3.12)

This on rearrangement gives:

�Xk ¼ �Xk�1 þ 1

n
Xk � Xk�nð Þ (3.13)

3.3 Proposed Remote Measuring for Sand in Pipelines 53

This is known as a moving average because the average at each kth instant is

based on the most recent set of n values. At any time, a moving window of

n values is used to calculate the average of the data sequence as shown in

Fig. 3.15.

4. Kalman filter (KF): The Kalman filter is a set of mathematical equations that

provides an efficient computational solution to discrete time data filtering

problems, in essence removing extraneous noise from a given stream of data.

The filter is very powerful in several aspects: it supports estimations of past,

present, and even future states, it is an optimal estimator in the case of Gaussian

uncertainties, and it can do so even when the precise nature of the modeled

system is unknown. Moreover, the Kalman filter is the best linear estimator for

any other distributions. Kalman filter is based on linear dynamical systems

discredited in the time domain. It is modeled on a Markov chain built on linear

operators perturbed by Gaussian noise. The state of the system is represented as a

vector of real numbers.

3.4 Simulation and Experimental Results

In this section we provide the output performance of the proposed platform. A test

bed was established using ten acoustic sensors to collect the data from the same

pipe. Figure 3.16 shows the test bed Platform. In order to get the accurate sand

production rate, the flow rate and differential pressure should be monitored as well.

The global flow rate is measured using one MC-II flow analyzer sensor and the

global differential pressure is measured using one differential pressure sensor. Both

sensors are mounted on the test bed. In the experimental tests, the sand is injected in

the test bed by a certain rate using an injector with a known flow rate and pressure.

Each sand rate module calculates the sand rate. The sand rates, the global flow rate

and the global pressure are digitized for wireless transmission using the WSDA

module. The data is collected in the gateway i.e., laptop in our case. CDF module at

the gateway is used to fuse all the ten sand rates in order to improve the system

output. The proposed system has been validated experimentally using different sand

rate, flow rate and pressure.

Fig. 3.15 Moving window of

n data

54 3 Proposed Centralized Data Fusion Algorithms

In the experimental results, each result is the average of ten runs. Table 3.1

(Scenario I) shows the average percentage error between the observed sand rate,

from each sand rate module, and the actual sand rate. The sand was injected with

20 G/s (Gram/second), flow rate 25 G/min (Gallon/Minute) and pressure 400 psi

(pound per square inch).

(Scenario II) shows error for another scenario: The sand was injected with 15 G/s

(Gram/second), flow rate 30 G/min (Gallon/Minute) and pressure 400 psi (pound per

square inch).

Tables 3.1 and 3.2 show that the error for each individual sand rate module is

very high and inconsistent with others. That is leading us to implement fusion to

increase the associated confidence [19, 21].

Tables 3.3 and 3.4 show average percentage error, maximum percentage error

and the standard deviation of four different fusionmethods (FA,MLE,MAF and KF).

Fig. 3.16 The testbed platform

Table 3.1 Average percentage error for scenario I

Sensor # Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Avg.% error 3% 19% 12% 7% 9%

Sensor # Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Avg.% error 15% 12% 6% 11% 5%

Table 3.2 Average percentage error for scenario II

Sensor # Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Avg.% error 21% 12% 6% 11% 3%

Sensor # Sensor 6 Sensor 7 Sensor 8 Sensor 9 Sensor 10

Avg.% error 5% 4% 15% 17% 10%

3.4 Simulation and Experimental Results 55

The results show that the average percentage error is decreased by using the fusion

methods for scenario I and II. The results show that the KF fusion method is the more

accurate method. However the FA,MLE andMAFmethods are less complex than the

KF to be implemented inWSN.MLE andMAFneed accumulation operation only. FA

needs ADD, OR, DIVIDE and COMPARE operations [22, 23]. Unlike the other

methods, Kalman filter algorithm does not lend itself for easy implementation; this

is because it involves many matrix multiplication, division and inversion. Altogether

computations of an estimate involve 17 matrix operations. Among these 17 matrix

operations, there are 10matrix multiplications, 2 matrix inversions, 4 matrix additions

and 1 matrix subtraction. Moreover, these tasks are computationally intensive and

strain the energy resources of any single computational node in a WSN. In other

words, most sensor nodes do not have the computational resources to complete a

central KF task repeatedly. Next chapters we will propose a low power Distributed

Kalman Filter (DKF).

Bibliography

1. I. A. Allahar, “Acoustic Signal Analysis for Sand Detection in Wells with Changing Fluid

Profiles,” in Society of Petroleum Engineers, pp. 103–111, October 2003.
2. J. Sheldon, R. Kube, and Z. Hong, “Oil sand screen modelling using partial least squares

regression,” in Proceeding of the IEEE International Conference on Automation and Logistics,
Oingdao, China, September 2008, pp. 2936–2940.

3. A. I. Shamma’a, R. T. A. Shaw, and J. Lucas, “On line EMwave sand monitoring sensor for oil

industry,” in Proceeding of the 33rd European Microwave Conference, Munich, Germany,

October 2003, pp. 535–538.

4. A. Huser and O. Kvernvold, “Prediction of Sand Erosion in Process and Pipe Components,”

in Proceeding of the 1st North American Conference on Multiphase Technology, Banff,
Canada, August 1998, pp. 134–139.

5. Milltronics Inc., “Senaco AS100 Acoustic Sensor,” http://www.lesman.com/unleashd/catalog/

belt/0460-en-00.pdf.

6. NuFlo Measurement Systems, “User manual,” http://www.cam.com/content/products.

Table 3.3 Comparison

between fusion methods for

scenario I

Method Avg.% error Max% error Stdev.

FA 4.06 9.67 3.02

MLE 6.24 11.06 3.94

MAF 5.08 12.54 4.06

KF 1.17 3.34 1.01

Table 3.4 Comparison

betweenmethods for scenario II
Method Avg.% error Max% error Stdev.

FA 4.01 10.77 3.01

MLE 6.33 8.87 3.88

MAF 5.14 9.13 3.97

KF 1.03 3.11 1.12

56 3 Proposed Centralized Data Fusion Algorithms

http://www.lesman.com/unleashd/catalog/belt/0460-en-00.pdf
http://www.lesman.com/unleashd/catalog/belt/0460-en-00.pdf
http://www.cam.com/content/products

7. Yokogawa Electronic Corporation, “EJA110A Differential Pressure Transmitter,” http://www.

yokogawa.com/fld/PRESSURE/EJA/fld-eja110a-01en.htm.

8. P. Levis and S. Madden, “TinyOS: An operating system for wireless sensor networks,”

in Ambient Intelligence Conference, Eindhoven, Netherlands, November 2004, pp. 123–129.

9. Crossbow Technology, “MICA2 Datasheet,” http://www.xbow.com.

10. F. Rincon, F. Moya, and J. Barbra, “Model Reuse through Hardware Design Patterns,”

in Proceeding of the IEEE Design, Automation, and Test in Europe Conference and Exhibi-
tion, Munich, Germany, March 2005, pp. 324–329.

11. D. Gay, P. Levis, and D. Culler, “Software Design Patterns for TinyOS,” in ACM Transactions
on Embedded Computing Systems, May 2007.

12. J. Hauer, P. Levis, V. Handziski, and D. Gay, “TinyOS Extension Proposal 101: Analog-to-

Digital Convertors (ADCs),” http://www.tinyos.net/tinyos-2.x/doc/pdf/tep101.pdf.

13. National Semiconductor Corporation, “LMC6484 CMOS Quad Rail-to-Rail Input and Output

Operational Amplifier,” http://www.datasheetcatalog.com/.

14. A. Abdelgawad, A. Lewis, M. Elgamel, F. Issa, N. F. Tzeng, and M. Bayoumi, “Remote

Measuring of Flow Meters for Petroleum Engineering and Other Industrial Applications,”

in International Workshop on Computer Architecture for Machine Perception and Sensing,
Montreal, Canada, March 2007, pp. 99–103.

15. National Semiconductor Corporation, “LM741 Operational Amplifier,” http://www.national.

com/.

16. Analog Microelectronics, “Vlotage/Current Converter AM422,” http://www.analogmicro.de/.

17. Microchip Technology, “PIC18F8720 datasheet,” http://ww1.micr-ochip.com/downloads/en/

devicedoc/39609b.pdf.

18. GridSphere, http://www.gridsphere.org.

19. A. Abdelgawad, Z. Merhi, M. Elgamel, and M. Bayoumi, “Multisensor data fusion methods

for petroleum engineering applications,” in Proceeding of the IEEE Sensors Applications
Symposium, New Orleans, Louisiana, USA, March 2009, pp. 265–268.

20. M. H. DeGroot and M. J. Schervish, Probability and Statistics: Addison Wesley 2002.

21. A. Abdelgawad, Z. Merhi, M. Elgamel, M. Bayoumi, and A. Zaki, “Data fusion framework for

sand detection in pipelines,” in Proceeding of the IEEE International Symposium on Circuits
and Systems, Tibia, Taiwan, May 2009, pp. 2173–2176.

22. A. Abdelgawad and M. Bayoumi, “Sand Monitoring in Pipelines Using Distributed Data

Fusion Algorithm,” IEEE Sensors Applications Symposium, SAS 2011, 22–24 Feb. 2011.

23. A. Abdelgawad and M. Bayoumi, “Remote Measuring for Sand in Pipelines Using Wireless

Sensor Network,” IEEE Transactions on Instrumentation and Measurement, vol.60, no.4,
pp.1443–1452, April 2011.

Bibliography 57

http://www.yokogawa.com/fld/PRESSURE/EJA/fld-eja110a-01en.htm
http://www.yokogawa.com/fld/PRESSURE/EJA/fld-eja110a-01en.htm
http://www.xbow.com
http://www.tinyos.net/tinyos-2.x/doc/pdf/tep101.pdf
http://www.datasheetcatalog.com/
http://www.national.com/
http://www.national.com/
http://www.analogmicro.de/
http://ww1.micr-ochip.com/downloads/en/devicedoc/39609b.pdf
http://ww1.micr-ochip.com/downloads/en/devicedoc/39609b.pdf
http://www.gridsphere.org

Chapter 4

Kalman Filter

Abstract This chapter has briefly discussed the need of the DKF and introduced

the literature work of the DKF. Most DKF methods proposed in the literature rely

on consensus filters algorithm. The convergence rate of such distributed consensus

algorithms typically depends on the network topology and the weights given to the

edges between neighboring sensors. The next chapter proposes a low power DKF.

The proposed DKF is based on a fast polynomial filter to accelerate distributed

average consensus in static network topologies. The idea is to apply a polynomial

filter on the network matrix that will shape its spectrum in order to increase the

convergence rate by minimizing its second largest eigenvalue. Fast convergence

can contribute to significant energy saving.

In 1960, R.E. Kalman published his famous paper presenting a recursive solution to the

discrete-data linear filteringproblem [1]. TheKalmanfilter, since that time, has been the

subject of extensive research and application, particularly in the area of autonomous or

assisted navigation. The Kalman filter is a set of mathematical equations that provides

an efficient computational solution to discrete time data filtering problems, in essence

removing extraneous noise from a given stream of data. The filter is very powerful in

several aspects: it supports estimations of past, present, and even future states, it is an

optimal estimator in the case of Gaussian uncertainties, and it can do so even when the

precise nature of the modeled system is unknown. Moreover, the Kalman filter is the

best linear estimator for any other distributions. Kalman filter is based on linear

dynamical systems discredited in the time domain. It is modeled on a Markov chain

built on linear operators perturbed by Gaussian noise. The state of the system is

represented as a vector of real numbers. At each discrete time increment, a linear

operator is applied to the state to generate the new state, with some noise mixed in,

and optionally some information from the controls on the system if they are known.

Then, another linear operator mixedwithmore noise generates the visible outputs from

the hidden state. TheKalman filtermay be regarded as analogous to the hiddenMarkov

model,with thekeydifference that the hidden state variables are continuous, as opposed

to being discrete in the hidden Markov model.

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_4, # Springer Science+Business Media, LLC 2012

59

Additionally, the hidden Markov model can represent an arbitrary distribution

for the next value of the state variables, in contrast to the Gaussian noise model that

is used for the Kalman filter. There is a strong duality between the equations of the

Kalman Filter and those of the hidden Markov model.

Kalman filters are basically calcified as Central Kalman Filters (CKF) and

decentralized Kalman filters. A Kalman filter is said to be a central Kalman filter,

if all measurements are processed by this Kalman filter. A decentralized Kalman

filter is defined as a kind of Kalman filter, in which the measurements are first

processed through different local Kalman filter. Their estimations are sending into a

fusion center data fusion. If the measurements come from different kind of sensors,

it is favorable to use a decentralized Kalman filter to estimate the system state.

The decentralized Kalman filter may not only reduce the calculation complexity but

also improve the estimate accuracy. A Decentralized Kalman filter does not require

any form of central processing facility or centralized communications medium.

Each sensing node implements its own local Kalman filter to arrive at a partial

decision which it then broadcasts to every other node. Each node then assimilates

this received information to arrive at its own local estimate of the system state.

The problem of decentralized Kalman filtering was first solved by Speyer [2] in

1979. It was independently resolved by Rao, Durrant-Whyte, and Rao in [3].

A Decentralized Kalman filter requires a complete network with all-to-all links.

This solution is not scalable for large-scale sensor networks due to its O (n2)
communication complexity (n is the number of sensors/nodes). Whenever, WSN

has finite battery lifetime and thus limited computing and communication

capabilities, so decentralized Kalman filter is not applicable in WSN. In particular,

it is preferred to avoid decentralized Kalman filter which requires communication

between all nodes. Thus, Distributer Kalman Filter (DKF) is preferred where only

communication with neighboring nodes is required. By adopting such communica-

tion structures we avoid the “cocktailparty” effect, as we can establish spatial

clusters in which just a few communication links need to be established. Not only

better scalability properties are achieved from the communication side, but also

from a computational point of view, as the formation of such clusters also establish

a natural hierarchy of computation of estimates in general. In DKF each node only

talks to its neighbors, under the assumption that each node has either O(log(n)) or
O(1) neighbors, the communication cost of this class of DKF is O(n log(n)), or O(n)
which are both scalable in n. Thus, distributed algorithm is the most suitable

algorithm to implement Kalman filter in wireless sensor networks.

4.1 Wireless Sensor Network Representation

In wireless sensor network, there is a link between two nodes when packets can be

successfully delivered from one node to the other. A wireless sensor network is

called connected if for two arbitrary nodes, there is a route, which consists of such

links, from one to the other. Traditional work on connectivity analysis of wireless

60 4 Kalman Filter

sensor networks often focuses on finding a critical transmission range to keep the

network connected. However, some low-cost sensor nodes may not support power-

adaptive transmissions. On the other hand, changing the transmission range can be

reformulated as changing the density of the sensor networks, in which each node is

using fixed transmitted power [4]. Recently, random graph theory is introduced into

the modeling of sensor networks with uncertain features. A random graph often can

be imagined as a living organismwhich evolves with time. By giving a set of vertices

in advance, the edges are generated according to some randomization rules [5].

4.2 Introduction to Graph Theory

Graph theory can be said to have its beginning in 1736 when EULER considered the

K€onigsberg bridge problem (see Fig. 4.1): Is there a walking route that crosses each

of the seven bridges of K€onigsberg exactly once? It took 200 years before the first

book on graph theory was written. This was done by KÖNIG in 1936. Since then

graph theory has developed into an extensive and popular branch of mathematics,

which has been applied to many problems in mathematics, computer science, and

other scientific and nonscientific areas. There seem to be no standard notations or

even definitions for graph theoretical objects. This is natural, because the names one

uses for these objects reflect the applications. So, for instance, if we consider a

communications network as a graph, then the computers, which take part in this

network, are called nodes rather than vertices or points.

Graph theory has abundant examples of NP-complete problems. Intuitively, a

problem is in P (Solvable- by an algorithm- in polynomial many steps on the size of

the problem instances) if there is an efficient (practical) algorithm to find a solution to

it. On the other hand, a problem is in NP (Solvable non-deterministically in polyno-

mial many steps on the size of the problem instances), if it is first efficient to guess a

solution and then efficient to check that this solution is correct. It is conjectured

(and not known) that P 6¼ NP. This is one of the great problems in modern

mathematics and theoretical computer science. If the guessing in NP-problems can

be replaced by an efficient systematic search for a solution, then P ¼ NP. For any
one NP-complete problem, if it is in P, then necessarily P ¼ NP.

Fig. 4.1 The town of

Konigsberg and its

seven bridges

4.2 Introduction to Graph Theory 61

4.3 Graphs and Their Plane Figures

Let V be a finite set, and denote by E (V) ¼ {{u, v} | u, v 2 V, u 6¼ v} the subsets of V
of two distinct elements. A pairG ¼ {V, E}with E � E (V) is called a graph (on V).
The elements of V are the vertices, and those of E the edges of the graph. The vertex

set of a graph G is denoted by VG and its edge set by EG. Therefore G ¼ {VG, EG}.
In literature, graphs are also called simple graphs; vertices are called nodes or

points; edges are called lines or links. A pair {u, v} is usually written simply as uv.
Notice that then uv ¼ vu. In order to simplify notations, we also write v 2 G instead

of v 2 VG. For a graph G, we denote vG ¼ |VG| and eG ¼ |EG|. The number vG of the

vertices is called the order of G, and eG is the size of G. For an edge e ¼ uv 2 EG,

the vertices u and v are its ends. Vertices u and v are adjacent or neighbors, if e ¼ uv
2 EG. Two edges e1 ¼ uv and e2 ¼ uw having a common end, are adjacent with

each other.

A graphG can be represented as a plane figure by drawing a line between the points

u and v (representing vertices) if e ¼ uv is an edge ofG. Figure 4.2 is a drawing of the
graph G with VG ¼ {v1, v2, v3, v4, v5, v6} and EG ¼ {v1v2, v1v3, v2v3, v2v4, v5v6}.

4.3.1 Direct Graph

A graph where the edges have a direction, that is, the edges are ordered, directed

graphs or digraphs D ¼ {(V, E), E � V � V. In this case, uv 6¼ vu}.
The directed graphs have representations, where the edges are drawn as arrows

as shown in Fig. 4.3. A digraph can contain edges uv and vu of opposite directions.

4.3.2 Undirected Graph

A graph for which the relations between pairs of vertices are symmetric, so that

each edge has no directional UD ¼ {(V, E), E � V � V. In this case, uv ¼ vu}.
Figure 4.4 shows an undirected graph.

V1

V2

V3

V4

V6

V5

Fig. 4.2 The graph G with

VG ¼ {v1, v2, v3, v4, v5, v6}
and EG ¼ {v1v2, v1v3, v2v3,
v2v4, v5v6}

62 4 Kalman Filter

4.3.3 Network Representations

Networks are mathematically represented by graphs where vertexes denote nodes

of the network and edges of the graph are the existing communication links between

nodes. Thus a proper definition of graphs and their mathematical representations,

together with a few theoretical results, will be useful in the study and classification

of networks and particularly in the study of distributed algorithms.

A graph G ¼ {V, E} is defined as a pair, where V is a finite set of vertexes and E
a set of edges. The set of edges E is a subset of the set V � V of ordered pairs of

distinct vertexes.

4.3.4 Node Degree

For an undirected graph the degree of a node is equal to the number of incident

edges on that node. Particularly in the case of loops they count as two, given that a

loop has a leaving and entering end of the same edge on the node.

4.3.5 Distance Matrix

A symmetric N by N matrix in which elements Mij represent the length of shortest

path between i and j; if there is no such path Mij ¼ 1. It can be derived from

powers of the Adjacency matrix.

Fig. 4.4 The undirected

graph

Fig. 4.3 The direct graph

4.3 Graphs and Their Plane Figures 63

4.3.6 Incidence Matrix

The incidence matrix of a directed graph G is a p � qmatrix [bij] where p and q are
the number of vertexes and edges respectively, such that bij ¼ 1 if the edge xj
leaves vertex vi, �1 if it enters vertex vi and 0 otherwise.

4.3.7 Adjacency Matrix

The adjacency matrix of a finite directed or undirected graph G on n vertexes is the
n � n matrix where the nondiagonal entry aij is the number of edges from vertex i
to vertex j, and the diagonal entry aii is either twice the number of loops at vertex i
or just the number of loops (usages differ, depending on the mathematical needs;

the former convention is normally used for undirected graphs, though directed

graphs always follow the latter). There exists a unique adjacency matrix for each

graph (up to permuting rows and columns), and it is not the adjacency matrix of any

other graph. In the special case of a finite simple graph, the adjacency matrix is a

(0,1)-matrix with zeros on its diagonal.

If the graph is undirected, the adjacency matrix is symmetric. In this project we

will assume undirected graphs in the representation of networks from the assump-

tion that communication is bidirectional between nodes.

We define the N � N adjacency matrix, A, as

Ai;j ¼ 1 if ði; jÞ 2 E
0 otherwise

�
(4.1)

4.3.8 Degree Matrix

It is a diagonal matrix which contains information about the degree of each vertex.

I.e., given a graph G ¼ {V, E } with ||V|| ¼ n the degree matrix D for G is a n � n
square matrix defined as

di;j ¼ degðviÞ if i ¼ j
0 otherwise

�
(4.2)

or more compactly D ¼ diag(A.1).

4.3.9 Laplacian Matrix

The Laplacian of a graph G is defined as:

L ¼ D� A (4.3)

64 4 Kalman Filter

With D the degree matrix of G and A the adjacency matrix of G.

More explicitly, given a graph G with n vertexes, the matrix L satisfies

li;j ¼
degðviÞ if i ¼ j
�1 if i 6¼ and vi adjacent vj
0 otherwise

8<
: (4.4)

In the case of directed graphs, either the in-degree or the out-degree might be

used, depending on the application. Spectral properties of Laplacian matrix will

play an essential role in analyzing the convergence of the class of linear consensus

protocols. According to Gershgorin theorem, all eigenvalues of L in the complex

plane are located in a closed disk centered at D + 0j with a radius of D ¼ maxi di,
which is the maximum degree of a graph. For undirected graphs, L is a symmetric

matrix with real eigenvalues and the set of eigenvalues of L can be ordered in an

ascending order as

0 ¼ l1 � l2 � ::: ::: ln � 2D (4.5)

The zero eigenvalue is the trivial eigenvalue of L and its multiplicity is the

number of connected components ofG. For a connected graphG, l2>0. The second

smallest eigenvalue of Laplacian, l2, is called algebraic connectivity of a graph.

Algebraic connectivity of the network topology is a criterion for the speed of

convergence of consensus algorithms.

The interaction topology of a network is represented using a directed graph

G ¼ {V, E } is a pair, where V is a finite set of vertexes V ¼ {1,2, . . ., n} and E a set

of edges. The set of edges E is a subset of the set V � V of ordered pairs of distinct

vertexes. The neighbors of agent i are denoted by Ni ¼ {j 2 V: (i, j) 2 E}.

4.4 Central Kalman Filter in Wireless Sensor Network

Let’s consider a sensor network with n sensors that are interconnected via an

undirected graph. Let’s consider a sensor network with n sensors that are

interconnected via an undirected graph. The model of a process can be defined as:

xkþ1 ¼ Akxk þ Bkuk þ wk k � 0 (4.6)

zk ¼ Ckxk þ vk k � 0 (4.7)

where zk 2 Rnp represents the vector of p-dimensional measurements obtained via n
sensors, wk and vk are assumed to be m � 1 and p � 1 zero-mean white noise

processes, respectively. The process vk is called measurement noise and wk is called

process noise.

4.4 Central Kalman Filter in Wireless Sensor Network 65

The above equations have several variables:

1. A, B, C: System matrices

2. k: The time index

3. x: The state system
4. u: Input to the system

5. z: The measurement output

6. w and v: Process noise and measurement noise respectively and they are zero

mean mutually uncorrelated white noises with covariance’s,

E Wk WT
k

� � ¼ Qk (4.8)

E Vk VT
k

� � ¼ Rk (4.9)

Additionally, x0 2 Rm is the zero-mean initial state of the process with

covariance matrix P0, and is assumed to be uncorrelated with uk and vk.
Building upon the underlying dynamic system model, and introducing

measurements Zk ¼ {z0, z1, . . ., zk}, we define the information matrix to be the

inverse of the state covariance matrix. To gain some intuition behind this definition,

lets for sake of practicality think of the state covariance matrix and the information

matrix as scalar quantities. Then, invoking the limits of zero and infinity for the

covariance, we can think of the information as achieving its maximum when the

covariance is zero, and vice versa.

Thus, covariance is essentially a measure of how close our estimate is to the true

value, the construction of the information matrix makes sense. The higher the

covariance, the less amount of information is contained in the estimate.

The Kalman filter estimates a process by using a form of feedback control.

The filter estimates the process state at some time and then obtains feedback in the

form of measurements. The equations for the Kalman filter fall into two groups:

1. Time update equations

2. Measurement update equations

The time update equations are responsible for projecting forward the current

state and error covariance estimates to obtain the a priori estimates for the next time

step. The measurement update equations are responsible for the feedback, i.e.

for incorporating a new measurement into a priori estimate to obtain an improved

a posteriori estimate.

The time update equations can also be thought of as predictor equations, while

the measurement update equations can be thought of as corrector equations. Indeed

the final estimation algorithm resembles that of a predictor-corrector algorithm for

solving numerical problems as shown below in Fig. 4.5.

Following from the above discussion, the inverses of the state covariance

matrices P and M are known as the information matrices. We describe below the

Kalman filter iterations in the information form.

66 4 Kalman Filter

1. Measurement-update:

M�1
k ¼ P�1

k þ C�
k R�1

k Ck (4.10)

2. Time-update: We will employ a change of notation here, for reasons that will

follow naturally given the dynamics of the following equations. For state

estimates and updates we define:

Kk ¼ Mk C
�
k R�1

k (4.11)

x̂ðkjkÞ ¼ x̂ðkjk�1Þ þ Kkðzk � Ck x̂ðkjk�1ÞÞ (4.12)

Pkþ1 ¼ AkMkA
�
k þ BkQkB

�
k (4.13)

x̂ðkþ1jkÞ ¼ Akx̂ðkjkÞ (4.14)

where Qk is the covariance of the process noise wk and Rk is covariance of the

measurement noise vk. The calculation of Kalman gain (Kk) not only depends on

the known measurement error covariance Rk, but also the state estimation

covariance Pk.

Thus far we have described in detail the workings of a central Kalman filter in

the context of a sensor network with n nodes, where each node observes p various
measurements. In central Kalman filter, all the observations of the sensors are

passed back to a central processing facility to perform overall data fusion so they

suffer from the associated problems: potential computational bottlenecks and the

susceptibility to total system failure if the central facility should fail. Thus central

Kalman filter is not applicable to be implemented in wireless sensor network.

4.5 Distributed Kalman Filter (DKF) Literature Work

Consensus filters can be used independently for DKF. The role of this consensus filter

is to perform distributed fusion of sensor measurements that is necessary for imple-

mentation of a scalable Kalman filter. Consensus problems and their special cases

have been the subject of intensive studies by several researchers [6–14] in the context

of formation control, self-alignment, and flocking [15] in networked dynamic systems.

Consensus-based tracking [16, 17] and synchronization algorithms [18] in sensor

networks that are scalable and resilient have recently emerged as powerful tools for

Time Update Measurement Update

Fig. 4.5 The Kalman filter

cycle

4.5 Distributed Kalman Filter (DKF) Literature Work 67

collaborative information processing. Distributed Kalman filter algorithms rely on

consensus filters is proposed in [19, 20]. A new generation of DKF algorithms with a

Peer-to-Peer (P2P) architecture that rely on reaching a consensus on estimates of local

Kalman filters have recently been introduced by Olfati-Saber in [19] they refer to this

class of distributed estimation algorithms as Kalman-Consensus Filters (KCF).

Carli studied the interaction between the consensus matrix and the number of

messages exchanged per sampling time in the Kalman filter for scalar systems. They

proved that optimizing the consensus matrix for fastest convergence and using the

centralized optimal gain is not necessarily the optimal strategy if the number of

exchanged messages per sampling time is small [22].

The consensus problem with quantized transmission has been studied recently.

Xiao in [23, 24] studied the convergence of the model in [6] when the received

values are assumed corrupted with an additive noise, and show that the variance of

the state vector with respect to the average of the initial values diverges with time.

Schizas in [25] proposes a distributed MLE and BLUE estimators for the estimation

of deterministic signals in ad hoc WSNs, where the estimators are formulated as the

solution of convex minimization sub problems. Kashyap in [26] introduced the

concept of quantized consensus and propose an algorithm to reach a consensus in

that sense. Some contributions found in literature analyze the communication

bandwidth constrains. Huimin in [27] studied the tradeoff between bandwidth and

tracking accuracy with communication constraints. Ribeiro in [28] analyzed the

distributed state estimators of dynamical stochastic processes, whereby the low

communication cost is affected by requiring the transmission of a single bit per

observation. In [29] Olfati-Saber addressed the distributed tracking of a maneuver-

ing target using sensor networks with limited sensing range. They introduce a novel

switching model for a target that is able to remain inside a rectangle in all time.

Carli in [22] introduced the problem of estimating the state of a dynamical system

from distributed noisy measurements. Each agent builds a local estimate based on

its own measurements and estimates from its neighbors. Estimation is performed

via a two stage strategy, the first is a Kalman-like measurement update which does

not require communication, and the second is an estimate fusion using a consensus

matrix. They studied the interaction between the consensus matrix, the Kalman

gain, and the number of messages exchange per sampling time. They proved that

optimizing the consensus matrix for fastest convergence and using the centralized

optimal gain is not necessarily the optimal strategy if the number of message

exchange per sampling time is small. Moreover, they verified that under certain

conditions the optimal consensus matrix should be doubly stochastic.

4.6 Olfati-Saber’s Distributed Kalman Filter

Olfati-Saber introduced a novel distributed Kalman filter strategy for distributed

state estimation and target tracking in sensor networks [6, 7, 9, 15–17, 21, 29, 30].

This DKF strategy consists of identical high-pass consensus filters for distributed

68 4 Kalman Filter

fusion of sensor data and covariance information. It enables a sensor network to act

as a collective observer for a process that is not observable by an individual sensor.

The strategy only requires single-hop communication between a sensor and its

neighbors.

4.7 Consensus Filters

Consensus problems are widely considered in computer science and they have a

long history in this field. They basically formed the field of distributed computing.

Formal study of these types of problems goes back to people who were working in

management science and statistics in the 1960s. The notion of statistical consensus

theory by DeGroot attracted interest 20 years later in the problem of processing

information with uncertainty obtained from multiple sensors and medical experts.

Distributed computing has been considered by people in systems and control

theory starting with the work of Olfati-Saber, and John [31] on asynchronous

asymptotic agreement problem for distributed decision-making systems.

In a network, consensus means to get an agreement regarding some common

interest of the nods which depends on the states of all them. A consensus algorithm

is the law which specifies the information flow between and node and its neighbors

to reach to the consensus in the whole network.

A directed graph G ¼ {V, E} with the set of nodes V ¼ 1, 2, . . ., n and edges

E � V � V is employed to show the interaction between the nodes in a network.

The neighbors of the node i are denoted by the set {Ni ¼ j 2 V: (i, j) 2 E}.
A simple consensus protocol, to reach a consensus on a graph regarding the state of

n integrator nodes with dynamics { _xi ¼ ui}, can be expressed as an nth-order linear
system:

_xiðtÞ ¼
X
j2Ni

xjðtÞ � xiðtÞ þ biðtÞ
� �

; xið0Þ ¼ zi 2 R biðtÞ ¼ 0 (4.15)

We can collect the terms in 4.6 and rewrite it as

_x ¼ �Lx (4.16)

where L ¼ [lij] is the graph Laplacian of the network.

According to the definition of graph Laplacian, all row-sums of L are zero sinceP
j

lij ¼ 0. Therefore, L always has a zero eigenvalue l1 ¼ 0. This zero eigenvalues

correspond to the eigenvector 1 ¼ (1, . . ., 1)T because 1 belongs to the null-space of
L, in other words L1 ¼ 0. So, we can conclude that an equilibrium of system is a

state in the form x* ¼ (a, . . ., a)T ¼ a1, where all nodes get to a consensus. Using

some analytical tools from algebraic graph theory, we later show that x* is a unique
equilibrium for connected graphs.

4.7 Consensus Filters 69

4.7.1 Information Consensus in Networked Systems

Let us consider a network of agents whose dynamics is _xi ¼ ui. Their goal is to
achieve a consensus through communication with their neighbors on a graph

G ¼ (V, E). By reaching a consensus we mean all the agents get to the same state

value, i.e. their states satisfy the following equation:

x1 ¼ x2 ¼ � � � ¼ xn (4.17)

This consensus value usually is called agreement space and can be expressed as

x ¼ a1 where a 2 R is the collective decision of the group of nodes. Let A ¼ [aij]
be the adjacency matrix of graph G. The set of neighbors of node i is Ni and defined

as:

Ni ¼ fj 2 V : aij 6¼ 0g; V ¼ f1; 2; ::: ::: ::; ng (4.18)

Node i communicates with node j if j belongs to the neighbor set of i.
The set of all nodes and their neighbors defines the edge set of the graph

E ¼ ði; jÞ 2 V X V : aij 6¼ 0
� �

.

A distributed consensus algorithm guarantees convergence to a collective

decision via local interconnection between nodes. Assuming the graph is undi-

rected, i.e. aij ¼ aji for all i, j, it follows that the state of all nodes is an invariant

quantity, or
P
j

_x ¼ 0. Applying this condition at times t ¼ 0 and t ¼ 1 leads to

the following result:

/¼ 1

n

X
i

xið0Þ (4.19)

Thus, if a consensus is achieved, the collective decision is equal to the average of

the initial state of all the nodes. A consensus protocol with the mentioned invari-

ance property is called an average-consensus algorithm.

1. Low-Pass consensus filter: Let us assume that there is a network with n nodes, xi
denote the m-dimensional state of node i and ui denote the dimensional input of

node i. Then, the following consensus protocol is a low-pass consensus filter:

_xi ¼
X
j 2 Ni

aij xj � xi
� �þ X

j 2 Ni[fig
aij uj � xi
� �

(4.20)

It can be expressed in the following collective form

_x ¼ � Imn þ D̂þ L̂
� �

xþ Imn þ D̂� L̂
� �

u (4.21)

70 4 Kalman Filter

where x ¼ [x1, x2, . . ., xn]
T , Â ¼ A	 Im and L̂ ¼ L	 Im. The MIMO transfer

function of (4.21) from input u to output x is:

HlpðsÞ ¼ sImn þ Imn þ D̂þ L̂
� ��1

Imn þ D̂� L̂
� �h

(4.22)

Applying Gregorian theorem to matrix � Imn þ D̂þ L̂
� � ¼ � Imn þ 2D� Â

� �
guarantees that all poles of H(s) are strictly negative, and thus the filter is stable.
Moreover their real part falls in the interval 1 1þ 3dmaxð Þ;� 1þ 3dminð Þ½
,
where dmax ¼ maxi di and dmin ¼ mini di. On the other hand H(s) is a proper

MIMO transfer function satisfying lims!1HðsÞ ¼ 0, which means that it is a

low-pass filter.

2. High-pass consensus filter: Let us assume that there is a network with n nodes, xi
be the m-dimensional state of the node i and ui be the dimensional input of this

node. Then, the following dynamic consensus algorithm is a high-pass filter.

_xi ¼
X
j 2 Ni

xj � xi
� �þ _ui (4.23)

This relation can be re-stated as follows

_xi ¼ �L̂xþ _u (4.24)

where L̂ ¼ L	 Im. The improper Multiple-Input and Multiple-Output (MIMO)

transfer function of this high-pass consensus filter from input u to output x is:

HhpðsÞ ¼ ðsInm þ L̂Þ�1s (4.25)

As we can see lims!1HðsÞ ¼ Inm, which means that the filter propagates high

frequency noise and is not useful for sensor fusion by itself.

3. Band-Pass consensus filter: This band-Pass distributed filter can be defined as:

HbpðsÞ ¼ HlpðsÞ HhpðsÞ (4.26)

It has the following dynamics

_x1 ¼ � Imn þ Âþ 2L̂
� �

x1 þ Imn þ Â
� �

u

_x2 ¼ �L̂x2 þ _x1 (4.27)

With input u and output x2.

4.7.2 Distributed Kalman Filter with Embedded Consensus Filters

Hereby, zk was an np-dimensional vector, essentially a long vertical vector with

stacked observations from the n different sensor. The process is an m-dimensional

process i.e., xk 2 Rm and the corresponding white noise vectors have appropriate

4.7 Consensus Filters 71

dimensions matching the zk and xk. There are n various sensors; each sensor is

m-dimensional meaning there are m different states associated with each sensor.

And for each of those states, there are p measurements taken. The states are related

to each other by way of matrices A and B. Likewise; our zk is extracted from our xk
by means of a linear combination dictated by the matrix C.

We will start by rewriting, zk ¼ Ck xk þ vk, the sensing model equation, which

again is essentially equating two np � 1 vectors. These vectors were stacked with

the information obtained at each individual sensor. In the distributed scenario we

will consider each individual sensor one at a time, producing the following

equation:

zkðkÞ ¼ CkðkÞ þ vkðkÞ (4.28)

This differs from the original sensing model because it describes the activity for

an individual sensor. This intuition is supported mathematically by the dimensions

of variables. zi(k) now has dimensions p � 1 instead of np � 1. Ck now has

dimension p � m instead of np � m and lastly vi (k) now has dimensions p � 1
instead of np � 1.

Now that we have developed a consistent notation for describing the state activity

at each sensor, we can define new variables zc, vc, and Cc, that are nothing but a

collection of the each parameter gathered from all nodes. Hence, there are n entries

for each of these newly defined variables. We describe zc ¼ col(z1, z2, . . ., zn),
vc ¼ col(v1,v2, . . .,vn), and Cc ¼ col(C1,C2, . . .,Cn). This naturally results in the

state relation: zc(k) ¼ Cc(k) + vc(k). Invoking the statistics from the white Gaussian

noise perturbations, and again defining a variable Rc as a collection of covariance

from the n various sensors, we can simply write Rc ¼ diag(R1,R2, . . ., Rn).
This definition allows us to express the Kalman filter iterations from the point of

view of the central node. Notice that the following equations strongly resemble the

Kalman filter iterations before a distributed implementation was considered. In this

case we introduced the iterations at individual nodes, then combined them to arrive

at the original set of Kalman filter iterations. The only difference is that the index

now is c for central instead of the k index that was originally used to describe the set
of measurements. We have the following:

M ¼ P�1 þ C�
c R

�1
c Cc

� ��1
(4.29)

Kc ¼ M C�
c R�1

c (4.30)

x̂k ¼ x̂ðkjk�1Þ þ Kc zc � Ccx̂ðkjk�1Þ
� �

(4.31)

The distributed implementation of the Kalman filter relies on two consensus

problems executed at each iteration. The first of these two is the determination of an

m X m matrix defined as such:

S ¼ 1

n
C�
c R�1

c Cc ¼ 1

n

Xn
i¼1

C�
i R�1

i Ci (4.32)

72 4 Kalman Filter

The second consensus determination is an m-vector of average measurements,

where each measurement is defined as:

yi ¼ C�
i R�1

i zi ¼ 1

n

Xn
i¼1

yi (4.33)

With these two definitions in mind, and with the application of some clever

arithmetic manipulations, the state propagation expressed above from the perspec-

tive of the central node can be rewritten as:

x̂k ¼ x̂ðkjk�1Þ þ nMðyi � Sx̂ðkjk�1ÞÞ (4.34)

This is effectively the Kalman state update equation for each node. Upon close

examination of this equation, it is natural to observe that the gain is the product nM.

Remembering that M is the state covariance matrix and is given by

M ¼ P�1 þ C�
c R

�1
c Cc

� ��1
, we can express nM in the following revealing manner:

nM ¼ Mm ¼ ðnPÞ�1 þ S
	
�1

(4.35)

Let us summarize the above arguments for constructing the state update

equations of a distributed Kalman filter. The aforementioned expressions for state

equations and covariance matrices are placed in the context of a sensor network

with n sensors and a topology G that is a connected graph illustrating a process of

dimension m using p � m sensor measurements. At each iteration k, every sensor

solves two consensus problems, acquiring the parameter S and the parameter y.

This enables each node to calculate the state estimate using the m-Kalman filter

update equations:

Mm ¼ nPð Þ�1 þ S
	
�1

(4.36)

x̂ðkjkÞ ¼ x̂ðkjk�1Þ þMmðy� Sx̂ðkjk�1ÞÞ (4.37)

Pþ
m ¼ AMmA

� þ nBQB� (4.38)

x̂ðkþ1jkÞ ¼ Akx̂ðkjkÞ (4.39)

Figure 4.6 presents the architecture of a node running a m-Kalman filter with

embedded consensus, and the communication architecture between two nodes.

Of course, the most significant attribute of the above m-Kalman filter state update

equations lies in the fact that the state estimates produced are identical to the ones

4.7 Consensus Filters 73

obtained via a central Kalman filter. Furthermore, a significant advantage for the

distributed implementation is revealed upon examining the computational costs of

the respective gain matrices. The central Kalman filter gain K has O (m2n) elements

while the gainMm of the m-Kalman filter has O (m2) elements. This suggests that the

implementation of the m-Kalman filter is in fact more computationally feasible than

that of the central Kalman filter. A last consideration in the topic of m-Kalman filters

returns to their usage of the time-varying consensus values S and y. Because of the

difference in nature between the two consensus values, two separate approaches

will be taken to obtain the desired quantities. Specifically, the calculation of S is

shown to require a type of band-pass filter, while y is obtained from a collection of

node measurements, hence justifying the use of a low-pass filter. The time-varying

nature of both parameters along with the mechanisms in place for estimation of

these necessary parameters naturally leads to some error at each iteration.

In order to implement this DKF in wireless sensor network the communication

and computation issues will come up, as in Olfati’s technique two values, measure-

ment and covariance, need to be exchanged between node and this will consume the

communication bandwidth. Moreover Kalman filter is a power hungry algorithm in

term of computational complexity.

In this thesis we will offer solutions for these problem, Starting with the computa-

tional complexity problem, we proposed a novel light-weight and low-power multipli-

cation algorithm. The proposed algorithm aims to decrease the number of instruction

cycles, save power and reduce the memory storage without increasing the code

complexity or sacrificing accuracy. For the communication bandwidth problem, we

will exchange the estimates between nodes which will lead to save the communication

bandwidth. Moreover, we proposed a DKF based on a well known fast polynomial

filter to accelerate distributed average consensus in static network topologies. The idea

is to apply a fast polynomial filter on the network matrix that will shape its spectrum in

order to increase the convergence rate by minimizing its second largest eigenvalue.

Fast convergence can contribute to significant energy saving and hence a fast DKF.

Fig. 4.6 Schematic representation of the m-Kalman filter

74 4 Kalman Filter

Bibliography

1. R.E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic
Engineering, vol. 3, pp. 35–45, 1960.

2. J. Speyer, “Computation and transmission requirements for a decentralized linear-quadratic-

Gaussian control problem,” IEEE Transactions on Automatic Control, vol. 24, pp. 266–269,
May 1979.

3. B.S.Y. Rao, H.F. Durrant-Whyte, and J.A. Sheen, “A fully decentralized multi-sensor system

for tracking and surveillance,” Journal of Robotics Research, vol. 3, pp. 20–44, November

1993.

4. J. Dong, Q. Chen, and Z. Niu, “Random graph theory based connectivity analysis in wireless

sensor networks with Rayleigh fading channels,” in Proceeding of the Asia-Pacific Conference
on Communications, Hong Kong, China, March 2007, pp. 123–126.

5. B. Bollabas, Random Graphs Second Edition: Cambride University Press, 2001.

6. R. Olfati-Saber and R.M. Murray, “Consensus problems in networks of agents with switching

topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, pp. 1520–1533,
January 2004.

7. R. Olfati-Saber and R.M. Murray, “Consensus protocols for networks of dynamic agents,”

in Proceeding of the American Control Conference, Denver, Colorado USA, June 2003,

pp. 951–956.

8. M. Mesbahi, “On State-dependent dynamic graphs and their controllability properties,” IEEE
Transactions on Automatic Control, vol. 50, pp. 387–392, May 2005.

9. R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in Proceeding of the
American Control Conference, pp. 2371–2378, 2005.

10. Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Transactions on
Automatic Control, vol. 50, pp. 1867–1872, November 2005.

11. L. Moreau, “Stability of multiagent systems with time-dependent communication links,” IEEE
Transactions on Automatic Control, vol. 50, pp. 169–182, February 2005.

12. R. Wei and R. W. Beard, “Consensus seeking in multiagent systems under dynamically

changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50,

pp. 655–661, November 2005.

13. L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control
Letters, pp. 65–78, June 2004.

14. L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average

consensus,” in the 4th International Symposium on Information Processing in Sensor
Networks, pp. 63–70, 2005.

15. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE
Transactions on Automatic Control, vol. 51, pp. 401–420, April 2006.

16. R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus Filters,” in the 44th
IEEE Conference on Decision and Control, pp. 8179–8184, 2005.

17. R. Olfati-Saber, “Distributed tracking for mobile sensor networks with information-driven

mobility,” in Proceeding of the American Control Conference, New York City, USA , July

2007, pp. 4606–4612.

18. G. Scutari, S. Barbarossa, and L. Pescosolido, “Distributed Decision Through Self-

Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric

Channels,” IEEE Transactions on Signal Processing, vol. 56, pp. 1667–1684, May 2008.

19. R. Olfati-Saber and J. S. Shamma, “Consensus Filters for Sensor Networks and Distributed

Sensor Fusion,” in Proceeding of the 44th IEEE Conference on Decision and Control, Seville,
Spain, December 2005, pp. 6698–6703.

20. D. Spanos, R. Olfati-Saber, and R.M. Murray, “Dynamic Consensus on Mobile Networks,”

in Proceeding of the 16th IFAC World Congress, Prague, Czech Republic, July 2005,

pp. 139–145.

Bibliography 75

21. R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Decision and Control,
2007 46th IEEE Conference on, New Orleans, Louisiana, USA, December 2007,

pp. 5492–5498.

22. R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed Kalman filtering based on

consensus strategies,” IEEE Journal on Selected Areas in Communications, vol. 26,

pp. 622–633, November 2008.

23. L. Xiao, S. Boyd, and S.J. Kim, “Distributed average consensus with least-mean-square

deviation,” in Proceeding of the 17th International Symposium on Mathematical Theory of
Networks and Systems, Kyoto, Japan, July 2006, pp. 2768–2776.

24. L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least–mean–square

deviation,” Journal of Parallel and Distributed Computing, vol. 2, pp. 33–46, May 2007.

25. I. D. Schizas, A. Ribeiro, and G.B. Giannakis, “Consensus in Ad HocWSNsWith Noisy Links

Part I: Distributed Estimation of Deterministic Signals,” IEEE Transactions on Signal
Processing vol. 56, pp. 350–364, June 2008.

26. A. Kashyap, T. Basar, and R. Srikant, “Quantized Consensus,” in Proceeding of the IEEE
International Symposium on Information Theory, pp. 635–639, 2006.

27. C. Huimin and X.R. Li, “On track fusion with communication constraints,” in Proceeding of
the 10th International Conference on Information Fusion, Seattle, Washington, USA, July

2007, pp. 1–7.

28. A. Ribeiro, G.B. Giannakis, and S.I. Roumeliotis, “SOI-KF: Distributed Kalman Filtering

With Low-Cost Communications Using the Sign of Innovations,” IEEE Transactions on
Signal Processing, vol. 54, pp. 4782–4795, October 2006.

29. R. Olfati-Saber and N.F. Sandell, “Distributed tracking in sensor networks with limited

sensing range,” in Proceeding of the American Control Conference, Seattle, Washington,

USA, June 2008, pp. 3157–3162.

30. R. Olfati-Saber, “Kalman-Consensus Filter : Optimality, stability, and performance,”

in Proceeding of the 48th IEEE Conference on Decision and Control, Chinghai, China,
December 2009, pp. 7036–7042.

31. N.T. John and A. Michael, “Convergence and asymptotic agreement in distributed decision

problems,” in Proceeding of the 21st IEEE Conference on Decision and Control, Orlando,
Florida, USA, December 1982, pp. 692–701.

76 4 Kalman Filter

Chapter 5

Proposed Distributed Kalman Filter

Abstract In this chapter, the DKF problem is addressed by reducing it into a

dynamic consensus problem in term of weighted average estimates matrix that

can be viewed as data fusion problem. We have presented a Distributed Kalman

Filter based on polynomial filter to accelerate the distributed average consensus in

the static network topologies. The proposed algorithm performs closely to the

central filter, and also reduces the filter complexity at each node by reducing

the dimension of the data. Thus, it scales computational complexity. Being based

on sending only the estimates between neighbors, it also reduced radically the

communication requirements. The proposed DKF contributes to significant

energy saving.

5.1 Distributed Kalman Filter (DKF) in WSN

and Related Work

Wireless sensor networks have become a widely used technology for applications

ranging from military surveillance to industrial fault detection. So far, the develop-

ment in micro-electronics has made it possible to build networks of inexpensive

nodes characterized by modest computation and storage capability as well as

limited battery life. A fundamental problem in wireless sensor networks is to

solve detection and estimation problems using scalable algorithms i.e., dada fusion

algorithm. This requires development of novel distributed algorithms for estimation

and in particularly Kalman filter.

Consensus algorithm provides a scalable algorithm for wireless sensor fusion.

This consensus filter plays a crucial role in solving a data fusion problem that

allows implementation of a scheme for distributed Kalman filter in sensor

networks. Consensus algorithms have proven to be effective tools for performing

network-wide distributed computation tasks such as computing aggregate

quantities and functions over networks. Consensus filters allow the network to

agree on the value of a particular computation. In that sense one could think of

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_5, # Springer Science+Business Media, LLC 2012

77

two possible options: one, do an estimation on each of the nodes and then agree

on an average value of all the nodes estimates; or one could get to a consensus on

certain computation values, dependent on all the measurements of the network

needed to calculate the estimate. The role of this consensus filter is to perform

distributed fusion of sensor measurements that is necessary for implementation of a

scalable Kalman filter.

Distributed average consensus is the task of calculating the average of a set of

measurements made at different locations through the exchange of local messages.

The goal is to evade the need for complicated networks with routing protocols and

topologies and ensure that the final average is available at every node. Distributed

average consensus algorithm is attractive because it obviates the need for global

communication and complicated routing. Moreover it is robust to node and link

failure. Distributed average consensus algorithm has been considered by people in

systems and control theory starting with the work of John [1] on asynchronous

asymptotic agreement problem for distributed decision-making systems. More

recently, it has been applied in distributed coordination of mobile autonomous

agents [2] and distributed data fusion in sensor networks [3–8].

In distributed average consensus algorithm, each node initializes its state to the

local measurement at each iteration of the algorithm and then updates its state by

adding a weighted sum of the local nodes. It is time-independent, and the state

values converge to the average of the measurements asymptotically. Moreover, it is

attractive because it is completely distributed and the computation at each node is

very simple. The major deficiency is the relatively slow rate of convergence

towards the average; often many iterations are required before the majority of

nodes have a state value close to the average.

The convergence rate of distributed average consensus algorithms has been

studied by several authors [9, 10]. Xiao, Boyd and their collaborators have been

the main contributors of methods that strive to accelerate consensus algorithms

through optimization of the weight matrix [3, 9, 11]. They showed that it is possible

to formulate the problem of identifying the weight matrix that satisfies network

topology constraints and minimizes the asymptotic convergence time as a convex

semidefinite optimization task. This can be solved using a matrix optimization

algorithm. Although elegant, the approach has two disadvantages. First, the convex

optimization requires substantial computational resources and can impose delays in

configuration of the network. If the network topology changes over time, this can be

of particular concern. Second, a straightforward implementation of the algorithm

requires a fusion centre that is aware of the global network topology. In particular,

in the case of on-line operation and a dynamic network topology, the fusion centre

needs to re-calculate the optimal weight matrix every time the network topology

changes. If such a fusion centre can be established in this situation, then the value of

a consensus algorithm becomes questionable. To combat the second problem,

Boyd proposes the use of iterative optimization based on the sub-gradient algo-

rithm. Calculation of the sub-gradient requires knowledge of the eigenvector

corresponding to the second largest eigenvalue of the weight matrix. In order

to make the algorithm distributed, Boyd employs decentralized orthogonal

78 5 Proposed Distributed Kalman Filter

iterations [11] for eigenvector calculation. The resulting algorithm, although

distributed, is demanding in terms of time, computation and communication,

because it essentially involves two consensus procedures.

Sundaram achieved consensus in a finite number of time steps, and constituted

an optimal acceleration for some topologies [12]. The disadvantage of the approach

is that each node must know the complete weight matrix, retain a history of all state

values, and then solve a system of linear equations. Again, this disadvantage is most

consequential in the scenario where nodes discover the network online and the

topology is dynamic, so that the initialization operation must be performed

frequently. However, even in the simpler case of a static topology, the overhead

of distributing the required initialization information can diminish the benefits of

the consensus algorithm unless it is performed many times. Cao proposes an

acceleration framework for gossip algorithms observing their similarity to the

power method [13]. This framework is based on the use of the weighted sum of

shift registers storing the values of local gossip iterations.

In this chapter, our goal is to accelerate the distributed Kalman filter in a fixed

network. We apply a fast polynomial filter methodology in the weight matrix in

order to accelerate the distributed average consensus in the network. The mean idea

behind the polynomial filter is to shape the spectrum of the polynomial weight

matrix to minimize the second largest eigenvalue and subsequently increase the

convergence rate.

5.2 Network Representations

In wireless sensor network, there is a link between two nodes when packets can be

successfully delivered from one node to the other. A wireless sensor network is called

connected if for two arbitrary nodes, there is a route, which consists of such links, from

one to the other. Traditional work on connectivity analysis ofwireless sensor networks

often focuses on finding a critical transmission range to keep the network connected.

However, some low-cost sensor nodesmay not support power-adaptive transmissions.

On the other hand, changing the transmission range can be reformulated as changing

the density of the sensor networks, inwhich each node is using fixed transmitted power

[14]. Recently, random graph theory was introduced into the modeling of sensor

networks with uncertain features. A random graph often can be imagined as a living

organismwhich evolveswith time. By giving a set of vertices in advance, the edges are

generated according to some randomization rules [15].

Let us consider a static network topology, where the state of a link does not

changes over the iterations. We assume the network at any arbitrary iteration t as an
undirected graph G ¼ {V, E} with the set of nodes V ¼ 1,2, . . ., n and E is the edge

set at iteration t. E � E�, where E� � V � V is employed to show the interaction

between the nodes in a network and it is drawn if and only if sensor i can

communicate with sensor j. The neighbors of the node i are denoted by the set

fNi ¼ j 2 V : ði; jÞ 2 Eg.

5.2 Network Representations 79

5.3 Asymptotic Average Consensus with Polynomial Filter

Let x0 (i) be a real scalar assigned to node i at time t ¼ 0 and x0 ¼ (x0(1), . . ., x0(n))
denotes the vector of the initial values on the network. The distributed average

consensus problem is to compute the average 1
n

Pn
i¼0

x0ðiÞ
� �

at every node, via local

communication and computation with their neighbors only on the graph. Thus,

node i carries out its update, at each step, based on its local state and communication

with its neighbors.

To reach a consensus on a graph, each sensor node i reports a scalar value

x0ðiÞ 2 R. The vector of initial values on the network x0 is denoted by

x0 ¼ x0ð1Þ; x0ð2Þ; . . . :; x0ðnÞ½ �T 2 Rn (5.1)

The purpose of the consensus algorithm is to compute the average at each sensor

node using linear distribution iteration. Thus the distributed linear iterations of the

network can be defined in the following form:

xtþ1ðiÞ ¼ WiixtðiÞ þ
X
j 2 Ni

WijxtðjÞ (5.2)

where i ¼ 1, . . ., n, xtðjÞ is the value computed by sensor node j at iteration t, and
Wij represents the edge weights of G. Each sensor node communicates only with its

direct neighbors, so Wij ¼ 0. Writing in a matrix-vector format, the above update

equation becomes

xtþ1 ¼ Wt xt (5.3)

where W is the weight matrix corresponding to the graph G of iteration t.
The iterative relation given by Eq. 5.3 can be written as:

xt ¼
Yt�1

i¼0

Wt

 !
x0 (5.4)

Equation 5.4 means that xt ¼ Wt x0 for all t.We want to chose the weight matrix

W so that for any initial value x0, xt convergences to the average vector

�x ¼
�

1
n

� �
1T x0

�
1 ¼ 1

n

� �
11T x0 i.e.,

lim
t!1 xt ¼ lim

t!1 Wt x0 ¼ 1

n

� �
11T x0 (5.5)

80 5 Proposed Distributed Kalman Filter

where 1 is the vector of ones. This is equivalent to the matrix equation:

lim
t!1 Wt ¼ 1

n

� �
11T x0 (5.6)

Let us define the vector of average as:

�x ¼ 1

n

Xn
i¼1

x0ðiÞ (5.7)

From Eqs. 5.6 and 5.7, we can find:

lim
t!1 xt ¼ 1

n

� �
11T

� �
x0 ¼ �x 1 (5.8)

The asymptotic convergence factor is defined as:

rasymðWÞ ¼ SUP
x0 6¼x

lim
t!1

k xt � �xk2
k x0 � �xk2

� �1
t

(5.9)

Equation 5.6 hold if and only if

1T W ¼ 1T (5.10)

W1 ¼ 1 (5.11)

r W � 1

n

� �
11T

� �
<1 (5.12)

where rð:Þ is the spectral radius of a matrix. Now Eq. 5.9 can be written as:

rasympðWÞ ¼ r W � 1

n

� �
11T

� �
(5.13)

Since W is symmetric, its eigenvalues arranges as: l1 ðWÞ � l2 ðWÞ . . . : �
ln ðWÞ: l2 ðWÞ; the second largest eigenvalue, is a measure of performance/speed

of consensus algorithm [16, 17]. Thus, the convergence rate of Eq. 5.3 depends on

the magnitude of the second largest eigenvalue l2.

5.4 Proposed Distributed Kalman Filter

We have described in detail the workings of a central Kalman filter in the context of

a sensor network with n nodes, where each node observes p various measurements.

The process we are describing is m-dimensional processes i.e. xk 2 Rm and the

corresponding white noise vectors have appropriate dimensions matching the zk and
xk. There are n various sensors; each sensor is m-dimensional, meaning there are

5.4 Proposed Distributed Kalman Filter 81

m different states associated with each sensor and for each of those states, there are

pmeasurements taken. The states are related to each other by way of matrices A and

B. Likewise; zk is extracted from xk by means of a linear combination dictated by the

matrix C.
In the distributed scenario we will consider each individual sensor one at a time.

The expressions for state equations and covariance matrices are placed in the

context of a sensor network with n sensors and a topology G that is a connected

graph illustrating a process of dimension m using p � m sensor measurements.

At each iteration k, each sensor node calculates the state estimate using the

m-Kalman filter update equations:

M�1
k ¼ P�1

k þ C�
k R

�1
k Ck (5.14)

Kk ¼ Mk C
�
k R�1

k (5.15)

Pkþ1 ¼ AkMkA
�
k þ BkQkB

�
k (5.16)

The local estimate x̂localkjkð Þ is formed by the predicted regional estimate x̂
reg
kjk�1ð Þ and

the local measurement zk:

x̂localkjkð Þ ¼ x̂
reg
kjk�1ð Þ þ Kk zk � Ck x̂

reg
kjk�1ð Þ

� �
(5.17)

The sensor nodes exchange their estimates over the communication channel and

combine the estimates in the neighboring nodes Ni.

x̂regkjkð Þ ¼
X
j 2 Ni

Wij x̂
Local
kjkð Þ (5.18)

W is symmetric and its eigenvalues arranges as: l1ðWÞ � l2ðWÞ::::: � ln ðWÞ:
The second largest eigenvalue l2 ðWÞ is a measure of the speed of consensus

algorithm. Thus, the convergence rate of DKF depends on the magnitude of the

second largest eigenvalue l2. We apply the fast polynomial filter proposed in [16]

on the spectrum ofW in order to impact the magnitude of l2 (W) that mainly drives

the convergence rate. In particular, the convergence is faster when the second

largest eigenvalue is small. The polynomial filter of degree m that is applied on

the spectrum of W is defined as:

pmðlÞ ¼ /0 þ/1 lþ/2 l2 þ :::::þ/m lm (5.19)

The matrix polynomial is given as

pmðWÞ ¼ /0 I þ/1 W þ/2 W2 þ ::::: þ/m Wm (5.20)

82 5 Proposed Distributed Kalman Filter

pmðWÞ is a periodic update of the current sensor node’s value with a linear

combination of its previous values. Now we can rewrite Eq. 5.18

x̂
reg
kjkð Þ ¼

Xm
i¼0

piðWÞ x̂Localk

� �
i

(5.21)

Each sensor node typically applies polynomial filter for distributed consensus.

The am’s are computed off-line assuming that W is known a priori.

The goal is finding the polynomial that leads to the fastest convergence of linear

iteration described in Eq. 5.21, for a given weight matrixW and a certain degree m.

The optimal polynomial is the one that minimizes the second largest eigenvalue of

W. Therefore, we need to solve an optimization problem where the optimization

variables are the m + 1 polynomial coefficients a0, a1,. . . am and the objective

function is the spectral radius of W � 1

n

� �
11T . The following optimization prob-

lem needs to be solved:

Minimize r
Xm
i¼0

ai Wi

 !
; where a 2 Rmþ1

Subject to
Xm
i¼0

/i W
i

 !
1 ¼ 1

(5.22)

The Linear Matrix Inequality (LMI) of Eq. 5.22 is equivalent to a set of m

polynomial inequalities inW, i.e., the leading principal minors of a must be positive.

To solve this optimization problem, the auxiliary variable f will be used to bind the

objective function, and then the spectral radius constraint is expressed as a linear

matrix inequality (LMI). Thus, the following optimization problemneeds to be solved.

Minimize f ; where f 2 Rmþ1

Subject to� fI �
Xm
i¼0

ai Wi � 11T

n
� fI;

Xm
i¼0

/i W
i

 !
1 ¼ 1

(5.23)

Since W is symmetric,
Pm
k¼0

ak Wk will be symmetric as well. Hence, the con-

straint W 1 ¼ 1 is sufficient to ensure that 1 will be also a left eigenvector of W.

5.4 Proposed Distributed Kalman Filter 83

Due to the LMI, the above optimization problem becomes equivalent to a semi-

definite program (SDP) [16]. SDP is a special case of cone programming and can be

efficiently solved by interior point methods. A matrix polynomial p is applied on the

weight matrix W to shape its spectrum in order to increase the convergence rate for

the DKF. Since the convergence rate is driven by the second eigenvalue l2 (W), it is
then possible to increase the convergence rate by careful design of the polynomial

p. The computation of the coefficients of the optimal polynomial is formulated as a

semi-definite program that can be efficiently solved. In addition, the sensors are

allowed to use their previous estimates, in order to accelerate the convergence rate

in a finite number of steps. Although using the previous estimates will exploit the

memory of sensors, the memory requirements can be adjusted to the memory

constraints imposed by the sensor.

W is calculated according to the fast polynomial consensus introduced above.

Then, each sensor node applies polynomial filter for distributed consensus by

implementing the algorithm1. Each sensor uses its previous estimate, in order to

accelerate the convergence rate in a finite number of steps.

Each node predicts the regional estimate x̂regkþ1jkð Þ as follow:

x̂regkþ1jkð Þ ¼ A x̂regkjkð Þ þ Bkuk (5.24)

Figure 5.1 presents the proposed architecture of m nodes (in another word,

neighbors) running a micro-Kalman filter as a part of the entire n nodes network. It

shows also the communication architecture between the nodes. The advantage of the

above micro-Kalman filter is that the state estimates produced are identical to the ones

obtained via a central Kalman filter, as we will see in the simulation section. Further-

more, a significant advantage for the distributed implementation is the computational

84 5 Proposed Distributed Kalman Filter

costs of the gain matrices. The central Kalman filter gain K has O (m2n) elements

while the gainMm of the micro-Kalman filter has O (m2) elements. This implies that

the implementation of the micro-Kalman filter is more computationally feasible than

that of the central Kalman filter, especially for large network. Furthermore, our

architecture is scalable in terms of the network size n.

5.5 Simulation Results

In order to compare the performance of the polynomial filter with the standard

iterative method. We provide simulation results for different network sizes, where

varies from 50 to 150 with step 10. In particular, we are trying to show how fast the

polynomial filter is, compared with the standard iteration. We measure the average

number of iterations needed by each method to reach the desired level of absolute

error across different network sizes with a fixed tolerance d ¼ 10�3. Figure 5.2

shows that the polynomial filter method is faster than the standard iteration by four

times in average. You can notice also that the improvement of polynomial filter

methods on the convergence rate is increased in larger networks.

For the sake of completeness, we also provide the output performance of the

proposed DKF versus the CKF. Consider a network of n ¼ 100 sensor that are

distributed randomly with a topology shown in Fig. 5.3. The model of a process is

defined as:

xkþ1 ¼ Akxk þ Bkuk þ wk k � 0 (5.25)

zk ¼ Ckxk þ vk k � 0 (5.26)

Fig. 5.1 Nodes representation of distributed Kalman filter for m neighbors

5.5 Simulation Results 85

The values used for the system defined in Eq. 4.25 are:

A ¼ 0 �1

1 0

� 	
; B ¼ 1 0

0 1

� 	

Fig. 5.3 Network topology for n ¼ 100 sensor nodes

Fig. 5.2 Convergence time for different network sizes

86 5 Proposed Distributed Kalman Filter

http://dx.doi.org/10.1007/978-1-4614-1350-9_4

In the simulations, a heterogeneous network is proposed. Half of the sensors

have one kind of sensors and the other half have another kind of sensors (i.e. each

half has different C matrix). The two different C matrices used in Eq. 5.26 are:

C1 ¼
1 0

0 1

� 	

C2 ¼
1 2

2 1

� 	

The Simulation time is 10 s with sampling time Ts ¼ 0.01 s and initial value as

below:

X0 ¼ ½ 0 0 �

P0 ¼
1 0

0 1

� 	

The estimation obtained from a Central Kalman Filter CKF, shown in Fig. 5.4,

will be our reference to evaluate the proposed DKF performance. Each node in the

network has an estimate, Fig. 5.5 shows the squared estimation error for the

proposed DKF at node 5 compared with the CKF squared error. Apparently, the

proposed distributed and the central Kalman filters provide almost the same

estimates, and they can be shown clearly in Fig. 5.6, which shows the average

Mean Square Error MSE for all the nodes versus the MSE of the CKF.

Fig. 5.4 Estimation obtained through the CKF (xch) and the real signal (x)

5.5 Simulation Results 87

Olfati in [18] addressed the DKF problem by reducing it into two separate

dynamic consensus problems: a low-pass consensus filter for fusion of the

measurements and a band-pass consensus filter for fusion of the inverse covari-

ance matrices. He decomposed the central Kalman filter into n micro-Kalman

filters with inputs that are provided by two consensus filters. This network of

micro-Kalman filters was able to collaboratively provide an estimate of the state

of the observed process. Figure 5.7 shows a comparison of the performance of

both the proposed distributed Kalman filter and Olfati’s algorithm. Simulation

results are presented for a wireless sensor network with n ¼ 200 nodes and 1,074

links. The result shows that the proposed algorithm improved the average MSE

over the olfatis algorithm.

In this work, we use a matrix polynomial p applied on the weight matrix W to

shape its spectrum in order to increase the convergence rate. Given the fact that the

Fig. 5.5 Estimation obtained through DKF (node 5) and the real signal (x)

Fig. 5.6 Average MSE for DKF versus MSE for CKF

88 5 Proposed Distributed Kalman Filter

convergence rate is driven by the second eigenvalue l2 (W), it is then possible to

increase the convergence rate by careful design of the polynomial p. We formulate

the computation of the coefficients of the optimal polynomial as a semi-definite

program that can be efficiently solved.

We also allow the sensors to use their previous estimates, in order to accelerate

the convergence rate in a finite number of steps. Although using the previous

estimates in our approach will exploit the memory of sensors, the polynomial filter

methodology introduced presents three main advantages:

1. It is robust

2. It has explicit control on the convergence rate

3. Its memory requirements can be adjusted to the memory constraints imposed by

the sensor.

The proposed polynomial filter increases the convergence rate of the DKF. Fast

convergence can contribute to significant energy saving and hence a fast DKF.

Multiplication is at the core of DKF operations. Therefore, saving power at the

multiplication level will have a significant impact on the energy reserve at each

node. Next chapter we propose a light-weight energy-efficient multiplication

algorithm for DKF based on Horner’s method [19, 20].

Bibliography

1. N.T. John and A. Michael, “Convergence and asymptotic agreement in distributed decision

problems,” in Proceeding of the 21st IEEE Conference on Decision and Control, Orlando,
Florida, USA, December 1982, pp. 692–701.

2. R. Wei and R.W. Beard, “Consensus seeking in multiagent systems under dynamically

changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50,

pp. 655–661, November 2005.

3. L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average

consensus,” in the 4th International Symposium onInformation Processing in Sensor
Networks, pp. 63–70, 2005.

Fig. 5.7 Average MSE for proposed and Olfati’s DKF algorithm

Bibliography 89

4. C.C. Moallemi and B. Van Roy, “Consensus Propagation,” IEEE Transactions on Information
Theory, vol. 52, pp. 4753–4766, January 2006.

5. D. Spanos, R. Olfati-Saber, and R. Murray, “Distributed sensor fusion using dynamic consen-

sus,” in Proceeding of the 16th IFAC World Congress, Prague, Czech Republic, July 2005,

pp. 199–205.

6. D.S. Scherber and H.C. Papadopoulos, “Locally constructed algorithms for distributed

computations in ad-hoc networks,” in Proceeding of the 3rd International Symposium on
Information Processing in Sensor Networks, Berkeley, California, USA, April 2004,

pp. 11–19.

7. L. Xiao, S. Boyd, and S.J. Kim, “Distributed average consensus with least-mean-square

deviation,” in Proceeding of the 17th International Symposium on Mathematical Theory of
Networks and Systems, Kyoto, Japan, July 2006, pp. 2768–2776.

8. L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least–mean–square

deviation,” Journal of Parallel and Distributed Computing, vol. 2, pp. 33–46, May 2007.

9. L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control
Letters, pp. 65–78, June 2004.

10. R. Olfati-Saber and R.M. Murray, “Consensus problems in networks of agents with switching

topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, pp. 1520–1533,
January 2004.

11. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE
Transactions on Information Theory, vol. 52, pp. 2508–2530, June 2006.

12. S. Sundaram, “Distributed Consensus and Linear Functional Calculation in Networks:

An Observability Perspective,” in Proceeding of the 6th International Symposium on Informa-
tion Processing in Sensor Networks, Cambridge, Massachusetts, USA, April 2007, pp. 99–108.

13. J. Liu, B.D.O. Anderson, M. Cao, and A.S. Morse, “Analysis of accelerated gossip

algorithms,” in Proceeding of the 48th IEEE Conference on Decision and Control, Chinghai,
China, December 2009, pp. 871–876.

14. J. Dong, Q. Chen, and Z. Niu, “Random graph theory based connectivity analysis in wireless

sensor networks with Rayleigh fading channels,” in Proceeding of the Asia-Pacific Conference
on Communications, Hong Kong, China, March 2007, pp. 123–126.

15. B. Bollabas, Random Graphs Second Edition: Cambride University Press, 2001.

16. E. Kokiopoulou and P. Frossard, “Polynomial Filtering for Fast Convergence in Distributed

Consensus,” IEEE Transactions on Signal Processing, vol. 57, pp. 342–354, October 2009.
17. S. Kar and J.M.F. Moura, “Sensor Networks With Random Links: Topology Design for

Distributed Consensus,” IEEE Transactions on Signal Processing, vol. 56, pp. 3315–3326,
March 2008.

18. R. Olfati-Saber, “Distributed Kalman Filter with Embedded Consensus Filters,” in the 44th
IEEE Conference on Decision and Control, pp. 8179–8184, 2005.

19. A. Abdelgawad and M. Bayoumi, “Low Power Distributed Kalman Filter for Wireless Sensor

Networks,” EURASIP Journal on Embedded Systems, vol. 2011, Article ID 693150, 11 pages,

doi:10.1155/2011/693150, 2011.

20. A. Abdelgawad and M. Bayoumi,“ Distributed Kalman Filter Using Fast Polynomial Filter,”

IEEE International Symposium on Circuits and Systems, ISCAS 2011, 15–18 May 2011

90 5 Proposed Distributed Kalman Filter

http://dx.doi.org/10.1155/2011/693150

Chapter 6

Proposed Multiplication Algorithm for DKF

Abstract An efficient and low-power multiplication algorithm has been proposed

in this chapter. It reduces the number of add operations during multiplication by

rounding any sequence of 1s in the fractional part. The impact of using the proposed

multiplication method on FIR and IIR filters response has been studied. Experi-

mental results show that the proposed algorithm achieves up to 17% power saving

and 16% increasing in speed, with only 1% accuracy loss compared to Horner’s

algorithm. The new multiplication method has been validated experimentally using

the eZ430-RF2500 wireless sensor board. In the next chapter, we will study the

impact of using the proposed multiplication method on the power consumption of

the proposed DKF.

6.1 Introduction

Signal processing in wireless sensor network has a vast range of applications. Finite

Impulse Response filter (FIR), Infinite Impulse Response filter (IIR), and Kalman

Filter find applications in object tracking, environmental monitoring and many

other applications. These tasks are computationally intensive and strain the energy

resources of any single computational node in a wireless sensor network. In other

words, most sensor nodes do not have the computational resources to complete

many of these signal processing tasks repeatedly. Multiplication is at the core of

many data and signal processing operations. Therefore, saving power at the multi-

plication level has a significant impact on the energy reserve of each node.

Consequently, energy-efficient multiplication can extend the WSN’s lifetime and

increase its computational capabilities per Watt of power. The sensor nodes avail-

able in the market, such as the Crossbow’s Micaz [1] and Telosb [2] motes, depend

on an 8-bit (in Micaz) or 16-bit (in Telosb) microcontroller. These microcontrollers

do not have a floating-point multiplier. Moreover, their hardware multiplier, if

enabled, tends to deplete the nodes’ energy quickly. To deal with such systems,

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_6, # Springer Science+Business Media, LLC 2012

91

several multiplication algorithms have been proposed which rely on repeated

additions and consume lots of instruction cycles and exhibits limited precision.

In this work we propose a light-weight energy-efficient multiplication algorithm

based on Horner’s method. Our method aims to reduce the number of add

operations during multiplication by rounding any sequence of 1s in the fractional

part. The applied rounding reduces the number of instruction cycles, and reduces

the memory storage without increasing the code complexity or sacrificing accuracy.

6.2 Overview of Multiplication Algorithms

Multiplications are often implemented with shift- and-add operations for hardware

efficiency [3]. In this method, a set of partial products is formed by multiplying the

multiplicand by each digit of the multiplier. Each partial product is shifted one digit

position from the previous partial product, and the partial products are then added to

produce the final product. Binary multiplication is done the same way; however,

because binary numbers consist only of 1s and 0s, each partial product will be either

an exact copy of the multiplicand, or it will be zero. Those bit positions of the

multiplier which contain 1’s produce partial products equal to the multiplicand;

those bit positions of the multiplier which contain 0s produce partial products which

are equal to zero. As an example, consider the multiplication of the two numbers A

and B below, represented in 12-bits.

A ¼ 0.14325 ¼ 0.001001001010b

B ¼ 0.12345 ¼ 0.000111111001b

The traditional method to perform this multiplication is: 0.14325 * 0.12345 þ
0.001001001010b * (2�4þ2�5þ2�6þ 2�7þ 2�8þ2�9þ2�12)

¼ 0.000000100100b +

0.000000010010b +

0.000000001001b +

0.000000000100b +

0.000000000010b +

0.000000000001b +

0.000000000000b +

0.000001000110b ¼ 0.01708984375

The exact result of this multiplication is 0.0176842125. The traditional method

results in an absolute error of 0.00059436875, which is approximately 2.5 LSB.

This error can be attributed to finite word length effects due to register width

limitations. As the number of bits allocated for the fractions increases, this error

is reduced. The Horner’s method aims to reduce this error while maintaining the

same register widths.

Horner’s method is primarily designed to perform multiplication on devices that

do not have a dedicated hardware multiplier [4]. It dictates a set of design equations,

which are unique for any multiplier. These design equations directly relate to a

sequence of shift and add operations on the multiplicand. The Horner’s algorithm is

based on the positions of the 1s in the multiplier and their distance to the immediate 1

92 6 Proposed Multiplication Algorithm for DKF

to their left. This is done starting from the rightmost bit position andmoving left until

the last 1 before the binary point. In the binary equivalent of the multiplier

0.14325 ¼ 0.001001001010b, starting from the right, the first 1 occurs at bit position

2�11. The difference in position of this 1 to its immediate 1 to the left is two.

Similarly, the difference for the 1 in bit position 2�9 is three and so on. If the number

to be multiplied is denoted as A, the design equations can be written as:

1. A1 ¼ A * 2�3 + A: Set the intermediate result equal to the operand B and start

with the rightmost 1. For the first iteration, the weight 2�3 is applied to the

intermediate result as the distance of the rightmost 1 (bit position 2�12) in the

multiplier to its next 1 (bit position 2�9) is three.

0.000001001001b +

0.001001001010b
A1 ¼ 0.001010010011b

2. A2 ¼ A1 * 2�1 + A: Continue to the next 1 in bit position 2�9.The weight 2�1

is now applied to the intermediate result since the distance of the 1 in bit position

2�9 to its next 1 (bit position 2�8) is one. The operand is again added.

0.000101001001b +

0.001001001010b
A2 ¼ 0.001110010011b

3. A3 ¼ A2 * 2�1 + A: Keep on to the next 1 in bit position 2�7 The weight 2�1 is

applied to the intermediate result and the operand added.

0.000111001001b +

0.001001001010b
A3 ¼ 0.010000010011b

4. A4 ¼ A3 * 2�1 + A: Go on to the next 1 in bit position 2�6 The weight 2�1 is

applied to the intermediate result and the operand added.

0.001000001001b +

0.001001001010b
A4 ¼ 0.010001010011b

5. A5 ¼ A4 * 2�1 + A: Continue to the next 1 in bit position 2�5 The weight 2�1

is applied to the intermediate result and the operand added.

0.001000101001 b +

0.001001001010 b

A5 ¼ 0.010001110011b
6. A6 ¼ A5 * 2�1 + A: Keep on to the next 1 in bit position 2�4 The weight 2�1 is

applied to the intermediate result and the operand added.

0.001000111001 b +

0.001001001010 b

A6 ¼ 0.010010000011b

The result ¼ A6 * 2�4 continues to the last 1 in bit position 2�4. The factor 2�4 is

applied to the intermediate result, as it is the weight at the position of the leftmost 1.

The operand is not added this time, since all the 1s have been taken into account. The

result ¼ A6 * 2�4 ¼ 0.000001001000b ¼ 0.017578125. This has an absolute error

of 0.0001060875 which is just 0.434534 LSB, which is 0.60% error from the actual

result.

6.2 Overview of Multiplication Algorithms 93

6.3 Proposed Method

The proposed method is a method targeted for fixed-point multiplication by

utilizing the redundancy of signed digit code. The feature of redundancy in this

representation allows a coefficient implementation to be selected which in general

requires fewer additions and thus yields a faster compact multiplication.

The proposed method aims to reduce the number of add operations during multi-

plication by rounding any sequence of 1s in the fractional part. For example the

number 1010.010111101 becomes 1010.01100001.

To better illustrate the algorithm, consider the following example where the

number 0.12345 is multiplied by the constant 0.14325.

A ¼ 0.14325 ¼ 0.001001001010b

B ¼ 0.12345 ¼ 0.000111111001b

The multiplicand B is rounded according to the proposed method to yield Bnew.

Bnew ¼ 0.12345 ¼ 0.001000000001b
The algorithm, then, follows Horner’s method but with only two steps compared

to Horner’s seven steps presented in the previous section.

1. A1 ¼ A * 2�9 + A: Set the intermediate result equal to the operand Bnew and

start with the rightmost 1. For the first iteration, the weight 2�9 is applied to the

intermediate result as the distance of the rightmost 1 (bit position 2�12) in the

multiplier to its next 1 (bit position 2�3) is 3.

0.000000000001b +

0.001001001010b
A1 ¼ 0.001001001011b

The result ¼ A1 * 2�3: Proceed to the last 1 in bit position 2�3. The factor 2�3 is

applied to the intermediate result, as it is the weight at the position of the leftmost 1.

The operand is not added this time, since all the 1s have been taken into account.

The result ¼ A1 * 2�3 ¼ 0.000001001001b ¼ 0.017822265625. This has an abso-

lute error of 0.000138053125which is just 0.5654656 LSB, which is 0.78% error from

the actual result. The procedure remains the same if the operand is a negative fraction.

6.4 Simulation Result

The error of the multiplication comes from the fraction part and depends on the total

number of bits in the fractional part. Matlab was used to compare the accuracy for

the proposed method with the existing methods; we calculated the average absolute

error of multiplying two fractions for different fraction width (starting from 2 bits to

12 bits). We multiplied all the possible combinations of the two fractions and

got the absolute average error. Figure 6.1 shows the average absolute error for the

shift-and-add, Horner, and proposed methods. The absolute average error of the

proposed method is very close to Horner’s method. The simulation results show that

94 6 Proposed Multiplication Algorithm for DKF

the proposed method reduces the accuracy by a maximum of 1% compared to

Horner’s method. Figure 6.2 draws a box and whisker diagram to show the spread

of the absolute error of the proposed multiplication method.

Table 6.1 shows the comparison of speed, accuracy and memory requirements

for both methods. The proposed method reduces the number of instruction cycles

and the code size without scarifying the accuracy.

6.5 Case Study

In this section, we are studying the impact of using the proposed multiplication

method on FIR and IIR filters response. The basic operation needed to implement a

FIR [5] filter is the multiply-and-accumulate (MAC). The mathematical expression

for the FIR filter is:

Y kð Þ ¼
Xn

i¼0

ci � X n� ið Þ (6.1)

where k is the time step, Y(k) is the filter output at time k, X(n�i) is the sampled

input at time n�i, ci is the filter coefficient i, and N is the order of the filter.

Consider a low pass FIR filter of order 12 with the following coefficients

[0.0002, �0.0024, �0.0158, �0.0190, 0.0723, 0.2714, 0.3867, 0.2714, 0.0723,

Fig. 6.1 Absolute average multiplication error for both methods

6.5 Case Study 95

�0.0190, �0.0158, �0.0024, and 0.0002]. Figure 6.3 shows the magnitude and the

phase response of the FIR filter using Horner’s method and the proposed multipli-

cation method.

The IIR filter normally includes adders and multipliers working at a very high

speed; it is important to design fast Multipliers [6]. The IIR filter is represented by a

difference equation where the output signal at a given instant is obtained as a linear

combination of samples of the input and output signals at previous time instants.

Moreover, an instantaneous dependency of the output on the input is also usually

included in the IIR filter. The difference equation that represents an IIR filter is:

YðnÞ ¼
Xn

i¼0

bi � X n� ið Þ�
Xm

i¼0

ai � X n� ið Þ (6.2)

Fig. 6.2 Box-and-whisker

diagram of the proposed

multiplication error

Table 6.1 Comparison of speed, accuracy and memory requirements for both methods

Type Method

Instruction

cycle

Code

size Result

Absolute

error

Integer–float multiplication

41 * 441.8375

Horner 32 60 18,115 0.3375

Proposed 29 60 18,115 0.3375

Float–float multiplication

0.14325 * 0.12345

Horner 18 37 0.0175781 0.000106

Proposed 6 26 0.0178222 0.000138

96 6 Proposed Multiplication Algorithm for DKF

For an IIR filter, coefficients refer to the (n * 1) vector a and (m * 1) vector b.

Consider a high pass IIR filter of order 12 with the following coefficients

{b ¼ [1 �1.9082 1] and a ¼ [�1.0644 0.8125]}. Figure 6.4 shows the magnitude

and the phase response of the IIR filter using Horner and the proposed multiplica-

tion algorithms. Figures 6.3 and 6.4 Show that the proposed method does not affect

the response of both IIR and FIR filters.

6.6 Counter Example Power Measurement

For demonstration purposes, we considered the MSP430 microcontroller. The

MSP430 is a family of ultra-low power microcontrollers by Texas Instruments

[7]. Low-cost, low power and a powerful instruction set make MSP430 an ideal

Fig. 6.3 FIR filter response using the Horner and the proposed multiplication algorithms.

(a) Magnitude response, (b) phase response

6.6 Counter Example Power Measurement 97

choice microcontroller for WSNs. TheMSP430 microcontroller CPU can perform a

register shift or add in one instruction cycle. This allows fast execution of

multiplications using the proposed method.

In order to compare between the power consumption of the proposed method and

the existing methods, a case of multiplying two fractions (0.14325 * 0.12345) is

implemented on MSP430F2274 microcontroller (eZ430-RF2500 kit) using IAR

Embedded Workbench Ver. 3.41A. Experimental results show that the proposed

method reduces the current by 15 nA and increases the speed by 16 ns with only

0.18% accuracy loss as shown in Fig. 6.5. The proposed method, in the best case,

achieves up to 17% power saving and 16% increase in speed, with only 1%

accuracy loss compared to Horner’s algorithm [8].

Fig. 6.4 IIR filter response using the Horner and the proposed multiplication algorithms.

(a) Magnitude response, (b) phase response

98 6 Proposed Multiplication Algorithm for DKF

In order to implement this DKF in wireless sensor network the computation issue

will come up. Moreover, Kalman filter is a power hungry algorithm in term of

computational complexity.

In this chapter we offered a solutions for this problem; we proposed a novel

light-weight and low-power multiplication algorithm. The proposed algorithm aims

to decrease the number of instruction cycles, save power and reduce the memory

storage without increasing the code complexity or sacrificing accuracy. More

experimental results for the proposed DKF using the proposed multiplication

algorithm will be presented chapter.

Bibliography

1. Crossbow Technology, “Micaz datasheet,” http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAZ_Datasheet.pdf.

2. J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wireless research,”

in Proceeding of the Information Processing in Sensor Networks, pp. 364–369, November 2005.

3. H.T. Nguyen and A. Chattejee, “Number-splitting with shift-and-add decomposition for power

and hardware optimization in linear DSP synthesis,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 8, pp. 419–424, May 2000.

4. K. Venkat and M. Raju, “Efficient Signal Conditioning for Microcontroller Based Medical

Solutions,” in Proceeding of the IEEE International Symposium on Consumer Electronics,
Dallas, Texas, USA, June 2007, pp. 1–5.

5. R. Tamura, M. Honma, N. Togawa, M. Yanagisawa, T. Ohtsuki, and M. Satoh, “FIR filter

design on Flexible Engine/Generic ALU array and its dedicated synthesis algorithm,”

in Proceeding of the IEEE Asia Pacific Conference on Circuits and Systems, Macao, China,

December 2008, pp. 701–704.

6. R. Landry, Jr., V. Calmettes, and E. Robin, “High speed IIR filter for XILINX FPGA,”

in Proceeding of the Midwest Symposium on Circuits and Systems, Notre Dame, Indian, USA,

August 1998, pp. 46–49.

7. Texas Instruments Inc., “MSP430 family of microcontrollers,” http://www.ti.com/msp430.

8. A. Abdelgawad, S. Abdelhak, S. Ghosh, and M. Bayoumi, “A low-power multiplication

algorithm for signal processing in wireless sensor networks,” in Proceeding of the 52nd IEEE
International Midwest Symposium on Circuits and Systems, Cancun, Mexico, August 2009,

pp. 695–698.

Fig. 6.5 Current, speed, and error both methods

Bibliography 99

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf
http://www.ti.com/msp430

Chapter 7

Experimental Results for the Proposed DKF

Abstract Experimentally, the proposed DKF using the proposed multiplication

method and the proposed fast polynomial filter was evaluated. The DKF introduced

by Olfati was experimentally tested as well. The results show that the proposed

DKF achieves up to 33% energy saving. The results show also that one node can run

the Olfati’s DKF for up to five neighbors only, but the proposed DKF can run for up

to seven neighbors. This different in the nodes numbers is because of the memory

limitation, as Olfati’s DKF exchange the measurements and the covariance, but the

proposed DKF exchange the estimation only. Moreover the proposed multiplication

method saves memory as well.

7.1 Test Bed

A test bed composed of 20 wireless sensor motes – TelosB – was used to test the

proposed DKF and measure its power consumption. TelosB is designed for

low-power operation. The low power operation of the TelosB module is due to

the ultra low power Texas Instruments MSP430 F1611 microcontroller featuring

10 kB of RAM, 48 kB of flash, and 128 B of information storage. The MSP430

microcontroller is based on a 16-bit RISC core integrated with RAM and flash

memories, analog and digital peripherals and a flexible clock subsystem. It supports

several low-power operating modes and consumes as low as 1 mA in a standby

mode; it also has very fast wake up time of no more than 6 ms. TelosB features a

Chipcon 2420 radio in the 2.4 GHz band. The CC2240 is controlled by the MSP430

microcontroller through the SPI port and a series of digital I/O lines with interrupt

capabilities. The MAC protocol used is X-MAC. X-MAC is an asynchronous MAC

protocol in which the sender uses short preambles to awaken the receiver. Before

any transmission, the sender senses the channel; if it is busy the sender retries after a

random backoff, otherwise it sends short preambles embedding the address of the

receiver. Once the receiver detects its address, it sends an acknowledgment, and the

sender can start transmitting the data [1].

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9_7, # Springer Science+Business Media, LLC 2012

101

Energy consumption in each TelosB can be attributed to the current draw of each

node. Therefore, we can use accurate measurements of the amount of current that the

node sinks to determine the power consumption. Current measurement is typically

donewith a shunt resistor placed in series with the current flow in a circuit as shown in

Fig. 7.1. This resistor is specifically chosen to be high-precision and low-impedance

so as not to interfere greatly with the circuit being monitored. Because the value of the

resistor is known, by measuring the voltage drop across the shunt resistor, we can

accurately calculate the current using Ohm’s law as in Eq. 5.3.

P ¼ Vn � I ¼ Vsupply � Vshunt

� � � Vshunt

Rshunt
(7.1)

The code for all the nodes was written in NesC. A java GUI was developed

to provide a friendly user interface with the nodes. The java interface is a multi-

threaded socket-based program that communicates with a serial forwarding pro-

gram. A set of 20 nodes is distributed around the laboratory, and a laptop gateway

is configured to be able to send/receive control signals and data packets to/from the

nodes [2].

7.2 Experimental Results

To illustrate the effects of energy saving for the proposed multiplication method on

the DKF, Fig. 7.2 shows the comparison between the power consumption of one

node has five neighbors and run DKF using the proposed multiplication method and

Horner’s method. Figure 7.2 shows the power trace for only one iteration.

The proposed method takes 140 ms while the Horner’s method takes 153 ms.

Thus, using the proposed multiplication method in DKF saves 8% of energy.

The proposed polynomial filter increases the convergence rate of the DKF.

Fast convergence can contribute to significant energy saving and hence a fast

DKF. Table 7.1 shows the time and energy consumption for the DKF using the

standard polynomial and the proposed polynomial. The measurements for one node

have five neighbors and runs for ten iterations.

Fig. 7.1 Power measurement with shunt resistor

102 7 Experimental Results for the Proposed DKF

http://dx.doi.org/10.1007/978-1-4614-1350-9_5

Experimentally, the proposed DKF using the proposed multiplication method

and the proposed fast polynomial filter was evaluated. The DKF introduced by

Olfati was experimentally tested as well. Figure 7.3 shows the comparison for both

methods for different numbers of neighbors. The results show that the proposed

DKF achieves up to 33% energy saving. The results show also that one node can run

the Olfati’s DKF for up to five neighbors only, but the proposed DKF can run for up

to seven neighbors. This difference in the nodes numbers is because of the memory

limitation, as Olfati’s DKF exchange the measurements and the covariance, but the

proposed DKS exchange the estimation only. Moreover, the proposed multiplica-

tion method saves memory as well [2].

We have presented a low power distributed Kalman filter based on a fast

polynomial filter [3]. Fast convergence led to significant energy saving. In addition,

we proposed a light-weight energy-efficient multiplication algorithm. The proposed

multiplication method reduced the number of add operations during multiplication

by rounding any sequence of 1s in the fractional part. The applied rounding reduced

the number of instruction cycles, and reduced the memory storage without increas-

ing the code complexity. The experimental results show that the proposed DKF

achieved up to 33% energy consumption save compared to Olfsti’s DKF. More-

over, the proposed DKF efficiently uses the node’s memory, so each node can run

DKF with up to seven neighbors.

Fig. 7.2 Power traces for DKF using proposed and Horner multiplication methods

Table 7.1 Energy and time

for the proposed polynomial

filter

Proposed polynomial Standard polynomial

Energy (mJ) 62.01644 71.05673

Time (S) 14.6193 16.5402

7.2 Experimental Results 103

Bibliography

1. E.A.M. Buettner, G. Yee, and R. Han, “X-mac: A short preamble mac protocol for duty-cycled

wireless sensor networks,” in Proceeding of the 4th ACM Conference on Embedded Sensor
Systems, New York, NY, USA, April 2006, pp. 307–320.

2. A. Abdelgawad, S. Abdelhak, S. Ghosh, and M. Bayoumi, “A low-power multiplication

algorithm for signal processing in wireless sensor networks,” in Proceeding of the 52nd IEEE
International Midwest Symposium on Circuits and Systems, Cancun, Mexico, August 2009,

pp. 695–698.

3. A. Abdelgawad and M. Bayoumi, “Low Power Distributed Kalman Filter for Wireless Sensor

Networks,” EURASIP Journal on Embedded Systems, vol. 2011, Article ID 693150, 11 pages,

doi:10.1155/2011/693150, 2011.

Fig. 7.3 Energy consumption of the proposed DKF and Olfatis’ DKF

104 7 Experimental Results for the Proposed DKF

http://dx.doi.org/10.1155/2011/693150

Index

A
Activity-based models, 29–31

B
Bayesian inference, 25

Boyd control loop, 29–30

C
Central data fusion (CDF) module

remote monitoring system,

sand in pipelines

acoustic sensor, 40–41

proposed centralized fusion methods,

50–54

WSDA framework, 42–50

sand measuring, pipelines

intrusive devices, 38–39

non-intrusive devices, 39

simulation and experimental results, 54–56

Central Kalman filters (CKF), 60, 65–67

CoD module, 45–49

Current-to-voltage converting circuit, 48

D
Dasarathy model, 28–29

Data-based models, 27–29

Data-feature-decision (DFD) model, 28–29

Data fusion

architectures and models

activity-based models, 29–31

data-based models, 27–29

role-based model, 31–34

classification

input and output, 24

levels of abstraction, 23

relationship among sources, 22–23

information fusion, sensor fusion, 19–21

properties, 18

techniques, methods, and algorithms

estimation, 26–27

inference, 24–25

Data in–data out (DAI-DAO), 24

Data in–feature out (DAI-FEO), 24

Decision in–decision out (DEI-DEO), 24

Dempster–Shafer inference, 25

Differential pressure, 41, 42

Digital signal processors (DSP), 9

Distributed Kalman filter (DKF)

asymptotic average consensus with

polynomial filter, 80–81

multiplication algorithm, 90–99

network representations, 79

proposed distributed Kalman filter, 81–85

simulation results, 85–89

WSN, 77–79

E
EJA110A differential pressure transmitter,

41, 42

F
Feature in–decision out (FEI-DEO), 24

Feature in–feature out (FEI-FEO), 24

Feature level fusion, 23

Field programmable gate array, 9

Finite impulse response filter (FIR), 91, 95–97

Frankel-Bedworth architecture, 32–34

Fuzzy art, 50–52

Fuzzy logic, 25

A. Abdelgawad and M. Bayoumi, Resource-Aware Data Fusion Algorithms
for Wireless Sensor Networks, Lecture Notes in Electrical Engineering 118,

DOI 10.1007/978-1-4614-1350-9, # Springer Science+Business Media, LLC 2012

105

H
High-level fusion, 23

High-pass consensus filter, 71

I
Infinite impulse response filter (IIR), 91, 95–97

Intelligence cycle, 30

J
Joint Directors of Laboratories (JDL) model

database management system, 27

human computer interaction (HCI), 27–28

sources, 27

K
Kalman filter, 26, 54

adjacency matrix, 64

consensus filters, 69–74

degree matrix, 64

direct graph, 62, 63

distance matrix, 63

distributed Kalman filter (DKF), 67–68

graph theory, 61

incidence matrix, 64

laplacian matrix, 64–65

network representations, 63

node degree, 63

Olfati-Saber’s distributed Kalman filter,

68–69

undirected graph, 62–63

wireless sensor network, 65–67

wireless sensor network representation,

60–61

L
Least squares method, 26

Linear matrix inequality, 83

Low-level fusion, 23

Low-pass consensus filter, 70–71

M
MaC module, 49–50

MAF. See Moving average filter (MAF)

Maximum likelihood (ML), 26

Maximum likelihood estimator (MLE), 40, 52–53

MC-II flow analyzer specifications, 41, 42

Medium access control, 11–12

Medium-level fusion, 23

MLE. SeeMaximum likelihood estimator (MLE)

Moving average filter (MAF), 26, 40, 50, 53–54

Multilevel fusion, 23

Multiplication algorithm

case study, 95–97

counter example power measurement, 97–99

proposed method, 94

simulation result, 94–95

Multisensor/sensor fusion, 21

N
Neural networks, 25

O
Object-oriented model, 32

Observe, orient, decide, act (OODA) loop,

29–30

Omnibus model, 31

P
Particle filter, 26–27

Pixel level fusion, 23

Polynomial filter, 103

R
Radio frequency (RF), 4, 11

Reduced instruction set computing, 97

ReT module, 44–45

Role-based model, 31–33

S
Sand rate module, 49

Semantic data fusion, 25

Senaco AS100 sensor, 41

Sensor network architecture

active sensors, 11

external memory, 10

medium access control (MAC), 11–12

microcontroller, 9–10

omni-directional sensors, 11

passive sensors, 11

power source, 10

sensors, 10–11

transceiver, 10

Sensor node evaluation metrics

communication, 8

computation, 8

flexibility, 7

106 Index

power, 6–7

robustness, 7

security, 7–8

size and cost, 9

time synchronization, 8–9

Signal level fusion, 23

Symbol level fusion, 23

V
Voltage amplification diagram, 47

Voltage divider diagram, 47

Voltage-to-current converting circuit, 49

W
Wireless sensor data acquisition (WSDA)

module, 42–50

Wireless sensor network (WSN)

applications

agriculture, 5

area monitoring, 3

environmental data collection, 4

greenhouse monitoring, 6

landfill ground well level monitoring

and pump counter, 4–5

node tracking, 6

security monitoring, 5

vehicle detection, 5

windrow composting, 5–6

challenges

dynamic network topology, 13

mixed traf?c, 13–14

platform heterogeneity, 13

resource constraints, 12–13

data fusion

architectures and models, 26–34

classification, 21–24

information fusion and sensor fusion,

19–21

techniques, methods, and algorithms,

24–26

sensor network architecture, 2, 10–12

sensor node evaluation metrics, 6–9

Index 107

	001Download PDF (57.9 KB)front-matter
	Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks
	Preface
	Contents
	List of Figures
	List of Tables
	List of Abbreviations

	002Download PDF (156.2 KB)fulltext
	Chapter 1: Introduction
	1.1 Wireless Sensor Network Applications
	1.2 Sensor Node Evaluation Metrics
	1.3 Sensor Network Architecture
	1.4 Wireless Sensor Network Challenges
	Bibliography

	003Download PDF (337.9 KB)fulltext
	Chapter 2: Data Fusion in WSN
	2.1 Introduction
	2.2 Information Fusion, Sensor Fusion, and Data Fusion
	2.3 Data Fusion Classification
	2.3.1 Classification Based on Relationship Among the Sources
	2.3.2 Classification Based on Levels of Abstraction
	2.3.3 Classification Based on Input and Output

	2.4 Data Fusion: Techniques, Methods, and Algorithms
	2.4.1 Inference
	2.4.2 Estimation

	2.5 Data Fusion: Architectures and Models
	2.5.1 Data-Based Models
	2.5.2 Activity-Based Models
	2.5.3 Role-Based Model

	Bibliography

	004Download PDF (494.4 KB)fulltext
	Chapter 3: Proposed Centralized Data Fusion Algorithms
	3.1 Introduction
	3.2 Sand Measuring in Pipelines
	3.2.1 The Intrusive Devices
	3.2.2 The Non-intrusive Devices

	3.3 Proposed Remote Measuring for Sand in Pipelines
	3.3.1 Sensors Used in the Proposed System
	3.3.2 WSDA Framework
	3.3.3 Proposed Centralized Fusion Methods

	3.4 Simulation and Experimental Results
	Bibliography

	005Download PDF (312.5 KB)fulltext
	Chapter 4: Kalman Filter
	4.1 Wireless Sensor Network Representation
	4.2 Introduction to Graph Theory
	4.3 Graphs and Their Plane Figures
	4.3.1 Direct Graph
	4.3.2 Undirected Graph
	4.3.3 Network Representations
	4.3.4 Node Degree
	4.3.5 Distance Matrix
	4.3.6 Incidence Matrix
	4.3.7 Adjacency Matrix
	4.3.8 Degree Matrix
	4.3.9 Laplacian Matrix

	4.4 Central Kalman Filter in Wireless Sensor Network
	4.5 Distributed Kalman Filter (DKF) Literature Work
	4.6 Olfati-Saber´s Distributed Kalman Filter
	4.7 Consensus Filters
	4.7.1 Information Consensus in Networked Systems
	4.7.2 Distributed Kalman Filter with Embedded Consensus Filters

	Bibliography

	006Download PDF (352.9 KB)fulltext
	Chapter 5: Proposed Distributed Kalman Filter
	5.1 Distributed Kalman Filter (DKF) in WSN and Related Work
	5.2 Network Representations
	5.3 Asymptotic Average Consensus with Polynomial Filter
	5.4 Proposed Distributed Kalman Filter
	5.5 Simulation Results
	Bibliography

	007Download PDF (227.8 KB)fulltext
	Chapter 6: Proposed Multiplication Algorithm for DKF
	6.1 Introduction
	6.2 Overview of Multiplication Algorithms
	6.3 Proposed Method
	6.4 Simulation Result
	6.5 Case Study
	6.6 Counter Example Power Measurement
	Bibliography

	008Download PDF (126.5 KB)fulltext
	Chapter 7: Experimental Results for the Proposed DKF
	7.1 Test Bed
	7.2 Experimental Results
	Bibliography

	009Download PDF (29.8 KB)back-matter
	Index

