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Preface

Mathematical finance has revolutionized the financial world in the past forty years.
A major reason for this success has been the parallel development of efficient com-
putational methods as well as more sophisticated mathematical models. These
novel computational tools are the foundation of a new field of research called Com-
putational Finance, whose main task is to calculate as accurately and efficiently
as possible the risks that financial instruments generate. This requires an inter-
disciplinary approach involving a variety of methods from financial mathematics,
stochastics, statistics, numerics and scientific computing.

Major impacts on the development of the field were the publication of the mono-
graph of Kloeden and Platen on stochastic numerics in 1992 and, later, the mono-
graph of Glasserman on Monte Carlo methods in 2004. These books, as well as
many others, provide the foundations of this rapidly developing subject.

The new computational tools have led to even more sophisticated mathematical
models, which in turn require computational methods that work under requirements
not handled in the existing textbooks. For example, the theory of stochastic numer-
ics has now been extended to handle non-standard assumptions on the coefficients
of the stochastic differential equations. Another significant new development is the
multi-level Monte Carlo method of Michael Giles, while others include the use of
inverse problem methods, wavelets and backward stochastic differential equations.

This volume consists of a series of cutting-edge surveys of recent developments in
the field of computational finance written by leading international experts. Several
of the contributions in this volume are based on talks presented at the International
Workshop on Numerical Algorithms in Computational Finance that was held from
July 20-22 in 2011 at the House of Finance of the Goethe University in Frankfurt am
Main. These surveys make the subject accessible to a wide readership in academia
and the financial world. They may also be of interest to practitioners in many areas
in engineering, technology and science beyond finance. Besides reviews of existing
results many new, previously unpublished, results are also presented.

The book consists of 13 chapters divided into the three parts: Foundations,
Algorithms and Applications.

The first part Foundations is devoted to survey and review articles. It begins
with the article Multilevel Monte Carlo methods for applications in finance by Mike
Giles and Lukasz Szpruch which presents a survey of recent progress regarding the
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multilevel Monte Carlo method. The chapter Convergence of numerical methods for
SDEs in finance by Peter Kloeden and Andreas Neuenkirch deals with nonstandard
assumptions on the coefficients of an SDEs and the effect on the convergence of
numerical discretization schemes. In Inverse problems in finance, Johann Baumeis-
ter gives an overview on inverse problems in finance, which are in general ill-posed
and thus require special regularization. The article Asymptotic and non asymptotic
approximations for option valuation by Roman Bompis and Emmanuel Gobet re-
views approximation methods for the derivation of closed-form solutions for option
pricing problems.

The second part Algorithms covers the algorithmic and numerical aspects
of the computational methods. The article Discretization of backward stochas-
tic Volterra integral equations by Christian Bender and Stanislav Pokalyuk deals
with the approximation of backward SDEs, while the next chapter Semi-Lagrangian
schemes for parabolic equations by Kristian Debrabant and Espen Robstad Jakobsen
covers numerical schemes for nonlinear second order parabolic PDEs. In Derivative-
free weak approximation methods for stochastic differential equations Kristian De-
braband and Andreas Rößler consider stochastic Runge-Kutta methods for the weak
approximation of SDEs and in the chapter Wavelet solution of degenerate Kol-
mogoroff forward equations Oleg Reichmann and Christoph Schwab review wavelet
Galerkin discretizations for Kolmogoroff forward pricing equations. Finally, in Ran-
domized multilevel quasi-Monte Carlo path simulation, Thomas Gerstner and Marco
Noll combine the multilevel Monte Carlo method with quasi-random number gen-
eration.

The third part Applications then deals with specific financial problems. The
article Drift-free simulation methods for pricing cross-market derivatives with LMM
by José Luis Fernández Pérez, María Rodríguez Nogueiras, Marta Pou Bueno and
Carlos Vázquez considers a simulation approach for libor rates, which avoids drift-
dependent paths. In Application of simplest random walk algorithms for pricing bar-
rier options by Maria Krivko and Michael V. Tretyakov proposes a special discretiza-
tion for barrier options close to the barrier. In the article Coupling local currency
Libor models to FX Libor models, John Schoenmakers focuses on the coupling of sin-
gle currency libor models into a joint libor model. The final chaper Dimension-
wise decompositions and their efficient parallelization by Philipp Schröder, Peter
Mlynczak and Gabriel Wittum tackles the pricing of high-dimensional basket op-
tions on parallel computers.

We would like to thank the referees for their valuable comments on the submis-
sions. We also thank Marco Noll for his tireless work to bring the manuscript into
publishable format. Finally, and most of all, we would like to thank the authors for
their informative contributions.

Thomas Gerstner and Peter Kloeden Frankfurt am Main, 2012
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Foundations
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Chapter 1

Multilevel Monte Carlo methods for applications in finance

Mike Giles and Lukasz Szpruch
Oxford-Man Institute of Quantitative Finance

and Mathematical Institute, University of Oxford

Abstract Since Giles introduced the multilevel Monte Carlo path simulation
method [18], there has been rapid development of the technique for a variety of
applications in computational finance. This paper surveys the progress so far, high-
lights the key features in achieving a high rate of multilevel variance convergence,
and suggests directions for future research.

1. Introduction

In 2001, Heinrich [28], developed a multilevel Monte Carlo method for parametric
integration, in which one is interested in estimating the value of E[f(x, λ)] where
x is a finite-dimensional random variable and λ is a parameter. In the simplest
case in which λ is a real variable in the range [0, 1], having estimated the value of
E[f(x, 0)] and E[f(x, 1)], one can use 1

2 (f(x, 0) + f(x, 1)) as a control variate when
estimating the value of E[f(x, 1

2 )], since the variance of f(x, 1
2 )− 1

2 (f(x, 0)+f(x, 1))

will usually be less than the variance of f(x, 1
2 ). This approach can then be applied

recursively for other intermediate values of λ, yielding large savings if f(x, λ) is
sufficiently smooth with respect to λ.

Giles’ multilevel Monte Carlo path simulation [18] is both similar and different.
There is no parametric integration, and the random variable is infinite-dimensional,
corresponding to a Brownian path in the original paper. However, the control
variate viewpoint is very similar. A coarse path simulations is used as a control
variate for a more refined fine path simulation, but since the exact expectation for
the coarse path is not known, this is in turn estimated recursively using even coarser
path simulation as control variates. The coarsest path in the multilevel hierarchy
may have only one timestep for the entire interval of interest.

A similar two-level strategy was developed slightly earlier by Kebaier [31], and
a similar multi-level approach was under development at the same time by Speight
[42; 43].

In this review article, we start by introducing the central ideas in multilevel

3
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Monte Carlo simulation, and the key theorem from [18] which gives the greatly
improved computational cost if a number of conditions are satisfied. The chal-
lenge then is to construct numerical methods which satisfy these conditions, and
we consider this for a range of computational finance applications.

2. Multilevel Monte Carlo

2.1. Monte Carlo

Monte Carlo simulation has become an essential tool in the pricing of derivatives
security and in risk management. In the abstract setting, our goal is to numerically
approximate the expected value E[Y ], where Y = P (X) is a functional of a random
variable X. In most financial applications we are not able to sample X directly
and hence, in order to perform Monte Carlo simulations we approximate X with
X∆t such that E[P (X∆t)] → E[P (X)], when ∆t → 0. Using X∆t to compute N
approximation samples produces the standard Monte Carlo estimate

Ŷ =
1

N

N∑
i=1

P (Xi
∆t),

where Xi
∆t is the numerical approximation to X on the ith sample path and N

is the number of independent simulations of X. By standard Monte Carlo results
Ŷ → E[Y ], when ∆t → 0 and N → ∞. In practice we perform Monte Carlo
simulation with given ∆t > 0 and finite N producing an error to the approximation
of E[Y ]. Here we are interested in the mean square error that is

MSE ≡ E
[
(Ŷ − E[Y ])2

]
Our goal in the design of the Monte Carlo algorithm is to estimate Y with accuracy
root-mean-square error ε (MSE ≤ ε2), as efficiently as possible. That is to minimize
the computational complexity required to achieve the desired mean square error.
For standard Monte Carlo simulations the mean square error can be expressed as

E
[
(Ŷ − E[Y ])2

]
=E

[
(Ŷ − E[Ŷ ] + E[Ŷ ]− E[Y ])2

]
= E

[
(Ŷ − E[Ŷ ])2

]
︸ ︷︷ ︸

Monte Carlo variance

+
(
E[Ŷ ]− E[Y ])2

)
︸ ︷︷ ︸

bias of the approximation

.

The Monte Carlo variance is proportional to 1
N

V[Ŷ ] =
1

N2
V

[
N∑
i=1

P (Xi
∆t)

]
=

1

N
V[P (X∆t)].

For both Euler-Maruyama and Milstein approximation |E[Ŷ ] − E[Y ]| = O(∆t),
typically. Hence the mean square error for standard Monte Carlo is given by

E
[
(Ŷ − E[Y ])2

]
= O(

1

N
) +O(∆t2).
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To ensure the root-mean-square error is proportional to ε, we must have MSE =

O(ε2) and therefore 1/N = O(ε2) and ∆t2 = O(ε2), which means N = O(ε−2) and
∆t = O(ε). The computational cost of standard Monte Carlo is proportional to the
number of paths N multiplied by the cost of generating a path, that is the number
of timesteps in each sample path. Therefore, the cost is C = O(ε−3). In the next
section we will show that using MLMC we can reduce the complexity of achieving
root mean square error ε to O(ε−2).

2.2. Multilevel Monte Carlo Theorem

In its most general form, multilevel Monte Carlo (MLMC) simulation uses a number
of levels of resolution, ` = 0, 1, . . . , L, with ` = 0 being the coarsest, and ` = L being
the finest. In the context of a SDE simulation, level 0 may have just one timestep
for the whole time interval [0, T ], whereas level L might have 2L uniform timesteps
∆tL = 2−LT .

If P denotes the payoff (or other output functional of interest), and P` denotes
its approximation on level l, then the expected value E[PL] on the finest level is
equal to the expected value E[P0] on the coarsest level plus a sum of corrections
which give the difference in expectation between simulations on successive levels,

E[PL] = E[P0] +
L∑
`=1

E[P` − P`−1]. (1)

The idea behind MLMC is to independently estimate each of the expectations on
the right-hand side of (1) in a way which minimises the overall variance for a given
computational cost. Let Y0 be an estimator for E[P0] using N0 samples, and let Y`,
` > 0, be an estimator for E[P` − P`−1] using N` samples. The simplest estimator
is a mean of N` independent samples, which for ` > 0 is

Y` = N−1
`

N∑̀
i=1

(P i` − P i`−1). (2)

The key point here is that P i`−P i`−1 should come from two discrete approximations
for the same underlying stochastic sample (see [39]), so that on finer levels of reso-
lution the difference is small (due to strong convergence) and so its variance is also
small. Hence very few samples will be required on finer levels to accurately estimate
the expected value.

The combined MLMC estimator Ŷ is

Ŷ =
L∑
`=0

Y`.

We can observe that

E[Y`] = N−1
`

N∑̀
i=1

E[P i` − P i`−1] = E[P i` − P i`−1],
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and

E[Ŷ ] =
L∑
`=0

E[Y`] = E[P0] +
L∑
`=1

E[P` − P`−1] = E[PL].

Although we are using different levels with different discretisation errors to estimate
E[P ], the final accuracy depends on the accuracy of the finest level L.

Here we recall the Theorem from [18] (which is a slight generalisation of the
original theorem in [18]) which gives the complexity of MLMC estimation.

Theorem 1. Let P denote a functional of the solution of a stochastic differential
equation, and let P` denote the corresponding level ` numerical approximation. If
there exist independent estimators Y` based on N` Monte Carlo samples, and positive
constants α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i) |E[P`−P ]| ≤ c1 2−α `

ii) E[Y`] =

{
E[P0], ` = 0

E[P`−P`−1], ` > 0

iii) V[Y`] ≤ c2N−1
` 2−β `

iv) C` ≤ c3N` 2γ `, where C` is the computational complexity of Y`

then there exists a positive constant c4 such that for any ε<e−1 there are values L
and N` for which the multilevel estimator

Y =
L∑
`=0

Y`,

has a mean-square-error with bound

MSE ≡ E
[
(Y − E[P ])

2
]
< ε2

with a computational complexity C with bound

C ≤


c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.

2.3. Improved MLMC

In the previous section we showed that the key step in MLMC analysis is the
estimation of variance V[P i`−P i`−1]. As it will become more clear in the next section,
this is related to the strong convergence results on approximations of SDEs, which
differentiates MLMC from standard MC, where we only require a weak error bound
for approximations of SDEs.

We will demonstrate that in fact the classical strong convergence may not be
necessary for a good MLMC variance. In (2) we have used the same estimator



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Multilevel Monte Carlo methods for applications in finance 7

for the payoff P` on every level `, and therefore (1) is a trivial identity due to the
telescoping summation. However, in [17] Giles demonstrated that it can be better to
use different estimators for the finer and coarser of the two levels being considered,
P f` when level ` is the finer level, and P c` when level ` is the coarser level. In this
case, we require that

E[P f` ] = E[P c` ] for ` = 1, . . . , L, (3)

so that

E[P fL ] = E[P f0 ] +
L∑
`=1

E[P f` − P
c
`−1].

The MLMC Theorem is still applicable to this modified estimator. The advantage is
that it gives the flexibility to construct approximations for which P f` −P c`−1 is much
smaller than the original P`−P`−1, giving a larger value for β, the rate of variance
convergence in condition iii) in the theorem. In the next sections we demonstrate
how suitable choices of P f` and P c` can dramatically increase the convergence of the
variance of the MLMC estimator.

The good choice of estimators, as we shall see, often follows from analysis of
the problem under consideration from the distributional point of view. We will
demonstrate that methods that had been used previously to improve the weak order
of convergence can also improve the order of convergence of the MLMC variance.

2.4. SDEs

First, we consider a general class of d-dimensional SDEs driven by Brownian motion.
These are the primary object of studies in mathematical finance. In subsequent
sections we demonstrate extensions of MLMC beyond the Brownian setting.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions, and let w(t) be a m-dimensional Brownian motion
defined on the probability space. We consider the numerical approximation of SDEs
of the form

dx(t) = f(x(t)) dt+ g(x(t)) dw(t), (4)

where x(t) ∈ Rd for each t ≥ 0, f ∈ C2(Rd,Rd), g ∈ C2(Rd,Rd×m), and for
simplicity we assume a fixed initial value x0 ∈ Rd. The most prominent example of
SDEs in finance is a geometric Brownian motion

dx(t) = αx(t) dt+ βx(t) dw(t),

where α, β > 0. Although, we can solve this equation explicitly it is still worth-
while to approximate its solution numerically in order to judge the performance
of the numerical procedure we wish to apply to more complex problems. Another
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interesting example is the famous Heston stochastic volatility model
ds(t) = rs(t) dt+ s(t)

√
v(t) dw1(t)

dv(t) = κ(θ − v(t)) dt+ σ
√
v(t) dw2(t)

dw1 dw2 = ρd t,

(5)

where r, κ, θ, σ > 0. In this case we do not know the explicit form of the solution
and therefore numerical integration is essential in order to price certain financial
derivatives using the Monte Carlo method. At this point we would like to point
out that the Heston model (5) does not satisfy standard conditions required for
numerical approximations to converge. Nevertheless, in this paper we always assume
that coefficients of SDEs (4) are sufficiently smooth. We refer to [32; 35; 44] for an
overview of the methods that can be applied when the global Lipschitz condition
does not hold. We also refer the reader to [33] for an application of MLMC to the
SDEs with additive fractional noise.

2.5. Euler and Milstein discretizations

The simplest approximation of SDEs (4) is an Euler-Maruyama (EM) scheme.
Given any step size ∆t`, we define the partition P∆t` := {n∆t` : n = 0, 1, 2, ..., 2`}
of the time interval [0, T ], 2`∆t = T > 0. The EM approximation X`

n ≈ x(n∆t`)

has the form [34]

X`
n+1 = X`

n + f(X`
n) ∆t` + g(X`

n) ∆w`n+1, (6)

where ∆w`n+1 = w((n+ 1)∆t`)−w(n∆t`) and X0 = x0. Equation (6) is written in
a vector form and its ith component reads as

X`
i,n+1 = X`

i,n + fi(X
`
n) ∆t` +

m∑
j=1

gij(X
`
n) ∆w`j,n+1.

In the classical Monte Carlo setting we are mainly interested in the weak approxi-
mation of SDEs (4). Given a smooth payoff P : Rd → R we say that X`

2` converges
to x(T ) in a weak sense with order α if

|E[P (x(T ))]− E[P (X`
T )]| = O(∆tα` ).

Rate α is required in condition (i) of Theorem 1. However, for MLMC condition
(iii) of Theorem 1 is crucial.We have

V` ≡ Var (P`−P`−1) ≤ E
[
(P`−P`−1)2

]
,

and

E
[
(P`−P`−1)2

]
≤ 2E

[
(P`−P )2

]
+ 2E

[
(P−P`−1)2

]
.

For Lipschitz continuous payoffs, (P (x)− P (y))2 ≤ L ‖x− y‖2, we then have

E
[
(P`−P )2

]
≤ LE

[∥∥x(T )−X`
T

∥∥2
]
.
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It is clear now, that in order to estimate the variance of the MLMC we need to
examine strong convergence property. The classical strong convergence on the finite
time interval [0, T ] is defined as(

E
[∥∥x(T )−X`

T

∥∥p])1/p

= O(∆tξ`), for p ≥ 2.

For the EM scheme ξ = 0.5. In order to deal with path dependent options we often
require measure the error in the supremum norm:(

E
[

sup
0≤n≤2`

∥∥x(n∆t`)−X`
n

∥∥p])1/p

= O(∆tξ) for p ≥ 2.

Even in the case of globally Lipschitz continuous payoff P , the EM does not achieve
β = 2ξ > 1 which is optimal in Theorem (1). In order to improve the convergence
of the MLMC variance the Milstein approximation Xn ≈ x(n∆t`) is considered,
with ith component of the form [34]

X`
i,n+1 =X`

i,n + fi(X
`
n) ∆t` +

m∑
j=1

gij(X
`
n) ∆w`j,n+1

+
m∑

j,k=1

hijk(X`
n)
(
∆w`j,n∆w`k,n − Ωjk ∆t` −A`jk,n

) (7)

where Ω is the correlation matrix for the driving Brownian paths, and A`jk,n is the
Lévy area defined as

A`jk,n =

(n+1)∆t`∫
n∆t`

( (wj(t)−wj(n∆t`)) dwk(t)− (wk(t)−wk(n∆t`)) dwj(t)) .

The rate of strong convergence ξ for the Milstein scheme is double the value we
have for the EM scheme and therefore the MLMC variance for Lipschitz payoffs
converges twice as fast. However, this gain does not come without a price. There is
no efficient method to simulate Lévy areas, apart from dimension 2 [14; 41; 45]. In
some applications, the diffusion coefficient g(x) satisfies a commutativity property
which gives

hijk(x) = hikj(x) for all i, j, k.

In that case, because the Lévy areas are anti-symmetric (i.e. Aljk,n = −Alkj,n), it
follows that hijk(X`

n)Aljk,n + hikj(X
`
n)Alkj,n = 0 and therefore the terms involving

the Lévy areas cancel and so it is not necessary to simulate them. However, this
only happens in special cases. Clark & Cameron [9] proved for a particular SDE
that it is impossible to achieve a better order of strong convergence than the Euler-
Maruyama discretisation when using just the discrete increments of the underlying
Brownian motion. The analysis was extended by Müller-Gronbach [38] to general
SDEs. As a consequence if we use the standard MLMC method with the Milstein
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scheme without simulating the Lévy areas the complexity will remain the same
as for Euler-Maruyama. Nevertheless, Giles and Szpruch showed in [22] that by
constructing a suitable antithetic estimator one can neglect the Lévy areas and still
obtain a multilevel correction estimator with a variance which decays at the same
rate as the scalar Milstein estimator.

2.6. MLMC algorithm

Here we explain how to implement the Monte Carlo algorithm. Let us recall that
the MLMC estimator Y is given by

Ŷ =
L∑
`=0

Y`.

We aim to minimize the computational cost necessary to achieve desirable accuracy
ε. As for standard Monte Carlo we have

E
[
(Y − E[P (X)])2

]
= E

[
(Y − E[Ŷ ])2

]
︸ ︷︷ ︸

Monte Carlo variance

+
(
E[PL]− E[P (X)])2

)︸ ︷︷ ︸
bias of the approximation

.

The variance is given by

V[Y ] =
L∑
`=0

V[Y`] =
L∑
`=0

1

N`
V`,

where V` = V[P`−P`−1]. To minimize the variance of Y for fixed computational cost
C =

∑L
`=0N`∆t

−1
` , we can treat N` as continuous variable and use the Lagrange

function to find the minimum of

L =
L∑
`=0

1

N`
V` + λ

(
L∑
`=0

N`∆t
−1
` − C

)
.

First order conditions shows that N` = λ−
1
2
√
V`∆t`, therefore

V[Y ] =
L∑
`=0

V`
N`

=
L∑
`=0

√
λ√

V`∆t`
V`.

Since we want V[Y ] ≤ ε2

2 we can show that

λ−
1
2 ≥ 2ε−2

L∑
`=0

√
V`/∆t`,

thus the optimal number of samples for level ` is

N` =

⌈
2ε−2

√
V`∆t`

L∑
`=0

√
V`/∆t`

⌉
. (8)
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Assuming O(∆t`) weak convergence, the bias of the overall method is equal c∆tL =

c T 2−L. If we want the bias to be proportional to ε√
2
we set

Lmax =
log (ε/(cT

√
2))−1

log 2
.

From here we can calculate the overall complexity. We can now outline the algorithm

(1) Begin with L=0;
(2) Calculate the initial estimate of VL using 100 samples.
(3) Determine optimal N` using (8).
(4) Generate additional samples as needed for new N`.
(5) if L < Lmax set L := L+ 1 and go to 2.

Most numerical tests suggests that Lmax is not optimal and we can substantially
improve MLMC by determining optimal L by looking at bias. For more details see
[18].

3. Pricing with MLMC

A key application of MLMC is to compute the expected payoff of financial options.
We have demonstrated that for globally Lipschitz European payoffs, convergence
of the MLMC variance is determined by the strong rate of convergence of the cor-
responding numerical scheme. However, in many financial applications payoffs are
not smooth or are path-dependent. The aim of this section is to overview results on
mean square convergence rates for Euler–Maruyama and Milstein approximations
with more complex payoffs. In the case of EM, the majority of payoffs encountered
in practice have been analyzed in Giles et al. [20]. Extension of this analysis to the
Milstein scheme is far from obvious. This is due to the fact that Milstein scheme
gives an improved rate of convergence on the grid points, but this is insufficient
for path dependent options. In many applications the behavior of the numerical
approximation between grid points is crucial. The analysis of Milstein scheme for
complex payoffs was carried out in [11]. To understand this problem better, we re-
call a few facts from the theory of strong convergence of numerical approximations.
We can define a piecewise linear interpolation of a numerical approximation within
the time interval [n∆t`, (n+ 1)∆t`) as

X`(t) = X`
n + λ`(X

`
n+1 −X`

n), for t ∈ [n∆t`, (n+ 1)∆t`) (9)

where λ` ≡ (t − n∆t`)/∆t`. Müller-Gronbach [37] has show that for the Milstein
scheme (9) we have

E
[

sup
0≤t≤T

∥∥x(t)−X`(t)
∥∥p] = O(| ∆t` log(∆t`) |p/2), p ≥ 2, (10)

that is the same as for the EM scheme. In order to maintain the strong order
of convergence we use Brownian Bridge interpolation rather than basic piecewise
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linear interpolation:

X̃`(t) = X`
n + λ` (X`

n+1−X`
n) + g(X`

n)
(
w(t)− w(n∆t`)− λ∆wln+1

)
, (11)

for t ∈ [n∆t`, (n + 1)∆t`). For the Milstein scheme interpolated with Brownian
bridges we have [37]

E
[

sup
0≤t≤T

∥∥∥x(t)− X̃`(t)
∥∥∥p] = O(| ∆t` log(∆t`) |p).

Clearly X̃`(t) is not implementable, since in order to construct it, the knowledge of
the whole trajectory (w(t))0≤t≤T is required. However, we will demonstrate that
combining X̃`(t) with conditional Monte Carlo techniques can dramatically improve
the convergence of the variance of the MLMC estimator. This is due to the fact that
for suitable MLMC estimators only distributional knowledge of certain functionals
of (w(t))0≤t≤T will be required.

3.1. Euler-Maruyama scheme

In this section we demonstrate how to approximate the most common payoffs using
the EM scheme (6).

The Asian option we consider has the payoff

P =

(
T−1

∫ T

0

x(t) dt−K

)+

.

Using the piecewise linear interpolation (9) one can obtain the following approxi-
mation

Pl ≡ T−1

∫ T

0

X`(t) dt = T−1
2`−1∑
n=0

1
2 ∆t` (X`

n+X`
n+1),

Lookback options have payoffs of the form

P = x(T )− inf
0≤t≤T

x(t).

A numerical approximation to this payoff is

P` ≡ X`
T − inf

0≤n≤2`
X`
n.

For both of these payoffs it can be proved that V` = O(∆t`) [20].
We now consider a digital option, which pays one unit if the asset at the final time

exceeds the fixed strike price K, and pays zero otherwise. Thus, the discontinuous
payoff function has the form

P = 1{x(T )>K},

with the corresponding EM value

P` ≡ 1{X`T>K}.
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Assuming boundedness of the density of the solution to (4) in the neighborhood of
the strike K, it has been proved in [20] that V` = O(∆t

1/2−δ
` ), for any δ > 0. This

result has been tightened by Avikainen [3] who proved that V` = O(∆t
1/2
` log ∆t`).

An up-and-out call gives a European payoff if the asset never exceeds the barrier,
B, otherwise it pays zero. So, for the exact solution we have

P = (x(T )−K)+1{sup0≤t≤T x(t)≤B},

and for the EM approximation

P` ≡ (X`
T −K)+1{sup

0≤n≤2`
X`n≤B}.

A down-and-in call knocks in when the minimum asset price dips below the barrier
B, so that

P = (x(T )−K)+1{inf0≤t≤T x(t)≤B},

and, accordingly,

Pl ≡ (X`
T −K)+1{inf

0≤n≤2`
X`n≤B}.

For both of these barrier options we have V` = O(∆t
1/2−δ
` ), for any δ > 0, assuming

that inf0≤t≤T x(t) and sup0≤t≤T x(t) have bounded density in the neighborhood of
B [20].

Table 1. Orders of convergence for V` as ob-
served numerically and proved analytically for
both Euler discretisations; δ can be any strictly
positive constant.

Euler
option numerical analysis
Lipschitz O(∆t`) O(∆t`)
Asian O(∆t`) O(∆t`)

lookback O(∆t`) O(∆t`)

barrier O(∆t
1/2
` ) O(∆t

1/2−δ
` )

digital O(∆t
1/2
` ) O(∆t

1/2
` log ∆t`)

As summarized in Table 1, numerical results taken form [17] suggest that all of
these results are near-optimal.

3.2. Milstein scheme

In the scalar case of SDEs (4) (that is with d = m = 1) the Milstein scheme has the
form

X`
n+1 = X`

n + f(X2l

n )∆t` + g(X`
n)∆w`n+1 + g

′
(X`

n)g(X`
n)((∆w`n+1)2 −∆t`), (12)

where g′ ≡ ∂g/∂x. The analysis of Lipschitz European payoffs and Asian options
with Milstein scheme is analogous to EM scheme and it has been proved in [11] that
in both these cases V` = O(∆t2`).
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3.2.1. Lookback options

For clarity of the exposition we will express the fine time-step approximation
in terms of the coarse time-step, that is P ′∆t` := {n∆t`−1 : n = 0, 1

2 , 1, 1 +
1
2 , 2, ..., 2

`−1}. The partition for the coarse approximation is given by P∆t`−1
:=

{n∆t`−1 : n = 0, 1, 2, ..., 2`−1}. Therefore, X`−1
n corresponds to X`

n for n =

0, 1, 2, ..., 2`−1.
For pricing lookback options with the EM scheme, as an approximation of the min-
imum of the process we have simply taken minnX

`
n. This approximation could be

improved by taking

X`
min = min

n

(
X`
n − β∗g(X`

n)∆t
1/2
`

)
.

Here β∗ ≈ 0.5826 is a constant which corrects the O(∆t
1/2
` ) leading order error

due to the discrete sampling of the path, and thereby restores O(∆t`) weak conver-
gence [6]. However, using this approximation, the difference between the computed
minimum values and the fine and coarse paths is O(∆t

1/2
` ), and hence the variance

V` is O(∆t`), corresponding to β= 1. In the previous section, this was acceptable
because β= 1 was the best that could be achieved in general with the Euler path
discretization which was used, but we now aim to achieve an improved convergence
rate using the Milstein scheme.

In order to improve the convergence, the Brownian Bridge interpolant X̃`(t)

defined in (11) is used. We have

min
0≤t<T

X̃`(t) = min
0≤n≤2`−1− 1

2

[
min

n∆tl−1≤t<(n+ 1
2 )∆tl−1

X̃`(t)
]

= min
0≤n≤2`−1− 1

2

X`
n,min,

where minimum of the fine approximation over the first half of the coarse time-step
is given by [24]

X`
n,min = 1

2

(
X`
n +X`

n+ 1
2
−
√(

X`
n+ 1

2

−X`
n

)2

− 2 g(X`
n)2 ∆tl logU `n

)
, (13)

and minimum of the fine approximation over the second half of the coarse time-step
is given by

X`
n+ 1

2 ,min
= 1

2

(
X`
n+ 1

2
+X`

n+1

−
√(

X`
n+1−X`

n+ 1
2

)2

− 2 g(X`
n+ 1

2

)2 ∆t` logU `
n+ 1

2

)
, (14)

where U `n, U `n+ 1
2

are uniform random variables on the unit interval. For the coarse
path, in order to improve the MLMC variance a slightly different estimator is used,
see (3). Using the same Brownian increments as we used on the fine path (to
guarantee that we stay on the same path), equation (11) is used to define X̃`−1

n+ 1
2

≡
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X̃`−1((n + 1
2 )∆t`−1). Given this interpolated value, the minimum value over the

interval [n∆t`−1, (n + 1)∆t`−1] can then be taken to be the smaller of the minima
for the two intervals [n∆t`−1, (n+ 1

2 )∆t`−1) and [(n+ 1
2 )∆t`−1, (n+ 1)∆t`−1),

X`−1
n,min = 1

2

(
X`−1
n + X̃`−1

n+ 1
2

−
√(

X̃`−1
n+ 1

2

−X`−1
n

)2

− 2 (g(X`−1
n ))2 ∆t`−1

2 logU `n

)
,

X`−1
n+ 1

2 ,min
= 1

2

(
X̃`−1
n+ 1

2

+X`−1
n+1

−
√(

X`−1
n+1−X̃

`−1
n+ 1

2

)2

− 2 (g(X`−1
n ))2 ∆t`−1

2 logU `
n+ 1

2 )

)
.

(15)

Note that g(X`−1
n ) is used for both time steps. It is because we used the Brow-

nian Bridge with diffusion term g(X`−1
n ) to derive both minima. If we changed

g(X`−1
n ) to g(X̃`−1

n+ 1
2

) in X`−1
n+ 1

2 ,min
, this would mean that different Brownian Bridges

were used on the first and second half of the coarse time-step and as a conse-
quence condition (3) would be violated. Note also the re-use of the same uniform
random numbers U `n and U `

n+ 1
2

used to compute the fine path minimum. The

min(X`−1
n,min, X

`−1
n+ 1

2 ,min
) has exactly the same distribution as X`−1

n,min, since they
are both based on the same Brownian interpolation, and therefore equality (3) is
satisfied. Giles et al. [11] proved the following Theorem:

Theorem 2. The multilevel approximation for a lookback option which is a uniform
Lipschitz function of x(T ) and inf [0,T ] x(t) has Vl = O(∆t2−δl ) for any δ>0.

3.3. Conditional Monte Carlo

Giles [17] and Giles et al. [11] have shown that combining conditional Monte Carlo
with MLMC results in superior estimators for various financial payoffs.

To obtain an improvement in the convergence of the MLMC variance barrier and
digital options, conditional Monte Carlo methods is employed. We briefly describe
it here. Our goal is to calculate E[P ]. Instead, we can write

E[P ] = E
[
E[P | Z]

]
,

where Z is a random vector. Hence E[P | Z] is an unbiased estimator of E[P ]. We
also have

Var [P ] = E
[
Var [P | Z]

]
+ Var

[
E[P | Z]

]
,

hence Var
[
E[P | Z]

]
≤ Var (P ). In the context of MLMC we obtain a better

variance convergence if we condition on different vectors on the fine and the coarse
level. That is on the fine level we take E[P f | Zf ], where Zf = {X`

n}0≤n≤2` .
On the coarse level instead of taking E[P c | Zc] with Zc = {X`−1

n }0≤n≤2`−1 , we
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take E[P c | Zc, Z̃c], where Z̃c = {X̃`−1
n+ 1

2

}0≤n≤2`−1 are obtained from equation (11).
Condition (3) trivially holds by tower property of conditional expectation

E [E[P c | Zc]] = E[P c] = E
[
E[P c | Zc, Z̃c]

]
.

3.4. Barrier options

The barrier option which is considered is a down-and-out option for which the
payoff is a Lipschitz function of the value of the underlying at maturity, provided
the underlying has never dropped below a value B ∈ R,

P = f(x(T )) 1{τ>T}.

The crossing time τ is defined as

τ = inf
t
{x(t) < B} .

This requires the simulation of (x(T ),1τ>T )). The simplest method sets

τ∆t` = inf
n
{X`

n < B}

and as an approximation takes (X`
2`−1 ,1{τ∆t`>2`−1}). But even if we could simulate

the process {x(n∆t`)}0≤n≤2`−1 it is possible for {x(t)}0≤t≤T to cross the barrier
between grid points. Using the Brownian Bridge interpolation we can approximate
1{τ>T} by

2`−1− 1
2∏

n=0

1{X`n,min≥B}.

This suggests following the lookback approximation in computing the minimum of
both the fine and coarse paths. However, the variance would be larger in this case
because the payoff is a discontinuous function of the minimum. A better treatment,
which is the one used in [16], is to use the conditional Monte Carlo approach to
further smooth the payoff. Since the process X`

n is Markovian we have

E
[
f(X`

2`−1)

2`−1− 1
2∏

n=0

1{X`n,min≥B}
]

= E
[
E
[
f(X`

2`−1)

2`−1− 1
2∏

n=0

1{X`n,min≥B} | X
`
0, . . . , X

`
2`−1

]]

= E
[
f(X`

2`−1)

2`−1− 1
2∏

n=0

E
[
1{X`n,min≥B} | X

`
n, X

`
n+1

]]

= E
[
f(X`

2`−1)

2`−1− 1
2∏

n=0

(1− p`n)

]
,
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where from [24]

p`n =P

(
inf

n∆t`≤t<(n+ 1
2 )∆t`

X̃(t) < B | X`
n, X

`
n+ 1

2

)

= exp

(
−2 (X`

n−B)+(X`
n+ 1

2

−B)+

g(X`
n)2 ∆t`

)
,

and

p`n+ 1
2

=P

(
inf

(n+ 1
2 )∆t`≤t<(n+1)∆t`

X̃(t) < B | X`
n+ 1

2
, X`

n+1

)

= exp

(
−2 (X`

n+ 1
2

−B)+(X`
n+1−B)+

g(X`
n+ 1

2

)2 ∆t`

)
.

Hence, for the fine path this gives

P f` = f(X`
2`−1)

2`−2− 1
2∏

n=0

(1− p`n), (16)

The payoff for the coarse path is defined similarly. However, in order to reduce the
variance, we subsample X̃`−1

n+ 1
2

, as we did for lookback options, from the Brownian

Bridge connecting X`−1
n and X`−1

n+1

E
[
f(X`−1

2`−1)
2`−1−1∏
n=0

1{X`−1
n,min≥B}

]
= E

[
E
[
f(X`−1

2`−1)
2`−1−1∏
n=0

1{X`−1
n,min≥B}

| X`−1
0 , X̃`−1

1
2

, . . . , X̃`−1
2`−1− 1

2

, X`−1
2`−1

]]

= E
[
f(X`−1

2`−1)
2`−1−1∏
n=0

E
[
1{X`−1

n,min≥B}
| X`−1

n , X̃`−1
n+ 1

2

, X`−1
n+1

]]

= E
[
f(X`−1

2`−1)
2`−1−1∏
n=0

(1− p`−1
1,n )(1− p`−1

2,n )

]
,

where

p`−1
1,n ==exp

−2 (X`−1
n −B)+(X̃`−1

n+ 1
2

−B)+

g(X`−1
n )2 ∆t`

 ,

and

p`−1
2,n ==exp

−2 (X̃`−1
n+ 1

2

−B)+(X`−1
n+1−B)+

g(X`−1
n )2 ∆tl

 .
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Note that the same g(X�−1
n ) is used (rather than using g(X̃�−1

n+ 1
2

) in p�−1
2,n ) to calculate

both probabilities for the same reason as we did for lookback options. The final
estimator can be written as

P c�−1 = f(X�−1
2�−1)

2�−1−1∏
n=0

(1− p�−1
1,n )(1− p�−1

2,n ). (17)

Giles et al. [11] proved the following theorem

Theorem 3. Provided inf [0,T ] |g(B)| > 0, and inf [0,T ] x(t) has a bounded density in
the neighbourhood of B, then the multilevel estimator for a down-and-out barrier
option has variance V� = O(Δt

3/2−δ
� ) for any δ>0.

The reason the variance is approximately O(Δt
3/2−δ
� ) instead of O(Δt2� ) is the

following: due to the strong convergence property the probability of the numerical
approximation being outside Δt1−δ� -neighborhood of the solution to the SDE (4) is
arbitrary small, that is for any ε > 0

P

(
sup

0≤nΔt�≤T

∥∥x(nΔt�)−X�
n

∥∥ ≥ Δt1−ε�

)
≤ Δt−p+pε� E

[
sup

0≤nΔt�≤T

∥∥x(nΔt�)−X�
n

∥∥p] = O(Δpε
� ).

(18)

If inf [0,T ] x(t) is outside the Δt
1/2
� -neighborhood of the barrier B then by (18) it

is shown that so are numerical approximations. The probabilities of crossing the
barrier in that case are asymptotically either 0 or 1 and essentially we are in the
Lipschitz payoff case. If the inf [0,T ] x(t) is within the Δt

1/2
� -neighborhood of the

barrier B then so are the numerical approximations. In that case it can be shown
that E[(P f� − P c�−1)

2] = O(Δt1−δ) but due to the bounded density assumption,
the probability that inf [0,T ] x(t) is within Δt

1/2
� -neighborhood of the barrier B is

of order Δt
1/2−δ
� . Therefore the overall MLMC variance is V� = O(Δ

3/2−δ
� ) for any

δ>0.

3.5. Digital options

A digital option has a payoff which is a discontinuous function of the value of the
underlying asset at maturity, the simplest example being

P = 1{x(T )>B}.

Approximating 1{x(T )>B} based only on simulations of x(T ) by Milstein scheme will
lead to an O(Δt�) fraction of the paths having coarse and fine path approximations
to x(T ) on either side of the strike, producing P� − P�−1 = ±1, resulting in V� =

O(Δt�). To improve the variance to O(Δt
3/2−δ
� ) for all δ>0, the conditional Monte

Carlo method is used to smooth the payoff (see section 7.2.3 in [24]). This approach
was proved to be successful in Giles et al. [11] and was tested numerically in [16],
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If X`
2`−1− 1

2

denotes the value of the fine path approximation one time-step before
maturity, then the motion thereafter is approximated as Brownian motion with
constant drift f(X`

2`−1− 1
2

) and volatility g(X`
2`−1− 1

2

). The conditional expectation

for the payoff is the probability that X`
2`−1>B after one further time-step, which is

P f` = E
[
1{X`

2`−1>B}
| X`

2`−1− 1
2

]
= Φ

(
X`

2`−1− 1
2

+f(X`
2`−1− 1

2

)∆t` −B

| g(X`
2`−1− 1

2

) |
√

∆t`

)
, (19)

where Φ is the cumulative Normal distribution.
For the coarse path, we note that given the Brownian increment ∆w`−1

2`−1− 1
2

for
the first half of the last coarse time-step (which comes from the fine path simulation),
the probability that X`

2`−1>B is

P c`−1 =E
[
1{X`−1

2`−1>B}
| X`−1

2`−1−1
,∆w`−1

2`−1− 1
2

]
=Φ

X2`−1

2`−1−1+f(X`−1
2`−1−1

)∆t`−1+g(X`−1
2`−1−1

)∆w`−1
2`−1− 1

2

−B

| g(X2`−1

2`−1−1
) |
√

∆t`

 .
(20)

The conditional expectation of (20) is equal to the conditional expectation of P f`−1

defined by (19) on level `−`, and so equality (3) is satisfied. A bound on the variance
of the multilevel estimator is given by the following result:

Theorem 4. Provided g(B) 6= 0, and x(t) has a bounded density in the neigh-
bourhood of B, then the multilevel estimator for a digital option has variance
Vl = O(∆t

3/2−δ
l ) for any δ>0.

Results of the above section were tested numerically in [17] and are summarized in
the table 2.

Table 2. Orders of convergence for Vl as
observed numerically and proved analyti-
cally for Milstein discretizations; δ can be
any strictly positive constant.

Milstein
option numerical analysis
Lipschitz O(Dt2l ) O(Dt2l )

Asian O(Dt2l ) O(Dt2l )

lookback O(Dt2l ) O(Dt2−δl )

barrier O(Dt
3/2
l ) O(Dt

3/2−δ
l )

digital O(Dt
3/2
l ) O(Dt

3/2−δ
l )

4. Greeks with MLMC

Accurate calculation of prices is only one objective of Monte Carlo simulations.
Even more important in some ways is the calculation of the sensitivities of the
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prices to various input parameters. These sensitivities, known collectively as the
“Greeks”, are important for risk analysis and mitigation through hedging.

Here we follow the results by Burgos at al. [8] to present how MLMC can ap-
plied in this setting. The pathwise sensitivity approach (also known as Infinitesimal
Perturbation Analysis) is one of the standard techniques for computing these sen-
sitivities [24]. However, the pathwise approach is not applicable when the financial
payoff function is discontinuous. One solution to these problems is to use the Likeli-
hood Ratio Method (LRM) but its weaknesses are that the variance of the resulting
estimator is usually O(∆t−1

l ).
Three techniques are presented that improve MLMC variance: payoff smoothing

using conditional expectations [24]; an approximation of the above technique using
path splitting for the final timestep [2]; the use of a hybrid combination of pathwise
sensitivity and the Likelihood Ratio Method [19]. We discuss the strengths and
weaknesses of these alternatives in different multilevel Monte Carlo settings.

4.1. Monte Carlo Greeks

Consider the approximate solution of the general SDE (4) using Euler discretization
(6). The Brownian increments can be defined to be a linear transformation of a
vector of independent unit Normal random variables Z.

The goal is to efficiently estimate the expected value of some financial payoff
function P (x(T )), and numerous first order sensitivities of this value with respect
to different input parameters such as the volatility or one component of the initial
data x(0). In more general cases P might also depend on the values of process
{x(t)}0≤t≤T at intermediate times.

The pathwise sensitivity approach can be viewed as starting with the expectation
expressed as an integral with respect to Z:

V` ≡ E
[
P (X`

n(Z, θ))
]

=

∫
P (X`

n(Z, θ)) pZ(Z) dZ. (21)

Here θ represents a generic input parameter, and the probability density function
for Z is

pZ(Z) = (2π)−d/2 exp
(
−‖Z‖22/2

)
,

where d is the dimension of the vector Z.
Let X`

n = X`
n(Z, θ). If the drift, volatility and payoff functions are all differen-

tiable, (21) may be differentiated to give

∂V`
∂θ

=

∫
∂P (X`

n)

∂X`
n

∂X`
n

∂θ
pZ(Z) ∆Z, (22)
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with
∂X`

n

∂θ
being obtained by differentiating (6) to obtain

∂X`
n+1

∂θ
=
∂X`

n

∂θ
+

(
∂f(X`

n, θ)

∂X`
n

∂X`
n

∂θ
+
∂f(X`

n, θ)

∂θ

)
∆tl

+

(
∂g(X`

n, θ)

∂X`
n

∂X`
n

∂θ
+
∂g(X`

n, θ)

∂θ

)
∆wln+1.

(23)

We assume that Z → ∆wln+1 mapping does not depend on θ. It can be proved that
(22) remains valid (that is we can interchange integration and differentiation) when
the payoff function is continuous and piecewise differentiable, and the numerical
estimate obtained by standard Monte Carlo with M independent path simulations

M−1
M∑
m=1

∂P (X`,m
n )

∂X`
n

∂X`,m
n

∂θ

is an unbiased estimate for ∂V/∂θ with a variance which is O(M−1), if P (x) is
Lipschitz and the drift and volatility functions satisfy the standard conditions [34].

Performing a change of variables, the expectation can also be expressed as

Vl ≡ E
[
P (X`

n)
]

=

∫
P (x) pX`n(x, θ)dx, (24)

where pX`n(x, θ) is the probability density function for X`
n which will depend on all

of the inputs parameters. Since probability density functions are usually smooth,
(24) can be differentiated to give

∂V`
∂θ

=

∫
P (x)

∂pX`n
∂θ

dx =

∫
P (x)

∂(log pX`n)

∂θ
pX`n dx

= E
[
P (x)

∂(log pX`n)

∂θ

]
.

which can be estimated using the unbiased Monte Carlo estimator

M−1
M∑
m=1

P (X`,m
n )

∂ log pX`n(X`,m
n )

∂θ

This is the Likelihood Ratio Method. Its great advantage is that it does not require
the differentiation of P (X`

n). This makes it applicable to cases in which the payoff
is discontinuous, and it also simplifies the practical implementation because banks
often have complicated flexible procedures through which traders specify payoffs.
However, it does have a number of limitations, one being a requirement of absolute
continuity which is not satisfied in a few important applications such as the LIBOR
market model [24].
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4.2. Multilevel Monte Carlo Greeks

The MLMC method for calculating Greeks can be written as

∂V

∂θ
=
∂E(P )

∂θ
≈ ∂E(PL)

∂θ
=
∂E(P0)

∂θ
+

L∑
`=1

∂E(P f` − P c`−1)

∂θ
. (25)

Therefore extending Monte Carlo Greeks to MLMC Greeks is straightforward. How-
ever, the challenge is to keep the MLMC variance small. This can be achieved by
appropriate smoothing of the payoff function. The techniques that were presented
in section 3.2 are also very useful here.

4.3. European call

As an example we consider an European call P = (x(T ) − B)+ with x(t) being a
geometric Brownian motion with Milstein scheme approximation given by

X`
n+1 = X`

n + r X`
n∆t` + σX`

n∆w`n+1 +
σ2

2
((∆w`n+1)2 −∆t`). (26)

We illustrate the techniques by computing delta (δ) and vega (ν), the sensitivities
to the asset’s initial value x(0) and to its volatility σ.

Since the payoff is Lipschitz, we can use pathwise sensitivities. We observe that

∂

∂x
(x−B)+ =

{
0, for x < B

1, for x > B

This derivative fails to exists when x = B, but since this event has probability 0,
we may write

∂

∂x
(x−K)+ = 1{X>B}.

Therefore we are essentially dealing with a digital option.

4.4. Conditional Monte Carlo for Pathwise Sensitivity

Using conditional expectation the payoff can be smooth as we did it in Section 3.2.
European calls can be treated in the exactly the same way as Digital option in Sec-
tion 3.2, that is instead of simulating the whole path, we stop at the penultimate step
and then on the last step we consider the full distribution of (X`

2l | w
l
0, . . . , w

l
2l−1).

For digital options this approach leads to (19) and (20). For the call options we
can do analogous calculations. In [8] numerical results for this approach obtained,
with scalar Milstein scheme used to obtain the penultimate step. They results are
presented in Table 3. For lookback options conditional expectations leads to (13)
and (15) and for barriers to (16) and (17). Burgos et al [8], applied pathwise sen-
sitivity to these smoothed payoffs, with scalar Milstein scheme used to obtain the
penultimate step, and obtained numerical results that we present in Table 4.
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Table 3. Orders of convergence for V` as observed numerically and correspond-
ing MLMC complexity.

Call Digital
Estimator β MLMC Complexity β MLMC Complexity

Value ≈ 2.0 O(ε−2) ≈ 1.4 O(ε−2)

Delta ≈ 1.5 O(ε−2) ≈ 0.5 O(ε−2.5)

Vega ≈ 2 O(ε−2) ≈ 0.6 O(ε−2.4)

Table 4. Orders of convergence for V` as observed numerically and corre-
sponding MLMC complexity.

Lookback Barrier
Estimator β MLMC Complexity β MLMC Complexity

Value ≈ 1.9 O(ε−2) ≈ 1.6 O(ε−2)

Delta ≈ 1.9 O(ε−2) ≈ 0.6 O(ε−2.4)

Vega ≈ 1.3 O(ε−2) ≈ 0.6 O(ε−2.4)

4.5. Split pathwise sensitivities

There are two difficulties in using conditional expectation to smooth payoffs in
practice in financial applications. This first is that conditional expectation will
often become a multi-dimensional integral without an obvious closed-form value,
and the second is that it requires a change to the often complex software framework
used to specify payoffs. As a remedy for these problems the splitting technique to
approximate E

[
P (X`

2l) | X
`
2`−1

]
and E

[
P (X`−1

2`−1) | X`−1
2`−1−1

,∆w`2`−2

]
, is used. We

get numerical estimates of these values by “splitting" every simulated path on the
final timestep. At the fine level: for every simulated path, a set of s final increments
{∆w`,i

2`
}i∈[1,s] is simulated, which can be averaged to get

E
[
P (X`

2`) | X
`
2`−1

]
≈ 1

s

s∑
i=1

P (X`
2`−1 ,∆w

`,i
2`

) (27)

At the coarse level, similar to the case of digital options, the fine increment of the
Brownian motion over the first half of the coarse timestep is used,

E
[
P (X`−1

2`−1) | X`−1
2`−1−1

,∆w`2`−2

]
≈ 1

s

s∑
i=1

P (X`−1
2`−1−1

,∆w`2`−2,∆w
`−1,i
2`−1 ) (28)

This approach was tested in [8], with scalar the Milstein scheme used to obtain the
penultimate step, and is presented in Table 5. As expected the values of β tend to
the rates offered by conditional expectations as s increases and the approximation
gets more precise.

4.6. Optimal number of samples

The use of multiple samples to estimate the value of the conditional expectations
is an example of the splitting technique [2]. If w and z are independent random
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Table 5. Orders of convergence for V` as observed
numerically and the corresponding MLMC complex-
ity.

Estimator s β MLMC Complexity
Value 10 ≈ 2.0 O(ε−2)

500 ≈ 2.0 O(ε−2)

Delta 10 ≈ 1.0 O(ε−2(log ε)2)

500 ≈ 1.5 O(ε−2)

Vega 10 ≈ 1.6 O(ε−2)
500 ≈ 2.0 O(ε−2)

variables, then for any function P (w, z) the estimator

YM,S = M−1
M∑
m=1

(
S−1

S∑
i=1

P (wm, z(m,i))

)
with independent samples wm and zm,i is an unbiased estimator for

Ew,z [P (w, z)] ≡ Ew
[
Ez[P (w, z) |w]

]
,

and its variance is

V[YM,S ] = M−1 Vw
[
Ez[P (w, z) |w]

]
+ (MS)−1 Ew

[
Vz[P (w, z) |w]

]
.

The cost of computing YM,S with variance v1M
−1 + v2 (MS)−1 is proportional to

c1M + c2MS,

with c1 corresponding to the path calculation and c2 corresponding to the pay-
off evaluation. For a fixed computational cost, the variance can be minimized by
minimizing the product(

v1+v2 s
−1
)

(c1+c2 s) = v1 c2 s+ v1 c1 + v2 c2 + v2 c1 s
−1,

which gives the optimum value sopt =
√
v2 c1/v1 c2.

c1 is O(∆t−1
` ) since the cost is proportional to the number of timesteps, and c2

is O(1), independent of ∆t`. If the payoff is Lipschitz, then v1 and v2 are both O(1)

and Sopt=O(∆t
−1/2
` ).

4.7. Vibrato Monte Carlo

The idea of vibrato Monte Carlo is to combine pathwise sensitivity and Like-
lihood Ration Method. Adopting the conditional expectation approach, each
path simulation for a particular set of Brownian motion increments w` ≡
(∆w`1,∆w

`
2, . . . ,∆w

`
2`−1) (excluding the increment for the final timestep) computes

a conditional Gaussian probability distribution pX(X`
2` |w

`). For a scalar SDE, if
µw` and σw` are the mean and standard deviation for given w`, then

X`
2l(w

`, Z) = µw` + σw`Z,
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where Z is a unit Normal random variable. The expected payoff can then be ex-
pressed as

V` = E
[
E [P (X`

2`) |w
`]
]

=

∫ {∫
P (x) pX`

2`
(x |w`) dx

}
pw`(y) dy.

The outer expectation is an average over the discrete Brownian motion increments,
while the inner conditional expectation is averaging over Z.

To compute the sensitivity to the input parameter θ, the first step is to apply
the pathwise sensitivity approach for fixed wl to obtain ∂µwl/∂θ, ∂σwl/∂θ.We then
apply LRM to the inner conditional expectation to get

∂V`
∂θ

= E
[
∂

∂θ
E
[
P (X`

2`) |w
`
]]

= E

[
EZ

[
P (X`

2`)
∂(log pX`

2`
)

∂θ
| w`

] ]
,

where

∂(log pX`
2`

)

∂θ
=
∂(log pX`

2`
)

∂µw`

∂µw`

∂θ
+
∂(log pX`

2`
)

∂σw`

∂σw`

∂θ
.

This leads to the estimator

∂V`
∂θ
≈ 1

N`

N∑̀
m=1

(
∂µw`,m

∂θ
E

[
P
(
X`

2`

) ∂(log pX`
2`

)

∂µw`
|w`,m

]

+
∂σŵ`,m

∂θ
E

[
P
(
X`

2`

) ∂(log pX`
2`

)

∂σw`
|w`,m

]
) (29)

We compute
∂µw`,m

∂θ
and

∂σw`,m

∂θ
with pathwise sensitivities. With X`,m,i

2l
=

X`
2`(w

`,m, Zi), we substitute the following estimators into (29)


E

P (X`
2`

) ∂(log p
X`

2`
)

∂µ
w`

|w`,m
 ≈ 1

s

s∑
i=1

P (X`,m,i
2`

) X2`,m,i

2`
− µ

w`,m

σ2

w`,m


E

P (X`
2`

) ∂(log p
X`

2`
)

∂σ
w`

|ŵ`,m
 ≈ 1

s

s∑
i=1

P
(
X
`,m,i

2`

)− 1

σ
w`,m

+

(
X`,m,i

2`
− µ

w`,m

)2

σ3

w`,m


In a multilevel setting, at the fine level we can use (29) directly. At the coarse

level, as for digital options in section 3.5, the fine Brownian increments over the
first half of the coarse timestep are re-used to derive (29).

The numerical experiments for the call option with s = 10 was obtained [8],
with scalar Milstein scheme used to obtain the penultimate step.

Estimator β MLMC Complexity
Value ≈ 2.0 O(ε−2)

Delta ≈ 1.5 O(ε−2)

Vega ≈ 2.0 O(ε−2)
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Although the discussion so far has considered an option based on the value of
a single underlying value at the terminal time T , it can be shown that the idea
extends very naturally to multidimensional cases, producing a conditional multi-
variate Gaussian distribution, and also to financial payoffs which are dependent on
values at intermediate times.

5. MLMC for Jump-diffusion processes

Giles and Xia in [47] investigated the extension of the MLMC method to jump-
diffusion SDEs. We consider models with finite rate activity using a jump-adapted
discretization in which the jump times are computed and added to the standard
uniform discretization times. If the Poisson jump rate is constant, the jump times
are the same on both paths and the multilevel extension is relatively straightforward,
but the implementation is more complex in the case of state-dependent jump rates
for which the jump times naturally differ.

Merton [36] proposed a jump-diffusion process, in which the asset price follows
a jump-diffusion SDE:

dx(t) = f(x(t−)) ∆t+ g(x(t−)) ∆w(t) + c(x(t−)) ∆J(t), 0 ≤ t ≤ T, (30)

where the jump term J(t) is a compound Poisson process
∑N(t)
i=1 (Yi − 1), the jump

magnitude Yi has a prescribed distribution, and N(t) is a Poisson process with
intensity λ, independent of the Brownian motion. Due to the existence of jumps,
the process is a càdlàg process, i.e. having right continuity with left limits. We note
that x(t−) denotes the left limit of the process while x(t) = lims→t+ x(t). In [36],
Merton also assumed that log Yi has a normal distribution.

5.1. A Jump-adapted Milstein discretization

To simulate finite activity jump-diffusion processes, Giles and Xia [47] used the
jump-adapted approximation from Platen and Bruti-Liberat [40]. For each path
simulation, the set of jump times J = {τ1, τ2, . . . , τm} within the time interval [0, T ]

is added to a uniform partition P∆tl := {n∆tl : n = 0, 1, 2, ..., 2l}. A combined set
of discretization times is then given by T = {0 = t0 < t1 < t2 < . . . < tM = T} and
we define a the length of the timestep as ∆tnl = tn+1 − tn. Clearly, ∆tnl ≤ ∆tl.

Within each timestep the scalar Milstein discretization is used to approximate
the SDE (30), and then the jump is simulated when the simulation time is equal to
one of the jump times. This gives the following numerical method:

X`,−
n+1 = X`

n + f(X`
n) ∆tn` + g(X`

n) ∆w`n+1

+ 1
2 g
′
(X`

n) g(X`
n) (∆(w`n)2 −∆tn` ),

X`
n+1 =

{
X`,−
n+1 + c(X`,−

n+1)(Yi − 1), when tn+1 = τi;

X`,−
n+1, otherwise,

(31)
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where X`,−
n = X`

tn− is the left limit of the approximated path, ∆w`n is the Brownian
increment and Yi is the jump magnitude at τi.

5.1.1. Multilevel Monte Carlo for constant jump rate

In the case of the jump-adapted discretization the telescopic sum (1) is written
down with respect to ∆t` rather than to ∆tn` . Therefore, we have to define the
computational complexity as the expected computational cost since different paths
may have different numbers of jumps. However, the expected number of jumps is
finite and therefore the cost bound in assumption iv) will still remain valid for an
appropriate choice of the constant c3.

The MLMC approach for a constant jump rate is straightforward. The jump
times τj , which are the same for the coarse and fine paths, are simulated by setting
τj − τj−1 ∼ exp(λ).

Pricing European call and Asian options in this setting is straightforward. For
lookback, barrier and digital options we need to consider Brownian bridge inter-
polations as we did in Section 3.2. However, due to presence of jumps some small
modifications are required. To improve convergence we will be looking at Brown-
ian bridges between time-steps coming from jump-adapted discretization. In order
to obtain an interpolated value X̃2`−1

n+ 1
2

for the coarse time-step a Brownian Bridge

interpolation over interval [kn, k̂n] is considered, where

kn = max {n∆tn`−1,max {τ ∈ J : τ < (n+ 1
2 )∆tn`−1}}

k̂n = min {(n+ 1)∆tn`−1,min {τ ∈ J : τ > (n+ 1
2 )∆tn`−1}}.

(32)

Hence

X̃`−1
n+ 1

2

= X`−1
kn

+ λ`−1 (X`−1

k̂n
−X`−1

kn
)

+ g(X`−1
kn

)
(
w`((n+ 1

2 )∆t`−1)− w`(kn)− λ`−1 (w`(k̂n)− w`(kn))
)

where λ`−1 ≡ ((n+ 1
2 )∆tn`−1 − kn)/(k̂n − kn).

In the same way as in Section 3.2, the minima over time-adapted discretization
can be derived. For the fine time-step we have

X`
n,min = 1

2

(
X`
n +X`,−

n+ 1
2

−
√(

X`,−
n+ 1

2

−X`
n

)2

− 2 g(X`
n)2 ∆tn` logU `n

)
.

Notice the use of the left limits X`,−. Following discussion in the previous sections,
the minima for the coarse time-step can be derived using interpolated value X̃`−1

n+ 1
2

.
Deriving the payoffs for lookback and barrier option is now straightforward.

For digital options, due to jump-adapted time grid, in order to find conditional
expectations, we need to look at relations between the last jump time and the last
timestep before expiry. In fact, there are three cases:
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(1) The last jump time τ happens before penultimate fixed-time timestep, i.e.
τ < (2l−1 − 2)∆tl.

(2) The last jump time is within the last fixed-time timestep ,
i.e. τ > (2l−1 − 1)∆tl;

(3) The last jump time is within the penultimate fixed-time timestep,
i.e. (2l−1 − 1)∆tl > τ > (2l−1 − 2)∆tl.

With this in mind we can easily write down the payoffs for the coarse and fine
approximations as we presented in Section 3.5.

5.1.2. MLMC for Path-dependent rates

In the case of a path-dependent jump rate λ(x(t)), the implementation of the mul-
tilevel method becomes more difficult because the coarse and fine path approxima-
tions may have jumps at different times. These differences could lead to a large
difference between the coarse and fine path payoffs, and hence greatly increase the
variance of the multilevel correction. To avoid this, Giles and Xia [47] modified
the simulation approach of Glasserman and Merener [26] which uses “thinning” to
treat the case in which λ(x(t), t) is bounded. Let us recall the thinning property of
Poisson processes. Let (Nt)t≥0 be a Poisson process with intensity λ and define a
new process Zt by "thinning“ Nt: take all the jump times (τn, n ≥ 1) correspond-
ing to N , keep then with probability 0 < p < 1 or delete then with probability
1 − p, independently from each other. Now order the jump times that have not
been deleted: (τ

′

n, n ≥ 1), and define

Zt =
∑
n≥1

1t≥τ ′n .

Then the process Z is Poisson process with intensity pλ.
In our setting, first a Poisson process with a constant rate λsup (which is an

upper bound of the state-dependent rate) is constructed. This gives a set of candi-
date jump times, and these are then selected as true jump times with probability
λ(x(t), t)/λsup. The following jump-adapted thinning Milstein scheme is obtained

(1) Generate the jump-adapted time grid for a Poisson process with constant
rate λsup;

(2) Simulate each timestep using the Milstein discretization;
(3) When the endpoint tn+1 is a candidate jump time, generate a uniform

random number U ∼ [0, 1], and if U < ptn+1
=

λ(x(tn+1−), tn+1)

λsup
, then

accept tn+1 as a real jump time and simulate the jump.

In the multilevel implementation, the straightforward application of the above
algorithm will result in different acceptance probabilities for fine and coarse level.
There may be some samples in which a jump candidate is accepted for the fine path,
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but not for the coarse path, or vice versa. Because of the first order strong con-
vergence, the difference in acceptance probabilities will be O(∆t`), and hence there
is an O(∆t`) probability of coarse and fine paths differing in accepting candidate
jumps. Such differences will give an O(1) difference in the payoff value, and hence
the multilevel variance will be O(h). A more detailed analysis of this is given in
[46].

To improve the variance convergence rate, a change of measure is used so that
the acceptance probability is the same for both fine and coarse paths. This is
achieved by taking the expectation with respect to a new measure Q:

EP [P f` − P
c
`−1] = EQ[P f`

∏
τ

Rfτ − P c`−1

∏
τ

Rcτ ]

where τ are the jump times. The acceptance probability for a candidate jump
under the measure Q is defined to be 1

2 for both coarse and fine paths, instead of
pτ = λ(X(τ−), τ) / λsup. The corresponding Radon-Nikodym derivatives are

Rfτ =


2pfτ , if U <

1

2
;

2(1− pfτ ), if U ≥ 1

2
,

Rcτ =


2pcτ , if U <

1

2
;

2(1− pcτ ), if U ≥ 1

2
,

Since V[Rfτ−Rcτ ] = O(∆t2) and V[P̂`−P̂`−1] = O(∆t2), this results in the multilevel
correction variance VQ[P̂`

∏
τ R

f
τ − P̂`−1

∏
τ R

c
τ ] being O(∆t2).

If the analytic formulation is expressed using the same thinning and change of
measure, the weak error can be decomposed into two terms as follows:

EQ

[
P̂`
∏
τ

Rfτ − P
∏
τ

Rτ

]
= EQ

[
(P̂` − P )

∏
τ

Rfτ

]

+ EQ

[
P (
∏
τ

Rfτ −
∏
τ

Rτ )

]
.

Using Hölder’s inequality, the bound max(Rτ , R
f
τ ) ≤ 2 and standard results for

a Poisson process, the first term can be bounded using weak convergence results
for the constant rate process, and the second term can be bounded using the cor-
responding strong convergence results [46]. This guarantees that the multilevel
procedure does converge to the correct value.

5.2. Lévy processes

Dereich and Heidenreich [13] analysed approximation methods for both finite and in-
finite activity Lévy driven SDEs with globally Lipschitz payoffs. They have derived
upper bounds for MLMC variance for the class of path dependent payoffs that are
Lipschitz continuous with respect to supremum norm. One of their main findings is
that the rate of MLMC variance converges is closely related to Blumenthal-Getoor
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index of the driving Lévy process that measures the frequency of small jumps. In
[13] authors considered SDEs driven by the Lévy process

s(t) = Σw(t) + L(t) + b t,

where Σ is the diffusion coefficient, L(t) is a compensated jump process and b is
a drift coefficient. The simplest treatment is to neglect all the jumps with size
smaller than h. To construct MLMC they took h`, that is at level ` they neglected
jumps smaller than h`. Then similarly as in the previous section, a uniform time
discretization ∆t` augmented with jump times is used. Let us denote by ∆L(t) =

L(t)− L(t)−, the jump-discontinuity at time t. The crucial observation is that for
h
′
> h > 0 the jumps of the process Lh

′

can be obtained from those of Lh by

∆L(t)h
′

= ∆Lht 1{|∆L(t)h|>h′},

this gives the necessary coupling to obtain a good MLMC variance. We define a
decreasing and invertible function g : (0,∞)→ (0,∞) such that∫

| x |2

h2
∧ 1ν(dx) ≤ g(h) for all h > 0,

where ν is a Lévy measure, and for ` ∈ N we define

∆t` = 2−` and h` = g−1(2`).

With this choice of ∆t` and h`, authors in [13] analysed the standard Euler-
Maruyama scheme for Lévy driven SDEs. This approach gives good results for a
Blumenthal-Getoor index smaller than one. For a Blumenthal-Getoor index bigger
than one, Gaussian approximation of small jumps gives better results [12].

6. Multi-dimensional Milstein scheme

In the previous sections it was shown that by combining a numerical approximation
with the strong order of convergence O(∆t`) with MLMC results in reduction of
the computational complexity to estimate expected values of functionals of SDE
solutions with a root-mean-square error of ε from O(ε−3) to O(ε−2). However,
in general, to obtain a rate of strong convergence higher than O(∆t1/2) requires
simulation, or approximation, of Lévy areas. Giles and Szpruch in [22] through the
construction of a suitable antithetic multilevel correction estimator, showed that
we can avoid the simulation of Lévy areas and still achieve an O(∆t2) variance for
smooth payoffs, and almost an O(∆t3/2) variance for piecewise smooth payoffs, even
though there is only O(∆t1/2) strong convergence.

In the previous sections we have shown that it can be better to use different
estimators for the finer and coarser of the two levels being considered, P f` when
level ` is the finer level, and P c` when level ` is the coarser level. In this case, we
required that

E[P f` ] = E[P c` ] for ` = 1, . . . , L, (33)
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so that

E[P fL ] = E[P f0 ] +
L∑
`=1

E[P f` − P
c
`−1],

still holds. For lookback, barrier and digital options we showed that we can obtain
a better MLMC variance by suitable modifying the estimator on the coarse levels.
By further exploiting the flexibility of MLMC, Giles and Szpruch [22] modified the
estimator on the fine levels in order to avoid simulation of the Lévy areas.

6.1. Antithetic MLMC estimator

Based on the well-known method of antithetic variates (see for example [24]), the
idea for the antithetic estimator is to exploit the flexibility of the more general
MLMC estimator by defining P c`−1 to be the usual payoff P (Xc) coming from a
level `−1 coarse simulation Xc, and defining P f` to be the average of the payoffs
P (Xf ), P (Xa) coming from an antithetic pair of level ` simulations, Xf and Xa.

Xf will be defined in a way which corresponds naturally to the construction
of Xc. Its antithetic “twin” Xa will be defined so that it has exactly the same
distribution as Xf , conditional on Xc, which ensures that E[P (Xf )] = E[P (Xa)]

and hence (3) is satisfied, but at the same time(
Xf −Xc

)
≈ − (Xa −Xc)

and therefore (
P (Xf )− P (Xc)

)
≈ − (P (Xa)− P (Xc)) ,

so that 1
2

(
P (Xf ) + P (Xa)

)
≈ P (Xc). This leads to 1

2

(
P (Xf ) + P (Xa)

)
− P (Xc)

having a much smaller variance than the standard estimator P (Xf )− P (Xc).
We now present a lemma which gives an upper bound on the convergence of the

variance of 1
2

(
P (Xf ) + P (Xa)

)
− P (Xc).

Lemma 1. If P ∈ C2(Rd,R) and there exist constants L1, L2 such that for all
x ∈ Rd ∥∥∥∥∂P∂x

∥∥∥∥ ≤ L1,

∥∥∥∥∂2P

∂x2

∥∥∥∥ ≤ L2.

then for p ≥ 2,

E
[(

1
2 (P (Xf ) + P (Xa))− P (Xc)

)p]
≤ 2p−1 Lp1 E

[∥∥ 1
2 (Xf+Xa)−Xc

∥∥p] + 2−(p+1) Lp2 E
[∥∥Xf −Xa

∥∥2p
]
.

In the multidimensional SDE applications considered in finance, the Milstein
approximation with the Lévy areas set to zero, combined with the antithetic con-
struction, leads to Xf−Xa = O(∆t1/2) but X

f−Xc = O(∆t). Hence, the variance
V[ 1

2 (P fl +P al )− P cl−1] is O(∆t2), which is the order obtained for scalar SDEs using
the Milstein discretization with its first order strong convergence.
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6.2. Clark-Cameron Example

The paper of Clark and Cameron [9] addresses the question of how accurately one
can approximate the solution of an SDE driven by an underlying multi-dimensional
Brownian motion, using only uniformly-spaced discrete Brownian increments. Their
model problem is

dx1(t) = dw1(t)

dx2(t) = x1(t) dw2(t), (34)

with x(0) = y(0) = 0, and zero correlation between the two Brownian motions w1(t)

and w2(t). These equations can be integrated exactly over a time interval [tn, tn+1],
where tn = n∆t, to give

x1(tn+1) = x1(tn) + ∆w1,n

x2(tn+1) = x2(tn) + x1(tn)∆w2,n + 1
2∆w1,n∆w2,n + 1

2A12,n (35)

where ∆wi,n ≡ wi(tn+1)− wi(tn), and A12,n is the Lévy area defined as

A12,n =

∫ tn+1

tn

(
w1(t)−w1(tn)

)
dw2(t)−

∫ tn+1

tn

(
w2(t)−w2(tn)

)
dw1(t).

This corresponds exactly to the Milstein discretization presented in (7), so for this
simple model problem the Milstein discretization is exact.

The point of Clark and Cameron’s paper is that for any numerical approximation
X(T ) based solely on the set of discrete Brownian increments ∆w,

E[(x2(T )−X2(T ))2] ≥ 1
4 T ∆t.

Since in this section we use superscript f, a, c for fine Xf , antithetic Xa and
coarse Xc approximations, respectively, we drop the superscript ` for the clarity of
notation.

We define a coarse path approximation Xc with timestep ∆t by neglecting the
Lévy area terms to give

Xc
1,n+1 = Xc

1,n + ∆w`−1
1,n+1

Xc
2,n+1 = Xc

2,n +Xc
1,n∆w`−1

2,n+1 + 1
2 ∆w`−1

1,n+1 ∆w`−1
2,n+1 (36)

This is equivalent to replacing the true Brownian path by a piecewise linear approx-
imation as illustrated in Figure 1.

Similarly, we define the corresponding two half-timesteps of the first fine path
approximation Xf by

Xf

1,n+ 1
2

= Xf
1,n + ∆w`1,n+ 1

2

Xf

2,n+ 1
2

= Xf
2,n +Xf

1,n ∆w`2,n+ 1
2

+ 1
2 ∆w`1,n+ 1

2
∆w`2,n+ 1

2

Xf
1,n+1 = Xf

1,n+1 + ∆w`1,n+1

Xf
2,n+1 = Xf

2,n+ 1
2

+Xf

1,n+ 1
2

∆w`2,n+1 + 1
2 ∆w`1,n+1 ∆w`2,n+1
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where ∆w`−1
n+1 = ∆w`

n+ 1
2

+ ∆w`n+1. Using this relation, the equations for the two
fine timesteps can be combined to give an equation for the increment over the coarse
timestep,

Xf
1,n+1 = Xf

1,n + ∆w`−1
1,n+1

Xf
2,n+1 = Xf

2,n +Xf
1,n ∆w`−1

2,n+1 + 1
2 ∆w`−1

1,n+1 ∆w`−1
2,n+1 (37)

+ 1
2

(
∆w`1,n+ 1

2
∆w`2,n+1 −∆w`2,n+ 1

2
∆w`1,n+1

)
.

The antithetic approximation Xa
n is defined by exactly the same discretization

except that the Brownian increments δwn and δwn+ 1
2
are swapped, as illustrated

in Figure 1. This gives

Xa
1,n+ 1

2
= Xa

1,n + ∆w`1,n+1,

Xa
2,n+ 1

2
= Xa

2,n +Xa
1,n ∆w`2,n+1 + 1

2 ∆w`1,n+1 ∆w`2,n+1,

Xa
1,n+1 = Xa

1,n+ 1
2

+ ∆w`1,n+ 1
2
,

Xa
2,n+1 = Xa

2,n+ 1
2

+Xa
1,n+ 1

2
∆w`2,n+ 1

2
+ 1

2 ∆w`1,n+ 1
2

∆w`2,n+ 1
2
,

and hence

Xa
1,n+1 = Xa

1,n + ∆w`−1
1,n+1,

Xa
2,n+1 = Xa

2,n +Xa
1,n ∆w`−1

2,n+1 + 1
2 ∆w`−1

1,n+1 ∆w`−1
2,n+1 (38)

− 1
2

(
∆w`1,n+ 1

2
∆w`2,n+1 −∆w`2,n+ 1

2
∆w`1,n+1

)
.

Swapping ∆w`
n+ 1

2

and ∆w`n+1 does not change the distribution of the driving Brow-

nian increments, and hence Xa has exactly the same distribution as Xf . Note also
the change in sign in the last term in (37) compared to the corresponding term in

 

 
W

W
c

W
f

W
a

Figure 1. Brownian path and approximations over one coarse timestep



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

34 Mike Giles and Lukasz Szpruch

(38). This is important because these two terms cancel when the two equations are
averaged.

These last terms correspond to the Lévy areas for the fine path and the antithetic
path, and the sign reversal is a particular instance of a more general result for time-
reversed Brownian motion, [30]. If (wt, 0 ≤ t ≤ 1) denotes a Brownian motion
on the time interval [0, 1] then the time-reversed Brownian motion (zt, 0 ≤ t ≤ 1)

defined by

zt = w1 − w1−t, (39)

has exactly the same distribution, and it can be shown that its Lévy area is equal
in magnitude and opposite in sign to that of wt.

Lemma 2. If Xf
n , Xa

n and Xc
n are as defined above, then

Xf
1,n = Xa

1,n = Xc
1,n,

1
2

(
Xf

2,n +Xa
2,n

)
= Xc

2,n, ∀n ≤ N

and

E
[(
Xf

2,N −X
a
2,N

)4
]

= 3
4 T (T+∆t) ∆t2.

In the next section we will see how this lemma generalizes to non-linear multidi-
mensional SDEs (4).

6.3. Milstein discretization - General theory

Using the coarse timestep ∆t, the coarse path approximation Xc
n, is given by the

Milstein approximation without the Lévy area term,

Xc
i,n+1 =Xc

i,n + fi(X
c
n) ∆t`−1 +

m∑
j=1

gij(X
c
n) ∆w`−1

j,n+1

+
m∑

j,k=1

hijk(Xc
n)
(

∆wj,n ∆w`−1
k,n+1 − Ωjk ∆t`−1

)
.

The first fine path approximation Xf
n (that corresponds to Xc

n) uses the corre-
sponding discretization with timestep ∆t/2,

Xf

i,n+ 1
2

= Xf
i,n + fi(X

f
n) ∆t`−1/2 +

m∑
j=1

gij(X
f
n) ∆w`j,n+ 1

2
(40)

+
m∑

j,k=1

hijk(Xf
n)
(

∆w`j,n+ 1
2

∆w`k,n+ 1
2
− Ωjk ∆t`−1/2

)
,
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Xf
i,n+1 = Xf

i,n+ 1
2

+ fi(X
f

n+ 1
2

) ∆t`−1/2 +
m∑
j=1

gij(X
f

n+ 1
2

) ∆w`j,n+1

+
m∑

j,k=1

hijk(Xf

n+ 1
2

)
(
∆w`j,n+1 ∆w`k,n+1 − Ωjk ∆t`−1/2

)
,

(41)

where ∆w`−1
n+1 = ∆w`

n+ 1
2

+ ∆w`n+1.
The antithetic approximation Xa

n is defined by exactly the same discretization
except that the Brownian increments Dw`

n+ 1
2

and ∆w`n+1 are swapped, so that

Xa
i,n+ 1

2
= Xa

i,n + fi(X
a
n) ∆t`−1/2 +

m∑
j=1

gij(X
a
n) δwn+ 1

2

+
m∑

j,k=1

hijk(Xa
n)
(
∆w`j,n+1 ∆w`k,n+1 − Ωjk ∆t`−1/2

)
,

Xa
i,n+1 = Xa

i,n+ 1
2

+ fi(X
a
n+ 1

2
) ∆t`−1/2 +

m∑
j=1

gij(X
a
n+ 1

2
) ∆w`j,n+ 1

2

+
m∑

j,k=1

hijk(Xa
n+ 1

2
)
(

∆w`j,n+ 1
2

∆w`k,n+ 1
2
− Ωjk ∆t`−1/2

)
.

(42)

It can be shown that [22]

Lemma 3. For all integers p ≥ 2, there exists a constant Kp such that

E
[

max
0≤n≤N

‖Xf
n −Xa

n‖p
]
≤ Kp ∆tp/2.

Let’s denote the average fine and antithetic path as follows

X
f

n ≡ 1
2 (Xf

n+Xa
n).

The main results of [22] is the following theorem:

Theorem 5. For all p ≥ 2, there exists a constant Kp such that

E
[

max
0≤n≤N

‖Xf

n −Xc
n‖p
]
≤ Kp ∆tp.

This together with a classical strong convergence result for Milstein discretization
allows to estimate the MLMC variance for smooth payoffs. n the case of payoff
which is a smooth function of the final state x(T ), taking p=2 in Lemma 1, p=4 in
Lemma 3 and p=2 in Theorem 5, immediately gives the result that the multilevel
variance

V
[

1
2

(
P (Xf

N ) + P (Xa
N )
)
− P (Xc

N )
]
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has an O(∆t2) upper bound. This matches the convergence rate for the multilevel
method for scalar SDEs using the standard first order Milstein discretization, and
is much better than the O(∆t) convergence obtained with the Euler-Maruyama
discretization.

However, very few financial payoff functions are twice differentiable on the entire
domain Rd. A more typical 2D example is a call option based on the minimum of
two assets,

P (x(T )) ≡ max (0,min(x1(T ), x2(T ))−K) ,

which is piecewise linear, with a discontinuity in the gradient along the three lines
(s,K), (K, s) and (s, s) for s ≥ K.

To handle such payoffs, an assumption which bounds the probability of the
solution of the SDE having a value at time T close to such lines with discontinuous
gradients is needed.

Assumption 6. The payoff function P ∈ C(Rd,R) has a uniform Lipschitz bound,
so that there exists a constant L such that

|P (x)− P (y)| ≤ L |x− y| , ∀x, y ∈ Rd,

and the first and second derivatives exist, are continuous and have uniform bound
L at all points x 6∈ K, where K is a set of zero measure, and there exists a constant
c such that the probability of the SDE solution x(T ) being within a neighborhood
of the set K has the bound

P
(

min
y∈K
‖x(T )− y‖ ≤ ε

)
≤ c ε, ∀ ε > 0.

In a 1D context, Assumption 6 corresponds to an assumption of a locally bounded
density for x(T ).

Giles and Szpruch in [22] proved the following result

Theorem 7. If the payoff satisfies Assumption 6, then

E
[(

1
2 (P (Xf

N ) + P (Xa
N ))− P (Xc

N )
)2
]

= o(∆t3/2−δ)

for any δ > 0.

6.4. Piecewise linear interpolation analysis

The piecewise linear interpolant Xc(t) for the coarse path is defined within the
coarse timestep interval [tk, tk+1] as

Xc(t) ≡ (1−λ)Xc
k + λXc

k+1, λ ≡ t− tk
tk+1 − tk

.
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Likewise, the piecewise linear interpolants Xf (t) and Xa(t) are defined on the fine
timestep [tk, tk+ 1

2
] as

Xf (t) ≡ (1−λ)Xf
k + λXf

k+ 1
2

, Xa(t) ≡ (1−λ)Xa
k + λXa

k+ 1
2
, λ ≡ t− tk

tk+ 1
2
− tk

,

and there is a corresponding definition for the fine timestep [tk+ 1
2
, tk+1]. It can be

shown that [22]

Theorem 8. For all p ≥ 2, there exists a constant Kp such that

sup
0≤t≤T

E
[
‖Xf (t)−Xa(t)‖p

]
≤ Kp ∆tp/2,

sup
0≤t≤T

E
[ ∥∥∥Xf

(t)−Xc(t)
∥∥∥p] ≤ Kp ∆tp,

where X
f
(t) is the average of the piecewise linear interpolants Xf (t) and Xa(t).

For an Asian option, the payoff depends on the average

xave ≡ T−1

∫ T

0

x(t) dt.

This can be approximated by integrating the appropriate piecewise linear inter-
polant which gives

Xc
ave ≡ T−1

∫ T

0

Xc(t) dt = N−1
N−1∑
n=0

1
2 (Xc

n +Xc
n+1),

Xf
ave ≡ T−1

∫ T

0

Xf (t) dt = N−1
N−1∑
n=0

1
4 (Xf

n + 2Xf

n+ 1
2

+Xf
n+1),

Xa
ave ≡ T−1

∫ T

0

Xa(t) dt = N−1
N−1∑
n=0

1
4 (Xa

n + 2Xa
n+ 1

2
+Xa

n+1).

Due to Hölder’s inequality,

E
[ ∥∥Xf

ave −Xa
ave

∥∥p] ≤ T−1

∫ T

0

E
[ ∥∥Xf (t)−Xa(t)

∥∥p] dt

≤ sup
[0,T ]

E
[ ∥∥Xf (t)−Xa(t)

∥∥p] ,
and similarly

E
[ ∥∥ 1

2 (Xf
ave+Xa

ave)−Xc
ave

∥∥p] ≤ sup
[0,T ]

E
[ ∥∥∥Xf

(t)−Xc(t)
∥∥∥p] .

Hence, if the Asian payoff is a smooth function of the average, then we obtain a
second order bound for the multilevel correction variance.
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This analysis can be extended to include payoffs which are a smooth function of
a number of intermediate variables, each of which is a linear functional of the path
x(t) of the form ∫ T

0

gT (t) x(t) µ(dt),

for some vector function g(t) and measure µ(dt). This includes weighted averages
of x(t) at a number of discrete times, as well as continuously-weighted averages over
the whole time interval.

As with the European options, the analysis can also be extended to payoffs
which are Lipschitz functions of the average, and have first and second derivatives
which exist, and are continuous and uniformly bounded, except for a set of points
K of zero measure.

Assumption 9. The payoff P ∈ C(Rd,R) has a uniform Lipschitz bound, so that
there exists a constant L such that

|P (x)− P (y)| ≤ L |x− y| , ∀x, y ∈ Rd,

and the first and second derivatives exist, are continuous and have uniform bound
L at all points x 6∈ K, where K is a set of zero measure, and there exists a constant
c such that the probability of xave being within a neighborhood of the set K has
the bound

P
(

min
y∈K
‖xave − y‖ ≤ ε

)
≤ c ε, ∀ ε > 0.

Theorem 10. If the payoff satisfies Assumption 9, then

E
[(

1
2 (P (Xf

ave) + P (Xa
ave))− P (Xc

ave)
)2]

= o(∆t3/2−δ)

for any δ > 0.

We refer the reader to [22] for more details.

6.5. Simulations for antithetic Monte Carlo

Here we present numerical simulations for a European option for process simulated
by Xf , Xa and Xc defined in section 6.2 with initial conditions x1(0) = x2(0) = 1.
The results in Figure 2 are for a European call option with terminal time 1 and
strike K = 1, that is P = (x(T )−K)+ The top left plot shows the behavior of the
variance of both P` and P` −P`−1. The superimposed reference slope with rate 1.5
indicates that the variance V` = V[P`−P`−1] = O(∆t1.5` ), corresponding to O(ε−2)

computational complexity of antithetic MLMC. The top right plot shows that E[P`−
P`−1] = O(∆t`). The bottom left plot shows the computational complexity C (as
defined in Theorem 1) with desired accuracy ε. The plot is of ε2 C versus ε, because
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we expect to see that ε2 C is only weakly dependent on ε for MLMC. For standard
Monte Carlo, theory predicts that ε2 C should be proportional to the number of
timesteps on the finest level, which in turn is roughly proportional to ε−1 due
to the weak convergence order. For accuracy ε = 10−4, the antithetic MLMC is
approximately 500 times more efficient than the standard Monte Carlo. The bottom
right plot shows that V[X1.` − X1.`−1] = O(∆t`). This corresponds to standard
strong convergence of order 0.5. We have also tested the algorithm presented in
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[22] for approximation of Asian options. Our results were almost identical as for
European options. In order to treat the lookback, digital and barrier options we
found that a suitable antithetic approximation to the Lévy areas are needed. For
suitable modification of the antithetic MLMC estimator we performed numerical
experiments where we obtained O(ε−2 log(ε)2) complexity for estimating barrier,
digital and lookback options. Currently, we are working on theoretical justification
of our results.

7. Other uses of multilevel method

7.1. SPDEs

Multilevel method has been used for a number of parabolic and elliptic SPDE
applications [4; 10; 27] but the first use for a financial SPDE is in a new paper by
Giles & Reisinger [21].
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This paper considers an unusual SPDE which results from modelling credit
default probabilities,

∆p = −µ ∂p
∂x

∆t+
1

2

∂2p

∂x2
∆t−√ρ ∂p

∂x
∆Mt, x > 0 (43)

subject to boundary condition p(0, t) = 0. Here p(x, t) represents the probability
density function for firms being a distance x from default at time t. The diffusive
term is due to idiosyncratic factors affecting individual firms, while the stochastic
term due to the scalar Brownian motion Mt corresponds to the systemic movement
due to random market effects affecting all firms.

Using a Milstein time discretization with uniform timestep k, and a central space
discretization of the spatial derivatives with uniform spacing h gives the numerical
approximation

pn+1
j = pnj −

µk +
√
ρ k Zn

2h

(
pnj+1 − pnj−1

)
+

(1−ρ) k + ρ k Z2
n

2h2

(
pnj+1 − 2pnj + pnj−1

)
, (44)

where the Zn are standard Normal random variables so that
√
hZn corresponds to

an increment of the driving scalar Brownian motion.
The paper shows that the requirment for mean-square stability as the grid is

refined and k, h→ 0 is k/h2 ≤ (1+2ρ2)−1, and in addition the accuracy is O(k, h2).
Because of this, the multilevel treatment considers a sequence of grids with h` =

2h`−1, k` = 4 k`−1.

The multilevel implementation is very straightforward, with the Brownian incre-
ments for the fine path being summed pairwise to give the corresponding Brownian
increments for the coarse path. The payoff corresponds to different tranches of a
credit derivative that depends on a numerical approximation of the integral∫ ∞

0

p(x, t) ∆x.

The computational cost increases by factor 8 on each level, and numerical ex-
periments indicate that the variance decreases by factor 16. The MLMC Theorem
still applies in this case, with β = 4 and γ = 3, and so the overall computational
complexity to achieve an O(ε) RMS error is again O(ε−2).

7.2. Nested simulation

The pricing of American options is one of the big challenges for Monte Carlo meth-
ods in computational finance, and Belomestny & Schoenmakers have recently writ-
ten a very interesting paper on the use of multilevel Monte Carlo for this purpose
[5]. Their method is based on Anderson & Broadie’s dual simulation method [1] in
which a key component at each timestep in the simulation is to estimate a condi-
tional expectation using a number of sub-paths.
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In their multilevel treatment, Belomestny & Schoenmakers use the same uni-
form timestep on all levels of the simulation. The quantity which changes between
different levels of simulation is the number of sub-samples used to estimate the
conditional expectation.

To couple the coarse and fine levels, the fine level uses N` sub-samples, and
the coarse level uses N`−1 = N`/2 of them. Similar research by N. Chen ∗ found
the multilevel correction variance is reduced if the payoff on the coarse level is
replaced by an average of the payoffs obtained using the first N`/2 and the second
N`/2 samples. This is similar in some ways to the antithetic approach described in
section 6.

In future research, Belomestny & Schoenmakers intend to also change the num-
ber of timesteps on each level, to increase the overall computational benefits of the
multilevel approach.

7.3. Truncated series expansions

Building on earlier work by Broadie and Kaya [7], Glasserman and Kim have re-
cently developed an efficient method [25] of exactly simulating the Heston stochastic
volatility model [19].

The key to their algorithm is a method of representing the integrated volatility
over a time interval [0, T ], conditional on the initial and final values, v0 and vT as(∫ T

0

Vs ds

∣∣∣∣∣ V0 = v0, VT = vT

)
d
=

∞∑
n=1

xn +
∞∑
n=1

yn +
∞∑
n=1

zn

where xn, yn, zn are independent random variables.
In practice, they truncate the series expansions at a level which ensures the

desired accuracy, but a more severe truncation would lead to a tradeoff between
accuracy and computational cost. This makes the algorithm a candidate for a
multilevel treatment in which level ` computation performs the truncation at N`
(taken to be the same for all three series, for simplicity).

To give more details, the level ` computation would use
N∑̀
n=1

xn +

N∑̀
n=1

yn +

N∑̀
n=1

zn

while the level `−1 computation would use
N`−1∑
n=1

xn +

N`−1∑
n=1

yn +

N`−1∑
n=1

zn

with the same random variables xn, yn, zn.
This kind of multilevel treatment has not been tested experimentally, but it

seems that it might yield some computational savings even though Glasserman
∗unpublished, but presented at the MCQMC12 conference.
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and Kim typically retain only 10 terms in their summations through the use of a
carefully constructed estimator for the truncated remainder. In other circumstances
requiring more terms to be retained, the savings may be larger.

7.4. Mixed precision arithmetic

The final example of the use of multilevel is unusual, because it concerns the com-
puter implementation of Monte Carlo algorithms.

In the latest CPUs from Intel and AMD, each core has a vector unit which can
perform 8 single precision or 4 double precision operations with one instruction.
Together with the obvious fact that double precision variables are twice as big as
single precision variables and so require twice as much time to transfer, in bulk,
it leads to single precision computations being twice as fast as double precision
computations. On GPUs (graphics processors) the difference in performance can
be even larger, up to a factor of eight in the most extreme cases.

This raises the question of whether single precision arithmetic is sufficient for
Monte Carlo simulation. In general, our view is that the errors due to single preci-
sion arithmetic are much smaller than the errors due to

• statistical error due to Monte Carlo sampling;
• bias due to SDE discretization;
• model uncertainty.

We have just two concerns with single precision accuracy:

• there can be significant errors when averaging the payoffs unless one uses
binary tree summation to perform the summation;
• when computing Greeks using “bumping”, the single precision inaccuracy
can be greatly amplified if a small bump is used.

Our advice would be to always use double precision for the final accumulation of
payoff values, and pathwise sensitivity analysis as much as possible for computing
Greeks, but if there remains a need for the path simulation to be performed in
double precision then one could use two-level approach in which level 0 corresponds
to single precision and level 1 corresponds to double precison.

On both levels one would use the same random numbers. The multilevel anal-
ysis would then give the optimal allocation of effort between the single precision
and double precision computations. Since it is likely that most of the calculations
would be single precision, the computational savings would be a factor two or more
compared to standard double precision calculations.

8. Multilevel Quasi-Monte Carlo

In Theorem 1, if β > γ, so that rate at which the multilevel variance decays with in-
creasing grid level is greater than the rate at which the computational cost increases,
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then the dominant computational cost is on the coarsest levels of approximation.
Since coarse levels of approximation correspond to low-dimensional numerical

quadrature, it is quite natural to consider the use of quasi-Monte Carlo techniques.
This has been investigated by Giles & Waterhouse [23] in the context of scalar
SDEs with a Lipschitz payoff. Using the Milstein approximation with a doubling
of the number of timesteps on each level gives β = 2 and γ = 1. They used a
rank-1 lattice rule to generate the quasi-random numbers, randomisation with 32
independent offsets to obtain confidence intervals, and a standard Brownian Bridge
construction of the increments of the driving Brownian process.

Their empirical observation was that MLMC on its own was better than QMC
on its own, but the combination of the two was even better. The QMC treatment
greatly reduced the variance per sample for the coarsest levels, resulting in signifi-
cantly reduced costs overall. In the simplest case of a European call option, shown
in Figure 3, the top left plot shows the reduction in the variance per sample as the
number of QMC points is increased.

The benefit is much greater on the coarsest levels than on the finest levels. In
the bottom two plots, the number of QMC points on each level is determined auto-
matically to obtain the required accuracy; see [23] for the precise details. Overall,
the computational complexity appears to be reduced from O(ε−2) to approximately
O(ε−1.5).

Giles & Waterhouse interpreted the fact that the variance is not reduced on the
finest levels as being due to a lack of significant low-dimensional content. i.e. the
difference in the two payoffs due to neighboring grid levels is due to the difference
in resolution of the driving Brownian path, and this is inherently of high dimen-
sionality. This suggests that in other applications with β < γ, which would lead
to the dominant cost being on the finest levels, then the use of quasi-Monte Carlo
methods is unlikely to yield any benefits.

Further research is needed in this area to investigate the use of other low-
discrepancy sequences (e.g. Sobol) and other ways of generating the Brownian incre-
ments (e.g. PCA). We also refer the reader to [15] for some results for randomized
multilevel quasi-Monte Carlo.

9. Conclusions

In the past 6 years, considerable progress has been achieved with the multilevel
Monte Carlo method for financial options based on underlying assets described by
Brownian diffusions, jump diffusions, and more general Lévy processes.

The multilevel approach is conceptually very simple. In essence it is a recursive
control variate strategy, using a coarse path simulation as a control variate for a fine
path simulation, relying on strong convergence properties to ensure a very strong
correlation between the two.

In practice, the challenge is to couple the coarse and fine path simulations as
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Figure 3. European call option (Fig 6.1 from [23])

tightly as possible, minimizing the difference in the payoffs obtained for each. In
doing this, there is considerable freedom to be creative, as shown in the use of
Brownian Bridge constructions to improve the variance for lookback and barrier
options, and in the antithetic estimators for multi-dimensinal SDEs which would
require the simulation of Lévy areas to achieve first order strong convergence. An-
other challenge is avoiding large payoff differences due to discontinuous payoffs; here
one can often use either conditional expectations to smooth the payoff, or a change
of measure to ensure that the coarse and fine paths are on the same side of the
discontinuity.

Overall, multilevel methods are being used for an increasingly wide range of
applications. This biggest savings are in situations in which the coarsest approxi-
mation is very much cheaper than the finest. If the finest level of approaximation
has only 32 timesteps, then there are very limited savings to be achieved, but if the
finest level has 256 timesteps, then the potential savings are much larger.
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Looking to the future, exciting areas for further research include:

• more research on multilevel techniques for American and Bermudan op-
tions;
• more investigation of multilevel Quasi Monte Carlo methods;
• use of multilevel ideas for completely new financial applications, such as
Gaussian copula and new SPDE models.
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Chapter 2

Convergence of numerical methods for stochastic differential
equations in mathematical finance

Peter Kloeden and Andreas Neuenkirch

Institut für Mathematik, Goethe-Universität, Robert-Mayer-Strasse 10, D-60325
Frankfurt am Main, Germany

Institut für Mathematik, Universität Mannheim, A5,6, D-68131 Mannheim,
Germany

Abstract Many stochastic differential equations that occur in financial mod-
elling do not satisfy the standard assumptions made in convergence proofs of numer-
ical schemes that are given in textbooks, i.e., their coefficients and the corresponding
derivatives appearing in the proofs are not uniformly bounded and hence, in particu-
lar, not globally Lipschitz. Specific examples are the Heston and Cox-Ingersoll-Ross
models with square root coefficients and the Ait-Sahalia model with rational coef-
ficient functions. Simple examples show that, for example, the Euler-Maruyama
scheme may not converge either in the strong or weak sense when the standard as-
sumptions do not hold. Nevertheless, new convergence results have been obtained
recently for many such models in financial mathematics. These are reviewed here.
Although weak convergence is of traditional importance in financial mathematics
with its emphasis on expectations of functionals of the solutions, strong convergence
plays a crucial role in Multi Level Monte Carlo methods, so it and also pathwise
convergence will be considered along with methods which preserve the positivity of
the solutions.

1. Introduction

Consider the Itô stochastic differential equation (SDE) in Rd

dXt = a(Xt)dt+
m∑
j=1

bj(Xt)dW
(j)
t , t ∈ [0, T ], X0 = x0 ∈ Rd (1)

with drift and diffusion coefficients a, bj : Rd → Rd for j = 1, . . . ,m. Here Wt =

(W
(1)
t , . . . ,W

(m)
t ), t ≥ 0, is an m-dimensional Brownian motion on a probability

49
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space (Ω,F ,P) and superscripts in brackets label components of vectors. Through-
out this article it will always be assumed that equation (1) has a unique strong
solution.

Explicit solutions of such equations are rarely known, thus one has to rely on
numerical methods to simulate their sample paths Xt(ω) or to estimate functionals
EΦ(X) for some Φ : C([0, T ];Rd) → R. Typically, such a numerical method relies
on a discretization

0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = T

and a global approximation on [0, T ] is obtained by interpolation.
In the case of the classical weak approximation the error of an approximation

X to X is measured by the quantity

|Eφ(XT )−Eφ(XT )|

for smooth functions φ : Rd → R. The test functions φ are a particular case of the
general (path-dependent) functionals Φ. In the strong approximation problem the
p-th mean of the difference between X and X is analyzed, i.e.(

E sup
k=0,...,n

|Xtk −Xtk |p
)1/p

for the maximal error in the discretization points or(
E sup
t∈[0,T ]

|Xt −Xt|p
)1/p

for the global error, where p ≥ 1 and | · | denotes the Euclidean norm. Here the
mean-square error, i.e. p = 2, is usually studied. The recent development of the
Multi-level Monte Carlo method for SDEs [19; 20] has revealed that strong error
bounds are crucial for the efficient computation of functionals EΦ(X).

While the strong error measures the error of the approximate sample paths X
on average, the pathwise error is the random quantity

sup
k=0,...,n

|Xtk(ω)−Xtk(ω)|, ω ∈ Ω

and

sup
t∈[0,T ]

|Xt(ω)−Xt(ω)|, ω ∈ Ω

respectively. Here the error is analyzed for a fixed ω ∈ Ω without averaging. This
quantity thus gives the error of the actually calculated approximation Xtk(ω), k =

0, . . . , n, respectively X(ω).
The traditional weak and strong convergence analysis for numerical methods for

stochastic differential equations (SDEs) relies on the global Lipschitz assumption,
i.e. the SDE coefficients satisfy

|a(x)− a(y)|+
m∑
j=1

|bj(x)− bj(y)| ≤ L · |x− y|, x, y ∈ Rd
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for some L > 0. However, in many SDEs used for modelling in mathematical finance
this assumption is violated, so the standard results (see [39; 27]) do not apply.

The Constant Elasticity of Variance Model for asset prices [12] , which was
introduced by Cox in 1975, is given by the SDE

dSt = µSt dt+ σSγt dWt, S0 = s0 > 0

where µ ∈ R, σ > 0 and γ ∈ (0, 1] and Wt, t ≥ 0, is a one-dimensional Brownian
motion. For γ = 1 this is the standard Black-Scholes model (i.e. a geometric
Brownian motion), while for γ ∈ (0, 1) the diffusion coefficient of this SDE is clearly
not globally Lipschitz continuous. This SDE has a unique strong solution if and
only if γ ∈ [1/2, 1] and takes values in [0,∞).

The Ait-Sahalia model and its generalization [1; 45], which are stochastic inter-
est rate models, follow the dynamics

dXt =
(
α−1X

−1
t − α0 + α1Xt − α2X

r
t

)
dt+ σXρ

t dWt, X0 = x0 > 0

where αi, σ, r, ρ > 0, i = −1, . . . , 2. Under certain conditions on the parameters
(see [45]), this SDE has a unique strong solution with values in (0,∞). Note that
here the diffusion coefficient grows superlinearly for large values of x while the drift
coefficient has a singularity at x = 0.

The Heston model [26], which is an asset price model with stochastic volatility,
is another example for an SDE with non-Lipschitz coefficients. This SDE takes
non-negative values only and contains square root coefficients:

dSt = µSt dt+
√
VtSt

(√
1− ρ2 dW

(1)
t + ρ dW

(2)
t

)
, S0 = s0 > 0

dVt = κ(λ− Vt) dt+ θ
√
Vt dW

(2)
t , V0 = v0 > 0.

The parameters satisfy µ ∈ R, κ, λ, θ > 0 and ρ ∈ (−1, 1). The second component
of this SDE is the Cox-Ingersoll-Ross process, which is also used as a short rate
model [13].

Finally, the use of the inverse of the CIR process as volatility process leads to
the so-called 3/2-model

dSt = µSt dt+
√
VtSt

(√
1− ρ2 dW

(1)
t + ρ dW

(2)
t

)
, S0 = s0 > 0

dVt = c1Vt(c2 − Vt) dt+ c3V
3/2
t dW

(2)
t , V0 = v0 > 0

where c1, c2, c3 > 0, see e.g. [27].

Motivated by these and other examples, the investigation of numerical methods
for SDEs with non-Lipschitz coefficients has been an active field of research in recent
years. This article, provides an overview of the new developments using the above
equations as illustrative examples and discussing, in particular, Euler-type schemes.
For some of the above equations exact simulation methods exist, see e.g. [11; 22]

and also [9] for a class of one-dimensional equations, which are superior for the
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simulation of the SDEs at a single or a few time points. However, if a full sample
path of the SDE has to be simulated or if the SDEs under consideration are part of
a larger SDE system, then discretization schemes are typically more efficient.

2. Pathwise Convergence Rates of the Euler Scheme and general
Itô-Taylor Methods

The pathwise error criteria are very robust with respect to the global Lipschitz
assumption. One of the simplest approximation schemes for equation (1) is the
Euler scheme

Xtk+1
= Xtk + a(Xtk)∆ +

m∑
j=1

bj(Xtk)∆kW
(j), k = 0, 1, . . . ,

with X0 = x0, where ∆ = T/n, tk = k∆ and ∆kW = Wtk+1
−Wtk . The Euler

scheme (and all other approximation methods that will be introduced below) depend
on the stepsize ∆ > 0, hence on n ∈ N, but this dependence will be omitted
whenever it is clear from the context.

From the results of Gyöngy [23] it follows that the Euler scheme has pathwise
convergence order 1/2 − ε also if the SDE coefficients are only locally Lipschitz
continuous: for all ε > 0

sup
k=0,...,n

|Xtk −Xtk | ≤ ηEε · n−1/2+ε

almost surely for a finite and non-negative random variable ηEε under the assumption
that for all N ∈ N there exist constants LN > 0 such that

|a(x)− a(y)|+
m∑
j=1

|bj(x)− bj(y)| ≤ LN · |x− y|, |x|, |y| ≤ N.

Thus, the pathwise convergence rate of the Euler scheme coincides up to an ar-
bitrarily small ε > 0 with its strong convergence rate 1/2, but for the pathwise
convergence rate no global Lipschitz assumption is required.

Jentzen, Kloeden & Neuenkirch [37] observed that this is not a specific feature
of the Euler scheme but, in fact, holds for general Itô-Taylor schemes of order
γ = 0.5, 1.0, 1.5, . . .. For the definition of these schemes, see e.g. [39]. The Euler
scheme corresponds to γ = 0.5, while γ = 1.0 yields the Milstein scheme

Xtk+1
= Xtk + a(Xtk)∆ +

m∑
j=1

bj(Xtk)∆kW
(j)

+
m∑

j1,j2=1

Lj1bj2(Xtk)Ij1,j2(tk, tk+1)



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Convergence of numerical methods for SDEs in finance 53

with the differential operators

Lj =
d∑
k=1

b
(k)
j

∂

∂xk
, j = 1, . . . ,m

and the iterated Itô-integrals

Ij1,j2(s, t) =

∫ t

s

∫ τ2

s

dW (j1)
τ1 dW (j2)

τ2 , j1, j2 = 1, . . . ,m.

The Itô-Taylor scheme of order 1.5 is usually called the Wagner-Platen scheme.

Theorem 1. Let γ = 0.5, 1.0, 1.5, . . .. Assume that a, b1, . . ., bm ∈ C2γ+1(Rd;Rd)
and moreover let X

γ,n
be the Itô-Taylor scheme of order γ with stepsize ∆ = T/n.

Then for every ε > 0 there exists a non–negative random variable ηγε such that

sup
k=0,...,n

∣∣∣Xtk(ω)−Xγ,n

tk
(ω)
∣∣∣ ≤ ηγε (ω) · n−γ+ε

for almost all ω ∈ Ω.

The main ingredients to obtain this result are the Burkholder-Davis-Gundy in-
equality, which implies that all moments of an Itô-integral are equivalent, the fol-
lowing Borel-Cantelli-type Lemma, and a localization procedure.

Lemma 1. (see [38]) Let α > 0, cp ≥ 0 for p ≥ 1 and let (Zn)n∈N be a sequence of
random variables with

(E|Zn|p)1/p ≤ cp · n−α

for all p ≥ 1 and n ∈ N. Then for every ε > 0 there exists a finite and non-negative
random variable ηε such that

|Zn| ≤ ηε · n−α+ε

almost surely for all n ∈ N.

The Burkholder-Davis-Gundy inequality and the Borel-Cantelli-type Lemma al-
low one to show that the Itô-Taylor scheme of order γ has pathwise convergence
rate γ − ε for smooth and bounded coefficients with bounded derivatives, thereby
extending the classical mean-square convergence analysis in [39]. Then a localiza-
tion argument is applied to avoid the boundedness assumptions. Roughly speaking,
this localization argument works as follows: A fixed sample path Xt(ω), t ∈ [0, T ],

of the SDE solution is bounded, i.e. stays in some open set B(ω). However for the
SDE

dYt = ã(Yt) dt+
m∑
j=1

b̃j(Yt) dW
(j)
t , Y0 = x0
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with smooth and bounded coefficients ã, b̃j with bounded derivatives, which coincide
with the ones of the original SDE on B(ω), the solution sample path Yt(ω), t ∈ [0, T ],
coincides withXt(ω), t ∈ [0, T ]. Asymptotically this also holds for the corresponding
sample paths of the γ-Itô-Taylor schemes, so the pathwise convergence rates carry
over.

Note that all the examples of SDEs given in the introduction take non-negative
values only, so good approximation schemes should preserve this structural property.
The (explicit) Euler scheme is, in general, not such a scheme, since its increments
are conditionally Gaussian. For example, in case of the CIR process

dXt = κ(λ−Xt) dt+ θ
√
Xt dWt, X0 = x0 > 0

the transition density of the Euler scheme reads as

p(y;x) =
1√

2πθ2x∆
exp

(
−
(
y − (x+ κ(λ− x)∆

)2
2θ2x∆

)
, y ∈ R, x > 0,

so negative values can be obtained with positive probability even in the first step.
This has lead to many ad-hoc corrections to prevent termination of the Euler
scheme. The truncated Euler scheme

Xtk+1
= Xtk + κ(λ−Xtk) ∆ + θ

√
X

+

tk
∆kW, k = 0, 1, . . . (2)

was proposed in [14], while the scheme

Xtk+1
= Xtk + κ(λ−Xtk)∆ + θ

√
|Xtk |∆kW, k = 0, 1, . . . (3)

was studied in [28]. Both approaches extend the mapping [0,∞) 3 x 7→
√
x ∈ [0,∞)

suitably to negative values of x. For the CIR process this idea was taken further
by Lord, Koekkoek & van Dijk [40], who also proposed modifications of the drift
coefficient for negative values of the state space.

Example 1. The following table shows the average number of negative steps per
path for the above Euler approximations of the CIR process. Scenario I (taken from
[2]), corresponds to the parameters

x0 = 0.05, κ = 5.07, λ = 0.0457, θ = 0.48, T = 5

while Scenario II (taken from [11]) uses

x0 = 0.09, κ = 2, λ = 0.09, θ = 1, T = 5.

The stepsize for the Euler schemes is given by ∆ = T/n with n = 512.

average negative steps of / for Scenario I Scenario II

Euler scheme (2) 0.9141 64.8611
Euler scheme (3) 1.0590 74.5017
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The empirical frequency of negative paths is 0.4913 in Scenario I and 0.9990 in
Scenario II. These results were obtained by a Monte Carlo simulation with N = 106

repetition. They clearly indicate that the Euler scheme (3) has a tendency for
negative “excursions". This can also be seen in Figure 1, which shows a sample
path of the (linearly interpolated) Euler schemes (2) and (3) using the same path
of the driving Brownian motion. The parameters used in this figure correspond to
Scenario II.

�

For general SDEs the procedure of modifying the coefficients outside the support
of the solution has been introduced systematically in [37]. For an SDE

dXt = a(Xt) dt+
m∑
j=1

bj(Xt) dW
(j)
t , X0 = x0 (4)

which takes values in a domain D ⊂ Rd, i.e.

P(Xt ∈ D, t ≥ 0) = 1, (5)

the auxiliary coefficients

ã(x) = a(x) · 1D(x) + f(x) · 1E(x), x ∈ Rd

b̃j(x) = bj(x) · 1D(x) + gj(x) · 1E(x), x ∈ Rd, j = 1, . . . ,m

with E = Rd \ D are introduced there. A modified Itô-Taylor scheme of order
γ based on the auxiliary functions f and g is then the corresponding standard
Itô-Taylor scheme for the SDE

dXt = ã(Xt) dt+
m∑
j=1

b̃j(Xt) dW
(j)
t ,

with a suitable definition of the derivatives of the coefficients on ∂D, see [37] for
details. This method is well-defined as long as the coefficients of the equation are
(2γ + 1)-times differentiable on D and the auxiliary functions are (2γ − 1)-times
differentiable on E. The purpose of the auxiliary functions is twofold: to obtain a
well-defined approximation scheme and to bring the numerical scheme back to D
if it leaves D. In particular, the auxiliary functions can always be chosen to be
affine or even constant. It was shown by Jentzen, Kloeden & Neuenkirch [37] that
Theorem 1 adapts to modified Itô-Taylor schemes for SDEs on domains D ⊂ Rd.

Theorem 2. Let X be the solution of SDE (4) satisfying condition (5). Moreover
let γ = 0.5, 1.0, 1.5, . . . and assume that

a ∈ C2γ+1(D;Rd), b ∈ C2γ+1(D;Rd,m)
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Figure 1. A path of Euler scheme (2) vs. Euler scheme (3) for the CIR process and Scenario II

and

f ∈ C2γ−1(E;Rd), g ∈ C2γ−1(E;Rd,m).

Finally let X̃γ,n be the modified Itô-Taylor method for X based on the auxiliary
functions f and g with stepsize ∆ = T/n. Then for every ε > 0 there exists a finite
and non-negative random variable ηf,gγ,ε such that

sup
k=0,...,n

∣∣Xtk(ω)− X̃γ,n
tk

(ω)
∣∣ ≤ ηf,gγ,ε(ω) · n−γ+ε
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for almost all ω ∈ Ω and all n ∈ N.

In the case of the Euler scheme, i.e. γ = 0.5, the assumptions on a and b can
be weakened to the assumption that a and b are locally Lipschitz continuous on D.
For SDEs on domains in mathematical finance this condition is typically satisfied.
In fact, in most cases the coefficients are infinitely differentiable.

The CIR process satisfies

P(Xt > 0 for all t ≥ 0) = 1

if and only if 2κλ ≥ θ2. The latter assumption is typically satisfied in interest rate
applications of the CIR process. Hence, modified Taylor schemes can be used here
with D = (0,∞). The truncated Euler scheme (2) corresponds to the auxiliary
functions f(x) = a(x), g(x) = 0, x ≤ 0, while the scheme (3) uses the auxiliary
functions f(x) = a(x), g(x) =

√
−x, x ≤ 0. Note that 2κλ ≥ θ2 is satisfied in

Scenario I, but not in Scenario II.

For structure preserving integration of the CIR process also the symmetrized
Euler method

X̃tk+1
=
∣∣∣X̃tk + κ(λ− X̃tk)∆ + θ

√
X̃tk ∆kW

∣∣∣, k = 0, 1, . . . (6)

was proposed in [10; 8]. While the modified Euler schemes (2) and (3) may leave
(0,∞) and are then forced back in the next steps, this scheme is always non-negative.
Adapting this to general SDEs, which take values in a domain D, leads to the
reflected Euler schemes, see e.g. [44], which are given by

X̃ψ
tk+1

= Hψ
tk+1
· 1D(Hψ

tk+1
) + ψ(Hψ

tk+1
) · 1Rd\D(Hψ

tk+1
)

with X̃ψ
0 = x0, where

Hψ
tk+1

= X̃ψ
tk

+ a(X̃ψ
tk

)∆ +
m∑
j=1

bj(X̃
ψ
tk

)∆kW
(j)

and a measurable projection function ψ : Rd \ D → D ∪ ∂D. A straightforward
modification of the above theorem yields a pathwise convergence order 1/2 − ε

for these reflected Euler schemes if the SDE coefficients are twice continuously
differentiable on D. In the same way reflected Itô-Taylor schemes of arbitrary order
can be constructed and analyzed.

The symmetrized Euler scheme (6) corresponds to the reflection function ψ(x) =

|x|. The results on modified Itô-Taylor schemes and reflected Euler methods apply
also to the generalized Ait-Sahalia model with D = (0,∞) if r > 1, ρ < (1 + r)/2,
to the Heston model with D = (0,∞)2 if 2κλ ≥ θ2 and to the 3/2-model with
D = (0,∞)2 and no further restrictions on the parameter.
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Example 2. To illustrate the above results consider Scenario I for the Cox-
Ingersoll-Ross process. Figure 2 shows for two different sample paths ω ∈ Ω the
maximum error in the discretization points, i.e.

sup
k=0,...,n

|Xtk(ω)−Xtk(ω)|,

of

(i) the truncated Euler scheme (2)
(ii) the symmetrized Euler scheme (6)
(iii) the modified Milstein scheme with auxiliary functions f(x) = κ(λ − x),

g(x) = 0, i.e. a truncated Milstein scheme.

To estimate the pathwise maximum error for the above approximation schemes
the Cox-Ingersoll-Ross process have been discretized with a very small step size
using scheme (2). In Figure 2 log-log-coordinates are used, so the dots indicate
the convergence orders 0.5 and 1. The pathwise convergence rates of all three
approximation schemes are in good accordance with the theoretically predicted
rates for moderate and small step sizes. For small step sizes both Euler schemes
do not take negative values and hence coincide. Moreover, for small step sizes the
Milstein scheme is superior due to its first order convergence.

�

Numerical methods with pathwise convergence rates of high order are thus avail-
able also for SDEs with non-globally Lipschitz coefficients. However, while path-
wise convergence rates are very important for the analysis of random dynamical
systems [7; 17], one of the main objectives in mathematical finance is the pricing of
(path-dependent) European-type derivatives, which means to compute real numbers
EΦ(X) where Φ : C([0, T ];Rd)→ R is the discounted payoff of the derivative. Since
the integrability of the random constants in the error bounds is an open problem,
the above pathwise convergence rates do not imply weak or strong convergence
rates. Nevertheless, if Φ is bounded and continuous and if X

γ
= (X

γ

t )t∈[0,T ] is
the piecewise linear interpolation of the γ-Itô-Taylor scheme (standard, modified or
reflected) then

EΦ(X
γ
) −→ EΦ(X)

for n→∞, so for bounded and continuous pay-offs (e.g. put options) one obtains
at least the convergence of the corresponding standard Monte Carlo estimators for
the option price. The same is true for barrier options with payoff of the form

Φ(X) = φ(XT )1{K1≤|Xt|≤K2, t∈[0,T ]}

with 0 ≤ K1 ≤ K2 <∞, if φ is bounded and continuous and the law of supt∈[0,T ] |Xt|
and inft∈[0,T ] |Xt| has a density with respect to the Lebesgue measure.
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Figure 2. Pathwise maximum error vs. step size for two sample paths for the Cox-Ingersoll-Ross
model for Scenario I

3. The Explicit Euler Scheme: Criteria for Weak and Strong Con-
vergence

It was shown by Higham, Mao & Stuart in [29] that the explicit Euler scheme

Xtk+1
= Xtk + a(Xtk)∆ +

m∑
j=1

bj(Xtk)∆kW
(j), k = 0, 1, . . . ,

X0 = x0
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is strongly convergent if the coefficients are locally Lipschitz continuous on Rd and a
moment condition for the SDE and its Euler approximation is satisfied. This result
can be extended to SDE on domains and the modified or reflected Euler scheme.

Theorem 3. Let X be the solution of SDE (4) satisfying condition (5). Moreover,
let X̃n be the modified Euler scheme based on the auxiliary functions f ∈ C(E;Rd),
g ∈ C(E;Rd,m) with stepsize ∆ = T/n or let X̃n be the reflected Euler scheme based
on the projection function ψ : E → D ∪ ∂D with stepsize ∆ = T/n. Assume that

a ∈ C2(D;Rd), b ∈ C2(D;Rd,m)

and furthermore, assume that for some p > 2

sup
n∈N

E max
k=0,...n

|X̃n
tk
|p + E sup

t∈[0,T ]

|Xt|p <∞. (7)

Then

lim
n→∞

E max
k=0,...,n

|Xtk − X̃n
tk
|2 = 0.

Proof. From the results of the previous section

lim
n→∞

max
k=0,...,n

|Xtk − X̃n
tk
| = 0

hold, almost surely. However, assumption (7) implies the uniform integrability of

max
k=0,...n

|Xtk − X̃n
tk
|2, n ∈ N.

The assertion now follows, since uniform integrability allows integration to the limit.

Note that assumption (7) is easily verified if the SDE coefficients have linear
growth on D, i.e.

|a(x)|+
m∑
j=1

|bj(x)| ≤ C · (1 + |x|), x ∈ D,

for some C > 0. Turning back to the Cox-Ingersoll-Ross process this gives us
strong convergence of the Euler schemes (2), (3) and (6) under the assumption
2κλ ≥ θ2. Note that for the Euler schemes (2) and (3) strong convergence without
a restriction on the parameter has been shown in [14] and [28] using a Yamada
function technique. This technique has also been applied by Gyöngy & Rásonyi in
[24] to obtain the following result:

Theorem 4. Let a1, a2, b : R→ R. Consider the one-dimensional SDE

dXt = (a1(Xt) + a2(Xt)) dt+ b(Xt) dWt, t ∈ [0, T ], X0 = x0 ∈ R
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and let X
n
be the corresponding Euler scheme with stepsize ∆ = T/n. Moreover, let

a2 be monotonically decreasing and assume that there exists constants α ∈ [0, 1/2],
β ∈ (0, 1] and C > 0 such that

|a1(x)− a1(y)| ≤ C · |x− y|, |a2(x)− a2(y)| ≤ C · |x− y|β ,

|b(x)− b(y)| ≤ C · |x− y| 12 +α

for all x, y ∈ R. Then, for all p ∈ N, there exist constants Kα,β
p > 0 such that

E max
k=0,...,n

|Xtk −X
n

tk
|p ≤


K0,β
p · 1

log(n) for α = 0

Kα,β
p ·

(
1
nα + 1

nβ/2

)
for α ∈ (0, 1/2)

Kα,β
p ·

(
1

np/2
+ 1

nβp/2

)
for α = 1/2

This result can be applied to the CEV model

dXt = µXt dt+ σXγ
t dWt,

if the mapping [0,∞) 3 x 7→ xγ ∈ [0,∞) is extended to (−∞, 0), e.g. as (x+)γ or
|x|γ . Theorem 4 then yields strong convergence of the corresponding Euler schemes.

Example 3. Whether the convergence rates predicted from Theorem 4 are sharp
for the CEV model remains an open problem. The following simulation study
suggests that the Euler scheme has strong convergence order 1/2, at least for some
parameter constellations. To better preserve the positivity of the CEV process, the
Euler scheme is applied to the SDE

dXt = µ|Xt| dt+ σ(X+
t )γ dWt

which still fulfills the assumptions of Theorem 4 with a2 = 0, i.e. β = 1, and
α = γ − 1/2. Its solution coincides with the CEV process.

Figure 3 shows the empirical root mean square maximum error in the discretiza-
tion points versus the step size for the parameters

Set I: µ = 0.1, σ = 0.3, γ = 0.75, T = 1, x0 = 0.2

Set II: µ = 0.2, σ = 0.5, γ = 0.55, T = 1, x0 = 0.5

The empirical mean square maximum error in the discretization points is estimated
by (

1

N

N∑
i=1

max
k=0,...,n

|X∗,(i)tk
−Xn,(i)

tk
|2
)1/2

with N = 5 · 104. Here X∗ is the numerical reference solution obtained by using
the same Euler scheme with very small step size and X∗,(i), X

n,(i)
are independent

copies of X∗,X
n
. For both sets of parameter a good accordance with the conver-

gence order 1/2 is obtained. (The dots in the figure indicate convergence order 1/2).
A regression of the numerical data yields moreover the empirical convergence order
0.493923 for set I, respectively 0.509903 for set II.
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Figure 3. Root mean square error of the Euler scheme vs. step size for the CEV process for the
parameter sets I and II

�

But do Theorems 3 and 4 have any consequences for the other examples? Un-
fortunately not: for the Heston, Ait-Sahalia and 3/2-models, no linear growth con-
dition is satisfied. Even worse, for the Ait-Sahalia model and the 3/2-model the
moments of the Euler scheme explode! In the case of the 3/2-model the latter can be
deduced from the following Theorem, which was obtained by Hutzenthaler, Jentzen
& Kloeden in [34].

Theorem 5. Let a, b : R→ R and assume that the one-dimensional SDE

dXt = a(Xt) dt+ b(Xt) dWt, t ∈ [0, T ], X0 = x0 ∈ R

has a unique strong solution with

sup
t∈[0,T ]

E|Xt|p <∞

for one p ∈ [1,∞). Moreover, let b(x0) 6= 0 and let C ≥ 1, β > α > 1 be constants
such that

max
(
|a(x)| , |b(x)|

)
≥ 1

C
· |x|β and min

(
|a(x)| , |b(x)|

)
≤ C · |x|α

for all |x| ≥ C. Then, the corresponding Euler scheme X
n
with stepsize ∆ = T/n

satisfies

lim
n→∞

E|XT −X
n

T |p =∞ and lim
n→∞

∣∣E|XT |p − E|Xn

T |p
∣∣ =∞. (8)
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In the case of the 3/2-model, which has finite moments up to order p < 2 + 2c1
c23

,
the coefficients are

a(x) = −c2x2 + c1c2x, b(x) = c3(x+)3/2, x ∈ R,

so the assumptions of the above Theorem are satisfied for α = 3/2, β = 2 and C
sufficiently large.

Concerning the Ait-Sahalia model, the moments of the Euler scheme already
explode in the second step. Here the first step of the Euler scheme has a Gaussian
distribution with mean x0 + (α−1x

−1
0 − α0 + α1x0 − α2x

r
0)∆ and variance α2

3x
2ρ
0 ∆.

The inverse of the first step must be computed for the second step of the Euler
scheme, so the moments of the second step are infinite, since inverse moments of a
Gaussian random variable do not exist.

Why the moments of the Euler scheme diverge for superlinearly growing coef-
ficients – even without a singularity – can be nicely illustrated by considering the
SDE

dXt = −X3
t dt+ σdWt, X0 = x0 (9)

with σ ≥ 0 for which the Euler scheme reads as

X
n

tk+1
= X

n

tk

(
1− |Xn

tk
|2∆
)

+ σ∆kW. (10)

In the deterministic case, i.e., (9) and (10) with σ = 0, the Euler approximation
of the deterministic equation is known to be unstable if the initial value is large (see
e.g. Chapter 6 in [16]). For example, if x0 = n, T = 1 and ∆ = n−1 then

X
n

t1 = n

(
1− n2

n

)
≈ −n2

and therefore

X
n

t2 = X
n

t1

(
1− |Xn

t1 |
2∆
)
≈ n5.

Iterating this further, one obtains ∣∣∣Xn

tk

∣∣∣ ' n(2k)

for k = 0, 1, . . . , n. Thus, X
n

tn grows double-exponentially fast in n. In the presence
of noise (σ > 0) there is an exponentially small event that the Brownian motion
leaves the interval [−2n, 2n] and on this event the approximations grow double-
exponentially fast due to the deterministic dynamics. Consequently this double-
exponentially growth can not be compensated by the exponentially small probability
of this event, which leads to the moment explosion of the Euler approximation.

Example 4. That rare events lead to the explosion of the moments of the Eu-
ler scheme can be also seen from the following numerical example. Consider the
volatility process in the 3/2-model

dVt = c1Vt(c2 − Vt) dt+ c3V
3/2
t dWt, V0 = v0 > 0
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with

c1 = 1.2, c2 = 0.8, c3 = 1, T = 4, v0 = 0.5

and try to compute

E|XT | = 0.566217

using the standard Monte Carlo estimator

1

N

N∑
i=1

|Xn,(i)

T |

where X
n,(1)

T , . . . , X
n,(N)

T are iid copies of X
n

T . The exact value for E|XT | is com-
puted using the inverse moments of the CIR process, see e.g. [31]. While for a
moderate number of repetitions the estimator seems to converge for small step sizes
(and the ’Inf’-outputs seem to be some numerical instabilities due to the large step
sizes), the estimator explodes even for small step sizes when increasing the number
of repetitions – as predicted by Theorem 5. Despite of this the Euler scheme for
this SDE converges pathwise with rate 1/2− ε due to Theorem 2.

Repetitions N
/ stepsize ∆ 20 2−2 2−4 2−6 2−8 2−10

103 6.327232 Inf Inf 0.550185 0.553499 0.555069
104 6.894698 Inf Inf Inf 0.562716 0.563352
105 7.430606 Inf Inf Inf 0.566218 0.567106
106 7.227379 Inf Inf Inf Inf 0.565750
107 7.279187 Inf Inf Inf Inf Inf

A similar moment explosion arises if a Multi-level Monte Carlo method is used
to estimate E|XT |. This is shown, also for more general SDEs, in [36].

�

However, in some cases using the Euler scheme one still obtains a convergent
Monte Carlo estimator for functionals of the type Eφ(XT ). The standard Euler-
based estimator for the latter quantity is

1

N

N∑
i=1

φ
(
X
n,(i)

T

)
. (11)

In the classical case, i.e. if a, b, φ ∈ C4(R;R) with at most polynomially growing
derivatives and a, b globally Lipschitz, one has

E

∣∣∣∣∣ 1

N

N∑
i=1

φ
(
X
n,(i)

T

)
−Eφ(XT )

∣∣∣∣∣
2

≤ KBias ·
1

n2
+KMC ·

1

N
,
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see e.g. [39]. The first term on the right hand side corresponds to the squared bias
of the Euler scheme, while the second term corresponds to the variance of the Monte
Carlo simulation. It is thus optimal to choose N = n2 for balancing both terms
with respect to the computational cost (number of arithmetic operations, function
evaluations and random numbers used), see [18]. The corresponding Monte Carlo
estimator has then convergence order 1/3 in terms of the computational cost.

Hutzenthaler & Jentzen could show in [32] that if the global Lipschitz assumption
on the drift-coefficient is weakened to

(x− y)(a(x)− a(y)) ≤ L (x− y)
2
, x, y ∈ R (12)

for some L > 0, then one still has∣∣∣∣∣∣ 1

N2

N2∑
i=1

φ(X
N,(i)

T )−Eφ(XT )

∣∣∣∣∣∣ ≤ ηε ·N−(1−ε)

almost surely for all ε > 0 and almost-surely finite and non-negative random vari-
ables ηε.

Weak approximation under non-standard assumptions is also studied by Mil-
stein & Tretyakov in [42]. In their approach, simulations which leave a ball with
sufficiently large radius are discarded. In the context of the Euler scheme with
equidistant stepsize this estimator reads as

1

N

N∑
i=1

φ
(
X
n,(i)

T

)
· 1{supk=0,...,n |X

n,(i)
tk
|≤R}.

For coefficients a, b and functions φ satisfying a Lyapunov-type condition still a
convergent Monte Carlo estimator is obtained, when matching the discarding radius
R appropriately to the number of repetitions N and the stepsize of the discretization
n.

Condition (12) on the drift coefficient is the so-called one-sided Lipschitz con-
dition. This condition is also very useful to obtain strong convergence results for
implicit Euler methods and tamed Euler schemes, which will be explained in the
next section. Very recently a unifying framework for the analysis of Euler-type
methods has been provided in [33].

4. Strong convergence of implicit and tamed Euler schemes

The condition in Theorem 3 for the strong convergence of the Euler scheme which
is usually difficult to verify is the finiteness of its moments, i.e.

sup
n∈N

E max
k=0,...,n

|Xn

tk
|p <∞
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for some p > 2. Moreover, this condition may even fail to hold for specific equations,
see Theorem 5. However, both problems can be overcome in some situations if
appropriate drift-implicit Euler schemes are used. The split-step backward Euler
scheme is defined as

X∗tk = Xtk + a(X∗tk)∆, Xtk+1
= X∗tk +

m∑
j=1

bj(X
∗
tk

)∆kW
(j) (13)

for k = 0, 1, . . . with X0 = x0, while the backward or drift-implicit Euler scheme
reads as

Xtk+1
= Xtk + a(Xtk+1

)∆ +
m∑
j=1

bj(Xtk)∆kW
(j). (14)

Both schemes are defined via an implicit equation, whose solvability relies on the
properties of the drift-coefficient a. The following result has been obtained by
Higham, Mao & Stuart in [29].

Theorem 6. Let a, bj ∈ C1(Rd;Rd), j = 1, . . . ,m, and assume that there exist
constants L1, L2 > 0 such that

〈x− y, a(x)− a(y)〉 ≤ L1 · |x− y|2, x, y ∈ Rd,
m∑
j=1

|bj(x)− bj(y)|2 ≤ L2 · |x− y|2, x, y ∈ Rd.

Then, the split-step backward Euler scheme given by (13) with stepsize ∆ = T/n is
well defined for ∆ < ∆∗ := 1/max{1 + 2L1, 4L2} and satisfies

lim
n→∞

E max
k=0,...,n

|Xtk −X
n

tk
|2 = 0.

The conditions on the coefficients imply that the SDE has bounded moments
of any order, and also allow one to show that the split-step Euler method has
moments of any order. The implicitness of the method is crucial for the latter.
Furthermore, the split-step Euler method coincides with the explicit Euler method
for the perturbed SDE

dX∆
t = a(h∆(X∆

t )) dt+
m∑
j=1

bj(h∆(X∆
t )) dW (j)(t), X∆

0 = x0. (15)

Here the function h∆ : Rd → Rd is defined as the unique solution of the equation

h∆(x) = x+ a(h∆(x))∆, x ∈ Rd

with ∆ < ∆∗. Since h∆ converges to the identity for ∆ → 0 this perturbed SDE
is close to original SDE. To establish Theorem 6, it thus remains to show that the
split-step backward Euler scheme is close to (15), which can be done along the lines
of the proof of Theorem 3.
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If the drift-coefficient is additionally also polynomially Lipschitz, then the stan-
dard strong convergence rate 1/2 can even be recovered.

Theorem 7. Let the assumptions of Theorem 6 hold and assume additionally that
there exist C, q > 0 such that

|a(x)− a(y)| ≤ C · (1 + |x|q + |y|q) · |x− y|, x, y ∈ Rd.

Then, the split-step backward Euler scheme given by (13) and the backward Euler
scheme given by (14) are well defined for ∆ < ∆∗ and have strong convergence
order 1/2, i.e. for both schemes there exists a constant K > 0 such that

E max
k=0,...,n

|Xtk −X
n

tk
|2 ≤ K · n−1.

As pointed out above, in each step of both schemes an implicit equation has to
be solved. If the function h∆ is not known explicitly, this has to be done numerically
and may be time-consuming. Solving implicit equations can be avoided by using the
so-called tamed Euler method, which has been proposed by Hutzenthaler, Jentzen
& Kloeden in [35]:

Xtk+1
= Xtk +

1

1 + |a(Xtk)|∆
a(Xtk)∆ +

m∑
j=1

bj(Xtk)∆kW
(j). (16)

Here the drift-term is “tamed" by the factor 1
1+|a(Xtk )|∆ in the k-th step, which

prevents a possible explosion of the scheme.

Theorem 8. Let the assumptions of Theorem 7 hold. Then, there exists a constant
K > 0 such that the tamed Euler scheme given by (16) satisfies

E max
k=0,...,n

|Xtk −X
n

tk
|2 ≤ K · n−1.

Here, the difficulty is again to control the moments of the approximation scheme.
For this appropriate processes are used that dominate the tamed Euler scheme on
subevents whose probabilities converge sufficiently fast to one.

The Theorems given so far in this section require the diffusion coefficient to be
globally Lipschitz, which is often not fulfilled in SDEs arising from mathematical
finance. However, the backward Euler method can be also successfully applied to
the Ait-Sahalia interest rate model

dXt =
(
α−1X

−1
t − α0 + α1Xt − α2X

r
t

)
dt+ σXρ

t dWt (17)

where αi, σ > 0, i = −1, . . . , 2 and r, ρ > 1. The following result has been obtained
by Szpruch et al. in [45]:

Theorem 9. Consider the SDE (17) and assume that

r + 1 > 2ρ.
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Then the corresponding backward Euler method (14) with stepsize ∆ = T/n is well
defined if ∆ ≤ 1/α1, and

lim
n→∞

E max
k=0,...,n

|Xtk −X
n

tk
|2 = 0.

Here the drift coefficient is still one-sided Lipschitz on the domain of the SDE,
i.e.

(x− y)(a(x)− a(y)) ≤ α1|x− y|2, x, y > 0,

and, moreover, −a is coercive on (0,∞), i.e.

lim
x→0

a(x) =∞ lim
x→∞

a(x) = −∞.

These two properties ensure that the drift-implicit Euler scheme for (17) is well-
defined and, in particular, takes only strictly positive values.

The drift coefficient in the volatility process

dVt = c1Vt(c2 − Vt) dt+ c3V
3/2
t dWt, V0 = v0 > 0

in the 3/2-model is also one-sided Lipschitz on (0,∞). It does not, however, satisfy
the coercivity assumption. Consequently, the drift-implicit Euler scheme cannot
be applied here, since the implicit equation may not be solvable. Note that very
recently, Higham et al. introduced in [30] a double-implicit Milstein scheme, which
is strongly convergent for the 3/2-model and similar SDEs.

5. Strong Convergence Rates for the approximation of the Cox-
Ingersoll-Ross process and the Heston model

Strong convergence rates for the approximation of the CIR process

dXt = κ(λ−Xt) dt+ θ
√
Xt dWt, t ∈ [0, T ], X0 = x0 > 0

with κ, λ, θ > 0 have been a long standing open problem, even in the regime where
the CIR process does not hit zero, i.e. when 2κλ ≥ θ2.

The first non-logarithmic rates were derived by Berkaoui, Bossy & Diop for the
symmetrized Euler scheme (6), i.e.

Xtk+1
=
∣∣∣Xtk + κ(λ−Xtk)∆ + θ

√
Xtk ∆kW

∣∣∣.
They showed in [8] that

E max
k=0,...,n

|Xtk −Xtk |2p ≤ Cp ·∆p

under the assumption

2κλ

θ2
> 1 +

√
8 max

{√
κ

θ

√
16p− 1, 16p− 2

}
,



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Convergence of numerical methods for SDEs in finance 69

where the constant Cp > 0 depends only on p, κ, λ, θ, x0 and T . Strong convergence
rates for a drift-implicit Euler-type scheme were recently obtained under mild as-
sumptions by Dereich, Neuenkirch & Szpruch in [15]. Their key tool is the use of the
Lamperti-transformation: by the Itô formula, the transformed process Yt =

√
Xt

satisfies the SDE

dYt =
α

Yt
dt+ βYt dt+ γ dWt, t ≥ 0, Y0 =

√
x0 (18)

with

α =
4κλ− θ2

8
, β = −κ

2
, γ =

θ

2
.

At first glance this transformation does not help at all, since the drift coefficient of
the arising SDE is singular. However,

a(x) =
α

x
+ βx, x > 0,

satisfies for α > 0, β ∈ R the restricted one-sided Lipschitz condition

(x− y)(a(x)− a(y)) ≤ β(x− y)2, x, y > 0

The drift-implicit Euler method with stepsize ∆ > 0 in this case is

Y tk+1
= Y tk +

(
α

Y tk+1

+ βY tk+1

)
∆ + γ∆kW, k = 0, 1, . . .

with Y 0 =
√
x0, which has the explicit solution

Y tk+1
=
Y tk + γ∆kW

2(1− β∆)
+

√
(Y tk + γ∆kW )2

4(1− β∆)2
+

α∆

1− β∆
.

Setting

Xtk = Y
2

tk
, k = 0, 1, . . . , (19)

gives a positivity preserving approximation of the CIR process, which is called drift-
implicit square-root Euler method. This scheme had already been proposed in [4],
but without a convergence analysis. Piecewise linear interpolation, i.e.

Xt =
tk+1 − t

∆
Xtk +

t− tk
∆

Xtk+1
, t ∈ [tk, tk+1],

gives a global approximation (Xt)t∈[0,T ] of the CIR process on [0, T ]. The main
result of [15] is:

Theorem 10. Let 2κλ > θ2, x0 > 0 and T > 0. Then, for all

1 ≤ p < 2κλ

θ2
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there exists a constant Kp > 0 such that(
E max
t∈[0,T ]

|Xt −Xt|p
)1/p

≤ Kp ·
√

log(∆)| ·
√

∆,

for all ∆ ∈ (0, 1/2].

The restriction on p arises in the proof of the convergence rate when controlling
the inverse p-th moments of the CIR process, which are infinite for p ≥ 2κλ/θ2.
For further details, see [15]. Note that for SDEs with Lipschitz coefficients the
convergence rate

√
| log(∆)| ·

√
∆ is best possible with respect to the above global

error criterion, see [43]. So the convergence rate given in Theorem 10 matches the
rate that is optimal under standard assumptions.

Other approximation schemes for the strong approximation of the CIR process
can be found in [4; 21; 25]. Among them is the drift-implicit Milstein scheme

Ztk+1
= Ztk + κ(λ− Ztk+1

)∆ + θ

√
Ztk∆kW +

θ2

4

(
(∆kW )2 −∆

)
with Z0 = x0, see [21]. It can be rewritten as

Ztk+1
=

1

1 + κ∆

(√
Ztk +

θ

2
∆kW

)2

+
1

1 + κ∆

(
κλ− θ2

4

)
∆, (20)

so this scheme preserves the positivity of the CIR process if 4κλ ≥ θ2. It coincides
up to a term of second order with the drift-implicit square-root Euler method, since
the latter can be written as

Xtk+1
=

1

1 + κ∆

(√
Xtk +

θ

2
∆kW

)2

+
1

1 + κ∆

(
κλ− θ2

4

)
∆

− 1

1 + κ∆

 4κλ− θ2

8
√
Xtk+1

− κ

2

√
Xtk+1

2

∆2.

Moreover the drift-implicit Milstein scheme dominates the drift-implicit square-root
Euler method:

Lemma 2. Let 2κλ > θ2, x0 > 0 and T > 0. Then

P(Ztk ≥ Xtk , k = 0, 1, . . .) = 1.

Proof. The numerical flow for the drift-implicit Milstein scheme is given by

ϕZ(x; k,∆) =
1

1 + κ∆

(√
x+

θ

2
∆kW

)2

+
1

1 + κ∆

(
κλ− θ2

4

)
∆
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and for the drift-implicit square-root Euler method it satisfies

ϕX(x; k,∆) +
1

1 + κ∆

(
4κλ− θ2

8
√
ϕX(x; k,∆)

− κ

2

√
ϕX(x; k,∆)

)2

∆2

=
1

1 + κ∆

(√
x+

θ

2
∆kW

)2

+
1

1 + κ∆

(
κλ− θ2

4

)
∆.

From [4] it is known that ϕX is monotone, i.e.

ϕX(x1; k,∆) ≥ ϕX(x2; k,∆)

for x1 ≥ x2. Thus it remains to show that

ϕZ(x; k,∆) ≥ ϕX(x; k,∆)

for arbitrary ∆ > 0, k = 0, 1, . . ., x > 0. However, this follows directly by comparing
both flows.

The above property allows one to show the strong convergence of the drift-
implicit Milstein scheme, which seems not to have been established yet in the liter-
ature.

Proposition 2.1. Let 2κλ > θ2, x0 > 0 and T > 0. Then

lim
n→∞

E max
k=0,...,n

|Xtk − Z
n

tk
|2 = 0.

Proof. First note that the drift-implicit square-root Euler method can be rear-
ranged as

Xtk+1
= ϕZ(Xtk ; k,∆)− κ

∫ tk+1

tk

(Xt −Xtk+1
) dt

+ θ

∫ tk+1

tk

(
√
Xt −

√
Xtk) dWt −

θ2

4
(∆kW

2 −∆)

where ϕZ is the numerical flow of the drift-implicit Milstein scheme defined in the
proof of the above Lemma. Thus the error ek = Xtk − Ztk satisfies the recursion

ek+1 = ek − κek+1∆ + θ
(√

Xtk −
√
Ztk

)
∆kW + ρk+1 (21)

with e0 = 0, where

ρk+1 = −κ
∫ tk+1

tk

(Xs −Xtk+1
) ds+ θ

∫ tk+1

tk

(
√
Xs −

√
Xtk) dWs.

Now (21) gives

ek+1 =
1

1 + κ∆

(
ek + θ

(√
Xtk −

√
Ztk

)
∆kW + ρk+1

)
,
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so

ek =
k−1∑
`=0

θ

(1 + κ∆)k−`

(√
Xt` −

√
Zt`

)
∆`W +

k−1∑
`=0

1

(1 + κ∆)k−`
ρ`+1.

Straightforward calculations using (20) yield

sup
n∈N

sup
k=0,...,n

EZtk <∞.

Then applying the Burkholder-Davis-Gundy inequality to the martingale

Mk =
k−1∑
`=0

(1 + κ∆)`
(√

Xt` −
√
Zt`

)
∆`W, k = 0, 1, . . .

gives

E sup
k=0,...,n

e2
k ≤ c

n−1∑
`=0

(1 + κ∆)2`E

∣∣∣∣√Xt` −
√
Zt`

∣∣∣∣2 ∆ (22)

+ cE sup
k=1,...,n

∣∣∣∣∣
k−1∑
`=0

1

(1 + κ∆)k−`
ρ`+1

∣∣∣∣∣
2

.

Here and below constants whose particular value is not important will be denoted
by c regardless of their value.

It remains to estimate the terms on the right side of the equation (22). The
previous Lemma implies that

E|Ztk −Xtk | = E(Ztk −Xtk),

so

E|Ztk −Xtk | ≤ 2 E|Xtk −Xtk |+ |E(Ztk −Xtk)|.

Clearly, Theorem 10 yields

max
k=0,...,n

E|Xtk −Xtk | ≤ c ·
√
| log(∆)| ·

√
∆.

Moreover,

EZtk+1
= EZtk + κ(λ−EZtk+1

)∆,

which is the drift-implicit Euler approximation of

EXt = x0 +

∫ t

0

κ(λ−EXs) ds, t ∈ [0, T ],

at the discretization points tk = k∆, so

max
k=0,...,n

|E(Xtk − Ztk)| ≤ c ·∆.

Hence

max
k=0,...,n

E|Xtk −Xtk | ≤ c ·
√
| log(∆)| ·

√
∆
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which gives
n∑
k=0

(1 + κ∆)2kE

∣∣∣∣√Xtk −
√
Ztk

∣∣∣∣2 ∆ ≤ c ·
√
| log(∆)| ·

√
∆ (23)

since |
√
x−√y| ≤

√
|x− y| for x, y > 0 and supn∈N supk=0,...,n(1 + κ∆)2k <∞.

For the second term, applying the Burkholder-Davies-Gundy inequality and
Jensen’s inequality yield

E sup
k=1,...,n

∣∣∣∣∣
k−1∑
`=0

1

(1 + κ∆)k−`
ρ`+1

∣∣∣∣∣
2

≤ c · 1

∆

n−1∑
k=0

E

∣∣∣∣∫ tk+1

tk

(Xt −Xtk+1
) dt

∣∣∣∣2 + c
n−1∑
k=0

E

∫ tk+1

tk

∣∣∣√Xt −
√
Xtk

∣∣∣2 dt.
Now

E|Xt −Xs|2 ≤ c · |t− s|, s, t ∈ [0, T ],

so it follows that

E sup
k=1,...,n

∣∣∣∣∣
k−1∑
`=0

1

(1 + κ∆)k−`
ρ`+1

∣∣∣∣∣
2

≤ c ·
√

∆, (24)

which completes the proof of the proposition.

Alternatively, Proposition 2.1 could have been obtained by deriving the path-
wise convergence of the drift-implicit Milstein scheme and establishing the uniform
integrability of the squared maximum error. Note that the above proof gives also
the convergence order 1/4 up to a logarithmic term. However this rate seems to be
suboptimal, see the following numerical example.

Example 5. The Figures 4 and 5 show the empirical root mean square maximum
error in the discretization points, i.e.(

1

N

N∑
i=1

max
k=0,...,n

|X∗,(i)tk
−Xn,(i)

tk
|2
)1/2

,

versus the step size for the approximation of the CIR process. Consider the

(i) truncated Euler scheme (2)
(ii) drift-implicit square-root Euler (19)
(iii) drift-implicit Milstein scheme (20)

for the Scenarios I and II (see Example 1). Scenario I satisfies the condition of
Theorem 10 and Proposition 2.1 since 2κλ/θ2 = 2.011276 . . ..This condition is vi-
olated in Scenario II where 2κλ/θ2 = 0.36. In the latter scenario, the truncation√
x+ in the definition of the schemes (ii) and (iii) is used, since both discretization
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schemes may take negative values here. The numerical reference solution X∗ is
computed in Scenario I using scheme (ii) with very small stepsize and in Scenario
II with scheme (i) with a very small stepsize. The number of repetitions of the
Monte Carlo simulation is N = 5 · 104. In the log-log coordinates here, the dots
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Figure 4. Root mean square errors vs. step size for Scenario I of the CIR process

indicate the convergence orders 0.5 and 1.0 in Figure 4 and 0.25 and 0.5 in Figure 5,
respectively. For Scenario I the empirical mean square error for the truncated Euler
scheme seems to decay with the order 0.5, while the other schemes seem to have an
empirical convergence order close to 1.0. (For smooth and Lipschitz coefficients the
Milstein scheme is of order one for the maximum error in the discretization points.)

For Scenario II, these convergence orders deteriorate and for all schemes are
significantly lower than one half, see also the following table, where the convergence
orders have been estimated by a linear regression.

empirical conv.
order / for Sc. I “part” Sc. II “part” Sc. I “full” Sc. II “full”

truncated Euler 0.5739 0.3193 0.6446 0.2960
drift-imp. square-

root Euler 0.9281 0.2734 0.8491 0.2837
drift-imp. Milstein 0.9447 0.3096 0.8719 0.2871

Here “part” denotes the results for the linear regression using only the step sizes
∆ = 5 · 2−j , j = 7, . . . , 13, while “full” uses the full data set, i.e. the step sizes
∆ = 5 · 2−j , j = 4, . . . , 13.

�
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Figure 5. Root mean square errors vs. step size for Scenario II of the CIR process

Applying the Lamperti-transformation also to the asset price in the Heston
model gives the log-Heston model

d log(St) =

(
µ− 1

2
Y 2
t

)
dt+ Yt

(√
1− ρ2dW

(1)
t + ρdW

(2)
t

)
, S0 = s0 > 0

dYt =

(
4κλ− θ2

8

1

Yt
− κ

2
Yt

)
dt+

θ

2
dW

(2)
t , Y0 = y0 > 0.

The approximation of the log-Heston price is then a simple integration problem.
Using the Euler scheme for the log-price equation and the drift-implicit square-root
Euler scheme for the volatility process yields an approximationHtk of log(Stk) given
by

Htk = log(s0) +
k−1∑
`=0

(
µ− 1

2
Y

2

t`

)
∆ +

k−1∑
`=0

Y t`

(√
1− ρ2∆`W

(1) + ρ∆`W
(2)
)
.

This is extended by piecewise linear interpolation to [0, T ].

Corollary 2.1. Let 2κλ > θ2, x0 > 0 and T > 0. Then, for all

1 ≤ p < 2κλ

θ2

there exists a constant Kp > 0 such that(
E max
t∈[0,T ]

| log(St)−Ht|p
)1/p

≤ Kp ·
√
| log(∆)| ·

√
∆,

for all ∆ ∈ (0, 1/2].
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Note that in the Heston model moment explosions may appear according to the
parameters of the SDE. In particular, for p > 1 one has ESpt < ∞ for all t > 0 if
and only if

ρ ≤ −
√
p− 1
√
p

+
κ

θp
.

For more details see e.g. [6]. Whether this phenomenon also arises for discretization
schemes for the Heston model is unknown at the time of writing.

Example 6. In this example we test the efficiency of the Multi-level Monte Carlo
estimator P̂ml see [19; 20], based on the above approximation scheme for the valu-
ation of a European Call option, i.e. for

p = e−rTE(ST −K)+.

The parameters for the Heston model are

v0 = 0.05, κ = 5.07, λ = 0.0457, θ = 0.48, T = 1

s0 = 100, µ = r = 0.0319, ρ = −0.7, K = 105.

(Since the riskfree measure is used for the valuation we have µ = r.) In view of
the above convergence result for the log-Heston model, we use the number of levels
L = dlog2(Tε−1)e and the number of repetitions Nl = dLε−2T2−`e, ` = 0, . . . , L,

for a given input accuracy ε > 0, see [19].
The table below shows the empirical root mean square error

rmsq =

√√√√ 1

M

M∑
i=1

|p− P̂ (i)
ml |2

for the Multi-level estimator versus the required number of total Euler steps. The
latter is proportional to the overall computational cost of the estimator, i.e. the
number of used random numbers, number of function evaluations and number of
arithmetic operations. The P̂ (i)

ml are iid copies of the Multi-level estimator P̂ml and
we use M = 5 · 104. The reference value p = 7.46253 was obtained by a numerical
evaluation of its Fourier transform representation, see e.g. [7].

For comparison, we also provide the corresponding numerical data for the stan-
dard Monte Carlo estimator P̂st, see (11), for which we use the relation ∆2 = T/N to
match stepsize ∆ and numbers of repetitions N . For the same parameters as above
the empirical root mean square error of P̂st is again estimated using M = 5 · 104

repetitions.
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Euler steps rmsqemp Euler steps rmsqemp

ε of P̂ml of P̂ml of P̂st of P̂st
2−3 1056 1.369616 512 1.444497
2−4 7168 0.685299 4096 0.714207
2−5 43520 0.352762 32768 0.357962
2−6 245760 0.181384 262144 0.179231
2−7 1318912 0.093485 2097152 0.089618
2−8 6815744 0.047139 16777216 0.044821

The numerical data are in good accordance with the predicted convergence be-
havior, that is

• for the Multi-level estimator a root mean square error of order ε for a
computational cost of order ε−2| log(ε)|2
• and for the standard estimator a root mean square error of order ε for a
computational cost of order ε−3.

In particular halving the input accuracy leads for both estimators (approximately)
to a halving of the empirical root mean square error. Moreover, these results illus-
trate nicely the superiority of the Multi-level estimator for small input accuracies.

6. Summary and Outlook

In this article we gave a survey on recent results on the convergence of numerical
methods for stochastic differential equations in mathematical finance. The pre-
sented results include:

• the pathwise convergence of general Itô-Taylor schemes for strictly positive
SDEs with smooth but not globally Lipschitz coefficients (Section 2);
• the construction of structure, i.e. positivity, preserving approximation
schemes (Sections 2 and 5);
• the strong convergence of Euler-type methods for the CEV model and the
CIR process (Section 3);
• the explosion of the moments of the Euler scheme for SDEs for the 3/2-
model (Section 3);
• the strong convergence of the drift-implicit Euler scheme for the Ait-Sahalia
model (Section 4);
• strong convergence rates for the approximation of the CIR and the log-
Heston model using a drift-implicit Euler-type method (Section 5).
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However many unsettled questions are remaining: the exact strong convergence rate
of the Euler scheme for the CEV and CIR processes, the existence or non-existence of
moment explosions for approximation schemes of the Heston model, how to prevent
moment explosions (if they happen) by simple modifications of the scheme etc.
And even if these questions are answered, the question remains whether there is a
“general theory” for numerical methods for SDEs from mathematical finance or do
these SDEs have to analysed one by one. So, the numerical analysis of SDEs arising
in finance will be still an active and challenging field of research in the future.
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Chapter 3

Inverse problems in finance

J. Baumeister

Department of Mathematics, Goethe University, Robert-Mayer Str. 6-10, D-60054
Frankfurt Main, Germany

Abstract We give a survey of the mathematical methods for the computa-
tional analysis of inverse problems in finance. In the first subsection we present the
forward/direct problem and the inverse problems in finance. As we know, inverse
problems are ill-posed in general. Therefore we give an introduction to ill-posedness
to the regularization theory in the second subsection. We sketch the main recent
developments in the linear and nonlinear theory. The simplest form of the inverse
problem in finance is to reconstruct the constant volatility in the Black-Scholes
model, in order to understand the smile in option prices. This problem and related
ones are considered in the third subsection. The mathematics is elementary and the
algorithms are more or less recipes. In subsection four we consider the uniqueness
in the reconstruction of local volatilities (Identifiability). This uniqueness is based
more or less on the equation of Dupire. The last subsection is devoted to the cali-
bration problem: determination of the local volatility from market data. We do this
for vanilla options only since the analysis of other complex models (like American
options, . . . ) is on the one side similar and on the other side not in the focus of the
financial market. We sketch various gradient methods and at the end we consider
a Kaczmarz-like method.

Almost all results presented in this survey suffer fromm the fact that the non-
linearity leads to a lot of difficulties to make the presentation as smooth as desired.
We see this mainly in Section 5 where we consider gradient type methods: the
adaptation to the Hilbert space setting is not as perfect as necessary.

1. Forward and inverse problems in finance

In this section, we present the main concepts of financial instruments and we give
an introduction to theoretical, numerical and empirical aspects of models in finance.
On this basis we formulate inverse problems of finance. Especially, for the compu-
tation of solutions in inverse problems (of finance) we sketch a few methods to solve
the forward problem (in finance). We follow mainly [12; 72; 129]. Some aspects

81
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presented here are also considered in [124].

1.1. Classification of problems

A model is an image of reality formulated in terms which are well defined and can be
handled by theoretical investigations. Usually, a model is developed by considering
the relation between causes and effects in the process under consideration.

Suppose that we have a mathematical model of a (physical, biological, social,
. . . ) process. We assume that this model gives a description of the system behind
the process and its operating conditions and explains the principal quantities of the
model:

input, system parameters, output

The analysis of the given process via the mathematical model may then be separated
into three distinct types of problems.

(A) The direct problem. Given the input and the system parameter, find
out the output of the model.

(B) The reconstruction problem. Given the system parameters and the
output, find out which input has led to this output.

(C) The identification problem. Given the input and the output, determine
the system parameters which are in agreement with the relation between
input and output.

We call a problem of type (A) a direct (or forward) problem since it is oriented
towards a cause-effect sequence. In this sense problems of type (B) and (C) are
called inverse problems because they are problems of finding out unknown causes
of known consequences. It is immediately clear that the solution of one of the
problems above involves a treatment of the other problems as well. A complete
discussion of the model by solving the inverse problems is the main objective of
inverse modelling.

Inverse modelling involves the estimation of the solution of an equation from
a set of observed data represented by y, p in (B) and y, x in (C) respectively. In
applications, the knowledge of just one observation y is not sufficient to determine
p in problem (B). It is the subject of the identification theory to find out how many
data y are sufficient to determine p in a uniquely way: identifiability.

Usually, the system is governed by a process operator transforming the input
into the output. Moreover, the laws of nature are often expressed as systems of
differential equations containing parameters describing the concrete situation; in
a dynamical consideration the parameters are functions of time. These equations
are local in the sense that the quantities (velocity, pressure, current in a physical
situation) depend on a neighborhood of the current time only. Another typical
feature of the laws is causality: later conditions depend on previous ones. Locality
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and causality are features typically associated to direct/forward problems. Inverse
problems on the other hand are most often nonlocal and noncausal. These properties
contribute to the fact that inverse problems are sensitive to the input data and
parameters.

Let us give a description of the input, the output, the parameters and the systems
by mathematical terms:

X space of input quantities;
Y space of output quantities;
P space of system parameters;
A(p) system operator from X into Y associated to the admissible parameter

p ∈ Pad ⊂ P .

In these terms we may formulate the problems (A), (B), (C) above in the following
way:

(A) Given x ∈ X and p ∈ Pad, find y := A(p)x .
(B) Given y ∈ Y and p ∈ Pad, find x ∈ X such that A(p)x = y .
(C) Given x ∈ X and y ∈ Y, find p ∈ Pad such that A(p)x = y .

For the description of X,Y, P,A(p) and Pad we use methods and results from anal-
ysis, linear algebra and functional analysis.

At first glance, the direct problem (A) seems to be solved much easier than the
inverse problems (B), (C). However, for the computation of y := A(p)x it may be
necessary to solve a differential or integral equation, a task which may be of the
same complexity as the solution of the equations in the inverse problems.

The theory to solve (B) or (C) falls into two distinct parts. One deals with the
ideal case in which the data are supposed to be known exactly and completely (per-
fect data). The other treats the practical problems that are created by incomplete
and imprecise data (imperfect data). It might be thought that an exact solution to
an inverse problem with perfect data would prove also useful for the practical case.
But in general, it turns out in inverse problems that the solution obtained by the
analytic formula obtained from the analysis of the forward problem is very sensitive
to the way in which the data set is completed and to errors in it. Moreover, when
the inverse problem is described by an operator equation, the naive way to solve
the equation by a fit of the data to the range of the related operator does not give
necessarily good results: As a rule of thumb: a good fit to the data does not mean
a good fit to the unknown solution.

The list of inverse problems other than in finance is huge. We refer for instance
to [12; 47; 61; 77; 97; 120]. Over the past 40 years, the number of publications
on inverse problems has grown rapidly. Nowadays there are several mathemati-
cal journals devoted to this topic. Especially, the subject of image processing and
non-invasively, non-destructively mapping have become very important: Making
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the unseen visible with mathematics. In the context of finance we are interested
mainly in determination of the volatility from market data which is the most im-
portant parameter in models finance instruments. Thus, we are concerned with
an inverse problem of the type (C) and, in general, all theoretical and numeri-
cal results concerning parameter identification may be applied; see for instance
[11; 15; 78; 79; 105].

There are concepts that are often confused by modellers, in particular in financial
and economic modeling: identification, simulation and extrapolation:

• Identification is building a model from the available data.
• Simulation is experimenting with the model to produce new and additional
data.
• Extrapolation is producing new data with a model beyond the reference
period of the available data.

With all these concepts we are concerned in this article,

1.2. Financial market and financial products

Here is a very short introduction to derivatives in order to fix assumptions which
are needed for our considerations; see for instance [51]. A critical discussion of the
problems with the financial products in the last years can be found in [50].

Fiancial market

We consider a financial market where assets (stocks, equities, interest rates, . . . )
are traded in continuous time and we assume that there are d risky assets. Their
prices S1, . . . , Sd are assumed to be stochastic processes. Additionally, we assume
that there is a riskless asset with price S0 . To describe the dynamics of the assets
S0, S1, . . . , Sd, we have to model the dynamics of their prices. Usually, the price-
dynamics of the risky assets is governed by a system of d stochastic differential
equations associated with Brownian motions dW 1, . . . , dW d: The dynamics of the
riskless asset S0 may be modelled by a stochastic differential equation too. If
the process is deterministic it may be modelled by a simple first order differential
equation; see the third section.

A portfolio associated to this financial market is a stochastic process πt =

(π0
t , π

1
t , . . . , π

d
t ), t ≥ 0, where πit denotes the number of shares of asset i held at

time t . Its value is

Vt(π) :=
d∑
i=0

πitS
i
t (1)

The family (Vt(π))t≥0 should be considered as a family of random variables. There-
fore the expectation EP(Vt(π)), t ≥ 0, is well defined (under reasonable assump-
tions). To analyze portfolios we have to state some conditions which have to fulfill
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the finance market from the theoretical point of view. Here is the list of these
conditions:

• There are market participants.
• There are no transactions costs.
• The market is perfectly liquid and it is possible to purchase or sell any
amount of shares or their fractions at any given time.
• Short-selling is allowed, i.e. values πit < 0 in a portfolio are allowed.
• Borrowing as well as lending is both possible at the risk-free interest rate.
• The interest rate is known.
• There are no arbitrage opportunities. Arbitrage is defined as the possibility

to do a set of trades that leaves you with no position, but money in the
pocket; see below.

In the following, we assume without further mention that these assumptions are
satisfied. Later on we shall add the assumption of completeness.

The assumption about the arbitrage-freeness is the most important one. In
terms of a portfolio this means, roughly speaking, no portfolio π with V0(π) = 0

and VT (π) ≥ 0,E(VT (π)) > 0, is possible. There is a famous expression often used
in financial literature: There is no such thing as a free lunch. From the theoretical
point of view, arbitrage-freeness ensures that a probability measure exists equivalent
to the given one associated to the processes (Sit)t≥0 with very helpful additional
properties.

Derivatives

Derivatives are financial products, such as futures, options and mortage-backed
securities. In general, these products are based on one or more underlying assets
traded in the financial market. Thus, the underlying is usually a stock, an interest
rate or an equity or a basket of these different financial objects. Here we consider
the case of one underlying and an deterministic riskless asset.

A derivative is a contract between two parties. Typically, the seller receives
money in exchange for an aggreement to purchase or sell some good or service at
some future time T > 0 called the maturity of the contract. For each time t ∈ [0, T ]

this contract has its price C(t) . The main problem is to find the price of the contract
at the initial time t = 0 . Since the payoff of the contract depends usually on the
evolution of the underlying which is unknown it is difficult to determine the price
of the contract/derivative.

An easy to understand example of an option is the European call option which
gives the holder of the option the right but not the obligation to buy a stock for
the strike price K at maturity T > 0 . Mathematically, this means that the payoff
function of the option is

(ST −K)+ := max(0, ST −K) (2)
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where St is the value of the underlying at time t ∈ [0, T ] . Usually, the price of
such an option will be determined under the assumption of a deterministic constant
interest rate r .

An European put option is the same, but this time the buyer of the option has
the right but not the obligation to sell the underlying. The payoff function of such
a contract is

(K − ST )+ := max(0,K − ST ) (3)

A call or put option that can be exercised anytime during its life [0, T ] is called an
American option. A huge amount of European and American options are observable
on the financial markets by the notion of their price round about the world.

Once we have at hand the family of stochastic variables St, t ∈ [0, T ], the price
C(t) of an European option is given by the discounted expectation with respect to
a measure Q :

C(t) = e−r(T−t)EQ((ST −K)+) (4)

Here Q is the so called risk-neutral measure which is a probability measure depend-
ing on the model for the evolution of the risky asset of the financial market with
helpful conditions. Moreover, r is the constant interest short rate for the riskless
asset.

1.3. The forward problem of option pricing

In this section we sketch the forward problem in order to prepare the formulation
of inverse problems in the following sections. Most of the aspects considered here
can be found in [36; 58].

The Black-Scholes-Merton model

Let us consider the modelling for an European option when the underlying is a stock.
Thus, we have one risky asset on our financial market. The interest short rate is
assumed to be deterministic and constant. The associated theory is called Arbitrage-
Free Option pricing and was among others developed by Black, Scholes and Merton
in the early 70s; see [21; 109]. A first pricing formula for options appears in thesis
of Bachelier (see [8]). In this model the dynamics of the underlying is governed by
a drifted Brownian motion.

As a paradigmatic example, we consider the problem of an European call option
with maturity T and strike K on the underlying asset S = (St)t≥0 whose dynamics
is described by the stochastic differential equation

dS

S
= (µ− q) dt︸ ︷︷ ︸

deterministic component

+ σ dWt︸ ︷︷ ︸
random component

(5)

Here (Wt)t≥0 denotes the standard Brownian motion/Wiener process. The stochas-
tic differential equation is called the (drifted) geometric Brownian motion. µ is the
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so called drift constant, q ≥ 0 is the rate of a continuous dividend. The increments
Wt −Ws, s < t, of the Wiener process are independent Gaussian random variables
with expectation zero and unit variance

√
t− s .

Throughout, we do not consider the modelling of dividents. This means that we
choose q = 0 in equation (5). This restriction is a technical simplification only.

Under the assumptions of our finance market (liquidity, absence of arbi-
trage and transaction costs, completeness,. . . ) the call price C = C(S, t) =

C(S, t;K,T, r, q, σ) has the probabilistic representation

C(S, t;K,T, r, σ) = exp(−r(T − t))EQt,S((ST −K)+) , (6)

where EQt,S is the expected value of the risk-neutral probability measure Q . Under
this probability measure the drift constant µ is eliminated, or in other terms: the
drift constant µ is replaced by the interest rate r . The risk-neutral probability
measure differs from so called subjective measure P in the sense that it is the one
for which the discounted process (e−r(T−t)St)t≥0 is a martingal; see [93; 101] for
more details.

An interpretation of the representation (6) would be: for each realization ω

of the market, the payoff (ST (ω) − K)+ should be brought to its present value
e−r(T−t)(ST (ω) − K)+ by means of discounting by the interest rate r . Then the
average over all the possible realizations with respect to the risk-neutral measure
gives the option price.

There are five factors that affect an option’s price: strike price, underlying stock
price, maturity time, interest rate, rate of dividend, volatility. The variance σ
of the random component in the stochastic differential equation (5) is the major
determinant. In the context of finance it is called volatility. For short, there are
three different types of volatility: implied volatility, stochastic volatility and local
volatility; see below.

Pricing formula

Let us surpress the parameter r, σ,K, T in the representation (6), i.e. C = C(S, t) .

Using Itô’s formula (see [82; 92]) the fair price C = C(S, t) for the European call
option satisfies the so called Black-Scholes equation with boundary and final values:

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2 + rS
∂C

∂S
− rC = 0 (S ∈ (0,∞), t ∈ [0, T )) , (7)

C(0, t) = 0 , lim
S→∞

(C(S, t)− S) = 0 , t ∈ (0, T ) , (8)

C(S, T ) = (S −K)+ , S > 0 . (9)
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Since the problem (7),(8),(9) can be transformed to a boundary value problem for
the heat equation – we will see this transformation later on – the solution can be
given by the following formula:

C(S, t) = SN (d+(σ))−Ke−r(T−t)N (d−(σ)) , (10)

where we use

N (a) :=

a∫
−∞

1√
2π

exp(−s
2

2
)ds , a ∈ R

d±(σ) =
ln(

S

K
) + (r ± σ2

2
)(T − t)

σ
√
T − t

, σ ≥ 0 ;

here N denotes the cumulative normal distribution function. Especially, C(S0, t0)

is the price which the emittent of an European call option should demand if the
price of the underlying asset is S0 at time t0 .

The pricing of an European put option can be done in the same way. Under the
assumptions for the finance market (see below) the so called put-call-parity holds:

P (S, t) + S = C(S, t) +Ke−r(T−t) , S > 0, t ∈ [0, T ] , (11)

where P,C is the price of the put and call, respectively. Therefore the price of a
put option can be computed from the price of a call option. This is important in
section 5 when we shall consider weak solutions.

Here are some properties which satisfy the price C = C(S, t;K,T ), P =

P (S, t;K,T ) of an European call option and a put option, respectively. For a
proof see [36].

Properties 1.1.

• 0 ≤ (S −Ke−r(T−t))+ ≤ C(S, t;K,T ) ≤ S , t ∈ [0, T ] .

• 0 ≤ (Ke−r(T−t) − S)+ ≤ P (S, t;K,T ) ≤ Ke−r(T−t) , t ∈ [0, T ] .

• C(S, t;K, ·) monotone nondecreasing.
• C(S, t, ·, T ) is monotone nonincreasing and convex.
• C(·, t;K,T ) is monotone nondecreasing and convex.
• limK→∞ C(S, t;K,T ) = 0 .

These properties are important for the completion of the market data in a concise
form. We come back to this properties in the next sections.
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Sensitivity

By showing how the model behavior responds to changes in parameter values, sen-
sitivity analysis is a useful tool in model building as well as in model evaluation and
it helps to build confidence in the model. Sensitivity analysis is used to determine
how “sensitive” a model is to changes in the value of the parameters of the model
and to changes in the structure of the model. Sensitivity analysis in finance is a
wide field; see [53; 54] for instance.

Sensitivity in finance is mainly related to the so called greeks.∗ These are quanti-
ties which measure the dependency of option prices C on parameters of the models.

Delta ∆ := ∂C
∂S is a quantity which is used as a hedging-parameter.

Gamma Γ := ∂2C
∂S2 can be used to measure the sensitivity of the option price with

respect to large variations of the price of the underlying.
Rho P := ∂C

∂r .

Vega V := ∂C
∂σ is the most important sensitivity quantity.

Theta Θ := ∂C
∂t can be used as a measure concerning the dependence of the

option price on the time to the maturity.

These greeks are defined independently of the model for the option prices. The
computation of the greeks is a very important task in using models for option
pricing. In particular, the determination of the Vega is of high interest.

1.4. Volatility

The Black-Scholes formula (10) worked well before the huge crashes 1987 and 1989,
but since then, it has been observed that market prices contradict the assumption
of constant volatility: option prices for different maturities change drastically, and
option prices for different strikes also experience significant variations. We conclude
that the Black-Scholes-Merton model does not describe the market correctly; one
calls this effect the smile. There are mainly three different strategies to remedy this
observation:

• Implied volatility • Stochastic volatility • Local volatility

Implied volatility

Here we state the question: what volatility is implied in observed option prices,
if the Black-Scholes model is a valid description of market conditions? Thus, the
implied volatility is the value of σ such that the price of a European call is equal
to the value obtained by applying the Black-Scholes formula. On the market, the
implied volatility is the volatility which use the traders, since then by the Black-
Scholes formula the price of the option can be computed. We will consider the
∗These numbers are called greeks since they are denoted by greek letters. An exceptional case is
the sensitivity with respect to the underlying: Vega is no greek letter.
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computation of the implied volatility in the next chapter.
According to the Black-Scholes model, we should expect implied volatilities for

different calls on the same underlying to be identical. But it can be observed that
this is not the case: there is a dependence on the strike price K, on the moneyness
(nearness of the stock price and the strike price) and on the remaining lifetime of
the option. This is confirmed by a series of empirical studies; see [39] for instance.

The collection of implied volatilities for different strikes and maturities is called
the implied volatility surface because if we plot that table, we can see a surface.
But this surface cannot be used for pricing options for strikes and maturities not
quoted on the market. Standard interpolation techniques may give rise to arbitrage
in the interpolated volatility surface even if there is no arbitrage in the original set.

Stochastic volatility

To overcome the smile-effect, one may extend the model. One widely used ap-
proach is to consider that the volatility also follows a stochastic diffusion process:
A concrete example of this kind is the so called Heston-modell (see [76]). Stochastic
volatility models are useful because they explain in a selfconsistent way why it is
that options with different strikes and expirations have different implied volatilities.

Local volatility

Another case is when the volatility σ is not a constant any more but rather a
deterministic function of the underlying asset and the time. These types of models
are called local volatility models. For such models, the dynamics of the underlying
asset is governed by the stochastic differential equation

dS

S
= µdt+ σ(S, t) dWt. (12)

Here σ is a function of the underlying asset and of time. Now, we are forced to use
a method for the computation of option prices where the volatility σ is a function
of the underlying and time:

σ : [0,∞)× [0, T ] −→ R .

Again, one can show that the price of an European call option whose dynamic of
the underlying is governed by the equation (12) is implicitely given as a solution of
the following system of equations:

∂C

∂t
+

1

2
σ(S, t)2S2 ∂

2C

∂S2 + rS
∂C

∂S
− rC = 0 (S ∈ (0,∞), t ∈ [0, T )) , (13)

C(0, t) = 0 , lim
S→∞

(C(S, t)− S) = 0 , t ∈ (0, T ) , (14)

C(S, T ) = (S −K)+ , S > 0 . (15)

In general, there is no closed form formula for the solution.
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Existence and logarithmic variables

Let us consider the Black-Scholes equation with boundary and final conditions and
local volatility; see (13),(14),(15). Let us fix the parameters r and the volatility
function σ in the Black-Scholes equation. Concerning the local volatility we assume∗

0 < σmin ≤ σ(x, t) ≤ σmax , x, t > 0 , whith constants σmin, σmax (16)

σ is Hölder-continuous , i.e. σ ∈ Cγ,γ/2([0,∞)× (t∗, T ])(0 < t∗ ≤ T )

with 0 < γ < 1 . (17)

Theorem 1.1 (Existence for the forward problem).
The initial-boundary value problem (13), (14), (15) posesses (under the assump-
tions (16), (17)) for each pair (K,T ) a continuous solution C(·, ·,K, T, r, σ) and we
have the growth-bound

|C(S, t;K,T, r, σ)| ≤ c1Sc2 ln(S) , S, t > 0 (c1, c2 ≥ 0 . (18)

Proof:
We set for a fixed pair (K,T )

y := ln(S/K), τ := T − t, a(y, τ) :=
1

2
σ(S, t)2 , c(y, τ) := C(S, t;K,T, r, σ) . (19)

Then we obtain from the equations (13), (14), (15)

LBS,logc :=
∂c

∂τ
− a(y, τ)

∂2c

∂y2 − (r − a(y, τ))
∂c

∂y
− rc = 0 , (20)

y ∈ R, τ ∈ (0, T ) .

c(−∞, τ) = 0 , lim
y→∞

(c(y, τ)−Key) = 0 , τ ∈ (0, T ) , (21)

c(y, 0) = K(ey − 1)+ , y ∈ R . (22)

From [57], Chapter 1, and [24], Chapter 2, we obtain a classical solution of (20),. . . ,
(22). A transformation back to the S-t–variables gives the result. For additional
details see [72].

Of course, one can say more on the quality of the solution in Theorem 1.1
(boundedness, Hölder-continuity). In general, finite difference methods are used to
solve the initial boundary value problem† problem numerically.

Should one prefer the S-t–variables or the (artificial) y-τ–variables in the anal-
ysis of the Black-Scholes-model? The answer is, it does not matter in theoretical
questions concerning existence, uniqueness and stability but it is important in nu-
merical considerations: the discretization in different variables in a uniform manner
∗For Hölder continuity consult [57; 128] for instance.
†Clearly, (15) is a condition on the end of the interval [0, T ] but by time reversing a parabolic
equation with an initial condistion results.
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has serious consequences. A uniform grid in the y-τ–variables means a very dense
grid in the S-t–variables at S = 0, a uniform grid in the S-t-variables at “S = ∞”
is essential a dense grid in the y-τ -variables at “y =∞”. Therefore for both choices
of variables numerical methods have to refine the grid appropriatly.

1.5. Inverse problems of finance

Suppose that we have a model to list the option prices as function of the parameters
already introduced:

C : (0,∞)× (0, T ) 3 (S, t) 7−→ C(S, t;K,T, r, σ) ∈ R (23)

Direct problem of finance

Given S∗, t∗, r, Tmax, a (continuous) function σ : (0,∞)×[t∗, Tmax) −→
(0,∞) and a set R ⊂ (0,∞)× [t∗, Tmax) .
Determine the operator G(σ) : R 3 (K,T ) 7−→ C(S∗, t∗;K,T, r, σ) ∈
[0,∞) .

For the evaluation of the operator G(σ) along the Black Scholes model in (K,T ) ∈ R
we have to solve the partial differential equation (13) with boundary conditions (14)
and final condition (15) or to solve the stochastic differential equation (5). This can
be done as follows:

• Finite difference and finite element methods in computing solutions of (7),
(8), (9); see [1; 72]

• Simulation methods using discrete models of the stochastic differential
equation (5) in combination with Monte Carlo methods, especially mul-
tilevel Monte Carlo methods; see for instance [75; 83; 100].

In any case, a huge amount of computational work is necessary. We will see in
section 4 and 5 that this can be avoided by a clever idea (Dupire’s equation or dual
Black-Scholes equation).

Market prices of financial derivatives such as options are directly observable. In
the context above, this means that values in the range of C (see (23)) are observable
in the market. Since the values of S and the constants K,T, r are also known from
the market the only parameter which is unknown is the volatility. According to the
formulation of the direct problem in finance using the operator G(σ) the inverse
problem should be:

Inverse problem of finance/Identifiability

Given S∗, t∗, r, Tmax and sets R, I ⊂ (0,∞)× [t∗, Tmax) .
Prove that
G(σ)(K,T ) = G(σ̃)(K,T ) for all (K,T ) ∈ R implies σ(S, t) =
σ̃(S, t) , (S, t) ∈ I .
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Clearly, the chance that identifiability can be proved, is related to the “size” and the
relation of the sets R, I . The main question is whether a given subset R is sufficient
for proving the identifiability in the set I . In particular, R and I can be the whole
set [0,∞) × [0, Tmax) . The main rule of thumb in this identifiability problem says
that for a stable reconstruction of the unknown properties of the system in a certain
subset I it is necessary to have data in a subset R which is in size and quality related
to I .

The calibration of a financial models is the process of tuning the model param-
eters to fit market data to the results of the model. Each calibration of a model
needs to choose a calibration set; see below. Obviously, the choice of the calibration
set may influence the outcome of the calibration. The calibration problem is the
inverse of the pricing problem. Instead of computing prices in a model with given
values for its parameters, one wishes to compute the values of the model parameters
that are consistent with observed prices (up to the bid-ask spread).

Inverse problem of finance/Calibration

Given S∗, t∗, r, Tmax, a set M ⊂ (0,∞) × [t∗, Tmax) and a function
v : M −→ R .
Find σ : 0,∞)× [t∗, Tmax) −→ (0,∞) such that

C(S∗, t∗;K,T, r, σ) = v(K,T ) for (K,T ) ∈M .

In the real situation, M is a discrete set and numerical methods have to take into
account this fact. The situation thatM is a singleton is a special case of calibration
when the Black-Scholes-formula is used as the pricing model: that is the case of the
implied volatility. Then we have to solve a nonlinear equation. This (numerical)
problem is discussed in the third section.

As a rule, the calibration problem is ill-posed: existence and uniqueness are in
question, a continuous dependence of the solution on the function v is in doubt.
This is a challenge for a numerical solution of the calibration problem. The remedy
is regularization.

There are three factors which have to be taken into account when we consider
a method for the solution of the calibration problem above:

(1) One has to consider the bid-ask-spread. The bid/ask spread (also known
as bid/offer or buy/sell spread) for securities (such as stocks, futures, op-
tions) is the difference between the prices quoted for an immediate sale
(ask) and an immediate purchase (bid).

(2) Noise There is always a degree of randomness in the level of stock prices
in the market. So, we have to solve the calibration problem for erroneous
data.

(3) Unmodelled dynamics We suspect that investors have shifted their
forward-looking focus to a specific point in the future beyond what we



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

94 J. Baumeister

can see in the available data.

2. An introduction into regularization of ill-posed problems

In this chapter we sketch the inverse terminology and the problems which result
from the fact that inverse problems are ill-posed in general. In the focus are aspects
of the regularization theory for ill-posed inverse problems, a very active branch of
applied mathematics. This theory is of enormous help to understand the problems
and questions atising in studying inverse problems of finance. We follow in this
section the monographs [12; 47; 97; 90].

2.1. Ill-posedness/Well-posedness

Here we explain basics of for classificying (systems of) equations whose solution do
not depend continously on the involved data.

Definition

In a complete analysis of an inverse problems – we denote the collection of methods
and results in this field by “inversion theory”- the questions of existence, uniqueness,
stability and construction of objects have to be considered.

The question of existence and uniqueness is of great importance in testing the as-
sumption behind any mathematical model. If the answer in the uniqueness question
is no, then we know that even perfect data do not contain enough information to re-
cover the physical quantity to be estimated. By questioning for stability we have to
decide whether the solution depends continuously on the data. Stability is necessary
if we want to be sure that a variation of the given data in a sufficiently small range
leads to an arbitrarily small change in the solution. This concept was introduced
by Hadamard in 1902 in connection with the study of boundary value problems for
partial differential equations and he designated unstable problems ill-posed∗ other-
wise well-posed; see [64]. The nature of inverse problems (irreversibility, causality,
unmodelled structures, . . . ) leads to ill-posedness as a characteristic property of
these problems.

The prototype of an inverse problem will be an equation of the form

F (x) = y (x ∈ X, y ∈ Y ) (24)

with a mapping F from the Banach space X into the Banach space Y ; in the
formulation above we have F (x) = A(p)x in the case (B). For such an equation,
the unknown is x and the data are usually the right-hand side y . If the stability
∗Hadamard believed – many mathematicians still do – that ill-posed problems are actually in-
correctely posed and artificial in that they would not describe physical systems. He was wrong!
Nowadays we know that such problems arise in a fundamental way in the modelling of complex
(physical) systems.
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condition is violated, the numerical solution of the inverse problem by standard
methods is difficult and often yields instability, even if the data are exact (since
any numerical method has internal errors acting like noise). Therefore, special
techniques, so called regularization methods have to be used in order to obtain a
stable approximation of the solution. The appropriate construction and analysis of
regularization methods and subsequently (or simultaneously) of numerical schemes
is the major issue in the solution of inverse problems.

When solving ill-posed problems (numerically), we must certainly expect some
difficulties, since any error acts as a perturbation on the original equation and so may
cause arbitrarily large variations in the solution. Since errors cannot be completely
avoided, there may be a range of plausible solutions and we have to find out a
reasonable solution. These ambiguities in the solution of inverse problems which
are unstable can be reduced by incorporating some sort of a-priori information
that limits the class of allowable solutions. By a-priori information we mean an
information which has been obtained independently of the observed values of the
data. This a-priori information may be given as a deterministic or a statistical
information. We shall restrict ourselves mainly to deterministic considerations,
only in the last section we strive the case of the stochastic regularization.

As we already have seen, an inverse problem may be formulated as the prob-
lem to solve an equation governed by an operator, let’s say A . Ill-posedness tells
us that the inverse A−1 does not exist and/or is not continuous. The remedy is
regularization. The idea of the regularization theory is to replace the inverse of
such an operator by a one-parameter family of continuous operators and to choose
the “best approximation” in this family by a clever strategy. Such a regularization
strategy uses two main ingredients for solving an inverse problem in a stable way:
a-priori information and signal to noise ratio (SNR). The signal to noise ratio is a
quantity which describes the relation of the size of the true solution (signal, image,
. . . ) to the size of the noise contained in the measured quantity (right-hand side of
the equation, . . . ).

Tutorial example: numerical differentiation

Let us present a first example of an ill-posed problem: (numerical) differentiation
of a function. The differentiation of a (measured) function is involved in many
inverse problems. In a mechanical system one may ask for hidden forces and since
Newton’s law relates forces to velocities and accelerations one has to differentiate
observed data when we want to compute the forces. Moreover, one can see that
numerical differentiation is implicitly present in the problem of X-ray tomography,
in parameter identification, in the determination of heat flow, and edge detection.
We will see that this problem is important too in finding the volatility from market
data and of sensitivities (greeks) for option prices.



October 18, 2012 15:8 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

96 J. Baumeister

Let us consider the problem of finding the integral of a given function. This can
be done analytically and numerically in a very stable way. When this problem is
considered as a direct (forward) problem then to differentiate a given function is
the related inverse problem. A mathematical description is given as follows:

Direct Problem: With a continuous function x : [0, 1] −→ R compute

y(t) :=

∫ t

0

x(s)ds , t ∈ [0, 1] .

Inverse Problem: Given a differentiable function y : [0, 1] −→ R
determine x := y′.

We are interested in the inverse problem. Since y should be considered as the result
of measurements the data y are noisy and we may not expect that the noisy data
ỹ of y is presented by a continuously differentiable function. Therefore, the inverse
problem has no obvious solution, especially when ỹ(0) �= 0 . (In practice we simply
subtract ỹ(0) from ỹ .) Moreover, the problem should not be formulated in the space
of continuous functions since perturbations due to noise lead to functions which are
not continuous. But the analysis and the message of the results is not very different
from the following in the more elementary case of continuous perturbations.

Suppose that instead of the continuous function y : [0, 1] −→ R a “measured”
function ỹ denoted by yε : [0, 1] −→ R is available only. We assume:

|yε(t)− y(t)| ≤ ε for all t ∈ [0, 1] .

Clearly, ε is the level of noise in the measurement of yε . It is reasonable to try to
reconstruct the derivative x := y′ of y at τ ∈ (0, 1) by

xε,h(τ) := Dhy
ε(τ) :=

yε(τ + h)− yε(τ)

h

where the discretization parameter h �= 0 has to be chosen such that τ + h ∈ [0, 1] .

We obtain

|xε,h(τ)− x(τ)| ≤
∣∣y(τ + h)− y(τ)

h
− x(τ)

∣∣
+

∣∣(yε − y)(τ + h)− (yε − y)(τ)

h

∣∣ .
Under the assumption that the unknown solution x is continuously differentiable
we have

y(τ + h)− y(τ)

h
− x(τ) =

1

2
y′′(η)h for some η ∈ [0, 1] .

When we know a bound (a priori bound)

|x′(t)| ≤ E for all t ∈ [0, 1] , (25)

then the estimate

|xε,h(τ)− x(τ)| ≤ 1

2
hE + 2

ε

h
(26)
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follows. Now it is clear that the best what we can do is to balance the terms on the
right hand side in (26), i.e. to choose the quantity h such that both terms of the
right hand side in (26) are equal. This is done by the choice

h := hopt := 2

√
ε

E
. (27)

This gives

|xε,h(ε)(τ)− x(τ)| ≤ 2
√
E ε . (28)

The Diagram 1 which is a graphical presentation of the bound (26) is typical for
approximations in ill-posed problems: there are two terms in the error estimate, a
term due to approximation of the inverse mapping and a term due to measurement
error. The balance of these two terms gives an “optimal” reconstruction result.
Thus, in contrast to well-posed problems, it is not the best to discretize finer and
finer. Moreover, the bound in (28) shows that halving the (measurement) error ε
does not lead to a halving of the absolute error in the result (as it is usually the
case in well posed problems). One may consider ill-posed problems under the motto
“When the imprecise is preciser”.∗

h E

ε

h

h

error bound

Figure 1. Error balance

The requirement (25) describes an information concerning the solution we want
to find. Therefore this information is called a priori information/a priori knowledge.
The quantity

SNR :=
E

ε

may be considered as the signal to noise ratio. As a so called merit function we have
used the norm of the deviation of the approximation from the (unknown) solution.
∗This is the title of [96].
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The regularization strategy to balance the merit function with respect to the a
priori information and the signal to noise ratio SNR is called an a priori strategy
since it can be done without calculating some approximations.

Numerical differentiation is studied in a huge amount of papers. See for instance
[4; 5; 70; 107; 114; 118].

Numerical methods: inverse crime

Often, tests of the exact or approximate theoretical models employed in inversion
schemes are made with synthetic data. Generating the latter also requires a theo-
retical model which, mathematically speaking, can be identical to, or different from,
the one employed in the inversion scheme. In [34] the authors coin the expression
inverse crime to denote the act of employing the same model to generate, as well
as to invert, synthetic data. Moreover, they warn against committing the inverse
crime, in order to avoid trivial inversion and go on to state: it is crucial that the
synthetic data be obtained by a forward solver which has no connection to the in-
verse solver. Shortly: The term “inverse crime” is saying that sampling the data in
the forward problem and solving the inverse problem are done in the same manner.
Inverse crime arises when

• the numerically produced simulated data is produced by the same model
that is used to invert the data;
• the discretization in the numerical simulation is the same as the one used
in the inversion.

When inverse crimes are not avoided a numerical algorithm may lead to unreallisti-
cally optimistic results. Note that inverse crimes are not possible in situations where
actual real-world measured data are used, they are only a problem of computational
simulation studies. In the context of mathfinance it is important that there is huge
amount of numerical methods to solve the forward problem which makes it possible
to choose different methods in the solution of the forward and inverse problems; see
[99; 100; 124] for numerical methods.

Let us revisite the problem of numerical differentiation. In order to check a
method of numerical differention which uses synthetic data of y on a grid 0 = t0 <

t1 < · · · < tN = 1 we can procede as follows: use a finer grid 0 = s0 < s1 < · · · <
sM = 1 – M should be not a multiple of N – and interpolate the data on the finer
grid such that data are available on the coarser grid and add a noise to the data
obtained. Then apply the method to the noisy data.

2.2. Regularization

Here we discuss the methods which are used to solve an ill-posed problem in a
stable way. We restrict ourselves to the linear case. Later on we shall show how the
following considerations may be extended to the nonlinear case.
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The linear equation

Let us introduce some notations from functional analysis; for a detailed introduction
the reader may consult [6]. Let X,Y be Banach spaces, i.e. complete normed vector
spaces over the scalar field K ∈ {R,C}; the norm in these spaces is denoted by ‖·‖X
and ‖ · ‖Y , respectively. For every linear and bounded mapping A from the Banach
space X into Y we use:

ran(A) := {y ∈ Y |y = Ax for some x ∈ X} is the range of A,
ker(A) := {x ∈ X|Ax = θ} is the null space of A,
σ(A) is the spectrum of A,
ρ(A) := K\σ(A) is the resolvent set of A,
rad(A) := supλ∈σ(A) |λ| is the spectral radius of A.

The adjoint operator of A is denoted by A∗. Moreover, if S ⊂ X, then A|S means
A restricted to S .

Let us consider the equation

Ax = y (x ∈ X, y ∈ Y ) (29)

where A is a linear and continuous mapping from the Banach space X into Y . We
consider the equation (29) under the following assumptions:

(A0) X and Y are Hilbert spaces with inner products 〈·, ·〉X
and 〈·, ·〉Y .

(A1) ran(A) is dense in Y but not closed

Notice that condition (A1) indicates that ran(A) has infinite dimension. Moreover,
it has the consequence that the equation (29) is ill-posed due to the lack of continuity
of the inverse of A even when it exists.

Clearly, when y /∈ ran(A) the equation (29) has no solution. Then, instead of
(29) we may consider the so called normal equation (see below):

A∗Ax = A∗y (x ∈ X, y ∈ Y ) (30)

A solution x of equation (30) is called a least squares solution or a normal solution
of (29). A normal solution of (29) exists for each y ∈ ran(A) + ran(A)⊥ where
ran(A)⊥ is the orthogonal space of ran(A) with respect to the inner product 〈·, ·〉Y .
There exists no normal solution of (29) for y /∈ ran(A) + ran(A)⊥ .

Since for every y0 ∈ Y the set {x ∈ X |A∗Ax∗ = A∗y0} is convex and closed the
following definition makes sense:

Definition 2.1. Consider y0 ∈ ran(A) + ran(A)⊥ . Then x0,+ with

‖x0,+‖X = min{‖x∗‖X |A∗Ax∗ = A∗y0} (31)

is called the minimal least squares solution of the equation Ax = y0 . �
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It can be shown that x0,+ is the unique solution to the equation (30) in the closure of
ran(A). As a consequence, we may define the (Moore-Penrose-) pseudo-inverse
A† :

A† : ran(A) + ran(A)⊥ � y0 �−→ x0,+ ∈ X .

One can show that A† is a linear operator. Notice that A† is not bounded under
the condition (A1).

A comprehensive presentation of pseudoinverses of linear operators may be found
in [59].

Regularization scheme

The key idea to solve an ill-posed linear equation (29) in a stable way is to find a
good approximationR for the pseudo-inverse operatorA† ; R should be a continuous
operator from Y nachX . Since ran(A) is not closed we cannot require R|ran(A) = A†

since this would imply that A† is continuous.

Definition 2.2. A family (Rh)h>0 of linear bounded operators from Y into X is
called a regularizing family for A if

lim
h↓0

RhAx = x for all x ∈ X . (32)

�

Obviously, a regularizing family (Rh)h>0 is a family which should approximate a
left inverse of A . Since A† is an unbounded operator RhA does not converge to the
identity I in the operator norm (by the theorem of Banach–Steinhaus) as h goes to
zero. Moreover, the family (‖Rh‖)h>0 cannot be bounded.∗

Suppose that x0, y0, yε are given as follows:

Ax0 = y0 , ‖y0 − yδ‖Y ≤ δ . (33)

The interpretation is that x0 is an exact solution of the equation (29) with right
hand side y0 and yδ is an approximation (measurement, perturbation,. . . ) of y0 .
With a regularizing family (Rh)h>0 for A we define

xδ,h := Rhy
δ , xδ,0 := Rhy

0 , h > 0 . (34)

We want to find the parameter h such that Rhyδ deals with the noise δ in an optimal
fashion. Since the reconstruction xδ,h − x0 error can be estimated as follows

‖xδ,h − x0‖X ≤ ‖Rhyδ −Rhy
0‖X + ‖RhAx0 − x0‖X

≤ δ‖Rh‖+ ‖(RhA− I)x0‖X (35)

we observe that two competing effects enter (35). The first one is the ill-posedness
effect: as h goes to 0 the norm ‖Rh‖ tends to ∞ ; so h should not be chosen too
∗Any operator norm is denoted by ‖ · ‖ .
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small. The second one is the regularizing effect: as h increases, RhA becomes a less
accurate approximation of the identity; therefore h should not be chosen too large.
Thus, we have to balance the two competing terms in (35) by a clever choice of the
parameter h (see (27)). Of course, one should try to choose h = h(δ) such that

δ‖Rh(δ)‖ = ‖(Rh(δ)A− I)x0‖X . (36)

This choice is in practice not possible for two reasons. First, the term ‖(RhA −
I)x0‖X is not known since x0 is unknown. Second, the equation (36), even when
the noice level is known, is not solvable exactly, in general. Usually, we estimate
the two competing terms in (35) as follows

δ‖Rh(δ)‖ ≤ δc1(h(δ)) , ‖(Rh(δ)A− I)x0‖X ≤ c2(δ, h(δ);x0) (37)

and try to find h = h(δ) such that

δc1(h(δ)) ≈ c2(δ, h(δ(h)), x0) . (38)

Then

‖xδ,h(δ) − x0‖X ≈ 2δc1(h(δ)) . (39)

and we can check whether we may conclude that limδ↓0 x
δ,h(δ) = x0 holds.

Definition 2.3. Let (Rh)h>0 be a regularizing family for A . This family is called
convergent for y0 ∈ ran(A) if there exists a parameter choice strategy h = h(δ)

such that

lim
h↓0

Rh(δ)y
δ = x0,+ (40)

where x0,+ is the minimal least squares solution of Ax = y0 . �

Filtering

A convenient method to construct a regularizing family is given by filtering when
the operator A is compact. A compact operator is a linear continuous operator
which admitts a singular system (ej , f j , σj)j∈N . This means:

(1) (ej)j∈N, (f
j , σj)j∈N is an orthonormal basis in X and Y, respectively

(2) Aej = σjf
j , A∗f j = σje

j , j ∈ N
(3) 0 < σj , j ∈ N, limj σj = 0

With a singular system we have a singular value decomposition of A:

Ax =
∞∑
j=1

σj〈x, ej〉Xf j , x ∈ X . (41)

The adjoint A∗ of A is given by

A∗y =
∞∑
j=1

σj〈y, f j〉Y ej , y ∈ Y . (42)
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The spectrum of the selfadjoint operators A∗A,AA∗ consists of eigenvalues σ2
j , j ∈

N . The pseudo-inverse is formally given by

A†y =
∞∑
j=1

σ−1
j 〈y, f

j〉Y ej , y ∈ ran + ran(A)⊥ . (43)

Since the series above does not converge for every y ∈ Y (due to Picard’s lemma)
we have to introduce a filter for the small singular values. This can be done by
choosing a mapping q : (0,∞) × (0, σ1] −→ R which damps out the contribution
of small singular values in the series (43). With such a filter function q we define a
potential candidate for a regularizing family in the following way:

Rhy :=
∞∑
j=1

q(h, σ)σ−1
j 〈y, f

j〉Y ej , y ∈ Y . (44)

The conditions which the filter q should satisfy can be read off from the following
estimates:

‖Rhy‖2X =
∞∑
j=1

|q(h, σj)|2σ−2
j |〈y, f

j〉Y |2

≤ sup
σ∈(0,σ1]

|q(h, σ)σ−1|2
∞∑
j=1

|〈y, f j〉Y |2

= sup
σ∈(0,σ1]

|q(h, σ)σ−1|2‖y‖2Y (45)

‖RhAx− x‖2X =
∞∑
j=1

|q(h, σj)− 1|2|〈x, ej〉X |2 . (46)

Theorem 2.1. Let A : X −→ Y be an injective compact operator with singular
system (ej , f j , σj)j∈N and let q : (0,∞) × (0, σ1] −→ R be a filter function which
satisfies the following conditions:

F1) |q(t, σ)| ≤ 1 for all t > 0, σ ∈ (0, σ1] .

F2) For all t > 0 there exists a constant c(t) such that for all σ ∈ (0, σ1] we
have |q(t, σ)| ≤ c(t)σ .

F3) limt→0 q(t, σ) = 1 for every σ ∈ (0, σ1] .

Then the family (Rh)h>0 defined in (44) is a regularizing family. Additionally, we
have with xδ,h := Rhy

δ

‖xδ,h − x0‖2X ≤ ‖x0‖2X sup
σ∈(0,σ1]

|q(h, σ)− 1|2 + δ2c(h)2 . (47)

Proof:
With the condition F2) we conclude from (45) ‖Rh‖ ≤ c(h), h > 0 . Let x ∈ X and
let ε > 0 . Then there exists N ∈ N with

∞∑
j=N+1

|〈x, ej〉X |2 < ε2 .
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According to the condition F3) we can choose a constant t0 > 0 such that

|q(t, σj)− 1|2 < ε2 for all j = 1, . . . , N and 0 < t ≤ t0 .

With the condition F1) we obtain for h ∈ (0, t0]

‖RhAx− x‖2X =
N∑
j=1

|q(h, σj)− 1|2|〈x, ej〉|2X +
∞∑

j=N+1

|q(h, σj)− 1|2|〈x, ej〉X |2

≤ ε2
N∑
j=1

|〈x, ej〉X |2 + 4ε2 ≤ ε2‖x‖2X + 4ε2 .

This shows limh→0RhAx = x . The estimate (47) follows immediately from (35),
(45), (46). �

Truncation:
We define

q(t, σ) :=

{
1 , σ2 ≥ t
0 , σ2 < t

.

This is a filter which truncates the contribution of singular values larger than the
threshold parameter

√
t . Here we can verify c(t) = 1/

√
t .

The classical method of Tikhonov

Consider the filtering with

q(t, σ) :=
σ2

σ2 + t
, t ≥ 0 .

Here we have c(t) = 1/(2
√
t) .∗ The associated regularization family

Rhy :=
∞∑
j=1

σ2
j

σ2
j + h

σ−1
j 〈y, f

j〉Y ej , y ∈ Y , h > 0,

has – thanks to the assumption (A1) – an alternative representation:

Rhy = (A∗A+ hI)−1A∗y , y ∈ Y , h > 0 . (48)

This leads the classical method of Tikhonov as follows: we consider the normal
equation

A∗Ax = A∗y (x ∈ X, y ∈ Y ) (49)

and regularize this equation in the following way

(A∗A+ hI)x = A∗y (x ∈ X, y ∈ Y, h > 0) (50)

The equation (50) is a necessary and sufficient condition for a solution xopt of the
optimization problem
∗To simplify some expressions we do not always use the best possible constants.
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Minimize Jh(x) := ‖Ax− y‖2Y + h‖x‖2X subject to x ∈ X

since the functional Jh is convex. The solution of this optimization problem – Jh
is called the Tikhonov functional – is given by Rhy; see (48). The advantage of the
formulation as an optimization problem consists in the fact that now we may omit
the assumption that A is injective and compact.

Remark 2.4. In the last section we have considered the regularization of the pro-
cess of numerical differentiation. The procedure is different from filtering and is
called regularization by discretization.

Regularization by iteration

In order to solve the equation (49) we may use the idea of a fixed point iteration
applied to

x = x− ω(A∗Ax−A∗y) (x ∈ X, y ∈ Y ) (51)

This leads to the iteration

xn+1 = xn − ω(A∗Axn −A∗y) , n ∈ N0 . (52)

Since

xn+1 =
n∑
k=0

(I − ωA∗A)x+
n−1∑
j=0

ω(I − ωA∗A)A∗Ay , n ∈ N0 , (53)

ω should be chosen such that rad(I − ωA∗A) is smaller than one. This is the case
when 0 < ω < ‖A‖2 . Thus the regularization operator Rh is to be chosen as follows:

Rhy =

b1/hc∑
k=0

(I − ωA∗A)x+

b1/hc−1∑
j=0

ω(I − ωA∗A)A∗Ay , h > 0 , (54)

It is obvious to translate the formula (54) to the case when A is a compact operator.

What concerns linear equations, iterative methods for approximating the gen-
eralized inverse (i.e. the least square solution of minimum norm) are based on
algorithms for solving fixed point equations related to the normal equation (see
[47; 59; 60] for corresponding definitions). The regularization character of these
methods (in the case of noisy data) is related to an early termination of the itera-
tion, and a corresponding stopping rule is determined by an a posteriori evaluation
of the iteration residual.

Standard iterative methods for the solution of ill-posed equations are considered
in [14; 13; 10; 68; 90; 122].
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Statistical regularization

The philosophy behind the statistical inversion methods is to recast the inverse
problem in the form of statistical quest for information. We have directly observable
quantities and others that cannot be observed. In inverse problems, some of the
unobservable quantities are of primary interest. These quantities depend on each
other through models. The objective of statistical inversion theory is to extract
information and assess the uncertainty about the variables based on all available
knowledge of the measurement process as well as information and models of the
unknowns that are available prior to the measurement.

The statistical inversion approach is based on the following principles: All vari-
ables included in the model are modelled as random variables, a priori information
is described by probability distributions, regularization is done by introducing some
requirements for these probabilty distributions in the space of solutions.

Statistical regularization is a rather new subject in solving inverse problems.
For more information see [89].

2.3. Calibration

In this section we describe the aspects of calibration and their connection to inverse
modelling. Moreover, we describe the least squares method to calibrate models
using ideas from elementary optimization methods.

Applied mathematics is full of models which describe phenomena observed in
real problems in mathematical terms. As we know, such models contain some
parameters which have to be fitted to the reality. Model calibration consists of
changing values of model input parameters in an attempt to match field conditions
within some acceptable criteria.

Introduction

When is calibration needed? In our inverse methodology, this is the case mainly for
problems of the type (C). In general, uncertainty of the parameters which govern
the model under consideration leads the fact that the predictive validity of the
model is in question. Thus, calibration is an approach to identify/estimate/adjust
the parameters of the model such that behavior of the model is consistent with
the real data of the process described by the model. As we shall see, in finance
calibration is mainly devoted to the adjustment of the volatility such that pricing
is consistent with the market data.

Consider again the problem (C) in Section 1.1:

Given x ∈ X and y ∈ Y, find p ∈ Pad such that A(p)x = y .

Here A(p) is assumed to operate linearly on x . Various problems may be extracted
from the formulation.
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Identifiability Determines the knowledge of y and x the parameter in an unique
way or are there are “many solutions”?

Stability Is the problem to determine p well-posed or ill-posed?
Erroroneous data How can erroneous data y, x be handled by a clever solution

concept?
Regularization How can a computation scheme be designed to avoid effects of

ill-posedness?

As a rule, to obtain identifiability the “dimensionality” of the data x, y have
to be of the same size as the “dimensionality” of p . Additionally, some structural
assumptions have to be satisfied as we can see from the elementary observation that
x = θ, y = θ does not allow to determine p . We collect such structural assumptions
by saying that the information content of the “experiment” determined by x, y should
be rich enough.

In general, even when identifiability holds parameter identification problems
are ill-posed when they are considered in the topology which is appropriate to de-
scribe the experiment (process of measurement,. . . ). This leads then to the question
whether and how the identification of p from erroneous data x̃, ỹ is possible. We
assume that the “input” x is an exact quantity and given. Then we set

F (p) := A(p)x , p ∈ Pad ,

and we assume that the equation F (p) = y for the right hand side y = y0 has a
solution:

F (p0) = y0 (p0 ∈ Pad) (55)

Moreover, we assume that the level of error in the data y0 is known:

‖y0 − yδ‖Y ≤ δ (δ ≥ 0) (56)

Now the solution concept has to be adjusted: instead of the equation F (p) = y we
should consider a defect–type formulation. We consider the classical least squares
formulation, see below.

Parameter identification are of great importance in applications. According to
te type of application different solution concepts and numerical algorithm werde
developed: in mechanics and control theory online adaptation schemes for the pa-
rameter (see [15; 105] for instance), in biology and reaction kinetics compartmental
analysis. Unfortunately, the estimation of the volatility in finance does not fit into
these already developed methods. This is why in finance new identifiability results
have to be developed.

Least squares formulation

Here is the formulation as a defect-minimization problem:

(DMin) Minimize ‖F (p)− yδ‖2Y subject to p ∈ Pad
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Unfortunately, ill-posedness is not avoided and regularization has to be introduced.
This may be done by the idea of Tikhonov-regularization:

(TMin) Minimize Jh,δ := ‖F (p) − yδ‖2Y + h‖p − p∗‖2P subject to
p ∈ Pad

Here it is assumed that the set Pad of admissible parameters is a subset of a Hilbert
space P , h > 0 is a regularization parameter scaling the penalty term ‖p− p∗‖2 , p∗
should be considered as an initial guess for the solution p0 of the problem.

Since the mapping F may may be nonlinear the problem (DMin) nor the problem
(TMin) can be studied as a convex optimization problem. As a consequence, these
optimization problems may have many local minima. In the formulation (TMin)
the introduction of the term h‖p − p∗‖2P is an attempt to localize the problem to
the neighborhood of p∗ . Additional, the nonconvexity has the consequence that the
existence of a solution is in doubt. As we know, compactness of the level sets and
the appropriate continuity of the functional is sufficient for existence. We collect
such conditions:∗

(L1) The admissible subset Pad is nonempty, closed and convex.
(L2) The level sets Nc := {p ∈ Pad|‖F (p)− y0‖2Y ≤ c}, c ≥ 0,

are weakly compact.

Theorem 2.2. Under the assumptions (L1), (L2) the problem (TMin) has a solu-
tion ph,δ ∈ Pad for each h > 0 .

Proof:
Consider a positive sequence (ηn)n∈N with limn ηn = 0 . Then there exist for each
n ∈ N a pn ∈ Pad with Jh,δ(pn) ≤ inf{Jh,δ(p)|p ∈ Pad}+ ηn . Due to

‖F (pn)− yδ‖2Y + h‖pn − p∗‖2 ≤ inf{Jh,δ(p)|p ∈ Pad}+ ηn , n ∈ N,

the sequences (‖F (pn) − yδ‖2Y )n∈N, (‖pn − p∗‖2)n∈N are bounded in Y and X, re-
spectively. Since in each Hilbert space a bounded sequence has a weakly convergent
subsequence we obtain a subsequence (pnk)k∈N of (pn)n∈N and ph,δ with ph,δ =

weak − limk p
nk . Since Pad and the level sets Nc are weakly closed (see (L1),(L2)

in connection with (56)) we get ph,δ ∈ Pad and ‖F (ph,δ) − yδ‖2Y + h‖ph,δ − p∗‖2 ≤
inf{Jh,δ(p)|p ∈ Pad} . Here we have used the fact a norm in a Hilbert space is weakly
lower continuous. Now, it is clear that ph,δ is a solution of (TMin). �

Now we want to use the optimization problem (TMin) as a regularization method,
i.e. we ask whether the sequence (phn,δn)n∈N is convergent when the sequence of the
regularization parameter (hn)n∈N and the error level (δn)n∈N converges to zero in
an appropriate way. Since we are not sure that a solution in Theorem 2.2 is unique
we have to define an enlarged solution concept.
∗A subset C of a Hilbert space U with inner product 〈·, ·〉U is weakly closed if every sequence
(uk)k∈N in C converges weakly to an element u ∈ C, i.e. limk〈uk, v〉U = 〈u, v〉U for every v ∈ U .
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Definition 2.5. p+ ∈ Pad is a p∗-minimum-norm-solution of the equation
F (p) = y0 if we have

‖p+ − p∗‖P = min{‖p− p∗‖P |p ∈ Pad, F (p) = y0}

Notice that the set {p ∈ Pad|F (p) = y0} is a nonempty set by (55). Therefore,
there exist p∗-minimum-norm-solution; the argumentation is similar to the proof of
Theorem 2.2.

The next result shows that by the optimization of the Tikhonov-functional in
(TMin) leads to a method to construct a p∗-minimum-norm-solution. In this result
we become aquainted with the key-idea in regularization: choice of an appropriate
regularization parameter.

Theorem 2.3. Suppose that the assumptions (L1),(L2) are satisfied. Moreover let

(δn)n∈N, (hn)n∈N be a sequence with lim
n
δn = lim

n
hn = lim

n

δ2n
hn

= 0 . (57)

Then the associated sequence (pn)n∈N with pn := pδn,ηn contains a subsequence
which converges to a p∗-minimum-norm-solution. If the p∗-minimum-norm-solution
is unique then the sequence (pn)n∈N converges to the p∗-minimum-norm-solution.

Proof:
Let p+ be a p∗-minimum-norm-solution. Let pn := phn,δn be a solution according
to Theorem 2.2. Then

Jhn,δn(p
n) ≤ Jhn,δn(p

+) ≤ δ2n + hn‖p+ − p∗‖2P (58)

and we obtain limn F (p
n) = y0, weak − limn F (p

n) = y0 . Due to the assumption

limn
δ2n
hn

= 0 (see (57)) we get lim supn ‖pn−p∗‖ ≤ ‖p+−p∗‖P . Now, since (pn)n∈N

is bounded there exists a weakly convergent subsequence (pnk)k∈N with p := weak−
limk p

nk ∈ Pad (see assumption (L1)). Due to (L2) we have F (p) = y0 . This implies

‖p− p∗‖P ≤ lim inf
k

‖pnk − p∗‖P ≤ lim sup
k

‖pnk − p∗‖P ≤ ‖p+ − p∗‖P . (59)

Therefore p is a p∗-minimum-norm-solution too and we have due to (59) limk p
nk =

p .

The additional assertion follows by a standard argumentation. �

Under additional assumptions convergence rates for the sequence (phn,δn)n∈N

can be proved. but in general, such assumptions are difficult to realize.

A more recent development is devoted to the use of Banach spaces instead of
Hilbert spaces. This has in application many nice properties but the analysis is
much more difficult; see [85; 119; 48] for the treatment of ill-posed problems in
Banach spaces.
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2.4. Data assimilation

A loose definition of data assimilation is:

Estimation and prediction of an unknown, true state by combining ob-
servations and system dynamics (model output).

This definition shows clearly, that algorithms for data assimilation have to consider
the problems inherent in inverse problems. The most important application is nu-
merical weather prediction. Other applications are navigation, geosciences, medical
imaging. In finance there are just a few papers on this subject, a treatment of
problems in finance by applying the following approach would be formidable. For
a rather complete overview concerning data assimilation algorithms see the mono-
graph [86].

Mostly, data assimilation algorithms are based on stochastical properties of the
fields under consideration and bring together Bayesian analysis and stochastic reg-
ularization. We prefer here the deterministic approach to handle data assimilation
algorithms. To study data assimilation from a rigorous mathematical point of view
one has to combine various themes of ill-posednes and regularization. This is why
this subject is placed in this chapter. A rather new sight on these algorithms is to
study data assimilation algorithms as iterative or cycled schemes. We sketch this
approach and we follow mainly [108]; see also [56; 55; 115]. Notice that we consider
the subject in a linear context.

Let’s start with an infinite partition

0 ≤ t0 < t1 < · · · < tk <

of the real (time) axis where data are provided. The data are given by a measure-
ment operator

H : X −→ Y (60)

where X,Y are infinite dimensional Hilbert spaces endowed with the norm ‖ · ‖X
and ‖ · ‖Y respectively. The state of the system at time tk is denoted by xk . By the
measurement operator we obtain data

yk = yktrue + ykδ = Hxktrue + ykδ , k ∈ N . (61)

For the most cases, H is a linear compact operator. Thus, H cannot have a continu-
ous inverse and we need regularization for handling the equation Hx = y . Stability
is reconstructed by Tikhonov regularization:

Minimize J(x) := ‖yk −Hxkb‖2Y + λ‖x− xkb |2X subject to x ∈ X (62)

Here xkb is the background state at time tk . Let us denote by xka the minimizer of
the functional J .

Now, a model for the process comes in. We assume that the transition from tk
to tk+1 in the states is modeled by a linear model operator Mk+1,k:

xk+1
b =Mk+1,kx

k
a . (63)
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The “iteration steps” (62), (63) define the cycled Tikhonov regularization. The
analysis of this type of regularization has to consider the interplay of two parts:
setup of the Tikhonov regularization and study of the discrete dynamical system
xk+1 :=Mk+1,kx

k . Spectral theory is a main tool in the analysis.

3. Elementary numerical approaches

In this section we consider methods to find the implied volatility and to complete
market data. The common characteristic of these problems is that the reconstructed
quantities depend sensitive on the data. The considerations are of elementary nature
and the results can be considered more or less as recipes. But nevertheless, already
these elementary problems lead to very interesting mathematical considerations. In
the following chapters we shall consider some of these problems more on a theoretical
basis.

3.1. Computation of the implied volatility

The goal

The Black-Scholes model assumes that the volatility is constant across strikes and
maturity dates. However as we know, in the world of options this is a very un-
realistic assumption: option prices for different maturities change drastically, and
option prices for different strikes also experience significant variations. For Euro-
pean options under the Black-Scholes model, calculation of the implied volatility
seems to be a straightforward exercise since a closed-form presentation exists for
the price. However, this closed-form allows not an analytical computation of the
implied volatility. In this section we consider the numerical problem to compute
the implied volatilities and the implied volatility surface.

Almost always, the inversion of the Black-Scholes formula to get the implied
volatility is done with some sort of solver method, for example, the Newton-Raphson
method; see the next subsection. These methods work very well for a single option,
usually producing very accurate estimates in negligible computing time. However,
frequently one has to invert millions or hundreds of thousands of options at the same
time. In these situations, a solver method might prove to be slow, especially for
real-time applications. The need to overcome the slow-speed problem in the solver
methods have led researchers to consider an alternative to the solver methods,
namely, analytical computable approximations. Most of the approximate closed-
form inversion methods perform some Taylor expansion to the Black-Scholes formula
and then analytically invert the expansion to obtain a formula for the implied
volatility. The usual assumption being made to justify the Taylor expansion is
that the strike price is close to the forward price. Because of the local nature of
the Taylor expansion, these methods work relatively well for very near-the-money
options. We sketch one such analytical approximation of the implied volatility.
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Results for the analytical inversion in order to get the implied volatility can be
found in [31; 35; 88].

Let us first define the normalized call option price c(·; ·) by

C(S; t;K,T, r, σ) = S c(ln(Ser(T−t)/K), σ
√
T − t) .

The expression for the normalized call price c(x, v) is given by

c(x; v) = N
(x
v
+
v

2

)
− e−xN

(x
v
− v

2

)
. (64)

The variable x is the logarithmic forward-moneyness and we shall call v the inte-
grated volatility. x, v are given as follows:

x = ln(Ser(T−t)/K) = ln(F/K) , v = σ
√
T − t, (65)

where F = Ser(T−t) is the forward price. We call equation (64) the dimension-
less Black-Scholes formula because all the three quantities entering the equation
are dimensionless. It clearly states that the Black-Scholes formula is essentially a
relation between three dimensionless quantities, namely the normalized price c, the
integrated volatility v and the moneyness x.

The identity (64) implicitly gives v as a function of c and x and is our starting
point for the approximate inversion. Given observed values of S, t,K, T, r and an
option price C, we first calculate p according to p = C/S and x according to equation
(65) and then use an approximate formula to get v from the equation p = c(x, v) .

The implied volatility σ can then be obtained by dividing v by
√
T − t . When the

option is at-the-money-forward, that is, when x = 0, the inversion for v(x, c) = p

can be done explicitly as follows:∗

v(0, p) =
√
8 erf−1(p) =

√
2π p+O(p3) (66)

We see that v(0, p) is almost linear in the normalized call price p.†

Newton’s method

As a computational method to compute the implied volatility we present the clas-
sical Newton-procedure. Let us recall the Black-Scholes-formula for the price of an
European call-option.

C(S, t;K, τ, r, σ) := SN (d+(σ)) −Ke−rτN (d−(σ)) , (67)

where

d±(σ) := d± + (σ, S,K, τ, r) :=
ln(

S

K
) + (r ± σ2

2
)τ

σ
√
τ

,

and N is the distribution function of the standard normal distribution. Notice that
we have used the remaining time τ as a “new” variable. In the following we use the
∗erf−1 is the inverse of the so called error-function N .
†We use here and in the following the Landau-symbols O(·), o(·) .
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identity

d−(σ) = d+(σ) − σ
√
τ .

The procedure for the “daily” computation of the implied volatility of an under-
lying is as follows:

Given at the time t∗ the price S∗ of the underlying, the constant interest
rate r, a european call option with strike price K, maturity T and term
to maturity τ .
Compute the volatility σ := σimp(K, τ ) by solving the equation

C(S∗, t∗;K, τ, r, σ) = v (68)

where v := Cmarket is the observed market-price of the option.

To abbreviate the notation, we set

f(σ) := C(S∗, t∗;K, τ, r, σ) . (69)

As a result, we have to compute a solution of

f(σ)− v = 0 (70)

There is no closed-form solution but we can solve it iteratively. Since f is differ-
entiable, we can apply each variant of the Newton method. The classical Newton-
procedure is the following one:

Algorithm 3.1 Computation of the implied volatility by Newton’s method
IN Price S∗ of the underlying at time t∗, strike price K, term to maturity τ,

interest rate r, market price v .
Initial guess σ0 for the implied volatility, accuracy bound ε > 0 for the
iterated approximations.

step 0 Set f(σ) := C(S∗, t∗;K, τ, r, σ) , f
′(σ) := ∂C

∂σ
(S∗, t∗;K, τ, r, σ) .

step 1 Set n := 0 .

step 2 Compute

dσ := −f(σ
n)− v

f ′(σn)

step 3 If |dσ| ≤ ε set L := n and return to OUT else

σn+1 = σn + dσ, n := n+ 1,

and go to step 2 .

OUT Approximate value σL for the implied volatility σimp(K, τ) .
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Analysis of the computation scheme

Now, we want to analyze whether the conditions are satisfied which guarantee the
quadratic convergence of the method. We do that under the assumptions

S∗ > 0, τ > 0 ,

which are not restrictive in practice.

Differentiability Obviously, the function f has infintely many derivatives. The
first derivative is given as follows:

f ′(σ) = S∗
√
τN ′(d+(σ)) .

Since f ′ is positive the Newton iteration is feasible. The derivative f ′ is the
vega, i.e. f ′ = V = ∂C

∂σ
.

Monotonicity f is strictly monotone increasing due to the fact that the first
derivative of f is positive. This implies that the solution of (70) is uniquely
determined.

Bounds We know from (a) in 1.1 that (S∗ − Ke−rτ )+ ≤ f(σ) ≤ S∗ . Obviously,
limσ→0 f(σ) = (S∗ −Ke−rτ )+ and limσ→∞ f(σ) = S∗ .

Curvature The second derivative of f is given as follows:

f ′′(σ) =
τ

2π
S∗e
−qτe−

1
2d+(σ)2 d+(σ)d−(σ)

σ
.

f ′′ is called the Volga, i.e. Volga = ∂2C
∂σ2 . Volga∗ is positive for options

away from the money, and initially increases with distance from the money.
Specifically, volga is positive where d+(σ) and d−(σ) terms are of the same
sign.

Existence of a solution A solution is guaranteed when we can show that

rl := lim
σ→0

f(σ)− v ≤ 0 , ru := lim
σ→∞

f(σ)− v ≥ 0 (71)

is satisfied since due to the monotonicity one of the following inequalities
rl < 0, ru > 0 holds true; continuity of f implies the solvability of (70).

Initial guess An initial guess can be determined by the bisection method.
Order of convergence The conditions for the quadratic convergence are given

when the initial guess is sufficient close to the solution. The stopping cri-
terion in the algorithm 3.1 is then appropriate.

The solvability of the equation (70) is in doubt when the market prices are not
in agreement with the Black-Scholes model, a fact that cannot be excluded; see the
smile-observation. Therefore, we cannot be sure that the market price of an option
is in the interval ((S−Ke−rτ )+, S) . From the numerical point of view, it is already
delicate when the observed market price v is in the near of the boundary of this
interval. A high instability of a solution of (70) is the consequence since we have
∗The interest in the volga is to measure the convexity of an option with respect to volatility.
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that the vega vanishes on the boundary of the interval. This corresponds to the
fact that limσ→0 V(σ) = limσ→∞ V(σ) = 0 holds.

Let us make a remark concerning the problem “inverse crime” in the implemen-
tation of the Newton-method; see Section 2.1. The main work in the iteration is
done in the evaluation of the functions f, f ′ . Since this evaluation cannot be done
analytically, an approximation procedure has to be used. In a simulation with
artificial data the evaluation in obtaining these data and the evaluation in the iter-
ation should be realized by different methods in order to test the robustness of the
method.

3.2. Pricing surface

Given a set of market prices, we consider the problem to determine a complete
surface of implied volatilities and of option prices.

Implied volatility surface

By varying the strike price K and the term to maturity τ we can create a table
whose elements represent volatilities for different strikes and maturities. Under
this practice, the implied volatility parameters will be different for options with
different time-to-expiration τ and strike price K . As we know, this collection of
implied volatilities for different strikes and maturities is called the implied volatility
surface and the market participants use this table as the option price quotation. For
many applications (calibration, pricing of nonliquid or nontraded options,. . . ) we
are interested in an implied volatility surface which is complete, i.e. which contains
an implied volatility for each pair (K,T ) in a reasonable large enough set [0,Kmax]×
[0, Tmax] .

However, in a typical option market, one often observes the prices of a few op-
tions with the same time-to-expiration but different strike levels only. To make
things worse, some of these option contracts are not liquid at all, i.e. are not traded
to an adequate extent. Therefore, we are faced with the problem of how to inter-
polate/extrapolate the table of implied volatilities. Such methods for completing
the table of implied volatilities are well known: polynomials in two variables, linear,
quadratic or cubic splines in one or two variables, parametrization of the surface and
fitting of the parameters. But it seems to be appropriate to complete the pricing
table to a pricing surface instead of completing the volatilities table since the prop-
erties of the pricing surface are more deeply related to the assumptions concerning
the market.

The construction of the volatility surface is considered in a large number of
papers. See for instance
[24; 25; 39; 49; 52; 46; 45; 70; 74; 72; 94; 103; 106; 116].
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Interpolation in option pricing

The reality of missing prices requires a good method to interpolate the option price
as a continuous function of the strike price (and the remaining life time of the
option). Unfortunately, we cannot choose freely an interpolation method. If the
pricing table is complete by interpolation we may compute the implied volatilities
in order to complete the table of implied volatilities. The no-arbitrage principle
determines that a call option price must be a monotonically decreasing and convex
function of the strike price; see (c), (d), (e) in 1.1. So, when we use the Black-Scholes
formula and the interpolated volatilities to price options, we need to make sure that
the final option price function satisfies the decreasingness and convexity restrictions.

We know that for a fixed expire-time convexity with respect the strikes should
be realized. This can be done by the requirement, that the second derivative of the
price-function is nonnegative. Here we describe a method which is closely related
to the usual interpolationg cubic splines. Let us start with a partition

0 < a = x0 < x1 < · · · < xN+1 = b <∞ . (72)

We set hi := xi − xi−1, i = 1, . . . , N + 1 . Consider the following constrained inter-
polation problem:

min
g∈W 2

2 [a,b]

1

2
‖g′′ − ψ‖22 such that (73)

g(xi) = yi , i = 0, . . . , N + 1 , g′′(x) ≥ 0 for a.e. x ∈ [a, b] . (74)

Here ‖ · ‖2 is the Lebesgue L2[a, b]-norm. Below, W k
2 [a, b] denotes the Sobolev space

of functions with absolutely continuous (k−1)-th derivatives and k-th derivative in
L2[a, b], k ∈ N . Therefore, each function g in W 2

2 [a, b] can be written as follows:

g(x) = g(a) +

∫ x

a

g′(η)dη +

∫ x

a

g′′(ξ)dξ , x ∈ [a, b] ,

with g′′ ∈ L2[a, b] . The usual inner product in W 2
2 [a, b] is given as follows:

〈g, h〉 := g(a)h(a) +

∫ b

a

g′′(ξ)h′′(ξ)dξ , g, h ∈W 2
2 [a, b] .

In the context of the option price surface, {(xi, yi) ∈ R2|i = 0, 1, 2, . . . , N + 1}
are strike levels and the corresponding observed prices of the options with the same
underlying S and the same time-to-expiration τ . Concerning the function ψ we
assume:

ψ is continuous differentiable (75)

ψ should be interpreted as an approximation of the second derivative of the pricing
function.

We want to introduce in the interpolation problem above the second derivative
u := g′′ as the variable which has to be determined. This is possible by using linear
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splines (hat functions)M1, . . . ,MN associated with the grid (72). With these splines
the interpolation condition (74) can be written as follows (Peano kernel theorem;
see for instance [80]):

〈Mi, u〉 =

∫ b

a

Mi(x)g′′(x)dx = (Ky)i , i = 1, 2, . . . , N .

The matrix K ∈ RN,N+2 = (ki,j)i=1,...,N,j=0,...,N+1 is defined as follows:

ki,i =
1

(hi+1 + hi)hi+1
, ki,i+1 =

−hi
(hi+1 + hi)hi+1

+
−hi+1

(hi+1 + hi)hi
, ki,i+2

=
1

(hi+1 + hi)hi
(76)

for i = 1, . . . , N and ki,j = 0 else. Notice that the matrix K is sparse and has full
rank.

Now, the interpolation problem above can be rewritten as the following mini-
mization problem:

Problem (I1)

min
u∈L2[a,b]

1

2
‖u− ψ‖22 (77)

such that 〈Mi, u〉 = (Ky)i , i = 1, 2, . . . , N . (78)

u(x) ≥ 0 for a.e. x ∈ [a, b] . (79)

This optimization problem is an infinite-dimensional problem. The constraint con-
dition (78) can be reformulated by

u ∈ V := {v ∈ L2[a, b]|〈Mi, v〉 = (Ky)i, i = 1, . . . , N} , (80)

with the affine subspace V of L2[a, b] .

Theorem 3.1. Suppose that the condition

Uad 6= ∅ (81)

holds. Then the problem (I1) has a unique solution.

Proof:
The objective function in (141) is lower semicontinuous, strictly convex, and coercive
∗ . Moreover, V is a closed convex subset. Therefore, the feasible set Uad := V ∩U+

is closed and convex. As a consequence, the problem (I1) is equivalent to find the
projection of ψ onto the nonempty, closed and convex set Uad . It is well known that
in a Hilbert space such a projection exists and is uniquely determined. �
∗This means: lim‖u‖2→∞

1
2
‖u− ψ‖22 =∞
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Figure 2. Lagrange multiplier

The constraints in (78), (79) are reformulated by the admissible set Uad :=

V ∩U+ where U+ is the cone {u ∈ L2[a, b]|u ≥ 0 a.e.} . The main question is, whether
the set Uad is nonempty. Since the pricing formula is nonincreasing with respect to
the strike variable we may assume that y0 ≥ y1 ≥ · · · ≥ yN+1 holds. Moreover, since
the pricing formula is convex with respect to the strike variable the second-order
divided differences associated with the data, denoted by (Ky)i, i = 1, 2, . . . , N, are
nonnegative. Let us summarize this assumption in

(Ky)i ≥ 0, i = 1, . . . , N . (82)

Therefore, a necessary condition for Uad 6= ∅ is that (82) holds.
In general, the basis for characterizing and computing the solution of an opti-

mization problem is to verify a necessary condition for a solution. The intended
necessary condition is a Kuhn-Tucker equation. As it is known, such an equa-
tion does not hold without a so called constrained qualification condition. Such a
constraint qualification is the well known Slater condition, which in our case is

int(U+) ∩ V 6= ∅. (83)

Here int(U+) denotes the interior (with respect to the norm-topology) of the cone
U+ . Unfortunately, the condition (83) cannot hold since we know int(U+) = ∅,
a well known fact in L2[a, b] . Therefore, one has to look for a condition which is
sufficient and does not use interior points of the cone U+ . Such a condition (84) is
related to the so called quasi relative interior points; see [17]. An improvement of
(81) is the following condition



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

118 J. Baumeister

There exists û ∈ V with û(x) > 0 a.e. in [a, b] . (84)

Notice that (84) is not saying that û is an interior point of U+ . From this
condition we conclude that the assumption (82) has to be changed into

(Ky)i > 0, i = 1, . . . , N . (85)

Theorem 3.2. If the assumption (84) holds then the problem (I1) has a unique
solution in the form

û(x) =

(
N∑
i=1

λiMi(x) + ψ(x)

)+

, x ∈ [a, b] , (86)

where the Lagrange parameter λ is the solution of the equation

G(λ) = d := Ky , (87)

with

Gi(λ) = 〈Mi, (
∑N

j=1
λjMj + ψ)+〉 , i = 1, . . . , N . (88)

Proof:
Set ρ := infu∈Uad

1
2‖u − ψ‖

2 and let û ∈ Uad with ρ = 1
2‖û − ψ‖

2; see Theorem
3.1. The main step in the proof of our theorem is the following fact: there exists a
parameter λ ∈ RN with

ρ = min
u∈U+

(
1

2
‖u− ψ‖2 − 〈Au−Ky, λ〉) =

1

2
‖û− ψ‖2 − 〈û, A∗λ〉+ 〈Ky, λ〉 (89)

where A∗ is the adjoint of the linear mapping

A : U 3 u 7−→ (M1(u), . . . ,MN (u)) ∈ RN .

This fact is the result of a separation theorem which uses the assumption (84) in
the form that Ky is a point in the image of the quasi-interior points qri(U+) under
the mapping A . We have

‖û− ψ‖2 − 2〈û, A∗λ〉+ 2〈Ky, λ〉
= ‖û− ψ‖2 − 2〈û− ψ,A∗λ〉+ 2〈Ky −Aψ, λ〉
= ‖û− ψ −A∗λ‖2 − ‖A∗λ‖2 + 2〈Ky −Aψ, λ〉.

This implies that û is the projection of ψ + A∗λ onto the cone U+ . The equation
(87) is a consequence of the fact that û has to be admissible. �

For the complete proof of the theorem we refer to [42; 63; 126] in connection
with [22].
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Interpolation by shape-preserving splines in the presence of noise

The shape-preserving interpolation method considered above presumes that the
observed data accurately reflect the behavior of the call option price function to be
approximated. Unfortunately, in financial practice, the observed data usually have
errors, thus the previous interpolation technique is not appropriate in many cases.

Again let

0 < a = x0 < x1 < · · · < xN+1 = b <∞

be a partition of the interval [a, b] and let yδ0, . . . , yδN+1 be the noisy data. In the
context of finance, this means that yδ0, . . . , yδN+1 are noisy prices of call options:
yδi ≈ C(S∗, t∗;K, τ) for some pair (K, τ) . As usual, δ ≥ 0 is the size of the noise,
i.e. there are data y0, . . . , yN+1 considered as noiseless, such that

|yδi − yi| ≤ δ .

We set y := (y0, . . . , yN+1), yδ := (yδ0, . . . , y
δ
N+1) .

Here is an approach to regard the presence of noise. The convex interpolation
model (I1) is changed to the following minimization problem:

Problem (I2)

min
u∈L2[a,b],z=(z

0
,...,z

N+1
)∈RN

1

2
‖u− ψ‖22

+
1

2α
|Q(z − yδ)|2 (90)

such that 〈Mi, u〉 = (Kz)i , i = 1, 2, . . . , N . (91)

u(x) ≥ 0 for a.e. x ∈ [a, b] . (92)

Here Q is a nonsingular matrix in RN+2,N+2 and | · | denotes the Euclidean
norm in RN . The matrix Q∗Q may be considered as a correlation matrix since
|Q(z − yδ)|2 = 〈z − yδ, Q∗Q(z − yδ)〉 where 〈·, ·〉 is the euclidean inner product in
RN+2 .

A solution of (I2) is called a smoothing spline. The term ‖u− ψ‖22 is a regular-
ization quantity which is “enhanced” by the positive regularization parameter α−1,

where α is a parameter which describes the tradeoff between the deviation of the
smoothing spline and the a-priori guess and the deviation of the noiseless variable
z and the noisy data yε .

Again, (I2) is an infinite-dimensional convex optimization problem. It can be
reformulated as a problem of the type (I2). We define a Hilbert space W and its
inner product 〈·, ·〉W by

W := U × RN+2 , 〈(u, a), (v, b)〉W := 〈u, v〉+ α−1〈Qa,Qb〉 .

Let Ψ := (ψ, yδ) ∈W, W+ := U+ × RN+2, and define the subspace V of W by

V := {(u, z)|Au−Kz = θ} ,
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where θ denotes the null vector in RN+2 . Then problem (I2) can be written as an
interpolation problem in W :

min{1

2
‖w −Ψ‖2W |w ∈W+ ∩ V }.

Now, it is clear that the following theorem can be proved similar to Theorem 3.2.

Theorem 3.3. If assumption (84) holds then problem (I2) has a unique solution
in the form

û(x) =

(
N∑
i=1

λ̂iMi(x) + ψ(x)

)+

, x ∈ [a, b] , (93)

ẑ = yδ − α(Q∗Q)−1K∗λ̂ (94)

where the Lagrange multiplier λ̂ is the solution of the equation

G(λ) + αK(Q∗Q)−1K∗λ− yε = 0 (95)

with

Gi(λ) = 〈Mi, (
∑N

j=1
λjMj + ψ)+〉 , i = 1, . . . , N . (96)

Proof:
For the proof of the theorem we refer to [63]. �

We can see that, as α→∞, the solution of the minimization problem (I2) tends
to the solution of the shape-preserving interpolation problem (I1) when y = yδ .

Computation of the shape preserving spline by a Newton-type-method

We have to solve the equation

Gi(λ) = (Ky)i , i = 1, . . . , N . (97)

Since the mappings

Rn 3 λ 7−→ gi(λ, x) :=
N∑
j=1

(λjMj(x) + ψ(x))Mi(x) ∈ R (98)

are continuous differentiable with respect to λ for all x ∈ [a, b] and piecewise contin-
uous differentiable functions with respect to x ∈ [a, b], gi(·, ·) is Lipschitz continuous
with respect to λ ∈ RN uniformly in x ∈ [a, b] . Moreover, one can show that the
following identity holds:

δGi(λ) =

∫ b

a

δ(gi(·, x)+)(λ)dx ,
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where δ is a symbol for the generalized Jacobian. Hence, each of the mappings Gi is
semismooth in λ, and the composed map G is semismooth at λ too. For the theory
of semismooth mappings see for instance [33; 123; 117]. Thus, we have to compute

δ(gi(·, x))+(λ) , i = 1, . . . , N .

With

M(x) :=

M1(x)
...

MN (x)

 , x ∈ [a, b] ,

one can show that

δ(gi(·, x))+(λ) =


Mi(x)M(x) if gi(λ, x) > 0

{αMi(x)M(x)|α ∈ [0, 1]} if gi(λ, x) = 0

0 if gi(λ, x) < 0,

(99)

where λ ∈ RN , x ∈ [a, b] .

Let

q(λ, x) :=
N∑
j=1

λjMj(x) + ψ(x) , λ ∈ RN , x ∈ [a, b],

and define

T (λ) := {x ∈ [a, b]|q(λ, x) = 0} , T (λ) = [a, b]\T (λ) , λ ∈ RN .

The generalized Jacobian δG of G is now given as

δG(λ) = δG−(λ) +DG+(λ) , λ ∈ RN , (100)

where, for j = 1, . . . , N

G−j (λ) =

∫
T (λ)

q(λ, x)+Mj(x)dt , G+
j (λ) =

∫
T (λ)

q(λ, x)+Mj(x)dt

As a consequence,

DG+(λ)ij =

∫ b

a

q(λ, x)0
+Mi(x)Mj(x)dx , i, j = 1, . . . , N, (101)

where

z0
+ :=

{
1 if z > 0

0 if z ≤ 0
.

Now, one can prove the following result which is the basis for the applicability of
Newton’s method to the equation (87); see [63].

Suppose that the assumption (84) holds. If λ is a solution of G(λ) = Ky ,
then every matrix Q ∈ δG(λ) is positive definite.
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Algorithm 3.2 Interpolation by smoothing splines using Newton’s method
IN Interpolation data (xi, yi), i = 0, . . . , N + 1 .

Initial approximation ψ for the second derivative (of the pricing fuction)
Initial guess λ0 for the Lagrange multiplier.
Accuracy-bound ε > 0 for the iteration steps.

step 0 Compute M1, . . . ,MN , y := (y0, . . . , yN ), and v := Ky .

step 1 For k = 0, 1, . . . do

• Compute G(λk)

• Choose Qk ∈ δG(λk)

• Solve the linear equation Qksk = −G(λk) + v

• If |sk| ≤ ε set L := k and go to OUT
• Set λk+1 := λk + sk

OUT Approximate Lagrange multiplier λL and an approximate smoothing spline

ûL :=

(
N∑
i=1

λLi Mi(x) + ψ(x)

)+

, x ∈ [a, b] .

Computation of the option price function

The solution to the original problem (73),(74) can be obtained by integrating twice
the solution û on [a, b] with the result C . Here we give are some hints how to do
this; see [63]. û may be replaced by the approximation ûL .

The price function C can be written as

C(x) = yk+(x−xk)C ′(xk)+

∫ x

xk

∫ s

xk

û(t)dtds , x ∈ [xk, xk+1], k = 0, . . . , N . (102)

In this formula, two terms need to be calculated, the first derivative of C at xk and
the integration

Q(xk, x) :=

∫ x

xk

∫ s

xk

û(t)dtds .

If the integration Q(xk, x) is known, then

C ′(xk) =
yk+1 − yk −Q(xk, xk+1)

xk+1 − xk
.

We have û = f+ with

f(x) =
N∑
i=1

λiMi(x) + ψ(x) , x ∈ [a, b] .
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Obviously, f is a piecewise differentiable function. Then we can obtain for each
k = 0, . . . , N a finite number of node by solving the equation f(x) = 0 in [xk, xk+1] .

This gives a new enlarged partition

a = t0 < t1 < · · · < tR+1 = b .

In every interval [tk, tk+1] the solution û has a computable representation. By con-
sidering several cases, the function Q(xk, x) can be computed by simple integration
(under the assumption that a primitive of ψ is known).

3.3. Forward rates and discount factors

In finance, the yield curve is the relation between the (level of) interest rate (or
cost of borrowing) and the time to maturity, known as the term. In the focus is the
financial instrument zero-coupon-bond.

Discount factor

Let B(t, T ) denote the price at time t of a security making a single payment of 1
unit at time T, T ≥ t . Such a security is called a zero coupon bond and B(t, T )

is the discount factor over the period [t, T ] . Discount factors are necessary for the
evaluation of financial products. The yield of a zero coupon bond may be interpreted
as the interest rate implied by the price of the zero coupon bond:

B(t, T ) = e−Y (t,T )(t−T ) or Y (t;T ) = − ln(B(t, T ))

T − t
. (103)

Suppose that we know the discount factors B(0, t1), B(t, t2) with 0 < t1 < t2 .

Then by an arbitrage-argument we obtain

B(0, t1)B(t1, t2) = B(0, t2) (104)

which makes it possible to read off the discount factor B(t1, t2) on the interval
[t1, t2] .

Forward rates

A forward rate is an interest rate set today for borrowing or lending at some date
in the future. Consider the time grid t < T1 < T2 and let F (t, T1, T2) denote the
forward rate fixed at time t for borrowing or lending in the period [T1, T2] . Again,
an arbitrage argument shows that forward rates are determined by discount factors,
namely:

F (t, T1, T2) =
1

T2 − T1

B(t, T1)−B(t, T2)

B(t, T2)
. (105)

With a continously compounded forward rate f(t, T1, T2) we obtain the identity

F (t, T1, T2)(T2 − T1) = exp(f(t, T1, T2)(T2 − T1))− 1)− 1 (106)
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which implies

f(t, T1, T2)(T2 − T1) =
ln(B(t, T1))− ln(B(t, T2))

T2 − T1
. (107)

Now define f(t, T ) to be the continuously compounded forward rate fixed at t for
the maturity T as the limit of f(t, T, T + h) as h approaches 0, whenever it exists:

f(t, T ) = lim
h↓0

ln(B(t, T ))− ln(B(t, T + h))

h
= − ∂

∂T
ln(B(t, ·)(T ). (108)

Using B(T, T ) = 1 we obtain

B(t, T ) = exp(−
∫ T

t

f(t, s)ds). (109)

A comparison with (103) implies

Y (t, T ) =
1

T − t

∫ T

t

f(t, s)ds. (110)

i.e., that yields are averages over forward rates.
Forward rates are in the focus when one wants to build a model of term structure

dynamics. When we introduce the time to maturity τ we obtain from Y the so called
yield curve y ; thus:

y(τ) := Y (T − τ, T ) , 0 ≤ τ ≤ T . (111)

y is often, but not always, an increasing function of τ .
The market does not contain enough information in order to determine the prices

of zero coupon bonds or the yield values for all values of t ∈ [0, T ] . Suppose that
the discount factor is known for t1 and t2 . Then the discount factor for t ∈ (t1, t2)

may be computed by (local) interpolation:

Linear interpolation B(t, T ) := aB(t1, T ) + (1− a)B(t2, T )

Exponential interpolation B(t, T ) := B(t1, T )
aB(t2, T )

1−a

where a := t− t1
t2 − t1

.

These interpolation procedures may be applied in the case of yield values or forward
rates.

Interpolation of market data

It is the goal of the yield-analysis to propose a model for the yield-curve and to fit
the outcome of the model to values observed on the financial market. Market data
in finance are discrete in time but for many applications we need to construct a
function continuous in time which approximates these data in an appropriate way.
Various interpolation methods for curve construction are available. In general, an
interpolation problem is as follows:
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Given real nodes t0 < t1 < · · · < tN and values y0, y1, . . . , yN ∈ R .
Construct a continuous function x on an interval (tl, tu) containing the
nodes with

x(ti) = yi, i = 0, . . . , N .

Of course, many choices of interpolation function are possible. According to the
nature of the problem, one imposes requirements additional to continuity, such as
differentiability, twice differentiability, monotonicity, convexity, conditions at the
boundary, . . . .

The typical approach is to require that in each interval the function is described
by some low dimensional polynomial, so the requirements of continuity and dif-
ferentiability reduce to linear equations in the coefficients, which are solved using
standard linear algebraic techniques.

Linear interpolation was already described above as local interpolation. Polyno-
mial interpolation is inadequate in the most cases since the interpolating function
shows a remarkable oscillatory behavior. Interpolation with splines (piecewise poly-
nomials) is the better method, although problems may occur on the ends of the in-
terval (tl, tu) . We will not go into the details since this the method of interpolation
by splines is described in many textbooks of numerical analysis.

The requirement of convex interpolants leads to the fact that algebraic techniques
are not sufficient to solve the interpolation problem. In the last section we studied
a method which may be applied in this situation too.

3.4. Parametric models for the forward rate

The Nelson-Siegel model

In practice, parametric models for the instantaneous forward rate are used. The
most famous is the Nelson-Siegel model; see [112]. Here one makes in a domain of
definition [0, Tmax] the ansatz (τ may be considered as time to maturity)

f(β0,β1,β2,λ)(τ) := β0 + β1e
− τ
λ + β2

τ

λ
e−

τ
λ , 0 < τ ≤ T . (112)

The parameter vector b := (β0, β1, β2, λ) determines the shape of the ansatz func-
tions. We see that the instantaneous forward rate f = fb = f(β0,β1,β2,λ) consists
of three terms: long-term, medium-term, short-term. The long-term component
is identified by the asymptotic value β0 . The short-term is β0 + β1e

− τλ and it is
asymptotical obtained by setting τ := 0 as β0 +β1 .

∗ The medium-term is identified
by β2

τ
λe
− τλ and it determines the height of the hump of f(β0,β1,β2,λ) .

When we plug in the parametric forward rate into the formula for the yield we

∗Here we use the rule of de l’Hospital
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obtain

y(τ) =
1

τ

∫ τ

0

f(β0,β1,β2,λ)(s)ds = β0 + (β1 + β2)
1− e− τλ

τ
λ

− β2e
− τλ , 0 < τ ≤ T .

(113)
Using this expression we try to construct the yield function by estimating the pa-
rameter b := (β0, β1, β2, λ) . Due to the applied situation we have to restrict the
parameter b to a set of admissible parameters Bad . We set:

Bad := {b = (β0, β1, β2, λ)|β0 ≥ 0, β0 + β1 ≥ 0, λ ≥ l} (114)

where l > 0 has to be chosen appropriately. Once the parameter b ∈ Bad is esti-
mated we may compute the yield function by (113) and the prices of the observed
bonds. As an optimization criterion to estimate the parameter b we may use the
observed prices B̃1, . . . , B̃N or the observed yield values ỹ1, . . . , ỹN in a least squares
functional:

Minimize
∑N
i=1(Bi − B̃i)2 subject to b ∈ Bad

Minimize
∑N
i=1(yi − ỹi)2 subject to b ∈ Bad

Here, Bi = Bi(b), yi = yi(b), i = 1, . . . , N, are the prices and yield values computed
from the Nelson-Siegel model (see (113) and (115)) for a grid of times 0 ≤ τ1 <

· · · < τn ≤ T . For the numerical realization of the minimization problems see below.
After the publication of the Nelson–Siegel model various extensions were pro-

posed that incorporate additional flexibility. Here we mention the four-term model
of Svensson (see [125]):

f(β0,β1,β2,β3,λ1,λ2)(τ) := β0 + β1e
− τ
λ1 + β2

τ

λ1

e
− τ
λ1 + β3

τ

λ2

e
− τ
λ2 , 0 < τ ≤ T . (115)

For this model, five parameters have to be estimated: β1, β2, β3, λ1, λ2 . It can be
done similiar to the considerations below.

Numerical recipes for the calibration

Let us consider the calibration of the Nelson–Siegel model based on the yield-
criterion. The vector of the observed data is ỹ := (ỹ1, . . . , ỹN ) . We set for λ ∈ R

φ(λ)i := (1, e−
τi
λ ,

τi

λ
e−

τi
λ ) , i = 1, . . . , N ,

Φ(λ)∗ := (φ(λ)1, . . . , φ(λ)N ) ∈ RN,3 ,
e(λ, β) := Φ(λ)β − ỹ , β ∈ Bad

F (λ, β) :=
1

2
‖e(λ, β)‖22 , β ∈ Bad .

Here are some theoretical and numerical observations:

• The minimization of the objective F is a nonlinear least squares problem.
• Since the objective F is non-convex, local minima for the objective F may
exist.
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• Non-convex least squares problems require special solvers to ensure conver-
gence.
• The solution quality is heavily depending on the initial guess for the solver.
• The error function e is linear in the parameter β, but “highly nonlinear” in
the scaling parameter λ .

The last observation is very important since it shows that our optimization problem
is a separable least squares problem; clever algorithms should exploit this fact.

Such problems have been considered very intensively during the last 30 years.
For a fixed λ the objective F is minimized with respect to β . This is done formally
by the projection of ỹ on the range of the convex set Bad under the mapping Φ(λ) .

We denote this projection by ΠBad(λ)†ỹ . Then we complete the optimization by
the minimization of 1

2‖Φ(λ)ΠBad(λ)†ỹ‖22 with respect to λ . Thus, the optimization
problem is stated as follows:

min
1

2
‖Φ(λ)ΠBad(λ)†ỹ‖22 subject to λ ≥ l . (116)

Algorithm 3.3 Computation of the yield-curve along the Nelson-Siegel model
IN Market data ỹ := (ỹ1, . . . , ỹN ) . Accuracy-bound ε > 0 .

step 0 Initial guess λ0 .

step 1 For k := 0, 1, . . . do

• Compute ΠBad(λk)†ỹ

• Compute a descent direction dk for the given parameter λk

• If |dk| ≤ ε then set βk := ΠBad(λk)†ỹ, L := k and go to OUT
• Increment λk+1 := λk + dk .

OUT Approximation (βL, λL) for the optimal parameter (β∗, λ∗)

For the computation of ΠBad(λk)†ỹ we have to solve a quadratic problem with
simple linear constraints. Several efficient methods are available. For the compu-
tation of a descent direction dk one should be able to compute the differential of
the mapping λ 7−→ ΠBad(λ)†ỹ . As it is known, this is not possible in a classical
sense for two reasons. First, the matrix φ(λ) may be rank-defficient, second, the
linear constraint is an inequality constraint and therefore the concept of generalized
gradient has to be used. A large amount of literature is devoted to the analysis of
the resulting problems.

3.5. Sensitivities

In this section we consider simple methods for estimating sensitivities of option
pricing (greeks).
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Parameter dependent expectation values

Consider an expectation value

v := E (Φ(ST )) := EQ (Φ(ST )) (117)

where Φ(ST ) is a random variable on a probability space (Ω,F , Q) which depends
implicitly on a parameter. Its the goal of our considerations to study this de-
pendency. Thus Φ(ST ) =: Y (α) with a random variable Y (α) dependimg on
α ∈ A ⊂ P . As a consequence we write

u(α) := E(Y (α)). (118)

Especially, we are interested in the derivative u′(α) .
Concrete realizations occur in at least two essential different situations: If α

is the initial value of a stochastic differential equation then α is a real number
(ranging over some interval of the real line). If α stands for the volatility σ, then α
is a variable in a function space and the computation of variations of u(α) is much
more difficult.

Sensitivities via difference quotients

Let α be a parameter in R , The sensitivity problem consists of finding a way to
estimate the derivative u′(α) or an apropriate approximation of it. An obvious
approach consists in the approximation of u′(α) by a forward–difference estimator:

u′(α) ≈ (u(α+ h)− u(α))h−1 (h > 0) . (119)

Going back to the random variable Y the approximation for u′(α) becomes

u′(α) ≈ E(Y (α+ h)− Y (α))h−1 (120)

Now, the expectation value is approximated by the average of n replications of
Y (α+ h)1, . . . , Yn(α+ h) and Y (α)1, . . . , Yn(α), respectively. This gives:
In the formulation above it is not required that the random variable Y is realized
by independent replications.

If u is twice differentiable at α, then

u(α+ h) = u(α) + u′(α)h+
1

2
u′′(α)h2 + o(h2) .

and

bias(Dn(α)) := E(Dn(α)− u′(α)) =
1

2
u′′(α)h+ o(h) . (121)

If we use central differences

Cn(α) :=
1

2h
(Ŷ (α+ h)− Ŷ (α− h))
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Algorithm 3.4 Monte Carlo-simulation of the sensitivity
IN A family of random variables Y (α))α∈A, a parameter α ∈ A . Step size h > 0

and a number n of replications.
step 1 Compute realizations Y1(α), . . . , Yn(α) and Y1(α+ h), . . . , Yn(α+ h) .

step 2 Compute the averages

Ŷ (α) :=
1

n

n∑
i=1

Yi(α) , Ŷ (α+ h) :=
1

n

n∑
i=1

Yi(α+ h)

and the number

Dn(α) :=
Ŷ (α+ h)− Ŷ (α)

h
.

OUT Estimator Dn(α) for u′(α) .

– the algorithm above may be changed to realize such approximations – we obtain

bias(Cn(α)) := E(Cn(α)− u′(α)) =
1

6
u′′′(α)h2 + o(h2) . (122)

Clearly, this estimator posesses a higher accuracy, but is more costly.
Let us compute the variance of the estimators Dn(α) and Cn(α):

V(Dn(α)) = h−2V(Ŷ (α+ h)− Ŷ (α)) (123)

V(Cn(α)) = (2h)−2V(Ŷ (α+ h)− Ŷ (α− h)) . (124)

These identities show the consequences of a small stepsize h in order to obtain a
small bias: a disastrous big variance may result. Thus, we can observe the typical
situation of an ill-posed problem; see Subsection 2.1.

Suppose that the realizations Y1(α), . . . , Yn(α) and Y1(α+ h), . . . , Yn(α+ h) are
families of identical distributed indepent random variables. Then

V(Ŷ (α+ h)− Ŷ (α)) =
1

n
V(Y (α+ h)− Y (α))

and under the assumption

V(Y (α+ h)− Y (α)) = O(hq) (125)

with q ∈ {0, 1, 2} we may analyze the behavior of the estimators more detailed; see
[58], pp. 378.

The considerations above may be applied to the computation of greeks. Serious
problems arise when the payoff function is not differentiable (in the classical sense).
But there are results in the literature which overcome this barrier; see for example
[98; 121].

A very deep theory to handle the differentiability of stochastic processes with
respect to certain variables is the so called Malliavan calculus. This theory presents
additional possibilities to compute sensitivities; see [32].
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4. Dupire’s method: the dual equation

In this section we consider the model of the geometric Brownian motion with a
local volatility from the identifiabilty point of view. In the first subsection we
sketch the derivation of Dupire’s equation. Next we present an identifiability result
whose proof is related to this this equation. From the considerations involved in the
identifiability problem an integral equation for the local volatility can be extracted.
This integral equation may be used to approximate the unknown volatility. In the
last subsection we consider the identifiability problem as a problem of numerical
differentiation.

4.1. Dupire’s equation

In Section 5 we will consider two approaches of calibration: one calibration method
is based on the volatility-to-solution map of the forward problem of finance. This
is a very time consuming method. As first observed by Dupire [43], there is an
alternative and a more direct way to solve the inverse problems of finance: the
second method is based on this way.

Suppose the option price of a Black-Scholes model with local volatility σ is
denoted by

C = C(S, t) = C(S, t;K,T, r, σ) .

Given S∗ > 0, t∗ > 0, we introduce a new variable U as follows:

U(K,T ) = U(K,T ;S∗, t∗, r, σ) := C(S∗, t∗;K,T, r, σ) .

Then one can show that the function U satisfies the following system:

LDU (U) :=
∂U

∂T
− 1

2
σ(K,T )2K2 ∂

2U

∂K2 + rK
∂U

∂K
= 0, (126)

K,T ∈ (0,∞)× (t∗,∞) ,

U(0, T ) = S∗ , lim
K→∞

U(K,T ) = 0, T ∈ (t∗,∞) , (127)

U(K, t∗) = (S∗ −K)+ , K > 0 . (128)

Several different derivations and proofs of this result are found in the literature; see
[3; 24; 43; 92]. In the next section we will sketch the proof in the framework of
weak solutions. In [72] a derivation of the system (126), (127), (128) is presented
based on a fine analysis of fundamental solutions of parabolic equations as given in
[57]. We follow mainly [25; 127].

We set

u(K,T ) := u(K,T ;S, t) := C(S, t;K,T ) , S,K > 0, T > 0, 0 ≤ t ≤ T .
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Then we know

lim
K→∞

u(K,T ;S, t) = 0 w(K,T ;S, t) := lim
K→∞

∂

∂K
u(K,T ;S, t) = 0

φ(K,T ;S, t) := lim
K→∞

∂2

∂K2u(K,T ;S, t) = 0.

Here we have already used the fact that these derivatives exist. This can be shown
by taking difference quotient with respect to the variable K and using the fact that
these difference quotients satisfy an initial boundary value problem. Due to the fact
that the final condition of w is of Heavy-side type the final condition of φ is the
Dirac distribution δS−K . Moreover, φ is a solution of the dual equation

∂v

∂T
−1

2

∂2

∂K2

(
σ2(K,T )K2v

)
+r

∂

∂K
(Kv)+rv = 0 (K ∈ (0,∞), T ∈ (0,∞)). (129)

Since∫ ∞
K

∫ ∞
η

∂

∂ξ
(ξφ(ξ, T )) dξdη = −

∫ ∞
K

ηφ(η, T )dη

=

∫ ∞
K

η
∂

∂ξ

(∫ ∞
η

φ(ξ, T )dξ

)
dη

= −K
∫ ∞
K

ηφ(ξ, T )dξ −
∫ ∞
K

∫ ∞
η

φ(ξ, T )dξdη

= K
∂U

∂K
(S, t; ξ, T, σ)− U(S, t; ξ, T, σ)

we obtain the equation

∂U

∂T
− 1

2
K2σ2(K,T )

∂2U

∂K2 − rK
∂U

∂K
= 0 (K ∈ (0,∞), T ∈ (0,∞)). (130)

By considering boundary values and the final value we obtain the following boundary
value problem

∂U

∂T
+

1

2
σ2(K, τ)K2 ∂

2U

∂K2 + rK
∂U

∂K
+ rU = 0 (131)

(K ∈ (0,∞), T ∈ (t∗,∞))

U(0, τ) = S∗ , lim
K→∞

U(K, τ) = 0 , τ ∈ (0, t∗) . (132)

U(K, 0) = (S∗ −K)+ , K > 0 . (133)

We can compute the same quantity, namely the option price
U(S∗, t∗;K,T, r, q, σ) as a function of K, with the help of two different systems.
First, along the Black-Scholes equation: solve severals Black-Scholes equations for
different strikes K . Second, along Dupire’s equation: solve Dupire’s equation once
to obtain the price for several strikes. Theoretically, the values have to be identical,
but under numerical methods there may be a difference, especially, since we have
to truncate the domain for the variables S,K respectively.

Some attempts are made to derive a dual equation for other models; see [2; 113].
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4.2. The uniqueness theorem for the inverse problem

Due to the smile effect, the local volatility should depend on both time and the level
of the underlying asset. A special case is given when we suppose that the volatility
function can be decomposed in the following manner:

σ(S, t) = σ(S)ρ(t) , (S, t) ∈ (0,∞)× (0,∞) (134)

We sketch here the special case when the volatility is free of time structure, i.e.
ρ(t) = 1 for all t . The other special case that the volatility depends on the time
only which is less complicated is analyzed in [25; 72; 73]. Thus, in our special case
the inverse problem is stated as follows:

Identifiability problem in finance

Given S∗, t∗, r, T ≥ t∗, a nonempty interval [Kmin,Kmax] of (0,∞), a
continuous function v : (0,∞)\[Kmin,Kmax] −→ [0,∞) and a contin-
uous function MT : [Kmin,Kmax] −→ (0,∞) .
Prove that there exists a uniquely determined continuous function
(volatility function) σ : [0,∞) −→ [0,∞) such that

U(K,T ;S∗, t∗) = MT (K) for all K ∈ [Kmin,Kmax],

σ(K) = v(K) for all K ∈ (0,∞)\[Kmin,Kmax] .

Notice that the function M is assumed to be continuous only. In the applied sit-
uation when M is assumed to be the result of an observation of the market prices
it is important that M is not a function representig exact prices. Then we have
to assume that for the exact prices M an approximation Mδ is available only; see
Section 2.1.

Theorem 4.1 (Uniqueness of the local volatility). The volatility function in
the identifiability problem in finance is uniquely determined.

The proof of this theorem was given for the first time in [23]. It is based on a
fine study of the fundamental solution of the Black Scholes equation in logarithmic
variables combined with the fact that the solution of the Black Scholes equation
is an analytic function in the time to maturity. In a more general framework the
inverse problem is studied by in [116].

The deviation of the volatility from the constant case may be considered as a
perturbation problem. This approach is studied in [26].

4.3. An integral equation for the unknown local volatility

We consider again the special case from the last subsection. Two quite different
approaches to extract the volatility function from observed option pprices have been
proposed in recent years. One is that of Lagnado and Osher ([103]) – we consider
that method in the next section – the other approach is that in Bouchouev ([23])
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for which we now give a short sketch. This method is method is considered in [37]

again and a reduction in complexity is achieved. We follow mainly this treatment.
Somehow between these approaches is the investigation via control theory in [106].

Bouchouev ([23]) derives the following integral equation for the volatility function
σ :

U(·, T ;S∗, t∗) = (S∗ − ·)+ + I0(σ)(·) + I1(σ)(·) + I2(σ)(·) (135)

In the presentation (135) I0, I1, I2 are very complicated integral operators (with
singularities in the kernels) which we do not repeat here since the formulae are
lengthly. In [37] and [127] proofs of the identity in (135) are given. If we know the
values U(K,T ;S∗, t∗),K > 0, (or their approximations) from an observation of the
market we can regard (135) as an integral equation for the volatility σ where S∗ is
the price of the underlying at the current time t∗ . This integral equation can be
solved by iteration

I0(σk+1) = U(·, T ;S∗, t∗)− (S∗ −K)+ − I1(σk)− I2(σk) , k = 0, 1 . . . , (136)

starting with a reasonable approximation σ0 . From the numerical point of view, a
huge amount of computational work is necessary to calculate reasonable approxi-
mations for σ .

In [37] a reduction of the triple integrals in (135) is achieved by a clever appli-
cation of the Laplace transform. The main step is to transform I0 to a functional
H of the value σ(K) which gives

U(·, T ;S, t∗) = (S − ·)+ +H(σ(·)) + I1(σ) + I2(σ) (137)

The iteration for solving (137) becomes

Algorithm 3.5 Computation of the local volatility by an integral equation
IN Price S∗ of the underlying at time t∗, maturity time T, market prices

U(K,T ;S∗, t∗) forK ∈ [Kmin,Kmax] . Initial guess σ0 for the local volatility.
Set k := 0 .

step 1 Compute the integrals I1(σk), I2(σk) .

step 2 Solve the equation

H(σk+1) = U(·, T ;S∗, t∗)− (S∗ − ·)+ − I1(σk)(·)− I2(σk)(·)

step 3 If the approximation σk+1 is not good enough return to step 2 with k :=

k + 1 else set L := k + 1 .

OUT Approximation σL for the local volatility.

The initial guess σ0 can be computed by solving

H(σ0) = U(·, T ;S∗, t∗)− (S∗ − ·)+ .
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Clearly, some additional considerations are necessary concerning the integration rou-
tines, removal of singularities in the integrals and cut off strategies; see [25; 37; 127]

for some related details..

4.4. Computation of the volatility via numerical differentiation

Now, we come back to a simple exploitation of Dupire’s equation. Here we follow
mainly [69].

The equation for the local volatility

Given a classical solution of (126),(127),(128) we can solve (126) for the volatility
to obtain along

1

2
σ(K,T )2 =

∂U

∂T
(K,T ) + rK

∂U

∂K
(K,T )

K2 ∂
2U

∂K2 (K,T )

, K ∈ (0,∞), T ∈ (t∗,∞) . (138)

the volatility. Despite its simplicity, this approach has severe practical shortcom-
mings which reflects the ill-posedness of the problem. First, financial markets typ-
ically allow only a few and prefixed maturity dates, and just a discrete sample of
strikes are on sell, too. Second, the Black-Scholes equation is just a model of the
real market dynamics, so that (138) is at best an approximate identity.

More on the technical side, in the formula (138) itself some problems are hidden.
As we shall see, the denominator in (138) is usually positive when it is evaluated
along the model. However, positivity of the nominator may not be an obvious
property for real data. Therefore it can easily happen that the computed fractions
in (138) change sign, and taking the square root to obtain σ is prohibited. Even if
the fraction remains finite and positive the volatility function computed from (138)
may exhibit rough oszillations, if the data have not been preprocessed properly;
see the examples in [40]. This is not surprising since we have to use more or less
implicitly numerical differentiation to evaluate the formula.

The computation of the local volatility via numerical differentiation

We assume that the following market data are available:

• Expiration dates T1, . . . , TN .

• Traded options with strike prices Ki1, . . . ,Kim, for each expiration date Ti .
• Market prices Vij for an option with expiration date Ti and strike price
Kij .

To evaluate (138) we need to differentiate these discrete data with respect to the
strike variable K and the maturity time T .
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Using the interpolation methods in Section 3.2 we may assume that for each
maturity time Ti we have a pricing function u(·, Ti) ∈ W 2

2 [0,Kmax] . Once these
functions are determined they can easily be differentiated analytically to compute
approximations of ∂U

∂K (K,T ), ∂
2U
∂K2 (K,T ) wherever needed. Therefore, the assump-

tion that for each i the same number m of option prices Vij are known is no serious
restriction.

Differentiation with respect to time is less delicate because of the relatively large
time gaps. While this implies that the numerical differentiation cannot be very ac-
curate, it also means that lack of stability is not really an issue here. Therefore we
can use simple difference schemes to approximate the time derivatives at the matu-
rity times. More precisely, we may use centered differences at the inner maturities
T2, . . . , TN , and one-sided differences at the extremal maturities T1 and TN . Note
that the maturities are not equispaced in general, so that the appropriate central
difference quotient is

∂U

∂T
(Kij , Ti)) ≈

1

hi + hi+1

( hi
hi+1

u(Kij , Ti+1)+(
hi+1

hi
− hi
hi+1

)u(Kij , Ti)

− hi
hi+1

u(Kij , Ti−1)
)

(139)

with hi := Ti − Ti−1, i = 2, . . . , N .

Let

zij := σ(Kij , Ti)
2 , j = 1, . . . ,mi, i = 1, . . . , N,

the numbers which we want to compute via the formula (138). To use the formula
(138) we have to compute the nominator and the denominator. Let

bij , dij be these numbers, respectively .

We stack all those values in one-dimensional vectors z, d, and b ∈ RN , N = (m+1)n,

using a standard lexicographical ordering (with all abscissa for a single maturity in
consecutive, increasing, order).The key idea is to consider the resulting expression
in (138) as a linear system

Dz = b (140)

where D is the diagonal matrix whose diagonal coincides with d. Since we cannot
exclude tiny entries in the matrix D the linear system (140) may be ill-conditioned
in general. Finally, although D is nonnegative by construction the system (140)
may not have a nonnegative solution because of possible sign changes in b. For
these reasons the linear system (140) needs to be regularized to obtain reasonable
approximations of z. We use Tikhonov regularization and consider the problem

Computing the local volatility via numerical differentiation

min
z∈RN

‖Dz − b‖22 + α‖Lz‖22 (141)
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Here, L is a given matrix and α > 0 is an appropriate regularization parameter.
This minimization problem is equivalent to solving the linear system

(D∗D + αL∗L)z = D∗b (142)

Notice that D∗ = D .

For the choice of the regularization parameter α no simple advice can be given.
Since we want to solve the equation (140) all recipes for regularizing ill-conditioned
systems of linear equations found in the literature may be applied: cross-validation
studies ([71]), singular value decomposition ([71]), L-curve analysis ([29; 28]).

Care has to be taken in the choice of L. With L equal to the identity matrix I
we cannot guarantee that the solution of the equation (142) is positive. In [69] a
choice L different from the identity matrix I is proposed.

5. Calibration/Hilbert space methods

In this section we consider the model of the geometric Brownian motion with a local
volatility again. But here we use a modelling in a Hilbert space setting since in the
Hilbert space framework calibration methods may benefit from methods considered
in the literature of ill-posed problems; see Section 2. Moreover, it is possible to
use finite element methods instead of the limited finite differences methods for the
computation of solutions. As a consequence, we have to consider weak solutions
of the Black Scholes equation and Dupire’s equation. At the end, we formulate
Kaczmarz’s method which is a very powerful method in solving ill-posed problems.
Concerning a comprehensive presentation of calibration in finance see [111].

5.1. Calibration via gradient methods

In this subsection, we describe a least squares algorithm to calibrate the local volatil-
ity by fitting the prices of a set of vanilla european calls available on the market. As
we will see later on, for these “simple” derivates a numerically more efficient method
is available, namely a least squares method based on Dupire’s equation. But never-
theless, for models with a complex structure these methods are not feasible because
in this case no replacement for Dupire’s equation seems to be possible.

The least squares problem

Suppose market prices of vanilla european calls are given spanning a set of expiration
dates T1, . . . , TN . Assume that for each expiration date Ti options are traded with
strike prices Ki1, . . . ,Kimi , mi ∈ N . Let

cij := cij(σ) = C(S∗, t∗;Kij , Ti, r, σ) , j = 1, . . . ,mi, i = 1, . . . , N , (143)

be the prices of the options (based on a model for the dynamics of the underlying
with local volatility) σ : [0,∞) × [0, Tmax] −→ R where Tmax := maxi=1,...,N Ti .
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On the market, the following prices are available

vij ≈ cij with V bij ≤ vij ≤ V aij , j = 1, . . . ,mi, i = 1, . . . , N , (144)

where V bij and V aij denote the bid and ask prices, respectively, for an option with
expiration date Ti and strike price Kij . vij may be chosen as the arithmetic mean
of the bid and ask prices.

Let Σ denote the space of continuous functions on the domain [0,∞)× [0, Tmax] .

The calibration problem to find a volatility function which is in “agreement” with
the market prices is transformed into a least squares problem:

Minimize J(σ) :=
1

2

N∑
i=1

mi∑
j=1

wij |cij(σ)− vij |2 subject to σ ∈ Σ . (145)

The nonnegative weights wij are suitable chosen numbers. These numbers are
important in practice because the prices of the options out the money can be very
small. A common way to choose these numbers is to relate them to the Vega of the
option.

Since the set of data is finite the problem of reconstruction σ from this data
set is severely underdetermined. As a rule, there exist several volatility functions
σ that match the market option price data. This lack of uniqueness leads to the
observation that the optimization problem cannot be solved in a stable way: small
perturbations in the price data can result in large changes in the matching function.
In general, such an unstable behavior is indicated by oszillations showing up in the
matching volatility. To make the problem well-posed we must introduce some type
of regularization which surpresses these oszillations. In other words, we have to
restrict the set of admissible volatilities to a subset of smooth functions combined
with a bound for the derivatives.

Here is a remark concerning gradient methods for minimizing a functional f :

X −→ R whereX is a Hilbert space. A gradient method is the following procedure:

xk+1 := xk − λk∇f(xk) , k = 0, 1, . . . , where x0 is a given initial guess (146)

Here ∇f(·) is the gradient of the mapping f . For the step size control parameter
λk a huge amount of proposals can be found in the literature; see for instance [95].

Of course, f has to be differentiable in some sense in order to have a gradient
∇f(x) . The strongest differentiability requirement is that of Frechet-differentiability
the “weakest” one is that of subdifferentiability as a lipschitzean mapping; see Sub-
section 3.2 and [33; 102; 123]. Then, due to the Hilbert space setting, the (gener-
alized) gradient ∇f(x) is (by the Riesz-Theorem) that element in X with

f ′(x)(h) = 〈∇f(x), h〉X , h ∈ X .

In order to apply these comments to the least squares problem above we have to
introduce the set Σ of admissibe volatilities as a subset of a Hilbert space; see below.
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Regularization of the least squares problem

We change the optimization criterion by adding a regularizing term:

Minimize J(σ) + λJR(σ) . (147)

Now, we have to choose the functional JR and the parameter λ in an appropriate
way. In general, this is done by choosing an appropriate Hilbert space W which
contains the admissible volatilities σ . We sketch such a choice in the case when the
volatilities are independent of time; see Subsection 4.2.

Again, let η := ησ denote 1
2σ(·)2 . We consider the vector space

W :=

{
η ∈ H|K 7−→ (K + 1)

∂η

∂K
∈ H

}
,

where ∂η
∂K is the derivative in sense of distributions. Clearly, W is a Hilbert space

when it is endowed with the inner product

〈η, ρ〉W := 〈η, ρ〉+ 〈(K + 1)
∂η

∂K
, (K + 1)

∂ρ

∂K
〉 , η, ρ ∈W .

Denote by W ′ the dual space of W . Then the spaces W,H,W ′ build a Gelfand
triple:

W ↪→ H ↪→W ′ .

Additionally, W is continuously imbedded into L∞(R+)∩C(R+) . Now, a candidate
for the regularizing functional is given by

JR(σ) :=
1

2
〈ησ, ησ〉W , ησ ∈ D , (148)

where we assume that D is a subset of W satisfying additional conditions in order
to allow to apply the existence and uniqueness result 5.1. More details concerning
the space W may be found in [1].

Parametrization: a remark

A possible way is to find σ among a family Σ of functions prescribed by a few
parameters. Let the local volatility be parametrized in the following way:

Σ := {σ(a)|a ∈ A} (149)

where Aad is a set of admissible parameters. With this set of ansatz-functions σ(a)

the problem of calibration becomes the following optimization problem:

min
a∈Aad

1

2

N∑
i=1

mi∑
j=1

wij |cij(σ(a))− vij |2 . (150)

The computation of a solution of (150) is possible by applying optimization algo-
rithms, notice however that (150) is not a very structured optimization problem
and that each evaluation of the cost function requires N solutions of the model
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equation; the Black-Scholes formula cannot be used since this formula holds only
for constant volatility. Moreover, even when the set Aad of admissible parameters is
a subset of a finite dimensional space the associated optimization is ill-conditioned
and again regularization is necessary when Aad is not bounded.

The gradient-type method of Lagnado and Osher

In [103] a description of a gradient-type method for the calibration of a model with
local volatility. This procedure does not use Dupire’s equation. Thus the idea may
be applied in a very general setting. We present this method in a slightly changed
version.

Let us consider the least squares-functional J(σ) used in the last subsection.
Regularization is done by the requirement of smoothness: ∇σ ∈ X := L2((0,∞)×
[0, Tmax]) . Consequently

JR(σ) :=
1

2
‖∇σ‖2 (151)

The gradient of the regularizing functional is easy to compute, since it is just an
inner product.

To distinguish the informal computation from the rigorous one we denote the
linearizations by δ . A formal computation shows

δJ(σ) =
N∑
i=1

mi∑
j=1

wij(cij(σ)− vij)δcij(σ)

where dij := δcij is a solution of the linearized Black Scholes equation:

∂dij
∂t

+
1

2
σ(S, t)2S2 ∂

2dij

∂S2 + rdij
∂dij
∂S
− rdij = −δ(1

2
σ(S, t)2)S2 ∂

2cij

∂S2 ,

S > 0, t ∈ (0, T ) , (152)

dij(0, t) = 0 , lim
S→∞

dij(S, t) = 0 , t ∈ (0, T ) , (153)

dij(S, T ) = 0 , S > 0 . (154)

As a consequence, to compute the gradient of the least squares-functional is expen-
sive. Therefore the gradient is replaced by a variation defined by simple perturba-
tions of the actual volatility.

vij := δcij(σ) := lim
ε→0

(cij(σ + εh)− cij(σ)) (155)

where h = hξ,τ is a peak variation:

hξ,τ := δξ,τ := δξδτ

δξ,τ is a product of Dirac distributions concerning the points ξ ∈ (0,∞), τ ∈
(0, Tmax) . Using this peak variation, we obtain that vij is a solution of the fol-
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lowing equation:

∂vij
∂t

+
1

2
σ(S, t)S2 ∂

2vij

∂S2 + rS
∂vij
∂S
− rvij = −δξ,τσ(S, t)S2 ∂

2cij

∂S2 ,

S > 0, t ∈ (0, Ti) , (156)

vij(0, t) = 0 , lim
S→∞

vij(S, t) = 0 , t ∈ (0, Ti) , (157)

vij(S, Ti) = 0 , S > 0 . (158)

For the numerical realization of the method we have to introduce the following
initialization:

• The domain (0,∞) has to truncated, lets say to an interval (0, Smax) with
Smax large enough; a reasonable proposal is Smax := 2S∗ .

• We have to choose boundary values in S = Smax .

• To apply difference schemes one has to choose a grid (Sm, tn),m =

0, . . . ,MS , n = 0, . . . Nt in [0, Smax]× [0, Tmax] .

• An initial guess for σ in the grid points (Sm, tn),m = 0, . . . ,MS , n =

0, . . . Nt, has to be chosen.
• The regularizing functional has to be replaced by a finite difference approx-
imation using the grid points (Sm, tn),m = 0, . . . ,MS , n = 0, . . . Nt .

Now, the iteration method results in Algorithm 5.1.

Algorithm 3.6 Calibration by the Lagnado-Osher method
IN Given market prices vij , grid points (Sm, tn), a discret initial guess σ0, a reg-

ularization parameter λ and a tolerance parameter ε .
step 0 Set k := 0 .

step 1 Solve the Black Scholes boundary value problems (7),(8),(9) by a finite
difference method on the grid (Sm, tn),m = 0, . . . ,MS , n = 0, . . . Nt, to
obtain cij .

step 2 Compute the functional J . If J(σk) ≤ ε then set L := k and go to OUT.
step 3 Solve the boundary value problems (156),(157),(158) to obtain vij
step 4 Evaluate the gradient of the regularizing part of the functional: gij ,m =

0, . . . ,MS , n = 0, . . . Nt .

step 5 Iterate as follows:

σk+1
ij := σkij − vij − λgij , m = 0, . . . ,MS , n = 0, . . . Nt, (159)

Return with k := k + 1 to step 1.
OUT Discrete approximation σL .

The iterative procedure is clearly computational very expensive since a large
number of partial differential equations have to be solved. By analyzing the steps,
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the work can be reduced by exploiting the fact that each solution is done on the
same grid with the same differential operator; see [103] for more hints concerning
the numerical realization.

In [38] the method of Lagnado and Osher is presented again and an alternative
regularization strategy is proposed. Moreover, the resulting method is embedded
in the context of Tikhonov regularization. But again, a rigorous analysis of the
main steps of the method is not presented. Further extensions of the approach of
Lagnado and Osher has been considered in [19; 20; 41; 44; 81].

Here are some additional references ([3; 7; 39; 46; 72; 74]) concerning ap-
proaches that are suggested to calibrate the Black Scholes models.

5.2. Black-Scholes equation: weak solutions

We consider the boundary value problem (7), (8), (9) now in a variational context.
Two problems have to be overcome: first, the equation is not uniformly parabolic,
second, the domain “S ∈ (0,∞)” is not compact. Both problems may be resolved
by appropriate function spaces. We follow here mainly the monograph [1].

Appropriate function spaces

As we know, the Black-Scholes-equation governs the model for a put and a call
option, the difference is contained in the final condition describing the payoff func-
tion. Since the payoff function for the put option has a compact support this case
is easier to handle. Later on we discuss then the case of a call option.

The boundary value problem for a put option (with local volatility) is given as
follows:

∂P

∂t
+

1

2
σ(S, t)2S2 ∂

2P

∂S2 + rS
∂P

∂S
− rP = 0 S ∈ (0,∞), t ∈ (0, T ), (160)

P (0, t) = Ke−r(T−t) , lim
S→∞

P (S, t) = 0 , t ∈ (0, T ) , (161)

P (S, T ) = (K − S)+ , S > 0 . (162)

Given r,K, T and σ we want to find a sufficiently smooth function P : (0,∞) ×
(0, T ) −→ R, which can be considered as a weak solution of (160), (161), (162).

Let us denote with H := L2(R+) := L2(0,∞) the vector space of square-
Lebesgue-integrable functions on the domain [0,∞) . H is a Hilbert space endowed
with the inner product

〈f, g〉 :=

∫ ∞
0

f(x)g(x)dx

and the associated norm ‖f‖ := 〈f, f〉 1
2 , f ∈ H . With H we may define a Sobolev-
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like space of first order by∗

W := H1
0 (R+) :=

{f : [0,∞) −→ R is continuous|f(0) = 0, f is absolutely continuous f ′ ∈ H} .

W is a Hilbert space endowed with the inner product

〈f, g〉W := 〈f ′, g′〉 , f, g ∈W ,

and the associated norm ‖f‖W := 〈f ′, f ′〉 1
2 , f ∈ W . We set

V :=

{
v ∈ H |v : x �−→ 1

x
w(x) with w ∈W

}
.

and endow V with the inner product†

〈v, u〉V := 〈v, u〉+ 〈xv, xu〉 , v, u ∈ V .

We collect some properties of the spaces V and W ; for the proof see [1]. V is a
Hilbert space and the space D := D∞(R+) of functions with infinite many deriva-
tives with compact support is a dense subspace of W and V. Therefore the space D
may be used as a space of test functions in V . This is important in introducing the
weak form of equation (160).

Let us denote by V ′ the space of continuous functionals on V . Then the triple
V,H, V ′ may be considered as a so called Gelfand triple:

V ↪→ H ↪→ V ′

Actually, V ′ is a Hilbert space where the restriction of the inner product to H × V

is given by the inner product on H . Hence

‖λ‖V ′ = sup

{
〈λ, v〉
‖λ‖‖v‖

∣∣v ∈ V

}
, λ ∈ H .

In the space V we have found the appropriate space for the weak solutions of the
Black Scholes equation. The requirement x �−→ xv′(x) ∈ H, which is contained in
the definition of V takes into account the fact that the term 1

2σ(S, t)
2S2 ∂2P

∂S2 in the
equation contains a factor S2 .

∗A continuous function f : [0,∞) −→ R is absolutely continuous if there exist a constant c and
an integrable function g such that f(x) = c+

∫ x
0 g(t)dt, x ≥ 0 .

†Here we use the following abbreviation: xu is the function x 
−→ xu(x)
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Weak solutions

We set η := ησ, ησ(S, t) :=
1
2σ(S, t)

2 . As usual, the weak formulation of the equation
is obtained by testing the equation (160) with a function φ ∈ D:

0 =

∫ ∞

0

∂P

∂t
(S, t)φ(S)dS

−
∫ ∞

0

∂P

∂S
(S, t)

( ∂η
∂S

(S, t)S2φ(S) + 2η(S, t)Sφ(S)

+η(S, t)S2 ∂φ

∂S
(S, t)

)
dS

+r

∫ ∞

0

S
∂P

∂S
(S, t)φ(S)dS − r

∫ ∞

0

P (S, t)φ(S)dS.

This leads to the bilinear form

a(t; v, φ;σ) := −
∫ ∞

0

(
ησ(S, t)S

2 ∂v

∂S
(S)

∂φ

∂S
(S)− rP (S, t)φ(S)

)
dS

+

∫ ∞

0

(
r + 2ησ(S, t) + S

∂ησ
∂S

(S, t)

)
S
∂v

∂S
(S)φ(S)ds .

Finally, we obtain the weak formulation of the boundary value problem (160), (161),
(162): 〈

∂P

∂t
(t), φ

〉
+ a(t;P (t), φ;σ) = 0 for all φ ∈ V . (163)

Hereby we used the “evolutionary notation” P (t) := P (·, t) .

Definition 5.1. A mapping P : R+ −→ V with P (T ) = (·−K)+ is called a weak
solution of (160), (161), (162) if we have

P ∈ L2(0, T ;V ) ∩ C(0, T ;H),
dP

dt
∈ L2((0, T );V

′)

and if the identity (163) holds for allmost all t ∈ (0, T ) .∗

For the existence of a solution in the sense of Definition 5.1 we need some as-
sumptions concerning ησ := 1

2σ(·, ·)2 .

Assumptions 5.2.

(1) There exist numbers 0 < ηm ≤ ηM such that

ηm ≤ ησ(x, t) ≤ ηM for all t ∈ [0, T ] and all x ∈ R+ . (164)

(2) There exists a constant 0 < c such that∣∣x∂ησ
∂x

(x, t)
∣∣ ≤ c for all t ∈ [0, T ] and all x ∈ R+ . (165)

∗Here is an illustration of the notation: P ∈ L2(0, T ;V ) means P (t) ∈ V for allmost all t ∈ (0, T ),∫ T
0 ‖P (t)‖2V <∞
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Under these assumptions we can see that the bilinear form a is continuous (see [1]):

|a(t; v, φ;σ)| ≤ c1‖v‖V ‖φ‖V for all v, φ ∈ V, t ∈ (0, T ) . (166)

In order to apply known results to prove the existence of a weak solution we need
a version of Garding’s inequality:

a(t; v, v; η)| ≥ c2‖v‖2V − λ‖v‖2 for all v, φ ∈ V, t ∈ (0, T ) . (167)

Here c1, λ ≥ 0 and c2 > 0 . For the proof of the inequality (167) see [1].

Theorem 5.1. Under the assumptions (164), (164) we have a uniquely determined
weak solution P of (160),(161),(162):

(a) P ∈ L2(0, T ;V ) ∩ C(0, T ;H) , dP
dt
∈ L2(0, T ;V ′) .

(b) 〈dPdt (t), φ〉+ a(t;P (t), φ; η) = 0 , t ∈ (0, T ) for all φ ∈ V .

Moreover

e−2λt‖P (t)‖2 + ηm

∫ ∞
0

e−2λs‖P (s)‖2V ds ≤ ‖P0‖2 , t ∈ (0, T ) . (168)

Proof:
For the proof of (a), (b) see [128], Theorem 26.1. In the proof there we find also the
estimate (168). It is more or less a consequence of Gardings inequality. �

Now, we have an existence result for the put option. In the case of a call option
we observe, that the price CT in the final condition

CT (S) := C(S, T ) = (S −K)+ , S ∈ (0,∞) ,

is not a L2(R+)–function. In order to overcome this difficulty we use the Put-Call-
Parity. As we know, under the assumptions concerning the financial market we
have

C(S, t) := P (S, t) + S −Ke−r(t−T ) , s ∈ (0,∞), t ∈ (0, T ) . (169)

Since the mapping (S, t) 7−→ S −Ke−r(t−T ) is a (classical) solution of (160) we
have in (169) a weak solution of (160). Obviously, the boundary condition in S = 0

is satisfied. The boundary condition in S = ∞ is part of the definition of a weak
solution P . The final condition in t = T may be extracted from

C(S, T ) = P (S, T ) + S −K = (K − S)+ + (S −K) = (S −K)+ .

As a consequence, under the assumption 5.2 we have in (169) a weak solution of
the Black Scholes boundary value problem.

In [1] we find a discussion of the stability problem (dependence of the weak
solution on the local volatility) in the case when σ is not time dependent.
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5.3. Weak solutions of Dupire’s equation

In this subsection we consider the calibration problem via least sqares using Dupire’s
equation. Since we want to use a Hilbert space setting we have to introduce weak
solution of Dupire’s equation. We do this in the case of an approximation of the
model: we cut the interval [0,∞) for each of the variables T and K .

Weak solutions

We consider initial boundary value problem (126), (127), (128) (Dupire’s system).
We choose T > 0 and K > 0 . The boundary values in Dupire’s system are replaced
by

U(T,K) = 0 , U(T,K) = 0 , T ∈ (0, T ) . (170)

Let us fix σ : [0,K]× [0, T ] −→ (0,∞) which satisfies assumption 5.2. We take a
smooth test function φ vaishing in K = 0 and K = K, multiply the equation (126)
by φ and integrate from K = 0 up to K = K. This gives after a partial integration
for T ∈ (0, T )

−
∫ K

0

U(K,T )
∂φ

∂T
(K)dK

=

∫ K

0

( ∂U
∂K

(K)(
∂σ

∂K
σ(K,T )K2 + σ(K,T )2K)φ(K,T )

+
1

2
σ(K,T )2K2 ∂φ

∂K

)
dK

+

∫ K

0

U(K,T )rK
∂φ

∂K
dK.

With the bilinear form

b(T ;K,φ;σ) := −
∫ K

0

( ∂U
∂K

(K)(
∂σ

∂K
σ(K,T )K2 + σ(K,T )2K)φ(K,T )

+
1

2
σ(K,T )2K2 ∂φ

∂K

)
dK

−
∫ K

0

U(K,T )rK
∂φ

∂K
dK

we obtain the following variational formulation of Dupire’s equation〈
∂U

∂T
(T ), φ

〉
+ b(T ;U(T ), φ;σ) = 0 for all test functions

φ ∈ V , T ∈ (0, T ). (171)

The Hilbert space setting to make the deriavation rigorous is essentially the same
as for the Black Scholes system. We use the Gelfand triple V ↪→ H ↪→ V

′
with

H := L2[0,K] , V := {v ∈ L2(0,K)|xdv
dx

∈ L2(0, K), v(0) = v(K) = 0} .
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Definition 5.3. A mapping U : (0, T ) −→ V with U(0) = (S∗ − ·)+ is called a
weak solution of (126), (127), (128) if we have

U ∈ L2(0, T ;V ) ∩ C(0, T ;H),
∂U

∂T
∈ L2(0, T ;V

′
)

and if the identity (171) holds for almost all T ∈ (0, T )

Now, one can prove that under the assumptions 5.2 the system (126), (127), (128)
posseses a uniquely determined weak solution. As a consequence, the “parameter-
to-solution” mapping is well defined if we choose the domain of definition according
to the assumptions 5.2.

Calibration via Dupires equation

We want to apply this method for the calibrating functional j := J + JR . We
consider the computation of the functional J in (145) only, the gradient of the
regularizing term JR is easy to compute when it is a a norm in a Hilbert space; see
above. For the computation of the gradient J in a volatility σ one has to linearize
Dupire’s equation with respect to σ . We do that again for a “volatility” only which
depends not on time. We fix the volatility σ .

Formally, linearization is no difficult task, the problem consists in the verification
of the procedure. Again, to distinguish the formal computation from the rigorous
one we denote the linearizations by δ . An informal computation shows

δJ(σ) =
m∑
i=1

mi∑
j=1

wij(cij(σ)− vij)δw(Ti,Kj)

where δw is a solution of the linearized Dupire equation:

∂w

∂T
(T ) + b(T ;w, ·;σ) = − ∂b

∂σ
(T ;U, ·;σ)δσ , w(0) = 0 (172)

As it is known from control theory, an adjoint equation is now very helpful to
compute the gradient of the optimization criterion. Let b̃ be the bilinear form such
that

b(T ;u, k;σ) = b̃(T ; k, u;σ) for all u, k .

Then we define the adjoint state p by solving

− ∂p
∂T

(T ) + b̃(T ; p, ·;σ) =
m∑
i=1

mi∑
j=1

wij(cij(σ)− vij)δTi,Kj , p(T ) = 0 . (173)

With this adjoint state the gradient ∇J is given by

∇J(σ) = − ∂b
∂σ

(T ;U, p;σ) (174)

Now, we may formulate the gradient method:
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Algorithm 3.7 Calibration using Dupire’s equation
IN Given market prices vij , a discret initial guess σ0, a regularization parameter

λ and a tolerance parameter ε .
step 0 Set k := 0 .

step 1 Compute a weak solution of Dupire’s equation using σk to obtain cij =

U(Ti,Kj) , j = 1, . . . ,mi, i = 1, . . . , N . .

step 2 Compute the functional J . If J(σk) ≤ ε then set L := k and go to OUT.
step 3 Compute a weak solution of the adjoint equation (173) to obtain the adjoint

state p .
step 4 Compute the gradient ∇J(σk) using (174).
step 5 Evaluate the gradient g of the regularizing part of the functional
step 6 Iterate as follows:

σk+1 := σk −∇J(σk)− λg . (175)

Return with k := k + 1 to step 1.
OUT Discrete approximation σL .

This algorithm was established in [1] and numerical experiments can be found
there.

5.4. Estimation of volatilities via Kaczmarz method

This section is devoted to a specific case of an iteration method, namely the so called
algebraic reconstruction technique (ART) and its generalization to the calibration of
options. The ART-algorithm has been developed by Kaczmarz 1936 as method to
solve a system of linear equations; see [87] for a reprint. The method was refounded
as a method to solve linear systems resulting in computer tomography and in image
reconstruction; see [110]. We shall apply the nonlinear realization to the calibration
problem in finance. Again, we consider the calibration of the model with a volatility
which does not depend on time.

Introduction

Suppose for each expiration time T1, . . . , TN a certain number of strikes is available,
and we shall assume that all strike prices are contained in the interval [Kmin,Kmax]

with Kmax ≤ K,Ti ≤ Tmax, ; see the last subsection. Again, we want to find σ given

U(t∗, S∗,K, Ti) = Ui(K) , K ∈ [Kmin,Kmax] , i = 1, . . . , N .

Here t∗ is the actual time and S∗ is the corresponding value of the underlying. Uj
denotes the market price of options given by the Black Scholes model with volatility
σ . Since financial markets typically allow only a discrete sample of strikes for each
maturity an interpolation procedure has to be applied. After all, the market prices
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Mj are known up to some noise level ε only:

‖Ui −Mi‖H ≤ ε , i = 1, . . . , N (176)

Thus, the inverse problem can now be formulated as follows: Calibrate the volatility
σ = σ(K) in the system of nonlinear operator equations

Gi(σ) = Mi, i = 1, . . . , N, (177)

where Gi : again the parameter-to-solution map. Notice that this nonlinear system
is inconsistent in general.

Before we continue to analyze the problem we sketch the idea of solving systems
of equations by the idea of Kaczmarz

The ART-algorithm

Suppose that a linear system of equations is given by

Fi(x) := 〈ai, x〉2 = yi, 1 ≤ i ≤ m, (178)

where a1, . . . , aN ∈ Rn and y1, . . . , yN ∈ R; 〈·, ·〉2 denotes the euclidean inner prod-
uct in Rn . In practice, the pair (ai, yi) may be considered as a representation of an
experiment:

yi is the result of the experiment,
ai describes the “geometry” of the experiment,
x is the unknown quantity to be estimated from the experiment.

Let J(x) :=
N∑
i=1

|〈ai, x〉2 − yi|2, x ∈ Rn. The procedure that we use to find x∗

with

α := J(x∗) = min{J(x)|x ∈ Rn} (179)

is iterative and of adaptive type: in any step, an estimation of x at the next iteration
step is constructed from that at the preceding step and from a new “observation”
given by a pair (ai, yi) . Adaption is done by moving a certain (small) step in the
direction opposite to the current gradient of the objective function J using the i-th
defect of the observation only (partial gradient step). This procedure leads to the
following form of an iteration:

xk+1 := xk − λk(〈ak, xk〉2 − yk)ak, k ∈ N0 . (180)

Here (λk)k∈N is a sequence of relaxation parameters and the data (ai, yi) are used
in a cyclic order:

ak = aj , yk = yj , if j = k mod m.

As usual in Kaczmarz-type algorithms, a group of N subsequent steps (starting at
some multiple k of N) shall be called a cycle. In general, one uses cyclic relaxation,
that is λk is constant during a cycle. Then one has to distinguish two cases:
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The consistent case Here the linear system has a solution and therefore α = 0 .

Then the sequence of the cyclic relaxation parameters λk has to satisfy
0 ≤ λk ≤ 2,

∑∞
k=0 λk(2− λk) =∞ , in order to obtain A†y = limk xkN .

The inconsistent case Here the linear system has no solution (due to errors in
the data or incomplete modelling) and therefore α > 0 . Then the sequence
of the cyclic relaxation parameters λk has to satisfy 0 ≤ λk,

∑∞
k=0 λk =

∞,
∑∞
k=0 λ

2
k <∞ . In order to obtain A†y = limk xkN .

For the proof see [12].

The attractivity of the ART-algorithm comes from the following facts:

• the iteration step is easy to implement;
• no extra effort is necessary to add data (ai, yi).

The shortcomings of this type of computation scheme are

• that the convergence is slow in general;
• that it is difficult to implement a stopping rule for the iteration, especially
when the data are corrupted by noise (leading to the inconsistent case).

A different interpretation of the method above results from the geometric idea
of a projection. Each row of the linear system (178) introduces an affine space:

Vi := {x ∈ Rn|〈ai, x〉2 = yi} , i = 1, . . . , N .

The projections onto these affine spaces are given as

Pi : Rn 3 x 7−→ x− (〈ai, x〉2 − yi)ai , i = 1, . . . , N . (181)

Then the method above may be considered as a cyclic projection of the current ap-
proximations xk on the affine spaces. Alternatively, the method may be interpreted
as the computation of the common fixed point of P1, · · · , PN . Each projection is a
nonexpansive mapping but never a contraction. On the other side, the composite
mapping PN · · ·P1 – one cycle in the ART-algorithm – has attractive properties;
see for instance [9; 18]. In order to use spectral considerations we should apply the
method with the operator P1 · · ·PN−1PNPN · · ·P1 – one cycle forward and one cycle
backwards –; see [16]. There is huge amount of literature concerning the fixed point
theory of nonexpansive operators, especially in the infinite dimensional setting; see
for instance [16; 17; 62].

The Landweber-Kaczmarz method

Here we present a realization of the Kaczmarz-algorithm in the nonlinear case. For
recent analysis of Kaczmarz type methods for systems of ill-posed equations, we
refer the reader to [13; 14; 27; 66; 65; 104; 90; 67].
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The starting point of the approach is the Landweber method which computes
the solution of a linear equation Ax = y by the following iteration

xk+1 := xk −A∗(Axk − y) , k = 0, 1, . . . ,

which is actually a fixed point iteration for the mapping x 7−→ x−A∗(Ax− y) .

The problem we are interested in consists of determining an unknown quantity
x ∈ X from the set of data y := (y1, . . . , yN ) ∈ Y N , where X, Y are Hilbert spaces
and N ≥ 1. In practical situations, we do not know the data exactly. Instead, we
have approximate measured data yδi ∈ Y, i = 1, . . . , N, only, satisfying

‖yδi − yi‖ ≤ δ , i = 1, . . . , N , (182)

with δ ≥ 0 (noise level). The finite set of data is obtained by indirect measurements
in a process being described by the model

Fi(x) = yi , i = 0, . . . , N − 1 , (183)

where Fi : Di ⊂ X → Y are mappings with corresponding domains of definition
Di . In a combination with the idea of Kaczmarz and using linearization we obtain
the following iteration method:

xk+1 = xk − F ′[k](x
k)∗(F[k](x

k)− yδ[k]) . (184)

Here [k] := k mod N + 1 ∈ 1, . . . , N , and x0 ∈ X is an initial guess, possibly
incorporating some a priori knowledge about the exact solution. Standard methods
for the solution of system (183) use iterative type methods after rewriting (183) as
a single equation F (x) = y, where

F := (F1, . . . , FN ) :
⋂N

i=1
Di → Y N (185)

and y := (y1, . . . , yN ). However these methods become inefficient if N is large or
the evaluations of Fi(x) and F ′i (x)∗ are expensive. In such a situation, Kaczmarz
type methods which cyclically consider each equation in (183) separately are much
faster and are often the method of choice in practice.

The Landweber-Kaczmarz-iteration with a “bang-bang” stepsize control consists
in

xk+1 := xk − ωkF ′[k](x
k)∗(F[k](x

k)− yδ[k]) , k = 0, 1, . . . , (186)

where

ωk :=

{
1 if ‖F[k](x

k)− yδ[k]‖ > τε

0 otherwise
(187)

The iteration is stopped when ωk = 0 during a cycle. This stopping rule is called
the loping-Kaczmarz-stopping rule. In order to prove convergence results of the
method one has to introduce some assumptions:
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(A1) The operators Fi are weakly sequentially continuously and Fréchet differen-
tiable and the corresponding domains of definition Di are weakly closed. Moreover,
there exist x0 ∈ X, M > 0, and ρ > 0 such that

‖F ′i (x)‖ ≤ M , x ∈ Bρ(x0) ⊂
⋂N−1

i=0
Di . (188)

where Bρ(x0) denotes the ball with radius ρ around x0 in the space X .

(A2) The local tangential cone condition

‖Fi(x)− Fi(x̄)− F ′i (x̄)(x− x̄)‖Y ≤ η‖Fi(x)− Fi(x̄)‖Y , x, x̄ ∈ Bρ(x0) (189)

holds for some η < 1.

(A3) There exists and element x∗ ∈ Bρ/4(x0) such that F (x∗) = y, where y =

(y0, . . . , yN−1) are the exact data satisfying (182).

Now, when the parameters α and η are chosen in an appropriate way, the method
is a regularizing iteration method. For details see Subsection 2 and [27; 104] and
[90].

Recently, Kaczmarz-type methods for systems of ill-posed equations were ana-
lyzed. We refer the reader to [65; 66; 104]. The main problem in the application of
the method to specific ill-posed problems consits in the verification of the so called
cone-condition (A1); see [90]. This is an uniform assumption on the nonlinearity
of the operators Fi. It is helpful to compare the error in the linearization with the
defect in the equation.

The Kaczmarz-method for the computation of local volatilities

Now, we come back to the calibration problem. In [30] it is shown that all the
assumptions (A1), (A2) and (A3) can be verified considering Dupire’s equation in
logarithmic variables. A cycle of the Kaczmarz method consists in N gradient steps.
The optimization criteria are

Ji(·) :=
1

2
‖ci −Mi‖H2 , i = 1, . . . ,m .

We formulate the method without regularization term. Regularization is done by
stopping the iteration with the bang-bang stopping criterion.

In order to realize the method we use the same ideas as in the last subsection,
especially the computation of the adjoint of the derivative via an adjoint equation
may be adapted.

− ∂p
∂T

(T ) + b̃(T ; p, ·;σ) = f , p(T ) = 0 . (190)

A few experiments in [30] show that the method works very well. Notice that no
extra effort is necessary to add data Ti .

Recent trends and developments are iterative regularization methods in Ba-
nachspaces; see [84; 91]. Up to now, these methods are not applied to inverse
problems in finance.
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Algorithm 3.8 Calibration via Kaczmarz method
IN Given market prices Mi, an initial guess σ0, a tolerance parameter ε .
step 0 Set k := 0 .

step 1 Compute a weak solution of Dupire’s equation to obtain ci = Ui =

U(Ti, ·) , i = 1, . . . , N . .

step 2 For i=1. . . ,N do

• Compute Ji(σ) .

• If Ji(σk) ≤ ε set ωi := 0 else ωi := 1 .

• Compute the adjoint state pi := P (Ti, ·) using (190) with right hand
side f = Ui −Mi .

• Iterate as follows:

σkN+l := σkN+(l−1) − ωipi . (191)

step 3 If ω1 = · · ·ωN = 0 set L := kN and go to OUT else return with k := k+ 1

to step 2.
OUT Discrete approximation σL .
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Chapter 4

Asymptotic and non asymptotic approximations
for option valuation

R. Bompis and E. Gobet∗

Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS,
Route de Saclay, 91128 Palaiseau cedex, France

Abstract We give a broad overview of approximation methods to derive analyti-
cal formulas for accurate and quick evaluation of option prices. We compare different
approaches, from the theoretical point of view regarding the tools they require, and
also from the numerical point of view regarding their performances. In the case of
local volatility models with general time-dependency, we derive new formulas using
the local volatility function at the mid-point between strike and spot: in general,
our approximations outperform previous ones by Hagan and Henry-Labordère. We
also provide approximations of the option delta.

1. Introduction

In the two last decades, numerous works have been devoted to designing efficient
methods in order to give exact or approximative pricing formulas for many financial
products in various models. This quest of efficiency originates in the need for more
and more accurate methods, when one takes into account an increasing number of
sources of risk, while maintaining a competitive computational time. The current
interest in real-time tools (for pricing, hedging, calibration) is also very high.

Let us give a brief overview of different computational approaches. While ex-
plicit formulas are available in simple models (Black-Scholes model associated to
log-normal distribution, or Bachelier model related to normal distributions for in-
stance), in general no closed forms are known and numerical methods have to be
used. As a numerical method, it is usual to perform PDE solvers for one or two-
dimensional sources of risk (see [1] for instance) or Monte Carlo methods for higher
dimensional problems [2]: both approaches are popular, efficiently developed and
many improvements have been proposed for years. However, these methods are not
intrinsically real-time methods, due to the increasing number of points required in
the PDE discretization grid or due to the increasing number of paths needed in the
∗This research is part of the Chair Financial Risks of the Risk Foundation, the Chair Derivatives
of the Future and the Chair Finance and Sustainable Development.
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Monte Carlo procedure. Not being real-time method means, for example, that when
used for calibration routine based on data consisting of (say) 30 vanilla options, it
usually takes more than one minute (in the most favorable situation) to achieve the
calibration parameters. The approaches presented below are aimed at reducing this
computational time to less than one second.

The class of affine models (such as Heston model, exponential Levy model . . . )
offers an alternative approach related to Fourier computations: on the one hand,
in such models the characteristic function of the marginal distribution of the log-
asset is explicitly known; on the other hand, there are general relations between
Call/Put prices and the characteristic function of the log-asset. These relations
write as follows.

• Following Carr and Madan [3], consider the difference zT (k) between the
Call price in a given model and that price in an arbitrary Black-Scholes
model (with volatility σ), both with maturity T and log-strike k. For zero
interest rate (to simplify), it is equal to zT (k) = E(eXT − ek)+−CallBS(k),

where X is the logarithm of the asset. A direct computation gives explicitly
the Fourier transform ẑT (v) in the log-strike variable:

ẑT (v) =

∫
R
eivkzT (k)dk =

ΦXT (1 + iv)− ΦBS
T (1 + iv)

iv(1 + iv)
,

where ΦX,BS
T (u) := E(euXT ) is either computed in the X model or in the

Black-Scholes model. Since ΦXT (·) is required to be known, we get the X-
model Call price zT (k) + CallBS(k) simultaneously for any log-strike using
a Fast Fourier Transform.

• Alternatively, following the Lewis approach[4] , let α > 0 be a damping
constant, set h(y) = (ey −K)+e

−(1+α)y which belongs to L2(R,Leb.) and
assume that E(e(1+α)XT ) < +∞: from the Parceval-Plancherel identity,
assuming that the density pXT of XT w.r.t. the Lebesgue measure exists,
we obtain

E(eXT −K)+ =

∫
R
h(y)e(1+α)ypXT (y)dy

=
1

2π

∫
R
ĥ(−ξ) ̂[e(1+α)·pXT (·)](ξ)dξ

=
1

2π

∫
R

e−(α+iξ) log(K)

(iξ + α)(iξ + α+ 1)
ΦXT (1 + α+ iξ)dξ.

The final identity still holds without assuming the existence of density:
this can be proved by adding a small Brownian perturbation (considering
XT + εWT instead of XT ), and taking the limit as the perturbation ε goes
to 0. From the above formula, using an extra numerical integration method
(to compute the ξ-integral), we recover Call prices. For higher numerical
performance, Lewis recommends a variant of the formula above, obtained
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through the decomposition (eXT − K)+ = eXT − min(eXT ,K): it finally
comes out as

E(eXT −K)+ = S0 −
1

2π

∫
R

e( 1
2−iξ) log(K)

1
4 + ξ2

ΦXT (
1

2
+ iξ)dξ. (1)

Regarding computational time, both Fourier-based approaches perform well, since
they are essentially reduced to a one-dimensional integration problem. But they can
be applied only to specific models for which the characteristic function is given in
an explicit and tractable form: in particular, it rules out the local volatility models,
the local and stochastic volatility models.

The last approach consists of explicit analytical approximations and this is the
main focus of this chapter: it is based on the general principle of expanding the
quantity of interest (price, hedge, implied volatility. . . ) with respect to some small-
/large parameters (possibly multidimensional). The parameters under consideration
may be of very different nature: for instance in the case of Call/Put options of strike
K and maturity T , it ranges from the asymptotic behavior as K is small or large,
to the case of short or long maturity T , passing through coupled asymptotics, or
small/fast volatility variations, and so on... A detailed description with references
is presented in Section 2. Due to the plentiful and recent literature on the sub-
ject, it is likely that we will not be exhaustive in the references, but we will do our
best to give the main trends and to expose whenever possible what are the links
between different viewpoints; we will compare the mathematical tools to achieve
these approximations (rather PDE techniques or stochastic analysis ones), in order
to provide to the reader a clarified presentation of this prolific topic.

The chapter is organized as follows. Section 2 gives an overview of asymptotic
and non-asymptotic results: wing formulas, long maturity behavior, large deviations
type results, regular and singular perturbation for PDEs, asymptotic expansions of
Wiener functionals and other stochastic analysis approaches. The choice of the
small/large parameter is of course crucial and is usually left to the expertise of the
user. In particular, we show that there might be a competition between different
small/large parameters and the accuracy order might not be the natural one. This
motivates deriving non asymptotic results and this is our emphasize in the next sec-
tions. We develop the principle of high order approximations related to an intuitive
proxy. In Section 3, we consider the simplest case of second order approximation
in local volatility models, using log-normal or normal proxys. We give pedagogic
proofs. Section 4 is devoted to a more detailed analysis: we first give arguments
based on stochastic analysis (martingales, Malliavin calculus). We compare this
derivation with a method mixing stochastic analysis and PDE, and with a pure
PDE approach: we show in which respect our methodology is different. In Sec-
tion 5, we provide various high-order approximation using proxys. In Section 6,
approximations of the option delta are provided. Section 7 is gathering numerical
experiments illustrating the performance of our formulas compared to those of Ha-
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gan etal. [5] and of Henry-Labordère[6]. Some intermediate and complementary
results are postponed to Appendix (Section 8).

Notation used throughout the chapter.
� Models. In all this work, financial products are written w.r.t. a single asset,
whose price at time t is denoted by St. The dynamics of S is modeled through a
filtered probability space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 is the natural filtration of
a standard linear Brownian motion W , augmented by the P-null sets. The risk-free
rate is set∗ to 0; most of the time and unless stated otherwise, S follows a local
volatility model, i.e. it is solution of the stochastic diffusion equation

dSt = Stσ(t, St)dWt, (2)

where the dynamics is directly under the pricing measure. Assumptions on the local
volatility σ are given later. We assume that the complete market framework holds
and that an option with payoff h(ST ) paid at maturity T has a fair value at time 0

equal to E(h(ST )).
For positive S, we define the log-asset X = log(S) which satisfies

dXt = a(t,Xt)dWt −
1

2
a2(t,Xt)dt, (3)

where a(t, x) = σ(t, ex).

� Call options. Let us denote by Call(S0, T,K) the price at time 0 of a Call option
with maturity T and strike K, written on the asset S. "Price" usually means the
price given by a model on S, that is

Call(S0, T,K) = E(ST −K)+. (4)

This Model Price should equalize the Market Price taken from Market data (cali-
bration step). As usual, ATM (At The Money) Call refers to S0 ≈ K, ITM (In The
Money) to S0 � K, OTM (Out The Money) to S0 � K.

� Black-Scholes Call price function. For convenience of the reader, we give
the Black-Scholes Call price function depending on log-spot x, total variance y and
log-strike z:

CallBS(x, y, z) = exN (d1(x, y, z))− ekN (d2(x, y, z)) (5)

where:

N (x) =

∫ x

−∞
N ′(u)du, N ′(u) =

e−u
2/2

√
2π

,

d1(x, y, z) =
x− z
√
y

+
1

2

√
y, d2(x, y, z) =d1(x, y, z)−√y.

∗for non-zero but deterministic risk-free rate, we are reduced to the previous case by considering
the discounted asset; see also the discussion in [7] for stochastic interest rates.
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This value CallBS(x, y, z) equals Call(ex, T, ez) in (4) when the volatility in (2) is
only time-dependent and y =

∫ T
0
σ2(t)dt. Note that CallBS is a smooth function

(for y > 0) and there is in addition a simple relation between its partial derivatives:

∂yCallBS(x, y, z) =
1

2
(∂2
x2 − ∂x)CallBS(x, y, z) =

1

2
(∂2
z2 − ∂z)CallBS(x, y, z). (6)

In the following, x0 = log(S0) (which is the initial value of the process X defined
in (3)) will represent the log-spot, k = log(K) the log-strike, xav = (x0 + k)/2 =

log(
√
S0K) the mid-point between the log-spot and the log-strike, m = x0 − k =

log(S0/K) the log-moneyness.
The reader can find in Proposition 4.2 the definition of VegaBS, VommaBS and
UltimaBS which are the first three derivatives of CallBS w.r.t. a volatility parameter.

For (x, T, z) given, the implied Black-Scholes volatility of a price Call(ex, T, ez)

is the unique non-negative parameter σI(x, T, z) such that

CallBS
(
x, σ2

I (x, T, z)T, z
)

= Call(ex, T, ez). (7)

� Bachelier Call price function. We now recall the Bachelier Call price as a
function of spot S, total variance Y and strike Z:

CallBA(S, Y, Z) =(S − Z)N
(S − Z√

Y

)
+
√
YN ′

(S − Z√
Y

)
, (8)

which coincides with Call(S, T, Z) when the volatility in (2) is such that xσ(t, x) =

Σ(t) and Y =
∫ T

0
Σ2(t)dt. The function CallBA is smooth (for Y > 0) and we have:

∂Y CallBA(S, Y, Z) =
1

2
∂2
S2CallBA(S, Y, Z) =

1

2
∂2
Z2CallBA(S, Y, Z).

We frequently use the notation Sav = (S0 +K)/2 andM = S0−K for the Bachelier
moneyness. Proposition 4.5 defines the sensibilities of CallBA w.r.t. the volatility
parameter: VegaBA, VommaBA and UltimaBA.

For (S, T, Z) given, the implied Bachelier volatility of a price Call(S, T, Z) is the
unique non-negative parameter ΣI(S, T, Z) such that

CallBA
(
S,Σ2

I (S, T, Z)T,Z
)

= Call(S, T, Z). (9)

Black-Scholes and Bachelier implied volatilities are compared in [8].

2. An overview of approximation results

The increasing need in evaluating financial risks at a very global level and in a
context of high-frequency market exchanges is a significant incentive for the com-
putational methods to be efficient in evaluating the exposure of large portfolio to
market fluctuations (VaR computations, sensitivity analysis), in quickly calibrating
the models to the market data. Hence, in the two last decades, many numerical
methods have been developed to meet these objectives: in particular, regarding the
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option pricing, several approximation results have been derived, following one or an-
other asymptotic point of view. We give a summary of these different approaches,
stressing the limits of applicability of the methods.

2.1. Large and small strikes, at fixed maturity

The Call price Call(S0, T,K) as a function of strike is convex and its left/right
derivatives are related to the distribution function of ST [9] : ∂−KCall(S0, T,K) =

−P(ST ≥ K) and ∂+
KCall(S0, T,K) = −P(ST > K). Beyond the important fact

that the family of Call prices {Call(S0, T,K) : K ≥ 0} completely characterizes the
marginal distribution of ST , this relation also shows that the tails of the law of ST
are intrinsically related to the decay of Call(S0, T,K) as K → +∞. In terms of
implicit volatility, the heuristics are the following: the larger the implied volatility
of OTM options, the larger the right tail of ST . This is similar for small strikes
K, using Put options. Lee [10] was the first one to quantify these features relating
the behavior of implied volatility to the tails of ST , with an encoding of the tails
through the existence of positive/negative moments. These are model-free relations,
that can be applied to any model with E(ST ) < +∞ and not only to local volatility
ones like in (2). The well-known Lee moment formulas read as follows, using the
log-variables x0 = log(S0) and m = log(S0/K) = x0 − k.

Theorem 1. Define
• the maximal finite positive moment order pR := sup{p ≥ 0 : E(S1+p

T ) < +∞},
• the maximal finite negative moment order∗ pL := sup{p ≥ 0 : E(S−pT ) < +∞}.
Then, the right tail-wing of the Black-Scholes implied volatility defined in (7) is
such that

lim sup
m→−∞

Tσ2
I (x0, T, x0 −m)

|m|
= φ(pR) := βR,

while the left tail-wing is such that

lim sup
m→+∞

Tσ2
I (x0, T, x0 −m)

m
= φ(pL) := βL,

where φ(x) = 2− 4(
√
x2 + x− x) ∈ [0, 2].

Proof. We refer to [10] for a detailed proof. We only give the two main arguments
for proving the right tail-wing, the left one being similar.

• The first argument relies on a tight connection between moments and asymp-
totics of Call/Put as K → +∞. Indeed, on the one hand, convexity inequalities
give (s−K)+ ≤ sp+1

p+1

(
p
p+1

)p 1
Kp (for p ≥ 0), and taking the expectation yields

Call(S0, T,K) ≤
E(Sp+1

T )

p+ 1

( p

p+ 1

)p 1

Kp
. (10)

∗1 + pR and pL are respectively called right-tail and left-tail indices.
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In other words, the more integrability of ST , the faster the decay of Call(S0, T,K)

as K → +∞. Conversely, the Carr formula states that the Call/Put prices form a
pricing generating system for any payoff equal to a difference of convex functions:
making this principle particular to the power payoff, we obtain

E(S1+p
T ) =

∫ ∞
0

p(p+ 1)Kp−1Call(S0, T,K)dK, (11)

i.e. the faster the decreasing of Call(S0, T,K) as K → +∞, the higher the integra-
bility of ST .

• The second argument is based on exponential decreasing behaviors of Call/Put
in terms of Black-Scholes implied volatility, as the log-moneyness m→ ±∞. Repa-
rameterizing the implied volatility σI(x0, T, x0 −m) =

√
β|m|/T with β ∈ (0, 2] (β

is interpreted as a slope of the total variance per log-moneyness), we obtain

CallBS(x0, β|m|, x0 −m) = S0N (−
√
f−(β)|m|)− S0e

−mN (−
√
f+(β)|m|)

where f±(β) = 1
β + β

4 ±1. Then, a direct computation shows a dichotomic behavior
related to β:

lim
m→−∞

e−cmCallBS(x0, β|m|, x0 −m) = +∞1c>f−(β)/2. (12)

Comparing (10-11-12) and setting pR := f−(βR)/2 (or equivalently βR = φ(pR))
yields the tail-wing formulas.

Since the original contribution of Lee, several improvements to Theorem 1 have
been established. For instance, the lim sup can be removed by a simple limit, under
the additional assumptions that ST has a regularly varying density, see [11]. More
recently, Gulisashvili [12] and his co-authors have proved refined expansions of the
form

σI(x0, T, k) =

√
2√
T

[√
logK + log

1

Call(S0, T,K)
− 1

2
log log

1

Call(S0, T,K)

−

√
log

1

Call(S0, T,K)
− 1

2
log log

1

Call(S0, T,K)

]

+O
((

log
1

Call(S0, T,K)

)− 1
2
)

as K becomes large, which allows precise asymptotics of σI(x0, T, k) through those
of Call(S0, T,K).

These kinds of asymptotics are now well-known for most of the usual models,
like CEV models (no right tail-wing), Heston model (tail-wing depending on the
maturity). . . see [13] for more references. Different models may have the same strike
asymptotics. We can use this information on extreme strikes in different manners:
first, comparing with the asymptotic market implied volatility smile, it allows for
selecting a coherent model. Second, it helps the calibration procedure by setting
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approximately some parameter values (those having an impact on the tails). Third,
it can be used to appropriately extrapolate market data.

In practice, these asymptotic formulas refer to far OTM or ITM options, for
which the accuracy of market data is really questionable (large bid-ask spread, low
liquidity). Thus, a direct application is usually not straightforward.

2.2. Long maturities, at fixed strike

Another asymptotics is large maturity. It has been studied by Rogers and Tehranchi,
see [14] and [15], proving the following.

Theorem 2. Assume that S remains positive with probability 1. Then, for any
λ > 0, limT→+∞ sup|m|≤λ

∣∣∣σI(x0, T, x0 −m)−
√

8
T | ln(E(ST ∧ S0))|

∣∣∣ = 0.

As before, the proof is based on the careful derivation of asymptotics of Black-
Scholes formula (5). The above limit states that for strikes in a fixed neighborhood

of the spot S0, the implied volatility behaves like
√

8
T | ln(E(ST ∧ S0))| for large

maturity, and thus it does not depend on the strike. In other words, the implied
volatility surface flattens as maturity becomes large, which is coherent with market
data. There are also some refined and higher order asymptotics: assuming that the
a.s. large-time limit of the martingale S is 0, then

Tσ2
I (x0, T, k) =8| ln(E(ST ∧

K

S0
))| − 4 ln(| ln(E(ST ∧

K

S0
))|)

+ 4 ln(
K

πS0
) + o(1),

where the reminder is locally uniform in the log-moneneyss m = x0 − k.

2.3. Long maturities, with large/small strikes

In view of the preceeding results, the asymptotics of the smile for large maturity
becomes very simple regarding the strike variable, unless one allows the strike to be
large/small together with the maturity. Indeed to recover interesting information
at the limit, we should consider strikes of the form K = S0e

xT with x 6= 0, or
equivalently k = x0 + xT . From the linearization of the payoff, one obtains

Call(S0, T, S0e
xT ) = E

(
ST1ST≥S0exT

)
− S0e

xTP(ST ≥ S0e
xT )

= S0PS
( 1

T
log(ST /S0) ≥ x

)
− S0e

xTP
( 1

T
log(ST /S0) ≥ x

)
where the new measure PS is the one associated to the numéraire S. Under this
form, it appears clearly that for x large enough (say larger than the asymptotic
P-mean or PS-mean of 1

T log(ST /S0) whenever it exists), both probabilities above
correspond to the evaluation of large deviation events. The role of Large Deviation
Principle satisfied by the sequence ( 1

T log(ST /S0))T≥0 as T → +∞ has been out-
lined in [16] in the case of Heston model, and in [17] for more general affine models.
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Saddle point arguments combined with Lewis formula (1) have been performed in
[18] for the Heston model, to recover the Stochastic Volatility Inspired parameter-
ization of Gatheral [19]: the squared implied volatility σ2

I (x0, T, x0 + xT ) has the
simple asymptotic shape

σ2
∞(x) =

ω1

2

(
1 + ω2ρx+

√
(ω2x+ ρ)2 + 1− ρ2

)
. (13)

For more general affine models like Heston model, without or with jumps, or Bates
model, or Barndorff-Nielsen-Shephard model (see [20] and [17]), it is possible to
derive similar limits. Let Λt(u) = log(E(Sut )) be the exponent of the moment
generating function, which is convex in u: in the aforementioned model we can define
and compute its asymptotic average Λ(u) = limt→∞

1
tΛt(u), which still satisfies

to the convexity feature. We associate its Fenchel-Legendre transform Λ∗(x) =

supu∈R(ux−Λ(u)) and it turns out that ( 1
T log(ST /S0))T≥0 satisfies an LDP under

P (resp. PS) with rate function x 7→ Λ∗(x) (resp. x 7→ Λ∗(x)− x).

Theorem 3. Under some assumptions (see [17]), for any x ∈ R, the asymptotic
implied volatility σ∞(x) is given by

lim
T→∞

σI(x0, T, x0 + xT ) =
√

2
[
sgn(Λ′(1)− x)

√
Λ∗(x)− x

+sgn(x− Λ′(0))
√

Λ∗(x)
]
.

In the Black-Scholes model with constant volatility σ, one has Λ(u) = σ2

2 (u2 − u),
Λ∗(x) = 1

2σ2

(
x + σ2

2

)2, and we get obviously σ∞(x) = σ. For Heston model, Λ is
explicit as well and we finally recover the SVI parsimonious parameterization (13).
Here again, different models may have the same asymptotic smiles, see [17].

2.4. Non large maturities and non extreme strikes

To obtain approximation formulas in that situation, the asymptotics should origi-
nate from different large/small parameters that are rather related to the model and
not to the contract characteristics (maturity and strike). These different asymp-
totics are generally well intuitively interpreted. For the sake of clarity, we spend
time to detail a bit the arguments, in order to make clearer the differences between
the further expansion results and the tools to obtain them. To the best of our
knowledge, such comparative presentation does not exist in the literature and the
reader may find it interesting.

2.4.1. Small noise expansion

This is inspired by the Freidlin-Wentzell approach [21] in which the noise in the
stochastic differential equation of interest is small. Denote by Y the scalar SDE
under study (which can be X or S in our framework), solution of

dYt = µ(t, Yt)dt+ ν(t, Yt)dWt, Y0 given. (14)
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Assume that ν is small, or equivalently that ν becomes εν with ε→ 0: after making
this small noise parameterization, the model reads

dY εt = µ(t, Y εt )dt+ εν(t, Y εt )dWt, Y ε0 = Y0.

For ε = 0, it reduces to an ODE

Y 0
t = y0,t = Y0 +

∫ t

0

µ(s, y0,s)ds (15)

and this deterministic model serves as a zero-order approximation for the further
expansion. Under smooth coefficient assumptions [21], we can derive a stochastic
expansion of Y ε in powers of ε:

Y εt = y0,t + εY1,t +
1

2
ε2Y2,t + o(ε2). (16)

For instance Y1 solves a linear Gaussian SDE

Y1,t =

∫ t

0

∂xµ(s, y0,s)Y1,sds+

∫ t

0

ν(s, y0,s)dWs

=

∫ t

0

e
∫ t
s
∂xµ(r,y0,r)drν(s, y0,s)dWs.

Similarly, Y2 solves

Y2,t =

∫ t

0

[∂xµ(s, y0,s)Y2,s + ∂2
xµ(s, y0,s)Y

2
1,s]ds+

∫ t

0

2∂xν(s, y0,s)Y1,sdWs

=

∫ t

0

e
∫ t
s
∂xµ(r,y0,r)dr

(
∂2
xµ(s, y0,s)Y

2
1,sds+ 2∂xν(s, y0,s)Y1,sdWs

)
.

Higher order expansions are available under higher smoothness assumptions. The
notation o(ε2) in (16) means that the related error term has a Lp-norm (for any
p) that can be neglected compared to ε2 as ε → 0. The stochastic expansion (16)
becomes a weak expansion result when we compute E(h(YT )) for a test function h.

� The case of smooth h. If h is smooth enough, we obviously obtain

E(h(YT )) =h(y0,T ) + εh′(y0,T )E(Y1,T )

+ ε2
(
h′(y0,T )E(

Y2,T

2
) +

1

2
h′′(y0,T )E(Y 2

1,T )
)

+ o(ε2).

Observe that E(Y1,T ) = 0 since Y1,T is a Wiener integral. To make the above ex-
pansion fully effective in practice, it is necessary to make the coefficients E(Y2,T )

and E(Y 2
1,T ) explicit: this is quite straightforward thanks to the linear equa-

tions solved by Y1,. and Y2,.. The L2-isometry property of the Wiener integral
yields E(Y 2

1,t) =
∫ t

0
e2
∫ t
s
∂xµ(r,y0,r)drν2(s, y0,s)ds. In addition, we have E(Y2,t) =∫ t

0
e
∫ t
s
∂xµ(r,y0,r)dr∂2

xµ(s, y0,s)E(Y 2
1,s)ds. The coefficients computation is reduced to
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the evaluation of nested time-integrals which are simple to compute using stan-
dard n-points integral discretization, with a computational complexity∗ of order n.
The above expansion analysis is a regular perturbation analysis, using a stochastic
analysis point of view.

To derive this expansion in powers of ε, we could alternatively use a PDE point
of view based on Feynman-Kac representation, which states that uε : (t, x) 7→
uε(t, x) = E(h(Y εT )|Y εt = x) solves the perturbed PDE{

∂tu
ε(t, x) + µ(t, x)∂xu

ε(t, x) + 1
2ε

2ν2(t, x)∂2
xu

ε(t, x) = 0 for t < T ,
uε(T, x) = h(x).

Setting Lε = ∂t + µ∂x + 1
2ε

2ν2∂2
x := L0 + ε2L2, the above PDE writes Lεuε = 0

plus boundary conditions at time T . Seeking an expansion of the form uε = u0 +

εu1 + 1
2ε

2u2 + o(ε2), we obtain

L0u0 + εL0u1 + ε2[
1

2
L0u2 + L2u0] + o(ε2) = 0.

A formal identification of each coefficient of εi (i = 0, 1 . . . ) to 0, we obtain a system
of PDEs:

L0u0 = 0, L0u1 = 0,
1

2
L0u2 + L2u0 = 0,

with the boundary conditions u0(T, .) = h(.), u1(T, .) = u2(T, .) = 0. The justifi-
cation of this kind of expansion and its related error analysis can be made under
appropriate smoothness assumptions on h, µ and ν; we refer to [22] , [23] or [24]

where a similar error analysis is made. The PDE solutions are then given by

u0(t, x) = h(yt,xT ), u1 ≡ 0, u2(t, x) =

∫ T

t

2L2u0(s, yt,xs )ds

where (yt,xs )s≥t stands for the solution of the ODE (15) with initial condition (t, x).
Under this form of system of PDEs, the derivation of an explicit expression for u2

is not as easy as within the stochastic analysis approach. However, we can obtain
the same expansion (fortunately!), i.e. the same formula for u2 at (0, Y0):

u2(0, Y0) = h′(y0,T )E(Y2,T ) + h′′(y0,T )E(Y 2
1,T ) (17)

with E(Y2,T ) and E(Y 2
1,T ) given as before. To see this, start from L2 and write

u2(t, x) =
∫ T
t
ν2(s, yt,xs )∂2

yu0(s, yt,xs )ds. We have ∂xu0(t, x) = h′(t, yt,xT )∂xy
t,x
T and

∂2
xu0(t, x) = h′(t, yt,xT )∂2

xy
t,x
T + h′′(t, yt,xT )(∂xy

t,x
T )2. Then to recover (17), use the

notation y0,t = y0,Y0

t , the flow property y
t,y0,t
s = y0,s for s ≥ t, and the explicit

expressions for ∂xyt,xs and ∂2
xy
t,x
s : for instance ∂xyt,xs = 1+

∫ s
t
∂xµ(r, yt,xr )∂xy

t,x
r dr =

e
∫ s
t
∂xµ(r,yt,xr )dr.We skip further details. This completes the PDE approach to derive

a regular perturbation analysis. Observe that the derivation of explicit formula is
∗Observe that although the time integrals are multidimensional, we are reduced to iterative one-
dimensional computations since the function to integrate is separable in all its variables.
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delicate because of the system of PDEs to solve (more complicated than solving the
system of SDEs arising within the stochastic analysis approach).

� The case of non-smooth h. The previous derivation which involves h′, h′′ and
possibly higher derivatives is mathematically incorrect if h is not smooth. This fact
is clear using the stochastic analysis approach. It is also clear using PDE arguments:
indeed, it would involve the perturbed PDE solution (t, x) 7→ E(h(Y εT )|Y εt = x), that
is not uniformly smooth (because the regularization parameter ε shrinks to 0). If
h(x) = 1x≥K (like digital payoff), i.e. we evaluate pε = P(Y εT ≥ K), and y0,T 6= K,
large deviation arguments [25] show that the probability pε is exponentially close
to 0 or 1 w.r.t. 1/ε2 (i.e. log(pε) ≈ −c/ε2 if y0,T < K), and thus an expansion
in power of ε provides zero coefficients at any order. To get a non degenerate and
interesting situation, we should consider the case K is close to y0,T in the sense
K = y0,T + λ ε, that is

pε = P(Y εT ≥ y0,T + λ ε) = P(
Y εT − y0,T

ε
≥ λ).

In other words, to overcome the difficulty of the singularity of h, we have leveraged
a homogenization argument (singular perturbation), by considering the rescaled
variable (usually called fast variable) Zεt =

Y εt −y0,t

ε = Y1,t+ 1
2εY2,t+o(ε). If the law

of Y1,T is non degenerate (for instance Gaussian law with non-zero variance), the
latter quantity can be expanded in powers of ε. Actually, for less specific functions
h, Watanabe [26] has developed a Malliavin calculus-based machinery to establish
a general expansion result of E(h(ZεT )) in powers of ε, available even for Schwartz
distributions h, assuming stochastic expansions in Malliavin sense of

ZεT = Z0,T + εZ1,T + ε2Z2,T + · · ·+ εnZn,T +O(εn+1)

for any n ≥ 1 and asymptotic (in ε) non-degeneracy in Malliavin sense of ZεT :

lim sup
ε→0

‖1/det(γZ
ε
T )‖p < +∞ (18)

for any p ≥ 1, where γZ is the Malliavin covariance matrix of a random variable Z.
The Watanabe result states the existence of random variables (πk)k≥1 such that for
any polynomially bounded function h, we have

E(h(ZεT )) = E(h(Z0,T )) +
n∑
k=1

εkE(h(Z0,T )πk) +O(εn+1), ∀n ≥ 1. (19)

Compared to the non-smooth case, the possibility to get an expansion result is due
to the non-degeneracy condition which has a (asymptotic) regularization effect on
the non-smooth function h. With our previous notation ZεT =

Y εT−y0,T

ε = Y1,T +
1
2εY2,T+o(ε), the asymptotic non-degeneracy (18) implies that the Gaussian random
variable Y1,T has a non-zero variance, i.e.

∫ T
0
e2
∫ T
s
∂xµ(r,y0,r)drν2(s, y0,s)ds > 0: in

the case of time-independent coefficient µ(s, y) = µ(y), ν(s, y) = ν(y), it reads
ν(y0,T ) 6= 0. The converse result (ν(y0,T ) 6= 0 implies (18)) holds true in the
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case of time-independent coefficient and in a multidimensional setting, see [26] .
Yoshida [27] has weakened the assumption (18) into a localized version allowing
degeneracy on a set of polynomially small probability measure. This approach
has been successfully applied to different pricing problems in finance, mainly by
Yoshida, Takahashi and their co-authors: see [28; 29; 30] or the unpublished work
[31]. Their methodology consists in expanding the density of the random variable
ZεT =

Y εT−y0,T

ε using the Gaussian density as the zero-order term, and then going
back to E(h(Y εT )) by suitable integration computations. The advantage of this
approach is that the expansion result (19) holds in a large generality, provided
that we assume infinitely differentiable coefficients and uniform non degeneracy.
However, observe two difficulties or restrictions:

• within usual financial models like Heston model, the required regularity
assumption is not satisfied and we even know that the Malliavin differen-
tiability of high order may fail, see [32].

• the existence of the Malliavin weights (πk)k does not provide an explicit
and numerically computable expansion: very involved additional computa-
tions are required to obtain explicit formulas. One might compare these
tricky computations to those necessary to solve the aforementioned system
of PDEs.

Last, this approach usually leads to normal approximations of financial models
(Bachelier prices) whereas log-normal approximations (Black-Scholes prices) might
be more accurate (numerical evidences are given in Section 7).

After this presentation of singular perturbation using stochastic analysis, we now
turn to the PDE approach. It has been developed in the financial context by Hagan
and co-authors [5; 33]. To be as close as possible to the quoted work, assume that
the drift coefficient is µ ≡ 0. In the case of Call payoff, the original valuation PDE
uε writes {

∂tu
ε(t, x) + 1

2ε
2ν2(t, x)∂2

xu
ε(t, x) = 0 for t < T ,

uε(T, x) = (x−K)+;

now, if we consider ATM strikes (K − Y0 = O(ε) similarly to before), we should
consider the fast variable y = (x − K)/ε and the rescaled solution vε(t, y) =
1
εu

ε(t,K + εy) which solves{
∂tv

ε(t, y) + 1
2ν

2(t,K + εy)∂2
yv
ε(t, y) = 0 for t < T ,

vε(T, y) = y+.
(20)

At this stage, the analysis follows the routine similar to before, by seeking a solution
under the form

vε = v0 + εv1 + o(ε) (21)
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solving Lεvε = 0 where Lε = ∂t + 1
2ν

2(t,K + εy)∂2
y = L0 + εL1 + o(ε) with

L0 = ∂t + 1
2ν

2(t,K)∂2
y , L1 = νν′(t,K)y∂2

y . A formal identification leads to a
system of PDEs:

L0v0 = 0, v0(T, y) = y+ and L0v1 + L1v0 = 0, v1(T, y) = 0.

The solution v0 is obviously given by the Call price in a Bachelier model (8)
dXBA

t = ν(t,K)dWt with time-dependent diffusion coefficient, and the first cor-
rection is given by v1(t, y) = E(

∫ T
t
L1v0(s,XBA

s )ds|XBA
t = y). Although the new

terminal function h(y) = y+ is not infinitely smooth, non-zero function ν induces
a smoothing effect due to a non-degenerate heat kernel (this feature is analogous
to the previous non-degeneracy in the Malliavin sense): hence, v0 is smooth with
derivatives possibly blowing up as time gets close to T and a careful analysis shows
that v1 is well defined too. Here again, the explicit computation of v1 is not an easy
exercise and it requires some tricks. Finally v1 can be written as the weighted sum
of derivatives of v0 (interpreted as Greeks). In Sections 3 and 5, we provide a more
direct and generic way to compute this kind of correction terms using stochastic
analysis instead of PDE arguments.
Regarding the careful justification of the above PDE regular expansion with error
estimates, quite surprisingly we have not been able to find literature references when
the terminal condition is non-smooth (like y 7→ y+).
Once obtained the expansion of vε for a given local volatility function σ(., .) (i.e.
ν(t, y) = y σ(t, y)), one can derive an expansion of the Black-Scholes implied volatil-
ity σI by identifying the previous expansion with that in the case (νI(t, y) = y σI):
see [5] where the analysis is successfully performed for time-independent volatility
σ(t, y) = σ(y) (or separable function σ(t, y) = σ(y)α(t) by a simple time-change). It
is possible that the case of general time-dependent volatility has been considered out
of reach by the authors of [5; 33] using PDE arguments, whereas we will see later
how much stochastic analysis tools are suitable even in the case time-dependent
coefficients.

2.4.2. Short maturity

In this asymptotics, the terminal time T is small. When one has to evaluate
E(h(YT )) for Y solution of the SDE (14) and for h smooth (say infinitely differ-
entiable with bounded derivatives), iterative applications of Itô’s formula give

E(h(YT )) = h(Y0) +

∫ T

0

E([Lh](t, Yt))dt

= h(Y0) + T [Lh](0, Y0) +

∫ T

0

∫ t

0

E([L2h](s, Ys))dsdt
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where L is the infinitesimal generator associated to Y . Iterating the procedure, we
obtain an expansion in powers of T :

E(h(YT )) =
n∑
k=0

T k

k!
[Lkh](0, Y0) +O(Tn+1), n ≥ 0.

The numerical evaluation of such formula is straightforward. We refer the reader
to [34] for a more comprehensive exposure of related Itô-Taylor expansions.

As in the case of small noise expansion, the case of non-smooth h requires a
different treatment because Lkh is not defined. For this, we transform the problem
of small terminal time with fixed coefficients into a problem of fixed terminal time
with small coefficients, by leveraging the scaling property of the Brownian motion.
Actually, having T small is equivalent to replace T by ε2T with ε→ 0: then, starting
from the SDE (14), we consider the time-rescaled process (Yε2t)0≤t≤T which has the
same distribution as (Y εt )0≤t≤T defined as the solution of

dY εt = ε2µ(ε2t, Y εt )dt+ εν(ε2t, Y εt )dWt, Y ε0 = Y0, (22)

see [26]. Observe that this leads to a different parameterization compared to the
small noise case (in particular, the drift coefficient is multiplied by ε2). However the
expansion methodology is similar: in the case of non-smooth function, it is more
appropriate to rescale the process by setting Zεt =

Y εt −y0,t

ε = Y1,t + 1
2εY2,t + o(ε),

where

Y1,t = ∂εY
ε
t |ε=0 = ν(0, Y0)Wt,

Y2,t = ∂2
εY

ε
t |ε=0 = 2µ(0, Y0)t+ 2∂yν(0, Y0)

∫ t

0

Y1,sdWs

= 2µ(0, Y0)t+ ∂yν(0, Y0)ν(0, Y0)(W 2
t − t).

Once the fast variable is selected, observe that we are reduced to a regular perturba-
tion problem, that can be handled using stochastic analysis tools (namely Watanabe
approach [26]) or using PDE tools. We skip details since it is similar to what have
been presented before. See also the book by Henry-Labordère [6], where short-time
asymptotics of density functions are derived through geometry considerations.

2.4.3. Fast volatility

Since the end of the nineties, another popular approximation approach has been
developed by Fouque, Papanicolaou and Sircar, see [35; 36]. It emphasizes that the
asset volatility (σt)t≥0 has usually slow variations compared to the variations of the
asset itself (multiscale modeling). This is achieved in two different ways.

• Either the natural time scale of stochastic volatility is short, which leads
to a model of the form (22) for (σt)t, while the asset dynamics is un-
changed. Thus, at order zero, we obtain a Black-Scholes model with a
constant volatility equal to the initial stochastic volatility σ0, see [35] .
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• Or the fluctuations of the stochastic volatility (σt)t are so fast that they
give the appearance of a constant (in time) volatility, when considered at a
longer time scale. This second point of view has been much developed by
Fouque, Papanicolaou and Sircar and their co-authors, in many respects,
and this is presented below.

As an illustration of their methodology, we consider the asset model dSt = StσtdWt

and an Ornstein-Uhlenbeck process for modeling (σt = f(Σt))t with

dΣt =
1

ε
(Σ∞ − Σt)dt+ v

√
2

ε
dBt.

For instance in the Scott model [37], f(x) = ex and (W,B) is a standard bi-
dimensional correlated Brownian motion (d〈W,B〉t = ρdt). As time goes to infinity,
the random variable Σt weakly converges to the stationary Gaussian distribution
with mean Σ∞ and variance (v

√
2
ε )2/(2 1

ε ) = v2. In other words, although the fluc-
tuations are fast (the characteristic time being ε), the distribution remains the same
(at least for time larger than ε). It allows the application of ergodic theorem to
obtain large-time asymptotics of integrals of the realized volatility: for any polyno-
mially bounded function Ψ, we have

lim
T→+∞

1

T

∫ T

0

Ψ(σs)ds =

∫
R

Ψ(ey)
1√

2πv2
e−(y−Σ∞)2/(2v2)dy := σ2

BS

in the almost sure sense and in the L1 sense. For Ψ(y) = y2, we obtain a constant
large-time approximation of 1

T

∫ T
0
σ2
sds to be used as a zero-order approximation in

a Black-Scholes formula. To derive correction terms, the authors employ singular
pertubation PDE techniques: indeed, the price function uε(t, x, y) = E(h(ST )|St =

x,Σt = y) solves Lεuε = 0 with

Lε = ∂t +
1

2
x2f2(y)∂2

xx +

√
2

ε
ρvxf(y)∂2

xy +
1

ε
(v2∂2

y + (Σ∞ − y)∂y)

:= L0 +
1√
ε
L1 +

1

ε
L2.

As in the previous approaches, by decomposing uε in powers of
√
ε and by gathering

the contributions of the same order, we obtain a system of PDEs characterizing the
main order term and the correction terms. Actually the analysis is quite intricate
because one has to take into account the ergodic property of σ (which leads to
solving elliptic PDEs of the form of Poisson equation): see [36] where the error
analysis is made for smooth payoffs and [38] for the Call option case. The final
approximation pricing formula writes

E(ST −K)+ = CallBS(log(S0), Tσ2
BS , log(K))

+
√
ε× linear combination of ∂iSCallBS(log(S0), Tσ2

BS , log(K))

for i = 2, 3 + . . .
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with some explicit coefficients as the factors for the Greeks. Consequently, the
approximation formula is straightforward to evaluate on a computer since Black-
Scholes price and Greeks are known in closed form and available in any pricing
software. In this analysis and similarly to any PDE approaches, assuming time
homogeneous coefficients simplifies much the derivation of explicit formula. In the
context of fast volatility, some extensions are possible, see [39].

2.4.4. Proxy expansion

We complete our overview section by presenting a different point of view, which is
going to be developed further in the next sections. As a difference with previous
works, this is rather a non-asymptotic approach, relying on the a priori knowledge of
proxy of the model to handle; for this reason, it may appear as more understandable
and more intuitive for practioners. Consider the model (2) on S:

dSt = Stσ(t, St)dWt,

and assume that by expertise, S behaves closely to a Gaussian model, i.e. the
fluctuations of Stσ(t, St) are small. Then, it is reasonable to take the Bachelier
model SP with parameter (Σt = S0σ(t, S0))t as a proxy, that is

dSPt = ΣtdWt, SP0 = S0. (Normal Proxy)

The Call price in S model should be close to that in the proxy; since this approxi-
mation may be too crude, it is recommended to add correction terms.
Alternatively, one could guess that S rather behaves as a log-normal model with
parameter (at)t, i.e. X = log(S) may be approximated by

dXP
t = −1

2
a2
tdt+ atdWt, XP

0 = x0. (Log-Normal Proxy)

The proxy volatility may be taken to at = a(t, x0) = σ(t, S0) for instance, but
another point could be chosen (for instance, the strike K or the mid-point (K +

S0)/2). This description does not put an emphasize on a specific asymptotic, but
one has to quantify how Stσ(t,Xt) ≈ Σt or a(t,Xt) ≈ at.

To compute correction terms to the relation E(ST − K)+ ≈ E(SPT − K)+ or
E(eX

P
T −K)+, it is necessary to derive a convenient representation of the distance to

the proxy ST −SPT or XT −XP
T . The linear interpolation X

η
T = XP

T + η(XT −XP
T )

does not lead to illuminating computations. It is much better to consider the
following interpolation: for η ∈ [0, 1], define

dXη
t = η(−1

2
a2(t,Xη

t )dt+ a(t,Xη
t )dWt), Xη

0 = x0. (23)

Note that η is not a small parameter but an interpolation parameter. Observe
also that this parameterization is different from that in small time or small noise
asymptotics.

A direct computation shows that X1
t = Xt, X0

t = x0 and ∂ηX
η
t |η=0 =∫ t

0
a(s, x0)[dWs − 1

2a(s, x0)ds]: this shows that Xt −XP
t = X1

t − (X0
t + ∂ηX

η
t |η=0)
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writes as a Taylor formula at order 1. Thus, the natural candidate for the first
contribution in Xt −XP

t is 1
2∂

2
ηX

η
t |η=0. The above interpolation is equivalent to

dX̂η
t = −1

2
a2(t, x0 + η(X̂η

t − x0))dt+ a(t, x0 + η(X̂η
t − x0))dWt, X̂η

0 = x0, (24)

which is related to Xη
t by the relation Xη

t = x0 + η(X̂η
t − x0).

2.5. Asymptotic expansion versus non-asymptotic expansion

Deriving an asymptotic expansion sheds the light on the crucial role of one model
parameter compared to the other ones, to explain and approximate the option prices:
for instance, in small noise expansion, we focus only on the volatility by putting an
ε in front of the dW -term, and so on. It finally leads to a generic expansion of the
form

uε = u0 + εu1 +
1

2
ε2u2 + . . . (25)

or in powers of
√
ε in the fast volatility framework. Our previous discussion has

shown how this expansion is obtained in a Markovian framework using PDE (regular
or singular pertubations), or more generally using Malliavin calculus (Watanabe
approach).

Actually, it is important to observe that writing such an expansion implicitly
means that apart of the parameter related to ε, the other parameters have no im-
portant asymptotics for the problem under consideration. Below we consider a
simple toy example to show that there might be a competition between all the
model parameters, and moreover there is a necessary trade-off with the payoff reg-
ularity. In other words, deriving (25) does not necessarily mean that the first order
approximation u0 + εu1 is really accurate and taking more terms do not necessarily
improve the accuracy, because of the possible crucial influence of other large or
small parameters. Our toy example is the following perturbed Brownian model:

Xε
1 = σW1 +

√
εB1

where (W,B) is a two-dimensional Brownian motion, and σ is positive. This toy
model can be viewed as the simplest way to perturb a volatility model (we could
have taken B = W without changing the conclusion of the discussion below) and
thus, it is quite realistic compared to the further situations to handle.

(1) Case h(x) = 1 + x2. We have E[h(Xε
1)] = 1 + σ2 + ε = E[h(X0

1 )] + ε.

(2) Case h(x) = 1 + x+. By a scaling argument, we have:

E[h(Xε
1)] =1 +

√
σ2 + εE[(W1)+]

=E[h(X0
1 )] +

1

2

ε

σ
E[(W1)+] +O(

ε2

σ3
).
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(3) Case h(x) = 1x≤x0
. We have:

E[h(Xε
1)] =N

(
x0√
σ2 + ε

)
=N

(x0

σ

)
−N ′

(x0

σ

) x0

σ

ε

2σ2
+O(

ε2

σ4
).

These simple computations show that the expansion order depends on the relative
magnitude of ε and σ, and also on the regularity of the function h. For instance, if
σ is also small, say ε = σ3 → 0, then the expansion order w.r.t. σ in the case (1),
(2), (3) is respectively equal to 3, 2 and 1. These subtleties do not appear in the
expansions (19) of Watanabe type or (21) of PDE type, because the focus is made
only on a single small parameter ε.

It means that in some situations, asymptotic expansions may be misleading or
may not give the best possible approximations; then, we should take into account
the influence of all (or many) model parameters. In the context of fast volatility,
multi-scale modeling and its related asymptotic analysis are very recently developed
in [24]; see also [40].

In the sequel of this work, we consider non asymptotic expansions, mainly for
local volatility models, and analyse the approximation error taking into account sev-
eral parameters at the same time, in order to determine to which extent they play
complementary or opposite roles. For instance, it is informative to see the simul-
taneous influences of maturity, of volatility amplitude or of derivatives of volatility
function on the option prices. Their impacts depend on the payoff smoothness: the
accuracy is expected to be improved for smooth payoff compared to non-smooth
payoffs.

Final considerations. After this (hopefully complete) overview, the reader may
wonder what is the best approximation method among those presented. Of course,
it depends on the required accuracy and the computational time allowed for the
numerical evaluation. From this point of view, all methods are not equivalent.
The choice of relevant asymptotics/approximations guarantees to catch the main
features of the pricing problem, and as a consequence, it will likely lead to an
expansion of low order to achieve a good accuracy (with low computational time or
complexity). In these respects, the proxy expansion has immediate advantages: the
better or the more intuitive the proxy, the smaller the number of correction terms.

One should also take care of the preservation of some model properties in the
approximation.

• One of them is the martingale property of S = eX (serving as a base for
Call/Put parity relation). For instance, a small noise approximation of X
defined in (3) does not maintain the martingale property since the volatility
coefficient is scaled by ε while the drift remains unchanged: as a result, the
final approximation may suffer from numerical arbitrage.
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• Another property is positivity of S. Taking a Normal Proxy for S may
give wrong results if the values of S close to 0 have a prominent role in the
computation of E(h(ST )) (for instance, Call/Put with small strikes).

These kinds of consideration may help to choose between different methods, with
the additional help of comparative numerical tests.

3. Approximation based on proxy

3.1. Notations and definitions

The following notations and definitions are repeatedly used in this work.

� Differentiation. If these derivatives have a meaning, we write l(i)t (x) = ∂ixi l(t, x)

for any function l of two variables.

� Integral Operator. The integral operator ωT is defined as follows: for any
measurable and bounded function l, we set

ω(l)Tt =

∫ T

t

ludu,

for t ∈ [0, T ]. Its n-times iteration is defined analogously: for any measurable and
bounded functions (l1, · · · , ln), we set

ω(l1, · · · , ln)Tt = ω(l1ω(l2, · · · , ln)T. )Tt ,

for t ∈ [0, T ].

� Time reversal. For any measurable and bounded function l, we denote by l̃ the
function l̃t = lT−t for any t ∈ [0, T ]. Notice the relation

ω(l̃1, l̃2, .., l̃n)T0 = ω(ln, ln−1, .., l1)T0 (26)

available for any measurable and bounded functions (l1, · · · , ln): in other words,
reversing the time of integrands is equivalent to change the order of integration.

� Quadratic mean on [0, T ]. For any measurable function (l(t, x))(t,x)∈[0,T ]×R of
two variables, bounded w.r.t. the time variable for any x ∈ R, we denote by lz its
quadratic mean on [0, T ] at the spatial point z defined by:

lz =

√
1

T

∫ T

0

l2t (z)dt.

This notation is frequently used for the function a at the points z = x0, k, xav and
for the function Σ at z = S0,K, Sav.

� Assumptions on a and Σ.
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• (Ha): a is a bounded measurable function of (t, x) ∈ [0, T ] × R, and five
times continuously differentiable in x with bounded∗ derivatives. Set

M1(a) = max
1≤i≤5

sup
(t,x)∈[0,T ]×R

|∂ixa(t, x)|

and M0(a) = max
0≤i≤5

sup
(t,x)∈[0,T ]×R

|∂ixa(t, x)|.

In addition, there exists a constant ca > 0 such that |a(t, x)| ≥ ca for any
(t, x) ∈ [0, T ]× R.

• (Haz): assume (Ha) by replacing the last uniform ellipticity by the single
condition

∫ T
0
|a(t, z)|2dt > 0.

The above hypothesis will be considered at z = x0, z = k or z = xav.
We define similarly (HΣ) or (HΣ

z ) by replacing a by Σ in (Ha) and (Haz). Then
the hypothesis will be considered at z = S0, z = K or z = Sav.
� Constants. Our next error estimates are stated following the notation below.

• "A = O(B)" means that |A| ≤ CB: here, C stands for a generic con-
stant that is a non-negative increasing function of T , M1(a), M0(a) and
of the oscillation ratio M0(a)

ca
(if (Ha) is fulfilled) or [M0(a)]2T∫ T

0
|a(t,z)|2dt

(if (Haz)
is fulfilled).
If (HΣ) or (HΣ

z ) is satisfied, in the above dependence a has to replaced by
Σ.
Usually, a generic constant may depend on S0, x0,K and k; nevertheless, it
remains uniformly bounded in these variables: it is possible to derive exact
dependency but we skip it to keep the analysis short.
• Similarly, if A is positive, A ≤c B means that A ≤ CB for a generic

constant C.

3.2. Proxy approximation: a primer using the local volatility at spot

� Log-normal proxy. Assume by expertise that the model (2) behaves closely
to a log-normal model, in the sense that a log-normal approximation seems to be
reasonable. For instance, in the case of CEV type model

Sσ(t, S) = νtS
βt , (27)

a log-normal heuristics is associated to β close to 1. Some numerical illustrations
are given later.

As a first log-normal approximation, we freeze the volatility in space to the initial
spot value: regarding the log-asset X defined in (3), it writes

dXP
t = −1

2
a2(t, x0)dt+ a(t, x0)dWt, XP

0 = x0.

∗the boundedness assumption of a and its derivatives could be weakened to Lp-integrability con-
ditions, up to extra work.
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We refer to this proxy model as log-normal proxy with volatility at spot. The evalu-
ation of the next correction terms requires a suitable representation of the distance
between the model and the proxy: for this, we use the interpolated process (23)
given by

dXη
t = η(−1

2
a2(t,Xη

t )dt+ a(t,Xη
t )dWt), Xη

0 = x0.

for an interpolation parameter η ∈ [0, 1]. Under (Hax0
), the three first derivatives of

η 7→ Xη
t are well defined (a.s. simultaneously for any t, see [41] ). Denote by Xη

i,t

and Xi,t the i-th derivative respectively at η and η = 0. Direct computations yield

dXη
1,t =− 1

2
a2(t,Xη

t )dt+ a(t,Xη
t )dWt

+ ηXη
1,t(−[a∂xa](t,Xη

t )dt+ ∂xa(t,Xη
t )dWt), Xη

1,0 = 0. (28)

dXη
2,t =2Xη

1,t(−[a∂xa](t,Xη
t )dt+ ∂xa(t,Xη

t )dWt)

+ ηXη
2,t(−[a∂xa](t,Xη

t )dt+ ∂xa(t,Xη
t )dWt)

+ η[Xη
1,t]

2(−∂x[a∂xa](t,Xη
t )dt+ ∂2

xa(t,Xη
t )dWt), Xη

2,0 = 0. (29)

dXη
3,t =3Xη

2,t(−[a∂xa](t,Xη
t )dt+ ∂xa(t,Xη

t )dWt)

+ 3[Xη
1,t]

2(−∂x[a∂xa](t,Xη
t )dt+ ∂2

xa(t,Xη
t )dWt),

+ ηXη
3,t(−[a∂xa](t,Xη

t )dt+ ∂xa(t,Xη
t )dWt)

+ 3η[Xη
1,t][X

η
2,t](−∂x[a∂xa](t,Xη

t )dt+ ∂2
xa(t,Xη

t )dWt)

+ η[Xη
1,t]

3(−∂2
x[a∂xa](t,Xη

t )dt+ ∂3
xa(t,Xη

t )dWt), Xη
3,0 = 0. (30)

Observe that Xη
t |η=0 = x0, thus the derivatives at η = 0 have simpler expressions:

dX1,t =− 1

2
a2(t, x0)dt+ a(t, x0)dWt = dXP

t ,

dX2,t =2X1,t(−[a∂xa](t, x0)dt+ ∂xa(t, x0)dWt),

with Xi,0 = 0 for i ≥ 1. Then notice that XP
t = x0 +X1,t: hence

XT −XP
T = X1

T − (x0 +X1,T ) =

∫ 1

0

(1− λ)Xλ
2,Tdλ (31)

=
1

2
X2,T +

∫ 1

0

(1− λ)2

2
Xλ

3,Tdλ (32)

using the Taylor expansion formula. As a consequence of the above representation,
we obtain an approximation of E(h(XT )) for a smooth function h:

E[h(XT )] = E[h(XP
T +

X2,T

2
+ ...)] = E[h(XP

T )] + E[h(1)(XP
T )
X2,T

2
] + ... (33)

The first term is related to a log-normal model and thus, it is expected to be easily
computable numerically. The second term is more delicate: actually, we transform
it into a weighed sum of sensitivities of E[h(XP

T + ε)] w.r.t. ε = 0. To achieve this
transformation, we use a key lemma which proof is given in Subsection 8.4
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Lemma 1. Let ϕ be a C∞b function and (λt)t be a measurable and bounded deter-
ministic function. Let N ≥ 1 be fixed, and consider measurable and bounded deter-
ministic functions t 7→ li,t for i = 1, . . . , N . Then, using the convention dW 1

t = dWt

and dW 0
t = dt, for any (I1, . . . , IN ) ∈ {0, 1}N we have:

E
(
ϕ(

∫ T

0

λtdWt)

∫ T

0

lN,tN

∫ tN

0

lN−1,tN−1 . . . (34)∫ t2

0

l1,t1dW I1
t1 . . .dW

IN−1

tN−1
dW IN

tN

)
=ω(l̂1, . . . , l̂N )∂I1+···+IN

εI1+···+IN E
(
ϕ(

∫ T

0

λtdWt + ε)
)
|ε=0, (35)

where l̂k,t := lk,t if Ik = 0 and l̂k,t := λtlk,t if Ik = 1.

Now, apply the above identity to ϕ(·) = h(1)(x0− 1
2

∫ T
0
a2(t, x0)dt+ ·), λt = a(t, x0)

and

X2,T

2
=

∫ T

0

(∫ t2

0

(−1

2
a2(t1, x0)dt1 + a(t1, x0)dWt1)

)
× (−[a∂xa](t2, x0)dt2 + ∂xa(t2, x0)dWt2),

to get

E[h(1)(XP
T )
X2,T

2
] = C1(a;x0)T0 (∂3

ε3 −
3

2
∂2
ε2 +

1

2
∂ε)E

(
h(XP

T + ε)
)
|ε=0

where the operator C1 is defined by:

C1(l; z)T0 = ω(l2(z), l(z)l(1)(z))T0 =

∫ T

0

l2t (z)

∫ T

t

ls(z)l
(1)
s (z)dsdt. (36)

Combine this with (33) to obtain that E(h(XT )) can be approximated by

E[h(XP
T )] + C1(a;x0)T0 (∂3

ε3 −
3

2
∂2
ε2 +

1

2
∂ε)E

(
h(XP

T + ε)
)
|ε=0.

So far, the payoff function h is smooth and this does not fit the Call/Put setting;
actually, an extra regularization argument and a careful passing to the limit enables
to extend the previous formula to any locally Lipschitz h. Additionally, some error
estimates are available (see [42]). All the results are gathered in the following
theorem.

Theorem 4. (2nd order log-normal approximation with local volatility at
spot). Assume (Hax0

). Assume that h is locally Lipschitz in the following sense:
for some constant Ch ≥ 0,

|h(x)| ≤ CheCh|x|, |h(y)− h(x)

y − x
| ≤ CheCh(|x|+|y|) (∀y 6= x).
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Then

E[h(XT )] = E[h(XP
T )]+C1(a;x0)T0 (∂3

ε3 −
3

2
∂2
ε2 +

1

2
∂ε)E

[
h(XP

T + ε)
]
|ε=0

+O(M1(a)[M0(a)]2T
3
2 ).

where the operator C1 is defined in (36) and O depends notably of the constant Ch.

This formula is referred to as a second order approximation because the residual
term is of order three with respect to the amplitude of the volatility coefficient.

Remark 4.1. The reader should notice that the expansion formulas are exact
for the particular payoff function h(x) = ex (indeed E[h(XT )] = E[h(XP

T )] =

∂iεiE
[
h(XP

T + ε)
]
|ε=0 = ex0 and the sum of the corrective terms is equal to zero).

This notably implies that the Call/Put parity relationship is preserved within these
approximations, which is an essential property. The reader can verify in Section 5
that this martingale property is preserved for higher order approximation formulas.

Under the current assumptions (
∫ T

0
a2(t, x0)dt > 0), the law of XP

T is a non-
degenerate Gaussian r.v. and thus, the above derivatives are meaningful even for
non-smooth h. Following [42], the Lipschitz regularity can be weakened to Hölder
regularity but error estimates in the case of discontinuous function h are not avail-
able so far under the current set of assumptions.

� Normal proxy. Alternatively to a log-normal proxy, we could prefer the use
of normal proxy on the asset S: for CEV-type model described in (27), it can be
justified for β close to 0. The same analysis can be done by considering the normal
proxy with diffusion coefficient computed at spot: it writes

dSPt = Σ(t, S0)dWt, SP0 = S0.

Then, the distance to the proxy is represented through the interpolation process

dSηt = ηΣ(t, Sηt )dWt, Sη0 = S0.

All the previous computations are very similar, and even simpler because there is
no dt-term. We skip details and state directly the result (see [42] ).

Theorem 5. (2nd order normal approximation with local volatility at
spot). Assume (HΣ

S0
). Assume that h is locally Lipschitz in the following sense:

for some constant Ch ≥ 0,

|h(x)| ≤ Ch(1 + |x|Ch), |h(y)− h(x)

y − x
| ≤ Ch(1 + |x|Ch + |y|Ch) (∀y 6= x).

Then

E[h(ST )] = E[h(SPT )]+C1(Σ;S0)T0 ∂
3
ε3E
[
h(SPT + ε)

]
|ε=0

+O(M1(Σ)[M0(Σ)]2T
3
2 ).
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Remark 4.2. As for the log-normal proxy (see Remark 4.1), the approximation
formulas involving the normal proxy do not suffer from numerical arbitrage when
using Call/Put payoffs: indeed they are exact for the particular payoff function
h(x) = x (indeed E[h(ST )] = E[h(SPT )] = S0 and ∂iεiE

[
h(SPT + ε)

]
|ε=0 = 0, ∀i ≥ 2).

This property holds again when considering higher order expansions (see Section
5).

Applying two previous results to the pricing of Call option (i.e. h(x) = (ex−K)+

in the case of log-normal proxy, and h(x) = (x−K)+ in the case of normal proxy),
we obtain two different expansions using respectively Black-Scholes formula and
Bachelier formula.

Theorem 6. (2nd order approximations for Call options with local volatil-
ity at spot). Assuming (Hax0

) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0
T, k)

+ C1(a;x0)T0 (∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
x0
T, k)

+O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
S0
) and using the normal proxy, one has

Call(S0, T,K) =CallBA(S0, Σ̄
2
S0
T,K) + C1(Σ;S0)T0 ∂

3
S3CallBA(S0, Σ̄

2
S0
T,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ).

3.3. Towards Call option approximations with the local volatility at
strike and at mid-point

For general payoff functions, the most natural choice seems to choose a proxy with
the local volatility frozen at spot. When we are dealing with Call or Put payoffs, the
spot and strike variables play a symmetrical role [43], and there is a priori no reason
to advantage one or the other one. A first attempt to exploit this duality in proxy
expansion is analysed in [44]. In this subsection, we briefly recall the expansion
formulas with a local volatility at strike and then we present new expansion formulas
with a local volatility at mid-point xav = (x0 + k)/2 = log

√
S0K or Sav = (S0 +

K)/2. We detail the analysis only for the log-normal proxy. The proofs for the
normal proxy are very similar and are left as an exercise to the reader.

To directly obtain expansions formulas with local volatility frozen at strike, the
idea is to follow the Dupire approach [43], using explicitly the PDE satisfied by the
Call price function (T,K)→ Call(S0, T,K) = E[(ST −K)+]. Indeed we have that:{

∂TCall(S0, T,K) = 1
2σ

2(T,K)K2∂2
K2Call(S0, T,K),

Call(S0, 0,K) = (S0 −K)+.

Thus we do not consider anymore a PDE in the backward variables (t, S) with
a Call payoff as a terminal condition, but we now handle a PDE in the forward
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variables (T,K), with a put payoff condition. This dual PDE has a probabilistic
Feynman-Kac representation:

Call(S0, T,K) = E[(S0 − ekT )+], (37)

where (kt)t∈[0,T ] is the diffusion process defined by:

dkt = a(T − t, kt)dWt −
1

2
a2(T − t, kt)dt, k0 = k = log(K),

where we recall that a(t, z) = σ(t, ez). Thus we are in a position to apply Theorem
4 for the Put payoff function h(z) = (ex0 − ez)+ with log-strike x0 = log(S0), with
a log-normal proxy starting from K = ek and with the local volatility ã(t, z) =

a(T − t, z). In the same way, we can apply Theorem 5 with a normal proxy. As a
result, we obtain a variant of Theorem 6 where the Greeks w.r.t. the kT -variable are
naturally transformed into Greeks w.r.t. the strike variable. The final statement is
the following result.

Theorem 7. (2nd order approximations for Call options with local volatil-
ity at strike). Assuming (Hak) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
kT, k)

+ C1(ã; k)T0 (∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)CallBS(x0, ā

2
kT, k)

+O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
K) and using the normal proxy, one has

Call(S0, T,K) =CallBA(S0, Σ̄
2
KT,K) + C1(Σ̃;K)T0 ∂

3
Z3CallBA(S0, Σ̄

2
KT,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ).

Now, in order to obtain approximation formulas for the mid-points xav or Sav,
we perform a Taylor expansion of the local volatility function around these mid-
points. We start from the expansions at spot and strike given in Theorems 6 and 7,
we consider the average of these expansions and we transform each term to freeze
the local volatility function at xav or Sav. We only give details for the log-normal
proxy. We first analyze the corrective terms.

Lemma 2. Assume (Hax0
)-(Hak)-(Haxav

). We have:

1

2
C1(a;x0)T0 (∂3

x3 −
3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
x0
T, k)

+
1

2
C1(ã; k)T0 (∂3

z3 −
3

2
∂2
z2 +

1

2
∂z)CallBS(x0, ā

2
kT, k)

=
1

2

[
C1(a;xav)T0 − C1(ã;xav)T0

]
(∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)

+O(M1(a)[M0(a)]2T
3
2 ).
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Proof. We begin with the x0-Greeks. Perform a zero order Taylor formula for the
function y → (∂3

x3 − 3
2∂

2
x2 + 1

2∂x)CallBS(x0, y, k) at y = ā2
x0
T = ω(a2(x0))T0 around

y = ā2
xav
T = ω(a2(xav))T0 and ∀t ∈ [0, T ], for the function x → a2

t (x) at x = x0

around x = xav to obtain:

C1(a;x0)T0 (∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
x0
T, k)

=[C1(a;xav)T0 +R1][(∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k) +R2

]
=C1(a;xav)T0 (∂3

x3 −
3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)

+ (∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)R1 + C1(a;x0)T0 R2,

where:

R1 =
(x0 − k)

2

∫ 1

0

(∂xC1(a;x)T0 )|x=λx0+(1−λ)xav
dλ,

R2 = T (ā2
x0
− ā2

xav
)

∫ 1

0

(∂4
yx3 −

3

2
∂3
yx2 +

1

2
∂2
yx)CallBS(x0, y, k)|y=T (λā2

x0
+(1−λ)ā2

xav
)dλ,

T (ā2
x0
− ā2

xav
) =

(x0 − k)

2

∫ 1

0

(∂xω(a2(x))T0 )|x=λx0+(1−λ)xav
dλ.

In view of the definition (36) of C1, the identity (6), Corollary 4.1 and (Hax0
)-(Haxav

),
we readily obtain∣∣(∂3

x3 −
3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)R1

∣∣
≤ 1

2

∣∣(∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)(x0 − k)

∣∣
×
∣∣ ∫ 1

0

(∂xC1(a;x)T0 )|x=λx0+(1−λ)xav
dλ
∣∣

≤c [ā2
xav
T ]−

1
2M1(a)[M0(a)]3T 2 ≤cM1(a)[M0(a)]2T

3
2 ,

∣∣C1(a;x0)T0 R2

∣∣ ≤c [M0(a)]3M1(a)T 2M0(a)M1(a)T

×
∫ 1

0

[T (λā2
x0

+ (1− λ)ā2
xav

)]−
3
2 dλ lcM1(a)[M0(a)]2T

3
2 .

Similarly, using in addition (Hak) we show that:

C1(ã; k)T0 (∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)CallBS(x0, ā

2
kT, k)

= C1(ã;xav)T0 (∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)CallBS(x0, ā

2
xav
T, k) +O(M1(a)[M0(a)]2T

3
2 ),

= −C1(ã;xav)T0 (∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k) +O(M1(a)[M0(a)]2T

3
2 ),
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where we have used at the last equality the relation (75) in Proposition 4.3. That

completes the proof.

Second, we analyze the leading order of the formula given in Theorems 6 and 7:

Lemma 3. Assume (Hax0
)-(Hak)-(Haxav

). We have:

1

2
[CallBS(x0, ā

2
x0
T, k) + CallBS(x0, ā

2
kT, k)] =CallBS(x0, ā

2
xav
T, k)

+O(M1(a)[M0(a)]2T
3
2 ).

Proof. Apply a first order Taylor formula twice; firstly for the function y →
CallBS(x0, y, k) at y = ā2

x0
T around y = ā2

xav
T and secondly, for the function

x→ a2
t (x) at x = x0 around x = xav, ∀t ∈ [0, T ]. It gives

CallBS(x0, ā
2
x0
T, k)

=CallBS(x0, ā
2
xav
T, k) + ∂yCallBS(x0, ā

2
xav
T, k)T (ā2

x0
− ā2

xav
) +R1,

=CallBS(x0, ā
2
xav
T, k) + ∂yCallBS(x0, ā

2
xav
T, k)ω(a(xav)a(1)(xav))T0 (x0 − k)

+R2 +R1.

where:

R1 =T 2(ā2
x0
− ā2

xav
)2

∫ 1

0

(∂2
y2CallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)ā2

xav
)(1− λ)dλ,

R2 =∂yCallBS(x0, ā
2
xav
T, k)

(x0 − k)2

4

∫ 1

0

(∂2
x2ω(a2(x))T0 )|x=λx0+(1−λ)xav

(1− λ)dλ.

Similar arguments previously employed in the proof of Lemma 2 easily lead to:

|R1| ≤c[M1(a)]2[M0(a)]2T 2

∫ 1

0

[T (λā2
x0

+ (1− λ)ā2
xav

)]−
1
2 dλ

≤cM1(a)[M0(a)]2T
3
2 ,

|R2| ≤cM1(a)[M0(a)]2T
3
2 .

Similarly we have:

CallBS(x0, ā
2
kT, k)

=CallBS(x0, ā
2
xav
T, k)− ∂yCallBS(x0, ā

2
xav
T, k)ω(a(xav)a(1)(xav))T0 (x0 − k)

+O(M1(a)[M0(a)]2T
3
2 ).

We are finished.

Lemmas 2 and 3 lead to the following Theorem for the log-normal proxy, while
similar arguments apply for the normal proxy.
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Theorem 8. (2nd order approximations for Call options with local volatil-
ity at mid-point). Under (Hax0

)-(Hak)-(Haxav
), we have

Call(ex0 ,T, ek) = CallBS(x0, ā
2
xav
T, k)

+
C1(a;xav)T0 − C1(ã;xav)T0

2
(∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav
T, k)

+O(M1(a)[M0(a)]2T
3
2 ). (38)

Under (HΣ
S0
)-(HΣ

K)-(HΣ
Sav

), we have

Call(S0, T,K) =CallBA(S0, Σ̄
2
Sav
T,K)

+
C1(Σ;Sav)T0 − C1(Σ̃;Sav)T0

2
∂3
S3CallBA(S0, Σ̄

2
Sav
T,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ). (39)

Remark 4.3. If a (and consequently Σ) is time-independent or has separable vari-
ables, observe that the corrective terms vanish and we obtain remarkably simple
formulas: the expansion formulas (38) and (39) reduce to only a Black-Scholes price
and a Bachelier price, with the local volatility function frozen at the mid-point.

3.4. Second order expansion of the implied volatility

Interestingly, the previous expansions of Call price (Theorems 6, 7 and 8) can be
turned into expansions of Black-Scholes and Bachelier implied volatility defined
respectively in (7) and (9). To achieve this, we use the relations between Greeks
postponed in Propositions 4.3 and 4.6 in order to write the different approximation
formulas in terms of the Vega. For example consider the second order log-normal
expansion formula based on the ATM local volatility (Theorem 6): thanks to (75)
in Proposition 4.3, it becomes:

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0
T, k)−VegaBS(x0, ā

2
x0
T, k)

C1(a;x0)T0 m

ā3
x0
T 2

+O(M1(a)[M0(a)]2T
3
2 ),

≈CallBS
(
x0, (āx0

− C1(a;x0)T0
ā3
x0
T 2

m)2T, k
)
,

where m is the log-moneyness m = x0 − k = log(S0/K). We have paved the way
for the following result:

Theorem 9. (2nd order expansions of the implied volatility). Assuming
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(Hax0
)-(Hak)-(Haxav

) and using the log-normal proxy, we have

σI(x0, T, k) =āx0
− C1(a;x0)T0

ā3
x0
T 2

m+ ErrorI
2,x0

, (40)

σI(x0, T, k) =āk +
C1(ã; k)T0
ā3
kT

2
m+ ErrorI

2,k, (41)

σI(x0, T, k) =āxav
+

(C1(ã;xav)T0 − C1(a;xav)T0 )

2ā3
xav
T 2

m+ ErrorI
2,xav

. (42)

Assuming (HΣ
S0
)-(HΣ

K)-(HΣ
Sav

) and using the normal proxy, we have

ΣI(S0, T,K) =Σ̄S0 −
C1(Σ;S0)T0

Σ̄3
S0
T 2

M + ErrorI
2,S0

,

ΣI(S0, T,K) =Σ̄K +
C1(Σ̃;K)T0

Σ̄3
KT

2
M + ErrorI

2,K,

ΣI(S0, T,K) =Σ̄Sav
+

(C1(Σ̃;Sav)T0 − C1(Σ;Sav)T0 )

2Σ̄3
Sav
T 2

M + ErrorI
2,Sav

,

where Sav = S0+K
2 and M = S0 −K.

Remark 4.4. We retrieve in our implied volatility approximation formulas the well-
known property that at the money (ie m = 0) and for short maturity, the value of
the implied volatility is equal to the value of the local volatility function and the
slope of the local volatility function is twice the slope of the implied volatility. We
justify this assertion for the Black-Scholes implied volatility, the work being similar
for the Bachelier one. If T � 1, in view of (40) and the definition (36) of C1,
assuming that a(t, x0) and a(1)(t, x0) are continuous at t = 0, we obtain:

[σI(x0, T, k)]|k=x0 ≈ a(0, x0),

∂k[σI(x0, T, k)]|k=x0 ≈ ∂k[āx0 ]|k=x0 −
C1(a;x0)T0
ā3
x0
T 2

∂k[(x0 − k)]|k=x0

≈ 0 +
a3(0, x0)a(1)(0, x0)T

2

2

a3(0, x0)T 2
=
a(1)(0, x0)

2
.

We obtain the same estimates starting from (41) and (42), we skip details.

To conclude this paragraph, we estimate the residual terms of the above implied
volatility expansions, in terms ofM0(a),M1(a) and so on. Since the Vega is very
small for far OTM/ITM Call options, deriving error bounds on implied volatility
from Theorems 6, 7 and 8 gives poor estimates for extreme strikes. Actually, in
the further numerical experiments, we also observe inaccuracies for extreme strikes.
To obtain accurate theoretical error bounds, we restrict to log-moneyness m (resp
moneyness M) belonging to a small ball by assuming that |m| ≤ ξM0(a)

√
T (resp.

|M | ≤ ξM0(Σ)
√
T ) for a given ξ > 0.
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For the sake of brevity, we only analyze the expansion (40), the other approximations
being similar. We assume in addition thatM0(a),M1(a) and T are globally small
enough to ensure that āx0

− C1(a;x0)T0
ā3
x0
T 2 m > 0. Note that at the money (i.e. m = 0),

this condition is automatically satisfied. A first order expansion readily gives

CallBS(x0,
(
āx0
− C1(a;x0)T0

ā3
x0
T 2

m
)2
T, k)

= CallBS(x0, ā
2
x0
T, k)− C1(a;x0)T0

ā3
x0
T 2

mVegaBS(x0, ā
2
x0
T, k)

+
(C1(a;x0)T0

ā3
x0
T 2

m
)2 ∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0−λ
C1(a;x0)T0
ā3
x0
T2 m

(1− λ)dλ

= CallBS(x0, σ
2
I (x0, T, k)T, k) +O(M1(a)[M0(a)]2T

3
2 )

+
(C1(a;x0)T0

ā3
x0
T 2

m
)2 ∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0
−λC1(a;x0)T0

ā3
x0
T2 m

(1− λ)dλ,

applying Theorem 6 and using the definition of the Black-Scholes implied volatility.
Expanding a→ CallBS(x0, a

2T, k) at a = σI(x0, T, k) around a = āx0
− C1(a;x0)T0

ā3
x0
T 2 m

gives:

ErrorI2,x0

∫ 1

0

VegaBS(x0, a
2T, k)|a=σI(x0,T,k)−λ ErrorI2,x0

dλ

=O(M1(a)[M0(a)]2T
3
2 )−

(C1(a;x0)T0
ā3
x0
T 2

m
)2

×
∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0−λ
C1(a;x0)T0
ā3
x0
T2 m

(1− λ)dλ.

In view of the expression of VegaBS (see (68) in Proposition 4.2) and (71) in Corol-
lary 4.2, the hypotheses made on m,M0(a),M1(a) and T guarantee the existence
of a constant C > 0 (depending on S0) such that:∫ 1

0

VegaBS(x0, a
2T, k)|a=σI(x0,T,k)−λ ErrorI2,x0

dλ ≥ C
√
T > 0.

In addition (72) and (Hax0
) readily yield∣∣(C1(a;x0)T0

ā3
x0
T 2

m
)2 ∫ 1

0

VommaBS(x0, a
2T, k)|

a=āx0
−λC1(a;x0)T0

ā3
x0
T2 m

(1− λ)dλ
∣∣

≤c (M1(a)M0(a)
√
T )2

√
T

āx0

≤cM1(a)[M0(a)]2T
3
2 ,

where the generic constant depends in an increasing way on ξ. That finally implies:

ErrorI2,x0
= O(M1(a)[M0(a)]2T ).

In view of the above upper bound, we interpret our implied volatility formulas as
second order expansion ones.
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4. Proofs: a comparative discussion between stochastic analysis and
PDE techniques

In this section, our aim is to show how three different techniques ranging from
stochastic analysis to PDE may lead to the same formulas given in Theorem 4. Al-
though the final result is the same, the derivation is quite different, first regarding
the way in which the expansion coefficients are made explicit, second regarding the
error estimates and the assumptions used for that.
We admit that our preference is for the stochastic analysis approach, because it
is flexible regarding the model and the functionals under consideration, and it is
slightly less demanding regarding the assumptions (pointwise ellipticity versus uni-
form ellipticity for instance). But the reader may argue differently, depending on
its own fields of expertise.
As an illustration of flexibility of the stochastic analysis approach, it has been pos-
sible to handle Call/Put/digital options in local volatility models with Gaussian
jumps [45], Call/Put options in local volatility models with stochastic Gaussian
interest rates [7], Call/Put options in time-dependent Heston model [46], general
average options (including Asian and Basket options) in local volatility models [42],
and more recently local stochastic volatility models [47].

4.1. A pure stochastic analysis approach

This is basically the derivation that we have performed in Subsection 3.2.

Smooth payoff h. We first deal with the case of infinitely differentiable function
h with exponentially bounded derivatives. Resuming from (31-32-33) and using
Taylor’s formula, write

E[h(XT )] = E[h(XP
T )] + E[h(1)(XP

T )(XT −XP
T )]

+

∫ 1

0

E
[
h(2)(XP

T + λ(XT −XP
T ))(XT −XP

T )2
]
(1− λ)dλ

=E[h(XP
T )] + E[h(1)(XP

T )
X2,T

2
] + E

[
h(1)(XP

T )

∫ 1

0

(1− λ)2

2
Xλ

3,T

]
dλ

+

∫ 1

0

E
[
h(2)(XP

T + λ(XT −XP
T ))(

∫ 1

0

Xη
2,T (1− η)dη)2

]
(1− λ)dλ

:=E[h(XP
T )] + E[h(1)(XP

T )
X2,T

2
] + Error2(h). (43)

The first correction term E[h(1)(XP
T )

X2,T

2 ] is made explicit using the key Lemma
1, and it is equal to a weighted summation of sensitivities ∂iεE[h(XP

T + ε)]|ε=0 for
i = 1, 2, 3 (see the statement of Theorem 4).

The evaluation of Error2(h) requires to estimate the Lp-norms of Xλ
2,T and Xλ

3,T

(uniformly in λ ∈ [0, 1]). Direct and standard stochastic calculus inequalities from
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(28-29-30) yield

|Xλ
2,T |p ≤cM1(a)M0(a)T, |Xλ

3,T |p ≤cM1(a)[M0(a)]2T 3/2 (44)

for any p ≥ 1 and any λ ∈ [0, 1]. Combining these estimates with Hölder and
Minkowski inequalities readily gives Error2(h) = O(M1(a)[M0(a)]2T

3
2 ), which

completes the proof if h is smooth as above. Observe that we have only required
the coefficients to be smooth enough, and nothing has been imposed on the non-
degeneracy of a.

Locally Lipschitz function h. We now extend the analysis to functions satisfy-
ing conditions of Theorem 4 (thus almost everywhere differentiable), assuming ad-
ditionally (Hax0

): observe that the pointwise ellipticity condition
∫ T

0
a2(t, x0)dt > 0

is necessary to ensure that XP -Greeks are well defined. The analysis below shows
that the condition is also sufficient to obtain the expansion.
The new ingredient consists in appropriately smoothing h and in using integration-
by-parts formula from Malliavin calculus to get rid of the derivatives of h; this
follows the arguments of [42]. Let B be another scalar Brownian motion indepen-
dent of W and for δ > 0, set

hδ(x) := E(h(x+ δB2T )) = E(hδ/
√

2(x+ δBT )).

For any δ > 0, the function hδ is smooth and its derivatives are exponentially
bounded, so that we can apply the previous expansion to hδ instead of h in order
to obtain:

E[hδ(XT )] =E[hδ(X
P
T )] + C1(a;x0)T0 (∂3

ε3 −
3

2
∂2
ε2 +

1

2
∂ε)E

[
hδ(X

P
T + ε)

]
|ε=0

+ Error2(hδ).

Take δ =M1(a)[M0(a)]2T : then replacing E(hδ(XT )) and E(hδ(X
P
T )) by E(h(XT ))

and E(h(XP
T )) readily yields an extra error O(M1(a)[M0(a)]2T

3
2 ) which has the

right magnitude regarding the expected global error. Moreover using (Hax0
), we can

also prove that computing the sensitivities with respect to h or to hδ does not de-
teriorate the global accuracy (see [42] ). It remains to prove that Error2(hδ) =

O(M1(a)[M0(a)]2T
3
2 ). An inspection of the representation (43) of Error2(hδ)

shows immediately that the first contribution with h(1)
δ is a O(M1(a)[M0(a)]2T

3
2 ),

by simply using the exponential growth condition on h(1) and the finiteness of ex-
ponential moments of Xη

T .The second contribution with h
(2)
δ is the integral over

(η1, η2, λ) ∈ [0, 1]3 of (1− η1)(1− η2)(1− λ) times

E
[
h

(2)
δ (XP

T + λ(XT −XP
T ))Xη1

2,TX
η2

2,T

]
= E

[
h

(2)

δ/
√

2
(XP

T + λ(XT −XP
T ) + δBT )Xη1

2,TX
η2

2,T

]
= E

[
h

(1)

δ/
√

2
(XP

T + λ(XT −XP
T ) + δBT )Hδ,η1,η2,λ

1

]
.
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The first equality follows from the definition of hδ, whereas the second one is an
integration by parts formula from Malliavin calculus [48]. We do not enter into
the derivation details, we only emphasize two points: first, it is allowed since XP

T +

λ(XT −XP
T )+δBT is a non-degenerate random variable (in Malliavin sense) thanks

to the additional perturbation δBT , and its Malliavin matrix has an inverse of
order (

∫ T
0
a2(t, x0)dt)−1 in Lp-norms, owing to the ellipticity assumption in (Hax0

).
Second, the Malliavin norms of Xη

2,T can be estimated similarly to (44) and it finally
gives that (E|Hδ,η1,η2,λ

1 |2)1/2 = O(M1(a)[M0(a)]2T
3
2 ). This finishes the proof.

Slight modifications in the above arguments would enable to handle functions with
local Hölder smoothness.

Arbitrary function h. Here, we do not assume any regularity on h, only ex-
ponential growth. The analysis is similar but the regularization step for h is more
complex, see [45]: the expansion analysis has been done under the uniform ellipticity
condition on (Ha), and not only under the pointwise ellipticity in (Hax0

).

As a conclusion to this stochastic analysis approach:

• the derivation of expansion coefficients is direct and easy;
• the error analysis relies on delicate Malliavin calculus estimates;
• it applies to general function h under mild non-degeneracy condition.

4.2. Mixing stochastic analysis and PDE

Here, we directly prove the expansion result for locally Lipschitz function h. We
represent the error E[h(XT )]− E[h(XP

T )] using the PDE associated to the proxy:

uP,h(t, x) = E[h(XP
T )|XP

t = x]

To get a smooth solution uP , assume that a(t, x0) 6= 0 for any t ∈ [0, T ], which
is stronger that

∫ T
0
a2(t, x0)dt > 0 considered in (Hax0

). The generic constants
appearing in our next error estimates depend in an increasing way of the oscillation
ratio M0(a)

inf
t∈[0,T ]

a(t, x0)
. Then,

{
∂tu

P,h(t, x) + 1
2a

2(t, x0)(∂2
x2 − ∂x)uP,h(t, x) = 0, for t < T ,

uP,h(T, x) = h(x),
(45)

|∂nxnuP,h(t, x)| ≤c ec|x|(
∫ T

t

a2(s, x0)ds)−
n−1

2 . (46)

The estimates (46) directly follow from the differentiation of the Gaussian density
of XP

T conditionally to Xp
t = x, taking into account the exponential growth of h.

Then, apply Itô’s formula to uP,h(t,Xt) between t = 0 and t = T , combine this
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with simplifications coming from the PDE solved by uP,h; it gives

E[h(XT )] =E[h(XP
T )] +

1

2
E
[ ∫ T

0

(a2(t,Xt)− a2(t, x0))(∂2
x2 − ∂x)uP,h(t,Xt)dt

]
=E[h(XP

T )] +
1

2

∫ T

0

∂x[a2](t, x0)E
[
(Xt − x0)(∂2

x2 − ∂x)uP,h(t,Xt)
]
dt

+
1

2
E
[ ∫ T

0

[a2(t,Xt)− a2(t, x0)− ∂x[a2](t, x0)(Xt − x0)]

× (∂2
xx − ∂x)uP,h(t,Xt)dt

]
. (47)

Taking advantage of (46), we can easily bound the last term in (47) by

C

∫ T

0

M0(a)M1(a)|Xt − x0|24(

∫ T

t

a2(s, x0)ds)−
1
2 dt

= O(M1(a)[M0(a)]2T
3
2 )

using standard increment estimates and uniform lower and upper bounds on a2.
Observe that the Lipschitz regularity of h gives rise to singular terms of the form
(T − t)− 1

2 , which are fortunately integrable at T .
Regarding the second term in (47), we have to approximate E

[
(Xt − x0)(∂2

x2 −

∂x)uP,h(t,Xt)
]
for any t ∈ [0, T [: we apply again the previous decomposition by

replacing T by t and h(x) by φt(x) = (x − x0)(∂2
xx − ∂x)uP,h(t, x). We denote by

vP,φt (s, x) = E[φt(X
P
t )|XP

s = x] the solution of the system (45) on [0, t[×R but with
terminal condition φt. The term under study is thus equal to

E[φt(X
P
t )] +

1

2
E[

∫ t

0

(a2(s,Xs)− a2(s, x0))(∂2
x2 − ∂x)vP,φt (s,Xs)ds].

It remains to make explicit vP,φt (s, x) in order to compute the first term and to
estimate the second. For this, the trick lies in the observation that for any k ≥
0, Mk,t = ∂kxku

P,h(t,XP
t ) is a martingale for t < T : this directly follows from

the application of Itô’s formula, combined with (45) and (46). Hence, successive
applications of the equalities E[Mk,t|XP

s = x] = ∂kxku
P,h(s, x) for s ≤ t and of the

Lemma 1 gives:

vP,φt (s, x) =E
[
(XP

t − x0)(∂2
x2 − ∂x)uP,h(t,XP

t )|XP
s = x

]
=(x− x0)E

[
(∂2
x2 − ∂x)uP,h(t,XP

t )|XP
s = x

]
+ E

[
(XP

t −XP
s )(∂2

x2 − ∂x)uP,h(t,XP
t )|XP

s = x
]
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=(x− x0)(∂2
x2 − ∂x)uP,h(s, x)

− 1

2

∫ t

s

a2(ξ, x0)dξE
[
(∂2
x2 − ∂x)uP,h(t,XP

t )|XP
s = x

]
+ E

[( ∫ t

s

a(ξ, x0)dWξ

)
(∂2
x2 − ∂x)uP,h(t, x

− 1

2

∫ t

s

a2(ξ, x0)dξ +

∫ t

s

a(ξ, x0)dWξ)
]

=(x− x0)(∂2
x2 − ∂x)uP,h(s, x)

− 1

2

∫ t

s

a2(ξ, x0)dξ(∂2
x2 − ∂x)uP,h(s, x)

+

∫ t

s

a2(ξ, x0)dξE
[
(∂3
x3 − ∂2

x2)uP,h(t,XP
t )|XP

s = x
]

=(x− x0)(∂2
x2 − ∂x)uP,h(s, x) +

∫ t

s

a2(ξ, x0)dξ(∂3
x3 −

3

2
∂2
x2

+
1

2
∂x)uP,h(s, x).

In particular the above calculus yields E[φt(X
P
t )] = vP,φt (0, x0) =∫ t

0
a2(s, x0)ds(∂3

x3 − 3
2∂

2
x2 + 1

2∂x)uP,h(0, x0) and by multiplying by 1
2∂x[a2](t, x0)

and integrating over t ∈ [0, T ] in (47), we recover the correction terms from Theo-
rem 4.

On the other hand, combining (46) and the ellipticity assumption, we easily obtain∣∣(∂2
x2 − ∂x)vP,φt (s,Xs)

∣∣
p

≤c |Xs − x0|2p
∣∣(∂4

x4 − 2∂3
x3 + ∂2

x2)uP,h(s,Xs)
∣∣
2p

+
∣∣(2∂3

x3 − 3∂2
x2 + ∂x)uP,h(s,Xs)

∣∣
p

+

∫ t

s

a2(ξ, x0)dξ
∣∣(∂5

x5 −
5

2
∂4
x4 + 2∂3

x3 −
1

2
∂2
x2)uP,h(s,Xs)

∣∣
p

≤c
√
s

inf
s∈[0,T ]

a2(s, x0)(T − s) 3
2

+
1

inf
s∈[0,T ]

a2(s, x0)(T − s)
,

for any p ≥ 1, t ∈ [0, T [, s ∈ [0, t[. Consequently we obtain for the final error:∣∣ ∫ T

0

∂x[a2](t, x0)E
[ ∫ t

0

(a2(s,Xs)− a2(s, x0))(∂2
x2 − ∂x)vP,φt (s,Xs)ds

]
dt
∣∣

≤cM1(a)M0(a)

∫ T

0

∫ t

0

|Xs − x0|2[

√
s

(T − s) 3
2

+
1

(T − s)
]dsdt

≤cM1(a)[M0(a)]2T
3
2 .

We have retrieved the error estimate provided in Theorem 4. Once again, we would
like to point out that the singular terms (T − s)−3/2 and (T − s)−1 appearing in
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the above time iterated integral remain integrable.

As a conclusion to this approach mixing stochastic analysis and PDE :

• the error analysis relies on usual estimates of derivatives of heat equations
(PDE satisfied by the proxy) and it may be considered easier; however for
digital options, the singularities arising in iterated time integrals are not
integrable and the current approach seems to be inappropriate.
• this approach requires stronger non-degeneracy assumptions compared to
the previous stochastic analysis approach;
• the explicit derivation of expansion coefficients is tricky and relies on ap-
propriate combination of martingale properties and Itô calculus;
• we nevertheless mention that this approach could be potentially used in a
framework where the Malliavin calculus fails, e.g. for barrier options.

Actually for higher order expansion, the latter explicit martingale computation is
harder to write down, whereas a direct application of Lemma 1 remains direct.

4.3. A pure PDE approach

Alternatively, inspired by the interpolation (23-24), consider the solution of the
PDE{

∂tu
η(t, x) + 1

2a
2(t, x0 + η(x− x0))(∂2

x2 − ∂x)uη(t, x) = 0, for t < T ,
uη(T, x) = h(x).

Observe that u1(0, x0) coincides with E(h(XT )) whereas u0(0, x0) coincides with
E(h(XP

T )). This PDE has similarities with that of Hagan (20) but it differs here,
because the space variable has not been rescaled around the strike. In addition the
solution of the principal PDE in the Hagan approach is a Call price in a Bachelier
model, whereas u0(0, x0) is a Call price in a Black-Scholes model.
To derive the correction terms, we shall apply a regular perturbation analysis by
writing uη = u0 + ηu1 + . . . , with u0 = u0, and

Lη = ∂t +
1

2
a2(t, x0 + η(x− x0))(∂2

x2 − ∂x)

= L0 + η
1

2
∂x[a2](t, x0)(x− x0)(∂2

x2 − ∂x) + . . . .

A formal identification of the system to PDEs to solve gives[
∂t +

1

2
a2(t, x0)(∂2

x2 − ∂x)
]
u0(t, x) = 0,

L0u1 = −1

2
∂x[a2](t, x0)(x− x0)(∂2

x2 − ∂x)u0

with u0(T, x) = h(x) and u1(T, x) = 0. As mentioned before, in our opinion,
an explicit resolution of u1 is difficult to exhibit without knowing the solution.
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However, after tedious calculus involving Gaussian kernels and convolutions, we
can retrieve the corrective terms of Theorem 4.
Also, a PDE error analysis (which we have not been able to find in the literature
in the case of irregular h) may presumably give error estimates only in powers
of η (which equals 1 here!) and not as O(M1(a)[M0(a)]2T

3
2 ). Additionally, due

to the form of the proxy, our intuition is that the error at (0, x0) (where we aim
at computing the solution) is smaller that the error at arbitrary (t, x). All these
reasons indicate that a PDE approach to derive correction terms and error analysis
in our proxy setting is probably irrelevant.

5. Higher-order proxy approximation

In this section, we give several expansions formulas with a third order accuracy.
First, we recall without proof results obtained in [49] and [44] for expansions based
on local volatility at spot and at strike. Second we introduce a new expansion with
local volatility frozen at mid-point. Finally new expansions of implied volatility are
provided.

5.1. Third order approximation with the local volatility at spot and
at strike.

We define some integral operators useful to state the next theorems.

Definition 4.1. If the derivatives and the integrals have a meaning, we define for
a two variables function l the above operators:

C1(l; z)T0 =ω(l2(z), l(z)l(1)(z))T0 ,

C2(l; z)T0 =ω(l2(z), (l(1)(z))2 + l(z)l(2)(z))T0 ,

C3(l; z)T0 =ω(l2(z), l2(z), (l(1)(z))2 + l(z)l(2)(z))T0 ,

C4(l; z)T0 =ω(l2(z), l(z)l(1)(z), l(z)l(1)(z))T0 .

We frequently use some linear combinations of these operators:

η1(l; z)T0 =
C1(l; z)T0

2
− C2(l; z)T0

2
− C3(l; z)T0

4
− C4(l; z)T0

2
,

η2(l; z)T0 =− 3C1(l; z)T0
2

+
C2(l; z)T0

2
+

5C3(l; z)T0
4

+
7C4(l; z)T0

2
+

[C1(l; z)T0 ]2

8
,

η3(l; z)T0 =C1(l; z)T0 − 2C3(l; z)T0 − 6C4(l; z)T0 −
3[C1(l; z)T0 ]2

4
,
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η4(l; z)T0 =C3(l; z)T0 + 3C4(l; z)T0 +
13[C1(l; z)T0 ]2

8
,

η5(l; z)T0 =− 3[C1(l; z)T0 ]2

2
,

η6(l; z)T0 =
[C1(l; z)T0 ]2

2
,

ζ2(l; z)T0 =
C2(l; z)T0

2
, ζ3(l; z)T0 =C1(l; z)T0 ,

ζ4(l; z)T0 =C3(l; z)T0 + 3C4(l; z)T0 , ζ6(l; z)T0 =
[C1(l; z)T0 ]2

2
.

Theorem 10. (3rd order approximations for Call options with the local
volatility at spot). Assuming (Ha) and using the log-normal proxy, one has

Call(ex0 , T, ek) =CallBS(x0, ā
2
x0
T, k) +

6∑
i=1

ηi(a;x0)T0 ∂
i
xiCallBS(x0, ā

2
x0
T, k)

+O(M1(a)[M0(a)]3T 2).

Assuming (HΣ) and using the normal proxy, one has

Call(S0, T,K) = CallBA(S0, Σ̄
2
S0
T,K)

+
∑

i∈{2,3,4,6}

ζi(Σ;S0)T0 ∂
i
SiCallBA(S0, Σ̄

2
S0
T,K)

+O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 4.1.

The magnitude of the residual terms in the previous formulas justifies the label of
third order approximations.

The above theorem is a straightforward application of Theorems 2.2, 2.3 and
4.2 in [49], taking into account that we slightly modify the notations of the Greek
coefficients. Namely, for convenience we merge certain ω operators: for instance the
reader can easily check that:

[C1(l; z)T0 ]2 =[ω(l(z)2, l(z)l(1)(z))T0 ]2

= 4ω(l(z)2, l(z)2, l(z)l(1)(z), l(z)l(1)(z))T0

+ 2ω(l(z)2, l(z)l(1)(z), l(z)2, l(z)l(1)(z))T0 .

We should mention that it seems possible to relax the strong hypothesis (Ha) which
appears in Theorems 2.2 and 4.2 in [49]. As for the second order approximations,
(Hax0

) may be sufficient.
Using the duality argument introduced in Subsection 3.3 and Theorems 2.2, 2.3

and 4.2 in [49], approximations using the volatility at strike are available too.
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Theorem 11. (3rd order approximations for Call options with the local
volatility at strike). Assuming (Ha) and using the log-normal proxy, one has

Call(ex0 , T, ek) = CallBS(x0, ā
2
kT, k)

+
6∑
i=1

ηi(ã; k)T0 ∂
i
ziCallBS(x0, ā

2
kT, k)

+O(M1(a)[M0(a)]3T 2),

Assuming (HΣ)and using the normal proxy, one has

Call(S0, T,K) = CallBA(S0, Σ̄
2
KT,K)

+
∑

i∈{2,3,4,6}

ζi(Σ̃;K)T0 ∂
i
ZiCallBA(S0, Σ̄

2
KT,K)

+O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 4.1.

5.2. Third order approximation with the local volatility at mid-
point.

We now state a new result related to third order expansions based on the local
volatility at mid-point xav or Sav. For a clearer proof, we change the presentation
of the corrective terms in comparison with Theorems 10 and 11: instead of gathering
them according to the order of the Greeks, we put them together according to the
operators Ci introduced in Definition 4.1.

Theorem 12. (3rd order approximations for Call options with the local
volatility at mid-point). Assuming (Ha) and using the log-normal proxy, one
has

Call(ex0 , T, ek) = CallBS(x0, ā
2
xav

T, k)

+
C1(a;xav)T0 − C1(ã;xav)T0

2
(∂3
x3 −

3

2
∂2
x2 +

1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C2(a;xav)T0 + C2(ã;xav)T0

2
(
1

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C3(a;xav)T0 + C3(ã;xav)T0

2
(∂4
x4 − 2∂3

x3 +
5

4
∂2
x2 −

1

4
∂x)CallBS(x0, ā

2
xav

T, k)

+
C4(a;xav)T0 + C4(ã;xav)T0

2
(3∂4

x4 − 6∂3
x3 +

7

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
[C1(a;xav)T0 ]2 + [C1(ã;xav)T0 ]2

2
(
1

2
∂6
x6 −

3

2
∂5
x5 +

13

8
∂4
x4 −

3

4
∂3
x3 +

1

8
∂2
x2)

× CallBS(x0, ā
2
xav

T, k)− (x0 − k)2C5(a;xav)T0 (
1

8
∂2
x2 −

1

8
∂x)CallBS(x0, ā

2
xav

T, k)

− (x0 − k)2C6(a;xav)T0 (
1

4
∂4
x4 −

1

2
∂3
x3 +

1

4
∂2
x2)CallBS(x0, ā

2
xav

T, k)

+O(M1(a)[M0(a)]3T 2), (48)
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where the operators Ci for i = 1..4 are defined in Definition 4.1 and where the time
reversal invariant∗ operators C5 and C6 are defined by:

C5(l; z)T0 =ω((l(1)(z))2 + l(z)l(2)(z))T0 ,

C6(l; z)T0 =ω(l(z)l(1)(z), l(z)l(1)(z))T0 .

Assuming (HΣ)and using the normal proxy, one has

Call(S0, T,K) =CallBA(S0, Σ̄
2
Sav
T,K)

+
C1(Σ;Sav)T0 − C1(Σ̃;Sav)T0

2
∂3
S3CallBA(S0, Σ̄

2
Sav
T,K)

+
C2(Σ;Sav)T0 + C2(Σ̃;Sav)T0

4
∂2
S2CallBA(S0, Σ̄

2
Sav
T,K)

+
C3(Σ;Sav)T0 + C3(Σ̃;Sav)T0

2
∂4
S4(S0, Σ̄

2
Sav
T,K)

+ 3
C4(Σ;Sav)T0 + C4(Σ̃;Sav)T0

2
∂4
S4(S0, Σ̄

2
Sav
T,K)

+
[C1(Σ;Sav)T0 ]2 + [C1(Σ̃;Sav)T0 ]2

4
∂6
S6(S0, Σ̄

2
Sav
T,K)

− (x0 − k)2C5(Σ;Sav)T0
8

∂2
S2CallBA(S0, Σ̄

2
Sav
T,K)

− (x0 − k)2C6(Σ;Sav)T0
4

∂4
S4(S0, Σ̄

2
Sav
T,K)

+O(M1(Σ)[M0(Σ)]3T 2).

Proof. We only prove the result for the log-normal proxy. The case of normal proxy
is similar, and it is left to the reader as an exercise. The idea is again to consider
the average of the third order formulas in spot and strike provided in Theorems 10
and 11 and to perform an expansion around the mid-point.
� Step 1: expansion of the leading term. Firstly we aim at showing that:

(CallBS(x0, ā
2
x0
T, k) + CallBS(x0, ā

2
kT, k))/2

=CallBS(x0, ā
2
xav
T, k) +

(x0 − k)2

4
C5(a;xav)T0 ∂yCallBS(x0, ā

2
xav
T, k)

+ (x0 − k)2C6(a;xav)T0 ∂
2
y2CallBS(x0, ā

2
xav
T, k) +O(M1(a)[M0(a)]3T 2), (49)

where the operators C5 and C6 are defined in Theorem 12. Perform Taylor expan-
sions to obtain:

∗that is C5(l̃; z)T0 = C5(l; z)T0 and C6(l̃; z)T0 = C6(l; z)T0 using (26).
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CallBS(x0, ā
2
x0
T, k)

=CallBS(x0, ā
2
xav
T, k) + ∂yCallBS(x0, ā

2
xav
T, k)T (ā2

x0
− ā2

xav
)

+
1

2
∂y2CallBS(x0, ā

2
xav
T, k)T 2(ā2

x0
− ā2

xav
)2 +R1

=CallBS(x0, ā
2
xav
T, k) + ∂yCallBS(x0, ā

2
xav
T, k)

× ω(a(xav)a(1)(xav))T0 (x0 − k) (50)

+
1

4
∂yCallBS(x0, ā

2
xav
T, k)C5(a;xav)T0 (x0 − k)2

+ ∂2
y2CallBS(x0, ā

2
xav
T, k)C6(a;xav)T0 (x0 − k)2 (51)

+R1 +R2 +R3, (52)

where we have used the relations ∂zω(l2(z))T0 = 2ω(l(z)l(1)(z))T0 , ∂2
z2ω(l2(z))T0 =

2C5(l; z)T0 , [ω(l(z)l(1)(z))T0 ]2 = 2C6(l; z)T0 and where R1, R2 and R3 are defined by:

R1 =T 3(ā2
x0
− ā2

xav
)3

×
∫ 1

0

(∂3
y3CallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)ā2

xav
)
(1− λ)2

2
dλ,

R2 =∂yCallBS(x0, ā
2
xav
T, k)

(x0 − k)3

8

×
∫ 1

0

(∂3
xω(a2(x))T0 )|x=λx0+(1−λ)xav

(1− λ)2

2
dλ,

R3 =
1

2
∂2
y2CallBS(x0, ā

2
xav
T, k)

(x0 − k)2

4

×
∫ 1

0

(∂2
xω(a2(x))T0 )x=λx0+(1−λ)xav

(1− λ)dλ

×
[ (x0 − k)2

4

∫ 1

0

(∂2
xω(a2(x))T0 )x=λx0+(1−λ)xav

(1− λ)dλ

+ 2ω(a(xav)a(1)(xav))T0 (x0 − k)
]
.

Using (6), Corollary 4.1 and (Ha) we obtain

|R1 +R2 +R3| ≤cM1(a)[M0(a)]3T 2.

Similarly, we show that:

CallBS(x0, ā
2
kT, k)

= CallBS(x0, āxav
, k)− ∂yCallBS(x0, ā

2
xav
T, k)ω(a(xav)a(1)(xav))T0 (x0 − k)

+
1

4
∂yCallBS(x0, ā

2
xav
T, k)C5(a;xav)T0 (x0 − k)2

+ ∂2
y2CallBS(x0, ā

2
xav
T, k)C6(a;xav)T0 (x0 − k)2 +O(M1(a)[M0(a)]3T 2).
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Combine this with (52) to obtain (49).

� Step 2: expansion of the corrective terms. Firstly we treat the correc-
tive terms with the operators C2, C3, C4 and [C1]2 in Theorems 10 and 11. We
let the reader verify that in the formula with volatility at spot (respectively in
strike), we can replace the point x0 (respectively k) by the point xav in all the
corrective terms involving these operators: indeed it induces an extra error of order
M1(a)[M0(a)]3T 2. This is very similar to the proof of Lemma 2 so we skip it.
Then we can replace derivatives w.r.t. z with derivatives w.r.t. x in CallBS thanks
to Proposition 4.3, equations (75)-(77)-(78)-(80). That leads to:

1

2
C2(a;x0)T0 (

1

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
x0
T, k) (53)

+
1

2
C2(ã; k)T0 (

1

2
∂2
z2 −

1

2
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
C3(a;x0)T0 (∂4

x4 − 2∂3
x3 +

5

4
∂2
x2 −

1

4
∂x)CallBS(x0, ā

2
x0
T, k)

+
1

2
C3(ã; k)T0 (∂4

z4 − 2∂3
z3 +

5

4
∂2
z2 −

1

4
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
C4(a;x0)T0 (3∂4

x4 − 6∂3
x3 +

7

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
x0
T, k)

+
1

2
C4(ã; k)T0 (3∂4

z4 − 6∂3
z3 +

7

2
∂2
z2 −

1

2
∂z)CallBS(x0, ā

2
kT, k)

+
1

2
[C1(a;x0)T0 ]2(

1

2
∂6
x6 −

3

2
∂5
x5 +

13

8
∂4
x4 −

3

4
∂3
x3 +

1

8
∂2
x2)CallBS(x0, ā

2
x0
T, k)

+
1

2
[C1(ã; k)T0 ]2(

1

2
∂6
z6 −

3

2
∂5
z5 +

13

8
∂4
z4 −

3

4
∂3
z3 +

1

8
∂2
z2)CallBS(x0, ā

2
kT, k)

=
C2(a;xav)T0 + C2(ã;xav)T0

2
(
1

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
C3(a;xav)T0 + C3(ã;xav)T0

2
(∂4
x4 − 2∂3

x3 +
5

4
∂2
x2 −

1

4
∂x)CallBS(x0, ā

2
xav

T, k)

+
C4(a;xav)T0 + C4(ã;xav)T0

2
(3∂4

x4 − 6∂3
x3 +

7

2
∂2
x2 −

1

2
∂x)CallBS(x0, ā

2
xav

T, k)

+
[C1(a;xav)T0 ]2 + [C1(ã;xav)T0 ]2

2

× (
1

2
∂6
x6 −

3

2
∂5
x5 +

13

8
∂4
x4 −

3

4
∂3
x3 +

1

8
∂2
x2)CallBS(x0, ā

2
xav

T, k)

+O(M1(a)[M0(a)]3T 2).

Secondly, we pass to the corrective terms in which appears the operator C1. For
the sake of clarity, we introduce the following notation Ax = ∂3

x3 − 3
2∂

2
x2 + 1

2∂x
and Az = ∂3

z3 − 3
2∂

2
z2 + 1

2∂z. For example ∂yAx stands for the differential operator
∂4
yx3 − 3

2∂
3
yx2 + 1

2∂
2
yx and similarly for ∂2

y2Ax. We recall the following relation
AxCallBS = −AzCallBS (see (75) in Proposition 4.3). Our purpose is to prove that:
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1

2
C1(a;x0)T0AxCallBS(x0, ā

2
x0
T, k) +

1

2
C1(ã; k)T0AzCallBS(x0, ā

2
kT, k) (54)

=
1

2
(C1(a;xav)T0 − C1(ã;xav)T0 )AxCallBS(x0, ā

2
xav
T, k)

+
(x0 − k)

4
[4C6(a;xav)T0

+ C2(a;xav)T0 + C2(ã;xav)T0 ]AxCallBS(x0, ā
2
xav
T, k)

+ [C4(a;xav)T0 + C4(ã;xav)T0 + ω(a(xav)a(1)(xav), a2(xav), a(xav)a(1)

× (xav))T0 ](x0 − k)∂yAxCallBS(x0, ā
2
xav
T, k)

+O(M1(a)[M0(a)]3T 2).

Perform a second order Taylor expansion for the function y → AxCallBS(x0, y, k)

at y = ā2
x0
T = ω(a2(x0))T0 around y = ā2

xav
T = ω(a2(xav))T0 and for the function

x→ C1(a;x)T0 at x = x0 around x = xav:

C1(a;x0)T0AxCallBS(x0, ā
2
x0
T, k) (55)

=
{
C1(a;xav)T0 + ∂x(C1(a;x)T0 )|x=xav

(x0 − k)

2
+R1

}
×
{
AxCallBS(x0, ā

2
xav
T, k)

+ ∂yAxCallBS(x0, ā
2
xav
T, k)T (ā2

x0
− ā2

xav
) +R2

}
=
{
C1(a;xav)T0 + ∂x(C1(a;x)T0 )|x=xav

(x0 − k)

2
+R1

}
×
{
AxCallBS(x0, ā

2
xav
T, k) +R3 +R2

+ ∂yAxCallBS(x0, ā
2
xav
T, k)ω(a(xav)a(1)(xav))T0 (x0 − k)

}
=C1(a;xav)T0AxCallBS(x0, ā

2
xav
T, k)

+ ∂x(C1(a;x)T0 )|x=xav

(x0 − k)

2
AxCallBS(x0, ā

2
xav
T, k)

+ C1(a;xav)T0 ∂yAxCallBS(x0, ā
2
xav
T, k)ω(a(xav)a(1)(xav))T0 (x0 − k)

+R,

where:

R =C1(a;x0)T0 [R3 +R2] +R1AxCallBS(x0, ā
2
xav
T, k)

+ (x0 − k)∂yAxCallBS(x0, ā
2
xav
T, k)ω(a(xav)a(1)(xav))T0

× [R1 + ∂x(C1(a;x)T0 )|x=xav

(x0 − k)

2
],

R1 =
(x0 − k)2

4

∫ 1

0

(∂2
x2(C1(a;x)T0 ))|x=λx0+(1−λ)xav

(1− λ)dλ,
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R2 =T 2(ā2
x0
− āxav

)2

×
∫ 1

0

(∂2
y2AxCallBS(x0, y, k))|y=T (λā2

x0
+(1−λ)āxav )(1− λ)dλ,

R3 =∂yAxCallBS(x0, ā
2
xav
T, k)

(x0 − k)2

4

×
∫ 1

0

(∂2
x2(ω(a2(x))T0 ))|x=λx0+(1−λ)xav

(1− λ)dλ.

On the one hand, we have:

∂z(C1(l; z)T0 ) = 2C6(l; z)T0 + C2(l; z)T0 ,

C1(l; z)T0 ω(l(z)l(1)(z))T0 = 2C4(l; z)T0 + ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T0 ,

and on the other hand, with (6), Corollary 4.1 and (Ha), it comes:

|R| ≤cM1(a)[M0(a)]3T 2.

We skip further details. Consequently we can write (55) as follows:

C1(a;x0)T0AxCallBS(x0, ā
2
x0
T, k) (56)

=C1(a;xav)T0AxCallBS(x0, ā
2
xav
T, k)

+
(x0 − k)

2
[2C6(a;xav)T0 + C2(a;xav)T0 ]AxCallBS(x0, ā

2
xav
T, k)

+ [2C4(a;xav)T0 + ω(a(xav)a(1)(xav), a2(xav), a(xav)a(1)(xav))T0 ](x0 − k)

× ∂yAxCallBS(x0, ā
2
xav
T, k) +O(M1(a)[M0(a)]3T 2).

Then using the relation AxCallBS = −AzCallBS, the time reversal invariance of
l → C6(l, z)T0 and l → ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T0 (for any z), one obtains
similarly:

C1(ã; k)T0AzCallBS(x0, ā
2
x0
T, k) (57)

=− C1(ã;xav)T0AxCallBS(x0, ā
2
xav
T, k)

+
(x0 − k)

2
[2C6(a;xav)T0 + C2(ã;xav)T0 ]AxCallBS(x0, ā

2
xav
T, k)

+ [2C4(ã;xav)T0 + ω(a(xav)a(1)(xav), a2(xav), a(xav)a(1)(xav))T0 ](x0 − k)

× ∂yAxCallBS(x0, ā
2
xav
T, k) +O(M1(a)[M0(a)]3T 2).

Compute the average of (56) and (57) to complete the proof of (54).

� Step 3: mathematical reductions. We gather terms coming from (49) and
(54). In view of (6) and equations (74) and (75) in Proposition 4.3, we have:
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(x0 − k)2

4
C5(a;xav)T0 ∂yCallBS(x0, ā

2
xav
T, k)

+
(x0 − k)

4
[C2(a;xav)T0 + C2(ã;xav)T0 ]AxCallBS(x0, ā

2
xav
T, k)

=
(x0 − k)2

4
∂yCallBS(x0, ā

2
xav
T, k)

(
C5(a;xav)T0 − 2

[C2(a;xav)T0 + C2(ã;xav)T0 ]

ω(a2(xav))T0

)
=

(x0 − k)2

4
∂yCallBS(x0, ā

2
xav
T, k)(C5(a;xav)T0 − 2C5(a;xav)T0 )

=− (x0 − k)2

8
C5(a;xav)T0 (∂2

x2 − ∂x)CallBS(x0, ā
2
xav
T, k), (58)

where we have used at the second equality the relation C5(l; z)T0 ω(l2(z))T0 =

C2(l; z)T0 + C2(l̃; z)T0 obtained easily with (26). Then (6), (74) and (75) yield

∂yAxCallBS(x0, ā
2
xav
T, k)

=∂y((−2(x0 − k)

y
∂y)CallBS(x0, y, k))|y=ā2

xav
T

=
2(x0 − k)

ω(a2(xav))T0

[∂yCallBS(x0, ā
2
xav
T, k)

ω(a2(xav))T0
− ∂2

y2CallBS(x0, ā
2
xav
T, k)

]
,

and straightforward calculus allows to obtain with (26):

C6(l; z)T0 ω(l2(z))T0 =C4(l; z)T0 + C4(l̃; z)T0

+ ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T0 .

These two intermediate results give:

(x0 − k)C6(a;xav)T0
[
AxCallBS(x0, ā

2
xav
T, k)

+ (x0 − k)∂2
y2CallBS(x0, ā

2
xav
T, k)

]
+ [C4(a;xav)T0 + C4(ã;xav)T0 + ω(a(xav)a(1)(xav), ...

a2(xav), a(xav)a(1)(xav))T0 ](x0 − k)∂yAxCallBS(x0, ω(a2(xav))T0 , k)

=− 2
(x0 − k)2

ω(a2(xav))T0
C6(a;xav)T0 ∂yCallBS(x0, ā

2
xav
T, k)

+ (x0 − k)2C6(a;xav)T0 ∂
2
y2CallBS(x0, ā

2
xav
T, k)

+ (x0 − k)[C6(a;xav)T0 ω(a2(xav))T0 ]
2(x0 − k)

ω(a2(xav))T0

×
[∂yCallBS(x0, ω(a2(xav))T0 , k)

ω(a2(xav))T0
− ∂2

y2CallBS(x0, ω(a2(xav))T0 , k)
]

=− (x0 − k)2C6(a;xav)T0 ∂
2
y2CallBS(x0, ā

2
xav
T, k)

=− (x0 − k)2

4
C6(a;xav)T0 (∂4

x4 − 2∂3
x3 + ∂2

x2)CallBS(x0, ā
2
xav
T, k). (59)
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Finally, sum the relations (49-54-53) taking into account the simplifications (58-59)
and apply Theorems 10 and 11 to obtain the announced result (48).

5.3. Third order expansion of the implied volatility

We define extra integral operators in order to state a new result about third order
expansions of the implied volatility.

Definition 4.2. Provided that the derivatives and the integrals below have a mean-
ing, we define the following operators for a two variables non-negative function l

such that lz > 0:

γ0(l; z)T0 =lz +
C2(l; z)T0

2lzT
− C4(l; z)T0

4lzT
− C3(l; z)T0

l
3

zT
2
− 3C4(l; z)T0

l
3

zT
2

+
[C1(l; z)T0 ]2

8l
3

zT
2

+
3[C1(l; z)T0 ]2

2l
5

zT
3

,

γ1(l; z)T0 =
C1(l; z)T0

l
3

zT
2

, γ2(l; z)T0 =
C3(l; z)T0

l
5

zT
3

+ 3
C4(l; z)T0

l
5

zT
3
− 3[C1(l; z)T0 ]2

l
7

zT
4

;

π0(l; z)T0 =
γ0(l; z)T0 + γ0(l̃; z)T0

2
, π1(l; z)T0 =

γ1(l̃; z)T0 − γ1(l; z)T0
2

,

π2(l; z)T0 =
γ2(l; z)T0 + γ2(l̃; z)T0

2
− C5(l; z)T0

8lzT
+
C6(l; z)T0

4l
3

zT
2

;

χ0(l; z)T0 =lz +
C2(l; z)T0

2lzT
− C3(l; z)T0

l
3

zT
2
− 3C4(l; z)T0

l
3

zT
2

+
3[C1(l; z)T0 ]2

2l
5

zT
3

,

χ1(l; z)T0 =γ1(l; z)T0 , χ2(l; z)T0 = γ2(l; z)T0 ;

Ξ0(l; z)T0 =
χ0(l; z)T0 + χ0(l̃; z)T0

2
, Ξ1(l; z)T0 = π1(l; z)T0 ,

Ξ2(l; z)T0 =π2(l; z)T0 .

Theorem 13. (3rd order expansions of the implied volatility). Assume
(Ha). We have:

σI(x0, T, k) =γ0(a;x0)T0 − γ1(a;x0)T0 m+ γ2(a;x0)T0 m
2 + ErrorI

3,x0
, (60)

σI(x0, T, k) =γ0(ã; k)T0 + γ1(ã; k)T0 m+ γ2(ã; k)T0 m
2 + ErrorI

3,k, (61)

σI(x0, T, k) =π0(a;xav)T0 + π1(a;xav)T0 m+ π2(a;xav)T0 m
2 + ErrorI

3,xav
. (62)



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

206 R. Bompis and E. Gobet

Under (HΣ) we have

ΣI(S0, T,K) =χ0(Σ;S0)T0 − χ1(Σ;S0)T0 M + χ2(Σ;S0)T0 M
2 + ErrorI

3,S0
, (63)

ΣI(S0, T,K) =χ0(Σ̃;K)T0 + χ1(Σ̃;K)T0 M + χ2(Σ̃;K)T0 M
2 + ErrorI

3,K, (64)

ΣI(S0, T,K) =Ξ0(Σ;Sav)T0 + Ξ1(Σ;Sav)T0 M + Ξ2(Σ;Sav)T0 M
2 + ErrorI

3,Sav
. (65)

The operators γi, πi, χi and Ξi used in the above expansions are defined in Definition
4.2.

Remark 4.5. We have obtained Black-Scholes (respectively Bachelier) implied
volatility approximations which are written as a quadratic function w.r.t. the Black-
Scholes log-moneyness (respectively w.r.t. the Bachelier moneyness). At the money,
observe that the corresponding approximations are not equal to the local volatility
function computed at spot. However, in view of the definition of the operators C1,
C2, C3 and C4 (see Definition 4.1) and the operators γ0 and χ0 (see Definition 4.2),
we easily obtain the estimate:

|γ0(a;x0)T0 − āx0
|+ |γ0(ã;x0)T0 − āx0

|

+ |χ0(Σ;S0)− Σ̄S0
|+ |χ0(Σ̃;S0)− Σ̄S0

| ≤c T.

It shows that when the maturity tends to zero, our implied volatility approxima-
tions at the money become equal to the local volatility function frozen at spot.
We therefore interpret the difference between our implied volatility approximations
ATM and the local volatility function frozen at spot as a maturity bias.

Proof. We first focus on the formula (60), the treatment of (61-63-64) being similar.
Start from Theorem 10 and apply Proposition 4.3 in order to write the Greeks w.r.t.
x (for each operator Ci) in terms of the VegaBS and the VommaBS. Thus the third
order expansion formula based on the ATM local volatility with log-normal proxy
can be transformed into:

Call(ex0 , T, ek)

=CallBS(x0, ā
2
x0
T, k) + VegaBS(x0, ā

2
x0
T, k)

×
[
− C1(a;x0)T0 m

ā3
x0
T 2

+
C2(a;x0)T0

2āx0
T

+
C3(a;x0)T0 m

2

ā5
x0
T 3

− C3(a;x0)T0
ā3
x0
T 2

+
3C4(a;x0)T0 m

2

ā5
x0
T 3

− 3C4(a;x0)T0
ā3
x0
T 2

− C4(a;x0)T0
4āx0T

+
[C1(a;x0)T0 ]2

8ā3
x0
T 2

+
3[C1(a;x0)T0 ]2

2ā5
x0
T 3

− 3[C1(a;x0)T0 ]2m2

ā7
x0
T 4

]
+

1

2
VommaBS(x0, ā

2
x0
T, k)

(C1(a;x0)T0 m

ā3
x0
T 2

)2
+O(M1(a)[M0(a)]3T 2)
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=CallBS(x0, ā
2
x0
T, k)

+ VegaBS(x0, ā
2
x0
T, k)

[
γ0(a;x0)T0 − āx0

− γ1(a;x0)T0 m+ γ2(a;x0)T0 m
2
]

+
1

2
VommaBS(x0, ā

2
x0
T, k)[γ1(a;x0)T0 m]2 +O(M1(a)[M0(a)]3T 2)

≈CallBS(x0,
[
γ0(a;x0)T0 − γ1(a;x0)T0 m+ γ2(a;x0)T0 m

2
]2
T, k).

This reads as an expansion of the implied volatility and achieves the proof of
(60).

Now we give the main lines of the derivation of the error estimate in (62), while
(65) is left to the reader. Again, we apply Theorem 12 and Proposition 4.3 in order
to replace the x0-Greeks with the VegaBS and the VommaBS. One obtains similarly:

Call(ex0 , T, ek) = CallBS(x0, ā
2
xav
T, k) (66)

+ VegaBS(x0, ā
2
xav
T, k)

[γ0(a;xav)T0 + γ0(ã;xav)T0
2

− āxav

+
γ1(ã;xav)T0 − γ1(a;xav)T0

2
m+

γ2(a;xav)T0 + γ2(ã;xav)T0
2

m2

− C5(a;xav)T0
8āxav

T
m2 +

C6(a;xav)T0
4ā3
xav
T 2

m2 +
C6(a;xav)T0

16āxav
T

m2 − C6(a;xav)T0
4ā5
xav
T 3

m4
]

+
1

2
VommaBS(x0, ā

2
xav
T, k)m2

( [γ1(a;xav)T0 ]2 + [γ1(ã;xav)T0 ]2

2

)
+O(M1(a)[M0(a)]3T 2).

Then write ( [γ1(a;xav)T0 ]2 + [γ1(ã;xav)T0 ]2

2

)

=
(γ1(ã;xav)T0 − γ1(a;xav)T0

2

)2
+
(γ1(ã;xav)T0 + γ1(a;xav)T0

2

)2
,

use the fact that (see the definition (69) of VommaBS and the definition of γ1 in
Definition 4.2)

1

2
VommaBS(x0, ā

2
xav
T, k)m2

(γ1(ã;xav)T0 + γ1(a;xav)T0
2

)2
=VegaBS(x0, ā

2
xav
T, k)(C1(ã;xav)T0 + C1(a;xav)T0 )2[− m2

32ā5
xav
T 3

+
m4

8ā9
xav
T 5

],

and finally, use the above identity (obtained with the definitions of C1, C6 and with
the relation (26)):
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(
C1(l̃;x)T0 + C1(l;x)T0 )2

=2[ω(l2(z))T0 ]2C6(l; z)T0 = 4ω(l2(z), l2(z))T0 ω(l(z)l(1)(z), l(z)l(1)(z))T0

=4
[
ω(l(z)l(1)(z), l(z)l(1)(z), l2(z), l2(z))T0

+ ω(l2(z), l2(z), l(z)l(1)(z), l(z)l(1)(z))T0

+ ω(l2(z), l(z)l(1)(z), l(z)l(1)(z), l2(z))T0

+ ω(l(z)l(1)(z), l2(z), l2(z), l(z)l(1)(z))T0

+ ω(l2(z), l(z)l(1)(z), l2(z), l(z)l(1)(z))T0

+ ω(l(z)l(1)(z), l2(z), l(z)l(1)(z), l2(z))T0
]
,

to cancel the terms C6(a;xav)T0
16āxavT

m2, −C6(a;xav)T0
4ā5
xav

T 3 m4 and
1
2VommaBS(x0, ā

2
xav
T, k)m2

(γ1(ã;xav)T0 +γ1(a;xav)T0
2

)2 in (66). That achieves the proof
of (62).

In addition to these implied volatility expansions, one can under additional tech-
nical assumptions upper bound the residuals terms. For instance, let us consider
(60), for which we can prove

ErrorI3,x0
= O(M1(a)[M0(a)]3T

3
2 ), (67)

which justifies the label of third order expansion. This is available under the as-
sumptions that |m| ≤ ξM0(a)

√
T (for a given ξ ≥ 0) and thatM0(a),M1(a) and

T are globally small enough to ensure that the implied volatility approximation
γ0(a;x0)T0 − γ1(a;x0)T0 m + γ2(a;x0)T0 m

2 is bounded away from 0. The method of
proof is analogous to that in Subsection 3.4, by performing a third order expansion
of BS price w.r.t. the volatility, using the estimate (73) on UltimaBS (see Corollary
4.2), and carefully gathering terms and evaluating their magnitudes.

6. Approximation of the Delta

In this section, we investigate the approximation of the delta of the Call price, i.e.
the derivative w.r.t. the spot, by deriving similar expansion formulas. For the sake
of brevity we present only results using a log-normal proxy. The results are new.
To achieve this goal, we follow again the Dupire approach taking advantage of the
symmetry between spot and strike. We start from the Feynman-Kac representation
(37) which leads to a nice expression for the delta:

δ(S0, T,K) = ∂S0E[(S0 − ekT )+] = P(ekT < S0) = P(kT < x0).

Thus we are reduced to compute the price of a binary option on the fictitious asset
(kt)t. This binary payoff is not anymore differentiable, but we can however apply
directly [49] to obtain
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Theorem 14. (1st and 2nd order approximations for delta using local
volatility at strike). Assume (Ha). Then we have:

δ(ex0 , T, ek) =δBS(x0, ā
2
kT, k) + C1(ã; k)T0 (∂3

z3 −
3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, ā
2
kT, k)

+O(M1(a)M0(a)T ),

δ(ex0 , T, ek) =δBS(x0, ā
2
kT, k) +

6∑
i=1

ηi(ã; k)T0 ∂
i
kiδ

BS(x0, ā
2
kT, k)

+O(M1(a)[M0(a)]2T
3
2 ),

where δBS is Black-Scholes delta function defined by δBS(x, y, z) = N (d1(x, y, z)),

with x the log-spot, y the total variance and z the log-strike.

Remark 4.6. In view of the error estimate, observe that the corresponding second
and third order formulas for vanilla payoffs are respectively first and second order
approximations for binary payoffs. This is due to the lack of regularity of the payoff
(see our discussion in Subsection 2.5).

Like in the previous price approximation formulas, it is possible to perform ad-
ditional Taylor expansions in order to obtain similar formulas using local volatility
function frozen at spot or at mid-point. We announce two Lemmas which proof
is very similar to those of Lemmas 2 and 3 and Theorem 12 is left to the reader.
Extra technical results are postponed in Appendix, Subsection 8.3.

Lemma 4. Let x ∈ {x0, xav}. Assume (Ha), then we have

δBS(x0, ā
2
kT, k)

=δBS(x0, a
2
xT, k) + 2∂yδ

BS(x0, a
2
xT, k)(k − x)C7(a;x)T0

+O(M1(a)M0(a)T ),

=δBS(x0, a
2
xT, k) + [2(k − x)C7(a;x)T0 + (k − x)2C5(a;x)T0 ]

× ∂yδBS(x0, a
2
xT, k) + 4∂2

y2δBS(x0, a
2
xT, k)(k − x)2C6(a;x)T0

+O(M1(a)[M0(a)]2T
3
2 ),

where C7(l; z)T0 = ω(l(z)l(1)(z))T0 .
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Lemma 5. Let x ∈ {x0, xav}. Assume (Ha), then we have

C1(ã; k)T0 (∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, ā
2
kT, k)

=C1(ã;x)T0 (∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, a
2
xT, k) +O(M1(a)M0(a)T ),

6∑
i=1

ηi(ã; k)T0 ∂
i
ziδ

BS(x0, ā
2
kT, k) =

6∑
i=1

ηi(ã;x)T0 ∂
i
ziδ

BS(x0, a
2
xT, k)

+[2C6(ã;x)T0 + C2(ã;x)T0 ](k − x)(∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, a
2
xT, k)

+2(k − x)C1(ã;x)T0 C7(ã;x)T0 (∂4
yz3 −

3

2
∂3
yz2 +

1

2
∂2
yz)δ

BS(x0, a
2
xT, k)

+O(M1(a)[M0(a)]2T
3
2 ).

Then remark that:

C1(ã;x)T0 C7(ã;x)T0 = 2C4(ã;x)T0 + C8(ã;x)T0 ,

where the operator C8 is defined as follows:

C8(l; z)T0 = C8(l̃; z)T0 = ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T0 .

An application of Proposition 4.8 finally yields the theorem below.

Theorem 15. (1st and 2nd order approximations for delta using local
volatility at spot and mid-point). Assume (Ha) and let x ∈ {x0, xav}. We
have:

δ(ex0 , T, ek) = δBS(x0, a
2
xT, k) + C1(ã;x)T0 (∂3

z3 −
3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, a
2
xT, k)

+ (k − x)C7(a;x)T0 (∂2
z2 − ∂z)δBS(x0, a

2
xT, k) +O(M1(a)M0(a)T ),

δ(ex0 , T, ek) = δBS(x0, a
2
xT, k) +

6∑
i=1

ηi(ã; k)T0 ∂
i
ziδ

BS(x0, a
2
xT, k)

+ (k − x)[C7(a;x)T0 +
(k − x)

2
C5(a;x)T0 ](∂2

z2 − ∂z)δBS(x0, a
2
xT, k)

+ (k − x)2C6(a;x)T0 (∂4
z4 − 2∂3

z3 + ∂2
z2)δBS(x0, a

2
xT, k)

+ (k − x)[2C6(ã;x)T0 + C2(ã;x)T0 ](∂3
z3 −

3

2
∂2
z2 +

1

2
∂z)δ

BS(x0, a
2
xT, k)

+ (k − x)[2C4(ã;x)T0 + C8(ã;x)T0 ](∂5
z5 −

5

2
∂4
z4 + 2∂3

z3 −
1

2
∂2
z2)

× δBS(x0, a
2
xT, k) +O(M1(a)[M0(a)]2T

3
2 ).
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7. Numerical experiments

7.1. The set of tests

For the numerical experiments, we consider a CEV model with constant parameters:
σ(t, S) = νSβ−1. We choose a spot value S0 equal to 1 and we test two values of
ν (a parameter interpreted as a level of volatility): firstly we set ν = 0.25 and
we consider either β = 0.8 (a priori close to the log-normal case) or β = 0.2 (a
priori close to the normal case). Then we investigate the case of a larger volatility
with ν = 0.4 and β = 0.5. For the sake of completeness, we give in Appendix 8.5
the expressions of corrective coefficients allowing the computation of our various
approximation formulas proposed throughout the chapter.

We compare the accuracy of different approximations, for various maturities
and various strikes gathered in 5 categories. The strikes evolve approximately as

Table 1. Set of maturities and strikes for the numerical experiments
T/K far ITM ITM ATM OTM far OTM
3M 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.30 1.35
6M 0.65 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.25 1.35 1.50
1Y 0.55 0.65 0.75 0.80 0.90 0.95 1.00 1.05 1.15 1.25 1.40 1.50 1.80
1.5Y 0.50 0.60 0.70 0.75 0.85 0.95 1.00 1.10 1.15 1.30 1.50 1.65 2.00
2Y 0.45 0.55 0.65 0.75 0.85 0.90 1.00 1.10 1.20 1.35 1.55 1.80 2.30
3Y 0.35 0.50 0.55 0.70 0.80 0.90 1.00 1.10 1.25 1.45 1.75 2.05 2.70
5Y 0.25 0.40 0.50 0.60 0.75 0.85 1.00 1.15 1.35 1.60 2.05 2.50 3.60
10Y 0.15 0.25 0.35 0.50 0.65 0.80 1.00 1.20 1.50 1.95 2.75 3.65 6.30

S0 exp(cν
√
T ) where c takes the value of various quantiles of the standard Gaussian

law (1%-5%-10%-20%-30%-40%-50%-60%-70%-80%-90%-95%-99%) which allows to
cover far ITM and far OTM options. We report in Tables 2, 3 and 4 the Black-
Scholes implied volatilities corresponding to the exact Call prices with constant
parameters [50].

Table 2. CEV model (β = 0.8, ν = 0.25): BS implied volatilities in %.

3M 25.90 25.73 25.56 25.41 25.26 25.13 25.00 24.88 24.76 24.65 24.45 24.35 24.26
6M 26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.00
1Y 26.53 26.10 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.56
1.5Y 26.78 26.30 25.91 25.73 25.41 25.13 25.00 24.77 24.66 24.35 24.00 23.77 23.31
2Y 27.06 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.92 23.56 22.98
3Y 27.73 26.78 26.53 25.91 25.57 25.27 25.01 24.77 24.45 24.09 23.63 23.25 22.60
5Y 28.64 27.38 26.79 26.31 25.74 25.42 25.01 24.66 24.27 23.85 23.26 22.79 21.94
10Y 30.08 28.66 27.75 26.80 26.12 25.59 25.02 24.57 24.02 23.39 22.57 21.92 20.69

The purpose of the numerical tests is to compare the following approximations:

(1) ImpVol(AppPriceLN(2,z)) and ImpVol(AppPriceN(2,z)): the BS im-
plied volatility of the second order expansions based respectively on the
log-normal and normal proxy with local volatility frozen at point z, z being
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Table 3. CEV model (β = 0.2, ν = 0.25): BS implied volatilities in %.

3M 28.75 28.00 27.31 26.67 26.08 25.53 25.01 24.53 24.07 23.64 22.84 22.48 22.13
6M 29.59 28.02 27.32 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
1Y 31.54 29.62 28.05 27.35 26.12 25.56 25.04 24.55 23.66 22.87 21.81 21.19 19.60
1.5Y 32.71 30.57 28.83 28.07 26.74 25.58 25.06 24.11 23.68 22.51 21.20 20.36 18.73
2Y 34.03 31.62 29.69 28.10 26.76 26.16 25.08 24.13 23.29 22.18 20.92 19.62 17.62
3Y 37.34 32.84 31.70 28.92 27.46 26.21 25.12 24.17 22.93 21.55 19.88 18.56 16.40
5Y 42.07 35.80 33.00 30.82 28.27 26.91 25.20 23.80 22.26 20.71 18.59 17.01 14.38
10Y 47.85 41.60 37.46 33.14 30.08 27.76 25.38 23.53 21.41 19.09 16.35 14.32 10.99

Table 4. CEV model (β = 0.5, ν = 0.4): BS implied volatilities in %.

3M 43.69 42.97 42.29 41.67 41.08 40.53 40.02 39.53 39.07 38.63 37.82 37.45 37.09
6M 44.51 42.99 42.31 41.68 41.10 40.55 40.03 39.55 39.09 38.23 37.84 37.10 36.11
1Y 46.38 44.55 43.03 42.35 41.13 40.58 40.06 39.58 38.68 37.86 36.78 36.13 34.45
1.5Y 47.49 45.46 43.80 43.06 41.75 40.61 40.10 39.14 38.71 37.51 36.15 35.27 33.52
2Y 48.73 46.47 44.63 43.10 41.79 41.20 40.13 39.17 38.31 37.17 35.87 34.49 32.31
3Y 51.76 47.62 46.55 43.90 42.48 41.26 40.18 39.22 37.97 36.54 34.79 33.36 30.97
5Y 55.94 50.30 47.73 45.69 43.27 41.95 40.28 38.87 37.30 35.69 33.42 31.68 28.66
10Y 60.86 55.20 51.48 47.60 44.80 42.63 40.36 38.55 36.41 33.98 30.97 28.64 24.51

respectively equal to x0, k or xav and to S0, K or Sav. See Theorems 6-7-8.
(2) AppImpVolLN(2,z) and AppImpVolN(2,z): the second order implied

volatility expansions (Theorem 9). All the results are converted into Black-
Scholes implied volatility. Namely, for the normal proxy, once we have com-
puted Bachelier implied volatility expansions, we first evaluate the price
with the Bachelier formula and then compute the related implied Black-
Scholes volatility.

(3) ImpVol(AppPriceLN(3,z)) and ImpVol(AppPriceN(3,z)): the implied
volatility of the third order expansions (Theorems 10 and 11). In addi-
tion for the log-normal proxy, we test the average of approximations based
on strike and on spot and we denote it by Av.ImpVol(AppPriceLN(3,.)).

(4) AppImpVolLN(3,z) and AppImpVolN(3,z): the third order implied volatil-
ity expansions (Theorem 13). We use the notation Av.AppImpVolLN(3,.)
for the average of the expansions in strike and in spot.

(5) Hagan and Henry-Labordère formulas denoted by (HF) and (HLF) in the
following: benchmark implied volatility approximations of Hagan etal. [5]

and Henry-Labordère [6] . For the sake of completeness, we recall these
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well-known implied volatility approximations in the CEV model:

σI(x0, T, k) ≈ ν(
S0 +K

2
)β−1

(
1 +

(1− β)(2 + β)

6
(
S0 −K
S0 +K

)2

+
(β − 1)2ν2T

24
(
S0 +K

2
)2β−2

)
, (HF)

σI(x0, T, k) ≈
ν(1− β) log(S0

K )

S1−β
0 −K1−β

(
1 +

(β − 1)2ν2T

24
(
S0 +K

2
)2β−2

)
. (HLF)

We recall that these formulas are essentially available for time-independent
volatility, while our formulas allow time dependency.

Our goal is to demonstrate the interest of our approximation formulas in com-
parison to those of Hagan and Henry-Labordere. We are rather exhaustive with
our numerical experiments in order to, on the one hand, select the best approx-
imation formulas among ours, and on the other hand to show that our methods
with log-normal proxy involving the mid-point generally outperform Hagan and
Henry-Labordère formulas. Full details allow the reader to easily reproduce the
results.

In Tables 7 and 9, we report the errors expressed in bps (basis points) on
implied volatility for (β, ν) = (0.8, 0.25) using the second and the third or-
der price expansions. Tables 8 and 10 give results for the second and the
third order implied volatility expansions. Next in Table 11, we report the er-
rors in bps obtained with the averaged expansions Av.ImpVol(AppPriceLN(3,.))
and Av.AppImpVolLN(3,.) and the benchmarks (HF) and (HLF). Then in Ta-
ble 12, we compare Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xav)),
Av.AppImpVolLN(3,.) and AppImpVolLN(3,xav) with the benchmarks (HF) and
(HLF).
After we analyze the case (β, ν) = (0.2, 0.25) and we report in Tables 13 and
14 the errors using ImpVol(AppPriceLN(3,xav)), ImpVol(AppPriceN(3,Sav)),
AppImpVolLN(3,xav), AppImpVolN(3,Sav) and the benchmarks (HF) and (HLF).
Because the other methods in general give globally less accurate results, we just
report and compare the best approximations.
Finally in Tables 15 and 16 we establish a comparison
between ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav) and the benchmarks
Hagan and (HLF) for (β, ν) = (0.5, 0.4).

For example, on the first row of Table 7, the value −12 corresponds to the ap-
proximation error of ImpVol(AppPriceLN(2,x0)) for the first strike of the maturity
T = 3M (i.e. K = 0.7), whereas on the second row, the value -3 corresponds to
the approximation error of ImpVol(AppPriceLN(2,k)) for the third strike of the
maturity T = 6M (i.e. K = 0.8). If the price approximation does not belong to
the non-arbitrage interval for Call options (it may happen for extremes strikes) we
just report ND in the tabular.
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7.2. Analysis of results

� Influence of T and K. We notice in Tables 7, 8, 9, 10 that errors are increasing
w.r.t. T for all the different approximations: this is coherent with the T 3/2 or T 2-
factor of our theoretical error estimates. For ATM options, all the approximations
are excellent and errors remain small for a large range of strikes and maturities:
with the log-normal proxy, usually smaller than 10 bps up to 10Y for strikes corre-
sponding to the Gaussian quantiles range [10%, 90%].

� Influence of the proxy. As expected, approximations based on log-normal
proxy perform better than approximations based on normal proxy. On the one
hand, we obtain simpler approximation formulas with the normal proxy: on the
other hand, the errors become significant when considering slightly OTM or ITM
options, even for short maturities and for advanced methods (order 3, local volatil-
ity frozen at the mid-point...).

� Influence of the order. Regarding firstly Tables 7-9 and then Tables 8-10,
we notice that as expected, third order approximations are more accurate than
second order ones. In addition, for the log-normal proxy case, second order ap-
proximations in spot or strike often underestimate the true implied volatility values
whereas third order approximations in spot overestimate the true values for OTM
options and yield underestimation for ITM options; the converse occurs for the third
order approximations in strike. Because the errors have approximately the same
magnitude but with opposite signs, approximations are improved by considering
the average between the approximations. It is discussed below.

� Influence of the point. Unquestionably, methods using the local volatility at
mid-point systematically give the best results. With ImpVol(AppPriceLN(2,xav))
(Table 7), errors do not exceed 15 bps for the whole set of strikes and matu-
rities, which is already really good, whereas ImpVol(AppPriceLN(3,xav)) and
AppImpVolLN(3,xav) provide errors close to 0 proving an extreme accuracy.

� Price expansions vs implied volatility expansions. Generally speaking,
the implied volatility expansions are more precise and stable. This can be easily
observed by comparing on the one hand Tables 7 and 8 and on the other hand
Tables 9 and 10. Sometimes, especially for extreme strikes, a simple direct second
order second implied volatility expansion is more accurate than the corresponding
third order price expansion. Since in addition the formulas are easier to compute,
we recommend the use of implied volatility expansions. Moreover, the difference
between ImpVol(AppPriceLN(3,xav)) and AppImpVolLN(3,xav) is not clear, both
methods giving similar and excellent results (see Tables 12 or 13) although the di-
rect implied volatility expansion remains more stable especially for β = 0.2 and/or
for large maturities. Last, when the local volatility function is frozen at spot or at
strike, there is really an improvement in using implied volatility expansions instead
of the corresponding price expansions.
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� Comparison with the benchmarks. In Table 11, we report the performance
of the methods Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.) and the
benchmarks (HF) and (HLF). Errors on the implied volatility are equal to zero
bp for the whole range of maturities and strikes for Av.AppImpVolLN(3,.) and
the (HLF) approximation, whereas Av.ImpVol(AppPriceLN(3,.)) and (HF) pro-
vide errors smaller than 45 and 70 bps in absolute value respectively. In Ta-
ble 12, we compare Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xav)),
Av.AppImpVolLN(3,.) and AppImpVolLN(3,xav) with the benchmarks (HF) and
(HLF). In order to observe more clearly the accuracy of the different methods, we
partially gather the results and we report the average of errors for different cate-
gories of strike (far ITM, ITM, ATM, OTM and far OTM, see Table 1), using a
scientific notation for the errors. Computing the average per categories of strikes
gives an advantage to methods which errors have non constant sign. These methods
may be more reliable than those giving a systematic over/under-estimation.
The best method is clearly AppImpVolLN(3,xav) which yields errors of 10−5

bps for short maturities and 10−2 bps for long maturities. The method gives
better results than the excellent approximation proposed by Henry-Labordère
(errors of 10−4 bps for short maturities and 10−1 bps for long maturities).
ImpVol(AppPriceLN(3,xav)) seems to be slightly better than (HLF) but is less
robust for extreme strikes than AppImpVolLN(3,xav). Significantly better results
are obtained by averaging the expansions in spot and strike, thanks to the sym-
metrical roles played by these two variables. The results are close to those of the
corresponding expansions with the mid-point, but they remain less accurate and
less robust for extreme strikes. The problem of this averaging method is the risk of
huge inaccuracy if one of two approximations in spot and strike fails. (HF) is clearly
less accurate than all the other approximations.

� Influence of β. In the Table 13, as expected the log-normal proxy provides larger
errors than for β = 0.8. Although the results of the normal proxy are better in com-
parison with the case β = 0.8, they remain less accurate and less robust than those
obtained with the log-normal proxy. Up to the maturity 5Y , AppImpVolLN(3,xav)
yields errors in bps smaller than 7 bps which is truly excellent. (HLF) gives compara-
ble results. (HF) seems less accurate and cruder for extreme strikes. For the maturity
10Y , we observe that AppImpVolLN(3,xav) (maximal error close to 159 bps) behaves
better than (HLF) (maximal error close to 271 bps) for very small strikes, whereas
for very large strikes (HLF) is slightly better (−5 bps for AppImpVolLN(3,xav) ver-
sus −1 bp for (HLF)). Surprisingly (HF) yields the smallest maximal error (close
to 112 bps) but is more inaccurate for OTM. (HLF) and AppImpVolLN(3,xav) give
excellent results with errors of the order of 10−3 bps for short maturity (3M) and
10−1 bps for the maturity 3Y . We nevertheless notice that ATM, (HLF) is better.

� Impact of ν. The level of volatility ν plays a similar role to
√
T , and in Tables 15

and 16, we analyse the impact of a larger volatility on our approximations. We take
ν = 40% and β = 0.5. We notice that up to the maturity 5Y , the errors in bps do not
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exceed 6 bps for the methods ImpVol(AppPriceLN(3,xav)) or AppImpVolLN(3,xav)
with a maximal error of 92 bps for the maturity 10Y . Their accuracy is better than
those of (HF) or (HLF) for short and long maturities. (HLF) is much more inaccurate
ITM for the maturity 10Y (maximal error of 286 bps). In Table 16, we aggregate
the results per categories of strike up to the maturity 3Y and we observe a good
accuracy of ImpVol(AppPriceLN(3,xav)) and AppImpVolLN(3,xav): 10−3 bps for
the maturity 3M and 10−1 for the maturity 3Y . In particular we notice that ATM,
(HF) and (HLF) are less accurate.

In view of all these tests, we may conclude that ImpVol (AppPriceLN(3,xav))
and particulary AppImpVolLN(3,xav) give very satisfying results, being at least as
good as the Henry-Labordère formula in the worst situations (β = 0.2 or ν = 0.4)
and being often better in the case β = 0.8. The different current tests prove that
our direct implied volatility approximations outperform the corresponding price
approximations. In addition, a normal proxy seems not to be the most appropriate
for the approximation of a CEV model, in view of the large errors obtained especially
for very small strikes. This presumably explains why the Hagan formula is much less
accurate than our approximations with log-normal proxy and than that of Henry-
Labordère. The Hagan formula is namely close in the spirit to our approximation
formulas with normal proxy.
To conclude, our approximations maintain very tight error estimates and allow
to deal naturally with general time-dependent local volatility (or with stochastic
interest rates, see [7]) which is a significant advantage compared to other approaches.

7.3. CEV Delta approximations

Now we test our approximation formulas for the deltas, by choosing again a CEV
model with spot value S0 = 1 and constant parameters. We test the values (β, ν) =

(0.8, 0.25) and (β, ν) = (0.2, 0.25). We report in Tables 5 and 6 the exact delta
values for the set of maturities and strikes defined in Table 1.

Table 5. CEV model (β = 0.8, ν = 0.25): deltas in %.

3M 99.75 98.89 96.38 90.83 81.18 67.67 51.99 36.60 23.57 13.91 3.78 1.76 0.76
6M 99.20 95.10 90.44 83.56 74.58 64.05 52.82 41.80 31.77 16.33 11.09 4.64 1.01
1Y 99.09 96.04 88.90 83.53 69.78 61.97 53.98 46.15 31.98 20.75 9.76 5.55 0.82
1.5Y 98.76 95.68 89.46 85.06 74.11 61.40 54.88 42.35 36.62 22.35 10.35 5.44 1.03
2Y 98.75 95.94 90.58 82.55 72.45 66.93 55.63 44.75 34.97 23.04 12.30 5.15 0.75
3Y 99.13 95.36 93.13 83.51 75.22 66.13 56.88 47.99 36.04 23.46 11.44 5.25 0.86
5Y 99.23 95.93 91.89 86.53 76.75 69.63 58.86 48.70 36.85 25.21 12.05 5.54 0.79
10Y 99.13 97.10 93.95 87.68 80.34 72.60 62.46 53.06 40.92 27.19 12.88 5.57 0.54

We test the 6 following approximations:

(1) AppDeltaLN(1,x0), AppDeltaLN(1,k) and AppDeltaLN(1,xav): first order
delta expansions based on the log-normal proxy with local volatility frozen
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Table 6. CEV model (β = 0.2, ν = 0.25): deltas in %.

3M 99.37 98.08 95.04 89.11 79.43 66.09 50.50 34.98 21.76 12.08 2.60 1.01 0.34
6M 98.13 92.97 88.01 81.08 72.24 61.88 50.71 39.59 29.35 13.70 8.60 2.85 0.35
1Y 97.34 93.15 85.45 80.09 66.66 58.97 51.00 43.08 28.51 17.00 6.39 2.91 0.14
1.5Y 96.23 92.03 85.29 80.89 70.22 57.76 51.23 38.45 32.50 17.73 6.20 2.35 0.13
2Y 95.71 91.77 85.84 77.85 68.06 62.67 51.43 40.30 30.09 17.68 7.29 1.81 0.04
3Y 95.62 90.10 87.57 77.87 69.86 61.01 51.76 42.61 30.02 16.82 5.53 1.36 0.03
5Y 94.70 89.45 84.88 79.47 70.04 63.12 52.32 41.69 28.91 16.52 4.53 0.87 0.00
10Y 94.37 90.36 86.11 79.22 71.81 64.05 53.52 43.32 29.65 14.59 2.76 0.23 0.00

at point x0, k and xav.
(2) AppDeltaLN(2,x0), AppDeltaLN(2,k) and AppDeltaLN(2,xav): second

order delta expansions based on the log-normal proxy with local volatil-
ity frozen at point x0, k and xav.

Tables 17-18 (respectively 19) give errors on deltas (expressed in bps) using all the
approximations with β = 0.8 (respectively β = 0.2).
Regarding the results, the accuracy for β = 0.8 is excellent because, except for
AppDeltaLN(1,x0), we obtain a maximal error (in absolute value) equal to 36 bps.
Generally speaking, approximations with local volatility at spot are not as good
as related approximations at strike. In addition, for second order formulas, we do
not observe any symmetry between the spot and strike approximations (which of-
ten overestimate the exact delta), whereas the symmetry slightly appears for the
first order expansions (not exactly with the same magnitude but opposite signs).
Maybe in this situation, the optimal expansion point is not exactly the convex com-
bination xav = (x0 + k)/2. However the methods with the mid-point are truly
excellent, in particular AppDeltaLN(2,xav) which yields a maximal error (in abso-
lute value) close to 1 bps. From Table 18, we observe that in average, the errors for
AppDeltaLN(2,xav) range from 10−3 for short maturities to 10−1 for long maturi-
ties.

In Table 19 (β = 0.2), without surprise the errors are larger compared to β = 0.8.
The best approximation is still AppDeltaLN(2,xav) which provides errors smaller
than 27 bps up to 5Y with a global maximal error of 157 bps, which remains quite
good. Curiously, for ATM options, the first order approximation may give better
estimates even if the related errors quickly for large or small strikes in comparison
with the second order approximations.
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8. Appendix

8.1. Computations of derivatives of CallBS w.r.t the log spot, the
log strike and the total variance

In the following Proposition, we make explicit the formula for the derivatives at any
order of CallBS w.r.t. x and z:

Proposition 4.1. Let x, z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂nxnCallBS(x, y, z) = exN (d1(x, y, z))

+1n≥2 e
xN ′(d1(x, y, z))

n−1∑
k=1

(
n− 1

k

)
(−1)k−1Hk−1(d1(x, y, z))

y
k
2

,

∂zznCallBS(x, y, z) = −ezN (d2(x, y, z))

+1n≥2 e
zN ′(d2(x, y, z))

n−1∑
k=1

(
n− 1

k

)
Hk−1(d2(x, y, z))

y
k
2

,

where (Hk)k∈N are the Hermite polynomials defined for any n ∈ N and for any
x ∈ R by:

Hn(x) = (−1)nex
2/2∂nxn(e−x

2/2)

Proof. For n = 1 the formulas are easy to obtain. For n ≥ 2, apply the Leibniz
formula to the products exN (d1(x, y, z)) and ezN (d2(x, y, z)).

We deduce a very useful Corollary:

Corollary 4.1. Let x, z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we
have:

|∂nxnCallBS(x, y, z)|+ |∂nznCallBS(x, y, z)| ≤c y
1−n

2 ,

|x− z|m|∂nxnCallBS(x, y, z)− exN (d1(x, y, z))| ≤c y
1−n+m

2 ,

|x− z|m|∂nznCallBS(x, y, z) + ezN (d2(x, y, z))| ≤c y
1−n+m

2 ,

where the generic constants depend polynomially on y.

Remark 4.7. In practice the two last estimates are used when we want to bound

(x− z)m
n∑
i=1

αi∂
i
xiCallBS(x, y, z) or (x− z)m

n∑
i=1

αi∂
i
ziCallBS(x, y, z) (with

n∑
i=1

αi = 0)

by a power of y with the highest possible degree.

Proof. We recall that for any polynomial function P, x→ P(x)N ′(x) is a bounded
function. Then the first inequality follows directly from Proposition 4.1. For the
second and the third, write (x− z) = d1(x, y, z)

√
y − 1

2y = d2(x, y, z)
√
y + 1

2y and
conclude similarly.
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In the next Proposition, we provide the formulas of the first, the second and the
third derivatives of CallBS w.r.t. a positive volatility:

Proposition 4.2. Let x, z ∈ R, ν > 0 and T > 0. We have:

VegaBS(x, ν2T, z) = ∂νCallBS(x, ν2T, z)

= ex
√
TN ′(d1(x, ν2T, z)) = ez

√
TN ′(d2(x, ν2T, z)), (68)

VommaBS(x, ν2T, z) = ∂νVegaBS(x, ν2T, z)

=
VegaBS(x, ν2T, z)

ν
d1(x, ν2T, z)d2(x, ν2T, z)

=
VegaBS(x, ν2T, z)

ν
[
(x− z)2

ν2T
− ν2T

4
], (69)

UltimaBS(x, ν2T, z) = ∂νVommaBS(x, ν2T, z)

= −VegaBS(x, ν2T, z)

ν2
[d1d2(1− d1d2) + d2

1 + d2
2](x, ν2T, z)

= −VegaBS(x, ν2T, z)

ν2
[
(x− z)2

2
+

3(x− z)2

ν2T
+
ν2T

4
− (x− z)4

ν4T 2
− ν4T 2

16
]. (70)

The above Proposition directly implies the following result:

Corollary 4.2. Let x, z ∈ R, ν > 0 and T > 0. We have the following estimates:

0 < VegaBS(x, ν2T, z) ≤c
√
T , (71)

|VommaBS(x, ν2T, z)| ≤c
√
T

ν
, (72)

|UltimaBS(x, ν2T, z)| ≤c
√
T

ν2
, (73)

where the generic constants depend polynomially of ν.

We finally state relations between the derivatives w.r.t. x or z, the VegaBS and the
VommaBS. These relations allow on the one hand to replace derivatives w.r.t. z

with derivatives w.r.t. x and on the other hand to write the differential operators
w.r.t. x or z in terms of the VegaBS and the VommaBS. The verification of these
identities is tedious but without mathematical difficulties. For instance, we have
used Mathematica to check these relations.
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Proposition 4.3. Let x, z ∈ R, ν > 0 and T > 0. We have:

(∂2
x2 − ∂x)CallBS(x, ν2T, z) = (∂2

z2 − ∂z)CallBS(x, ν2T, z)

=
ex

ν
√
T
N ′(d1(x, ν2T, z))

=
VegaBS(x, ν2T, z)

νT
, (74)

(∂3
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3

2
∂2
x2 +

1

2
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3

2
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1

2
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= −e
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2
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x6 −

3

2
∂5
x5 +

13

8
∂4
x4 −

3

4
∂3
x3 +

1

8
∂2
x2)CallBS(x, ν2T, z)

= (
1

2
∂6
z6 −

3

2
∂5
z5 +

13

8
∂4
z4 −

3

4
∂3
z3 +

1

8
∂2
z2)CallBS(x, ν2T, z)

= exN ′(d1(x, ν2T, z))
[ (x− z)4

2ν9T
9
2

− (x− z)2

8ν5T
5
2

− 3
(x− z)2

ν7T
7
2

+
1

8ν3T
3
2

+
3

2ν5T
5
2

]
(79)

= VegaBS(x, ν2T, z)
[
− 3

(x− z)2

ν7T 4
+

1

8ν3T 2
+

3

2ν5T 3

]
+

1

2
VommaBS(x, ν2T, z)

(x− z)2

ν6T 4
. (80)

8.2. Derivatives of CallBA w.r.t the spot, the strike and the total
variance

Proposition 4.4. Let S,Z ∈ R and Y > 0. For any integer n ≥ 1, we have:

∂nSnCallBA(S, Y, Z) =1n=1N (
S − Z√

Y
) + 1n≥2N ′(

S − Z√
Y

)(−1)n−2
Hn−2(S−Z√

Y
)

Y
n−1

2

,

∂nZnCallBA(S, Y, Z) =− 1n=1N (
S − Z√

Y
) + 1n≥2N ′(

S − Z√
Y

)
Hn−2(S−Z√

Y
)

Y
n−1

2

.

Corollary 4.3. Let S,Z ∈ R and Y > 0. For any integers n ≥ 2 and m ≥ 1, we
have:

|S − Z|m
(
|∂nSnCallBA(S, Y, Z)|+ |∂nZnCallBA(S, Y, Z)|

)
≤cY

1−n+m
2 ,

where the generic constants depend polynomially on Y .

Proposition 4.5. Let S,Z ∈ R, V > 0 and T > 0. We have:

VegaBA(S, V 2T,Z) =∂V CallBA(S, V 2T,Z) =
√
TN ′(S − Z

V
√
T

),

VommaBA(S, V 2T,Z) =∂V VegaBA(S, V 2T,Z)

=
VegaBA(S, V 2T,Z)

ν

(S − Z)2

V 2T
,

UltimaBA(S, V 2T,Z) =∂V VommaBA(S, V 2T,Z)

=− VegaBA(S, V 2T,Z)

ν2
[
3(S − Z)2

V 2T
− (S − Z)4

V 4T 2
].
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Corollary 4.4. Let S,Z ∈ R V > 0 and T > 0. We have the following estimates:

0 < VegaBA(S, V 2T,Z) ≤c
√
T ,

|VommaBA(S, V 2T,Z)| ≤c
√
T

V
,

|UltimaBA(S, V 2T,Z)| ≤c
√
T

V 2
,

where the generic constants depend polynomially on V .

Proposition 4.6. Let S,Z ∈ R V > 0 and T > 0. We have:

∂2
S2CallBA(S, V 2T,Z) = ∂2

Z2CallBA(x, V 2T,Z)

=
VegaBA(S, V 2T,Z)

V T
,

∂3
S3CallBA(S, V 2T,Z) = −∂3

Z3CallBA(S, V 2T,Z)

= −VegaBA(S, V 2T,Z)
(S − Z)

V 3T 2
,

∂3
S4CallBA(S, V 2T,Z) = ∂4

Z4CallBA(S, V 2T,Z)

= VegaBA(S, V 2T,Z)
[ (S − Z)2

V 5T 3
− 1

V 3T 2

]
,

∂6
S6CallBA(S, V 2T,Z) = ∂6

Z6CallBA(S, V 2T,Z)

= VegaBA(S, V, T, Z)
[
− 6

(S − Z)2

V 7T 4
+

3

V 5T 3

]
+ VommaBA(S, V 2T,Z)

(S − Z)2

V 6T 4
.

8.3. Derivatives of δBS w.r.t the log spot, the log strike and the total
variance

Proposition 4.7. Let x, z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂nxnδ
BS(x, y, z) =(−1)n−1N ′(d1(x, y, z))

Hn−1(d1(x, y, z))

y
n
2

,

∂nznδ
BS(x, y, z) =−N ′(d1(x, y, z))

Hn−1(d1(x, y, z))

y
n
2

.

Corollary 4.5. Let x, z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we
have:

|x− z|m
(
|∂nxnδBS(x, y, z)|+ |∂nznδBS(x, y, z)|

)
≤cy

m−n
2 ,

where the generic constants depend polynomially on y.

Proposition 4.8. Let x, z ∈ R and y > 0. We have:

∂yδ
BS(x, y, z) =

1

2
(∂2
z2 − ∂z)δBS(x, y, z) = −N

′(d1(x, y, z))

2y
d2(x, y, z).
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8.4. Proof of Lemma 1

We proceed by induction. The key is to prove the above technical result:

Lemma 6. Let (mt)t∈[0,T ] be a square integrable and predictable process, (λt)t∈[0,T ]

be a measurable and bounded deterministic function and ϕ be a C∞b function. Then,
we have:

E
(
ϕ(

∫ T

0

λtdWt)

∫ T

0

mtdWt

)
= E

(
ϕ(1)(

∫ T

0

λtdWt)

∫ T

0

λtmtdt
)
.

Proof. We propose two proofs: firstly we employ a PDE argument and secondly
we show that this is a straightforward application of the Malliavin calculus theory.
In the two points of view, we use the common notation for the diffusion process
(Zt)t∈[0,T ] = (

∫ t
0
λsdWs)t∈[0,T ] and we recall that (Ft)t∈[0,T ] denotes the augmented

filtration of the Brownian motion W .

� PDE argument. We introduce u(t, x) = E[ϕ(ZT )|Zt = x] which solves the
following PDE with terminal condition:{

∂tu(t, x) + 1
2λ

2
t∂

2
xxu(t, x) = 0, (t, x) ∈]0, T [×R,

u(T, x) = ϕ(x), x ∈ R.

Thanks to the above PDE and the assumption on ϕ, ∀i ∈ N, ∂ixi(u(t, Zt))t∈[0,T ] is
a martingale and ∀t ∈ [0, T ], we have:

∂ixiu(t, Zt) = E[ϕ(i)(ZT )|Ft] =E[ϕ(i)(ZT )] +

∫ t

0

∂i+1
xi+1u(s, Zs)λsdWs.

Then applying the L2-isometry for the product u(T,ZT )
∫ T

0
mtdWt =

ϕ(ZT )
∫ T

0
mtdWt, it readily comes:

E
(
ϕ(ZT )

∫ T

0

mtdWt

)
=

∫ T

0

E[∂xu(t, Zt)λtmt]dt = E
(
ϕ(1)(ZT )

∫ T

0

λtmtdt
)
,

where at the last equality we have used the martingale property of ∂x(u(t, Zt))t∈[0,T ].

�Malliavin calculus approach. The result directly comes from the duality rela-
tionship of Malliavin calculus (see [48] ) identifying the Itô integral

∫ T
0
mtdWt with

the Skorohod operator and observing that (ϕ(1)(ZT )λt)t∈[0,T ] is the first Malliavin
derivative of ϕ(ZT ).

Lemma 6 is a particular case of Lemma 1 for N = 1 and IN = 1 noting that ∀i ∈ N,

E
(
ϕ(i)(

∫ T
0
λtdWt)

)
= ∂iεiE

(
ϕ(
∫ T

0
λtdWt + ε)

)
|ε=0, thanks to the regularity of ϕ.
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For N = 1 and IN = 0, there is nothing to prove. Suppose that the formula (35) is
true for N ≥ 2. Then apply Lemma 6 if IN+1 = 1 to obtain:

E
(
ϕ(

∫ T

0

λtdWt)

∫ T

0

lN+1,tN+1

∫ tN+1

0

lN,tN . . .

×
∫ t2

0

l1,t1dW I1
t1 . . .dW

IN
tN dW

IN+1

tN+1

)
=E
(
ϕ(IN+1)(

∫ T

0

λtdWt)

∫ T

0

l̂N+1,tN+1

×
∫ tN+1

0

lN,tN

∫ tN

0

. . .

∫ t2

0

l1,t1dW I1
t1 . . .dW

IN
tN dtN+1

)
=E
(
ϕ(IN+1)(

∫ T

0

λtdWt)

∫ T

0

(
lN,tN

∫ T

tN

l̂N+1,sds
) ∫ tN

0

. . .

×
∫ t2

0

l1,t1dW I1
t1 . . .dW

IN
tN

)
,

where at the last equality we have used the fact that
∫ T

0
ftZtdt =

∫ T
0

(
∫ T
t
fsds)dZt

for any continuous semi-martingale Z starting from 0 and any measurable
and bounded deterministic function f (apply the Itô formula to the product
(
∫ T
t
fsds)Zt). We easily conclude with the induction hypothesis and leave the de-

tails to the reader.

8.5. Applications of the expansions for time-independent CEV
model

We specify in this section the results and the practical calculus of the various ex-
pansion coefficients when the volatility has the form:

σ(S) = νSβ−1,

i.e. a CEV-type time-independent volatility with a level ν and a skew β ≤ 1.
Although the volatility and its derivatives are not bounded, we expect that our
expansions can be generalized to that model. Alternatively, to fit our assumptions,
we would need to modify the CEV volatility function σ near 0 and +∞, so that the
ellipticity and regularity conditions are met. The impact of such a modification has
been studied in the case of Limited CEV model in [51] where the authors show a
very small impact on prices. Observe in addition that the correction terms in our
expansions do no depend on the modification of σ at 0 and +∞.

To apply our different expansion theorems, we need to give the expressions of
the coefficients (Ci)1≤i≤8 defined in Definition 4.1, in Theorem 12 and in Lemmas
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4-5. A straightforward calculus leads to:

a(x) =νex(β−1), a(1)(x) =(β − 1)a(x), a(2)(x) =(β − 1)2a(x),

a(x0) =νSβ−1
0 , a(k) =νKβ−1, a(xav) =ν(S0K)

β−1
2 ,

Σ(S) =νSβ , Σ(1)(S) =β
Σ(S)

S
, Σ(2)(S) =β(β − 1)

Σ(S)

S2
,

Σ(S0) =νSβ0 , Σ(K) =νKβ , Σ(Sav) =ν(
S0 +K

2
)β .

Thus for β ∈ [0, 1], the magnitudes ofM0(a) andM1(a) are mainly linked to those
of ν and ν(β− 1). At the limit case β = 1, the model coincides with the log-normal
proxy and M1(a) = 0. In the same spirit, ν and νβ are respectively linked to
M0(Σ) andM1(Σ). At the limit case β = 0, the model coincides with the normal
proxy andM1(Σ) = 0.

Finally, the expression of the coefficients (Ci)1≤i≤8 are:

C1(a;x)T0 =(β − 1)a4(x)
T 2

2
, C2(a;x)T0 =(β − 1)2a4(x)T 2,

C3(a;x)T0 =(β − 1)2a6(x)
T 3

3
, C4(a;x)T0 =C8(a;x)T0 = (β − 1)2a6(x)

T 3

6

C5(a;x)T0 =2(β − 1)2a2(x)T, C6(a;x)T0 =(β − 1)2a4(x)
T 2

2
,

C7(a;x)T0 =(β − 1)a2(x)T,

C1(Σ;S)T0 =β
Σ4(S)

S

T 2

2
, C2(Σ;S)T0 =β(2β − 1)

Σ4(S)

S2

T 2

2
,

C3(Σ;S)T0 =β(2β − 1)
Σ6(S)

S2

T 3

6
, C4(Σ;S)T0 =C8(Σ;S)T0 = β2 Σ6(S)

S2

T 3

6
,

C5(Σ;S)T0 =β(2β − 1)
Σ2(S)

S2
T, C6(Σ;S)T0 =β2 Σ4(S)

S2

T 2

2
,

C7(Σ;S)T0 =β
Σ2(S)

S
T,

where x = x0, k, xav and S = S0,K, Sav.
We now give the expressions of the coefficients γi, πi, χi and Ξi defined in



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

226 R. Bompis and E. Gobet

Definition 4.2 useful to compute the implied volatility expansions:

γ0(a;x)T0 =
(β − 1)2

24
a3(x)T [1− a2(x)T

4
], γ1(a;x)T0 =

(β − 1)

2
a(x),

γ2(a;x)T0 =
(β − 1)2

12
a(x), π0(a;x)T0 =γ0(a;x)T0 ,

π1(a;x)T0 =0, π2(a;x)T0 =− (β − 1)2

24
a(x),

χ1(Σ;S)T0 =
βΣ(S)

2S
, χ0(Σ;S)T0 =

β(β − 2)

24S2
Σ3(S)T,

χ2(Σ;S)T0 =
β(β − 2)

12S2
Σ(S), Ξ0(Σ;S)T0 =χ0(Σ;S)T0 ,

Ξ2(Σ;S)T0 =− β(β + 1)

24S2
Σ(S), Ξ1(Σ;S)T0 =0.

For example, the second and third order Black-Scholes and Bachelier implied volatil-
ity expansions based on the mid-points are explicitely given by:

σI(x0, T, k) ≈ ν(S0K)
β−1

2 ,

σI(x0, T, k) ≈ ν(S0K)
β−1

2

[
1 +

(β − 1)2ν2T

24
(S0K)β−1(1− ν2T (S0K)β−1

4
)

− (β − 1)2

24
log2(

S0

K
)
]
,

ΣI(S0, T,K) ≈ ν(
S0 +K

2
)β ,

ΣI(S0, T,K) ≈ ν(
S0 +K

2
)β
[
1 +

β(β − 2)ν2T

24
(
S0 +K

2
)2β−2

− β(β + 1)

6
(
S0 −K
S0 +K

)2
]
,

which are very simple formulas. The last formula coincides with the intermediate
equation (A.28b) in [5].
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Table 7. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility
using the 6 second order price approxima-
tions ImpVol(AppPriceLN(2,x0)), ImpVol(AppPriceLN(2,k)), ImpVol(AppPriceLN(2,xav)),
ImpVol(AppPriceN(2,S0)), ImpVol(AppPriceN(2,K)) and ImpVol(AppPriceN(2,Sav)).

3M −12 −6 −2 −1 0 0 0 0 0 −1 −3 −5 −8
−17 −7 −3 −1 0 0 0 0 0 −1 −2 −4 −7
0 0 0 0 0 0 0 0 0 0 0 0 0
−577 −79 −18 −1 2 2 2 2 2 0 −22 −44 −73
−124 −59 −20 −2 2 2 2 2 2 1 −21 −53 −125
21 14 9 6 3 2 2 2 3 4 9 11 15

6M −13 −3 −1 −1 0 0 0 0 0 −1 −2 −4 −15
−17 −4 −2 −1 0 0 0 0 0 −1 −2 −4 −11
1 0 0 0 0 0 0 0 0 0 0 0 1
−269 −18 0 5 5 4 3 4 4 1 −5 −35 −117
−138 −26 −4 4 5 4 3 4 4 3 −2 −30 −238
33 16 11 7 5 4 3 3 4 8 10 16 26

1Y −23 −8 −2 −1 0 0 0 0 0 −1 −4 −8 −37
−34 −9 −2 −1 0 0 0 0 0 −1 −4 −7 −23
1 1 0 0 0 0 0 0 0 0 0 0 1
−848 −48 6 10 8 7 6 7 9 6 −21 −59 −235
−240 −69 −1 8 8 7 6 7 9 9 −9 −45 ND
64 36 20 14 8 7 6 7 9 13 22 29 54

1.5Y −28 −11 −3 −2 −1 0 0 0 −1 −2 −6 −12 −50
−41 −12 −4 −2 −1 0 0 0 −1 −2 −5 −10 −30
2 1 0 0 0 0 0 0 0 0 0 1 2
−644 −50 10 16 14 10 9 11 12 10 −31 −95 −299
−291 −90 −4 10 14 10 9 11 12 13 −9 −71 ND
89 52 30 23 14 10 9 11 12 19 32 44 74

2Y −36 −14 −5 −2 −1 −1 −1 −1 −1 −2 −6 −18 −91
−56 −17 −6 −2 −1 −1 −1 −1 −1 −2 −6 −14 −44
2 1 0 0 0 0 −1 0 0 0 0 1 2
ND −65 12 22 18 15 13 14 17 13 −27 −138 −418
−373 −129 −13 18 18 15 13 14 17 18 −1 −107 ND
119 72 44 27 17 15 13 14 17 25 39 60 105

3Y −64 −18 −11 −3 −1 −1 −1 −1 −1 −3 −10 −27 −141
−122 −21 −13 −3 −1 −1 −1 −1 −1 −3 −9 −21 −57
4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
ND −43 6 35 28 22 19 20 25 17 −62 −208 −534
−638 −154 −68 27 28 22 19 20 25 27 −8 −159 −2260
208 102 81 41 28 21 19 20 25 37 61 87 146

5Y −106 −31 −13 −6 −2 −1 −1 −1 −2 −5 −17 −45 −472
−256 −38 −14 −6 −2 −1 −1 −1 −2 −5 −15 −32 −88
7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5
ND −41 53 64 49 39 32 35 41 25 −116 −334 −753
−1000−295 −55 34 48 39 32 35 43 47 −4 −249 ND
377 183 119 80 49 38 32 34 43 60 99 140 233

10Y −172 −69 −30 −10 −4 −3 −2 −2 −4 −9 −35 −103 ND
ND −95 −34 −10 −4 −3 −2 −2 −4 −9 −28 −61 −159
15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
ND 40 158 146 109 82 67 70 80 32 −271 −625 −1100
−1531−762 −232 75 103 82 67 70 85 95 16 −781 ND
786 451 289 166 108 80 67 68 84 120 192 267 439
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Table 8. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied
volatility using the 6 second order implied volatility approximations AppImpVolLN(2,x0),
AppImpVolLN(2,k), AppImpVolLN(2,xav), AppImpVolN(2,S0), AppImpVolN(2,K) and
AppImpVolN(2,Sav).

3M −1 −1 0 0 0 0 0 0 0 0 0 −1 −1
−1 −1 −1 0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
27 18 12 7 4 2 2 2 3 5 11 15 19
29 19 12 7 4 2 2 2 3 5 11 15 18
21 14 9 6 3 2 2 2 3 4 9 11 15

6M −2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1
−2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1
1 0 0 0 0 0 0 0 0 0 0 0 1
41 20 13 9 5 4 3 4 5 10 13 21 36
44 21 14 9 6 4 3 4 5 9 12 20 33
33 16 11 7 5 4 3 3 4 8 10 16 26

1Y −3 −2 −1 −1 0 0 0 0 0 −1 −1 −2 −3
−4 −2 −1 −1 0 0 0 0 0 −1 −1 −1 −3
1 1 0 0 0 0 0 0 0 0 0 0 1
79 44 24 17 9 7 6 7 10 16 28 39 74
88 48 25 17 9 7 6 7 10 15 27 36 67
64 36 20 14 8 7 6 7 9 13 22 29 54

1.5Y −4 −3 −1 −1 −1 0 0 0 −1 −1 −2 −2 −4
−5 −3 −2 −1 −1 0 0 0 −1 −1 −2 −2 −4
2 1 0 0 0 0 0 0 0 0 0 1 2
108 64 36 27 15 10 9 11 13 23 42 59 104
123 69 38 28 15 10 9 11 13 22 39 54 91
89 52 30 23 14 10 9 11 12 19 32 44 74

2Y −6 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −6
−7 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −5
2 1 0 0 0 0 −1 0 0 0 0 1 2
145 87 52 31 19 15 13 14 19 30 50 80 149
167 97 55 32 19 15 13 14 18 29 47 72 127
119 72 44 27 17 15 13 14 17 25 39 60 105

3Y −10 −5 −4 −2 −1 −1 −1 −1 −1 −2 −3 −5 −9
−12 −6 −4 −2 −1 −1 −1 −1 −1 −2 −3 −4 −7
4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
249 121 96 47 31 22 19 20 28 45 80 120 212
301 136 105 49 31 22 19 20 28 43 73 106 176
208 102 81 41 28 21 19 20 25 37 61 87 146

5Y −18 −9 −5 −4 −2 −1 −1 −1 −2 −3 −5 −8 −14
−23 −10 −6 −4 −2 −1 −1 −1 −2 −3 −5 −7 −11
7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5
443 216 140 92 52 39 32 35 48 74 132 196 352
571 252 155 98 53 40 32 35 47 69 117 167 277
377 183 119 80 49 38 32 34 43 60 99 140 233

10Y −33 −19 −12 −7 −4 −3 −2 −2 −3 −6 −10 −16 −29
−47 −24 −14 −7 −4 −3 −2 −2 −3 −5 −9 −12 −21
15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
904 522 333 188 117 82 67 70 94 149 264 394 725
1289 660 390 203 120 83 67 70 91 137 224 313 510
786 451 289 166 108 80 67 68 84 120 192 267 439
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Table 9. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility
using the 6 third order price approxima-
tions ImpVol(AppPriceLN(3,x0)), ImpVol(AppPriceLN(3,k)), ImpVol(AppPriceLN(3,xav)),
ImpVol(AppPriceN(3,S0)), ImpVol(AppPriceN(3,K)) and ImpVol(AppPriceN(3,Sav)).

3M −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
6 −4 −2 −1 0 0 0 0 0 0 2 0 −6
−22 −1 2 1 0 0 0 0 0 0 −2 −3 −2
−1 0 0 0 0 0 0 0 0 0 0 0 0

6M −1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
−17 −4 −1 0 0 0 0 0 0 1 2 4 −12
−13 4 2 0 0 0 0 0 0 −1 −1 −5 −12
−1 0 0 0 0 0 0 0 0 0 0 0 −1

1Y 1 1 0 0 0 0 0 0 0 0 0 0 1
−2 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0
−62 −15 −2 −1 0 0 0 0 0 1 6 9 −56
−34 13 3 1 0 0 0 0 0 −1 −5 −12 −45
−3 0 0 0 0 0 0 0 0 0 0 0 −3

1.5Y −2 0 0 0 0 0 0 0 0 0 0 0 4
3 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 0
−100 −23 −4 −2 0 0 0 0 0 2 11 14 −83
−36 21 7 3 0 0 0 0 0 −1 −8 −23 −98
−4 −1 0 0 0 0 0 0 0 0 0 −1 −5

2Y −3 −1 0 0 0 0 0 0 0 0 0 1 10
4 1 0 0 0 0 0 0 0 0 0 −1 −7
0 0 0 0 0 0 0 0 0 0 0 0 0
−163 −36 −8 −1 0 0 0 0 0 3 14 17 −177
−63 31 14 2 0 0 0 0 0 −2 −9 −38 −243
−7 −1 0 0 0 0 0 0 0 0 0 −1 −12

3Y −9 −1 0 0 0 0 0 0 0 0 0 1 16
11 1 0 0 0 0 0 0 0 0 0 −1 −10
0 0 0 0 0 0 0 0 0 0 0 0 0
−818 −48 −23 −2 −1 0 0 0 1 5 29 16 −275
−250 52 41 4 1 0 0 0 −1 −3 −19 −69 ND
−24 −2 −1 0 0 0 0 0 0 0 −1 −3 −23

5Y −18 −1 0 0 0 0 0 0 0 0 1 2 39
23 1 0 0 0 0 0 0 0 0 −1 −2 −21
0 0 0 0 0 0 0 0 0 0 0 0 0
ND −103 −26 −7 −2 −1 0 0 1 12 57 −10 −522
−597 90 65 17 1 1 0 −1 −2 −5 −38 −143 ND
−73 −5 −1 −1 0 0 0 0 0 0 −2 −7 −76

10Y −34 −5 −1 0 0 0 0 0 0 0 1 7 147
28 3 1 0 0 0 0 0 0 0 −1 −7 −59
0 0 0 0 0 0 0 0 0 0 0 0 0
ND −340 −83 −16 −6 −4 −1 1 4 42 109 −222 −987
−1200−42 230 49 5 1 −1 −3 −4 −13 −94 −588 ND
−214 −29 −7 −3 −2 −1 −1 −1 −1 −1 −6 −28 ND
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Table 10. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using
the 6 third order implied volatility approximations AppImpVolLN(3,x0), AppImpVolLN(3,k),
AppImpVolLN(3,xav), AppImpVolN(3,S0), AppImpVolN(3,K) and AppImpVolN(3,Sav).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 1 0 0 0 0 0 0 0 −1 −2 −3
−5 −3 −1 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 1 0 0 0 0 0 0 −1 −1 −3 −8
−10 −3 −1 0 0 0 0 0 0 0 1 2 5
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
17 6 2 1 0 0 0 0 0 −1 −4 −7 −25
−30 −10 −2 −1 0 0 0 0 0 1 3 5 14
1 0 0 0 0 0 0 0 0 0 0 0 1

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
25 10 3 2 0 0 0 0 0 −2 −7 −15 −43
−49 −17 −5 −2 0 0 0 0 0 1 5 9 22
2 1 0 0 0 0 0 0 0 0 0 1 2

2Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
37 16 6 1 0 0 0 0 0 −2 −9 −24 −79
−80 −29 −9 −2 0 0 0 0 0 2 6 14 35
4 1 0 0 0 0 0 0 0 0 0 1 4

3Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
77 23 15 2 0 0 0 0 −1 −5 −20 −47 −143
−214 −48 −28 −4 0 0 0 0 0 3 11 23 55
12 2 1 0 0 0 0 0 0 0 1 2 8

5Y −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
160 50 22 7 0 −1 0 0 −2 −10 −47 −108 −350
−618 −130 −47 −15 −1 0 0 −1 0 6 22 43 102
36 7 2 0 0 0 0 0 0 0 2 6 21

10Y −1 −1 −1 0 0 0 0 0 0 0 1 1 1
2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
362 155 68 16 0 −3 −1 1 −4 −34 −153 −368 −1307
−2195−631 −216 −44 −6 1 −1 −3 0 14 53 102 231
113 34 10 0 −1 −1 −1 −1 −1 1 8 21 70
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Table 11. CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using
the 4 approximations Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.), (HF), and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −1 0 0 0 0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0 0

2Y 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0
−3 −1 0 0 0 0 0 0 0 0 0 −1 −3
0 0 0 0 0 0 0 0 0 0 0 0 0

3Y 1 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0
−9 −2 −1 0 0 0 0 0 0 0 −1 −2 −6
0 0 0 0 0 0 0 0 0 0 0 0 0

5Y 2 0 0 0 0 0 0 0 0 0 0 0 9
0 0 0 0 0 0 0 0 0 0 0 0 0
−24 −5 −2 0 0 0 0 0 0 0 −2 −4 −14
0 0 0 0 0 0 0 0 0 0 0 0 0

10Y −3 −1 0 0 0 0 0 0 0 0 0 0 44
0 0 0 0 0 0 0 0 0 0 0 0 0
−69 −24 −8 −1 0 0 0 0 0 −1 −6 −14 −44
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 12. CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in
bps on the BS implied volatility using the 6 approximations Av.ImpVol(AppPriceLN(3,.)),
ImpVol(AppPriceLN(3,xav)), Av.AppImpVolLN(3,.), AppImpVolLN(3,xav), (HF), and (HLF).

far ITM ITM ATM OTM far OTM
3M 6.7E−2 1.4E−4 −7.9E−6 1.8E−4 1.5E−2

−2.4E−4 −1.4E−5 −1.3E−5 −1.3E−5 −9.9E−5
4.3E−4 9.1E−5 −8.2E−6 7.3E−5 2.6E−4
−3.4E−5 −9.6E−6 −1.3E−5 −8.7E−6 −1.7E−5
−9.1E−2 −8.6E−3 2.0E−4 −7.3E−3 −4.8E−2
−6.4E−5 1.7E−4 2.4E−4 1.5E−4 −9.8E−6

6M 3.6E−2 1.6E−4 −4.3E−5 1.5E−4 3.2E−2
−3.0E−4 −4.3E−5 −5.3E−5 −3.6E−5 −2.4E−4
1.0E−3 1.5E−4 −4.3E−5 1.4E−4 7.8E−4
−6.5E−5 −4.3E−5 −5.3E−5 −3.5E−5 −4.9E−5
−1.6E−1 −7.9E−3 9.2E−4 −8.6E−3 −1.3E−1
2.5E−4 8.6E−4 9.5E−4 7.1E−4 1.3E−4

1Y 9.6E−2 5.1E−4 −1.9E−4 4.4E−4 1.9E−1
−1.1E−3 −1.8E−4 −2.1E−4 −1.4E−4 −1.1E−3
4.2E−3 4.3E−4 −1.9E−4 5.5E−4 3.0E−3
−2.5E−4 −1.8E−4 −2.1E−4 −1.4E−4 −2.1E−4
−6.3E−1 −2.2E−2 3.8E−3 −3.6E−2 −5.1E−1
1.2E−3 3.7E−3 3.8E−3 2.8E−3 4.4E−4

1.5Y 9.2E−2 1.2E−3 −3.9E−4 7.5E−4 2.8E−1
−1.8E−3 −4.0E−4 −4.5E−4 −3.2E−4 −2.1E−3
8.5E−3 1.1E−3 −3.9E−4 1.1E−3 6.1E−3
−4.9E−4 −3.9E−4 −4.5E−4 −3.0E−4 −4.0E−4
−1.2E+0 −5.5E−2 8.3E−3 −7.3E−2 −9.9E−1
3.9E−3 8.4E−3 8.6E−3 6.2E−3 1.1E−3

2Y 1.4E−1 1.7E−3 −6.4E−4 1.4E−3 8.7E−1
−3.1E−3 −7.1E−4 −7.9E−4 −5.3E−4 −4.7E−3
1.5E−2 1.8E−3 −6.4E−4 1.7E−3 1.1E−2
−8.9E−4 −7.1E−4 −7.9E−4 −5.1E−4 −8.1E−4
−2.0E+0 −9.6E−2 1.5E−2 −1.0E−1 −1.9E+0
7.5E−3 1.5E−2 1.5E−2 1.1E−2 1.2E−3

3Y 5.8E−1 2.5E−3 −1.5E−3 1.9E−3 1.5E+0
−9.9E−3 −1.6E−3 −1.7E−3 −1.1E−3 −9.4E−3
3.7E−2 5.3E−3 −1.5E−3 3.8E−3 2.2E−2
−2.4E−3 −1.5E−3 −1.7E−3 −1.1E−3 −1.6E−3
−5.2E+0 −3.5E−1 3.4E−2 −2.6E−1 −3.8E+0
1.8E−2 3.5E−2 3.5E−2 2.4E−2 3.1E−3

5Y 1.2E+0 6.2E−3 −3.6E−3 1.2E−3 4.5E+0
−3.0E−2 −4.0E−3 −4.2E−3 −2.7E−3 −2.7E−2
1.0E−1 1.2E−2 −3.5E−3 9.4E−3 5.4E−2
−7.2E−3 −3.9E−3 −4.3E−3 −2.5E−3 −4.4E−3
−1.5E+1 −6.9E−1 9.4E−2 −6.7E−1 −9.1E+0
6.5E−2 1.1E−1 9.7E−2 6.3E−2 7.6E−3

10Y −2.1E+0 −4.6E−2 −1.1E−2 −3.2E−2 2.2E+1
−9.7E−2 −1.1E−2 −1.2E−2 −7.5E−3 −1.3E−1
2.8E−1 3.8E−2 −1.1E−2 2.9E−2 1.7E−1
−2.3E−2 −1.1E−2 −1.3E−2 −6.9E−3 −1.8E−2
−4.6E+1 −3.1E+0 3.8E−1 −2.4E+0 −2.9E+1
4.4E−1 4.8E−1 4.0E−1 2.3E−1 2.2E−2
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Table 13. CEV model (β = 0.2, ν = 0.25): errors in bps on the BS implied
volatility using the 6 approximations ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav),
ImpVol(AppPriceN(3,Sav)), AppImpVolN(3,Sav), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
−5 −1 0 0 0 0 0 0 0 0 0 −1 −2
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y −1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
−9 −3 −1 0 0 0 0 0 0 0 −1 −1 −4
−1 0 0 0 0 0 0 0 0 0 0 0 0

2Y −1 0 0 0 0 0 0 0 0 0 0 0 −3
−1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 1
−15 −5 −1 0 0 0 0 0 0 0 −1 −3 −8
−1 −1 0 0 0 0 0 0 0 0 0 0 0

3Y −4 −1 −1 −1 −1 −1 0 0 0 0 0 −1 −8
−2 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1
7 2 2 1 0 0 0 0 0 0 0 0 0
8 3 2 1 0 0 0 0 0 0 0 1 1
−45 −9 −5 −1 0 0 0 0 0 −1 −2 −5 −15
−4 −1 −1 0 0 0 0 0 0 0 0 0 0

5Y 2 −1 −2 −2 −2 −2 −1 −1 −1 0 0 −2 −37
7 −1 −2 −2 −2 −2 −1 −1 −1 0 0 0 −1
47 13 6 4 2 1 1 1 1 1 1 1 0
50 13 7 4 2 1 1 1 1 1 1 1 3
−117 −26 −9 −3 0 0 0 0 0 −1 −6 −12 −31
4 0 0 0 0 0 0 0 0 0 −1 −1 −1

10Y 148 84 41 12 2 −2 −3 −2 −2 −1 −2 −13 ND
159 85 41 12 2 −2 −3 −2 −2 −1 −1 −1 −5
530 221 109 45 21 11 6 3 2 2 2 2 −8
541 224 111 45 21 11 6 3 2 2 2 3 6
−112 −6 18 18 12 8 4 2 −1 −5 −17 −33 −73
271 123 65 29 14 8 4 2 0 −1 −1 −1 −1
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Table 14. CEV model (β = 0.2, ν = 0.25): average per categories of strikes of errors in
bps on the BS implied volatility using the 6 approximations ImpVol(AppPriceLN(3,xav)),
AppImpVolLN(3,xav), ImpVol(AppPriceN(3,Sav)), AppImpVolN(3,Sav), (HF) and (HLF).

far ITM ITM ATM OTM far OTM
3M −5.4E−2 −4.0E−3 −3.4E−3 −3.3E−3 −2.9E−2

−9.3E−3 −3.1E−3 −3.4E−3 −1.9E−3 −4.1E−3
2.5E−2 6.3E−3 1.8E−3 3.7E−3 8.9E−3
3.9E−2 7.2E−3 1.8E−3 4.5E−3 1.6E−2
−3.8E−1 −3.9E−2 7.9E−5 −2.9E−2 −1.6E−1
−2.1E−2 −4.6E−3 3.2E−4 −2.6E−3 −7.9E−3

6M −6.9E−2 −1.5E−2 −1.4E−2 −7.5E−3 −7.4E−2
−2.1E−2 −1.4E−2 −1.4E−2 −7.2E−3 −1.1E−2
6.8E−2 1.6E−2 6.9E−3 9.6E−3 2.5E−2
9.0E−2 1.7E−2 6.9E−3 1.0E−2 4.3E−2
−7.2E−1 −4.5E−2 1.5E−3 −3.9E−2 −4.3E−1
−5.6E−2 −7.4E−3 1.8E−3 −5.4E−3 −2.2E−2

1Y −2.5E−1 −6.6E−2 −5.5E−2 −2.8E−2 −3.8E−1
−9.9E−2 −6.6E−2 −5.5E−2 −2.6E−2 −4.6E−2
3.2E−1 6.4E−2 2.8E−2 3.5E−2 7.8E−2
4.1E−1 6.7E−2 2.8E−2 3.8E−2 1.5E−1
−3.0E+0 −1.4E−1 8.2E−3 −1.5E−1 −1.6E+0
−2.6E−1 −2.3E−2 8.8E−3 −1.9E−2 −7.2E−2

1.5Y −4.4E−1 −1.6E−1 −1.2E−1 −6.2E−2 −7.4E−1
−2.4E−1 −1.6E−1 −1.2E−1 −5.6E−2 −8.8E−2
7.4E−1 1.7E−1 6.2E−2 7.1E−2 1.5E−1
8.8E−1 1.8E−1 6.2E−2 7.8E−2 2.9E−1
−5.6E+0 −3.5E−1 1.7E−2 −3.0E−1 −3.0E+0
−5.6E−1 −5.8E−2 1.9E−2 −3.5E−2 −1.3E−1

2Y −8.0E−1 −3.1E−1 −2.2E−1 −9.6E−2 −1.9E+0
−4.9E−1 −3.1E−1 −2.2E−1 −9.0E−2 −1.8E−1
1.5E+0 3.2E−1 1.2E−1 1.1E−1 2.1E−1
1.7E+0 3.3E−1 1.2E−1 1.2E−1 5.1E−1
−1.0E+1 −6.1E−1 3.0E−2 −4.3E−1 −5.5E+0
−1.1E+0 −9.2E−2 3.6E−2 −5.5E−2 −2.1E−1

3Y −2.3E+0 −8.0E−1 −4.8E−1 −2.0E−1 −4.3E+0
−1.4E+0 −8.0E−1 −4.8E−1 −1.7E−1 −3.5E−1
4.8E+0 9.8E−1 2.8E−1 2.4E−1 3.4E−1
5.4E+0 1.0E+0 2.8E−1 2.6E−1 9.3E−1
−2.7E+1 −2.1E+0 8.9E−2 −1.0E+0 −9.9E+0
−2.7E+0 −2.7E−1 9.7E−2 −1.1E−1 −3.7E−1
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Table 15. CEV model (β = 0.5, ν = 0.4): errors in bps on the BS implied volatility using
the 4 approximations ImpVol(AppPriceLN(3,xav)), AppImpVolLN(3,xav), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−4 −1 0 0 0 0 0 0 0 0 0 −1 −3
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−8 −2 0 0 0 0 0 0 0 0 −1 −2 −5
0 0 1 1 0 0 0 0 0 0 0 0 0

2Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−13 −4 0 1 1 1 1 1 1 0 −1 −3 −10
1 1 1 1 1 1 1 1 1 0 0 0 0

3Y −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0
−37 −5 −2 2 2 2 2 2 1 0 −2 −6 −19
3 3 3 3 2 2 2 2 1 1 0 0 0

5Y 6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 −1
6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 0
−88 −9 4 7 8 7 6 5 3 1 −5 −14 −43
25 15 12 10 8 7 6 5 3 2 1 0 −1

10Y 92 61 40 22 13 8 4 2 1 0 0 −1 −8
91 61 40 22 13 8 4 2 1 0 0 0 −1
−58 54 76 69 54 42 31 23 15 4 −17 −44 −118
286 173 120 79 56 42 31 23 16 9 4 1 −2
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Table 16. CEV model (β = 0.5, ν = 0.4): average per categories of strikes of errors in
bps on the BS implied volatility using the 4 approximations ImpVol(AppPriceLN(3,xav)),
AppImpVolLN(3,xav), (HF) and (HLF).

far ITM ITM ATM OTM far OTM
3M −6.9E−3 −5.3E−3 −5.4E−3 −3.6E−3 −3.2E−3

−4.6E−3 −5.3E−3 −5.4E−3 −3.6E−3 −2.2E−3
−3.8E−1 −2.9E−2 1.1E−2 −2.4E−2 −1.8E−1
−5.9E−3 8.0E−3 1.1E−2 5.4E−3 −3.0E−3

6M −2.3E−2 −2.3E−2 −2.1E−2 −1.5E−2 −1.1E−2
−2.1E−2 −2.3E−2 −2.1E−2 −1.5E−2 −8.3E−3
−6.8E−1 4.2E−3 4.4E−2 −1.1E−2 −4.8E−1
1.1E−2 4.4E−2 4.5E−2 2.8E−2 −3.4E−3

1Y −9.9E−2 −9.5E−2 −8.2E−2 −5.3E−2 −4.2E−2
−9.5E−2 −9.4E−2 −8.2E−2 −5.3E−2 −2.8E−2
−2.6E+0 8.3E−2 1.8E−1 −5.3E−2 −1.8E+0
8.7E−2 2.0E−1 1.8E−1 1.0E−1 −1.5E−2

1.5Y −2.3E−1 −2.1E−1 −1.7E−1 −1.1E−1 −7.9E−2
−2.2E−1 −2.1E−1 −1.7E−1 −1.1E−1 −5.2E−2
−4.7E+0 2.0E−1 4.1E−1 −7.7E−2 −3.5E+0
3.4E−1 5.0E−1 4.1E−1 2.4E−1 −2.5E−2

2Y −4.0E−1 −3.6E−1 −2.9E−1 −1.8E−1 −1.5E−1
−3.9E−1 −3.6E−1 −2.9E−1 −1.8E−1 −8.1E−2
−8.2E+0 4.3E−1 7.6E−1 −3.7E−2 −6.7E+0
8.1E−1 9.7E−1 7.7E−1 4.2E−1 −6.8E−2

3Y −7.0E−1 −7.2E−1 −5.7E−1 −3.3E−1 −3.0E−1
−6.6E−1 −7.2E−1 −5.8E−1 −3.3E−1 −1.4E−1
−2.1E+1 7.9E−1 1.8E+0 −2.2E−1 −1.3E+1
3.0E+0 2.6E+0 1.8E+0 8.8E−1 −1.2E−1
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Table 17. CEV model (β = 0.8, ν = 0.25): errors in bps on the deltas using the 6 ap-
proximations AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xav), AppDeltaLN(2,x0),
AppDeltaLN(2,k) and AppDeltaLN(2,xav).

3M 1 2 2 1 1 0 0 0 −1 −1 −2 −2 −2
1 0 0 −1 −1 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 3 3 2 1 1 1 0 −1 −1 −2 −3 −4 −4
1 −1 −1 −1 −1 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 5 5 3 3 1 1 0 −1 −2 −4 −6 −8 −9
1 −2 −3 −2 −1 0 0 0 1 2 2 1 −3
0 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 7 7 5 4 2 1 0 −2 −3 −5 −9 −13 −15
0 −3 −4 −3 −2 0 0 1 1 3 3 1 −4
0 0 1 1 1 0 0 −1 −1 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

2Y 9 9 7 5 3 2 0 −2 −4 −7 −12 −18 −20
0 −4 −6 −4 −2 −1 0 1 2 4 5 0 −6
0 0 1 1 1 1 0 −1 −1 −1 −1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 2
1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

3Y 12 12 10 6 4 2 0 −3 −6 −11 −19 −28 −32
0 −8 −8 −6 −3 −1 0 1 3 6 6 −1 −9
0 0 1 1 1 1 0 −1 −2 −2 −1 0 1
1 0 0 0 0 0 0 0 0 0 1 1 4
1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

5Y 16 17 13 10 7 4 0 −5 −10 −18 −34 −51 −61
−3 −13 −14 −10 −5 −2 0 1 5 10 9 −4 −15
0 1 2 2 2 1 0 −2 −3 −3 −1 0 1
3 1 1 0 0 0 0 0 0 1 1 3 10
3 1 0 0 0 0 0 0 0 0 1 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

10Y 24 26 21 16 12 7 −1 −8 −19 −37 −76 −118 −145
−16 −26 −26 −17 −9 −4 −1 2 8 20 13 −17 −23
−1 1 3 4 4 2 −1 −3 −5 −6 −2 1 2
4 2 1 1 1 1 1 1 1 2 3 8 36
6 2 0 0 0 1 1 1 0 0 3 5 −6
0 0 0 0 0 1 1 1 1 0 0 −1 −1
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Table 18. CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in bps
on the deltas using the 2 approximations AppDeltaLN(1,xav) and AppDeltaLN(2,xav).

far ITM ITM ATM OTM far OTM
3M −3.1E−2 7.1E−2 −1.9E−3 −8.0E−2 4.0E−2

−1.8E−3 2.4E−4 3.6E−3 4.7E−4 −2.4E−3
6M −1.1E−2 2.3E−1 −6.0E−3 −2.3E−1 4.8E−2

−4.6E−3 5.0E−3 1.1E−2 4.4E−3 −6.1E−3
1Y −4.0E−2 4.5E−1 −1.9E−2 −4.5E−1 7.9E−2

−1.4E−2 1.7E−2 3.0E−2 1.2E−2 −1.6E−2
1.5Y −1.9E−2 6.8E−1 −1.2E−1 −6.6E−1 1.4E−1

−2.4E−2 2.8E−2 5.3E−2 2.4E−2 −3.2E−2
2Y −2.4E−2 8.7E−1 −4.8E−2 −9.6E−1 2.1E−1

−3.6E−2 4.4E−2 7.9E−2 3.9E−2 −4.9E−2
3Y 3.9E−2 1.2E+0 −9.4E−2 −1.4E+0 3.6E−1

−5.7E−2 6.7E−2 1.4E−1 6.2E−2 −9.5E−2
5Y 6.3E−2 2.0E+0 −1.9E−1 −2.3E+0 6.5E−1

−1.2E−1 1.4E−1 2.8E−1 1.2E−1 −2.1E−1
10Y 8.9E−2 3.4E+0 −5.6E−1 −4.3E+0 1.5E+0

−3.4E−1 2.5E−1 6.2E−1 2.3E−1 −6.1E−1
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Table 19. CEV model (β = 0.2, ν = 0.25): errors in bps on the deltas using the 6 ap-
proximations AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xav), AppDeltaLN(2,x0),
AppDeltaLN(2,k) and AppDeltaLN(2,xav).

3M 19 27 25 18 11 6 0 −6 −11 −17 −30 −31 −27
9 −1 −10 −13 −9 −3 0 3 7 9 −3 −7 −6
−1 −1 0 2 2 2 0 −2 −2 −1 0 0 0
5 3 2 1 1 0 0 0 0 1 2 3 5
3 3 2 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 51 45 34 24 16 9 0 −8 −15 −31 −41 −59 −58
−7 −29 −27 −19 −10 −3 0 4 9 17 13 −6 −11
−2 2 4 5 5 3 0 −2 −4 −3 −2 0 1
10 3 2 2 1 1 1 1 1 2 2 5 13
10 3 1 1 1 1 1 1 0 1 2 3 −2
−1 0 0 0 1 1 1 1 1 0 0 0 0

1Y 99 90 59 46 24 13 1 −10 −32 −53 −93 −117 −113
−54 −69 −52 −37 −11 −3 1 5 19 32 12 −14 −9
−3 3 9 11 8 5 1 −3 −7 −7 −2 1 1
24 10 5 4 3 2 2 2 3 4 7 12 41
28 9 2 2 2 2 2 2 1 1 6 6 −4
−2 0 1 1 2 2 2 2 1 1 0 −1 0

1.5Y 146 126 86 70 43 16 2 −26 −38 −77 −140 −183 −180
−123 −114 −81 −60 −23 −3 2 13 21 45 12 −27 −10
−2 7 15 17 15 7 2 −7 −9 −10 −3 1 1
35 16 10 8 5 4 4 4 4 7 13 24 72
37 12 3 3 4 4 4 3 2 2 11 7 −6
−3 0 2 3 4 4 4 3 3 1 −1 −1 −1

2Y 189 163 17 81 51 36 3 −29 −58 −102 −173 −254 −224
−197 −164 −115 −63 −23 −11 3 14 33 58 23 −40 −4
0 11 20 23 19 14 3 −7 −13 −13 −5 2 1
50 24 15 11 7 6 5 6 7 11 18 40 125
45 15 5 5 6 6 5 3 3 14 4 −3
−4 0 3 5 6 6 5 5 4 2 −1 −2 −1

3Y 262 218 188 118 82 45 6 −33 −86 −157 −286 −393 −354
−377 −245 −204 −93 −40 −10 6 18 49 82 −3 −54 −3

0 24 30 36 31 20 6 −7 −19 −18 −4 3 1
95 36 29 19 14 11 10 10 13 0 35 77 230
51 13 9 9 11 11 10 8 5 6 26 −4 −2
−8 2 5 9 10 10 10 9 6 3 −2 −4 −1

5Y 373 323 253 197 131 85 11 −61 −148 −258 −497 −684 −592
−641 −409 −276 −169 −60 −19 11 34 84 121 −43 −59 0
0 43 59 64 53 38 11 −13 −30 −28 −3 4 0
156 62 47 39 28 23 20 20 26 38 73 170 533
−156 −19 3 15 22 23 20 15 8 13 38 −22 0
−27 2 13 19 22 21 20 17 12 5 −6 −6 0

10Y 390 381 325 262 06 134 18 −102 −269 −529 −1075−1477−1164
−174 −486 −447 −269 −123 −36 18 56 49 175 −127 −23 0
−71 −8 39 76 78 58 18 −21 −53 −44 0 4 0
75 −5 3 25 32 34 38 43 57 88 189 536 1725
−1252−598 −237 −43 18 7 38 32 15 47 5 −21 0
−157 −97 −49 −3 23 34 38 36 26 6 −16 −10 0
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Chapter 5

Discretization of backward stochastic Volterra integral equations

Christian Bender and Stanislav Pokalyuk

Department for Mathematics, Saarland University, D-66041 Saarbrücken,
Germany

Abstract Backward stochastic Volterra integral equations (BSVIEs) can be
applied to describe dynamic versions of coherent risk measures, allowing for time
inconsistencies, see Yong [26]. We show that under certain regularity conditions
the adapted M-solution of a BSVIE can be approximated by a sequence of discrete
BSVIEs driven by a binary random walk. The proof relies on a representation for-
mula for BSVIEs via systems of quasilinear partial differential equations of parabolic
type.
Keywords: BSVIE; Adapted M-solution; Quasilinear PDEs of parabolic type.

1. Introduction

In the theory of stochastic differential equations (SDEs) numerical methods, allow-
ing to solve these equations, play an important role, because in most cases it is
impossible to obtain explicit solutions for SDEs.

In this paper we generalize a numerical method originally designed for backward
stochastic differential equations (BSDEs) by Ma, Protter, San Martin, Torres [13],
to solve backward stochastic Volterra integral equations (BSVIEs) of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (1)

numerically. Here W is a Brownian motion on [0, T ], the function h is called the
generator, and the free term f(·; t) at time t may depend on the whole path of the
Brownian motion up to time T . Similarly to a BSDE a solution of a BSVIE consists
of a pair of processes (Y, Z). For a BSVIE Z is a two-parameter process such that
Zt,· is adapted to the Brownian filtration for almost every t ∈ [0, T ]. Y is also
required to be adapted to the Brownian filtration. In order to guarantee uniqueness
of the solution of a BSVIE under Lipschitz assumptions, Yong [27] suggested to
consider so-called M-solutions only. These solutions determine Zt,s for t > s by

245
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a martingale condition. The precise notion of an M-solution for BSDEs will be
recalled in Section 2.

The theory of BSDEs and BSVIEs is a relatively modern part of the theory of
stochastic differential equations. Intensive research on BSDEs started in the 90s
when well-posedness results for nonlinear BSDEs were established (see [16]) and
the connection between BSDEs and partial differential equations (PDEs, for short)
– in fact a generalization of the well-known Feynman-Kac formula to quasilinear
PDEs – was understood (see [17], [18]).

In mathematical finance the theory of BSDEs plays an important role, when
questions are focused around pricing and optimal hedging problems for contingent
claims in models of financial markets; see [10] for general information. Further,
BSDEs can also be used to solve utility maximization problems with backward
stochastic dynamics or to describe dynamic risk measures (see [21], [19], [20], [10]).

If one considers a family of BSDEs parametrized in time, one arrives at a spe-
cial type of backward stochastic Volterra integral equations. In the general form
BSVIEs can however not be reduced to BSDEs (see [27]). The first works dedi-
cated to stochastic Volterra integral equations were presented by Berger and Mizel
[5] in 1980. In 2002, Lin introduced a class of nonlinear BSVIEs in [12], where he
proved existence and uniqueness of the solutions to these BSVIEs under uniform
Lipschitz conditions on the generator. Thereafter, Yong [25] formulated BSVIEs
in a generalized form. In [27] he proved the well-posedness of adapted M-solutions
for these types of BSVIEs. From a financial point of view BSVIEs can be applied
to describe time-inconsistent risk measures and preferences, which are known to
exist in real world, see e.g. [22] and [11]. A detailed discussion on the modeling of
time-inconsistent risk measures and preferences via BSVIEs can be found in Yong
[26], Wang and Shi [24] and Wang [23]. BSVIEs also appear as adjoint equations in
stochastic control problems for Volterra integral equations, see e.g. Yong [25], [27].

These applications illustrate that numerical algorithms for BSVIEs are called
for. There are by now several approaches to provide numerical methods to solve
BSDEs, which can basically be divided into two types:

The first type is based on a four step scheme to solve general forward-backward
stochastic differential equations via solutions of quasilinear parabolic PDEs pro-
posed in 1994 by Ma, Protter and Yong [14]. In 1996 Douglas, Ma and Protter [7]

and in 2006 Milstein and Tretyakov [15] developed two numerical methods using this
scheme by approximating numerically the solutions of the corresponding parabolic
PDEs.

The second branch of algorithms directly discretizes the BSDE. This approach
was initiated by Bally [2] making use of a random time discretization and by
Chevance [6] under strong regularity conditions. Convergence of the time dicretized
BSDEs under standard Lipschitz assumptions and with arbitrary time grids was
shown by Zhang [29]. The time discretized BSDE still requires to compute some
nested conditional expectations. Several approaches have been suggested to approx-
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imate these conditional expectations, see e.g. Bender and Steiner [3] for a review.
One possibility is to replace Brownian motion by a binary random walk, which is
the approach followed by Ma, Protter, San Martin, Torres [13], and by Briand,
Delyon and Memin [4].

To the best of our knowledge, numerical methods for BSVIEs have not yet been
developed. Here, we want to close this gap and present an approximation scheme
for the solutions of BSVIEs which generalizes the results from [13]. Actually, we
approximate the solution of (1) by the sequence of discrete BSVIEs (DBSVIEs, for
short)

Y
(n)
ti = f(W (n); ti)−

n−1∑
j=i

h(tj , Y
(n)
tj )∆tj+1 −

n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

(2)

Here, ∆W (n) denotes the increment of a simple binary random walk (with piecewise
linear interpolation) on an equidistant time grid ti = Ti/n, 0 ≤ i ≤ n , which weakly
approximates the Brownian motion. The notion of an M-solution for such DBSVIEs
can be introduced analogously to the continuous time case and we refer the reader
to Section 2 for the details. We will show that the sequence of discrete solutions
(Y (n))n∈N converges weakly to the continuous process Y in the Skorokhod topology
under certain Lipschitz assumptions. As a main argument we use that certain
systems of quasilinear PDEs of parabolic type, to which the M-solution of (1) can
be connected, are well approached by their discrete analogues.

The rest of the chapter is organized as follows:
In Section 2 we introduce the main spaces and notation. In addition, we recall the

well-posedness result of Yong [27] for BSVIEs. Our main result on weak convergence
of the solution of a sequence of DBSVIEs to the corresponding continuous time
BSVIE is formulated in Section 3. In this section we also discuss well-posedness of
DBSVIEs and construct an explicit numerical scheme for solving DBSVIEs. The
proof of the main result is provided in Sections 4 and 5. In Section 4 we relate the
solution of the continuous time BSVIE to systems of parabolic Cauchy problems
under additional smoothness assumptions. These results can be applied to prove the
main convergence theorem, when the generator and the free term are smooth and
the free term depends on finitely many time points of the Brownian motion only.
The proof of the main result in the general case will be given in Section 5. A priori-
estimates for BSVIEs are applied to extend convergence of the finite dimensional
distributions from the smooth case to the general case. The proof is then completed
by a tightness argument. In Section 6 we illustrate the numerical approximation
with an example. Here we also obtain empirically the speed of convergence of our
algorithm.
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2. Preliminaries

In this section we define some spaces needed for the study of BSVIEs, resp. DB-
SVIEs, and state the well-posedness result for general backward stochastic Volterra
integral equations.

We first introduce some general notation.
Let d, k, ki, l, p, q, qi ∈ N = {1, 2, . . .}, for i = 1, . . . p, T ∈ (0,∞), R, S, R̃, S̃ ∈

[0, T ], with R < S, R̃ < S̃, r ∈ [1,∞], α ∈ (0, 1) be some variables and W =

(Wt)t∈[0,T ] be a standard d-dimensional Brownian motion defined on a complete
filtered probability space (Ω,F ,F,P), where F = (Ft)t∈[0,T ] is the natural filtration
of W augmented by all the P-null sets in F . T is a fixed terminal time.

We use the standard notations for the following spaces:

Rk k-dimensional real space with the Euclidean norm
||x||2 :=

√
x∗x and inner product 〈x,y〉 := x∗y, where [·]∗

denotes matrix/vector transposition, x := (x1, . . . , xk)∗,
y := (y1, . . . , yk)∗ ∈ Rk.

Rk×d the Hilbert space of all (k × d) real matrices with the
Euclidean norm ||A||2 :=

√
tr(AA∗) and inner product

〈A,B〉 := tr(AB∗), A,B ∈ Rk×d.

C([R,S];Rk) the space of all continuous functions ϕ : [R,S]→ Rk with
the norm ||ϕ||∞ := sup

t∈[R,S]

||ϕ(t)||2.

C∞(X1 × . . .×Xp;Rk) the space of all infinitely smooth functions ϕ : X1 × . . .×
Xp → Rk, such that Xi = R or Xi = [R,S], i = 1, . . . , p.

C∞b (X1 × . . .×Xp;Rk) the space of those ϕ ∈ C∞(X1 × . . . ×Xp;Rk) such that
ϕ and all its derivatives are uniformly bounded.

Further, we define some spaces for random variables and stochastic processes:

L2
FS (Ω;Rk) the space of FS-measurable random variables X : Ω→ Rk

such that E[||X||22] <∞.

L2
FS (R,S;Rk) the space of FS ⊗B([R,S])-measurable processes Y : Ω×

[R,S]→ Rk such that E
[∫ S

R

||Yt||22dt
]
<∞.
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L2
F(R,S;Rk) the space of FS ⊗ B([R,S])-measurable processes Y :

Ω × [R,S] → Rk such that Y is F-adapted and

E
[∫ S

R

||Yt||22dt
]

< ∞. We define ||Y ||L2
F(R,S;Rk) :=(

E
[∫ S

R

||Yt||22dt
]) 1

2

.

L2(R,S;L2
F(R̃, S̃;Rk×d)) the space of all processes Z : Ω × [R,S] × [R̃, S̃] →

Rk×d such that Zt,· ∈ L2
F(R̃, S̃;Rk×d) for a.e. t ∈

[R,S] and E
[∫ S

R

∫ S̃

R̃

||Zt,s||22dsdt
]
< ∞. We define

||Z||L2(R,S;L2
F(R̃,S̃;Rk×d)) :=

(
E
[∫ S

R

∫ S̃

R̃

||Zt,s||22dsdt
]) 1

2

.

L2,∞
F (R,S;Rk) the space of FS ⊗ B([R,S])-measurable processes Y :

Ω × [R,S] → Rk such that Y is F-adapted and
E
[

sup
t∈[R,S]

||Yt||22
]
< ∞. We define ||Y ||L2,∞

F (R,S;Rk) :=(
E
[

sup
t∈[R,S]

||Yt||22
]) 1

2

.

H2[R,S] L2
F(R,S;Rk)× L2(R,S;L2

F(R,S;Rk×d)).

To state the well-posedness of DBSVIEs (2) (see Theorem 3.4 in Section 3)
we need to define some discrete time analogues of these spaces. Namely, given a
discretization 0 = t0 < t1 < . . . < tn = T of the time interval [0, T ] with time-step
T
n (ti := iT

n , i = 0, . . . , n, n ∈ N), replace the d-dimensional Brownian motion Ws

in (1) by a simple symmetric random walk W (n)
s , whose increments are

√
T/n and

−
√
T/n; i.e. if the number ns/T is an integer

W (n)
s :=


W

1,(n)
s

...
W

d,(n)
s

 :=

√
T

n


∑ns/T
j=1 ε1

j

...∑ns/T
j=1 εdj



Here, {εdj} is an i.i.d. {-1,1}-symmetric sequence. If ns/T is not an integer then
W

(n)
s is defined by linear interpolation between the values of W (n)

s′ and W
(n)
s′′ for

which ns′/T and ns′′/T are integers and the nearest points to the left and right of
ns/T .

Letting F(n) := (F (n)
ti )i=0,...,n be the natural filtration of W (n), we denote the

following discrete spaces for i0, i1 ∈ {0, . . . , n}:
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L2
F(n)(ti0 , ti1 ;Rk) the space of processes Y (n) : Ω × {ti0 , . . . , ti1} →

Rk such that Y (n) is F(n)-adapted. We define

||Y (n)||L2

F(n)
(ti0 ,ti1 ;Rk) :=

(
E
[
T

n

i1−1∑
i=i0

||Y (n)
ti ||

2
2

]) 1
2

.

L2,(n)(ti0 , ti1 ;Rk×d) the space of all processes Z(n) : Ω × {ti0 , . . . , ti1}2 →
Rk×d such that Z(n)

ti,· is (F (n)
tj )j=i0,...,i1 -adapted for all ti,

i = i0, . . . , i1. We define ||Z(n)||L2,(n)(ti0 ,ti1 ;Rk×d) :=(
E
[(

T

n

)2 i1−1∑
i=i0

i1−1∑
j=i0

||Z(n)
ti,tj ||

2
2

]) 1
2

.

L2,∞
F(n)(ti0 , ti1 ;Rk) the space of processes Y (n) : Ω × {ti0 , . . . , ti1} →

Rk such that Y (n) is F(n)-adapted. We define

||Y (n)||L2,∞
F(n)

(ti0 ,ti1 ;Rk) :=

(
E
[

sup
i∈{i0,...,i1}

||Y (n)
ti ||

2
2

]) 1
2

.

H2,(n)[ti0 , ti1 ] L2
F(n)(ti0 , ti1 ;Rk)× L2,(n)(ti0 , ti1 ;Rk×d).

Before we state the well-posedness theorem for solutions of BSVIEs, we define
such equations in the general case:

Definition 2.1. For f : C([0, T ];Rd) × [0, T ] → Rk and h : [0, T ] × Rk × Rk×d ×
Rk×d × [0, T ]→ Rk we call a stochastic integral equation of Itô’s type of the form

Yt = f(W ; t)−
T∫
t

h(s, Ys, Zt,s, Zs,t; t)ds−
T∫
t

Zt,sdWs, t ∈ [0, T ], (3)

a backward stochastic Volterra integral equation. The process f is called the free
term and the function h the generator.

Note, that equation (3) cannot be reduced to a BSDE in general because the free
term f or the generator h may depend on t.

Equation (3) has in general infinitely many adapted solutions. To achieve unique-
ness, as pointed out in [27], we consider only adapted M-solutions. Such solutions
of the BSVIE fulfill a martingale representation property, which determines the
process Zt,s for t ≥ s:

Definition 2.2. Let S ∈ [0, T ). A pair (Y,Z) ∈ H2[S, T ] is called an adapted M-
solution of the BSVIE (3) on [S, T ] if (3) holds in the usual Itô’s sense for almost
all t ∈ [S, T ] and Yt has the following martingale representation:

Yt = E[Yt|FS ] +

t∫
S

Zt,sdWs, a.e. t ∈ [S, T ]. (4)
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Remark 2.3. In general the generator h can also depend on ω ∈ Ω in a non-
anticipative way, but throughout this chapter we consider only generators which
are independent on ω.

To obtain the well-posedness for the BSVIE (3) we impose the following assump-
tions for the free term f and generator h:

(V1′) f : C([0, T ];Rd)× [0, T ]→ Rk is measurable and satisfies

E

[∫ T

0

‖f(W·; t)‖22dt

]
<∞.

(V2′) h : [0, T ]×Rk ×Rk×d ×Rk×d × [0, T ]→ Rk is measurable and satisfies the
following Lipschitz condition: There is a constant L′ > 0 such that

||h(s, y1, z1, z̄1; t)− h(s, y2, z2, z̄2; t)||2
≤ L′(||y1 − y2||2 + ||z1 − z2||2 + ||z̄1 − z̄2||2)

holds for all (t, s) ∈ {(t, s) ∈ [0, T ]2 : 0 ≤ t < s ≤ T}, yi ∈ Rk, zi, z̄i ∈
Rk×d, i = 1, 2.

The following theorem due to Yong [27] is based on an application of the con-
traction mapping theorem.

Theorem 2.4. Let (V1′) and (V2′) hold. Then there exists a unique adapted
M-solution (Y,Z) ∈ H2[0, T ] which solves the BSVIE (3).

3. Main result

We now consider a special case of (3), namely, Equation (1). For this equation,
conditions (V1′) and (V2′) become:

(V1) f : C([0, T ];Rd)× [0, T ]→ Rk is measurable and satisfies

E

[∫ T

0

‖f(W·; t)‖22dt

]
<∞.

(V2) h : [0, T ] × Rk → Rk is measurable and satisfies the following Lipschitz
condition: There is a constant L > 0 such that

||h(s, y1)− h(s, y2)||2 ≤ L||y1 − y2||2

holds for all s ∈ [0, T ], yi ∈ Rk, i = 1, 2.

We construct a numerical method to approximate the M-solution of (1). In [13]

a numerical method is presented to approximate usual BSDEs, where the solutions
are related with solutions of quasilinear PDEs of parabolic type. Our aim is to
generalize this method to BSVIEs.
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The discretization of the BSVIEs (1) is based on replacing the d-dimensional
Brownian motion Ws by a simple symmetric random walk W (n)

s (see Section 2).
We introduce the following discretized version of BSVIE (1):

Definition 3.1. For f : C([0, T ];Rd) × [0, T ] → Rk, h : [0, T ] × Rk → Rk and the
discretization 0 = t0 < t1 < . . . < tn = T of the time interval [0, T ] with time-step
T
n (ti := iT

n , i = 0, . . . , n, n ∈ N), we call an equation of the form (2) a discrete
backward stochastic Volterra integral equation, where

Y
(n)
ti :=


Y

1,(n)
ti
...

Y
k,(n)
ti

 ,
n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

:=


∑d
J=1

∑n−1
j=i Z

1J,(n)
ti,tj ∆W

J,(n)
tj+1

...∑d
J=1

∑n−1
j=i Z

kJ,(n)
ti,tj ∆W

J,(n)
tj+1


with ∆tj+1 := tj+1 − tj = T

n .

Analogously to (3) also equation (2) can be solved uniquely by a pair (Y (n), Z(n))

only if the pair (Y (n), Z(n)) fulfills a “discrete” martingale representation property:

Definition 3.2. Let S ∈ {0, 1, . . . , i−1}. A pair (Y (n), Z(n)) ∈ H2,(n)[0, T ] is called
an adapted M-solution of the DBSVIE (2), if (Y (n), Z(n)) solves (2) and Y (n)

ti has
the following discrete martingale representation:

Y
(n)
ti = E

[
Y

(n)
ti

∣∣F (n)
tS

]
+

i−1∑
j=S

Z
(n)
ti,tj∆W

(n)
tj+1

. (5)

The following lemma represents the Z-part of a DBSVIE in terms of the Y -part
of the solution. The result is similar to the BSDE case. Therefore the proof is
postponed to the appendix.

Lemma 3.3. Suppose that the DBSVIE has an adapted M-solution (Y (n), Z(n)).
Then Z(n) can be expressed in forms of Y (n) as follows:

Z
(n)
ti,tS

=


1

∆tS+1
E
[
Y

(n)
ti

(∆W
(n)
tS+1

)∗
∣∣F(n)
tS

]
, S < i

1

∆tS+1
E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj , Y
(n)
tj

)∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F(n)
tS

]
,S ≥ i.

We can now state a well-posedness result for BSVIEs.

Theorem 3.4. Let (V1) and (V2) hold. Then for n large enough (depending on
the Lipschitz constant L) there exists a unique adapted M-solution (Y (n), Z(n)) ∈
H2,(n)[0, T ] which solves the discrete BSVIE (2).

Proof. The proof is analogous to the continuous case and we therefore omit the
details. It also relies on the contraction mapping theorem.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Discretization of backward stochastic Volterra integral equations 253

The main result of this paper is to show the weak convergence of the sequence
(Y (n))n∈N to Y . For this purpose we need the following additional assumptions:

(V3) The free term f is a Lipschitz function, i.e. there exists a constant K > 0

such that

||f(g1; t1)− f(g2; t2)||2 ≤ K(||g1 − g2||∞ + |t1 − t2|). (6)

holds for all gi ∈ C([0, T ];Rd) and ti ∈ [0, T ], i = 1, 2.
(V4) The free term f and the generator h are functions bounded by a constant

D > 0, and h is continuous.

Remark 3.5. In fact, we do not have to require that h is bounded, since one can
show with analogous arguments as in Lemma 3.1 of [13] that the processes Y and
Y (n) are bounded under the assumptions (V1)-(V3) with a bounded free term f .

Theorem 3.6. (Main Convergence Theorem) Suppose that the assumptions
(V1)-(V4) are fulfilled for BSVIE (1). Denote by (Y (n), Z(n))n∈N the sequence of
discrete M-solutions of (2) and by (Y, Z) the adapted M-solution of (1). Then the
sequence (Y (n))n∈N converges weakly in the Skorokhod topology to Y if it is piecewise
constant interpolated between the points Y (n)

ti and Y (n)
ti+1

for all i = 0, . . . , n− 1.

The sequence of processes (Y (n), Z(n))n∈N can be approximated by a sequence
of processes (Ŷ (n), Ẑ(n))n∈N given by explicit expressions. To understand this, note
that Y (n)

ti from (2) can be written as

Y
(n)
ti = Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)− h(ti, Y
(n)
ti )∆ti+1

+
n−1∑
j=i+1

Z
(n)
ti+1,tj∆W

(n)
tj+1
−
n−1∑
j=i

Z
(n)
ti,tj∆W

(n)
tj+1

.

Taking the conditional expectation of Y (n)
ti given F (n)

ti one obtains

Y
(n)
ti = E

[
Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)
∣∣F (n)
ti

]
− h(ti, Y

(n)
ti )∆ti+1.

In addition, denoting by

X0
i := E

[
Y

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)
∣∣F (n)
ti

]
the map Θ

(n)
i : L2

F(n)
ti

(Ω;Rk)→ L2

F(n)
ti

(Ω;Rk) which maps

V 7→ X0
i − h(ti, V )∆ti+1

is a contraction for large n with fixed-point Y (n)
ti , since for two different random

variables V and Ṽ

||Θ(n)
i (V )−Θ

(n)
i (Ṽ )||2 ≤ ||h(ti, V )∆ti+1 − h(ti, Ṽ )∆ti+1||2

≤ LT

n
||V − Ṽ ||2 P-a.s.,
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holds, where LT
n < 1 for large n. Furthermore,

||Y (n)
ti − (X0

i − h(ti, X
0
i )∆ti+1)||2

= ||X0
i − h(ti, Y

(n)
ti )∆ti+1 −X0

i + h(ti, X
0
i )∆ti+1||2

≤ LT

n
||Y (n)

ti −X
0
i ||2 ≤

DLT 2

n2
P-a.s.

This motivates us to propose the following explicit numerical scheme for the BSVIE
(1):

Ŷ
(n)
tn = f(W (n); tn), Ẑ

(n)
tn,tn = 0,

X̂
(n)
ti = E

[
Ŷ

(n)
ti+1

+ f(W (n); ti)− f(W (n); ti+1)
∣∣F (n)
ti

]
,

Ŷ
(n)
ti = X̂

(n)
ti − h(ti, X̂

(n)
ti )∆ti+1,

Ẑ
(n)
ti,tS =


1

∆tS+1
E
[
Ŷ

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
, S < i

1

∆tS+1
E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj , Ŷ
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F (n)
tS

]
,S ≥ i.

With analogous arguments as in [13], we can estimate the error between Y (n) and
Ŷ (n) as well as between Z(n) and Ẑ(n). Namely,

||Y (n)
ti − Ŷ

(n)
ti ||2 = ||E

[
Y

(n)
ti+1
− Ŷ (n)

ti+1

∣∣F (n)
ti

]
− (h(ti, Y

(n)
ti )− h(ti, X̂

(n)
ti ))∆ti+1||2

≤ ||E
[
Y

(n)
ti+1
− Ŷ (n)

ti+1

∣∣F (n)
ti

]
||2 + ||h(ti, Y

(n)
ti )− h(ti, Ŷ

(n)
ti )||2∆ti+1

+||h(ti, Ŷ
(n)
ti )− h(ti, X̂

(n)
ti )||2∆ti+1 ≤

D(e2L − 1)

n
P-a.s.

and

||Z(n)
ti,tS − Ẑ

(n)
ti,tS ||2

=


1

∆tS+1
||E
[
(Y

(n)
ti − Ŷ

(n)
ti )(∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
||2 ,S < i

1

∆tS+1

∣∣∣∣∣∣∣∣E[(n−1∑
j=i

(h(tj , Ŷ
(n)
tj )− h(tj , Y

(n)
tj ))∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F (n)
tS

]∣∣∣∣∣∣∣∣
2

,S ≥ i

≤


1√
T
D(e2L − 1)
√
n

, S < i
√
TLD(e2L − 1)√

n
, S ≥ i.

Hence, we obtain the following corollary of Theorem 3.6:

Corollary 3.7. The assertion of Theorem 3.6 also holds true if we consider the
sequence (Ŷ (n))n∈N instead of the sequence (Y (n))n∈N, .
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The following two sections are devoted to the prove of Theorem 3.6. In Section
4 we will prove a representation formula for the solution of the continuous BSVIE
in terms of systems of parabolic Cauchy problems. This formula is valid under
the assumptions of Theorem 3, when, additionally, the free term f depends on the
values of the Brownian motion at finitely many time points only and the coefficient
functions f and g are infinitely smooth. This result is the cornerstone to prove
Theorem 3.6 in the ‘smooth’ case. Section 5 contains some a-priori estimates for
continuous and discrete BSVIEs which are required to transfer convergence of the
finite dimensional distributions from the smooth case to the general case. Moreover,
tightness is shown in this Section, which finally completes the of Theorem 3.6.

4. Connection to parabolic Cauchy problems

Generalizing some ideas of [13] from BSDEs to BSVIEs, a method of constructing
the M-solutions of (1) via solutions of quasilinear PDEs of parabolic type will be
presented in Section 4.1, if the free term depends only on finitely many points of
the trajectory of the Brownian motion and the free term and the generator are
infinitely smooth. We then discuss the problem of smoothness for the solutions of
such PDEs of parabolic type in Section 4.2. Finally, in Section 4.3, we show the weak
convergence result of Theorem 3.6 under the additional smoothness assumptions of
this section.

Let us first fix some notation. Denote by τ := (τ0, . . . , τm) a partition of [0, T ]

of length m, i.e. 0 = τ0 < τ1 < . . . < τm = T , and consider the BSVIE

Y
[m]
t = f [m](Wτ1 , . . . ,Wτm ; t)−

T∫
t

h[m](s, Y [m]
s )ds−

T∫
t

Z
[m]
t,s dWs, t ∈ [0, T ], (7)

where f [m] : Rl × [0, T ] → Rk with l := dm and h[m] : [0, T ] × Rk → Rk are given
maps.

Similarly, for a given partition τ (n) := (τ
(n)
0 , . . . , τ

(n)
m ) of [0, T ] of length m with

τ
(n)
λ := bτλnc

n , λ = 0, . . . ,m, we consider the DBSVIE

Y
(n),[m]
ti =f [m](W

(n)

τ
(n)
1

, . . . ,W
(n)

τ
(n)
m

; ti)−
T

n

n−1∑
j=i

h[m](tj , Y
(n),[m]
tj )

−
n−1∑
j=i

Z
(n),[m]
ti,tj ∆W

(n)
tj+1

. (8)

For simplicity, in the argument of the free terms we sometimes write Wτm :=

(Wτ1 , . . . ,Wτm) and W(n)

τ
(n)
m

:= (W
(n)

τ
(n)
1

, . . . ,W
(n)

τ
(n)
m

).

To obtain weak convergence of the solution Y (n),[m] from (8) to the solution
Y [m] from (7) we introduce the following assumptions for the free term f [m] and
generator h[m]:
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(M) f [m] ∈ C∞b (Rl × [0, T ];Rk) and h[m] ∈ C∞b ([0, T ]× Rk;Rk).

The following result will be proved in Section 4.3:

Lemma 4.1. Assume that in (7) and (8) the assumption (M) is fulfilled. Let
m ∈ N, (Y (n),[m], Z(n),[m])n∈N be the sequence of discrete M-solutions of (8) and
(Y [m], Z [m]) be the adapted M-solution of (7). Then the sequence (Y (n),[m])n∈N (de-
fined via piecewise constant interpolation) converges weakly to Y [m] in the Skorokhod
topology.

4.1. Construction of the solutions of BSVIEs via PDEs

For the sake of simplicity we first take T = d = k = 1. Further, suppose that the
free term f [m] in (7) depends only on two points of the trajectory of a Brownian
motion, i.e. τ2 = 1 (and so m = 2), and the assumptions on f [2] and h[2] from (7)
for the uniqueness and existence of the adapted M-solution (Y [2], Z [2]) hold.

Our purpose is to show that the M-solution of (7) can be represented via so-
lutions of six systems of PDEs of parabolic type, if f [2] and h[2] are sufficiently
smooth. Each system of PDEs is defined on one of the following subsets of [0, 1]2

(see Figure 1):

S2,2 := {(t, s) ∈ [0, 1]2| t, s ≥ τ1, t ≤ s},
S1,2 := {(t, s) ∈ [0, 1]2| t < τ1, s ≥ τ1},
S1,1 := {(t, s) ∈ [0, 1]2| t < τ1, s ≤ τ1, t ≤ s},
S2,2 := {(t, s) ∈ [0, 1]2| t, s ≥ τ1, t ≥ s},
S2,1 := {(t, s) ∈ [0, 1]2| t ≥ τ1, s ≤ τ1},
S1,1 := {(t, s) ∈ [0, 1]2| t < τ1, s ≤ τ1, t ≥ s}.

To construct PDEs for the upper triangle of [0, 1]2 we consider (t, s) in all subsets
of this domain.

Suppose that (t, s) ∈ S2,2. Recall that according to Theorem 2.4, Equation (7)
admits an adapted M-solution (Y

[2]
t , Z

[2]
t,s). We consider the ansatz

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t), Z

[2]
t,s =

∂u2,2

∂x2
(s,Wτ1 ,Ws; t)

for some deterministic function u2,2. If the partial derivatives

∂u2,2

∂s
(s, x1, x2; t),

∂2u2,2

∂x2
2

(s, x1, x2; t)
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Figure 1. The sets S2,2,...,S1,1 in [0, 1]2.

exist and are continuous we can apply Itô’s formula to u2,2 and the Brownian
motion, and for r ∈ [t, 1] we obtain the following equation:

u2,2(1,Wτ1 ,W1; t) = u2,2(r,Wτ1 ,Wr; t)

+

1∫
r

[
∂u2,2

∂s
(s,Wτ1 ,Ws; t) +

1

2

∂2u2,2

∂x2
2

(s,Wτ1 ,Ws; t)

]
ds

+

1∫
r

∂u2,2

∂x2
(s,Wτ1 ,Ws; t)dWs.

Comparing (7) and the previous equation, we see that u2,2 is required to solve
∂u2,2

∂s
(s, x1, x2; t) +

1

2

∂2u2,2

∂x2
2

(s, x1, x2; t) = h[2](s, u2,2(s, x1, x2; s))

u2,2(1, x1, x2; t) = f [2](x1, x2; t)

(9)

Theorem 4.2 below states that under condition (M) on the free term f [2] and
the generator h[2] a unique bounded solution u2,2 to (9) exists and is regular enough
to guarantee that our application of Itô’s formula was correct. Therefore, Y [2]

t and
Z

[2]
t,s can really be written in terms of u2,2 and the Brownian motion.
In a similar way we want to find corresponding systems of PDEs for the other

subsets on [0, 1]2. So in the following we again suppose that f [2] and h[2] fulfill
(M). Then the obtained solutions of the PDE systems turn out to be sufficiently
differentiable in order to apply Itô’s formula thanks to Theorem 4.2 below.

For t ∈ [0, τ1) we write (7) as follows:

Y
[2]
t = ψτ1t −

τ1∫
t

h[2](s, Y [2]
s )ds−

τ1∫
t

Z
[2]
t,sdWs, (10)
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where

ψτ1t = f [2](Wτ1 ,W1; t)−
1∫

τ1

h[2](s, Y [2]
s )ds−

1∫
τ1

Z
[2]
t,sdWs, (11)

which is Fτ1-measurable for almost all t ∈ [0, τ1).
If (t, s) ∈ S1,2 we set

ψτ1t = u1,2(τ1,Wτ1 ,Wτ1 ; t), Z
[2]
t,s =

∂u1,2

∂x2
(s,Wτ1 ,Ws; t),

and, applying Itô’s formula, we obtain with equation (11) the system
∂u1,2

∂s
(s, x1, x2; t) +

1

2

∂2u1,2

∂x2
2

(s, x1, x2; t) = h[2](s, u2,2(s, x1, x2; s))

u1,2(1, x1, x2; t) = f [2](x1, x2; t)

(12)

For (t, s) ∈ S1,1 set,

Y
[2]
t = u1,1(t,Wt; t), Z

[2]
t,s =

∂u1,1

∂x1
(s,Ws; t),

and from (10) we get the final system
∂u1,1

∂s
(s, x1; t) +

1

2

∂2u1,1

∂x2
1

(s, x1; t) = h[2](s, u1,1(s, x1; s))

u1,1(τ1, x1; t) = u1,2(τ1, x1, x1; t)

(13)

Consequently, the solution of (7) is given by

Y
[2]
t =

{
u2,2(t,Wτ1 ,Wt; t) , t ∈ [τ1, 1]

u1,1(t,Wt; t) , t ∈ [0, τ1)
(14)

Z
[2]
t,s =



∂u2,2

∂x2
(s,Wτ1 ,Ws; t) , (t, s) ∈ S2,2

∂u1,2

∂x2
(s,Wτ1 ,Ws; t) , (t, s) ∈ S1,2

∂u1,1

∂x1
(s,Ws; t) , (t, s) ∈ S1,1

(15)

To obtain systems of PDEs for the lower triangle we have to use the M-condition
(4), because this condition determines the process Z [2]

t,s.
Suppose that (t, s) ∈ S2,2, and that from (4) with S = τ1 for a.e. t ∈ [τ1, 1] we

have

Y
[2]
t = E[Y

[2]
t |Fτ1 ] +

t∫
τ1

Z
[2]
t,sdWs. (16)
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Set

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t), Z

[2]
t,s =

∂u2,2

∂x2
(s,Wτ1 ,Ws; t).

Applying Itô’s formula to u2,2 and the Brownian motion we get for r ∈ [τ1, t] the
following equation:

u2,2(r,Wτ1 ,Wr; t) = u2,2(τ1,Wτ1 ,Wτ1 ; t)

+

r∫
τ1

[
∂u2,2

∂s
(s,Wτ1 ,Ws; t) +

1

2

∂2u2,2

∂x2
2

(s,Wτ1 ,Ws; t)

]
ds

+

r∫
τ1

∂u2,2

∂x2
(s,Wτ1 ,Ws; t)dWs,

where u2,2(τ1,Wτ1 ,Wτ1 ; t) = E[u2,2(r,Wτ1 ,Wr; t)|Fτ1 ].
Comparing the previous equation and (16), we can write

∂u2,2

∂s
(s, x1, x2; t) +

1

2

∂2u2,2

∂x2
2

(s, x1, x2; t) = 0

u2,2(t, x1, x2; t) = u2,2(t, x1, x2; t),

(17)

from which it follows that

Y
[2]
t = u2,2(t,Wτ1 ,Wt; t) = u2,2(t,Wτ1 ,Wt; t)

= u2,2(τ1,Wτ1 ,Wτ1 ; t) +

t∫
τ1

∂u2,2

∂x2
(s,Wτ1 ,Ws; t)dWs

= E[Y
[2]
t |Fτ1 ] +

t∫
τ1

Z
[2]
t,sdWs.

Hence, (16) is satisfied.
For (t, s) ∈ S2,1 consider ϕτ1t := E[Y

[2]
t |Fτ1 ]. In order to get (4) with S = 0, we

require in view of (16) that

ϕτ1t = E[Y
[2]
t ] +

τ1∫
0

Z
[2]
t,sdWs.

Setting

ϕτ1t = u2,1(τ1,Wτ1 ; t), Z
[2]
t,s =

∂u2,1

∂x1
(s,Ws; t),

from Itô’s formula we obtain the system of PDE:
∂u2,1

∂s
(s, x1; t) +

1

2

∂2u2,1

∂x2
1

(s, x1; t) = 0

u2,1(τ1, x1; t) = u2,2(τ1, x1, x1; t),

(18)
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since for r ∈ [0, τ1] we have

u2,1(r,Wr; t) = u2,1(0,W0; t) +

r∫
0

∂u2,1

∂x1
(s,Ws; t)dWs.

For p ∈ [τ1, 1] one obtains

u2,1(0,W0; t) = E[u2,1(τ1,Wτ1 ; t)] = E[u2,2(τ1,Wτ1 ,Wτ1 ; t)]

= E
[
u2,2(p,Wτ1 ,Wp; t)−

p∫
τ1

∂u2,2

∂x2
(s,Wτ1 ,Ws; t)dWs

]
= E[u2,2(p,Wτ1 ,Wp; t)].

In particular, for p = t we have u2,1(0,W0; t) = E[u2,2(t,Wτ1 ,Wt; t)] = E[Y
[2]
t ], and

ϕτ1t = E[Y
[2]
t ] +

τ1∫
0

Z
[2]
t,sdWs.

Finally, for (t, s) ∈ S1,1, from (4) we obtain

Y
[2]
t = E[Y

[2]
t ] +

t∫
0

Z
[2]
t,sdWs,

for a.e. t ∈ [0, τ1].
Setting

Y
[2]
t = u1,1(t,Wt; t), Z

[2]
t,s =

∂u1,1

∂x1
(s,Ws; t),

Itô’s formula gives 
∂u1,1

∂s
(s, x1; t) +

1

2

∂2u1,1

∂x2
1

(s, x1; t) = 0

u1,1(t, x1; t) = u1,1(t, x1; t)

(19)

Hence, the solution of (4) is given by

Y
[2]
t =

{
u2,2(t,Wτ1 ,Wt; t) , t ∈ [τ1, 1]

u1,1(t,Wt; t) , t ∈ [0, τ1)
(20)

Z
[2]
t,s =



∂u2,2

∂x2
(s,Wτ1 ,Ws; t) , (t, s) ∈ S2,2

∂u2,1

∂x1
(s,Ws; t) , (t, s) ∈ S2,1

∂u1,1

∂x1
(s,Ws; t) , (t, s) ∈ S1,1

(21)

Here, of course, (20) coincides with (14).
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If the interval [0, 1] is divided into m parts at the points τ1, . . . , τm (0 < τ1 <

. . . < τm = 1) then Y [m]
t and Z [m]

t,s are computed with the next algorithm:
Consider (7) and a partition of [0, 1]2 into 2m−1+ m(m+1)

2 intervals as shown in
Figure 2. Thus, one has to solve 2m− 1 + m(m+1)

2 PDEs on the following subsets:

S1,j := {(t, s) ∈ [0, 1]2| 0 ≤ t < τj−1, τj−1 ≤ s ≤ τj}, j = 2, . . . ,m,

S2,j :=

{
{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τm−1 ≤ s ≤ τm, t ≤ s}, j = m

{(t, s) ∈ [0, 1]2| τj−1 ≤ t < τj , τj−1 ≤ s ≤ τj , t ≤ s}, j = 1, . . . ,m− 1,

Si,j :=


{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τj−1 ≤ s ≤ τj}, i = m, j = 1, . . . ,m− 1, i 6= j,

{(t, s) ∈ [0, 1]2| τi−1 ≤ t < τi, τj−1 ≤ s ≤ τj}, i = 1, . . . ,m− 1, j = 1, . . . ,m, i 6= j,

{(t, s) ∈ [0, 1]2| τm−1 ≤ t ≤ τm, τm−1 ≤ s ≤ τm, t ≥ s}, i = j = m,

{(t, s) ∈ [0, 1]2| τi−1 ≤ t < τi, τj−1 ≤ s ≤ τj , t ≥ s}, i = j = 1, . . . ,m− 1.

Figure 2. The algorithm of the construction in the general case. The terminal conditions of the
systems of PDEs are defined on the thick lines.

We start in the right upper corner S2,m. Denoting a vector (x1, . . . , xm) by xm,
u2,m is given by the system

∂u2,m

∂s
(s,xm; t) +

1

2

∂2u2,m

∂x2
m

(s,xm; t) = h[m](s, u2,m(s,xm; s))

u2,m(1,xm; t) = f [m](xm; t)

with Y [m]
t := u2,m(t,Wτm−1 ,Wt; t), Z

[m]
t,s :=

∂u2,m

∂xm
(s,Wτm−1 ,Ws; t).

With this we can solve on S1,m

ψ
τm−1

t = f [m](Wτm ; t)−
1∫

τm−1

h[m](s, Y [m]
s )ds−

1∫
τm−1

Z
[m]
t,s dWs,
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which can be translated to a parabolic equation u1,m with terminal condition f [m]

and nonhomogeneous term being equal to h[m](s, u2,m(s,xm; s)).
The most right column of the lower triangle can be solved using the M-condition

(4). Namely, we write the solution on Sm,m in the following way:

Y
[m]
t = E[Y

[m]
t |Fτm−1 ] +

t∫
τm−1

Z
[m]
t,s dWs,

which can be translated with Itô’s formula into an homogeneous parabolic equation
of the form 

∂um,m
∂s

(s,xm; t) +
1

2

∂2um,m
∂x2

m

(s,xm; t) = 0

um,m(t,xm; t) = u2,m(t,xm; t).

(22)

Iteratively um,i on Sm,i is given by an homogeneous parabolic equation of the
form (22) with terminal condition um,i+1.

With this we compute Y [m]
t and Z [m]

t,s in the regions S1,m, S2,m and Sm,j , j =

1, . . . ,m. The next step is to compute this solution in the regions S1,m−1, S2,m−1

and Sm−1,j , j = 1, . . . ,m− 1.
Observing that

Y
[m]
t = ψ

τm−1

t −
τm−1∫
t

h[m](s, Y [m]
s )ds−

τm−1∫
t

Z
[m]
t,s dWs,

we can compute Y [m]
t and Z [m]

t,s on S1,m−1, S2,m−1 and Sm−1,j , j = 1, . . . ,m − 1,
in an analogous way as on S1,m, S2,m and Sm,j , j = 1, . . . ,m, with new boundary
condition ψτm−1

t instead of f [m]. Proceeding in this way we can find Y [m]
t , Z [m]

t,s on
the whole square.

4.2. Regularity problem for parabolic Cauchy problems

In this part we study the well-posedness of the PDEs from the previous subsection,
i.e. we show that the PDE has a unique bounded classical solution under (M).
In addition, we show that even higher order derivatives exist, are continuous and
bounded. We will need these derivatives in the proof of Lemma 4.1.

Our regularity result for the solutions of PDEs constructed on the sets from
Figure 1 is the following:

Theorem 4.2. Let condition (M) on f [m] and h[m] be fulfilled for the BSVIE
(7) and suppose l = m = 2, k = T = d = 1. Then there exist unique bounded
classical solutions ui1,i2 and uj1,j2 , j1 ≥ j2, defined on the subsets S1,i2 , S2,i2 ,
Sj1,j2 (see Figure 1), i1, i2, j1, j2 ∈ {1, 2}, belonging to C∞b ([0, 1] × Ri2 × [0, 1];R)

and C∞b ([0, 1]× Rj2 × [0, 1];R), respectively.
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Obviously one can extend the result iteratively to the general case:

Corollary 4.3. Let the conditions (M) on f [m] and h[m] be fulfilled for the BSVIE
(7). Then there exist unique bounded classical solutions ui1,i2 and uj1,j2 , j1 ≥ j2,
defined on the subsets S1,i2 , S2,i2 , Sj1,j2 (see Figure 2), i1 ∈ {1, 2}, i2, j1, j2 ∈
{1, . . . ,m}, belonging to C∞b ([0, T ] × Ri2·d × [0, T ];Rk) and C∞b ([0, T ] × Rj2·d ×
[0, T ];Rk), respectively.

Before proving Theorem 4.2 we show the next lemma:

Lemma 4.4. Let g ∈ C∞b ([t, 1] × R3;R) depending on the variables (s, x2, v, x1)

be a bounded function, t ∈ [0, 1]. Then for all (s, x2) the unique bounded classical
solution v(s, x2;x1) of

∂v

∂s
(s, x2;x1) +

1

2

∂2v

∂x2
2

(s, x2;x1) = g(s, x2, v(s, x2;x1);x1),

(s, x2;x1) ∈ [t, 1]× R× R
v(1, x2;x1) = 0.

is C∞ in x1 with uniformly bounded derivatives.
In addition, the mixed partial derivatives ∂i1+i2+i3v

∂si3∂x
i2
2 ∂x

i1
1

exist, are continuous and
bounded for i1, i2, i3 ∈ N0.

Proof. We use some ideas from [1] to achieve the claimed differentiability of v in
the variable x1. Namely, using Theorem 4.5, Chapter 7, from [28], the solution of
(23) has for x1 fixed and (t, x2) ∈ [0, 1]× R the following representation:

v(t, x2;x1) = E[Y x1,x2,t
t ] ≡ Y x1,x2,t

t ,

where (Y x1,x2,t
s , Zx1,x2,t

s ) is the unique adapted solution of the family of BSDEs
Y x1,x2,t
r =

1∫
r

g(s,W t,x2
s , Y x1,x2,t

s ;x1)ds+

1∫
r

Zx1,x2,t
s dWs, r ≥ t

Y x1,x2,t
1 = 0

(23)

with W t,x2
s := x2 + (Ws −Wt).

Then one can show that the conditions of Theorem 2.2 in [1] are fulfilled, and
hence Y x1,x2,t

s is a.s. continuous in s and Y x1,x2,t
s , Zx1,x2,t

s are continuously differ-
entiable in x1. Therefore, v is differentiable in x1.

Furthermore, denoting by (∇Y x1,x2,t
s ,∇Zx1,x2,t

s ) the derivatives of Y x1,x2,t
s and

Zx1,x2,t
s in x1, they solve by Theorem 2.1 in [1] the BSDE

∇Y x1,x2,t
r =

1∫
r

[
∂g

∂x1
(s,W t,x2

s , Y x1,x2,t
s ;x1)

+∂g
∂v (s,W t,x2

s , Y x1,x2,t
s ;x1)∇Y x1,x2,t

s

]
ds−

1∫
r

∇Zx1,x2,t
s dWs,

∇Y x1,x2,t
1 = 0

(24)
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for r ∈ [t, 1]. In particular, ṽ(s, x2;x1) := ∇Y x1,x2,s
s =

∂v

∂x1
(s, x2;x1) solves

∂ṽ

∂s
(s, x2;x1) +

1

2

∂2ṽ

∂x2
2

(s, x2;x1)

=
∂g

∂x1
(s, x2, v(s, x2;x1);x1) +

∂g

∂v
(s, x2, v(s, x2;x1);x1)ṽ(s, x2;x1),

ṽ(1, x2;x1) = 0.

(25)
Denoting

G1(s, x2;x1) :=
∂g

∂x1
(s, x2, v(s, x2;x1);x1),

G2(s, x2;x1) :=
∂g

∂v
(s, x2, v(s, x2;x1);x1)

and using Theorem 4.1, Chapter 7, from [28], the unique bounded solution of (25)
is given explicitly by

ṽ(s, x2;x1) = E
[
−

1−s∫
0

G1(s+ θ,W s,x2

θ ;x1)e
−
θ∫
0

G2(λ+s,W
s,x2
λ ;x1)dλ

dθ

]
. (26)

Note that the solution ṽ is indeed bounded as G1 and G2 are bounded. By the
smoothness and boundedness condition on g, v can be differentiated a second time
with second derivative

∂2v

∂x2
1

(s, x2;x1) =
∂ṽ

∂x1
(s, x2;x1)

= E
[
−

1−s∫
0

∂

∂x1

(
G1(s+ θ,W s,x2

θ ;x1)e
−
θ∫
0

G2(λ+s,W
s,x2
λ ;x1)dλ)

dθ

]
.

Continuing iteratively under the assumptions on the function g we obtain that v is
∞-times differentiable in x1 with bounded derivatives.

In addition, as ∂v
∂x1

can be represented as in Equation (26), it follows that also
the mixed partial derivatives exist, are continuous and bounded, if the function g
fulfills the assumptions stated in the lemma. For i1 = 0, infinite smoothness in
(s, x2) is classical for semilinear parabolic Cauchy problems with smooth data.

Proof of Theorem 4.2. We first construct the unique bounded solution u2,2 of
the system of PDEs in (9) as

u2,2(s, x1, x2; t) = ũ2,2(s, x1, x2; t) + ū2,2(s, x1, x2), (27)

where ũ2,2 and ū2,2 are the unique bounded solutions of the Cauchy problems
∂ũ2,2

∂s
(s, x1, x2; t) +

1

2

∂2ũ2,2

∂x2
2

(s, x1, x2; t) = 0,

ũ2,2(1, x1, x2; t) = f [2](x1, x2; t)

(28)
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∂ū2,2

∂s
(s, x1, x2) +

1

2

∂2ū2,2

∂x2
2

(s, x1, x2) = h[2](s, ũ2,2(s, x1, x2; s)

+ū2,2(s, x1, x2)).

ū2,2(1, x1, x2) = 0

(29)

Using Theorem 4.2, Chapter 4, from [9] for (28) and Lemma 4.4 for (29), we see
that ũ2,2 ∈ C∞b ([0, 1] × R2 × [0, 1];R) and ū2,2 ∈ C∞b ([0, 1] × R2;R). Then from
(27) it follows that u2,2 ∈ C∞b ([0, 1] × R2 × [0, 1];R). Consequently, the function
u2,2(s, x, y; t) exhibits the required properties.

Due to the differentiability of the functions f [2], h[2] and u2,2, using Theorem
4.1, Chapter 7, from [28], the unique bounded classical solution of u1,2 of (12)
can be expressed in an explicit form. Using assumption (M) from Lemma 4.1, it
follows that u1,2 ∈ C∞b ([0, 1] × R2 × [0, 1];R). In the same manner we show that
u1,1 ∈ C∞b ([0, 1]×R× [0, 1];R) writing u1,1 as a sum of two functions solving easier
PDEs similar to ũ2,2 and ū2,2.

Notice that the solutions of the PDEs (17), (18), (19) represent Cauchy problems
which are of the same type as the problem (28). We have the same regularity
properties because the terminal condition of uj1,j2 is ui1,i2 which lies in C∞b ([0, 1]×
Ri2 × [0, 1];R). Hence, uj1,j2 ∈ C∞b ([0, 1]× Rj2 × [0, 1];R).

4.3. Proof of Lemma 4.1

In this subsection we give the proof of Lemma 4.1. For notational simplicity, we
show this lemma for T = d = k = 1 and m = 2, since the proof can be easily
generalized.

In order to compute a discretization of ui1,i2 , i1 ≤ i2 (i1, i2 = 1, 2), we consider
(sη, x1,i, x2,j ; tκ) = (η∆s, iδ, jδ;κ∆t), where δ = δ(n) = 1/

√
n, ∆s = ∆t = 1/n.

From a Taylor expansion of u2,2 we get the following recurrence equation:

1

2

(
u2,2(sη+1, x1,i, x2,j + δ; tκ) + u2,2(sη+1, x1,i, x2,j − δ; tκ)

)
= u2,2(sη, x1,i, x2,j ; tκ) +

∂u2,2

∂s
(sη, x1,i, x2,j ; tκ)δ2

+
1

2

∂2u2,2

∂x2
2

(sη, x1,i, x2,j ; tκ)δ2

+
1

4

(∂2u2,2

∂x2
2

(s+
η , x1,i, x

+
2,j ; tκ)δ2 − ∂2u2,2

∂x2
2

(sη, x1,i, x2,j ; tκ)δ2
)

+
1

2

∂2u2,2

∂x2∂s
(s+
η , x1,i, x

+
2,j ; tκ)δ3 +

1

4

∂2u2,2

∂s2
(s+
η , x1,i, x

+
2,j ; tκ)δ4

+
1

4

(∂2u2,2

∂x2
2

(s−η , x1,i, x
−
2,j ; tκ)δ2 − ∂2u2,2

∂x2
2

(sη, x1,i, x2,j ; tκ)δ2
)
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+
1

2

∂2u2,2

∂x2∂s
(s−η , x1,i, x

−
2,j ; tκ)δ3 +

1

4

∂2u2,2

∂s2
(s−η , x1,i, x

−
2,j ; tκ)δ4

=u2,2(sη, x1,i, x2,j ; tκ) + h[2](sη, u
2,2(sη, x1,i, x2,j ; sη))∆s+O(δ3), (30)

for appropriate values (s±η , x
±
2,j) ∈ [sη, sη ± δ2] × [x2,j , x2,j ± δ] and with

u2,2(n, x1,i, x2,j ; tκ) = f [2](x1,i, x2,j ; tκ), since∣∣∣∂2u2,2

∂x2
2

(s±η , x1,i, x
±
2,j ; tκ)δ2 − ∂2u2,2

∂x2
2

(sη, x1,i, x2,j ; tκ)δ2
∣∣∣

≤
∣∣∣∣∣∣∂3u2,2

∂x3
2

∣∣∣∣∣∣
∞
δ3 +

∣∣∣∣∣∣∂3u2,2

∂x2
2∂s

∣∣∣∣∣∣
∞
δ4

and the involved partial derivatives exist and are uniformly bounded in accordance
with the assumptions, see Theorem 4.2.

This motivates to define U2,2
n (η, i, j;κ) for k1 = bτ1nc and τ (n)

1 = k1/n by
1
2

(
U2,2
n (η + 1, i, j + 1;κ) + U2,2

n (η + 1, i, j − 1;κ)
)

= U2,2
n (η, i, j;κ) + h[2](η, U2,2

n (η, i, j; η)) 1
n

U2,2
n (n, i, j;κ) = f [2](x1,i, x2,j ; tκ),

(31)

where κ = n, . . . , k1, η = n− 1, . . . , κ, i, j ∈ Z.
Using Lipschitz condition on h, the previous difference equation has a unique

solution for large n.
Similarly, we approximate (12) and (13):

1
2

(
U1,2
n (η + 1, i, j + 1;κ) + U1,2

n (η + 1, i, j − 1;κ)
)

= U1,2
n (η, i, j;κ) + h[2](η, U2,2

n (η, i, j; η)) 1
n

U1,2
n (n, i, j;κ) = f [2](x1,i, x2,j ; tκ), κ = k1, . . . , 0,

η = n− 1, . . . , k1, i, j ∈ Z


1
2

(
U1,1
n (η + 1, j + 1;κ) + U1,1

n (η + 1, j − 1;κ)
)

= U1,1
n (η, j;κ) + h[2](η, U1,1

n (η, j; η)) 1
n

U1,1
n (k1, j;κ) = U1,2

n (k1, j, j;κ), κ = k1, . . . , 0, η = k1 − 1, . . . , κ, j ∈ Z

One easily shows that for

Y
(n),[2]
tη,tκ =


U2,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ;κ) , κ = n, . . . , k1, η = n, . . . , κ,

U1,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ;κ) , κ = k1, . . . , 0, η = n, . . . , k1,

U1,1
n (η,W

(n)
tη ;κ) , κ = k1, . . . , 0, η = k1, . . . , κ,

we have

Y
(n),[2]
tη,tη = E

[
f [2](W

(n)

τ
(n)
1

,W
(n)
1 ; tη)− 1

n

n−1∑
λ=η

h[2](tλ, Y
(n),[2]
tλ,tλ

)

∣∣∣∣F (n)
tη

]
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and, hence,

Y
(n),[2]
tη =

{
U2,2
n (η,W

(n)

τ
(n)
1

,W
(n)
tη ; η) , tη ∈ [τ

(n)
1 , 1],

U1,1
n (η,W

(n)
tη ; η) , tη ∈ [0, τ

(n)
1 ).

(32)

Now we want to obtain an upper bound for

θ2,2
n (η) := sup

i,j∈Z

∣∣u2,2(η∆s, x1,i, x2,j ;κ∆s)− U2,2
n (η, i, j;κ)

∣∣,
κ = n, . . . , k1, η = n− 1, . . . , κ. From (30) and the definition of U2,2, see (31), we
can find a constant C1 such that

θ2,2
n (η) ≤ γ

[
θ2,2
n (η + 1) +

C1

n
√
n

]
, γ =

1

1− L∆s
,

which yields the inequality

θ2,2
n (η) ≤ γn−ηθ2,2

n (n) +
C1

n
√
n

n−η∑
p=1

γp = γn−ηθ2,2
n (n) +

C1

n
√
n
γ
γn−η − 1

γ − 1

and, therefore,

max
k1≤κ≤n

max
κ≤η≤n−1

θ2,2
n (η) ≤ e2Lθ2,2

n (n) +
C1

n
√
n
γ
e2L − 1

γ − 1
=
C1(e2L − 1)

L
√
n

,

θ2,2
n (n) = 0.

Analogously, we can find a constant C2 such that

θ1,2
n (η) := sup

i,j∈Z

∣∣u1,2(η∆s, x1,i, x2,j ;κ∆s)− U1,2
n (η, i, j;κ)

∣∣
≤ C1(e2L − 1) + C2√

n
,

where κ = k1, . . . , 0, η = n− 1, . . . , k1, and

max
0≤κ≤k1

max
n−1≤η≤k1

θ1,2
n (η) ≤ C1(e2L − 1) + C2√

n
.

Finally we consider

θ1,1
n (η) := sup

j∈Z

∣∣u1,1(η∆s, x2,j ;κ∆s)− U1,1
n (η, j;κ)

∣∣,
κ = k1, . . . , 0, η = k1 − 1, . . . , κ. Applying the bound for θ1,2

n (η) and denoting by
C a bound for the partial derivatives of u1,1 and u1,2 we obtain,

θ1,1
n (k1) = sup

j∈Z

∣∣u1,1(k1∆s, x2,j ;κ∆s)− U1,2
n (k1, j, j;κ)

∣∣
≤ θ1,2

n (k1) + 2C(τ1 − k1∆s) ≤ C1(e2L − 1) + C2 + 2C√
n

.
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For k1 − 1 ≤ η ≤ κ we can find a constant C3 such that

θ1,1
n (η) ≤ γ

[
θ1,1
n (η + 1) +

C3

n
√
n

]
,

which yields the upper bound

max
0≤κ≤k1

max
k1−1≤η≤κ

θ1,1
n (η) ≤ e2Lθ1,1

n (k1) +
C3(e2L − 1)

L
√
n

≤
(
e2L(C2 + 2C) +

(e2L − 1)(Le2LC1 + C3)

L

)
1√
n
.

Hence, for a suitable constant A, we obtain the following estimate:

max
η

{
θ2,2
n (η), θ1,1

n (η)

}
≤ A√

n
. (33)

We now define

Ỹ
(n),[2]
t =

{
u2,2(t, W̃

(n)
t ; t) , t ∈ [τ1, 1],

u1,1(t, W̃
(n)
t ; t) , t ∈ [0, τ1),

where W̃ (n) is the piecewise constant interpolation of the binary random walkW (n)
tη .

By the representation result (14) for the solution Yt of the continuous BSVIE and
the smoothness of u1,1 and u2,2 we obtain by Donsker’s theorem and the continuous
mapping theorem that Ỹ (n),[2] converges weakly to Y [2] in the Skorokhod topol-
ogy. We can finally deduce from (32), (33), and Slutsky’s theorem that the same
convergence result also holds true for Y (n),[2].

5. Proof of Theorem 3.6

In this section we provide the proof of Theorem 3.6 in the general case. To this end
we first show how to extend convergence of the finite dimensional distributions from
the smooth case to the general case. Then, as the final step we prove tightness.

5.1. Convergence of the finite dimensional distributions

As a preparation for the proof of convergence in finite dimensional distributions we
require some a-priori estimates for continuous and discrete BSVIEs.

The next lemma estimates the difference of solutions Y and Ȳ of Equation (1),
if Y and Ȳ have the free term f and f̄ and the generator h and h̄, respectively.

Lemma 5.1. Let f, f̄ be two free terms and h, h̄ be two generators satisfying (V1)
and (V2). Let (Y,Z) and (Ȳ , Z̄) be two adapted M-solutions of (1) with f and h
replaced by f̄ and h̄, respectively. Then

||Y − Ȳ ||L2,∞
F (0,T ;Rk) ≤

√
C
(
E
[
||f − f̄ ||2∞

]
+ ||h− h̄||2∞

)
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holds for some constant C <∞ depending only on the Lipschitz constants of h and
h̄, where

||f − f̄ ||∞ := sup
s∈[0,T ]

||f(W ; s)− f̄(W ; s)||2

and

||h− h̄||∞ := sup
(s,y)∈[0,T ]×Rk

||h(s, y)− h̄(s, y)||2.

Proof. The proof of this lemma is analogous to the proof from [13], which is based
on Gronwall’s lemma and Doob’s inequality.

The analogous result in the discrete case is stated in the following lemma.

Lemma 5.2. Let f, f̄ be two free terms and h, h̄ be two generators satisfying (V1)
and (V2). Let (Y (n), Z(n))n∈N and (Ȳ (n), Z̄(n))n∈N be two discrete M-solutions of
(2) with f and h replaced by f̄ and h̄, respectively. Then

lim sup
n→∞

||Y (n) − Ȳ (n)||L2,∞
F(n)

(0,T ;Rk) ≤
√
C
(
E
[
||f − f̄ ||2∞

]
+ ||h− h̄||2∞

)
holds for some constant C <∞ depending only on the Lipschitz constants of h and
h̄, where

||f − f̄ ||∞ := sup
s∈[0,T ]

||f(W ; s)− f̄(W ; s)||2

and

||h− h̄||∞ := sup
(s,y)∈[0,T ]×Rk

||h(s, y)− h̄(s, y)||2.

Proof. The proof is the discrete analogue to the proof of Lemma 5.1 with the
application of the discrete Gronwall lemma and Doob’s inequality together with
the fact that W (n) converges weakly to W by Donsker’s Theorem.

With these a-priori estimates to our disposal we can prove the following lemma.

Lemma 5.3. Under the assumptions of Theorem 3.6, convergence of the finite
dimensional distributions holds true.

Proof. Let m ∈ N and τ 〈m〉 := (τ
〈m〉
0 , . . . , τ

〈m〉
m ) be a partition of [0, T ] (0 = τ

〈m〉
0 <

τ
〈m〉
1 < . . . < τ

〈m〉
m = T ).
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For a point x := (x1, . . . ,xm) ∈ Rl, where xi ∈ Rd, i = 1, . . . ,m, m ∈ N, l = dm,
define the linear interpolation Iτ〈m〉,x : [0, T ]→ Rd of τ 〈m〉 and x as

Iτ〈m〉,x(t) :=



0 , t = 0

t

τ
〈m〉
1

x1 , t ∈ [0, τ
〈m〉
1 ]

τ
〈m〉
2 − t

τ
〈m〉
2 − τ 〈m〉1

x1 +
t− τ 〈m〉1

τ
〈m〉
2 − τ 〈m〉1

x2 , t ∈ [τ
〈m〉
1 , τ

〈m〉
2 ]

...

τ
〈m〉
m − t

τ
〈m〉
m − τ 〈m〉m−1

xm−1 +
t− τ 〈m〉m−1

τ
〈m〉
m − τ 〈m〉m−1

xm , t ∈ [τ
〈m〉
m−1, τ

〈m〉
m ]

.

Define f 〈m〉 : Rl × [0, T ]→ Rk by f 〈m〉(x; t) := f(Iτ〈m〉,x; t) and consider

Y
〈m〉
t = f 〈m〉(W

τ
〈m〉
m

; t)−
T∫
t

h(s, Y 〈m〉s )ds−
T∫
t

Z
〈m〉
t,s dWs, t ∈ [0, T ]. (34)

By Theorem 2.4 Equation (34) has a unique adapted M-solution (Y 〈m〉, Z〈m〉). Fur-
thermore, by Theorem 3.4 there exists a unique M-solution (Y (n),〈m〉, Z(n),〈m〉) for

Y
(n),〈m〉
ti = f 〈m〉(W(n)

τ
(n),〈m〉
m

; ti)−
T

n

n−1∑
j=i

h(tj , Y
(n),〈m〉
tj )−

n−1∑
j=i

Z
(n),〈m〉
ti,tj ∆W

(n)
tj+1

(35)

Assume, that (τ 〈m〉)m∈N is a sequence of partitions, such that

lim
m→∞

max
i∈{0,...,m−1}

|τ 〈m〉i+1 − τ
〈m〉
i | = 0.

Then from Lemma 5.1 it follows that Y 〈m〉 converges to Y in L2,∞
F for m → ∞ as

f(Iτ〈m〉,W
τ
〈m〉
m

; t) converges to f(W ; t) in L2,∞
F . The analogous result for Y (n),〈m〉 is

stated in Lemma 5.2.
In addition, as f is bounded, f 〈m〉 is also bounded. Moreover, f 〈m〉 is Lipschitz

with Lipschitz constant independent of m. Hence, we can approximate f 〈m〉 and h
by a sequence of smooth functions f 〈m〉,{p} and h{p}, such that

lim
p→∞

sup
m

E[ sup
s∈[0,T ]

||f 〈m〉,{p}(W
τ
〈m〉
m

; s)− f 〈m〉(W
τ
〈m〉
m

; s)||22] = 0,

and

lim
p→∞

||h− h{p}||∞ = 0,

Actually, we only need uniform convergence of h{p} to h on a sufficiently large
compact set, because Y 〈m〉, Y , Y (n),〈m〉 and Y (n) are uniformly bounded by the
boundedness assumption on f and h.
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With this we consider

Y
〈m〉,{p}
t = f 〈m〉,{p}(W

τ
〈m〉
m

; t)−
T∫
t

h{p}(s, Y 〈m〉,{p}s )ds−
T∫
t

Z
〈m〉,{p}
t,s dWs,

t ∈ [0, T ]. (36)

The free term f 〈m〉,{p} and the generator h{p} fulfill assumption (M) of Lemma 4.1.

Therefore we define τ (n),〈m〉 := (τ
(n),〈m〉
0 , . . . , τ

(n),〈m〉
m ) with τ (n),〈m〉

λ :=
bτ〈m〉λ nc

n for
λ = 0, . . . ,m, and consider

Y
(n),〈m〉,{p}
ti = f 〈m〉,{p}(W(n)

τ
(n),〈m〉
m

; ti) (37)

−T
n

n−1∑
j=i

h{p}(tj , Y
(n),〈m〉,{p}
tj )−

n−1∑
j=i

Z
(n),〈m〉,{p}
ti,tj ∆W

(n)
tj+1

.

Due to Theorem 3.4 there exists a unique M-solution (Y (n),〈m〉,{p}, Z(n),〈m〉,{p}) of
Equation (38) and Lemma 4.1 implies weak convergence of Y (n),〈m〉,{p} to Y 〈m〉,{p}

when n tends to infinity.
In order to show convergence of the finite dimensional distributions of Y (n) to

those of Y , let G : Rrk → R be a bounded continuous function, r ≥ 1, and 0 ≤ t̃1 <
. . . < t̃r ≤ T some partition of [0, T ]. Then we obtain∣∣∣E[G(Yt̃1 , . . . , Yt̃r )]− E[G(Y

(n)

t̃1
, . . . , Y

(n)

t̃r
)]
∣∣∣

≤ E
[
|G(Yt̃1 , . . . , Yt̃r )−G(Y

〈m〉
t̃1

, . . . , Y
〈m〉
t̃r

)|
]

+E
[
|G(Y

〈m〉
t̃1

, . . . , Y
〈m〉
t̃r

)−G(Y
〈m〉,{p}
t̃1

, . . . , Y
〈m〉,{p}
t̃r

)|
]

+
∣∣∣E[G(Y

〈m〉,{p}
t̃1

, . . . , Y
〈m〉,{p}
t̃r

)]− E[G(Y
(n),〈m〉,{p}
t̃1

, . . . , Y
(n),〈m〉,{p}
t̃r

)]
∣∣∣

+E
[
|G(Y

(n),〈m〉,{p}
t̃1

, . . . , Y
(n),〈m〉,{p}
t̃r

)−G(Y
(n),〈m〉
t̃1

, . . . , Y
(n),〈m〉
t̃r

)|
]

+E
[
|G(Y

(n),〈m〉
t̃1

, . . . , Y
(n),〈m〉
t̃r

)−G(Y
(n)

t̃1
, . . . , Y

(n)

t̃r
)|
]
.

Now letting first n tend to infinity, the third summand goes to zero by Lemma 4.1.
Then, for p→∞, the second and the fourth summand tend to zero by Lemmas 5.1
and 5.2. Finally, the same lemmas yield convergence of the first and fifth term to
zero, as finally m→∞.

5.2. Tightness

As the final step of the proof of Theorem 3.6, we will now proof tightness of the
sequence (Y (n))n∈N.

Lemma 5.4. Assume that the assumptions (V1)-(V4) are fulfilled. Let
(Y (n), Z(n))n∈N be the sequence of discrete M-solutions from (2). Then the sequence
(Y (n))n∈N is tight in the Skorokhod topology.
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For the proof we need the next lemma.

Lemma 5.5. The jumps of Y (n) in (2) converge uniformly to zero, more precisely,

||Y (n)
ti+1
− Y (n)

ti ||2 ≤
Ke2L

√
n

+
KT +D

n
P-a.s.

Proof. Note that from [27], we can interpret (1) as a parameterized BSDE in the
following sense:

Yt,r = f(W ; t)−
T∫
r

h(s, Ys,s)ds−
T∫
r

Zt,sdWs, r ∈ [t, T ],

with Yt,·, Zt,· being F-adapted for almost all t ∈ [0, T ] and Ys := Ys,s.
From the above we can write the following discretization of the solution Yt,r:

Y
(n)
ti,tk

= f(W (n); ti)−
T

n

n−1∑
j=k

h(tj , Y
(n)
tj ,tj )−

n−1∑
j=k

Z
(n)
ti,tj∆W

(n)
tj+1

.

In particular, we notice that Y (n)
ti,ti coincides with Y

(n)
ti in (2).

Thus, we obtain

||Y (n)
ti+1
− Y (n)

ti ||2 = ||Y (n)
ti+1,ti+1

− Y (n)
ti,ti+1

+ Y
(n)
ti,ti+1

− Y (n)
ti,ti ||2

≤ ||Y (n)
ti+1,ti+1

− Y (n)
ti,ti+1

||2 + ||Y (n)
ti,ti+1

− Y (n)
ti,ti ||2 =: A+B,

where due to adaptedness of Y (n), Z(n)
ti+1,·, Z

(n)
ti,·

A =
∣∣∣∣E[Y (n)

ti+1,ti+1
− Y (n)

ti,ti+1

∣∣F (n)
ti+1

]∣∣∣∣
2

=

∣∣∣∣∣∣∣∣E[f(W (n); ti+1)− T

n

n−1∑
j=i+1

h(tj , Y
(n)
tj )−

n−1∑
j=i+1

Z
(n)
ti+1,tj∆W

(n)
tj+1

−f(W (n); ti) +
T

n

n−1∑
j=i+1

h(tj , Y
(n)
tj ) +

n−1∑
j=i+1

Z
(n)
ti,tj∆W

(n)
tj+1

∣∣∣∣F (n)
ti+1

]∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣E[f(W (n); ti+1)− f(W (n); ti)

∣∣F (n)
ti+1

]∣∣∣∣
2

≤ K|ti+1 − ti| =
KT

n
.

Moreover, using Lemma 3.2 in [13] we obtain,

B ≤ Ke2L

√
n

+
D

n
.

Hence, for all i = 0, . . . , n,

||Y (n)
ti+1
− Y (n)

ti ||2 ≤
Ke2L

√
n

+
KT +D

n
,
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which proves the lemma.

Proof of Lemma 5.4. Consider the Doob decomposition for the discretized solu-
tion Y (n)

ti , i = 0, . . . , n:

Y
(n)
ti = U

(n)
ti +A

(n)
ti ,

where

U
(n)
ti :=

i−1∑
j=0

(
Y

(n)
tj+1
− E

[
Y

(n)
tj+1

∣∣F (n)
tj

])
and

A
(n)
ti := Y

(n)
ti − U

(n)
ti .

Then A(n) is a predictable process and U (n) is a square integrable martingale.
Thus, Y (n)

ti is a square integrable semimartingale and, as pointed out in [13], we can
use Theorem 2.3 (with condition C2) in [8] for the process

G(n) :=
k∑
l=1

[U (n),l, U (n),l] + V (A(n),l)

with [U (n),l, U (n),l] and V (A(n),l) being the quadratic, resp., total variation of the
lth component U (n),l of U (n) and A(n),l of A(n). Namely, using Lemma 5.5 one can
see that G(n) is bounded by some constant independent of n. Indeed,

n−1∑
i=0

∣∣∣∣A(n)
ti+1
−A(n)

ti

∣∣∣∣
2

=
n−1∑
i=0

∣∣∣∣∣∣∣∣E[f(W (n); ti+1)
∣∣F (n)
ti

]
− E

[
f(W (n); ti)

∣∣F (n)
ti

]
+
T

n
h(ti, Y

(n)
ti )

∣∣∣∣∣∣∣∣
2

≤
n−1∑
i=0

(
KT

n
+
DT

n

)
= T (K +D),

and
n−1∑
J=0

||U (n)
tJ+1
− U (n)

tJ ||
2
2 =

n−1∑
J=0

||Y (n)
tJ+1
− E

[
Y

(n)
tJ+1

∣∣F (n)
tJ

]
||22

=
n−1∑
J=0

∣∣∣∣∣∣∣∣Y (n)
tJ+1
− Y (n)

tJ −
T

n
h(tJ , Y

(n)
tJ )

+E
[
f(W (n); tJ)− f(W (n); tJ+1)

∣∣F (n)
tJ

]∣∣∣∣∣∣∣∣2
2

≤
n−1∑
J=0

(
Ke2L

√
n

+
KT +D

n
+
T (K +D)

n

)2

≤ C
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for some constant C. Hence, from [8] the sequence (Y (n)) is relatively compact in
the Skorokhod topology and, by Prokhorov’s theorem, it is tight.

6. Numerical example

Consider for (1) the BSVIE:

Yt = te
1
2 sin(W1) +

1∫
t

Ysds−
1∫
t

Zt,sdWs, t ∈ [0, 1], (38)

with T = d = k = 1.
Since conditions (V1) and (V2) hold, Equation (38) admits a unique solution

(Y,Z).
Note that Yt = e

t
2 sin(Wt), since e

t
2 sin(Wt) is a martingale and hence

E
[
te

1
2 sin(W1) +

1∫
t

Ysds

∣∣∣∣Ft] = tYt + (1− t)Yt = Yt.

Using (2) we find the discretization Y (n)
ti . If we interpolate piecewise constantly

between values Y (n)
ti and Y

(n)
ti+1

, from Theorem 3.6, we obtain that Y (n) converges
weakly to Y . In particular, for every bounded continuous function g : D([0, 1];R)→
R, we have

lim
n→∞

(
E
[
g
(
Y (n)

)]
− E

[
g
(
Y
)])

= 0. (39)

For our numerical test example we choose the function g(y) :=
∫ 1

0
min{y(s)2,M}ds

for some constant M ≥ e. The truncation guarantees that g is bounded. By the
choice of M we have Y 2

t = min{Y 2
t ,M} for every t ∈ [0, 1]. Hence, by Itô’s formula

E
[∫ 1

0

min{Y 2
s ,M}ds

]
= E

[∫ 1

0

Y 2
s ds

]
=

∫ 1

0

esE
[
sin2(Ws)

]
ds

=
1

2

∫ 1

0

es(1− e−2s)ds =
(e− 1)2

2e
.

We examine the convergence behavior by plotting the weak approximation error

n 7→
(
E
[∫ 1

0

min{Y 2
s ,M}ds

]
− E

[
1

n

n−1∑
i=0

min{(Y (n)
ti )2,M}

])
=: X(n), M ≥ e,

see Figure 3. For the computation of

1

n

n−1∑
i=0

E
[
min{(Y (n)

ti )2,M}
]
,
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we exploit that the solution of the DBSVIE Y
(n)
ti can be written as

Y
(n)
ti =

n

n− 1
E
[
tie

1
2 sin(W

(n)
1 ) +

1

n

n−1∑
j=i+1

Y
(n)
tj

∣∣∣∣F (n)
ti

]
.

We plot the weak approximation error X(n) in logarithmic scales on both axes
for n = 10, 20, 40, . . . , 400 with M = 10. The slope in Figure 3 is about −0.928.
This indicates that the rate of convergence is close to order 1, which is the weak
convergence rate that one may expect in this type of example.

We also note that, by weak convergence, Y (n)
0 → Y0 = 0. Table 1 illustrates that

even for a moderate grid size (e.g. n = 100) the numerical approximation almost
perfectly (up to rounding errors) matches the true value.

Table 1. Values of X(n) and Y (n)
0 .

n X(n) Y
(n)
0

100 0.0339 0.0039× 10−16

200 0.0172 −0.0078× 10−16

300 0.0116 0.1067× 10−16

400 0.0087 0.0503× 10−16

Figure 3. Speed of convergence of the numerical algorithm: The weak approximation error n 7→
X(n) is plotted on logarithmic scales on both the axes for n = 10, 20, 40, . . . , 400; the slope is
about −0.928.
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7. Proof of Lemma 3.3

Proof of Lemma 3.3. In the case S < i, multiplying Equation (5) by ∆W
(n)
tS+1

and taking the conditional expectation of this expression given F (n)
tS one obtains

E
[
(Y

(n)
ti − E

[
Y

(n)
ti

∣∣F (n)
tS

]
)(∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
=

i−1∑
j=S

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F (n)
tS

]
.

On the other hand, using the martingale property of the random walk and the tower
property of conditional expectation, it follows that

E
[
(Y

(n)
ti − E

[
Y

(n)
ti

∣∣F (n)
tS

]
)(∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
= E

[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
and

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F (n)
tS

]
=

{
Z

(n)
ti,tS∆tS+1 , j = S

0 , j > S.

Hence,

Z
(n)
ti,tS =

1

∆tS+1
E
[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
.

In the same spirit, for the case S ≥ i we multiply Equation (2) by ∆W
(n)
tS+1

and take

the conditional expectation given F (n)
tS . One obtains

0 = E
[
Y

(n)
ti (∆W

(n)
tS+1

)∗
∣∣F (n)
tS

]
= E

[(
f(W (n); ti)−

n−1∑
j=i

h(tj , Y
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F (n)
tS

]

−
n−1∑
j=i

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F (n)
tS

]
where

E
[
(Z

(n)
ti,tj∆W

(n)
tj+1

)(∆W
(n)
tS+1

)∗
∣∣F (n)
tS

]
=

{
Z

(n)
ti,tS∆tS+1 , j = S

0 , j 6= S.

Thus,

Z
(n)
ti,tS =

1

∆tS+1
E
[(
f(W (n); ti)−

n−1∑
j=i

h(tj , Y
(n)
tj )∆tj+1

)
(∆W

(n)
tS+1

)∗
∣∣∣∣F (n)
tS

]
.
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Semi-Lagrangian schemes for parabolic equations
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Norwegian University of Science and Technology, NO–7491, Trondheim, Norway

1. Introduction

In this chapter we discuss a class of numerical schemes for linear and fully non-
linear parabolic equations of second order. These schemes are monotone and based
on differencing and interpolation. Moreover, they are very robust in the sense that
they preserve monotonicity and convergence even for arbitrary degenerate problems
and low regularity solutions. E. g. we can approximate diffusion equations with
arbitrary positive semidefinite diffusion matrices, while the standard assumption
for finite difference methods is that the matrix is diagonally dominant. We also
consider fractional or nonlocal versions of the equations of order less than or equal
to two. These are equations with (singular) integral terms, and in this case we also
add numerical quadrature.

In linear form the equation (the initial value problem) we will consider takes the
form

ut − L[u](t, x)− J [u](t, x)− c(t, x)u− f(t, x) = 0 in QT , (1)

u(0, x) = g(x) in RN , (2)

where QT := (0, T ]× RN ,

L[φ](t, x) := tr
[
a(t, x)D2φ

]
+ b(t, x)Dφ,

J [φ](t, x) :=

∫
RM\{0}

(
φ(t, x+ j(t, x, z))− φ− 1|z|≤1j(t, x, z)Dφ

)
ν(dz),

for some positive definite matrix a ∈ RN,N and vectors b, c, f, j ∈ RN . The Lévy
measure ν(dz) is a positive Radon measure on RM\{0} satisfying∫

|z|>0

|z|2 ∧ 1 ν(dz) <∞.

279
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This equation models e. g. the value of options in finance with a fixed realization
date.

Under suitable assumptions the solution u has a stochastic representation,

u(T − t, x) = E

(
g(XT ) +

∫ T

t

f(s,Xs)ds

)
(3)

(here we assumed for simplicity c ≡ 0), where the stochastic process Xt (e. g. stock
prices) is the solution of the following SDE:

dXs = σ(s,Xs)dWs + b(s,Xs)ds+

∫
|z|>0

j(s,Xs, z)Ñ(dz, ds), (4)

s > t, Xt = x,

and a = 1
2σσ

T for some σ ∈ RN,P and W and Ñ denote Brownian motion and
(compensated) Poisson random measure respectively. When j ≡ 0 this could e. g.
be the Black-Scholes model or local/stochastic volatility models in finance. When
j 6≡ 0, the Poisson random measure produces jumps (discontinuities) in the paths
of Xt, infinitely many on each time-interval if

∫
|z|>0

ν(dz) =∞. Many such (Lévy)
models have been used in finance to remedy the shortcomings of the Black-Scholes
model, we refer to the books [12; 31].

In general the equations we consider may be fully non-linear, degenerate
parabolic integro partial differential equations (IPDEs) of Bellman type:

ut + sup
α∈A

{
− Lα[u](t, x)− Jα[u](t, x)− cα(t, x)u− fα(t, x)

}
= 0 in QT , (5)

where A is the value set of the controls and the coefficients in Lα and Jα now
depend also on α. Note that (1) is a special case of (5) by taking A equal to a point.
Equation (5) is convex and non-local and arises as the dynamic programming or
Bellman equation in optimal control of SDEs like the one above. In finance it is,
starting with Merton’s pioneering work [28; 29], applied to portfolio optimization
type of problems.

In typical applications, one is faced with diffusions that may degenerate (at
least on the boundary) and value functions of the optimal control problem that
often are not smooth enough to be interpreted as classical solutions. However,
under quite general assumptions, the value function is the unique viscosity solution
[13; 21] of the IPDE (5), which is also the correct framework for typical finance
problems, see [19]. Therefore, in the following we consider (5) in the case that a
unique bounded continuous viscosity solution exists, see Section 5 for some relevant
well-posedness and regularity results. Then, classical finite difference methods do
typically not necessarily converge - stability and consistency are no longer sufficient
for convergence. However, Barles and Souganidis [4; 21] showed in the case Jα ≡ 0

that if the numerical approximation method is in addition monotone, then it will
converge to the viscosity solution. This result has later found many applications in
finance, see, e. g. [1; 32; 20; 33].
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Classical finite difference approximations (FDMs) of (10) are not monotone un-
less the matrix aα satisfies additional assumptions like e. g. being diagonally dom-
inant [26]. More general assumptions are given in e. g. [4; 17] but at the cost of
increased stencil length. In fact, Dong and Krylov [17] proved that no fixed stencil
FDM can approximate equations with a second derivative term involving a general
positive semi-definite matrix function aα. Note that this type of result has been
known for a long time, see e. g. [30; 14]. Some very simple examples of such “bad”
matrices are given by(

x2
1

1
2x1x2

1
2x1x2 x2

2

)
in [0, 1]2,

(
α2 α1α2

α1α2 α2
2

)
for

(
α1

α2

)
∈ A = [0, 1]2.

In the following we will consider monotone approximation schemes relying on mono-
tone interpolation. We do a motivating derivation of the schemes in the linear, local
case in Section 2. In Section 3 we consider a generalized family of SL schemes for
local PDEs of Bellman type and give results on consistency, stability, monotonicity
and convergence in case the interpolation used is monotone. Moreover, we give ro-
bust error estimates which are valid also for degenerate equations and non-smooth
solutions. The method is applied to a super-replication problem under gamma con-
straints. In Section 4 we derive SL schemes applicable also to IPDEs (5) of Bellman
type.

Note that we will not discuss American type of option pricing problems, even
though it could be done. The numerical and analytical challenges of this case fall
between the linear and fully-nonlinear cases, and it should be easy to adapt the
ideas herein in this direction.

2. Some motivation for the schemes

We now formally derive a numerical scheme for the PDE (1) by a two step procedure:
(i) Discretize (in time) the associated representation formula (3) and SDE (4), and
(ii) introduce a spatial grid via interpolation in space.

This idea has been explored in the general case for control problems in
[16; 11; 18; 27; 9]. We illustrate this approach by deriving an explicit scheme in
the linear case and when the coefficients c ≡ 0 and j ≡ 0. Note that in this case the
equation is local and J ≡ 0. Let sn = n∆t for n = 0, . . . ,M be discrete times and
let T = M∆t. We consider a simple quadrature approximation of (3) combined
with a suitably chosen weak Euler approximation of (4):

ũ(T − sm, x) = E
[M−1∑
k=m

f(X̃k) ∆t+ g(X̃M )
]
, (6)

X̃m = x, X̃n = X̃n−1 + σ(X̃n−1) k ξn + b(X̃n−1) k2 ηn, n > m, (7)

where k =
√

(P + 1)∆t and ξn = (ξn,1, . . . , ξn,P )> and ηn are sequences of i. i. d.
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random variables satisfying

P
(

(ξn,1, . . . , ξn,P , ηn) = ±ej
)

=
1

2(P + 1)
if j ∈ {1, . . . , P},

P
(

(ξn,1, . . . , ξn,P , ηn) = eP+1

)
=

1

P + 1
,

(ej denotes the j-th unit vector) and all other values of (ξn,1, . . . , ξn,P , ηn) have
probability zero. By the definition of ũ and properties of the conditional expectation
(or the dynamic programming principle in the control setting) one sees that

ũ(T − sm, x) = E
[
f(X̃m) ∆t+ ũ(T − sm+1, X̃m+1)

]
.

By the definition of X̃ (7), we find that

ũ(T − sm, x) = E
[
f(x) ∆t+ ũ(T − sm+1, x+ σ(x) k ξn + b(x) k2 ηn)

]
,

and after evaluating the expectation that

ũ(T − sm, x) = f(x)∆t+
1

P + 1
ũ(T − sm+1, x+ b(x)k2)

+
1

P + 1

P∑
j=1

1

2

(
ũ(T − sm+1, x+ σj(x)k) + ũ(T − sm+1, x− σj(x)k)

)
.

Subtract ũ(T − sm+1, x) from both sides and divide by ∆t = k2

P+1 . If we let m =

M − n and tn = T − sM−n (and tn−1 = T − s(M−n)+1), we then find that

ũ(tn, x)− ũ(tn−1, x)

∆t
= f(x) + L̃[ũ](tn−1, x), (8)

where

L̃[φ](t, x) =
P∑
j=1

φ(t, x+ σj(x)k)− 2φ(t, x) + φ(t, x− σj(x)k)

k2

+
φ(t, x+ b(x)k2)− φ(t, x)

k2
.

Note that −L̃ is a non-negative operator, and that hence the explicit scheme is
monotone.

We have obtained a derivative free discrete in time scheme. It remains to dis-
cretize also in space. The idea we will use is to replace ũ in (8) by some interpolant
Iu associated to a non-degenerate spatial grid X∆x = {xα}α∈ZN where the distance
between the nodes is of the order ∆x. Note that this means that

Iφ(xα) = φ(xα) and Iφ(x)→ φ(x) as ∆x→ 0.

A fully discrete scheme can then be obtained by requiring this new scheme to hold
in all grid points:

U(tn, xα)− U(tn−1, x)

∆t
= f(xα) + L̃[IU ](tn−1, xα) for n ≥ 0, α ∈ ZN . (9)



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Semi-Lagrangian schemes for parabolic equations 283

If I represents a monotone interpolation in the sense that U ≤ V implies that
IU ≤ IV (e. g. piecewise linear interpolation), then it is easy to see that −L̃ ◦ I is
a non-negative operator and again the explicit scheme is monotone.

Remark 6.1. We did not require a CFL condition for the above explicit scheme to
be monotone. The reason is essentially that the discretization of space derivatives
here depends directly on ∆t through k but not on ∆x.

The best monotone interpolation is piecewise linear interpolation with quadratic
O(∆x2) convergence. The local truncation error of the scheme has contributions
from discretization in time, approximation of derivatives, and interpolation error.
In the case of linear interpolation it takes the form:

O
(

∆t+ k2 +
∆x2

k2

)
,

and the optimal choices are ∆t ∼ k2 ∼ ∆x, i. e. a rather good linear “CFL” condition
but with a linear rate of O(∆x).

Remark 6.2. By construction, the arguments of Φ occurring in the definition of
L̃[Φ] can be seen as a short time approximation of (7). Hence the scheme (9) tracks
particle paths approximately. In view of the discussion above we might say that
the scheme follows particles in the mean because of the expectation. For first order
PDEs, schemes defined in this way are called SL schemes by e. g. Falcone, so we
will also denote the generalized schemes considered in the following as SL schemes.

3. Local PDEs of Bellman type

In this section we restrict to local PDEs of Bellman type

ut − inf
α∈A

{
Lα[u](t, x) + cα(t, x)u+ fα(t, x)

}
= 0 in QT , (10)

u(0, x) = g(x) in RN , (11)

where

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x),

i. e. Jα ≡ 0, and generalize the above construction. Consider general finite difference
approximations of the differential operator Lα[φ] in (10) defined as

Lαk [φ](t, x) :=
M∑
i=1

φ(t, x+ yα,+k,i (t, x))− 2φ(t, x) + φ(t, x+ yα,−k,i (t, x))

2k2
, (12)

for k > 0 and some M ≥ 1, where for all smooth functions φ,

|Lαk [φ]− Lα[φ]| ≤ C(|Dφ|0 + · · ·+ |D4φ|0)k2. (13)

This approximation and interpolation yield a semi-discrete approximation of (10),

Ut − inf
α∈A

{
Lαk [IU ](t, x) + cα(t, x)U + fα(t, x)

}
= 0 in (0, T )×X∆x,
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and the final scheme can then be found after discretizing in time using a parameter
θ ∈ [0, 1],

δ∆tnU
n
i = inf

α∈A

{
Lαk [IŪθ,n· ]n−1+θ

i + cα,n−1+θ
i Ūθ,ni + fα,n−1+θ

i

}
(14)

in G, where Uni = U(tn, xi), f
α,n−1+θ
i = fα(tn−1 + θ∆tn, xi), . . . for (tn, xi) ∈ G,

δ∆tφ(t, x) =
φ(t, x)− φ(t−∆t, x)

∆t
, and φ̄θ,n· = (1− θ)φn−1

· + θφn· .

As initial conditions we take

U0
i = g(xi) in X∆x. (15)

For the choices θ = 0, 1, and 1/2 the time discretization corresponds to respectively
explicit Euler, implicit Euler and midpoint rule. For θ = 1/2, the full scheme can
be seen as generalized Crank-Nicolson type discretization.

For the approximation Lαk and interpolation I we assume



M∑
i=1

[yα,+k,i + yα,−k,i ] = 2k2bα +O(k4),

M∑
i=1

[yα,+k,i y
α,+>
k,i + yα,−k,i y

α,−>
k,i ] = 2k2σασα> +O(k4),

M∑
i=1

[yα,+k,i,j1
yα,+k,i,j2

yα,+k,i,j3
+ yα,−k,i,j1y

α,−
k,i,j2

yα,−k,i,j3 ] = O(k4),

M∑
i=1

[yα,+k,i,j1
yα,+k,i,j2

yα,+k,i,j3
yα,+k,i,j4

+ yα,−k,i,j1y
α,−
k,i,j2

yα,−k,i,j3y
α,−
k,i,j4

] = O(k4),

(Y1)

for all j1, j2, j3, j4 = 1, 2, . . . , N indicating components of the y-vectors.

(I.1) There are K ≥ 0, r ∈ N such that for all smooth functions φ

|(Iφ)− φ|0 ≤ K|Drφ|0∆xr.

(I.2) There is a set of non-negative functions {wj(x)}j such that

(Iφ)(x) =
∑
j

φ(xj)wj(x),

and

wj(x) ≥ 0, wi(xj) = δij

for all i, j ∈ N.
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Under assumption (Y1), a Taylor expansion shows that Lαk is a second order con-
sistent approximation satisfying (13). If we assume also (I.1), it then follows that
Lαk [Iφ] is a consistent approximation of Lα[φ] if ∆xr

k2 → 0. Indeed

|Lαk [Iφ]− Lα[φ]| ≤ |Lαk [Iφ]− Lαk [φ]|+ |Lαk [φ]− Lα[φ]|,

where |Lαk [φ]− Lα[φ]| is estimated in (13), and by (I.1),

|Lαk [Iφ]− Lαk [φ]| ≤ C|Drφ|0
∆xr

k2
.

Remark 6.3. Assumption (Y1) is similar to the local consistency conditions used
in [26]. The O(k4) terms insure that the method is second order accurate as k → 0.
Convergence will still be achieved if we relax O(k4) to o(k2) as k → 0.

Remark 6.4. An interpolation satisfying (I.2) is said to be positive and is mono-
tone in the sense explained just before Remark 6.1. Such an interpolation Iφ does
not use (exact) derivatives to reconstruct the function φ. Typically I will be con-
stant, linear, or multi-linear interpolation (i. e. r ≤ 2 in (I.1)), because higher order
interpolation is not monotone in general.

3.1. Examples of approximations Lαk

We present several examples of approximations of the term Lα[φ] of the form Lαk [φ],
including previous approximations that have appeared in [18; 27; 9; 14] plus some
new approximations to show the flexibility of our framework.

(1) The approximation of Falcone [18] (see also [11]),

bαDφ ≈ Iφ(x+ hbα)− Iφ(x)

h
,

corresponds to our Lαk if k =
√
h, yα,±k = k2bα.

(2) The approximation of Crandall-Lions [14],

1

2
tr[σασα>D2φ] ≈

P∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj and M = P .
(3) The corrected version of the approximation of Camilli-Falcone [9] (see also

[27]),

1

2
tr[σασα>D2φ] + bαDφ

≈
P∑
j=1

Iφ(x+
√
hσαj + h

P b
α)− 2Iφ(x) + Iφ(x−

√
hσαj + h

P b
α)

2h
,

corresponds to our Lαk if k =
√
h, yα,±k,j = ±kσαj + k2

P b
α and M = P .
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(4) The new approximation obtained by combining approximations 1 and 2,

1

2
tr[σασα>D2φ] + bαDφ ≈ Iφ(x+ k2bα)− Iφ(x)

k2

+
P∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj for j ≤ P , yα,±k,P+1 = k2bα and
M = P + 1.

(5) Yet another new approximation,

1

2
tr[σασα>D2φ] + bαDφ

≈
P−1∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2

+
Iφ(x+ kσαP + k2bα)− 2Iφ(x) + Iφ(x− kσαP + k2bα)

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj for j < P , yα,±k,P = ±kσαP + k2bα and
M = P .

When σα does not depend on α but bα does, approximations (4) and (5) are much
more efficient than approximation (3).

3.2. Linear interpolation SL scheme (LISL)

To keep the scheme (14) monotone, linear or multi-linear interpolation is the most
accurate interpolation one can use in general. In this typical case we call the full
scheme (14)–(15) the LISL scheme. In the following, we denote by cα,+ the positive
part of cα, and we use the technical assumptions (A.1) and (A.2) from the appendix.
Then we have the following result by [16]:

Theorem 1. Assume that (A.1), (A.2), (I.1), (I.2) and (Y1) hold.

(a) The LISL scheme is monotone if the CFL conditions

(1− θ)∆t
[M
k2
− cα,n−1+θ

i

]
≤ 1 and θ∆t cα,n−1+θ

i ≤ 1 for all α, n, i (16)

hold.

(b) The truncation error of the LISL scheme is O(|1 − 2θ|∆t + ∆t2 + k2 + ∆x2

k2 ),
so it is first order accurate when k = O(∆x1/2) and ∆t = O(∆x), or if θ = 1

2 ,
∆t = O(∆x1/2).

(c) If 2θ∆t supα |cα,+|0 ≤ 1 and (16) hold, then there exists a unique bounded and
L∞-stable solution U of the LISL scheme converging uniformly to the solution u of
(10)–(11) as ∆t, k, ∆x

k → 0.
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From this result it follows that the scheme is at most first order accurate, has
wide and increasing stencil and a good CFL condition. From the truncation error
and the definition of Lαk the stencil is wide since the scheme is consistent only if
∆x/k → 0 as ∆x→ 0 and has stencil length proportional to

l :=

max
t,x,α,i

|yα,−k,i | ∨ |y
α,+
k,i |

∆x
∼ k

∆x
→∞ as ∆x→ 0.

Here we have used that if (Y1) holds and σ 6≡ 0, then typically yα,±k,i ∼ k. Note that
if k = ∆x1/2, then l ∼ ∆x−1/2. Finally, in the case θ 6= 1 the CFL condition for
(14) is ∆t ≤ Ck2 ∼ ∆x when k = O(∆x1/2), and it is much less restrictive than
the usual parabolic CFL condition, ∆t = O(∆x2).

Remark 6.5. The LISL scheme is consistent and monotone for arbitrary degener-
ating diffusions, without requiring that aα is diagonally dominant or similar condi-
tions. In comparison to other schemes applicable in this situation, like the ones of
Bonnans-Zidani [4; 7], it is much easier to analyze and to implement and faster in
the sense that the computational cost for approximating the diffusion matrix is for
fixed x, t, α independent of the stencil size.

3.3. Error estimates

In the following we take a uniform time-grid, G = ∆t {0, 1, . . . , NT } × X∆x, for
simplicity. Let Q∆t,T := ∆t {0, 1, . . . , NT } × RN . To apply the regularization
method of Krylov [25] we need a continuity and continuous dependence result for
the scheme that relies on the following additional (covariance-type) assumptions:
Whenever two sets of data σ, b and σ̃, b̃ are given, the corresponding approximations
Lαk , y

α,±
k,i and L̃αk , ỹ

α,±
k,i in (12) satisfy

M∑
i=1

[yα,+k,i + yα,−k,i ]− [ỹα,+k,i + ỹα,−k,i ] ≤ 2k2(bα − b̃α),

M∑
i=1

[yα,+k,i y
α,+>
k,i + yα,−k,i y

α,−>
k,i ] + [ỹα,+k,i ỹ

α,+>
k,i + ỹα,−k,i ỹ

α,−>
k,i ]

−[yα,+k,i ỹ
α,+>
k,i + ỹα,+k,i y

α,+>
k,i + yα,−k,i ỹ

α,−>
k,i + ỹα,−k,i y

α,−>
k,i ]

≤ 2k2(σα − σ̃α)(σα − σ̃α)> + 2k4(bα − b̃α)(bα − b̃α)>,

(Y2)

when σ, b, y±k are evaluated at (t, x) and σ̃, b̃, ỹ±k are evaluated at (t, y) for all t, x, y.
Then one can prove the following error estimate [16]:

Theorem 2 (Error Bound). Assume that (A.1), (A.2), (I.1), (I.2), (Y1), (Y2),
and the CFL conditions (16) hold, and that k ∈ (0, 1) and ∆t ≤ (2k0 ∧ 2k1)−1. If
u solves (10)–(11) and U solves (14)–(15), then

|u− U | ≤ C(|1− 2θ|∆t1/4 + ∆t1/3 + k1/2 +
∆x

k2
) in G.
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This error bound holds also for unstructured grids. For more regular solutions it
is possible to obtain better error estimates, but general and optimal results are not
available. The best estimate in our case is O(∆x1/5) which is achieved when k =

O(∆x2/5) and ∆t = O(k2). Note that the CFL conditions (16) already imply that
∆t = O(k2) if θ < 1. Also note that the above bound does not show convergence
when k is optimal for the LISL scheme (k = O(∆x1/2)).

Remark 6.6. These results are consistent with results for LISL type schemes for
stationary Bellman equations. In fact if all coefficients are independent of time and
cα(x) < −c < 0, then by combining the results of [9] and [3], exactly the same error
estimate is obtained for the solution of a particular stationary LISL scheme and the
unique stationary Lipschitz solution of (10).

3.4. Boundary conditions

When solving PDEs on bounded domains, the SL (like other) schemes may exceed
the domain if they are not modified near the boundary. The reason is of course
the wide stencil. This may or may not be a problem depending on the equation
and the type of boundary condition: (i) For Dirichlet conditions the scheme needs
to be modified near the boundary or boundary conditions must be extrapolated.
This may result in a loss of accuracy or monotonicity near the boundary. (ii)
Homogeneous Neumann conditions can be implemented exactly by extending in
the normal direction the values of the solution on the boundary to the exterior. (iii)
If the boundary has no regular points, no boundary conditions can be imposed. In
this case the SL schemes will not leave the domain if the normal diffusion tends to
zero fast enough when the boundary is approached. Typical examples are equations
of Black-Scholes type.

3.5. Convergence test for a super-replication problem

We consider a test problem from [6] which was used to test convergence rates for
numerical approximations of a super-replication problem from finance. The corre-
sponding PDE is

inf
α2

1+α2
2=1

{
α2

1ut(t, x)− 1

2
tr
(
σα(t, x)σα>(t, x)D2u(t, x)

)}
= f(t, x),

0 ≤ x1, x2 ≤ 3 (17)
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with σα(t, x) =

(
α1x1

√
x2

α2η(x2)

)
and η(x) = x(3−x). We take u(t, x) = 1+t2−e−x2

1−x
2
2

as exact solution as in [6], and then f is forced to be

f(t, x) =
1

2

(
ut −

1

2
x2

1x2ux1x1 −
1

2
x2

2(3− x2)2ux2x2

−

√(
−ut +

1

2
x2

1x2ux1x1 −
1

2
x2

2(3− x2)2ux2x2

)2

+
(
x1
√
x2

3
(3− x2)ux1x2

)2
)
.

In [6] η(x) = x, while we take η(x) = x(3 − x) to prevent the LISL scheme from
overstepping the boundaries. Note that changing η does not change the solutions
as long as η > 0 in the interior of the domain, see [6], and hence the above equation
is equivalent to the equation used in [6]. The initial values and Dirichlet boundary
values at x1 = 0 and x2 = 0 are taken from the exact solution. As in [6], at
x = 3 and y = 3 homogeneous Neumann boundary conditions are implemented.
To approximate the values of α1, α2, the Howard algorithm is used (see [6]), which
requires an implicit time discretization, so we choose θ = 1. As stop criterion of
the iterations we require that the change of the maximal component and the sum
over all components of the residual in Howard’s algorithm are both smaller than
0.01. The minimization is done over α1,k + iα2,k = e2πik/2N∆x , k = 1, . . . , N∆x,
where N∆x = 3/∆x is the number of space grid points in one dimension. The
calculations are done in MATLAB, on an INTEL(R) Core(TM)2 Duo P8700, 2.54
Ghz Laptop. The linear systems involved are solved by the standard MATLAB
back slash operator, using internally UMFPACK [15]. We choose k =

√
∆x and a

regular triangular grid. The numbers of time steps are chosen as 1
∆x .

The results at t = 1 are given in Table 1. The numerical order of convergence is
approximately one. The CPU times are better than expected: They get multiplied
roughly by 10 when ∆x is divided by 2, a property which can also be observed in
[6]. The reason is that the Howard algorithm needs fewer iterations when the time
step becomes smaller.

Table 1. Results for the convergence test
for the super-replication problem at t = 1

∆x error rate time in s
1.50e-1 2.01e-1 0.71
7.50e-2 9.49e-2 1.08 5.52
3.75e-2 4.29e-2 1.15 59.32
1.87e-2 1.94e-2 1.15 803.26

Remark 6.7. Equation (17) can not be written in a form (10) satisfying the as-
sumptions of this section, so the results of this section do not apply to this problem.
However, it seems possible to extend them to cover this problem using comparison
results from [6] along with L∞-bounds on the numerical solution that follow from
the maximum principle.
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Remark 6.8. If we compare naively these results to the results of [6], we find that
the LISL scheme is about 10 times faster than the method of [6]. Of course, this
comparison is not fair, e. g. it could be that a less efficient linear solver is used in
[6].

3.6. A super-replication problem

We apply our method to solve a problem from finance, the super-replication problem
under gamma constraints considered in [6]. It consists of solving equation (17) with
f ≡ 0, Neumann boundary conditions and σα as in Subsection 3.5, and initial and
Dirichlet conditions given by

u(t, x) = max(0, 1− x1), t = 0 or x1 = 0 or x2 = 0.

The solution obtained with the LISL scheme is given in Figure 1 and coincides with
the solution found in [6]. It gives the price of a put option of strike and maturity
1, and x1 and x2 are respectively the price of the underlying and the price of the
forward variance swap on the underlying.

0 1 2 3 0 1 2 30

0.5

1

x1
x2

U

Figure 1. Numerical solution of super-replication problem at t = 1

4. Nonlocal PDEs of Bellman type

In this section we derive a Semi-Lagrangian scheme for equation (5) in the non-local
case. We also discuss very briefly how this scheme can be shown to converge and
how error estimates can be obtained. We repeat that the non-local equations arise
in non-Gaussian models of (financial) markets, e. g. if you want to incorporate heavy
tail distributions or skew distributions. Such models have been extensively treated
in the books by Cont-Tankov [12] and Schoutens [31].
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4.1. Derivation of the scheme for linear problems

Now we return to the non-local scheme which will be a time-dependent version of
the stationary scheme derived and extensively analyzed in Camilli-Jakobsen [10]. In
the following we will derive the scheme in the linear case and when c ≡ 0, modifying
the derivation of the local scheme in Section 3 to treat the nonlocal case when j 6≡ 0.
Here we also assume that

ν̄ =

∫
|z|>0

ν(dz) <∞, (18)

and we remark that this means that the jump part of the process is a compound
Poisson process with intensity ν̄ and increment distribution (jump length and direc-
tion) ν

ν̄ . We will come back to this assumption. Compared to the local construction,
we only need to change the approximation of the SDE. We take e. g. an interlacing
weak Euler approximation of (4) from [10]:


X̃0 = x,

X̃n = X̃n−1 + ∆tb(X̃n−1, tn−1) +
√
P∆t

∑P
m=1 σm(Xn−1, tn−1)ξmn−1,

for n = Ni + 1, Ni + 2, . . . , Ni+1 − 1,
XNi+1

= XNi+1−1 + j(tNi+1−1, XNi+1−1, Zi),

where ξmn , m = 1, . . . , d are random variables taking values in {−1, 0, 1} such that

P [{ξin = ±1}] =
1

2P
and P [{ξin 6= 0} ∩ {ξjn 6= 0}] = 0, i 6= j.

Moreover, Nn =
∑n−1
i=0 N̂i, and N̂i and Zi, i ∈ N0, are i. i. d. sequences of stochastic

variables taking values in {0, 1} and in RN and representing the number of jumps
and the corresponding z-jumps (length and direction) of the Poisson measure Ñ
in [ti−1, ti). We set N0 = 0 and Z0 = 0 and assume that N̂i have the probability
distribution

P [N̂i = 0] = e−∆tν̄ and P [N̂i = 1] = 1− e−∆tν̄

for i ∈ N0, i. e. they are weak approximations of the Poisson process with intensity
∆tν̄, while the Zi, i ∈ N, are i. i. d. random variables with probability density ν

ν̄ .
Between jumps the process evolves like an approximation to a random walk, and

when the process jumps there is no random walk part. This is called interlacing
and also holds for the associated continuous time process. The probability to jump
(once!) in a time interval is 1−e−ν̄∆t, and this is only a good approximation if ν̄∆t
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is small. In the current case we can easily compute the expectation and find that

E(φ(X1)) = e−ν̄∆t 1

2P

P∑
i=1

(
φ(x+ ∆tb(x, t) +

√
P∆tσi(x, t))

+ φ(x+ ∆tb(x, t)−
√
P∆tσi(x, t))

)
+(1− e−ν̄∆t)

∫
|z|>0

φ(x+ j(x, z, t))
ν(dz)

ν̄
.

Following the derivation of the local scheme, we are again lead to the scheme (9)
but now with a modified L̃:

L̃φ(x) = e−ν̄∆t 1

2

d∑
m=1

(φ(x+ ∆tb(x, t) +
√
P∆tσm(x, t))

P∆t

− 2φ(x) + φ(x+ ∆tb(x, t)−
√
P∆tσm(x, t))

P∆t

)
+

1− e−ν̄∆t

ν̄∆t

∫
|z|>0

φ(x+ j(x, z, t))− φ(x) ν(dz).

Again we see that−L̃◦I is nonnegative and the scheme is monotone if I is monotone.

Remark 6.9. When j ≡ 0, the operator L̃ is different from the L̃ of Section 3,
and hence gives a new scheme also for purely local equation. In fact by carefully
designing the weak Euler approximation of (4) a whole family of schemes can be
obtained, schemes that will have different strong and weak sides.

4.2. The scheme in the nonlinear case under (18)

A similar derivation using the dynamical programming principle would give the
following scheme for (5) (compare with (9)):

U(tm, xα)− U(tm−1, xα)

∆t
=

sup
α∈A

{
L̃α[IU ](tm−1, xα) + cα(tm−1, xα)U(tm−1, xα) + f(tm−1, xα)

}
, (19)

for m ≥ 0, α ∈ ZN where L̃α is defined as L̃ except that σ, b, and η now depend
also on α.

Note that the scheme so far is explicit, and if I is a monotone interpolation
operator, then the scheme is monotone in the sense of [4]. See Remark 6.1 for a
remark on the lack of CFL condition. If linear interpolation (a monotone O(∆x2)

interpolation) is used, then the scheme is monotone with a truncation error of the
form

O
(

∆t+ ∆t+
∆x2

∆t
+ ν̄(∆t+ ∆x2)

)
.
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Here the three first terms are as in the local case (see Remark 6.1), the fourth term
comes from

e−ν̄∆t,
1− e−ν̄∆t

ν̄∆t
≈ 1 +O(ν̄∆t),

and the last term from the ν-integrated interpolation error.
In view of these properties, and under standard assumptions on the coefficients,

we easily find that the scheme is L∞-stable and we can then use a nonlocal version
of the Barles-Souganidis result (see Section 1) to prove local uniform convergence
of the scheme (19) to the (not necessarily smooth viscosity) solution of (5). To
summarize, the scheme (19) has the following properties:

(1) it is consistent and monotone,

(2) it is first order accurate with linear CFL condition ∆t = C∆x,

(3) it is L∞-stable and locally uniformly convergent under general and natural
assumptions which include degenerate problems and nonsmooth solutions,

(4) robust a priori error estimates can be obtained under general and natural
assumptions which include degenerate problems and nonsmooth solutions.

These properties were proved in the stationary case in [10], and these proofs can be
adapted to the present time dependent case without too much difficulties.

Remark 6.10.

(1) The above scheme is not fully discrete. It remains to discretize the supre-
mum and to introduce numerical quadrature to evaluate the ν-integral.
This can be done in such a way that the above properties are preserved,
see [10] for a more thorough discussion of these issues.

(2) When (18) does not hold and
∫
ν(dz) = ∞, we can reduce to the case∫

ν(dz) < ∞ by truncation, i. e. by replacing ν(dz) by 1|z|>δν(dz). For
δ small, the error we make in the equation and schemes will be small.
Moreover, we can improve the approximation (increase the order) by adding
suitably chosen local diffusion (i. e. modifying σ). In the latter case, we still
have a problem which we can solve with the above scheme. We refer again
to [10] for a detailed discussion on this.

(3) As in the previous section on local equations, error estimates can be ob-
tained in the general case by a regularization argument using Krylov’s
method of shaking the coefficients [25]. We refer again to [10] for actual
results, but see also [24; 5].

5. Appendix: Well-posedness of the Bellman equation

In this section we give some relevant well-posedness and regularity results for the
Bellman equation (5) and initial condition (2). To this end, we impose the following
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assumptions:

(A.1) The control set A is a separable metric space. For any α ∈ A, aα =
1
2σ

ασαT , and σα, bα, cα, fα, ηα are continuous.

(A.2) There is a positive constant K such that for all α ∈ A and t ∈ [0, T ],

|g|1 + |σα|1 + |bα|1 + |cα|1 + |fα|1 ≤ K,

where |φ|1 = sup(t,x)∈QT |φ(x, t)| + sup(x,t) 6=(y,s)
|φ(x,t)−φ(y,s)|
|x−y|+|t−s|1/2 is a space-

time Lipschitz/Hölder-norm.

(A.3) ν is a positive Radon measure on RM \ {0} satisfying∫
0<|z|≤1

|z|2ν(dz) +

∫
|z|≥1

ν(dz) ≤ K.

(A.4) ηα is continuous in (x, t), and for every α ∈ A and (y, s), (x, t) ∈ QT ,∫
|z|<1

|ηα(x, t, z)|2ν(dz) +

∫
|z|>0

|ηα(x, t, z)− ηα(y, s, z)|2

|x− y|2 + |t− s|
ν(dz)

+

∫
|z|≥1

|ηα(x, t, z)− ηα(y, s, z)|
|x− y|+ |t− s|1/2

ν(dz) ≤ K.

Assumptions (A.1)–(A.4) are standard and pretty general. E. g. they imply that
the associated SDEs have unique strong solutions for fixed nice controls. They can
be relaxed in many cases to allow for e. g. growth in the coefficients and solutions,
less regular c and f , and less regularity in time. Most models in finance are covered
by the assumptions, including most non-local ones [12].

Under these assumptions the following results hold:

Proposition 6.1. Assume (A.1)–(A.4).

(a) There exists a unique bounded continuous viscosity solution u of the initial value
problem (5)–(2) satisfying |u|1 <∞.

(b) If u1 and u2 are respectively viscosity sub and supersolutions of (5) satisfying
u1(0, ·) ≤ u2(0, ·), then u1 ≤ u2.

For the precise definition of viscosity solutions, we refer to e.g. [2]. The proof
of Proposition 6.1 can be obtained from interpolating between the proofs of [2] and
[22], see also [23].
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1. Introduction and examples

In finance, quantities such as asset prices, interest rates, and their derivatives are
often modeled by systems of stochastic differential equations (SDEs). Some exam-
ples are the correlated exponential Ornstein-Uhlenbeck stochastic volatility model
[25; 20]

dS(t) = µS(t)∆t+meZ(t)S(t)dW1(t),

dZ(t) = −αZ(t)∆t+ k
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

and the quadratic volatility model [24]

dS(t) = µS(t)∆t+ S(t)Z(t)dW1(t),

dZ(t) = l(ω − Z(t))S(t)∆t+ βZ(t)2
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

with positive parameters µ,m,α, k respectively µ, l, ω, β, and correlation ρ ∈
[−1, 1]. In both models, S and Z are stochastic processes describing an asset price
respectively characterizing its volatility, with initial conditions S(t0), Z(t0). Fur-
ther, there exist interest rate models like e.g. the Hull-White two-factor model

df(r(t)) = (θ(t) + u(t)− af(r(t))) ∆t+ σ1dW1(t),

du(t) = −bu(t)∆t+ σ2

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

having additive noise with correlation ρ, constants a, b, σ1 and σ2, a functional
form f(r), prescribed initial value u(0) = 0 and initial condition f(r(0)), and θ(t)
a function depending on the time chosen such that the model fits the initial term
structure (see [12] for details).

299
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More generally, we denote in the following by X = (X(t))t∈I the solution of the
d-dimensional Itô SDE defined by

dX(t) = a(t,X(t))∆t+
m∑
j=1

bj(t,X(t))dWj(t), X(t0) = x0, (1)

with an m-dimensional Wiener process (W (t))t≥0 and I = [t0, T ]. We assume that
the Borel-measurable coefficients a, bj : I × Rd → Rd, j = 1, . . . ,m are chosen such
that a unique solution exists, see e. g. [9].

Closed form solutions of SDEs are usually not available, so numerical approx-
imation is necessary. Therefore, let a discretization Ih = {t0, t1, . . . , tN} with
t0 < t1 < . . . < tN = T of the considered time interval [t0, T ] with step sizes
hn = tn+1 − tn for n = 0, 1, . . . , N − 1 be given. Further, define h = max0≤n<N hn
as the maximum step size. Then we aim at constructing a numerical approximation
process Y h = (Y h(t))t∈Ih which approximates in some sense X(t) at some discrete
times t ∈ Ih. Thereby, one is often not primarily interested in accurate approxi-
mations of individual solution paths, i .e. strong approximation, but rather in weak
approximation, i. e. good approximations of the expectation of functionals of the
solution, like the expectation of some payoff function in option pricing. An example
for such a payoff function is

P = Nvar ·

(
1

T

∫ T

0

V 2(t)∆t−Kvar

)
(2)

for a variance swap option with variance strike Kvar and variance notional Nvar,
where V (t) = meZ(t) for the correlated Ornstein-Uhlenbeck stochastic volatility
model and V (t) = Z(t) in the case of the quadratic volatility model.

The quality of the approximation method is amongst others judged by its order.
For the usually used definition of the weak order of convergence, let ClP (Rd,R)

denote the space of all g ∈ Cl(Rd,R) fulfilling a polynomial growth condition, i. e.
that there are constants C̃ > 0 and κ > 0 such that |∂ixg(x)| ≤ C̃(1 + ‖x‖κ) for any
partial derivative of order i ≤ l and all x ∈ Rd, see [13]. We say that Y h converges
weakly with order p to X as h → 0 on the grid Ih if for each f ∈ C2(p+1)

P (Rd,R)

there exist a constant Cf and a finite δ0 > 0 such that

max
t∈Ih
|E(f(X(t)))− E(f(Y h(t)))| ≤ Cf hp (3)

holds for each h ∈ ]0, δ0[ .
In recent years, the development of numerical methods for the weak approx-

imation of SDEs has become a field of increasing interest, see e. g. [13; 19] and
references therein. Amongst modern approaches are stochastic multi-step methods,
stochastic Taylor methods and stochastic Runge-Kutta (SRK) methods, the latter
ones playing the major role, as they are easier to work with than the first ones,
and do not rely on the computation of higher order derivatives of the coefficient
functions of the SDE like the second ones. Second order SRK methods for the
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weak approximation of SDEs were proposed amongst others by [13; 14; 18; 26; 4].
However, these methods were not suitable for problems with high numbers m of
Wiener processes, because for these methods the number of function evaluations
per step increases quadratically in m. Recently, new classes of SRK methods were
introduced by [22; 23] which overcome this problem. An alternative has later been
proposed by [16]. An explicit third order weak SRK method for autonomous SDEs
with scalar (i. e. one-dimensional) noise has been given in [13], a class of third order
weak schemes for multi-dimensional additive noise can be found in [2].

Usually the expectation of a considered payoff function evaluated at the numer-
ical approximation process cannot be calculated explicitly. Therefore, one often
resorts to Monte Carlo simulation, i e. simulating M stochastically independent re-
alizations Y h,j = (Y h(t))jt∈Ih , j = 1, . . . ,M , of the approximation Y h = (Y h(t))t∈Ih
and applying the payoff function P to each of the realizations. Then, applying the
arithmetic mean

ÊM (P (Y h)) =
1

M

M∑
j=1

P (Y h,j)

as an estimator we obtain an approximation for the desired expectation of the
payoff.

In the following, we introduce in Section 2 a class of efficient SRK methods for
second order weak approximation of general multi-dimensional SDEs and present
in Subsection 2.1 coefficients defining an explicit SRK method that possesses mini-
mized leading error terms. However, sometimes stiff SDEs have to be solved where
explicit methods would need very small step sizes for reasonable approximations.
In this case, implicit methods are an appropriate choice and coefficients for a weak
second order drift-implicit SRK method are presented in Subsection 2.2 and it is
described how to solve the occurring implicit equations. In Section 3 we introduce
a class of SRK methods which are suitable for the third order weak approximation
of multi-dimensional SDEs with additive noise. Because some payoff functions may
need approximation values not only at the prescribed discretization points but also
at some intermediate time points, continuous SRK methods are presented in Sec-
tion 4 that allow to get approximations at any time with negligible computational
costs. This feature is of special importance if the step size control algorithm de-
scribed in Section 5 is applied in order to control the approximation errors. Finally,
in Section 6 we give an outlook to the topic of optimally balancing of step sizes and
the number of Monte Carlo simulations as well as some remarks to the application of
the multi-level Monte Carlo simulation recently proposed by Giles [10]. The aim of
the presented approximation methods and the corresponding add-ons is to provide
a rich toolbox for practitioners who are confronted with the problem of numerical
weak approximation in mathematical finance. Here, we want to emphasize that this
introduction is far away from being exhaustive and that there is a big amount of
special literature that is steadily increasing due to active research in this area (see,
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e.g., [13] and the references therein).

2. Efficient second order stochastic Runge-Kutta methods

We consider the class of SRK methods introduced in [23] for the second order weak
approximation of SDE (1). The d-dimensional approximation process Y h with
Yn = Y h(tn) of an s-stage SRK method is thus defined by Y0 = x0 and

Yn+1 = Yn +
s∑
i=1

αi a(tn + c
(0)
i hn, H

(0)
i )hn

+
s∑
i=1

m∑
k=1

β
(1)
i bk(tn + c

(1)
i hn, H

(k)
i ) Î(k),n

+
s∑
i=1

m∑
k=1

β
(2)
i bk(tn + c

(1)
i hn, H

(k)
i )

Î(k,k),n√
hn

+
s∑
i=1

m∑
k=1

β
(3)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i ) Î(k),n

+
s∑
i=1

m∑
k=1

β
(4)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i )

√
hn

(4)

for n = 0, 1, . . . , N − 1 with stage values

H
(0)
i = Yn +

s∑
j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑
j=1

m∑
l=1

B
(0)
ij bl(tn + c

(1)
j hn, H

(l)
j ) Î(l),n

H
(k)
i = Yn +

s∑
j=1

A
(1)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑
j=1

B
(1)
ij bk(tn + c

(1)
j hn, H

(k)
j )

√
hn

(5a)

and

Ĥ
(k)
i = Yn +

s∑
j=1

A
(2)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑
j=1

m∑
l=1
l 6=k

B
(2)
ij bl(tn + c

(1)
j hn, H

(l)
j )

Î(k,l),n√
hn

(5b)

for i = 1, . . . , s and k = 1, . . . ,m. Here, α, β(1), . . . , β(4), c(q) ∈ Rs and A(q), B(q) ∈
Rs×s for q ∈ {0, 1, 2} are the vectors and matrices of coefficients of the SRK method
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where c(q) = A(q)e for q ∈ {0, 1, 2} with a vector e = (1, . . . , 1)T . They can be
gathered in the following extended Butcher tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β(1)T β(2)T

β(3)T β(4)T

The SRK method needs the simulation of independent realizations of the random
variables Î(k),n, k = 1, . . . ,m, in each step. They are three-point distributed with

P(Î(k),n = ±
√

3hn) =
1

6
and P(Î(k),n = 0) =

2

3
.

Further, independent realizations of the random variables Î(k,l),n for k, l = 1, . . . ,m

that are defined by

Î(k,l),n =


1
2 (Î(k),nÎ(l),n −

√
hnĨ(k),n) if k < l

1
2 (Î(k),nÎ(l),n +

√
hnĨ(l),n) if l < k

1
2 (Î2

(k),n − hn) if k = l

(6)

have to be simulated in each step. They are defined by two point distributed
independent random variables Ĩ(k),n satisfying

P(Ĩ(k),n = ±
√
hn) =

1

2

for k = 1, . . . ,m−1. Thus, 2m−1 realizations of discretely distributed independent
random variables have to be simulated each step.

By the application of the multi–colored rooted tree analysis ([21], see also [3])
order conditions for the coefficients of the SRK method (4) – (5) can be easily
determined. For a detailed analysis of convergence, we refer to Theorem 5.1 in [23]

that gives order conditions for the SRK method (4) – (5) of weak order one and
two.

2.1. An efficient explicit second order SRK method

Explicit SRK methods in the class (4) – (5) are characterized by A(q)
ij = B

(q)
ij = 0

for j ≥ i and q ∈ {0, 1}, which means that the equations (5a) for the stages and
thus also the others are explicitly solvable. One can show that explicit order one
SRK methods need at least s = 1 stage while order two SRK methods need at least
s = 3 stages.
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Table 1. Coefficients of the explicit weak second order SRK scheme DRI1

0

1
2

1
2

6−
√

6
10

1 −1 2 3+2
√

6
5

0

0

342
491

342
491

3
√

38
491

342
491

342
491

0 −3
√

38
491

0

0 0 0 0

0 0 − 214
513

√
1105
991

− 491
513

√
221
4955

− 491
513

√
221
4955

0 0 0 214
513

√
1105
991

491
513

√
221
4955

491
513

√
221
4955

1
6

2
3

1
6

193
684

491
1368

491
1368

0 1
6

√
491
38

− 1
6

√
491
38

− 4955
7072

4955
14144

4955
14144

0 − 1
8

√
4955
221

1
8

√
4955
221

In [8], we gave a full classification of the coefficients of all explicit methods with
minimal stage number. Based on this classification, we calculated the coefficients
of an extension of the well-known RK32 scheme of Kutta [1] to an SRK method
with minimized leading local error term, resulting in the method DRI1 shown in
Table 1. This SRK method has weak order two, however the inherent RK32 scheme
assures order three for the SRK method if it is applied to ODEs, i.e. SDE (1) with
bj(t, x) ≡ 0 for j = 1, . . . ,m.

2.2. Implicit SRK methods

When numerically integrating an SDE, one sometimes experiences that explicit
methods suffer from huge stability problems, in the sense that only excessively small
step sizes lead to reasonable approximations, whereas implicit methods do not suffer
from these problems. Such (systems of) equations are called stiff. Second order
weak approximation methods for stiff systems have been considered in [13; 15]. In
[7] we considered suitable implicit methods within the proposed class of efficient
SRK methods and analyzed their stability properties, suggesting amongst others
the coefficients of DDIRDI5 given in Table 2.

The drawback of implicit SRK methods is that their stage values are only given
implicitly. E. g., for the methods in the class (4) - (5), if not all of the matrices A(q)

and B(q), q ∈ {0, 1}, are lower triangular, then the stage values H(k), k = 0, . . . ,m,
are only given implicitly by (5a). So, in practice these implicit equations have to
be solved approximately, which is usually done by iterative Newton-type methods.
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Table 2. Coefficients of the implicit weak second
order SRK scheme DDIRDI5
1
2

+ 1
6

√
3 1

2
+ 1

6

√
3 0 0 0 0 0

1
2
− 1

6

√
3 − 1

3

√
3 1

2
+ 1

6

√
3 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 1 0 0

1 1 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 −1 0 0

1
2

1
2

0 1
2

1
4

1
4

0 1
2
− 1

2

− 1
2

1
4

1
4

0 1
2
− 1

2

These yield for (5a) the linear and thus directly solvable system

H
(0)
i,r = Yn + hn

s∑
j=1

A
(0)
ij

(
a(tn + c

(0)
j hn, H

(0)
j,r−1) + J

(0)
j,r−1(H

(0)
j,r −H

(0)
j,r−1)

)
+

m∑
l=1

Î(l),n

s∑
j=1

B
(0)
ij

(
bl(tn + c

(1)
j hn, H

(l)
j,r−1) + J

(l)
j,r−1(H

(l)
j,r −H

(l)
j,r−1)

)
H

(k)
i,r = Yn + hn

s∑
j=1

A
(1)
ij

(
a(tn + c

(0)
j hn, H

(0)
j,r−1) + J

(0)
j,r−1(H

(0)
j,r −H

(0)
j,r−1)

)
+
√
hn

s∑
j=1

(
B

(1)
ij bk(tn + c

(1)
j hn, H

(k)
j,r−1) + J

(k)
j,r−1(H

(k)
j,r −H

(k)
j,r−1)

)
(7)

for i = 1, . . . , s, k = 1, . . . ,m and r = 1, . . . , R with R being the iteration number,
some approximations J (0)

j,r−1 and J
(l)
j,r−1 to the Jacobians of a(tn + c

(0)
j hn, H

(0)
j,r−1)

and bl(tn+ c
(1)
j hn, H

(l)
j,r−1), and predictors (initial values for the iteration) H(0)

i,0 and
H

(k)
i,0 .

For the approximations J (0)
j,r−1 and J (l)

j,r−1 to the Jacobian of a(tn + c
(0)
j hn, H

(0)
j,r−1)

and bl(tn + c
(1)
j hn, H

(l)
j,r−1) there exist several common choices. If we choose all

J
(0)
j,r−1 and J

(l)
j,r−1 to be the exact Jacobians a′(tn + c

(0)
j hn, H

(0)
j,r−1) and bl

′(tn +

c
(1)
j hn, H

(l)
j,r−1), then we obtain the classical Newton iteration method for solv-

ing (5a), which is locally convergent of order two and will be denoted in the
following as full Newton iteration. If we choose instead J

(0)
j,r−1 = a′(tn, Yn) and

J
(l)
j,r−1 = bl

′(tn, Yn), then we obtain the so called modified Newton iteration method,
which is locally convergent of order one. Here, J (0)

j,r−1 and J (l)
j,r−1 are independent

of the iteration number r and the stage values. Thus their computation is much
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cheaper and simpler than in the full Newton iteration case, and in Runge-Kutta
implementations this is usually the method of choice.
The third and simplest possibility is to choose all J (0)

j,r−1 = J
(l)
j,r−1 = 0. In this case

we do not even have to solve a linear system for the stage values. This iteration
method is called simple iteration method or predictor corrector method. Its disad-
vantage is that it leads to an explicit method, so it is not suitable for stiff systems.
Setting H

(k)
i = H

(k)
i,R, k = 0, . . . ,m, (4), (7) and (5b) form a so-called iterated

Runge-Kutta method. In [3] the order of these has been determined in dependence
on the type of the SDE, the numerical approximation scheme used to solve the
implicit equations, on the number of iterations and on the predictor. It turns out
that for the weak approximation of Itô SDEs, when using the trivial predictor, i e.
H

(k)
i,0 = Yn, k = 0, . . . ,m, the number of modified Newton steps needed is one less

than the order of the method, so for second order methods only one iteration step
is necessary to preserve the overall order of convergence.

3. Third order SRK methods for SDEs with additive noise

For SDEs having additive noise, i. e., the functions bj(t, x) ≡ bj , j = 1, . . . ,m, in
(1) are constant, like the Hull-White two-factor model, in [2] the following class of
SRK methods for third order weak approximation has been proposed:

Yn+1 = Yn + hn

s∑
i=1

αia(tn + cihn, Hi) +
m∑
l=1

blĴ(l),n, (8a)

Hi = Yn + hn

s∑
j=1

Aija(tn + cjhn, Hj) +
m∑
l=1

bl(d1,iĴ(l),n + d2,iĴ(m+l),n), (8b)

which defines a d-dimensional approximation process Y h with Y h(tn) = Yn. Here,
Ĵ(k),n, k = 1, . . . , 2m, are independent random variables which depend on hn and
whose moments all exist. Further, α = (α1, . . . , αs)

>, A = (Aij)i,j=1,...,s, c =

(c1, . . . , cs)
>, d1 = (d1,1, . . . , d1,s)

>, and d2 = (d2,1, . . . , d2,s)
> are the coefficients

of the SRK method, which can be arranged in an extended Butcher tableau of the
form

c A d1 d2

αT
.

In the following, we choose c = Ae with e = (1, . . . , 1)> ∈ Rs. Applying B-series
theory ([3], see also [21]) order conditions for orders one, two, and three have been
determined, see Theorem 4 in [2]. To obtain an order three method, the moments
of the random variables Ĵ(k),n have to coincide up to the seventh moment with the
ones of N(0, hn) for k = 1, . . . ,m and up to the fifth moment for k = m+1, . . . , 2m.
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Table 3. Coefficients of the explicit weak third order SRK scheme AN3D1

0 0 0 0 0

d1 d2
1 1 0 0 0

1/2 3/8 1/8 0 0

1 −0.4526683126055039 −0.4842227708685013 1.9368910834740051 0

1/6 −0.005430430675258792 2/3 0.1720970973419255

with

d1 = (−0.01844540496323970, 0.8017012756521233, ...

0.5092227024816198, 0.9758794209767762)>

d2 = (−0.1866426386543421,−0.8575745885712401, ...

− 0.4723392695015512, 0.3060354860326548)>

So, one can e. g. choose Ĵ(k),n such that

P(Ĵ(k),n = ±
√

6hn) =
1

30
, P(Ĵ(k),n = ±

√
hn) =

3

10
, P(Ĵ(k),n = 0) =

1

3

for k = 1, . . . ,m and

P(Ĵ(k),n = ±
√

3hn) =
1

6
, P(Ĵ(k),n = 0) =

2

3

for k = m+ 1, . . . , 2m.
Whereas in the deterministic case we would only need three stages to construct an

explicit third order method, here we need four stages to fulfill the order conditions.
But with four stages, there are some remaining degrees of freedom. Determining
these by requiring in addition that the method fulfills also the deterministic or-
der four conditions and that the order four coefficients of the local error in the
Euclidean norm assuming two dimensional noise are minimized, a numerical opti-
mization yields the scheme AN3D1 presented in Table 3. AN3D1 needs 2m random
variable and four drift evaluations per step. Compared to Platen’s third order
method [13], which is only applicable in the case m = 1, but then also for general
noise, we need two random variable and three drift evaluations less.

4. Continuous weak approximation

The methods considered so far converge with some given order at the discretization
points. However, in some applications higher order continuous time approximation
methods guaranteeing uniform orders of convergence not only at the discretization
points but also at any arbitrary time point within the approximation interval are
of advantage.
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Classical time discrete methods are inefficient in this case where the number
of output points has to be very large because this forces the step size to be very
small. Therefore, in [6; 5] we developed continuous time approximation methods
guaranteeing uniform weak orders of convergence on the complete time interval,
i. e., (3) can be replaced by

max
t∈I
|E(f(X(t)))− E(f(Y h(t)))| ≤ Cf hp. (9)

Especially, we were interested in continuous sample trajectories of the applied SRK
methods. These have negligible additional computational complexity compared to
the time discrete SRK but allow e. g. the use of an individual discretization for each
sample trajectory which needs not necessarily to contain some common discretiza-
tion points for all trajectories in order to be able to calculate the expectation at
these common time points, a property which is useful e. g. when using adaptive
time stepping in parallel computing. For this reason, we extended the well known
convergence theorem due to [19] to the continuous case and developed continuous
extensions of weak order two SRK methods both in the Itô and in the Stratonovich
case.

Applying the theory developed there to the SRK method (4) – (5), we obtain
continuous second order approximation formulas by replacing (4) with

Y (tn + θhn) = Yn + θ
s∑
i=1

αi a(tn + c
(0)
i hn, H

(0)
i )hn

+
√
θ

s∑
i=1

m∑
k=1

β
(1)
i bk(tn + c

(1)
i hn, H

(k)
i ) Î(k)

+
s∑
i=1

m∑
k=1

β
(2)
i bk(tn + c

(1)
i hn, H

(k)
i )

Î(k,k)√
hn

+
s∑
i=1

m∑
k=1

β
(3)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i ) Î(k)

+
s∑
i=1

m∑
k=1

β
(4)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i )

√
hn

for θ ∈ [0, 1].
A continuous extension of the third order method AN3D1 is obtained when α in

(8) is replaced by the vector function

α(θ) =


0.6958702845944792θ − 0.5292036179278126θ2

0.0006311211304501030θ − 0.006061551805708955θ2

0.6082602157745158θ + 0.05840645089215089θ2

−0.3047614325400084θ + 0.4768585298819339θ2

 ,

and if the left hand side of (8a) is replaced by Y (tn + θhn) for θ ∈ [0, 1].
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5. Adaptive step size selection

Often, the solution of an SDE turns out to highly vary or oscillate over some pe-
riods of time while it behaves much more stable for other periods of time. Then,
the precision of the numerical approximation can be increased by spending more
computational work for the periods with a highly varying solution which means to
use small step sizes there and to increase step sizes for the remaining time periods.
This leads to an error control algorithm with adaptive step size selection where the
approximation error is estimated by a pair of embedded SRK methods of different
orders of convergence as proposed in [17]. Note that in this section we focus on the
second order methods introduced in Section 2, as the third order method AN3D1
does not possess an embedded second order method: If one restricts to four stages
in (8), then the order two conditions determine the weights α uniquely from the
remaining parameters. So, to obtain a local error estimator in this case, one can
either construct methods with five stages, or use local Richardson extrapolation,
which however roughly would double the computational work.

5.1. Embedded stochastic Runge-Kutta methods

In the following we denote by p = (pD, pS) the order of the SRK method (4), where
pD and pS with pD ≥ pS indicate the order of convergence if the SRK method is
applied to a deterministic or a stochastic differential equation, respectively. Thus,
the order pS is guaranteed in any case.

We consider a second SRK approximation Ŷn+1 which only differs from Yn+1

in the coefficients αi and β
(r)
i for r = 1, 2, 3, 4 with i = 1, . . . , s and can thus be

written in the form

Ŷn+1 = Yn +
s∑
i=1

α̂i a(tn + c
(0)
i hn, H

(0)
i )hn

+
s∑
i=1

m∑
k=1

β̂
(1)
i bk(tn + c

(1)
i hn, H

(k)
i ) Î(k),n

+
s∑
i=1

m∑
k=1

β̂
(2)
i bk(tn + c

(1)
i hn, H

(k)
i )

Î(k,k),n√
hn

+
s∑
i=1

m∑
k=1

β̂
(3)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i ) Î(k),n

+
s∑
i=1

m∑
k=1

β̂
(4)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i )

√
hn

(10)

for n = 0, 1, . . . , N − 1 using the same stage values given in (5). The order p̂ =

(p̂D, p̂S) of this approximation is assumed to fulfill p̂D < pD and p̂S < pS . Together
with the original SRK method it defines then an embedded SRK scheme of order
p(p̂) = (pD, pS)((p̂D, p̂S)).
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For step size control, we have to calculate the two approximations Yn+1 and Ŷn+1

in each step, both using the same stage values given in (5a) and (5b). Therefore,
the additional computational effort to calculate Ŷn+1 is negligible.

We will consider the embedded SRK schemes of order p(p̂) = (3, 2)((2, 1)) ob-
tained by extending the coefficients of the DRI1 scheme with the weights

α̂ = [0 1 0]T , β̂(1) = [1 0 0]T , β̂(2) = β̂(3) = β̂(4) = [0 0 0]T

for the embedded weak SRK approximation Ŷ of order (2, 1). Alternatively, we can
apply the implicit embedded SRK schemes of order p(p̂) = (2, 2)((1, 1)) by using
the coefficients of the DDIRDI5 scheme however with the weights

α̂ = [1 0 0]T , β̂(1) = [1 0 0]T , β̂(2) = β̂(3) = β̂(4) = [0 0 0]T

to get the implicit embedded weak SRK approximation Ŷ of order p̂ = (1, 1).

5.2. Step size control algorithm

For step size control, we describe the algorithm proposed in [17] that turned out
to give good results. For the problem of weak approximation, a suitable step size
selection has to depend on the expectation of the solution rather than on single
trajectories. The expectation gives much more regularity by smoothing the solution
which is essential for the local error estimates. For each step, we calculate two
approximations by the embedded SRK method based on (4) and (10) with stage
values (5) based on Yn. Then, we obtain a more precise approximation Yn+1 and
a less precise one Ŷn+1. Suppose that we have calculated M realizations Y kn , k =

1, . . . ,M , that are needed for the Monte Carlo simulation at time tn. Then, we
calculate the corresponding approximations Y kn+1 and Ŷ kn+1 with the proposed step
size h. After applying the payoff function f : Rd → R to each approximation value,
we get the two estimates for the expectations

ÊM (f(Yn+1)) ≈ E(f(Yn+1)) and ÊM (f(Ŷn+1)) ≈ E(f(Ŷn+1)).

Then |ÊM
(
f(Yn+1)

)
− ÊM

(
f(Ŷn+1)

)
| is used as an estimator for the local error of

the less precise approximation. Now, we calculate the total tolerance tol as

tol = Atol + max{|ÊM
(
f(Yn)

)
|, |ÊM

(
f(Yn+1)

)
|}Rtol (11)

with some prescribed positive absolute tolerance Atol and relative tolerance Rtol
for the error. Thus, we can calculate an approximately optimal step size such that

err =
|ÊM

(
f(Yn+1)

)
− ÊM

(
f(Ŷn+1)

)
|

tol
≈ 1 (12)

is fulfilled. Using the local error estimate (see [17] for details), we get that

hopt = h

(
1

err

) 1
p̂S+1
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is the optimal step size proposal to calculate the current approximation Yn+1. In
case of deterministic ordinary differential equations, Hairer, Nθrsett and Wanner
[11] propose a multiplication of hopt by a safety factor fac < 1 (e.g. fac = 0.8)
to prevent strong oscillations of the step size. Further, in order to avoid too fast
growth or reduction of the step size we also use factors facmax and facmin, so
that finally the new step size is calculated as

hnew = h ·min

(
facmax,max

(
facmin, fac ·

(
1

err

) 1
p̂S+1

))
. (13)

Finally, if err ≤ 1 is fulfilled then the current step with step size h is accepted for all
M realizations of Yn+1 and the next step is calculated with step size hnew. However
if err > 1, then the current step is rejected and has to be recalculated with the
smaller step size hnew for all M realizations.

5.3. Simulation of the conditional distributed random variables

The weak second order SRK method makes use of the random variables Î(k),n and
Ĩ(l),n for k = 1, . . . ,m and l = 1, . . . ,m − 1. If the step size control algorithm is
applied, we sometimes need to reject calculated steps based on some proposed step
size if the local error estimate is too large. Then, we have to recalculate the last
step with a smaller step size.

Let us suppose that we already have simulated the approximation Yn at time
tn and we calculate the next approximation at time tn + h with some proposed
step size h. Let us denote the used random variables Î(k),n = Î(k);tn,tn+h and
Ĩ(l),n = Ĩ(l);tn,tn+h in order to emphasize the corresponding time interval. If the
new approximation at tn + h is rejected by the step size control algorithm, then we
have to repeat the calculation of Yn+1 with some smaller step size hnew < h, i.e. we
have to divide the integration interval [tn + h] into [tn + hnew]∪ [tn + hnew, tn + h].
In this case, we have to simulate random variables Î(k);tn,tn+hnew and Ĩ(l);tn,tn+hnew

for the approximation at time tn+hnew with a conditional distribution because the
realization of the underlying random processes at time tn + h are already known.

Suppose that î(k) and ĩ(l) denote the already known realizations of the random
variables Î(k);tn,tn+h and Ĩ(l);tn,tn+h, respectively. Now, one has to simulate real-
izations of the independent random variables Ẑ(k) and Z̃(l) for k = 1, . . . ,m and
l = 1, . . . ,m− 1 with distribution

P(Ẑ(k) = ±
√

3hnew) =
1

6
, P(Ẑ(k) = 0) =

2

3

and P(Z̃(l) = ±
√
hnew) =

1

2
.

Then, we have to apply random variables with a conditional distribution that are
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simulated as follows:

Î(k);tn,tn+hnew =

√
h− hnew

h
Ẑ(k) +

hnew
h

î(k) (14)

Ĩ(l);tn,tn+hnew =

√
h− hnew

h
Z̃(l) +

hnew
h

ĩ(l) (15)

and we directly obtain that

Î(k);tn+hnew,tn+h = −
√
h− hnew

h
Ẑ(k) +

h− hnew
h

î(k) (16)

Ĩ(l);tn+hnew,tn+h = −
√
h− hnew

h
Z̃(l) +

h− hnew
h

ĩ(l). (17)

Because Î(k,l),n can be calculated from Î(k),n, Î(l),n, Ĩ(k),n and Ĩ(l),n, all needed
random variables for the SRK method in case of a rejected step size are given.
Clearly, if the new step size hnew is rejected as well, we have to try another step
size less than hnew and again we have to simulate random variables conditionally
that the realizations at time tn+hnew are known. As a result of this, all realizations
have to be stored until an approximation at some later time point is accepted by
the step size control algorithm.

6. Adaptive selection of Monte Carlo sample number and time step-
ping

6.1. Classical setting

Until now, we considered |E(f(X(t))) − E(f(Y h(t)))| as a measure of the error.
However, in practice it is often not possible to evaluate the expectation E(f(Y h(t)))

exactly, and one often resorts then to Monte-Carlo methods, calculating M inde-
pendent realizations Y h,j , j = 1, . . . ,M , and using the estimator

E(f(Y h(t))) ≈ ÊM (f(Y h(t))) =
1

M

M∑
j=1

f(Y h,j(t))

as an approximation for the desired expectation.
The resulting error |E(f(X(t)))− ÊM (f(Y h(t)))| is, however, itself a stochastic

variable. It is often assessed in the mean-square sense, thus looking at

ems(t) = E
((

E(f(X(t)))− ÊM (f(Y h(t))
)2)

,

which can be rewritten as the sum of the squared systematic error of the weak
approximation method and the variance of the Monte-Carlo estimator, i.e.

ems(t) =

(
E
(
f
(
X(t)

)
− f

(
Y h(t)

)))2

+ Var ÊM (f(Y h(t))︸ ︷︷ ︸
= 1
M Var f(Y h(t))

.
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Thus, to obtain an estimator with a mean-square error smaller than some prescribed
ε2, one can choose M , and, in the case of fixed time stepping, h, otherwise Atoli
and Rtoli, such that suitable estimators for∣∣∣E(f(X(t)

)
− f

(
Y h(t)

))∣∣∣ and
1

M
Var f(Y h(t))

are not larger than ε√
2
. Whereas the systematic error can be estimated by Richard-

son extrapolation techniques, the variance is usually estimated as sample variance.
To simplify the presentation, in the following we restrict to the case of constant
step sizes and controlling the error only at the end point T . Then, similar to the
multi-level Monte Carlo algorithm in [10], the following algorithm can be applied
to determine M and h, given some rough initial guesses:

Step 1 Choose initial N and M .
Step 2 Define h = T−t0

N .
Step 3 Calculate the unbiased sample variance s2 of M samples of f(Y h(T )).
Step 4 Choose newM according toM = d

√
2s2

ε e. Evaluate extra samples as needed
for new M , and calculate ÊM (f(Y h(T ))).

Step 5 Calculate ÊM
(
f
(
Y
h
2 (T )

))
and the extrapolated value

F =
2pÊM

(
f
(
Y
h
2 (T )

))
− ÊM

(
f
(
Y h(T )

))
2p − 1

,

where p denotes the weak approximation order of the method.
Step 6 Calculate the error indicator

χ =

√
2

ε
|F − ÊM

(
f
(
Y h(T )

))
|.

If χ < 1, F can be used as approximation with the desired accuracy, so we
are done.
Otherwise, calculate the new number of time steps as

Nnew = dN p
√
χ · λe,

where the safety factor λ can be chosen e. g. equal to 1.25. Let N = Nnew
and restart with Step 2.

6.2. Short outlook to multi-level Monte Carlo simulation

The presented SRK methods are weak order two schemes in the sense of (3). How-
ever, for the approximation of the expectation we applied the arithmetic mean as
an estimator given a particular number of independent sample trajectories. In order
to reduce the variance of such an estimator and to optimally balance the computa-
tional costs for the number of samples and the computation of each approximation,
Giles proposed the multi-level Monte Carlo simulation (see [10] for details). Here,
we want to mention that although multi-level Monte Carlo simulation originally
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relies on pathwise approximation properties, this technique can be applied to weak
approximation schemes like the presented SRK methods as well. In this case, the
random variables Î(k),n and Ĩ(l),n that are used by the SRK method have to be cho-
sen from infinitely divisible distribution, e. g. the normal distribution, to ensure that
simulations on a coarse grid can be build from the accumulated realizations of the
random variables that are used on a fine grid. Of special interest is the combination
of a weak order one scheme on all levels except of the finest level, where a higher
order weak approximation should be applied. In this case, the computational effort
can be significantly reduced compared to multi-level Monte Carlo simulation based
on the same approximation scheme on each level. Further details will be available
in a forthcoming report. Multi-level Monte Carlo simulation is in the focus of active
current research.
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Chapter 8

Wavelet solution of degenerate Kolmogoroff forward equations for
exotic contracts in finance

Oleg Reichmann and Christoph Schwab∗

Seminar für Angewandte Mathematik, ETH Zürich. Rämistrasse 101, 8092
Zürich, Switzerland.

Abstract We review deterministic numerical methods for option pricing which
are based on discretizations of the (Kolmogoroff forward) pricing equations. Specifi-
cally, wavelet Galerkin discretizations in (log) state space G of the stochastic process
are based on the Dirichlet forms corresponding to the stochastic process S, and ex-
ponentially convergent numerical time stepping of discontinuous Galerkin type is
used, based on the analyticity of the semigroup generated by the process.

We illustrate the general concepts in particular for option pricing under market
models beyond the Black-Scholes-Merton setup, where standard path simulation
methods are known to require special attention, due to the degeneracies of the
process S, typically near the origin in the state space.

Here, the infinitesimal generators’ domains are known to coincide with certain
Sobolev spaces with singular weights and, possibly, nonconstant order of differenti-
ation, leading to nonstandard partial integrodifferential equations. Specific models
considered here are the CEV model, the Ait-Sahalia model as well as the Heston
stochastic volatility model. In each of these cases, we exhibit the corresponding
evolution triple consisting of a (weighted) L2 space, identified with its own dual,
and the domain of the Dirichlet form of the stochastic process, and its dual. While
the chapter of Kloeden and Neuenkirch focuses on the simulation of the paths of the
process, the methods presented here allow the deterministic approximation of the
conditional expectations. The arising (Kolmogoroff forward) pricing equations are
degenerate parabolic. We show well-posedness of their variational formulations for
a number of contracts (Barrier-, American-, Compound- and Swing contracts) on
certain weighted Sobolev spaces. Their discretization is carried out using wavelets
in space and an hp-discontinuous Galerkin (dG) timestepping scheme for European
contracts. The computation of Greeks for these models is also addressed.
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1. Financial Modelling

A large class (but not all) models in quantitative finance assume that the dynamics
of market (“spot”) prices S(t) of the risky assets (such as, for example, stocks)
are governed by an Ito stochastic ordinary differential equation (SODE for short).
Specifically, the dynamics of the risky asset given by stochastic differential equation

dS(t) = b(S, t)dt+ σ(S, t)dW (t) , 0 ≤ t ≤ T <∞ . (1)

Here, W (t) is a standard Brownian motion, and (1) is to be understood as an Ito
SODE, and the coefficients b(s, t) and σ(s, t) are assumed to be such that (1) admits
unique, strong solutions {S(t)}t≥0 which are adapted to the natural filtration of the
driving process W = {W (t)}t≥0.

The archetype of market models like (1) is the classical Black-Scholes (BS) model,
where the parameters b and σ are linear with respect to S(t), i.e.

dS(t) = bS(t)dt+ σS(t)dW (t) . (2)

In (1), the coefficient functions b(s, t) and σ(s, t) in (1) are assumed to depend
on various parameters which can be used to calibrate the model (1) to market
data. Typically, this is done by calibrating predicted, arbitrage-free option prices
computed from (1) for particular instances of the parameter values to observed
prices of derivative contracts in the markets.

Evidently, for the efficiency of this methodology, it is necessary to have efficient
numerical solvers for (1) for a given set of parameters, in order to compute the
arbitrage free prices and their sensitivities from (1).

Under the assumptions made above, the price process S = {S(t)}t≥0 is a Markov
process, and we speak of (1) as parametric Makovian market model; we refer to
[22] for details. We emphasize that not all models which are currently in use are
parametric, Markovian diffusions governed by Ito SODEs like (1): it has been argued
that (1) is too specific, and that the class of “driving processes”, i.e. W in (1), should
be widened to include also processes with jumps, such as Lévy processes: indeed, no
arbitrage pricing theory is available for even more general, non-Markovian models
(see, e.g., [13] and the references there), and in the Markovian case, the inclusion
of driving processes with jumps in (1) is widely practised for about a decade by
now (see, e.g. [7]) and the numerical methodologies which are discussed below are
available also in this setting (see [35] and the references there).

Arguments against the inclusion of driving processes with jumps have been that
the completeness of market models is then lost, and, from a numerical simulation
perspective, that path simulation will become difficult in cases where sampling from
the exact increments of the driving process is not possible anymore.

In the present note, we consider computational option pricing methods for dif-
fusion driven market models such as (1) where, however, the coefficient functions
b(s, t) and σ(s, t) exhibit various degeneracies which render the numerical solution
and path simulation for the SODE (1) nonstandard. Rather than elaborating on
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path simulation, we consider here the evaluation of the option prices by the nu-
merical solution of the (deterministic) Kolmogoroff equations. These will take the
generic form

∂tu = Au , 0 < t ≤ T , u|t=0 = u0 . (3)

Here, A denotes the infinitesimal generator of the semigroup associated to the price
process {S(t)}t≥0, with domain D(A) ⊂ H, and G denotes the range of admissible
values which can be taken by the price process S. For degenerate diffusions, the
pivot space H depends on the market model and could be a (weighted) L2 space
over G.

Our numerical approach will not be based on path simulation, but rather on the
variational approximation of weak solutions of (3). These are given by

∀v ∈ V : (v, ∂tu) + a(u, v) = 0 , 0 < t ≤ T , u|t=0 = u0 . (4)

Here, the bilinear form a(·, ·) denotes the so-called Dirichlet form of the process S,
and V = D(A1/2) ⊂ H

Since the parabolic forward equation (3), resp. (4) is deterministic and parabolic,
its solution operator has strong smoothing properties: for example, it forms in all
cases considered here, an analytic semigroup which implies time-analyticity of the
dependence of the solutions u(t) on t. It is, as we shall show, therefore possible
to design high-order convergent discretization schemes for (4), both with respect
to time-integration and with respect to the discretization in the spot price s. The
methods which we present here are mesh based, i.e they require meshing the state
domain G of the price process S. While this causes technical difficulties in the
case when S in (1) is vector-valued (as, e.g., in basket contracts) due to the curse of
dimensionality, it is a substantial advantage in that prices of compound and of multi-
period contracts can be computed without any modification of the basic numerical
methodology.

The price to be paid for this is, of course, the solution of large linear systems of
equations in each timestep. As we will show, these systems can be preconditioned
perfectly by means of multiresolution (i.e. wavelet) Galerkin discretizations in G,
also in cases when the generatorA is a degenerate, second order differential operator;
this case is, in financial models, typical, and standard preconditioning methods such
as multilevel or multigrid preconditioning are not directly applicable. The use of
multiresolution bases for Galerkin discretizations has, moreover, also the advantage
to render the matrices arising from processes with jumps numerically sparse; this
aspect is not developed here, and we refer to [35] and the references there for more
on this.

Here, we consider only contracts of finite maturity, i.e. T < ∞. Pricing of
perpetual contracts will also allow the use of our techniques, but for brevity of
exposition, we will not elaborate here. The outline of this chapter is as follows: a
general setup of Markovian market models and of financial derivative contracts are
introduced in Section 2. Well-posedness, i.e. existence of a unique weak solution,
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of variational formulations of the forward equations is subsequently discussed in
Section 3. The space and time discretization of the pricing problems is presented
and analyzed in Section 4. In particular, we propose a wavelet discretization in
space and an hp-dG timestepping scheme. Finally, numerical examples and an
outlook are given in Section 5.

2. Pricing of Derivative Contracts

In the pricing of derivative contracts enter two classes of ingredients: a) the market
model and b) the conditions from the contracts’ term sheets.

2.1. Models

In the following we present some examples of SDEs with degenerate coefficients,
where by degenerate we mean that the coefficients do not satisfy a global Lipschitz
condition, i.e.,

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C |x− y| , (5)

for some functions b and σ, x, y ∈ R and C independent of x and y.

Example 1 (CEV model). Let S be given as the solution of

dS(t) = bS(t)dt+ σS(t)ρdW (t), S(0) = s,

b ∈ R, σ, s ∈ R+ and ρ ∈ (0, 1). Note that in the limiting case ρ ↑ 1 we obtain the
classical Black–Scholes model and for ρ = 0.5 a square-root process, see [10; 14].
The generator ACEV for the CEV model is given as

ACEV (s; ∂s) = bs∂s +
1

2
σ2s2ρ∂ss .

Example 2 (Heston model). Let S = (S(t))t≥0 be given as S(t) = exp(X(t)).
Then (the log price process) X = (X(t))t≥0 is the solution of

dX(t) = (b− 1

2
Y (t))dt+

√
Y (t)S(t)dW1(t), X(0) = x,

dY (t) = α(m− Y (t))dt+ ρβ
√
Y (t)W1(t) +

√
1− ρ2

√
Y (t)W2(t),

Y (0) = Y0 .

Here, α, b,m ∈ R, Y0, β, s ∈ R+ and ρ ∈ [0, 1] and W1,W2 denote two independent
Brownian motions, see [19]. The generator A for the Heston model is given as

AH(x, y; ∂x, ∂y) :=
1

2
y∂xx + βρy∂xy +

1

2
β2y∂yy

+

(
b− 1

2
y

)
∂x + α(m− y)∂y .
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Note that we set the market price of volatility risk to zero for simplicity. A non-
vanishing market price of volatility risk would lead to a different drift component
for the volatility process, see also [2; 19].

Example 3 (Ait-Sahalia model). Let S be given as the solution of

dS(t) = (α−1S(t)−1 − α0 + α1S(t)− α2S(t)ν)dt

+σS(t)ρdW (t), S(0) = s,

for αi > 0, i = −1, . . . , 2, σ, ν, ρ, s > 0, see [1; 40] for details. The generator AAS
for the Ait-Sahalia model is given as

AAS(s; ∂s) = (α−1s
−1 − α0 + α1s− α2s

ν)∂s +
1

2
σ2s2ρ∂ss ,

in the following we set α0 = α2 = 0 for simplicity.

2.2. Contracts

In this section we derive pricing expressions, i.e., PDEs, PDIs or sequences of PD(I)s
for the valuation of plain vanilla and exotic contracts under general market models
as described in the previous section. Therefore let S = (S(t))t≥0 be an admissible
market model and A the corresponding generator as in Example 1-3.

2.2.1. European

The value V (t, s) of a European type contract with (reasonable) payoff g is given
as

V (t, s) = E[e−r(T−t)g(S(T ))|S(t) = s], (6)

where the expectation is computed under some (possibly non-unique) martingale
measure Q and r ≥ 0 denotes the risk free interest rate. Under some regularity
assumptions on the option price V (t, s) we formally obtain the following result.

Theorem 1. Let V ∈ C1,2((0, T )×G)∩C0([0, T ]×G) be given as Eq. (6), then V
satisfies the following equation

∂tV +AV − rV = 0 in (0, T )×G, V (T, s) = g(s) in G, (7)

where A is the generator of S in the CEV model resp. in the Ait-Sahalia model, or
the generator of Z = (X,Y ) in the Heston model, and where G denotes the state
space of the process S, respectively Z.

Barrier options differ from vanillas in the sense that the option contract is triggered
if the price of the underlying hits some barrier B > 0. Recall that a stopping time
τ for a given filtration F is a random variable taking values in (0,∞) and satisfying

{τ ≤ t} ∈ Ft, ∀t ≥ 0.
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Let τ(B,∞) denote the first hitting time of the complement set (−∞, B] by the
stochastic process S. Then the value of a down-and-out option is then given by

V (t, s) = E[e−r(T−t)g(S(T ))1τ(B,∞)>T |S(t) = s]. (8)

Under some regularity assumptions on the option price V (t, s) we obtain the fol-
lowing result.

Theorem 2. Let V ∈ C1,2((0, T )×GB)∩C0([0, T ]×GB) be given as Eq. (8), then
V satisfies the following equation

∂tV +AV − rV = 0 in (0, T )×GB , V (T, s) = g(s) in GB , (9)

and boundary conditions

V (t, s) = 0, in J ×GcB .

with A as in Theorem 1 and GB = (B,∞) for the CEV model and for the Ait-
Sahalia model and G = (log (B),∞)×R+ for the Heston model. Analogous formu-
lations can be obtained for up-and-out as well as knock in options. Note that the
value of the corresponding plain vanilla contract is given as the sum of the knock-
in and knock-out option. We refer to [16] for a rigorous derivation of the pricing
equation for Barrier options under certain additive market models.

2.2.2. Compound

Compound options are options on options. Let V1(t, s) be the option price of a
European option with payoff g1(s) and maturity T1 > 0. The value of a compound
option V with payoff g(s) and maturity 0 < T < T1 is given by

V (t, s) = E
[
er(t−T )g(V1(T, ST )) | S(t) = s

]
.

Applying Theorem 1 we can obtain the value V1 of the underlying option by solving
the partial differential equation

∂tV1 +AV1 − rV1 = 0, in (0, T1)×G, V1(T1, s) = g1(s), in G,

In a second step we get the price of the compound option by solving

∂tV +AV − rV = 0, in (0, T )×G, V (T, s) = g(V1(T, s)), in G.

2.2.3. American

Denoting by Tt,T the set of all stopping times for S with values in the interval (t, T ),
the value of an American option is given by

V (t, s) := sup
τ∈Tt,T

E
[
e−r(τ−t)g(Sτ ) | St = s

]
. (10)

As for the European vanilla style contracts, there is a close connection between
the probabilistic representation (10) of the price and a deterministic, PDE based
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representation of the price. Discretization of the arising variational inequalities
leads to a system of linear complementarity problems (LCPs) which can be solved
employing the projected SOR (PSOR) algorithm, see [11] for details. We follow a
different approach in the following and employ a semismooth Newton method, see
[23; 24] for details. The application of this method to multidimensional diffusion
models is discussed in [18] and the case of certain bivariate Lévy models is analyzed
in [36]. The derivation of a system of inequalities satisfied by V (t, s) can be justified
rigorously for different market models. We refer to [26] for the Black-Scholes model
and to [29] for Lévy type market models. The corresponding formulations for the
Ait-Sahalia model and the Heston model are given in Section 3.3.

2.2.4. Swing

Although swing options appear in various forms in applications, most of them are
mathematically optimal multiple stopping problems. For example, in energy mar-
kets the delivery of a commodity is limited by capacity constraints usually resulting
in a pre-specified refracting time for contracts with several exercise rights. It can be
agreed that the refraction period δ which is greater than the minimal delivery time
is constant. This separation of two exercise times not only represents an important
contract constraint, but also prevents the case of single optimal stopping time prob-
lems where all rights are exercised at once, see [3]. Let us denote by Tt,T the set
of all stopping times for S with values in (t, T ) and by Tt,∞ the set of all stopping
times with values greater or equal than t. For stopping time problems with p ∈ N
exercise rights, constant refracting period δ and maturity T the following sets are
defined.

Definition 8.1. The set of admissible stopping time vectors with length p ∈ N and
refracting time δ > 0 is defined by

T (p)
t := {τ (p) = (τ1, . . . , τp) | τi ∈ Tt,∞ with τ1 ≤ T

a.s. and τi+1 − τi ≥ δ for i = 1, . . . , p− 1}.

Consider a Lipschitz continuous time-dependent payoff function g : R+×R+ → R+

where we assume that g(t, ·) = 0 for t > T . The finite horizon multiple stopping
time problem with maturity T and p ∈ N exercise rights is defined as

V (p)(t, s) := sup
τ(p)∈T (p)

t

E

[
p∑
i=1

e−r(τi−t)g(τi, Sτi) | St = s

]
. (11)

It is shown in [5] for the Black-Scholes model that the multiple stopping time prob-
lem can be reduced to a cascade of single stopping time problems. In particular we
have

V (p)(t, s) = sup
τ∈Tt,T

E
[
e−r(τ−t)g(p)(τ, Sτ ) | St = s

]
, (12)
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with

g(p)(t, s) :=

{
g(t, s) + e−rδE

[
V (p−1)(t+ δ, St+δ) | St = s

]
if t ≤ T − δ,

g(t, s) if t ∈ (T − δ, T ],

V (0)(t, s) := 0.

We remark that positivity of the refraction time δ is essential in the analysis of
[5]; it is, however, possible to have period-dependent refraction times δi > 0. In
the following we consider the cascade of single stopping time problems for the mar-
ket models in Example 1-3. We remark that the connection between Eq. (11) and
Eq. (12) is formal for these market models to our knowledge. For the description of a
Finite Element based pricing algorithm for swing options we refer to [42]. We point
out that pricing multiperiod contracts such as swing options by path simulation is
costly: To start path simulation in period i+1, prices at the end of period i must be
known, approximately, in all points of the state space or, at least, on a sufficiently
fine triangulation in the state space of the process. This requires numerical pricing
in period i by path simulation for a large number of spot prices, see for example [27].
For the presently considered mesh based pricing methods, valuation of contracts on
meshes in (log) price space in period i is naturally performed, so that the compu-
tational methodology and the computational complexity versus numerical accuracy
is not affected by the transition from single- to multiperiod contracts.

3. Well-posedness of PDEs and PDIs

3.1. General results

We consider the standard parabolic set up in the following. Let the separable Hilbert
spaces V ⊂ H be given with continuous and dense embedding. We identify H with
its dual and obtain the Gelfand triple

V ⊂ H ≡ H∗ ⊂ V∗.

The following abstract well-posedness result holds.

Theorem 3. Assume that the bilinear form a(·, ·) : V × V → R satisfies continu-
ity and a Garding inequality, i.e. the following properties. There exist constants
C1, C2 > 0 and C3 ≥ 0 such that for all u, v ∈ V there holds

|a(u, v)| ≤ C1 ‖u‖V ‖v‖V , (13)

a(u, u) ≥ C2 ‖u‖2V − C3 ‖u‖2H . (14)

Then the following abstract parabolic problem is uniquely solvable.
Find u ∈ L2((0, T );V) ∩H1((0, T );V∗) such that

(∂tu, v)V∗,V + a(u, v) = (f, v)V∗,V ,∀v ∈ V, a.e. in (0, T ), (15)

u(0) = g, (16)
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with g ∈ H, f ∈ L2((0, T );V∗) and T > 0.

Proof. See Theorem 4.1 in [30].

For the study of optimal stopping problems which arise e.g. in the contact of
American options or swing options we require variational formulations of parabolic
variational inequalities. To this end, let ∅ 6= K ⊂ V be a closed, non-empty and
convex subset of V with indicator functions

IK(v) =

{
0, if v ∈ K,
+∞, else.

We denote by K‖·‖H the closure of D(IK) in H and consider the following vari-
ational problem: given f ∈ L2((0, T );V∗), u0 ∈ K

‖·‖H , find u ∈ L2((0, T );V) ∩
H1((0, T );V∗) such that u(t, ·) ∈ D(IK) a.e. in (0, T ) and

(∂tu, u− v)V∗,V + a(u, u− v) − (f, u− v)V∗,V + IK(u)− IK(v) ≥ 0,

∀v ∈ D(IK) a.e. in (0, T ). (17)

The existence and uniqueness results can be obtained for the formulation Eq. (17)
under certain regularity assumptions on f and on the initial condition u0 for bilin-
ear forms a(·, ·) satisfying Eq. (13)-Eq. (14) from Chapter 6, Theorem 2.1 in [17],
see also the monograph [28].
In the following we consider bilinear forms arising in the context of option pric-
ing under the CEV market model and the Ait-Sahalia model and prove Gard-
ing inequalities and continuity of the corresponding bilinear forms on weighted
Sobolev spaces. As described above, this is the main step to the proof of well-
posedness of the corresponding pricing equation. We consider the bilinear form
aCEV(·, ·) : Wρ(G)×Wρ(G)→ R given as

aCEV(φ, ψ) :=
1

2
σ2

∫ R

0

s2ρ∂sϕ∂sφds+ ρσ2

∫ R

0

s2ρ−1∂sϕφds

−r
∫ R

0

s∂sϕφds+ r

∫ R

0

ϕφds ,

for ρ ∈ [0, 1/2), G = (0, R), R > 0 and Wρ(G) is C∞0 (G)
Wρ(G)

, where ‖φ‖Wρ(G) is
given as

‖φ‖2ρ = ‖φ‖2Wρ(G) =

∫ R

0

s2ρ |∂sφ|2 + |φ|2 ds.

Then we have the following result.

Lemma 1. For ρ ∈ (0, 1/2) the bilinear form aCEV(·, ·) is continuous and satisfies
a Garding inequality on Wρ(G).
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Proof. Let ϕ ∈ C∞0 (G). By Hardy’s inequality, for ε 6= 1, ε > 0, and any R > 0(∫ R

0

sε−2|ϕ|2ds
) 1

2 ≤ 2

|ε− 1|

(∫ R

0

sε|∂sϕ|2ds
) 1

2

(18)

we find with ε = 2ρ 6= 1, that∣∣∣ ∫ R

0

s2ρ−1∂sϕφds
∣∣∣ ≤ (∫ R

0

s2ρ(∂sϕ)2ds
) 1

2
(∫ R

0

s2ρ−2φ2ds
) 1

2

≤ ‖ϕ‖ρ
2

|2ρ− 1|
‖φ‖ρ

and, by the Cauchy-Schwarz inequality,∣∣∣ ∫ R

0

s∂sϕφds
∣∣∣ ≤ ‖ϕ‖ρ(∫ R

0

s2−2ρφ2ds
) 1

2 ≤ ‖ϕ‖ρ R1−ρ ‖φ‖L2(G) .

Thus, for ϕ, φ ∈ C∞0 (G), ρ 6= 1
2 , there holds

|aCEV
ρ (ϕ, φ)| ≤ C(ρ, σ, r)‖ϕ‖ρ‖φ‖ρ .

Hence, we may extend the bilinear form aCEV
ρ (·, ·) from C∞0 (G) to Wρ(G) by con-

tinuity for ρ ∈ [0, 1]\{ 1
2}. Furthermore, we have

aCEV
ρ (ϕ,ϕ) =

1

2
σ2‖sρ∂sϕ‖2L2(G) +

1

2
ρσ2

∫ R

0

s2ρ−1∂s(ϕ
2)ds

− 1

2
r

∫ R

0

s∂s(ϕ
2)ds+ r

∫ R

0

ϕ2ds .

Integrating by parts, we get, for 0 ≤ ρ ≤ 1
2 ,∫ R

0

s2ρ−1∂s(ϕ
2)ds = −(2ρ− 1)

∫ R

0

s2ρ−2ϕ2ds ≥ 0 .

Analogously, 1
2

∫ R
0
s∂s(ϕ

2)ds = − 1
2

∫ R
0
ϕ2ds, hence we get for 0 ≤ ρ ≤ 1

2

aCEV
ρ (ϕ,ϕ) ≥ 1

2
σ2‖sρ∂sϕ‖2L2(G) +

3

2
r‖ϕ‖2L2(G) ≥

1

2
min{σ2, 3r}‖ϕ‖2ρ .

For ρ ∈ [1/2, 1) we consider a different formulation. We introduce the spaces
Wρ,µ(G) as closure of C∞0 (G) with respect to the norm

‖ϕ‖2ρ,µ :=

∫ R

0

(
s2ρ+2µ|∂sϕ|2 + s2µ|ϕ|2

)
ds . (19)

We consider the bilinear form aCEV
µ (·, ·) : Wρ,µ(G)×Wρ,µ(G)→ R is defined by

aCEV
µ (ϕ, φ) :=

1

2
σ2

∫ R

0

s2ρ+2µ∂sϕ∂sφds+ σ2(ρ+ µ)

∫ R

0

s2ρ+2µ−1∂sϕφds

−r
∫ R

0

s1+2µ∂sϕφds+ r

∫ R

0

s2µϕφds . (20)
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Proposition 8.1. Assume 0 ≤ ρ ≤ 1 and select{
µ = 0 if 0 ≤ ρ < 1

2 , ρ = 1 ,

− 1
2 < µ < 1

2 − ρ if 1
2 ≤ ρ < 1 .

(21)

Then there exists C1, C2 > 0 such that ∀ϕ, φ ∈Wρ,µ(G) there holds

|aCEV
ρ,µ (ϕ, φ)| ≤ C1‖ϕ‖ρ,µ‖φ‖ρ,µ , (22)

aCEV
ρ,µ (ϕ,ϕ) ≥ C2‖ϕ‖2ρ,µ . (23)

Proof. The continuity (22) of aCEV
ρ,µ inWρ,µ(G)×Wρ,µ(G) follows from the Cauchy-

Schwarz inequality and by Hardy’s inequality (18) with ε = 2(ρ+ µ) 6= 1

|aCEV
ρ,µ (ϕ, φ)| ≤ 1

2
σ2‖ϕ‖ρ,µ‖φ‖ρ,µ + σ2(ρ+ µ)‖ϕ‖ρ,µ

(∫ R

0

s2ρ+2µ−2φ2ds

)1/2

+ r‖ϕ‖ρ,µ
(∫ R

0

s2+2µ−2ρφ2ds

)1/2

≤
(
σ2

2
+

2σ2(ρ+ µ)

|2ρ+ 2µ− 1|
+ rR1−ρ

)
‖ϕ‖ρ,µ‖φ‖ρ,µ.

Let ϕ ∈ C∞0 (G). We calculate

aCEV
ρ,µ (ϕ,ϕ) =

1

2
σ2‖sρ+µ∂sϕ‖2L2(G) +

1

2
σ2(ρ+ µ)

∫ R

0

s2ρ+2µ−1∂s(ϕ
2)ds

− 1

2
r

∫ R

0

s1+2µ∂s(ϕ
2)ds+ r‖sµϕ‖2L2(G)

=
1

2
σ2‖sρ+µϕs‖2L2(G) −

1

2
σ2(ρ+ µ)(2ρ+ 2µ− 1)×∫ R

0

s2ρ+2µ−2ϕ2ds+
1

2
r(1 + 2µ)

∫ R

0

s2µϕ2ds+ r‖sµϕ‖2L2(G) .

Given 1/2 ≤ ρ < 1, we now choose µ such that −1/2 ≤ µ < 1/2 − ρ. Then,
2ρ+ 2µ− 1 < 0, 1 + 2µ ≥ 0, ρ+ µ ≥ 0 and we get

aCEV
ρ,µ (ϕ,ϕ) ≥ 1

2
σ2‖sρ+µ∂sϕ‖2L2(G) + r‖sµϕ‖2L2(G) ≥

1

2
min{σ2, 2r}‖ϕ‖2ρ,µ

By density of C∞0 (0, R) in Wρ,µ(G), we have shown (23).

In the following we obtain a variational formulation for the Ait-Sahalia short rate

model, let us consider the space W̃ρ,µ(G) given as C∞0 (G)
W̃ρ,µ(G)

with the norm
‖·‖

W̃ρ,µ(G)

‖u‖2
W̃ρ,µ(G)

=
∥∥∥s2(ρ+µ) |∂su|2

∥∥∥2

L2(G)
+
∥∥s−2ρ−2+2µu2

∥∥2

L2(G)
(24)

and the pivot space Hρ,µ(G) with norm ‖·‖Hρ,µ(G) given as

‖u‖2Hρ,µ(G) =
∥∥s−ρ−1+µu

∥∥2

L2(G)
.
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We consider in the following the bilinear form aAS
µ : W̃µ,ρ(G)× W̃µ,ρ(G)→ R given

by

aAS
ρ,µ(ϕ, φ) :=

1

2
σ2

∫ R

0

s2ρ+2µ∂sϕ∂sφds+ σ2(ρ+ µ)

∫ R

0

s2ρ+2µ−1∂sϕφds

−α−1

∫ R

0

s−1+2µ∂sϕφds− α1

∫ R

0

s1+2µ∂sϕφds

+

∫ R

0

s2µ+1ϕφds . (25)

Proposition 8.2. Assume 0 ≤ ρ ≤ 1 and select

µ ≥ ρ+ 1. (26)

Assume also r > 0. Then there exists C1, C2 > 0 and C3 ≥ 0 such that ∀ϕ, φ ∈
Wρ,µ(G) there holds

|aAS
ρ,µ(ϕ, φ)| ≤ C1‖ϕ‖ρ,µ‖φ‖ρ,µ , (27)

aAS
ρ,µ(ϕ,ϕ) ≥ C2‖ϕ‖2ρ,µ − C3 ‖ϕ‖2Hρ,µ(G) , (28)

with ‖u‖2Hρ,µ(G) =
∥∥s−ρ−1+µu

∥∥2

L2(G)

Proof. The continuity (27) of aAS
ρ,µ in Wρ,µ(G)×Wρ,µ(G) follows from the Cauchy-

Schwarz inequality and by Hardy’s inequality (18) with ε = 2(ρ+ µ) 6= 1

|aAS
ρ,µ(ϕ, φ)| ≤ 1

2
σ2‖ϕ‖ρ,µ‖φ‖ρ,µ + σ2(ρ+ µ)‖ϕ‖ρ,µ

(∫ R

0

s2ρ+2µ−2φ2ds

)1/2

+ α−1‖ϕ‖ρ,µ
(∫ R

0

s−2+2µ−2ρφ2ds

)1/2

+ α1‖ϕ‖ρ,µ
(∫ R

0

s2+2µ−2ρφ2ds

)1/2

+R2+ρ‖ϕ‖ρ,µ‖φ‖ρ,µ

≤
(
σ2

2
+

2σ2(ρ+ µ)

|2ρ+ 2µ− 1|
+ α−1 + α1R

2 +R2+ρ

)
‖ϕ‖ρ,µ‖φ‖ρ,µ.

Let ϕ ∈ C∞0 (G). We calculate

aAS
ρ,µ(ϕ,ϕ) =

1

2
σ2‖sρ+µ∂sϕ‖2L2(G) + σ2(ρ+ µ)

∫ R

0

s2ρ+2µ−1∂s(ϕ
2)ds

+ α−1

∫ R

0

s−1+2µ∂s(ϕ
2)ds+ α1

∫ R

0

s1+2µ∂s(ϕ
2)ds

+ ‖sµ+1ϕ‖2L2(G)
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≥ 1

2
σ2‖sρ+µϕs‖2 − σ2(ρ+ µ)(2ρ+ 2µ− 1)

∫ R

0

s2ρ+2µ−2ϕ2ds

− α−1(−1 + 2µ)

∫ R

0

s−2+2µϕ2ds− α1(1 + 2µ)

∫ R

0

s2µϕ2ds

+ ‖sµ+1ϕ‖2L2(G)

≥ 1

2
σ2‖sρ+µϕs‖2 −R4ρσ2(ρ+ µ) ‖φ‖2Hρ,µ(G)

− α−1(−1 + 2µ)R2ρ ‖φ‖2Hρ,µ(G) − α1(1 + 2µ)R2ρ+2 ‖φ‖2Hρ,µ(G)

≥ C2 ‖φ‖2ρ,µ − C3 ‖φ‖2Hρ,µ(G) .

By density of C∞0 (G) in W̃ρ,µ(G), we have shown (23).

3.2. Contracts of European type

Well-posedness results for European contracts in different market models described
above are given in this section.

3.2.1. Univariate models

We consider the problem Eq. (7) on a bounded domain G = (0, R) and impose
homogeneous Dirichlet conditions, either due to a (knock-out) barrier condition or
due to localization. The localization can be justified rigorously for a wide range
of models, see e.g. [20; 31]. In financial modelling terms, localization corresponds
to the approximation of a plain vanilla option by the corresponding double barrier
contract. For justification and mathematical analysis of localization (and for the
meaning of barrier contracts) and its errors in Lévy type market models, we refer
to [9; 8; 34].

The arising variational formulation for a European option reads: find u ∈
L2((0, T );V) ∩H1((0, T );V∗) such that

(∂tu, v)V∗,V + a(u, v) = (f, v)V∗,V ,∀v ∈ V, a.e. in (0, T ), (29)

u(0) = g, (30)

where V = D(A1/2) denotes the domain of the corresponding bilinear form. The
dual paring (·, ·)V∗,V is understood as the continuous extension of theH scalar prod-
uct and the bilinear form a(·, ·) can be any of the forms in the set {aASρ,µ, aH , aCEV }
(or, more generally, any form for which continuity and a Garding inequality on a
closed subspace of D(A1/2) can be verified). We have the following result which is
a direct consequence of Theorem 3 and of Proposition 8.2 or of Proposition 8.1.

Theorem 4. The formulation Eq. (29)-Eq. (30) admits a unique solution.
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3.2.2. Stochastic volatility models

Note that the option price is a function of z = (x, y) and not just x, since we have
to condition on (X(t), Y (t)) = Z(t) = z and not just on X(t) = x. The reason for
this is that the process Z is Markovian, but the process X is not. We find that the
function v(t, z) := V (T − t, z) is solution of the PDE

∂tv −AHv + rv = 0 in J × R× R≥0

v(0, z) = v0(z) := g(ex) in R× R≥0,
(31)

where the infinitesimal generator AH appearing in the pricing equation (31) is given
in log-price by

(AHf)(z) :=
1

2
y∂xxf(x, y) + βρy∂xyf(x, y) +

1

2
β2y∂yyf(x, y)

+

(
r − 1

2
y

)
∂xf(x, y) + α(m− y)∂yf(x, y). (32)

To cast the pricing equation (31) corresponding to the Heston model in a variational
formulation and to establish its well-posedness, we change variables

ṽ(t, x, ỹ) := v(t, x, 1/4ỹ2). (33)

The pricing equation for ṽ becomes,

∂tṽ − ÃHṽ + rṽ = 0 in J × R× R≥0

ṽ0 = g(ex) in R× R≥0,
(34)

with

(ÃHf)(x, ỹ) :=
1

8
ỹ2∂xxf(x, ỹ) +

1

2
ρβỹ∂xỹf(x, ỹ) +

1

2
β2∂ỹỹf(x, ỹ)

+

(
r − 1

8
ỹ2

)
∂xf(x, ỹ) +

1

2

(
− αỹ +

4αm− β2

ỹ

)
∂ỹf(x, ỹ). (35)

We consider the weak formulation of the transformed pricing equation (34). It
is convenient to multiply the value of the option v in (34) with an exponentially
decaying factor, i.e., we consider

w := ve−η, (36)

where η ∈ C2(Rnv+1) is assumed to be at most polynomially growing at infinity.
For notational simplicity, we drop “˜” in ṽ and Ã. Consider the change of variables
(36) with η = η(x, y) := 1

2κy
2, κ > 0. It follows that the pricing equation for

w := (v − v0)e−η in the Heston model becomes

∂tw −AH
κw + rw = fH

κ in J × R× R≥0

w(0, x, y) = 0 in R× R≥0,
(37)
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where fH
κ := e−κ/2y

2

(AHv0 − rv0) and

(AH
κ f)(z) :=

1

8
y2∂xxf(x, y) +

1

2
ρβy∂xyf(x, y) +

1

2
β2∂yyf(x, y) (38)

+

(
r − 1

8
y2 +

1

2
βκρy2

)
∂xf(x, y)

+
1

2

(
(2β2κ− α)y +

4αm− β2

y

)
∂yf(x, y)

+

(
1

2
y2κ(β2κ− α) + 2ακm

)
f(x, y).

Let G := R × R≥0 and denote by (·, ·) the L2(G)-inner product, i.e., (ϕ, φ) =∫
G
ϕφdxdy. We associate to −AH

κ + r the bilinear form aHκ (·, ·) via

aHκ (ϕ, φ) :=
(
(−AH

κ + r)ϕ, φ
)
, ϕ, φ ∈ C∞0 (G).

Integration by parts yields

aH
κ (ϕ, φ) =

1

8

(
y∂xϕ, y∂xφ

)
+

1

2
β2
(
∂yϕ, ∂yφ

)
+

1

2
ρβ
(
y∂xϕ, ∂yφ

)
+

1

2
[ρβ − 2r]

(
∂xϕ, φ

)
+

1

8
[1− 4βκρ]

(
y∂xϕ, yφ

)
− 1

2
[2β2κ− α]

(
y∂yϕ, φ

)
− 1

2
[4αm− β2]

(
y−1∂yϕ, φ

)
− 1

2
κ[β2κ− α]

(
yϕ, yφ

)
− [2καm− r]

(
ϕ, φ

)
=:

9∑
k=1

bk(ϕ, φ). (39)

Define the weighted Sobolev space

V := C∞0 (G)
‖·‖V

, (40)

where the closure is taken with respect to the norm ‖·‖V given by

‖v‖2V := ‖y∂xv‖2L2(G) + ‖∂yv‖2L2(G) + ‖
√

1 + y2v‖2L2(G). (41)

Theorem 5. Assume that 0 < κ < α/β2 and that

1− 2|4αm/β2 − 1| > ρ2.

Then, there exist constants Ci > 0, i = 1, 2, 3, such that for all ϕ, φ ∈ V there holds

|aH
κ (ϕ, φ)| ≤ C1‖ϕ‖V‖φ‖V
aH
κ (ϕ,ϕ) ≥ C2‖ϕ‖2V − C3‖ϕ‖2L2(G).

Proof. For the proof of this statement we refer to [20] .



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

332 Oleg Reichmann and Christoph Schwab

By the abstract well-posedness result Theorem 3 in the triple of spaces V ⊂ L2(G) =

H ≡ H∗ ⊂ V ∗ we conclude that the weak formulation to the (transformed) Heston
model (37),

Find w ∈ L2(J ;V) ∩H1(J ;L2(G)) such that

(∂tw, v) + aH
κ (w, v) = 〈fH

κ , v〉V∗,V , ∀v ∈ V, a.e. in J,

w(0) = 0.

(42)

admits a unique solution for every fH
κ ∈ V∗. For localization estimates we refer to

[20] . For details on the discretization as well as the well-posedness and precondi-
tioning we refer to [21]

3.3. Contracts of American type

3.3.1. Univariate models

The value of an American option is given as

V (t, s) := sup
τ∈Tt,T

E
[
e−r(T−t)g(S(T ))|S(t) = s

]
,

where Tt,T denotes the set of all stopping times for S. A similar result to the Black-
Scholes case is not available for the Ait-Sahalia model due to the degeneracy of the
coefficients in the SDE. We therefore make the following assumption.

Assumption 8.1. Let v(t, z) be a sufficiently smooth solution of the following
system of inequalities

∂tv −AASv + rv ≥ 0 in J × R+,

v(t, s) ≥ g(s) in J × R+,

(∂tv −AASv + rv)(g − v) = 0 in J × R+,

v(0, s) = g(s) in R,

(43)

whereAAS is the infinitesimal generator of the process S. Then, V (T−t, s) = v(t, s).

We consider the problem Eq. (43) on the domain G in excess-to-payoff coordinates
imposing homogeneous Dirichlet conditions. The arising cone of positive solutions
is given by

K+,R = {v ∈ W̃ρ,µ(G)|v ≥ 0 a.e. in G}.

The formulation reads

Find uR ∈ L2(J ;V) ∩H1(J ;V∗) such that uR(t, ·) ∈ K+,R and

(∂tuR, v − uR) + aAS(uR, v − uR) ≥ −aAS(g, v − uR) ∀v ∈ K+,R,

uR(0) = 0. (44)

The well-posedness of this formulation follows under certain regularity assumptions
on the payoff g from [17] .



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Wavelet solution of degenerate Kolmogoroff forward equations 333

3.3.2. Stochastic volatility models

American options in stochastic volatility models can be obtained similar to the
Ait-Sahalia model. The value of an American option is given as

V (t, z) := sup
τ∈Tt,T

E
[
e−r(T−t)g(eXT )|Zt = z

]
,

where Tt,T denotes the set of all stopping times for Z. A similar result to the Black-
Scholes case is not available, to our knowledge, for general stochastic volatility
models due to the possible degeneracy of the coefficients in the SDE. We therefore
make the following assumption.

Assumption 8.2. Let v(t, z) be a sufficiently smooth solution of the following
system of inequalities

∂tv −AHv + rv ≥ 0 in J × R× R+,

v(t, z) ≥ g(ex) in J × R× R+,

(∂tv −AHv + rv)(g − v) = 0 in J × R× R+,

v(0, z) = g(ex) in R× R+,

(45)

where AH is the infinitesimal generator of the process Z. Then, V (T−t, z) = v(t, z).

We perform the same transformations as described in Section 3.2.2 and obtain the
following system of inequalities for w := (v − v0)e−η in the Heston model

∂tw −AH
κw + rw ≥ fH

κ in J × R× R+,

w(t, x, y) ≥ 0 in J × R× R+,

(∂tw −AH
κw + rw)w = 0 in J × R× R+,

w(0, x, y) = 0 in R× R+.

(46)

The set of admissible solutions in the Heston model for the variational form of (46)
is the convex set K0 given as

K0 := {v ∈ V|v ≥ 0 a.e. z ∈ R× R+} ,

where V is given in (40). The variational formulation of (46) reads:

Find w ∈ L2(J ;V) ∩H1(J ;V∗) such that w(t, ·) ∈ K0 and

(∂tw, v − w) + aH
κ (w, v − w) ≥ 〈fH

κ , v − w〉V∗,V , ∀v ∈ K0, a.e. in J,

w(0) = 0. (47)

Since the bilinear form aH
κ (·, ·) is continuous and satisfies a Garding inequality in V

by Theorem 5, problem (47) admits a unique solution for every payoff g ∈ L∞(R) by
[17] . We localize the problem to a bounded domain GR = (−R1, R1)× (−R2, R2),
R1, R2 > 0, as in Section 3.2.2 and obtain the following problem for

K+,R :=
{
v ∈ Ṽ|v ≥ 0 a.e. z ∈ GR

}
.
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Find w ∈ L2(J ; Ṽ ) ∩H1(J ;L2(GR)) such that w(t, ·) ∈ K+,R and

(∂tw, v − w) + aH(w, v − w) ≥ 〈fH
κ , v − w〉Ṽ ∗,Ṽ , ∀v ∈ K+,R, a.e. in J,

w(0) = 0, (48)

where Ṽ := C∞0 (GR)
‖·‖V . Well-posedness results for the variational formulations

associated to the values of swing options and compound options in the models
considered above can be obtained similarly.

3.4. Greeks

A key task in financial engineering is the fast and accurate calculation of sensitivities
of market models with respect to model parameters. This becomes necessary for
example in model calibration, risk analysis and in the pricing and hedging of certain
derivative contracts. Classical examples are variations of option prices with respect
to the spot price or with respect to time-to-maturity, the so-called “Greeks” of the
model. For classical, diffusion type models and plain vanilla type contracts, the
Greeks can be obtained analytically. For more complicated contracts, closed form
solutions are generally not available for pricing and calibration. Thus, prices and
model sensitivities have to be approximated numerically. We distinguish two classes
of sensitivities.

i) The sensitivity of the solution to a variation of an input parameter. Typical
examples are the Greeks Vega, Rho and Vomma. Other sensitivities which
are not so commonly used in the financial community are the sensitivity of
the price with respect to the correlation of the stock and the volatility.

ii) The sensitivity of the solution to a variation of arguments t, x. Typical
examples are the Greeks Theta, Delta and Gamma.

We refer to [22] for details on the computation of Greeks in both cases. The com-
putation of sensitivities as in i) requires an additional solve of the pricing equation
with a non-trivial right hand side, while Greeks of the type ii) can be obtained via
post processing of the solution of the pricing problem. In both cases, we obtain the
same convergence results as for the option price, see [22] .

4. Discretization

Since we discretize the parabolic equations in (0, T ) × G in the spatial variable
with spline wavelet bases for V, we briefly recapitulate basic definitions and results
on wavelets from e.g. [6] and the references there. For specific spline wavelet
constructions on a bounded interval, we refer to e.g. [33], [15] and [41]. We discretize
the domain G = (a, b) by equidistant mesh points

a = x0 < x1 < x2 < · · · < xNL+1 = b,
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where we assume the number NL satisfies NL = 2L+1 − 1 with L ∈ N0 and use the
notation VL = VNL . Then, we have the nested spaces with 2, 4, . . . , 2L+1 subinter-
vals

V0 ⊂ V1 ⊂ · · · ⊂ VL,

and dimV` = 2`+1 − 1 =: N`. Here, we write b`,j to indicate the refine-
ment level. Wavelets constitute a so-called hierarchical or multiscale basis. We
start with {ψ0,1} for the space V0. Then, we add basis functions {ψ1,1, ψ1,2}
such that span{ψ0,1, ψ1,1, ψ1,2} = V1. Similarly, we add again basis functions
{ψ2,1, ψ2,2, ψ2,3, ψ2,4} such that span{ψ0,1, ψ1,1, ψ1,2, ψ2,1, ψ2,1, ψ2,3, ψ2,4} = V2 and
so on. Therefore, we introduce for ` ∈ N0 the complement spaces W` =

span{ψ`,k : k ∈ ∇`} where ∇` := {1, . . . , 2`} such that V` = V`−1 ⊕W`, ` ≥ 1 and
V0 = W0. This decomposition is illustrated in Figure 1.

W2

W3

W0

V

psi2

W1

phi

psi1

psi0

psi3

Figure 1. Single-scale space VL and its decomposition into multiscale wavelet spacesW` for L = 3

We assume that the wavelets ψ`,k have compact support |supp ψ`,k| ≤ C2−`,
are normalized in L2(G), i.e., ‖ψ`,k‖L2 = 1, and Φ` := {b`,j(x) : 1 ≤ j ≤ N`} has
approximation order p. In addition, we associated with Φ` a dual basis, Φ̃` = {b̃`,j :

1 ≤ j ≤ N`}, i.e., one has 〈b`,j , b̃`,j′〉 = δj,j′ , 1 ≤ j, j′ ≤ N`. The approximation
order of Φ̃` is denoted by p̃ and we assume p ≤ p̃.

Example 4 (Piecewise linear wavelets). We define the wavelet functions ψ`,k
as the following piecewise linear functions. Let h` = 2−`−1(b− a) and c` :=

√
3/2 ·

(2h`)
−1/2. For ` = 0 we have N0 = 1 and ψ0,1 is the function with value 2c0

at x = a + h0. For ` ≥ 1 the wavelet ψ`,1 has the values ψ`,1(a + h`) = 2c`,
ψ`,1(a + 2h`) = −c` and zero at all other nodes. The wavelet ψ`,2` has the values
ψ`,2`(b−h`) = 2c`, ψ`,2`(b−2h`) = −c` and zero at all other nodes. The wavelet ψ`,k
with 1 < k < 2` has the values ψ`,k(a+(2k−2)h`) = −c`, ψ`,k(a+(2k−1)h`) = 2c`,
ψ`,k(a + 2kh`) = −c` and zero at all other nodes. For ` = 0, . . . , 3 these wavelets
are plotted in Figure 1. The constants c` are chosen such that the wavelets ψ`,k are
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normalized in L2(G). Note that these biorthogonal wavelets W` are not orthogonal
on V`−1. But the inner wavelets ψ`,k with 1 < k < 2` have two vanishing moments,
i.e.,

∫
ψ`,k(x)xndx = 0 for n = 0, 1. The approximation order of V` is p = 2.

Since VL = span{ψ`,k : 0 ≤ ` ≤ L, k ∈ ∇`} we have a unique decomposition

u =
L∑
`=0

u` =
L∑
`=0

∑
k∈∇`

u`,kψ`,k,

for any u ∈ VL with u` ∈ W`. Furthermore, any u ∈ H̃s(G), 0 ≤ s ≤ p admits a
representation as an infinite wavelet series,

u =
∞∑
`=0

u` =
∞∑
`=0

∑
k∈∇`

u`,kψ`,k, (49)

which converges in H̃s. The coefficients u`,k are the so-called wavelet coefficients of
the function u.

4.1. Wavelet transformation

For u ∈ VL we want to show how to obtain the multi-scale wavelet coefficients
d`,k := u`,k in u =

∑L
`=0

∑
k∈∇` d`,kψ`,k, from the single-scale coefficients c`,j in

u =
∑NL
j=1 c`,jb`,j .

For the wavelets ψ`,k as in Example 4 and hat functions b`,j we have

ψ`,k = −0.5b`,2k−2 + b`,2k−1 − 0.5b`,2k, 1 < k < 2`,

ψ`,1 = b`,1 − 0.5b`,2,

ψ`,2` = −0.5b`,2`+1−2 + b`,2`+1−1,

b`−1,j = 0.5b`,2j−1 + b`,2j + 0.5b`,2j+1,

where we set the normalization factors c` = 0.5 for simplicity. For u =
∑NL
j=1 cL,jbL,j

we have

N`+1∑
j=1

c`+1,jb`+1,j =

N∑̀
j=1

c`,jb`,j +
∑

k∈∇`+1

d`+1,kψ`+1,k,

and therefore

c`+1,2j+1 = 0.5c`,j + 0.5c`,j+1 + d`+1,j+1, j = 2, . . . , N` − 1

c`+1,2j = c`,j − 0.5d`+1,j − 0.5d`+1,j+1, j = 2, . . . , N`

c`+1,1 = 0.5c`,1 + d`+1,1,

c`+1,N`+1
= 0.5c`,N` + d`+1,2`+1 .

(50)
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This can be written in matrix form

c`+1,1

c`+1,2

...

...
c`+1,N`+1−1

c`+1,N`+1


=



1 0.5

−0.5
. . . −0.5

0.5
. . . 0.5
. . . . . . . . .

−0.5
. . . −0.5

0.5 1





d`+1,1

c`,1
...
...

c`,N`
d`+1,2`+1


Now, starting with u =

∑NL
j=1 cL,jbL,j we can compute using the decomposition

algorithm (50), the coefficients cL−1,j and dL,k. Iteratively, we decompose c`+1,j

into c`,j and d`+1,j until we have the series representation u =
∑L
`=0

∑
k∈∇` d`,kψ`,k.

Similarly, we can obtain the single-scale coefficients cL,j from the multi-scale wavelet
coefficients d`,k.

4.2. Norm equivalences

For preconditioning of the large systems which are solved at each time step, we
require wavelet norm equivalences. These are analogous to the classical Parseval
relation in Fourier analysis which allow to express Sobolev norms of a periodic
function u in terms of (weighted) sums of its Fourier coefficients. Wavelets allow for
analogous statements: the Parseval equation is replaced by appropriate inequalities
and the function u need not to be periodic. For u ∈ L2(G) there holds

‖u‖2L2(G) ∼
∞∑
`=0

‖u`‖2L2(G) ∼
∞∑
`=0

∑
k∈∇`

|u`,k|2 .

The mapping u 7→ u0 + · · · + u` defines a continuous projector P` : L2(G) → V`.
For general Sobolev spaces H̃s(G), we have the direct (or Jackson type) estimate,

‖u− P`u‖L2(G) ≤ C2−ls ‖u‖H̃s(G) , 0 ≤ s ≤ p.

For u ∈ V` we also have the inverse (or Bernstein-type) estimates,

‖u‖H̃s(G) ≤ C2ls ‖u‖L2(G) , s < p− 1/2.

Using the inverse estimate and the series representation (49) we have

‖u‖2H̃s(G) ∼
∞∑
`=0

‖u`‖2H̃s(G) ≤ C
∞∑
`=0

∑
k∈∇`

22ls |u`,k|2 , 0 ≤ s < p− 1/2.

In the other direction we have for u ∈ H̃p(G)

‖u`‖L2(G) = ‖P`u− P`−1u‖L2(G) ≤ ‖P`u− u‖L2(G) + ‖P`−1u− u‖L2(G)

≤ C(2−`p + 2p2−`p)) ‖u‖H̃p(G) ,
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and therefore
L∑
`=0

∑
k∈∇`

22lp |u`,k|2 ≤ C ′L ‖u‖2H̃p(G) .

Unfortunately, we do not quite obtain the required bound. This estimate is sharp.
For 0 ≤ s < p, one can modify this argument and obtain

‖u‖2H̃s(G) ∼
∞∑
`=0

‖u`‖2H̃s(G) ∼
∞∑
`=0

∑
k∈∇`

22ls |u`,k|2 , 0 ≤ s < p− 1/2. (51)

4.3. Weighted spaces

We can obtain similar results to Eq. (51) for weighted spaces as given in Eq. (19)
and Eq. (24). In the case of weighted spaces with degenerate weights we need special
wavelet constructions, see [12]. For the proof of norm equivalences we refer to [4].
In addition to the requirements given above, the boundary wavelets and the dual
wavelets need to satisfy certain assumptions, see [4] . The norm equivalences can be
used to define diagonal preconditioners for the arising mass and stiffness matrices,
therefore allowing for an efficient solution of the linear systems. For sparse tensor
product discretizations in stochastic volatility models we refer to [21].

4.4. Space discretization

Let T0 = {x0 = −R < x1 = 0 < x2 = R} be a coarse partition of G. Furthermore,
define the mesh T`, for ` ∈ N, recursively by bisection of each interval in T `−1. We
denote our computational mesh obtained in this way as TL, for some L ∈ N0, with
mesh size h = R2−L. The finite element space V` used for the spatial discretization
is the space of all continuous piecewise polynomials of approximation order p on
the triangulation T` which vanish on the boundary ∂G.

The semi-discrete problem corresponding to Eq. (29)-Eq. (30) reads:

Find uL ∈ H1(J ;VL) such that (52)

(∂tuL, vL) + a(uL, vL) = 0, ∀vL ∈ VL, a.e. in J, uL(0) = uL,0,

where uL,0 = PNL is the L2 projection of u0 onto VL. We have the following a
priori result on the spatial semi-discretization which is shown in [32].

Theorem 6. We consider the problem Eq. (29)-Eq. (30). Then, for t > 0, there
holds the error estimate

‖u(t)− uL(t)‖L2(G) ≤ C min{1, hpt−
p
2 }.

Here, C > 0 is a constant independent of h and t, and u, uL are the solutions of
Eq. (29)-Eq. (30) and (52) respectively.
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4.5. Discontinuous Galerkin time discretization

We refer to [37; 38; 39] for details on discontinuous Galerkin timestepping schemes.
For 0 < T <∞ and M ∈ N, letM = {Jm}Mm=1 be a partition of J = (0, T ) into M
subintervals Jm = (tm−1, tm), m = 1, . . . ,M , with

0 = t0 < t1 < t2 < . . . < tM = T.

Moreover, denote by km = tm− tm−1 the length of Jm. For u ∈ H1(M, VL) = {v ∈
L2(J, VL) : v|Jm ∈ H1(Jm, VL), m = 1, . . . ,M}, define the one-sided limits

um+ = lim
s→0+

u(tm + s), m = 0, . . . ,M − 1,

um− = lim
s→0+

u(tm − s), m = 1, . . . ,M,

and the jumps

[[u]]m = um+ − um− , m = 1, . . . ,M − 1.

To each time step Jm we associate an approximation order rm ≥ 0. The orders are
collected in the degree vector r = (r1, . . . , rM ). We introduce the following space of
functions which are discontinuous in time

Sr(M, VL) = {u ∈ L2(J, VL) : u|Jm ∈ Srm(Jm, VL), m = 1, . . . ,M},

where Srm(Jm) denotes the space of polynomials of degree at most rm on Jm.
Consider the problem (52). For test function w ∈ C1(J, VL) with w(T ) = 0 we

integrate the variational formulation with respect to the time variable t and use
integration by parts to obtain∫

J

(
(∂tuL, w) + a(uL, w)

)
dt = 0,

⇒
∫
J

(
− (uL, w

′) + a(uL, w)
)

dt = (uL,0, w(0)).

Replacing uL by a function U ∈ Sr(M, VL) and integrating by parts in each Jm,
we obtain with wm = w(tm)

−
∫
J

(uL, w
′) dt = −

M∑
m=1

(
(U,w)|tmtm−1

−
∫
Jm

(U ′, w)dt
)

=

∫
J

(U ′, w) dt+
M−1∑
m=1

([[U ]]m, w
m) + (U0

+, w
0).

Therefore, we obtain the fully discrete scheme: Find U ∈ Sr(M, VL) such that for
all W ∈ Sr(M, VL)∫

J

(
(U ′,W ) + a(U,W )

)
dt+

M−1∑
m=1

([[U ]]m,W
m
+ ) + (U0

+,W
0
+) = (uL,0,W

0
+). (53)
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The solution operator of the parabolic problem is assumed to generate a holomorphic
semi-group; holomorphy of the semigroup must be verified on a case-by-case basis,
for example by verifying for the Dirichlet form a(·, ·) the so-called Sector Condition,
see Definition 4.7.12 in [25]. Therefore, the solution u(t) is analytic with respect to
t for all t > 0. However, due to the non-smoothness of the initial data, the solution
may be singular at t = 0. By the use of so-called geometric time discretization, the
low regularity of the solution at t = 0 can be resolved.

Definition 8.2. We call a partition MM,γ = {Jm}Mm=1 of the time interval J =

(0, T ), 0 < T < ∞, geometric with M time steps Jm = (tm−1, tm), m = 1, . . . ,M ,
and grading factor γ ∈ (0, 1), if

t0 = 0, tm = TγM−m, 1 ≤ m ≤M.

A polynomial degree vector r = (r1, . . . , rM ) is called linear with slope µ > 0 on
MM,γ , if r1 = 0 and rm = bµmc, m = 2, . . . ,M , where bµmc = max{q ∈ N0 : q ≤
µm}.

We have the following a priori error estimate on the hp-dG scheme [32] .

Theorem 7. Let u0 ∈ H̃s(G), 0 < s ≤ 1. Then, there exist µ0,m0 > 0 such that
for all geometric partitions MM,γ with M ≥ m0| log h|, and all polynomial degree
vectors r onMM,γ with slope µ > µ0, the fully discrete solution U obtained by (53)
satisfies

‖u(T )− U(T )‖L2(G) ≤ Ch
p, (54)

where C > 0 is a constant independent of mesh width h, and u is the solution of
the parabolic problem Eq. (29)-Eq. (30).

We now study the linear systems resulting from the hp-dG method (53). We show
that they may be solved iteratively, without causing a loss in the rates of convergence
in the error estimate (54), by the use of an incomplete GMRES method. Further-
more, we prove that the overall complexity is linear (up to logarithmic terms).

4.5.1. Derivation of the linear systems

The hp-dG time stepping scheme (53) corresponds to a linear system of size (rm +

1)NL to be solved in each time step m = 1, . . . ,M . Let {ϕ̂j : j = 0, . . . , rm} be a
basis of the polynomial space Srm(−1, 1). We also refer to ϕ̂j as the reference time
shape functions. On the time interval Jm = (tm−1, tm) the time shape functions
ϕm,j are then defined as ϕm,j = ϕ̂j ◦ F−1

m , where Fm is the mapping from the
reference interval (−1, 1) to Jm given by

Fm(t̂) =
1

2
(tm−1 + tm) +

1

2
kmt̂.
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Since the semidiscrete approximation U |Jm and the test function W |Jm in (53)
are both in Srm(Jm, VL), they can be written in terms of the basis {ϕm,j : j =

0, . . . , rm},

U |Jm(x, t) =

rm∑
j=0

Um,j(x)ϕm,j(t), W |Jm(x, t) =

rm∑
j=0

Wm,j(x)ϕm,j(t).

We choose normalized Legendre polynomials as reference time shape functions, i.e.,

ϕ̂j(t̂) =
√
j + 1/2 · Lj(t̂), j ∈ N0, (55)

where Lj are the usual Legendre polynomials of degree j on (−1, 1).

Example 5. The first four reference time shape functions of the form (55) are

ϕ̂0(t̂) =
√

1/2, ϕ̂1(t̂) =
√

3/2 · t̂, ϕ̂2(t̂) =
√

5/2 · (3t̂2 − 1)/2,

ϕ̂3(t̂) =
√

7/2 · (5t̂3 − 3t̂)/2 .

The variational formulation (53) then reads: For m = 1, . . . ,M , find (Um,j)
rm
j=0 ∈

V rm+1
L such that there holds for all (Wm,i)

rm
i=0 ∈ V

rm+1
L ,

rm∑
i,j=0

Cmij (Um,j ,Wm,i) +
km
2

rm∑
i,j=0

Imij a(Um,j ,Wm,i) =

rm∑
i=0

fm,i,

where fm,i = ϕ̂+
i (−1)(Um−1(tm−1),Wm,i), with U0(t0) = uL,0 ∈ VL, and for i, j =

1, . . . , rm,

Cmij =

∫ 1

−1

ϕ̂′jϕ̂jdt̂+ ϕ̂+
j (−1)ϕ̂+

i (−1), Imij =

∫ 1

−1

ϕ̂jϕ̂idt̂ = δij .

The matrices Cm and Im, m = 1, . . . ,M , are independent of the time step and
can be calculated in a preprocessing step. Their size, however, depends on the
corresponding approximation order rm.

Denoting by M and A the mass and (wavelet compressed) stiffness matrix with
respect to (·, ·) and a(·, ·), (53) takes the matrix form

Find um ∈ R(rm+1)NL such that for m = 1, . . . ,M(
Cm ⊗M +

k

2
Im ⊗A

)
um = (ϕm ⊗M)um−1,

u0 = u0 .

(56)

where um denotes the coefficient vector of U |Jm
and ϕm := (ϕ̂+

1 (−1), . . . , ϕ̂+
rm+1(−1))> ∈ Rrm+1. Furthermore, u0 ∈ RNL is the

coefficient vector of uL,0 with respect to the wavelet basis of VL.
For notational simplicity, we consider for the rest of this section a generic time

step, omit the index m and write C and I for the matrices Cm and Im, respec-
tively, u, ϕ for the vectors appearing in (56), and r for the approximation order.
Furthermore, we denote the right hand side by f = (ϕm ⊗M)um−1.
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Theorem 8. Let the assumptions of Theorem 7 hold. Then, choosing the number
and order of time steps such that M = r = O(| log h|) and in each time step nG =

O(| log h|)5 GMRES iterations, implies that∥∥u(T )− UdG(T )
∥∥
L2(G)

≤ Chp, (57)

where UdG denotes the (perturbed) hp-dG approximation of the exact solution u

toEq. (29)-Eq. (30) obtained by the incomplete GMRES(m0) method.

5. Numerical examples

In this section several numerical examples are given to illustrate the theoretical
results of the previous sections.

Example 6 (CEV). We consider the CEV model as in Example 1 with variational
formulation as in Proposition 8.1. The discretization was carried out using linear
finite elements in space and the θ-scheme in time. The convergence rates for dif-
ferent choices of ρ can be observed in Figure 2. We use the following parameters:
T = 1, r = 0.05, σ = 0.3 and K = 1.

Example 7 (Heston). We consider the Heston model as introduced in Example 2,
the weak formulation is given in Eq. (42). We discretize using linear finite elements
in space and the θ-scheme in time. The price of a European put option is computed
as well as the sensitivity of the option price with respect to the correlation coefficient
ρ. We observe a convergence rate of approximately O(N−1) for the sensitivity as
well as for the option price, see Figure 3. The following parameters were chosen:
(α,m, β, ρ, κ, r, T,K) = (2.5, 0.025, 0.5,−0.4, 0.8, 0, 0.5, 100).

Example 8 (Swing). We price a swing option in the CEV model with K = 1,
T = 1, σ = 0.3, ρ = 0.5, r = 0.05, δ = 0.1 and p = 5. The price of the swing
options and the corresponding exercise boundary are depicted in Figure 5.
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ropean put option in the CEV model (left). Implied Black-Scholes volatilities in the CEV model
(right).
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Chapter 9

Randomized multilevel quasi-Monte Carlo path simulation

Thomas Gerstner and Marco Noll

Institut für Mathematik, Goethe-Universität, Robert-Mayer-Strasse 10, D-60325
Frankfurt am Main, Germany

Abstract This paper presents theoretical and numerical results with regard to
convergence rates, for a combination of the multilevel Monte Carlo method with
quasi-Monte Carlo path simulation. A complexity theorem, applicable for all path
simulation methods that use the multilevel approach, shows that for many payoff
functions the convergence rate is improved significantly by using quasi-random num-
bers instead of random numbers. The theoretical results are confirmed by numerical
examples with several types of options.

1. Introduction

For many traded financial options it is not possible to attain an exact price and
therefore numerical methods are needed. In this paper, the expected value of an op-
tion depends on the stock price given by the stochastic differential equation (SDE),

dS(t) = a(S(t), t)dt+ b(S(t), t)dW (t). (1)

The function a denotes the drift and b the volatility of the underlying. The simplest
discretization methods for the SDE (1) are the Euler scheme

Ŝ(tn+1) = Ŝ(tn) + a(Ŝ(tn), tn)h+ b(Ŝ(tn), tn)∆Wn, (2)

and the Milstein scheme

Ŝ(tn+1) = Ŝ(tn) + a(Ŝ(tn), tn)h+ b(Ŝ(tn), tn)∆Wn

+
1

2

∂b(Ŝ(tn), tn)

∂S
b(Ŝ(tn), tn)(∆Wn − h)2, (3)

where h = T/N is the timestep for N ∈ N steps on the grid tn = nh, n = 0, 1, ..., N

and ∆Wn = W (tn) − W (tn−1) denotes the increments of a standard Brownian
motion which is discretized by a Brownian bridge [7].

Let f : R −→ R be a function, so that f(S(T )) is the discounted payoff of an
option. For European or digital options the value f(S(T )) only depends on the

349
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stock price at the final time T , but in the case of Asian or barrier options the entire
path S(t), 0 < t < T , needs to be considered.

The standard Monte Carlo method requires a computational complexity of C =

O(ε3), i.e a convergence rate ε = O(C1/3), to achieve a mean square error ofMSE =

O(ε2). For the quasi-Monte Carlo method (QMC) it is well established that, in the
best case, a convergence rate of ε = O(C1/2) [7] can be achieved.

After introducing the multilevel Monte Carlo method, we examine in section 3
if the randomized multilevel quasi-Monte Carlo method (RMLQMC) improves the
convergence rate. The next section gives an extension of the complexity theorem
in [3], which can be used for every simulation method that use the multilevel ap-
proach. Finally, we compare the RMLQMC method with the QMC method. The
contribution of this paper are theoretical results for the RMLQMC method, the
extended complexity theorem in section 4 and numerical results for several types of
options.

2. Multilevel Monte Carlo method

The multilevel Monte Carlo method, as proposed by Giles [3], improves the conver-
gence rate by simulating the stock prices for different timesteps. The payoff of the
option on the finest level L is rewritten as a telescope sum

E[P̂L] = E[P̂0] +
L∑
l=1

E[P̂l − P̂l−1],

where P = f(S(T )) is the option value and P̂l is its approximation with timestep
hl = M−lT , where M ∈ N. The expected values of P̂l − P̂l−1 are then simulated
for l = 1, ..., L independently.

It is important that P̂l and P̂l−1 are calculated from the same Brownian path.
We first generate a path with timestep hl and then add M Brownian increments of
the fine path to calculate P̂l−1.

From the estimator

Ŷl = N−1
l

Nl∑
i=1

(P̂
(i)
l − P̂

(i)
l−1), l = 1, ..., L,

for E[P̂l − P̂l−1] and the estimator

Ŷ0 = N−1
0

N0∑
i=1

P̂
(i)
0

for E[P̂0] it follows that Ŷ =
∑L
l=0 Ŷl approximates E[P̂L]. The variance of Ŷl

is given by V ar[Ŷl] = N−1
l Vl, where Vl = V ar[(P̂l − P̂l−1)] for l = 1, ..., L and
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V0 = V ar[P̂0]. This results in

V ar[Ŷ ] = V ar
[ L∑
l=0

Ŷl

]
=

L∑
l=0

V ar[Ŷl] =
L∑
l=0

N−1
l Vl.

The variance is minimised if Nl ∼
√
Vlhl. The computational complexity depends

on the number of simulations for every timestep and is therefore given by C =∑L
l=1Nlh

−1
l . With the requirement of a Lipschitz bounded payoff function and

a(S, t) and b(S, t) satisfying certain conditions [11] Vl = O(hl) is obtained from
strong convergence. From Nl = O(ε−2(L + 1)hl) and L = log ε−1

logM + O(1) then
follows the complexity estimate C = O

(
ε−2(log ε)2

)
. The weak convergence of the

Euler scheme finally leads to E[PL − P ] = O(ε) which implies MSE = O
(
ε2
)
.

The complexity theorem from Giles [3] generalizes the previous results. It can
also be applied to non-Lipschitz payoff functions and the Euler method can be
replaced by any other discretization method [3].

3. Randomized multilevel quasi-Monte Carlo method

This section examines to what extent the multilevel approach can also improve the
convergence rate of the quasi-Monte Carlo method. Numerical examples in [5] have
already shown that this approach works quite well. In the following, we try to
justify these results theoretically.

First, we apply the randomization approach of Tuffin [17] to estimate the variance
of the quasi-Monte Carlo method. In the following

Ŷl =
1

I

I∑
i=1

Z
(l)
i

denotes the estimator which is calculated by I independent copies of Z(l)

Z(l) =
1

Nl

Nl∑
j=1

fl({xjl + ξ(j,l)}),

where (ξ(j,l))j∈N denotes a low-discrepancy sequence, xjl is an in [0, 1]d uniformly
distributed random variable, {xjl + ξ(j,l)} denotes the fractional part of the random
variable, so that {xjl +ξ(j,l)} ∈ [0, 1]d and fl is the payoff function of the multilevel
method, i.e. fl = Pl − Pl−1 for l = 1, ..., L.

The key point here is that the sequence (ξ(j,l))j∈N is the same for every i = 1, ..., I

for each estimator Ŷl. Only the uniformly distributed random variable xjl is different
for each i. Then, the multilevel estimator is given by

Ŷ =
L∑
l=0

Ŷl.
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In the following VHK denotes the Hardy-Krause variation, D∗Nl the star discrepancy,
Qxl = ({xl + ξ(n,l)})n∈N the set of randomized points of xl and P = (ξ(n,l))n∈N the
set of low-discrepancy points. Now we are able to calculate the variance

V ar[Ŷl] =
1

I
V ar

[ 1

Nl

Nl∑
j=1

fl({xjl + ξ(j,l)})
]

=
1

I

∫
[0,1]d

( 1

Nl

Nl∑
j=1

fl({xjl + ξ(j,l)})− E[fl]
)2

dxl

≤ 1

I

∫
[0,1]d

(
VHK(fl)D

∗
Nl

(Qxl)
)2

dxl

≤
(

4dVHK(fl)D
∗
Nl

(P)
)2

.

The third step uses the Koksma-Hlawka Inequality [7], and for the last step,
D∗Nl(Qxl) ≤ 4dD∗Nl(P) is needed [12]. For a low-discrepancy sequence the star
discrepancy is given by the estimate D∗Nl(P)= O(N−1

l (logNl)
d). Because of

(logN)d ≥ 4d ∀ N ≥ 55 we can replace 4d in D∗Nl(P) by doubling the dimen-
sion. For many constructions it is sufficient to consider a star discrepancy of
D∗Nl(P) = O

(
N−1+ε
l

)
∀ ε > 0 [12]. Applying this consideration leads to a vari-

ance of

V ar[Ŷl] = O
((
VHK(fl)

)2
N−2+ε
l

)
.

The next step is to examine VHK(fl). The standard assumption is that VHK(fl) is
bounded. However in the multilevel approach we have the situation that the payoff
function is the difference of two calculated option values to different timesteps.
The difference of the timesteps becomes smaller with higher levels, therefore the
difference of Pl and Pl−1 decreases. That leads to the assumption that VHK(fl)

decreases if the timestep decreases. It is also expected that the strong convergence
of the discretization method influences the variation. Thus it seems to be a decent
assumption that the variation acts like the variance of Pl − Pl−1 of the multilevel
Monte Carlo method which leads to the assumption

V ar[Ŷl] = O
(
h2β
l N

−2+ε
l

)
, (4)

where β denotes the strong convergence rate of the discretization method. In higher
dimensions it is difficult to estimate the variation, therefore we examine if this
assumption holds in the numerical results.

Next we analyze the computational complexity under these assumptions. To do
that, we use results from Giles in [3] for the MLMC method and modify them for
the RMLQMC method. As discretization method the Euler scheme is used. As
before, we want to achieve an accurancy ofMSE = (E[Y − Ŷ ])2 +V ar[Ŷ ] = O(ε2).
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From weak convergence follows E[P̂L−P ] = O(hL). Setting the maximum level
L = log ε−1

logM + O(1) and letting ε → 0 leads to hL = O(ε) for the finest timestep.
Because Ŷ is an unbiased estimatior of PL we have E[Ŷ − Y ] = O(ε). To simplify
the variance we neglect ε > 0, so that

V ar[Ŷl] = O
(
h2β
l N

−2
l

)
. (5)

To minimize the variance for a fixed computaional complexity we treat Nl as
a continuous variable. Then we have an extremal value problem with f(N) =∑L
l=0N

−2
l h2β

l and g(N) =
∑L
l=0Nlh

−1
l − K. Thereby, K is chosen such that

g(N) = 0 with N = (N0, ..., NL). N is a minimal if there are Lagrange multipliers
λ0, ..., λL ∈ R that satisfy

∇f(N) = λ0∇g0(N) + ...+ λL∇gL(N).

This leads to

−2h2β
l N

−3
l = λlh

−1
l , for l = 0, ..., L,

from which follows Nl = O
(
h

1+2β
3

l

)
. For the Euler discretization we have β = 1/2

and in order to achieve V ar[Ŷ ] = O(ε2) we choose

Nl = O(ε−7/6(L+ 1)1/2h
2/3
l ).

With (5) we have

V ar[Ŷ ] =
L∑
l=0

c1N
−2
l hl =

L∑
l=0

c1hl(ε
−7/6(L+ 1)1/2h

2/3
l )−2

=
L∑
l=0

c1hl(ε
7/3(L+ 1)−1h

−4/3
l ) ≤ c1ε

7/3ε−1/3 ≤ c1ε
2,

with a constant c1. That leads toMSE = O(ε2) and the computational complexity
is thus

C = c1

L∑
l=0

Nlh
−1
l = c1

L∑
l=0

(ε−7/6(L+ 1)1/2h
2/3
l )h−1

l

= c1

L∑
l=0

ε−7/6(L+ 1)1/2h
−1/3
l ≤ c1ε

−7/6(L+ 1)3/2h
−1/3
L

≤ c1ε
−9/6(L+ 1)3/2 = O

(
ε−3/2(log ε−1)3/2

)
.
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4. Extended complexity theorem

The following theorem gives general results for the RMLQMC method. It is an
extension of the complexity theorem in [3] which can be used for every simulation
method that use the multilevel approach. This is achieved by extending the com-
plexity theorem by an parameter δ that depends on the simulation method. For
the MLMC method we usually have δ = 1. For the RMLQMC method we can at
best achieve δ = 2− ε.

Theorem 1. Let P denote a functional of the solution of stochastic differential
equation (1) for a given Brownian path W (t), and let P̂l denote the corresponding
approximation using a numerical discretization with timestep hl = M−lT.

If there exist independent estimators Ŷl based on Nl simulations and positive con-
stants α ≥ 1/2, β, δ ≥ 1, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1hαl

ii) E[Ŷl] =

{
E[P̂l], l = 0

E[P̂l − P̂l−1], l > 0

iii) V ar[Ŷl] ≤ c2N−δl hβl

iv) Cl, the computational complexity of Ŷl, is bounded by Cl ≤ c3Nlh−1
l ,

then there exists a positive constant c4 > 0 such that for any ε < e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑
l=0

Ŷl

has a mean square error with bound

MSE = E[(Ŷ − E[P ])2] < ε2

with a computational complexity C with bound

C ≤

{
c4 max

(
ε−

2
δ (log ε−1)1+ 1

δ , ε−
1
α

)
, β ≥ δ,

c4 max
(
ε−

2
δ−

1
α+ β

αδ (log ε−1)1+ 1
δ , ε−

1
α

)
, β < δ.

Proof. The proof is similar to the one of the complexity theorem in [3]. Let dxe
be the integer n satisfying x ≤ n < x+ 1 . First, we choose L to satisfy

1√
2
M−αε < c1h

α
L ≤

1√
2
ε, (6)
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which leads to

L =
⌈ log(

√
2c1T

αε−1)

α logM

⌉
. (7)

Because of i), ii) and (6), the bias is bounded by

(E[Ŷ ]− E[P ])2 ≤ 1

2
ε2. (8)

This result is needed later to estimate the MSE. For L→∞, we have

L∑
l=0

h−1
l < h−1

L

M

M − 1
.

Because of (6) we also have h−1
L < M

(
ε√
2c1

)− 1
α

, so that with ε−
1
α ≤ ε−2 for

α ≥ 1
2 , ε < e−1, we have

L∑
l=0

h−1
l <

M2

M − 1

( ε√
2c1

)− 1
α

. (9)

It’s also easy to see that

(
h−1
L

)1− 1
δ = h

−1+ 1
δ

L ≤M1− 1
δ

( ε√
2c1

)−1+1/δ
α

, (10)

and

(
h−1
L

)1− βδ = h
−1+ β

δ

L ≤M1− βδ
( ε√

2c1

)− 1
α

(
1− βδ

)
. (11)

These resuls are used later to calculate an upper bound for the computational
complexity. We first choose

Nl = d
(
2ε−2(L+ 1)c2h

β
l

) 1
δ e (12)

to achieve MSE < ε2. This follows from (8) combined with

V ar[Ŷ ] =
L∑
l=0

V ar[Ŷl]
iii)

≤
L∑
l=0

c2N
−δ
l hβl ≤ ε2

2
.

To calculate the computational complexity we need to find an upper bound for the
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maximum level L. To do that we use 1 < log ε−1 for ε < e−1,

L+ 1
(7)

≤ log(
√

2c1T
αε−1)

α logM
+ 2

≤ log ε−1

α logM
+

log(
√

2c1T
α)

α logM
+ 2

≤ log ε−1
( 1

α logM
+

log(
√

2c1T
α)

α logM log ε−1
+

2

log ε−1

)
1<log ε−1

≤ log ε−1
( 1

α logM
+ max

(
0,

log(
√

2c1T
α)

α logM

)
+ 2
)

︸ ︷︷ ︸
=:c4

= c4 log ε−1.

With δ ≥ 1 it follows for c5 = (c4)1+ 1
δ that

(L+ 1)1+ 1
δ ≤ c5

(
log ε−1

)1+ 1
δ . (13)

For further calculations we need to consider thus different cases for β.

case 1: β ≥ δ

We need

h
−1+ β

δ

l ≤(M−lT )−1+ β
δ ≤ T−1+ β

δ ≤ max{T−1, T β} <∞, (14)

for β ≥ δ ≥ 1, l = 0, ..., L and T < ∞. Now we can estimate the computational
complexity by

C
iv), (12)

≤
L∑
l=0

c3h
−1
l

((
2ε−2(L+ 1)c2h

β
l

) 1
δ + 1

)
(9), (14)

≤ c7ε
− 2
δ (L+ 1)1+ 1

δ +
M2

M − 1
(
√

2c1)
1
α ε−

1
α

(13)

≤ c7ε
− 2
δ (c5 log(ε−1)1+ 1

δ ) + c8ε
− 1
α

≤ c9 max
(
ε−

2
δ (log ε−1)1+ 1

δ , ε−
1
α

)
,

with constants c6, c7, c8, c9.

case 2: δ > β
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In this case we get an upper bound similarly

C
(12)

≤
L∑
l=0

c3h
−1
l

((
2ε−2(L+ 1)c2h

β
l

) 1
δ + 1

)
h
−1+

β
δ

l ≤ h
−1+

β
δ

L

≤ c6ε
− 2
δ (L+ 1)1+ 1

δ h
−1+ β

δ

L +
M2

M − 1
(
√

2c1)
1
α ε−

1
α

(11)

≤ c7ε
− 2
δ (log(ε−1))1+ 1

δ ε−
1
α

(
1− βδ

)
+ c8ε

− 1
α

≤ c9 max
(
ε−

2
δ−

1
α+ β

αδ (log ε−1)1+ 1
δ , ε−

1
α

)
,

with new constants c6, c7, c8, c9.

For the multilevel Monte Carlo method (δ = 1) it is possible to improve the
upper bound in the theorem. This was already shown in [3]. In order to avoid too
many cases this case is not considered seperately here.

If we have a Lipschitz bounded payoff function and use the Euler discretization
then α = 1 and β = 1. With δ = 2 for the RMLQMC method we obtain the same
computational complexity as calculated in section 3. Replacing the Euler scheme
by the Milstein scheme gives us β = 2, from which a computational complexity of
C = O

(
ε−1(log ε−1)3/2

)
can be obtained. It’s remarkable that almost a convergence

rate of 1 is achieved if the payoff function is smooth enough.
To apply this theorem we first need to determine the parameters α, β, δ. The

parameter α follows from the weak convergence of the discretization method. The
parameter β is numerically easy to determine and depends on the payoff function.
For smooth payoff functions it is expected that β/2 is equivalent to the strong
convergence rate. The parameter δ needs to be determined numerically. Later, we
examine how δ depends on the payoff function. Also has to be analyzed if δ depends
on the dimension for the RMLQMC method.

In the following numerical examples we hence first determine the necessary pa-
rameters for the extended complexity theorem, then we compare the theoretical
convergence rate with the numerical calculated convergence rate.

5. Numerical results

Now we compare the QMC method with the RMLQMC method. It has to be
emphasised that the QMC method is not randomized, because this decreases the
convergence rate. For the RMLQMC method we use the algorithm suggested in
[5], but we replace the rank-1 lattice rule by a Sobol sequence [16]. This algorithm
aims to achieve a RMSE of O(ε).

Both methods perform significantly better then pure MC or MLMC, which are,
therefore not considered in the following.
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For the numerical results, the option value and the computational costs are
simulated 100 times. These data are used to determine the RMSE, the variance
and the bias. We also assume that the stock price corresponds to a simple geometric
Brownian motion,

dS(t) = rSdt+ σSdW (t),

with rate of interest r = 0.05 and volatility σ = 0.2. For all examples we further
use S(0) = 1, K = 1 and T = 1.

5.1. European option

First, we consider a European call option with discounted payoff function

P = exp(−rT )
(
S(T )−K

)+
.

For calculating α we choose a fixed number of samples (here Nl = 5000) and plot
E[P̂l − P ] versus the timestep hl = 2−l for l = 2, ..., 8. We consider the Euler and
the Milstein discretization, but no difference can be expected, since α only depends
on the weak convergence rate. Figure 1 shows an α of 1 for both methods.
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Figure 1. The parameters α (left) and β (right) for varying mesh widths h for a European option

The parameter β is calculated for a fixed number of samples by comparing the
variance of Ŷl for different timesteps hl. The right plot shows a β of 1.65 for the
Milstein scheme and β = 0.48 for the Euler scheme.

Determing δ is more difficult, because it represents the convergence rate of the
simulation method. For the RMLQMC method δ is expected to depend on the
dimension which increases as the timestep decreases. Hence we determine δ for
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different timesteps. In Figure 2 we examine δ for l = 3, 5, 7. Level 7 already
presents the worst-case scenario, because no higher levels were needed. For level
3 the Euler and Milstein scheme have a δ of 1.6. It gets worse for level 5 with
δ = 1.5 and for level 7 δ reduces to 1.3. As expected we see that δ depends on the
dimension.

Using the determined parameters in the complexity theorem gives us a conver-
gence rate between ε = O(C−0.65) and ε = O(C−0.8) for the Milstein discretization
and between ε = O(C−0.45) and ε = O(C−0.5) for the Euler discretization.

The next step is to compare these results with the numerical calculated conver-
gence rates. The top left plot in Figure 3 shows the behavior of the RMSE for the
QMC and RMLQMC method. The QMC method achieves a RMSE convergence
rate of 0.5, i.e. RMSE = O(C−0.5). Combining the RMLQMC method with the
Milstein discretization the RMSE convergence rate is strikingly increased to 0.75.
Using the Euler discretization the convergence rate couldn’t be improved because
the variance wasn’t reduced. This shows the bottom plot in Figure 3. The conver-
gence rate of the variance is only 1. The Milstein discretization improves this rate
to 1.5.

The top right plot gives the behavior of the squared bias versus the costs. The
QMC method has a convergence rate of the squared bias of 0.75, whereas the RM-
LQMC method improves this rate to 1.5. In this example, the RMSE is almost
equally determined by the variance and the bias. The numerically calculated com-
putational costs are in the range of the computational costs determined by the
complexity theorem.
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Figure 2. The parameter δ for a varying number of samples N(L) for a European option
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Figure 3. Convergence rates for a European option: RMSE (top left), squared bias (top right)
and variance (bottom left)

5.2. Asian option

Next, we consider an Asian option with payoff function

P = exp(−rT ) max(0, S −K),

where

S =

∫ T

0

S(t)dt

is approximated by Sl =
∑Nl
n=1

1
2

(
Ŝn + Ŝn−1

)
hl for each level l.

We first determine α, β and δ. The left plot in Figure 4 shows an α of at least
1. The right plot shows β = 1.1 for the Euler scheme and β = 1.6 for the Milstein
scheme.

Figure 5 has the results for δ. For level 3 δ = 1.5, for level 5 and 7 δ = 1.2. These
results are similar to those of the European option, but approximately 0.1 worse.
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That indicates that δ is not independent of the payoff function. A reason for this
is that the variance of Ŷl depends on the payoff function. With these values we get
a convergence rate between ε = O(C−0.6) and ε = O(C−0.75) from the extended
complexity theorem.

The top left plot in Figure 6 shows a convergence rate of ε = O(C−0.6) for
all considered methods. Therefore the RMLQMC method couldn’t improve the
convergence rate. One reason might be that the approximation of S by Sl is too
slow. In particular the convergence rate of the variance couldn’t be improved. For all
methods we have a convergence rate of the variance of 1.3. Thus the computational
complexity is only reduced by a constant. For this option we also see that the
convergence rate of the squared bias has no impact on the RMSE convergence.

Obviously the Milstein discretization does not work better than the Euler dis-
cretization. The reason for this is again that the approximation of S by Sl is not
good enough. But we also see in Figure 4 that the Euler method already works very
well. For the first 5 levels both discretization methods achieve the same results.
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Figure 4. The parameters α (left) and β (right) for varying mesh widths h for an Asian option
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5.3. Barrier option

In the following a barrier option is considered with payoff function

P = exp(−rT )
(
S(T )−K

)+
1τ>T ,

where τ = inft>0{S(t) < B} denotes the barrier crossing time. The barrier B is
chosen to be 0.85.

To improve the convergence rate of the variance, a standard approach is used
[4; 7] which redefines the payoff on the fine Level P̂l to

exp(−rT )
(

(ŜfnT −K
)+ nT−1∏

n=0

p̂fn

)
,

where nT = T/h describes the number of timesteps used in this approximation.
The probability that the path did not cross the barrier during the nth timestep is
denoted by p̂fn. This probability can be expressed by

p̂fn = 1− exp
(−2(Ŝfn −B)+(Ŝfn+1 −B)+

(σŜfn)2hf

)
,

where Ŝfn denotes the approximated asset price for the fine-path at the nth timestep.
For the payoff on the coarse level we first construct an interpolated midpoint

Ŝm+ 1
2

=
1

2
(Ŝm+1 + Ŝm) + σŜm

(
Wm+ 1

2
− 1

2
(Wm+1 +Wm)

)
.

The key point here is that Wm+ 1
2
was already calculated for the fine-path approx-

imation. The probability that the path did not cross the barrier during the mth

timestep is [4]

p̂cm =
{

1− exp
(−2(Ŝcm −B)+(Ŝcm+1/2 −B)+

(σŜcm)2hc

)}
×
{

1− exp
(−2(Ŝcm+1/2 −B)+(Ŝcm+1 −B)+

(σŜcm)2hc

)}
.

The payoff of the coarse level is given by

exp(−rT )
(

(ŜcmT −K
)+ mT−1∏

m=0

p̂cm

)
.

Important is that with this construction the expected payoff is not changed, so that
E[P̂ fl ] = E[P̂ cl ].

The left plot in Figure 7 shows α = 1 for both discretization methods. The
right plot gives an average β of 0.75 for the Milstein discretization. For the Euler
discretization only a β of 0.2 could be achieved.

Figure 8 shows the results for δ. For L = 3 δ is 1.3 and for L = 7 only a δ
of 1 is attained. This indicates that the RMLQMC method is not better than the
MLMC method if the fine timesteps are important. With these values we attain
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a computational complexity between ε = O(C−0.45) and ε = O(C−0.75) for the
Milstein scheme and between ε = O(C−0.35) and ε = O(C−0.55) for the Euler
scheme.

The top left plot in Figure 9 shows a RMSE convergence rate of 0.35 for the
Euler discretization, the Milstein discretization improves this to 0.55. But the QMC
method also achieves this convergence rate. It is clear that the Euler discretization
does not work well for the RMLQMC method because of the low value for β that
leads to a lower convergence rate of the variance.
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Figure 7. The parameters α (left) and β (right) for varying mesh widths h for a barrier option

10
1

10
2

10
3

10
4

10
5

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

N(L)

v
a
ri
a
n
c
e

 

 

10
1

10
2

10
3

10
4

10
5

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

N(L)

v
a
ri
a
n
c
e

 

 

delta Milstein, L=3

delta Milstein, L=5

delta Milstein, L=7

delta Euler, L=3

delta Euler, L=5

delta Euler, L=7
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Figure 9. Convergence rates for a barrier option: RMSE (top left), squared bias (top right) and
variance (bottom left)

5.4. Digital option

The considered digital option is defined by

P = exp(−rT )1S(T )>K .

Now we use the technique of conditional expectation [4; 7] to improve the conver-
gence rate of the variance. This can be achieved by terminating the path calculations
at time nT − 1. The number of timesteps is described by nT = T/h. For the stock
price approximated on the fine level at this time ŜfnT−1, we calculate the probability
of the event {ŜfnT > K} which is given by

p̂f = Φ
( ŜfnT−1 + rŜfnT−1h

f −K
σŜfnT−1

√
hf

)
,

where Φ is the cumulative Normal distribution. The payoff on the fine level is

P fl = exp(−rT )p̂f .
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For the coarse path simulation we use that the Brownian increments ∆W on the
fine path are already calculated. Here we have nT /2 timesteps and the probability
of the event {ŜcnT /2 > K} is

p̂c = Φ
( ŜcnT /2−1 + rŜcnT /2−1h

c + σŜcnT /2−1∆WnT−1 −K

σŜcnT /2−1

√
hc

)
,

where ∆WnT−1 describes the Brownian increment of the fine path-calculation at
time nT − 1. The payoff is P cl = exp(−rT )p̂c [4]. We again have E[P̂ fl ] = E[P̂ cl ].
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Figure 10. The parameters α (left) and β (right) for varying mesh widths h for a digital option

In the left plot in Figure 10 we see that α is 1. The right plot shows β. In
this example it is difficult to determine a value for β. The Euler discretization
even seems to have a negative β. Hence we neglect the first two points and assume
a β of 0. A similar problem appears when simulating with the Milstein scheme.
Neglecting the first two points gives a β of 0.8, but this value seems too good, so
that we assume β = 0.5.

In Figure 11 we attain for level 3 an value for δ of 1.5. For level 7 we still
have δ = 1.2. There is no significant difference between Euler and Milstein dis-
cretization. The extended complexity theorem gives a computational complexity
between ε = O(C−0.375) and ε = O(C−0.43) for the Euler discretization and be-
tween ε = O(C−0.45) and ε = O(C−0.7) for the Milstein discretization. But in this
example those values are not reliable because we couldn’t attain a clear value for β.
The numerically obtained convergence rates are presented in Figure 12. The QMC
method achieves a RMSE convergence rate of 0.35. The RMLQMC method im-
proves the convergence rate to 0.4 using the Euler scheme, and the Milstein scheme
shows a convergence rate of 0.5. Obviously the convergence rate of the squared bias
has no impact on the RMSE convergence for the QMC method. For the RMLQMC
method we have a similar result, the RMSE convergence is clearly dominated by
the variance.
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6. Conclusion

This chapter gives theoretical and numerical results for the RMLQMC method.
First, we established a theorem which can be used for all simulation methods that
use the multilevel approach. In this context we analyzed numerical examples. These
showed partially clear improvements. The best result was achieved for a European
option, where the RMLQMC method with Milstein discretization improved the
convergence rate to 0.75, whereas the QMC method only had a convergence rate of
0.5. In the case of an Asian option the RMLQMC, independent of the discretization
method, achieved the same convergence rate as the standard QMC method. No
improvement was achieved because the used approximation formula for the payoff
which is given by an integral was too slow, therefore there was no advantage using
the Milstein scheme instead of the Euler scheme. However, it is this combination
that achieves better results than the standard QMC method. For a barrier and a
digital option the results were similar. The RMLQMC method worked very well for
the digital option, whereas for the barrier option the convergence rate of the QMC
method could not be improved.

The weak point of the extended complexity theorem is the calculation of the
parameter δ. For simulation methods which depend on the dimension, δ also de-
pends on the dimension. Hence it is difficult to determine δ which seems to play
a crucial role. However the extended complexity theorem shows the possibilities of
the multilevel approach if a better simulation method is used. That is the key point
of future work.
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Abstract In this work we present an efficient procedure to simulate the dynamics
of the LMM mainly avoiding the use of the drift dependent paths in Monte Carlo
simulation. We extend this simulation procedure to the case of the LMM for two
economies. In the case of two currencies we distinguish the domestic and foreign
forward LIBOR rates plus the forward foreign exchange rate. In the model proposed
here, we introduce the current value of the discount factors and the volatilities
for both economies directly from the market. We also adjust the correlations by
extending Rebonato’s formula to the cross currency case. Notice that the existence
of Quanto products mainly motivates the need of cross-currency models, therefore
we present some numerical results concerning to a quanto pricing example.

1. Introduction

The LIBOR Market Model (LMM) has become very popular since its introduction
in the late nineties [6; 16]. This is mainly due to the fact that LMM prices caps
by means of the standard Black’s formula have employed in the markets. Also, the
model avoids arbitrage among bonds and keeps all rates positive. As the LMM
assumes lognormal dynamics for each forward LIBOR rate, it is also referred as
the Lognormal Forward-LIBOR Model (LFM) in [6], for example. Thus, the model

373
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assumes deterministic diffusion coefficients for the logarithmic forward rates (i.e.
lognormal volatility), although each forward rate becomes a martingale under an
appropriate probability measure which is not the same for all rates [13]. As indicated
for example in [6], several common measures can be chosen (terminal, spot, etc),
each one of them associated to a particular choice of the numeraire. The dynamics
of each forward rate under this common measure can be obtained by the change of
numeraire technique. Under this common numeraire almost all the forward LIBOR
dynamics include the presence of a drift term depending on several forward rates.
This dependence of the drift on the forward rates prevents us from having an exact
solution of the system of stochastic differential equations governing the dynamics
of the set of LIBOR rates.

LMM models the whole Zero Coupon curve, so it is specially well suited to
price derivatives on a single interest rate curve by using Monte Carlo simulation.
Clearly, this approach requires the discretization of continuous models. The dis-
cretized approximation should maintain the desired properties of the continuous
model: guaranteeing no arbitrage among different bonds, preserving positivity of
forward rates and pricing caplets according to Black’s formula.

The most immediate Euler scheme in Monte Carlo simulation discretizes the
stochastic differential equations verified by LIBOR rates under the common measure
[11]. This approach requires the discretization of the drift terms so a discretization
error is introduced. Particularly, in order to guarantee that the discretized model
remains arbitrage free, all discretized deflated bonds must remain martingales. Dis-
cretization of the forward LIBOR stochastic equations require some not easy drift
free adjustment [1]. In this chapter we follow an alternative approach that mainly
consists of first simulating certain martingales and next computing the LIBOR rates
in terms of them (see [12], for example). This methodology is referred to as the
drift free simulation (DFS) technique.

In the present work we describe an efficient method, proposed in [9], to simulate
the dynamics of forward LIBOR rates in the LMM for a single interest rate curve
when using as the numeraire a bond maturing at any LIBOR tenor date (forward
measure) or the bank account (spot measure). This method starts from some ideas
developed in [12] that replace the simulation of the drifts associated to LIBOR rates
by the simulation of appropriate martingales. In this setting, we first describe three
drift free simulation (DFS) techniques. The first one is implicit and requires a se-
quential implementation of the simulation of the involved martingales and does not
guarantee the positivity of the computed martingales at discrete level. The second
technique is based on a log-Euler simulation technique leading to a non recursive
simulation algorithm which allows to parallelize in a certain sense the simulation of
all the involved martingales. Although the positivity of martingales is guaranteed
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in these case, the forward LIBOR rates can be negative. In both of these previous
methods, the martingales are defined as the discounted values of certain bonds in
terms of a chosen numeraire. Next, as a third technique, we recall the method
proposed by Glasserman and Zhao in [12], in which the differences between partic-
ular deflated bonds are used as martingales. These martingales are obtained via
a particular change of coordinates applied to the deflated bonds, which preserves
the martingale property of those bonds at discrete level, although negative deflated
bonds may appear thus leading to arbitrage among different bonds, as indicated
in [4]. In [4], alternatives to the Glasserman-Zhao method to avoid this limitation
are presented, although all of them exhibit some further particular disadvantages
(negative forward rates, an additional discretization bias, no arbitrage free,...).

An efficient method proposed in [9] simulates forward LIBOR rates according
to the LMM model avoiding negative deflated bonds and negative forward rates.
The method is based upon a new parameterization of the martingales introduced
by Glasserman and Zhao. The numerical results illustrate the better performance
of the proposed method when pricing caplets. Also the proposed adjustment for en-
suring the martingale property at discrete level provides slightly better results with
the methods proposed here. Although different alternative probability measures
have been analyzed, here we just present two examples of numeraires: discount
bond maturing at an intermediate tenor date and the bank account. At that point,
we also consider a combination of these two: up to maturity of the bond we use the
bond and after that the bank account starting at that date.

Moreover, we develop a model for pricing cross-market derivatives. A first exam-
ple comes from the two currencies framework where we have domestic rates, foreign
rates and the FX rate. A second example arises in the inflation derivatives setting
in which we distinguish nominal rates, real rates and the inflation index. Thus, in
the general cross-market setting, our aim is to state models for the Zero Coupon
Curve evolution of a market A, for the Zero Coupon Curve evolution of a market
B and for the evolution of the exchange rate between both markets. Both Zero
Coupon Curves will be represented by their respective forward rates. In particular,
we model rates of each economy by a LMM, so we can construct a market model
that assumes lognormality for forward LIBOR rates. When addressing the LMM
methodology for cross-currency derivatives, the assumption that all forward for-
eign exchange (FX) rates are lognormal results in inconsistent with the lognormal
hypothesis about domestic and foreign rates for all maturities [16]. In [21] con-
sistent combinations of lognormality assumptions are analyzed, amongst them we
will choose to assume lognormality just for one maturity in forward FX rates. This
choice has also been considered in [16], where the simulation procedure proposed in
[12] for one currency is extended to the cross-currency case. The proposed exten-
sion takes advantage of the drift-free procedures to simulate the dynamics of the
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forward rates in each economy. Here we mainly present the two currency case, so we
model the evolution of domestic Zero Coupon Curve, foreign Zero Coupon Curve,
and a forward FX rate. Thus, we apply the drift-free simulation methods to the
two currencies case and then use it to obtain the value of Quanto Caplets. Finally,
we compare the values obtained with the different DFS techniques with the value
obtained with the market formula.

This chapter is organized as follows. Section 2 describes the proposed drift-free
simulation methods for LMM. In Section 3 we present the dynamics for forward
rates in the domestic and the foreign markets and the FX rate under a general
probability measure and a particular one. In Section 4 we extend the methodology
proposed in Section 2 to the two currencies case. Section 5 is devoted to lognormal
approximation of swap rates. Section 6 deals with the model calibration procedure.
Section 7 introduces particular Quanto Caplets derivatives and Section 8 presents
the obtained numerical results for Quanto Caplets pricing.

2. Drift-Free simulations methods for LIBOR Market Model
(LMM)

In this section we recall the Drift-Free Simulation (DFS) methodologies for LMM
that were presented in [12] and a new parameterization technique described and
discussed in [9]. For this purpose, we first introduce the usual notation related to
LMM.

We consider a tenor structure T :={T0, T1, ..., TN+1}, with T0 = 0, Tj < Tk, 0 ≤
j < k ≤ N + 1, and the corresponding accruals δj = Tj+1 − Tj , 0 ≤ j ≤ N . For
j = 0, ..., N + 1, let Bj(t) denote the price at time t of a zero-coupon bond that
matures at the tenor date Tj ≥ t. For j = 0, ..., N , we denote by Lj(t) the value
at time t ≤ Tj of a forward LIBOR rate for the accrual period [Tj , Tj+1]. These
forward LIBOR rates can be obtained in terms of quotients of zero coupon bond
prices, as follows:

Lj(t) =
Bj(t)−Bj+1(t)

δjBj+1(t)
. (1)

The bank account, β, is the asset whose value at times t ∈ (Ti−1, Ti] is given by

β(t) = Bi(t)
i−1∏
l=0

(
1 + δlLl(Tl)

)
. (2)

We shall denote by W (t) a (correlated) N -dimensional Wiener process in a cer-
tain probability space (Ω,F ,P) with a correlation matrix Σ = (Σi,j). The natural
filtration generated by W (t) is denoted by Ft. Every stochastic process we consider
is defined on this probability space. In the sequel several particular probability
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measures that correspond to particular choices of numeraire are considered.

LMM assumes lognormal forward LIBOR rates under P. Hence, for j = 1, ..., N ,
we assume the following dynamics for forward LIBOR rates:

dLj(t) = µj(t)Lj(t)dt+ σj(t)Lj(t)dWj(t), (3)

where µj(t) denotes the drift term and σj(t) denotes the volatility term. The in-
stantaneous correlation coefficient < dLj(t), dLk(t) > is then Σj,kdt.

As previously indicated, we first present DFS procedures that allow to simulate
these forward LIBOR rates avoiding the calculation of the drifts appearing in (3).
Once we have chosen a numeraire Num, the drift free simulation procedures are
based on the simulation of the following deflated bonds

Mj(t)
.
=

Bj(t)

Num(t)
, t ≤ Tj , j = 1, . . . , N + 1, (4)

which are martingales under an appropriate equivalent probability measure Q,
which, of course, depends on the choice of Num.

The DFS techniques are based on the following (recurrence) relation

Mj(t) =
(
1 + δjLj(t)

)
Mj+1(t) , (5)

connecting consecutive deflated bonds and a LIBOR rate.

Remark 10.1. As we have already pointed out we shall only consider two types
of numeraries: discount bonds of any (tenor) maturity and the bank account. It
is a simple fact, but quite relevant in the sequel, that for any of those numeraries
and for each interval [Tj , Tj+1) there exists an index k such that dMk(t) = 0 along
that interval. If the numeraire is the bond Bn, n ≤ N + 1, then this index k is
always k = n, while for the bank account as numeraire the index k is j + 1 within
the interval [Tj , Tj+1).

2.1. Implicit Drift-Free Simulation (IDFS)

Taking into account that Mj(t) is a martingale under Q and the recurrence rela-
tion (5), we obtain the following (equivalent) expressions relating the dynamics of
consecutive Mj :

dMj(t) = δjσj(t)Lj(t)Mj+1(t) dWj(t) +
(
1 + δjLj(t)

)
dMj+1(t), (6)

dMj+1(t) =
−δjσj(t)Lj(t)(
1 + δjLj(t)

)2Mj(t) dWj(t) +
1

1 + δjLj(t)
dMj(t). (7)
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These expressions are relevant for our purposes, because as pointed out in Re-
mark 10.1, in each time interval (t, t + dt], dMk(t) = 0 for some k, and then we
may compute recursively the dMj(t), for j = k − 1, k − 2, ..., using (6), and for
j = k + 1, k + 2, ..., by (7), just in terms of the brownian jumps and the previous
levels of the LIBOR rates and the deflated bonds.

The simulation algorithm goes as follows. For simplicity, we assume the same
constant accrual δj = ∆T for j = 1, . . . , N . For the IDFS procedure we consider a
constant simulation time step δt, which is a fraction∗ of the constant accrual ∆T .
We consider ti = iδt as a generic discretization time.

The steps of the IDFS algorithm are the following:
1. Initialize the values {Bj(0)}N+1

j=0 , {Lj(0)}Nj=0 and {Mj(0)}N+1
j=0 .

2. Simulation of the correlated Brownian motions {Wj(ti)}Nj=1 with ti ≤ Tj .
3. For each i = 0, 1, 2, · · · , (N+1)(δt/∆T )−1, the computation of the martingale

structure and LIBOR rates at time ti+1 follows two steps.
3.1. First, calculate all the martingale structure at time ti+1, starting from

dMk(ti) = 0, and Mk(ti+1) = Mk(ti) + dMk(ti). Thus, for j = k − 1, k − 2, . . . ,
with Tj ≥ ti+1, using the Euler discretization, we set

Mj(ti+1) = Mj(ti) + dMj(ti), (8)

where dMj(ti) is given by (6). Next, for j = k, k + 1, . . . , N − 1, N we set

Mj+1(ti+1) = Mj+1(ti) + dMj+1(ti), (9)

where dMj+1(ti) is obtained with (7).
3.2. Secondly, calculate the forward LIBOR rates at ti+1 by using the following

equivalent expression to (1):

Lj(ti+1) =
Mj(ti+1)−Mj+1(ti+1)

∆TMj+1(ti+1)
, with j such that Tj ≥ ti+1.

Next, go back to Step 3.1. for the following value of i.

Once we have run the algorithm, we can recover the numeraire and discount
bonds values only at tenor dates by means of

Num(Tj) =
1

Mj(Tj)
, j = 1, ..., N + 1, (10)

and

Bj(Ti) = Mj(Ti)Num(Ti), i ≤ j. (11)
∗In this way we guarantee that tenor dates are simulation dates, thus avoiding the use of additional
complex interpolation procedures.
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The constraint of recovering only for tenor dates is not a problem, because for
pricing we just need the values of martingales, forward rates, numeraire and dis-
count bounds at tenor dates. Actually, the choice of δt small is only for convergence
purposes.

The above IDFS procedure combined the Euler discretization results with a re-
cursive method: to pass from time ti to ti+1 we choose an appropriate order in j

(first decreasing from k−1 to 0 and next increasing from k+1 to N+1) to calculate
theMj at time ti+1. Note that Euler discretization does not guarantee the required
positivity of the martingales Mj . In order to avoid these two disadvantages (recur-
siveness and non positiveness) we introduce another simulation procedure.

2.2. Explicit Drift-Free Simulation (EDFS)

In this section we introduce and describe an alternative log-Euler discretization at
Step 3 of the IDFS algorithm leading to a non recursive simulation procedure which
we call Explicit Drift-Free Simulation (EDFS) algorithm and describe next.

First, by using (6), we have

dMj(t)

Mj(t)
= σj(t)

(
1− Mj+1(t)

Mj(t)

)
dWj(t) +

dMj+1(t)

Mj+1(t)
. (12)

Again, as indicated in Remark 10.1, since dMk(t) = 0 for some k, we have that

dMj(t)

Mj(t)
= εk,j

∑
l∈θk,j

(
dMl(t)

Ml(t)
− dMl+1(t)

Ml+1(t)

)
, (13)

where

εk,j =


−1, if j > k,

0, if j = k,

+1, if j < k,

θk,j =


{k, k + 1, ..., j − 1}, if j > k,

∅, if j = k,

{j, j + 1, ..., k − 1}, if j < k.

(14)

Next, by combining (12) and (13), we get

dMj(t)

Mj(t)
= εk,j

∑
l∈θk,j

σl(t)

(
1− Ml+1(t)

Ml(t)

)
dWl(t), (15)

or equivalently,

dMj(t)

Mj(t)
= σMj (t)dWM

j (t), (16)
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where

σMj (t) = εk,j

[ ∑
l1,l2∈θk,j

(
1− Ml1+1(t)

Ml1(t)

)(
1− Ml2+1(t)

Ml2(t)

)
σl1(t)σl2(t)Σl1,l2

] 1
2

, (17)

and WM
j (t) is an appropriate new Brownian motion.

Therefore, given (15) and (17), and applying the log-Euler discretization, we
have the following algorithm for the martingale structure:

Mj(ti+1) = Mj(ti) exp

(
dMj(ti)

Mj(ti)
− 1

2
σMj (ti)

2δt

)
, j = 1, . . . , N + 1, (18)

as an alternative to Step 3.1 in the IDFS algorithm.

The rest of the steps of the algorithm are analogous to the previously described
IDFS procedure.

In this EDFS method, once we know all the martingales at time ti we can com-
pute independently the martingales at time ti+1 this is why it is termed explicit.

In the EDFS method, the positivity of the deflated bonds Mj is guaranteed by
construction, although this is not the case for the forward LIBOR rates, thus raising
the possibility of discount bonds values greater than one. In order to overcome this
disadvantage we present another simulation procedure proposed by Glasserman and
Zhao in [12].

2.3. Glasserman-Zhao Drift-Free Simulation (GZDFS)

In order to guarantee the positivity of the forward LIBOR rates, Glasserman and
Zhao in [12] have introduced the following set of martingales:

Xj(t)
.
= Mj(t)−Mj+1(t) = ∆TLj(t)Mj+1(t), t ≤ Tj j = 1, . . . , N. (19)

Taking into account that Xj is a martingale under Q, we deduce the following
dynamics:

dXj(t)

Xj(t)
=
dMj+1(t)

Mj+1(t)
+ σj(t)dWj(t). (20)

Next, by combining (15) and (20), we get

dXj(t)

Xj(t)
= εk,j+1

∑
l∈θk,j+1

σl(t)

(
1− Ml+1(t)

Ml(t)

)
dWl(t) + σj(t)dWj(t), (21)

or equivalently,

dXj(t)

Xj(t)
= σXj (t)dWX

j (t), (22)
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where

σXj (t) =

 ∑
l1,l2∈θk,j+1

(
1− Ml1+1(t)

Ml1(t)

)(
1− Ml2+1(t)

Ml2(t)

)
σl1(t)σl2(t)Σl1,l2

+σj(t)
2 + 2σj(t)εk,j+1

∑
l∈θk,j+1

(
1− Ml+1(t)

Ml(t)

)
σl(t)Σl,j

 1
2

, (23)

and WX
j (t) is a new Brownian motion.

Therefore, given (21) and (23), and by applying the log-Euler discretization, we
have the following algorithm for simulating the Xj ’s:

Xj(ti+1) = Xj(ti) exp

(
dXj(t)

Xj(t)
− 1

2
σXj (ti)

2δt

)
, j = 1, . . . , N. (24)

Taking into account the previous dynamics, Step 3 of GZDFS algorithm can be
written as follows:

3. For each i = 0, 1, 2, · · · , (N+1)(δt/∆T )−1, the computation of the martingale
structure and LIBOR rates at time ti+1 follows three steps.

3.1. First, calculate the values of Xj(ti+1), with Tj ≥ ti+1, by (24).
3.2. Secondly, calculate all the martingale structure at time ti+1, starting from

dMk(ti) = 0, and Mk(ti+1) = Mk(ti) + dMk(ti). Then, for j = k − 1, k − 2, . . . ,
with Tj ≥ ti+1,

Mj(ti+1) = Mj+1(ti+1) +Xj(ti+1). (25)

Next, for j = k + 1, k + 2, . . . , N,N + 1,

Mj(ti+1) = Mj−1(ti+1)−Xj−1(ti+1). (26)

3.3. Thirdly, calculate the forward LIBOR rates at ti+1 by using the following
equivalent expression to (1):

Lj(ti+1) =
Xj(ti+1)

∆TMj+1(ti+1)
, with j such that Tj ≥ ti+1.

Next, go back to Step 3.1. for the following value of i.

Note that the positivity is guaranteed for Xj for j = 1, . . . , N and for Mj for
j = 1, . . . , k, but not for j = k + 1, . . . , N + 1.

As indicated in [4], the main disadvantage of Glasserman-Zhao method is that
for a wide set of terminal measures and for the spot measure the deflated bonds
in the discrete model could become negative, thus leading to internal arbitrage of
the model. Moreover, these deflated bonds are used to obtain the forward LIBOR
rates. This undesirable property can be avoided, for example, by using a terminal
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measure. Nevertheless, other measures as the bank account offer advantages from
the accuracy of Monte Carlo simulation point of view. In [4] several alternative
strategies are proposed to overcome these difficulties and the different pros and
cons of each one are highlighted.

In order to overcome the pointed out drawback of the Glasserman-Zhao method
and the difficulties indicated in the alternatives proposed in [4], in the next subsec-
tion we describe a new parameterized DFS method that was proposed in [9]. In the
final section this method will be compared with the previous ones when pricing a
two currency derivative product.

2.4. A new Parameterized Drift-Free Simulation (PDFS) algorithm

In this subsection we present a parameterized algorithm that guarantees the posi-
tivity of the deflated bonds and of the forward LIBOR rates under any forward or
spot probability measure (see [9]).

This procedure is based on adding the dynamic of the martingale MN+1 to the
system of stochastic differential equations proposed by Glasserman and Zhao in [12],
dXj , j = 1, ..., N . In this way, if we ensure that X1, ..., XN ,MN+1 are positive, then
we can compute each martingale Mj as a sum of positive terms, Mj = Mj+1 +Xj ,
for j = N,N − 1, ..., 1.

We have the following new system of N + 1 dynamics


dXj(t)

Xj(t)
= εk,j+1

∑
l∈θk,j+1

σl(t)

(
1− Ml+1(t)

Ml(t)

)
dWl(t) + σj(t)dWj(t), j = 1, ..., N,

dMN+1(t)

MN+1(t)
= −

N∑
l=k

σl(t)

(
1− Ml+1(t)

Ml(t)

)
dWl(t),

(27)
to which we impose the following additional constraints

i) Xj > 0, for j = 1, ..., N , andMN+1 > 0. This condition guarantees positive
martingales and forward LIBOR rates.

ii) Xk +Xk+1 + ...+XN +MN+1 = Mk, where Mk is a value that we know in
each time, taking into account that dMk = 0. This condition is necessary
to ensure the compatibility of the system.

We propose to ensure these conditions using the following parameterization of
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Xj , j = 1, ..., N , and MN+1:

Xj(t) = exp
(
uj(t)

)
, j = 1, ..., k − 1,

Xj(t) =
exp

(
uj(t)

)
Mk(t)

N+1∑
m=k

exp
(
um(t)

) , j = k, ..., N, (28)

MN+1(t) =
exp

(
uN+1(t)

)
Mk(t)

N+1∑
m=k

exp
(
um(t)

) ,

where uk(t) = 0.

Equivalently, we have

uj(t) =


ln
(
Xj(t)

)
, if j = 1, ..., k − 1,

0, if j = k,
ln
(
Xj(t)

)
− ln

(
Xk(t)

)
, if j = k + 1, ..., N ,

ln
(
MN+1(t)

)
− ln

(
Xk(t)

)
, if j = N + 1.

(29)

Thus, we can simulate the values of uj , j = 1, ..., N+1, by an Euler discretization
of the dynamics

duj(t) =



dXj(t)

Xj(t)
− 1

2
σXj (t)2δt, if j = 1, ..., k − 1,

0, if j = k,(
dXj(t)

Xj(t)
− dXk(t)

Xk(t)

)
− 1

2

(
σXj (t)2 − σXk (t)2

)
δt, if j = k + 1, ..., N,

(
dMN+1(t)

MN+1(t)
− dXk(t)

Xk(t)

)
− 1

2

(
σMN+1(t)2 − σXk (t)2

)
δt, if j = N + 1,

(30)

where
dMN+1

MN+1
, σMN+1,

dXj

Xj
y σXj are given by (15), (17), (21) and (23), respectively.

Then, we compute X1, ..., XN ,MN+1 by (28), and finally we obtain the rest of the
martingales Mj , for j = N,N − 1, ..., 1, as follows

Mj(t) = Mj+1(t) +Xj(t). (31)

The other steps of the algorithm are analogous to the previously described
GZDFS procedure.
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Note that now, since the forward LIBOR rates are calculated as quotients of
positive terms, they are positive for any forward or spot probability measure.

2.5. Martingale adjustment

In order to preserve in the discrete implementation the martingale property of each
continuous model, we also propose an appropriate martingale adjustment at simu-
lation level. We distinguish the IDFS, EDFS, GDFS cases and the PDFS one.

2.5.1. Martingale adjustment for the IDFS, the EDFS and the GDFS algo-
rithms

In the previous discretization procedures the martingale property forMj andXj can
be lost in practice. So, following [12], we introduce an adjustment at the simulation
level. The martingale adjustment consists of multiplying each simulated martingale
by the ratio of its value at time zero and its mean. That is, by denoting NS the
number of simulations, the values obtained in Step 3 are replaced by the following
values

Mj(ti+1)[p] = Mj(ti+1)[p]
Mj(0)[p]

1

NS

NS∑
p=1

Mj(ti+1)[p]

(32)

in the EDFS and IDFS cases, and by

Xj(ti+1)[p] = Xj(ti+1)[p]
Xj(0)[p]

1

NS

NS∑
p=1

Xj(ti+1)[p]

(33)

in the GZDFS case.

The previous adjustments guarantee the martingale property for Mj and Xj at
discrete level that appeared in the previous simulation algorithms.

2.5.2. Martingale adjustment for the PDFS algorithm

As before, the martingale property for Xj andMN+1 can be lost with the discretiza-
tion, so that we need an adjustment procedure for uj to ensure that Xj and MN+1

are martingales. Since the dynamics of uj are coupled for j = k + 1, ..., N + 1, in
this case the adjustment is not analogous to that one of the other previous DFS
methods. As we explain below, the adjustment for these terms will be an approxi-
mation.
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• Adjustment for uj, j < k:

By denoting NS the number of simulations, if j < k the value obtained for
each uj is replaced by the following value

uj(ti+1)[p] = uj(ti+1)[p] + αj(ti+1), (34)

where

αj(ti+1) = ln


Xj(0)

1

NS

NS∑
p=1

exp
(
uj(ti+1)[p]

)
 . (35)

Note that, as in the previous DFS methods, this is an exact adjustment
for each j, but this is not the case for the adjustment when j > k in next
paragraph.

• Adjustment for uj, j > k:

In this case, since the dynamics of uj are coupled for j = k + 1, ..., N + 1,
we have to calculate all adjustments αk+1(ti+1), ..., αN+1(ti+1) at the
same time. So, for each ti+1, we look for the vector −→α (ti+1) =(
αk+1(ti+1), ..., αN+1(ti+1)

)
such that

Fi+1

(−→α (ti+1)
)

=
(
Xk+1(0), ..., XN (0),MN+1(0)

)t
where Fi+1 : RN+1−k −→ RN+1−k is defined by

Fi+1

(−→α (ti+1)
)

=



1
NS

NS∑
p=1

exp
(
uk+1(ti+1)[p] + αk+1(ti+1)

)
Mk(ti+1)[p]

N+1∑
m=k

exp
(
um(ti+1)[p] + αm(ti+1)

)
...

1
NS

NS∑
p=1

exp
(
uN+1(ti+1)[p] + αN+1(ti+1)

)
Mk(ti+1)[p]

N+1∑
m=k

exp
(
um(ti+1)[p] + αm(ti+1)

)


(36)

Since we know that −→α (ti+1) will be close to the zero vector of RN+1−k,
−→
Θ = (0, 0, ..., 0), by using just one iteration of Newton method and starting
from

−→
Θ = (0, 0, ..., 0), we can calculate the approximated adjustment by

−→α (ti+1) ≈ JFi+1(
−→
Θ)−1

×
((
Xk+1(0), ..., XN (0),MN+1(0)

)t − Fi+1(
−→
Θ)
)
,

(37)
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where JFi+1(
−→
Θ) is the Jacobian matrix of Fi+1 in

−→
Θ , that is given by

(JFi+1)j1,j2 =



1

NS

NS∑
p=1


Mk(ti+1)[p]2 exp

(
uj1(ti+1)[p]

) N+1∑
l=k,l 6=j1

exp
(
ul(ti+1)[p]

)
(
N+1∑
m=k

exp
(
um(ti+1)[p]

))2

 ,

if j1 = j2,

− 1

NS

NS∑
p=1


Mk(ti+1)[p]2 exp

(
uj1(ti+1)[p]

)
exp

(
uj2(ti+1)[p]

)(
N+1∑
m=k

exp
(
um(ti+1)[p]

))2

 ,

if j1 6= j2.

(38)

3. Two currencies LMM formulation

In this section we formulate the LMM for the two currencies setting. For this pur-
pose, we use the one currency case notation introduced in the previous section for
the domestic currency, and we extend the notation to the foreign currency accord-
ingly.

Thus, for j = 0, ..., N + 1, let B∗j (t) denote the price at time t of a discount
bond in foreign currency that matures at the tenor date Tj > t. For j = 0, ..., N , we
denote by L∗j (t) the value at time t of the foreign forward LIBOR rate for the period
[Tj , Tj+1]. Analogously to the domestic case, these foreign rates can be obtained
using quotients of their respective discount bond prices as follows:

L∗j (t) =
B∗j (t)−B∗j+1(t)

δjB∗j+1(t)
. (39)

Moreover, we denote by FX(t) the FX rate at time t between domestic and
foreign economies. For j = 0, 1, ..., N + 1, let FXfwdj(t) denote the value at time
t of a forward FX rate that matures at time Tj > t. So, we have:

FXfwdj(t) =
FX(t)B∗j (t)

Bj(t)
. (40)

Remark 10.2. In what follows, when convenient we use the notation A(∗) to refer
to both A and A∗ respectively, where A represents a term associated to the domestic
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economy and A∗ is the respective term associated to the foreign one.

Note that we have N domestic forward LIBOR rates, N foreign forward LIBOR
rates and N + 1 forward exchange rates, i.e., we can choose between 3N + 1 rates
to formulate our cross-currency model. If we represent all these rates in a graph G
as indicated in Figure 1, where

1

1 + δiLi
FXfwdi+1 = FXfwdi

1

1 + δiL∗i
,

by using graph theory we can demonstrate that we have to choose for our model
the rates corresponding to the 2N + 1 edges of any of the possible spanning trees
of G, see [10; 2]. In this way, we get a model without redundancies (because we do
not have cycles), so that the other remaining N rates can be calculated (because
all nodes are connected).

Figure 1. Graph associated to the rates appearing in LMM for two currencies

As we are in the context of LMM, we choose the domestic and foreign forward
LIBOR rates and one of the forward exchange rate. Namely, we select the forward
exchange rate that is martingale because we are interested in the simulation of these
rates avoiding the use of the drift terms. Thus, we choose FXfwdk where k is n
if the numeraire is the bond Bn and k is j + 1 along the interval [Tj , Tj+1) if the
numeraire is the bank account.

In order to formulate the model we denote by Z(t) = (W1(t), ...,WN (t),W ∗1 (t),

...,W ∗N (t),WFX
k (t)) a (correlated) (2N+1)-dimensional Wiener process in a certain

probability space (Ω,F ,P) with a correlation matrix

C =

Σ ρ γ

ρ Σ∗ γ∗

γ γ∗ 1

 ∈M(2N+1)×(2N+1),

so Σ(∗), ρ, γ(∗) denote the correlations among domestic (foreign) forward LIBOR
rates, among domestic and foreign forward LIBOR rates and among domestic (for-
eign) forward LIBOR rates and the forward exchange rate. The natural filtration
spanned by Z(t) is denoted by Ft. Every stochastic process we consider is defined
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on this probability space. In the sequel several particular probability measures that
correspond to particular choices of numeraire are considered.

LMM assumes lognormal forward LIBOR rates in both currencies under any
probability measure P. Hence, for j = 1, ..., N , we assume the following dynamics
for forward LIBOR rates in both economies:

dL
(∗)
j (t) = µ

(∗)
j (t)L

(∗)
j (t)dt+ σ

(∗)
j (t)L

(∗)
j (t)dW

(∗)
j (t), (41)

where µ(∗)
j (t) denotes the drift term, σ(∗)

j (t) denotes the volatility term andW (∗)
j (t)

denotes a Brownian motion under P, for the domestic (foreign) forward LIBOR
rate. The instantaneous correlation coefficient < dL

(∗)
j (t), dL

(∗)
k (t) > is then Σ

(∗)
j,kdt.

(The previous remark is already applied in this notation.)

Moreover, we can assume lognormality for the chosen forward FX rate, FXfwdk.
That is,

dFXfwdk(t) = µFXk (t)FXfwdk(t)dt+ σFXk (t)FXfwdk(t)dWFX
k (t), (42)

where µFXk (t) and σFXk (t) denote the drift and volatility of the forward FX rate
while WFX

k (t) denotes a Brownian motion under P.

As in the one currency case, the drift term depends on the chosen probability
measure. Thus, if we consider Qn then L(∗)

n−1(t) and FXfwdn(t) are martingales,
and if we consider Qβ the the terms that are martingales depend on the time
interval, that is, L(∗)

j (t) and FXfwdj+1(t) are martingales if t ∈ (Tj , Tj+1]. As we
say, we are interested in the simulation of these rates avoiding the use of the drift
terms. For this purpose, in the next section we adapt the DFS methodology to the
two currencies case.

4. DFS for two currencies LMM

In this section, we extend the DFS procedures introduced in Section 2 to the cross-
currency setting.

As in the one currency case, once we have chosen the numeraire Num, the DFS
procedures are based on the simulation of the following deflated bonds

Mj(t)
.
=

Bj(t)

Num(t)
, M∗j (t)

.
=
B∗j (t)TC(t)

Num(t)
, t ≤ Tj , j = 1, . . . , N + 1, (43)

which are martingales under an appropriate equivalent probability measure Q,
which, of course, depends on the choice of Num.

The DFS techniques are based on the following (recurrence) relations

M
(∗)
j (t) =

(
1 + δjL

(∗)
j (t)

)
M

(∗)
j+1(t) , (44)
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connecting consecutive deflated bonds and a LIBOR rate in both economies.

Then, the DFS procedure (with or without adjustment) for the domestic part
is carried out as indicated in Section 2. The construction of the foreign structure
is totally analogous with one main difference: while the calculus of the martingale
structure in the domestic currency starts from the known martingale dynamics
dMk(t) = 0 (remember Remark 10.1), the calculus in the foreign currency starts
from the martingale dynamics dM∗k (t) = dFXfwdk(t)∗. Therefore, a previous step
to the calculation of the foreign martingale is the computation of FXfwdk(t) from
its drift-free dynamics, which is given by

dFXfwdk(t) = σFXk (t)FXfwdk(t)dWFX
k (t). (45)

As in the case of martingale Mj , we can apply the analogous adjustment of this
dynamics to guarantee the martingale property of FXfwdk(t) at discrete level.

Next, once the FX rate has been simulated, we apply the previous described
methodology, although taking into account that now dM∗k (t) = dFXfwdk(t) and
replacing (13) and (15) by

dM∗j (t)

M∗j (t)
=
dFXfwdk(t)

FXfwdk(t)
+ εk,j

∑
l∈Θk,j

(
dM∗l (t)

M∗l (t)
−
dM∗l+1(t)

M∗l+1(t)

)

=
dFXfwdk(t)

FXfwdk(t)
+ εk,j

∑
l∈Θk,j

σ∗l

(
1−

M∗l+1(t)

M∗l (t)

)
dW ∗l (t).

(46)

Moreover, while in the domestic case we calculate the numeraire at the tenor
dates with (10), in the foreign case we compute the FX rate at time Tj with expres-
sion

FX(Tj) = M∗j (Tj)Num(Tj), ∀j = 1, ..., N + 1. (47)

Next, we compute the foreign Zero Coupon curve at tenor dates with

B∗j (Ti) =
M∗j (Ti)Num(Ti)

FX(Ti)
, i ≤ j. (48)

5. Swap rates and lognormal approximation model

In view of their utility in model calibration and derivatives pricing, we introduce the
swap rates in both economies. For this purpose, first let us consider a swap contract
as an agreement between two parties whereby at each time Tl, with l = j+1, . . . , k,
the following exchange occurs:

Kδl−1 ↔ L
(∗)
l−1(Tl−1)δl−1,

∗Note that we just need to assume lognormality for one forward exchange rate, which is consistent
with assuming lognormality for all forward LIBOR rates (see [16], for example), as we said before.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

390 J.L. Fernández, M.R. Nogueiras, M. Pou and C. Vázquez

where δl−1 = Tl − Tl−1. We denote by S(∗)
j,k (t) the value at time t of a domestic

(foreign) forward swap rate for the time interval [Tj , Tk], that is, the rate K that
makes the present value of the swap contract equal to zero. These forward swap
rates can be obtained in terms of discounted bonds as

S
(∗)
j,k (t) =

B
(∗)
j (t)−B(∗)

k (t)

A
(∗)
j+1,k(t)

, (49)

where

A
(∗)
j+1,k(t) =

k∑
l=j+1

δlB
(∗)
l (t).

Due to inconsistency with the arbitrage-free hypothesis, when using an LMM we
cannot assume also lognormality for the swap rates. Nevertheless, note that in [7]

it is pointed out the existence of empirical works showing that forward swap rates
obtained by LMM are nearly lognormal under the appropriate measure (see [3], for
example). However, a lognormal approximation of swap rates is required so that
we extend the one proposed in [20].

For this purpose, we assume that Sj,j+s(t) and S∗j,j+s(t) can be lognormally
approximated under any probability measure Q, so that

dS
(∗)
j,j+s(t)

S
(∗)
j,j+s(t)

≈ µS
(∗)

j,j+s(t)dt+ σS
(∗)

j,j+s(t)dW
S(∗)

j,j+s(t). (50)

Hence, we have the approximation(
dS

(∗)
j,j+s(t)

S
(∗)
j,j+s(t)

)(
dS

(∗)
j,j+s(t)

S
(∗)
j,j+s(t)

)
≈ σS

(∗)

j,j+s(t)
2dt. (51)

Moreover, in [20] the approximation

S
(∗)
j,j+s(t) ≈

j+s∑
l=j+1

ωlj+1,j+s(∗)(0)L
(∗)
l−1(t), (52)

is proposed, where

ωlj+1,j+s(∗)(t) =
δlB

(∗)
l (t)

A
(∗)
j+1,j+s(t)

. (53)

Thus, from (52) and by freezing the forward LIBOR and swap rates to their
value at time 0, we have

(
dS

(∗)
j,j+s(t)

S
(∗)
j,j+s(t)

)2

≈
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j+s∑
r,p=j+1

ωr
j+1,j+s(∗)

(0)ωp
j+1,j+s(∗)

(0)L
(∗)
r−1(0)L

(∗)
p−1(0)Σ

(∗)
r−1,p−1σ

(∗)
r−1(t)σ

(∗)
p−1(t)

S
(∗)
j,j+s(0)2

dt.

(54)
Then, from approximations (51) and (54), for all t 6 Tj we obtain∫ Tj

t

σS
(∗)

j,j+s(z)
2dz

≈
j+s∑

r,p=j+1

ωr
j+1,j+s(∗)

(0)ωp
j+1,j+s(∗)

(0)L
(∗)
r−1(0)L

(∗)
p−1(0)Σ

(∗)
r−1,p−1

S
(∗)
j,j+s(0)2

×
∫ Tj

t

σ
(∗)
r−1(z)σ

(∗)
p−1(z)dz, (55)

where Σ
(∗)
r−1,p−1 = 〈W (∗)

r−1,W
(∗)
p−1〉. Approximation (55) is known as Rebonato’s for-

mula, which relates the volatilities of forward and swap rates with the correlations
between forward rates.

For practical purposes, we are interested in the expression for the dynamics of
swap rates under QAj+1,j+s (probability measure with Aj+1,j+s(t) as numeraire).
Note that under this measure we have that

• Sj,j+s(t) is a martingale, so that

dSj,j+s(t)

Sj,j+s(t)
≈ σSj,j+s(t)dWS

j,j+s(t), (56)

where σSj,j+s(t) is given by (55).
• S∗j,j+s(t) is not a martingale, so that

dS∗j,j+s(t)

S∗j,j+s(t)
≈ µS

∗

j,j+s(t)dt+ σS
∗

j,j+s(t)dW
S∗

j,j+s(t), (57)

where σS
∗

j,j+s(t) is given by (55).

In order to approximate the drift in this second case, we first use (52) to obtain

EQAj+1,j+s [S∗j,j+s(Tj)|Ft] ≈
j+s∑
l=j+1

ωlj+1,j+s∗(0)EQAj+1,j+s [L∗l−1(Tj)|Ft]. (58)

On the other hand, from approximation (57) we get

EQAj+1,j+s [S∗j,j+s(Tj)|Ft] ≈ S∗j,j+s(t)e
∫ Tj
t µS

∗
j,j+s(z)dz. (59)
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Therefore, by identifying approximations (58) and (59), the computations detailed
in the Annexe lead to the following approximation of the drift term:

∫ Tj

t

µS
∗

j,j+s(z)dz

≈ ln

∑j+s
l=j+1

[
ωlj+1,j+s∗(0)L∗l−1(t)

∑j+s
k=j+1 ω

k
j+1,j+s(t)e

∫ Tj
t Xl,k(z)dz

]
S∗j,j+s(t)

 ,

(60)

with

Xl,k(z) = −γ∗l−1,lσ
∗
l−1(z)σFXl (z) + σ∗l−1(z)εl,k

∑
m∈θl,k

δmσm(0)Lm(0)

1 + δmLm(0)
ρm,l−1, (61)

where γ∗l−1,l represents the correlation between L∗l−1(t) and FXfwdl(t) and
ρm,l−1 represents the correlation between Lm(t) and L∗l−1(t).

6. Model calibration

We are in the context of market models so we have to introduce into our model
as many parameters as market information allows. As indicated in Setp 1 of the
algorithm, we first introduce the following market data:

{Bj(0)}N+1
j=0 , {B∗j (0)}N+1

j=0 , FX(0).

Other free parameters (volatilities and correlations) are considered in the next
paragraphs so that the model parameters are adjusted to the market.

6.1. Adjustment of volatilities

The structure of volatilities is adjusted to market by imposing that:

∫ Ti

0

σi(t)
2dt = Ti(σ

mar
i )2,

∫ Ti

0

σ∗i (t)2dt = Ti(σ
∗mar
i )2,

∫ Tj

0

σFXj (t)2dt = Tj(σ
FX,mar
j )2,

where σ(∗)mar
i are quoted volatilities of caplets of each economy and σFX,marj are

quoted volatilities of call options on forward exchange rates.

In practice, for simplicity, we choose constant volatilities, that is:

σi(t) = σmari , σ∗i (t) = σ∗,mari , σFXi (t) = σFX,mari , ∀t.
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6.2. Adjustment of correlations

When working under the probability measure Qn+1, we have to adjust the following
correlation matrix:

C =



Σ11 . . . Σ1N ρ11 . . . ρ1N γ1,n+1

...
...

...
...

...
ΣN1 . . . ΣNN ρN1 . . . ρNN γN,n+1

ρ11 . . . ρN1 Σ∗11 . . . Σ∗1N γ∗1,n+1
...

...
...

...
...

ρ1N . . . ρNN Σ∗N1 . . . Σ∗NN γ∗N,n+1

γ1,n+1 . . . γN,n+1 γ
∗
1,n+1 . . . γ

∗
N,n+1 Θn+1,n+1


where:

• Σ
(∗)
ij is the correlation between L(∗)

i and L(∗)
j ,

• ρij is the correlation between Li and L∗j ,
• γ(∗)

i,n+1 is the correlation between L(∗)
i and FXfwdn+1,

• Θn+1,n+1 is the correlation between FXfwdn+1 and FXfwdn+1, so that
Θn+1,n+1 = 1.

First, we adjust the correlations within each economy, (Σij)
N
i,j=1 and (Σ∗ij)

N
i,j=1,

by using swaps volatilities from the market in each economy and taking into account
(55).

As the other correlations cannot be calculated analogously, we obtain them from
historical data and assume they are constant, that is:

ρij = ρ, γi,n+1 = γ, γ∗i,n+1 = γ∗, ∀i, j = 1, ..., N.

Remark 10.3. If matrix C built as above is not positive semidefinite then we
have to approximate it by another one that is positive semidefinite (and therefore
a correlation matrix). We can do this by parameterizing correlations with some
method, as the ones proposed in [19], and then trying to minimize the error between
the matrix C and its approximated correlation matrix.

7. Cross-currency derivatives: Quanto Caplets

Nowadays there exists a lot of financial derivatives on rates of different currency
markets (see [6], for example). They can be classified into

• Standard cross-currency products (Cross-currency swap, Cross-crurrency
swaption,...): These contracts are agreements between two parts so that
each part pays terms of one currency in this currency.
• Quanto products (Quanto fra, Quanto caplet/floorlet, Quanto swap,
Quanto Swaption,...): They consists of products that pay terms of one
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currency economy in another currency. As will be explained later, in the
pricing of these derivatives there is one term that does not affect the pricing
of the corresponding derivatives on the one currency (fra, caplet/floorlet,
swap, swaption,...). This term is known as quanto adjustment.

In view of the previous description, Quanto products clearly depend on the do-
mestic and foreign Zero coupon curves, as well as on the FX rate. Thus, they
justify the need of two currencies models. Here we present a Quanto Caplet pricing
methodology.

Let QCapletj(t) denote the price at time t of a Quanto Caplet that matures at
time Tj , so that it pays at Tj+1.

We distinguish two kinds of Quanto Caplets:

i) The Quanto Caplet that pays at Tj+1 the amount N(L∗j (Tj) −K∗)+δj in
the domestic currency, where N is the invested notional that is paid back
at the payment date. The payoff of this product is:

QCapletj(Tj) = Nδj(L
∗
j (Tj)−K∗)+Bj+1(Tj). (62)

Hence, for all t < Tj , the Quanto Caplet price is given by

QCapletj(t) = Bj+1(t)NδjEQj+1 [(L∗j (Tj)−K∗)+|Ft]. (63)

Moreover, we know that under Qj+1 measure we have

dL∗j (t)

L∗j (t)
= −γ∗j,j+1σ

∗
j (t)σFXj+1(t)dt+ σ∗j (t)dW ∗j (t), (64)

where γ∗j,j+1 denotes the correlation between L∗j and FXfwdj+1. So, by a
proposition in [6], p. 919, we obtain the Black formula

QCapletj(t) = Bj+1(t)Nδj

(
L∗j (t)e

Ω∗jφ(d+)−K∗φ(d−)
)
, (65)

with

Ω∗j =

∫ Tj

t

−γ∗j,j+1σ
∗
j (z)σFXj+1(z)dz,

d± =
ln
(
L∗j (t)

K∗

)
+ Ω∗j ± 1

2

∫ Tj
t
σ∗j (z)2dz(∫ Tj

t
σ∗j (z)2dz

) 1
2

.

ii) The Quanto Caplet that pays at Tj+1 the amount N(Lj(Tj) − K)+δj in
the foreign currency, where N denotes the invested notional. Therefore, the
payoff of this derivative is:

QCapletj(Tj) = Nδj(Lj(Tj)−K)+B
∗
j+1(Tj)FX(Tj). (66)
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Hence, for all t < Tj , the Quanto Caplet price is given by

QCapletj(t) = Bj+1(t)NδjEQj+1 [(Lj(Tj)−K)+FXfwdj+1(Tj)|Ft]. (67)

Moreover, we know that under Qj+1 measure we have

dLj(t)FXfwdj+1(t)

Lj(t)FXfwdj+1(t)

= γj,j+1σj(t)σ
FX
j+1(t)dt+ σjdWj(t) + σFXj+1dW

FX
j+1 (t), (68)

where γj,j+1 is the correlation between Lj and FXfwdj+1. So, using the
same proposition of [6] that in previous case, we can deduce the Black
formula

QCapletj(t) = Bj+1(t)NδjFXfwdj+1(t)
(
L(t)eΩjφ(d+)−Kφ(d−)

)
,

(69)
with

Ωj =

∫ Tj

t

γj,j+1σj(z)σ
FX
j+1(z)dz,

d± =
ln
(
Lj(t)
K

)
+ Ωj ± 1

2

∫ Tj
t
σj(z)

2dz(∫ Tj
t
σj(z)2dz

) 1
2

.

Furthermore, we can obtain the value of Quanto Caplets at time t by using
simulation under Q (probability measure with Num as numeraire) and taking into
account that

QCapletj(t) = Num(t)EQ

[
QCapletj(Tj)

Num(Tj)
|Ft
]
. (70)

In next section we propose an efficient procedure to simulate the joint dynamics
that mainly avoids the use of the drift dependent paths.

8. Numerical results

In this section, we present the same data used for the different DFS methods de-
scribed in previous sections and the obtained results for martingales and caplet
pricing in each currency (dollar and euro). We also present the results obtained for
the pricing of one Quanto Caplet. Thus, in Tables 1 to 10 we consider the dollar as
the domestic currency and the euro as the foreign one.

Table 1 shows the data for the Monte Carlo simulation procedure. More precisely,
we consider the case N = 10. The accrual period is constant and equal to one year.
The time step and the number of simulations are also indicated. The domestic and
foreign market data are given in Tables 2 and 3, respectively. They include the
Zero Coupon Curves, the volatilities of the involved forward LIBOR and swap rates
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Table 1. Parameters of the simulation proce-
dure.

N ∆T δt Number of simulations (NS)

10 1 0.25 400.000

Table 2. Domestic market data.

l

i Bi(0) σi σSi,i+1 σSi,i+2 σSi,i+3 σSi,i+4 σSi,i+5 σSi,i+6 σSi,i+7 σSi,i+8 σSi,i+9 σSi,i+10

0 1,00000000
1 0,990761 0,7666 0,7666 0,5925 0,5015 0,4501 0,4240 0,3938 0,3764 0,3684 0,3565 0,3404
2 0,980002 0,5095 0,5095 0,4445 0,4063 0,3842 0,3632 0,3534 0,3386 0,3308 0,3221
3 0,954435 0,3950 0,3950 0,3650 0,3509 0,3319 0,3232 0,3165 0,3031 0,2998
4 0,922703 0,3378 0,3378 0,3272 0,3102 0,3032 0,2945 0,2876 0,2783
5 0,887878 0,3132 0,3132 0,2966 0,2893 0,2820 0,2736 0,2692
6 0,851701 0,2893 0,2893 0,2781 0,2695 0,2622 0,2546
7 0,815186 0,2655 0,2655 0,2596 0,2497 0,2425
8 0,779710 0,2485 0,2485 0,2413 0,2336
9 0,744830 0,2315 0,2315 0,2230
10 0,710892 0,2145 0,2145
11 0,677054

Table 3. Foreign market data.

i B∗i (0) σ∗i σS
∗

i,i+1 σS
∗

i,i+2 σS
∗

i,i+3 σS
∗

i,i+4 σS
∗

i,i+5 σS
∗

i,i+6 σS
∗

i,i+7 σS
∗

i,i+8 σS
∗

i,i+9 σS
∗

i,i+10

0 1,000000
1 0,987689 0,5152 0,5152 0,3844 0,3402 0,3088 0,2847 0,2689 0,2568 0,2495 0,2434 0,238100
2 0,966393 0,3566 0,3566 0,2896 0,2702 0,2549 0,2428 0,2370 0,2325 0,2289 0,2256
3 0,938774 0,2837 0,2837 0,2395 0,2281 0,2190 0,2121 0,2098 0,2081 0,2065
4 0,907973 0,2367 0,2367 0,2086 0,2019 0,1971 0,1931 0,1917 0,1903
5 0,874979 0,2015 0,2015 0,1854 0,1826 0,1802 0,1780 0,1767
6 0,840833 0,1851 0,1851 0,1732 0,1711 0,1690 0,1673
7 0,806538 0,1687 0,1687 0,1610 0,1596 0,1579
8 0,772759 0,1602 0,1602 0,1538 0,1528
9 0,739546 0,1518 0,1518 0,1467
10 0,707055 0,1433 0,1433
11 0,674961

in both economies. Table 4 shows data associated to FX rate. As the correlation
matrix is completed with constant input data, these data are shown in Table 14.

We consider as numeraire:

Num(t) =

{
B5(t), if t ≤ T5,
β5(t), if t > T5,



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Drift-Free Simulation methods for pricing cross-market derivatives with LMM 397

Table 4. Forward foreign exchange (FX) rate data.

FX(0) σFX1 σFX2 σFX3 σFX4 σFX5 σFX6 σFX7 σFX8 σFX9 σFX10 σFX11

1.511 0,1365 0,1311 0,1256 0,1202 0,1147 0,1106 0,1064 0,1023 0,0981 0,0940 0,0899

Table 5. Correlation data.

ρ γ γ∗

0.7 0.2 0.3

where β5(t) corresponds to a the bank account starting at time T5, that is

β5(t) = Bi(t)
i−1∏
l=5

(
1 + ∆TLl(Tl)

)
, t ∈ (Ti−1, Ti], i = 6, . . . , N + 1. (71)

In this case the numeraire is B5 until T5 and the spot measure starting after T5 for
t > T5. Although this choice neither corresponds to a forward measure nor to a
pure spot one, the proposed methodology can be applied.

Taking into account this information, in each currency we compare:

• the value of the martingales at time t = 0 jointly with the expected values
obtained with different simulation methods (see Tables 6 and 7 and Figures
2 and 3),
• the Black value of the caplets (see, for example [6]) and the one obtained
with the simulations at time t = 0 (see Tables 8 and 9 and Figures 4 and
5).

Finally, Table 10 shows the market price and the simulated prices in Case 1 and
Case 2 for both the Quanto Caplet and the Quanto Floorlet that mature at time
T5 (so that they pay at time T6), without and with adjustment when using the
previously described DFS methods.

For all DFS methods, Tables 6 and 7 illustrate how the proposed adjustment
guarantees the martingale property for Mj and M∗j at discrete level. On the other
hand, Figures 2 and 3 show that the numerical results are better in the PDFS
method for the domestic currency (even when compared with the recently intro-
duced GZDFS method) and in the IDFS one for the foreign currency. In any case,
the results for the foreign martingale with the IDFS method are very close to those
ones with the PDFS method. As illustrated by Figures 4 and 5, the PDFS method
exhibits the best behavior for caplet pricing in both currencies. Finally, the PDFS
method provides the best results in the quanto pricing for the Caplet 2 and Floorlet
1, and it results to be the second best method in the Caplet 1 case. So, taking
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Table 6. Expected value of the domestic martingales, E(Mj(Tj)), obtained from the different
Drift-Free Simulation methods without and with adjustment (WA), compared with Mj(0).

j Mj(0) IDFS IDFS WA EDFS EDFS WA GZDFS GZDFS WA PDFS PDFS WA

1 1,115875 1,115886 1,115875 1,115888 1,115875 1,115910 1,115875 1,115910 1,115875
2 1,103757 1,103853 1,103757 1,103855 1,103757 1,103869 1,103757 1,103869 1,103757
3 1,074962 1,074947 1,074962 1,074949 1,074962 1,074963 1,074962 1,074963 1,074962
4 1,039223 1,039260 1,039223 1,039260 1,039223 1,039269 1,039223 1,039269 1,039223
5 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
6 0,959254 0,959235 0,959254 0,959235 0,959254 0,959227 0,959254 0,959253 0,959254
7 0,918129 0,918048 0,918129 0,918050 0,918129 0,918036 0,918129 0,918083 0,918129
8 0,878172 0,878017 0,878172 0,878020 0,878172 0,878005 0,878172 0,878066 0,878171
9 0,838888 0,838771 0,838888 0,838775 0,838888 0,838752 0,838888 0,838820 0,838888
10 0,800663 0,800441 0,800663 0,800447 0,800663 0,800419 0,800663 0,800492 0,800664
11 0,762553 0,762317 0,762553 0,762323 0,762553 0,762293 0,762553 0,762367 0,762556

Table 7. Expected value of the foreign martingales, E(M∗j (Tj)), obtained from the different
Drift-Free Simulation methods without and with adjustment (WA), compared with M∗j (0).

j M∗j (0) IDFS IDFS WA EDFS EDFS WA GZDFS GZDFS WA PDFS PDFS WA

1 1,680858 1,680860 1,680858 1,680885 1,680858 1,680895 1,680858 1,680895 1,680858
2 1,644618 1,645066 1,644618 1,645107 1,644618 1,645110 1,644618 1,645110 1,644618
3 1,597615 1,597917 1,597615 1,597981 1,597615 1,597975 1,597615 1,597975 1,597615
4 1,545198 1,545197 1,545198 1,545230 1,545198 1,545226 1,545198 1,545226 1,545198
5 1,489049 1,488996 1,489049 1,489033 1,489049 1,489033 1,489049 1,489033 1,489049
6 1,430939 1,431101 1,430939 1,431127 1,430939 1,431123 1,430939 1,431129 1,430939
7 1,372574 1,372859 1,372574 1,372900 1,372574 1,372900 1,372574 1,372910 1,372574
8 1,315089 1,315772 1,315089 1,315815 1,315089 1,315814 1,315089 1,315828 1,315089
9 1,258567 1,259181 1,258567 1,259225 1,258567 1,259226 1,258567 1,259243 1,258567
10 1,203273 1,204043 1,203273 1,204094 1,203273 1,204095 1,203273 1,204114 1,203273
11 1,148656 1,149099 1,148656 1,149138 1,148656 1,149137 1,148656 1,149158 1,148656

into account its results and its positiveness preserving property, in general PDFS
method should be chosen for the cross-currency simulation.

ANNEXE: Approximation of drift terms

In this Annexe we develop the calculations leading to the approximation of the
drift term, µS

∗

j,j+s, provided by expression (60). For this purpose, we first identify
approximations (58) and (59), so that

S∗j,j+s(t)e
∫ Tj
t µS

∗
j,j+s(z)dz =

j+s∑
l=j+1

ωlj+1,j+s∗(0)EQAj+1,j+s [L∗l−1(Tj)|Ft]. (72)
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Figure 2. Relative error of E(Mj(Tj)) with different methods with respect to Mj(0).

In order to obtain the expectations included in the right hand side of (72), we apply
the following change of numeraire formula:

Aj+1,j+s(t)

Aj+1,j+s(Tj)
dQAj+1,j+s =

Bl(t)

Bl(Tj)
dQl (73)

for l = j + 1, . . . , j + s. Therefore, we obtain

EQAj+1,j+s [L∗l−1(Tj)|Ft] =
Bl(t)

Aj+1,j+s(t)
EQl

[
L∗l−1(Tj)

Aj+1,j+s(Tj)

Bl(Tj)
|Ft
]

(74)

or, equivalently

EQAj+1,j+s [L∗l−1(Tj)|Ft] =
Bl(t)

Aj+1,j+s(t)

j+s∑
k=j+1

δkEQl

[
L∗l−1(Tj)

Bk(Tj)

Bl(Tj)
|Ft
]
. (75)

Next, we consider the following Proposition, which provides the expectations ap-
pearing in the right hand side of (75).

Proposition 10.1. For l = j + 1, . . . , j + s, we have

EQl

[
L∗l−1(Tj)

Bk(Tj)

Bl(Tj)
|Ft
]
≈ L∗l−1(t)

Bk(t)

Bl(t)
exp

(∫ Tj

t

Xkl(z)dz

)
, (76)
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Figure 3. Relative error of E(M∗j (Tj)) with different methods with respect to M∗j (0).

Table 8. Value at the zero time of domestic caplets ATM that mature at Tj . The Black
values and the ones obtained from the different Drift-Free Simulation methods without and
with adjustment are presented.

j BLACK IDFS IDFS WA EDFS EDFS WA GZDFS GZDFS WA PDFS PDFS WA

1 0,003212 0,003423 0,003429 0,003402 0,003408 0,003220 0,003219 0,003220 0,003219
2 0,007193 0,007492 0,007464 0,007449 0,007420 0,007242 0,007202 0,007242 0,007202
3 0,008495 0,008665 0,008673 0,008642 0,008649 0,008500 0,008506 0,008500 0,008506
4 0,009209 0,009361 0,009344 0,009351 0,009334 0,009240 0,009215 0,009240 0,009215
5 0,009905 0,010022 0,010014 0,010031 0,010023 0,009930 0,009914 0,009897 0,009897
6 0,010112 0,010234 0,010209 0,010254 0,010230 0,010167 0,010128 0,010138 0,010112
7 0,009739 0,009840 0,009806 0,009864 0,009832 0,009792 0,009746 0,009768 0,009733
8 0,009581 0,009611 0,009630 0,009631 0,009650 0,009571 0,009586 0,009557 0,009577
9 0,009217 0,009320 0,009272 0,009341 0,009294 0,009293 0,009226 0,009278 0,009217
10 0,008984 0,009024 0,009015 0,009040 0,009032 0,008999 0,008984 0,008989 0,008976

where Xkl(z) is given by (61).



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Drift-Free Simulation methods for pricing cross-market derivatives with LMM 401

-0,010

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

1 2 3 4 5 6 7 8 9 10

IDFS

IDFS WA

EDFS

EDFS WA

GZDFS

GZDFS WA

PDFS

PDFS WA

Figure 4. Relative error with respect to Black’s formula for caplets in the domestic currency with
different methods.

Table 9. Value at the zero time of foreign caplets ATM that mature at Tj . The Black values and
the ones obtained from the different Drift-Free Simulation methods without and with adjustment
are presented.

j BLACK IDFS IDFS WA EDFS EDFS WA GZDFS GZDFS WA PDFS PDFS WA

1 0,006541 0,006804 0,006802 0,006727 0,006724 0,006558 0,006552 0,006558 0,006552
2 0,008308 0,008512 0,008515 0,008439 0,008442 0,008327 0,008327 0,008327 0,008327
3 0,009033 0,009159 0,009171 0,009105 0,009114 0,009023 0,009037 0,009023 0,009037
4 0,009328 0,009410 0,009425 0,009362 0,009377 0,009299 0,009319 0,009299 0,009319
5 0,009197 0,009268 0,009282 0,009236 0,009248 0,009195 0,009205 0,009184 0,009201
6 0,009294 0,009371 0,009368 0,009345 0,009341 0,009306 0,009303 0,009298 0,009293
7 0,009013 0,009046 0,009063 0,009027 0,009043 0,008997 0,009015 0,008990 0,009009
8 0,008997 0,009067 0,009061 0,009051 0,009043 0,009025 0,009014 0,009017 0,009011
9 0,008841 0,008883 0,008884 0,008868 0,008869 0,008845 0,008846 0,008838 0,008839
10 0,008692 0,008733 0,008729 0,008725 0,008719 0,008706 0,008699 0,008700 0,008692

Proof: First, we calculate the dynamics of the process L∗l−1(t)Bk(t)
Bl(t)

under Ql.
For this purpose, we take into account that

dL∗l−1(t)

L∗l−1(t)
= −γ∗l−1,lσ

TC
l (t)σ∗l−1(t)dt+ σ∗l−1(t)dW ∗l−1(t), (77)

under Ql.
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Figure 5. Relative error with respect to Black’s formula for caplets in the foreign currency with
different methods.

Table 10. Value at time t = 0 of Cases 1 and 2 of Quanto Caplets/Floorlets that mature at T5. The
market values and the ones obtained from Drift-Free Simulation methods are presented.

CASE MARKET IDFS IDFS WA EDFS EDFS WA GDFS GDFS WA PDFS PDFS WA

Caplet 1 0,005559 0,005611 0,005620 0,005573 0,005580 0,005542 0,005549 0,005537 0,005548
Caplet 2 0,015901 0,016884 0,016870 0,016897 0,016884 0,016793 0,016765 0,016713 0,016712
Floorlet 1 0,006611 0,006724 0,006715 0,006675 0,006668 0,006641 0,006636 0,006638 0,006630
Floorlet 2 0,014157 0,014069 0,014084 0,014083 0,014097 0,013938 0,013951 0,013924 0,013925

On the other hand, for l = j + 1, . . . , j + s, we introduce the notation

Nk
l (t) =

Bk(t)

Bl(t)
. (78)

Next, we can proceed as to obtain (15), although with l = n+ 1 and k = j, and we
get

dNk
l (t)

Nk
l (t)

= εl,k
∑

m∈θl,k

σm

(
1−

Nm+1
l (t)

Nm
l (t)

)
dWm(t) (79)
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Moreover, by taking into account that

σm(t)

(
1−

Nm+1
l (t)

Nm
l (t)

)
=
σm(t)δmLm(t)

1 + δmLm(t)
, (80)

then we have
dNlk(t)

Nk
l (t)

= εl,k
∑

m∈Θl,k

σm(t)δmLm(t)

1 + δmLm(t)
dWm(t) (81)

under Ql.
Notice that the volatility of the martingale Nk

l results to be stochastic. We avoid
this complication by freezing that term to its value at time t = 0:

dNlk(t)

Nk
l (t)

≈ εl,k
∑

m∈Θl,k

σm(0)δmLm(0)

1 + δmLm(0)
dWm(t). (82)

Then, by Ito’s Lemma

d
(
L∗l−1(t)Bk(t)

Bl(t)

)
L∗l−1(t)Bk(t)

Bl(t)

≈

−γ∗l−1,lσ
TC
l (t)σ∗l−1(t) + σ∗l−1(t)εl,k

∑
m∈Θl,k

σm(0)δmLm(0)

1 + δmLm(0)
ρm,l−1

 dt

+σ∗l−1dW
∗
l−1(t) + εl,k

∑
m∈Θl,k

σm(0)δmLm(0)

1 + δmLm(0)
dWm(t). (83)

Therefore, we get (76) and the proof is concluded.

2

Next, by using the previous Proposition in (75), we have

EQAj+1,j+s [L∗l−1(Tj)|Ft]

≈ Bl(t)

Aj+1,j+s(t)

j+s∑
k=j+1

δkL
∗
l−1(t)

Bk(t)

Bl(t)
exp

(∫ Ti

t

Xkl(z)dz

)
,

(84)

and by introducing (84) in (72), we get

∫ Tj

t

µS
∗

j,j+s(z)dz ≈

ln

∑j+s
l=j+1 ω

l
j+1,j+s∗(0) Bl(t)

Aj+1,j+s(t)

∑j+s
k=j+1 δkL

∗
l−1(t)Bk(t)

Bl(t)
exp

(∫ Tj
t
Xkl(z)dz

)
S∗j,j+s(t)

 ,

(85)
or, equivalently
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∫ Tj

t

µS
∗

j,j+s(z)dz ≈

ln

∑j+s
l=j+1

[
ωlj+1,j+s∗(0)L∗l−1(t)

∑j+s
k=j+1 ω

k
j+1,j+s(t) exp

(∫ Tj
t
Xkl(z)dz

)]
S∗j,j+s(t)

 ,

(86)
where Xkl(z) is given by (61).
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Chapter 11

Application of simplest random walk algorithms for pricing
barrier options

M. Krivko and M.V. Tretyakov

Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
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2RD, UK

Abstract The effectiveness of the first-order algorithm from [Milstein, Tretyakov.
Theory Prob. Appl. 47 (2002), 53-68] is demonstrated in application to barrier op-
tion pricing. This algorithm uses the weak Euler approximation far from barriers
and a special construction motivated by linear interpolation of the price near barri-
ers. It is easy to implement and is universal: it can be applied to various structures
of the contracts including derivatives on multi-asset correlated underlyings and can
deal with various type of barriers. In contrast to the Brownian bridge techniques
currently commonly used for pricing barrier options, the algorithm tested here does
not require knowledge of trigger probabilities nor their estimates. We illustrate this
algorithm via pricing a barrier caplet, barrier trigger swap and barrier swaption.
AMS 2000 subject classification. 65C30, 60H30, 91B28, 91B70.
Keywords. Barrier options, exotic derivatives, weak approximation of stochastic
differential equations in bounded domains, Monte Carlo technique, the Dirichlet
problem for parabolic partial differential equations, interest rate derivatives.

1. Introduction

Barrier option contracts are among the most traded and oldest exotic derivatives.
They accommodate an investors’ view about the future market behavior more
closely and they are generally cheaper than the corresponding plain vanilla options.
Typically, a barrier option is activated (knocked in) or deactivated (knocked out)
depending on whether a vector of underlying assets or their functional has crossed a
specified barrier level, which itself can be a functional of the underlying assets. Due
to its attractive features, barrier optionality has been introduced in a wide range of
derivatives products. In the context of credit risk, the event of default of some refer-
ence entity can be modelled as a lower barrier on the equity of the entity. This is the
key idea in structural models for pricing popular credit instruments such as credit

407
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default swaps (CDSs) and credit default obligations (CDOs). More recently, barrier
optionality has been also used to model contingent convertible (CoCo) bonds which
were introduced to provide financial institutions with sufficient capital in times of
distress or systemic risk.

Closed form solutions for barrier option prices can be obtained only in some
particular settings. For instance, they are available in the case of a single underly-
ing asset and a constant barrier within the standard Black-Scholes setup (see, e.g.
[10; 19; 4; 18; 21]). In products involving a large number of dependent assets nu-
merical approximation for pricing and hedging barrier options is usually inevitable
and this can be a challenging problem.

In this paper we assume that underlying assets are modelled via multidimensional
stochastic differential equations (SDEs) and we consider European-type barrier op-
tions. The arbitrage price u(t, x) of such an option solves the Dirichlet problem
for a linear parabolic partial differential equation. Finding this price numerically
requires efficient weak approximations of diffusions in a bounded domain.

“Ordinary” numerical methods for SDEs in Rd on a finite time interval are based
on a time discretization [9; 11; 16]. They ensure smallness of time increments at
each step, but might not ensure smallness of space increments. In [13; 12; 15] (see
also [16]) a number of weak-sense approximations for SDEs in a bounded domain
were proposed, in which space increments are controlled at each step so that the
constructed approximation belongs to the bounded domain. Approximations of [12]

(see also [16]) are based on adaptive control of a time step of numerical integration
of the SDEs. A step is chosen such that (of course, aside of reaching a required
accuracy) the next state of a Markov chain approximating in the weak sense the
SDEs’ solution remains in the bounded domain with probability one. This leads to a
decrease of the time step when the chain is close to the boundary of the domain. The
chain is stopped in a narrow zone near the boundary so that values of the solution
u(t, x) (i.e., the option price at time t and underlyings’ price x) in this zone can be
approximated accurately by the known values of the function ϕ on the boundary
(i.e., the value of the option at the barrier). Another type of approximation was
proposed in [15] (see also [16]). In the algorithm of weak order one from [15] the
step of numerical integration of the SDEs is constant for points belonging to a
certain time layer t = tk. Far from the boundary, a Markov chain approximating
the SDEs’ solution is constructed using the weak Euler scheme (i.e., using discrete
random variables for approximating the Wiener increments). When a point is close
to the boundary, we make an intermediate (auxiliary) step of the random walk,
which preserves the point in the time layer t = tk. On this auxiliary step we “flip
a coin” to decide whether to terminate the chain on the boundary or jump back in
the domain and continue the random walk. The construction of this step is based
on the idea of linear interpolation for the solution u(t, x). The algorithm is efficient
and very easy to implement. Its simpler version of order 1/2 in the weak sense is
also presented in [15; 16]. In Section 2 we recall these two algorithms from [15; 16].
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As far as we know, despite simplicity of these weak schemes, they have not been
used in financial applications. In this article we try to fill this gap and illustrate
their applicability to pricing barrier options.

Currently, the popular numerical approach for pricing barrier options exploits
the Brownian bridge technique [1; 2; 7; 20; 3] (also see [8] for a review and the
references therein). It is based on simulation of a one-dimensional Brownian bridge
extremum between time steps and computing analytically the associated probability
of exiting the spatial domain for each time interval of the partition. It was proved
in [7] that this approach realized along with the Euler scheme (which uses Gaussian
random variables for simulating Wiener increments) results in an approximation of
weak order one. The Brownian bridge technique relies on analytical formulas for
trigger probabilities and can run into difficulties in the case of multiple barriers
and/or correlated structure of the underlyings when there are no closed formulas
for the distribution of extremum. Though some extensions to these more general
and not uncommon problems have been considered, e.g. in [8; 20].

In contrast the simplest random walk algorithm of [15] displays a high degree
of flexibility and can be applied to various structures of the contracts including
derivatives on multi-asset correlated underlyings and can deal with various types of
barriers, e.g. single, double and time dependent barriers. In comparison with the
Brownian bridge techniques the method of [15] does not require the knowledge of
the trigger probabilities or their estimates.

In Sections 4-6 we present three examples on how to apply the algorithm from
[15] for valuation of barrier options. These contracts cover the most common types
of barrier options. In the first example (Section 4), we consider an algorithm for
barrier derivatives where the payoff depends on a single underlying. As an illus-
tration, we deal with pricing a barrier caplet and provide ready-for-implementation
procedure which can be easily applied to similar other contracts. The second ex-
ample (Section 5) is devoted to multi-asset options with barriers imposed on all or
some of the correlated underlying assets. We illustrate this case by pricing a trigger
swap. The last example (Section 6) is barrier contracts written on an asset that
can be expressed through some other multi-asset underlying. As a specific case, we
consider valuation of a barrier swaption under the LIBOR market model (LMM).
Though all three examples are for fixed-income markets, the considered algorithms
are also directly applicable to barrier options in other markets.

2. Simplest random walks for stopped diffusions

Let (Ω,F ,P) be a complete probability space, Ft, 0 ≤ t ≤ T, be a filtration satis-
fying the usual hypotheses, (wt,Ft) be an r-dimensional standard Wiener process.
Let G be a bounded domain in Rd and Q = [t0, T ) × G be a cylinder in Rd+1,

Γ = Q̄\Q be the part of the cylinder’s boundary consisting of the upper base and
lateral surface. Price of barrier options with underlying modelled by a diffusion
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process can usually be expressed as

u(t, x) = E [ϕ(τ,Xt,x(τ))Yt,x,1(τ) + Zt,x,1,0(τ)] , (1)

where Xt,x(s), Yt,x,y(s), Zt,x,y,z(s), s ≥ t, is the solution of the Cauchy problem for
the system of SDEs:

dX = (b(s,X)− σ(s,X)µ(s,X)) ds+ σ(s,X) dw(s), X(t) = x, (2)

dY = c(s,X)Y ds+ µᵀ(s,X)Y dw(s), Y (t) = y, (3)

dZ = g(s,X)Y ds+ F ᵀ(s,X)Y dw(s), Z(t) = z, (4)

(t, x) ∈ Q, and τ = τt,x is the first exit time of the trajectory (s,Xt,x(s)) to the
boundary Γ. In (2)-(4), b(s, x) is a d-dimensional column-vector, the σ(s, x) is a
d× r matrix, µ(s, x) and F (s, x) are r-dimensional vectors, and Y (s), Z(s), c(s,X)

and g(s,X) are scalars. We assume that all the coefficients in (2)-(4), the function
ϕ(t, x) defined on Γ and the boundary ∂G of the space domain G satisfy some
regularity conditions.

We note that the value of the expectation u(t, x) in (1) does not depend on a
choice of functions µ(s, x) and F (s, x). This flexibility can be used for reducing
variance of the random variable ϕ(τ,Xt,x(τ))Yt,x,1(τ) + Zt,x,1,0(τ) with the aim of
reducing the statistical error in computing u(t, x) via the Monte Carlo technique
[11; 16]. For instance, if µ and F are such that

d∑
i=1

σij
∂u

∂xi
+ uµj + F j = 0, j = 1, . . . , r, (5)

then V ar[ϕ(τ,Xt,x(τ))Yt,x,1(τ) + Zt,x,1,0(τ)] = 0 and ϕ(τ,Xt,x(τ))Yt,x,1(τ)

+Zt,x,1,0(τ) ≡ u(t, x) [14; 16]. As we see from (5), optimal µ and F require knowl-
edge of the the solution u(t, x) (i.e., the option price) to the considered problem
and its derivatives (i.e., deltas) which is impractical. However, instead of the exact
u(t, x) in (5), one can use its approximation (e.g. price and deltas for a related
option for which the closed-form solution is known) to find some suboptimal µ and
F which can lead to variance reduction [6; 17].

To simulate (1)-(4), we need an approximation of the trajectory (s,X(s)) which
satisfies some restrictions related to its nonexit from the domain Q̄. Let us recall
two algorithms for (1)-(4) from [15; 16].

We apply the weak explicit Euler approximation with the simplest simulation of
noise to the system (2)-(4):

Xt,x(t+ h) ≈ X = x+ h (b(t, x)− σ(t, x)µ(t, x)) + h1/2σ(t, x) ξ , (6)

Yt,x,y(t+ h) ≈ Y = y + hc(t, x) y + h1/2µᵀ(t, x) y ξ , (7)

Zt,x,y,z(t+ h) ≈ Z = z + hg(t, x) y + h1/2F ᵀ(t, x) y ξ , (8)

where h > 0 is a time-discretization step (a sufficiently small number), ξ =

(ξ1, . . . , ξr)ᵀ, ξi, i = 1, . . . , r, are mutually independent random variables taking



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Application of simplest random walk algorithms for pricing barrier options 411

the values ±1 with probability 1/2. Clearly, the random vector X takes 2r different
values.

Introduce the set of points close to the boundary (a boundary zone) St,h ⊂ Ḡ

on the layer t : we say that x ∈ St,h if at least one of the 2r values of the vector
X is outside Ḡ. It is not difficult to see that due to compactness of Q̄ there is a
constant λ > 0 such that if the distance from x ∈ G to the boundary ∂G is equal to
or greater than λ

√
h then x is outside the boundary zone and, therefore, for such x

all the realizations of the random variable X belong to Ḡ.
Since we should impose restrictions on an approximation of the system (2) so

that it does exit from the domain Ḡ, the formulas (6)-(8) can be used only for the
points x ∈ Ḡ\St,h on the layer t, and a special construction is required for points
from the boundary zone. Let x ∈ St,h. Denote by xπ ∈ ∂G the projection of the
point x on the boundary of the domain G (the projection is unique assuming that
h is sufficiently small and ∂G is smooth) and by n(xπ) the unit vector of internal
normal to ∂G at xπ. Introduce the random vector Xπ

x,h taking two values xπ and
x + h1/2λn(xπ) with probabilities p = px,h and q = qx,h = 1 − px,h, respectively,
where

px,h =
h1/2λ

|x+ h1/2λn(xπ)− xπ|
. (9)

This construction is motivated by the following observation [15]. If v(x) is a twice
continuously differentiable function with the domain of definition Ḡ, then an ap-
proximation of v(x) by the expectation Ev(Xπ

x,h) corresponds to linear interpolation
and

v(x) = Ev(Xπ
x,h) +O(h) = pv(xπ) + qv(x+ h1/2λn(xπ)) +O(h) . (10)

We emphasize that the second value x + h1/2λn(xπ) does not belong to the
boundary zone. We also note that p is always greater than 1/2 (since the distance
from x to ∂G is less than h1/2λ) and that if x ∈ ∂G then p = 1 (since in this case
xπ = x).

Let a point (t0, x0) ∈ Q. We would like to find the value u(t0, x0). Introduce a
discretization of the interval [t0, T ] , for definiteness the equidistant one:

t0 < t1 < · · · < tM = T, h := (T − t0)/M.

To approximate the solution of the system (2), we construct a Markov chain
(tk, Xk) which stops when it reaches the boundary Γ at a random step κ ≤M. The
resulting algorithm can be formulated as Algorithm 2.1 given below.

It is proved in [15] (see also [16]) that under appropriate regularity assumptions
on the coefficients of (2)-(4), the boundary condition ϕ(t, x) in (1) and on the
boundary ∂G Algorithm 2.1 converges with weak order one.

The next algorithm is obtained by a simplification of Algorithm 2.1: as soon as
Xk gets into the boundary domain Stk,h, the random walk terminates, i.e., κ = k,
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Algorithm 2.1 Algorithm of weak order one for (1)-(4).

STEP 0. X ′0 = x0, Y0 = 1, Z0 = 0, k = 0.

STEP 1. If X ′k /∈ Stk,h, then Xk = X ′k and go to STEP 3.
If X ′k ∈ Stk,h, then either Xk = X ′πk with probability
pX′k,h or Xk = X ′k + h1/2λn(X ′πk ) with probability qX′k,h .

STEP 2. If Xk = X ′πk , then STOP and κ = k,

Xκ = X ′πk , Yκ = Yk, Zκ = Zk .

STEP 3. Simulate ξk and find X ′k+1, Yk+1, Zk+1 according to
(6)-(8) for t = tk, x = Xk, y = Yk, z = Zk,

ξ = ξk .

STEP 4. If k + 1 = M, STOP and κ = M, Xκ = X ′M , Yκ = YM ,

Zκ = ZM , otherwise k = k + 1 and return to STEP 1.

Algorithm 2.2 Algorithm of weak order 1/2 for (1)-(4).

STEP 0. X0 = x0, Y0 = 1, Z0 = 0, k = 0.

STEP 1. If Xk /∈ Stk,h, then go to STEP 2.
If Xk ∈ Stk,h, then STOP and κ = k, X̄κ = Xπ

k ,
Yκ = Yk, Zκ = Zk .

STEP 2. Simulate ξk and find Xk+1, Yk+1, Zk+1 according to
(6)-(8) for t = tk, x = Xk, y = Yk,

z = Zk, ξ = ξk .

STEP 3. If k + 1 = M, STOP and κ = M, X̄κ = XM , Yκ = YM ,

Zκ = ZM , otherwise k = k + 1 and return to STEP 1.

and X̄κ = Xπ
k , Yκ = Yk, Zκ = Zk is taken as the final state of the Markov chain.

The resulting algorithm takes the form of Algorithm 2.2.
It is proved in [15; 16] that under appropriate regularity assumptions on the

coefficients of (2)-(4), the boundary condition ϕ(t, x) in (1) and on the boundary
∂G Algorithm 2.2 converges with weak order 1/2. We note that in one-dimension
(i.e., in the case of a single underlying) Algorithm 2.2 is analogous to pricing barrier
options by binary trees (see, e.g. [5]).

3. LIBOR Market Model

We will now assume that there exists an arbitrage-free market with continuous and
frictionless trading taking place inside a finite time horizon [t0, t

∗].
Among the most important benchmark interest rates is the London Interbank
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Offered Rate (LIBOR). It is based on simple (or simply compounded) interest. The
forward LIBOR rate L(t, T, T +δ) is the rate set at time t for the interval [T, T +δ],

t ≤ T. If we enter into a contract at time t to borrow one unit at time T and repay
it with interest at time T + δ, the interest due will be δL(t, T, T + δ).

A simple replication argument (see, e.g., [4]) relates LIBOR rates and bond prices
via the following identity

L(t, T, T + δ) =
1

δ

(
P (t, T )

P (t, T + δ)
− 1

)
, (11)

where P (t, T ) is the price at time t ≤ T of a default-free zero coupon bond.
For simplicity, we fix an equidistant finite set of maturities or tenor dates

T0 < · · · < TN = T ∗, Ti = iδ, i = 0, . . . , N, (12)

where

δ = (T ∗ − T0)/N,

denotes the fixed length of the interval between tenor dates.
Let us introduce a simplified notation for the time t forward LIBOR rate for the

accrual period [Ti, Ti+1] and the payment at Ti+1:

Li(t) : = L(t, Ti, Ti+1),

t0 ≤ t ≤ t∗ ∧ Ti, t0 < Ti ≤ T ∗, i = 0, . . . , N − 1.

In the case of LIBOR Market Model (LMM) the arbitrage-free dynamics of Li(t)
under the forward measure QTk+1 associated with the numeraire P (t, Tk+1) can be
written as the following system of SDEs (see, e.g. [4; 18; 21]):

dLi(t)

Li(t)
=


σi(t)

i∑
j=k+1

δLj(t)
1+δLj(t)ρi,jσj(t)dt+ σi(t)dW

Tk+1

i (t), i > k, t ≤ Tk,

σi(t)dW
Tk+1

i (t), i = k, t ≤ Ti,

−σi(t)
k∑

j=i+1

δLj(t)
1+δLj(t)ρi,jσj(t)dt+ σi(t)dW

Tk+1

i (t), i < k, t ≤ Ti,

(13)
where WTk+1 = (W

Tk+1

0 , . . . ,W
Tk+1

N−1 )> is an N -dimensional correlated Wiener pro-

cess defined on a filtered probability space
(

Ω,F , {Ft}t0≤t≤t∗ ,Q
Tk+1

)
; the instan-

taneous correlation structure is defined as

E
[
W

Tk+1

i (t)W
Tk+1

j (t)
]

= ρi,j , i, j = 0, . . . , N − 1; (14)

and σi(t), i = 0, . . . , N − 1, are instantaneous volatilities which we assume here to
be deterministic bounded functions.

Let ρ be the instantaneous correlation matrix with elements ρi,j . To simulate the
correlated Wiener processes, we will use the pseudo-root of the correlation matrix
ρ defined via the equation

ρ = UUᵀ, (15)
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where U is an upper triangular matrix with components Ui,j , i, j = 0, . . . , N − 1.
Using U and introducing N -dimensional standard Wiener process, one can re-write
(13) in the form of (2).

In what follows we will assume that the current time t0 is set to 0. For conve-
nience, we also assume a unit notional value of all the contracts we introduce below.
In our numerical experiments in the next sections we take the correlation function
of the form:

ρi,j = exp(−β |Ti − Tj |), i, j = 0, . . . , N − 1. (16)

4. Barrier cap/floor

In this section we consider the Monte Carlo evaluation of barrier options written
on a single underlying. We use a knock-out caplet for illustration, though our
treatment is rather general and can be used to value different barrier option, for
instance European and Parisian barrier options and options with different barriers
including single, double and time-dependent barriers, both for fixed-income and
equity markets.

An Interest Rate Cap is a security that allows its holder to benefit from low
floating rates and be protected from high ones. Similarly, an Interest Rate Floor
is an instrument designed to protect from low floating interest rates yet allow the
holder to benefit from high rates. Formally, a cap price is obtained by summing
up the prices of the underlying caplets, which are call options on successive LIBOR
rates. Also, a floor is a strip of floorlets, which are put options on successive LIBOR
rates.

A knock-out caplet pays the same payoff as a regular caplet as long as a prescribed
barrier rate H is not reached from below by the corresponding LIBOR rate before
the option expires. More specifically, the price at time t ≤ T0 of a knock-out caplet
set at time Ti−1 with payment date at Ti, i ≥ 1, with strike K and unit cap nominal
value is given by

Vcaplet(t) = δP (t, Ti+1)EQTi+1
[(
Li(Ti)−K

)
+
χ (θ > Ti)

∣∣∣Ft] , (17)

where θ is the first exit time of Li(s), s ≥ t, from the interval G = (0, H). Let τ
be the first exit time of the space-time diffusion (s, Li(s)), s ≥ t, from the domain
Q = [t, Ti)× (0, H). Obviously, τ = θ ∧ Ti.

The dynamics of Li(s) under QTi+1 is (see (13)):

dLi(s)

Li(s)
= σi(s)dW

Ti+1

i (s), s ≤ Ti. (18)

Note that the correlation structure of (13) does not influence the price of the knock-
out caplet since it does not depend on the joint dynamics of forward rates.

One can observe that the dynamics (18) coincides with the model of a stock
price process under the risk-neutral measure in the case of zero interest rate. This
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means that by dropping the factor δP (t, Ti+1) in (17), the valuation of European
barrier options on equity with zero interest rate and of barrier caplets under the
LMM coincide.

In the considered case the price of the barrier caplet has the well-known closed-
form solution:

Vcaplet(t) = Vcaplet(t, L
i(t)) (19)

= δP (t, Ti+1)
{
Li(t)

[
Φ(δ+(Li(t)/K, vi))− Φ(δ+(Li(t)/H, vi))

]
−K

[
Φ(δ−(Li(t)/K, vi))− Φ(δ−(Li(t)/H, vi))

]
−H

[
Φ(δ+(H2/(KLi(t)), vi))− Φ(δ+(H/Li(t), vi))

]
+KLi(t)

[
Φ(δ−(H2/(KLi(t)), vi))− Φ(δ−(H/Li(t), vi))

]
/H
}
,

where Φ(·) denotes the standard normal cumulative distribution function,

δ+(x, v) = (lnx+ v2/2)/v, δ−(x, v) = (lnx− v2/2)/v, (20)

and

v2
i =

∫ Ti

t

(σi(s))
2
ds.

This analytical result will be used in our numerical experiments to assess the per-
formance of proposed algorithms. We note that the algorithm presented in this
example can be easily extended to a more general model of underlying when the
closed-form solution might be not available. In particular, there is no difficulty in
including a drift term in the underlying dynamics (see also Sections 5 and 6). In
the experiments we simulate

Ṽcaplet(t) = Vcaplet(t)/δP (t, Ti+1), (21)

i.e. we drop δP (t, Ti+1) from (17), which does not imply any loss of generality
since the caplet price can easily be recovered by multiplying Ṽcaplet(t) by the factor
δP (t, Ti+1) observable at time t.

4.1. Algorithm

To preserve positivity of the LIBOR rate, we simulate the log dynamics corre-
sponding to (18) rather than the LIBOR rate Li(t) itself. To illustrate the variance
reduction technique discussed in Section 2, we complement (18) with the equation
(cf. (4)):

dZ = F (s, Li)dW
Ti+1

i (s), Z(0) = 0, (22)

with (see (5) and (21))

F (s, Li) = −σi(s)
∂

∂Li
Ṽcaplet(s, L

i(s)) . (23)



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

416 M. Krivko and M.V. Tretyakov

We choose a time step h > 0 so that M = Ti/h is an integer. We set lnLi0 = Li(0)

and Z0 = 0. The weak Euler scheme (6), (8) applied to (18) in the log form and
(22) takes the form:

lnLik+1 = lnLik −
1

2
(σi(tk))

2
h+ σi(tk)

√
hξk+1, (24)

Zk+1 = Zk + F (s, Lik)
√
hξk+1 , (25)

where ξk are independent random variables distributed by the law P (ξ = ±1) = 1/2.

The boundary zone St,h required for Algorithms 2.1 and 2.2 is chosen here as

Stk,h = {Lik : lnLik ≥ lnH +
1

2
σ2
i (tk)h− σi(tk)

√
h}, (26)

i.e., the condition for lnLik+1 to be inside the domain G is

lnLik < lnH +
1

2
σ2
i (tk)h− σi(tk)

√
h , (27)

and the corresponding λk for Algorithm 2.1 is so that

λk
√
h = −1

2
σ2
i (tk)h+ σi(tk)

√
h . (28)

We note that instead of (26) and (28) we could take the wider boundary zone
Stk,h = {Lik : lnLik ≥ lnH − σi(tk)

√
h} and correspondingly λk = σi(tk). A wider

boundary zone usually leads to a bigger numerical integration error. Here we cannot
take a boundary zone narrower than Stk,h in (26) because it would not ensure that
the chain lnLik belongs to Ḡ.

To realize Algorithm 2.1, we follow the random walk generated by (24) and at
each time tk, we check whether at the next step Lik+1 cannot cross the barrier H,
i.e., we check whether the condition (27) holds. If it does, we perform (24)-(25) to
find lnLik+1, Zk+1. Otherwise, Lik has reached the boundary zone Stk,h, where we
make the auxiliary step: we either stop the chain at lnH with probability p :

p =
λk
√
h

lnH − lnLik + λk
√
h

or we kick the current position of the random walk lnLik back into the domain to
the position lnLik−λk

√
h with probability 1−p and then carry out (24)-(25) to find

lnLik+1, Zk+1. If k + 1 = M, we stop, otherwise we continue with the algorithm.
The outcome of simulating each trajectory is a point (tκ , lnL

i
κ , Zκ).

To realize Algorithm 2.2, we also follow the random walk generated by (24),
and at each time tk, we check whether the condition (27) holds. If it does not, Lik
has reached the boundary zone Stk,h and we stop the chain at lnH. If it does,
we perform (24)-(25) to find lnLik+1, Zk+1. If k + 1 = M, we stop, otherwise we
continue with the algorithm. The outcome of simulating each trajectory is again a
point (tκ , lnL

i
κ , Zκ).
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In the experiments we evaluate the expectation

Ṽcaplet(0) = EQTi+1
[(
Li(Ti)−K

)
+
χ (θ > Ti) + Z(τ)

]
(29)

≈ EQTi+1
[(

exp(lnLiκ)−K
)

+
χ (κ = M) + Zκ

]
.

The approximate equality in (29) is related to the bias due to the numerical approx-
imation. The expectation on the right-hand side is realized via the Monte Carlo
technique.

4.2. Numerical results

Here we present some results of numerical tests of Algorithms 2.1 and 2.2 for pricing
the barrier caplet (29). We use the following parameters in the experiments: i = 9,

δ = 1, K = 1%, H = 28%, L9(0) = 13%. The volatility σi(t) is assumed to be
constant at 25% . The exact caplet price Ṽcaplet(0) with these parameters evaluated
by (19) without the factor δP (0, Ti+1) is 6.57%. In the experiments we did 106

Monte Carlo runs. The results are presented in Fig. 1. We see that Algorithm 2.1 is
much more accurate than Algorithm 2.2. We also observe “oscillating” convergence
which is typical for binary tree methods [5].

Figure 1. Barrier caplet price. Comparison of the results of numerical experiments for the Al-
gorithm 2.1 (Algorithm O(h)) and Algorithm 2.2 (Algorithm O(

√
h)) and the exact caplet price

(solid line) evaluated for i = 9, δ = 1, K = 1%, H = 28%, L9(0) = 13%, σi(t) = 25%.

Let us also remark on the effect of variance reduction in these experiments. For
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instance, in Algorithm 2.1 for h = 0.02 we got the Monte Carlo error (which we
define as half of the size of the confidence interval for the corresponding estimator
with probability 0.95) equal to 1.11× 10−4 in the case of F = 0 and 1.55× 10−5 in
the case of the optimal F from (23) (i.e., 100 time speed-up in reaching the same
level of the Monte Carlo error). The use of the optimal F does not result in zero
Monte Carlo error due to the error of numerical integration.

5. Trigger swap

This example is devoted to evaluation of multi-asset barrier options with barriers
on all or some of the correlated underlying assets. We consider a trigger swap as a
specific case, though the considered approach can be used to value other multi-asset
barrier options, for instance basket options, CDOs and nth-to-default CDSs, and it
can also be applied for options with single, double and time-dependent barriers.

A trigger swap is a swap on a floating reference rate that takes effect or terminates
when some index rate hits a specified trigger level. Trigger swaps have a number of
variations [4; 21]. Here we consider a knock-in version of a payer trigger swap with
a fixed rate K whose barrier is continuously monitored. The index and reference
rate both coincide with a LIBOR rate. For given trigger levels H0, . . . ,HN−1 as-
sociated with the LIBOR rates L0(t), . . . , LN−1(t), the structure of the swap under
consideration is expressed as follows. Once one of the the continuously monitored
LIBOR rate L0(t), . . . , LN−1(t) for the first time hits the corresponding trigger level
H0, . . . ,HN−1 from below, the contract holder enters into the payer swap starting
at next tenor date for the remaining time to the last tenor TN−1. More specifi-
cally, let θ be the first exit time of L0(s), . . . , LN−1(s), s ≥ 0, from the domain
G =

(
0, H0

)
× · · · ×

(
0, HN−1

)
, τ be the first exit time of the space-time diffusion

(s, L0(s), . . . , LN−1(s)) from the domain Q = [0, TN−1)×G (clearly τ = θ∧TN−1),
and T%(τ) be the closest tenor date Ti to τ from the right, i.e., %(t) is defined as

%(t) = min {i, i = 0, 1, . . . , N − 1 : t ≤ Ti} .

If θ ≤ TN−1, then at a tenor date T%(τ) the contract holder enters into the contract
according to which the holder pays fixed payments of δK and receives floating
payments of δLi−1(Ti−1) at the coupon dates Ti, i = %(τ) + 1, . . . , N ; otherwise the
contract expires worthless.

The value of this trigger swap at time t = 0 under the forward measure QTN is
given by

Vtrswap(0) = P (0, TN )EQTN
[

1

P (T%(τ), TN )
(30)

×

1− P (T%(τ), TN )−Kδ
N∑

i=%(τ)+1

P (T%(τ), Ti)

χ(θ ≤ TN−1)

 ,
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or in terms of the LIBOR rates

Vtrswap(0) = P (0, TN )EQTN

 N−1∏
j=%(τ)

(
1 + δLj(T%(τ))

)
(31)

−Kδ
N−1∑

i=%(τ)+1

N−1∏
j=i

(
1 + δLj(T%(τ))

)
− 1

χ(θ ≤ TN−1)

 .
In order to price this contract by the Monte Carlo technique, we need to generate

paths for the vector L%(t)(t), . . . , LN−1(t). This means that the size of the vector
of LIBOR rates which we need to simulate decreases over time. The dynamics of
Li(t) under QTN are described by the SDEs (cf. (13)):

dLi(t)

Li(t)
= −σi(t)

N−1∑
j=i+1

δLj(t)

1 + δLj(t)
ρi,jσj(t)dt+ σi(t)dW

TN
i (t),

i = %(t), . . . , N − 1. (32)

5.1. Algorithm

Here we only apply Algorithm 2.1. For simplicity, we consider such a set of tenor
dates Ti and time steps h that Ti/h are integers.

As before, we simulate dynamics of the LIBOR rates L%(t)(t), . . . , LN−1(t) in log
space according to the weak Euler scheme (cf. (6)):

lnLik+1 = lnLik − σi(tk)h
N−1∑
j=i+1

δLjk
1 + δLjk

ρi,jσj(tk) (33)

−1

2
(σi(tk))

2
h+ σi(tk)

√
h
N−1∑
j=i

Ui,jξj,k+1,

i = %k+1, . . . , N − 1,

where ξj,k are mutually independent random variables distributed by the law P (ξ =

±1) = 1/2 and %k =: %(tk).

The algorithm for the considered trigger swap proceeds as follows. Let Lk =

(L%kk , . . . , L
N−1
k )>. Denote by κ the first exit time of (tk, Lk) from Q. Let M =

TN−1/h. Suppose by a time step k none of the rates L%kk , . . . , L
N−1
k have crossed

their barriers H%k , . . . ,HN−1, i.e., χ (κ ≤ k) = 0. Then we evaluate whether at the
next time step k + 1 the event κ = k + 1 might be realized. One can see that the
rate Lik+1, i = %k+1, . . . , N − 1, computed via (33) will be below the barrier Hi, i.e.
inside the domain G, if the following is true

lnLik < lnHi − λk
√
h , (34)

where

λk = σMax

√
N − %k+1
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and σMax = maxj,k σj(tk).

If (27) is satisfied for all the rates L%k+1

k , . . . , LN−1
k then we move to the step

k + 1, evaluate lnLik+1, i = %k+1, . . . , N − 1, according to (33) and continue with
the algorithm unless k + 1 = M (in this case the trigger swap expires worthless).

The case when the condition (27) does not hold for a single i implies that the
point Lk is in the boundary zone Stk,h and is near the barrier Hi. Then we either
assign κ = k, lnLiκ = lnHi, lnLjκ = lnLjk for j 6= i, T%κ = T%k with probability

pi =
λk
√
h

lnHi − lnLik + λk
√
h

(35)

and carry on with simulating lnLik+1, i = %k+1, . . . , N−1, according to (33) starting
from lnLκ until time T%κ = min {Ti : tκ ≤ Ti, i = 0, 1, . . . , N − 1} (the barriers are
“removed” in simulating the remaining part of this trajectory); or we jump outside
the boundary zone Stk,h by changing the ith component of lnLk from lnLik to
lnLik − λk

√
h with probability 1− pi, perform the usual step according to (33) and

continue with the algorithm unless k+ 1 = M (in this case the trigger swap expires
worthless).

We note that in comparison with the original formulation of Algorithm 2.1 here
we do not stop the chain Lk at its first exit time from the space domain G. Instead,
when the barrier is hit, we find the trigger tenor date T%κ , and if tκ < TN−1, we
continue the simulation according to (33) until T%κ to get the required LIBOR rates
Lj(T%(τ)) in (31).

Now we discuss the case when the condition (27) does not hold for more than
one i (i.e., the random walk has reached a corner of the domain G). In this case
the algorithm proceeds as follows. Let us denote by ` = {l1, . . . , ln} the set of tenor
dates corresponding to the LIBOR rates for which (27) is violated. First, we select
the rate from the set

{
lnLl1k , . . . , lnL

ln
k

}
, which is the closest to its boundary, i.e.,

lj such that lnH lj − lnL
lj
k is minimum over j = 1, . . . , n. Then, we repeat the

procedure which is given above for a single i with the following difference. If lnLik
jumps from the boundary to lnLik − λk

√
h, we find the second closest rate from

the set
{

lnLl1k , . . . , lnL
ln
k

}
and as before repeat for this point the routine we have

presented for a single i.We follow this procedure in the outlined fashion until either
the set ` is empty or for some lj we reach the boundary and assign lnL

lj
k = lnH lj .

The outcome of simulating each trajectory is the payer swap starting tenor date
T%κ , the stopping time κ and the point lnLη with η = T%κ/h, which are used for
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evaluating the trigger swap:

Vtrswap(0) ≈ P (0, TN )EQTN

N−1∏
j=%κ

(
1 + δLjη

)

−Kδ
N−1∑

i=%κ+1

N−1∏
j=i

(
1 + δLjη

)
− 1

χ(κ < M)


with the expectation simulated by the Monte Carlo technique. We present the
pseudocode for simulating a single trajectory based on the algorithm we described
above.

Algorithm 5.1 Pseudocode for simulating a single trajectory in pricing the barrier
trigger swap.
SET M to TN−1/h, k to 1, κ to M
WHILE k < M

IF κ > k
FOR j = 0 to N − 1,

IF (27) for j is false
calculate pj by (35)
form array p of pj

ENDIF
ENDFOR
sort p in descending order
FOR n = 1 to length(p)

generate u ∼ Unif [0.1];
IF u < p(n)

SET κ to k
SET lnLik to lnHi

SET M to T%κ/h
BREAK

ELSE
SET lnLik to lnLik − λk

√
h

ENDIF
ENDFOR

ENDIF
Evaluate lnLk+1 by (33)
Increase k by 1

ENDWHILE

5.2. Numerical results

Let us present results of numerical experiments we performed for pricing a trigger
swap using Algorithm 6.1. The parameters chosen for the experiments are T0 = 5,
δ = 1, N = 11 (i.e., T ∗ = TN = 16), K = 0.01, H = 0.13, β = 0.2. The initial
LIBOR rate curve is assumed to be flat at 0.04 and the volatility σi(t) is set to be
constant at 0.2. In the simulations we run 106 Monte Carlo paths.

Since the closed-form formula for the trigger swap (31) is not available, we found
the reference trigger swap price by evaluating the price using Algorithm 5.1 with
h = 0.01 and the number of Monte Carlo runs 106. This reference price is 5.46×10−2
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with the Monte Carlo error 5.50×10−4, which gives half of the size of the confidence
interval for the corresponding estimator with probability 0.95.

The results of the experiments with Algorithm 5.1 are presented in Table 1. In
the table the values before “±” are estimates of the bias computed as the difference
between the reference price and its sampled approximation, while the values after
“±” give half of the size of the confidence interval for the corresponding estimator
with probability 0.95. The “mean exit time” is the average time for trajectories
(tk, Lk) to leave the space-time domainQ. The experimentally observed convergence
rate for Algorithm 5.1 is in agreement with the theoretical first order convergence
in h (though we note that the convergence theorem in [15; 16] is proved under
restrictive regularity conditions and the payoff of the trigger swap and the boundary
of the space domain G do not satisfy these conditions).

Table 1. Performance of Algorithm 5.1 for the trigger swap.
h error mean exit time

0.25 2.22× 10−2 ± 6.39× 10−4 12.51

0.2 1.85× 10−2 ± 6.26× 10−4 12.61

0.125 1.17× 10−2 ± 6.01× 10−4 12.78

0.1 9.56× 10−3 ± 5.92× 10−4 12.83

0.0625 6.03× 10−3 ± 5.78× 10−4 12.92

0.05 4.67× 10−3 ± 5.72× 10−4 12.95

6. Barrier swaption

In this section we consider Monte Carlo evaluation of a knock-out swaption under
the LMM. We use the knock-out swaption as a guide in our exposition, its treatment
is rather general and it can be used to value different barrier options, where the
underlying and barrier can be expressed as functionals of some diffusion process.

A European payer (receiver) swaption is an option that gives its holder a right,
but not an obligation, to enter a payer (receiver) swap at a future date at a given
fixed rate K. The swaption maturity usually coincides with the first reset date T0

of the underlying swap. The underlying swap length TN − T0 is called the tenor of
the swaption.

Without loss of generality, we concentrate on a knock-out receiver swaption with
the first reset date T0. A knock-out swaption has the structure as a standard
swaption except that if the underlying swap rate is above a barrier level Rup at
any time before T0 then the swaption expires worthless. The price of the knock-out
swaption at time t = 0 under the forward measure QT0 is given by:

Vswaption(0) = P (0, T0)EQT0

δ (Rswap(T0)−K)+

N∑
j=1

P (T0, Tj)χ (θ > T0)

 , (36)

where θ is the first exit time of the process Rswap(s), s ≥ 0, from the interval
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(0, Rup). The swap rate Rswap(s) can be expressed in terms of the spanning LIBOR
rates as

Rswap(s) =

1− 1/
N−1∏
j=0

(
1 + δLj(s)

)
δ
N−1∑
i=0

1/
i∏

j=0

(1 + δLj(s))

. (37)

The bond prices P (T0, Tj) can be expressed via LIBOR rates (see (11)) as well.
Also, let τ be the first exit time of the space-time process (s,Rswap(s)) from the

domain D = [0, T0)× (0, Rup) (obviously, τ = θ ∧ T0).
The LMM dynamics of LIBOR rates under QT0 are given by (cf. (13)):

dLi(t)

Li(t)
= σi(t)

i∑
j=0

δLj(t)

1 + δLj(t)
ρi,jσj(t)dt+ σi(t)dW

T0
i (t), i = 0, . . . , N − 1. (38)

In this example we deal with pricing the barrier swaption (36) expressed in terms
of the spanning LIBOR rates with dynamics in the form of (38). This means that we
consider this problem in the coordinate system of the LIBOR rates and the barrier
is given as an implicit surface in the LIBOR coordinates. We also introduce the
space domain G in the phase space of the SDEs (38) corresponding to the interval
(0, Rup) on the swap-rate semi-line. As usual, the corresponding space-time domain
Q := [0, T0)×G.

For test purposes, let us introduce an analytical approximation for the barrier
swaption. To this end, we note that under the Swap Market Model (SMM, see
details in [4; 18; 21]) the barrier swaption pricing problem admits the closed-form
solution (cf. (19))

Vswaption(0) = δ
N∑
j=1

P (0, Tj)
{
Rswap(0)

[
Φ(δ+(Rswap(0)/K, vRswap))

−Φ(δ+(Rswap(0)/Rup, vRswap))
]

−K
[
Φ(δ−(Rswap(0)/K, vRswap))− Φ(δ−(Rswap(0)/Rup, vRswap))

]
−H

[
Φ(δ+(R2

up/(KRswap(0)), vRswap))− Φ(δ+(Rup/Rswap(0), vRswap))
]

+KRswap(0)Φ(δ−(Rup
2/(KRswap(0)), vRswap)/Rup)

−Φ(δ−(Rup/Rswap(0), vRswap))
]}
, (39)

where δ± are from (20),

v2
Rswap =

∫ Ti

0

(
σRswap(s)

)2
ds,

and σRswap(s) is the instantaneous volatility of the log-normal dynamics of the swap
rate.
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Using Rebonato’s formula [4] , we can compute the “approximate” volatility
vLMM
Rswap

for the LMM analogous to the volatility vRswap in the SMM entering (39) as

vLMM
Rswap =

N−1∑
i,j=0

ωi(0)ωj(0)Li(0)Lj(0)ρij

(Rswap(0))
2

∫ T0

0

σi(s)σj(s)ds, (40)

where

ωi(0) =

1− 1/
i−1∏
j=0

(
1 + δLj(0)

)
δ
N−1∑
k=0

1/
k∏
j=0

(1 + δLj(0))

.

The quantity vLMM
Rswap

can be used as a proxy for vRswap in (39) to compute approx-
imate barrier swaption prices under LMM. We will check in our numerical experi-
ments whether an approximation obtained by our algorithm is consistent with this
analytical approximation.

6.1. Algorithm

Here we exploit Algorithm 2.1. We choose a time step h > 0 so that M = T0/h is
an integer. Again inside the domain G we use the weak Euler scheme to simulate
trajectories of the log LIBOR rates (38):

lnLik+1 = lnLik + σi(tk)
i∑

j=0

δLjk
1 + δLjk

ρi,jσj(tk)h (41)

−1

2
(σi(tk))

2
h+ σi(tk)

√
h
N−1∑
j=i

Ui,jξj,k+1,

i = 0, . . . , N − 1,

where ξj,k are mutually independent random variables distributed by the law P (ξ =

±1) = 1/2.

For a fixed tk, we denote by lnLk the point with coordinates lnL0
k, lnL

1
k, . . . ,

lnLN−1
k , i.e. lnLk = (lnL0

k, lnL
1
k, . . . , lnL

N−1
k )>. As before, we follow the random

walk constructed by (41) until we reach the boundary zone Stk,h. Algorithmically,
it implies that we implement a check at each step whether the current position of
the random walk is in the boundary zone Stk,h. More precisely, we evaluate at time
tk whether the current position lnLk is such that the maximum increment from
point lnLk according to all possible realizations of (41) at the next time level tk+1

results in the state of the random walk below the barrier, i.e. in the domain G.
Introduce

lnLk,Max = max
i

lnLik



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Application of simplest random walk algorithms for pricing barrier options 425

and

ln L̂k+1 = lnLk,Max + σ2
MaxhN −

1

2
σ2
Maxh+ σMax

√
hN, (42)

where σMax = maxi,k σi(tk). Using the fact that

Rswap(L̂k+1, ..., L̂k+1) = L̂k+1,

one can see that the current position of the random walk lnLk is inside the domain
G if the following condition is satisfied

ln L̂k+1 < lnRup. (43)

Algorithmically, we do the following. If condition (43) is true, we evaluate the next
position of the random walk at tk+1 according to (41) and continue further with
the algorithm unless k + 1 = M (i.e., we have reached the maturity time T0 of the
swaption).

We note the condition (43) is computationally cheap but it is rather rough. Once
this condition fails, we check a finer but computationally more expensive condition
based on the maximum increments of each of Li(tk) towards the boundary:

Rswap(L
0
k(1 + σ0(tk)σMax,kh+ σ0(tk)

√
Nh), L1

k(1 + 2σ1(tk)σMax,kh

+σ1(tk)
√

(N − 1)h), ..., LN−1
k (1 +NσN−1(tk)σMax,kh+ σN−1(tk)

√
h))

< Rup, (44)

where σMax,k = maxj σj(tk). If the condition (44) holds, we again carry on to
the next time step tk+1 using (41) and continue further with the algorithm unless
k + 1 = M.

If both conditions (43) and (44) fail, the random walk has reached the boundary
zone Stk,h, where as before we apply the different procedure which require us to
find the projection lnLπk := (Lπ,0k , Lπ,1k , . . . , Lπ,N−1

k )> of the current position lnLk
on the boundary given as the implicit function of the spanning LIBOR rates:

lnRswap(tk) = lnRup. (45)

For completeness of the exposition, let us discuss how the projection lnLπk can
be simulated before we return to the description of the algorithm. The problem of
finding the point lnLπk is equivalent to finding the minimum value of the function

| lnLπk − lnLk|2 =
(

lnLπ,0k − lnL0
k

)2

+ · · ·+
(
Lπ,N−1
k − lnLN−1

k

)2

(46)

subject to the constraint

ln


N−1∏
j=0

(
1 + δLπ,jk

)
− 1

δ

(
1 +

N−2∑
i=0

N−1∏
j=i+1

(
1 + δLπ,jk

))
 = lnRup. (47)
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We regard lnLπ,1k , . . . , lnLπ,N−1 as independent variables in the constraint equation
(47) and write lnLπ,0k as

lnLπ,0k = ln


Rup ·

(
1 +

N−2∑
i=0

N−1∏
j=i+1

(
1 + δLπ,jk

))
+ 1

N−1∏
j=1

(
1 + δLπ,jk

) − 1

δ

 . (48)

Hence the minimization problem is reduced to finding the point lnLπ,1k ,

. . . , lnLπ,N−1 at which the function | lnLπk − lnLk|2 from (46) with lnLπ,0k from
(48) has its minimum value. This optimization problem can be solved using stan-
dard procedures, e.g. the MATLAB function “lsqnonlin()”.

Let us now continue with the description of the algorithm. When lnLk is in the
boundary zone, we either stop the chain at lnLπk with probability p :

p =
λ
√
h

| lnLπk − lnLk|+ λ
√
h
, (49)

where

λ
√
h =
√
N

(
σ2
MaxhN −

1

2
σ2
Maxh+ σMax

√
hN

)
; (50)

or we jump inside the domain G to the point lnLk + λ
√
h
−−−−−−−−→
lnLπk lnLk
| lnLπk−lnLk| with proba-

bility 1− p, apply the Euler step (41) to evaluate lnLk+1 and continue further with
the algorithm unless k + 1 = M.

The outcome of simulating each trajectory is the point (tκ , lnLκ). In Algo-
rithm 6.1 we present the pseudocode for simulating a single trajectory based on the
algorithm we described above.

6.2. Numerical results

We give some results for pricing a barrier swaption by Algorithm 6.1. We consider
the barrier swaption with the initial LIBOR curve flat at 0.05, constant volatility
σi(t) at 0.1 and the following parameters: T0 = 10, N = 10, δ = 1 (i.e., TN = T ∗ =

20), K = 0.01, Rup = 0.075, β = 0.1. The simulations use 106 Monte Carlo runs.
The pricing problem for the barrier swaption (36) does not admit a closed-form

solution. We used the barrier swaption price found by Algorithm 6.1 with h = 0.01

and 107 of Monte Carlo runs as the reference solution. This reference price is
0.15506 with the Monte Carlo error 1.42 × 10−4, which gives half of the size of
the confidence interval for the corresponding estimator with probability 0.95. The
analytical approximation based on (39) and (40) yields the price of the barrier
swaption 0.15556, which turns out to be very accurate.

We present results of the experiments in Table 2. As in the previous section,
the error column values before “±” are estimates of the bias computed using the
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Algorithm 6.1 Barrier swaption: Pseudocode for simulating a single trajectory.
FOR k = 1 to M

calculate ln L̂k+1 by (42)

IF (43) is true: calculate lnLk+1 by (41)

ELSE

IF (44) is true: calculate lnLk+1 by (41)

ELSE

solve the minimisation problem (46) with lnLπ,0k from (48)

generate u ∼ Unif [0, 1]

calculate probability p by (49)

IF u < p

break

ELSE

SET lnLk to lnLk + λ
√
h
−−−−−−−−→
lnLπk lnLk

|lnLπk−lnLk|
calculate lnLk+1 by (41)

ENDIF

ENDIF

ENDIF

ENDFOR

reference price value and the values after “±” reflect the Monte Carlo error with
probability 0.95. The “mean exit time” is the average time for approximate trajec-
tories to exit the space-time domain Q. It is clear that the results demonstrate the
expected first order of convergence.

Table 2. Performance of Algorithm 6.1 for the barrier swaption.
h error mean exit time

0.25 1.01× 10−2 ± 4.33× 10−4 9.36

0.2 8.08× 10−3 ± 4.37× 10−4 9.40

0.125 5.15× 10−3 ± 4.42× 10−4 9.46

0.1 4.15× 10−3 ± 4.44× 10−4 9.48

0.0625 2.58× 10−3 ± 4.47× 10−4 9.51

0.03125 1.03× 10−3 ± 4.49× 10−4 9.54

Acknowledgment

MVT was partially supported by the Leverhulme Trust.

Bibliography

[1] Andersen, L., Brotherton-Racliffe, R.: Exact exotics. Risk 9 (1996), 85–89.
[2] Baldi, P.: Exact asymptotics for the probability of exit from a domain and applica-

tions to simulation. Ann. Prob. 23 (1995), 1644–1670.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

428 M. Krivko and M.V. Tretyakov

[3] Beaglehole, D. R., Dybvig, P.H., Zhou G.: Going to extremes: Correcting simulation
bias in exotic option valuation. Financial Analyst Journal, January/February (1997),
62–68.

[4] Brigo, D., Mercurio, F.: Interest Rate Models: Theory and Practice. Springer, 2006.
[5] Derman, E., Kani, I., Ergener, D., Bardhan, I.: Enhanced numerical methods for

options with barriers. Quantitative Strategies Research Notes, Goldman Sachs. May
1995.

[6] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, 2003.
[7] Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stoch. Pro-

cess. Appl. 87 (2000), 167–197.
[8] Gobet, E.: Advanced Monte Carlo methods for barrier and related exotic options. In

Mathematical Modeling and Numerical Methods in Finance, Eds. A. Bensoussan, Q.
Zhang, P. Ciarlet. Elsevier, 2009, 497–528.

[9] Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

[10] Kunitomo, N., Ikeda, M.: Pricing options with curved boundaries. Math. Fin. 4
(1992), 275–298.

[11] Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer
Academic Publishers, 1995.

[12] Milstein, G.N.: Solution of the first boundary value problem for equations of parabolic
type by means of the integration of stochastic differential equations. Theor. Probab.
Appl., 40 (1995), 556–563.

[13] Milstein, G.N., Rybkina, N.F.: An algorithm for random walks over small ellipsoids
for solving the general Dirichlet problem. J. Comp. Math. Math. Phys., 33 (1993),
631–647.

[14] Milstein, G.N. , Schoenmakers, J.G.M.: Monte Carlo construction of hedging strate-
gies against multi-asset European claims. Stoch. Stoch. Rep. 73 (2002), 125–157.

[15] Milstein, G.N., Tretyakov, M.V.: The simplest random walks for the Dirichlet prob-
lem. Theory Prob. Appl. 47 (2002), 53–68.

[16] Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics.
Springer, 2004.

[17] Milstein, G.N., Tretyakov, M.V.: Practical variance reduction via regression for sim-
ulating diffusions. SIAM J. Numer. Anal. 47 (2009), 887–910.

[18] Rebonato, R.: Interest-rate Option Models. Wiley, 1998.
[19] Rubinstein, M., Reiner, E.: Breaking down the barriers. Risk 4 (1991), 28–35.
[20] Shevchenko, P.: Addressing the bias in Monte Carlo pricing of multiasset options

with multiple barriers through discrete sampling. J. Comp. Fin. 6 (2003), 1–20.
[21] Schoenmakers, J.: Robust Libor Modelling and Pricing of Derivative Products. Chap-

man and Hall/CRC, 2005.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Chapter 12

Coupling local currency Libor models to FX Libor models

John Schoenmakers
Weierstrass Institute for Applied Analysis and Stochastics,

Mohrenstrasse 39, D-10117 Berlin

Abstract We focus on the coupling of two existing and calibrated single currency
Libor models into a joint Libor model that allows for pricing of multiple currency
based structured interest rate products. Our main contribution is twofold: On the
one hand we provide a method for synthesizing two local currency based correlation
structures into a correctly defined joint correlation structure that describes the cross
Libor correlations between the two currencies in a realistic way. On the other hand
we introduce an (necessary) FX related factor X in order to describe the unified
model with respect to one particular numéraire measure. In addition we propose to
calibrate this factor to FX instruments in the case where X is modeled via Heston
type dynamics.

1. Introduction

Libor interest rate modeling, initially developed by [16], [6], and [12] almost two
decades ago, is still considered to be the universal tool for evaluation of structured
interest rate products. One of the main reasons is the great flexibility in the choice
of the Libor volatilities in the Libor framework. Starting from deterministic volatil-
ity structures leading to the Libor market model, many enhancements have been
proposed in order to match implied volatility patterns of liquid products such as
caps and swaptions. In this respect we mention (among other approaches) the Lévy
Libor model by [8] (see for example [3] and [17] for a numerical treatments and
practical implementation), displaced diffusion, CEV Libor models, log-normal mix-
ture models, and even random parameter Libor models (e.g. [5] and the references
therein for an overview). Another important line of research is the development of
(one factor) stochastic volatility models based on CIR type scalar volatilities by [1],
[19], and their multi factor extensions by [2] and more recently [14]. Further we
mention SABR related Libor models (e.g. [10]) that are based on a different types
of scalar volatilities. SABR based Libor models gained popularity because they
allow for pricing of European liquids by relatively simple approximation formulas

429
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based on heat kernel expansion techniques.
For pricing of structured interest rate products that involve different currencies

(quanto style products), Libor models that are jointly defined with respect to these
currencies are called for. Although there already appeared some approaches in the
literature more recently (e.g. [4]), by now we have not seen a generic approach to
connect two existing generally specified and calibrated single currency Libor models.

Here we present a generic approach to melt two given Libor rate models with
respect to two different currencies (domestic and foreign) into a unified Libor model.
As a key issue we propose a tractable approach to synthesize the Libor correlation
structures given in their respective currencies into a joint correlation structure from
which the initial domestic and foreign correlations may be retrieved, and moreover
the cross correlations between domestic and foreign Libors are modeled as a (re-
scaled) suitably defined average of the domestic and foreign correlations. This
averaging procedure is based on coupling of a particular square root of the domestic
structure with another particular square root of the foreign structure. The coupling
is carried out in such a way that joint matrix is a real correlation matrix in the
sense that it is positive and has diagonal entries that are all equal to one. In
order to describe the unified model with respect to a unified measure, for instance
the terminal domestic bond or the terminal foreign bond measure, an additional FX
related factor X has to be incorporated. Finally we outline an FFT based procedure
by [7] for pricing liquidly traded FX options, in the case where X is driven by a
Heston type stochastic volatility process. This procedure may then be used in order
to calibrate the dynamics of X. The method is fairly general in the sense that it
can be applied to virtually all Libor models driven by a Wiener environment.

2. Resume of Wiener based Libor modeling

For a fixed sequence of tenor dates 0 =: T0 < T1 < . . . < Tn, called a tenor structure,
we consider zero bond processes Bi, i = 1, . . . , n, where each Bi is defined on the
interval [0, Ti] and ends up with terminal face value Bi(Ti) = 1. We now define a
set of forward Libors on the tenor structure by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i < n, (1)

where the δi := Ti+1 − Ti, i = 1, . . . , n − 1, denoting the periods between two
subsequent tenor dates, are called day-count fractions. Li is in fact the annualized
effective rate corresponding to a forward rate agreement (FRA) contracted at time
t, for the period [Ti, Ti+1]. Here we assume that according to this agreement, the
interest rate δiLi(Ti) par notional 1 has to be payed at Ti+1.

In this chapter we consider a framework where the zero-bonds (Bi)i=1,...,n that
define the Libors are adapted processes which are defined on a filtered probability
space (Ω, (Ft)0≤t≤T∞ , P ) with T∞ ≥ Tn being some finite time horizon. Throughout
it is assumed that the filtration (Ft) is generated by some d-dimensional standard
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Brownian motion W (thus excluding jump type models). Furthermore, we consider
predictable (column) processes σi with state Rd, that denote the volatility of the
bonds Bi respectively, predictable (scalar) drift processes µi denoting the drifts of
the Bi, and a (scalar) market price of risk process λ, all adapted to the driving
Brownian motion W. That is, in the objective measure the zero bond dynamics are
of the form

dBi
Bi

= µidt+ σ>i dW with µi = σ>i λ. (2)

Under some further mild technical conditions (see [12] and [13] for details) there
now exists for each i, 1 ≤ i < n, an Rd-valued predictable volatility process Γi such
that the Libor dynamics are given by

dLi
Li

= −
n−1∑
j=i+1

δjLj
1 + δjLj

Γ>i Γjdt+ Γ>i dW(n), 0 ≤ t ≤ Ti, 1 ≤ i < n, (3)

where W(n) is an equivalent standard Brownian motion under the terminal
numéraire measure Pn induced by the terminal zero coupon bond Bn, that is, for
all j, Bj/Bn are Pn-martingales. (We do not dwell on issues of local versus true
martingales here.) In particular

Γi := δ−1
i L−1

i (1 + δiLi) (σi − σi+1)i , 1 ≤ i < n. (4)

For some general fixed i, 1 ≤ i < n we may consider instead the numéraire measure
Pi+1 induced by the bond Bj+1, and then for 1 ≤ j ≤ i we obtain from (3) the
dynamics

dLj
Lj

= Γ>j

− n−1∑
k=j+1

δkLk
1 + δkLk

Γkdt+ dW(n)


= −

i∑
k=j+1

δkLk
1 + δkLk

Γ>j Γkdt+ Γ>j

(
−

n−1∑
k=i+1

δkLk
1 + δkLk

Γkdt+ dW(n)

)

=: −
i∑

k=j+1

δkLk
1 + δkLk

Γ>j Γkdt+ Γ>j dW(i+1), 1 ≤ j ≤ i. (5)

Since by (1) Li is a martingale under Pi+1, it automatically follows that W(i+1) in
(5) is a standard Brownian motion under the equivalent measure Pi+1. Finally we
note that in the case where the Γj are deterministic we have the well documented
Libor Market Model (LMM) (see for example [5] and [18] and the references therein).

3. Multi currency extension of the Libor model

In this section we will melt two markets, the domestic and the foreign interest
rate market, into just one. That is, we are going to consider zero bonds and more
general traded assets in this extended market and determine their unified dynamics
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described by an SDE. Let (B1,...,Bn, B
∗
1 , ..., B

∗
n∗) be an arbitrage free joint system of

domestic zero bonds Bi and foreign zero bonds B∗i expressed in domestic currency,
corresponding to a domestic and foreign tenor structure 0 =: T0 < T1 < . . . < Tn,

and 0 =: T ∗0 < T ∗1 < . . . < T ∗n∗ , respectively. Since it only makes sense to consider
the domestic and foreign bond system on the same joint time interval, we make the
following structural assumption,

Tn = T ∗n∗ = T∞,

that is, we allow both tenor structures to be different, but they both span the same
time period. In view of (2) we consider the coupled dynamics

dBi
Bi

= µidt+ σ>i dW, 1 ≤ i ≤ n, (6)

dB∗i
B∗i

= µ∗i dt+ σ∗>i dW , 1 ≤ i ≤ n∗,

where now W is a D-dimensional standard Brownian motion with D being suf-
ficiently large. Connected with (6) we so introduce a general FX-Libor system
(L1, ..., Ln−1, L

∗
1, ..., L

∗
n∗−1, X) defined by

Li =
1

δi
(
Bi
Bi+1

− 1), L∗i =
1

δ∗i
(
B∗i
B∗i+1

− 1), X =
B∗n∗

Bn
(7)

with δ∗i := T ∗i+1 − T ∗i . Then with respect to Bn as numéraire we obtain under Pn
the joint dynamics

dLi
Li

= −
n−1∑
j=i+1

δjLj
1 + δjLj

Γ>i Γjdt+ Γ>i dW
(n), 1 ≤ i < n,

dL∗i
L∗i

= −Γ∗>i ΓXdt−
n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗>i Γ∗jdt+ Γ∗>i dW(n), 1 ≤ i < n∗,

dX

X
= Γ>XdW

(n), (8)

where ΓX := σ∗n∗ − σn, W(n) is standard Brownian motion under Pn, and due to
(4)

Γi = (δiLi)
−1

(1 + δiLi) (σi − σi+1)i , 1 ≤ i < n,

Γ∗i = (δ∗i L
∗
i )
−1

(1 + δ∗i L
∗
i )
(
σ∗i − σ∗i+1

)
, 1 ≤ i < n∗.
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Similarly, with respect to B∗n∗ as numéraire we get

dLi
Li

= Γ>i ΓXndt−
n−1∑
j=i+1

δjLj
1 + δjLj

Γ>i Γjdt+ Γ>i dW
(n∗), 1 ≤ i < n,

dL∗i
L∗i

= −
n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗>i Γ∗jdt+ Γ∗>i dW(n∗), 1 ≤ i < n∗,

dX

X
= ‖ΓX‖2 dt+ Γ>XdW

(n∗), (9)

where W(n∗) is a D-dimensional standard Brownian motion under the measure Pn∗ ,
corresponding to B∗n∗ that satisfies

dW(n∗) = dW(n) − ΓXdt. (10)

The connecting relation (10) is easily verified in the following way. Since X−1 is a
martingale under Pn∗ , we derive by Ito’s formula and using (8),

dX−1

X−1
= X

(
− 1

X2
dX +

1

X3
d〈X,X〉

)
= −Γ>XdW

(n) + ‖ΓX‖2 dt

= −Γ>X

(
dW(n) − ΓXdt

)
= −Γ>XdW

(n∗),

from which (10) follows.
Due to the above approach, the domestic zero bonds Bi are in general correlated

with the foreign zero bonds B∗i (in domestic currency). We think that this is a
natural way of modeling and, indeed, leaving this possibility out of consideration
would give rise to a very controversial discussion among practitioners. However,
as a consequence, the volatility structures of both the domestic and foreign Libors
in (8) (respectively (9)) need to be determined, and moreover also the volatility
process ΓX .

4. Connecting a local general model with a foreign extended market
model

Let us assume that we are given a local Libor model (3) where the local volatility
processes are of the form

Γi(t) = ‖Γi‖ (t)ei(t), ei ∈ Rd, 1 ≤ i < n, (11)

where the ei are unit vectors that at most deterministically depend on t, and the
‖Γi‖ (t) are given scalar volatility processes adapted to a d-dimensional Brownian
motion W. W.l.o.g. we assume that the correlation structure introduced by

Rij :=
[
(ei)
>
ej

]
(t), 1 ≤ i, j < n,

has constant rank d. In addition we assume that we are also given a foreign Libor
model where the foreign volatility processes are of the more special form

Γ∗i (t) = gi(t, L
∗)e∗i (t), e∗i ∈ Rd

∗
, 1 ≤ i < n∗, (12)
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where e∗i are unit vectors deterministically depending on t, and gi(t, ·) are nonneg-
ative deterministic (scalar) volatility functions. Hence the foreign Libors follow a
so called extended market model in the foreign terminal bond measure P∗n. For
suitably chosen gi, (12) might represent for example a CEV model, some displaced
diffusion model, or a standard market model. It is well known that the distribution
of such a model, that is the distribution of

(
L∗j
)

1≤j<n∗ in the Pn∗ measure, is com-
pletely determined by these volatility functions gi and the correlation structure R∗

determined by

R∗ij =
[
(e∗i )

>
e∗j

]
(t) 1 ≤ i, j < n∗. (13)

W.l.o.g. we assume that R∗ has constant rank d∗. Our goal is now to construct
a new joint model (8) such that the distribution of (Lj)1≤j<n∗ and

(
L∗j
)

1≤j<n∗
coincide with the respective initial ones in their respective measures.

Let us define C ∈ R(n−1)×d by Cik = ei,k 1 ≤ i < n, 1 ≤ k ≤ d, hence
CC> = R. Next, let F ∈ R(n∗−1)×d, and for some suitable p ≥ 0 to be determined,
G ∈ R(n∗−1)×p with p = rank(G) (with R(n∗−1)×0 := ∅, i.e. an empty matrix),
such that F and G solve the following matrix equation,

FF> +GG> = R∗. (14)

We then have

Σ :=

(
C ∅
F G

)(
C ∅
F G

)>
=

(
C ∅
F G

)(
C> F>

∅ G>

)
=

(
R CF>

FC> R∗

)
and it holds

dLi
Li

= −
n−1∑
j=i+1

δjLj
1 + δjLj

Γ>i Γjdt+ Γ>i dW
(n), 1 ≤ i < n, (15)

dL∗i
L∗i

= −
n∗−1∑
j=i+1

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗>i Γ∗jdt+ Γ∗>i dW(n∗), 1 ≤ i < n∗,

with respect to an extended Brownian motion W(n) := (W(n), W̃(n)) ∈ RD and
W(∗n) := (W(n∗), W̃(n∗)) ∈ RD, under the measures Pn and Pn∗ , respectively, with
D = d+ p and

Γi = ‖Γi‖ ei, 1 ≤ i < n, and Γ∗i = gie
∗
i , 1 ≤ i < n∗, (16)

where

ei,k := ei,k, 1 ≤ k ≤ d, ei,d+k = 0, 1 ≤ k ≤ p, 1 ≤ i < n,

e∗i,k := Fik, 1 ≤ k ≤ d, e∗i,d+k = Gik, 1 ≤ k ≤ p, 1 ≤ i < n∗. (17)
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There are two edge solutions: i) F = 0 implying that GG> = R∗ (so p = d∗ hence
D = d+ d∗) and

Σ =

(
R ∅
∅ R∗

)
,

i.e. L and L∗ are independent, ii) G = ∅ (p = 0) implying that FF> = R∗ (so
D = d ≥ d∗),

Σ =

(
R CF>

FC> R∗

)
, (18)

and both the local and the foreign model are driven by W(n) ∈ Rd in fact.

A simple pragmatic solution

By taking p = d∗ in the case d ≥ d∗ and letting F1 and G1 be matrices as specified
above with F1F

>
1 = R∗ and G1G

>
1 = R∗, we have that for any |%| ≤ 1, F% = %F1

and G% =
√

1− %2G1 solve the matrix equation (14). Let us specialize to the case
d = d∗ = p : A matrix G with GG> = R∗ is determined up to a orthogonal transfor-
mation. Indeed, let G1 ∈ R(́n∗−1)×p be the unique lower triangular (Cholesky) root
of R∗ with G1,ii > 0, and G1G

>
1 = R∗, then any G with G = G1Q for orthogonal

Q ∈ Rṕ×p, satisfies GG> = R∗. Now let further C1 be the unique lower triangular
(Cholesky) root of R, hence C1C

>
1 = R, then determine QC ∈ Rṕ×p such that

C = C1QC , and take F1 = G1QC . For the joint FX Libor model we then take for
F and G in (17),

F% = %G1QC and G% =
√

1− %2G1, (19)

respectively, and the volatilities, say Γ%,i in (16) accordingly. For the cross currency
Libor correlation matrix we then obtain in (18)

CF>% = %CQ>CG
>
1 = %C1G

>
1 , |%| ≤ 1,

hence

Σ% :=

(
R %C1G

>
1

%G1C
>
1 R∗

)
(20)

being a valid correlation matrix for any |%| ≤ 1. In the particular case where R = R∗

(hence n = n∗) we thus obtain by this construction CF>% = %R. In the general case
where R 6= R∗ and possibly n 6= n∗ (but d = d∗ = p) we may consider the matrix
C1G

>
1 as some kind of average between R and R∗. In the next section we will outline

the calibration of % to FX rate vanilla options.
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5. Calibration to FX market

Let us consider X := B∗n∗/Bn. Note that (cf. [9]),

Bn(t) = Bη(t)(t)
n−1∏
j=η(t)

1

1 + δjLj(t)

for 0 ≤ t ≤ Tn = T∞. and η(t) := min{m : Tm ≥ t}. Thus, by (15),

dBn
Bn

= (...)dt+ d lnBn

= (...)dt+
dBη(t)

Bη(t)
−

n−1∑
j=η(t)

δjLj
1 + δjLj

Γ>j dW
(·)

=: (...)dt+ σ>η(t)dW
(·) −

n−1∑
j=η(t)

δjLj
1 + δjLj

Γ>j dW
(·).

In the same way, for t ≤ T ∗n∗ = T∞,

B∗n∗(t) = B∗η∗(t)(t)
n∗−1∏
j=η∗(t)

1

1 + δ∗jL
∗
j (t)

with η∗(t) := min{m : T ∗m ≥ t} and so

dB∗n∗(t)

B∗n∗(t)
= (...)dt+ d lnB∗n∗

= (...)dt+ σ∗>η∗(t)dW
(·) −

n∗−1∑
j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗>j dW(·).

Note that B∗n∗(t) is the foreign terminal bond expressed in domestic currency. We
so may set for t ≤ T∞, B

∗
n∗(t) =: ζ(t)B̃n∗(t), where B̃n∗(t) is a foreign bond

expressed in the foreign currency and ζ(t) is the FX spot rate. In particular we
have B∗n∗(Tn∗) = ζ(Tn∗) = ζ(Tn) = ζ(T∞), and

ζ(t) =
B∗n∗(t)

B̃n∗(t)
=
B∗η∗(t)(t)

B̃η∗(t)(t)
.

We thus have
dX

X
= (...)dt+

(
σ∗>η∗(t) − σ

>
η(t)

)
dW(·)

+

 n−1∑
j=η(t)

δjLj
1 + δjLj

Γ>j −
n∗−1∑
j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗>j

 dW(·)

=: (...)dt+ Γ>XdW
(·) = Γ>XdW

(n)
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with

ΓX = σ∗η∗(t) − ση(t) +
n−1∑
j=η(t)

δjLj
1 + δjLj

Γj −
n∗−1∑
j=η∗(t)

δ∗jL
∗
j

1 + δ∗jL
∗
j

Γ∗j . (21)

Let us further assume that
dζ

ζ
= (· · ·)dt+

(
σfx
)>
dW(·).

Since B∗η∗(t)(t) = ζ(t)B̃η∗(t)(t) we then have σ∗η∗(t) = σfx + σ̃η∗(t) with σ̃j being the
volatility of the foreign zero bond maturing at T ∗j . From this we observe that ΓX
is completely determined by specification of σfx and the difference σ̃η∗(t) − ση(t).

Conversely, specifying ΓX implicitly determines σfx + σ̃η∗(t) − ση(t) via (21).

Remark 12.1. Moreover, in practice one may neglect the volatility of Bη(t)(t) and
B̃η∗(t)(t), respectively, being the volatilities of zero bonds less than one period before
maturity. We then have in approximation

σ∗η∗(t) − ση(t) ≈ σfx(t) (22)

in (21).

More generally, for i ≤ n∗ and j ≤ n we may consider the process Xi,j :=

B∗i (t)/Bj(t), 0 ≤ t ≤ T ∗i ∧ Tj (hence X ≡ Xn∗,n), and for its volatility Xi,j we
derive in a similar way,

ΓXi,j = σ∗η∗(t) − ση(t) +

j−1∑
k=η(t)

δkLk
1 + δkLk

Γk −
i−1∑

k=η∗(t)

δ∗kL
∗
k

1 + δ∗kL
∗
k

Γ∗k

= ΓX +
n∗−1∑
k=i

δ∗kL
∗
k

1 + δ∗kL
∗
k

Γ∗k −
n−1∑
k=j

δkLk
1 + δkLk

Γk, t ≤ T ∗i−1 ∧ Tj−1. (23)

So any ΓXi,j is determined by ΓX via (23).
Let us now consider an option to buy one unit of foreign currency for K units

of domestic currency at time T ∗i , i ≤ n∗, and assume that T ∗i = Ti′ for a certain i′.
Clearly, the net payoff of this option is

(ζ(T ∗i )−K)
+

= (B∗i (T ∗i )−K)
+

=

(
B∗i (Ti′)

Bi′(Ti′)
−K

)+

= (Xi,i′(Ti′)−K)
+
,

and the option value in domestic currency at time t = 0 is given by

Ci(K) := Bn(0)En
(ζ(T ∗i )−K)+

Bn(T ∗i )

= Bi′(0)Ei′ (Xi,i′(Ti′)−K)
+
.
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For i = n∗, i′ = n, we thus obtain by T ∗n∗ = Tn = T∞,

Cn∗(K) := Bn(0)En
(ζ(T ∗n∗)−K)+

Bn(Tn)

= Bn(0)En (X(T∞)−K)
+
. (24)

We thus conclude that any standard FX option maturing on a joint tenor date T ∗i =

Ti′ as described above may be priced, once the volatility process ΓX is specified,
via the formula

Ci(K) = Bi′(0)Ei′ exp

[
−1

2

∫ Ti′

0

∥∥ΓXi,j
∥∥2
dt+

∫ Ti′

0

Γ>Xi,jdW
(i′)

]
, (25)

where ΓXi,j follows from (23). Needless to say that a particular evaluation proce-
dure for (25) largely depends on the specific structure of the respective volatility
specifications for Γ, Γ∗, and ΓX .

Example 1. In the special case of a (multi-factor) domestic and foreign Libor
Market Model, that is Γ and Γ∗ are deterministic vector functions, the ΓXi,j may
be obtained from ΓX by standardly freezing the Libors in (23). If moreover ΓX is
taken to be deterministic as well, we may then compute all prices (25) by the Black
76 formula.

Remark 12.2. We further observe, for instance, that when ΓX has a Heston type
structure, like ΓX =: βX

√
V eX for some deterministic βX , unit vector eX , and

square-root volatility process V, then due to (23) ΓXi,j is essentially not of Heston
type for i < n∗. In this respect we should note that the approach in [4], where
simultaneously all the FXi = ΓXi,i have a Heston type volatility structure seems to
be inconsistent with this observation.

Remark 12.3. In the case where both the domestic and foreign model is a one-
factor Libor Market Model, i.e. both Γ and Γ∗ are deterministic scalar volatilities
connected to a one dimensional Brownian motion, we are in a setting related to the
one in [4] in a sense.

We continue with a further mild structural assumption on the process ΓX , namely
that it is of the form

ΓX = ‖ΓX‖

n−1∑
j=1

ρXej +
n∗−1∑
j=1

ρ∗Xe∗j

 =: ‖ΓX‖ eX , (26)

under the normalization condition

‖eX‖2 =

∥∥∥∥∥∥
n−1∑
j=1

ρXej +
n∗−1∑
j=1

ρ∗Xe∗j

∥∥∥∥∥∥
2

=

ρ2
X

n−1∑
j,j′=1

Rjj′ + 2%ρXρ
∗
X

n−1∑
j=1

n∗−1∑
j′=1

[
C1G

>
1

]
jj′

+ (ρ∗X)
2
n∗−1∑
j=1

n∗−1∑
j′=1

R∗jj′ = 1, (27)
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where ρX and ρ∗X are considered to be some kind of uniform partial correlation of
the FX market with the domestic and foreign Libor rates, respectively. Further, in
(26) ‖ΓX‖ is in general a scalar stochastic process that is still to be specified. In
(8) we now have by (26) and (19),

Γ∗>i ΓX = ‖ΓX‖

n−1∑
j=1

ρXΓ∗>i ej +
n∗−1∑
j=1

ρ∗XΓ∗>i e∗j


‖ΓX‖

%ρX ‖Γ∗i ‖ n−1∑
j=1

[
C1G

>
1

]
ji

+ ρ∗X ‖Γ∗i ‖
n∗−1∑
j=1

R∗ij

 . (28)

In particular the correlations of X with the domestic and foreign Libors are given
by

CorrX,Li =
n−1∑
j=1

ρXej · ei +
n∗−1∑
j=1

ρ∗Xe∗j · ei (29)

= ρX

n−1∑
j=1

Rij + %ρ∗X

n∗−1∑
j=1

[
C1G

>
1

]
ij

=: ρXPi + %ρ∗XQi, 1 ≤ i < n, and

CorrX,L∗i =
n−1∑
j=1

ρXej · e∗i +
n∗−1∑
j=1

ρ∗Xe∗j · e∗i (30)

= %ρX

n−1∑
j=1

[
C1G

>
1

]
ji

+ ρ∗X

n∗−1∑
j=1

R∗ij

=: %ρXQ
∗
i + ρ∗XP

∗
i , 1 ≤ i < n∗,

respectively. Since all processes X, Li, and L∗i are observable at the market and
the constants Pi, Qi, and P ∗i , Q∗i , in (29) and (30) are in principle known from the
respective calibrations of the domestic and foreign Libor system, it seems natural
to estimate the correlations in (29) and (30) from historical data. This may be done
by minimizing the total square distance

n∑
i=1

(
%ρXQ

∗
i + ρ∗XP

∗
i − ĈorrX,Li

)2

+
n∗∑
i=1

(
%ρXQ

∗
i + ρ∗XP

∗
i − ĈorrX,L∗i

)2

→ min
%,ρX ,ρ∗X

with ĈorrX,Li and ĈorrX,L∗i being the respectively estimated correlations, under
the normalization restriction

ρ2
X

n−1∑
i=1

Pi + 2%ρXρ
∗
X

n−1∑
i=1

Qi + (ρ∗X)
2
n−1∑
i=1

P ∗i = 1
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(note that
∑n−1
i=1 Qi =

∑n∗−1
i=1 Q∗i and cf. (27)). Note that after determination of

ΓX , the dynamics of the FX rate ζ are implicitly determined by (21) and (22), and
are in particular driven by the total Brownian motion W.

After identifying eX in (26) in the above way, the norm process ‖ΓX‖ has to be
modeled appropriately, such that calibration to a suitably large set of plain vanilla
FX options is feasible. The most simple way is to assume that ‖ΓX‖ is deterministic
(cf. Example 1). However the typically observed skew patterns in implied volatilities
of vanilla FX options may not be captured in this way. Therefore more sophisticated
choices are called for. Below we will sketch the procedure in the context of a Heston
type model forX and a fairly generally structured domestic and foreign Libor model
as described in Section 4.

Let us assume that
dX

X
= βX

√
V e>XdW

(n), (31)

where V follows the square-root dynamics

dV = κX(θX − V )dt+ σX
√
V

(
ρXe>XdW

(n) +
√

1− ρ2
XdWX

)
. (32)

In (31) and (32) the parameters βX , κX , θX , σX , and ρX are assumed to be con-
stants, and WX is an additional independent standard Brownian motion to inforce
decorrelation between X and V. (Formally one might extend the vector W with
an extra Brownian component and extend correspondingly all the unit vectors ei,

e∗i , eX , with an extra zero component.) Subsequently we may calibrate the system
(31)-(32) to a family of vanilla FX options (24) with different strikes and common
maturity Tn = T ∗n∗ = T∞. This may be done in a standard way by using a relatively
fast Fourier based pricing procedure. Although this pricing procedure is more or
less standard, we still present it here for the convenience of the reader (cf. also
[14]).

Let us write (24) as

C(K) := Cn∗(K) = Bn(0)En

(
X(0)eln

X(T∞)
X(0) −K

)+

. (33)

We may then apply the Fourier pricing method of Carr-Madan (spelled out later
on) to the triple

ϕ(z ; v), X(0), K,

where the characteristic function

ϕ(z ; v) := En

[
eiz ln

X(T∞)
X(0)

∣∣∣V (0) = v
]

(34)

may be obtained as follows. Consider the logarithm of (31),

d lnX = −1

2
β2
XV dt+ βX

√
V e>XdW

(n), (35)
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along with the square-root dynamics (32). Let us then abbreviate Y 0,y,v(t) :=

lnX(t) with Y 0,y,v(0) = lnX(0) =: y, and V 0,y,v(t) := V (t) with V 0,y,v(0) =

V (0) =: v. Then by (35), the generator of the vector process (Y, V ) is given by

A := Ay,v := −1

2
β2
Xvdt

∂

∂y
+ κX (θX − v)

∂

∂v

+
1

2
vβ2

X

∂2

∂y2
+ vβXσXρX

∂2

∂y∂v
+

1

2
σ2
Xv

∂2

∂v2
.

Let p̂ (z, z′ ; t, y, v) satisfy the Cauchy problem

∂p̂

∂t
= Ap̂, p̂(z, z′ ; 0, y, v) = ei(zy+z′v). (36)

Then

p̂ (z, z′ ; t, y, v) = Eei(zY
0,y,v(t)+z′V 0,x,v(t)).

We are only interested in the solution for z′ = 0. Let us therefore consider the
ansatz

p̂ (z ; t, y, v) = exp (A(z; t) +B0(z; t)y +B(z; t)v)

with

A(z; 0) = 0, B0(z; 0) = iz, B(z; 0) = 0. (37)

Substitute this ansatz into (36) yields,(
∂A

∂t
+
∂B0

∂t
x+

∂B

∂t
v

)
= −1

2
vβ2

XB0 + κX (θX − v)B

+
1

2
vβ2

XB
2
0 + vβXσXρXB0B +

1

2
σ2
XvB

2,

and we so obtain the Riccati system

∂A

∂t
= κXθXB

∂B0

∂t
= 0

∂B

∂t
= −1

2
β2
XB0 − κXB +

1

2
β2
XB

2
0 + βXσXρXB0B +

1

2
σ2
XB

2.

In view of (37) we then get

∂A

∂t
= κXθXB

∂B

∂t
= −1

2
β2
X

(
iz + z2

)
− (κX − izβXσXρX)B +

1

2
σ2
XB

2.

As a well known fact (see [11]) this system can be explicitly solved, but there
are different representations for its solution depending on the chosen branch of the
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complex logarithm. We here use Lord and Kahl’s representation due to the principal
branch, see [15]∗, to get

B(z; t) =
a+ d

σ2
X

1− edt

1− gedt

and

A(z; t) =
κXθX
σ2
X

{
(a− d) t− 2 ln

[
e−dt − g

1− g

]}
,

where

a = κX − izβXσXρX

d =
√
a2 + (iz + z2)β2

Xσ
2
X

g =
a+ d

a− d
.

Taking all together we have with t = T∞ for (34),

ϕ(z ; v) = e−iz lnX(0)p̂ (z ;T∞, lnX(0), v) = exp
(
Ã(z;T∞) +B(z;T∞)v

)
(38)

with

B(z;T∞) =
a+ d

σ2
X

1− edT∞
1− gedT∞

, and

Ã(z; t) :=
κXθX
σ2
X

{
(a− d)T∞ − 2 ln

[
e−dT∞ − g

1− g

]}
.

Carr & Madan inversion formula
Due to Carr and Madan [7], the FX vanilla option price may be obtained by the
following inversion formula,

C(K) = Bn(0)(X(0)−K)++

Bn(0)X(0)

2π

∫ ∞
−∞

1− ϕ(z − i;V (0))

z(z − i)
e−iz ln K

X(0) dz, (39)

where ϕ is given by (38). The integrand in (39) decays with rate z−2 if |z| → ∞,
which is relatively slow from a numerical point of view. Therefore it is better to
modify the inversion formula in the following way. Let ϕB be the characteristic
function (34) due to some Black model,

X(T∞) = X(0)e−
1
2 (σB)

2
T∞+σB

√
T∞ς , ς ∈ N(0, 1)

in the measure Pn, for a particular suitably chosen volatility σB . We then have (cf.
Black’s 76 formula)

En (X(T∞)−K)
+

= B(X(0), T∞, σ
B ,K),

∗Roger Lord confirmed a typo in the published version in a personal communication and therefore
referred to the preprint version.
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where

B(X,T, σ,K) := XN (d+)−KN (d−) , with

d± :=
ln X

K ±
1
2σ

2T

σ
√
T

, and

ϕB(z ; v) = ϕB(z) = Ene
iz
(
− 1

2 (σB)
2
T∞+σB

√
T∞ς

)

= e−
1
2 (σB)

2
T∞(z2+iz).

By application of Carr and Madan’s formula to the Black model we get,

CB(K) := Bn(0)B(X(0), T∞, σ
B ,K) = Bn(0)(X(0)−K)+ (40)

+
Bn(0)X(0)

2π

∫ ∞
−∞

1− ϕB(z − i)

z(z − i)
e−iz ln K

X(0) dz,

and then by subtracting (40) from (39) we obtain,

C(K) = CB(K)+ (41)

Bn(0)X(0)

2π

∫ ∞
−∞

ϕB(z − i; ·)− ϕ(z − i;V (0))

z(z − i)
e−iz ln K

X(0) dz.

Inversion formula (41) is usually much more efficient due to the typically much
faster decaying integrand in comparison with (39).
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Chapter 13

Dimension-wise decompositions and their efficient parallelization

Philipp Schröder, Peter Mlynczak and Gabriel Wittum
Goethe-Center for Scientific Computing, Goethe-University,
Kettenhofweg 139, D-60325 Frankfurt am Main, Germany

1. Introduction

Many problem classes in finance lead to high dimensional partial differential equa-
tions which need to be solved efficiently. To circumnavigate the curse of dimension
several methods exist, e.g. dimension-wise decomposition techniques. In this chap-
ter we will present an overview over the different methods available to cope with
high dimensional problems. The class of dimension-wise decomposition methods,
which we will discuss in detail, decomposes a high dimensional problem into a set of
low dimensional problems. Dependent on the dimension d of the total problem, and
the order of the decomposition method the number of low-dimensional problems
can be quite large. This makes efficient parallelization techniques necessary.

2. High-dimensional problems in computational finance

In the following section we will introduce two example problems from computational
finance which are of high dimension. The first will be the standard Black-Scholes
equation for the pricing of an option contract. The other will be an implementation
of the Libor Market Model (LMM) for the pricing of interest rate derivatives.

2.1. Equity options: The Black-Scholes Model

In one dimension, the development of an asset over time is described in financial
theory using a geometric Brownian motion follows the stochastic differential equa-
tion:

dS(t) = S(t)µdt+ S(t)σdW (t) t ≥ 0, S(t = 0) = a. (1)

In higher dimensions the developement of a set of (correlated) assets over time
is equally described by a n-dimensional geometric Brownian motion. Using the
Feynman-Kac formula, the partial differential equation, which is the solution to

445
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this SDE can be easily calculated, and we arrive at the multidimensional expansion
to the famous Black-Scholes equation.

∂u

∂t
− r

d∑
i=1

Si
∂u

∂Si
− 1

2

d∑
i,j=1

σiσjρijSjSj
∂2u

∂Si∂Sj
+ ru = 0 (2)

with initial condition

u(S, 0) = g(S) :=

{
(
∑
i µiSi −K)+ ∀S ∈ Rd+

(K −
∑
i µiSi)+ ∀S ∈ Rd+

. (3)

The initial condition is specific to the pricing problem which is to be solved. In
this case the initial condition presented here corresponds to a European style put
option with arithmetric average.

By Girsanov’s theorem this PDE is closely related to the expected value

u(S, T ) = e−rtEQ[g(S(T ))] (4)

under the risk-neutral measure Q.

2.1.1. Transformations of the Black-Scholes equation

Several coordinate transformations of the Black-Scholes equation are known which
offer different advantages compared to the original approach. We will present the
most common transformations here.

The most common transformation is the so called Log Price transformation. It
is achieved by defining yi := log(Si). This leads to transformations

∂Si → Si∂yi

and ∑
i,j

∂Si∂Sj →
∑
i,j

(
−δij

1

S2
i

+
1

SiSj
∂yi∂yj

)
by which we arrive at the Log-Price representation:

∂u

∂t
−

d∑
i=1

(r− 1

2
σ2
i )
∂u

∂yi
− 1

2

d∑
i,j=1

σiσjρij
∂2u

∂yi∂yj
+ ru = 0 ∀(y, t) ∈ Rd× (0, T ) (5)

with initial conditions

u(y, 0) =

(
K −

d∑
i=1

µie
yi

)
∀y ∈ Rd. (6)

This representation of (2) has the advantage, that the diffusion as well as the
convection term have constant coefficients. A disadvantage of the transformation,
however, is that the orginally only one-sided unbounded domain is now unbounded
on both sides.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Dimension-wise decompositions and their efficient parallelization 447

Another possible transformation is closely related to a principal component anal-
ysis of the covariance matrix. The starting point is the representation with constant
coefficients. Transforming the equation into the eigensystem of the covariance ma-
trix

Σij := ρijσiσj (7)

by an orthogonal transformation with Q bringing Σ to diagonal form

QΣQT = diag(λi). (8)

To receive this we transform using

z = Qy (9)

and receive the equation

∂u

∂t
−

d∑
i,j=1

qij(r −
1

2
σ2
i )
∂u

∂zi
− 1

2

d∑
i=1

λi
∂2u

∂z2
i

+ ru = 0 ∀(z, t) ∈ Rd × (0, T ) (10)

with initial condition

u(z, 0) =

(
K −

d∑
i=1

µie
∑d
j=1 qjizj

)
+

. (11)

Performing an additional translation

x := z + tb (12)

with

bi :=
d∑
j=1

qij(r −
1

2
σ2
j ) (13)

and after the substitution v = ert we arrive at the heat-equation

∂u

∂t
− 1

2

d∑
i=1

λi
∂2u

∂x2
i

= 0 ∀(x, t) ∈ Rd × (0, T ) (14)

with intial condition

u(x, 0) =

(
K −

d∑
i=1

µie
∑d
j=1 qjixj

)
+

. (15)

At this point another relation to the representation in integral form, respectively
via an expectation value can be seen. As it is known, the heat equation has a
solution by integration with Green’s function:

u(x0, t) =
e−rt∏d

i=1(2πtλi)1/2

×
∫
Rd

(
K −

d∑
i=1

µie
∑d
j=1 qjix

′
j

)
+

e−
1
2t

∑d
i=1(x0

i−x
′
i)

2/λidx′. (16)
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Here the relation to the original variables S0 is given by

xi = zi + tbi

=
d∑
j=1

qijyj + t
d∑
j=1

qij(r −
1

2
σ2
j )

=
d∑
j=1

qij

(
yj + t(r − 1

2
σ2
j )

)

=
d∑
j=1

qij

(
lnS0

j + t(r − 1

2
σ2
j )

)
.

2.2. Interest-rate derivatives: The Libor-Market-Model

The Libor-Market-Model, also LMM or BGM (Brace, Gatarek, Musiela) Model has
first been described in 1997 by the authors who gave the model its name in [4].
Today the model is the market standard for the pricing of interest rate derivatives
depending on several interest rates (e.g. the 3-month EURIBOR rate and the 6-
month EURIBOR rate). The model assumes the developement of the individual
forward-rates dLi by

dLi = µidt+ σidW
i. (17)

Note, that in this case µi and σi can also be time dependent. The modeled forward-
rates can be directly observed in the market. This is also the main advantage
compared to the approach of the Heath-Jarrow-Morton Model, which models in-
stantaneous forward rates, which can not be directly observed.

For pricing within the LMM-framework, the different forward-rates have to be
seen under a common probability measure, which again will be the martingale
measure Q for risk-neutral pricing. One possible choice for this measure would be
the so called terminal measureQTN which is the martingale measure for the forward-
rate with the longest maturity. All other forward-rates have to be transformed into
this measure by use of the Radon-Nikodym theorem. We arrive at the formulation
of the model under the terminal measure:

dLi = Liµi + LiσidW
N (18)

with

µi(t) :=

{
−σi(t)

∑N−1
j=i+1

δjLj
1+δjLj

ρijσj j < N − 1

0 j = N − 1
. (19)

Note that only the terminal forward-rate is a martingale under this measure.
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Having derived the dynamics of the forward-rates under a common measure, we
can use Itō’s lemma to arrive at following set of partial differential equations:

∂u

∂t
+

1

2

N−1∑
i,j=1

ρijσiσjLiLj
∂2u

∂Li∂Lj
+
N−1∑
i=1

µiLi
∂u

∂Li
= 0 (20)

with initial conditions

µi :=

{
−σi

∑N−1
j=i+1

δjLj
1+δjLj

ρijσj j < N − 1

0 j = N − 1
. (21)

2.2.1. Pricing example: Bermuda swaption

We conclude this section with an example for the pricing of an interest-rate deriva-
tive with the Libor-Market-model. Additionally to the partial differential equation
and the model parameters, we also need to specify the option-type specific initial
conditions.

A Bermuda swaption gives the bearer the right but not the obligation to enter
into an interest-rate swap contract at a predetermined set of dates Ti. The value of
the Bermuda swaption therefore is the maximum of an interest-rate swap entered at
date Ti and a Bermudan swaption with the next (and all of the remaining exercise
dates) Ti+1:

uBSw(Ti, . . . , TN ) = max (u(Ti, . . . , TN );uBSw(Ti+1, . . . , TN )) . (22)

Depending on the number of periods, the problem results in a N − i dimensional
problem. Since normal swaps have maturities of ten and more years as well as
quarterly payment dates, we can easily reach dimensions of 40 and more. First
attempts to solve such high dimensional problems were discussed in [3] and [16].
Using sparse grids the authors were able to solve problems with up to five spatial
dimensions.

3. Methods for high dimensional partial differential equations

In this section we will discuss some of the up-to-date methods for high dimensional
partial differential equations. We will focus on methods with applications to finance
but will also present methods with possible applications to finance which to our
knowledge have not yet been realized

Methods for high dimensional equations – except for analytical methods – can
be put into three categories.

The first category is a reduction of the problem dimension itself. By use of the
Karhunen-Loeve transformation the stochastical differential equation which governs
the dynamics of the model can be reduced to a lower dimensional equation. This
results naturally in a lower dimensional partial differential equation which describes
the solution to the SDE.
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Figure 1. Overview over methods for high dimensional PDEs.

As a second possibility, the dimension of the partial differential equation can be
reduced. By transformation it is possible to derive a lower dimensional approxi-
mation to the original equation. Several different approaches exist, with different
properties and approximation errors. The method set of dimension-wise decompo-
sitions, which we will discuss in length later in this chapter belongs to this class of
methods.

The last possibility to reduce the complexity, respectively the high dimensionality
of the problem is the discretization layer. This is also the area where the broadest
range of different methods exits. The method of sparse grids, which we will discuss
and parallelize later, belongs to this class of methods. An overview of the different
method classes can be seen in Figure 1.

3.1. Principal Component Analysis

Principal Component Analysis (short PCA) is a well known technique from statis-
tics. In it an optimized representation of the variables is found (with respect to
the orthogonal distance). This corresponds to an eigenvalue decomposition of the
variables covariance matrix.

PCA furthermore has a close connection to linear regression. Whereas with linear
regression one tries to minimize the distance in the y-direction (or in direction of
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the dependent variable) the principal component analysis minimizes the orthogonal
distance, as can be seen in figure 2. This also ensures that the resulting variables
(in the eigensystem of the covariance matrix) are uncorrelated.

Hauptkomponentenanalyse und 
! Lineare Regression

Bei der Hauptkomponentenanalyse werden die Fehlerquadrate senkrecht 
zur Geraden minimalisiert (orthogonale Regression), bei der linearen 
Regression diejenige in der y-Richtung.

y y

x x
Figure 2. Orthogonal distance of sample datapoints.

Mathematically we are looking for a transformation, which finds a new coordinate
system by

x = Qy. (23)

while transforming in a way such that the variance of each individual variables
variance

V ar(xi) = qT
i Σqi (24)

is maximized under the constraint

(qi,qj) = 0 ∀i 6= j (25)

(qi,qi) = 1. (26)

Since this corresponds to the eigenvalue decomposition of the covariance matrix,
Q consists of the eigenvectors and the λi are the corresponding eigenvalues of the
covariance matrix. Furthermore, the magnitude of the λi defines the ratio of total
variance that is captured within the variable xi.

A reduction of the total dimension can the be reached by omitting variables in
the transform (by omitting the respective eigenvectors). To minimize the projection
error, one omits the eigenvectors corresponding to the smalles eigenvalues.
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3.2. Tensor-product methods

In the next two subsections we will discuss two methods which do not try to reduce
the model equation but try to minimize the complexity of the numerical approxi-
mation of the solution function in the domain by a clever choice of basis functions.
The first approach of this kind is the tensor-product approximation.

The tensor product approximation was first introduced by Beylkin and
Mohlenkamp in [1] and [2], where the authors introduce the so called separation
representation. The idea is to broaden the separation of variables approach; in-
stead of using the simple representation for the function f(x)

f(x1, . . . , xd) ≈ φ1(x1) · . . . · φd(xd) (27)

we consider the linear combination

f(x1, . . . , fd) =
r∑
i=1

siφ
i
1(x1) · . . . · φid(xd) +O(ε). (28)

Here r denotes the so called separation rank and si the separation coefficient.
Let F be the representation of a discrete function on a d-dimensional rectangular

grid

F = F (j1, . . . , jd) (29)

with

ji = 1, . . . ,Mi, (30)

then one can find a representation for F by

F ≈
r∑
i=1

siF
i
1(j1) · . . . · F id(jd) (31)

or using tensor product notation
r∑
i=1

siF
i
1 ⊗ . . .⊗ Fid. (32)

Linear operators in d dimensions represented in their discrete form by matrices

A = A(j1, j
′
1; . . . ; jd, j

′
d), (33)

can be written in separation representation

A =
r∑
i=1

siA
i
1(j1, j

′
1) · . . . ·Aid(jd, j′d), (34)

where the Ail are one-dimensional matrices, i.e. linear operators on one-dimensional
functions in the sense as defined above.

As it is shown in [2] the following operations can be performed on operators in
separation representation
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Remark 13.1 (basic linear algebra). Let d be the dimension, r the separation
rank and M as defined above. The following estimations hold for linear operators
in the separation representation:

• Memory requirements: The memory requirement for F in separated rep-
resentation is of order O(d · r ·M).

• Multiplication: The product of two grid functions in separation represen-
tation is calculated with a number of operations of order O(d · r · r̃ ·M)

by

(F, F̃) =
r∑
i=1

r̃∑
ĩ=1

sis̃ĩ(F
i
1, F̃

ĩ
1) · . . . · (Fid, F̃ĩd). (35)

• Matrix-Vector multiplication: The complexity of a matrix-vector mul-
tiplication in separation representation is of order O(d · rA · rF ·M2) and
the product can be calculated through

G := AF =

rA∑
i=1

rF∑
ĩ=1

sAi s
F
ĩ

(Ai1Fĩ1)⊗ . . .⊗ (AidFĩd). (36)

One can easily see that the complexity of all operations is only linear in the total
dimension d. Furthermore, the respective separation ranks are relevant for the
complexity estimates. In general the resulting object, while still in representation
will have a higher separation rank than the original objects. In the case of a matrix-
vector multiplication the separation rank will be

rG = rArF. (37)

This is, of course, only a worst case estimation, however the need for a method
to minimize the separation rank becomes obvious. The authors in [2] propose an
alternating least-squares approach to minimize the separation rank. We note here,
that a nearly optimal representation may be preferable to a full optimization of the
separation rank due to a much higher computational effort of the full optimization.

3.2.1. Kronecker-tensor-product representation

In [10] the authors define a tensor product representation on basis of the kronecker
product

A× B = [aij ]B, (38)

whiche means that each element of the matrix A is multiplied with matrix B. If
A ∈ Rn×m and B ∈ Rr×p, then the resulting matrix is of dimensionality Rnr×mp.

The representation of a matrix in hierarical Kronecker-tensor-product format
(HKT) is being formulated by the sum Kronecker-tensor-products

A =
r∑
i=1

Ui × Vi, (39)
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where the individual Kronecker factors Ui and Vi are being represented by H-
matrices. By this representation we are able to compute a matrix vector multi-
plication

AF =
r∑
i=1

rF∑
j=1

(UiF
1
j )× (ViF

2
j ) (40)

with a complexity of O(rFrs
√
N log N) if F has a representation like

F =
r∑
i=1

F1
i × F2

i . (41)

As before, r denotes the representation rank of the tensor product representation
and s the maximal rank of the H-matrices. Further literature on H-matrices can
be found in [9].

As we can see, by using H-matrices the complexity estimate for a matrix-vector
multiplication in separation representation can be reduced from O(drArFN

2) to
O(rFrs

√
N log N) and is no longer quadratically dependent on the number of nodes

in each dimension. The HKT representation therefore enables the efficient solution
of problems with several hundred dimensions (see [10]).

3.3. Sparse Grids

3.3.1. The foundations of sparse grids

Sparse grids are commonly used throughout numerical analysis for the discretization
of high dimensional problems. They were first described in [17] for the numerical
integration of high dimensional problems. Since then several extensions to the sparse
grid quadrature have been developed, e.g. in [5]. The idea behind sparse grids is
to use a hierachical tensor product representation to reduce the complexity of the
numerical discretization and thereby the complexity of the numerical solution of
the problem. We define a hierachical difference space Wl by

Wl := Vl \
d⊕
j=1

Vl−ej
(42)

with l ∈ Nd as multi-index and ej as jth unit vector. With n being the number of
refinements, we can describe a cartesian grid Vn as

Vn :=
⊕
|l|∞≤n

Wl (43)

where

|l|∞ := max
1≤j≤n

lj. (44)
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Since our aim is to reduce the number of nodes needed for calculation of the
solution we define the sparse grid function space V sn ⊂ Vn via

V sn :=
⊕
|l|1≤n

Wl. (45)

The motivation behind this choice is to neglect those basis function with a small
support in the function representation.

The advantage of sparse grids compared to cartesian grids is that the number of
nodes is being reduced, as can be seen in figure 3. We note, however, that only the
number of nodes inside the domain is being reduced, whereas the number of nodes
on the edge is equal to the case of cartesian grid representation.

A more detailed investigation shows, that in d dimensions and on a grid level n(
n+ d− 1

d− 1

)
(46)

grids each with O(2n) nodes are needed. The respective grids are highlighted in
figure 4 on the right side. The complexity of a problem discretized using sparse
grids can therefore be estimated by O(2nnd−1) instead of O(2nd) as in the case of
cartesian grids.

Figure 3. Grid points in a cartesian and in a sparse grid.

The numerical error of sparse grids can be estimated via

||u− un||∞ ≤
1

6d

∥∥∥∥ ∂2du

∂x2
1 · · · ∂x2

d

∥∥∥∥
∞
·

(
1 +

d−1∑
i=1

(
3

4

)i
·
(
n+ i− 1

i

))
h2
n. (47)

Here it is interesting to note the requirement for bounded mixed derivatives. In
particular for option pricing problems with their non-smooth initial conditions this
can pose a limit to the convergence of sparse grids (see [14] for more details).

A visualization of the subspaces in a cartesian and a sparse grid are represented
in figure 4. Here i = (i1, .., in) denotes the position in the “grid table” and ≤i is to
be interpreted component wise. We show the cartesian grid on the left side and the
corresponding sparse grid on the right side. A position i = (i1, .., in) corresponds
to a grid which has been refined ij-times in the xj direction.
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(a) cartesian grid (b) sparse grid

Figure 4. Grid table for a two-dimensional grid.

3.3.2. Combination technique for sparse grids

By using the combination technique for sparse grids introduced in [8] one reaches
a given complexity of O(2nnd−1) for the calculations and, as it is shown in [15] an
asymptotic error equal to the one from equation (47). This is possible by using
only the subgrids on the diagonal and the subdiagonal in figure 4. The solutions
on the highlighted grids can be computed independently. The total solution can
be calculated by summation over the subgrids on the diagonal in figure 4. By the
substraction of the grids on the subdiagonal, the correct weighting of the nodes can
be assured. For the sake of transparency, we only show the 2D case with grid level
2 here. Higher grid levels and dimensions can be calculated in the same way.

The numerical error of the sparse grid combination technique has been derived
in [15]:

|u− un| ≤
2K

(d− 1)!

(
5

2

)d−1

(n+ 2(d− 1))d−14−n. (48)

The combination technique, compared to the usual sparse grid approach, has
two main advantages: First, the complexity of the problem is further reduced since
it is decomposed onto several subgrids. Secondly, the solutions on the individual
subgrids are independent, which enables an easy parallelization approach to be
discussed later on.

4. Dimension-wise decomposition methods

4.1. ANOVA Decompositions

In general, the ANOVA decomposition expands the multivariate function f(x) into
the sum
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f(x) =
∑
u⊆D

fu(xu). (49)

The individual terms here can be obtained via the projection

Puf(xu) :=

∫
Ωd−|u|

f(z)dµD\u(x) (50)

and the recursive definition

fu(xu) := Puf(xu)−
∑
v⊂u

fv(xv). (51)

Here xu denotes the |u|-dimensional vector that consists solely of the components
of the index u, where |u| is the length of u which is also called order of u. In
addition, µj denotes probability measures on the borel sets of Ωj ⊆ R and Ωu the
|u|-dimensional product set

Ωu :=
⊗

j∈u⊆D

Ωj (52)

with D = {1, . . . , d}. Furthermore, we define a d-dimensional product measure by

dµ(x) =
d∏
j=1

dµj(xj). (53)

Let V d := L2(Ωd, µ) be the Hilbert space of square integrable functions with the
scalar product

(f, g)µ :=

∫
Ωd
f(z)g(x)dµ(x). (54)

4.1.1. Classical ANOVA decomposition

By choosing the Lebesgue measure µ(xi) = dxi as probability measure and Ωi =

[0, 1], one can construct the so called classical ANOVA decomposition with the
following projections

Puf(xu) =

∫
[0,1]d−|u|

f(x)dxD\u. (55)

While the classical ANOVA provides many desirable features, e.g. easy access
to error estimators and smoothing properties of the projection, it has the clear
disadvantage, that even for the constant term f∅ one has to solve an integration
problem of dimension d. Since this is neither desirable and mostly simply not
possible, we introduce the Anchor ANOVA decomposition in the following section,
whose projections require much less effort.
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4.1.2. Anchor ANOVA decomposition

Due to its complexity advantages, the Anchor ANOVA decomposition is commonly
used when handling high dimensional problems. It can be constructed by choosing
the Dirac measure µ(xi) = δ(xi−ai)dxi as probability measure as well as Ωi = [0, 1],
where a ∈ Ωd designates the so called anchor point which gives the decomposition
its name. The Anchor ANOVA decomposition can be constructed through the
following projections:

Puf(xu) =

∫
[0,1]d−|u|

f(x)δ(x− a)dxD\u (56)

= f(x)|x=a\xu
. (57)

Here f(x)|x=a\xu
means that

xi = ai ∀i /∈ u, (58)

where fu can be understood as behavior of f(x) in the hyperplane through a. In this
context the decomposition is also named CUT-HDMR in [13]. [7] provides a good
summary of the methodology and some generalizations, as well as a link between
the Anchor ANOVA decomposition and the multivariate Taylor-expansion.

For a better understanding of the effects of the Anchor ANOVA’s projections,
we show the one- and two-dimensional projections of a simple forward contract as
well as a geometric basket option. The one-dimensional projections are shown in
figure 5, while the two-dimensional projections f12(x) are shown in figure 6.

-2 -1 1 2

-0.015

-0.010

-0.005

0.005

0.010

0.015

(a) Forward
-2 -1 1 2

0.1

0.2

0.3

0.4

(b) Basket option

Figure 5. One-dimensional projections of the Anchor ANOVA decomposition.

For the basket option, in both the one-dimensional and the two-dimensional case,
one can clearly observe the non-smoothing effect of the Anchor ANOVA.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Dimension-wise decompositions and their efficient parallelization 459

(a) Forward (b) Basket option

Figure 6. Two-dimensional projections of the Anchor ANOVA decomposition.

Remark 13.2 (Anchor ANOVA with normal distribution).
By choosing Ω = Rd and dµ(x) = δ(x− a)ϕd,λ(x)dx with ϕd,λ(x) as the multi-
dimensional normal distribution

ϕd,λ(x) :=
1∏

i

√
2πλi

e−
∑d
i=1 x

2
i /2λi , (59)

we define the projections

Puf(xu) = (f(x)ϕd−|u|,λ(xu))
∣∣∣
x=a\xu

, (60)

which result in the Anchor ANOVA with the normal distribution.

4.2. Taylor-like ANOVA decomposition

Taking a closer look at the variance distribution of the individual anchor ANOVA
projections, it becomes evident that not all the two-dimensional terms are of equal
importance. Therefore we propose an approximation to the Standard ANOVA
decomposition. Taking only some terms of the Standard ANOVA decomposition
into account we define the following approximation, which we will call Taylor-like
ANOVA expansion:

Proposition 13.1 (Taylor-like ANOVA expansion of first order). Let

vu := Ifu, (61)

where fu denotes the ANOVA term resulting from an ANOVA decomposition of the
payoff-function g(x) and

If :=

∫
Ω

f(x)dx (62)

denotes the integral operator. Then

u(x, t) ≈ v0 +
d∑
i=1

vi +
d∑
i=2

v1,i (63)
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represents a Taylor-like approximation to the Standard ANOVA decomposition.

As we will see later this is, indeed a very good approximation to the full solution.
Compared to the ordinary ANOVA expansion, the Taylor-like ANOVA expansion

has a clear complexity advantage since it depends only linearly on the dimension of
the full problem. Furthermore, as we will see later, it also has a precision advantage
compared to the ordinary ANOVA expansion of similar dimension. The complexity
advantage is even greater if we look at equation (63) in terms of the solutions
u(n,j)(x, t) and not the individual ANOVA terms vu.

4.3. Taylor-like ANOVA expansion of higher order

Two obvious possibilities exist to generalize the Taylor-like ANOVA expansion to
expansions of higher order:

i) A Taylor approximation of higher order, e.g. 2nd order;
ii) a Taylor approximation of first order around a higher dimensional (e.g. 2D)

problem.

Proposition 13.2. (Taylor approximation of first order around a higher
dimensional problem)

Beginning from

u(x, t) ≈ u(2)(x, t) +
d∑
j=3

(
u(2,j)(x, t)− u(2)(x, t)

)
, (64)

we again substitute the corresponding ANOVA terms and obtain

u(x, t) ≈ v0 +
d∑
i=1

vi +
d∑
i=2

v1,i +
d∑
i=3

(v2,i + v1,2,i). (65)

This formulation is still linear in the dimension d of the full problem. The com-
plexity advantage of a formulation in terms of the solutions u(n)(x, t) is even clearer
here. While in the formulation using the numerical solutions u(n)(x, t) still one
n-dimensional and d − n (n+1) dimensional problems need to be solved. In terms
of a formulation in ANOVA terms, this corresponds to d one-dimensional, (2d− 3)

two-dimensional and (d− 2) three-dimensional problems.

Proposition 13.3 (Taylor approximation of second order).
If we take higher order Taylor approximations into consideration, in the case of
a second order approximation we get

u(x, t) = u(n)(x, t) +
d∑

j=n+1

λj
∂u

∂λj
(x, t)

∣∣∣
λ=λ(n)

(66)

+
1

2

d∑
i,j=n+1

λiλj
∂2u

∂λi∂λj
(x, t)

∣∣∣
λ=λ(n)

+O
(
||λ− λ(n)||4

)
. (67)
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We will approximate the second derivative by difference quotients using central dif-
ferences:

∂2u

∂λi∂λj
(x, t)

∣∣∣
λ=λ(n)

≈ u(n,i,j)(x, t)− u(n,i)(x, t)− u(n,j)(x, t) + u(n)(x, t)

λiλj
, (68)

and end up with the following approximation for n=1:

u(x, t) ≈ u(1)(x, t) +
d∑
i=2

(u(1,i)(x, t)− u(1)(x, t))

+
1

2

d∑
i,j=2

(u(1,i,j)(x, t)− u(1,i)(x, t)− u(1,j)(x, t) + u(1)(x, t))

=
63
v0 +

d∑
i=1

vi +
d∑
i=2

v1,i

+
1

2

d∑
i,j=2

(u(1,i,j)(x, t)− u(1,i)(x, t)− u(1,j)(x, t) + u(1)(x, t)),

which can be written as

u(x, t) ≈ v0 +
d∑
i=1

vi +
d∑
i=2

v1,i +
d∑
i=2
i<j

(v1ij + vij), (69)

since vij = vji.
Since a representation in terms of numerical solutions is preferable, we rewrite

the original formulation using the Gaussian formula
n∑
k=1

k =
n(n+ 1)

2
, (70)

and u(n,i,j)(x, t) = u(n,j,i)(x, t) as

u(x, t) ≈
(

1− (d− n) +
(d− n− 1)(d− n)

2

)
u(n)(x, t)

−
d∑

i=n+1

(d− n− 2)u(n,i)(x, t)

+
1

2

d∑
i,j=n+1

u(n,i,j)(x, t).

It is easy to see that this approximation contains (d−n−1)(d−n)
2 (n+2)-dimensional

problems, hence is no longer of linear order in d.
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5. Efficient parallelization of dimension-wise decompositions

In the previous sections we introduced examples from the class of high dimensional
problems in finance and presented various methods on how to cope with the curse
of dimension. In this rather technical section we will elaborate on an efficient imple-
mentation scheme that significantly reduces computational time. The reduction is
achieved by combining the sparse grids and dimension-wise decomposition methods
(chapter 3.3 and 4) using parallelization.

We will shortly introduce parallel processes and inter-process communication in
section 5.1. On this basis, we will explain an object-oriented concept for parallelizing
solvers for high dimensional problems using sparse grids (section 5.2) and present
an enhancement that allows for parallel solving of multiple problems in section 5.3.
The concepts introduced are implemented in the simulation software SG2 [6] at the
Goethe Center for Scientific Computing. The pseudo code here is in C++ syntax,
a widely used programming language in numerical software development.

5.1. Parallel Processes Using the Message Passing Interface

The purpose of this section is to depict the basic principles of parallelization. We
use the “Message Passing Interface” (MPI), that manages communication between
different processes running in parallel, for explanation. The interface has imple-
mentations in various programming languages (e.g. C++, Java, Python, . . . ). For
clarity, we will describe a few interface methods but will not present a comprehensive
documentation of the interface. For this the reader is referred to [12].

The fundamental approach when parallelizing program code is the following:
when the program is executed MPI will start several parallel processes executing
the same program code. Every process has an unique identifier and processes com-
municate using interface methods provided by MPI which must be integrated into
the program code by the programmer. Taking advantage of the parallelility of the
processes is thus a duty of the user of the interface, i.e. the programmer. For exam-
ple, she can utilize the process identifier to enforce the execution of specific parts
of code only in specific processes. Figure 7 gives an indication of the concept.∗ The
programmer distributes different parts of the calculation to different processes and
gathers the solution of every process on a so-called Master process. The Master
then continues processing the calculation. Note, that all other processes may still
be executing the same code the Master is executing, but might hold different data.

Basic operations supported by the interface are, for example, waiting on other
processes to arrive at the same line of code or sending and receiving of messages and
variables from/to other processes. There exists 1:1-communication as well as 1:n-
communication routines, whereas the latter covers the distribution from (Broadcast)
and the gathering on a single process (Gather or Collect) of Integer, Double or Char
∗We assume that only one MPI process is started on one Central Processing Unit (CPU). This is
– by default – invoked by MPI upon startup, but may be varied by the programmer.
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File.cpp!

1 !main() {!

... common code;!

7 !if(process 0)!

8 ! !code A; !

9 !if(process 1)!

10! !code B; !

...!

21!if(process n)!

22! !code X; !

23!} !
! !

CPU 0 

Executes “common code“ 
and “code A“ only 

CPU 1 

Executes “common code“ 
and “code B“ only 

CPU n 

Executes “common code“ 
and “code X“ only 

File.cpp!

1 !main() {!

... common code;!

7 !if(process 0)!

8 ! !code A; !

9 !if(process 1)!

10! !code B; !

...!

21!if(process n)!

22! !code X; !

23!} !
! !

File.cpp!

1 !main() {!

... common code;!

7 !if(process 0)!

8 ! !code A; !

9 !if(process 1)!

10! !code B; !

...!

21!if(process n)!

22! !code X; !

23!} !
! !

Figure 7. Parallel processes in the Message Passing Interface.

data types. Which process receives which data is managed using Communicators. In
principle, only processes sharing a common Communicator are able to communicate
with each other.

In the following sections we assume that extended interface methods for broad-
casting and gathering of Arrays and Vectors from/on a single process exist. Both
methods can be implemented using only the basic MPI operations just described.

5.2. Sparse Grid Parallelization

As already seen in section 3.3, partial differential equations on sparse grids can
be solved by discretizing and solving the equation on every sparse grid indepen-
dently and separately. The solution on the full grid is then represented as a linear
combination of all partial solutions and is obtained via extrapolation.

The parallelization of these decoupled problems is embarrassingly simple: Every
MPI process calculates the solution on a single sparse grid. When all processes are
finished a Master process gathers the individual solutions on the grids of the sparse
grid table and combines them to the full solution using a combination technique.
The number of calculating processes is bounded from above by the number of sparse
grids for a given dimension d of the full problem and the refinements n; as given by
equation (46).∗

For the dimension-wise decomposition method from section 4 it would be favor-
able to solve multiple partial differential equations in parallel using the described
sparse grid parallelization for the solution of every single lower dimensional prob-
∗Of course, one can start additional processes but their calculations will be redundant.
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lem. In section 5.3 we present our technical solution: the MPI Scheduler class, that
organizes the parallelization of sparse grid solver objects. First we will elaborate on
an object-oriented implementation scheme of the Message Passing Interface which
is fundamental to the MPI Scheduler.

5.2.1. Object-Oriented Implementation of the Message Passing Interface

An object-oriented approach for MPI implementation could be the following: when
starting MPI, i.e., when starting the parallel processes, we create an MPI object in
every process. It is initialized with some basic parameters of the process.∗ These
may be the total number of processes started or the processes ID – its Rank. The
programmer can then access the parameters of the process objects, e.g. by Getter
and Setter methods, to execute conditional instructions in different processes; recall
figure 7. Extended interface methods however can be realized as static methods as
they must not differ in different processes. Figure 8 depicts a diagrammatic process
object.

MPIProcess
-totalNoOfProcs: int
-rank: int
getTotalNoOfProcs()
getRank()
isMaster()
...

«instanceOf»

mpiProcess: MPIProcess
totalNoOfProcs: int="8"
rank: int="0"
[isMaster() = "true"]

Figure 8. Class diagram of the MPI object that exists on every process. A common approach is
to assign the Master status to the process whose Rank is zero.

5.2.2. Parallel Solutions to Sparse Grids

Having introduced the basic functionality of the MPI process object and extended
communication routines mentioned in section 5.1, we present the sparse grid par-
∗This may be realized as a static instantiation of the object in this process.
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allelization approach from the software package [6]. We are aware that there are
many ways to implement sparse grid parallelization techniques, however, the follow-
ing approach demonstrates well the simplicity of parallelizing decoupled problems.

For a given refinement and the dimension of the problem we set up the sparse grid
table (compare figure 4) in every process, but not a grid vector (i.e. the discretized
solution) for every grid of the sparse grid table. When initializing the discretization
of the respective sparse grid, every process checks whether there exists a grid vector
for the grid. In this case, the process executes code that creates the discretization
and solves the partial differential equation on this specific grid. When all processes
have solved the equations on their grid, a Master process gathers all solutions from
the processes and extrapolates them to the solution of the full problem.

If enough processes exist, only one grid vector per process will be created and
thus every process solves the partial differential equation on a different grid. We
present again equation (46) from section 3.3 as it formulates the number of processes
needed at best as a function f(n, d) of refinement n and dimension d:

f(n, d) =

(
n+ d− 1

d− 1

)
.

In case of fewer processes, one process covers multiple grid vectors and calculates
the solutions for multiple grids.

It must be emphasized that the assignment of sparse grid solutions to processes
should not be arbitrary. For example, the isotropy of a (sparse) grid has major
influence on the time needed to solve the equation on that grid ([11]). In addition,
several factors, e.g., vastly varying diffusion coefficients, influence the runtime of the
solvers. At the end, the total runtime of solving the full problem is bounded from
below by the process(es) with the longest calculation time for the partial solution(s).

5.3. Parallelization of Sparse Grid Solvers

Here we present a new implementation concept to solve multiple high dimensional
problems in parallel. The fundamental idea of the the MPI Scheduler class is to
group processes and to solve, again in parallel, one or more problems of lower
dimension using the aforementioned sparse grid parallelization.

Firstly, we introduce extensions to the MPI process object which allow for group-
ing of processes. Then we illustrate how to fit solution methods for partial differ-
ential equations – like sparse grids – into an object-oriented framework. Putting
these pieces together, we conclude by demonstrating the functionality of the MPI
Scheduler. It groups MPI processes and assigns solver objects for partial differential
equations to these process groups for solving.

5.3.1. Extensions to the MPI Objects

To encapsulate the parallelization within each process group we add a group-wide
process ID to the MPI process object. The communication within a group is or-
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ganized using group specific Communicators. In addition, we add an attribute to
the object storing the number of processes in the same group that this process is
in. This is realized by a group ID so every process knows its membership. Fig-
ure 9 shows the extended process object. Note that one might also have to modify

MPIProcess
-totalNoOfProcs: int
-rank: int
-groupNoOfProcs: int
-groupRank: int
-groupID: int
-comm: MPIComm
getTotalNoOfProcs()
getRank()
isMaster()
getGroupNoOfProcs()
getGroupRank()
isGroupMaster()
getGroupID()
getComm()
...

mpiProcess: MPIProcess
totalNoOfProcs: int="8"
rank: int="2"
groupNoOfProcs: int="2"
groupRank: int="0"
groupID: int="1"
comm: MPIComm="group1"
[isMaster() = "false"]
[isGroupMaster() = "true"]

«instanceOf»

Figure 9. Class diagram of the extended MPI object, which allows for grouping of MPI processes.

the extended interface methods for broadcasting and gathering of Arrays and Vec-
tors. This task is not too difficult as inter-process communication is organized using
Communicators and every group has its own. The following function call gives an
example:

template <typename T> void broadcastArray(Array<T>, Communicator);

5.3.2. Object-Oriented Solution of Partial Differential Equations

In order to keep the parallelization flexible and re-usable for various types of solvers,
the MPI Scheduler assigns solver objects to different process groups. It starts the
solution process centrally and manages the gathering and combination of all solu-
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tions on the Master when finished. To be manageable, the solver objects essentially
need a group ID to enable their assignment to groups and two further methods:

• a method solve()
• and a method getSolution().

Which problem type the solvers implement and how they are solved is of no impor-
tance to the MPI Scheduler.

Even though the actual design of the solver objects is negligible, we suggest the
following fundamental components:

i) the discretization (in space),
ii) the time stepping scheme,
iii) and a linear (or non-linear) solver.

A solver object for sparse grids additionally needs a grid table. Figure 10 depicts
two possible solver objects: one ordinary and one using sparse grids.

Solver
-groupID: int
-timeStep: TimeSteppingScheme
-solver: LinSolver
-discret: Discretization
solve()
getSolution()
...

(a) An ordinary solver object.

SGSolver
-groupID: int
-timeStep: TimeSteppingScheme
-solver: LinSolver
-discret: Discretization
-gridTable: SparseGridTable
solve()
getSolution()
...

(b) A solver object for sparse grids.

Figure 10. Class diagrams for possible solver objects for partial differential equations.

5.3.3. The MPI Scheduler

An MPI Scheduler object stores a reference to an Array of solver objects, which
contains the problems to be solved. Figure 11 shows the schematic design of the
MPI Scheduler. We would like to discuss the following methods in more detail:

createGroups(Mode): Groups processes given different modes. In principle
applicable to other tasks than the parallel solving of (sparse grid) problems.
schedule(Method): Assigns solver objects to groups by setting group IDs.
If there are more solver objects than groups, multiple solver objects may
be assigned to one group. It implements further scheduling methods that
adjusts to the grouping modes.
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MPIScheduler
-theProblems: Array<Solver*>
createGroups(Mode)
schedule(Method)
solveScheduled()
gatherSolutions(Array<Vector>)
...

«instanceOf»

mpiScheduler: MPIScheduler
theProblems: [*solver1, ..., *solverN]

Figure 11. Class diagram of the MPI Scheduler. The MPI Scheduler object stores references to
the solver objects in an Array. It groups the processes, manages and initializes the parallel solving
and gathers the solutions at the end.

solveScheduled(): Calls the solve() method of the solver objects. Thus
it triggers the solving of the problems.
gatherSolutions(Array<Vector>): Gathers the solutions of all groups in
an Array on the Master. Recall that the solution on every sparse grid is a
grid vector.∗

As illustrated in section 5.1 the program code is executed in all processes
but some instructions are conditional to specific processes. We can use this de-
sign principle of MPI to minimize the communication overhead between the pro-
cesses when creating the groups. [Grouping of processes] When executing the
createGroups(Mode) method, all processes run through a loop and decide locally,
using their own Ranks, which group they join. When entering a group, the group ID
and the group Communicator are set for each process. Therefore the programmer
may define an Array of intervals after which the processes arrange in order:

Array<Array<int> > range;

...

∗Of course, the solution may be evaluated at a given point in the domain, i.e. a grid point, or
at any given point in time during execution of the time stepping scheme. If needed, the MPI
Scheduler implementation should also provide respective gathering methods.
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for(int i = 0; i < range.length(); i++){
if( mpiProcess.getRank() < range[i].max()

&& mpiProcess.getRank() >= range[i].min()) {

mpiProcess.setGroupID(i);
mpiProcess.setComm(i);

}
}

This way, e.g., eight processes may be split up into two groups using a two-
dimensional Array containing the intervals [0;3] and [4;7]. Solving the scheduled
problems also can be realized locally by looping over all solver objects. Every pro-
cess checks if its group ID matches the group ID of the current solver object. In
this case it triggers the calculation of the solution by calling the solve() method
of the solver object. Thus every process only solves problems assigned to its group
ID.

For the rest of this section, we will focus on the operation principle of the MPI
Scheduler. Figure 12 illustrates the functioning of the MPI Scheduler. In the initial
situation all solver objects as well as the MPI Scheduler object are created in every
process. The MPI Scheduler is instantiated with references on the solver objects
(figure 12a).∗ As explained in example 5.3.3, the MPI Scheduler object firstly
groups the processes by local decision and determines Master processes within each
group (figure 12b). Calling schedule(Method) results in a mapping of groups
to solver objects. For this the MPI Scheduler sets the process group ID to that
solver’s group ID attribute that will calculate the solution to the problem associated
with the solver object (figure 12c). Subsequently the MPI Scheduler initializes
the calculations of the solutions in every group by executing solveScheduled()
(figure 12d). If sparse grid parallelization is used within the groups, the sparse
grids will now be assigned to the processes in the respective group and the partial
differential equation will be solved (figure 12e). Finally, figure 12f depicts how the
MPI Scheduler gathers the sparse grid solutions from the group Masters on the
overall Master using gatherSolutions(Array<Vector>).†

When combining MPI Scheduler and sparse grid parallelization it might happen
that there are fewer CPUs than “number of sparse grids × number of groups”. In this
case one can either overcommit the cores, i.e., assign more than one MPI process to
one CPU, or reduce the number of processes per group. As described in section 5.2
the sparse grid parallelization then assigns multiple grids to one process. Generally,
the latter would be faster in terms of runtime as it saves communication overhead
between the processes.

∗For simplicity, we set one process equal to one CPU.
†The solution Array is created on every process and the MPI Scheduler must ensure that it copies
the correct Vectors to the overall Master’s Array.
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Figure 12. Interaction of the MPI Scheduler and the solver objects.



September 27, 2012 11:6 World Scientific Review Volume - 9.75in x 6.5in ws-rv975x65

Dimension-wise decompositions and their efficient parallelization 471

CPU  

solver4: SGSolver
groupID: int="4"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

solver3: SGSolver
groupID: int="3"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

solver2: SGSolver
groupID: int="2"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

4 
3 

2 

mpiScheduler: MPIScheduler
theProblems: [*solver1, ..., *solver4]
createGroups(simple)
schedule(simple)
solveScheduled()
gatherSolutions(solution)

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU 

CPU  

1 2 3 4 

Calls solver 

Overall and group Master  Group Master 

solver1: SGSolver
groupID: int="1"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
solve()
getSolution()

1 

(d) Initializing.

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU 

CPU  CPU  

1 2 3 4 

mpiScheduler: MPIScheduler
theProblems: [*solver1, ..., *solver4]
createGroups(simple)
schedule(simple)
solveScheduled()
gatherSolutions(solution)

Overall and group Master  Group Master 

solver4: SGSolver
groupID: int="4"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

solver3: SGSolver
groupID: int="3"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

solver2: SGSolver
groupID: int="2"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

4 
3 

2 

Every process group solves the problem with 
their respective group ID 

Sparse grid parallelization 
within the groups 

solver1: SGSolver
groupID: int="1"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
solve()
getSolution()

1 

(e) Solving.

mpiScheduler: MPIScheduler
theProblems: [*solver1, ..., *solver4]
createGroups(simple)
schedule(simple)
solveScheduled()
gatherSolutions(solution)

solver4: SGSolver
groupID: int="4"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU 

CPU  CPU  

2 3 4 

Gathers the solutions... 

Overall and group Master  Group Master 

solver3: SGSolver
groupID: int="3"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

solver2: SGSolver
groupID: int="2"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
Solve()
getSolution()

4 
3 

2 

... on the overall 
Master 

1 

solver1: SGSolver
groupID: int="1"
timeStep: TimeSteppingScheme = "&ts"
solver: LinSolver = "&solver"
discret: Discretization = "&disc"
gridTable: SparseGridTable = "&sgTable"
solve()
getSolution()

1 

(f) Gathering.

Figure 12. Interaction of the MPI Scheduler and the solver objects.
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