
Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Ronald J. Brachman, Yahoo! Research
William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

CM& Morgan   Claypool Publishers&SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis

Digital Library of Engineering and Computer Science. Synthesis Lectures

provide concise, original presentations of important research and development

topics, published quickly, in digital and print formats. For more information

visit www.morganclaypool.com

Ronald J. Brachman, William W. Cohen, and Peter Stone, Series Editors

ISBN: 978-1-62705-197-2

9 781627 051972

90000

Series ISSN: 1939-4608 D
E

C
H

T
E

R
 

R
E

A
SO

N
IN

G
 W

IT
H

 PR
O

B
A

B
IL

IST
IC

 A
N

D
 D

E
T

E
R

M
IN

IST
IC

 G
R

A
P

H
IC

A
L

 M
O

D
E

L
S

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Reasoning with Probabilistic and
Deterministic Graphical Models
Exact Algorithms
Rina Dechter, University of California, Irvine

Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes)

have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and

computer science in general. These models are used to perform many reasoning tasks, such as scheduling,

planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics.

These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial

optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research

during the past three decades has yielded a variety of principles and techniques that significantly advanced

the state of the art.

In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such

models. The main feature exploited by the algorithms is the model’s graph. We present inference-based,

message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-

cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular

has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters

such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would

serve well in moving forward to approximation and anytime-based schemes. The target audience of this book

is researchers and students in the artificial intelligence and machine learning area, and beyond.
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ABSTRACT
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov de-
cision processes) have become a central paradigm for knowledge representation and reasoning in
both artificial intelligence and computer science in general. ese models are used to perform
many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, de-
sign, hardware and software verification, and bioinformatics. ese problems can be stated as the
formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and proba-
bilistic inference. It is well known that the tasks are computationally hard, but research during the
past three decades has yielded a variety of principles and techniques that significantly advanced
the state of the art.

In this book we provide comprehensive coverage of the primary exact algorithms for rea-
soning with such models. e main feature exploited by the algorithms is the model’s graph. We
present inference-based, message-passing schemes (e.g., variable-elimination) and search-based,
conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses
distinguished characteristics and in particular has different time vs. space behavior. We empha-
size the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset,
and (the pseudo-tree) height. We believe the principles outlined here would serve well in mov-
ing forward to approximation and anytime-based schemes. e target audience of this book is
researchers and students in the artificial intelligence and machine learning area, and beyond.

KEYWORDS
graphical models, Bayesian networks, constraint networks, Markov networks,
induced-width, treewidth, cycle-cutset, loop-cutset, pseudo-tree, bucket-
elimination, variable-elimination, AND/OR search, conditioning, reasoning,
inference, knowledge representation
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Preface
Graphical models, including constraint networks (hard and soft), Bayesian networks, Markov
random fields, and influence diagrams, have become a central paradigm for knowledge represen-
tation and reasoning, and provide powerful tools for solving problems in a variety of application
domains, including scheduling and planning, coding and information theory, signal and image
processing, data mining, computational biology, and computer vision.

ese models can be acquired from experts or learned from data. Once a model is available,
we need to be able to make deductions and to extract various types of information. We refer to this
as reasoning in analogy with the human process of thinking and reasoning. ese reasoning prob-
lems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial
optimization, and probabilistic inference. It is well known that these tasks are computationally
hard, but research during the past three decades has yielded a variety of effective principles and
led to impressive scalability of exact techniques.

In this book we provide a comprehensive coverage of the main exact algorithms for rea-
soning with such models. e primary feature exploited by the algorithms is the model’s graph
structure and they are therefore uniformly applicable across a broad range ofmodels, where depen-
dencies are expressed as constraints, cost functions or probabilistic relationships. We also provide
a glimpse into properties of the dependencies themselves, known as context-specific independen-
cies, when treating deterministic functions such as constraints. Clearly, exact algorithms must be
complemented by approximations. Indeed, we see this book as the first phase of a broader book
that would cover approximation algorithms as well. We believe, however, that in order to have
effective approximations we have to start with the best exact algorithms.

e book is organized into seven chapters and a conclusion. Chapter 1 provides an intro-
duction to the book and its contents. Chapter 2 introduces the reader to the formal definition
of the general graphical model and then describes the most common models, including con-
straint networks and probabilistic networks, which are used throughout the book. We distinguish
two classes of algorithms: inference-based, message-passing schemes (Chapters 3, 4, and 5) and
search-based, conditioning schemes (Chapters 6 and 7). is division is useful because algorithms
in each class possesses common and distinguished characteristics and in particular have different
behavior with respect to the tradeoff between time and memory. Chapter 7 focuses on this trade-
off, introducing hybrids of search and inference schemes. We emphasize the dependence of both
types on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height.

e book is based on research done in my lab over the past two decades. It is largely founded
onworkwithmy graduate and postdoctoral students including:Dan Frost, Irina Rish, Kalev Kask,
David Larkin, Robert Mateescu, Radu Marinescu, Bozhena Bidyuk, Vibhav Gogate, Lars Ot-
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ten, Natasha Flerova and William Lam and my postdoctoral students Javier Larrosa, and Emma
Rollon.Most heavily it relies on the work of Kalev Kask (Chapter 5) and RobertMateescu (Chap-
ters 6 and 7). I wish to also thank my colleagues at UCI for providing a supportive environment
in our AI and machine learning labs, and especially to Alex Ihler for our recent collaboration that
has been particularly inspiring and fruitful.

I owe a great deal to members of my family that took an active role in some parts of this
book. First, to my son Eyal who spent several months reading and providing editing, as well as
very useful suggestions regarding the book’s content and exposition.anks also go tomy husband
Avi on providing editorial comments on large parts of this book and to Anat Gafni for her useful
comments on Chapter 1.

Rina Dechter
Los Angeles, December 2013



1

C H A P T E R 1

Introduction
Over the last three decades, research in artificial intelligence has witnessed marked growth in
the core disciplines of knowledge representation, learning and reasoning. is growth has been
facilitated by a set of graph-based representations and reasoning algorithms known as graphical
models.

e term “graphical models” describes a methodology for representing information, or
knowledge, and for reasoning about that knowledge for the purpose of making decisions by an
intelligent agent. What makes these models graphical is that the structure of the knowledge can
be captured by a graph. e primary benefits of graph-based representation of knowledge are that
it allows compact encoding of complex information and its efficient processing.

1.1 PROBABILISTIC VS. DETERMINISTICMODELS
e concept of graphical models has mostly been associated exclusively with probabilistic graphical
models. Such models are used in situations where there is uncertainty about the state of the world.
e knowledge represented by these models concerns the joint probability distribution of a set of
variables. An unstructured representation of such a distribution would be a list of all possible value
combinations and their respective probabilities. is representation would require a huge amount
of space even for a moderate number of variables. Furthermore, reasoning about the informa-
tion, for example, calculating the probability that a specific variable will have a particular value
given some evidence would be very inefficient. A Bayesian network is a graph-based and far more
compact representation of a joint probability distribution (and, as such, a graphical model) where
the information is encoded by relatively small number of conditional probability distributions as
illustrated by the following example based on the early example by Lauritzen and Spiegelhalter
[Lauritzen and Spiegelhalter, 1988].

is simple medical diagnosis problem focuses on two diseases: lung cancer and bronchitis.
ere is one symptom, dyspnoea (shortness of breath), that may be associated with the presence
of either disease (or both) and there are test results from X-rays that may be related to either
cancer, or smoking, or both. Whether or not the patient is a smoker also affects the likelihood of
a patient having the diseases and symptoms. When a patient presents a particular combination
of symptoms and X-ray results it is usually impossible to say with certainty whether he suffers
from either disease, from both, or from neither; at best, we would like to be able to calculate the
probability of each of these possibilities. Calculating these probabilities (as well as many others)
requires the knowledge of the joint probability distribution of the five variables (Lung Cancer
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(L), Bronchitis (B), Dyspnea (D), Test of X-ray (T), and smoker (S)), that is, the probability of
each of their 64 value combinations when we assume a bi-valued formulation for each variable
(e.g., X-ray tests are either positive (value 1) or negative (value 0).

Alternatively, the joint probability distribution can be represented more compactly by fac-
toring the distribution into a small number of conditional probabilities. One possible factoriza-
tion, for example, is given by

P.S;L;B;D; T / D P.S/P.LjS/P.BjS/P.DjL;B/P.T jL/ :

is factorization corresponds to the directed graph in Figure 1.1 where each variable is
represented by a node and there is an arrow connecting any two variables that have direct proba-
bilistic (andmay be causal) interactions between them (that is, participate in one of the conditional
probabilities).

Figure 1.1: A simple medical diagnosis Bayesian network.

e graph articulates a more compact representation of the joint probability distribution,
in that it represents a set of independencies that are true for the distribution. For example, it
expresses that the variables lung cancer and bronchitis are conditionally independent on the vari-
able smoking, that is, if smoking status is known then knowing that the patient has (or doesn’t
have) lung cancer has no bearing on the probability that he has bronchitis. However, if it is also
known that shortness of breath is present, lung cancer and bronchitis are no longer independent;
knowing that the person has lung cancer may explain away bronchitis and reduces the likeli-
hood of dyspnea. Such dependencies and independencies are very helpful for reasoning about the
knowledge.

While the term “graphical models” has mostly been used for probabilistic graphical models,
the idea of using a graph-based structure for representing knowledge has been used with the same
amount of success in situations that seemingly have nothing to do with probability distributions
or uncertainty. One example is that of constraint satisfaction problems. Rather than the probabil-
ity of every possible combination of values assigned to a set of variables, the knowledge encoded
in a constraint satisfaction problem concerns their feasibility, that is, whether these value com-
bination satisfy a set of constraints that are often defined on relatively small subsets of variables.
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Figure 1.2: A map of eight neighboring countries.

e structure associated with these set of constraints is a constraint graph where each variable is
represented by a node and two nodes are connected by an edge if they are bound by at least one
constraint. A constraint satisfaction problem along with its constraint graph is often referred to
as a constraint network and is illustrated by the following example.

Consider the map in Figure 1.2 showing eight neighboring countries and consider a set
of three colors—red, blue, and yellow, for example. Each of the countries needs to be colored by
one of the three colors so that no two countries that have a joint border have the same color. A
basic question about this situation is to determine whether such a coloring scheme exists and, if
so, to produce such a scheme. One way of answering these questions is to systematically generate
all possible assignments of a color to a country and then test each one to determine whether it
satisfies the constraint. Such an approachwould be very inefficient because the number of different
assignments could be huge. e structure of the problem, represented by its constraint graph in
Figure 1.3, could be helpful in simplifying the task. In this graph each country is represented by a
node and there is an edge connecting every pair of adjacent countries representing the constraint
that prohibits that they be colored by the same color.

Figure 1.3: e map coloring constraint graph.
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Just as in the Bayesian network graph, the constraint graph reveals some independencies
in the map coloring problem. For example, it shows that if a color is selected for France the
problem separates into three smaller problems (Portugal - Spain; Italy - Switzerland; and Belgium
- Luxembourg - Holland) which could be solved independently of one another. is kind of
information is extremely useful for expediting the solution of constraint satisfaction problems.

Whereas a Bayesian network is an example of a probabilistic graphical model, a constraint
network is an example of a deterministic graphical model. e graphs associated with the two
problems are also different: Bayesian networks use directed graphs, indicating that the informa-
tion regarding relationship between two variables is not symmetrical while constraint graphs are
undirected graphs. Despite these differences, the significance of the graph-based structure and
the way it is used to facilitate reasoning about the knowledge are sufficiently similar to place both
problems in a general class of graphical models. Many other problem domains have similar graph
based structures and are, in the view of this book, graphical models. Examples include proposi-
tional logic, integer linear programming, Markov networks, and Influence Diagrams.

1.2 DIRECTEDVS. UNDIRECTEDMODELS

e examples in the previous section illustrate the two main classifications of graphical models.
e first of these has to do with the kind information represented by the graph, primarily on
whether the information is deterministic or probabilistic. Constraint networks are, for example,
deterministic; an assignment of values to variables is either valid or not. Bayesian networks and
Markov networks, on the other hand, represent probabilistic relationships; the nodes represent
random variables and the graphical model as a whole encodes the joint probability distribution
of those random variables. e distinction between these two categories of graphical models is
not clear-cut, however. Cost networks, which represent preferences among assignments of values
to variables are typically deterministic but they are similar to probabilistic networks as they are
defined by real-valued functions just like probability functions.

e second classification of graphical models concerns how the information is encoded in
the graph, primarily whether the edges in their graphical representation are directed or undirected.
For example, Markov networks are probabilistic graphical models that have undirected edges
while Bayesian networks are also probabilistic models but use a directed graph structure. Cost
and constraint networks are primarily undirected yet some constraints are functional and can be
associated with a directed model. For example, Boolean circuits encode functional constraints
directed from inputs to outputs.

To make these classifications more concrete, consider a very simple example of a relation-
ships between two variables. Suppose that we want to represent the logical relationship A _ B
using a graphical model. We can do it by a constraint network of two variables and a single con-
straint (specifying that the relationship A _ B holds). e undirected graph representing this
network is shown in Figure 1.4a. We can add a third variable, C, that will be “true” if an only if
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the relation A _ B is “true,” that is, C D A _ B:is model may be expressed as a constraint on
all three variables, resulting in the complete graph shown in Figure 1.4b.

A B

(a)

A B

C

A B

C

(b) (c)

Figure 1.4: Undirected and directed deterministic relationships.

Now consider a probabilistic version of the above relationships, where the case of C D A _
B might employ a NOISY-OR relationship. A noisy-or function is the nondeterministic analog
of the logical OR function and specifies that each input variable whose value is “1” produces an
output of 1 with high probability 1 � � for some small �. is can lead to the following encoding:

P.C D 1jA D 0; B D 0/ D 0; P.C D 1jA D 0; B D 1/ D 1 � �B ;

P.C D 1jA D 1; B D 0/ D 1 � �A; P.C D 1jA D 1; B D 1/ D .1 � �B/.1 � �A/ :

is relationship is directional, representing the conditional probability of C for any given
inputs to A and B and can parameterize the directed graph representation as in Figure 1.4c. On
the other hand, if we are interested in introducing some noise to an undirected relation A _ B we
can do so by evaluating the strength of theOR relation in a way that fits our intuition or expertise,
making sure that the resulting function is normalized. Namely, that the probabilities sum to 1.
We could do the same for the ternary relation. ese probabilistic functions are sometime called
potentials or factors which frees them from the semantic coherency assumed when we talk about
probabilities. Figure 1.5 shows a possible distribution of the noisy two- and three-variable OR
relation, which is symmetrical.

From an algorithmic perspective, the division between directed and undirected graphical
models is more salient and received considerable treatment in the literature [Pearl, 1988]. Deter-
ministic information seems to be merely a limiting case of nondeterministic information where
probability values are limited to 0 and 1. Alternatively, it can be perceived as the limiting cost in
preference description moving from 2-valued preference (consistent and inconsistent) to multi-
valued preference, also called soft constraints. Yet, this book will be focused primarily on methods
that are indifferent to the directionality aspect of the models, and be more aware of the deter-
ministic vs. non-deterministic distinction. e main examples used in this book will be constraint
networks and Bayesian networks, since these are respective examples of both undirected and di-
rected graphical models, and of Boolean vs. numerical graphical models.
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A B P.A _ B/

0 0 0
1 0 0.25
0 1 0.25
1 1 1/2

A B C P.A _ B _ C/

0 0 0 0
1 0 0 1/15
0 1 0 1/15
0 0 1 1/15
1 1 0 2/15
1 0 1 2/15
0 1 1 2/15
1 1 1 6/15

Figure 1.5: Parameterizing directed and undirected probabilistic relations.

1.3 GENERALGRAPHICALMODELS
Graphical models include constraint networks [Dechter, 2003] defined by relations of allowed tu-
ples, probabilistic networks [Pearl, 1988], defined by conditional probability tables over subsets of
variables or by a set of potentials, cost networks defined by costs functions, and influence diagrams
[Howard andMatheson, 1984] which include both probabilistic functions and cost functions (i.e.,
utilities) [Dechter, 2000]. Mixed networks is a graphical model that distinguish between prob-
abilistic information and deterministic constraints. Each graphical model comes with its typical
queries, such as finding a solution (over constraint networks), finding the most probable assign-
ment, or updating the posterior probabilities given evidence, posed over probabilistic networks,
or finding optimal solutions for cost networks.

e use of any model of knowledge (and graphical models are no exception) involves two
largely independent activities, the construction of the model, and the extraction of useful in-
formation from the model. In the case of our medical diagnosis problem, for example, model
construction involves the selection of the variables to be included, the structure of the Bayesian
network, and the specification of the conditional probability distributions needed to specify the
joint probability distribution. Information extraction involves answering queries about the effect
of evidence on the probability of certain variables and about the best (most likely) explanation
for such evidence. In the case of the map coloring problem, the model’s structure is largely deter-
mined by the map to be colored. Information extraction involves answering queries like whether
the map can be colored using a given set of colors, finding the minimum number of colors needed
to color it, and, if a map cannot be colored by a given number of colors, finding the minimum
number of constraint violations that have to be incurred in order to color the map.

e construction of the graphical model, including learning its structure and parameters
from data or from experts, depends very much on the specific type of problem. For example,
constructing a Bayesian network would be a very different process from constructing an integer
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linear programming optimization problem. In contrast, the process of answering queries over
graphical models, in particular when taking advantage of their graph-based structure, is more
universal and common in many respects across many types of problems. We call such activity
as reasoning or query processing, that is, deriving new conclusions from facts or data represented
explicitly in the models. e focus of this book is on the common reasoning methods that are used
to extract information from given graphical models. Reasoning over probabilistic models is often
referred to as inference. We, however, attribute a more narrow meaning to inference as discussed
shortly.

Although the information extraction process for all the interesting questions posed over
graphical models are computationally hard (i.e., NP-hard), and thus generally intractable, they in-
vite effective algorithms for many graph structures as we show throughout the book. is includes
answering optimization, constraint satisfaction, counting, and likelihood queries. e breadth
of these queries render these algorithms applicable to a variety of fields including scheduling,
planning, diagnosis, design, hardware and software testing, bio-informatics, and linkage analysis.
Some learning tasks may be viewed as reasoning over a meta-level graphical model [Darwiche,
2009].

Our goal is to present a unifying treatment in a way that goes beyond a commitment to
the particular types of knowledge expressed in the model. Previous books on graphical models
focused either on probabilistic networks or on constraint networks. e current book is therefore
broader in its unifying perspective. Yet it has restricted boundaries along the following dimensions.
We address only graphical models over discrete variables (no continuous variables), cover only
exact algorithms (a subsequent extension for approximation is forthcoming), and address only
propositional graphical models (recent work on first-order graphical models is outside the scope
of this book). In addition, we will not focus on exploiting the local structure of the functions,
beyond our treatment of deterministic functions—a form of local structure. is is what is known
as the context-specific information. Such techniques are orthogonal to graph-based principles
and can, and should, be combined with them.

Finally, and as already noted, the book will not cover issues of modeling (by knowledge
acquisition or learning from data) which are the two primary approaches for generating proba-
bilistic graphical models. For this and more, we refer the readers to the books in the area. First
and foremost is the classical book that introduced probabilistic graphical models [Pearl, 1988]
and a sequence of books that followed amongst which are [Jensen, 2001; Neapolitan, 2000]. In
particular, note the comprehensive two recent textbooks [Darwiche, 2009; Koller and Friedman,
2009]. For deterministic graphical models of Constraint networks see [Dechter, 2003].

1.4 INFERENCEANDSEARCH-BASED SCHEMES
As already noted, the focus of this book is on reasoning algorithms which exploit graph structures
primarily and are thus applicable across all graphical models. ese algorithms can be broadly
classified as either inference-based or search-based, and each class will be discussed separately, as
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they have different characteristics. Inference-based algorithms perform a deductive step repeat-
edly while maintaining a single view of the model. Some example of inference-based algorithms
we will focus on are resolution, variable-elimination and join-tree clustering. ese algorithms are
distinguished by generating new functions that augment the original model specification making
it more explicit. By inference we also mean algorithms that reason by inducing equivalent model
representations according to some set of inference rules. ese are sometimes called reparame-
terization schemes because they generate an equivalent specification of the problem from which
answers can be produced more easily. Inference algorithms are exponentially bounded in both
time and space by a graph parameter called treewidth.

Search-based algorithms perform repeatedly a conditioning step, namely, fixing the value of
a variable to a constant, and thus restrict the attention to a subproblem. is leads to a search
over space of all subproblems. Search algorithms can be executed in linear space, a property that
makes them particularly attractive. ey can be shown to be exponentially bounded by graph-
cutset parameters that depend on the memory level the algorithm would use. When search and
inference algorithms are combined they enable improved performance by flexibly trading-off time
and space. Search methods are more naturally poised to exploit the internal structure of the func-
tions themselves, namely, their local structure. e thrust of advanced reasoning schemes is in
combining inference and search yielding a spectrum of memory-sensitive algorithms applicable
across many domains.

1.5 OVERVIEWOFTHEBOOK
Chapter 2 introduces the reader to the graphical models framework and its most common specific
models discussed throughout this book. is includes constraint networks, directed and undi-
rected probabilistic networks, cost networks, and mixed networks. Influence diagram is an im-
portant graphical model combining probabilistic and cost information as well, which we dediced
to not include here. Chapters 3, 4, and 5, focus on inference algorithms. Chapter 6 on search,
while Chapter 7 concludes with hybrids of search and inference. Specifically, in the inference part,
chapter 3 introduces the variable-elimination scheme called bucket elimination (BE) for constraint
networks, and thenChapter 4 extends this scheme of bucket elimination to probabilistic networks,
and to both optimization and likelihood queries. Chapter 5 shows how these variable elimina-
tion algorithms can be extended to message-passing scheme along tree-decompositions yielding
the bucket-tree elimination (BTE), cluster-tree elimination (CTE), and the join-tree or junction-
tree propagation schemes. Search is covered in Chapter 6 through the notion of AND/OR search
spaces that facilitate exploiting problem decomposition within search schemes. Chapter 7 presents
hybrids of search an inference whose main purpose is to design algorithms that can trade space
for time and Chapter 8 provides some concluding remarks.
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C H A P T E R 2

What are GraphicalModels
We will begin this chapter by introducing the general graphical model framework and continue
with the most common types of graphical models, providing examples of each type: constraint
networks [Dechter, 2003], Bayesian networks, Markov networks [Pearl, 1988], and cost net-
works. We also discuss a mix of probabilistic networks with constraints. Another more involved
example which we will skip here is influence diagrams [Howard and Matheson, 1984].

2.1 GENERALGRAPHICALMODELS
Graphical models include constraint networks defined by relations of allowed tuples, probabilistic
networks, defined by conditional probability tables over subsets of variables or by a set of poten-
tials, cost networks defined by costs functions and mixed networks which is a graphical model
that distinguish between probabilistic information and deterministic constraints. Each graphical
model comes with its typical queries, such as finding a solution (over constraint networks), find-
ing the most probable assignment or updating the posterior probabilities given evidence, posed
over probabilistic networks, or finding optimal solutions for cost networks.

Simply put, a graphical model is a collection of local functions over subsets of variables that
convey probabilistic, deterministic, or preferential information and whose structure is described
by a graph. e graph captures independency or irrelevance information inherent in the model
that can be useful for interpreting the data in the model and, most significantly, can be exploited
by reasoning algorithms.

A graphical model is defined by a set of variables, their respective domains of values which
we assume to be discrete, and by a set of functions. Each function is defined on a subset of the
variables called its scope, which maps any assignment over its scope, an instantiation of the scopes’
variables, to a real value. e set of local functions can be combined in a variety of ways (e.g., by
sum or product) to generate a global function whose scope is the set of all variables. erefore, a
combination operator is a defining element in a graphical model. As noted, common combina-
tion operators are summation and multiplication, but we also have AND operator, for Boolean
functions, or the relational join, when the functions are relations.

We denote variables or sets of variables by uppercase letters (e.g., X; Y; Z; S ) and values
of variables by lowercase letters (e.g., x; y; z; s). An assignment (X1 D x1; :::; Xn D xn) can be
abbreviated as x D .x1; :::; xn/. For a set of variables S, DS denotes the Cartesian product of the
domains of variables in S . If X D fX1; :::; Xng and S � X, xS denotes the restriction of x D

.x1; :::; xn/ to variables in S (also known as the projection of x over S). We denote functions by
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letters f , g, h, etc., and the scope (set of arguments) of a function f by scope.f /. e projection
of a tuple x on the scope of a function f , can also be denoted by xscope.f / or, for brevity, by xf .

Definition 2.1 Elimination operators. Given a function hS defined over a scope S , the func-
tions .minX h/, .maxX h/, and .

P
X h/ where X � S , are defined over U D S �X as follows: For

every U D u, and denoting by .u;x/ the extension of tuple u by the tuple X D x, .minX h/.u/ D

minx h.u;x/, .maxX h/.u/ D maxx h.u;x/, and .
P

X h/.u/ D
P

x h.u;x/. Given a set of func-
tions hS1

; :::; hSk
defined over the scopes S D fS1; :::; Skg, the product function j̆hSj

and the
sum function

P
j hSj

are defined over scopeU D [jSj such that for every U D u, . j̆hSj
/.u/ D

j̆hSj
.uSj

/ and .
P
j hSj

/.u/ D
P
j hSj

.uSj
/. We will often denote hSj

by hj when the scope
is clear from the context.

e formal definition of a graphical model is give next.

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M D hX;D;F ;
N
i,

where:

1. X D fX1; : : : ; Xng is a finite set of variables;

2. D D fD1; : : : ;Dng is the set of their respective finite domains of values;

3. F D ff1; : : : ; frg is a set of positive real-valued discrete functions, defined over scopes of
variables S D fS1; :::; Srg, where Si � X. ey are called local functions.

4.
N

is a combination operator (e.g.,
N
2 f
Q
;
P
;‰g (product, sum, join)). e combination

operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

e graphical model represents a global function whose scope is X which is the combination of all
its functions:

Nr
iD1 fi .

Note that the local functions define the graphical model and are given as input. e global
function provides the meaning of the graphical model but it cannot be computed explicitly (e.g.,
in a tabular form) due to its exponential size. Yet all the interesting reasoning tasks (called also
“problems” or “queries”) are defined relative to the global function. For instance, we may seek an
assignment on all the variables (sometime called configuration, or a solution) having the maxi-
mum global value. Alternatively, we can ask for the number of solutions to a constraint problem,
defined by a summation. We can therefore define a variety of reasoning queries using an addi-
tional operator called marginalization. For example, if we have a function defined on two vari-
ables, F.X; Y /, a maximization query can be specified by applying the max operator written
as maxx;y F.x; y/ which returns a function with no arguments, namely, a constant, or we may
seek the maximizing tuple .x�; y�/ D argmaxx;yF.x; y/. Sometimes we are interested to get
Y.x/ D argmaxyF.x; y/.
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Since the marginalization operator, which is max in the above examples, operates on a
function of several variables and returns a function on their subset, it can be viewed as eliminating
some variables from the function’s scope to which it is applied. Because of that it is also called an
elimination operator. Consider another example when we have a joint probability distribution on
two variables P.X; Y / and we want to compute the marginal probability P.X/ D

P
y P.X; y/.

In this case, we use the summarginalization operator to express our query. A formal definition of a
reasoning task using the notion of a marginalization operator, is given next. We define marginal-
ization by explicitly listing the specific operators we consider, but those can also be characterized
axiomatically ([Bistarelli et al., 1997; Kask and Dechter, 2005; Shenoy, 1992]).

Definition 2.3 A reasoning problem. A reasoning problem over a graphical model M D

hX;D;F ;
N
i and given a subset of variables Y � X is defined by a marginalization operator

+Y explicitly as follows. +Y fS 2 fmaxS�YfS;minS�YfS; �YfS;
P

S�YfSg is a marginaliza-
tion operator. e reasoning problem PhM;+Zi for a scope Z � X is the task of computing the
function PM.Z/ D+Z

Nr
iD1 fi , where r is the number of functions in F .

Many reasoning problems are defined by Z D f;g. Note that in our definition �Yf is the
relational projection operator (to be defined shortly) and unlike the rest of the marginalization
operators the convention is that it is specified by the scope of variables that are not eliminated.

2.2 THEGRAPHSOFGRAPHICALMODELS
As we will see throughout the book, the structure of graphical models can be described by graphs
that capture dependencies and independencies in the knowledge base. ese graphs are useful
because they convey information regarding the interaction between variables and allow efficient
query processing.

2.2.1 BASICDEFINITIONS
Although we already assumed familiarity with the notion of a graph, we take the opportunity to
define it formally now.

Definition 2.4 Directed and undirected graphs. A directed graph is a pair G D fV;Eg, where
V D fX1; : : : ; Xng is a set of vertices and E D f.Xi ; Xj /jXi ; Xj 2 V g is the set of edges (arcs). If
.Xi ; Xj / 2 E, we say that Xi points to Xj . e degree of a variable is the number of arcs incident
to it. For each variable, Xi , pa.Xi /, or pai is the set of variables pointing to Xi in G, while the
set of child vertices of Xi , denoted ch.Xi /, comprises the variables that Xi points to. e family
of Xi , Fi , includes Xi and its parent variables. A directed graph is acyclic if it has no directed
cycles. An undirected graph is defined similarly to a directed graph, but there is no directionality
associated with the edges.
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A graphical model can be represented by a primal graph. e absence of an arc between two
nodes indicates that there is no direct function specified between the corresponding variables.

Definition 2.5 Primal graph. e primal graph of a graphical model is an undirected graph
that has variables as its vertices and an edge connects any two variables that appear in the scope
of the same function.

e primal graph (also called moral graph for Bayesian networks) is an effective way to
capture the structure of the knowledge. In particular, graph separation is a sound way to cap-
ture conditional independencies relative to probability distributions over directed and undirected
graphical models. In the context of probabilistic graphical models, primal graphs are also called
i-maps (independence maps [Pearl, 1988]). In the context of relational databases [Maier, 1983],
primal graphs capture the notion of embedded multi-valued dependencies (EMVDs).

All advanced algorithms for graphical models exploit their graphical structure. Besides the
primal graph, other graph depictions include hyper-graphs, dual graphs, and factor graphs.

2.2.2 TYPESOFGRAPHS
earcs of the primal graph do not provide a one to one correspondence with scopes.Hypergraphs
and dual graphs are representations that provide such one-to-one correspondence.

Definition 2.6 Hypergraph. A hypergraph is a pair H D .V; S/ where V D fv1; ::; vng is a set
of nodes and S D fS1; :::; Slg, Si � V , is a set of subsets of V called hyperedges.

A related representation that converts a hypergraph into a regular graph is the dual graph.

Definition 2.7 A dual graph. A hypergraph H D .V; S/ can be mapped to a dual graph
Hdual D .S;E/ where the nodes of the dual graph are the hyperedges S D fS1; :::; Slg in H,
and .Si ; Sj / 2 E iff Si \ Sj ¤ ;.

Definition 2.8 A primal graph of a hypergraph. A primal graph of a hypergraph H D .V; S/
has V as its set of nodes, and any two nodes are connected if they appear in the same hyperedge.
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Figure 2.1: (a) Hyper; (b) primal; (c) dual; (d) join-tree of a graphical model having scopes ABC,
AEF, CDE and ACE; and (e) the factor graph.

GRAPHICALMODELSANDHYPERGRAPHS
Any graphical modelM D hX;D;F ;

N
i;F D ffS1

; :::; fSt
g can be associated with a hypergraph

HM D .X;H/, where X is the set of nodes (variables), and H is the scopes of the functions in
F , namely H D fS1; :::;Slg. erefore, the dual graph of (the hypergraph of ) a graphical model
associates a node with each function’s scope and an arc with each two nodes corresponding to
scopes sharing variables.

Example 2.9 Figure 2.1 depicts the hypergraph (a), the primal graph (b), and the dual graph
(c) representations of a graphical model with variables A; B; C; D; E; F and with functions
on the scopes (ABC ), (AEF ), (CDE), and (ACE). e specific functions are irrelevant to the
current discussion; they can be arbitrary relations over domains of f0; 1g, such as C D A _ B ,
F D A _E, CPTs or cost functions.

A factor graph is also a popular graphical depiction of a graphical model.
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Definition2.10 Factorgraph. Given a graphical model and its hypergraphH D .V; S/ defined
by the functions scopes, the factor graph has function nodes and variable nodes. Each scope is
associated with a function node and it is connected to all the variable nodes appearing in the
scope. Figure 2.1e depicts the factor graph of the hypergraph in part (a). e meaning of graph

(d) will be described shortly.
We will now describe several types of graphical models and show how they fit the general

definition.

2.3 CONSTRAINTNETWORKS
Constraint networks provide a framework for formulating real world problems as satisfying a set
of constraints among variables, and they are the simplest and most computationally tractable of
the graphical models we will be considering. Problems in scheduling, design, planning, and diag-
nosis are often encountered in real-world scenarios and can be effectively rendered as constraint
networks problems.

Let’s take scheduling as an example. Consider the problem of scheduling several tasks,
where each takes a certain time and each have different options for starting time. Tasks can be
executed simultaneously, subject to some precedence restriction between them due to certain re-
sources that they need but cannot share. One approach to formulating such a scheduling problem
is as a constraint satisfaction problem having a variable for each combination of resource and time
slice (e.g., the conference room at 3 p.m. on Tuesday, for a class scheduling problem). e domain
of each variable is the set of tasks that need to be scheduled, and assigning a task to a variable
means that this task will begin at this resource at the specified time. In this model, various phys-
ical constraints can be described as constraints between variables (e.g., that a given task takes 3 h
to complete or that another task can be completed at most once).

e constraint satisfaction task is to find a solution to the constraint problem, that is, an
assignment of a value to each variable such that no constraint is violated. If no such assignment
can be found, we conclude that the problem is inconsistent. Other queries include finding all the
solutions and counting them or, if the problem is inconsistent, finding a solution that satisfies the
maximum number of constraints.

Definition2.11 Constraintnetwork. A constraint network (CN) is a 4-tuple,R D hX;D;C;‰
i, where X is a set of variables X D fX1; : : : ; Xng, associated with a set of discrete-valued do-
mains, D D fD1; : : : ;Dng, and a set of constraints C D fC1; : : : ; Crg. Each constraint Ci is a
pair .Si ; Ri /, where Ri is a relation Ri � DSi

defined on scope Si � X. e relation denotes
all compatible tuples of DSi

allowed by the constraint. e join operator ‰ is used to combine
the constraints into a global relation. When it is clear that we discuss constraints we will refer to
the problem as a triplet R D hX;D;Ci. A solution is an assignment of values to all the variables,
denoted x D .x1; : : : ; xn/, xi 2 Di , such that 8 Ci 2 C, xSi

2 Ri . e constraint network rep-
resents its set of solutions, sol.R/ D‰i Ri . erefore, a constraint network is a graphical model
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Figure 2.2: A constraint network example of a map coloring.

whose functions are relations and whose combination operator is the relational join (
N
D‰). e

primal graph of a constraint network is called a constraint graph. It is an undirected graph in which
each vertex corresponds to a variable and an edge connects any two vertices if the corresponding
variables appear in the scope of the same constraint.

Example 2.12 e map coloring problem in Figure 2.2(a) can be modeled by a constraint net-
work: given a map of regions and three colors {red, green, blue}, the problem is to color each
region by one of the colors such that neighboring regions have different colors. Each region is a
variable, and each has the domain {red, green, blue}. e set of constraints is the set of relations
“different” between neighboring regions. Figure 2.2 overlays the corresponding constraint graph
and one solution (A=red, B=blue, C=green, D=green, E=blue, F=blue, G=red) is given. e set
of constraints are A ¤ B , A ¤ D, B ¤ D, B ¤ C , B ¤ G,D ¤ G, D ¤ F ,G ¤ F , D ¤ E.¹

Next we define queries of constraint networks.

Definition 2.13 e queries, or constraint satisfaction problems. e primary query over a
constraint network is deciding if it has a solution. Other relevant queries are enumerating or
counting the solutions. ose queries overR can be expressed as P D hR; �;Zi, when marginal-
ization is the relational projection operator � . at is,+YD �Y . For example, the task of enumer-
ating all solutions is expressed by +;

N
i fi D �;.‰ifi /. Another query is to find the minimal

domains of variables. e minimal domain of a variable X is all its values that participate in any
solution. Using relational operations,MinDom.Xi / D �Xi

.‰j Rj /.

Example 2.14 As noted earlier, constraint networks are particularly useful for expressing and
solving scheduling problems. Consider the problem of scheduling five tasks (T1, T2, T3, T4,

¹Example taken from [Dechter, 2003].
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T5), each of which takes one hour to complete. e tasks may start at 1:00, 2:00, or 3:00. Tasks
can be executed simultaneously subject to the restrictions that:

• T1 must start after T3;

• T3 must start before T4 and after T5;

• T2 cannot be executed at the same time as either T1 or T4; and

• T4 cannot start at 2:00.

We can model this scheduling problem by creating five variables, one for each task, where each
variable has the domain {1:00, 2:00, 3:00}. e corresponding constraint graph is shown in Fig-
ure 2.3, and the relations expressed by the graph are shown beside the figure.²

Unary constraint
DT4 = {1:00, 3:00}
Binary constraints
RfT1;T 2g: {(1:00,2:00), (1:00,3:00), (2:00,1:00),

(2:00,3:00), (3:00,1:00), (3:00,2:00)}
RfT1;T 3g: {(2:00,1:00), (3:00,1:00), (3:00,2:00)}
RfT2;T 4g: {(1:00,2:00), (1:00,3:00), (2:00,1:00),

(2:00,3:00), (3:00,1:00), (3:00,2:00)}
RfT3;T 4g: {(1:00,2:00), (1:00,3:00), (2:00,3:00)}
RfT3;T 5g: {(2:00,1:00), (3:00,1:00), (3:00,2:00)}

Figure 2.3: e constraint graph and constraint relations of the scheduling problem.

Sometimes we express the relation Ri as a cost function Ci , where C.xSi
/ D 1 if xSi

2 Ri
and 0 otherwise. In this case the combination operator is a product. We will switch between these
two alternative specification as needed. If we want to count the number of solutions we merely
change the marginalization operator to be summation. If on the other hand we want merely to
query whether the constraint network has a solution, we can let the marginalization operator be
maximization. We let Z D f;g, so that the summation occurs over all the variables. We will get
“1” if the constraint problem has a solution and “0” otherwise.

Propositional Satisfiability One special case of the constraint satisfaction problem is what is
called propositional satisifiability (usually referred to as SAT). Given a formula ' in conjunctive
normal form (CNF), the SAT problem is to determine whether there is a truth-assignment of val-
ues to its variables such that the formula evaluates to true. A formula is in conjunctive normal form

²Example taken from [Dechter, 2003].
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if it is a conjunction of clauses ˛1; : : : ; ˛t , where each clause is a disjunction of literals (propositions
or their negations). For example, ˛ D .P _ :Q _ :R/ and ˇ D .R/ are both clauses, where P ,
Q, andR are propositions, andP ,:Q, and:R are literals. ' D ˛ ^ ˇ D .P _ :Q _ :R/ ^ .R/
is a formula in conjunctive normal form.

Propositional satisfiability can be defined as a constraint satisfaction problem in which each
proposition is represented by a variable with domain {0, 1}, and a clause is represented by a con-
straint. For example, the clause .:A _ B/ is a relation over its propositional variables that allows
all tuple assignments over .A;B/ except .A D 1; B D 0/.

2.4 COSTNETWORKS
In constraint networks, the local functions are constraints, i.e., functions that assign a Boolean
value to any assignment in its domain. However, it is straightforward to extend constraint net-
works to accommodate real-valued relations using a graphical model called a cost network. In cost
networks, the local functions represents cost-components, and the sum of these cost-components
is the global cost function of the network. e primary task is to find an assignment of the vari-
ables such that the global cost function is optimized (minimized or maximized). Cost networks
enable one to express preferences among local assignments and, through their global costs to
express preferences among full solutions.

Often, problems are modeled using both constraints and cost functions. e constraints
can be expressed explicitly as being functions of a different type than the cost functions, or they
can be modeled as cost components themselves. It is straightforward to see that cost networks are
graphical model where the combination operator is summation.

Definition2.15 Costnetwork, combinatorial optimization. A cost network is a 4-tuple graph-
ical model, C D hX;D;F ;

P
i, where X is a set of variables X D fX1; : : : ; Xng, associated with

a set of discrete-valued domains, D D fD1; : : : ;Dng, and a set of local cost functions F D

ffs1
; : : : ; fSr

g. Each fSi
is a real-valued function (called also cost-component) defined on a sub-

set of variables Si � X. e local cost components are combined into a global cost function via
the

P
operator. us, the cost network represents the function

C.x/ D
X
i

fSi
.xSi

/ or

in simplified notations as
C.x/ D

X
f 2F

f .xf / :

e primary optimization task (which we will assume to be a minimization, w.l.o.g) is to
find an optimal solution for the global cost function F D

P
i fi . Namely, finding a tuple x such

that x D argminX

P
i fSi

.xSi
/. We can associate the cost model with its primal graph in the

usual way.
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Figure 2.4: A cost network.

Weighted Constraint Satisfaction Problems A special class of cost networks that has gained
considerable interest in recent years is a graphical model called the Weighted Constraint Satis-
faction Problem (WCSP) [Bistarelli et al., 1997]. ese networks extends the classical constraint
satisfaction problem formalismwith soft constraints, that is, positive integer-valued local cost func-
tions.

Definition 2.16 WCSP. A Weighted Constraint Satisfaction Problem (WCSP) is a graphical
model hX;D;F ;

P
i where each of the functions fi 2 F assigns “0” (no penalty) to allowed tuples

and a positive integer penalty cost to the forbidden tuples. Namely, fi W DSi
! N, where Si is

the scope of the function.

Many real-world problems can be formulated as cost networks and often fall into the
weightedCSP class.is includes resource allocation problems, scheduling [Bensana et al., 1999],
bioinformatics [de Givry et al., 2005; ébault et al., 2005], combinatorial auctions [Dechter,
2003; Sandholm, 1999], and maximum satisfiability problems [de Givry et al., 2003].

Example 2.17 Figure 2.4 shows an example of a WCSP instance with Boolean variables. e
cost functions are given in Figure 2.4(a), and the associated graph is shown in Figure 2.4(b). Note
that a value of1 in the cost function denotes a hard constraint (i.e., high penalty). You should
verify that the minimal cost solution of the problem is 5, which corresponds to the assignment
.A D 0; B D 1; C D 1;D D 0;E D 1/.

e task of MAX-CSP, namely of finding a solution that satisfies the maximum number
of constraints (when the problem is inconsistent), can be formulated as a cost network by treating
each relation as a cost function that assigns “0” to consistent tuples and “1” otherwise. Since all
violated constraints are penalized equally, the global cost function will simply count the number of
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violations. In this case the combination operator is summation and the marginalization operator
is minimization. Namely, the task is to find +;

N
i fSi

, namely, to find,argminX.
P
i fSi

/.

Definition 2.18 MAX-CSP. A MAX-CSP is a WCSP hX;D;Fi with all penalty costs equal
to 1. Namely, 8fi 2 F , fi W Dfi

! f0; 1g.

Maximum Satisfiability. In the same way that propositional satisfiability (SAT) can be seen as
a constraint satisfaction problem over logical formulas in conjunctive normal form, so can the
problem of maximum satisfiability (MAX-SAT) be formulated as a MAX-CSP problem. In this
case, given a set of Boolean variables and a collection of clauses defined over subsets of those
variables, the goal is to find a truth assignment that violates the least number of clauses. Naturally,
if each clause is associated with a positive weight, then the problem can be described as a WCSP.
e goal of this problem, calledweighted maximum satisfiability (weighted MAX-SAT), is to find
a truth assignment such that the sum weight of the violated clauses is minimized.

Integer Linear Programs. Another well-known class of optimization task is integer linear pro-
gramming. It is formulated over variables that can be assigned integer values (finite or infinite).
e task is to find an optimal solution to a linear cost function F.x/ D

P
i ˛ixi that satisfies a

set of linear constraints.

Definition 2.19 Integer linear programming. An Integer Linear Programming Problem (ILP)
is a graphical model hX;N;F D ff1; :::fn; C1; ::; Clg;

P
i having two types of functions. Linear

cost components fi .xi / D ˛ixi for each variable Xi , where ˛i is a real number. e scopes are
singleton variables. e constraints are of weighted csp type, each defined on scope Si . ey are
specified by

Ci .xSi
/ D

n
0; if

P
xj2Si

�ij � xj � �i

or infinity otherwise. e �’s are given real-valued constants. e marginalization operator is
minimization or maximization.

2.5 PROBABILITYNETWORKS
As mentioned previously, Bayesian networks and Markov networks are the two primary for-
malisms for expressing probabilistic information via graphical models.
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2.5.1 BAYESIANNETWORKS
A Bayesian network [Pearl, 1988] is defined by a directed acyclic graph over vertices that represent
random variables of interest (e.g., the temperature of a device, gender of a patient, feature of an
object, occurrence of an event). e arc from one node to another is meant to signify a direct
causal influence or correlation between the respective variables, and this influence is quantified
by the conditional probability of the child variable given all of its parents variables. erefore,
to define a Bayesian network, one needs both a directed graph and the associated conditional
probability functions. To be consistent with our graphical models description we define Bayesian
network as follows.

Definition2.20 (Bayesiannetworks)A Bayesian network (BN) is a 4-tupleB D hX;D;PG ;
Q
i.

X D fX1; : : : ; Xng is a set of ordered variables defined over domains D D fD1; : : : ;Dng, where
o D .X1; : : : ; Xn/ is an ordering of the variables. e set of functions PG D fP1; : : : ; Png

consist of Conditional Probability Tables (CPTs for short) Pi D fP.Xi jYi / g where Yi �

fXiC1; :::; Xng. esePi functions can be associated with a directed acyclic graphG in which each
node represents a variableXi and there is a directed arc from each parent variable ofXi toXi . e
Bayesian network B represents the probability distribution over X, PB.x/ D

Qn
iD1 P.xi jxpa.Xi //

where pa.X/ are the parents of X in G. We define an evidence set e as an instantiated subset of
evidence variables E. e Bayesian network always yields a valid joint probability distribution.

Moreover, it is consistent with its input CPTs. Namely, for each Xi and its parent set Yi , it can
be shown that

PB.Xi jYi / /
X

X�fXi[Yi g

PB.x/ D P.Xi jYi /:

where the last summand on the right is the input CPT for variable Xi .
erefore a Bayesian network is a graphical model, where the combination operator is prod-

uct,
N
D
Q

. e primal graph of a Bayesian network is called a moral graph and it connects any
two variables appearing in the same CPT. e moral graph can also be obtained from the directed
graphG by connecting all the parents of each child node and making all directed arcs undirected.

Example 2.21 [Pearl, 1988] Figure 2.5(a) is a Bayesian network over six variables, and Figure
2.5(b) shows the corresponding moral graph. e example expresses the causal relationship be-
tween variables “season” (A), “the automatic sprinkler system is on” (B), “whether it rains or does
not rain” (C ), “manual watering is necessary” (D), “the wetness of the pavement” (F ), and “the
pavement is slippery” (G). e Bayesian network is defined by six conditional probability tables
each associated with a node and its parents. For example, the CPT of F describes the probabil-
ity that the pavement is wet .F D 1/ for each status combination of the sprinkler and raining.
Possible CPTs are given in Figure 2.5(c).

e conditional probability tables contain only half of the entries because the rest of the
information can be derived based on the property that all the conditional probabilities sum to
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Figure2.5: Belief networkP.G;F; C;B;A/ D P.GjF /P.F jC;B/P.DjA;B/P.C jA/P.BjA/P.A/.

1. is Bayesian network expresses the probability distribution P.A;B;C;D;F;G/ D P.A/ �
P.BjA/ � P.C jA/ � P.DjB;A/ � P.F jC;B/ � P.GjF /.

Next, we define the main queries over Bayesian networks.

Definition 2.22 (Queries over Bayesian networks) Let B D hX;D;PG ;
Q
i be a Bayesian net-

work. Given evidence E D e where E is the evidence variables and e is their assignment, the
primary queries over Bayesian networks are to find the following quantities.

1. Posterior marginals, or belief updating. For every Xi not in E the belief is defined by
bel.Xi / D PB.Xi je/.
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P.Xi je/ D
X

X�Xi

Y
j

P.Xj jXpaj
; e/

2. e probability of evidence is PB.E D e/. Formally,

PB.E D e/ D
X

X

Y
j

P.Xj jXpaj
; e/

3. e most probable explanation (mpe) is an assignment xo D .xo1; :::; x
o
n/ satisfying

xo D argmaxXPB D argmaxX

Y
j

P.Xj jXpaj
; e/:

e mpe value is PB.x
o/, sometime also calledMAP .

4. Maximum a posteriori hypothesis ( marginalmap). Given a set of hypothesized variables
A D fA1; :::; Akg, A � X, the map task is to find an assignment ao D .ao1; :::; a

o
k/ such

that
ao D argmaxA

X
X�A

P .Xje/ D argmaxA

X
X�A

Y
j

P.Xj jXpaj
; e/

ese queries are applicable to a variety of applications such as situation assessment, di-
agnosis, probabilistic decoding and linkage analysis, to name a few. To answer the above queries
over B D hX;D;PG ;

Q
i we use as marginalization operators either summation or maximiza-

tion. In particular, the query of finding the probability of the evidence can be expressed as
+;

N
i fi D

P
X

Q
i Pi . e belief updating task, when given evidence e, can be formulated using

the summation as a marginalization operator, where Zi D fXig. Namely, 8Xi ; PB.Xi je/ D+XiN
k fk D

P
fX�Xi IEDeg

Q
k Pk . e mpe task is defined by a maximization operator where

Z D f;g, yielding mpe defined by +;
N
i fi D maxX

Q
i Pi . If we want to get the actual mpe

assignment we would need to use the argmax operator. Finally, the marginal map is defined by
both summation and maximization.

2.5.2 MARKOVNETWORKS
Markov networks, also called Markov Random Fields (MRF), are undirected probabilistic
graphical models very similar to Bayesian networks. However, unlike Bayesian networks they
convey undirectional information, and are therefore defined over an undirected graph. Moreover,
whereas the functions in Bayesian networks are restricted to be conditional probability tables of
children given their parents in some directed graph, in Markov networks the local functions,
called potentials, can be defined over any subset of variables. ese potential functions between
random variables can be thought of as expressing some kind of a correlation information. When a
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configuration to a subset of variables is likely to occur together their potential value may be large.
For instance in vision scenes, variables may represent the grey levels of pixels, and neighboring
pixels are likely to have similar grey values. erefore, they can be given a higher potential level.
Other applications of Markov networks are in physics (e.g., modeling magnetic behaviors of crys-
tals). ey convey symmetrical information and can be viewed as the probabilistic counterpart of
constraint or cost networks, whose functions are symmetrical as well.

Like a Bayesian network, a Markov network also represents a joint probability distribution,
even though its defining local functions do not have a clear probabilistic semantics. In particular,
they do not express local marginal probabilities (see [Pearl, 1988] for a discussion).

Definition 2.23 Markov networks. A Markov network is a graphical model M D h

X;D;H;
Q
i where H D f 1; : : : ;  mg is a set of potential functions where each potential  i

is a non-negative real-valued function defined over a scope of variables S D fS1; :::;Smg. Si . e
Markov network represents a global joint distribution over the variables X given by:

PM D
1

Z

mY
iD1

 i ; Z D
X

X

mY
iD1

 i

where the normalizing constant Z is called the partition function.

Queries. e primary queries over Markov networks are the same as those of Bayesian network.
at is, computing the posterior marginal distribution over all variables Xi 2 X, finding thempe
value and a corresponding assignment (configuration) and finding the partition function. It is
not hard to see that this later query is mathematically identical to computing the probability of
evidence. Like Bayesian networks, Markov networks are graphical models whose combination
operator is the product operator,

N
D
Q

and the marginalization operator can be summation,
or maximization, depending on the query.

Example 2.24
Figure 2.6 shows a 3 � 3 square grid Markov network with 9 variables

fA;B;C;D;E; F;G;H; I g. e 12 potentials are:  1.A;B/,  2.B; C /,  3.A;D/,  4.B;E/,
 5.C; F /,  6.C;D/,  7.D;E/,  8.D;G/,  9.E;H/,  10.F; I /,  11.G;H/, and  12.H; I /.
e Markov network represents the probability distribution formed by taking a product of these
twelve functions and then normalizing. Namely, given that x D .a; b; c; d; e; f; g; h; i/

F.a; b; c; d; e; f; g; h; i/ /

 1.a; b/ �  2.b; c/ �  3.a; d/ �  4.b; e/ �  5.c; f / �  6.d; e/ �  7.e; f / �  8.d; g/

� 9.e; h/ �  10.f; i/ �  11.g; h/ �  12.h; I /

where Z D
P
a;b;c;d;e;f;g;h;i F.a; b; c; d; e; f; g; h; i/ is the partition function.
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Figure 2.6: (a) An example 3 � 3 square grid Markov network (ising model) and (b) an example
potential H6.D;E/.

Markov networks typically are generated by starting with a graph model which describes
the variables of interest and how they depend on each other, like in the case of image analysis
whose graph is a grid. en the user defines potential functions on the cliques of the graph. A
well-known example is the ising model. is model arise from statistical physics [Murphy, 2012].
It was used to model the behavior of magnets. e structure is a grid, where the variables have
values f�1;C1g. e potential express the desire to have neighboring variables have the same
value. e resulting Markov network is called a Markov Random Field (MRF). Alternatively,
like in the case of constraint networks, if the potential functions are specified with no explicit
reference to a graph (perhaps representing some local probabilistic information or compatibility
information) the graph emerges as the associated primal graph.

Markov networks provide some more freedom from the modeling perspective, allowing to
express potential functions on any subset of variables. is, however, comes at the cost of loosing
semantic clarity. e meaning of the input local functions relative to the emerging probability dis-
tribution is not coherent. In both Bayesian networks and Markov networks the modeling process
starts from the graph. In the Bayesian network case the graph restricts the CPTs to be defined for
each node and its parents. In Markov networks, the potentials should be defined on the maximal
cliques. For more see [Pearl, 1988].
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2.6 MIXEDNETWORKS
In this section, we introduce the mixed network, a graphical model which allows both proba-
bilistic information and deterministic constraints and which provides a coherent meaning to the
combination.

Definition 2.25 Mixed networks. Given a belief network B D hX;D;PG ;
Q
i that expresses

the joint probability PB and given a constraint network R D hX;D;C;‰i that expresses a set
of solutions denoted �, a mixed network based on B and R denoted M.B;R/ D hX;D;P ;Ci is
created from the respective components of the constraint network and a Bayesian network as
follows: the variables X and their domains are shared (we could allow non-common variables and
take the union), and the functions include the CPTs in PG and the constraints in C. e mixed
network expresses the conditional probability PM.X/:

PM .x/ D

�
PB.x j x 2 �/; if x 2 �

0; otherwise:

Example 2.26 Consider a scenario involving social relationship between three individuals Alex
(A), Becky (B), and Chris (C). We know that if Alex goes to a party Becky will go, and if Chris
goes Alex goes. We also know the weather effects these three individuals differently and they
will or will not go to a party with some differing likelihood. We can express the relationship
between going to the party and the weather using a Bayesian network (Figure 2.7a), while the
social relationship using a propositional formula (see Figure 2.7b).

e mixed network have two types of functions: probabilistic local functions and con-
straints. is is a graphical model whose combination operator is product, when we assume that
constraints have their cost-based representation.

Queries. Posterior marginals, mpe and marginal map queries over probabilistic networks can
be extended to mixed networks straight-forwardly. ey are well-defined relative to the mixed
probability distribution PM. Since PM is not well defined for inconsistent constraint networks we
always assume that the constraint network portion is consistent.

Mixed networks give rise to a new query, which is to find the probability of a consistent
tuple, namely, we want to determine PB.x 2 sol.R//. We will call this a Constraint Probability
Evaluation (CPE). Note that evidence is a special type of constraint. So this is an extension of
probability of the evidence, or the partition function query.

Definition 2.27 Queries onmixed networks. We consider the following two new queries.
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Query:
Is it likely that Chris goes to the
part y i f Becky does not but the weather
is bad?

P (C, ¬B |w = bad, A B, C A )

Alex is likely to go in bad weather
Chris rarely does in bad weather
Becky is indi"erent, but unpredictable

Figure 2.7: epart example, a Bayesian network (a), constraint formula (b), and amixed network (c).

• Given a mixed network M.B;R/, where B D hX;D;P ;
Q
i and R D hX;D;Ci the con-

straint Probability Evaluation (CPE) task is to find the probability PB.x 2 sol.R//. If R is
a CNF expression ', the cnf probability evaluation seeksPB.x 2Mod.'//, whereMod.'/
are the models (solutions of ').

• Belief assessment of a constraint or of a CNF expression is the task of assessing PB.X j'/ for
every variableX . SinceP.Xi j'/ D ˛ � P.Xi ^ '/where ˛ is a normalizing constant relative
to X , computing PB.X j'/ reduces to a CPE task over B for the query ..Xi D xi / ^ '/. In
other words we want to find PB.xjXi D xi ;x 2Mod.'//. More generally, PB.'j / D

˛' � PB.' ^  / where ˛' is a normalization constant relative to all the models of '.

e problem of evaluating the probability of CNF queries over Bayesian networks has vari-
ous applications. One example is network reliability: Given a communication graph with a source
and a destination, one seeks to diagnose the failure of communication. Since several paths may
be available between source and destination, the failure condition can be described by a CNF
formula as follows. Failure means that for all paths (conjunctions) there is a link on that path
(disjunction) that fails. Given a probabilistic fault model of the network, the task is to assess the
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probability of a failure [Portinale and Bobbio, 1999]. ere are many examples in modeling travel
patterns of human and in natural language processing. [Chang et al., 2012; Gogate et al., 2005].

We conclude with some example queries over mixed networks.

Definition 2.28 e weighted counting task. Given a mixed network M D hX;D;PG ;Ci,
where PG D fP1; :::; Pmg the weighted counting task is to compute the normalization constant
given by:

Z D
X

x2Sol.C/

mY
iD1

Pi : (2.1)

Equivalently, if we have a cost-based representation of the constraints in C as 0=1 functions, we
can rewrite Z as:

Z D
X

X

mY
iD1

Pi

pY
jD1

Cj : (2.2)

We will refer to Z as weighted counts and we can see that mathematically, it is identical to the

partition function.

Definition 2.29 Marginal task, belief updating. Given a mixed network M D hX;D;P; C i,
where P D fP1; :::; Png and R D hX;D;Ci, the marginal task is to compute the marginal dis-
tribution at each variable. Namely, for each variable Xi compute:

PM.xi / D
X

X

ıXi
PM; where ıXi

.x/ D

�
1 if Xi is assigned the value xi
0 otherwise.

When we are given a probabilistic network that has zeros, we can extract a constraint por-
tion from it, generating an explicit mixed network as we show below.

It is easy to see that the weighted counts over a mixed network specialize to (a) the proba-
bility of evidence in a Bayesian network, (b) the partition function in a Markov network, and (c)
the number of solutions of a constraint network. e marginal problem can express the posterior
marginals in a Bayesian or Markov network.

2.7 SUMMARYANDBIBLIOGRAPHICALNOTES
e work on graphical models can be seen as originating from two communities. e one that
centers on statistics and probabilities and aims at capturing probability distributions vs. the one
that centers on deterministic relationships, such as constraint networks and logic systems. Each
represents an extreme point in a spectrum of models. Each went through the process of gener-
alization and extensions towards the other; probabilistic models were augmented with constraint



28 2. WHATAREGRAPHICALMODELS

processing and utility information (e.g., leading to influence diagrams), and constraint networks
were extended to soft constraints and into fuzzy type information.

e seminal work by Bistareli et al. [Bistarelli et al., 1997] provides a foundational unifying
treatment of graphicalmodels, using themathematical framework of semirings. Various semirings
yield different graphical models, using the umbrella name Soft Constraints. e work emerged
from and generalizes the area of constraint networks. Constraint networks were distinguished
as semirings that are idempotent. For a complete treatment, see [Bistarelli, 2004]. Another line
of work rooted at probabilistic networks was introduced by Shenoy and Shafer who provide an
axiomatic treatment for probability and belief-function propagation [Shafer and Shenoy, 1990;
Shenoy, 1992]. eir framework is focused on an axiomatic formulation of the two operators of
combination and marginalization in graphical models. e work by Dechter [Dechter, 1996a,
1999], focusing on unifying variable elimination algorithms, demonstrates that common algo-
rithms can be applied across various graphicalmodels such as constraints networks, cost-networks,
propositional cnfs, influence diagrams, and probabilistic networks and that it can be expressed us-
ing also the two operation of combination and marginalization [Kask and Dechter, 2005]. is
work is the basis of the exposition in this book. Other related work focusing on message-passing
perspective over certain restricted graphs is Srinivas and McEliece [Aji and McEliece, 2000].
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C H A P T E R 3

Inference: Bucket Elimination
for Deterministic Networks

is chapter is the first of two chapters in which we introduce the bucket-elimination inference
scheme. It is a variable elimination scheme that generalizes dynamic programming and char-
acterizes all inference algorithms over graphical models. As noted, by inference we mean algo-
rithms that solve queries by inducing equivalent model representations according to some set of
inference rules. Bucket-elimination algorithms are knowledge-compilation, also called reparame-
terization schemes methods: they generate an equivalent representation of the input problem from
which various queries are answerable in polynomial time. We will see that the bucket-elimination
scheme is applicable to most, if not all, of the types of queries and graphical models we discussed
in Chapter 2, but its general structure and properties are most readily understood in the context of
constraint networks. In this chapter, the primary query is whether or not an input constraint net-
work is consistent. In the following chapter, we will apply this scheme to probabilistic reasoning
and combinatorial optimization.

To illustrate the basic idea behind bucket elimination, let’s walk through a simple con-
straints problem. Consider the graph coloring problem in Figure 3.1a. e task is to assign one
of two colors (green or red) to each node in the graph so that adjacent nodes will have different
colors. Here is one way to solve this problem: consider nodeE first. It can be colored either green
or red. Since only two colors are available it follows thatD and C must have identical colors; thus,
C D D can be inferred, and we can add this as a new constraint to our network without changing
its solutions set. We can ignore variable E from now on since we already summarized its impact
on the rest of the problem when we added C D D. We focus on variable C next. Together, the
inferred constraint C D D and the input constraint C ¤ B imply that D ¤ B , and we add this
constraint to the model. Having taken into account the effect of C on the other variables in the
network, we can ignore C also from now on. Continuing in this fashion with node D, we infer
A D B . However, since there is an input constraint A ¤ B we have reached a contradiction and
can conclude that the original set of constraints is inconsistent.

e algorithm which we just executed, is known as adaptive-consistency in the constraint
literature [Dechter and Pearl, 1987] and it can solve any constraint satisfaction problem. e
algorithm works by processing and eliminating variables one by one, while deducing the effect of
the eliminated variable on the rest of the problem. e elimination operation first joins all the
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(a)

Bucket.E/: E ¤ D, E ¤ C
Bucket.C /: C ¤ B
Bucket.D/: D ¤ A,
Bucket.B/: B ¤ A,
Bucket.A/:

(b)
Bucket.E/: E ¤ D, E ¤ C
Bucket.C /: C ¤ B jj D D C
Bucket.D/: D ¤ A, jj , D ¤ B
Bucket.B/: B ¤ A, jj B D A
Bucket.A/: jj

(c)

Figure 3.1: A graph coloring example (a) and a schematic execution of adaptive-consistency (b,c).

relations that are defined on the current variable and then projects out the variable. Adaptive-
consistency can be described using a data structure called buckets as follows: given an ordering
of the variables, we process the variables from last to first. In the previous example, the ordering
was d D A;B;D;C;E, and we processed the variables from E to A. Note that we will use this
convention throughout: we assume that the inference algorithm process the variables from last to
first w.r.t to a given ordering. (e reason for that will be clear later.)e first step is to partition the
constraints into ordered buckets, so that the bucket for the current variable contains all constraints
that mention the current variable and that have not been already placed in a previous bucket. In
our example, all the constraints mentioning the last variable E are put in a bucket designated as
bucketE . Subsequently, all the remaining constraints mentioningD are placed in bucketD , and
so on. e initial partitioning of the constraints is depicted in Figure 3.1b. e general partition
rule is that each constraint identifies the variable in its scope that appears latest in the ordering,
and then places the constraint in the bucket of the identified variable.

After this initialization step, the buckets are processed from last to first. Processing a bucket
means solving the subproblem defined by the constraints in the bucket and then inferring the con-
straint that is imposed by that subproblem on the rest of the variables. In other words, we compute
the constraint that the bucket-variable induces on the variables that precede it in the ordering.
As we saw, processing bucket E produces the constraintD D C , which is placed in bucketC . By
processing bucketC , the constraintD ¤ B is generated and placed in bucketD .While processing
bucket D, we generate the constraint A D B and put it in bucketB . When processing bucketB ,
inconsistency is discovered between the inferred A ¤ B and the input constraint A D B . e
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buckets’ final contents are shown in Figure 3.1c. e new inferred constraints are displayed to the
right of the bar in each bucket.

Observe that because the new added constraints are inferred, the problem itself does not
change in the sense that with or without the added constraints it has the same set of solutions.
However, what is significant is that once all the buckets are processed, and if no inconsistencies
were discovered, a solution can be generated in a backtrack-freemanner. is means that a solution
can be assembled by assigning values to the variables progressively, starting with the first variable
in ordering d while respecting all the current constraints in a bucket. is process is guaranteed
to continue until all the variables are assigned a value from their respective domains, thus yielding
a solution to the problem. e notion of backtrack-free constraint network relative to an ordering
is central to the theory of constraint processing and will be defined shortly.

3.1 BUCKET-ELIMINATIONFORCONSTRAINT
NETWORKS

We have presented an informal definition of the bucket-elimination algorithm on constraint net-
works called adaptive-consistency. Here we will provide a formal definition of the algorithm,
using the formalism of constraint networks introduced in the previous chapter and utilizing the
following operations:

Definition 3.1 Operations on constraints: select, project, join. Let R be a relation on a set S

of variables, let Y � S be a subset of the variables, and let y be an instantiation of the variables in
Y . We denote by �y.R/ the selection of those tuples in R that agree with Y D y . We denote by
�Y .R/ the projection of the relation R on the subset Y , that is, a tuple Y D y appears in �Y .R/

if and only if it can be extended to a full tuple in R. Let RS1
be a relation on a set S1 of variables

and let RS2
be a relation on a set S2 of variables. We denote by RS1

‰ RS2
the join of the two

relations. e join of RS1
and RS2

is a relation defined over S1 [ S2 containing all and only the
tuples t, satisfying tS1

2 RS1
and tS2

2 RS2
.

Using the above operations, adaptive-consistency is presented as in Figure 3.2. In step 1 the
algorithm partitions the constraints into buckets whose structure depends on the variable ordering
used. e main bucket operation is given in steps 4 and 5.

Algorithm adaptive-consistency specifies that it returns a “backtrack-free” network along
the ordering d . is concept is related to the search approach that is common for solving con-
straint satisfaction, and in particular, to backtracking search (for more see Chapter 6). Backtrack-
ing search assign values to the variables in a certain order in a depth-first manner, checking the
relevant constraints, until an assignment is made to all the variables or a dead-end is reached where
no consistent values exist. If a dead-end is reached during search, the algorithm will backtrack to a
previous variable, change its value, and proceed again along the ordering. We say that a constraint
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A-C (AC)
Input: A constraint network R D hX;D;Ci, an ordering d D . X1; : : : ; Xn)
Output: A backtrack-free network, denoted Ed .R/, along d , if the empty constraint
was not generated. Else, the problem is inconsistent.
1. Partition constraints into bucket1, …, bucketn as follows:

for i  n downto 1, put in bucketi all unplaced constraints mentioning Xi .
2. for p  n downto 1 do
3. for all the constraints RS1

; : : : ; RSj
in bucketp do

4. A 
Sj
iD1 Si � fxpg

5. RA  ˘A.‰
j
iD1 RSi

/

6. if RA is not the empty relation then add RA to the bucket of the
latest variable in scope A,

7. else exit and return the empty network
8. return Ed .R/ D .X;D; bucket1 [ bucket2 [ � � � [ bucketn/

Figure 3.2: Adaptive-consistency as a bucket-elimination algorithm.

network is backtrack-free along an ordering d of its variables if it is guaranteed that a dead-end
will never be encountered by backtracking search.

We next formally define the notion of backtrack-free network. It is based on the notion of
a partial solution.

Definition 3.2 Partial solution. Given a constraint network R, we say that an assignment
of values to a subset of the variables S D fX1; :::; Xj g denoted by x

j
1 D .< X1; x1 >;< X2; x2 >

; :::; < Xj ; xj >/ is consistent relative toR iff it satisfies every constraint whose scope is subsumed
in S . e assignment x

j
1 (also called configuration) is also called a partial solution of R.

Definition 3.3 Backtrack-free search. A constraint network is backtrack-free relative to a
given ordering d D .X1; :::; Xn/ if for every j � n, every partial solution x

j
1 can be consistently

extended to include XjC1. Namely, there exists xjC1 s.t x
jC1
1 D .x

j
1 ; xjC1/ is consistent.

We are now ready to state the main property of adaptive-consistency.

eorem 3.4 Correctness and completeness of adapative-consistency. [Dechter and Pearl,
1987] Given a set of constraints and an ordering of variables, adaptive-consistency decides if a set of
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constraints is consistent and, if it is, the algorithm always generates an equivalent representation that
is backtrack-free along the input variable ordering. (Prove as an exercise.)�

Example 3.5 Consider the graph coloring problem depicted in Figure 3.3 (modified by ex-
tending the domain of variable C with one additional color from Example 3.1 where colors are
replaced by numbers). e figure shows a schematic execution of adaptive-consistency using the
bucket data structure for the two orderings d1 D .E;B; C;D;A/ and d2 D .A;B;D;C;E/. e
initial constraints, partitioned into buckets for both orderings, are displayed in the figure to the
left of the double bars, while the constraints generated by the algorithm are displayed to the right
of the double bar, in their respective buckets.

Notice that adaptive-consistency applied along ordering d1 generates a different set of con-
straints, and in particular it generates only binary constraints (i.e., defined on pairs of variables),
while along ordering d2 the algorithm generates a ternary constraint. Notice also that for the
ordering d1, the constraint B ¤ E generated in bucketD is displayed for illustration only in
bucketB (in parentheses), since there is already an identical original constraint. Indeed, the con-
straint is redundant.

Example 3.6 An alternative and more detailed graphical illustration of the algorithm’s per-
formance using d2 is given in Figure 3.4. e figure shows, through the changing graph, how
constraints are generated in the reverse order of d2 D A;B;D;C;E and how a solution is cre-
ated in the forward order of d2. e first step is processing the constraints that mention variables
E. ese are all joined to create a relation over EDBC and then E is projected out, yielding a
constraint on DBC whose relation is explicitly given in the figure. e relation is added to the
set of constraints and is depicted as an added clique over the three nodes. en E is removed,
yielding the 3rd graph that includes only nodes A;D;B;C . e next variable to be processed is
C . the constraints that include C are the original constraint B ¤ C and the new constraint over
DBC . Joining both yields the new constraint on DBC as depicted, and projecting out C from
this relation yields a constraint on DB whose meaning is the equality constraint. Variable D is
eliminated next and then B , yielding the last variable A with two values f1; 2g.

Subsequently, the reverse process of generating a solution starts at A. Since it has two
legitimate values, we can select any of those. e valueA D 1 is selected. e next value satisfying
the inequality constraint is B D 2, then D D 2 (satisfying D D B), then C D 3 (satisfying C ¤
B). To assign a value for E we look at the constraint on EDBC which only allows E D 1 to
extend the current partial solution A D 1; B D 2;D D 2; C D 3, yielding a full solution.

What is the complexity of adaptive-consistency? It is clearly linear in the number of buck-
ets and the time to process each bucket. However, since processing a bucket amounts to solving
a constraint-satisfaction subproblem (generating the join of all relations) its complexity is expo-
nential in the number of variables mentioned in a bucket. Conveniently, the number of variables
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(a)

Ordering d1

Bucket.A/: A ¤ D, A ¤ B
Bucket.D/: D ¤ E jj RDB
Bucket.C /: C ¤ B , C ¤ E
Bucket.B/: B ¤ E jj R1BE , R2BE
Bucket.E/: jj RE

Ordering d2
Bucket.E/: E ¤ D, E ¤ C , E ¤ B
Bucket.C /: C ¤ B jj RDCB
Bucket.D/: D ¤ A jj RDB.D D D B/
Bucket.B/: B ¤ A jj RAB.D R ¤ B/
Bucket.A/: jj RA

Figure 3.3: A modified graph coloring problem.

appearing in a bucket along a given ordering, can be obtained using the induced-width of the graph
along that ordering. e induced-width is an important graph parameter that is instrumental to
all bucket-elimination algorithms, and we define it next.

Definition 3.7 Induced-graph, width, and induced-width. Given an undirected graph G D
.V;E/, where V D fv1; :::; vng is the set of nodes and E is a set of arcs over V . An ordered graph
is a pair .G; d/, where d D .v1; :::; vn/ is an ordering of the nodes. e nodes adjacent to v that
precede it in the ordering are called its parents. e width of a node in an ordered graph is its
number of parents. e width of an ordered graph .G; d/, denoted w.d/, is the maximum width
over all nodes. ewidth of a graph is the minimum width over all the orderings of the graph. e
induced-graph of an ordered graph .G; d/ is an ordered graph .G�; d / where G� is obtained from
G as follows: the nodes of G are processed from last to first (top to bottom) along d . When a
node v is processed, all of its parents are connected. e induced width of an ordered graph, .G; d/,
denoted w�.d/, is the maximum number of parents a node has in the induced ordered graph
.G�; d /. e induced-width of a graph, w�, is the minimal induced width over all its orderings.

Example 3.8 Generating the induced-graph for d1 D E;B;C;D;A and d2 D A;B;D;C;E
leads to the two graphs in Figure 3.5. e broken lines are the newly added arcs. e induced
width along d1 and d2 are 2 and 3, respectively. ey suggest different performance bounds for
adaptive-consistency because the number of variables in a bucket is bounded by the number of
parents of the corresponding variable plus 1 in the induced ordered graph which is equal to its
induced-width plus 1.
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Figure 3.4: A schematic variable-elimination and solution-generation process is backtrack-free.
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Figure 3.5: e induced width along the orderings: d1 D A;B;C;D;E and d2 D E;B;C;D;A.

eorem 3.9 e time and space complexity of - is O..r C n/kw�.d/C1/

and O.n � kw�.d//, respectively, where n is the number of variables, k is the maximum domain size,
and w�.d/ is the induced-width along the order of processing d and r is the number of the problems’
constraints.

Proof: Since the total number of input functions plus those generated is bounded by r C n and
since the computation in a bucket is O.ri � kw

�.d/C1/, where ri is the number of functions in
bucketi , a simple algebraic computation yields a total of O..r C n/kw�.d/C1/. �

e above analysis suggests that problems having bounded induced width w� � b for
some constant b can be solved in polynomial time. In particular, observe that when the
graph is cycle-free its width and induced width are 1. Consider, for example, ordering d D
.A;B; C;D;E; F;G/ for the tree in Figure 3.6. As demonstrated by the schematic execution
along d , adaptive-consistency generates only unary relationships in this cycle-free graph.We note
that on trees the algorithm can be accomplished in a distributed manner as a one-pass message
passing algorithm.

3.2 BUCKETELIMINATIONFORPROPOSITIONALCNFS
Since propositional CNF formulas, discussed in Chapter 2, are a special case of constraint net-
works, we might wonder what adaptive consistency looks like when applied to them.

Propositional variables take only two values ft rue; falseg or “1” and “0.” We denote
propositional variables by uppercase letters P;Q;R; : : :, propositional literals (i.e., P D“true” or
P D“false”) by P and :P and disjunctions of literals, or clauses, are denoted by ˛; ˇ; : : :. A unit
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Bucket(F)

Bucket(G)

Bucket(E)

Bucket(D)

Bucket(C)

Bucket(B)

Bucket(A)

Figure 3.6: Schematic execution of adaptive-consistency on a tree network. DX denotes unary con-
straints over X .

clause is a clause of size 1. e notation .˛ _ T /, when ˛ D .P _Q _R/ is shorthand for the
disjunction .P _Q _R _ T /. .˛ _ ˇ/ denotes the clause whose literal appears in either ˛ or ˇ.
e resolution operation over two clauses .˛ _Q/ and .ˇ _ :Q/ results in a clause .˛ _ ˇ/, thus
eliminatingQ. A formula ' in conjunctive normal form (CNF) is a set of clauses ' D f˛1; : : : ; ˛tg
that denotes their conjunction. e set ofmodels or solutions of a formula ' is the set of all truth
assignments to all its symbols that do not violate any clause in '. Deciding if a formula is satisfiable
is known to be NP-complete [Garey and Johnson, 1979].

It turns out that the join-project operation used to process and eliminate a variable by
adaptive-consistency over relational constraints translates to pair-wise resolution when applied to
clauses [Rish and Dechter, 2000].

Definition 3.10 Extended composition. e extended composition of relation RS1
, …, RSm

relative to a subset of variables A �
Sm
iD1 Si , denoted ECA.RS1

; : : : ; RSm
/, is defined by

ECA.RS1
; : : : ; RSm

/ D �A.‰
m
iD1 RSi

/ :

When extended composition is applied to m relations, it is called extended m-composition. If the
projection operation is restricted to subsets of size i , it is called extended .i;m/-composition.
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It is not hard to see that extended composition is the operation applied in each bucket
by adaptive-consistency. We next show that the notion of resolution is equivalent to extended
2-composition.

Lemma 3.11 e resolution operation over two clauses, .˛ _Q/ and .ˇ _ :Q/, results in a clause
.˛ _ ˇ/ for which models.˛ _ ˇ/ D ECscope.˛_ˇ/.models.˛ _Q/;models.ˇ _ :Q//. (Prove
as an exercise.) �

Example 3.12 Consider the two clauses ˛ D .P _ :Q _ :O/ and ˇ D .Q _ :W /. Now
let the relation RPQO D f000; 100; 010; 001; 110; 101; 111g be the models of ˛ and the
relation RQW D f00; 10; 11g be the models of ˇ. Resolving these two clauses over Q

generates the resolvent clause  D res.˛; ˇ/ D .P _ :O _ :W /. e models of  are
f.000; 100; 010; 001; 110; 101; 111g. e reader should verify that ECPQW .RPQO ; RQW / which
is equal, by definition to �RQW .RPQO ‰ RQw/ yields the models of  .

Substituting extended decomposition by resolution in adaptive consistency yields a bucket-
elimination algorithm for propositional satisfiability which we call directional resolution (DR)
given in Figure 3.7. We call the output theory (i.e., formula) of directional resolution, denoted
Ed .'/, the directional extension of '. e following description of the algorithm may be famil-
iar. Given an ordering d D .Q1; :::;Qn/, all the clauses containing Qi that do not contain any
symbol higher in the ordering are placed in the bucket of Qi , denoted bucketi . e algorithm
processes the buckets in the reverse order of d . Processing of bucketi means resolving over Qi
all the possible pairs of clauses in the bucket and inserting the resolvents into appropriate lower
buckets. Note that if the bucket contains a unit clause (Qi or :Qi ), only unit resolutions are
performed, namely resolutions involving a unit clause.

Example 3.13 Given the input theory '1 D f.:C/; .A _ B _ C/; .:A _ B _E/; .:B _ C _
D/g; and an ordering d D .E;D;C;B;A/, the theory is partitioned into buckets and pro-
cessed by directional resolution in reverse order. Resolving over variable A produces a new clause
.B _ C _E/, which is placed in bucketB . Resolving over B then produces clause .C _D _E/,
which is placed in bucketC . Finally, resolving over C produces clause .D _E/, which is placed
in bucketD . Directional resolution now terminates, since no resolution can be performed in
bucketD and bucketE . e output is a non-empty directional extension Ed .'1/. Once the di-
rectional extension is available, model generation can begin. ere are no clauses in the bucket of
E, the first variable in the ordering, and therefore E can also be assigned any value (e.g., E D 0).
Given E D 0, the clause .D _E/ in bucketD implies D D 1, clause :C in bucketC implies
C D 0, and clause .B _ C _E/ in bucketB , together with the current assignments to C and E,
implies B D 1. Finally, A can be assigned any value since both clauses in its bucket are satisfied
by previous assignments. e initial partitioning into buckets along the ordering d as well as the
buckets’ contents generated by the algorithm are depicted in Figure 3.8.
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D-R (DR)
Input: A CNF theory ', an ordering d D Q1; : : : ;Qn of its variables.
Output: A decision of whether ' is satisfiable. If it is, a theory Ed .'/, equivalent

to ', else an empty directional extension.
1. Initialize: Generate an ordered partition of clauses into buckets bucket1,

…, bucketn, where bucketi contains all clauses whose highest variable is
Qi .

2. for i  n downto 1 process bucketi :
3. if there is a unit clause then (the instantiation step)

apply unit-resolution in bucketi and place the resolvents in their right buckets.
if the empty clause was generated, theory is not satisfiable.

4. else resolve each pair f.˛ _Qi /; .ˇ _ :Qi /g � bucketi .
if  D ˛ _ ˇ is empty, return Ed .'/ D fg, the theory is not satisfiable
else add  it to the appropriate bucket of its highest proposition.

5. return Ed .'/ 
S
i bucketi .

Figure 3.7: Directional-resolution.

As already observed in example 3.13, once all the buckets are processed, and if the empty
clause was not generated, a truth assignment (model) can be assembled in a backtrack-freemanner
by consulting Ed .'/, using the order d . We can show, indeed, thatDR is guaranteed to generate
a backtrack-free representation along the order of processing. is can be shown directly (prove
as an exercise) or indirectly by proving that for bi-valued domains 2-composition is equivalent to
full extended-composition, and then apply eorem 3.4.

eorem 3.14 Backtrack-free by DR. Given a theory ' and an ordering of its variables d , the
directional extension Ed .'/ generated by DR is backtrack-free along d . �

Not surprisingly, the complexity of directional-resolution is exponentially bounded (time
and space) in the induced width of the theory’s interaction graph along the order of processing.
Notice that the graph of theory '1 along the ordering d (depicted also in Figure 3.8b) has an
induced width of 3.

Lemma 3.15 Given a theory ' and an ordering d D .Q1; :::; Qn/, ifQi has at most w parents in
the induced graph along d , then the bucket of Qi in the output Ed .'/ contains no more than 3wC1
clauses.
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Figure 3.8: A schematic execution of directional resolution using ordering d D .E;D;C;B;A/.

Proof. Given a clause ˛ in the bucket ofQi , there are three possibilities for each parent P ofQi :
either P appears in ˛, :P appears in ˛, or neither of them appears in ˛. Since Qi also appears
in ˛, either positively or negatively, the number of possible clauses in a bucket is no more than
2 � 3w < 3wC1. �

Since the number of parents of each variable is bounded by the induced-width along the
order of processing we get the following.

eorem 3.16 Complexity of DR. Given a theory ' and an ordering of its variables d , the time
complexity of algorithmDRalongd isO.n � 9w�.d//, andEd .'/ contains atmostn � 3w

�.dC1/ clauses,
where w�.d/ is the induced width of ' ’s interaction graph along d . �

3.3 BUCKETELIMINATIONFORLINEAR INEQUALITIES
A special type of constraint is one that can be expressed by linear inequalities. e domains may
be the real numbers, the rationals or finite subsets. In general, a linear constraint between r vari-
ables or less is of the form

Pr
iD1 aiXi � c, where ai and c are rational constants. For example,

.3Xi C 2Xj � 3/ ^ .�4Xi C 5Xj � 1/ are allowed constraints between variables Xi and Xj . In
this special case, variable elimination amounts to the standard Gaussian elimination. From the
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inequalities X � Y � 5 and X > 3 we can deduce by eliminating X that Y > 2. e elimination
operation is defined by the following.

Definition 3.17 Linear elimination. Let ˛ D
P.r�1/
iD1 aiXi C arXr � c, and ˇ DP.r�1/

iD1 biXi C brXr � d . en elimr.˛; ˇ/ is applicable only if ar and br have opposite
signs, in which case elimr.˛; ˇ/ D

Pr�1
iD1.�ai

br

ar
C bi /Xi � �

br

ar
c C d . If ar and br have the

same sign the elimination implicitly generates the universal constraint.

It is possible to show that the pair-wise join-project operation applied in a bucket can be
accomplished by linear elimination as defined above. Applying adaptive-consistency to linear con-
straints and processing each pair of relevant inequalities in a bucket by linear elimination yields
a bucket-elimination algorithm Directional Linear Elimination (abbreviated DLE), which is the
well-known Fourier elimination algorithm (see [Lassez and Mahler, 1992]). For more informa-
tion, see Chapter 8 in [Dechter, 2003].

Just one noteworthy comment regarding the bucket-elimination DLE (or Fourier elimi-
nation) is that it distinct itself from the general bucket-elimination class in its complexity. e
complexity of Fourier elimination is not bounded exponentially by the induced width. e reason
is that the number of linear inequalities that can be specified over a scope of size i cannot be
bounded exponentially by i .

3.4 THE INDUCED-GRAPHAND INDUCED-WIDTH
Wehave seen that there is a tight relationship between the complexity of inference algorithms such
as adaptive-consistency and the graph’s induced-width. is algorithm, and all other inference
algorithms that we will see are time and space exponential in the induced-width along the order
of processing. is motivates finding an ordering with a smallest induced width, a task known
to be hard [Arnborg, 1985]. However, useful greedy heuristics algorithms are available in the
literature [Becker and Geiger, 1996; Dechter, 2003; Shoiket and Geiger, 1997]. To illustrate we
use the following example.

Example 3.18 Consider Figure 3.9(a). For each ordering d , .G; d/ is the graph depicted without
the broken edges, while .G�; d / is the corresponding induced graph that includes the broken
edges. We see that the induced width of B along d1 is 3, and that the overall induced width of
this ordered graph is 3. e induced widths of the graph along orderings d2 and d3 both remain
2, and, therefore, the induced width of the graph G is 2.
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E

E

E

E

Figure 3.9: (a) Graph G, and three orderings of the graph; (b) d1 D .F;E;D;C;B;A/, (c) d2 D
.A;B; C;D;E; F /, and (d) d3 D .F;D;C;B;A;E/. Broken lines indicate edges added in the induced
graph of each ordering.

3.4.1 TREES
A rather important observation is that a graph is a tree (has no cycles) iff it has an ordering whose
width is 1. e reason a width-1 graph cannot have a cycle is because, if it has a cycle, for any
ordering, at least one node on that cycle would have two parents, thus contradicting presumption
of having a width-1 ordering. And vice-versa: if a graph has no cycles, it can always be converted
into a rooted directed tree by directing all edges away from a designated root node. In such a
directed tree, every node has exactly one node pointing to it; its parent. erefore, any ordering
in which, according to the rooted tree, every parent node precedes its child nodes, has a width of
1. Notice that given an ordering having width of 1, its induced-ordered graph has no additional
arcs, yielding an induced width of 1, as well. In summary,

Proposition 3.19 A graph is a tree iff it has width and induced width of 1. �

3.4.2 FINDINGGOODORDERINGS
Finding aminimum-width ordering of a graph, can be accomplished by various greedy algorithms.
e greedy algorithm min-width (see Figure 3.10). e algorithm orders variables from last to
first as follows: in the first step, a variable with minimum degree is selected and placed last in the
ordering. e variable and all its adjacent edges are then eliminated from the original graph, and
selection of the next variable continues recursively with the remaining graph. Ordering d2 of G
in Figure 3.9c could have been generated by a min-width ordering.
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- ()
input: a graph G D .V;E/, V D fv1; :::; vng
output: A min-width ordering of the nodes d D .v1; :::; vn/.
1. for j D n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j and G  G � frg.

(delete from V node r and from E all its adjacent edges)
4. endfor

Figure 3.10: e min-width (MW) ordering procedure

Proposition 3.20 [Freuder, 1982] Algorithm min-width () finds a minimum width ordering of
a graph and its complexity is O.jEj/ when E are the edges in the graph. (Prove as an exercise.) �

ough finding the min-width ordering of a graph is easy, finding the minimum induced
width of a graph is hard ( NP-complete [Arnborg, 1985]). Nevertheless, deciding whether there
exists an ordering whose induced width is less than a constant k, takesO.nk/ time [S. A. Arnborg
and Proskourowski, 1987].

A decent greedy algorithm, obtained by a small modification to the min-width algorithm,
is the min-induced-width () algorithm (Figure 3.11). It orders the variables from last to first
according to the following procedure: the algorithm selects a variable with minimum degree and
places it last in the ordering. e algorithm next connects the node’s neighbors in the graph to
each other, and only then removes the selected node and its adjacent edges from the graph, con-
tinuing recursively with the resulting graph. e ordered graph in Figure 3.9c could also have been
generated by a min-induced-width ordering of G. In this case, it so happens that the algorithm
achieves w�, the minimum induced width of the graph.

Another variation yields a greedy algorithm known as min-fill. It uses the min-fill set, that
is, the number of edges needed to be filled so that the node’s parent set be fully connected, as an
ordering criterion. is min-fill heuristic described in Figure 3.12, was demonstrated empirically
to be somewhat superior to min-induced-width algorithm [Kjæaerulff, 1990]. e ordered graph
in Figure 3.9c could also have been generated by a min-fill ordering of G while the ordering d1
or d3 in parts (a) and (d) could not.

What is the complexity of MIW and MIN-Fill? It is easy to see that their complexity is
bounded by O.n3/.

e notions of width and inducedwidth and their relationships to various graph parameters,
have been studied extensively. In the following we briefly note the connection with chordal graphs.
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-- ()
input: a graph G D .V;E/, V D fv1; :::; vng
output: An ordering of the nodes d D .v1; :::; vn/.
1. for j D n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j .
4. connect r ’s neighbors: E  E [ f.vi ; vj /j.vi ; r/ 2 E; .vj ; r/ 2 Eg,
5. remove r from the resulting graph: V  V � frg.

Figure 3.11: e min-induced-width () procedure

- (-)
input: a graph G D .V;E/, V D fv1; :::; vng
output: An ordering of the nodes d D .v1; :::; vn/.
1. for j D n to 1 by -1 do
2. r  a node in V with smallest fill edges for his parents.
3. put r in position j .
4. connect r ’s neighbors: E  E [ f.vi ; vj /j.vi ; r/ 2 E; .vj ; r/ 2 Eg,
5. remove r from the resulting graph: V  V � frg.

Figure 3.12: e min-fill (-) procedure

3.5 CHORDALGRAPHS

For some special graphs such as chordal graphs, computing the induced-width is easy. A graph is
chordal if every cycle of length at least four has a chord, that is, an edge connecting two nonadjacent
vertices. For example,G in Figure 3.9a is not chordal since the cycle .A;B;D;C;A/ does not have
a chord. e graph can be made chordal if we add the edge .B; C / or the edge .A;D/.

Many difficult graph problems become easy on chordal graphs. For example, finding all
the maximal (largest) cliques (completely connected subgraphs) in a graph, an NP-complete task
on general graphs, is easy for chordal graphs. is task (finding maximal cliques) is facilitated by
using yet another ordering procedure called themax-cardinality ordering [Tarjan and Yannakakis,
1984]. A max-cardinality ordering of a graph orders the vertices from first to last according to the
following rule: the first node is chosen arbitrarily. From this point on, a node that is connected
to a maximal number of already ordered vertices is selected, and so on (see algorithm in Figure
3.13). Ordering d2 in Figure 3.9c,d are max-cardinality ordering but ordering d1 is not.
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A max-cardinality ordering can be used to identify chordal graphs. Namely, a graph is
chordal iff in a max-cardinality ordering each vertex and all its parents form a clique. One can
thereby enumerate all maximal cliques associated with each vertex (by listing the sets of each
vertex and its parents, and then identify the maximal size of a clique). Notice that there are at
most n maximal cliques: each vertex and its parents is one such clique. In addition, when using a
max-cardinality ordering of a chordal graph, the ordered graph is identical to its induced graph,
and therefore its width is identical to its induced width. It is easy to see that,

Proposition 3.21 If G is the induced graph of a graph G, along some ordering d , then G is chordal.
�

Proof. One way to show this is to realize that the ordering d can be obtained as a max-cardinality
ordering of G. �

Example 3.22 We see again that G in Figure 3.9a is not chordal since the parents of A are not
connected in the max-cardinality ordering in Figure 3.9d. If we connect B and C , the resulting
induced graph is chordal.

- ()
input: a graph G D .V;E/, V D fv1; :::; vng
output: An ordering of the nodes d D .v1; :::; vn/.
1. Place an arbitrary node in position 0.
2. for j D 1 to n do
3. r  a node in G that is connected to a largest subset of nodes

in positions 1 to j � 1, breaking ties arbitrarily.
4. endfor

Figure 3.13: e max-cardinality () ordering procedure

A very important attraction for max-cardinality ordering is that it can be achieved in linear
time.

Proposition 3.23 [Tarjan and Yannakakis, 1984] Given a graph G D .V;E/ the complexity of
max-cardinality search is O.nCm/ when jV j D n and jEj D m.
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A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose maximal cliques
are of size k C 1, and it can be defined recursively as follows:

Definition 3.24 k-trees. A complete graph with k vertices is a k-tree. A k-tree with r vertices
can be extended to r C 1 vertices by connecting the new vertex to all the vertices in any clique of
size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique of size
smaller than k.

3.6 SUMMARYANDBIBLIOGRAPHYNOTES
is chapter is based in part on Chapters 4 and 8 of [Dechter, 2003]. It introduces the in-
ference bucket-elimination algorithm for constraint satisfaction problems, called -
 and shows the principled connection between this class of algorithms and the
graph-parameter of induced-width. e algorithm complexity is exponentially bounded by the
induced-width along the order of processing. Subsequently, the algorithm is applied to propo-
sitional formulas in conjunctive normal form for solving satisfiability. e connection between
pair-wise resolution and the operation of variable elimination is described and the resulting direc-
tional resolution algorithm is shown to be a particular case of adaptive-consistency and therefore of
bucket elimination as well. e connection to variable elimination over linear inequalities is also
briefly noted, showing that Fourier elimination is also a special case of this class of algorithms even
though it’s complexity is not bounded exponentially by the induced-width. e chapter conclude
with a brief discussion on relevant graph algorithms for orderings.

Algorithm - was introduced by Dechter [Dechter and Pearl, 1987]
as well as its complexity analysis using the concept of induced-width as the principle graph-
parameter that controls the algorithms’s complexity. A similar elimination algorithm was intro-
duced earlier by Seidel [Seidel, 1981]. It was observed that these algorithms belong to the class
of Dynamic Programming algorithms as presented in [Bertele and Brioschi, 1972]. In [Dechter
and Pearl, 1989], the connection between - and tree-clustering algorithms
was made explicit, as will will show in Chapter 5.

e observation that pair-wise resolution is the variable-elimination operation for CNFs
in - yielded algorithm - for CNFs, which was
presented in [Dechter and Rish, 1994; Rish and Dechter, 2000]. It was also observed that the
resulting algorithm is the well-known David-Putnam (DP) algorithm [Davis and Putnam, 1960]
implying that the complexity of DP is exponentially by the induced-width as well.
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C H A P T E R 4

Inference: Bucket Elimination
for Probabilistic Networks

Having investigated bucket elimination in deterministic constraint networks in the previous chap-
ter, we now present the bucket-elimination algorithm for the three primary queries defined over
probabilistic networks: (1) belief-updating or computing posterior marginals (bel) as well as find-
ing the probability of evidence; (2) finding the most probable explanation (mpe); and (3) finding
the maximum a posteriori hypothesis (map).

We start focusing on queries over Bayesian networks first, and later show that the algo-
rithms we derive are applicable with minor changes to Markov networks, cost networks, and
mixed networks as well to the general graphical model. Below we recall the definition of Bayesian
networks for your convenience.

Definition 4.1 (Bayesian networks) A Bayesian network (BN) is a 4-tuple B D hX;D;PG ;
Q
i.

X D fX1; : : : ; Xng is a set of ordered variables defined over domains D D fD1; : : : ;Dng, where
d D .X1; : : : ; Xn/ is an ordering of the variables. e set of functions PG D fP1; : : : ; Png consist
of conditional probability tables (CPTs for short) Pi D fP.Xi jYi / g where Yi � fXiC1; :::; Xng.
esePi functions can be associated with a directed acyclic graphG in which each node represents
a variable Xi and Yi D pa .Xi / are the parents of Xi in G. at is, there is a directed arc from
each parent variable of Xi to Xi . e Bayesian network B represents the probability distribution
over X, PB.x1; : : : ; xn/ D

Qn
iD1 P.xi jxpa.Xi //. We define an evidence set e as an instantiated

subset of the variables.

4.1 BELIEFUPDATINGANDPROBABILITYOFEVIDENCE
Belief updating is the primary inference task over Bayesian networks. e task is to determine
the posterior probability of singleton variables once new evidence arrives. For instance, if we are
interested in the likelihood that the sprinkler was on last night (as we were in the Bayesian network
example in Chapter 2), then we need to update this likelihood if we observe that the pavement
near the sprinkler is slippery. More generally, we are sometime asked to compute the posterior
marginals of a subset of variables given some evidence. Another important query over Bayesian
networks, computing the probability of the evidence, namely computing the joint likelihood of a
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B C

D

G

Season

Sprinkler Rain

Watering Wetness

Slippery

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Figure4.1: Belief networkP.G;F; C;B;A/ D P.GjF /P.F jC;B/P.DjA;B/P.C jA/P.BjA/P.A/.

specific assignment to a subset of variables, is highly related to belief updating. We will show in
this chapter how these tasks can be computed by the bucket-elimination scheme.

4.1.1 DERIVINGBE-BEL
We next present a step-by-step derivation of a general variable-elimination algorithm for belief
updating. is algorithm is similar to adaptive-consistency, but the join and project operators of
adaptive-consistency are replaced, respectively, with the operations of product and summation.
We begin with an example and then proceed to describe the general case.

Let X1 D x1 be an atomic proposition (e.g., pavement = slippery ). e problem of be-
lief updating is to compute the conditional probability of X1 given evidence e, P.x1je/, and the
probability of the evidence P.e/. By Bayes rule we have that P.x1je/ D P.x1;e/

P.e/
, where 1

P.e/
is

called the normalization constant. To develop the algorithm, we will use the previous example of
a Bayesian network, (Figure 2.5), and assume the evidence is G D 1 (we also use g D 1 mean-
ing that the specific assignment g is the number 1). For convenience we depict here part of the
network again in Figure 4.1.

Consider the variables in the ordering d1 D A;C;B; F;D;G. We want to computeP.A D
ajg D 1/ or P.A D a; g D 1/. By definition,

P.a; g D 1/ D
X

c;b;e;d;gD1

P.a; b; c; d; e; g/ D
X

c;b;f;d;gD1

P.gjf /P.f jb; c/P.d ja; b/P.cja/P.bja/P.a/:

We can now apply some simple symbolic manipulation, migrating each conditional probability
table to the left of the summation variables that it does not reference. We get

P.a; g D 1/ D P.a/
X
c

P.cja/
X
b

P.bja/
X
f

P.f jb; c/
X
d

P.d jb; a/
X
gD1

P.gjf /: (4.1)

Carrying the computation from right to left (from G to A), we first compute the right-
most summation, which generates a function over F that we denote by �G.F /, defined by:
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�G.f / D
P
gD1 P.gjf / and place it as far to the left as possible, yielding

P.a; g D 1/ D P.a/
X
c

P.cjA/
X
b

P.bja/
X
f

P.f jb; c/�G.f /
X
d

P.d jb; a/: (4.2)

(We index a generated function by the variable that was summed over to create it; for example,
we created �G.f / by summing over G.) Summation removes or eliminates a variable from the
calculation.

Summing next over D (generating a function denoted �D.B;A/, defined by �D.a; b/ DP
d P.d ja; b/), we get

P.a; g D 1/ D P.a/
X
c

P.cja/
X
b

P.bja/�D.a; b/
X
f

P.f jb; c/�G.f / : (4.3)

Next, summing over F (generating �F .B; C / defined by �F .b; c/ D
P
f P.f jb; c/�G.f /), we

get,
P.a; g D 1/ D P.a/

X
c

P.cja/
X
b

P.bja/�D.a; b/�F .b; c/ : (4.4)

Summing over B (generating �B.A; C /), we get

P.a; g D 1/ D P.a/
X
c

P.cja/�B.a; c/ : (4.5)

Finally, summing over C (generating �C .A/), we get

P.a; g D 1/ D P.a/�C .a/ : (4.6)

Summing over the values of variable A, we generate P.g D 1/ D
P
a P.a/�C .a/. e answer to

the query P.ajg D 1/ can be computed by normalizing the last product in Eq. (4.6). Namely,
P.ajg D 1/ D ˛P.a/�C .a/ where ˛ D 1

P.gD1/
.

We can create a bucket-elimination algorithm for this calculation by mimicking the above
algebraic manipulation, using buckets as the organizational device for the various sums. First, we
partition the CPT s into buckets relative to the given order, d1 D A;C;B; F;D;G. In bucket G
we place all functions mentioning G. From the remaining CPT s we place all those mentioning
D in bucketD , and so on. is is precisely the partition rule we used in the adaptive-consistency
algorithm for constraint networks. is results in the initial partitioning given in Figure 4.2. Note
that observed variables are also placed in their corresponding bucket.

Initializing the buckets corresponds to deriving the expression in Eq. (4.1). Now we process
the buckets from last to first (or top to bottom in the figures), implementing the right to left
computation in Eq. (4.1). Processing a bucket amounts to eliminating the variable in the bucket
from subsequent computation. e bucketG is processed first. We eliminate G by summing over
all values of G, but since we have observed that G D 1, the summation is over a singleton value.



50 4. INFERENCE: BUCKETELIMINATIONFORPROBABILISTICNETWORKS
BucketG D P.gjf /; g D 1

BucketD D P.d jb; a/

BucketF D P.f jb; c/

BucketB D P.bja/

BucketC D P.cja/

BucketA D P.a/

Figure 4.2: Initial partitioning into buckets using d1 D A;C;B; F;D;G.

e function �G.f / D
P
gD1 P.gjf / D P.g D 1jf /, is computed and placed in bucketF . In

our calculations above, this corresponds to deriving Eq. (4.2) from Eq. (4.1)). Once we have
created a new function, it is placed in a lower bucket in accordance with the same rule we used to
partition the original CPT s.

Following order d1, we proceed by processing bucketD , summing over D the product of
all the functions that are in its bucket. Since there is a single function, the resulting function
is �D.b; a/ D

P
d P.d jb; a/ and it is placed in bucketB . Subsequently, we process the buckets

for variables F;B; and C in order, each time summing over the relevant variable and moving
the generated function into a lower bucket according to the same placement rule. In bucketA we
compute the answerP.ajg D 1/ D ˛ � P.a/ � �C .a/. Figure 4.3 summarizes the flow of functions
generated during the computation.

In this example, the generated � functions were at most two-dimensional; thus, the com-
plexity of processing each bucket using ordering d1 is (roughly) time and space quadratic in the
domain sizes. But would this also be the case had we used a different variable ordering? Consider
ordering d2 D A;F;D;C;B;G. To enforce this ordering we require that the summations remain
in order d2 from right to left, yielding (and we leave it to you to figure how the � functions are
generated):
P.a; g D 1/ D P.a/

P
f

P
d

P
c P.cja/

P
b P.bja/ P.d ja; b/P.f jb; c/

P
gD1 P.gjf /

D P.a/
P
f �G.f /

P
d

P
c P.cja/

P
b P.bja/ P.d ja; b/P.f jb; c/

D P.a/
P
f �G.f /

P
d

P
c P.cja/�B.a; d; c; f /

D P.a/
P
f �g.f /

P
d �C .a; d; f /

D P.a/
P
f �G.f /�D.a; f /

D P.a/�F .a/.
e analogous bucket-elimination schematic process for this ordering is shown in Figure

4.4a. As before, we finish by calculating P.ajg D 1/ D ˛P.a/�F .a/, where ˛ D 1P
a P.a/�F .a/

.
We conclude this section with a general derivation of the bucket-elimination algorithm for

probabilistic networks, called BE-bel. As a byproduct, the algorithm yields the probability of the
evidence. Consider an ordering of the variables d D .X1; :::; Xn/ and assume we seek P.X1je/.
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Figure 4.3: Bucket elimination along ordering d1 D A;C;B; F;D;G.

Note that if we seek the belief for variableX1 it should initiate the ordering. Later we will see how
this requirement can be relaxed. We need the definition of ordered-restricted Markov blanket.

Definition 4.2 Markov blanket. Given a Bayesian network B D hX;D;PG ;
Q
i and an order-

ing d D .X1; :::; Xn/ the Markov blanket of variable Xj relative to d , denoted Mj is the set of
its neighbors in the moral graph that precede it in the ordering d , including Xj . We denote by
Sj DMj � fXj g.

Using the notation x.i::j / D .xi ; xiC1; :::; xj / and x D .x1; :::; xn/ we want to compute:

P.x1; e/ D
X

x.2::n/

P.x; e/ D
X

x.2::n�1/

X
xn

Y
i

P.xi ; ejxpai
/ :

Separating Xn from the rest of the variables results in:

D
X

x.2::n�1/

Y
Xi2X�Mn

P.xi ; ejxpai
/ �
X
xn

Y
Xi2Mn

P.xi ; ejxpai
/
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Figure 4.4: e bucket’s output when processing along d2 D A;F;D;C;B;G.

D
X

x.2::n�1/

Y
Xi2X�Mn

P.xi ; ejxpai
/ � �n.xSn

/

where
�n.xSn

/ D
X
xn

Y
Xi2Mn

P.xi ; ejxpai
/: (4.7)

e process continues recursively with Xn�1.
us, the computation performed in bucket Xn is captured by Eq. (4.7). Given order-

ing d D X1; :::; Xn, where the queried variable appears first, the CPT s are partitioned us-
ing the rule described earlier. e computed function in bucketXp

is �Xp
and is defined

over the bucket’s scope, excluding Xp Sp D [�i2bucketXP
scope.�i / �Xp by �X D

P
Xp
 X �Q

�2bucketXp
�, where,  X D

Q
P2bucketX

P . is function is placed in the bucket of its largest-
index variable in Sp. Once processing reaches the first bucket, we have all the information to
compute the answer which is the product of those functions. If we also process the first bucket
we get the probability of the evidence. Algorithm BE-bel is described in Figure 4.5 (step 3 will
elaborate more shortly). With the above derivation we showed the following.
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A BE-
Input: A belief network B D hX;D;PG ;

Q
i, an ordering d D . X1; : : : ; Xn) ; evidence e

output: e belief P.X1je/ and probability of evidence P.e/
1. Partition the input functions (CPTs) into bucket1, …, bucketn as follows:

for i  n downto 1, put in bucketi all unplaced functions mentioning Xi .
Put each observed variable in its bucket. Denote by  i the product of input
functions in bucketi .

2. backward: for p  n downto 1 do
3. for all the functions  S0

; �S1
; : : : ; �Sj

in bucketp do
If (observed variable) Xp D xp appears in bucketp,
assign Xp D xp to each function in bucketp and then
put each resulting function in the bucket of the closest variable in its scope.
else,

4. �p  
P
Xp
 p �

Qj
iD1 �Si

5. place �p in bucket of the latest variable in scope(�p),
6. return (as a result of processing bucket1):

P.e/ D ˛ D
P
X1
 1 �

Q
�2bucket1

�

P.X1je/ D
1
˛
 1 �

Q
�2bucket1

�

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

eorem4.3 Sound and complete. AlgorithmBE-Bel applied along any ordering that starts with
X1 computes the belief P.X1je/. It also computes the probability of evidence P.e/ as the inverse of the
normalizing constant in the first bucket. �

e bucket’s operations for BE-bel
Processing a bucket requires the two types of operations on the functions in the buckets, combina-
tions, and marginalization. e combination operation in this case is a product, which generates
a function whose scope is the union of the scopes of the bucket’s functions. e marginalization
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operation is summation, summing out the bucket’s variable. e algorithm often referred to as
being a sum-product algorithm.

Example 4.4 Let’s look at an example of both of these operations in a potential bucket of B
assuming it contains only two functions, P.F jB;C / and P.BjA/. ese functions are displayed
in Figure 4.6. To take the product of the functions P.F jB;C / and P.BjA/ we create a function
over F;B;C;A where for each tuple assignment, the function value is the product of the respec-
tive entries in the input functions. To eliminate variable B by summation, we sum the function
generated by the product, over all values in of variable B . We say that we sum out variable B . e
computation of both the product and summation operators are depicted in Figure 4.7.

B C F P.F jB;C /

false false true 0.1
true false true 0.9
false true true 0.8
true true true 0.95

A B P.BjA/

summer false 0.2
fall false 0.6

winter false 0.9
spring false 0.4

Figure 4.6: Examples of functions in the bucket of B .

e implementation details of the algorithm to perform these operations might have a sig-
nificant impact on the performance. In particular, much depends on how the bucket’s functions
are represented. If, for example, the CPT s are represented as matrices, then we can exploit effi-
cient matrix multiplication algorithms. is important issue is outside the scope of this book.

4.1.2 COMPLEXITYOFBE-bel
Although BE-bel can be applied along any ordering, its complexity varies considerably across
different orderings. Using ordering d1 we recorded � functions on pairs of variables only, while
using d2 we had to record functions on as many as four variables (see BucketC in Figure 4.4a).
e arity (i.e., the scope size) of the function generated during processing of a bucket equals
the number of variables appearing in that processed bucket, excluding the bucket’s variable itself.
Since computing and recording a function of arity r is time and space exponential in r we conclude
that the complexity of the algorithm is dominated by its largest scope bucket and it is therefore
exponential in the size (number of variables) of the bucket having the largest number of variables.
e base of the exponent is bounded by a variable’s domain size.

Fortunately, as was observed earlier for adaptive-consistency, the bucket sizes can be easily
predicted from the elimination process along the ordered graph. Consider the moral graph of a
given Bayesian network.is graph has a node for each variable and any two variables appearing in
the same CPT are connected. e moral graph of the network in Figure 4.1(a) is given in Figure
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A B C F f .A;B; C; F / D P.F jB;C / � P.BjA/

summer false false true 0.2 � 0.1 =0.02
summer false true true 0.2 � 0.8 =0.16

fall false false true 0.6 � 0.1 = 0.06
fall false true true 0.6 � 0.8 = 0.46

winter false false true 0.9 � 0.1 = 0.09
winter false true true 0.9 � 0.8 = 0.72
spring false false true 0.4 � 0.1 =0.04
spring false true true 0.4 � 0.8 =0.32
summer true false true 0.8 � 0.9 =0.72
summer true true true 0.8 � 0.95 =0.76

fall true false true 0.4 � 0.9 =0.36
fall true true true 0.4 � 0.95 =0.38

winter true false true 0.1 � 0.9 =0.09
winter true true true 0.1 � 0.95 =0.095
spring true false true 0.6 � 0.9 =0.42
spring true true true 0.6 � 0.95 =0.57

A C F �B.A;B; F / D
P
B f .A;B; C; F /

summer false true 0.02+0.72 = 0.74
fall false true 0.06 + 0.36 = 0.42

winter false true 0.09 +0.09 = 0.18
spring false true 0.04 + 0.42 = 0.46
summer true true 0.72 + 0.16 = 0.88

fall true true 0.46 + 0.38 = 0.84
winter true true 0.72 + 0.095 = 0.815
spring true true 0.32 + 0.57 = 0.89

Figure 4.7: Processing the functions in the bucket of B .

4.1(b). If we take this moral graph and impose an ordering on its nodes, the induced-width of
the ordered graph of each nodes captures the number of variables which would be processed in
that bucket. We demonstrate this next.

Example 4.5 Recall the definition of induced graph (Definition 3.7). e induced moral graph
in Figure 4.8, relative to ordering d1 D A;C;B; F;D;G is depicted in Figure 4.8a. Along this
ordering the induced ordered graph was not added any edges over the original graph, since all
the earlier neighbors of each node are already connected. e induced width of this graph is 2.
Indeed, in this case, the maximum arity of functions recorded by the algorithm is 2. For ordering
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Figure 4.8: Two orderings, d1 (a) and d2 (b), of our example moral graph. In (c) the induced graph
along ordering d2.

d2 D A;F;D;C;B;G, the ordered moral graph is depicted in Figure 4.8b and the induced graph
is given in Figure 4.8c. In this ordering, the induced width is not the same as the width. For
example, the width of C is initially 2, but its induced width is 3. e maximum induced width
over all the variables in this ordering is 4 which is the induced-width of this ordering.

eorem 4.6 Complexity of BE-bel. Given a Byaesian network whose moral graph is G, let
w�.d/ be its induced width of G along ordering d , k the maximum domain size, and r be the num-
ber of input CPT s. e time complexity of BE-bel is O.r � kw�.d/C1/ and its space complexity is
O.n � kw

�.d// (see Appendix for a proof ).

4.1.3 THE IMPACTOFOBSERVATIONS
In this section we will see that observations, which are variable assignments, can have two oppos-
ing effects on the complexity of bucket-elimination BE-bel. One effect is of universal simplifica-
tion and applies to any graphical model, while the other introduces complexity but is specific to
likelihood queries over Bayesian networks.

Evidence removes connectivity
e presence of observed variables, which we call evidence in the Bayesian network context, is
inherent to queries over probabilistic networks. From a computational perspective evidence is just
an assignments of values to a subset of the variables. It turns out that the presence of such partial
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assignments can significantly simplify inference algorithms such as bucket elimination. In fact,
we will see that this property of variable instantiations, or conditioning, as it is sometime called, is
the basis for algorithms that combine search and variable-elimination, to be discussed in Chapter
7.

Take our belief network example with ordering d1 and suppose we wish to compute the
belief inA, having observedB D b0. When the algorithm arrives at bucketB , the bucket contains
the three functions P.bja/, �D.b; a/, and �F .b; c/, as well as the observation B D b0 (see Figure
4.3 and addB D b0 to bucketB ). Note that b0 represent a specific value in the domain ofB while
b stands for an arbitrary value in its domain.

e processing rule dictates computing �B.a; c/ D P.b0ja/�D.b0; a/�F .b0; c/. Namely,
generating and recording a two-dimensioned function. It would be more effective, however, to
apply the assignment b0 to each function in the bucket separately and then put the individual
resulting functions into lower buckets. In other words, we can generate �1.a/ D P.b0ja/ and
�2.a/ D �D.b0; a/, each of which has a single variable in its scope which will be placed in bucket
A, and �F .b0; c/, which will be placed in bucket C . By doing so, we avoid increasing the di-
mensionality of the recorded functions. In order to exploit this we introduce a special rule for
processing buckets with observations (see step 3 in the algorithm): the observed value is assigned
to each function in a bucket, and each function generated by this assignment is moved to the
appropriate lower bucket.

Considering now ordering d2, bucketB contains P.bja/; P.d jb; a/; P.f jc; b/; and B D
b0 (see Figure 4.4a). e special rule for processing buckets holding observations will place the
functionP.b0ja/ in bucketA,P.d jb0; a/ in bucketD , andP.f jc; b0/ in bucketF . In subsequent
processing only one-dimensional functions will be recorded. We see that in this case too the
presence of observations reduces complexity: buckets of observed variables are processed in linear
time and their recorded functions do not create functions on new subsets of variables.

Alternatively, we could just preprocess all the functions in which B appears and assign each
the value b0. is will reduce those functions scope and remove variable B altogether. We can
then apply BE to the resulting pre-processed problem. Both methods will lead to an identical
performance, but using an explicit rule for observations during BE allows for a more general
and dynamic treatment. It can later be generalized by replacing observations by more general
constraints (see Section 4.5).

In order to see the implication of the observation rule computationally, we can modify the
way we manipulate the ordered moral graph and will not add arcs among parents of observed
variables when computing the induced graph. is will permit a tighter bound on complexity. To
capture this refinement we use the notion of conditional induced graph.

Definition 4.7 Conditional induced-width. Given a graph G, the conditional induced graph
relative to ordering d and evidence variables E, denoted w�E.d/, is generated, processing the
ordered graph from last to first, by connecting the earlier neighbors of unobserved nodes only.
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e conditional inducedwidth is the width of the conditional induced graph, disregarding observed
nodes.

For example, in Figure 4.9a-b we show the ordered moral graph and induced ordered moral
graph of the graph in Figures 4.1a–b. In Figure 4.9c the arcs connected to the observed node
B are marked by broken lines and are disregarded, resulting in the conditional induced-graph.
Modifying the complexity in eorem 4.6, we get the following.

Figure 4.9: Adjusted induced graph relative to observing B .

eorem4.8 Given a Bayesian network having n variables, algorithm BE-bel when using ordering
d and evidence on variables E D e, is time and space exponential in the conditional induced width
w�E.d/ of the network’s ordered moral graph. Specifically, its time complexity is O.r � kw

�
E.d/C1/ and

its space complexity is O.n � kw�
E.d//. �

It is easy to see that the conditional induced width is the induced width obtained by re-
moving the evidence variables altogether (which correspond to the alternative preprocessing men-
tioned above).
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Evidence creating connectivity: relevant subnetworks
We saw that observation can simplify computation. But, in Bayesian networks observation can
also complicate inference. For example, when there is no evidence, computing the belief of a
variable depends only on its non-descendant portion. is is because Bayesian networks functions
are local probability distributions, and such functions, by definition, sum to 1. If we identify the
portion of the network that is irrelevant, we can skip processing some of the buckets. For example,
if we use a topological ordering from root to leaves along the directed acyclic graph (where parents
precede their child nodes) and assuming that the queried variable is the first in the ordering, we
can identify skippable buckets dynamically during processing.

Proposition 4.9 Given a Bayesian network and a topological ordering X1; :::; Xn, that begins a
query variable X1, algorithm BE-bel, computing P.X1je/, can skip a bucket if during processing the
bucket contains no evidence variables and no newly computed messages.

Proof: If topological ordering is used, each bucket of a variable X contains initially at most one
function, P.X jpa.X//. Clearly, if there is neither evidence nor new functions in the bucket the
summation operation

P
x P.xjpa.X// will yield the constant 1. �

Example 4.10 Consider again the belief network whose acyclic graph is given in Figure 4.1a
and the ordering d1 D A;C;B; F;D;G. Assume we want to update the belief in variable A given
evidence on F . Obviously the buckets of G and D can be skipped and processing should start
with bucketF . Once bucketF is processed, the remaining buckets in the ordered processing are
not skippable.

Alternatively, we can prune the non-relevant portion of the Bayesian network in advance,
before committing to any processing ordering. e relevant subnetwork is called ancestral subnet-
work and is defined recursively as follows.

Definition 4.11 Ancestral graph. Given a Bayesian network’s directed graphG D .X;E/, and
a query involving variables S (including the evidence variables), the ancestral graph of G, Ganc ,
relative to S � X, includes all variables in S and if a node is in Ganc , its parents are also in Ganc .

Example 4.12 Continuing with the example from Figure 4.1a, and assuming we want to assess
the belief in A given evidence on F , the relevant ordered moral graph in Figures 4.1b should be
modified by deleting nodes D and G. e resulting graph has nodes A;B; C , and F only.

eorem 4.13 Given a Bayesian B D hX;D;PG ;
Q
i and a query P.Y je/, when Y � X and

E � X is the evidence variable set, we can compute P.Y je/ by considering only the ancestral Bayesian
network defined by GY[E. (Exercise: Prove the theorem.)
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4.2 BUCKETELIMINATIONFOROPTIMIZATIONTASKS
Belief-updating answers the question: “What is the likelihood of a variable given the observed
data?” Answering that question, however, is often not enough; we want to be able to find the most
likely explanation for the data we encounter. is is an optimization problem, and while we pose
the problem here on a probabilistic network, it is a problem that is representative of optimization
tasks on many types of graphical model. e query is called mpe.

e most probable explanation (mpe) task appears in numerous applications. Examples
range from diagnosis and design of probabilistic codes to haplotype recognition in the context of
family trees, and medical and circuit diagnosis. For example, given data on clinical findings, it may
suggest the most likely disease a patient is suffering from. In decoding, the task is to identify the
most likely input message which was transmitted over a noisy channel, given the observed output.
Although the relevant task here is finding the most likely assignment over a subset of hypothesis
variables which would correspond to a marginal map query, the mpe is close enough and is often
used in applications (see [Darwiche, 2009] for more examples). Finally, the queries of mpe/map
(see Chapter 2) drive most of the learning algorithms for graphical model [Koller and Friedman,
2009]. Our focus here is on algorithms for answering such queries on a given graphical model.

4.2.1 A BUCKETELIMINATIONALGORITHMFORMPE
Given a Bayesian network B D hX;D;PG ;

Q
i, the mpe task seeks an assignment to all the vari-

ables that has the maximal probability given the evidence. Namely, the task is to find a full
instantiation x0 such that P.x0/ D maxx P.x; e/, where denoting x D .x1; :::; xn/, P.x; e/ DQ
i P.xi ; ejxpai

/. (Remember the xpai
is the assignments to x restricted to the variables in the

parent set of Xi .) Given a variable ordering d D X1; :::; Xn, we can accomplish this task by per-
forming maximization operation, variable by variable, along the ordering from last to first (i.e.,
right to left), migrating to the left all CPTs that do not mention the maximizing variable. We
will derive this algorithm in a similar way to that in which we derived BE-bel. Using the notation
defined earlier for operations on functions, our goal is to findM , s.t.

M D max
x
P.x.1::n/; e/ D max

x.1::n�1/

max
xn

Y
i

P.xi ; ejxpai
/

D max
x.1::n�1/

Y
Xi2X�Mn

P.xi ; ejxpai
/ �max

xn

P.xn; ejxpan
/
Y

Xi2Mn

P.xi ; ejxpai
/

D max
x.1::n�1/

Y
Xi2X�Mn

P.xi ; ejxpai
/ � hn.xSn

/

where
hn.xSn

/ D max
xn

P.xn; ejxpan
/
Y

Xi2Mn

P.xi ; ejxpai
/
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and Sn is the scope of the generated function hn, andMn is the Markov blanket ofXn. Clearly, the
algebraicmanipulation of the above expressions is the same as the algebraicmanipulation for belief
updating where summation is replaced by maximization. Consequently, the bucket elimination
procedure BE-mpe is identical to BE-bel except for this change in the margnalization operator.

Given ordering d D .X1; :::; Xn/, the conditional probability tables are partitioned as
before. To process each bucket, we take the product of all the functions that reside in the
bucket and then eliminate the bucket’s variable by maximization. We distinguish again between
the original function in the bucket whose product is denoted  p and the messages, which in
this case will be denoted by h. e generated function in the bucket of Xp is hp W Sp ! R,
hp D maxXp

 p �
Qj
iD1 hi , where Sp D scope. p/ [ [iscope.hi / � fXpg, is the order restricted

Markov blanket and it is placed in the bucket of its largest-index variable in Sp. If the function
is a constant, we can place it directly in the first bucket; constant functions are not necessary to
determine the exact mpe value.

Bucket processing continues from the last to the first variable. Once all buckets are pro-
cessed, thempe value can be extracted as the maximizing product of functions in the first bucket.
At this point we know the mpe value but we have not generated an optimizing tuple (also called
configuration). e algorithm initiates a forward phase to compute an mpe tuple by assigning
values to the variables along the ordering from X1 to Xn, consulting the information recorded
in each bucket. Specifically, the value xi of Xi is selected to maximize the product in bucketi
given the partial assignment x.1::.i�1// D .x1; :::; xi�1/.e algorithm is presented in Figure 4.10.
Observed variables are handled as in BE-bel.

Example 4.14 Consider again the belief network in Figure 4.1a. Given the ordering d D
A;C;B; F;D;G and the evidence G D 1, we process variables from last to first once partition-
ing the conditional probability functions into buckets, as was shown in Figure 4.2 To process
G, assign G D 1, get hG.f / D P.G D 1jf / and place the result in bucketF . We next process
bucketD by computing hD.b; a/ D maxd P.d jb; a/ and put the result in bucketB . Bucket F ,
which is next to be processed, now contains two functions: P.f jb; c/ and hG.f /. We Com-
pute hF .b; c/ D maxf p.f jb; c/ � hG.f /, and place the resulting function in bucketB . To pro-
cess bucketB , we record the function hB.a; c/ D maxb P.bja/ � hD.b; a/ � hF .b; c/ and place it
in bucketC . To process C (to eliminate C ), we compute hC .a/ D maxc P.cja/ � hB.a; c/ and
place it in bucketA. Finally, the mpe value given in bucketA,M D maxa P.a/ � hC .a/, is deter-
mined. Next, the mpe configuration is generated by going forward through the buckets. First,
the value a0 satisfying a0 D argmaxaP.a/hC .a/ is selected. Subsequently, the value of C , c0 D
argmaxcP.cja

0/hB.a
0; c/ is determined. Next, b0 D argmaxbP.bja0/hD.b; a0/hF .b; c0/ is

selected, and so on. e schematic computation is the same as in Figure 4.3 where � is simply
replaced by h.
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Algorithm BE-mpe
Input: A belief network B D hX;D;PG ;

Q
i, where P D fP1; :::; Png; an ordering of the

variables, d D X1; :::; Xn; observations e.
Output: e most probable configuration given the evidence.
1. Initialize:Generate an ordered partition of the conditional probability function, bucket1, : : :,
bucketn, where bucketi contains all functions whose highest variable is Xi . Put each observed
variable in its bucket. Let  i be the product of input function in a bucket and let hi be the
messages in the bucket.

2. Backward: For p  n downto 1, do
for all the functions h1; h2; :::; hj in bucketp, do

• If (observed variable) bucketp containsXp D xp, assignXp D xp to each function and put
each in appropriate bucket.

• else, Generate functions hp ( maxXp
 p �˘

j
iD1hi

Add hp to the bucket of the largest-index variable in scope.hp/.

3. Forward:

• Generate the mpe cost by maximizing over X1, the product in bucket1. Namely mpe D
maxX1

 1
Q
j h1j

.

• (generate an mpe tuple)
For i D 1 to n along d do: Given x.1::.i�1// D .x1; :::; xi�1/ Choose xoi D argmaxXi

 i �

˘fhj2 bucketi ghj .x.1::.i�1///.

4. Output: mpe and configuration xo.

Figure 4.10: Algorithm BE-mpe.

e backward process can be viewed as a compilation phase in which we compile informa-
tion regarding the most probable extension (cost to go) of partial tuples to variables higher in the
ordering.

Complexity. As in the case of belief updating, the complexity of BE-mpe is bounded exponen-
tially by the arity of the recorded functions, and those functions depend on the induced width
and the evidence

eorem 4.15 Soundness and Complexity. Algorithm BE-mpe is complete for the mpe task. Its
time and space complexity areO.r � kw�

E.d/C1/ andO.n � kw�
E.d//, respectively, where n is the number
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of variables, k bound the domain size andw�E.d/ is the induced width of the ordered moral graph along
d , conditioned on the evidence E. �

4.2.2 A BUCKETELIMINATIONALGORITHMFORMAP
e maximum a’posteriori hypothesismap¹ task is a generalization of both mpe and belief updat-
ing. It asks for the maximal probability associated with a subset of hypothesis variables and is widely
applicable especially for diagnosis tasks. Belief updating is the special case where the hypothesis
variables are just single variables. e mpe query is the special case when the hypothesis variables
are all the unobserved variables. We will see that since it is a mixture of the previous two tasks, in
its bucket-elimination algorithm some of the variables are eliminated by summation while others
by maximization.

Given a Bayesian network, a subset of hypothesized variables A D fA1; :::; Akg, and
some evidence e, the problem is to find an assignment (i.e., configuration) to A having max-
imum probability given the evidence compared with all other assignments to A. Namely,
the task is to find ao D argmaxa1;:::;ak

P.a1; :::; ak; e/ (see also Definition 2.22). So, we
wish to compute maxa1::k

P.a1; :::; ak; e/ D maxa1::k

P
x.kC1::n/

Qn
iD1 P.xi ; ejxpai

/ where x D

.a1; :::; ak; xkC1; :::; xn/. Algorithm BE-map in Figure 4.11 considers only orderings in which the
hypothesized variables start the ordering because summation should be applied first to the subset
of variables which are in X �A, and subsequently maximization is applied to the variables in A.
Since summation and maximization cannot be permuted we have to be restricted in the orderings.
Like BE-mpe, the algorithm has a backward phase and a forward phase, but the forward phase
is restricted to the hypothesized variables only. Because only restricted orderings are allowed, the
algorithm may be forced to have far higher induced-width than would otherwise be allowed.

eorem4.16 Algorithm BE-map is complete for the map task for orderings started by the hypothesis
variables. Its time and space complexity are O.r � kw�

E.d/C1/ and O.n � kw�
E.d//, respectively, where

n is the number of variables in graph, k bounds the domain size and w�E.d/ is the conditioned induced
width of its moral graph along d , relative to evidence variables E. (Prove as an exercise.) �

4.3 BUCKETELIMINATIONFORMARKOVNETWORKS
Recalling Definition 2.23 of a Markov network which is presented here for convenience.

Definition 4.17 Markov networks. A Markov network is a graphical model M D h

X;D;H;
Q
i where HD f 1; : : : ;  mg is a set of potential functions where each potential  i

¹Sometimes map is meant to refer to the mpe, and the map task is called marginal map.
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Algorithm BE-map
Input: A Bayesian network B D hX;D;PG ;

Q
i, P D fP1; :::; Png; a subset of hypothesis vari-

ables A D fA1; :::; Akg; an ordering of the variables, d , in which the A’s are first in the ordering;
observations e.  i is the product of input function in the bucket of Xi .
Output: A most probable assignment A D a.
1. Initialize: Generate an ordered partition of the conditional probability functions, bucket1,
: : :, bucketn, where bucketi contains all functions whose highest variable is Xi .
2. Backwards For p  n downto 1, do
for all the message functions ˇ1; ˇ2; :::; ǰ in bucketp and for  p do

• If (observed variable) bucketp contains the observation Xp D xp, assign Xp D xp to each
ˇi and  p and put each in appropriate bucket.

• else, If Xp is not in A, then p̌ (
P
Xp
 p �˘

j
iD1ˇi ;

else, (Xp 2 A), p̌ ( maxXp
 p �

Qj
iD1 ˇi

Place p̌ in the bucket of the largest-index variable in scope. p̌/.

3. Forward: Assign values, in the ordering d D A1; :::; Ak , using the information recorded in
each bucket in a similar way to the forward pass in BE-mpe.
4. Output: Map and the corresponding configuration over A.

Figure 4.11: Algorithm BE-map.

is a non-negative real-valued function defined over a scope of variables Si . e Markov network
represents a global joint distribution over the variables X given by:

P.x/ D 1

Z

mY
iD1

 i .x/ ; Z D
X
x

mY
iD1

 i .x/

where the normalizing constant Z is referred to as the partition function.

It is easy to see that the bucket-elimination algorithms we presented for Bayesian networks
are immediately applicable to all the main queries over Markov networks. All we need to do
is replace the input conditional probabilities through which a Bayesian network is specified by
the collection of local potential functions or factors denoted by  .:/. e query of computing
posterior marginals is accomplished by BE-bel, computing mpe and map are accomplished by
BE-mpe and BE-map, respectively. Since the partition function is identical, mathematically to
the expression of probability of evidence, the task of computing Z is identical algorithmically to
the task of computing the probability of the evidence.
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4.4 BUCKETELIMINATIONFORCOSTNETWORKSAND
DYNAMICPROGRAMMING

As we mentioned at the outset, bucket-elimination algorithms are variations of a very well known
class of optimization algorithms known as Dynamic Programming [Bellman, 1957; Bertele and
Brioschi, 1972]. Here we make the connection explicit, observing that BE-mpe is a dynamic
programming scheme with some simple transformations.

at BE-mpe is dynamic programming becomes apparent once we transform thempe’s cost
function, which has a product combination operator, into the traditional additive combination
operator using the log function. For example,

P.a; b; c; d; f; g/ D P.a/P.bja/P.cja/P.f jb; c/P.d ja; b/P.gjf /

becomes

C.a; b; c; d; e/ D �logP D C.a/C C.b; a/C C.c; a/C C.f; b; c/C C.d; a; b/C C.g; f /

where each Ci D � logPi .
e general dynamic programming algorithm is defined over cost networks (see Section 2.4).

As we showed a cost network is a tuple C D hX;D;F ;
P
i, where X D fX1; :::; Xng are variables

over domains D D fD1; :::;Dng, F is a set of real-valued cost functions C1; :::; Cl , defined over
scopes S1; :::; Sl . e task is to find an assignment or a configuration to all the variables that
minimizes the global function

P
i Ci .

A straightforward elimination process similar to that of BE-mpe (where the product is
replaced by summation and maximization by minimization) yields the non-serial dynamic pro-
gramming algorithm in [Bertele and Brioschi, 1972]. e algorithm, called here BE-opt, is given
in Figure 4.12. Evidence is not assumed to be part of the input, so this part of the algorithm is
omitted.

A schematic execution of our example along ordering d D G;A; F;D;C;B is depicted in
Figure 4.13. It is identical to what we saw for BE-mpe, except that the generated functions are
computed by min-sum, instead of max-product. Not surprisingly, we can show the following.

eorem 4.18 Given a cost network C D hX;D;F ;
P
i, BE-opt is complete for finding an optimal

cost solution. Its time and space complexity areO.r � kw�.d/C1/ andO.n � kw�.d//, respectively, where
n is the number of variables in graph, k bounds the domain size, and w�.d/ is the induced width of its
primal graph along d . �

Consulting again the various classes of cost networks elaborated up on in Section 2.4, al-
gorithm, BE-opt is applicable to all including weighted-csps, max-csps and max-sat.
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Algorithm BE-opt
Input: A cost network C D hX;D;F ;

P
i, F D fC1; :::; Cl g; ordering d .

Output: A minimal cost assignment.
1. Initialize: Partition the cost components into buckets. Define  i as the sum of the input cost functions in
bucket Xi .
2. Process buckets from p  n downto 1
For  p and the cost messages h1; h2; :::; hj in bucketp , do:

• (sum and minimize):
hp ( minXp

. p C
Pj
iD1 hi /. Place hp into the largest index variable in its scope.

3. Forward: Assign minimizing values in ordering d , consulting functions in each bucket (as in BE-mpe).
4. Return: Optimal cost and an optimizing assignment.

Figure 4.12: Dynamic programming as BE-opt.

min

Figure 4.13: Schematic execution of BE-opt.

4.5 BUCKETELIMINATIONFORMIXEDNETWORKS
e last class of graphical models we will address is mixed network defined in Section 2.6. To
refresh, these models allow the explicit representation of both probabilistic information and con-
straints. e mixed network is defined by a pair of a Bayesian network and a constraint network.
is pair expresses a probability distribution over all the variables which is conditioned on the
requirement that all the assignments having non-zero probability satisfy all the constraints.

We will focus only on the task that is unique to this graphical model, the constraint prob-
ability evaluation (CPE), which can also stand for CNF probability evaluation. Given a mixed
network M.B;'/, where ' is a CNF formula defined on perhaps a subset of propositional vari-
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ables and B is a Bayesian network, the CPE task is to compute P.x 2Mod.'//, where the
models of ' are denoted by Mod.'/ and are the assignments to all the variables satisfying the
formula '. We denote by PB.'/ the probability that PB.x 2Mod.'//. We denote by X' the set
of variables in the scope of '. By definition,

PB.'/ D
X

x'2Mod.'/

P.x'/

Using the belief network product form we get:

PB.'/ D
X

fxjx'2Mod.'/g

nY
iD1

P.xi jxpai
/:

We separate the summation over Xn and the rest of the variables X � fXng as usual and denote
by 'CXn

the set of all clauses defined onXn (there may be none if it is not a proposition in ') and
by '�Xn

all the rest of the clauses which are not defined on Xn. We get (denoting P.Xi jxpai
/ by

Pi ):

PB.'/ D
X

fx.1::n�1/jx'�Xn
2Mod.'�Xn /g

X
fxnjx'CXn

2Mod.'CXn /g

nY
iD1

P.xi jxpai
/:

Let tn be the set of indices of functions in the product that do not mention Xn, namely, are not in
'CXn

and by ln D f1; : : : ; ng n tn we get:

PB.'/ D
X

fx.1::n�1/jx'�Xn
2Mod.'�Xn /g

Y
j2tn

Pj �
X

fxnjx'CXn
2Mod.'CXn /g

Y
j2ln

Pj :

erefore:
PB.'/ D

X
fx.1::n�1/jx'�Xn

2Mod.'�Xn /g

.
Y
j2tn

Pj / � �Xn
;

where �Xn
is defined over Un D scope.'CXn

/, by

�Xn
D

X
fxnjxUn2Mod.'CXn /g

Y
j2ln

Pj : (4.8)

e case of observed variables. When Xn is observed, that is constrained by a literal, the sum-
mation operation reduces to assigning the observed value to each of its CPTs and to each of the
relevant clauses. In this case, Eq. (4.8) becomes (assume Xn D xn and P.Dxn/ is the function
instantiated by assigning xn to Xn):

�Xn
D
Y
j2ln

Pj .Dxn/
; if xUn

2Mod.'CXn
/ ^ .Xn D xn//: (4.9)
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Algorithm 1: BE-
Input: A belief network M D .B;≃/, B D hX;D;PG ;

Q
i, where B D fP1; :::; Png; a

CNF formula on k propositions ' D f˛1; :::˛mg defined over k propositions;
an ordering of the variables, d D fX1; : : : ; Xng.

Output: e belief P.'/.
Place buckets with unit clauses last in the ordering (to be processed first).1

// Initialize
Partition B and ' into bucket1; : : : ; bucketn, where bucketi contains all the CPTs
and clauses whose highest variable is Xi .
Put each observed variable into its appropriate bucket. (We denote probabilistic
functions by �s and clauses by ˛s).
for p  n downto 1 do // Backward2

Let �1; : : : ; �j be the functions and ˛1; : : : ; ˛r be the clauses in bucketp
Process-bucketp(

P
, (�1; : : : ; �j ),(˛1; : : : ; ˛r ))

return P.'/ as the result of processing bucket1.3

Otherwise, �Xn
D 0. Since a tuple xUn

satisfies 'CXn
^ .Xn D xn/ only if xUn�Xn

satisfies the
resolvent clause n D resolve.'CXn

; .Xn D xn//, we get:

�Xn
D
Y
j2ln

Pj .Dxn/
; if x.Un�Xn/ 2Mod.n/: (4.10)

We can, therefore, extend the case of observed variable in a natural way: CPTs are assigned the
observed value as usual while clauses are individually resolved with the unit clause .Xn D xn/,
and both are moved to appropriate lower buckets. is yields the following.

To Initialise, place all CPTs and clauses mentioning Xn in its bucket and then com-
pute the function in Eq. (4.8). e computation of the rest of the expression proceeds with
Xn�1 in the same manner. is yields algorithm BE- described in Figure 1 and Procedure
Process-bucketp. e elimination operation is summation for the current query. us, for ev-
ery ordering of the propositions, once all the CPTs and clauses are partitioned, we process the
buckets from last to first, in each applying the following operation. Let �1; :::�t be the proba-
bilistic functions in bucketP and ' D f˛1; :::˛rg be the clauses. e algorithm computes a new
function �P over Sp D scope.�1; :::�t / [ scope.˛1; :::˛r/ � fXpg defined by:

�P D
X

fxp jx'2Mod.˛1;:::;˛r /g

Y
j

�j :

Example 4.19 Consider the belief network in Figure 4.14, which is similar to the one in Figure
2.5, and the query ' D .B _ C/ ^ .G _D/ ^ .:D _ :B/. e initial partitioning into buckets
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Procedure Process-bucketp(
P

, (�1; : : : ; �j),(˛1; : : : ; ˛r ) ).
if bucketp contains evidence Xp D xp then

1. Assign Xp D xp to each �i and put each resulting function in the bucket of its
latest variable
2. Resolve each ˛i with the unit clause, put non-tautology resolvents in the buckets
of their latest variable and move any bucket with unit clause to top of processing

else
�p  

P
fxp jxUp2Mod.˛1;:::;˛r /g

Qj
iD1 �i

Add �p to the bucket of the latest variable in Sp, where
Sp D scope.�1; :::; �j ; ˛1; :::; ˛r/, Up D scope.˛1; :::; ˛r ).

A

F

B C

D

G

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Figure 4.14: Belief network.

along the ordering d D A;C;B;D;F;G, as well as the output buckets are given in Figure 4.15.
We compute:
In Bucket G: �G.f; d/ D

P
fgjg_dDtrueg P.gjf /

In BucketF : �F .b; c; d/ D
P
f P.f jb; c/�G.f; d/

In BucketD : �D.a; b; c/ D
P
fd j:d_:bDtrueg P.d ja; b/�F .b; c; d/

In BucketB : �B.a; c/ D
P
fbjb_cDtrueg P.bja/�D.a; b; c/�F .b; c/

In BucketC : �C .a/ D
P
c P.cja/�B.a; c/

In BucketA: �A D
P
a P.a/�C .a/

P.'/ D �A.

For example in bucketG , �G.f; d D 0/ D P.g D 1jf /, because if D D 0 g must get the
value “1”, while �G.f; d D 1/ D P.g D 0jf /C P.g D 1jf /. In summary, we have the follow-
ing.

eorem 4.20 Correctness and completeness. Algorithm BE-cpe is sound and complete for the
CPE task.
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Bucket G:    P(G|F,D)

Bucket F:    P(F|B,C)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A)

Bucket C:   P(C|A)

Bucket A:   P(A)

)( CB∨ ),,( CBADλ

)( DG ∨
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Figure 4.15: Execution of BE-CPE.

Bucket G:    P(G|F,D)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A),P(F|B,C),

Bucket C:   P(C|A)

Bucket F:

Bucket A:

)( CB ∨ ),( BA
Dλ

),( CFBλ

)(
1
ABλ

G   )( ¬∨ DG

D        ),(  ), ( DFBD Gλ¬∨¬

)(FCλ

)(
2
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λ

C

)(ϕP

B¬
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Figure 4.16: Execution of BE-CPE (evi-
dence :G).

It is easy to see that the complexity of the algorithm depends on the mixed graph which is
the union of the moral graph and the constraint graph, in the usual way.

eorem 4.21 Complexity of BE-cpe. Given a mixed networkMB;' having mixed graph is G,
with w�.d/ its induced width along ordering d , k the maximum domain size and r be the number of
input functions. e time complexity of BE-cpe is O.r � kw�.d/C1/ and its space complexity is O.n �
kw

�.d//. (Prove as an exercise.)

Notice that algorithm BE-cpe also includes a unit resolution step whenever possible (see
Procedure Process-bucketp) and a dynamic reordering of the buckets that prefers processing
buckets that include unit clauses. is may have a significant impact on efficiency because treating
observations (namely unit clauses) in a special way can avoid creating new dependencies as we
already observed.

Example 4.22 Let’s now extend the example by adding :G to the query. is will place :G in
the bucket of G. When processing bucket G, unit resolution creates the unit clause D, which
is then placed in bucket D. Next, processing bucket F creates a probabilistic function on the
two variables B and C . Processing bucket D that now contains a unit clause will assign the
value D D 1 to the CPT in that bucket and apply unit resolution, generating the unit clause
:B that is placed in bucket B . Subsequently, in bucket B we can apply unit resolution again,
generating C placed in bucket C , and so on. In other words, aside from bucket F , we were able
to process all buckets as observed buckets, by propagating the observations (see Figure 4.16.) To
incorporate dynamic variable ordering, after processing bucket G, we move bucket D to the top
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of the processing list (since it has a unit clause). en, following its processing, we process bucket
B and then bucket C , then F , and finally A.

Since unit resolution increases the number of buckets having unit clauses, and since those
are processed in linear time, it can improve performance substantially. Such buckets can be iden-
tified a priori by applying unit resolution on the CNF formula or arc-consistency if we have a
constraint expression. In fact, any level of resolution can be applied in each bucket. is can yield
stronger CNF expressions in each bucket and may help improve the computation of the proba-
bilistic functions (see [Dechter, 2003]).

4.6 THEGENERALBUCKETELIMINATION
We now summarize and generalize the bucket elimination algorithm using the two operators of
combination andmarginalization. As presented in Chapter 2, the general task can be defined over a
graphical model M D hX;D;F ;˝i, where: X D fX1; :::; Xng is a set of variables having domain
of values D D fD1; :::;Dng and F D ff1; :::; fkg is a set of functions, where each fi is defined
over Si D scope.fi /. Given a function h and given Y � scope.h/, the (generalized) projection
operator +Y h, +Y h 2 fmaxS�Y h;minS�Y h; �Y h;

P
S�Y hg and the (generalized) combina-

tion operator j̋fj defined over U D [j scope.fj /, ˝kjD1fj 2 f˘k
jD1fj ;

Pk
jD1 fj ; ‰j fj g.

All queries require computing +Y ˝niD1fi : Such problems can be solved by a general bucket-
elimination algorithm stated in Figure 4.17. For example, BE-bel is obtained when +YD

P
S�Y

and j̋ D j̆ , BE-mpe is obtained when+YD maxS�Y and j̋ D j̆ , and adaptive consistency
corresponds to +YD �Y and j̋ D‰j . Similarly, Fourier elimination and directional resolution
can be shown to be expressible in terms of such operators. For mixed networks the combination
and marginalization are also well defined.

We will state briefly the properties of GBE.

eorem4.23 Correctness and complexity. AlgorithmGBE is sound and complete for its task. Its
time and space complexities is exponential in the w�.d/C 1 and w�.d/, respectively, along the order
of processing d .

4.7 SUMMARYANDBIBLIOGRAPHICALNOTES
In the last two chapters, we showed how the bucket-elimination framework can be used to unify
variable-elimination algorithms for both deterministic and probabilistic graphical models for var-
ious tasks. e algorithms take advantage of the structure of the graph. Most bucket-elimination
algorithms are time and space exponential in the induced width of the underlying dependency
primal graph of the problem.

Chapter 4 is based on Dechter’s Bucket-elimination algorithm that appeared in [Dechter,
1999]. Among the early variable elimination algorithms we find the peeling algorithm for genetic
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AlgorithmGeneral bucket elimination (GBE)
Input: M D hX;D;F ;˝i . F D ff1; :::; fng an ordering of the variables, d D X1; :::; Xn;

Y � X.

Output: A new compiled set of functions from which the query +Y ˝niD1fi can be derived
in linear time.

1. Initialize:Generate an ordered partition of the functions into bucket1; :::; bucketn, where
bucketi contains all the functions whose highest variable in their scope is Xi . An input func-
tion in each bucket  i ,  i D ˝niD1fi .
2. Backward: For p  n downto 1, do
for all the functions  p, �1; �2; :::; �j in bucketp, do

• If (observed variable) Xp D xp appears in bucketp, assign Xp D xp in  p and to each
�i and put each resulting function in appropriate bucket.

• else, (combine and marginalize)
�p  +Sp

 p ˝ .˝
j
iD1�i / and add �p to the largest-index variable in scope.�p/.

3. Return: all the functions in each bucket.

Figure 4.17: Algorithm General bucket elimination.

trees [Cannings et al., 1978], Zhang and Poole’s VE1 algorithm [Zhang and Poole, 1996], and
SPI algorithm by D’Ambrosio et al., [R.D. Shachter and Favero, 1990] which preceded both
BE-bel and VE1 and provided the principle ideas in the context of belief updating. Decimation
algorithms in statistical physics are also related and were applied to Boltzmann trees [Saul and
Jordan, 1994].

In [R. Dechter and Pearl, 1990] the connection between optimization and constraint satis-
faction and its relationship to dynamic programming is explicated. In the work of [Mitten, 1964;
Shenoy, 1992] and later in [Bistarelli et al., 1997] an axiomatic framework that characterize tasks
that can be solved polynomially over hyper-trees, is introduced.

4.8 APPENDIX: PROOFS
Proof ofeorem 4.6
During BE-bel, each bucket creates a � function which can be viewed as a message that it sends
to a parent bucket, down the ordering (recall that we process the variables from last to first). Since
to compute this function over w� variables the algorithm needs to consider all the tuples defined
on all the variables in the bucket, whose number is bounded by w� C 1, the time to compute the
function is bounded by kw�C1, and its size is bounded by kw� . For each of these kw�C1 tuple we
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need to compute its value by considering information from each of the functions in the buckets. If
ri is the number of the bucket’s original messages and degi is the number of messages it receives
from its children, then the computation of the bucket’s function is O..ri C degi C 1/kw

�C1/.
erefore, summing over all the buckets, the algorithm’s computation is bounded byX

i

.ri C degi � 1/ � k
w�C1:

We can argue that
P
i degi � n, when n is the number of variables, because only a single

function is generated in each bucket, and there are total of n buckets. erefore, the total com-
plexity can be bound by O..r C n/ � kw�C1/. Assuming r > n, this becomes O.r � kw�C1/. e
size of each �message isO.kw�

/. Since the total number of �messages is bounded by n, the total
space complexity is O.n � kw�

/. �
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C H A P T E R 5

Tree-Clustering Schemes
In this chapter, we take the bucket elimination algorithm a step further. We will show that bucket
elimination can be viewed as an algorithm that sends messages along a tree (the bucket tree).
e algorithm can then be augmented with a second set of messages passed from bottom to top,
yielding a message-passing schemes that belongs to the class of cluster tree elimination algorithms.

ese latter methods have received different names in different research areas, such as join-
tree clustering or junction-tree algorithms, clique-tree clustering, and hyper-tree decompositions.
We will refer to all these as cluster-tree processing schemes over tree-decompositions. Our algo-
rithms are applicable to a general reasoning problem described by P D hX;D;F ;

N
;+i, where

the first four elements identify the graphical model and the fifth identifies the reasoning task (see
Definition 2.2).

Important: we will assume the specific of probabilistic networks when developing the al-
gorithms and the reader can just make the appropriate generalization. Also we will allow abuse of
notation when including in a model its query operator whenever relevant. Henceforth we assume
M D hX;D;F ;

Q
;
P
i.

5.1 BUCKET-TREEELIMINATION
e bucket-elimination algorithm, BE-bel (see Figure 4.5) for belief updating is designed to com-
pute the belief of the first node in a given ordering, and the probability of evidence. However, it
is often desirable to answer the belief query for each and every variable in the network. A brute-
force approach will require running BE-bel n times, each time with a different variable at the start
of the ordering. We will show next that this is unnecessary. By viewing bucket-elimination as a
message passing algorithm along a rooted bucket tree, we can augment it with a second message
passing phase in the opposite direction, from root to leaves, achieving the same goal.

Example 5.1 Consider our ongoing Bayesian network example defined over the directed acyclic
graph (DAG) in Figure 4.1 and appearing again here in Figure 5.8(a). Figure 5.1a recaps the
initial buckets along ordering d D .A;B; C; D; F;G/ and the messages, labeled by �, that will
be passed by BE from top to bottom. Figure 5.1b depicts the same computation as message-
passing along a tree which we will refer to as a bucket tree. Notice that, as before, the ordering
is displayed from the bottom up (A, the first variable, is at the bottom and G, the last one, is
at the top), and the messages are passed top down. is computation results in the belief in
A, bel.A/ D P.AjG D 1/, and consulted only functions that reside in the bucket of A. What
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if we now want to compute bel.D/? We can start the algorithm using a new ordering such as
.D;A;B;C; F;G/. Alternatively, rather then doing all the computations from scratch using a
different variable ordering whose first variable is D, we can take the bucket tree and re-orient
the edges to make D the root of the tree. Reorienting the tree so that D is the root, requires
reversing only 2 edges, .B;D/ and .A;B/, suggesting that we only need to recompute messages
from node A to B and from B to D. We can think about a new virtual partial order expressed
as .fD;A;Bg; C; F;G/, namely, collapsing the buckets of B;A and D into a single bucket and
therefore ignoring their internal order. By definition, we can compute the belief in D by the
expression

bel.d/ D ˛
X
a

X
b

P.a/ � p.bja/ � P.d ja; b/ � �C!B.b/ : (5.1)

Likewise, we can also compute the belief in B by

bel.b/ D ˛
X
a

X
d

P.a/ � p.bja/ � P.d ja; b/ � �C!B.b/ : (5.2)

is computation can be carried also over the bucket tree, whose downward messages were
already passed, in three steps. e first executed in bucket A, where the function P.A/ is moved
to bucketB , the second is executed by bucketB , computing a function (a product) that is moved
to bucketD . e final computation is carried in bucketD . Denoting the new reverse messages by
� , a new �A!B.a/ D P.A/, is passed from bucketA to bucketB . en, an intermediate function
is computed in bucketB , to be sent to bucketD , using the messages received from bucketC and
bucketA and its own function,

�B!D.a; b/ D p.bja/ � �A!B.a/ � �C!B.b/ :

Finally, the belief is computed in bucketD using its current function content by

bel.d/ D ˛
X
a;b

P.d ja; b/ � �B!D.a; b/: (5.3)

is accomplishes the computation of the algebraic expression in Eq (5.1). You can see some of
these messages depicted in Figure 5.2a. e belief in B can also be computed in bucketD . How-
ever, if we want each bucket to compute its own belief, and since bucketD sends P.DjA;B/
to bucketB anyway, as part of BE, the computation of Eq. (5.2) can be carried out there, au-
tonomously.

e example generalizes. We can compute the belief for every variable by a second message
passing from the root to the leaves along the bucket tree, such that at termination the belief for
each variable can be computed locally, in each bucket, consulting only the functions in its own
bucket.
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G F
F( )

F C
B ,C( )

G F
F( )

B A
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Figure 5.1: Execution of BE along the bucket tree.

Let M be a graphical model M D hX;D;F ;
Q
i and d an ordering of its variables

X1; :::; Xn. Let BX1
; :::; BXn

denote a set of buckets, one for each variable. We will use BXi
and

Bi interchangeably. As before, each bucket Bi contains those functions in F whose latest variable
in ordering d is Xi (i.e., according to the bucket-partitioning rule), and, as before, we denote by
 i the product of functions in Bi . A bucket tree of a model M along d has buckets as its nodes.
Bucket BX is connected to bucket BY if the function generated in bucket BX by BE is placed in
BY . erefore, in a bucket tree, every vertex BX other than the root has one parent vertex BY and
possibly several child vertices BZ1

; :::; BZt
.

e structure of the bucket tree can be extracted also from the induced-ordered graph of
M along d using the following definition.

Definition 5.2 bucket-tree, separator, eliminator. Let M D hX;D;F ;
Q
i be a graphical

model whose primal graph is G, and let d D .X1; :::; Xn/ be an ordering of its variables. Let
.G�; d / be the induced graph along d of G.

• e bucket tree has the buckets denoted fBigniD1 as its nodes. Each bucket contains a set of
functions and a set of variables. e functions are those placed in the bucket according to
the bucket partitioning rule where  i is their product. e set of variables in Bi , denoted
scope.Bi /, is Xi and all its parents in the induced-graph .G�; d /. Each vertex Bi points to
Bj (or, Bj is the parent of Bi ) if Xj is the closest neighbor of Xi that appear before it in
.G�; d /.

• If Bj is the parent of Bi in the bucket tree, then the separator of Xi and Xj , sep.Bi ; Bj / D
scope.Bi / \ scope.Bj /.
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Figure 5.2: Propagation of � ’s and �’s along the bucket tree (a), and the augmented output bucket
tree (b).

• Given a directed edge .Bi ; Bj / in the bucket tree, elim.i; j / is the set of variables in Bi
and not in Bj , namely elim.Bi ; Bj / D scope.Bi / � sep.Bi ; Bj /. We will call this set ”the
eliminator from Bi to Bj .”

Algorithm bucket-tree elimination (BTE) presented in Figure 5.3 includes the two message
passing phases along the bucket tree. Notice that we always assume that the input may contain
also a set of evidence nodes because this is typical to a large class of problems in probabilistic net-
works. Given an ordering of the variables, the first step of the algorithm generates the bucket tree
by partitioning the functions into buckets and connecting the buckets into a tree. e subsequent
top-down phase is identical to general bucket elimination. e bottom-up messages are defined
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as follows. e messages sent from the root up to the leaves will be denoted by � . e message
from Bj to a child Bi is generated by multiplying the bucket’s function  j by all the � mes-
sages from its parent bucket and all the �messages from its other child buckets and marginalizing
(e.g., summing) over the eliminator from Bj to Bi . We see that downward messages are gener-
ated by eliminating a single variable. Upward messages, on the other hand, may be generated by
eliminating zero, one or more variables.

When BTE terminates, each output bucket B 0

i contains the �j!i it received from its
parent Bj , its own function  j and the �k!i messages sent from each child Bk . en, each
bucket can compute its belief over all the variables in its bucket, by multiplying all the functions
in a bucket as specified in step 3 of BTE. It can then compute also the belief on single variables
and the probability of evidence as in the procedure in Figure 5.4.

A -  (BTE)
Input: A problem M D hX;D;F ;

Q
;
P
i, ordering d .

X D fX1; :::; Xng and F D ff1; :::; frg
Evidence E D e.
Output: Augmented buckets fB 0ig, containing the original functions and all the
� and � functions received from neighbors in the bucket tree.
1. Pre-processing: Partition functions to the ordered buckets as usual

and generate the bucket tree.
2. Top-down phase: � messages (BE) do

for i D n to 1, in reverse order of d process bucket Bi :
e message �i!j from Bi to its parent Bj , is:
�i!j (

P
elim.i;j /  i �

Q
k2child.i/ �k!i

endfor
3. bottom-up phase: � messages

for j D 1 to n, process bucket Bj do:
Bj takes �k!j received from its parent Bk , and computes a message �j!i
for each child bucket Bi by
�j!i (

P
elim.j;i/ �k!j �  j �

Q
r¤i �r!j

endfor
4. Output: augmented buckets B 01; :::; B 0n, where each B 0i contains the

original bucket functions and the � and � messages it received.

Figure 5.3: Algorithm bucket-tree elimination.
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C  
Input: a bucket tree processed by BTE with augmented buckets: B01; :::; B0n
output: beliefs of each variable, bucket, and probability of evidence.

bel.Bi /(
Q
f 2B0i

f

bel.Xi /(
P
Bi�fXi g

Q
f 2B0i

f

P.evidence/(
P
Bi

Q
f 2B0i

f

Figure 5.4: Query answering.

Example 5.3 Figure 5.2a shows the complete execution of BTE along the bucket tree. Notice,
that the variables in each bucket are not stated explicitly in the figure. For example, the variables
in the bucketC are A;B;C while the scope of the original function has only variables A;C . e
� and � messages are placed on the outgoing upward arcs. e � functions in the bottom-up
phase are computed as follows (the first three were demonstrated earlier):
�A!B.a/ D P.a/

�B!C .c; a/ D P.bja/�D!B.a; b/�A!B.a/

�B!D.a; b/ D P.bja/�C!B.a; b/�A!B.a; b/

�C!F .c; b/ D
P
a P.cja/�B!C .a; b/

�F!G.f / D
P
b;c P.f jb; c/�C!F .c; b/

e actual output (the augmented buckets) are shown in Figure 5.2b.

Explicit submodels. Extending the view of the above algorithms for any reasoning task over
graphical models, we can show that when BTE terminates we have in each bucket all the in-
formation needed to answer any reasoning task on the variables appearing in that bucket. In
particular, we do not need to look outside a bucket to answer a belief query. We call this property
”explicitness”. It is sometime referred to also as minimality or decomposability [Montanari, 1974].

Definition 5.4 Explicit function and explicit sub-model. Given a graphical model M D

hX;D;F ;
Q
i, and reasoning tasks defined by marginalization

P
and given a subset of variables

Y , Y � X, we define MY , the explicit function of M over Y :

MY D
X
X�Y

Y
f 2F

f; (5.4)
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We denote by FY any set of functions whose scopes are subsumed in Y over the same domains
and ranges as the functions in F . We say that .Y; FY / is an explicit submodel of M iffY

f 2FY

f DMY (5.5)

As we elaborate more later, once we have an explicit representation in each cluster we can
answermost queries locally.We can compute the belief of each variable, the probability of evidence
or the partition function, and the optimal solution costs inside each bucket.

eorem 5.5 Completeness of BTE. GivenM D hX;D;F ;
Q
;
P
i and evidenceE D e, when

algorithm BTE terminates, each output bucket is explicit relative to its variables. Namely, for each Bi ,
f̆ 2B

0
i
f DMscope.Bi /.

e completeness of BTE will be derived from that of a larger class of tree propagation
algorithms that we present in the following section. We next address the complexity of BTE.

eorem 5.6 Complexity of BTE. Let w�.d/ be the induced width of .G�; d / where G is the
primal graph of M D hX;D;F ;

Q
;
P
i, r be the number of functions in F and k be the maximum

domain size.e time complexity ofBTE isO.r � deg � kw�.d/C1/, where deg is the maximum degree
of a node in the bucket tree. e space complexity of BTE is O.n � kw�.d//.

Proof: As we previously showed, the downward � messages take O.r � kw�.d/C1/ steps. is
simply is the complexity ofBE.e upwardmessages per bucket are computed for each of its child
nodes. Each such message takes O.ri � kw

�.d/C1/ steps, where ri is the number of functions in
bucketBi , yielding a time complexity per upward bucket ofO.ri � deg � kw�d/C1/. Summing over
all buckets we get complexity ofO.r � deg � kw�.d/C1/. Since the size of each downward message
is kw� we get space complexity of O.n � kw�.d//. e complexity of BTE can be improved to be
O.rkw

�.d/C1/ time and O.nkw�.d/C1/ space [Kask and Dechter, 2005]. �.
In theory the speedup expected from running BTE vs. running BE n times is at most n.

is may seem insignificant compared with the exponential complexity in w�, however it can
be very significant in practice, especially when n is large. Beyond the saving in computation,
the bucket tree provides an architecture for distributed computation of the algorithm when each
bucket is implemented by a different cpu.

5.1.1 ASYNCHRONOUSBUCKET-TREEPROPAGATION
Algorithm BTE can also be described without committing to a particular schedule by viewing the
bucket tree as an undirected tree and by unifying the up and down messages into a single message-
type denoted by �. In this case each bucket receives a � message from each of its neighbors
and each sends a � message to every neighbor. is distributed algorithm, called Bucket-Tree
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Propagation or BTP, is written for a single bucket described in Figure 5.5. It is easy to see that
the algorithm accomplishes the same as BTE and is therefore correct and complete. It sends at
most two messages on each edge in the tree (computation starts from the leaves of the tree). It is
also easy to see the distributed nature of the algorithm.

eorem 5.7 Completeness of BTP. Algorithm BTP terminates generating explicit buckets.

Proof. e proof of BTP correctness follows from the correctness of BTE. All we need to show
is that at termination the buckets’ content in BTE and BTP are the same. (Prove as an exercise.)

�

B-T P (BTP)
Input: A problem M D hX;D;F ;

Q
;
P
i, ordering d . X D fX1; :::; Xng and

F D ff1; :::; frg, E D e. An ordering d and a corresponding bucket-tree structure,
in which for each node Xi , its bucket Bi and its neighboring buckets are well defined.

Output: Explicit buckets. Assume functions assigned with the evidence.
1. for bucket Bi do:
2. for each neighbor bucket Bj do,

once all messages from all other neighbors were received, do
compute and send to Bj the message
�i!j (

P
elim.i;j /  i � .

Q
k¤j �k!i /

3. Output: augmented buckets B 01; :::; B 0n, where each B 0i contains the
original bucket functions and the � messages it received.

Figure 5.5: Algorithm Bucket-tree propagation (BTP).

Finally, since graphical models whose primal graph is a tree, the induced-width is 1, clearly

Proposition 5.8 BTE on trees For tree graphical models, algorithms BTE and BTP are time and
space O.nk2/ and O.nk/, respectively, when k bound the domain size and n bounds the number of
variables.
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5.2 FROMBUCKETTREESTOCLUSTERTREES
Algorithms BTE and its synchronous version BTP are special cases of a class of algorithms
that operates over a tree-decomposition of the graphical model. A tree-decomposition takes a
graphical model and embeds it in a tree where each node in the tree is a cluster of variables and
functions. e decomposition allows message-passing between the clusters in a manner similar to
BTE and BTP , yielding an algorithm which we will call Cluster-Tree Elimination or CTE. We
provide the idea through a short route from BTE to CTE and subsequently establish the formal
grounds in more details.

5.2.1 FROMBUCKETSTOCLUSTERS; THE SHORTROUTE

Example 5.9 Let’s go back to example 5.1. We saw that to facilitate message-passing in the
reverse order of d we suggested first to virtually collapse the individual buckets of D;A;B into a
single cluster and reasoned from there. However, we can actually apply this collapsing and then
perform the computation defined in Equations 5.1 and 5.2 within the collapsed cluster, instead
of moving around information in between the individual buckets. is will yield 4 clusters. e
first 3 correspond to the original buckets of variables G, F and C , and the forth is the cluster
over fA;D;Bg groups all the functions in the respective buckets. e message sent from the
new cluster ABD to bucketC is identical to the � message from bucketb to bucketC , and it
can be computed using the the same rule as specified in algorithm BTP . Namely, the message
from ABD to C is computed by taking the product of all the functions in cluster ABD and then
eliminating the eliminator (namely, summing over D). We get,

�ABD!C D
X
D

P.bja/ � P.d ja; b/ � P.a/:

It is easy to see that this is the same �B!C computed by BTP .

In other words, BTE/BTP algorithms can be extended to work over a larger ensemble
of cluster-trees and those can be obtained, by just collapsing some adjacent clusters into larger
clusters, where the starting point is a bucket-tree. In certain cases, as in the example above, there
is no loss in efficiency. In fact we have less clusters yielding a simplification. In other cases, if
the clusters get larger and larger, we may loose decomposability and therefore have less effective
computation. We will identify the tradeoffs associated with this process and provide a scheme to
generate good cluster-tree decompositions. What we wish to stress here is that the only thing
that will change is the complexity of the resulting algorithms.

In summary, the algorithm CTE that we will present, is just the BTP that is applied to
any cluster-tree and those can be obtained by collapsing adjacent buckets (their functions and
variables) of a bucket-trees. A preliminary version of the algorithm, called CTP is presented in
Figure 5.6.
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C-T P (CTP)
Input: A problem M D hX;D;F ;

Q
;
P
i, ordering d . X D fX1; :::; Xng and

F D ff1; :::; frg, E D e. An ordering d and a corresponding bucket-tree structure,
in which for each node Xi , its bucket Bi and its neighboring buckets are well defined.

Output: Explicit buckets.
0. CT  Generate clusters C1; :::Cl collapsing, some adjacent buckets.
1. for bucket Ci do:
2. for each neighbor bucket Cj do,

once all messages from all other neighbors were received, do
compute and send to Cj the message
�i!j (

P
elim.i;j /  i � .

Q
k¤j �k!i /

3. Output: augmented buckets C 01; :::; C 0n, where each C 0i contains the
original bucket functions and the � messages it received.

Figure 5.6: Algorithm Cluster-Tree propagation (CTP).

In the rest of this chapter we provide a somewhat different route to CTE and to gen-
eral message-passing over general tree-decompositions, whose starting point are acyclic graphical
models. Some graphical models are inherently tree-structured. Namely, their input functions al-
ready has a dependency structure that can be captured by a tree-like graph (with no cycles). Such
graphical models are called Acyclic Graphical models [Maier, 1983] and they include regular trees
as a special case. We will describe acyclic models first and then show how a tree-decomposition
can impose a tree structure on non-acyclic graphical models as well. In particular we will show
that bucket-trees are special cases of tree-decompositions.

5.2.2 ACYCLICGRAPHICALMODELS
As we know, a graphical model can be associated with a dual graph (see Definition 2.7). which
provides an alternative view of the graphical model. In this view, each function resides in its own
node which can be regarded as a meta variabls and the arcs indicate equality constraints between
shared variables. So, if a graphical model’s dual graph is a tree, we have a tree-graphical model,
and we know it can be solved in linear time by a BTE-like message-passing algorithm over the
dual graph (see Proposition 5.8.)

Sometime the dual graph seems to not be a tree, but it is in fact, a tree. is is because some
of its arcs are redundant and can be removed while not violating the original independency rela-
tionships that is captured by the graph. Arcs are redundant if they express a dependency between
two nodes that is already captured or implied by an alternative set of dependencies, and therefore
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Figure 5.7: (a) Hyper; (b) primal; (c) dual; (d) join-tree of a graphical model having scopes ABC,
AEF, CDE and ACE; and (e) the factor graph.

their removal does not alter the conditional independence captured by graph separation (for more
see [Pearl, 1988]). We illustrate with the next example and then provide the formal definition of
capturing this notion.

Example 5.10 Refer to Figure 5.7 (presented earlier Figure 2.1). We see that the arc between
(AEF ) and (ABC ) in Figure 2.1c expresses redundant dependency because variable A also ap-
pears along the alternative path .ABC/ � AC � .ACE/ � AE � .AEF ). In other words, a de-
pendency between AEF and ABC relative to A is maintained through the path even if they
are not directly connected. Likewise, the arcs labeled E and C are also redundant. eir removal
yields the tree in 2.1d which we call a join-tree. is reduced dual graph in 2.1d satisfies a property
called connectedness.

Definition 5.11 Connectedness, join-trees. Given a dual graph of a graphical model M, an
arc subgraph of the dual graph satisfies the connectedness property iff for each two nodes that share
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a variable, there is at least one path of labeled arcs of the dual graph such that each contains the
shared variables. An arc subgraph of the dual graph that satisfies the connectedness property is
called a join-graph and if it is a tree, it is called a join-tree.

We can now formally define acyclic graphical models.

Definition 5.12 Acyclic networks. A graphical model ,M D hX;D;F;
Q
i, whose dual graph

has a join-tree is called an acyclic graphical model.

Example 5.13 We can see that the join-tree in Figure 5.7d satisfies the connectedness property.
e graphical model defined by the scopes: AEF;ABC;CDE;ACE is therefore, acyclic.

It is easy to see that if algorithm BTE is applied to an acyclic graphical model it would be
efficient. In fact, it will be time and space linear. is is because the join-tree suggests an ordering
over the variables where the width of the primal graph along d equals the induced-width (prove
as an exercise) and where each function is placed in a single bucket. is means that messages are
always defined over scopes that are subsumed by existing scopes of the original functions.

eorem 5.14 Given an acyclic graphical model, algorithm BTE is time and space linear. (See proof
in the Appendix.)

5.2.3 TREEDECOMPOSITIONANDCLUSTERTREEELIMINATION
Now that we have established that acyclic graphical models can be solved efficiently, all that
remains is to transform a general graphical model into an acyclic one. is task is facilitated by
algorithm tree-decomposition defined next. We will subsequently show that a bucket tree is a
special case of tree decomposition.

Definition 5.15 Tree decomposition, cluster tree. Let M D< X;D;F;
Q
> be a graphical

model. A tree-decomposition ofM is a triple< T; �; >, where T D .V;E/ is a tree, and � and 
are labeling functions which associate with each vertex v 2 V two sets, �.v/ � X and  .v/ � F
satisfying:

1. for each function fi 2 F , there is exactly one vertex v 2 V such that fi 2  .v/, and
scope.fi / � �.v/; and

2. for each variableXi 2 X , the set fv 2 V jXi 2 �.v/g induces a connected subtree of T . is
is also called the running intersection property [Maier, 1983].
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We will often refer to a node and its functions as a cluster and use the term tree decomposition
and cluster tree interchangeably.

Definition 5.16 treewidth, pathwidth, separator-width, eliminator. e treewidth [Arnborg,
1985] of a tree decomposition < T; �; > is maxv2V j�.v/j minus 1. Given two adjacent ver-
tices u and v of a tree-decomposition, the separator of u and v is sep.u; v/ D �.u/ \ �.v/, and
the eliminator of u with respect to v is elim.u; v/ D �.u/ � �.v/. e separator-width is the
maximum over all separators. e pathwidth of a graph is the treewidth when only chain-line
tree-decompositions are restricted.

Example 5.17 Consider again the Bayesian network in Figure 5.8a. Any of the cluster-trees in
Figure 5.9 describes a partition of variables into clusters. We can now place each input function
into a cluster that contains its scopes, and verify that each is a legitimate tree decomposition. For
example, Figure 5.9c shows a cluster-tree decomposition with two vertices, and labeling �.1/ D
fG;F g and �.2/ D fA;B;C;D; F g. Any function with scope fGg must be placed in vertex 1
because vertex 1 is the only vertex that contains variable G (placing a function having G in its
scope in another vertex will force us to add variable G to that vertex as well). Any function with
scope fA;B;C;Dg or one of its subsets must be placed in vertex 2, and any function with scope
fF g can be placed either in vertex 1 or 2. Notice that the tree-decomposition at Figure 5.9a is
actually a bucket-tree.

We see that for some nodes sep.u; v/ D �.u/. at is, all the variables in vertex u belong to
an adjacent vertex v. In this case the number of clusters in the tree decomposition can be reduced
by merging vertex u into v without increasing the cluster size in the tree-decomposition. is is
accomplished by moving from Figure 5.9a to Figure 5.9b.

Definition 5.18 Minimal tree decomposition. A tree decomposition isminimal if sep.u; v/ ¤
�.u/ and sep.u; v/ ¤ �.v/ for each pair .u; v/ of adjacent nodes.

We can show the following.

eorem 5.19 A bucket tree of a graphical model M, is a tree decomposition of M. (for a proof see
Appendix.)
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Figure5.8: Belief networkP.G;F; C;B;A/ D P.GjF /P.F jC;B/P.DjA;B/P.C jA/P.BjA/P.A/.

Figure 5.9: From a bucket tree to join tree to a super bucket tree.

CTE. We will show now that a tree decomposition facilitates a message-passing scheme, called
Cluster-Tree Elimination (CTE), that is similar to BTE in the same sense the CTP is similar to
BTP . e algorithm is presented in Figure 5.10. Like in BTP , each vertex of the tree sends a
function to each of its neighbors. All the functions in a vertex u and all the messages received by u
from all its neighbors other than a specific vertex v to which u’s message is directed, are combined
by product. e combined function is marginalized over the separator of vertices u and v (namely,
eliminating the eliminator) using the marginalization operator,

P
, and the marginalized function

is then sent from u to v. We will denote message by m.
Vertex activation can be asynchronous and convergence is guaranteed. If processing is per-

formed from leaves to root and back, convergence is guaranteed after two passes, where only one
message is sent on each edge in each direction. If the tree contains l edges, then a total of 2l
messages will be sent.

Example 5.20 Consider again the graphical model whose primal graph appears in Figure 5.8(b)
but now assume that all functions are defined on pairs of variables (you can think of this as a
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-  (CTE)
Input: A tree decomposition < T; �; > for a problemM D< X;D;F;

Q
;
P
g >,

X D fX1; :::; Xng, F D ff1; :::; frg. Evidence E D e,  u D
Q
f 2 .u/ f

Output: An augmented tree decomposition whose clusters are all model explicit.
Namely, a decomposition < T; �; N > where u 2 T , N .u/ is model explicit relative to �.u/.
1. Initialize. (denote by mu!v the message sent from vertex u to vertex v.)
2. Compute messages:

For every node u in T , once u received messages from all neighbors but v,
Process observed variables:
For each node u 2 T assign relevant evidence to  .u/
Compute the message:

mu!v  
P
�.u/�sep.u;v/  u �

Q
r2neighbor.u/;r¤v mr!u

endfor
Note: functions whose scopes do not contain any separator variable
do not need to be combined and can be directly passed on to the receiving vertex.

3. Return: e explicit tree < T; �; N >, where
N .v/(  .v/ [u2neighbor.v/ fmu!vg

return the explicit function: for each v,M�.v/ D
Q
f 2 N .v/ f

Figure 5.10: Algorithm Cluster-Tree Elimination (CTE).

Markov network). Two tree decompositions are given in Figure 5.11a and 5.11b. For the tree-
decomposition in 5.11b we show the propagated messages explicitly in Figure 5.11c. Since cluster
1 contains only one function, the message from cluster 1 to 2 is the summation of fFG over the
separator between cluster 1 and 2, which is variable F . e message m2!3 from cluster 2 to
cluster 3 combines the functions in cluster 2 with the message m1!2, and marginalizes over the
separator between cluster 2 and 3, yielding fB;C g, and so on.

Once all vertices have received messages from all their neighbors we have the explicit clus-
ters (see Definition 5.4) and therefore an answer to any singleton marginal query (e.g., beliefs)
and a host of other reasoning tasks can be accomplished over the explicit tree in linear time.
Before we prove these properties in Section 5.3 we will pause to discuss the generation of tree-
decompositions.

5.2.4 GENERATINGTREEDECOMPOSITIONS
We have already established that a bucket-tree built along a given ordering is a tree decompo-
sition. Each node is a bucket, whose variables include the bucket’s variable and all its earlier
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Figure 5.11: Two tree decompositions of a graphical model.

neighbors in the induced graph and whose functions are those assigned to it by the initial bucket-
partitioning. As suggested earlier, once we have a tree decomposition, other tree decompositions
can be obtained bymerging adjacent nodes.erefore, bucket trees can serve as a starting point for
generating arbitrary tree decompositions, a process that is justified by the following proposition.

Proposition 5.21 If T is a tree decomposition, then any tree obtained by merging adjacent clusters is
also a tree decomposition. (Prove as an exercise.)
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A special class of tree-decompositions called join-trees can be obtained by merging sub-
sumed buckets into their containing buckets, as defined by their variables. is is indeed the
approach we discussed in our short route. Alternatively, they can be generated directly from the
induced-graph by selecting as clusters only those buckets that are associated with maximal cliques.

Algorithm join-tree clustering (JTC ) for generating join-tree decompositions, is described
in Figure 5.12. e algorithm generates an induced graph, which we know is chordal, it then iden-
tifies its maximal cliques as the candidate cluster-nodes and then connect them in a tree structure.
is process determines the variables associated with each node. Subsequently, functions are par-
titioned into the clusters appropriately.

J-  ( JTC)
Input: A graphical model M D hX;D;F ;

Q
i, X D fX1; :::; Xng, F D ff1; :::; frg.

Its scopes S D S1; :::; Sr and its primal graph is G D .X;E/.
Output: A join-tree decomposition < T; �; > for M
1. Select a variable ordering, d D .X1; :::; Xn/.
2. Triangulation (create the induced graph along d and call it G�):

for j D n to 1 by -1 do
E  E [ f.i; k/ji < j; k < j; .i; j / 2 E; .k; j / 2 Eg

3. Create a join-tree of the induced graph .G�; d / as follows:
a. Identify all maximal cliques in the chordal graph.
Let C D fC1; :::; Ctg be all such cliques, where Ci is the cluster of bucket i.
b. Create a tree T of cliques:
Connect each Ci to a Cj .j < i/ with whom it shares largest subset of variables.

4. Create  i : Partition input function in cluster-node whose variables contain its scope.
5. Return a tree-decomposition < T; �; >, where T is generated in step 3,
�.i/ D Ci and  .i/ is determined in step 4.

Figure 5.12: Join-tree clustering.

Example 5.22 Consider the graph in Figure 5.13a and the ordering d1 D .G;D;F; C;B;A/ in
Figure 5.13b. Performing the triangulation step of JTC connects parents recursively from the last
variable to the first, creating the induced-ordered graph by adding the new (broken) edges of Fig-
ure 5.13b.emaximal cliques of this induced graph are:Q1 D fA;B;C;Dg,Q2 D fB;C; F;Dg
and Q3 D fF;D;Gg. Alternatively, if ordering d2 D .A;B; C; F;D;G/ in Figure 5.13c is used,
the induced graph generated has only one added edge. e cliques in this case are:Q1 D fG;F g,
Q2 D fA;B;Dg, Q3 D fB;C; F g and Q4 D fA;B;C g. Yet, another example is given in Figure
5.13d. e corresponding join-trees of orderings d1 and d2 are depicted in the earlier decompo-
sitions observed in Figure 5.11a and 5.11b, respectively.
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Figure 5.13: A graph (a) and three of its induced graphs (b), (c), and (d).

Treewidth and induced-width. Clearly, if the ordering used by JTC has induced width
w.d/, the treewidth of the resulting join-tree is w.d/ as well. And, vice-versa, given a tree-
decomposition of a graph whose treewidth is w, there exist an ordering of the nodes d whose
induced-width satisfies w.d/ D w. In other words treewidth and induced-width can be viewed as
synonym concepts for graphs, yet induced-width is explicitly defined for an ordering.

5.3 PROPERTIESOFCTEFORGENERALMODELS
AlgorithmCTE which takes as an input a tree-decomposition of a graphical model, and evidence,
outputs an explicit tree-decomposition. In this section we will prove this claim and discuss issues
of complexity.

Convergence. It is clear thatCTE converges after 2message passing along the tree. If we remove
the edge .u; v/ we get 2 subtrees. One rooted at node u and one rooted at node v. e outgoing
message from u to v depends solely on information in the subtree that include u but not v.
erefore the message mu!v will not be influenced by the message mv!v.

eorem 5.23 Convergence of CTE. Algorithm CTE converges after two iterations.
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5.3.1 CORRECTNESSOFCTE
e correctness of CTE can be shown in two steps. First showing that CTE can solve acyclic
graphical models. Since a tree-decomposition transforms a graphical model into an acyclic one,
the correctness argument follows. However, instead of taking this route, we will next state the
correctness based on the general properties of the combine

N
and marginalize + operators in

order to emphasize the broad applicability of this algorithm. e following theorem articulates
the properties which are required for correctness. e proof can be found in [Kask and Dechter,
2005] and in the Appendix of this chapter.

eorem5.24 Soundness and completeness. Given a graphical model and reasoning tasksM D

hX;D;F ;
N
;+i, and assuming that the combination operator

N
and the marginalization operator

+Y satisfy the following properties [Shenoy, 1997]):

1. order of marginalization does not matter:
+X�fXi g

.+X�fXj g
f .X// D+X�fXj g

.+X�fXi g
f .X//;

2. commutativity: f
N
g D g

N
f ;

3. associativity: f
N
.g
N
h/ D .f

N
g/
N
h;

4. restricted distributivity:
+X�fXkg

Œf .X � fXkg/
N
g.X/� = f .X � fXkg/

N
+X�fXkg

g.X/.

Algorithm CTE is sound and complete. Namely, it is guaranteed to transform a tree-decomposition
< T; �; > into an explicit one. Namely, for every node v 2 T , given the messages generated mu!v
for all .u; v/ 2 T , then

M�.u/ D  u ˝ .
O

fj j.j;u/2Eg

mj!u/ :

whereM�.u/ is explicit relative to �.u/ (Definition 5.4). For a proof see the Appendix. �

It is common to call the combined function in a cluster as belief. Another concept associated
with clusters is their normalized constant.

Definition 5.25 belief, normalizing constants. Given a tree decomposition < T; �; 	 >, T D
.V;E/ of a graphical model M D< X;D;F;

N
;+>, and a set of messages denoted by m (po-

tentially generated by CTE, but not only) then the beliefs associated with each cluster u 2 T ,
relative to incoming messages fmg is:

bu D  u ˝ Œ
O

k2neighbors.v/

mk!u� (5.6)

We also define
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bsep.u;v/ D+�.u/�sep.u;v/ bu: (5.7)

e normalizing constant of a node v is defined by:

Ku D+�.u/ bu (5.8)

What we showed is that if the set of messagesmwere generated by CTE then the beliefs of
each node is the explicit function of themodel. Clearly, therefore for any two adjacent nodes in the
tree decomposition, marginalizing the beliefs over the separators must yields identical function
which is the explicit function over that separator. In the case of probabilities this means that the
marginal probability on the separator variables can be obtained in either one of the clusters.

Definition 5.26 Pairwise consistency. Given a tree decomposition < T; �; >, T D .V;E/
of M D hX;D;F ;

N
;+i, and a set of messages mu!v; mv!u, for every edge .u; v/ 2 T , then

+sep.u;v/ Œ v ˝ .
O

fj j.j;v/2Eg

mj!v/� D+sep.u;v/ Œ u ˝ .
O

fj j.j;u/2Eg

mj!u/�:

using the definition of beliefs this is equivalent to:

+sep.u;v/ bv D buv D+sep.u;v/ bu:

Interestingly, we can prove pairwise consistency of CTE without using explicitness, as well
as several properties and in particular that the normalizing constants of all nodes are identical.

eorem 5.27 Given a tree decomposition < T; �; >, T D .V;E/ of M D hX;D;F ;
N
;+i,

when CTE terminates with the set of messagesmu!v; mv!u, then for any edge in T ,

1. e message obey symmetry, namley:

bsep.u;v/ D mu!v ˝mv!u (5.9)

2. e belief generated are pairwise consistent

3. e normalizing constant is unique. Namely,

Ku D Kv (5.10)
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Proof. We will prove 1, and from 1 we prove 2 and from 2 we prove 3. For readability we use
product

Q
for the combination operator

N
and summation

P
for the marginalization +.

1. We have by definition that

mu!v D
X

�.u/�sep.u;v/

 u
Y

r2ne.u/;r¤v

mr!u

Multiplying both sides by mv!u we get

mu!v.xuv/ �mv!u.xvu/ D
X

�.u/�sep.u;v/

 .xu/
Y

r2ne.u/

mr!u.xru/ D D
X

�u�sep.u;v/

bu D bsep.u;v/

(5.11)
which yields symmetry.
2. e property pwc follows immediately from symmetry (show as an exercise.)
3. (proof of normal constant.) If < T; �; 	 > is pwc relative to messages generated by CTE then

Ku D
X
�.u/

bu D
X

sep.u;v/

X
�.u/��.uv/

bu D

and because of pairwise consistency

D
X

sep.u;v/

buv D
X

sep.u;v/

bvu D
X

sep.u;v/

X
�.v/�sep.u;v/

bv D
X
�.v/

bv D Kv

�

If our graphical model and query are of a sum-product type, the normalizing constant is
the probability of evidence or the partition function. And, as expected, we can compute this in
any node in the tree decomposition. If it is the max-product or min-sum model, the normalizing
constant is the cost of an optimal solution, and it also can be derived in any dode.

5.3.2 COMPLEXITYOFCTE
Algorithm CTE can be subtly varied to influence its time and space complexities. e description
in Figure 5.10 seems to imply an implementation whose time and space complexities are the same.
Namely, that the space complexity must also be exponential in the induced-width or treewidth,
denoted w. Indeed, if we compute the message in the equation in Fig. 5.10 in a brute-force
manner, recording the combined function first, and subsequently marginalizing over the separator,
we will have space complexity exponential in w.

However, we can, instead, interleave the combination and marginalization operations, and
thereby make the space complexity identical to the size of the sent message only, as follows.

In words, for each assignment x to the variables in �.u/, we compute the product func-
tional value, and accumulate the sum value on the separator, sep, updating the message function
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G 
Input: cluster u, its �.u/ and  .u/, its neighbor v with �.v/, sep D �.u/ \ �.v/.
1. initialize: for all xsep, mu!v.xsep/ 0.
2. for every assignment x�.u/, do
3. mu!v.xsep/( mu!v.xsep/C  u.x�.u// �

Q
fj j.j;u/2T;j¤vgmj!u.xsep/

4. end for

Figure 5.14: Generate messages.

mu!v.xsep/. With this modification we now can state (and then prove) the general complexity
of CTE (for a proof see Appendix).

eorem 5.28 Complexity of CTE. Given a graphical model M D hX;D;F ;
N
;+i and its

tree-decomposition < T; �; >, where T D .V;E/, if N is the number of vertices in V , w its tree-
width, sep its maximum separator, r the number of functions inF , deg the maximum degree in T , and
k the maximum domain size of a variable, the time complexity of CTE is O..r CN/ � deg � kwC1/
and its space complexity is O.N � kjsepj/ (for a proof see appendix.)

Trading space for time in CTE. As we noted earlier, given any tree decomposition we can gen-
erate new tree decompositions by merging adjacent clusters. While time complexity will increase,
this process can generate smaller separators, and therefore smaller memory.

Example 5.29 Consider the tree decompositions in Figure 5.9. For the first two decompositions
CTE will have time exponential in 3 and space complexity exponential in 2. e third yields time
exponential in 5 but space exponential in 1.

5.4 ILLUSTRATIONOFCTEFOR SPECIFICMODELS
In this last section of this chapter we will provide more details on algorithms tailored to specific
graphical models such as Bayesian networks and constraint networks.

5.4.1 BELIEFUPDATINGANDPROBABILITYOFEVIDENCE
As we saw, applying algorithm CTE to Bayesian networks when combination is product and the
marginalization operators is summation, yields an algorithm that computes the explicit clusters
for a given tree decomposition. In this case the explicit functions are the posterior marginal prob-
ability distribution given the evidence over the cluster’s variables. erefore, when the algorithm
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Figure 5.15: [Execution of CTE-bel]: (a) a belief network; (b) A join-tree decomposition; (c) execu-
tion of CTE-bel; and (d) the explicit tree-decomposition.

terminates the marginals can be obtained by the normalized product over all functions in the
corresponding clusters. From these clusters one can also compute the probability of evidence or
the posterior beliefs over singleton variables. We will refer to this specialized algorithm as CTE-
bel. When a cluster sends a message to a neighbor, the message may contains a single combined
function and may also contain individual functions that do not share variables with the relevant
eliminator.

Example 5.30 Figure 5.15 describes a belief network (a) and a join-tree decomposition for it
(b). Figure 5.15c shows the trace of running CTE-bel. In this case no individual functions ap-
pear between any of the clusters. Figure 5.15d shows the explicit output tree-decomposition.
If we want to compute the probability of evidence P.G D ge/, we can pick cluster 4, for ex-
ample, and compute P.G D ge/ D

P
e;f;gDge

P.gje; f / �m3!4.e; f / and if we wish to com-
pute the belief for variable B for example we can use the second or the first bucket, P.Bjge/ D
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˛ �
P
a;c P.a/ � p.bja/ � p.cja; b/ �m2!1.b; c/ where ˛ is the normalizing constant that is 1 di-

vided by the probability of evidence.

Pearl’s Belief Propagation over Polytrees
A special acyclic graphical models are polytrees. is case deserves attention for historical reasons;
it was recognized by Pearl [Pearl, 1988] as a generalization of trees on which his known belief
propagation algorithm was presented. It also gives rise to an iterative approximation algorithm
over general networks, known as Iterative BP or loopy BP [Weiss and Pearl, 2010].

Definition 5.31 Polytree. A polytree is a directed acyclic graph whose underlying undirected
graph has no cycles (see Figure 5.16a).

It is easy to see that the dual graph of a polytree is a tree, and thus yields an acyclic problem
that has a join-tree decomposition where each family resides in a single node u in the decompo-
sition. Namely �.u/ D fXg [ pa.X/, and  .u/ D fP.X jpa.X//g. Note, that the separators in
this polytree decomposition, are all singleton variables. In summary,

Proposition 5.32 A polytree has a dual graph which is a tree and it is therefore an acyclic graphical
model (Prove as an exercise.)

It can be shown that Pearl’s BP is identical to CTE if applied to the poly-tree based dual
tree that is rooted in accordance with the poly-tree’s topological order and where in one direction
the CTE messages are named �s and in the reverse direction they are named � ’s.

Example 5.33 Consider the polytree given in Figure 5.16a. An ordering along which we can run
CTE is given in Figure 5.16b, a directed polytree decomposition is given in Figure 5.16c along
with the � and � messages. e explicit output tree-decomposition is given in part 5.16d. Once
the propagation terminates, beliefs can be computed in each cluster.

5.4.2 CONSTRAINTNETWORKS
Algorithm CTE for constraint networks can be obtained straightforwardly by using the join
operation for combination and the relational project for marginalization. e explicit algorithm
called CTE-cons is given in Figure 5.17 (see also 9.10 in [Dechter, 2003]). It yields an explicit
representation of the constraints in each node. is makes it possible to answer most relevant
queries locally, by consulting the constraints inside each of these nodes only. is property of
explicitness is called minimality and decomposability in [Montanari, 1974]as defined next.

Definition 5.34 Minimal subproblem, a decomposable network. Given a constraint problem
R D .X;D;C /, where C D fRS1

; :::; RSm
g and a subset of variables Y � X , a subproblem over
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Figure 5.16: (a) A polytree and (b) a legal processing ordering, (c) a polytree decomposition and
messages, and (d) the explicit decomposition.

Y ,RY D .Y;DY ; CY / is minimal relative toR, iff sol.RY / D �Y sol.R/ where sol.R/ D‰R2R
R is the set of all solutions of network R. A network of constraints is decomposable if each of its
subnetworks is minimal.
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C - (CTE-)
Input: A tree decomposition < T; �; > for a constraint network R D< X;D;C;‰; � >.
 u is the join of original relations in cluster u
Output: An explicit tree-decomposition where each cluster is minimal (i.e., explicit).
Compute messages:
for every edge .u; v/ in the tree, do

• Let mu!v denote the message sent from u to v.

mu!v  �sep.u;v/. u ‰ .‰Ri2clusterv.u//Ri / (5.12)

endfor
Return:A tree-decomposition augmented with constraintmessages. For every node u 2 T , return
the decomposable (explicit) subproblem  

0

.u/ D  .u/ [ fm.i!u/j.i; u/ 2 T g.
If  0 is consistent for every node the problem is consistent.
Generate a solution in a backtrack-free manner.

Figure 5.17: Algorithm cluster-tree elimination (CTE).

An immediate illustration can be generated from the example in Figure 5.11. All we need
is to assume that the functions are relations and the product is replaced by a join‰ operator while
the sum operator is replaced with the relational projection � . >From the comrrectness of CTE it
follows that:

eorem 5.35 Given a tree decomposition < T; �; > for a constraint networkR D hX;D;C D
fRS1

; :::; RSr
g;‰i where RSi

is the relation over a scope Si . en at termination of CTE-cons, the
constraints in each node constitute a minimal network. Namely, for each node u,‰Ri2cluster.u/ Ri D

��.u/.‰Ri2R Ri /.

e minimality property is powerful. Once we have a minimal subnetwork which is
not empty we immediately know that the network is consistent. Moreover, the resulting tree-
decomposition whose clusters are minimal can be shown to be backtrack-free along orderings
consistent with the tree structure. is means that we can generate a solution in any order along
the tree and we are guaranteed to not have any dead-ends. erefore solution generation is linear
in the output network. (Exercise: prove that CTE-cons generates a backtrack-free ordering along
some variable orderings.) Interestingly, in the case of constraints we do not need to be careful
regarding the exclusion of the message sent from u to v when v computes the message it sends
to u.

Counting. We have looked at algorithms for solving the tasks of computing the probability of
evidence or marginals in probabilistic networks and of answering constraint satisfaction tasks over
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constraint networks. e first is often referred to as the sum-product algorithm and the second as
the join-project. e join-project algorithm can be accomplished using Boolean operators. If we
express the relations as f0; 1g cost functions(“0” for inconsistent tuple and “1” for a consistent
tuple), combining functions by a Boolean product operators and marginalizing using Boolean
summation will yield an identical algorithm to CTE-cons. If we use regular summation for the
marginalization operator and a regular product operator for combination over this (0,1) cost rep-
resentation of relation, then the CTE sum-product algorithm computes the number of solutions of
the constraint network. Moreover, it associates any partial configuration in each cluster with the
number of solutions extending it. We will refer to the algorithm as CTE-count.

Definition 5.36 Counts of partial solutions. Given a R D< X;D;C >, and given a partial
value assignment xS over scope S, S � X, we denote by count.xS/, the number of full solutions
of R that extend the partial assignment xS. Namely,

count.xS/ D jfy 2 sol.R/jyS D xSgj :

eorem5.37 Given a tree decomposition< T; �; > for a constraint networkR D< X;D;C D
fC1; :::; Crg >, where each Ci is represented as a zero-one cost function. en when CTE-count
terminates with < T; �; 0 >, then for each u and for each of its assignment x�.u/ over its scope,Q
f 2 0.u/ f D count.x�.u//.

5.4.3 OPTIMIZATION
A popular type of CTE algorithm is for solving an optimization query. Namely when + is max
or min. If, for example, we want to solve theMPE task over Bayesian networks, we know that we
can do so by the bucket elimination algorithm when in each bucket we use the max-product com-
bination operators. Extending that into a CTE-max (or a CTE-min, when we combine functions
by summation) algorithm (called often the max-product algorithm) will generate, not only the
maximum cost, but also for every partial assignment of a node u, x�.u/, in a tree decomposition,
the maximum cost (e.g., probability) of any of its completions into a full assignment. Finally, if in
our cost network the combination operator is summation, we can use min-sum ormax-sumCTE.
In all these cases, at termination we have what is sometimes called, the optimal cost to go associated
with each node u, and therefore with each partial assignment x�.u/ in the tree decomposition.

For marginal map queries the extension is straightforward, we only need to make sure the
the tree-decomposition will be along ordering that are restricted. Once the clusters are gener-
ated, as join-trees for example, the messages are generated in the same manner when summation
variables in each cluster should be eliminated before maximization variables.
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5.5 SUMMARYANDBIBLIOGRAPHICALNOTES
Join-tree clustering was introduced in constraint processing by Dechter and Pearl [Dechter and
Pearl, 1989] and in probabilistic networks by Spigelhalter et al. [Lauritzen and Spiegelhalter,
1988]. Both methods are based on the characterization by relational-database researchers that
acyclic-databases have an underlying tree-structure, called join-tree, that allows polynomial query
processing using join-project operations and easy identification procedures [Beeri et al., 1983;
Maier, 1983; Tarjan and Yannakakis, 1984]. In both constraint networks and belief networks, it
was observed that the complexity of compiling any knowledge-base into an acyclic one is expo-
nential in the cluster size, which is characterized by the induced width or tree width. At the same
time, variable-elimination algorithms developed in [Bertele and Brioschi, 1972; Seidel, 1981] and
[Dechter and Pearl, 1987] (e.g., adaptive-consistency and bucket-elimination) were also observed
to be governed by the same complexity graph-parameter. In [Dechter and Pearl, 1987, 1989]
the connection between induced-width and treewidth was recognized via the work of [Arnborg,
1985] on treewidth, k-trees and partial k-trees. is was made explicit later in [Freuder, 1992].
e similarity between variable-elimination and tree-clustering from the constraint perspective
was analyzed by [Dechter and Pearl, 1989]. Independently of this investigation, the treewidth
parameter was undergoing intensive investigation in the theoretic-graph-community. It charac-
terizes the best embedding of a graph or a hypergraph in a hypertree. Various connections between
hypertrees, chordal graphs and k-trees were made by Arnborg et al. [Arnborg, 1985; S. A. Arn-
borg and Proskourowski, 1987]. ey showed that finding the smallest treewidth of a graph is
NP-complete, but deciding if the graph has a treewidth below a certain constant k is polynomial in
k. A recent analysis shows that this task can be accomplished in O.n � f .k// where f .k/ is a very
bad exponential function of k. [Bodlaender, 1997]. e style of describing a tree-decomposition
is adopted from [Georg Gottlob and Scarcello, 2000] where they talk about hypertree decompo-
sitions (not used here).

5.6 APPENDIX: PROOFS

Proof ofeorem 5.14
e algorithm is linear because there exists an ordering for which each function resides alone in
its bucket, and for which BTE generates messages that are subsumed by the original functions’
scopes. Clearly, such messages (at most n in each direction) can be generated in time and space
bounded by the functions’ sizes (i.e., number of tuples in the domain of each input function).
A desired ordering can be generated by processing leaf nodes along the join-tree of the acyclic
model, imposing a partial. We can show (exercise) that the ordering generated facilitates messages
whose scopes are subsumed by the original function scopes. is implies a linear complexity. �
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Proof ofeorem 5.19
Given bucket tree T D .V;E/ of M, whose nodes are mapped to buckets, we need to show how
the tree can be associated with mappings � and  that satisfy the that conditions of Definition
5.15. In other words, the tree structure T in tree decomposition < T; �; > is the bucket tree
structure, where eachBi corresponds to a vertex in V . If a bucketBi has a parent (i.e., is connected
to) bucket Bj , there is an edge .Bi ; Bj / 2 E. Labeling �.Bi / is defined to be the union of the
scopes of new and old functions in Bi during processing by BTE, and labeling  .Bi / is defined
to be the set of functions in the initial partition in Bi . With these definitions, condition 1 of
Definition 5.15 is satisfied because each function is placed into exactly one bucket and condition
2 of Definition 5.15 is also satisfied because labeling �.Bi / is the union of scopes of all functions
in Bi . Condition 4 of Definition 5.15 is trivially satisfied since there is exactly one bucket for each
variable.

Finally, we need to prove the connectedness property. Let’s assume that there is a variable
Xk with respect to which the connectedness property is violated. is means that there must be
(at least) two disjoint subtrees, T1 and T2, of T , such that each vertex in both subtrees contains
Xk , and there is no edge between a vertex in T1 and T2. Let BI be a vertex in T1 such that Xi is
the earliest relative to ordering d , and Bj a vertex in T2 such that Xj is the earliest in ordering
d . Since T1 and T2 are disjoint, it must be that Xi ¤ Xj . However, this is impossible since this
would mean that there are two buckets that eliminate variable Xk . �

Proof ofeorem 5.28
e time complexity of processing a vertex u in tree T is degu � .j .u/j C degu � 1/ � kj�.u/j,
where degu is the degree of u, because vertex u has to send out degu messages, each being a
combination of .j .u/j C degu � 1/ functions, and requiring the enumeration of kj�.u/j combi-
nations of values. e time complexity of CTE is

T ime.CTE/ D
X
u

degu � .j .u/j C degu � 1/ � k
j�.u/j :

By bounding the first occurrence of degu by deg and j�.u/j by w C 1, we get

T ime.CTE/ � deg � kwC1 �
X
u

.j .u/j C degu � 1/ :

Since
P
u j .u/j D r we can write

T ime.CTE/ � deg � kwC1 � .r CN/

D O..r CN/ � deg � kwC1/ :

For each edge CTE will record two functions. Since the number of edges is bounded by N
and the size of each function we record is bounded by kjsepj.
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If the cluster tree is minimal (for any u and v, sep.u; v/ � �.u/ and sep.u; v/ � �.v/),
then we can bound the number of verticesN by n. Assuming r � n, the time complexity of CTE
applied to a minimal tree-decomposition is O.deg � r � kwC1/. �

Proof ofeorem 5.24
Using the four properties of combination and marginalization operators, the claim can be proved
by induction on the depth of the tree. Specifically, we will show that for every node u, CTE gen-
erates the explicit representation for that node. Namely, for every node u,

N
f 2 N .u/ f DM�.u/.

Let < T; �; >, where T D .V;E/ be a cluster-tree decomposition for M, and let root it
in vertex v 2 V . We can create a partial order of the vertices of T along the rooted tree. We denote
by Tu D .Vu; Eu/ the subtree rooted at vertex u and define by �.Tu/ all the variables associated
with nodes appearing in Tu, namely: �.Tu/ D

S
v2Vu

�.v/.
Since commutativity permits combining the functions in any order, we select an ordering of

the nodes in T d.j / 2 V; j D 1; :::; jV j where a vertex in the rooted tree T precedes its children
in the ordering, and thus the first vertex is the root of the tree is v. As usual we denote by  u DN
f 2 .u/ f , the combination of all the input functions in node u. Because of associativity and

commutativity, clearly:

8 u M�.u/ D+�.u/

jV jO
jD1

 d.j /:

Let u be a node having the parent w in the rooted tree T , and define elim.u/ D �.u/ �
sep.u;w/ and elim.Tu/ D

S
v2Vu

elim.v/. (We will show that elim.Tu/ is the set of variables
that are eliminated by CTE in the subtree rooted at u when sending a message to parent w). Be-
cause of the connectedness property, variables in elim.Tu/, appear only in the subtree rooted at
u. In other words, elim.Tu/

T
fXi jXi 2 V � �.Tu/g D ;. Consequently, we can marginalize (+)

over such variables earlier in the process of deriving M�.u/ (note that +Zi
means marginalizing

over X �Zi ). If Xi 62 �.u/ and if Xi 2 elim.d.k// for some k, then, the marginalization elim-
inating Xi can be applied to

NjV j
jDk

 d.j / instead of to
NjV j
jD1  d.j /. is is safe to do, because as

shown above, if a variable Xi belongs to elim.d.k//, then it cannot be part of any  d.j /, j < k.
We can therefore derive M�.u/ as follows:

M�.u/ D+�.u/

jV jO
jD1

 d.j / D (5.13)

(because of the tree structure)

D+�.u/ Œ

d.k�1/O
jD1

 d.j / +.X�elim.d.k//

jV jO
jDk

 d.j /� D (5.14)

D+�.u/

d.k�1/O
jD1

 d.j / ˝ FT .d.k// ; (5.15)
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where for u D d.k/ FT .u/ D+.X�elim.u//
NjV j
jDk

 d.j /. (note that .X � elim.u/ D sep.u;w/).
We now assert that due to properties 1-4, FT .u/ obeys a recursive definition relative to the tree-
decomposition and that this recursive definition is identical to the messages computed by CTE
and sent from u to its parent w. is is articulated by the following proposition and will conclude
the proof.

Proposition 5.38 e functions FT .u/ defined above relative to the rooted tree-decomposition T ,
obey the following recursive definition. Let ch.u/ be the set of children of u in the rooted tree T .

• If ch.u/ D ; (vertex u is a leaf vertex), then FT .u/ D+.X�elim.u//  u.

• Otherwise, FT .u/ D+.X�elim.u//  u ˝
N
w2ch.u/ FT .w/.

It is easy to see that the messages computed by CTE up the tree decomposition along T are the
FT .u/ functions. Namely, For every node u and its parent w, FT .u/ D mu!w , and in particular at
the root node v FT .v/ DM�.v/ which is identical to the message v can send to its (empty parent).

is completes the proof for the root node v. Since the argument can be applied to any node that
can be made into a root of the tree, we have explicitness for all the nodes in the tree-decomposition. �
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C H A P T E R 6

AND/OR Search Spaces and
Algorithms for Graphical

Models
In this chapter we start the discussion of the second type of reasoning algorithms, those that are
based on the conditioning step, namely, on assigning a single value to a variable. To recall, algo-
rithms for processing graphical models fall into two general types: inference-based and search-
based. Inference-based algorithms (e.g., variable-elimination, tree-clustering discussed earlier) are
good at exploiting the independencies displayed by the underlying graphical model and in avoid-
ing redundant computation. ey have worst case time guarantee which is exponential in the
treewidth of the graph. Unfortunately, any method that is time-exponential in the treewidth is
also space exponential in the treewidth or in the related separator-width parameter and therefore,
not feasible for models that have large treewidths.

Traditional search algorithms (e.g., depth-first branch-and-bound, best-first search) tra-
verse the model’s search space where each path represents a partial or a full solution. For example,
we can compute expression 6.1 forP.G D 0;D D 1/ of the network of Figure 5.8(a) by traversing
the search-tree in Figure 6.1 along an ordering, from first variable to last variable.

P.D D 1;G D 0// D
X

a;c;b;f;dD1;gD0

P.g D 0jf /P.f jb; c/P.d D 1ja; b/P.cja/P.bja/P.a/

(6.1)

D
X
a

P.a/
X
c

P.cja/
X
b

P.bja/
X
f

P.f jb; c/P.d D 1jb; a/P.g D 0jf /;

Specifically, the arcs of each path are weighted by numerical values extracted from the CPT’s of
the problem that correspond to the variable assignments along the path. e bottom path shows
explicitly the functions at each arc and the leaves provide the probabilities conditioned on the
evidence as is shown. In this traditional search tree, every complete path expresses a solution,
namely a full assignment to the variables and the product of its weight gives the probability of
this solution.
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e search tree can be traversed by depth-first search accumulating the appropriate sums of
probabilities (details will be given shortly). It can also be searched to find the assignment having
the highest probability, thus solving the mpe task.

Figure 6.1: Probability tree for computing P(d=1,g=0).

Notice that the structure of search spaces does not retain the independencies represented
in the underlying graphical model and may lead to inferior schemes compared with inference
algorithms. e size of this search tree is O.kn/ when k bounds the somain size and n is the
number of variables. On the other hand, the memory requirements of search algorithms may be
less severe than those of inference algorithms; if we use DFS traversal it can be accomplished
with linear memory. Furthermore, search requires only an implicit, generative, specification of
the functions (given in a procedural or functional form) while inference schemes often rely on an
explicit tabular representation over the (discrete) variables. For these reasons search algorithms
are the only choice available for models with large treewidth, large domains, and with implicit
representation.

In this chapter we will show that it is beneficial to depart from the standard linear search
space in favor of AND/OR search spaces, originally introduced in the context of heuristic search
[Nillson, 1980], primarily because they encode some of the structural information in the graphical
models. In particular, AND/OR search spaces can capture the independencies in the graphical
model to yield AND/OR search trees that are exponentially smaller than the standard search
tree, which we call OR tree. We will provide analysis of the size of the AND/OR search tree
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and show that it is bounded exponentially by the height of some tree that spans the graphical
model. Subsequently, we show that the search tree may contain significant redundancy that when
identified, can be removed yielding AND/OR search graphs. is additional savings can reduce
the size of the AND/OR search space further to the point that it can be guaranteed to be no
larger than exponentially in the graphical model treewidth,

6.1 AND/OR SEARCHTREES
We will present and contrast the concepts of OR vs. AND/OR search spaces of graphical models
starting with an example of a constraint network.

Example 6.1 Consider the simple tree graphical model (i.e., whose primal graph is a tree) in Fig-
ure 6.2a, over domains of variables f1; 2; 3g, which represents a graph-coloring problem. Namely,
each node should be assigned a value such that adjacent nodes have different values. e common
way to solve this problem is to consider all partial and full solutions to the variables by traversing
the problem’s search tree, in which each partial path is an assignment to a subset of the variables,
and the solutions are paths of length n when n is the number of variables. e problem depicted
in Figure 6.2a yields the OR search tree in Figure 6.2b.

Notice, however, that once variable X is assigned the value 1, the search space it roots
can be decomposed into two independent subproblems, one that is rooted at Y and one that is
rooted at Z, both of which can to be solved independently. Indeed, given X D 1, the two search
subspaces do not interact. e same decomposition can be associated with the other assignments
to X , .X D 2/ and .X D 3/. Applying the decomposition along the tree (in Figure 6.2a yields
the AND/OR search tree in Figure 6.2c. e AND nodes denote problem-decomposition. ey
indicate that child nodes of an AND nodes can be solved independently. Indeed, in the AND/OR
space, a full assignment to all the variables is not a path but a subtree. Comparing the size of the
traditional OR search tree in Figure 6.2b against the size of the AND/OR search tree, the latter
is clearly smaller. e OR search space has 3 � 27 nodes while the AND/OR one has 3 � 25.

More generally, if k is the domain size, a balanced binary tree graphical model (e.g., a
graph coloring problem) with n nodes has an OR search tree of sizeO.kn/. e AND/OR search
tree, whose underlying tree graphical model has depth O.log2 n/, has size O..2k/log2 n/ D O.n �

klog2 n/ D O.n1Clog2 k/. When k D 2, this becomes O.n2/ instead of 2k .
e AND/OR space is not restricted to tree graphical models as in the above example. As

we show, it only has to be guided by a tree spanning the primal graph of the model that obeys some
conditions to be defined in the next subsection. We define the AND/OR search space relative to
a guiding spanning tree of the primal graph.

Definition 6.2 AND/OR search tree. Given a graphical model M D hX;D;F ;
N
i, its pri-

mal graph G and a guiding spanning tree T of G, the associated AND/OR search tree, denoted
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(a) A constraint tree
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(b) OR search tree
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(c) AND/OR search tree with one of its solution
subtrees

Figure 6.2: OR vs. AND/OR search trees; note the connector for AND arcs.

ST .M/, has alternating levels of AND and OR nodes. e OR nodes are labeled Xi and cor-
respond to the variables. e AND nodes are labeled hXi ; xi i (or simply xi ) and correspond to
the value assignments of the variables. e structure of the AND/OR search tree is based on the
underlying spanning tree T . Its root is an OR node labeled by the root of T .

A path from the root of the ST .M/ to a node n is denoted by path.n/. If n is labeled
Xi or xi the path will be denoted path.n D Xi / or path.n D xi /, respectively. e assignment
sequence along path.n/, denoted val.path.n// is the tuple of values assigned to the variables
along the path. at is, the sequence of AND nodes along path.n/:

val.path.n D Xi // D fhX1; x1i; hX2; x2i; : : : ; hXi�1; xi�1ig D x.1::i�1/;

val.path.n D xi // D fhX1; x1i; hX2; x2i; : : : ; hXi ; xi ig D x.1::i/:

e set of variables associated with OR nodes along path path.n/ is denoted by var.path.n// W
var.path.n D Xi // D fX1; : : : ; Xi�1g, var.path.n D xi // D fX1; : : : ; Xig. e parent-child
relationship between nodes in the search space are defined as follows.

1. An OR node, n, labeled by Xi has a child AND node, m, labeled hXi ; xi i iff hXi ; xi i is
consistent with the assignment val.path.n//. Consistency is defined relative to the con-
straints when we have a constraint problem, or relative to the flat constraints extracted from
the zeros in the CPT tables otherwise.

2. An AND node m, labeled hXi ; xi i has a child OR node r labeled Y , iff Y is a child of X
in the guiding spanning tree T . Each OR arc emanating from an OR to an AND node is
associated with a weight to be defined shortly (see Definition 6.8).
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A solution in an AND/OR space is a subtree rather than a path.

Definition 6.3 Solution subtree. A solution subtree of an AND/OR search tree contains the
root node. For every OR node, if it is in the solution tree then the solution contains one of its
child nodes and for each of its included AND nodes the solution contains all its child nodes, and
all its leaf nodes are consistent.

Example 6.4 In the example of Figure 6.2a, T is the tree rooted at X , and accordingly the root
OR node of the AND/OR tree in 6.2c is X . Its child nodes which are AND nodes, are labeled
hX; 1i; hX; 2i; hX; 3i (only the values are noted in the figure). From each of these AND nodes
emanate two OR nodes, Y and Z, since these are the child nodes of X in the guiding tree of
Figure 6.2a. e descendants of Y along the path from the root, hX; 1i, are hY; 2i and hY; 3i only,
since hY; 1i is inconsistent with hX; 1i. In the next level, from each node hY; yi emanateOR nodes
labeled T andR and from hZ; zi emanate nodes labeled L andM as dictated by the guiding tree.
In Figure 6.2c a solution tree is highlighted.

As noted, if the graphical model is not a tree it can be guided by some legal spanning tree
of the graph. For example, as we will show in Section 6.1.2, a depth-first-search (DFS) spanning
tree of the graph is a useful and legal guiding tree. e notion of a DFS spanning tree is defined
for undirected graphs.

Definition 6.5 DFS spanning tree. Given a graph G D .V;E/ and given a node X1, a DFS
tree T of G is generated by applying a depth-first-search traversal over the graph, yielding an
ordering d D .X1; : : : ; Xn/. e DFS spanning tree T of G is defined as the tree rooted at the
first node, X1, and which includes only the traversed (by DFS) arcs of G. Namely, T D .V;E 0/,
where E 0 D f.Xi ; Xj / j Xj t raversed f rom Xi by DFS traversalg.

Example 6.6 Consider the probabilistic network given in Figure 6.3a whose undirected primal
graph is obtained by including the broken arcs and removing the arrows. A guiding tree which in
this case is a DFS spanning-tree of the graph is given in part (b). e dashed arcs are part of the
graph but not the spanning-tree arcs. e AND/OR search tree associated with this guiding tree
is given in part (d) of the figure. e weights on the arcs will be explained next.
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Figure 6.3: Labeled AND/OR search tree for belief networks.

6.1.1 WEIGHTSOFOR-ANDARCS
e arcs in AND/OR trees are associated with weights defined based on the graphical model’s
functions and the combination operator. e simplest case is that of constraint networks.

Definition 6.7 arc weights for constraint networks. In an AND/OR search tree ST .R/ of a
constraint network R, each terminal node is assumed to have a single, dummy, outgoing arc. e
outgoing arc of a terminal AND node always has the weight “1” (namely it is consistent). An
outgoing arc of a terminal OR node has weight “0”, (there is no consistent value assignments if
an OR node is a leaf ). e weight of any internal OR to AND arc is “1.” e arcs from AND to
OR nodes have no weight.

We next define arc weights for any general graphical model using the notion of buckets of
functions. e concept is simple even if the formal definition may look complex. When consider-
ing an arc .n;m/ having labels .Xi ; xi / (Xi labels n and xi labelsm), we identify all the functions
over variable Xi that are fully instantiated in path(n) once Xi is assigned. We then associate each
function with its valuation given the current value-assignment along the path to n. e products
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(a) (b)

Figure 6.4: Arc weights for probabilistic networks.

of all these function values is the weight of the arc. e following definition identify those func-
tions of Xi we want to consider in the product. Weights are assigned only on arcs connecting an
OR node to an AND node.

Definition 6.8 OR-to-AND weights, buckets relative to a tree. Given an AND/OR tree
ST .M/, of a graphical model M, the weight w.n;m/.Xi ; xi / of arc .n;m/ is the combination (e.g.,
product) of all the functions in Xi ’s bucket relative to T , denoted BT .Xi /, which are assigned by
their values along path.m/. BT .Xi / include all functions f having Xi in their scopes and whose
scope.f / � pathT .Xi /. Formally,w.n;m/.Xi ; xi / D

N
f 2BT .Xi /

f .val.path.m///. If the set of
functions is empty the weight is the constant 1 (or the identity relative to the combination oper-
ator).

Definition 6.9 Weight of a solution subtree. Given a weighted AND/OR tree ST .M/, of a
graphical model M, the weight of a subtree t is w.t/ D

N
e2arcs.t/w.e/, where arcs.t/ is the

set of arcs in subtree t .

Example 6.10 Figure 6.4 shows a guiding DFS tree of the Bayesian network in Figure 6.3, along
a guiding tree in 6.4b and a portion of the AND/OR search tree with the appropriate weights on
the arcs expressed symbolically. e bucket of variable E contains the function P.EjA;B/, and
the bucket of C contains two functions, P.C jA/ and P.DjB;C /. Note that P.DjB;C / belongs
neither to the bucket of B nor to the bucket ofD, but it is contained in the bucket of C , which is
the last variable in its scope to be instantiated in a path from the root of the tree. We see indeed
that the weights from nodes labeled E and from any of its AND value assignments include only
the instantiated functionP.EjA;B/, while the weights on the arcs connectingC to its AND child
nodes are the products of the two functions in its bucket, instantiated appropriately. (Exercise:
show how would the weight computed on the arc would change if we actually use the guiding
tree in Figure 6.3b). e evaluated weights along this pseudo-tree are depicted in Figure 6.3d.
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6.1.2 PSEUDOTREES
We have mentioned that a DFS spanning tree is a legal guiding tree for the AND/OR search.
is is indeed the case because child nodes branching reflect problem decomposition. However,
there is a more general class of spanning trees, called pseudo-trees, which can be considered. In
order to guide a proper decomposition for a graphical model, such trees need to obey the back-arc
property.

Definition 6.11 Pseudo tree, extended graph. Given an undirected graph G D .V;E/, a di-
rected rooted tree T D .V;E 0/ defined on all its nodes is a pseudo tree if any arc in E which is
not in E 0 is a back-arc in T , namely, it connects a node in T to an ancestor in T . e arcs in
E 0 may not all be included in E. Given a pseudo tree T of G, the extended graph of G relative
to T includes also the arcs in E 0 that are not in E. at is, the extended graph is defined as
GT D .V;E [E 0/.

Clearly, a DFS-tree is a pseudo-tree with the additional restriction that all its arcs are in
included in the original graph. e use of a larger class of pseudo trees has the potential of yielding
smaller depth guiding trees which are highly desirable, as we show in the next example.

Example 6.12 Consider the graphG displayed in Figure 6.5a. Ordering d1 D .1; 2; 3; 4; 7; 5; 6/
is a DFS ordering of a DFS spanning tree T1 having depth of 3 (Figure 6.5b). e tree T2 in
Figure 6.5c is a pseudo tree and has a tree depth of 2 only. e two tree-arcs (1,3) and (1,5) are
not in G. e tree T3 in Figure 6.5d, is a chain. e extended graphs GT1 , GT2 and GT3 are
presented in Figure 6.5b, c, d when we ignore directionality and include the broken arcs.
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Figure 6.5: (a) A graph; (b) a DFS tree T1; (c) a pseudo tree T2; and (d) a chain pseudo tree T3.

Figure 6.6 shows the AND/OR search trees along the pseudo trees T1 and T2 in Figure
6.5. e domains of the variables are fa; b; cg and there is no pruning due to hard constraints. We
see that the AND/OR search tree based on T2 is smaller because T2 has a smaller height than T1.
e weights are not specified here.
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Figure 6.6: AND/OR search tree along pseudo trees T1 and T2.

6.1.3 PROPERTIESOFAND/OR SEARCHTREES
Any pseudo tree T of a graph G has the property that the arcs of G which are not in T are
back arcs. Namely, they connect a node to one of its ancestors in the guiding tree. is property
implies that each scope of a function in F will be fully assigned on some path in T , a property
that is essential for the ability of the AND/OR search space to consider all the functions in the
model and supports correct computation. In fact, the AND/OR search tree can be viewed as an
alternative representation of the graphical model.

eorem 6.13 Correctness. Given a graphical modelM D hX;D;F D ff1; :::; frg;
N
i having

a primal graph G and a guiding pseudo-tree T of G and its associated weighted AND/OR search tree
ST .M/ then (1) there is a one-to-one correspondence between solution subtrees ofST .M/ and solutions
ofM; (2) the weight of any solution tree equals the cost of the full solution assignment it denotes; namely,
if t is a solution tree of ST .M/ then F.val.t// D w.t/, where val.t/ is the full solution defined by
tree t . (See Appendix for a proof.)

As already mentioned, the virtue of an AND/OR search tree representation is that its size
can be far smaller than the traditional OR search tree. e size of an AND/OR search tree de-
pends on its depth, also called height, of its pseudo-tree T . erefore, pseudo trees of smaller
height should be preferred. An AND/OR search tree becomes an OR search tree when its pseudo
tree is a chain.

eorem 6.14 Size of AND/OR search tree. Given a graphical model M, with domains size
bounded by k, having a pseudo tree T whose height is h and having l leaves, the size of its AND/OR
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Figure 6.8: e minimal OR search graph of the tree
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search treeST .M/ isO.l � kh/ and therefore alsoO.nkh/ andO..bk/h/when b bounds the branching
degree of T and n bounds the number of nodes.e size of its OR search tree along any ordering isO.kn/
and these bounds are tight. (See Appendix for proof.)

We can give a more refined bound on the search space size by spelling out the height
hi of each leaf Li in T as follows. Given a guiding spanning T having L D fL1; : : : ; Llg
leaves of a model M, where the depth of leaf Li is hi and k bounds the domain sizes, the
size of its full AND/OR search tree ST .M/ is O.

Pl
kD1 k

hiC1/. Using also the domain sizes
for each variable yields an even more accurate expression of the search tree size: jST .M/j D

O.
P
Lk2L

Q
fXj jXj2pathT .Lk/g

jD.Xj /j/.

6.2 AND/OR SEARCHGRAPHS
It is often the case that a search space that is a tree can become a graph if nodes that root identical
search subspaces, or correspond to identical subproblems, are identified. Any two such nodes can
be merged, yielding a graph and thus reducing the size of the search space.

Example 6.15 Consider again the graph in Figure 6.2a and its AND/OR search tree in Figure
6.2c depicted again in Figure 6.9 representing a constraint network. Observe that at level 3, node
hY; 1i appears twice, (and so are hY; 2i and hY; 3i) (not shown explicitly in the figure). Clearly
however, the subtrees rooted at each of these twoANDnodes are identical and they can bemerged
because in this tree model, any specific assignment to Y uniquely determines its rooted subtree.
Indeed, the resulting merged AND/OR search graph depicted in Figure 6.10 is equivalent to the
AND/OR search tree in Figure 6.9.
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Figure 6.9: AND/OR search tree
for the tree problem in Figure 6.2a.
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Figure 6.10: e minimal AND/OR search graph of
the tree graphical model in Figure 6.2a.

It may also occur that two nodes that do not root identical subtrees still correspond to
equivalent subproblems. Such nodes can also be unified, even if their explicit weighted subtrees
do not look identical. To discuss this issue we need the notion of equivalent graphical models. In
general, two graphical models are equivalent if they have the same set of solutions, and if each
is associated with the same cost. We will use the notion of universal graphical model to define
equivalence. A universal graphical model represents the solutions of a graphical model, through
a single global function over all the variables. For example, the universal model of a Bayesian
network is the joint probability distribution it represents.

Definition 6.16 Universal equivalent graphical model. Given a graphical model M D

hX;D;F;
N
i the universal equivalent model of M is u.M/ D hX;D;F D f

Nr
iD1 figi.

We also need to define the cost of a partial solution and the notion of a graphical model
conditioned on a partial assignment. Informally, a graphical model conditioned on a particular
partial assignment is obtained by assigning the appropriate values to all the relevant variables in
the function ( to all the conditioning set) and modifying the output functions appropriately.

Definition 6.17 Cost of an assignment, conditional model. Given a graphical model R D
hX;D;C;

N
i:

1. the cost of a full assignment x D .x1; :::; xn/ is defined by c.x/ D
N
f 2F f .xf /.e cost of a

partial assignment y , over Y � X is the combination of all the functions whose scopes are in-
cluded in Y (denoted FY ) evaluated at the assigned values. Namely, c.y/ D

N
f 2FY

f .yf /.

2. the graphical model conditioned on Y D y is Mjy D hX � Y;DjX�Y ; F jy ;
N
i, where

F jy D ff jYDy ; f 2 F g.
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6.2.1 GENERATINGCOMPACTAND/OR SEARCHSPACES
We will next define the merge operator. It transforms AND/OR search trees into an equivalent
AND/OR graphs.

Definition 6.18 Merge. Assume a given weighted AND/OR search graph S 0T of a graphical
modelM and assume two paths path.n1/ and path.n2/ ending by AND nodes at level i having
the same label xi . Nodes n1 and n2 can be merged iff the weighted search subgraphs rooted at n1
and n2 are identical. e merge operator, merge.n1; n2/, redirects all the arcs going into n2 into
n1 and removes n2 and its subgraph. When we merge AND nodes only we call the operation
AND-merge. e same reasoning can be applied to OR nodes, and we call the operation OR-
merge.

Proposition 6.19 Merge-minimal AND/OR graphs Given a weighted AND/OR search graph
GT guided by a pseudo tree T : e merge operator has a unique fix point, called the merge-minimal
AND/OR search graph. (See proof in the Appendix).

When T is a chain pseudo tree, the above definitions are applicable to the traditional OR
search tree as well. However, we may not be able to reach the same compression as in some
AND/OR cases, because of the linear structure imposed by the OR search tree.

Example 6.20 e smallest OR search graph of the graph-coloring problem in Figure 6.2a
(depicted again in Figure 6.7) is given in Figure 6.8 along the DFS order X; Y; T;R;Z;L;M .
e smallest AND/OR graph of the same problem along the DFS tree is given in Figure 6.10.
We see that some variable-value pairs (AND nodes) must be repeated in Figure 6.8 while in
the AND/OR case (Figure 6.10) they appear just once. In particular, the subgraph below the
paths .hX; 1i; hY; 2i/ and .hX; 3i; hY; 2i/ in the OR tree cannot be merged at hY; 2i. You can now
compare all the four search space representations side by side in Figures 6.7–6.10.

6.2.2 BUILDINGCONTEXT-MINIMALAND/OR SEARCHGRAPHS
e merging rule seems to be quite operational; we can generate the AND/OR search tree and
then recursively merge identical subtrees going from leaves to root. is, however, requires gen-
erating the whole search tree first, which would still be costly. It turns out that for some nodes
it is possible to recognize that they can be merged by using graph properties only, namely based
on their contexts. e context of a variable is the set of its ancestor variables in the pseudo tree T
that completely determine the conditioned subproblems below it.

We have already seen in Figure 6.2a that at level 3, node hY; 1i appears twice (and so are
hY; 2i and hY; 3i). Clearly we can see that Y uniquely determines its rooted subtree. In this case Y
is its own context and the AND/OR search graph in Figure 6.10 is equivalent to the AND/OR
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search tree in Figure 6.7. In general, an AND/OR search graph of a graphical model that is a tree
can be obtained by merging all AND nodes having the same label hX; xi. at is, every variable
is its own context. e resulting equivalent AND/OR graph has search space size of O.nk/.

e general idea of a context is to identify a minimal set of ancestor variables, along the
path from the root to the node in the pseudo tree, such that when assigned the same values they
yield the same conditioned subproblem, regardless of value assigned to the other ancestors. To
derive a general merging scheme we define the induced-width of a pseudo-tree.

Definition 6.21 Induced width of a pseudo tree. e induced width of G relative to a pseudo
tree T , is the maximum width of its induced pseudo tree obtained by recursively connecting the
parents of each node, going from leaves to root along each branch. In that process we consider
both the extended arcs in the pseudo tree and those in the graphical model.

Definition 6.22 Parents, parents-separators. Given a primal graph G and a pseudo tree T of
its graphical model M D hX;D;C;

N
i, the parents of an OR node Xi , denoted by pai or paXi

,
are the ancestors ofXi that are connected inG toXi or to descendants ofXi .e parent-separators
ofXi (or of hXi ; xi i), denoted by pasXi

, are formed byXi and its ancestors that have connections
in G to descendants of Xi .

It follows from these definitions that the parents of Xi , paXi
separate in the primal graph

G, the ancestors of Xi in T , fromXi and its descendants. Similarly, the parents-separators ofXi ,
pasXi

, separate the ancestors ofXi from its descendants. It is also easy to see that each variableXi
and its parents paXi

form a clique in the induced pseudo-graph. e following proposition estab-
lishes the relationship between paXi

and pasXi
. We use both in order to characterize two types

of merging: AND merge and OR merge. e following claim follows directly from Definitions
6.22. It is easy to see the following.

Proposition 6.23 Relations between contexts

1. If Y is the single child of X in T , then pasX D paY .

2. If X has children Y1; : : : ; Yk in T , then pasX D [kiD1paYi
.

eorem 6.24 Context-basedmerge operators. LetGT � be the induced pseudo tree of T and let
path.n1/ and path.n2/ be any two partial paths in an AND/OR search graph.

1. If n1 and n2 are AND nodes annotated by hXi ; xi i and

val.path.n1//ŒpasXi
� D val.path.n2//ŒpasXi

� (6.2)

then the AND/OR search subtrees rooted by n1 and n2 can be merged.
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2. If n1 and n2 are OR nodes annotated by Xi and

val.path.n1//ŒpaXi
� D val.path.n2//ŒpaXi

� (6.3)

then the AND/OR search subtrees rooted by n1 and n2 can be merged.

Definition 6.25 context. e val.path.ni //ŒpasXi
� is called the AND context of ni and the

val.path.ni //ŒpaXi
� is called the OR context of ni .

Example 6.26 For the balanced tree in Figure 6.2a consider the
chain pseudo tree d D .X; Y; T;R;Z;L;M/. Namely, the chain has arcs
f.X; Y /; .Y; T /; .T;R/; .R;Z/; .Z;L/; .L;M/g and the extended graph includes also the
arcs .Z;X/; .M;Z/. e context of T along d is XY T (since the induced graph has the arc
.T;X/), of R it is XR, for Z it is Z and forM it isM . Indeed in the first three levels of the OR
search graph in Figure 6.8 there are no merged nodes. In contrast, if we consider the AND/OR
ordering along the DFS tree, the context of every node is itself yielding a single appearance of
each AND node having the same assignment annotation in the minimal AND/OR graph (See
Figure 6.10 and contrast it with Figure 6.8).

Definition 6.27 Context minimal AND/OR search graph. e AND/OR search graph of
M guided by a pseudo-tree T that is closed under context-based merge operator, (namely no
more merging is possible), is called the context minimal AND/OR search graph and is denoted
by CMT .R/.

We should note that we can, in general, merge nodes based both on AND and OR con-
texts. However, Proposition 6.23 shows that doing just one type of merging renders the other
unnecessary (up to some small constant factor). In practice, we would recommend just the OR
context based merging, because it has a slight (albeit by a small constant factor) space advantage.

Example 6.28 Figure 6.11a refer back to the model given in Figure 6.3a, again assuming that all
assignments are valid and that variables take binary values. Figure 6.11b shows, again, the pseudo
tree derived from ordering d D .A;B;E;C;D/. e (OR) context of each node appears in square
brackets, and the broken arcs are backarcs. e context-minimal AND/OR graph appears in
6.11(b).

Since each context must appear only once in the Context-minimal graph (different appear-
ances should be merged) the number of nodes in the context minimal AND/OR search graph
cannot exceed the number of different contexts. Since, as we will show, the context’s scope size is
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Figure 6.11: AND/OR search graph.

bounded by the induced width of the pseudo tree that guides it, the size of the context minimal
graph can be bounded exponentially by the induced width along the pseudo-tree.

Proposition 6.29 Given a graphical modelM, and a pseudo tree T having induced width w, then
the size of the context minimal AND/OR search graph based on T , CMT .R/, is O.n � kw/, when k
bounds the domain size and n is the number of variables.

Proof. For any variable, the number of its contexts is bounded by the number of possible instan-
tiations to the variables in it context. Since the context size of each variable is bounded by its
induced-width along the pseudo tree (prove as an exercise), we get the bound of O.kw/. Since
we have n variables, the total bound is O.n � kw/. �

In summary, context-based merge (AND and/or OR) offers a powerful way of trimming
the size of the AND/OR search space, and therefore of bounding the truly minimal AND/OR
search graph. We can generateCMT using depth-first or breadth first traversals while figuring the
converging arcs into nodes via their contexts. is way we avoid generating duplicate searches for
the same contexts. All in all, the generation of the search graph is linear in its size. e AND/OR
graph is exponential in w and linear in n. Based on Proposition 6.29 we can conclude the follow-
ing.

eorem6.30 e contextminimal AND/OR search graphCMT of a graphical model whose guiding
pseudo tree has a treewidthw can be generated in time and spaceO.nkwC1/ andO.nkw/, respectively.
(Prove as a exercise.)
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6.3 FINDINGGOODPSEUDOTREES
Since the AND/OR search space, be it a tree or a graph, depends on a guiding pseudo-tree we
should address the issue of finding good pseudo-tress. We will discuss two schemes for generating
good pseudo-trees. One based on an induced graph along an ordering of the variables, while the
other is based on hypergraph-decomposition.

6.3.1 PSEUDOTREESCREATEDFROM INDUCEDGRAPHS
We saw that the complexity of an AND/OR search trees is controlled by the height of the pseudo
tree. It is desirable therefore to find pseudo trees having minimal height. is is yet another graph
problem (in addition to finding minimal induced-width) which is known to be NP-complete but
greedy algorithms and polynomial time heuristic scheme are available.

A general scheme for generating pseudo trees starts from an induced graphs along some
ordering d . A pseudo-tree can then be obtained via a depth-first traversal of the induced-ordered
graph starting from the first node in d and breaking ties in favor of earlier variables in d . An
alternative way for generating a pseudo-tree from an induced ordered graph is based on the ob-
servation that a bucket tree is a pseudo tree (see Definition 5.2). Summarizing:

Proposition 6.31 Given a graphical modelM D< X;D;F;
N
> and an ordering d ,

1. the bucket tree derived from the induced ordered graph along d of M, T D .X;E/ with E D
f.Xi ; Xj /j.BXi

; BXj
/ 2 bucket � t reeg, is a pseudo tree ofM, and

2. the DFS-tree generated by traversing the induced-order graph starting at the first variable of its
ordering, is a pseudo tree.

Proof. All one need to show is that all the arcs in the primal graph of M which are not in T
are back-arcs and this is easy to verify based on the construction of DFS tree in part (1) and of a
bucket-tree in part (2). (Exercise: complete the proof ). �

It is interesting to note that a chain graphical model has a (non-chain) pseduo-tree of depth
logn, when n is the number of variables. e induced width of such a tree is logn as well. On
the other hand the minimum induced width of a chain pseudo tree is 1. erefore, on the one
hand a chain can be solved in linear space and inO.klogn/ time along its logn height pseudo tree,
and on the other hand it can also be solved in O.nk2/ time with O.nk/ memory using bucket-
elimination along its chain whose induced width is 1 and height is n=2. is example generalizes
into a relationship between the treewidth and the pseudo-tree height of a graph.

Proposition 6.32 [Bayardo and Miranker, 1996; H.L. Bodlaender and Kloks, 1991] e minimal
height, h�, of all pseudo trees of a given graph G satisfies h� � w� � logn, where w� is the tree width
of G.
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Table 6.1: Bayesian networks repository (left); SPOT5 benchmarks (right).

Network hypergraph min-fill Network hypergraph min-fill
width depth width depth width depth width depth

barley 7 13 7 23 spot_5 47 152 39 204
diabetes 7 16 4 77 spot_28 108 138 79 199
link 21 40 15 53 spot_29 16 23 14 42
mildew 5 9 4 13 spot_42 36 48 33 87
munin1 12 17 12 29 spot_54 12 16 11 33
munin2 9 16 9 32 spot_404 19 26 19 42
munin3 9 15 9 30 spot_408 47 52 35 97
munin4 9 18 9 30 spot_503 11 20 9 39
water 11 16 10 15 spot_505 29 42 23 74
pigs 11 20 11 26 spot_507 70 122 59 160

Proof. If there is a tree decomposition of G having a treewidth w, then we can create a pseudo
tree whose height h satisfies h � w � logn (prove as an exercise). From this it follows that h� �
w� � logn. �

e above relationship suggests a bound on the size of AND/OR search trees of a graphical
models in terms of their treewidth.

eorem 6.33 A graphical model that has a treewidth w� has an AND/OR search tree whose size is
O.k.w

��logn//, where k bounds the domain size and n is the number of variables.

Notice, however, that even though a graph may have induced-width of w�, the induced
width of the pseudo tree created as suggested by the above theorem may be of size w�logn and
not w�.

Width vs. height of a given pseudo tree. Since an induced-ordered graph can be a starting
point in generating a pseudo tree, the question is if the min-fill ordering heuristic which appears
to be quite good for finding small induced-width is also good for finding pseudo trees with small
heights (see Chapter 3). A different question is what is the relative impact of the width and the
height on the actual search complexity. e AND/OR search graph is bounded exponentially by
the induced-width while the AND/OR search tree is bounded exponentially by the height. We
will have a glimpse into these questions by comparing with an alternative scheme for generating
pseudo trees which is based on the hypergraph decompositions scheme.
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6.3.2 HYPERGRAPHDECOMPOSITIONS

Definition 6.34 Hypergraph separators. Given a dual hypergraph H D .V ;E/ of a graphical
model, a hypergraph separator decomposition of size k by nodes S is obtained if removing S yields
a hypergaph having k disconnected components. S is called a separator.

It is well known that the problem of finding the minimal size hypergraph separator is
hard. However, heuristic approaches were developed over the years.¹. Generating a pseudo tree
T (yielding also a tree-decomposition) for M using hypergraph decomposition is fairly straight-
forward. e vertices of the hypergraph are partitioned into two balanced (roughly equal-sized)
parts, denoted by Hlef t and Hright , respectively, while minimizing the number of hyperedges
across. A small number of crossing edges translates into a small number of variables shared be-
tween the two sets of functions. Hlef t and Hright are then each recursively partitioned in the
same fashion, until they contain a single vertex. e result of this process is a tree of hypergraph
separators which can be shown to also be a pseudo tree of the original model where each separator
corresponds to a subset of variables connected by a chain.

Table 6.1 illustrates and contrasts the induced width and height of pseudo trees obtained
with the hypergraph andmin-fill heuristics for 10 Bayesian networks from the BayesianNetworks
Repository² and 10 constraint networks derived from the SPOT5 benchmarks [Bensana et al.,
1999]. It is generally observed that the min-fill heuristic generates lower induced width pseudo
trees, while the hypergraph heuristic produces much smaller height pseudo trees. Note that it is
not possible to generate a pseudo-tree that is optimal w.r.t. both the treewidth and the height
(remember our earlier example of a chain).

Notice that for graphical models having a bounded treewidth w, the minimal AND/OR
graph is bounded by O.nkw/ while the minimal OR graph is bounded by O.nkw �logn/. We con-
clude this section with the following example which is particularly illustrative of the tradeoff
involved.

Example 6.35 Consider the graph of a graphical model given in Figure 6.12a.We see the pseudo
tree in part (b) having w=4 and h=8 and the corresponding context-minimal search graph in (c).
e second pseudo-tree in part (d) has w=5, h=6 and the context-minimal graph appears in part
(e).

6.4 VALUE FUNCTIONSOFREASONINGPROBLEMS
Aswe described earlier, there are a variety of reasoning problems over graphical models (see Chap-
ter 2). For constraint networks, the most popular tasks are to decide if the problem is consistent,

¹A good package hMeTiS is Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
²Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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to find a single solution or to count solutions. If a cost function is defined by the graphical model
we may also seek an optimal solution. e primary tasks over probabilistic networks are comput-
ing beliefs (i.e., the posterior marginals given evidence), finding the probability of the evidence
and finding the most likely tuple given the evidence (i.e., mpe and map queries). Each of these
reasoning problems can be expressed as finding the value of nodes in theweighted AND/OR search
space.

For example, for the task of finding a solution to a constraint network, the value of every
node is either “1” or “0.” e value “1” means that the subtree rooted at the node is consistent
and “0” otherwise. erefore, the value of the root node determines the consistency query for the
full constraint network. For solutions-counting the value function of each node is the number of
solutions of the subproblem rooted at that node.

Given a graphical model and a specification by an AND/OR search space of the model.
e submodel associated with a node n in the search space, is the submodel conditioned on all
the value assignments along the path from the root node to n.

Definition 6.36 Value function for consistency and counting. Given AND/OR tree ST .R/
of a constraint network. e value of a node (AND or OR) for deciding consistency is “1” if it
roots a consistent subproblem and “0” otherwise. e value of a node (AND or OR) for counting
solutions is the number of solutions in the subproblem it roots which is the number of solutions
in its subtree.

e value of nodes in the search graph can be expressed as a function of the values of their
child nodes, thus allowing a recursive value computation from leaves to root.

Proposition 6.37 Recursive value computation for constraint queries Consider the following.

1. For the consistency task the value of AND leaves is “1” and the value of OR leaves is “0” (they are
inconsistent). An internal OR node is labeled “1” if one of its successor nodes is “1” and an internal
node has value “1” iff all its child OR nodes have value “1.”

2. e counting values of leaf AND nodes are “1” and of leaf OR nodes are “0.” e counting value
of an internal OR node is the sum of the counting-values of all its child nodes. e counting-value
of an internal AND node is the product of the counting-values of all its child nodes. (Exercise:
prove the proposition.)

We now move to probabilistic queries. We can generalize to any graphical model and to
any query. We provide the recursive definition of values and then prove that it is correct, namely,
that it has the intended meaning. Remember that the label of an arc .Xi ; hXi ; xi i/ along path
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path.n D xi / is defined asw.Xi ; hXi ; xi i/ D
Q
f 2B.Xi /

f .val.path.n D xi ///, whereB.Xi / are
the functions in its bucket (see Definition 6.8.)

Definition 6.38 Recursive value computation for a general reasoning problems. e value
function of a reasoning problem M D hX;D; F;

N
+i is defined as follows: the value of leaf

AND nodes is “1” and of leaf OR nodes is “0.” e value of an internal OR node is obtained by
combining the value of each AND child node with the weight (see Definition 6.8) on its incoming
arc and thenmarginalizing over all AND children. e value of an AND node is the combination
of the values of its OR children. Formally, if children.n/ denotes the children of node n in the
AND/OR search graph, then³:

v.n/ D
N
n02children.n/ v.n

0/, if n D hX; xi is an AND node,
v.n/ D+n02children.n/ .w.n;n0/

N
v.n0//, if n D X is an OR node.

Given a reasoning task, the value of the root node is the answer to the query as stated next

Proposition 6.39 Let M D hX;D;F ;
N
+i be a graphical model reasoning task and let n D X1

be the root node in an AND/OR search graph S 0T .M/. en the value of X1 defined recursively by
Definition 6.38 obeys that v.X1/ D+X

N
f 2F f . (For a formal proof see [Dechter and Mateescu,

2007b].)

For probabilistic network when the combination is a product and the marginalization is a
sum, the value of the root node is the probability of evidence. If we use the max marginalization
operator, the value of the root is the mpe cost.

Example 6.40 Consider our AND/OR tree example of the probabilistic Bayesian network and
assume that we have to find the probability of evidence P(D=1,E=0). e weighted AND/OR
tree was depicted in 6.3. In Figure 6.13a we show also the value of each node for the query.
Starting at leaf bodes for E and D we see that their values is “0” for the non-evidence value and
“1” otherwise, indicated through faded arcs. erefore the value of OR nodesD is as dictated by
the appropriate weights. We see that when we go from leaves to root, the value of an OR node
is the sum value of their child nodes, each multiplied by the arc-weight. For example, the value
v.n/ D 0:88 in the left part of the tree is obtained from the values of its child nodes, (0.8 and 0.9),
each multiplied by their respective weights (0.2,0.8) yielding v.n/ D 0:2 � 0:8C 0:8 � 0:9 D 0:88.
e value of AND nodes is the product of value of their OR child nodes. In part (b) we see the
value associated with nodes in the AND/OR graph. In this case merging occur only in OR nodes
labeled D, and the value of each node is computed in the same way.

³We abuse notations here as
N

is defined between matrices or tables and here we have scalars
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(a) Labeled AND/OR tree

Figure 6.13: Labeled AND/OR search tree and graphs for belief networks.

6.4.1 SEARCHINGAND/ORTREE (AOT) ANDAND/ORGRAPH (AOG)
Search algorithms that traverse the AND/OR search space can compute the value of the root
node yielding the answer to the query. In this section we present a typical depth-first algorithms
that traverse AND/OR trees and graphs. We use solution counting as an example for a constraint
query and the probability of evidence as an example for a probabilistic query. e application
of these ideas for combinatorial optimization tasks, such as MPE is straightforward (at least in
its brute-force manner). Effective and more sophisticated schemes (e.g., branch and bound or
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(b) Labeled AND/OR graph

Figure 6.13: Labeled AND/OR search tree and graphs for belief networks.

best-first search) were developed [Marinescu and Dechter, 2005, 2009a,b; Otten and Dechter,
2012].

Example 6.41 Looking again at Figure 6.13 we can see how value computation can be ac-
complished when we traverse the search space in a depth-first manner, using only linear space.
If instead, the AND/OR graph is searched, we need to cache the results of subproblem’s value
computation in order to avoid redundant computation. is can be accomplished by caching us-
ing the node context. For example, in Figure 6.13 we keep a table for nodeD index by its context
consisting of variables B and C . For each path to an OR node labeled D like ( A=0, B=0, C=1,
D=1), once we discovered that the value below this path is 0.8, we keep this value in the cache
table indexed by the pair .B D 0; C D 1/. Likewise, for each assignment to these two variables
the solution is cached and retrieved when the same context is encountered (see Figure 6.13b).

Algorithm 2, presents the basic depth-first traversal of the AND/OR search tree or search
graph for counting the number of solutions of a constraint network, AO-, (or for
probability of evidence for belief networks, AO--). As noted, the context based
caching is done using tables. For each variable Xi , a table is reserved in memory for each possible
assignment to its parent set pai which is its context. Initially each entry has a predefined value, in
our case “-1.” e fringe of the search is maintained on a stack called OPEN. e current node is
denoted by n, its parent by p, and the current path by path.n/. e children of the current node
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are denoted by successors.n/. If caching is set to “false” the algorithm searches the AND/OR
tree and we will refer to it as AOT .

e algorithm is based on two mutually recursive steps: EXPAND and PROPAGATE,
which call each other (or themselves) until the search terminates. Before expanding an OR node,
its cache table is checked (line 5). If the same context was encountered before, it is retrieved from
cache, and successors.n/ is set to the empty set, which will trigger the PROPAGATE step. If a
node is not found in cache, it is expanded in the usual way, depending on whether it is an AND
or OR node (lines 9–16). e only difference between counting and belief updating is line 11 vs.
line 12. For counting, the value of a consistent AND node is initialized to 1 (line 11), while for
belief updating, it is initialized to the bucket value for the current assignment (line 12). As long
as the current node is not a dead-end and still has unevaluated successors, one of its successors is
chosen (which is also the top node on OPEN), and the expansion step is repeated.

e bottom up propagation of values is triggered when a node has an empty set of successors
(note that as each successor is evaluated, it is removed from the set of successors in line 30). is
means that all its children have been evaluated, and its final value can now be computed. If the
current node is the root, then the search terminates with its value (line 19). If it is an OR node,
its value is saved in cache before propagating it up (line 21). If n is OR, then its parent p is AND
and p updates its value by multiplication with the value of n (line 23). If the newly updated value
of p is 0 (line 24), then p is a dead-end, and none of its other successors needs to be evaluated. An
AND node n propagates its value to its parent p in a similar way, only by summation (line 29).
Finally, the current node n is set to its parent p (line 31), because n was completely evaluated. e
search continues either with a propagation step (if conditions are met) or with an expansion step.

6.5 GENERALAND-OR SEARCH - AO(I)

General AND/OR algorithms for evaluating the value of a root node for any reasoning problem
using tree or graph AND/OR search are identical to the above algorithms when product is re-
placed by the combination operator and summation is replaced by the marginalization operator.
We can view the AND/OR tree algorithm (which we will denote AOT) and the AND/OR graph
algorithm (denoted AOG) as two extreme cases in a parameterized collection of algorithms that
trade space for time via a controlling parameter i . We denote this class of algorithms as AO.i/
where i determines the size of contexts that the algorithm caches. AlgorithmAO.i/ records nodes
whose context size is i or smaller (the test in line 21 needs to be a bit more elaborate and check
if the context size is smaller than i). us, AO(0) is identical to AOT, while AO.w/ is identical
to AOG, where w is the induced width of the used pseudo-tree. For any intermediate i we get
an intermediate level of caching, which is space exponential in i and whose execution time will
increase as i decreases. Some elaboration follows.
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Algorithm 2: AO- / AO--.
Input: A constraint network R D hX;D;C i, or a belief network B D hX;D;P i;

a pseudo tree T rooted at X1; parents pai (OR-context) for every variable Xi ;
caching set to true or false.

Output: e number of solutions, or the updated belief, v.X1/.
if caching DD true then // Initialize cache tables

Initialize cache tables with entries of “�1”1

v.X1/ 0; OPEN fX1g // Initialize the stack OPEN2
while OPEN ¤ ˚ do3

n top.OPEN/; remove n from OPEN4
if caching DD true and n is OR, labeledXi and Cache.val.path.n//ŒpaXi

�/ ¤ �1 then // In5
cache

v.n/ Cache.val.path.n//ŒpaXi
�/ // Retrieve value6

successors.n/ ' // No need to expand below7
else // EXPAND8

if n is an OR node labeledXi then // OR-expand9
successors.n/ fhXi ; xi i j hXi ; xi i is consistent with path.n/ }10
v.hXi ; xi i/ 1, for all hXi ; xi i 2 successors.n/11
v.hXi ; xi i/ 

Q
f 2BT .Xi /

f .val.path.n//ŒpaXi
�/, for all hXi ; xi i 2 successors.n/

12
// AO-bu

if n is an AND node labeled hXi ; xi i then // AND-expand13
successors.n/ childrenT .Xi /14
v.Xi / 0 for all Xi 2 successors.n/15

Add successors.n/ to top of OPEN16

while successors.n/ DD ˚ do // PROPAGATE17
if n is an OR node labeledXi then18

if Xi DD X1 then // Search is complete19
return v.n/20

if caching DD true then21
Cache.val.path.n//ŒpaXi

�/ v.n/ // Save in cache22

v.p/ v.p/ � v.c/23
if v.p/ DD 0 then // Check if p is dead-end24

remove successors.p/ from OPEN25
successors.p/ ˚26

if n is an AND node labeled hXi ; xi i then27
let p be the parent of n28
v.p/ v.p/C v.n/;29

remove n from successors.p/30
n p31

6.5.1 COMPLEXITY
From eorem 6.33 we can clearly conclude the following.

eorem 6.42 For any reasoning problem, algorithm AOT runs in linear space and in O.nkh/
time, when h is the height of the guiding pseudo tree and k is the maximum domain size. If the primal
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graph has a tree decomposition with treewidth w, then there exists a pseudo tree T for which AOT is
O.nkw �logn/. (Exercise: provide a proof ).

Obviously, for constraint satisfaction the algorithm would terminate early with a first so-
lution, andwould potentially be much faster than for the rest of the queries. Based on eorem
6.29 we can derive a complexity bound when searching the AND/OR context-minimal search
graph.

eorem 6.43 For any reasoning problem, the complexity of algorithm AOG (i.e., algorithm 2 for
the flag caching=true) is time and space O.nkw/ where w is the induced width of the guiding pseudo
tree and k is the maximum domain size.

e space complexity of AOG can often be far tighter than exponential in the treewidth.
One reason is related to the space complexity of tree decomposition schemes which, as we know,
can operate in space exponential in the size of the cluster separators only, rather than be exponen-
tial in the cluster size. We will use the term dead caches to address this issue. Intuitively, a node
that has only one incoming arc in the search tree will be traversed only once by DFS search, and
therefore its value does not need to be remembered, as it will never be used again. Luckily, such
nodes can be recognized based only on their context.

Definition 6.44 Dead cache. [Darwiche, 2001a] If X is the parent of Y in pseudo tree T , and
context.X/ � context.Y /, then context.Y / is a dead cache.

We know that a pseudo-tree is also a bucket-tree. at is, given a pseudo-tree we can
generate a bucket-tree by associating a cluster for each variable Xi and its parents paXi

in the
induced-graph. Following the pseudo-tree structure, some of the clusters may not be maximal,
and these are precisely the ones that correspond to dead caches. e parents paXi

that are not
dead caches are those separators between maximal clusters in the bucket tree associated with the
pseudo-tree.

Example 6.45 Consider the graphical models and the pseudo tree in Figure 6.12a. e context
in the left branch (C; CK; CKL; CKLN ) are all dead-caches. e only one which is not a dead
cache is CKO , the context of P . As you can see, there are converging arcs into P only along this
branch. Indeed if we describe the clusters of the corresponding bucket-tree. we would have just
two maximal clusters: CKLNO and PCKO whose separator is CKO , which is the context of P .
(Exercise: Determine the dead caches for the pseudo-tree in Figure 6.12d).

We can conclude the following.

Proposition 6.46 If dead caches are not recorded, the space complexity of AOG can be reduced to being
exponential in the separator’s size only, while still being time exponential in the induced-width . (Prove
as an exercise.)
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Finding a single solution. We can easily modify the algorithm to find a single solution. e main
difference is that the 0=1 v values of internal nodes are propagated using Boolean summation and
product instead of regular operators. If there is a solution, the algorithm terminates as soon as
the value of the root node is updated to 1. e solution subtree can be generated by following the
pointers of the latest solution subtree. is, of course, is a very naive way of computing a single
consistent solution as would be discussed in the context of mixed networks in Section 6.6.

Finding posterior marginals. To find posterior marginal of the root variable, we only need to
keep the computation at the root of the search graph and normalize the result. However, if we
want to find the belief (i.e., posterior marginal) for each variable we would need to make a more
significant adaptation of the search scheme.

Optimization tasks. General AND/OR algorithms for evaluating the value of a root node for
any reasoning problem using tree or graph AND/OR search spaces are identical to the above
algorithms when product is replaced by the appropriate combination operator (i.e., product or
summation) and marginalization by summation is replaced by the appropriate marginalization
operator. For optimization (e.g., mpe) all we need is to change line 30 of the algorithm from
summation to maximization. Namely, we should have v.p/ maxfv.p/; v.n/g. Clearly, this
will yield a base-line scheme that can be advanced significantly using heuristic search ideas. To
compute marginal map query we will use marginalization by sum of max based on the variable
identity to which the marginalization operator is applied.

Depth-first vs Best-first searches is could be the right place to make a clear distinction be-
tween searching the AND/OR space depth-first of best-first for optimization tasks. Best-first
cannot exploit dead-caches, but must cache all nodes in the explicated graph. For this reason
DFS can have far better memory utilization even when both scheme search an AD/OR graph.

6.6 AND/OR SEARCHALGORITHMSFORMIXED
NETWORKS

We will consider now AND/OR search schemes in the context of mixed graphical models (see
definition 2.25 in Section 2.6). To refresh, the mixed network is defined by a pair of a Bayesian
network and a constraint network. is pair expresses a probability distribution over all the vari-
ables which is conditioned on the requirement that all the assignments having nonzero probability
satisfy all the constraints. e constraint network may be specified explicitly as such, or can be
extracted from the probabilistic network as those partial tuples whose probability is zero (see
Definition 2.25 and [Darwiche, 2009] chapter 13).

All advanced constraint processing algorithms [Dechter, 2003], either incorporating no-
good learning and constraint propagation during search, or using variable elimination algorithms
such as adaptive-consistency and directional resolution, can be applied toAND/OR search formixed
networks. In this section we will touch on these methods briefly because they need a considerable
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Figure 6.14: AND/OR search tree and backtrack-free tree.

space to be treated adequately. Our aim is to point to the main principles of constraint processing
that can have impact in the context of AND/OR search and refer the reader to the literature for
full details (see [Dechter, 2003]).

Overall, the virtue of having the mixed network view is that the constraint portion can be
processed by a wide range of constraint processing techniques, both statically before search, or
dynamically during search [Dechter, 2003]. Recall the concept of backtrack-free (see Chapter 3).

Definition 6.47 Backtrack-free AND/OR search tree. Given graphical model M and given
anAND/OR search tree ST .M/, the backtrack-free AND/OR search tree ofMw.r.t. T is obtained
by pruning from ST .M/ all inconsistent subtrees, namely all nodes that root no consistent partial
solution (have a value 0).

Example 6.48 Consider 5 variables X; Y;Z; T;R over domains f2; 3; 5g, where the constraints
are: X divides Y and Z, and Y divides T and R. e constraint graph and the AND/OR search
tree relative to the guiding DFS tree rooted atX , are given in Figure 6.14a, b. In 6.14b we present
the ST .R/ search space whose nodes’ consistency status are already evaluated as having value “1”
if consistent and “0” otherwise. We also highlight two solutions subtrees; one depicted by solid
lines and one by dotted lines. Part (c) presents the backtrack-free tree where all nodes that do not
root a consistent solution are pruned.

If we traverse the backtrack-free AND/OR search tree we can find a solution subtree
without encountering any dead-ends. Some constraint networks specifications yield a backtrack-
free search space. Others can be made backtrack-free by massaging their representation using
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constraint propagation algorithms. In particular, the variable-elimination algorithms adaptive-
consistency described in Chapter 3, and directional resolution, compiles a constraint specification
(resp., a Boolean CNF formula) into one that has a backtrack-free search space along some or-
derings. We remind now the definition of the directional extension (see also Chapter 3).

Definition 6.49 Directional extension [Dechter and Pearl, 1987; Rish and Dechter, 2000].
Let R D hX;D;C;‰i be a constraint problem and let d be a DFS ordering of a pseudo tree,
then the directional extension Ed .R/ denotes the constraint network (resp., the CNF formula)
compiled by adaptive-consistency (resp., directional resolution) in reversed order of d .

Example 6.50 In Example 6.48, if we apply adaptive-consistency in reverse order of d D
.X; Y; T;R;Z/, the algorithm will remove the values f3; 5g from the domains of both X and
Z yielding a tighter directional extension networkR0. As noted before, the AND/OR search tree
of R0 in Figure 6.14c is backtrack-free.

Proposition 6.51 Given a constraint network R D hX;D;C;‰i, and a pseudo-tree T , the
AND/OR search tree of the graphical model compiled into a directional extension Ed .R/ when d is
a DFS ordering of T , coincides with the backtrack-free AND/OR search tree of R based on T . (See
Appendix for proof.)

Proposition 6.51 emphasizes the significance of no-good learning for deciding inconsis-
tency or for finding a single solution. ese techniques are known as clause learning in SAT
solvers [Jr. and Schrag, 1997] and are currently used in most advanced solvers [Marques-Silva
and Sakalla, 1999]. Namely, when we apply no-good learning we explore a pruned search space
whose many inconsistent subtrees are removed, but we do so more gradually, during search, then
when applying the full variable-elimination compilation, before search.

We will now give more details on applying constraint techniques while searching the
AND/OR search space for processing queries over mixed networks. e mixed network can be
processed by tightening the constraint network only. Namely we can process the deterministic in-
formation separately (e.g., by enforcing some consistency level [Dechter and Mateescu, 2007b]).

6.6.1 AND-OR-CPEALGORITHM
Algorithm AND-OR- for the constraint probabilistic evaluation query (CPE) (Definition
2.27) is given in Algorithm 3. e input is a mixed network, a pseudo tree T of the mixed graph
and the context of each variable. e output is the probability that a random tuple generated from
the belief network distribution is consistent (satisfies the constraint portion). As common with
other queries, AND-OR- traverses the AND/OR search tree or graph corresponding to T in
a DFS manner and each node maintains a value v which accumulates the computation in its own
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Algorithm 3: AND-OR-.
Input: A mixed network B D hX;D;PG ;

Q
i that expresses PB and a constraint network R D hX;D;C;‰i; a pseudo

tree T of the moral mixed graph, rooted atX1; parents pai (OR-context) for every variableXi ; caching set to true
or false.

Output: e probability P. Nx 2 �.R// that a tuple satisfies the constraint query.
if caching DD true then // Initialize cache tables

Initialize cache tables with entries of “�1”1

v.X1/ 0; OPEN fX1g // Initialize the stack OPEN2
while OPEN ¤ ˚ do3

n top.OPEN/; remove n from OPEN4
if caching DD true and n is OR, labeledXi and Cache.val.path.n//ŒpaXi

�/ ¤ �1 then // If in5
cache

v.n/ Cache.val.path.n//ŒpaXi
�/ // Retrieve value6

successors.n/ ˚ // No need to expand below7
else // Expand search (forward)8

if n is an OR node labeledXi then // OR-expand9

successors.n/ ConstraintPropagation(hX;D;Ci; val.path.n//)10
// CONSTRAINTPROPAGATION
v.hXi ; xi i/ 

Q
f 2BT .Xi /

f .val.path.n//ŒpaXi
�/, for all hXi ; xi i 2 successors.n/

11

if n is an AND node labeled hXi ; xi i then // AND-expand12
successors.n/ childrenT .Xi /13
v.Xi / 0 for all Xi 2 successors.n/14

Add successors.n/ to top of OPEN15

while successors.n/ DD ˚ do // Update values (backtrack)16
if n is an OR node labeledXi then17

if Xi DD X1 then // Search is complete18
return v.n/19

if caching DD true then20
Cache.val.path.n//Œpai �/ v.n/ // Save in cache21

let p be the parent of n22
v.p/ v.p/ � v.n/23
if v.p/ DD 0 then // Check if p is dead-end24

remove successors.p/ from OPEN25
successors.p/ ˚26

if n is an AND node labeled hXi ; xi i then27
let p be the parent of n28
v.p/ v.p/C v.n/;29

remove n from successors.p/30
n p31

subtree. As before we have a recursive computation. OR nodes accumulate the summation of the
product between each child’s value and its OR-to-AND weight, while AND nodes accumulate
the product of their children’s values.e context-based caching is done using table data structures
as described earlier.
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Procedure ConstraintPropagation(R, xi1).
Input: A constraint network R D hX;D;Ci; a partial assignment path Nxi to variable Xi .
Output: reduced domainDi of Xi ; reduced domains of future variables; newly inferred constraints.
is is a generic procedure that performs the desired level of constraint propagation, for example forward
checking, unit propagation, arc consistency over the constraint network R and conditioned on xi

1.
return reduced domain ofXi
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Figure 6.15: Mixed network defined by the query ' D .A _ C/ ^ .B _ :E/ ^ .B _D/.

Example 6.52 We refer back to the example in Figure 6.3. Consider a constraint network that
is defined by the CNF formula ' D .A _ C/ ^ .B _ :E/ ^ .B _D/. e trace of algorithm
AND-OR- without caching is given in Figure 6.15. Notice that the clause .A _ C/ is not
satisfied if A D 0 and C D 0, therefore the paths that contain this assignment cannot be part of a
solution of the mixed network. e value of each node is shown to its left (the leaf nodes assume
a dummy value of 1, not shown in the figure). e value of the root node is the probability of '.
Notice how similar is Figure 6.15 to Figure 6.3. Indeed, in 6.3 we seek the probability of evidence
which can be modeled as the CNF formula having unit clauses D ^ :E.

6.6.2 CONSTRAINTPROPAGATION INAND-OR-CPE
We next discuss the use of constraint propagation during search. is methods are used in any
constraint or SAT/CSP (see Chapters 5 and 6 in [Dechter, 2003]). In general, constraint propaga-
tion helps to discover what variable and what value to not instantiate in order to avoid dead-ends
as much as possible. is is done with a bounded level of computation. e incorporation of these
methods on top of AND/OR search for computation of the value of the root is straightforward.
For illustration, we will only consider static variable ordering based on a pseudo tree, and will focus
on the impact of constraint propagation on domain-value order of assignments to the variables.

In algorithm AND/OR-, line 10 contains a call to the generic
ConstraintPropagation procedure consulting only the constraint subnetwork R, condi-
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tioned on the current partial assignment. e constraint propagation is relative to the current set
of constraints, the given path that defines the current partial assignment, and the newly inferred
constraints, if any, that were learned during search. ConstraintPropagation which requires
polynomial time, may discover that some domain value-assignments to the variables cannot
be extended to a full solution. ese assignments are marked as dead-ends and removed from
the current domain of the variable. All the remaining domain values remain feasible and are
returned by the procedure as possible candidates to extend the search frontier. Clearly, not all
those assignments are guaranteed to lead to a solution.

We therefore have the freedom to employ any procedure for checking the consistency of
the constraints of the mixed network. e simplest case is when no constraint propagation is used
and only the initial constraints of R are checked for consistency. We denote this algorithm by
AO-C.

We also consider two forms of constraint propagation on top of AO-C. e first algorithm
AO-FC, is based on forward checking, which is one of the weakest forms of propagation. It prop-
agates the effect of a domain-value assignment to each future uninstantiated variable separately,
and checks consistency against the constraints whose scope would become fully instantiated by
just one such future variable.

e second algorithm, referred to as AO-RFC, performs a variant of relational forward
checking. Rather than checking only constraints whose scope becomes fully assigned, AO-RFC
checks all the existing constraints by looking at their projection on the variables along the current
path. If the projection is empty an inconsistency is detected. AO-RFC is computationally more
expensive than AO-FC, but yields a more pruned search space.

Example 6.53 Figure 6.16a shows the belief part of a mixed network, and Figure 6.16b the con-
straint part. All variables have the same domain, {1,2,3,4}, and the constraints express “less than”
relations. Figure 6.16c shows the search space of AO-C. Figure 6.16d shows the space traversed
by AO-FC. Figure 6.16e shows the space when consistency is enforced with Maintaining Arc
Consistency (which enforces full arc-consistency after each new instantiation of a variable).

SAT solvers. One possibility that was explored with success (e.g., [Allen and Darwiche, 2003])
is to delegate the constraint processing to a separate off-the-shelf SAT solver. In this case, for
each new variable assignment the constraint portion is packed and fed into the SAT solver. If
no solution is reported, then that value is a dead-end. If a solution is found by the SAT solver,
then the AND/OR search continues (remember that for some tasks we may have to traverse all
the solutions of the graphical model, so the one solution found by the SAT solver does not finish
the task). Since, the worst-case complexity of this level of constraint processing, at each node, is
exponential in the worst-case, a common alternative is to use unit propagation, or unit resolution,
as a form of bounded resolution (see Chapter 3 and [Rish and Dechter, 2000]).
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Figure 6.16: Traces of AND-OR- with various levels of constraint propagation.

Such a hybrid use of search and a specialized efficient SAT (or constraint) solver can be
very useful, and it underlines further the power that the mixed network representation has in
delimiting the constraint portion from the belief network.

6.6.3 GOODANDNOGOODLEARNING
When a search algorithm encounters a dead-end, it can use different techniques to identify the
ancestor variable assignments that caused the dead-end, which is called a conflict-set. It is conceiv-
able that the same assignment of that set of ancestor variables may be encountered in the future,
and they would then lead to the same dead-end. Rather than rediscovering it again, if memory
allows, it is useful to record the dead-end conflict-set as a new constraint (or clause) over the an-
cestor variable set that is responsible for it. Recording dead-end conflict-sets is sometimes called
nogood learning.
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One form of nogood learning is graph-based, and it uses various techniques to identify the
ancestor variables that generate the nogood. e information on conflicts is generated from the
primal graph information alone. It is easy to show that AND/OR search already implements this
information within the context of the nodes. erefore, if caching is used, just saving the informa-
tion about the nogoods encountered amounts to nogood learning techniques such as graph-based
learning (see [Dechter, 2003]).

If deeper types of nogood learning are desirable, they need to be added on top of the
AND/OR search. In such a case, a smaller set than the context of a node may be identified
as a culprit assignment, and may help discover future dead-ends much earlier than when context-
based caching alone is used. Needless to say, deeper learning is computationally more expensive.

In recent years [Beam, Kautz, Tian Sang, Bacchus and Piassi, 2004; Darwiche, 2001a;
Dechter and Mateescu, 2007b], several schemes propose not only the learning of nogoods, but
also that of their logical counterparts, the goods. Traversing the context minimal AND/OR graph
and caching appropriately can be shown to implement both good and nogood graph-based learn-
ing.

6.7 SUMMARYANDBIBLIOGRAPHICALNOTES
Chapters 6 presents search for graphical models using the concept of AND/OR search spaces
rather than OR spaces. It introduced the AND/OR search tree, and showed that its size can be
bounded exponentially by the depth of its pseudo tree over the graphical model.is implies expo-
nential savings for any linear space algorithms traversing the AND/OR search tree. Specifically,
if the graphical model has treewidth w�, the height of the pseudo tree is O.w� � logn/.

e AND/OR search tree can be further compacted into a graph by merging identical
subtrees. We showed that the size of the minimal AND/OR search graph is exponential in the
treewidth, while the size of the minimal OR search graph is exponential in the pathwidth. Since
for some graphs the difference between treewidth and pathwidth is substantial, the AND/OR
representation implies substantial time and space savings formemory intensive algorithms travers-
ing the AND/OR graph. Searching the AND/OR search graph can be implemented by caching
during search, while no-good recording is interpreted as pruning portions of the search space
independent of it being a tree or a graph, an OR or an AND/OR.

e chapter is based on thework byDechter andMateescu [Dechter andMateescu, 2007b].
e AND/OR search space is inspired by search advances introduced sporadically in the past
three decades for constraint satisfaction and more recently for probabilistic inference and for op-
timization tasks. Specifically, it resembles pseudo tree rearrangement [Freuder and Quinn, 1987;
Freuder, 1985], briefly introduced more than two decades ago, which was adapted subsequently
for distributed constraint satisfaction [Collin, Dechter and Katz, 1991, 1999] and more recently
in [Modi et al., 2005], and was also shown to be related to graph-based backjumping [Dechter,
1992]. is work was extended in [Bayardo and Miranker, 1996] and more recently applied to
optimization tasks [Larrosa and Sanchez, 2002]. Another version that can be viewed as explor-
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ing the AND/OR graphs was presented recently for constraint satisfaction [Terrioux and Jegou,
2003b] and for optimization [Terrioux and Jegou, 2003a]. Similar principles were introduced for
probabilistic inference in algorithm Recursive Conditioning [Darwiche, 2001a] as well as in Value
Elimination [F. Bacchus and Piassi, 2003a,b] and currently provide the backbones of the most
advanced SAT solvers [Beam, Kautz, Tian Sang, Bacchus and Piassi, 2004].

It is known that exploring the search space in a dynamic variable ordering is highly benefi-
cial. AND/OR search trees for graphical models can also be modified to allow dynamic variable
ordering. is require a careful balancing act of the computational overhead that normally ac-
companies dynamic search schemes. For further information see [F. Bacchus and Piassi, 2003b;
Marinescu and Dechter, 2009a].

6.8 APPENDIX: PROOFS
Proof ofeorem 6.13
(1) By definition, all the arcs of ST .R/ are consistent. erefore, any solution tree of ST .R/
denotes a solution for R whose assignments are all the labels of the AND nodes in the solution
tree. Also, by definition of the AND/OR tree, every solution ofRmust corresponds to a solution
subtree in ST .R/. (2) By construction, the set of arcs in every solution tree have weights such that
each function of F contribute to one and only one weight via the combination operator. Since
the total weight of the tree is derived by combination, it yields the cost of a solution. �.

Proof ofeorem 6.14
Let p be an arbitrary directed path in the pseudo tree T that starts with the root and ends with
a leaf. is path induces an OR search subtree which is included in the AND/OR search tree
ST , and its size is O.kh/ when h bounds the path length. e pseudo tree T is covered by l such
directed paths, whose lengths are bounded by h. e union of their individual search trees covers
the whole AND/OR search tree ST , where every distinct full path in the AND/OR tree appears
exactly once, and therefore, the size of the AND/OR search tree is bounded by O.l � kh/. Since
l � n and l � bm, it concludes the proof. e bounds are tight because they are realizable for
graphical models whose all full assignments are consistent. �.

Proof ofeorem 6.19
(1) All we need to show is that the merge operator is not dependant on the order of applying the
operator. Mergeable nodes can only appear at the same level in the AND/OR graph. Looking at
the initial AND/OR graph, before themerge operator is applied, we can identify all themergeable
nodes per level. We prove the proposition by showing that if two nodes are initially mergeable,
then they must end up merged after the operator is applied exhaustively to the graph. is can be
shown by induction over the level where the nodes appear.
Base case: If the two nodes appear at the leaf level (level 0), then it is obvious that the exhaustive
merge has to merge them at some point.
Inductive step: Suppose our claim is true for nodes up to level k and two nodes n1 and n2 at
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level k C 1 are initially identified as mergeable. is implies that, initially, their corresponding
children are identified as mergeable. ese children are at level k, so it follows from the inductive
hypothesis that the exhaustive merge has to merge the corresponding children. is in fact implies
that nodes n1 and n2 will root the same subgraph when the exhaustive merge ends, so they have
to end up merged. Since the graph only becomes smaller by merging, based on the above the
process, merging has to stop at a fix point.
(2) Analogous to (1).
(3) If the nodes can be merged, it follows that the subgraphs are identical, which implies that
they define the same conditioned subproblems, and therefore the nodes can also be unified. �

Proof of Proposition 6.51.
Note that if T is a pseudo tree of R and if d is a DFS ordering of T , then T is also a pseudo tree
ofEd .R/ and therefore ST .Ed .R// is a faithful representation ofEd .R/.Ed .R/ is equivalent to
R, therefore ST .Ed .R// is a supergraph ofBFT .R/.We only need to show that ST .Ed .R// does
not contain any dead-ends, in other words any consistent partial assignment must be extendable
to a solution of R, is however is obvious, because Adaptive consistency makes Ed .R/ strongly
directional w�.d/ consistent, where w�.d/ is the induced width of R along ordering d [Dechter
and Pearl, 1987], a notion that is synonym with backtrack-freeness. �
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C H A P T E R 7

Combining Search and
Inference: Trading Space for

Time
We introduced inference and search algorithm separately, because they seem to have useful but
complementary properties. We saw that if we apply search over an AND/OR space and if, in
addition, we use context-based caching, search has the same worst-case complexity as inference,
both are time and space exponentially bounded by the treewidth. However, when the treewidth is
too high, the needed memory is not available and schemes that are more flexible in trading space
for time are needed. is is one of the main virtues of search compared with inference. Search
can be done in linear memory and accommodates space for time tradeoff quite flexibly. In fact,
we have already observed that the class of AND/OR search AO.i/ of searching the AND/OR
context minimal search space and caching tables based on bounded (by i) context only, can be
trade time and space effectively. In this chapter we discuss several additional approaches trading
space for time that are based on combining search with inference. We demonstrate the principles
of such hybrids in the context of OR tree search, first, and then extend it to AND/OR search.

7.1 THECUTSET-CONDITIONINGSCHEME
e algorithms presented in this section exploit the fact that variable instantiation changes the
effective connectivity of the primal graph.

7.1.1 CUTSET-CONDITIONINGFORCONSTRAINTS
Consider a constraint problem whose primal graph is given in Figure 7.1a. For this problem,
instantiating X2 to some value, say a, renders the choices of values to X1 and X5 independent, as
if the pathwayX1 �X2 �X5 were blocked atX2. Similarly, this instantiation blocks dependency
in the pathway X1 �X2 �X4, leaving only one path between any two variables. In other words,
given that X2 was assigned a specific value, the “effective” constraint graph for the rest of the
variables is shown in Figure 7.1b. Here, the instantiated variable X2 and all its incident arcs
are first deleted from the graph, and X2 subsequently is duplicated for each of its neighbors.
e constraint problem having the graph shown in Figure 7.1a when X2 D a is identical to the
constraint problem having the graph in Figure 7.1b with the same assignmentX2 D a.We already
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Figure 7.1: An instantiated variable cuts its own cycles.

saw, in Chapter 6 that this idea leads to problem decomposition and to the notion of AND/OR
graph. Here, however, we look at a more intermediate phenomena where variable conditioning
makes the remaining problem more tractable even if it does not decompose.

In general, when the group of instantiated variables constitutes a cycle-cutset; a set of nodes
that, once removed, would render the constraint graph cycle-free, as shown in Figure 7.1b, and
can be solved by tree-solving algorithm. e tree solving algorithm can be belief propagation,
or its constraint version of arc-consistency. In most practical cases it would take more than a
single variable to cut all the cycles in the graph. us, a general way of solving a problem whose
constraint graph contains cycles is to identify a subset of variables that cut all cycles in the graph,
find a consistent instantiation of the variables in the cycle-cutset, and then solve the remaining
problem by the inference tree algorithm. If a solution to this restricted problem (conditioned on
the cycle-cutset values) is found, then a consistent solution to the entire problem is at hand. If
not, another instantiation of the cycle-cutset variables should be considered until a solution is
found. If we seek to enumerate all solutions or to count them, we would have to enumerate over
all the assignments to the cutset variables.

Example 7.1 If the task is to solve a constraint problem whose constraint graph is presented in
Figure 7.1a (assume X2 has two values fa; bg in its domain), first X2 D a must be assumed, and
the remaining tree problem relative to this instantiation, is solved. If no solution is found, it is
assumed that X2 D b and another attempt is made.

e number of times the tree-solving algorithm needs to be invoked is bounded by the
number of partial solutions to the cycle-cutset variables. A small cycle-cutset is therefore de-
sirable. Finding the minimal cycle-cutset, is computationally hard [Garey and Johnson, 1979]
however, so it will be more practical to settle for heuristic compromises. e problem, which is
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also known as the feedback set problem was investigated extensively and approximation and heuris-
tic approaches were presented (e.g., [Bar-Yehuda et al., 1998; Becker et al., 2000]). One simple
approach is to incorporate the cutset scheme within depth-first backtracking search. BecauseDFS
backtracking works by progressively instantiating sets of variables, we only need to keep track of
the connectivity status of the primal graph. As soon as the set of instantiated variables consti-
tutes a cycle-cutset, the search algorithm can switch to the tree-solving inference algorithm on
the restricted conditioned problem, i.e., either finding a consistent extension for the remaining
variables (thus finding a solution to the entire problem) or concluding that no such extension
exists (in which case backtracking takes place and another instantiation tried).

Example 7.2 Assume that DFS-backtracking search instantiates the variables of the CSP rep-
resented in Figure 7.2a in the order C;B;A;E;D;F (Figure 7.2b). Backtracking will instanti-
ate variables C , B , and A, and then, realizing that these variables cut all cycles, will invoke a
tree-solving algorithm on the rest of the problem. at is, the tree problem in Figure 7.2c, with
variables C , B , and A assigned, should then be attempted. If no solution is found, control returns
to backtracking which will go back to variable A and assign it a new domain value.

Figure 7.2: (a) A constraint graph, (b) its ordered graph, and (c) the constraint graph of the cutset
variable and the conditioned variable, where the assigned variables are darkened.

is idea, often referred to as cutset-conditioning, generalizes to all graphical models. As
observed in Chapter 4 and in particular in Section 4.1.3, when variable are assigned a value, the
connectivity of the graph reduces, thus yielding saving in computation. is yielded the notion of
conditional induced-width (see 4.7.) which controls the impact of observed variables by bounding
the complexity of the respective algorithms more tightly. Rather than insisting on conditioning
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on a subset of variables that cuts all cycles and yields subproblems having induced-width 1, we can
allow cutsets that create subproblems whose induced-width is higher than 1 but still bounded.
is suggests a framework of hybrid algorithms parameterized by an integer q which bounds the
induced-width of the conditioned subproblems solved by inference.

Definition 7.3 q-cutset, minimal. Given a graph G, a subset of nodes is called a q-cutset for
an integer q iff when removed, the resulting graph has an induced-width less than or equal to q.
A minimal q-cutset of a graph has a smallest size among all q-cutsets of the graph. A cycle-cutset
is a 1-cutset of a graph.

Finding a minimal q-cutset is clearly a hard task [A. Becker and Geiger, 1999; Bar-Yehuda
et al., 1998; Becker et al., 2000; Bidyuk and Dechter, 2004]. However, like in the special case of a
cycle-cutset we can settle for a non-minimal q-cutset relative to a given variable ordering. Namely,
given an ordering, we can seek an initial prefix set of the ordering that is a q-cutset of the problem.
en a DFS search algorithm can traverse the search space over the q-cutset variables and for
each of its consistent assignment solve the rest of the problem by an inference algorithm such
as - if it is a constraint problem or by - or -
 , in the general case.

Example 7.4 Consider as another example the contsaint graph of a graph coloring problem
given in Figure 7.3a. e search space over a 2-cutset, and the induced-graph of the conditioned
instances are depicted in 7.3b.

7.1.2 GENERALCUTSET-CONDITIONING
We will distinguish two schemes: the sequential variable-elimination with conditioning and the
alternating one. Algorithm variable-elimination and conditioning VEC.q/ is described in Figure
7.4. e algorithm is presented in the context of finding a single solution of a constraint networks
but it is immediately extendable to any query and to every graphical model. It can apply depth-
first search over the q-cutset and then at each leaf of the cutset variable applies bucket-elimination
on the remaining variables, thus solving conditioned subproblems. In particular, the constraint
problem R D hX;D;C;‰i conditioned on an assignment Y D y , denoted Ry is R augmented
with the unary constraints dictated by the assignment y . In the worst case, all possible assignments
to the q-cutset variables need to be enumerated. If c is the q-cutset size, in the worst-case kc is the
number of conditioned subproblems having induced-width bounded by q that should be solved,
each requiring O.nkqC1/ steps. Clearly, then

eorem 7.5 Properties of cutset-decomposition. Given a constraint network
R D hX;D;C;‰i having n variables and a domain size bounded by k, algorithm VEC(q) is
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Figure 7.3: (a) A graph coloring problem and (b) its 3-cutset conditioned search space.

sound and complete and it has time and space complexity of O.n � kcCqC1/ and O.kq/, respectively,
where c is the q-cutset size . (Prove as an exercise). �

e special case of q D 1 yields the cycle-cutset algorithm whose time complexity is
O.nkcC2/ which operates in linear space. We see that the integer q can control the balance be-
tween search and inference (e.g., variable-elimination), controlling the tradeoff between time and
space.

7.1.3 ALTERNATINGCONDITIONINGANDELIMINATION
An alternative use of the q-cutset principle is to alternate between conditioning-search and
variable-elimination. Given a variable ordering we can apply BE to the variables, one by one,
as long as the induced-width of the eliminated variables does not exceed q. However, if a variable
has induced-width higher than q, the variable will be conditioned upon creating, k subproblems,
one for each assigned value on which the alternating algorithm resumes. We call this Alternating
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Algorithm VEC(q)
Input: A graphical constraint model R D hX;D;C;‰i. an ordering d that starts with
Y such that Y � X is a q-cutset, Z D X � Y
Output: A consistent assignment, if there is one.

• while y  apply backtracking search generating the next partial solution of Y D y ,
do

1. z BE-.RYDy/.
2. if z is not false, return solution .y ; z/.

• endwhile.

• return: the problem has no solutions.

Figure 7.4: Algorithm variable-elimination with conditioning VEC(q).

Variable-Elimination and Conditioning and denote it as ALT-VEC.q/. Clearly, the conditioning
set uncovered via ALT-VEC.q/ is a q-cutset and therefore can be used as the q-cutset within
VEC . (Exercise: Prove that the conditioned set in ALT-VEC(q) is a q-cutset.)

Both VEC.q/ and ALT-VEC.q/ will benefit from the optimization task of finding a min-
imal q-cutset of a graph which is obviously hard, but some greedy heuristic algorithms were in-
vestigated empirically. For q > 1 the task was addressed sporadically [Bidyuk and Dechter, 2004;
Fishelson and Geiger, 2003]. As in the case of the cycle-cutset (i.e., q D 1), we can always use a
brute-force approach that fits algorithm ALT-VEC as follows. Given an ordering d D x1; :::; xn
of G, process the nodes from last to first. When node X is processed, and if its induced-width is
greater than q, it is added to the q-cutset and is then removed from the remaining graph. Other-
wise, the variable’s earlier neighbors are connected, and only then it is removed from the graph.
Note that verifying that a given subset of nodes in a graph is a q-cutset of the graph can be ac-
complished in polynomial time (linear in the number of nodes), by deleting the candidate cutset
nodes from the graph and verifying that the remaining graph has an induced width bounded by
q. e latter task, however, is exponential in q and therefore quite costly if q is not small.

Example 7.6 As a simple illustration consider Figure 7.5 (left). Applying ALT-VEC(2) will
eliminate the variable B first and A next, yielding the graph in the middle and then the graph on
the right whose induced-width is higher than 2. We now condition on variableC which generates
several subproblems having induced-width of 2 each (see 7.5 lower part. From then on, we will
only eliminate variables.
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Figure 7.5: A graph (a), eliminating A (b), and conditioning on B (c).

It is possible to show that both VEC(q) and ALT-VEC(q) are basically the same
performance-wise, if both use the same q-cutset. We refer the interested reader to [Mateescu
and Dechter, 2005b].

In summary, the parameter q which bounds the conditioned induced-width can be used
within VEC(q) to control the trade-off between search and inference. If d is the ordering used
by VEC.q/ and if q � w�.d/, the algorithm coincides with a pure inference algorithm such as
bucket-elimination. As the control parameter q decreases, the algorithm requires less space and
more time.

We can show that the size of the smallest cycle-cutset (1-cutset), c�1 and the smallest in-
duced width, w� of a given graph, obey the inequality 1C c�1 � w�. More generally,

eorem 7.7 Given graph G, and denoting by c�q its minimal q-cutset then,

1C c�1 � 2C c
�
2 � :::q C c

�
q ; ::: � w

�
C c�w� D w

�:

Proof. Let’s assume that we have a q-cutset of size cq . en if we remove it from the graph the
result is a graph having a tree decomposition whose treewidth is bounded by q. Let’s T be this
decomposition where each cluter has size q C 1 or less. If we now take the q-cutset variables and
add them back to every cluster of T , we will get a tree decomposition of the whole graph (exercise:
show that) whose treewidth is cq C q. erefore, we showed that for every cq-size q-cutset, there
is a tree decomposition whose treewidth is cq C q. In particular, for an optimal q-cutset of size c�q
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Figure 7.6: A primal constraint graph.

we have thatw�, the treewidth obeys,w� � c�q C q. is does not complete the proof because we
only showed that for every q, w� � c�q C q. But, if we remove even a single node from a minimal
q-cutset whose size is c�q , we get a q C 1 cutset by definition, whose size is c�q � 1. erefore,
c�qC1 � c

�
q � 1. Adding q to both sides of the last inequality we get that for every 1 � q � w�,

q C c�q � q C 1C c
�
qC1, which completes the proof. �

e above relationship can suggest a point in which to trade space for time for given prob-
lem instances. In some extreme cases all the inequalities can become equalities. is is the case
when we have a complete graph, for example. In a complete graph therefore it is better to use
q=1 and resort to linear space search because the time complexity will not change if we apply full
bucket-elimination, while the memory required would be heavy. For more on this see [Dechter
and Fattah, 2001].

7.2 THE SUPER-CLUSTER SCHEMES
Wenow present an orthogonal approach for combining search and inference. In fact, the inference
algorithm CTE in Figure 5.10 that processes a tree decomposition, already contains a hidden
combination of variable elimination and search. It computes functions on the separators using
variable elimination, and is therefore space exponential in the separator’s size. e elimination of
variables in any cluster can be carried out by search in time exponential in the cluster size but with
a lower space complexity as presented in eorem 5.28. us, one can trade even more space for
time by allowing larger clusters, yet smaller separators.

Assume a problem whose tree decomposition has tree-width r and maximum separator
size s. Assume further that our space restrictions do not allow the necessary O.ks/ memory re-
quired when applying CTE on such a tree. One way to overcome this problem is to combine the
nodes in the tree that are connected by large separators into a single cluster. e resulting tree
decomposition has larger clusters but smaller separators.

We can get a sequence of tree decompositions parameterized by the sizes of their separators
as follows. Let T be a tree decomposition of hypergraph H. Let s0; s1; :::; sn be the sizes of the
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Figure 7.7: A tree decomposition with separators equal to (a) 3, (b) 2, and (c) 1.

separators in T , listed in strictly descending order. With each separator size si we associate a
secondary tree decomposition Ti , generated by combining adjacent nodes whose separator sizes
are strictly greater than si . We denote by ri the largest set of variables in any cluster of Ti . Note
that as si decreases ri increases. Clearly, from eorem 5.28 we have the following.

eorem 7.8 Given a tree decomposition T of graphical model having n variables andm functions,
separator sizes s0; s1; :::; st and secondary tree decompositions having a corresponding maximal clus-
ter size, r0; r1; :::; rt . e complexity of CTE when applied to each secondary tree decompositions Ti is
O.m � deg � exp.ri // time, and O.n � exp.si // space (i ranges over all the secondary tree decomposi-
tion).

We will call the resulting algorithm -  (s), or SCTE.s/.
It takes a primary tree decomposition and generates a tree decomposition whose separator’s size is
bounded by s. ese cluster-trees can be processed by CTE. In the following example we assume
that a naive depth-first search processes (enumerates the tuples in) each cluster when generating
the messages over the separators.

Example 7.9 Consider the constraint problem having the constraint graph in Figure 7.6. e
graph can be decomposed into the join-tree in Figure 7.7a. If we allow only separators of size
2, we get the join tree T1 in Figure 7.7b. is structure suggests that applying CTE takes time
exponential in the largest cluster, 5, while requiring space exponential in 2. If space considerations
allow only singleton separators, we can use the secondary tree T2 in Figure 7.7c. We conclude that
the problem can be solved either in O.k4/ time (k being the maximum domain size) and O.k3/
space using T0, or in O.k5/ time and O.k2/ space using T1, or in O.k7/ time and O.k/ space
using T2.
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Algorithm SCTE.s/ (which is not presented explicitly) suggests the following new graph
parameter.

Definition 7.10 Separator-bounded width. Given a graph G and a constant s, find a tree
decomposition of G having the smallest induced-width, w�s whose separator size is bounded by
s. e parameter w�s is the separator-bounded treewidth of the tree decomposition.

Finding a separator-bound treewidthw�s is hard, of course. is type of tree-decomposition
is attractive because it requires only linear space. While we generally cannot find the best tree-
decompositions having a bounded separators’ size in polynomial time, this is possible for the
extreme case when the separators are required to be singletons (s D 1/, in which case the clus-
ters are viewed as non-separable components [Even, 1979]. For the use of this special case see
[Dechter, 2003].

7.3 TRADINGTIMEANDSPACEWITHAND/OR SEARCH
We will now generalize the above 3 algorithms (VEC(q), ALT-VEC(q), SCTE(s)) in several ways.
First, whenever search is applied we replace standard OR search with AND/OR tree search.
Second, when inference (e.g., bucket-elimination) is applied we can consider replacing it with the
memory intensive AND/OR graph search. Finally, we describe all this having the more intensive
counting queries, such as solution counting, probability of evidence or partition function, in mind.

Variable elimination and context-minimal AND/OR search. Before considering other variants
of time-space trading algorithms we note that Variable Elimination (BE) and memory-intensive
AND/OR Search (AO) can actually be viewed as searching the same AND/OR context mini-
mal graph when they are guided by comparable variable-orderings when there is no determin-
ism. Variable-elimination explores the search space bottom up in a breadth-first manner and
AND/OR search explores it top-down in a depth-first manner (see [Mateescu, 2007]). erefore,
interchanging Bucket-elimination with context-based AO graph-search within a more global
scheme can be entertained.

7.3.1 AND/ORCUTSET-CONDITIONING
e VEC(q) scheme we presented (either sequential or alternating) performs search on the cutset
variables and exact inference on each of the conditioned subproblems. As we showed, if the q-
cutset Cq is explored by linear space OR search, the total time complexity is O.n � k.jCq jCqC1//,
and the space complexity is O.kq/. An immediate improvement to this scheme would be to
enumerate the assignments to Cq by AND/OR search.

Example 7.11 Figure 7.8a shows two 3 � 3 grids, connected on the side node A. A cycle cutset
must include at least two nodes from each grid, so the minimal cycle cutset contains three nodes:
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Figure 7.8: Traditional cycle cutset viewed as AND/OR tree.

Figure 7.9: AND/OR cycle cutset.

the common node A and one more node from each grid, for example B and C . e cycle cut-
set scheme will enumerate all the assignments of fA;B;C g, as if these variables form the chain
pseudo tree as in Figure 7.8b. However, if A is the first conditioning variable, the remaining sub-
problem is split into two independent portions, so the cycle cutset fA;B;C g can be organized as
an AND/OR search space based on the pseudo tree in Figure 7.8c. If k is the maximum domain
size of variables, the number of sub-problem displayed in Figure 7.8b is O.k3/ while the number
of sub-problems in Figure 7.8c is O.k2/.

A more general and impressive is the example in Figure 7.11 where we have a complete bi-
nary tree of depth r . e leaf nodes root 3 � 3 grids. Since a cycle-cutset must contain two nodes
from each grid an optimal cycle cutset would have C D fAr1; : : : ; Ar2r�1 ; B

r
1 ; : : : ; B

r
2r�1g, contain-

ing 2r nodes, so the complexity of the VEC scheme is O.kjCj/ D O.k.2r //. Consider now the
AND/OR cycle cutset AO-C D fAji j j D 1; : : : ; r I i D 1; : : : ; 2j�1g [ fBr1 ; : : : ; Br2r�1g, con-
taining all the A and B nodes. A pseudo tree in this case is formed by the binary tree of A nodes,
and the B nodes exactly in the same position as in the figure. e depth in this case is r C 1, so
the complexity of exploring this as an AND/OR tree is O.exp.r C 1//, even though the number
of nodes is jAO-Cj D jCj C 2r�1 � 1.
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is suggestsAND/OR cutset algorithmwhich can be farmore effective than itsOR version.
e algorithm uses the notion of a start pseudo-tree.

Definition 7.12 Start pseudo-tree. Given an undirected graph G D .X; E/, a directed rooted
tree T D .V;E 0/, where V � X, is called a start pseudo-tree if it has the same root and is a con-
nected subgraph of some pseudo tree of G.

AND/OR cutset-conditioning schemes. e AND/OR cutset-conditioning schemes com-
bines AND/OR search spaces with the cutset-conditioning idea. e conditioning (cutset) vari-
ables form a start pseudo tree.e remaining conditioned subproblems have bounded conditioned
induced-width. Given a graphical model and a pseudo tree T , we first find a start pseudo tree
Tstart such that the context of any node not in Tstart contains at most q variables that are not
in Tstart . is can be done by starting with the root of T and then including as many descen-
dants as necessary in the start pseudo tree until the previous condition is met. Tstart now forms
a structured cutset, and when its variables are instantiated, the remaining conditioned subprob-
lems has induced width bounded by q. e cutset variables can be explored by the linear space
(no caching) AND/OR search, while the remaining variables outside the cutset, by using full
caching, of size bounded by q. e cache tables need to be deleted and reallocated for each new
conditioned subproblem (i.e., each new instantiation of the cutset variables).

We can explore the conditioned subproblems by bucket-elimination as before yielding an
algorithm variant called (AO-VEC(q)). If instead we choose to explore the conditioned subprob-
lem using the AND/OR context-minimal search, we call the algorithms by (AO-CUTSET(q)).

eorem 7.13 Complexity. Given a graphical model M D hX;D;F ;
N
i having primal graph

G and given a q-cutset on a start pseudo-tree of height m, the time and space complexity of both AO-
VEC.q/ and AO-CUTSET.q/ is O.n � kmCqC1/ and O.kq/, respectively.

Finally, we can also augment the alternating variant (ALT-VEC(q)) so that its conditioning
part will exploit an AND/OR search space. We will refer to this variant as ALT-VEC-AO and
will elaborate on it shortly.

7.3.2 ALGORITHMADAPTIVECACHING (AOC.q/)
e cutset-consitioning principle and especially the variant AO-CUTSET(q), inspire a new al-
gorithm, based on a more refined caching scheme for AND/OR search, which we call Adaptive
Caching -AOC.q/. e algorithm integrates the idea of AND/OR cutset within AND/OR con-
text minimal search. It caches some values even at nodes with contexts greater than the bound
q as follows. Let’s assume that context.X/ D ŒX1 : : : Xk� and k > q. During AND/OR search,
when variables X1; : : : ; Xk�q are instantiated, they can be regarded as part of a cutset. e prob-
lem rooted by Xk�qC1 can be solved in isolation, like a subproblem in the cutset scheme, after
variables X1; : : : ; Xk�q are assigned their current values in all the functions. In this subproblem,
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Algorithm AOC.q/.
Input: MDhX;D;F ;

N
i; GD.X;E/;dD.X1;: : :; Xn/; q

Output: Updated belief for X1
Let T = T .G; d ) // create elimination tree for each X 2 X do

allocate a table for q-context.X/
Initialize search with root of T ;
while search not finished do

Pick next successor not yet visited // EXPAND;
Purge cache tables that are not valid;1

if value in cache then2

retrieve value; mark successors as visited;3

while all successors visited do // PROPAGATE4

Save value in cache;5

Propagate value to parent;6

context.X/ D ŒXk�qC1 : : : Xk�, so it can be cached within space bounded by q. However, when
the search retracts to Xk�q or above, the cache table for X needs to be deleted and will be re-
allocated when a new subproblem rooted at Xk�qC1 is solved. is is because the subproblem
explored is conditioned on a different set of variables.

Definition 7.14 q-context, flag. Given a graphical model, a pseudo tree T , a variable X and
context.X/ D ŒX1 : : : Xk�, the q-context of X is:

q-context.X/ D
�
ŒXk�qC1 : : : Xk�; if q < k

q�context.X/; if q � k
:

Xk�q is called the flag of q-context.X/.

e high level pseudocode for AOC.q/ is given above. It is similar to AND/OR search
based on full context. e difference is in the management of cache tables. Whenever a variable
X is instantiated (when an AND node is reached), and for any variable Y such that X is the flag
of q-context.Y / the cache table is purged (reinitialized with a neutral value (line 1). Otherwise,
the search proceeds as usual, retrieving values from cache if possible (line 3) or else continuing to
expand, and propagating the values up when the search is completed for subproblem below (line
6).

Example 7.15 We will clarify here the distinction between AND/OR with full caching (AO),
AO � CUTSET .q/ and Adaptive AND/OR Caching, AOC.q/. We should note that the scope
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Figure 7.10: Context minimal graph (full caching).

Figure 7.11:
AOC(2) graph (adaptive caching).

of a cache table is always a subset of the variables on the current path in the pseudo tree. erefore,
the caching method (e.g., full caching based on context (AO), cutset-conditioning cache, adaptive
caching) is an orthogonal issue to that of the search space decomposition. Figure 7.10 shows a
pseudo tree, with binary valued variables, the context for each variable, and the context minimal
graph. If we assume the bound q D 2, some of the cache tables do not fit in memory. We could,
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Figure 7.12: AOCutset(2) graph (AND/OR Cutset).

in this case, use AO-CUTSET(2) whose search-space is shown in Figure 7.12, that takes more
time, but can be executed in the bounded memory. e cutset in this case is made of variables A
andB , and we see four conditioned subproblems, the four columns, that are solved independently
from one another (there is no sharing of subgraphs). Figure 7.11 shows the search space explored
byAOC.2/, which falls between the previous two. It uses bounded memory, takes more time than
full caching (as expected), but less time than AO � CUTSET .2/ (because the graph is smaller).
is can be achieved because Adaptive Caching allows the sharing of subgraphs. Note that the
cache table of H has the scope ŒBG�, which allows merging.

7.3.3 RELATIONSBETWEENAOC(q), AO-ALT-VEC(q) ANDAO-VEC(q)
We will now illustrate that there is no principled difference between some of the hybrid algo-
rithms presented. Consider the graphical model given in Figure 7.13a having binary variables,
the ordering d1 D .A;B;E; J ;R;H;L;N ;O;K;D;P ; C ;M;F ;G/, and the space limitation
q D 2. A pseudo tree corresponding to this ordering is given in Figure 7.13b. e context of each
node is shown in square brackets.

If we apply AO-ALT-VEC(q) along d1 (eliminating from last to first), variables G, F and
M can be eliminated. However,C cannot be eliminated, because it would produce a function with
scope equal to its context, ŒABEHLKDP �, violating the bound q D 2. AO-ALT-VEC switches
to conditioning on C and all the functions that remain to be processed are modified accordingly,
by instantiating C . e primal graph has two connected components now, shown in Figure 7.14.
Notice that the pseudo trees are based on this new graph, and their shape changes from the
original pseudo tree.
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Figure 7.13: Primal graph and pseudo tree.
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Figure 7.14: Components after conditioning on C .

Continuing with the ordering, P andD can be eliminated (one variable from each compo-
nent), but then K cannot be eliminated. After conditioning on K, variables O , N and L can be
eliminated (all from the same component), then H is conditioned (from the other component)
and the rest of the variables are eliminated. To highlight the conditioning set, we will box its vari-
ables when writing the ordering, d1 D .A;B;E; J ;R; H ; L;N ;O; K ;D; P ; C ;M; F;G/.
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Figure 7.15: Pseudo tree for AOC(2).

If we take the conditioning set ŒHKC � in the order imposed on it by d1, reverse it and put
it at the beginning of the ordering d1, then we obtain:

d2D

 
C ;

"
K ;

�
H ;

h
A;B;E;J;R

i
H
;L;N;O

�
K

;D;P

#
C

;M;F;G

!
;

where the indexed squared brackets together with the underlines represent subproblems that need
to be solved multiple times, for each instantiation of the index variable.

Using ordering d2 we will build a pseudo tree that can guide both AO � VEC as well
as AOC.2/, given in Figure 7.15. e outer box corresponds to the conditioning of C . e
inner boxes correspond to conditioning on K and H , respectively. e context of each node
is given in square brackets, and the 2-context is on the right side of the dash. For example,
context.J / D ŒCH -AE�, and 2-context.J / D ŒAE�. e context minimal graph correspond-
ing to the execution of AOC.2/ is shown in Figure 7.16.

We can follow the execution of both AOC.q/ and AO � VEC.q/ along this context min-
imal graph. After conditioning on C , AO � VEC.q/ solves two subproblems (one for each value
of C ), which are the ones shown on the large rectangles.

If we change the ordering to d3 D .A;B;E; J ;R; H ; L;N ;O; K ;D; P ; F ;G; C ;M/,
(F and G are eliminated after conditioning on C ), then the pseudo tree is the same as before,
and the context minimal graph for AOC is still the one shown in Figure 7.16. Algorithm, AO �
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Figure 7.16: Context minimal graph.

ALT � VEC.q/ is given below (where NG.Xi / is the set of neighbors of Xi in the graph G).
Note that the guiding pseudo tree is regenerated after each conditioning.

Algorithm AO � ALT � VEC.q/.
Input: MDhX;D;Fi; GD.X;E/; dD.X1;: : :; Xn/; i

Output: Updated belief for X1
Let T = T .G; d ) // create elimination tree ;
while T not empty do

if ((9Xi leaf in T )^(jNG.Xi /j� i)) then eliminate Xi else pick Xi leaf from T ;
for each xi 2 Di do

assign Xi D xi ;
call VEC.i/ on each connected component of conditioned subproblem

break;

Based on the previous example it is possible to show that

eorem 7.16 AOC(q) and AO-VEC(q) simulates AO-ALT-VEC(q). Given a graphical model
MDhX;D;F

N
i with no determinism and an execution of AO-VEC(q), there exists a pseudo tree

that guides an execution ofAOC(q) that traverses the same context minimal graph. (For a proof see the
appendix.)
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Figure 7.17: Tree decompositions: a) for d2; b) maximal cliques only; c) secondary tree for i D 2.

7.3.4 AOC(q) COMPAREDWITHSTCE(q)
Algorithm -(q), or SCTE.q/, described in Section 7.2. works on a tree-decomposition
whose separator sizes are bounded by an integer q. e computation in each cluster was assumed
initially to be naive, but it can be carried out by any search method. We can naively enumerate all
the instantiations of the cluster, or, we can usemore advancedmethod such as cutset-conditioning,
or AND/OR search with adaptive caching. We refer to this resulting method as SCTE with AO
search, or (SCTE-AO(q)). We next relate this variant to the AOC scheme.

Consider again at the example from Figures 7.15 and 7.16, and the ordering d2. Because
the induced parent set is equal to the context of a node, SCTE is equivalent to creating a cluster
for each node in the pseudo tree from Figure 7.15, and labeling it with the variable and its context.
e result is shown in Figure 7.17a. A better way to build a tree decomposition is to pick only the
maximal cliques in the induced graph, and this is equivalent to collapsing neighboring subsumed
clusters from Figure 7.17a, resulting in the tree decomposition in Figure 7.17b. If we want to run
STCE with bound q D 2, some of the separators are bigger than 2, so a secondary tree is obtained
by merging clusters adjacent to large separators, obtaining the tree in Figure 7.17c. STCE(2)
now runs by sending messages upwards, toward the root. Its execution, when augmented with
AND/OR cutset in each cluster, can also be followed on the context minimal graph in Figure
7.16. e separators ŒAF �, ŒAR� and ŒCD� correspond to the contexts of G, F , and M in the
graph in Figure 7.15. e root cluster ŒCHABEJDR� corresponds to the part of the context
minimal graph that contains all these variables. If this cluster would be processed by enumeration
(OR search), it would result in a tree with 28 D 256 leaves. However, when explored by AND/OR
search with adaptive caching the context minimal graph of the cluster is much smaller, as can be
seen in Figure 7.16. By comparing the underlying context minimal graphs, it can be shown that:

eorem 7.17 Given a graphical modelM D hX;D;Fi with no determinism, and an execution of
SCTE.q/, there exists a pseudo tree that guides an execution of AOC.q/ and AO � VEC.q/ that
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traverses the same context minimal graph. (see [Mateescu and Dechter, 2007; Mateescu, 2007] for a
proof ).

7.4 SUMMARYANDBIBLIOGRAPHICALNOTES
In the past ten years, four types of algorithms have emerged, based on: (1) cycle-cutset and q-
cutset [Dechter, 1990a; Pearl, 1988]; (2) alternating conditioning and elimination controlled by
induced-width q [Fishelson and Geiger, 2002; Larrosa and Dechter, 2002; Rish and Dechter,
2000]; (3) recursive conditioning [Darwiche, 2001a], which was recently recast as context-based
AND/OR search [Dechter and Mateescu, 2004]; and (4) varied separator-sets for tree decom-
positions [Dechter and Fattah, 2001]. is chapter is based on the above schemes and also, to a
great extent on [Dechter and Mateescu, 2007b; Mateescu and Dechter, 2005a, 2007].

We presented 3 levels of algorithms trading space for time, based on combining search
and inference. Algorithms VEC, ALT-VEC and SCTE, provided the principles integration
schemes whose search component was naive. Algorithms AO-VEC, AO-CUTSET replaced the
search component with AND/OR search and allowed the memory intensive component to be
applied either via inference, yielding AO-VEC, or via context-based AND/OR search, yielding
AO-CUTSET.e two final schemes ofAOC and SCTE-AO provide an additional improvement.

We noted that there is no principled difference betweenmemory-intensive search with fixed
variable ordering and inference beyond: (1) different direction of exploring a common search space
(top down for search vs. bottom-up for inference); (2) different assumption of control strategy
(depth-first for search and breadth-first for inference). Also those differences occur only in the
presence of determinism.

AdaptiveCaching algorithm can be viewed as themost efficient AND/OR search algorithm,
that exploits the available memory in the best way. Algorithm cutset-conditioning for Bayesian
networks was introduced in [Pearl, 1988]. e cycle-cutset conditioning for constraint networks
was introduced in [Dechter, 1990a]. Extensions to higher levels of cutset-conditioning appeared
first in the context of satisfiability in [Rish and Dechter, 2000] and were subsequently addressed
for constraint processing in [Larrosa and Dechter, 2003]. e cutset-conditioning scheme was
used both for solving SAT problems and for optimization tasks [Larrosa and Dechter, 2001;
Rish and Dechter, 2000] and is currently used for Bayesian networks applications [Fishelson and
Geiger, 2002; Fishelson et al., 2005]. Algorithms for finding small cycle-cutsets were proposed
by [A. Becker and Geiger, 1999]. An algorithm for finding good w-cutset is given in [Bidyuk
and Dechter, 2004].
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7.5 APPENDIX: PROOFS
Proof ofeorem 7.16
e pseudo tree of AOC.q/ is obtained by reversing the conditioning set of VEC.q/ and placing
it at the beginning of the ordering. e proof is by induction on the number of conditioning
variables, by comparing the corresponding contexts of each variable.

Basis step. If there is no conditioning variable it was shown that AO is identical to VE is they
are appleid along the same variable-ordering (thus the same pseudo-tree. If there is only one con-
ditioning variable. Given the ordering d D .X1; : : : ; Xj ; : : : ; Xn/, let’s say Xj is the conditioning
variable.

(a) Consider X 2 fXjC1; : : : ; Xng. e function recorded by VEC.q/ when eliminating X
has the scope equal to the context of X in AOC.q/.

(b) For Xj , both AO � VEC.q/ and AOC.q/ will enumerate its domain, thus making the
same effort.

(c) After Xj is instantiated by VEC.q/, the reduced subproblem (which may contain mul-
tiple connected components) can be solved by variable elimination alone. By the equivalence of
AO to VE, variable elimination on this portion is identical to AND/OR search with full caching,
which is exactly AO � VEC.q/ on the reduced subproblem.

From (a), (b) and (c), it follows that AO � VEC.i/ and AOC.i/ are identical if there is
only one conditioning variable.

Inductive step. We assume that VEC.q/ and AOC.q/ are identical for any graphical model
if there are at most k conditioning variables, and have to prove that the same is true for k C 1
conditioning variables.

If the ordering is d D .X1; : : : ; Xj ; : : : ; Xn/ and Xj is the last conditioning variable in
the ordering, it follows (similar to the basis step) that VEC.q/ and AOC.q/ traverse the same
search space with respect to variables fXjC1; : : : ; Xng, and also forXj . e remaining conditioned
subproblem now falls under the inductive hypothesis, which concludes the proof. Note that it is
essential that VEC.q/ uses AND/OR over cutset, and is pseudo tree based, otherwise AOC.q/
is better. �
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C H A P T E R 8

Conclusion
We covered the principles of exact algorithms in graphical models, organized along the two styles
of reasoning: inference and search. We focused on methods that are applicable to general graphical
models, whose functions can come from a variety of frameworks and applications (constraints,
Boolean, probabilities, costs etc.). ese include, constraint networks and SAT models, Bayesian
networks, Markov random fields, Cost networks, and Influence diagrams. erefore, the primary
features that capture structure in a unified way across all these models are graph features. e
main graph property is the induced-width also known as treewidth, but we also showed the rele-
vance of related features such as height of pseudo trees, cycle-cutsets, q-cutsets and separator width.
We showed that both inference and search scheme are bounded exponentially by any of these
parameters, and some combination of those hint at how we can trade memory for time.

With the exception of constraints, we did not discuss internal function structure as a po-
tential feature. ese function-structure features are sometimes addressed as language (e.g., Horn
clauses, linear functions, convex functions) and can lead to various tractable classes. Other terms
used are context-sensitive or context specific independence. In the constraint literature, tractability
based on the language of constraints was investigated thoroughly (see Chapter 10 in[Dechter,
2003].) Likewise, focus on language is a central research activity in probabilistic reasoning. An
example of a structure exploited in probabilistic graphical models are the sub-modular functions
[Dughmi, 2009].

e next thing on our agenda is to extend the book with a second part focusing on ap-
proximation schemes. is obviously is necessary since exact algorithms cannot scale-up to many
realistic applications that are complex and quite large and appropriately, current research centered
on developing approximation schemes. But, we believe that in order to have effective approxi-
mation algorithms we have to be equipped with the best exact algorithms, first.

Approximation algorithms can be organized along the dimensions of inference and search
as well. Given a general algorithmic architecture (such as Adaptive AND/OR search with caching
(AOC(q)), or, alternatively, AO-VEC(q), we can approximate either the inference part or the
search part or both, systematically yielding an ensemble of candidates approximation algorithms
that can be studied. We can view messages-passing and variational algorithms such as general-
ized belief propagation, the mini-bucket and weighted mini-bucket schemes [Dechter and Rish,
2002; Liu and Ihler, 2011] as approximations that bound inference. We can view Monte Carlo
sampling methods, as approximations to search. e hybrid schemes can be used to focus on
approximating only those portions of the problem instance that appear non-tractable for exact



166 8. CONCLUSION

processing. Namely, for a given problem instances, it can suggest a balance between approximate
and exact and the type of approximation that should be utilized.

One should note that approximate reasoning in graphical modeling with any guarantees was
shown to be hard as well [Dagum and Luby, 1993; Roth]. Yet, algorithms that generate bounds
or anytime schemes that can improve their bounds if allowed more time, and even get to an exact
solution when time permits, are highly desirable. Pointers to some literature on approximations
can be found in recent PhD theses [Kask, 2001] [Bidyuk, 2006] and [Gogate, 2009] [Mateescu,
2007] [Marinescu, 2007] and in a variety of articles in the field such as (on message-passing
variational approaches) [Mateescu et al., 2010] [J. S. Yedidia and Weiss, 2005; M. J. Wainwright
and Willskey, 2005; Wainwright and Jordan, 2008; Wainwright et al., 2003], [Ihler et al., 2012;
Liu and Ihler, 2013], and [Sontag et al., 2008]. On Sampling and hybrid of sampling and bounded
inference see [Bidyuk and Dechter, 2007; Bidyuk et al., 2010], [Gogate and Dechter, 2010, 2011,
2012]. On anytime schemes for optimization see [Marinescu and Dechter, 2009b; Otten and
Dechter, 2012].
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