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Foreword

The topic of randomized algorithms has had a long history in computer science. See
[290] for one of the most popular texts on this topic. Almost as soon as the first
NP-hard or NP-complete problems were discovered, the research community began
to realize that problems that are difficult in the worst-case need not always be so
difficult on average. On the flip side, while assessing the performance of an algo-
rithm, if we do not insist that the algorithm must always return precisely the right
answer, and are instead prepared to settle for an algorithm that returns nearly the
right answer most of the time, then some problems for which “exact” polynomial-
time algorithms are not known turn out to be tractable in this weaker notion of what
constitutes a “solution.” As an example, the problem of counting the number of sat-
isfying assignments of a Boolean formula in disjunctive normal form (DNF) can be
“solved” in polynomial time in this sense; see [288], Sect. 10.2.

Sometime during the 1990s, the systems and control community started taking
an interest in the computational complexity of various algorithms that arose in con-
nection with stability analysis, robustness analysis, synthesis of robust controllers,
and other such quintessentially “control” problems. Somewhat to their surprise, re-
searchers found that many problems in analysis and synthesis were in fact NP-hard if
not undecidable. Right around that time the first papers on addressing such NP-hard
problems using randomized algorithms started to appear in the literature. A paral-
lel though initially unrelated development in the world of machine learning was to
use powerful results from empirical process theory to quantity the “rate” at which
an algorithm will learn to do a task. Usually this theory is referred to as statistical
learning theory, to distinguish it from computational learning theory in which one is
also concerned with the running time of the algorithm itself.

The authors of the present monograph are gracious enough to credit me with
having initiated the application of statistical learning theory to the design of sys-
tems affected by uncertainty [405, 408]. As it turned out, in almost all problems of
controller synthesis it is not necessary to worry about the actual execution time of
the algorithm to compute the controller; hence statistical learning theory was indeed
the right setting for studying such problems. In the world of controller synthesis, the
analog of the notion of an algorithm that returns more or less the right answer most
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X Foreword

of the time is a controller that stabilizes (or achieves nearly optimal performance
for) most of the set of uncertain plants. With this relaxation of the requirements on
a controller, most if not all of the problems previously shown to be NP-hard now
turned out to be tractable in this relaxed setting. Indeed, the application of random-
ized algorithms to the synthesis of controllers for uncertain systems is by now a
well-developed subject, as the authors point out in the book; moreover, it can be
confidently asserted that the theoretical foundations of the randomized algorithms
were provided by statistical learning theory.

Having perhaps obtained its initial impetus from the robust controller synthesis
problem, the randomized approach soon developed into a subject on its own right,
with its own formalisms and conventions. Soon there were new abstractions that
were motivated by statistical learning theory in the traditional sense, but are not
strictly tied to it. An example of this is the so-called “scenario approach.” In this
approach, one chooses a set of “scenarios” with which a controller must cope; but
the scenarios need not represent randomly sampled instances of uncertain plants. By
adopting this more general framework, the theory becomes cleaner, and the precise
role of each assumption in determining the performance (e.g. the rate of conver-
gence) of an algorithm becomes much clearer.

When it was first published in 2005, the first edition of this book was among
the first to collect in one place a significant body of results based on the random-
ized approach. Since that time, the subject has become more mature, as mentioned
above. Hence the authors have taken the opportunity to expand the book, adopting
a more general set of problem formulations, and in some sense moving away from
controller design as the main motativating problem. Though controller design still
plays a prominent role in the book, there are several other applications discussed
therein. One important change in the book is that bibliography has nearly doubled
in size. A serious reader will find a wealth of references that will serve as a pointer
to practically all of the relevant literature in the field. Just as with the first edition,
I have no hesitation in asserting that the book will remain a valuable addition to
everyone’s bookshelf.

Hyderabad, India M. Vidyasagar
June 2012



Foreword to the First Edition

The subject of control system synthesis, and in particular robust control, has had
a long and rich history. Since the 1980s, the topic of robust control has been on
a sound mathematical foundation. The principal aim of robust control is to ensure
that the performance of a control system is satisfactory, or nearly optimal, even when
the system to be controlled is itself not known precisely. To put it another way, the
objective of robust control is to assure satisfactory performance even when there is
“uncertainty”” about the system to be controlled.

During the two past two decades, a great deal of thought has gone into modeling
the “plant uncertainty.” Originally the uncertainty was purely “deterministic,” and
was captured by the assumption that the “true” system belonged to some sphere
centered around a nominal plant model. This nominal plant model was then used
as the basis for designing a robust controller. Over time, it became clear that such
an approach would often lead to rather conservative designs. The reason is that in
this model of uncertainty, every plant in the sphere of uncertainty is deemed to be
equally likely to occur, and the controller is therefore obliged to guarantee satisfac-
tory performance for every plant within this sphere of uncertainty. As a result, the
controller design will trade off optimal performance at the nominal plant condition
to assure satisfactory performance at off-nominal plant conditions.

To avoid this type of overly conservative design, a recent approach has been to
assign some notion of probability to the plant uncertainty. Thus, instead of assuring
satisfactory performance at every single possible plant, the aim of controller design
becomes one of maximizing the expected value of the performance of the controller.
With this reformulation, there is reason to believe that the resulting designs will of-
ten be much less conservative than those based on deterministic uncertainty models.

A parallel theme has its beginnings in the early 1990s, and is the notion of the
complexity of controller design. The tremendous advances in robust control syn-
thesis theory in the 1980s led to very neat-looking problem formulations, based on
very advanced concepts from functional analysis, in particular, the theory of Hardy
spaces. As the research community began to apply these methods to large-sized
practical problems, some researchers began to study the rate at which the compu-
tational complexity of robust control synthesis methods grew as a function of the
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xii Foreword to the First Edition

problem size. Somewhat to everyone’s surprise, it was soon established that several
problems of practical interest were in fact NP-hard. Thus, if one makes the reason-
able assumption that P # NP, then there do not exist polynomial-time algorithms
for solving many reasonable-looking problems in robust control.

In the mainstream computer science literature, for the past several years re-
searchers have been using the notion of randomization as a means of tackling diffi-
cult computational problems. Thus far there has not been any instance of a problem
that is intractable using deterministic algorithms, but which becomes tractable when
a randomized algorithm is used. However, there are several problems (for example,
sorting) whose computational complexity reduces significantly when a randomized
algorithm is used instead of a deterministic algorithm. When the idea of random-
ization is applied to control-theoretic problems, however, there appear to be some
NP-hard problems that do indeed become tractable, provided one is willing to ac-
cept a somewhat diluted notion of what constitutes a “solution” to the problem at
hand.

With all these streams of thought floating around the research community, it is an
appropriate time for a book such as this. The central theme of the present work is the
application of randomized algorithms to various problems in control system anal-
ysis and synthesis. The authors review practically all the important developments
in robustness analysis and robust controller synthesis, and show how randomized
algorithms can be used effectively in these problems. The treatment is completely
self-contained, in that the relevant notions from elementary probability theory are
introduced from first principles, and in addition, many advanced results from prob-
ability theory and from statistical learning theory are also presented. A unique fea-
ture of the book is that it provides a comprehensive treatment of the issue of sample
generation. Many papers in this area simply assume that independent identically
distributed (iid) samples generated according to a specific distribution are available,
and do not bother themselves about the difficulty of generating these samples. The
trade-off between the nonstandardness of the distribution and the difficulty of gener-
ating iid samples is clearly brought out here. If one wishes to apply randomization to
practical problems, the issue of sample generation becomes very significant. At the
same time, many of the results presented here on sample generation are not readily
accessible to the control theory community. Thus the authors render a signal service
to the research community by discussing the topic at the length they do. In addi-
tion to traditional problems in robust controller synthesis, the book also contains
applications of the theory to network traffic analysis, and the stability of a flexible
structure.

All in all, the present book is a very timely contribution to the literature. I have
no hesitation in asserting that it will remain a widely cited reference work for many
years.

Hyderabad, India M. Vidyasagar
June 2004



Preface to the Second Edition

Since the first edition of the book “Randomized Algorithms for Analysis and Con-
trol of Uncertain Systems” appeared in print in 2005, many new significant devel-
opments have been obtained in the area of probabilistic and randomized methods
for control, in particular on the topics of sequential methods, the scenario approach
and statistical learning techniques. Therefore, Chaps. 9, 10, 11, 12 and 13 have been
rewritten to describe the most recent results and achievements in these areas.

Furthermore, in 2005 the development of randomized algorithms for systems and
control applications was in its infancy. This area has now reached a mature stage
and several new applications in very diverse areas within and outside engineering
are described in Chap. 19, including the computation of PageRank in the Google
search engine and control design of UAVs (unmanned aerial vehicles). The revised
title of the book reflects this important addition. We believe that in the future many
further applications will be successfully handled by means of probabilistic methods
and randomized algorithms.

Torino, Italy Roberto Tempo
July 2012 Giuseppe Calafiore
Fabrizio Dabbene
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Chapter 1
Overview

Don’t assume the worst-case scenario. It’s emotionally draining
and probably won’t happen anyway.
Anonymous

1.1 Probabilistic and Randomized Methods

The main objective of this book is to introduce the reader to the fundamentals of the
area of probabilistic and randomized methods for analysis and design of uncertain
systems. The take off point of this research is the observation that many quantities
of interest in engineering, which are generally very difficult to compute exactly, can
be easily approximated by means of randomization.

The presence of uncertainty in the system description has always been a critical
issue in control theory and applications. The earliest attempts to deal with uncer-
tainty were based on a sfochastic approach, that led to great achievements in classi-
cal optimal control theory. In this theory, uncertainty is considered only in the form
of exogenous disturbances having a stochastic characterization, while the plant dy-
namics are assumed to be exactly known. On the other hand, the worst-case setting,
which has later emerged as a successful alternative to the previous paradigm, explic-
itly considers bounded uncertainty in the plant description. This setting is based on
the “concern” that the uncertainty may be very malicious, and the idea is to guard
against the worst-case scenario, even if it may be unlikely to occur. However, the
fact that the worst-case setting may be too pessimistic, together with research re-
sults pointing out the computational hardness of this approach, motivated the need
for further explorations towards new paradigms.

The contribution of this book is then in the direction of proposing a new paradigm
for control analysis and design, based on a rapprochement between the classical
stochastic approach and the modern worst-case approach. Indeed, in our setting we
shall assume that the uncertainty is confined in a set (as in the worst-case approach)
but, in addition to this information, we consider it as a random variable with given
multivariate probability distribution. A typical example is a vector of uncertain pa-
rameters uniformly distributed inside a ball of fixed radius.

We address the interplay between stochastic (soft) and worst-case (hard) perfor-
mance bounds for control system design in a rigorous fashion, with the goal to derive
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Fig. 1.1 Structure of the
book

useful computational tools. The algorithms derived in this context are based on un-
certainty randomization and are usually called randomized algorithms. These algo-
rithms have been used successfully in, e.g., computer science, computational geom-
etry and optimization. In these areas, several problems dealing with binary-valued
functions have been efficiently solved using randomization, such as data structur-
ing, search trees, graphs, agent coordination and Byzantine agreement problems.
The derived algorithms are generally called Las Vegas randomized algorithms.

The randomized algorithms for control systems are necessarily of different type
because we not only need to estimate some fixed quantity, but actually need to op-
timize over some design parameters (e.g., the controller’s parameters), a context to
which classical Monte Carlo methods cannot be directly applied. Therefore, a novel
methodology is developed to derive technical tools which address convex and non-
convex control design problems by means of sequential and non-sequential random-
ized algorithms. These tools are then successfully utilized to study several systems
and control applications. We show that randomization is indeed a powerful tool in
dealing with many interesting applications in various areas of research within and
outside control engineering.

We now describe the structure of the book which can be roughly divided into six
parts, see the block diagram shown in Fig. 1.1 which explains various interconnec-
tions between these parts.

1.2 Structure of the Book

Chapter 2 deals with basic elements of probability theory and introduces the notions
of random variables and matrices used in the rest of the book. Classical univariate
and multivariate densities are also listed.
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e Uncertain systems
Chapter 3: Uncertain Linear Systems
Chapter 4: Linear Robust Control Design
Chapter 5: Limits of the Robustness Paradigm

This first part of the book contains an introduction to robust control and discusses
the limits of the worst-case paradigm. This part could be used for teaching a grad-
uate course on the topic of uncertain systems, and it may be skipped by the reader
familiar with these topics. Chapters 3 and 4 present a rather general and “dry” sum-
mary of the key results regarding robustness analysis and design. In Chap. 3, after
introducing norms, balls and signals, the standard M—A model for describing lin-
ear time-invariant systems is studied. The small gain theorem (in various forms),
wu theory and its connections with real parametric uncertainty, and the computation
of robustness margins constitute the backbone of the chapter.

Chapter 4 deals with H., and H> design methods following a classical approach
based on linear matrix inequalities. Special attention is devoted to linear quadratic
Gaussian, linear quadratic regulator and guaranteed-cost control of uncertain sys-
tems.

In Chap. 5, the main limitations of classical robust control are outlined. First,
a summary of concepts and results on computational complexity is presented and
a number of NP-hard problems within systems and control are listed. Second, the
issue of conservatism in the robustness margin computation is discussed. Third,
a classical example regarding discontinuity of the robustness margin is revisited.
This chapter provides a launching point for the probabilistic methods discussed next.

o Probabilistic methods for analysis
Chapter 6: Probabilistic Methods for Uncertain Systems
Chapter 7: Monte Carlo Methods

This part discusses probabilistic techniques for analysis of uncertain systems, Monte
Carlo and quasi-Monte Carlo methods. In Chap. 6, the key ideas of probabilis-
tic methods for systems and control are discussed. Basic concepts such as the so-
called “good set” and “bad set” are introduced and three different problems, which
are the probabilistic counterparts of standard robustness problems, are presented.
This chapter also includes many specific examples showing that these problems can
sometimes be solved in closed form without resorting to randomization.

The first part of Chap. 7 deals with Monte Carlo methods and provides a general
overview of classical methods for both integration and optimization. The laws of
large numbers for empirical mean, empirical probability and empirical maximum
computation are reported. The second part of the chapter concentrates on quasi-
Monte Carlo, which is a deterministic version of Monte Carlo methods. In this case,
deterministic sequences for integration and optimization, together with specific error
bounds, are discussed.

o Statistical learning theory
Chapter 8: Probability Inequalities
Chapter 9: Statistical Learning Theory
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These two chapters address the crucial issue of finite-time convergence of random-
ized algorithms and in particular discuss probability inequalities, sample complex-
ity and statistical learning theory. In the first part of Chap. 8, classical probability
inequalities, such as Markov and Chebychev, are studied. Extensions to deviation
inequalities are subsequently considered, deriving the Hoeffding inequality. These
inequalities are then used to derive the sample complexity obtaining Chernoff and
related bounds.

Chapter 9 deals with statistical learning theory. These results include the well-
known Vapnik—Chervonenkis and Pollard results regarding uniform convergence of
empirical means for binary and continuous-valued functions. We also discuss how
these results may be exploited to derive the related sample complexity. The chapter
includes useful bounds on the binomial distribution that may be used for computing
the sample complexity.

o Randomized algorithms for design
Chapter 10: Randomized Algorithms in Systems and Control
Chapter 11: Sequential Algorithms for Probabilistic Design
Chapter 12: Scenario Approach for Probabilistic Design
Chapter 13: Learning-Based Control Design

In this part of the book, we move on to control design of uncertain systems with
probabilistic techniques. Chapter 10 formally defines randomized algorithms of
Monte Carlo and Las Vegas type. A clear distinction between analysis and synthe-
sis is made. For analysis, we provide a connection with the Monte Carlo methods
previously addressed in Chap. 7 and we state the algorithms for the solution of the
probabilistic problems introduced in Chap. 6. For control synthesis, three different
paradigms are discussed having the objective of studying feasibility and optimiza-
tion for convex and nonconvex design problems. The chapter ends with a formal
definition of efficient randomized algorithms.

The main point of Chap. 11 is the development of iterative stochastic algorithms
under a convexity assumption in the design parameters. In particular, using the stan-
dard setting of linear matrix inequalities, we analyze sequential algorithms consist-
ing of a probabilistic oracle and a deterministic update rule. Finite-time convergence
results and the sample complexity of the probabilistic oracle are studied. Three up-
date rules are analyzed: gradient iterations, ellipsoid method and cutting plane tech-
niques. The differences with classical asymptotic methods studied in the stochastic
approximation literature are also discussed.

Chapter 12 studies a non-sequential methodology for dealing with design in a
probabilistic setting. In the scenario approach, the design problem is solved by
means of a one-shot convex optimization involving a finite number of sampled
uncertainty instances, named the scenarios. The results obtained include explicit
formulae for the number of scenarios required by the randomized algorithm. The
subsequent problem of “discarded constraints” is then analyzed and put in relation
with chance-contrained optimization.

Chapter 13 addresses nonconvex optimization in the presence of uncertainty us-
ing a setting similar to the scenario approach, but in this case the objective is to
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compute only a local solution of the optimization problem. For design with binary
constraints given by Boolean functions, we compute the sample complexity, which
provides the number of constraints entering into the optimization problem. Further-
more, we present a sequential algorithm for the solution of nonconvex semi-infinite
feasibility and optimization problems. This algorithm is closely related to some re-
sults on statistical learning theory previously presented in Chap. 9.

e Multivariate random generation
Chapter 14: Random Number and Variate Generation
Chapter 15: Statistical Theory of Radial Random Vectors
Chapter 16: Vector Randomization Methods
Chapter 17: Statistical Theory of Radial Random Matrices
Chapter 18: Matrix Randomization Methods

The main objective of this part of the book is the development of suitable sam-
pling schemes for the different uncertainty structures analyzed in Chaps. 3 and 4.
To this end, we study random number and variate generations, statistical theory of
random vectors and matrices, and related algorithms. This requires the development
of specific techniques for multivariate generation of independent and identically dis-
tributed vector and matrix samples within various sets of interest in control. These
techniques are non-asymptotic (contrary to other methods based on Markov chains)
and the idea is that the multivariate sample generation is based on simple algebraic
transformations of a univariate random number generator.

Chapters 15 and 17 address statistical properties of random vectors and matrices
respectively. They are quite technical, especially the latter, which is focused on ran-
dom matrices. The reader interested in specific randomized algorithms for sampling
within various norm-bounded sets may skip these chapters and concentrate instead
on Chaps. 16 and 18.

Chapter 14 deals with the topic of random number and variate generation. This
chapter begins with an overview of classical linear and nonlinear congruential meth-
ods and includes results regarding random variate transformations. Extensions to
multivariate problems, as well as rejection methods and techniques based on the
conditional density method, are also analyzed. Finally, a brief account of asymptotic
techniques, including the so-called Markov chain Monte Carlo method, is given.

Chapter 15 is focused on statistical properties of radial random vectors. In par-
ticular, some general results for radially symmetric density functions are presented.
Chapter 16 studies specific algorithms which make use of the theoretical results of
the previous chapter for random sample generation within £, norm balls. In par-
ticular, efficient algorithms (which do not require rejection) based on the so-called
generalized Gamma density are developed.

Chapter 17 is focused on the statistical properties of random matrices. Various
norms are considered, but specific attention is devoted to the spectral norm, owing
to its interest in control. In this chapter methods based on the singular value decom-
position (SVD) of real and complex random matrices are studied. The key point is
to compute the distributions of the SVD factors of a random matrix. This provides
significant extensions of the results currently available in the theory of random ma-
trices.
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In Chap. 18 specific randomized algorithms for real and complex matrices are
constructed by means of the conditional density method. One of the main points
of this chapter is to develop algebraic tools for the closed-form computation of the
marginal density, which is required in the application of this method.

e Systems and control applications
Chapter 19: Applications of randomized algorithms

This chapter shows that randomized algorithms are indeed very useful tools in many
areas of application. This chapter is divided into two parts. In the first part, we
present a brief overview of some areas where randomized algorithms have been suc-
cessfully utilized: systems biology, aerospace control, control of hard disk drives,
high-speed networks, quantized, switched and hybrid systems, model predictive
control, fault detection and isolation, embedded and electric circuits, structural de-
sign, linear parameter varying (LPV) systems, automotive and driver assistance sys-
tems. In the second part of this chapter, we study in more details a subset of the men-
tioned applications, including the computation of PageRank in the Google search
engine and control design of unmanned aerial vehicles (UAVs). The chapter ends
with a brief description of the Toolbox RACT (Randomized Algorithms Control
Toolbox).

The Appendix includes some technical results regarding transformations be-
tween random matrices, Jacobians of transformations and the Selberg and Dyson—
Mehta integrals.



Chapter 2
Elements of Probability Theory

In this chapter, we formally review some basic concepts of probability theory.
Most of this material is standard and available in classical references, such as
[108, 189, 319]; more advanced material on multivariate statistical analysis can
be found in [22]. The definitions introduced here are instrumental to the study of
randomized algorithms presented in subsequent chapters.

2.1 Probability, Random Variables and Random Matrices

2.1.1 Probability Space

Given a sample space §2 and a o -algebra S of subsets S of £2 (the events), a proba-
bility PR {S} is a real-valued function on S satisfying:

1. PrR{S} €[0,1];
2. PR{2}=1;
3. If the events S; are mutually exclusive (i.e., S; N S = @ for i # k), then

PR {U Si} = ZPR{S,-}
iel iel
where 7 is a countable' set of positive integers.

The triple (£2, S, PR {S}) is called a probability space.
A discrete probability space is a probability space where 2 is countable. In this
case, S is given by subsets of §2 and the probability PR : £2 — [0, 1] is such that

> PrR{w}=1.

wes2

IBy countable we mean finite (possibly empty) or countably infinite.
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2.1.2 Real and Complex Random Variables

We denote with R and C the real and complex field respectively. The symbol F is
also used to indicate either R or C. A function f : £2 — R is said to be measurable
with respect to a o-algebra S of subsets of 2 if f~!(A) € S for every Borel set
ACR.

A real random variable x defined on a probability space (£2,S,PR{S}) is a
measurable function mapping £2 into ) C R, and this is indicated with the shorthand
notation x € ). The set ) is called the range or support of the random variable x.
A complex random variable x € C is a sum X = Xg + jx1, where xg € R and x; € R
are real random variables, and j = +/—1. If the random variable x maps the sample
space 2 into a subset [a, b] C R, we write X € [a, b]. If 2 is a discrete probability
space, then X is a discrete random variable mapping §2 into a countable set.

Distribution and Density Functions The (cumulative) distribution function (cdf)
of a random variable x is defined as

Fy(x) = PR {x < x}.

The function Fx(x) is nondecreasing, right continuous (i.e., Fx(x) = lim,_ . Fx(2)),
and Fyx(x) — 0 for x - —oo, Fx(x) — 1 for x — 00. Associated with the concept
of distribution function, we define the «a percentile of a random variable

Xg =inf{x T Fx(x) > a}.

For random variables of continuous type, if there exists a Lebesgue measurable
function fx(x) > 0 such that

Fx(X)=/x Jx(x)dx

then the cdf Fx(x) is said to be absolutely continuous, and

dFx(x)
dx

holds except possibly for a set of measure zero. The function fx(x) is called the
probability density function (pdf) of the random variable x.

For discrete random variables, the cdf is a staircase function, i.e. Fx(x) is constant
except at a countable number of points xp, x3, ... having no finite limit point. The
total probability is hence distributed among the “mass” points x1, x2, ... at which
the “jumps” of size

fx(x) =

Sx(xi) = liH}) Fx(x;i +¢€) — Fx(x; —€) =PR{x=x;}

occur. The function fx(x;) is called the mass density of the discrete random vari-
able x. The definition of random variables is extended to real and complex random
matrices in the next section.
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2.1.3 Real and Complex Random Matrices

Given n random variables X1, .. ., Xp, their joint distribution is defined as
Fxl,...,xn(xh oo Xp) =PR{X1 <x1,...,X, S x0).

When the above distribution is absolutely continuous, we can define the joint density
function fx,, . x,(X1,...,%s)

8nf?){],..,,)(,«, (xla e "x}’l)
Ax1 -+ 0x, ’

fxl ..... X,l(xlvﬂ"xn)i

The random variables x1, ..., X, are said to be independent if

n
Fayoooy 1) = [ | P (i)
i=1
where Fy, (x;) = PR{x; < x;}.

A real random matrix X € R is a measurable function X : 2 — ) C R™™,
That is, the entries of X are real random variables [X]; x fori =1,...,n and k =
1,...,m. A complex random matrix X € C"" is defined as the sum X = Xp + j X,
where Xg and X are real random matrices. A random matrix is discrete if its entries
are discrete random variables.

The distribution function Fx(X) of a real random matrix X is the joint cdf of the
entries of X. If X is a complex random matrix, then its cdf is the joint cdf of Xp
and X7. The pdf fx(X) of areal or complex random matrix is analogously defined as
the joint pdf of the real and imaginary parts of its entries. The notation X ~ fx(X)
means that X is a random matrix with probability density function fx(X).

Let X € """ be a real or complex random matrix (of continuous type) with pdf
fx(X) and support Y C F"™>™_ Then, if Y C ), we have

PrR{X e Y}:/ Xx(X)dX.
Y

Clearly, PR{X € V} = fy /x(X)dX = 1. When needed, to further emphasize that
the probability is relative to the random matrix X, we explicitly write PRx {X € Y'}.

2.1.4 Expected Value and Covariance

Let X € Y € ™™ be a random matrix and let J : F"" — RP”-9 be a Lebesgue
measurable function. The expected value of the random matrix J(X) is defined as

Ex(/(X)) = /y J(X) fx(X)dX

where ) is the support of X. We make use of the symbol Ex (J(X)) to emphasize
the fact that the expected value is taken with respect to X. The suffix is omitted when
clear from the context.
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If X € "™ is a discrete random matrix with countable support Y = {X1, X», ...},
X; eF"»" and Y C Y, then

PR{X €Y} = Z fx(Xi) = Z PR{X = X;}.
XieY XieY
The expected value of J(X) is defined as
E(J(X)) = > J(X:) fx(X)).
X,-e)}

The expected value of X € R™™ is usually called the mean. The covariance matrix
of x € R" is defined as

Cov (x) = Ex((x — Ex ) (x — Ex (%))

where X7 denotes the transpose of X. The covariance of x € R is called the variance
and is given by

Var (x) = By ((x — Bx (0)°).

1/2

The square root of the variance (Var (x))'/ is called the standard deviation.

2.2 Marginal and Conditional Densities

Consider a random vector X = [X] - -- X,]7 € R” with joint density function

fx(x):fxl ,,,,, x,,(xlwu’xn)-

The marginal density of the first i components of the random vector x = [X] - - - X,
is defined as

fxl,.‘.,x,«(m,.-‘,xz‘)i/-“/fx(m,.--,xn)dxiﬂ---dxn- 2.1

]T

The conditional density fx;|x,,...x;_, (Xi|x1, ..., x;—1) of the random variable x; con-
ditioned to the event X; = xq,...,X;—1 = x;_1 is given by the ratio of marginal
densities
- Sxpex (L x0)
fxilxl,...,xi,l(xiu], ...,xl;l) = ! : (22)

fX],...,X,'_l(-xls cee 1xi—l) )

2.3 Univariate and Multivariate Density Functions

We next present a list of classical univariate and multivariate density functions. The
reader is referred to Chap. 14 for numerical methods for generating random vari-
ables with the mentioned densities.
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Binomial Density The binomial density with parameters n, p is defined as

bn,p(x)i(;l)px(l—p)"_x, xef{0,1,...,n} (2.3)

n!

=01 The binomial distribu-

where (") indicates the binomial coefficient () =
tion is denoted as
X

Bn,p(x)iz<n>pk(1—p)”", x€{0,1,....n} (2.4)

k
k=0

Normal Density The normal (Gaussian) density with mean x € R and variance
02 € R is defined as

Ni g2(x) = e 2000 LR, 2.5)

o2

Multivariate Normal Density = The multivariate normal density with mean
x € R" and symmetric positive definite covariance matrix W € S*, W > 0, is de-
fined as

Niw(x) = Q) AW~ 12e=2G=DTWT =)y cgn, (2.6)
Uniform Density The uniform density on the interval [a, b] is defined as

I _
Upa.p(x) = { o ifxe [.a, bl;
0 otherwise.

2.7)

Uniform Density over a Set Let S be a Lebesgue measurable set of nonzero
volume (see Sect. 3.1.3 for a precise definition of volume). The uniform density
over S is defined as

1 . .
Z/lS(X)i{_Vol(S) if X es;
0 otherwise.

(2.8)

If instead S is a finite discrete set, i.e. it consists of a finite number of elements
S ={Xy, X5, ..., Xy}, then the uniform density over S is defined as

1 . .
Us(X) = { Caicy T XES;
0 otherwise

where Card (S) is the cardinality of S.

Chi-Square Density  The unilateral chi-square density with n > 0 degrees of free-
dom is defined as

x2(x) = X" le™ 2 x e Ry (2.9)

I(n)2)21/2

where I'(-) is the Gamma function

F(x)i/oof;‘x_le_sdg, x> 0.
0
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Weibull Density The Weibull density with parameter a > 0 is defined as
Wa(x) =ax®le™, xeR. (2.10)
Laplace Density The unilateral Laplace (or exponential) density with parameter
A > 01is defined as
Ly(x)=xe™, xeRy. (2.11)

Gamma Density The unilateral Gamma density with parameters a > 0, b > 0 is
defined as

1
Gap(x) = b xle b x eR,. (2.12)

Generalized Gamma Density The unilateral generalized Gamma density with
parameters a > 0, ¢ > 0 is defined as

Gaclx) = %xw*le*”, xeRy. (2.13)

2.4 Convergence of Random Variables

We now recall the formal definitions of convergence almost everywhere (or almost
sure convergence), convergence in the mean square sense and convergence in prob-
ability. Other convergence concepts not discussed here include vague convergence,
convergence of moments and convergence in distribution, see e.g. [108].

Definition 2.1 (Convergence almost everywhere) A sequence of random variables
x(D x@ . converges almost everywhere (a.e.) (or with probability one) to the
random variable x if

PR{ lim x™) =x} =1.

N—o0

Definition 2.2 (Convergence in the mean square sense) A sequence of random vari-
ables x(), x| .. converges in the mean square sense to the random variable x if

lim E(’x — X(N)yz) =0.

N—o0

Definition 2.3 (Convergence in probability) A sequence of random variables x(1),
x® ... converges in probability to the random variable x if, for any € > 0, we have
lim PrR{|x —xV)| > €} =0.
N—o00
Convergence a.e. and convergence in the mean square sense both imply conver-

gence in probability, while there is no implicative relationship between convergence
a.e. and convergence in the mean square sense.



Chapter 3
Uncertain Linear Systems

This chapter presents a summary of some classical results regarding robustness anal-
ysis of linear systems. Synthesis problems are subsequently presented in Chap. 4.
In these two chapters, we concentrate on linear, continuous and time-invariant sys-
tems and assume that the reader is familiar with the basics of linear algebra and
systems and control theory, see e.g. [101, 335]. We do not attempt to provide a com-
prehensive treatment of robust control, which is discussed in depth for instance in
[110, 121, 149, 184, 340, 357, 422]. Advanced material may be also found in the
special issues [245, 338], and specific references are listed in [141].

3.1 Norms, Balls and Volumes

3.1.1 Vector Norms and Balls

Let x € F", where FF is either the real or the complex field, then the £, norm of
vector x is defined as

n 1/p
Ilelpﬁ(lez'lp> . PEl,o00) 3.1
i=1

and the £, norm of x is

l[xlloo = max |x;|.
l

The ¢, norm is usually called the Euclidean norm. We define the ball of radius p in
the £, norm as

By, (0. F") = {x € F" 1 |Ix]l, < p} (3.2)

and its boundary as
OBy, (0. F") = {x € F" : |Ix]l, = p}. (3.3)
R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems, 13
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When clear from the context, we simply write By, (o) and dBj.,(p) to denote
By, (o, F") and 8By, (p, F"), respectively. Moreover, for balls of unit radius, we
write By, (F") and a8y, (F"), or in brief as By, and 9B,

We introduce further the weighted £, norm of a real vector x € R”. For a sym-
metric, positive definite matrix W > 0, the weighted ¢> norm, denoted by VAT
defined as

ey = (7w )2, (3.4)

Clearly, if we compute the Cholesky decomposition W~! = RT R, then we have
IIXIIXV = || Rx||2. The ball of radius p in the E;V norm is

By (0 R") = {x e Rt |lxlly < p}. (3.5)

This ball is an ellipsoid in the standard ¢, metric. In fact, if we denote the ellipsoid
of center x and shape matrix W > 0 as

EGW)={xeR: x—0) W lx -5 <1} (3.6)
then By w (0. R") = £(0, P2W).

3.1.2 Matrix Norms and Balls

Two different classes of norms can be introduced when dealing with matrix vari-
ables: the so-called Hilbert—Schmidt norms, based on the isomorphism between the
matrix space F*" and the vector space """, and the induced norms, where the
matrix is viewed as an operator between vector spaces.

Hilbert-Schmidt Matrix Norms  The (generalized) Hilbert—Schmidt £, norm of
a matrix X € ™" is defined as (see, e.g., [207])

n m l/p
||X||pﬁ<22}[X]i,k!”> . p€l0,00);

i=1 k=1
11X lloo im%X|[X]i,k|
i,

3.7

where [X];  is the (7, k) entry of matrix X. We remark that for p = 2 the Hilbert—
Schmidt £, norm corresponds to the well-known Frobenius matrix norm

[ Xl2 = vTr XX*

where Tr denotes the trace and X* is the conjugate transpose of X. Given a matrix
X e "™, we introduce the column vectorization operator

&1
vee(X) = | 3.8)
Em
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where &1, ..., &, are the columns of X. Then, using (3.7) the Hilbert—Schmidt ¢ »
norm of X can be written as

1XI, = ||Vec(X)||p.
In analogy to vectors, we denote the £, Hilbert-Schmidt norm ball in ™ of radius
o as
By, (0, ") = {X e F*" 1 | X||, < p}.

When clear from the context, we write Bj.,(p) to denote By, (o, F"™) and
By, (F™"™) or By.,, for unit radius balls.

Induced Matrix Norms The £, induced norm of a matrix X € [F">" is defined as

X1, = max, | XEllp, &eF™. (3.9
P=

The £; induced norm of a matrix X € F"™ turns out to be the maximum of the £;

norms of its columns, that is

XM= max &l (3.10)

i=l,..., m

where &1, ..., &, are the columns of X. Similarly, the £, induced norm is equal to
the maximum of the £; norms of the rows of X, i.e.

.....

where nIT, e, 77,{ are the rows of X.

The £, induced norm of a matrix is called the spectral norm and is related to the
singular value decomposition (SVD), see for instance [207]. The SVD of a matrix
X e ™", m > n, is given by

X=UXV*

where X = diag([o ‘- 0,]), with oy > --- > 0, > 0, U € F™™" is unitary, and
V € F"™" has orthonormal columns.

The elements of X are called the singular values of X, and X is called the
singular values matrix. The maximum singular value o1 of X is denoted by o (X).
The ¢ induced norm of a matrix X is equal to

I1X1ll2 = o (X). (3.11)
The £, induced norm ball of radius p in F"*"" is denoted by
By, (0, F"™) = {X e F"" I X1ll, < p}- (3.12)
For simplicity, we denote a ball of radius p in the spectral norm as
Bs (,O,F"’m) iBHl'le (p,Fn’m). (3.13)

When clear from the context, we write Bj. p(,o) and B, (p) to denote the balls
Bm.mp (p, F”’m) and Bo’ (p, F”’m) respectively. Similarly, B|||.H|p(Fn’m) or B”.”p, and
By (F"™™) or B, denote unit radius balls.
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3.1.3 Volumes

Consider the field ™. The dimension d of " isd =nm if F=R, and d = 2nm
if F=C. Let S C "™ be a Lebesgue measurable set and let p4(-) denote the
d-dimensional Lebesgue measure, then the volume of S is defined as

Vol(S) = / dua (X). (3.14)
S

Similarly, we indicate by Surf(S) the surface of S, that is the (d — 1)-dimensional
Lebesgue measure of S. In particular, for norm balls, volume and surface measures
depend on the ball radius according to the relations (see for instance [39])

Vol (B, (p)) = Vol (By.,)p;
Surf(B“.Hp (p)) = Surf(B”.Hp)pd_l.

3.2 Signals

In this section, we briefly introduce some concepts related to signals, see e.g. [247]
for a comprehensive treatment of this topic.

3.2.1 Deterministic Signals

A deterministic signal v(t) : R — R" is a Lebesgue measurable function of the time
variable ¢ € R. The set

yt = {v(t) € R" : v is Lebesgue measurable, v(t) =0 for all ¢ < O}

is the linear space of causal signals. For p € [1, 00), the infinite-horizon Ll“,‘ space
is defined as the space of signals v € V' such that the integral

[e}e] 1/p
</0 lv) ||§dr> (3.15)

exists and is bounded. In this case, (3.15) defines a signal norm, which is denoted
by [[v]| . For p = 00, we have |[v]|o = esssup, v(z).

For the important special case p = 2, ﬁ; is a Hilbert space, equipped with the
standard inner product

(x,y) = /0 3T (Ox () dr

where x, y € L’; . Signals in E;r are therefore causal signals with finite total energy.
These are typically transient signals which decay to zero as t — oo.
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We now discuss some fundamental results related to the Laplace transform of
signals in E;‘ . The H’ space (see Definition 3.3) is the space of functions of com-
plex variable g(s) : C — C” which are analytic! in Re(s) > 0 and for which the

integral
1 [fo° 1/2
<— / g (jw)g(jo) dw) (3.16)

27 J_ oo

exists and is bounded. In this case, (3.16) defines a norm denoted by || g||2. Define
further the unilateral Laplace transform of the signal v € VT as

c(s) = £(v) = /OO v(t)e " dt
0

and the inverse Laplace transform

1 ct+jow
v()=£7(¢) = lim — f C(s)e*! ds.
w—00 27 | c—jw
Then, if v € £, its Laplace transform is in H’;. Conversely, by the Paley—Wiener
theorem, see e.g. [149], for any ¢ € H there exists a causal signal v € L; such that
¢ = £(v). Notice also that H? is a Hilbert space, equipped with the inner product

1 o0

(g, h) = 2—/ g (jo)h(jo)dw
T J-c0

for g, h € H. Finally, we recall the Parseval identity, see e.g. [184], which relates

the inner product of the signals v, w € E; to the inner product of their Laplace

transforms

(v, w) =(L(v), L(w)).

3.2.2 Stochastic Signals

The performance specifications of control systems are sometimes expressed in
terms of stochastic, rather than deterministic, signals. In this section, we summa-
rize some basic definitions related to stochastic signals. For formal definitions of
random variables and matrices and their statistics, the reader can refer to Chap. 2
and to [138, 319] for further details on stochastic processes.

Denote with v(¢) a zero-mean, stationary stochastic process. The autocorrelation
of v(¢) is defined as

Ry () =By (vOV (¢ + 7))

ILet § ¢ C be an open set. A function f : § — C is said to be analytic at a point so € S if it is
differentiable for all points in some neighborhood of so. The function is analytic in S if it is analytic
for all s € S. A matrix-valued function is analytic if every element of the matrix is analytic.
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where Ey(-) denotes the expectation with respect to the stochastic process. The
power spectral density (psd) @y y(w) of v is defined as the Fourier transform of
Ry, v(7). A frequently used measure of a stationary stochastic signal is its root-mean-
square (rms) value

IVl17ms = By (v/ ()V(®)) = TrRy 4(0).

The rms value measures the average power of the stochastic signal, and it is a
steady-state measure of the behavior of the signal, i.e. it is not affected by tran-
sients. By the Parseval identity, the average power can alternatively be computed as
an integral over frequency of the power spectral density

o0

1
2
IVIins = - [w Tr &y v(w) dw.

If the process v(t) is ergodic, then its moments can be equivalently computed as
time-domain averages of a single realization v(¢) of the process. With probability
one, the rms norm is given by

T
[Vl = lim l/ oI (tyv(r) dr.
rms T—>OOT O

3.3 Linear Time-Invariant Systems

Consider a linear time-invariant (LTT), proper system described in standard state
space form

x=Ax + Bw;

(3.17)
z=Cx+ Dw

where A e R""s B eR™9, C e RP"s, D € RP-4. This state space system is sta-
ble, or Hurwitz, if Re(A; (A)) < 0,i =1, ..., ngs, where X; (A) denote the eigenvalues
of A.

Assuming x (0) = 0, system (3.17) defines a proper linear operator G m