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and the Morass of Overcomplication.
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Foreword

The topic of randomized algorithms has had a long history in computer science. See
[290] for one of the most popular texts on this topic. Almost as soon as the first
NP-hard or NP-complete problems were discovered, the research community began
to realize that problems that are difficult in the worst-case need not always be so
difficult on average. On the flip side, while assessing the performance of an algo-
rithm, if we do not insist that the algorithm must always return precisely the right
answer, and are instead prepared to settle for an algorithm that returns nearly the
right answer most of the time, then some problems for which “exact” polynomial-
time algorithms are not known turn out to be tractable in this weaker notion of what
constitutes a “solution.” As an example, the problem of counting the number of sat-
isfying assignments of a Boolean formula in disjunctive normal form (DNF) can be
“solved” in polynomial time in this sense; see [288], Sect. 10.2.

Sometime during the 1990s, the systems and control community started taking
an interest in the computational complexity of various algorithms that arose in con-
nection with stability analysis, robustness analysis, synthesis of robust controllers,
and other such quintessentially “control” problems. Somewhat to their surprise, re-
searchers found that many problems in analysis and synthesis were in fact NP-hard if
not undecidable. Right around that time the first papers on addressing such NP-hard
problems using randomized algorithms started to appear in the literature. A paral-
lel though initially unrelated development in the world of machine learning was to
use powerful results from empirical process theory to quantity the “rate” at which
an algorithm will learn to do a task. Usually this theory is referred to as statistical
learning theory, to distinguish it from computational learning theory in which one is
also concerned with the running time of the algorithm itself.

The authors of the present monograph are gracious enough to credit me with
having initiated the application of statistical learning theory to the design of sys-
tems affected by uncertainty [405, 408]. As it turned out, in almost all problems of
controller synthesis it is not necessary to worry about the actual execution time of
the algorithm to compute the controller; hence statistical learning theory was indeed
the right setting for studying such problems. In the world of controller synthesis, the
analog of the notion of an algorithm that returns more or less the right answer most
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x Foreword

of the time is a controller that stabilizes (or achieves nearly optimal performance
for) most of the set of uncertain plants. With this relaxation of the requirements on
a controller, most if not all of the problems previously shown to be NP-hard now
turned out to be tractable in this relaxed setting. Indeed, the application of random-
ized algorithms to the synthesis of controllers for uncertain systems is by now a
well-developed subject, as the authors point out in the book; moreover, it can be
confidently asserted that the theoretical foundations of the randomized algorithms
were provided by statistical learning theory.

Having perhaps obtained its initial impetus from the robust controller synthesis
problem, the randomized approach soon developed into a subject on its own right,
with its own formalisms and conventions. Soon there were new abstractions that
were motivated by statistical learning theory in the traditional sense, but are not
strictly tied to it. An example of this is the so-called “scenario approach.” In this
approach, one chooses a set of “scenarios” with which a controller must cope; but
the scenarios need not represent randomly sampled instances of uncertain plants. By
adopting this more general framework, the theory becomes cleaner, and the precise
role of each assumption in determining the performance (e.g. the rate of conver-
gence) of an algorithm becomes much clearer.

When it was first published in 2005, the first edition of this book was among
the first to collect in one place a significant body of results based on the random-
ized approach. Since that time, the subject has become more mature, as mentioned
above. Hence the authors have taken the opportunity to expand the book, adopting
a more general set of problem formulations, and in some sense moving away from
controller design as the main motativating problem. Though controller design still
plays a prominent role in the book, there are several other applications discussed
therein. One important change in the book is that bibliography has nearly doubled
in size. A serious reader will find a wealth of references that will serve as a pointer
to practically all of the relevant literature in the field. Just as with the first edition,
I have no hesitation in asserting that the book will remain a valuable addition to
everyone’s bookshelf.

M. VidyasagarHyderabad, India
June 2012



Foreword to the First Edition

The subject of control system synthesis, and in particular robust control, has had
a long and rich history. Since the 1980s, the topic of robust control has been on
a sound mathematical foundation. The principal aim of robust control is to ensure
that the performance of a control system is satisfactory, or nearly optimal, even when
the system to be controlled is itself not known precisely. To put it another way, the
objective of robust control is to assure satisfactory performance even when there is
“uncertainty” about the system to be controlled.

During the two past two decades, a great deal of thought has gone into modeling
the “plant uncertainty.” Originally the uncertainty was purely “deterministic,” and
was captured by the assumption that the “true” system belonged to some sphere
centered around a nominal plant model. This nominal plant model was then used
as the basis for designing a robust controller. Over time, it became clear that such
an approach would often lead to rather conservative designs. The reason is that in
this model of uncertainty, every plant in the sphere of uncertainty is deemed to be
equally likely to occur, and the controller is therefore obliged to guarantee satisfac-
tory performance for every plant within this sphere of uncertainty. As a result, the
controller design will trade off optimal performance at the nominal plant condition
to assure satisfactory performance at off-nominal plant conditions.

To avoid this type of overly conservative design, a recent approach has been to
assign some notion of probability to the plant uncertainty. Thus, instead of assuring
satisfactory performance at every single possible plant, the aim of controller design
becomes one of maximizing the expected value of the performance of the controller.
With this reformulation, there is reason to believe that the resulting designs will of-
ten be much less conservative than those based on deterministic uncertainty models.

A parallel theme has its beginnings in the early 1990s, and is the notion of the
complexity of controller design. The tremendous advances in robust control syn-
thesis theory in the 1980s led to very neat-looking problem formulations, based on
very advanced concepts from functional analysis, in particular, the theory of Hardy
spaces. As the research community began to apply these methods to large-sized
practical problems, some researchers began to study the rate at which the compu-
tational complexity of robust control synthesis methods grew as a function of the
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xii Foreword to the First Edition

problem size. Somewhat to everyone’s surprise, it was soon established that several
problems of practical interest were in fact NP-hard. Thus, if one makes the reason-
able assumption that P �= NP, then there do not exist polynomial-time algorithms
for solving many reasonable-looking problems in robust control.

In the mainstream computer science literature, for the past several years re-
searchers have been using the notion of randomization as a means of tackling diffi-
cult computational problems. Thus far there has not been any instance of a problem
that is intractable using deterministic algorithms, but which becomes tractable when
a randomized algorithm is used. However, there are several problems (for example,
sorting) whose computational complexity reduces significantly when a randomized
algorithm is used instead of a deterministic algorithm. When the idea of random-
ization is applied to control-theoretic problems, however, there appear to be some
NP-hard problems that do indeed become tractable, provided one is willing to ac-
cept a somewhat diluted notion of what constitutes a “solution” to the problem at
hand.

With all these streams of thought floating around the research community, it is an
appropriate time for a book such as this. The central theme of the present work is the
application of randomized algorithms to various problems in control system anal-
ysis and synthesis. The authors review practically all the important developments
in robustness analysis and robust controller synthesis, and show how randomized
algorithms can be used effectively in these problems. The treatment is completely
self-contained, in that the relevant notions from elementary probability theory are
introduced from first principles, and in addition, many advanced results from prob-
ability theory and from statistical learning theory are also presented. A unique fea-
ture of the book is that it provides a comprehensive treatment of the issue of sample
generation. Many papers in this area simply assume that independent identically
distributed (iid) samples generated according to a specific distribution are available,
and do not bother themselves about the difficulty of generating these samples. The
trade-off between the nonstandardness of the distribution and the difficulty of gener-
ating iid samples is clearly brought out here. If one wishes to apply randomization to
practical problems, the issue of sample generation becomes very significant. At the
same time, many of the results presented here on sample generation are not readily
accessible to the control theory community. Thus the authors render a signal service
to the research community by discussing the topic at the length they do. In addi-
tion to traditional problems in robust controller synthesis, the book also contains
applications of the theory to network traffic analysis, and the stability of a flexible
structure.

All in all, the present book is a very timely contribution to the literature. I have
no hesitation in asserting that it will remain a widely cited reference work for many
years.

M. VidyasagarHyderabad, India
June 2004



Preface to the Second Edition

Since the first edition of the book “Randomized Algorithms for Analysis and Con-
trol of Uncertain Systems” appeared in print in 2005, many new significant devel-
opments have been obtained in the area of probabilistic and randomized methods
for control, in particular on the topics of sequential methods, the scenario approach
and statistical learning techniques. Therefore, Chaps. 9, 10, 11, 12 and 13 have been
rewritten to describe the most recent results and achievements in these areas.

Furthermore, in 2005 the development of randomized algorithms for systems and
control applications was in its infancy. This area has now reached a mature stage
and several new applications in very diverse areas within and outside engineering
are described in Chap. 19, including the computation of PageRank in the Google
search engine and control design of UAVs (unmanned aerial vehicles). The revised
title of the book reflects this important addition. We believe that in the future many
further applications will be successfully handled by means of probabilistic methods
and randomized algorithms.

Roberto Tempo
Giuseppe Calafiore

Fabrizio Dabbene

Torino, Italy
July 2012
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Chapter 1
Overview

Don’t assume the worst-case scenario. It’s emotionally draining
and probably won’t happen anyway.

Anonymous

1.1 Probabilistic and Randomized Methods

The main objective of this book is to introduce the reader to the fundamentals of the
area of probabilistic and randomized methods for analysis and design of uncertain
systems. The take off point of this research is the observation that many quantities
of interest in engineering, which are generally very difficult to compute exactly, can
be easily approximated by means of randomization.

The presence of uncertainty in the system description has always been a critical
issue in control theory and applications. The earliest attempts to deal with uncer-
tainty were based on a stochastic approach, that led to great achievements in classi-
cal optimal control theory. In this theory, uncertainty is considered only in the form
of exogenous disturbances having a stochastic characterization, while the plant dy-
namics are assumed to be exactly known. On the other hand, the worst-case setting,
which has later emerged as a successful alternative to the previous paradigm, explic-
itly considers bounded uncertainty in the plant description. This setting is based on
the “concern” that the uncertainty may be very malicious, and the idea is to guard
against the worst-case scenario, even if it may be unlikely to occur. However, the
fact that the worst-case setting may be too pessimistic, together with research re-
sults pointing out the computational hardness of this approach, motivated the need
for further explorations towards new paradigms.

The contribution of this book is then in the direction of proposing a new paradigm
for control analysis and design, based on a rapprochement between the classical
stochastic approach and the modern worst-case approach. Indeed, in our setting we
shall assume that the uncertainty is confined in a set (as in the worst-case approach)
but, in addition to this information, we consider it as a random variable with given
multivariate probability distribution. A typical example is a vector of uncertain pa-
rameters uniformly distributed inside a ball of fixed radius.

We address the interplay between stochastic (soft) and worst-case (hard) perfor-
mance bounds for control system design in a rigorous fashion, with the goal to derive
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2 1 Overview

Fig. 1.1 Structure of the
book

useful computational tools. The algorithms derived in this context are based on un-
certainty randomization and are usually called randomized algorithms. These algo-
rithms have been used successfully in, e.g., computer science, computational geom-
etry and optimization. In these areas, several problems dealing with binary-valued
functions have been efficiently solved using randomization, such as data structur-
ing, search trees, graphs, agent coordination and Byzantine agreement problems.
The derived algorithms are generally called Las Vegas randomized algorithms.

The randomized algorithms for control systems are necessarily of different type
because we not only need to estimate some fixed quantity, but actually need to op-
timize over some design parameters (e.g., the controller’s parameters), a context to
which classical Monte Carlo methods cannot be directly applied. Therefore, a novel
methodology is developed to derive technical tools which address convex and non-
convex control design problems by means of sequential and non-sequential random-
ized algorithms. These tools are then successfully utilized to study several systems
and control applications. We show that randomization is indeed a powerful tool in
dealing with many interesting applications in various areas of research within and
outside control engineering.

We now describe the structure of the book which can be roughly divided into six
parts, see the block diagram shown in Fig. 1.1 which explains various interconnec-
tions between these parts.

1.2 Structure of the Book

Chapter 2 deals with basic elements of probability theory and introduces the notions
of random variables and matrices used in the rest of the book. Classical univariate
and multivariate densities are also listed.
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• Uncertain systems
Chapter 3: Uncertain Linear Systems
Chapter 4: Linear Robust Control Design
Chapter 5: Limits of the Robustness Paradigm

This first part of the book contains an introduction to robust control and discusses
the limits of the worst-case paradigm. This part could be used for teaching a grad-
uate course on the topic of uncertain systems, and it may be skipped by the reader
familiar with these topics. Chapters 3 and 4 present a rather general and “dry” sum-
mary of the key results regarding robustness analysis and design. In Chap. 3, after
introducing norms, balls and signals, the standard M–� model for describing lin-
ear time-invariant systems is studied. The small gain theorem (in various forms),
μ theory and its connections with real parametric uncertainty, and the computation
of robustness margins constitute the backbone of the chapter.

Chapter 4 deals with H∞ and H2 design methods following a classical approach
based on linear matrix inequalities. Special attention is devoted to linear quadratic
Gaussian, linear quadratic regulator and guaranteed-cost control of uncertain sys-
tems.

In Chap. 5, the main limitations of classical robust control are outlined. First,
a summary of concepts and results on computational complexity is presented and
a number of NP-hard problems within systems and control are listed. Second, the
issue of conservatism in the robustness margin computation is discussed. Third,
a classical example regarding discontinuity of the robustness margin is revisited.
This chapter provides a launching point for the probabilistic methods discussed next.

• Probabilistic methods for analysis
Chapter 6: Probabilistic Methods for Uncertain Systems
Chapter 7: Monte Carlo Methods

This part discusses probabilistic techniques for analysis of uncertain systems, Monte
Carlo and quasi-Monte Carlo methods. In Chap. 6, the key ideas of probabilis-
tic methods for systems and control are discussed. Basic concepts such as the so-
called “good set” and “bad set” are introduced and three different problems, which
are the probabilistic counterparts of standard robustness problems, are presented.
This chapter also includes many specific examples showing that these problems can
sometimes be solved in closed form without resorting to randomization.

The first part of Chap. 7 deals with Monte Carlo methods and provides a general
overview of classical methods for both integration and optimization. The laws of
large numbers for empirical mean, empirical probability and empirical maximum
computation are reported. The second part of the chapter concentrates on quasi-
Monte Carlo, which is a deterministic version of Monte Carlo methods. In this case,
deterministic sequences for integration and optimization, together with specific error
bounds, are discussed.

• Statistical learning theory
Chapter 8: Probability Inequalities
Chapter 9: Statistical Learning Theory
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These two chapters address the crucial issue of finite-time convergence of random-
ized algorithms and in particular discuss probability inequalities, sample complex-
ity and statistical learning theory. In the first part of Chap. 8, classical probability
inequalities, such as Markov and Chebychev, are studied. Extensions to deviation
inequalities are subsequently considered, deriving the Hoeffding inequality. These
inequalities are then used to derive the sample complexity obtaining Chernoff and
related bounds.

Chapter 9 deals with statistical learning theory. These results include the well-
known Vapnik–Chervonenkis and Pollard results regarding uniform convergence of
empirical means for binary and continuous-valued functions. We also discuss how
these results may be exploited to derive the related sample complexity. The chapter
includes useful bounds on the binomial distribution that may be used for computing
the sample complexity.

• Randomized algorithms for design
Chapter 10: Randomized Algorithms in Systems and Control
Chapter 11: Sequential Algorithms for Probabilistic Design
Chapter 12: Scenario Approach for Probabilistic Design
Chapter 13: Learning-Based Control Design

In this part of the book, we move on to control design of uncertain systems with
probabilistic techniques. Chapter 10 formally defines randomized algorithms of
Monte Carlo and Las Vegas type. A clear distinction between analysis and synthe-
sis is made. For analysis, we provide a connection with the Monte Carlo methods
previously addressed in Chap. 7 and we state the algorithms for the solution of the
probabilistic problems introduced in Chap. 6. For control synthesis, three different
paradigms are discussed having the objective of studying feasibility and optimiza-
tion for convex and nonconvex design problems. The chapter ends with a formal
definition of efficient randomized algorithms.

The main point of Chap. 11 is the development of iterative stochastic algorithms
under a convexity assumption in the design parameters. In particular, using the stan-
dard setting of linear matrix inequalities, we analyze sequential algorithms consist-
ing of a probabilistic oracle and a deterministic update rule. Finite-time convergence
results and the sample complexity of the probabilistic oracle are studied. Three up-
date rules are analyzed: gradient iterations, ellipsoid method and cutting plane tech-
niques. The differences with classical asymptotic methods studied in the stochastic
approximation literature are also discussed.

Chapter 12 studies a non-sequential methodology for dealing with design in a
probabilistic setting. In the scenario approach, the design problem is solved by
means of a one-shot convex optimization involving a finite number of sampled
uncertainty instances, named the scenarios. The results obtained include explicit
formulae for the number of scenarios required by the randomized algorithm. The
subsequent problem of “discarded constraints” is then analyzed and put in relation
with chance-contrained optimization.

Chapter 13 addresses nonconvex optimization in the presence of uncertainty us-
ing a setting similar to the scenario approach, but in this case the objective is to
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compute only a local solution of the optimization problem. For design with binary
constraints given by Boolean functions, we compute the sample complexity, which
provides the number of constraints entering into the optimization problem. Further-
more, we present a sequential algorithm for the solution of nonconvex semi-infinite
feasibility and optimization problems. This algorithm is closely related to some re-
sults on statistical learning theory previously presented in Chap. 9.

• Multivariate random generation
Chapter 14: Random Number and Variate Generation
Chapter 15: Statistical Theory of Radial Random Vectors
Chapter 16: Vector Randomization Methods
Chapter 17: Statistical Theory of Radial Random Matrices
Chapter 18: Matrix Randomization Methods

The main objective of this part of the book is the development of suitable sam-
pling schemes for the different uncertainty structures analyzed in Chaps. 3 and 4.
To this end, we study random number and variate generations, statistical theory of
random vectors and matrices, and related algorithms. This requires the development
of specific techniques for multivariate generation of independent and identically dis-
tributed vector and matrix samples within various sets of interest in control. These
techniques are non-asymptotic (contrary to other methods based on Markov chains)
and the idea is that the multivariate sample generation is based on simple algebraic
transformations of a univariate random number generator.

Chapters 15 and 17 address statistical properties of random vectors and matrices
respectively. They are quite technical, especially the latter, which is focused on ran-
dom matrices. The reader interested in specific randomized algorithms for sampling
within various norm-bounded sets may skip these chapters and concentrate instead
on Chaps. 16 and 18.

Chapter 14 deals with the topic of random number and variate generation. This
chapter begins with an overview of classical linear and nonlinear congruential meth-
ods and includes results regarding random variate transformations. Extensions to
multivariate problems, as well as rejection methods and techniques based on the
conditional density method, are also analyzed. Finally, a brief account of asymptotic
techniques, including the so-called Markov chain Monte Carlo method, is given.

Chapter 15 is focused on statistical properties of radial random vectors. In par-
ticular, some general results for radially symmetric density functions are presented.
Chapter 16 studies specific algorithms which make use of the theoretical results of
the previous chapter for random sample generation within �p norm balls. In par-
ticular, efficient algorithms (which do not require rejection) based on the so-called
generalized Gamma density are developed.

Chapter 17 is focused on the statistical properties of random matrices. Various
norms are considered, but specific attention is devoted to the spectral norm, owing
to its interest in control. In this chapter methods based on the singular value decom-
position (SVD) of real and complex random matrices are studied. The key point is
to compute the distributions of the SVD factors of a random matrix. This provides
significant extensions of the results currently available in the theory of random ma-
trices.
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In Chap. 18 specific randomized algorithms for real and complex matrices are
constructed by means of the conditional density method. One of the main points
of this chapter is to develop algebraic tools for the closed-form computation of the
marginal density, which is required in the application of this method.

• Systems and control applications
Chapter 19: Applications of randomized algorithms

This chapter shows that randomized algorithms are indeed very useful tools in many
areas of application. This chapter is divided into two parts. In the first part, we
present a brief overview of some areas where randomized algorithms have been suc-
cessfully utilized: systems biology, aerospace control, control of hard disk drives,
high-speed networks, quantized, switched and hybrid systems, model predictive
control, fault detection and isolation, embedded and electric circuits, structural de-
sign, linear parameter varying (LPV) systems, automotive and driver assistance sys-
tems. In the second part of this chapter, we study in more details a subset of the men-
tioned applications, including the computation of PageRank in the Google search
engine and control design of unmanned aerial vehicles (UAVs). The chapter ends
with a brief description of the Toolbox RACT (Randomized Algorithms Control
Toolbox).

The Appendix includes some technical results regarding transformations be-
tween random matrices, Jacobians of transformations and the Selberg and Dyson–
Mehta integrals.



Chapter 2
Elements of Probability Theory

In this chapter, we formally review some basic concepts of probability theory.
Most of this material is standard and available in classical references, such as
[108, 189, 319]; more advanced material on multivariate statistical analysis can
be found in [22]. The definitions introduced here are instrumental to the study of
randomized algorithms presented in subsequent chapters.

2.1 Probability, Random Variables and Random Matrices

2.1.1 Probability Space

Given a sample space Ω and a σ -algebra S of subsets S of Ω (the events), a proba-
bility PR {S} is a real-valued function on S satisfying:

1. PR {S} ∈ [0,1];
2. PR {Ω} = 1;
3. If the events Si are mutually exclusive (i.e., Si ∩ Sk = ∅ for i �= k), then

PR

{⋃
i∈I
Si

}
=
∑
i∈I

PR {Si}

where I is a countable1 set of positive integers.

The triple (Ω,S,PR {S}) is called a probability space.
A discrete probability space is a probability space where Ω is countable. In this

case, S is given by subsets of Ω and the probability PR :Ω→[0,1] is such that∑
ω∈Ω

PR {w} = 1.

1By countable we mean finite (possibly empty) or countably infinite.
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2.1.2 Real and Complex Random Variables

We denote with R and C the real and complex field respectively. The symbol F is
also used to indicate either R or C. A function f :Ω→R is said to be measurable
with respect to a σ -algebra S of subsets of Ω if f−1(A) ∈ S for every Borel set
A⊆R.

A real random variable x defined on a probability space (Ω,S,PR {S}) is a
measurable function mappingΩ into Y ⊆R, and this is indicated with the shorthand
notation x ∈ Y . The set Y is called the range or support of the random variable x.
A complex random variable x ∈C is a sum x = xR + jxI, where xR ∈R and xI ∈R

are real random variables, and j
.=√−1. If the random variable x maps the sample

space Ω into a subset [a, b] ⊂ R, we write x ∈ [a, b]. If Ω is a discrete probability
space, then x is a discrete random variable mapping Ω into a countable set.

Distribution and Density Functions The (cumulative) distribution function (cdf)
of a random variable x is defined as

Fx(x)
.= PR {x ≤ x}.

The function Fx(x) is nondecreasing, right continuous (i.e., Fx(x)= limz→x+ Fx(z)),
and Fx(x)→ 0 for x→−∞, Fx(x)→ 1 for x→∞. Associated with the concept
of distribution function, we define the α percentile of a random variable

xα = inf
{
x : Fx(x)≥ α

}
.

For random variables of continuous type, if there exists a Lebesgue measurable
function fx(x)≥ 0 such that

Fx(x)=
∫ x

−∞
fx(x)dx

then the cdf Fx(x) is said to be absolutely continuous, and

fx(x)= dFx(x)

dx

holds except possibly for a set of measure zero. The function fx(x) is called the
probability density function (pdf) of the random variable x.

For discrete random variables, the cdf is a staircase function, i.e. Fx(x) is constant
except at a countable number of points x1, x2, . . . having no finite limit point. The
total probability is hence distributed among the “mass” points x1, x2, . . . at which
the “jumps” of size

fx(xi)
.= lim
ε→0

Fx(xi + ε)− Fx(xi − ε)= PR {x = xi}

occur. The function fx(xi) is called the mass density of the discrete random vari-
able x. The definition of random variables is extended to real and complex random
matrices in the next section.
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2.1.3 Real and Complex Random Matrices

Given n random variables x1, . . . ,xn, their joint distribution is defined as

Fx1,...,xn(x1, . . . , xn)
.= PR {x1 ≤ x1, . . . ,xn ≤ xn}.

When the above distribution is absolutely continuous, we can define the joint density
function fx1,...,xn(x1, . . . , xn)

fx1,...,xn(x1, . . . , xn)
.= ∂nFx1,...,xn(x1, . . . , xn)

∂x1 · · · ∂xn .

The random variables x1, . . . ,xn are said to be independent if

Fx1,...,xn(x1, . . . , xn)=
n∏
i=1

Fxi (xi)

where Fxi (xi)= PR {xi ≤ xi}.
A real random matrix X ∈ R

n,m is a measurable function X : Ω → Y ⊆ R
n,m.

That is, the entries of X are real random variables [X]i,k for i = 1, . . . , n and k =
1, . . . ,m. A complex random matrix X ∈C

n,m is defined as the sum X = XR+ jXI,
where XR and XI are real random matrices. A random matrix is discrete if its entries
are discrete random variables.

The distribution function FX(X) of a real random matrix X is the joint cdf of the
entries of X. If X is a complex random matrix, then its cdf is the joint cdf of XR

and XI. The pdf fX(X) of a real or complex random matrix is analogously defined as
the joint pdf of the real and imaginary parts of its entries. The notation X ∼ fX(X)

means that X is a random matrix with probability density function fX(X).
Let X ∈ F

n,m be a real or complex random matrix (of continuous type) with pdf
fX(X) and support Y ⊆ F

n,m. Then, if Y ⊆ Y , we have

PR {X ∈ Y } =
∫
Y

fX(X)dX.

Clearly, PR {X ∈ Y} = ∫Y fX(X)dX = 1. When needed, to further emphasize that
the probability is relative to the random matrix X, we explicitly write PRX {X ∈ Y }.

2.1.4 Expected Value and Covariance

Let X ∈ Y ⊆ F
n,m be a random matrix and let J : Fn,m → R

p,q be a Lebesgue
measurable function. The expected value of the random matrix J (X) is defined as

EX
(
J (X)

) .= ∫
Y
J (X)fX(X)dX

where Y is the support of X. We make use of the symbol EX (J (X)) to emphasize
the fact that the expected value is taken with respect to X. The suffix is omitted when
clear from the context.
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If X ∈ F
n,m is a discrete random matrix with countable support Y = {X1,X2, . . .},

Xi ∈ F
n,m and Y ⊆ Y , then

PR {X ∈ Y } =
∑
Xi∈Y

fX(Xi)=
∑
Xi∈Y

PR {X =Xi}.

The expected value of J (X) is defined as

E
(
J (X)

) .= ∑
Xi∈Y

J (Xi)fX(Xi).

The expected value of X ∈ R
n,m is usually called the mean. The covariance matrix

of x ∈R
n is defined as

Cov (x)
.= Ex

((
x − Ex (x)

)T (x − Ex (x)
))

whereXT denotes the transpose ofX. The covariance of x ∈R is called the variance
and is given by

Var (x)
.= Ex

((
x − Ex (x)

)2)
.

The square root of the variance (Var (x))1/2 is called the standard deviation.

2.2 Marginal and Conditional Densities

Consider a random vector x = [x1 · · · xn]T ∈R
n with joint density function

fx(x)= fx1,...,xn(x1, . . . , xn).

The marginal density of the first i components of the random vector x = [x1 · · · xn]T
is defined as

fx1,...,xi (x1, . . . , xi)
.=
∫

· · ·
∫
fx(x1, . . . , xn)dxi+1 · · ·dxn. (2.1)

The conditional density fxi |x1,...,xi−1(xi |x1, . . . , xi−1) of the random variable xi con-
ditioned to the event x1 = x1, . . . ,xi−1 = xi−1 is given by the ratio of marginal
densities

fxi |x1,...,xi−1(xi |x1, . . . , xi−1)
.= fx1,...,xi (x1, . . . , xi)

fx1,...,xi−1(x1, . . . , xi−1)
. (2.2)

2.3 Univariate and Multivariate Density Functions

We next present a list of classical univariate and multivariate density functions. The
reader is referred to Chap. 14 for numerical methods for generating random vari-
ables with the mentioned densities.
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Binomial Density The binomial density with parameters n,p is defined as

bn,p(x)
.=
(
n

x

)
px(1 − p)n−x, x ∈ {0,1, . . . , n} (2.3)

where
(
n
x

)
indicates the binomial coefficient

(
n
x

) = n!
x!(n−x)! . The binomial distribu-

tion is denoted as

Bn,p(x)
.=

x∑
k=0

(
n

k

)
pk(1 − p)n−k, x ∈ {0,1, . . . , n}. (2.4)

Normal Density The normal (Gaussian) density with mean x̄ ∈ R and variance
σ 2 ∈R is defined as

Nx̄,σ 2(x)
.= 1

σ
√

2π
e−

1
2 (x−x̄)2/σ 2

, x ∈R. (2.5)

Multivariate Normal Density The multivariate normal density with mean
x̄ ∈ R

n and symmetric positive definite covariance matrix W ∈ S
n, W � 0, is de-

fined as

Nx̄,W (x)
.= (2π)−n/2|W |−1/2 e−

1
2 (x−x̄)T W−1(x−x̄), x ∈R

n. (2.6)

Uniform Density The uniform density on the interval [a, b] is defined as

U[a,b](x)
.=
{

1
b−a if x ∈ [a, b];
0 otherwise.

(2.7)

Uniform Density over a Set Let S be a Lebesgue measurable set of nonzero
volume (see Sect. 3.1.3 for a precise definition of volume). The uniform density
over S is defined as

US(X)
.=
{

1
Vol(S) if X ∈ S;
0 otherwise.

(2.8)

If instead S is a finite discrete set, i.e. it consists of a finite number of elements
S = {X1,X2, . . . ,XN }, then the uniform density over S is defined as

US(X)
.=
{

1
Card(S) if X ∈ S;
0 otherwise

where Card (S) is the cardinality of S.

Chi-Square Density The unilateral chi-square density with n > 0 degrees of free-
dom is defined as

χ2
n(x)

.= 1

Γ (n/2)2n/2
xn/2−1e−x/2, x ∈R+ (2.9)

where Γ (·) is the Gamma function

Γ (x)
.=
∫ ∞

0
ξx−1e−ξ dξ, x > 0.
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Weibull Density The Weibull density with parameter a > 0 is defined as

Wa(x)
.= axa−1e−xa , x ∈R. (2.10)

Laplace Density The unilateral Laplace (or exponential) density with parameter
λ > 0 is defined as

Lλ(x)
.= λe−λx, x ∈R+. (2.11)

Gamma Density The unilateral Gamma density with parameters a > 0, b > 0 is
defined as

Ga,b(x)
.= 1

Γ (a)ba
xa−1e−x/b, x ∈R+. (2.12)

Generalized Gamma Density The unilateral generalized Gamma density with
parameters a > 0, c > 0 is defined as

Ga,c(x)
.= c

Γ (a)
xca−1e−xc , x ∈R+. (2.13)

2.4 Convergence of Random Variables

We now recall the formal definitions of convergence almost everywhere (or almost
sure convergence), convergence in the mean square sense and convergence in prob-
ability. Other convergence concepts not discussed here include vague convergence,
convergence of moments and convergence in distribution, see e.g. [108].

Definition 2.1 (Convergence almost everywhere) A sequence of random variables
x(1),x(2), . . . converges almost everywhere (a.e.) (or with probability one) to the
random variable x if

PR

{
lim
N→∞x(N) = x

}
= 1.

Definition 2.2 (Convergence in the mean square sense) A sequence of random vari-
ables x(1),x(2), . . . converges in the mean square sense to the random variable x if

lim
N→∞E

(∣∣x − x(N)
∣∣2)= 0.

Definition 2.3 (Convergence in probability) A sequence of random variables x(1),
x(2), . . . converges in probability to the random variable x if, for any ε > 0, we have

lim
N→∞ PR

{∣∣x − x(N)
∣∣> ε}= 0.

Convergence a.e. and convergence in the mean square sense both imply conver-
gence in probability, while there is no implicative relationship between convergence
a.e. and convergence in the mean square sense.



Chapter 3
Uncertain Linear Systems

This chapter presents a summary of some classical results regarding robustness anal-
ysis of linear systems. Synthesis problems are subsequently presented in Chap. 4.
In these two chapters, we concentrate on linear, continuous and time-invariant sys-
tems and assume that the reader is familiar with the basics of linear algebra and
systems and control theory, see e.g. [101, 335]. We do not attempt to provide a com-
prehensive treatment of robust control, which is discussed in depth for instance in
[110, 121, 149, 184, 340, 357, 422]. Advanced material may be also found in the
special issues [245, 338], and specific references are listed in [141].

3.1 Norms, Balls and Volumes

3.1.1 Vector Norms and Balls

Let x ∈ F
n, where F is either the real or the complex field, then the �p norm of

vector x is defined as

‖x‖p .=
(

n∑
i=1

|xi |p
)1/p

, p ∈ [1,∞) (3.1)

and the �∞ norm of x is

‖x‖∞ .= max
i

|xi |.
The �2 norm is usually called the Euclidean norm. We define the ball of radius ρ in
the �p norm as

B‖·‖p
(
ρ,Fn

) .= {x ∈ F
n : ‖x‖p ≤ ρ} (3.2)

and its boundary as

∂B‖·‖p
(
ρ,Fn

) .= {x ∈ F
n : ‖x‖p = ρ}. (3.3)
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When clear from the context, we simply write B‖·‖p (ρ) and ∂B‖·‖p (ρ) to denote
B‖·‖p (ρ,Fn) and ∂B‖·‖p (ρ,Fn), respectively. Moreover, for balls of unit radius, we
write B‖·‖p (Fn) and ∂B‖·‖p (Fn), or in brief as B‖·‖p and ∂B‖·‖p .

We introduce further the weighted �2 norm of a real vector x ∈ R
n. For a sym-

metric, positive definite matrix W � 0, the weighted �2 norm, denoted by �W2 , is
defined as

‖x‖W2 .= (xTW−1x
)1/2
. (3.4)

Clearly, if we compute the Cholesky decomposition W−1 = RT R, then we have
‖x‖W2 = ‖Rx‖2. The ball of radius ρ in the �W2 norm is

B‖·‖W2
(
ρ,Rn

) .= {x ∈R
n : ‖x‖W2 ≤ ρ}. (3.5)

This ball is an ellipsoid in the standard �2 metric. In fact, if we denote the ellipsoid
of center x̄ and shape matrix W � 0 as

E(x̄,W) .= {x ∈R
n : (x − x̄)T W−1(x − x̄)≤ 1

}
(3.6)

then B‖·‖W2 (ρ,R
n)= E(0, ρ2W).

3.1.2 Matrix Norms and Balls

Two different classes of norms can be introduced when dealing with matrix vari-
ables: the so-called Hilbert–Schmidt norms, based on the isomorphism between the
matrix space F

n,m and the vector space F
nm, and the induced norms, where the

matrix is viewed as an operator between vector spaces.

Hilbert–Schmidt Matrix Norms The (generalized) Hilbert–Schmidt �p norm of
a matrix X ∈ F

n,m is defined as (see, e.g., [207])

‖X‖p .=
(
n∑
i=1

m∑
k=1

∣∣[X]i,k
∣∣p)1/p

, p ∈ [0,∞);

‖X‖∞ .= max
i,k

∣∣[X]i,k
∣∣ (3.7)

where [X]i,k is the (i, k) entry of matrix X. We remark that for p = 2 the Hilbert–
Schmidt �p norm corresponds to the well-known Frobenius matrix norm

‖X‖2 =√
TrXX∗

where Tr denotes the trace and X∗ is the conjugate transpose of X. Given a matrix
X ∈ F

n,m, we introduce the column vectorization operator

vec(X)
.=
⎡
⎢⎣
ξ1
...

ξm

⎤
⎥⎦ (3.8)
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where ξ1, . . . , ξm are the columns of X. Then, using (3.7) the Hilbert–Schmidt �p
norm of X can be written as

‖X‖p = ∥∥vec(X)
∥∥
p
.

In analogy to vectors, we denote the �p Hilbert–Schmidt norm ball in F
n,m of radius

ρ as

B‖·‖p
(
ρ,Fn,m

) .= {X ∈ F
n,m : ‖X‖p ≤ ρ}.

When clear from the context, we write B‖·‖p (ρ) to denote B‖·‖p (ρ,Fn,m) and
B‖·‖p (Fn,m) or B‖|·‖p for unit radius balls.

Induced Matrix Norms The �p induced norm of a matrix X ∈ F
n,m is defined as

‖|X‖|p .= max
‖ξ‖p=1

‖Xξ‖p, ξ ∈ F
m. (3.9)

The �1 induced norm of a matrix X ∈ F
n,m turns out to be the maximum of the �1

norms of its columns, that is

‖|X‖|1 = max
i=1,...,m

‖ξi‖1 (3.10)

where ξ1, . . . , ξm are the columns of X. Similarly, the �∞ induced norm is equal to
the maximum of the �1 norms of the rows of X, i.e.

‖|X‖|∞ = max
i=1,...,n

‖ηi‖1

where ηT1 , . . . , η
T
n are the rows of X.

The �2 induced norm of a matrix is called the spectral norm and is related to the
singular value decomposition (SVD), see for instance [207]. The SVD of a matrix
X ∈ F

n,m, m≥ n, is given by

X =UΣV ∗

where Σ = diag([σ1 · · · σn]), with σ1 ≥ · · · ≥ σn ≥ 0, U ∈ F
n,n is unitary, and

V ∈ F
m,n has orthonormal columns.

The elements of Σ are called the singular values of X, and Σ is called the
singular values matrix. The maximum singular value σ1 of X is denoted by σ̄ (X).
The �2 induced norm of a matrix X is equal to

‖|X‖|2 = σ̄ (X). (3.11)

The �p induced norm ball of radius ρ in F
n,m is denoted by

B‖|·‖|p
(
ρ,Fn,m

) .= {X ∈ F
n,m : ‖|X‖|p ≤ ρ}. (3.12)

For simplicity, we denote a ball of radius ρ in the spectral norm as

Bσ
(
ρ,Fn,m

) .= B‖|·‖|2
(
ρ,Fn,m

)
. (3.13)

When clear from the context, we write B‖|·‖|p (ρ) and Bσ (ρ) to denote the balls
B‖|·‖|p (ρ,Fn,m) and Bσ (ρ,Fn,m) respectively. Similarly, B‖|·‖|p (Fn,m) or B‖·‖p , and
Bσ (Fn,m) or Bσ denote unit radius balls.
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3.1.3 Volumes

Consider the field F
n,m. The dimension d of Fn,m is d = nm if F≡R, and d = 2nm

if F ≡ C. Let S ⊂ F
n,m be a Lebesgue measurable set and let μd(·) denote the

d-dimensional Lebesgue measure, then the volume of S is defined as

Vol(S)
.=
∫
S

dμd(X). (3.14)

Similarly, we indicate by Surf(S) the surface of S, that is the (d − 1)-dimensional
Lebesgue measure of S. In particular, for norm balls, volume and surface measures
depend on the ball radius according to the relations (see for instance [39])

Vol
(
B‖·‖p (ρ)

)= Vol(B‖·‖p )ρd;
Surf

(
B‖·‖p (ρ)

)= Surf(B‖·‖p )ρd−1.

3.2 Signals

In this section, we briefly introduce some concepts related to signals, see e.g. [247]
for a comprehensive treatment of this topic.

3.2.1 Deterministic Signals

A deterministic signal v(t) :R→R
n is a Lebesgue measurable function of the time

variable t ∈R. The set

V+ = {v(t) ∈R
n : v is Lebesgue measurable, v(t)= 0 for all t < 0

}
is the linear space of causal signals. For p ∈ [1,∞), the infinite-horizon L+

p space
is defined as the space of signals v ∈ V+ such that the integral(∫ ∞

0

∥∥v(t)∥∥p
p

dt

)1/p

(3.15)

exists and is bounded. In this case, (3.15) defines a signal norm, which is denoted
by ‖v‖p . For p =∞, we have ‖v‖∞ .= ess supt v(t).

For the important special case p = 2, L+
2 is a Hilbert space, equipped with the

standard inner product

〈x, y〉 =
∫ ∞

0
yT (t)x(t)dt

where x, y ∈ L+
2 . Signals in L+

2 are therefore causal signals with finite total energy.
These are typically transient signals which decay to zero as t→∞.
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We now discuss some fundamental results related to the Laplace transform of
signals in L+

2 . The Hn2 space (see Definition 3.3) is the space of functions of com-
plex variable g(s) : C → C

n which are analytic1 in Re(s) > 0 and for which the
integral (

1

2π

∫ ∞

−∞
g∗(jω)g(jω)dω

)1/2

(3.16)

exists and is bounded. In this case, (3.16) defines a norm denoted by ‖g‖2. Define
further the unilateral Laplace transform of the signal v ∈ V+ as

ζ(s)= L(v)
.=
∫ ∞

0
v(t)e−st dt

and the inverse Laplace transform

v(t)= L
−1(ζ )

.= lim
ω→∞

1

2πj

∫ c+jω

c−jω
ζ(s)est ds.

Then, if v ∈ L+
2 , its Laplace transform is in Hn2 . Conversely, by the Paley–Wiener

theorem, see e.g. [149], for any ζ ∈Hn2 there exists a causal signal v ∈ L+
2 such that

ζ = L(v). Notice also that Hn2 is a Hilbert space, equipped with the inner product

〈g,h〉 = 1

2π

∫ ∞

−∞
g∗(jω)h(jω)dω

for g,h ∈Hn2 . Finally, we recall the Parseval identity, see e.g. [184], which relates
the inner product of the signals v,w ∈ L+

2 to the inner product of their Laplace
transforms

〈v,w〉 = 〈L(v),L(w)〉.

3.2.2 Stochastic Signals

The performance specifications of control systems are sometimes expressed in
terms of stochastic, rather than deterministic, signals. In this section, we summa-
rize some basic definitions related to stochastic signals. For formal definitions of
random variables and matrices and their statistics, the reader can refer to Chap. 2
and to [138, 319] for further details on stochastic processes.

Denote with v(t) a zero-mean, stationary stochastic process. The autocorrelation
of v(t) is defined as

Rv,v(τ )
.= Ev

(
v(t)vT (t + τ))

1Let S ⊂ C be an open set. A function f : S→ C is said to be analytic at a point s0 ∈ S if it is
differentiable for all points in some neighborhood of s0. The function is analytic in S if it is analytic
for all s ∈ S. A matrix-valued function is analytic if every element of the matrix is analytic.
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where Ev(·) denotes the expectation with respect to the stochastic process. The
power spectral density (psd) Φv,v(ω) of v is defined as the Fourier transform of
Rv,v(τ ). A frequently used measure of a stationary stochastic signal is its root-mean-
square (rms) value

‖v‖2
rms = Ev

(
vT (t)v(t)

)= Tr Rv,v(0).

The rms value measures the average power of the stochastic signal, and it is a
steady-state measure of the behavior of the signal, i.e. it is not affected by tran-
sients. By the Parseval identity, the average power can alternatively be computed as
an integral over frequency of the power spectral density

‖v‖2
rms =

1

2π

∫ ∞

−∞
TrΦv,v(ω)dω.

If the process v(t) is ergodic, then its moments can be equivalently computed as
time-domain averages of a single realization v(t) of the process. With probability
one, the rms norm is given by

‖v‖2
rms = lim

T→∞
1

T

∫ T

0
vT (t)v(t)dt.

3.3 Linear Time-Invariant Systems

Consider a linear time-invariant (LTI), proper system described in standard state
space form

ẋ =Ax +Bw;
z= Cx +Dw (3.17)

where A ∈ R
ns,ns , B ∈ R

ns ,q , C ∈ R
p,ns , D ∈ R

p,q . This state space system is sta-
ble, or Hurwitz, if Re(λi(A)) < 0, i = 1, . . . , ns , where λi(A) denote the eigenvalues
of A.

Assuming x(0)= 0, system (3.17) defines a proper linear operator G mapping the
input signal space into the output signal space. In the space of Laplace transforms,
the operator G is represented by the transfer-function matrix, or simply transfer
matrix

G(s)= C(sI −A)−1B +D.
The system (3.17) is indicated compactly by means of the matrix quadruple

ΩG
.=
[
A B

C D

]
.

The operator G related to system (3.17) is stable if and only if it maps L+
2 into L+

2 .
A necessary and sufficient stability condition for G is that its transfer matrix G(s)
has all its poles in the open left-half plane.
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Definition 3.1 (RH∞ space) The space RHp,q∞ is defined as the space of proper,
rational functions with real coefficients G : C→ C

p,q that are analytic in the open
right-half plane.

From this definition, it follows that the operator G is stable if and only if its
transfer matrix G(s) belongs to RH∞.

Assuming G stable, since G maps L+
2 into L+

2 , it is natural to define its L+
2 -gain

as

‖G‖L+
2 →L+

2

.= sup
0�=w∈L+

2

‖Gw‖2

‖w‖2
.

If G is represented in the frequency domain by the transfer matrix G(s), then it can
be shown that its L+

2 -gain coincides with the so-called H∞ norm of G(s), defined
as ∥∥G(s)∥∥∞ .= ess sup

ω∈R
σ̄
(
G(jω)

)
(3.18)

where σ̄ (G(jω)) denotes the largest singular value of G(jω), i.e.∥∥G(s)∥∥∞ = ‖G‖L+
2 →L+

2
. (3.19)

In a more general setting, one can define the space of functions G : C→ C
p,q (not

necessarily rational), for which the norm (3.18) is bounded.

Definition 3.2 (H∞ space) The space Hp,q∞ is defined as the space of functions
G :C→C

p,q that are analytic and bounded in the open right-half plane.

From this definition it follows immediately that RH∞ ⊂H∞.

Remark 3.1 (H∞ norm interpretations) The H∞ norm of a stable system may be
interpreted from (3.19) as the maximum energy gain of the system. In the case of
stochastic signals, it has an alternative interpretation as the rms gain of the system,
i.e. it denotes the maximum average power amplification from input to output. We
also remark that the H∞ norm is submultiplicative, i.e.

‖GH‖∞ ≤ ‖G‖∞‖H‖∞.
For stable single-input single-output (SISO) systems, (3.18) indicates that the value
of the H∞ norm coincides with the peak of the magnitude of the Bode plot of the
transfer function of the system.

Another frequently used measure of a system “gain” is the H2 norm. This norm
and the corresponding linear space of transfer matrices are now defined.

Definition 3.3 (H2 and RH2 spaces) The space Hp,q2 is defined as the space of
functions G : C→ C

p,q that are analytic in the open right-half plane and such that
the integral (

1

2π

∫ ∞

−∞
TrG∗(jω)G(jω)dω

)1/2

(3.20)
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exists and is bounded. In this case, (3.20) defines the H2 norm of G, which is de-
noted by ‖G‖2. The space RHp,q2 is then defined as

RHp,q2
.= {G ∈Hp,q2 :G is real rational

}
.

Notice that, according to the above definition, a rational transfer matrix G(s)
belongs to RH2 if and only if it is stable and strictly proper.

Remark 3.2 (H2 norm interpretations) The H2 norm of a stable system has two
interpretations. First, we notice that ‖G(s)‖2

2 can be computed in the time domain
using the Parseval identity

‖G‖2
2 =

∫ ∞

0
TrgT (t)g(t)dt

where g(t) = L−1(G(s)) is the impulse response matrix. The H2 norm can hence
be interpreted as the energy of the impulse response of the system.

Secondly, the H2 norm can be viewed as a measure of the average power of
the steady-state output, when the system is driven by white noise input, see for in-
stance [67]. In fact, when a stochastic signal w with power spectral densityΦw,w(ω)

enters a stable and strictly proper system with transfer matrix G, then the output z
has spectral density given by

Φz,z(ω)=G(jω)Φw,w(ω)G
∗(jω)

and the average output power is ‖z‖rms. When w is white noise, then Φw,w(ω)= I ,
and ‖z‖rms = ‖G‖2.

3.4 Linear Matrix Inequalities

Many of the analysis and design specifications for control systems may be expressed
in the form of satisfaction of a positive (or negative) definiteness condition for a
matrix function which depends affinely on the decision variables of the problem.
Such matrix “inequalities” are commonly known under the name of linear matrix
inequalities (LMIs), and are now briefly defined.

Let x ∈R
m be a vector of decision variables. An LMI condition on x is a matrix

inequality of the form

F(x)� 0 (3.21)

with

F(x)= F0 +
m∑
i=1

xiFi (3.22)

and where Fi ∈ S
n, i = 0,1, . . . ,m are given symmetric matrices. Inequality (3.21)

is called a strict matrix inequality, because strict positive definiteness is required
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by the condition. Nonstrict LMIs are defined analogously, by requiring only posi-
tive semidefiniteness of matrix F(x), and are indicated with the notation F(x)� 0.
The feasible set of the LMI (3.21) is defined as the set of x that satisfy the matrix
inequality

X = {x ∈R
m : F(x)� 0

}
.

The most notable feature of LMIs is that the feasible set X ∈ R
m is a convex set,

meaning that for all x1, x2 ∈X and all λ ∈ [0,1] it holds that

λx1 + (1 − λ)x2 ∈X .
This fact can be easily understood by noticing that the condition F(x)� 0 is equiv-
alent to the condition

ξT F (x)ξ > 0, for all non-zero ξ ∈R
n.

Indeed, for any given non-zero ξ ∈ R
n, the set {x : ξT F (x)ξ > 0} is an open half-

space, hence a convex set, and X is the (infinite) intersection of such half-spaces.
LMI conditions are often used as constraints in optimization problems. In particular,
mathematical programs having linear objective and an LMI constraint

min
x∈Rm c

T x subject to F(x)� 0

are known as semidefinite programs (SDPs), see e.g. [385, 400]. Clearly, SDPs are
convex optimization problems, and encompass linear, as well as convex quadratic
and conic programs.

The representation of control analysis and design problems by means of SDPs
has had enormous success in recent years, owing to the availability of efficient nu-
merical algorithms (interior point algorithms in particular, see [299]) for the solution
of SDPs. We refer the reader to [68] for an introduction to LMIs and SDPs in sys-
tems and control. The LMI representation for control problems is extensively used
in subsequent chapters.

Finally, we remark that in applications we often encounter LMIs where the de-
cision variables are in matrix rather than in vector form as in the standard repre-
sentation of (3.21) and (3.22). The first and most notable example is the Lyapunov
inequality

AX+XAT ≺ 0 (3.23)

where A ∈ R
n,n is a given matrix, and X ∈ S

n is the decision matrix. Such LMIs
in matrix variables can, however, be converted in the standard form (3.22) by in-
troducing a vector x containing the free variables of X and exploiting the linearity
of the representation. For example, the LMI (3.23) is rewritten in standard form by
first introducing vector x ∈R

m,m= n(n−1)/2, containing the free elements of the
symmetric matrix X. Then, one writes X =∑m

i=1 xiSi , where Si ∈ R
n,n represents

an element of the standard basis of symmetric matrices, and therefore (3.23) takes
the standard form

F0 +
m∑
i=1

xiFi � 0

with F0 = 0n,n, Fi =−(ASi + SiAT ), i = 1, . . . ,m.
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3.5 Computing H2 and H∞ Norms

LetG(s)= C(sI−A)−1B ∈RHp,q2 be a strictly proper transfer matrix, and assume
that A is stable. Then, we have

‖G‖2
2 = TrCWcC

T

whereWc is the controllability Gramian of the system. The controllability Gramian
is positive semidefinite,Wc � 0, and it is the unique solution of the Lyapunov equa-
tion

AWc +WcAT +BBT = 0.

Equivalently, in the dual formulation we obtain

‖G‖2
2 = TrBTWoB

where the observability Gramian Wo � 0 is the unique solution of the Lyapunov
equation

ATWo +WoA+CT C = 0.

For the monotonicity property of the Lyapunov equation, we can also express the
H2 norm in terms of a Lyapunov inequality. This characterization in terms of LMIs
is stated in the next lemma, see for instance [346].

Lemma 3.1 (H2 norm characterization) LetG(s)= C(sI−A)−1B+D and γ > 0.
The following three statements are equivalent:

1. A is stable and ‖G(s)‖2
2 < γ ;

2. D = 0, and there exist S � 0 such that

AS + SAT +BBT ≺ 0;
TrCSCT < γ ;

3. D = 0, and there exist P � 0 and Q� 0 such that[
PA+AT P PB

BT P −I
]
≺ 0;[

P CT

C Q

]
� 0;

TrQ< γ.

The next well-known lemma, often denoted as bounded real lemma, gives a char-
acterization of the H∞ norm of a system.

Lemma 3.2 (Bounded real lemma) LetG(s)= C(sI −A)−1B+D and γ > 0. The
following two statements are equivalent:

1. A is stable and ‖G(s)‖∞ < γ ;
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2. There exist P � 0 such that⎡
⎣PA+AT P PB CT

BT P −γ I DT

C D −γ I

⎤
⎦≺ 0. (3.24)

A detailed proof of the bounded real lemma in this form may be found in [344].
There is also a nonstrict characterization of the H∞ norm, given in the next lemma,
see [344].

Lemma 3.3 (Nonstrict bounded real lemma) Let G(s)= C(sI −A)−1B +D, with
A stable and (A,B) controllable,2 and let γ ≥ 0. The following two statements are
equivalent:

1. ‖G(s)‖∞ ≤ γ ;
2. There exist P = PT such that⎡

⎣PA+AT P PB CT

BT P −γ I DT

C D −γ I

⎤
⎦� 0.

From the computational point of view, checking whether the H∞ norm is less
than γ amounts to solving Eq. (3.24) with respect to P , which is a convex feasibility
problem with LMI constraints.

3.6 Modeling Uncertainty of Linear Systems

In this section, we present a general model that is adopted to represent various
sources of uncertainty that may affect a dynamic system. In particular, we follow
a standard approach based on the so-called M–Δ model, which is frequently used
in modern control theory, see e.g. [422], for a systematic discussion on this topic.

In Fig. 3.1, M ∈ RHc,r∞ represents the transfer matrix of the known part of the
system, which consists of the extended plant and the controller. In this description,
Δ ∈ RHrΔ,cΔ∞ encompasses all time-invariant uncertainties acting on the system.
This uncertainty is assumed to belong to a block-diagonal structured set D̃ of the
form

D̃
.= {Δ ∈RHrΔ,cΔ∞ :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)

}
(3.25)

where q
.= [q1 · · ·q�]T represents (real or complex) uncertain parameters qi , with

multiplicity mi , i = 1, . . . , �, and Δi , i = 1, . . . , b, denote general full-block stable

2(A,B) is controllable if and only if the reachability matrix R = [BABA2B · · · Ans−1B] is full
rank.
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Fig. 3.1 M–Δ model. M(s) is the known part of the system, consisting of the interconnection of
plant and controller, Δ represents the uncertain part, w includes noise, disturbances and reference
signals and z represents controlled signals and tracking errors

and proper transfer matrices of size ri × ci . Moreover, a bound ρ on the magnitude
of the uncertainty is imposed. In particular, we assume that Δ ∈ B

D̃
(ρ), where

B
D̃
= B

D̃
(ρ)

.= {Δ ∈ D̃ : ‖q‖p ≤ ρ, ‖Δi‖∞ ≤ ρ, i = 1, . . . , b
}

(3.26)

and ‖ · ‖p is an �p vector norm. Note that, when clear from the context, we drop the
dependency on ρ and we simply write B

D̃
.

Following classical literature on the subject, one can associate to D̃ a correspond-
ing matrix structure

D
.= {Δ ∈ F

rΔ,cΔ :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)
}
, (3.27)

where Δi are (real or complex) matrices. We remark that if qi in D̃ is real (com-
plex), then the corresponding parameter in D is also real (complex). Similarly, if a
full block Δi of size ri × ci in D̃ is a static real (complex) matrix gain, then the
corresponding block in D is also a real (complex) matrix of size ri × ci . If instead a
full block Δi ∈RHri ,ci∞ in D̃ is a dynamic operator, then the corresponding block in
D is a static complex block of size ri × ci . The related norm-bounded set is defined
as

BD = BD(ρ)
.= {Δ ∈D : ‖q‖p ≤ ρ, σ̄ (Δi)≤ ρ, i = 1, . . . , b

}
. (3.28)

We remark that if no dynamic block appears in (3.25), then the sets B
D̃

and BD

coincide. In the more general situation of dynamic blocks, BD may be viewed as a
“snapshot” of B

D̃
at a fixed frequency.

The signal w in Fig. 3.1 usually represents disturbances of various nature enter-
ing the system, such as white (or colored) noise or a deterministic, norm-bounded
signal, and z describes errors or other quantities that should be kept small in some
sense. The transfer matrixM(s) is partitioned as[

zΔ(s)

z(s)

]
=
[
M11(s) M12(s)

M21(s) M22(s)

][
wΔ(s)

w(s)

]
so that the transfer matrix of the performance channel w→ z can be expressed in
terms of the upper linear fractional transformation (LFT)

Fu(M,Δ)
.=M22 +M21Δ(I −M11Δ)

−1M12. (3.29)
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This LFT is well defined whenever the matrixM11 satisfies a well-posedness condi-
tion, i.e. (I−M11(∞)Δ(∞)) is nonsingular for allΔ ∈ B

D̃
. Moreover, the condition

(I −M11Δ)
−1 ∈RHcΔ,cΔ∞ guarantees that the interconnection betweenM ∈RHc,r∞

and Δ ∈RHrΔ,cΔ∞ is internally stable, see [422].
Two key requirements are typically imposed on the interconnection in Fig. 3.1:

(i) the interconnection is well posed and internally stable, for all Δ ∈ B
D̃

; (ii) the
influence of the disturbances w on the controlled outputs z is below a desired level
for all uncertainties Δ ∈ B

D̃
. In particular, condition (i) is a robust stability con-

dition (see details in Sect. 3.7), and condition (ii) typically expresses performance
requirements imposed as bounds on the gain of the w→ z channel.

Remark 3.3 (LFT representation lemma) Notice that the LFT representation in
(3.29) is general enough to encompass uncertainty entering the transfer matrix in
a generic polynomial or rational manner, provided that the transfer matrix has no
singularities at zero. This result is known as the LFT representation lemma, see
for instance [158]. In [422], constructive rules for building the LFT representation
starting from basic algebraic operations on LFTs are given.

In the following, we present some examples, involving different uncertainty con-
figurations, and show how we can express them in theM–Δ framework.

Example 3.1 (Real unstructured uncertainty) Consider a linear time-invariant sys-
tem expressed in state space form

ẋ =A(Δ)x +Bw;
z= Cx +Dw (3.30)

where the matrix A(Δ) ∈R
ns ,ns depends on the uncertainty Δ ∈R

rΔ,cΔ in a simple
additive form, i.e.

A(Δ)=A+LΔR (3.31)

with L ∈ R
ns ,rΔ and R ∈ R

cΔ,ns . In this case, since Δ is a full real block, B
D̃
=

BD = {Δ ∈R
rΔ,cΔ : σ̄ (Δ)≤ ρ}.

The uncertainty structure in (3.31) has been extensively studied in the literature,
see Sect. 3.7. In particular, the smallest value of ρ such that there exists a value ofΔ
that makes the system (3.30) unstable is called the real stability radius of the system,
see Definition 3.4 and Theorem 3.3 for its computation. It can be easily verified that
the uncertain system (3.30) may be represented inM–Δ form with

M(s)=
[
R

C

]
(sI −A)−1 [L B

]+ [0 0
0 D

]
.

Example 3.2 (Real parametric uncertainty) Consider a system described by the
transfer function

G(s, q)= s + 3 + q1

s2 + (2 + q1)s + 5 + q2
(3.32)
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Fig. 3.2 G(s, q) of
Example 3.2 expressed in
controllable canonical form

Fig. 3.3 M–Δ representation
for Example 3.2

where q = [q1 q2]T represents a two-dimensional vector of real parametric uncer-
tainty. The vector q is assumed to be bounded in the set {q : ‖q‖∞ ≤ ρ}. An M–Δ
representation of the uncertain system in (3.32) may be derived by writing the sys-
tem in controllable canonical form and pulling out the uncertainty, see Fig. 3.2. We
therefore obtain

M(s)=

⎡
⎢⎢⎢⎢⎢⎣

0 −1
s2+2s+5

−1
s2+2s+5

1
s2+2s+5

0 −s
s2+2s+5

−s
s2+2s+5

s

s2+2s+5

0 −1
s2+2s+5

−1
s2+2s+5

1
s2+2s+5

1 −(s+3)
s2+2s+5

−(s+3)
s2+2s+5

s+3
s2+2s+5

⎤
⎥⎥⎥⎥⎥⎦

and the matrixΔ belongs to the set D̃≡D= {Δ= bdiag(q1, q2I2)}, with the bound
‖q‖∞ ≤ ρ. The resultingM–Δ interconnection is shown in Fig. 3.3.
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Fig. 3.4 System affected by dynamic multiplicative uncertainty

Example 3.3 (Unmodeled dynamics) Consider a transfer matrix G(s,Δ) affected
by multiplicative uncertainty of the type

G(s,Δ)= (I +W1(s)Δ(s)W2(s)
)
G(s) (3.33)

where the transfer matrices W1(s),W2(s) weight the uncertainty over frequency, as
shown in Fig. 3.4.

In this case, G(s) is the nominal model and the uncertainty is constituted by
unknown dynamics, expressed in terms of an uncertain stable transfer matrix Δ(s)
that belongs to the set B

D̃
= {Δ(s) ∈ RHrΔ,cΔ∞ : ‖Δ‖∞ ≤ ρ}. The multiplicative

model (3.33) is immediately rewritten inM–Δ form, letting

M(s)=
[

0 W2(s)G(s)

W1(s) G(s)

]
.

3.7 Robust Stability of M–Δ Configuration

Consider the M–Δ model introduced in the previous section, with M(s) ∈ RHc,r∞
and Δ ∈ B

D̃
(ρ). For fixed ρ > 0, we say that the system is robustly stable if it is

stable for all uncertaintiesΔ varying in the set B
D̃

. More generally, a given property
(stability or performance) is robustly satisfied if it holds for all Δ ∈ B

D̃
(ρ). Conse-

quently, a measure of the “degree” of robustness of a system is given by the largest
value of ρ such that the considered property is robustly guaranteed. This measure is
generally called the robustness margin. When robust stability is of concern, the term
stability radius is frequently used. The computation of stability radii under various
uncertainty structures and for different system descriptions has been one of the main
areas of research in the robust control community.

In this section, we report some of the most important results regarding robust
stability for different uncertainty configurations. Since the main focus of the section
is on stability, to simplify our discussion we refer to systems described by the con-
figuration of Fig. 3.5, where the performance channel w→ z is neglected. In this
case, the dimensions of Δ are compatible withM , i.e. Δ ∈RHr,c∞ .

For historical reasons, we begin our discussion with the case when Δ is an un-
known stable transfer matrix bounded in the H∞ norm, and show how this problem
is equivalent to a “static” problem with a complex matrix Δ.
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Fig. 3.5 M–Δ configuration
for robust stability

3.7.1 Dynamic Uncertainty and Stability Radii

Consider the configuration of Fig. 3.5, in which M(s) ∈ RHc,r∞ and Δ is an un-
known transfer matrix Δ(s) ∈RHr,c∞ . We define the stability radius rLTI(M(s)) un-
der LTI perturbations as the smallest value of ‖Δ(s)‖∞ such that well-posedness or
internal stability are violated.

The radius of stability may be computed by invoking a fundamental result of
robustness analysis known as the small gain theorem, see e.g. [422].

Theorem 3.1 (Small gain) Consider the interconnected system in Fig. 3.5, with
M ∈RHc,r∞ , and ρ > 0. Then, the interconnection is well posed and internally sta-
ble for all Δ ∈RHr,c∞ with ‖Δ‖∞ ≤ ρ if and only if ‖M‖∞ < 1/ρ.

From this result, it follows immediately that the stability radius under LTI per-
turbations is given by

rLTI
(
M(s)

)= 1

‖M(s)‖∞ = 1

supω σ̄ (M(jω))
.

Remark 3.4 (Extensions of the small gain theorem) It should be observed that the
small gain theorem holds for larger classes of uncertainty, see [149]. In fact, this re-
sult follows as a special case of the contraction mapping theorem in Banach spaces.
In particular, it can be reformulated for nonlinear operators from L+

p → L+
p , pro-

vided that the (Lipschitz) incremental gains of the system and of the uncertainty are
used in place of the H∞ norm, see also [184]. This fact is useful in robustness anal-
ysis, since it allows one to model certain classes of nonlinearities as gain-bounded
uncertainties.

Corollary 3.1 Consider the interconnected system in Fig. 3.5, with M ∈ RHc,r∞ ,
and ρ > 0. The following statements are equivalent:

1. The interconnection is well posed and internally stable for all Δ ∈ Hr,c∞ with
‖Δ‖∞ ≤ ρ;

2. The interconnection is well posed and internally stable for all Δ ∈ RHr,c∞ with
‖Δ‖∞ ≤ ρ;

3. The interconnection is well posed and internally stable for all matrices Δ ∈C
r,c

with ‖Δ‖ ≤ ρ;
4. M ∈RHc,r∞ and ‖M‖∞ < 1/ρ.
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An interesting conclusion drawn from this corollary is that checking robust sta-
bility of the M–Δ interconnection under purely static uncertainties is necessary
and sufficient for robust stability under rather general dynamic perturbations. As a
consequence of this fact, when the system is affected by dynamic uncertainty with
D̃ = RHr,c∞ , robust stability of the interconnection can be detected by considering
the “purely static” matrix structure D=C

r,c .
A related robustness problem arises in the assessment of robust stability for sys-

tems described in state space description. Assume for instance that the uncertain
linear system is of the form

ẋ =A(Δ)x +Bw;
z= Cx +Dw (3.34)

where A(Δ) = A + LΔR, A ∈ R
ns,ns is stable and Δ ∈ F

r,c is a full block either
real (as in Example 3.1) or complex.

Definition 3.4 (Real and complex stability radii) Consider the uncertain system
(3.34), with

A(Δ)=A+LΔR (3.35)

where A ∈ R
ns ,ns is stable, L ∈ R

ns,r , R ∈ R
c,ns and Δ ∈ F

r,c . Then, the stability
radius of the triple A, L, R is defined as

rF(A,L,R)
.= inf

{
σ̄ (Δ) :Δ ∈ F

r,c and A(Δ) is unstable
}
. (3.36)

In particular, for Δ ∈ R
r,c, rR(A,L,R) is called the real stability radius. Simi-

larly, for Δ ∈C
r,c , rC(A,L,R) is called the complex stability radius.3

The next theorem, which is a direct consequence of the small gain theorem, re-
lates the complex stability radius to the computation of the H∞ norm of a certain
operator.

Theorem 3.2 (Complex stability radius) Let A(Δ)=A+LΔR, where A ∈R
ns ,ns

is stable, L ∈ R
ns ,r , R ∈ R

c,ns and Δ ∈ C
r,c. Then, the complex stability radius is

given by

rC(A,L,R)= 1

‖M‖∞
whereM(s)=R(sI −A)−1L.

Proof Since A is stable, then M ∈ RHc,r∞ . Therefore, by the small gain theorem,
the closed-loop interconnection ofM with Δ ∈C

r,c is stable for all ‖Δ‖ ≤ ρ if and
only if ‖M‖∞ < 1/ρ. The statement then follows, noticing that the dynamic matrix
of this interconnection is indeed A+LΔR. �

3Real and complex stability radii can also be defined in more general form for complex matrices
A,L,R, see for instance [202].
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When the uncertain matrix A(Δ) is expressed in the form (3.35), but the uncer-
tainty Δ is real, the above result is clearly conservative. In this case, a formula for
computing exactly the real stability radius is derived in [331].

Theorem 3.3 (Real stability radius) Let A(Δ) = A + LΔR, where A ∈ R
ns ,ns is

stable, L ∈R
ns ,r , R ∈R

c,ns and Δ ∈R
r,c. Then, the real stability radius is given by

rR(A,L,R)=
{

sup
ω

inf
γ∈(0,1]σ2

([
Re(M(jω)) −γω Im(M(jω))

γ−1ω Im(M(jω)) Re(M(jω))

])}−1

(3.37)

whereM(s)=R(sI −A)−1L, and σ2(·) denotes the second largest singular value.

We remark that the minimization over γ in (3.37) can be easily performed since
the function to be optimized is unimodal with respect to γ ∈ (0,1], see further de-
tails in [331].

3.7.2 Structured Singular Value and μ Analysis

In this section, we consider the general case when the matrix Δ in Fig. 3.5 belongs
to the structured set defined in (3.25)

D̃= {Δ ∈RHr,c∞ :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)
}

where qi ∈ F, i = 1, . . . , � and Δi ∈RHri ,ci∞ , i = 1, . . . , b. To the operator structure
D̃, we associate the matrix structure (3.27)

D= {Δ ∈ F
r,c :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)

}
.

Letting M ∈ RHc,r∞ , we consider the complex matrix M(jω) ∈ C
c,r obtained

by evaluating the transfer matrixM(s) for s = jω, with ω ∈R+. In this setting, the
multivariable stability margin ofM(jω) for a system with diagonal perturbations D
is discussed in [336], and its inverse, the structured singular value of M(jω) with
respect to D, is studied in [143]. We now formally define the structured singular
value μD(M(jω)).

Definition 3.5 (Structured singular value) LetM(jω) ∈C
c,r , the structured singu-

lar value ofM(jω) with respect to D is defined as

μD

(
M(jω)

) .= 1

min{σ̄ (Δ) : det(I −M(jω)Δ)= 0,Δ ∈D} (3.38)

unless no Δ ∈D makes I −M(jω)Δ singular, in which case μD(M(jω))
.= 0.

An alternative expression when Δ is complex, is given in [422]

μD

(
M(jω)

)= max
Δ∈BD(1)

ρλ
(
M(jω)Δ

)
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where ρλ(·) denotes the spectral radius, i.e. the maximum modulus of the eigenval-
ues.

The theorem stated next is a fundamental result for robust stability under struc-
tured perturbations and constitutes a generalization of the small gain theorem.

Theorem 3.4 (Small μ) Consider the interconnected system in Fig. 3.5, with
M ∈ RHc,r∞ , and ρ > 0. The interconnection is well posed and internally stable
for all Δ ∈ D̃ with ‖Δ‖∞ < ρ if and only if

sup
ω∈R

μD

(
M(jω)

)≤ 1

ρ
. (3.39)

Remark 3.5 (Equivalence between dynamic and static perturbations) From this re-
sult, we see that checking robust stability under dynamic perturbations is equivalent
to checking robust stability against purely static perturbations, since only the static
perturbations set D enters in condition (3.39).

Lemma 3.4 Let M(s) = C(sI − A)−1B +D ∈RHc,r∞ . Then, the interconnection
in Fig. 3.5 is well posed and internally stable for all Δ ∈ D̃ with ‖Δ‖∞ < ρ if and
only if the two conditions:

1. (I −DΔ) is nonsingular;
2. A+BΔ(I −DΔ)−1C is stable

hold for all Δ ∈D with σ̄ (Δ) < ρ.

Proof From Theorem 3.4, it follows that the interconnection is well posed and ro-
bustly stable for allΔ ∈ D̃ with ‖Δ‖∞ < ρ if and only if it is well posed and robustly
stable for all Δ ∈ D with σ̄ (Δ) < ρ. Then, closing the loop on M with wΔ =ΔzΔ
with Δ ∈D, we have

ẋ =Ax +BΔzΔ;
(I −DΔ)zΔ = Cx.

If (I − DΔ) is nonsingular, then the dynamic matrix of the closed loop is A +
BΔ(I −DΔ)−1C and the result follows immediately. �

The previous lemma permits us to extend the notion of stability radius to the case
of structured static perturbations.

Definition 3.6 (Stability radius under structured perturbations) Let

A(Δ)=A+BΔ(I −DΔ)−1C

where A ∈ R
ns ,ns is stable, B ∈ R

ns ,r , C ∈ R
c,ns , D ∈ R

c,r and Δ ∈ D. Then, the
stability radius under structured perturbations is defined as

rD(A,B,C,D)
.= inf

{
σ̄ (Δ),Δ ∈D :A(Δ) is unstable or I −DΔ is singular

}
.

(3.40)
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As a direct consequence of Theorem 3.4 and Lemma 3.4, we have the result
presented next.

Theorem 3.5 (Stability radius under structured perturbations) Let A(Δ) = A +
BΔ(I −DΔ)−1C, where A ∈R

ns,ns is stable, B ∈R
ns ,r , C ∈R

c,ns , D ∈R
c,r and

Δ ∈D. Moreover, let M(s)= C(sI −A)−1B +D, M ∈RHc,r∞ . Then, the stability
radius under structured perturbations is given by

rD(M)= rD(A,B,C,D)= 1

supω∈RμD(M(jω))
.

3.7.3 Computation of Bounds on μD

The computation of μD under general uncertainty structures D is a difficult non-
convex problem and many results have appeared in the literature in this sense. The
interested reader is addressed to Sect. 5.1 and to the survey paper [61] focused on
computational complexity in systems and control. For these reasons, research on
computation of the structured singular value mainly concentrated on establishing
upper and lower bounds on μD. In particular, we now consider the purely complex
uncertainty structure

D= {Δ ∈C
r,c :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)

}
consisting of complex repeated scalars qi ∈ C and square full complex blocks
Δi ∈C

ri ,ri . In addition, let M ∈C
r,r , where r =∑�

i=1mi +
∑b
i=1 ri and introduce

the two scalings sets

V .= {V ∈D : VV ∗ = Ir
}

and

D .= {D :D = bdiag(D1, . . . ,D�, d1Ir1, . . . , db−1Irb−1 , Irb ),

Di ∈C
mi,mi , Di � 0, di ∈R, di > 0

}
.

Then, the following bounds hold, see e.g. [422]

max
V∈V

ρλ(VM)≤ μD(M)≤ inf
D∈D

σ̄
(
DMD−1).

The lower bound in this equation is actually an equality, but unfortunately no ef-
ficient algorithm with guaranteed global convergence is currently available for its
computation. In contrast, the upper bound can be computed efficiently by solv-
ing a convex optimization problem (therefore achieving the global optimum), but
the bound coincides with μD(M) only for special uncertainty structures for which
2�+b ≤ 3, see [314] for details and also see [143] for proof of the case �= 0, b= 3.
For 2�+ b > 3 the gap between μD and its upper bound can be arbitrarily large, but
computational practice shows that this gap often remains quite small.
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Similar upper bounds can also be constructed for the more general uncertainty
structure (3.27). These upper bounds are still convex with respect to suitably se-
lected scaling matrices and, therefore, can be efficiently computed. However, in
general there is no guarantee that they are close to the actual μD.

3.7.4 Rank-One μ Problem and Kharitonov Theory

There are special cases in which μD can also be efficiently computed for general
uncertainty structures D. One such case is the so-called rank-one μ problem, where
M ∈C

r,r is a rank-one matrix

M = uv∗, u, v ∈C
r .

Then, it has been shown in [417] that under rather general uncertainty structures,
which may include real or complex repeated scalars, and full complex blocks, μD

and its upper bound actually coincide.
The interest in the rank-one μ problem also resides in the fact that it provides

a connection to Kharitonov-type results for uncertain polynomials discussed in the
next section. To explain this connection more precisely, we assume that the transfer
matrixM(s) is of the form

M(s)= u(s)vT (s)
where u(s), v(s) ∈RHr,1∞ and that the structured set D is given by

D= {Δ ∈R
r,r :Δ= diag

([q1 · · · qr ]
)
, qi ∈R, i = 1, . . . , r

}
. (3.41)

Subsequently, we define

D(s, q)
.= det

(
I +M(s)Δ)= 1 +

r∑
i=1

ui(s)vi(s)qi

where ui(s) and vi(s), i = 1, . . . , r , are rational functions of the form

ui(s)= nui(s)/dui(s), vi(s)= nvi(s)/dvi(s)
and nui(s), dui(s), nvi(s), dvi(s) are coprime polynomials in s. The assumption
u(s), v(s) ∈RHr,1∞ implies that dui(s), dvi(s) are Hurwitz polynomials, i.e. all their
roots lie in the open left half plane.

Then, assuming a bound ‖q‖∞ ≤ 1 on the uncertainty q , checking robust stability
amounts to verifying if D(jω,q) �= 0 for all ω ∈R and all q within this bound. We
notice that

D(s, q)= 1

p0(s)

(
p0(s)+

r∑
i=1

pi(s)qi

)

where
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p0(s)=
r∏
i=1

dui(s)dvi(s);

pi(s)= nui(s)nvi(s)
r∏
k �=i
duk(s)dvk(s), i = 1, . . . , r.

Since p0(s) is Hurwitz, p0(jω) �= 0 for all ω ∈ R. Then, D(jω,q) �= 0 if and only
if p(s, q) �= 0, where the affine polynomial p(s, q) is given by

p(s, q)= p0(s)+
r∑
i=1

pi(s)qi .

Therefore, robust stability is guaranteed if and only if

p(jω,q) �= 0

for all ω ∈ R and ‖q‖∞ ≤ 1. Now, since p(jω,0) �= 0, by simple continuity ar-
guments, this condition is satisfied if and only if no root of p(s, q) crosses the
imaginary axis for ‖q‖∞ ≤ 1, i.e. if and only if p(s, q) is Hurwitz for all q . Con-
versely, one can show that for any polynomial p(s, q) affine in q , there exists a
rational matrix of the formM(s)= u(s)vT (s) with u(s) and v(s) rational, such that
p(s, q)= det(I +M(s)Δ), with Δ in (3.41).

3.8 Robustness Analysis with Parametric Uncertainty

In this section, we consider systems affected by real parametric uncertainty of the
type

q
.= [q1 · · · q�]T

where each qi , i = 1, . . . , �, is bounded in the interval [q−i , q+i ]. That is, the uncer-
tainty vector q is assumed to belong to the set

Bq
.= {q ∈R

� : qi ∈
[
q−i , q

+
i

]
, i = 1, . . . , �

}
. (3.42)

The set Bq is a hyperrectangle whose vertices q1, . . . , q2� are obtained considering
the 2� combinations of either qi = q−i or qi = q+i , for i = 1, . . . , �. As described
in Example 3.1, systems affected by bounded parametric uncertainty can be rep-
resented in the general M–Δ form. In this case, it can be easily shown that the
uncertainty Δ in theM–Δ representation depends on the vector

q̄
.= [q̄1 · · · q̄�]T

where

q̄i = 2

q+i − q−i
qi − q

+
i + q−i
q+i − q−i

, i = 1, . . . , �.
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Consequently, the uncertainty Δ is bounded in the set

BD = {Δ ∈D : ‖Δ‖∞ ≤ 1
}

where the structure D has the simple form

D= {Δ ∈R
r,c :Δ= bdiag(q̄1Im1, . . . , q̄�Im�), q̄ ∈R

�
}
.

We notice that once the uncertain system has been rewritten in the M–Δ form, the
robustness results presented in Sect. 3.7 can be applied directly.

In parallel with the μ analysis approach, in the 1980s and early 1990s a frame-
work for studying stability of systems affected by real parametric uncertainty was
developed independently. This framework does not necessarily require rewriting the
system inM–Δ form and is based upon a direct representation of the SISO uncertain
plant in the transfer function form

G(s, q)
.= NG(s, q)

DG(s, q)

whereNG(s, q) andDG(s, q) are the numerator and denominator plant polynomials
whose coefficients depend on the uncertainty q . Subsequently, for a given controller

K(s)
.= NK(s)

DK(s)

with numerator and denominator controller polynomialsNK(s) andDK(s), we con-
struct the closed-loop polynomial

p(s, q)=NK(s)NG(s, q)+DK(s)DG(s, q)
= a0(q)+ a1(q)s + · · · + an(q)sn

where the coefficients ai(q) of p(s, q) are functions of q . An illustration of the
parametric approach, borrowed from [383], is given in the next example.

Example 3.4 (DC electric motor with uncertain parameters) Consider the system in
Fig. 3.6, representing an armature-controlled DC electric motor with independent
excitation. The voltage to angle transfer function G(s)=Θ(s)/V (s) is given by

G(s)= Km

LJs3 + (RJ +BL)s2 + (K2
m +RB)s

where L is the armature inductance, R is the armature resistance, Km is the motor
electromotive force–speed constant, J is the moment of inertia and B is the me-
chanical friction. Then, taking a unitary feedback controller K(s)= 1, we write the
closed-loop polynomial, obtaining

p(s)=Km + (K2
m +RB)s + (RJ +BL)s2 +LJs3.

Clearly, the values of some of the motor parameters may be uncertain. For example,
the moment of inertia and the mechanical friction are functions of the load. There-
fore, if the load is not fixed, then the values of J and B are not precisely known.
Similarly, the armature resistance R is a parameter that can be measured very accu-
rately but which is subject to temperature variations, and the motor constantKm is a
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Fig. 3.6 DC-electric motor of Example 3.4

function of the field magnetic flow, which may vary. To summarize, it is reasonable
to say that the motor parameters, or a subset of them, may be unknown but bounded
within given intervals. More precisely, we can identify uncertain parameters

q1 = L, q2 =R, q3 =Km, q4 = J, q5 = B
and specify a given range of variation [q−i , q+i ] for each qi, i = 1, . . . ,5. Then,
instead of G(s), we write

G(s, q)= q3

q1q4s3 + (q2q4 + q1q5)s2 + (q2
3 + q2q5)s

and the closed-loop uncertain polynomial becomes

p(s, q)= q3 + (q2
3 + q2q5

)
s + (q2q4 + q1q5)s

2 + q1q4s
3. (3.43)

However, not necessarily all motor parameters are uncertain. For example, we
may assume that the armature inductance L, the armature resistance R and the con-
stant Km are fixed and that the moment of inertia J and the mechanical friction B
are unknown. Then, we take q1 = J and q2 = B as uncertain parameters. In this
case, the closed-loop polynomial has an affine uncertainty structure

p(s, q)=Km + (K2
m +Rq2

)
s + (Rq1 +Lq2)s

2 +Lq1s
3.

On the other hand, if L, Km and B are fixed, and R and J are uncertain, then we
identify q1 and q2 with R and J respectively. In this case, the closed-loop polyno-
mial coefficients are no longer affine functions of the uncertainties, instead they are
multiaffine4 functions of q

p(s, q)=Km + (K2
m +Bq1

)
s + (q1q2 +BL)s2 +Lq2s

3.

In the general case when all motor parameters are uncertain, the polynomial p(s, q)
in (3.43) has a polynomial uncertainty structure.

4A function f :R� →R is said to be multiaffine if the following condition holds: if all components
q1, . . . , q� except one are fixed, then f is affine. For example, f (q)= 3q1q2q3 − 6q1q3 + 4q2q3 +
2q1 − 2q2 + q3 − 1 is multiaffine.
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The study of stability of polynomials with various uncertainty structures is one
of the main goals of parametric stability. The first result we present is the celebrated
Kharitonov theorem [235] on the stability of interval polynomials, i.e. polynomials
p(s, q) whose coefficients ai(q)= qi are independent and bounded in given inter-
vals [q−i , q+i ].
Theorem 3.6 (Kharitonov) Consider the interval polynomial family P

P = {p(s, q)= q0 + q1s + · · · + qnsn : qi ∈
[
q−i , q

+
i

]
, i = 0,1, . . . , n

}
and the four fixed Kharitonov polynomials

p1(s)
.= q−0 + q−1 s + q+2 s2 + q+3 s3 + q−4 s4 + q−5 s5 + q+6 s6 + · · · ;

p2(s)
.= q+0 + q+1 s + q−2 s2 + q−3 s3 + q+4 s4 + q+5 s5 + q−6 s6 + · · · ;

p3(s)
.= q+0 + q−1 s + q−2 s2 + q+3 s3 + q+4 s4 + q−5 s5 + q−6 s6 + · · · ;

p4(s)
.= q−0 + q+1 s + q+2 s2 + q−3 s3 + q−4 s4 + q+5 s5 + q+6 s6 + · · · .

Then, the interval polynomial family P is Hurwitz if and only if the four Kharitonov
polynomials are Hurwitz.

Remark 3.6 (Proof and extensions) This theorem was originally proved by Khari-
tonov [235] using arguments based on the Hermite–Bieler theorem, see e.g. [175].
A simpler proof based on the so-called value set approach can be found in [286].
We observe that the original statement of the Kharitonov theorem has an invariant
degree assumption on the interval family; this hypothesis has been subsequently
removed in [199, 222, 413].

The Kharitonov theorem is computationally attractive since it requires checking
stability of only four “extreme” polynomials, regardless of the degree of the poly-
nomial. However, it is based on the hypothesis that the polynomial coefficients vary
within independent intervals. This hypothesis is generally not satisfied by generic
uncertain systems, and therefore the Kharitonov theorem is usually applied by first
overbounding the uncertainty with independent intervals at the expense of conser-
vatism, see Chap. 5.

A more general result, which takes into account the dependence of the polyno-
mial coefficients on the uncertain parameters is known as the edge theorem [46], is
discussed next. In the edge theorem, it is assumed that the coefficients of the polyno-
mial are affine functions of the uncertainty vector q = [q1 · · · q�]T bounded in the
hyperrectangle Bq defined in (3.42). The polynomial family is therefore expressed
as

P =
{
p(s, q)= a0(q)+ a1(q)s + · · · + an−1(q)s

n−1 + sn :

ai(q)= ai0 +
�∑
k=1

aikqk, q ∈ Bq, i = 0,1, . . . , n− 1

}
. (3.44)
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The family P is often called a polytope of polynomials, whose vertices are the poly-
nomials pi(s) corresponding to the 2� vertices of the hyperrectangle Bq . We define[

pi,pk
] .= {p(s)= λpi(s)+ (1 − λ)pk(s), λ ∈ [0,1]}

as the convex combination of the two vertex polynomials pi(s) and pk(s). Then,
[pi,pk] is said to be an edge of the polytope P if pi(s),pk(s) are such that,
for any polynomials pa(s),pb(s) ∈ P with pa(s),pb(s) /∈ [pi,pk], it follows that
[pa,pb] ∩ [pi,pk] = ∅.

The edge theorem is due to [46]. A simplified version of this result in the special
case of Hurwitz stability is reported below.

Theorem 3.7 (Edge theorem) Consider the polytope of polynomials P defined
in (3.44). The family P is Hurwitz if and only if all edges of P are Hurwitz.

Remark 3.7 (Edge theorem for D-stability) The edge theorem can be stated in more
general form for various root confinement regions of the complex plane, which in-
clude the unit disc (Schur stability) and other simply connected sets D. In this case,
we deal with the so-called D-stability.

Remark 3.8 (Edge redundancy) Notice that every polynomial belonging to an edge
of P is obtained from one of the �2�−1 edges of the hyperrectangle Bq , but not
necessarily vice versa, [42]. When applying the edge theorem, it is often easier to
work with the edges of Bq instead of the edges of P . In doing this, we accept the
possibility of redundancy in the robustness test.

In the context of real parametric uncertainty, for an uncertain polynomial p(s, q),
the robustness margin discussed at the beginning of Sect. 3.7 is formally defined as

rq
.= inf

{
ρ : p(s, q) not Hurwitz for some q ∈ Bq(ρ)

}
where

Bq(ρ)
.= {q ∈R

� : qi ∈
[
ρq−i , ρq

+
i

]
, i = 1, . . . , �

}
. (3.45)

Remark 3.9 (Interval matrices) An obvious question that was studied in depth in
the area of parametric robustness is whether the stability results for interval and
polytopic polynomials can be extended to uncertain matrices. In particular, a nat-
ural generalization of the interval polynomial framework leads to the notion of an
interval matrix, i.e. a matrix whose entries are bounded in given intervals. Formally,
a family A of interval matrices is defined as

A .= {A ∈R
n,n : [A]i,k ∈

[
a−ik, a

+
ik

]
, i, k = 1, . . . , n

}
. (3.46)

Unfortunately, it has been shown that extensions of Kharitonov-like results to stabil-
ity of interval matrices fail, see for instance [41]. Moreover, this problem has been
shown to be computationally intractable, see Sect. 5.1.
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Finally, we notice that one of the objectives of parametric stability is to establish
“extreme point” and “edge-like” results for special classes of uncertain polynomials
and uncertain feedback systems. An important tool for analyzing stability of uncer-
tain systems in the frequency domain is the so-called value set (or “template,” see
[208, 209] for specific discussions on this concept) and efficient algorithms have
been developed for its construction. The literature on parametric stability is very
broad and the interested reader is redirected, for instance, to the books [41, 58, 136]
and the surveys [42, 383].



Chapter 4
Linear Robust Control Design

This chapter continues the study of robustness of uncertain systems initiated in
Chap. 3. In particular, we now focus on robust synthesis, i.e., we discuss the prob-
lem of designing a controller K such that the interconnection in Fig. 4.1 achieves
robust stability with respect to uncertainty and (nominal or robust) performance in
the w→ z channel.

4.1 H∞ Design

The first problem that we study is the design of a controller such that the intercon-
nection shown in Fig. 4.2 is robustly stable for D̃=RHr,c∞ , Δ ∈ B

D̃
, where D̃ and

B
D̃

are defined in (3.25) and (3.26). This yields the classical H∞ design problem
discussed in this section.

In particular, we consider an extended plant G with state space representation

ẋ =Ax +B1wΔ +B2u;
zΔ = C1x +D11wΔ +D12u;
y = C2x +D21wΔ

(4.1)

where A ∈ R
ns ,ns , B1 ∈ R

ns ,r , B2 ∈ R
ns ,ni , C1 ∈ R

c,ns , D11 ∈ R
c,r , D12 ∈ R

c,ni ,
C2 ∈ R

no,ns , D21 ∈ R
no,r . In this section, we make the following standing assump-

tions

(A,B2) stabilizable;
(A,C2) detectable.

(4.2)

The small gain theorem implies that the well posedness and internal stability of
the interconnection in Fig. 4.2 for all Δ ∈ B

D̃
are equivalent to the existence of a

controllerK such that the closed loop betweenG andK is well posed and internally

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_4,
© Springer-Verlag London 2013
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Fig. 4.1 Interconnection for
control design guaranteeing
robust stability and (nominal
or robust) performance.
G(s) is the known part of the
system, Δ represents the
uncertain part, and K(s) is
the controller to be designed.
The signal w includes noise,
disturbances and reference
signals, z represents
controlled signals and
tracking errors, u is the
control signal, and y is the
measured output

Fig. 4.2 Interconnection for
control design guaranteeing
robust stability

stable, and the transfer matrix TwΔ,zΔ of the channel wΔ → zΔ satisfies the bound
‖TwΔ,zΔ‖∞ < 1/ρ. Partitioning the transfer matrix G as[

zΔ
y

]
=
[
G11 G12
G21 G22

][
wΔ
u

]

we write the transfer matrix TwΔ,zΔ in terms of the lower linear fractional transfor-
mation

TwΔ,zΔ =Fl (G,K)
.=G11 +G12K(I −G22K)

−1G21. (4.3)

Letting γ = 1/ρ, the (γ -suboptimal) H∞ robust design problem is now reformu-
lated.

Problem 4.1 (γ -suboptimal H∞ design) For fixed γ > 0, find, if possible, a con-
troller K such that the closed loop between G and K is well posed and internally
stable, and ‖TwΔ,zΔ‖∞ < γ .
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In the following, for simplicity, we consider full-order controllers, i.e. controllers
of the same order ns of the plant. Let the controller K , with state space representa-
tion

ẋK =AKxK +BKy;
uK = CKxK +DKy

be described by the quadruple

ΩK
.=
[
AK BK
CK DK

]
. (4.4)

Then, the closed-loop transfer matrix TwΔ,zΔ = Fl (G,K) has state space represen-
tation given by the block matrix

ΩT
.=
[
Acl Bcl

Ccl Dcl

]

=
⎡
⎣ A 0 B1

0 0 0
C1 0 D11

⎤
⎦+

⎡
⎣0 B2
I 0
0 D12

⎤
⎦ΩK

[
0 I 0
C2 0 D21

]
. (4.5)

From the bounded real lemma (Lemma 3.2), the closed loop is stable and
‖TwΔ,zΔ‖∞ < γ if and only if there exist a positive definite matrix Pcl � 0 such
that the linear matrix inequality⎡

⎣0 0 0
0 −γ I 0
0 0 −γ I

⎤
⎦+

⎡
⎣Pcl 0

0 0
0 I

⎤
⎦ΩT

[
I 0 0
0 I 0

]

+
⎡
⎣I 0

0 I

0 0

⎤
⎦ΩTT

[
Pcl 0 0
0 0 I

]
≺ 0

holds. This matrix inequality is rewritten more compactly as

Z(Pcl)+Φ(Pcl)ΩKΨ +Ψ TΩTKΦT (Pcl)≺ 0 (4.6)

where

Z(Pcl)=
⎡
⎣0 0 0

0 −γ I 0
0 0 −γ I

⎤
⎦+

⎡
⎣Pcl 0

0 0
0 I

⎤
⎦
⎡
⎣ A 0 B1

0 0 0
C1 0 D11

⎤
⎦[I 0 0

0 I 0

]

+
⎛
⎝
⎡
⎣Pcl 0

0 0
0 I

⎤
⎦
⎡
⎣ A 0 B1

0 0 0
C1 0 D11

⎤
⎦[I 0 0

0 I 0

]⎞⎠
T

;

Φ(Pcl)=
⎡
⎣Pcl 0

0 0
0 I

⎤
⎦
⎡
⎣0 B2
I 0
0 D12

⎤
⎦ ; Ψ =

[
0 I 0
C2 0 D21

][
I 0 0
0 I 0

]
.

Notice that the matrix inequality (4.6) is not jointly linear in Pcl and ΩK . How-
ever, (4.6) is an LMI in the controller matrix ΩK for fixed Pcl. A way to overcome
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this difficulty has been proposed in [173, 217]. Here, we adopt the representation
of [173]. First, we partition Pcl and P−1

cl as

Pcl =
[
S N

NT #

]
, P−1

cl =
[
R M

MT #

]
(4.7)

with M,N ∈R
ns,ns , R,S ∈ S

ns and # means “it doesn’t matter.” Then, the variable
ΩK is eliminated from condition (4.6) using suitable projections. This leads to the
existence theorem stated below, see [173].

Theorem 4.1 (H∞ LMI solvability conditions) Consider the extended plant (4.1)
with assumptions (4.2). Let N12 and N21 be orthogonal bases of the null spaces
of [BT2 DT12] and [C2 D21] respectively. Then, there exists a controller matrix
ΩK such that the closed loop is internally stable and ‖TwΔ,zΔ‖∞ < γ if and only if
there exist symmetric matrices R,S ∈ S

ns such that the following system of LMIs is
feasible

[
N12 0

0 I

]T ⎡⎢⎣
AR +RAT RCT1 B1
C1R −γ I D11

BT1 DT11 −γ I

⎤
⎥⎦[N12 0

0 I

]
≺ 0; (4.8)

[
N21 0

0 I

]T ⎡⎢⎢⎣
AT S + SA SB1 CT1

BT1 S −γ I DT11

C1 D11 −γ I

⎤
⎥⎥⎦
[
N21 0

0 I

]
≺ 0; (4.9)

[
R I

I S

]
� 0. (4.10)

We now make a few comments regarding the use of this result for constructing
an H∞ stabilizing controller, see [173]. Once a feasible pair R,S for (4.8)–(4.10) is
found, a full-order controller can be determined as follows:

1. Compute via SVD two invertible matricesM,N ∈R
ns ,ns such thatMNT = I −

RS;
2. The matrix Pcl � 0 in the bounded real lemma is uniquely determined as the

solution of the linear equations

Pcl

[
R I

MT 0

]
=
[
I S

0 NT

]
;

3. For Pcl determined as above, anyΩK that is feasible for the controller LMI (4.6)
yields a stabilizing γ -suboptimal controller for the system (4.1).

Remark 4.1 (Reduced-order H∞ controller) The LMI condition (4.10) in Theo-
rem 4.1 can be relaxed to nonstrict inequality. The resulting possible rank drop can
be exploited to determine a controller of reduced order k < ns . In particular, there
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exists a γ -suboptimal controller of order k < ns if and only if (4.8), (4.9) and the
inequality [

R I

I S

]
� 0

hold for some R, S which further satisfy

rank(I −RS)≤ k.
We also remark that in the third step of the above procedure for determining the
controller matrix ΩK it is not necessary to solve numerically the controller LMI,
since analytic formulas are given in [172, 217].

4.1.1 Regular H∞ Problem

In the so-called regular H∞ problem discussed in classical references such as [144],
the following standard simplifying assumptions are made

D11 = 0, DT12

[
C1 D12

]= [0 I
]
, D21

[
BT1 DT21

]= [0 I
]
.

(4.11)

With these assumptions, it may be easily verified1 that, letting X
.= γR−1 and

Y
.= γ S−1, and using the Schur complement rule, conditions (4.8)–(4.10) are equiv-

alent to

ATX+XA+X(γ−2B1B
T
1 −B2B

T
2

)
X+CT1 C1 ≺ 0; (4.12)

AY + YAT + Y (γ−2CT1 C1 −CT2 C2
)
Y +B1B

T
1 ≺ 0; (4.13)

X � 0, Y � 0, ρλ(XY) < γ
2. (4.14)

The left-hand sides of inequalities (4.12) and (4.13) coincide with the expressions
arising in the standard Riccati-based H∞ formulas [144]. In particular, the connec-
tion with the algebraic Riccati equations (AREs) is detailed in the next lemma.

Lemma 4.1 (ARE based H∞ solution) Consider the extended plant (4.1) satisfying
the following regularity conditions:

1. D11 = 0, DT12[C1 D12] = [0 I ], D21[BT1 DT21] = [0 I ];
2.
[A−jωI B2

C1 D12

]
has full column rank for all ω;

3.
[A−jωI B1

C2 D21

]
has full row rank for all ω.

1To this end, take N21 = [ I 0
−DT21C2 D

T⊥
21

]
, where DT⊥21 is the orthogonal complement of DT21, i.e.

D21D
T⊥
21 = 0 and DT⊥T21 DT⊥21 = I . Since D21B

T
1 = 0 we may write BT1 =DT⊥21 Z for some matrix

Z and, therefore, B1D
T⊥
21 D

T⊥T
21 BT1 = B1B

T
1 . Everything follows in a similar way for the first

inequality, choosing N12 = [ I 0
−BT2 D12 D

T
12

]
.
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Suppose that the two algebraic Riccati inequalities (ARIs)

ATX+XA+X(γ−2B1B
T
1 −B2B

T
2

)
X+CT1 C1 ≺ 0; (4.15)

AY + YAT + Y (γ−2CT1 C1 −CT2 C2
)
Y +B1B

T
1 ≺ 0 (4.16)

admit positive definite solutions X0, Y0 � 0. Then, the corresponding AREs

ATX+XA+X(γ−2B1B
T
1 −B2B

T
2

)
X+CT1 C1 = 0; (4.17)

AY + YAT + Y (γ−2CT1 C1 −CT2 C2
)
Y +B1B

T
1 = 0 (4.18)

have stabilizing solutions2 X∞, Y∞ satisfying

0 �X∞ ≺X0;
0 � Y∞ ≺ Y0.

Moreover, if ρλ(X0Y0) < γ
2, then ρλ(X∞Y∞) < γ 2.

Conversely, if the AREs (4.17) and (4.18) admit stabilizing solutions X∞ � 0,
Y∞ � 0 satisfying ρλ(X∞Y∞) < γ 2, then there exist feasible solutions X0, Y0 � 0
of the ARIs (4.15) and (4.16) such that ρλ(X0Y0) < γ

2.

Remark 4.2 (Controller formulas) Under the simplifying assumptions (4.11), for
any pair X,Y which is feasible for (4.12)–(4.14), a γ -suboptimal controller may be
constructed as

AK =A+ (γ−2B1B
T
1 −B2B

T
2

)
X+ (γ−2YX− I)−1

YCT2 C2;
BK =−(γ−2YX− I)−1

YCT2 ;
CK =−BT2 X;
DK = 0.

Moreover, if X∞ � 0, Y∞ � 0 satisfying ρλ(X∞Y∞) < γ 2 are stabilizing solutions
of the AREs (4.17) and (4.18), then substituting formally X =X∞, Y = Y∞ in the
above controller formulas, we obtain the expression of the so-called central con-
troller given in [144]. Riccati-based solutions for the general H∞ problem, without
simplifying assumptions, are given in [347, 348] and in [339].

4.1.2 Alternative LMI Solution for H∞ Design

An alternative approach to determine synthesis LMIs for the H∞ problem is based
on a systematic technique for transforming analysis LMI conditions into synthesis
LMIs using a suitable linearizing change of controller variables and a congruence
transformation, see [277, 346]. The next lemma is based on [346].

2X ∈ S
n is a stabilizing solution of the AREAT X+XA+XRX+Q= 0 if it satisfies the equation

and A+RX is stable.
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Lemma 4.2 (Linearizing change of variables) Let Pcl, P
−1
cl be partitioned as in

(4.7), where R,S ∈ S
n andM,N ∈R

ns ,ns . Let

Â
.=NAKMT +NBKC2R+ SB2CKM

T + S(A+B2DKC2)R;
B̂
.=NBK + SB2DK ;

Ĉ
.= CKMT +DKC2R;

D̂
.=DK

(4.19)

and

Π1
.=
[
R I

MT 0

]
, Π2

.=
[
I S

0 NT

]
.

Then, it holds that

PclΠ1 =Π2;
ΠT1 PclAclΠ1 =ΠT2 AclΠ1 =

[
AR +B2Ĉ A+B2D̂C2

Â SA+ B̂C2

]
;

ΠT1 PclBcl =ΠT2 Bcl =
[
B1 +B2D̂D21

SB1 + B̂D21

]
;

CclΠ1 = [C1R +D12Ĉ C1 +D12D̂C2
] ;

ΠT1 PclΠ1 =ΠT1 Π2 =
[
R I

I S

]
.

Applying the bounded real lemma to the closed-loop system ΩT in (4.5), and
performing the congruence transformation with bdiag(Π1, I, I ), we obtain a result
which provides alternative solvability conditions in the modified controller vari-
ables. This is stated in the next theorem, see [346] for proof.

Theorem 4.2 (Alternative H∞ LMI solution) Consider the extended plant (4.1)
with assumptions (4.2). Then, there exists a controller matrix ΩK such that the
closed loop is internally stable and ‖TwΔ,zΔ‖∞ < γ if and only if there exist sym-
metric matrices R,S ∈ S

ns and matrices Â, B̂, Ĉ, D̂ such that the following system
of LMIs is feasible3

⎡
⎢⎢⎣
AR +RAT +B2Ĉ + ĈT BT2 ÂT +A+B2D̂C2 B1 +B2D̂D21 ∗

∗ AT S + SA+ B̂C2 +CT2 B̂T SB1 + B̂D21 ∗
∗ ∗ −γ I ∗

C1R +D12Ĉ C1 +D12D̂C2 D11 +D12D̂D21 −γ I

⎤
⎥⎥⎦≺ 0;

(4.20)[
R I

I S

]
� 0. (4.21)

3The asterisks indicate elements whose values are easily inferred by symmetry.
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We now discuss this result and show how a γ -suboptimal H∞ controller can
be obtained. For any matrices Â, B̂ , Ĉ, D̂, R, S satisfying (4.20) and (4.21), we
can recover a γ -suboptimal H∞ controller by inverting the change of variables of
Lemma 4.2 as follows:

1. Compute via SVD two square and invertible matrices M,N ∈ R
ns,ns such that

MNT = I −RS. We remark that this is always possible for full-order controller
design due to the constraint (4.21);

2. The controller matrices are uniquely determined as

DK = D̂;
CK = (Ĉ −DKC2R)M

−T ;
BK =N−1(B̂ − SB2DK);
AK =N−1(Â−NBKC2R− SB2CKM

T − S(A+B2DKC2)R
)
M−T

(4.22)

whereM−T = (M−1)T = (MT )−1.

4.1.3 μ Synthesis

In this section, we consider the problem of designing a controller such that the in-
terconnection in Fig. 4.2 is well posed and robustly stable for structured uncertainty
of the form

D̃
.= {Δ ∈RHr,c∞ :Δ= bdiag(Δ1, . . . ,Δb),Δi ∈RHri ,ri∞

}
with the bound ‖Δ‖∞ < ρ. From the small μ theorem applied to the closed-loop
system Fl (G,K), the problem amounts to determining a controller K(s) such that

sup
ω∈R

μD

(
Fl
(
G(jω),K(jω)

))≤ 1

ρ

where D is the purely complex uncertainty structure

D= {Δ ∈C
r,c :Δ= bdiag(Δ1, . . . ,Δb), Δi ∈C

ri ,ri
}
.

Unfortunately, this problem cannot be solved efficiently in general. Indeed, even
evaluating μD for fixed K is computationally difficult, as discussed in Sect. 3.7.3.
However, in practice, the problem can be tackled using a suboptimal iterative ap-
proach, generally denoted as D–K iteration, see for instance [38, 106, 422].

D–K Iteration for μ Synthesis

1. Let K̂(s) be any stabilizing controller for the system (usually, K̂(s) is computed
solving a standard H∞ problem), and let {ω1, . . . ,ωN } be a suitable frequency
grid;
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Fig. 4.3 Configuration for
μ synthesis via D–K
iteration

2. Fix K(s)= K̂(s). Determine the sequence of scaling matrices of the form

D̃(ωi)
.= bdiag

(
d̃1(ωi)Ir1, . . . , d̃b−1(ωi)Irb−1 , Irb

)
, i = 1, . . . ,N

with d̃k(ωi) > 0 for k = 1, . . . , b− 1, such that

σ̄
(
D̃(ωi)Fl

(
G(jωi), K̂(jωi)

)
D̃−1(ωi)

)
, i = 1, . . . ,N

is minimized;
3. Find scalar transfer functions dk(s) ∈ RH∞ such that d−1

k (s) ∈ RH∞ and
|dk(jωi)| � d̃k(jωi), for i = 1, . . . ,N and k = 1, . . . , b − 1, and construct the
transfer matrix

D(s)
.= bdiag

(
d1(s)Ir1 , . . . , db−1(s)Irb−1 , Irb

);
4. Consider the configuration in Fig. 4.3, solve the H∞ minimization problem

K̂ = arg min
∥∥D(s)Fl(G(s),K(s))D−1(s)

∥∥∞
and repeat the iterations from step 2.

The D–K iteration is terminated when either an H∞ norm smaller than 1/ρ is
achieved in step 4, or no significant improvement is obtained with respect to the
previous iteration.

Remark 4.3 (Convergence of D–K iteration) The D–K iteration is not guaranteed
to converge to a global optimum (nor to a local one), but can be a useful tool for
many practical design problems.

For fixed K , the D-subproblem (step 2) is a convex optimization problem that
may be efficiently solved. Similarly, for fixed D, the K-subproblem (step 4) is a
standard H∞ design, which can be directly solved by means of the Riccati or LMI
approach discussed in the previous sections. However, the problem is not jointly
convex in D and K . The rational approximations required in step 3 may be per-
formed using interpolation theory, see e.g. [416], but this approach usually results
in high-order transfer functions. This is clearly not desirable, since it increases the
order of the scaled plant, and therefore of the controller. For this reason, a frequently
used method is based on graphical matching by means of low-order transfer func-
tions.

We finally remark that the D–K iteration may still be applied for more gen-
eral uncertainty structures, involving for instance repeated scalar blocks, provided
that suitable scalings are used in the evaluation of the upper bound of μD, see e.g.
Sect. 3.7.3.
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Fig. 4.4 Interconnection for
nominal H2 design

4.2 H2 Design

In this section, we discuss the problem of designing a controller K such that its in-
terconnection with the nominal modelG, see Fig. 4.4, provides closed-loop stability
and attains a level γ of H2 performance on the w→ z channel.

Let G be represented by

ẋ =Ax +B1w+B2u;
z= C1x +D11w+D12u;
y = C2x +D21w

(4.23)

where A ∈ R
ns ,ns , B1 ∈ R

ns ,q , B2 ∈ R
ns,ni , C1 ∈ R

p,ns , D11 ∈ R
p,q , D12 ∈ R

p,ni ,
C2 ∈ R

no,ns , D21 ∈R
no,q . In this section, we make the following standing assump-

tions

(A,B2) stabilizable;
(A,C2) detectable.

(4.24)

Following the same derivation as in the beginning of Sect. 4.1, we obtain the closed-
loop system Tw,z described by the block matrix

ΩT =
[
Acl Bcl

Ccl Dcl

]

given in (4.5). Then, for fixed γ > 0 the H2 performance design problem is formu-
lated.

Problem 4.2 (γ -suboptimal H2 design) For fixed γ > 0, find a controller K such
that the closed loop between G and K is well posed and internally stable, and
‖Tw,z‖2

2 < γ .

To obtain the H2 synthesis conditions we proceed as follows: first, we apply
Lemma 3.1 to the closed-loop matrices Acl,Bcl,Ccl,Dcl. Then, we introduce the
change of controller variables of Lemma 4.2, and perform the congruence trans-
formation with bdiag(Π1, I ), obtaining the result summarized in the next theorem,
see [346].
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Theorem 4.3 (H2 LMI solution) Consider the extended plant (4.23) with assump-
tions (4.24). Then, there exists a controller matrix ΩK such that the closed loop
is internally stable and ‖Tw,z‖2

2 < γ if and only if there exist symmetric matrices
R,S ∈ S

ns and matrices Q,Â, B̂, Ĉ, D̂ such that the following system of LMIs is
feasible⎡
⎢⎣
AR+RAT +B2Ĉ + ĈT BT2 ÂT +A+B2D̂C2 B1 +B2D̂D21

∗ AT S + SA+ B̂C2 +CT2 B̂T SB1 + B̂D21

∗ ∗ −I

⎤
⎥⎦≺ 0;

⎡
⎢⎣

R I (C1R +D12Ĉ)
T

I S (C1 +D12D̂C2)
T

(C1R +D12Ĉ) (C1 +D12D̂C2) Q

⎤
⎥⎦� 0;

D11 +D12D̂D21 = 0;
TrQ< γ.

For any matrices Â, B̂, Ĉ, D̂,R,S satisfying the LMI solvability conditions of
this theorem, we recover a γ -suboptimal H2 controller by inverting the change of
variables in (4.19) using (4.22).

Under the standard regularity assumptions introduced in Sect. 4.1.1, the solution
of the H2 problem can be alternatively stated in terms of two decoupled AREs, as
summarized in the next lemma, see e.g. [422].

Lemma 4.3 (ARE based H2 solution) Consider the extended plant (4.23) satisfy-
ing the following regularity assumptions:

1. D11 = 0;
2. R1

.=DT12D12 � 0 and R2
.=D21D

T
21 � 0;

3.
[A−jωI B2

C1 D12

]
has full column rank for all ω;

4.
[A−jωI B1

C2 D21

]
has full row rank for all ω.

Define

Ax
.=A−B2R

−1
1 DT12C1, Ay

.=A−B1D
T
21R

−1
2 C2

and let X,Y � 0 be stabilizing solutions of the two AREs

XAx +ATx X−XB2R
−1
1 BT2 X+CT1

(
I −D12R

−1
1 DT12

)
C1 = 0; (4.25)

YATy +AyY − YCT2 R−1
2 C2Y +B1

(
I −DT21R

−1
2 D21

)
BT1 = 0. (4.26)

Then, the controller

BK = (B1D
T
21 + YCT2

)
R−1

2 ; (4.27)

CK =−R−1
1

(
DT12C1 +BT2 X

); (4.28)

AK =A+B2CK −BKC2; (4.29)

DK = 0 (4.30)
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stabilizes the closed-loop system and minimizes the H2 norm of the w→ z channel.
Moreover, with this controller we have

‖Tw,z‖2
2 = TrBT1 XB1 + TrCKYC

T
KR1.

Remark 4.4 (LQG control) The H2 control problem is equivalent to classical
linear quadratic Gaussian (LQG) control. The connection is established assum-
ing that the exogenous signal w(t) is white Gaussian noise with E(w(t)) = 0,
E(w(t)wT (t + τ)) = Iδ(τ ), where δ(·) is the Dirac impulse function. In this case,
the objective is to determine a control law that stabilizes the closed loop and mini-
mizes the average output power

E

(
lim
T→∞

1

T

∫ T

0
‖z‖2 dt

)
= ‖z‖2

rms = ‖Tw,z‖2
2.

An important special case that falls out directly from the H2 problem is the clas-
sical linear quadratic regulator (LQR) problem, which is discussed next.

4.2.1 Linear Quadratic Regulator

In the traditional linear quadratic regulator problem, see for instance [21, 246], we
consider the system description

ẋ =Ax +B2u (4.31)

with initial state x(0) = x0 ∈ R
ns given but arbitrary. We look for a state feedback

control law of the form u = −Kx, where K ∈ R
ni ,ns such that the closed loop is

stable and the following cost is minimized

c=
∫ ∞

0

[
x(t)

u(t)

]T
Q

[
x(t)

u(t)

]
dt (4.32)

where

Q
.=
[
Qxx Qxu
QTxu Quu

]
� 0. (4.33)

Since Q is positive semidefinite, it can be factored as

Q=
[
CT1

DT12

][
C1 D12

]
.

Therefore, the above cost c is equivalent to ‖z‖2
2, where z is the output associated

with (4.31)

z= C1x +D12u. (4.34)

We now state a result analogous to Lemma 4.3 for the LQR problem.
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Lemma 4.4 (Extended LQR) Consider the plant (4.31), (4.34) satisfying the fol-
lowing hypotheses:

1. (A,B2) is stabilizable;
2.
[A−jωI B2

C1 D12

]
has full column rank for all ω;

3. [D12 D
⊥
12]T [D12 D

⊥
12] =

[
Quu 0

0 I

]� 0.

Then, there exists a unique optimal control minimizing the cost function given
in (4.32)

K =Q−1
uu

(
BT2 X+DT12C1

)
where X � 0 is the stabilizing solution of the ARE(

A−Q−1
uuD

T
12C1

)T
X+X(A−Q−1

uuD
T
12C1

)−XB2Q
−1
uu B

T
2 X

+CT1 D⊥
12D

⊥T
12 C1 = 0. (4.35)

Moreover, the optimal cost is c= xT0 Xx0.

Remark 4.5 (Standard LQR) We notice that in the standard LQR it is often assumed
that Qxu = 0, i.e. CT1 D12 = 0. This assumption is made without loss of generality,
since there always exists a coordinate transformation that brings a general LQR
problem in standard form. In this situation, the cost function is

c=
∫ ∞

0

(
xT (t)Qxxx(t)+ uT (t)Quuu(t)

)
dt (4.36)

with Qxx � 0 and Quu � 0. Then, the ARE in (4.35) is simplified as

ATX+XA−XB2Q
−1
uu B

T
2 X+Qxx = 0. (4.37)

Furthermore, the unique optimal control law is given by

u(t)=−Q−1
uu B

T
2 Xx(t) (4.38)

where X � 0 is the corresponding stabilizing solution of (4.37).

In the next section we study the related problems of quadratic stabilizability and
guaranteed-cost linear quadratic control.

4.2.2 Quadratic Stabilizability and Guaranteed-Cost

We next consider the case when the system (4.31) described in state space form is
affected by uncertainty. In particular, we study

ẋ =A(Δ)x +B2u, x(0)= x0 ∈R
ns (4.39)

where Δ belongs to the uncertainty set BD defined in (3.28). This system is said to
be quadratically stable if there exists P � 0 such that the Lyapunov inequality

A(Δ)P + PAT (Δ)≺ 0 (4.40)



54 4 Linear Robust Control Design

is satisfied for all Δ ∈ BD. Then, we address the problem of finding a control law
u=−Kx, K ∈R

ni ,ns , such that the closed-loop is quadratically stable. That is, we
seek P � 0 and K such that the inequality(

A(Δ)+B2K
)
P + P (A(Δ)+B2K

)T ≺ 0

is satisfied for all Δ ∈ BD. This matrix inequality is not jointly linear in P and K .
However, introducing the new matrix variable Y = KP as in [68] we obtain the
following robust LMI in the variables P , Y

A(Δ)P + PAT (Δ)+B2Y + YT BT2 ≺ 0, for all Δ ∈ BD, (4.41)

where the matrix Y ∈ R
ni ,ns is not necessarily symmetric. We say that the system

(4.39) is quadratically stabilizable if there exist matrices P � 0 and Y such that the
above LMI holds for allΔ ∈ BD, that is if it holds robustly with respect toΔ. Robust
LMIs are discussed in the next section. Relations between quadratic stabilization
and H∞ design can be found in a number of papers, including [234].

Remark 4.6 (Quadratic stability/stabilizability for interval matrices) In general, the
matrix inequalities (4.40) or (4.41) are to be solved for all Δ ∈ BD, i.e. we have to
satisfy an infinite number of LMIs simultaneously. In many important cases, owing
to convexity properties, this problem can be reduced to the solution of a finite num-
ber of LMIs. For example, let A be an ns × ns interval matrix family, defined as
in (3.46). In this case, the problem of quadratic stability, i.e. finding a common solu-
tion P � 0 satisfying (4.40) for all [A]i,k in the intervals [a−ik, a+ik], i, k = 1, . . . , ns ,
is equivalent to finding P � 0 that satisfies

A�P + P (A�)T ≺ 0, �= 1, . . . ,2n
2
s

where A� is a vertex matrix obtained setting all the entries of the interval matrix
to either lower a−ik or upper a+ik bounds, see e.g. [206]. Extreme point results of
this kind also hold for more general classes than interval matrices, see e.g. [41].
A major computational issue, however, is that the number of LMIs which should be
simultaneously solved is exponential in ns . It has been recently shown in [11, 90]
that the number of vertex systems may be reduced to 22ns .

Quadratic stability and LQR control may be linked together in the so-called
guaranteed-cost LQR control described below. Consider the system (4.39) and the
standard quadratic cost

c(Δ)=
∫ ∞

0

(
xT (t)Qxxx(t)+ uT (t)Quuu(t)

)
dt

withQxx � 0 andQuu � 0. Then, for γ > 0 the objective is to find a state feedback
law of the form

u(t)=−Q−1
uu B

T
2 P

−1x(t) (4.42)

where the design matrix variable P � 0 is chosen so that the closed-loop system is
quadratically stable and the cost

c(Δ)≤ γ−1xT0 P
−1x0 (4.43)

is guaranteed for all Δ ∈ BD.
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The guaranteed-cost control problem can be easily formulated in terms of LMIs,
see e.g. [68]. We present here an alternative characterization involving a quadratic
matrix inequality (QMI).

Lemma 4.5 Let P � 0 be a solution that simultaneously satisfies the QMIs

A(Δ)P + PAT (Δ)− 2B2Q
−1
uu B

T
2 + γ (B2Q

−1
uu B

T
2 + PQxxP

)≺ 0 (4.44)

for all Δ ∈ BD. Then, the control law

u(t)=−Q−1
uu B

T
2 P

−1x(t)

quadratically stabilizes the system (4.31) and the cost

c(Δ)≤ γ−1xT0 P
−1x0

is guaranteed for all Δ ∈ BD.

The proof of this result is standard and it is not reported here; see e.g. [243, 322]
for statements and proofs of similar results.

Remark 4.7 (Special cases of guaranteed-cost control) We notice that if γ → 0,
then the constraint (4.43) on the cost c(Δ) vanishes and the guaranteed-cost control
reduces to a special case of quadratic stabilizability with the specific choice of a
control law of the form (4.42). On the other hand, by setting γ = 2 and Qxx = 0 in
Eq. (4.44), we recover the quadratic stability setup.

4.3 Robust LMIs

As seen in the previous sections, several robust control problems can be formulated
as the robust solution of general uncertain LMIs of the form

F(Δ,θ)� 0, Δ ∈ BD (4.45)

where the LMI matrices Fi(Δ) ∈ S
n, i = 0,1, . . . , nθ , are known functions of the

uncertainty Δ. That is

F(Δ,θ)
.= F0(Δ)+

nθ∑
i=1

θiFi(Δ)

and Δ ∈ BD and θ ∈R
nθ .

Remark 4.8 (Robust optimization) In the optimization area, mathematical program-
ming problems subject to an infinite number of constraints, such as (4.45), are usu-
ally referred to as semi-infinite programs, see e.g. [333]. In the last years, a new
paradigm in this area termed robust optimization, has emerged. Pioneering studies
in this field are [50, 158]. In particular, [158] deals with optimization problems sub-
ject to constraints of type (4.45), which are termed robust semidefinite programs.
Determining an exact solution for these problems is computationally intractable in
the general case.
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4.4 Historical Notes and Discussion

In the early 1970s, a set-theoretic description of a plant family, often called
unknown-but-bounded model [351], emerged as a novel paradigm for estimation
and Kalman filtering. A few years later, researchers realized some drawbacks of op-
timal control, such as the lack of guaranteed margins of linear quadratic Gaussian
(LQG) [142]. Subsequently, in the early 1980s, a successful alternative to the exist-
ing classical approach for control has been developed. In this new setting, the design
objective is to determine feedback controllers that are guaranteed against all possi-
ble uncertainty realizations, i.e. worst-case (or robust) controllers, see [337] for an
historical account on the history of robust control. In other words, a controller is
designed with the aim of guaranteeing a specified performance for all plants that are
compatible with the uncertainty description.

A major stepping stone in the robustness direction was the formulation in 1981
by Zames of the H∞ problem [420]. In the subsequent fifteen years, the research
in robust control evolved in various directions, each based on diverse problem for-
mulations and mathematical tools. Even though several subareas played a major
role within robustness, we feel that H∞ deserves the credit for its centrality and
also for its connections with classical optimal control. However, other successful
methods to handle uncertainty have been developed. In particular, we recall the
methods based on the structured singular value, also known as μ theory [314], the
approach dealing with systems affected by parametric uncertainty, or Kharitonov
theory [41, 58], the optimization-based methods based on linear matrix inequali-
ties [68], the �1 optimal control theory [121] and the so-called quantitative feedback
theory (QFT) [208, 209].

In the late 1980s, robust control became a well-known discipline so that the tech-
nical results and the algorithms developed were successfully used in various indus-
trial applications, including aerospace, chemical, electrical and mechanical engi-
neering. Moreover, the impact of robust control theory has begun to spread to other
fields than engineering, such as economics [191].4

A few years later, in the early 1990s, researchers in robust control realized more
fully some of its theoretical limitations, which can be roughly summarized as the
issues of conservatism and computational complexity. In fact, when compared with
classical stochastic methods, the worst-case paradigm may lead to problems whose
exact solution cannot be determined in polynomial time, see e.g. [61]. Therefore,
relaxation techniques are typically introduced so that the resulting problem can be
solved with numerically efficient algorithms. Clearly, this entails a compromise be-
tween tightness of the solution and numerical complexity, as discussed in Chap. 5.

The brief presentation of robustness analysis and control techniques given in this
and the previous chapter is necessarily incomplete. The H∞ theory alone has been
the subject of a variety of studies, each addressing different viewpoints. Quoting

4T.J. Sargent was awarded the Nobel Memorial Prize in Economic Sciences in 2011 together with
C.A. Sims “for their empirical research on cause and effect in the macroeconomy.”
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Lanzon, Anderson and Bombois (see [253] and its previous versions), “Some con-
trol theorists may say that interpolation theory [416] is the essence of H∞ control,
whereas others may assert that unitary dilation [144] is the fundamental underlying
idea of H∞ control. Also, J-spectral factorization [236] is a well-known framework
of H∞ control. A substantial number of researchers may take differential game the-
ory [34] as the most salient feature of H∞ control and others may assert that the
bounded real lemma is the most fundamental building block with its connections
to LMI techniques. All these opinions contain some truth since some techniques
may expose certain features of the problem that are hidden (to some degree) when
using different viewpoints.” The approach chosen in this chapter mainly focuses
on LMI techniques, since this appears computationally attractive and quite flexible.
For instance, multiobjective design with mixed H2/H∞ performance specifications
may be easily implemented in the LMI framework [345, 346, 375]. Also, robustness
analysis based on integral quadratic constraints (IQCs) relies on LMI optimization
[219, 280], as well as most of the recent results based on parameter-dependent Lya-
punov functions [156].

In this chapter, we also presented well-known results related to nominal H2 con-
trol design. The issue of robust (or guaranteed-cost) H2 control is not included in
this introductory exposition. The interested reader is referred for instance to the
survey [315] and to [373, 415]. We remark that recently there has been a growing
interest in solutions to robust control problems based on polynomially-constrained
optimization. The interest towards these techniques has been revitalized by the in-
troduction of approaches based on sum-of-squares (SOS) relaxations [105, 320],
and other results of real algebraic geometry; see e.g. [254, 255]. In [349], a matrix-
version of SOS representation is given to construct relaxations for computing upper
bounds of robust optimization problem when uncertain parameters are constrained
by polynomial matrix inequalities. These approaches systematically build an hi-
erarchy of convex relaxations of the robust optimization problem. Such “lifted”
problems provide a guaranteed—and hence conservative—solution to the original
problem. The nice feature of these methods, that makes them preferable to other
conservative approaches, is that under mild assumptions one can prove asymptotic
convergence of the solutions of the convex relaxations to the solution of the original
robust optimization problem as one increases the order of the relaxation.



Chapter 5
Limits of the Robustness Paradigm

In this chapter we discuss some limits of the classical robustness paradigm. In par-
ticular, we study complexity issues, conservatism and discontinuity problems. As
outlined in Chaps. 3 and 4, stability and performance of control systems affected by
bounded perturbations have been studied in depth in recent years. The attention of
researchers and control engineers concentrated on specific descriptions of the uncer-
tainty structures and related computational tools. Following the notation established
in Sect. 3.6, we denote by Δ the uncertainty affecting a linear time-invariant system
M(s). In particular, Δ is generally assumed to belong to the structured set

D= {Δ ∈ F
r,c :Δ= bdiag(q1Im1, . . . , q�Im�,Δ1, . . . ,Δb)

}
where q1, . . . , q� represent real or complex uncertain parameters, possibly repeated
with multiplicity m1, . . . ,m�, respectively, and Δ1, . . . ,Δb represent full blocks of
appropriate dimensions. The structured matrix Δ is assumed to be bounded by a
quantity ρ. That is, Δ belongs to the structured norm bounded set

BD(ρ)=
{
Δ ∈D : ‖q‖p ≤ ρ, σ̄ (Δi)≤ ρ, i = 1, . . . , b

}
.

Then, we consider the family of uncertain systems obtained when the uncertainty Δ
varies over BD(ρ) and we say that a certain property, e.g. stability or performance,
is robustly satisfied if it is satisfied for all members of the family. As discussed in
Sect. 3.7, the largest value of ρ so that stability or performance holds for all Δ is
called the robustness margin or stability radius

rD(M)= sup
{
ρ : stability (or performance) holds for all Δ ∈ BD(ρ)

}
.

The main objective of robustness analysis is to develop efficient algorithms for com-
puting rD(M) for various uncertainty structures D. In Chap. 4, we presented some
classical results for special classes of D. In general, however, the problem of com-
puting rD(M) is known to be difficult from the computational point of view. This
issue is addressed in the next section.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_5,
© Springer-Verlag London 2013
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5.1 Computational Complexity

The first critical issue of the classical robustness paradigm is computational com-
plexity. In particular, various robust control problems have been shown to fall into
the category of the so-called “intractable” problems, which are practically unsolv-
able if the number of variables becomes sufficiently large. These problems are gen-
erally denoted as NP-hard. In this section, we present introductory material on com-
putational complexity and then discuss some robust control problems which fall
into the category of NP-hard problems. The reader interested in more advanced ma-
terial regarding decidability concepts and NP-completeness may refer to standard
references such as [7, 176], and for specific results on continuous computational
complexity to [388]. The material presented here is based on the overview [61] on
computational complexity results in systems and control.

5.1.1 Decidable and Undecidable Problems

First, we study decision problems, i.e. problems for which the answer is either “yes”
or “no.” An example of a decision problem is checking whether a given matrix
with integer entries is nonsingular. This question can be answered, for instance,
by computing the determinant of the matrix and verifying if it is zero or not. This
nonsingularity problem is known to be decidable, that is there exists an algorithm
which always halts with the right “yes/no” answer. Unfortunately, there are many
undecidable problems for which there is no algorithm that always halts with the right
answer. We now provide an example of a decidable problem, see for instance [61].

Example 5.1 (Decidable problem) Consider a set of m multivariate polynomials
p1(x), . . . , pm(x) with rational coefficients in n real variables x = [x1 · · ·xn]T . The
problem is to decide whether a solution x exists satisfying m polynomial equalities
and inequalities of the form

pi(x1, . . . , xn)= 0 i = 1, . . . ,mi;
pk(x1, . . . , xn) > 0 k = 1, . . . ,mk;
p�(x1, . . . , xn)≥ 0 �= 1, . . . ,m�

(5.1)

where mi +mk +m� =m. This problem is decidable.

A variation on this example is the following: to decide if there exist x1, . . . ,

xq ∈ R such that (5.1) is satisfied for all xq+1, . . . , xn ∈ R. This problem is also
decidable since it can be reduced to the previous one with the so-called Tarski–
Seidenberg quantifier elimination (QE) method, see [352, 379]. On the other hand,
there are many problems which are undecidable. Probably, the most famous one is
the Hilbert’s tenth problem on Diophantine equations, which is stated next.
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Example 5.2 (Undecidable problem) Given an integer coefficient polynomial p(x)
in the variables x1, . . . , xn, the goal is to decide if there exists an integer root. This
problem has been shown to be undecidable in [278], see also [123] for an elementary
exposition.

5.1.2 Time Complexity

Assuming that an algorithm halts, we define its running time as the sum of the
“costs” of each instruction. In the so-called random access machine (RAM) model,
each arithmetic operation involves a single instruction which is assumed to have a
unit cost. More realistically, in the bit model, the cost of an arithmetic operation is
given by the sum of the bit length of the integers involved in the operation, i.e. the
running time of the algorithm depends on the size of the problem instance.

Since the running time may be different for different instances of the same size,
we define the running time T (n) as the worst-case running time over all instances
of size n. Formally, we say that an algorithm runs in polynomial time if there exists
an integer k such that its worst-case running time is1

T (n)=O(nk).
We define P as the class of all decision problems having polynomial-time algo-
rithms. In practice, the class P consists of all problems that are efficiently solvable.
Notice that the notion of time complexity is associated with a specific algorithm and
not with the problem itself. In other words, for the same problem, algorithms with
different complexity may be derived.

An alternative definition of polynomial-time algorithms is related to the notion
of “average” running time. An interesting example in this direction is the simplex
method for solving linear programming problems. The complexity of the simplex
method has been shown to be not polynomial-time in the worst case. However, it
is known to have polynomial average running time. We will not discuss average
complexity issues further, but we refer to [288, 350]. An example of a problem
which is solvable in polynomial time is stability of a continuous-time system, which
is presented next.

Example 5.3 (Polynomial-time test for Hurwitz stability) Given a monic polyno-
mial of order n

p(s)= a0 + a1s + a2s
2 + · · · + sn

we would like to ascertain if p(s) is Hurwitz. This question can be easily answered
using the Routh table. In particular, in [313] it is shown that the number of arithmetic

1The notationO(·) means the following: for functions f,g :R+ →R
+, we write f (n)=O(g(n))

if there exist positive numbers n0 and c such that f (n)≤ cg(n) for all n≥ n0.
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operations (additions, multiplications and divisions) required by the Routh test is
given by

n2 − 1

4
for n odd and

n2

4
for n even.

Therefore, we conclude that Hurwitz stability has a polynomial-time solution and,
moreover, that the number of operations required is O(n2). In [313], a detailed
complexity analysis of tabular and determinant methods for continuous and discrete-
time stability is also reported.

5.1.3 NP-Completeness and NP-Hardness

Unfortunately, for many decidable problems of interest, no polynomial-time algo-
rithm is known. Many of these problems belong to a specific class of nondetermin-
istic polynomial time, denoted as NP. A decision problem is said to belong to NP if
the validity of a “yes” instance can be verified in polynomial time. Clearly, the class
NP includes the class P. An example of a problem in the class NP is the so-called
satisfiability problem (SAT) recalled next.

Example 5.4 (SAT problem) Consider the case of n binary variables x1, . . . , xn ∈
{0,1} and a set of m linear equality and (strict) inequality constraints

ci(x1, . . . , xn)= 0 i = 1, . . . ,mi;
ck(x1, . . . , xn) > 0 k = 1, . . . ,mk

(5.2)

with mi +mk =m. Notice that the sums and products in the constraints (5.2) can be
interpreted as Boolean operations. The problem is to determine if a binary solution
exists. Clearly, if we have a solution, then the “yes” instance can be verified in
polynomial time, since it suffices to check if the conditions (5.2) are satisfied.

It has been shown, [112], that SAT is the hardest problem in the class NP. That
is, every problem in the class NP can be reduced to SAT in polynomial time. More
precisely, let R be any problem in NP. Then, given an instance I of R, there exists
a polynomial-time algorithm which provides an “equivalent” instance I ′ of SAT.
The “equivalence” statement means that I is a “yes” instance of R if and only if
I ′ is a “yes” instance of SAT. This means that, if a polynomial-time algorithm for
SAT were found then every problem in NP would be solvable in polynomial time.
For this reason, the SAT problem belongs to the class of NP-complete problems. In
words, a problem is NP-complete if it is at least as difficult as any other problem in
NP. NP-completeness has been established for many problems, see e.g. [176].

To elaborate further, suppose that a polynomial-time algorithm for SAT is known.
In this case, any problem in NP could be solved in polynomial time, by first reducing
it to SAT and then using the polynomial-time algorithm for SAT. The immediate
consequence of this fact would be that the classes NP and P coincide. Unfortunately,
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it is not known if a polynomial-time algorithm for SAT exists and, therefore, it is
not known if P = NP, even though it is widely believed that P �= NP. The question
of whether P is equal to NP is actually one of the main outstanding problems in
theoretical computer science.

On the other hand, if a problem R is at least as hard as SAT (i.e. the SAT problem
can be mapped into R in polynomial time), then we say that R is NP-hard. There-
fore, a decision problem is NP-complete if and only if it is NP-hard and belongs to
NP. In other words, if we could find an algorithm which runs in polynomial time for
solving an NP-hard problem, we would have a polynomial-time solution for SAT.
For this reason, NP-hardness is generally interpreted as “the problem is intractable.”

We notice that there exist classes of problems which are harder than NP. For
instance, consider the class EXP ⊃ NP ⊃ P of problems that can be solved in expo-
nential time, i.e. withO(2n

k
) operations, for some integer k, where n is the problem

size. Then, the hardest problems in this class are called EXP-complete. These prob-
lems are provably exponential time, i.e. P �= EXP, see [318].

In recent years, a number of systems and control problems have been shown to
be NP-hard. In the next subsection, we describe some of them.

5.1.4 Some NP-Hard Problems in Systems and Control

In Sect. 3.7, we defined the structured singular value μD of a matrix M ∈ F
c,r with

respect to the uncertainty structure D

μD(M)= 1

min{σ̄ (Δ) : det(I −MΔ)= 0,Δ ∈D}
unless no Δ ∈D makes I −MΔ singular, in which case μD(M)= 0. As previously
discussed, the computation of μD for general uncertainty structures is a difficult
problem. More precisely, it has been shown that the problem of deciding whether
μD(M)≥ 1 is NP-hard in the following cases:

1. Real μ problem.M is a real matrix and

D= {Δ :Δ= bdiag(q1Im1, . . . , q�Im�), qi ∈R
};

2. Mixed μ problem.M is a complex matrix and

D= {Δ :Δ= bdiag(q1Im1, . . . , q�Im�), qi ∈ F
};

3. Purely complex μ problem.M is a complex matrix and

D= {Δ :Δ= bdiag(q1Im1, . . . , q�Im�), qi ∈C
}
.

The first two results are proven in [71], and the third is stated in [386]. Subsequent
specific results regarding the complexity of approximating μ are not discussed here
but are reported in [61].

We now turn our attention to the class of n×n interval matrices defined in (3.46),
where each entry [A]i,k of the matrix is bounded in the interval [a−ik, a+ik], for all
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i, k = 1, . . . , n. For this class, we are interested in establishing the complexity of
various problems, including Hurwitz stability and nonsingularity. Clearly, stability
can be detected by studying the characteristic polynomial. In the special case of in-
terval matrices in controllability (observability) canonical form, with perturbations
entering only in the last column (row), the characteristic polynomial is an interval
polynomial with coefficients lying in independent intervals. Then, stability can be
easily established through the Kharitonov theorem, see Sect. 3.8, which requires
checking the stability of four specific polynomials. As discussed in Example 5.3,
this test can be performed in O(n2) operations. However, similar results cannot be
derived for stability of general interval matrices, and this problem is NP-hard. Sim-
ilar negative complexity results have been established for different problems. More
precisely, for the class of interval matrices, the following problems have been shown
to be NP-hard:

1. Stability. Decide if all matrices in this class are Hurwitz;
2. Nonsingularity. Decide if all matrices in this class are nonsingular;
3. Largest singular value. Decide if all matrices in this class have spectral norm less

than one;
4. Positive definiteness. Decide if all symmetric matrices in this class are positive

definite.

These results have been established independently in [295, 323]. Related results for
the nonsingularity problem are given in [115, 131].

Next, we turn our attention to the counterpart of stability of a family of matrices,
namely the “existence” problem. It has been shown that establishing if there exists a
Hurwitz matrix in the class of interval matrices is NP-hard. This problem is closely
related to the well-known static output feedback problem: given state space matri-
ces A, B and C, we are interested in determining if there exists a static feedback K
such that A+ BKC is Hurwitz. Static output feedback has been shown to be NP-
hard when lower and upper bounds on the entries of K are given, see e.g. [61]. This
problem has also been reformulated in terms of decision methods, see [20]. A spe-
cific instance of the static output feedback problem is the so-called “one-in-a-box”
problem, see [118]. More generally, reformulations of “difficult” control problems
in terms of multivariate polynomial inequalities for the use of quantifier elimination
(QE) methods have been addressed in various papers, see e.g. [139, 140]. How-
ever, such reformulations do not lead to a simplification, since QE problems have
exponential complexity. In recent years, computationally more efficient approaches
to optimization problems under multivariate polynomial inequalities have been de-
veloped in the context of sum-of-squares and moment-based techniques, see the
discussion in Sect. 4.4.

To conclude this section on complexity in systems and control, we mention that
branch-and-bound techniques are often used to solve problems which are apparently
intractable, see e.g. [37, 127, 301]. These techniques seem to work reasonably well
in practice, because the algorithms may run in polynomial time “on average,” even
though they are exponential time in the worst-case.
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Fig. 5.1 Overbounding of
the multiaffine uncertainty of
Example 5.5

5.2 Conservatism of Robustness Margin

For real parametric uncertainty entering affinely into a control system, it is well
known that the robustness margin can be computed exactly (modulo round-off er-
rors). However, in real-world problems, the plant may be affected by nonlinear un-
certainty. In many cases, this nonlinear uncertainty can be embedded into an affine
structure by replacing the original family by a “larger” one. This process has the
advantage of handling more general robustness problems, but it has the obvious
drawback of giving only an approximate but guaranteed solution. Clearly, the qual-
ity of the approximation depends on the specific problem under consideration. This
issue is analyzed in the next example.

Example 5.5 (Parameter overbounding and relaxation) To illustrate the overbound-
ing methodology, consider the DC electric motor of Example 3.4 with two uncertain
parameters q1 =R and q2 = J . In this case, the closed-loop polynomial has the fol-
lowing multiaffine form

p(s, q)=Km + (K2
m +Bq1

)
s + (q1q2 +BL)s2 +Lq2s

3.

To overbound p(s, q) with affine uncertainty, we set q3 = q1q2. Given bounds
[q−1 , q+1 ] and [q−2 , q+2 ] for q1 and q2, the range of variation [q−3 , q+3 ] for q3 can
be immediately computed

q−3 = min
{
q−1 q

−
2 , q

−
1 q

+
2 , q

+
1 q

−
2 , q

+
1 q

+
2

};
q+3 = max

{
q−1 q

−
2 , q

−
1 q

+
2 , q

+
1 q

−
2 , q

+
1 q

+
2

}
.

Clearly, the new uncertain polynomial

p̃(s, q)=Km + (K2
m +Bq1

)
s + (q3 +BL)s2 +Lq2s

3

has three uncertain parameters q1, q2, q3 entering affinely into p̃(s, q). Since q3 =
q1q2, this new parameter is not independent of q1 and q2, and not all values of
[q−3 , q+3 ] are physically realizable. However, since we neglect this constraint and
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assume that the parameters qi are independent, this relaxation technique leads to
an overbounding of p(s, q) with p̃(s, q). In other words, if stability is guaranteed
for p̃(s, q), then it is also guaranteed for p(s, q), but the converse may not be true.
Figure 5.1 illustrates the overbounding procedure for q−1 = 1.2, q+1 = 1.7, q−2 = 1.7,
q+2 = 2.2, q−3 = 2.04 and q+3 = 3.74. In this figure, the blue square represents the
set of all physically realizable uncertainties, and the three-dimensional box shows
its overbounding. The conservatism of the approach is evident.

To generalize the discussion in this example, we restate the overbounding prob-
lem for parametric uncertainty as follows: given an uncertain polynomial p(s, q)
with nonlinear uncertainty structure and a hyperrectangle Bq , find a new uncertain
polynomial p̃(s, q)with affine uncertainty structure and a new hyperrectangle B̃q . In
general, there is no systematic methodology to construct an “optimal” overbound-
ing. The most natural way may be to compute an interval overbounding for each
coefficient of the polynomial, i.e. an interval polynomial overbounding. To illus-
trate, letting ai(q), i = 0,1, . . . , n− 1, denote the coefficients of p(s, q), the lower
and upper bounds are given by

a−i = min
q∈Bq

ai(q); a+i = max
q∈Bq

ai(q).

If ai(q) are affine or multiaffine functions, these minimizations and maximizations
can be easily performed. In fact, we have that

a−i = min
q∈Bq

ai(q)= min
k=1,...,2�

ai
(
qk
);

a+i = max
q∈Bq

ai(q)= max
k=1,...,2�

ai
(
qk
)

where q1, . . . , q2� are the vertices of the hyperrectangle Bq . However, this is not true
for more general uncertainty structures, for example if ai(q) are polynomial func-
tions of q . In this case, a tight interval polynomial overbounding may be difficult to
construct.

A technique frequently used to avoid the possible conservatism introduced by
overbounding and relaxation techniques is the so-called gridding approach. Sup-
pose we wish to establish if a polynomial p(s, q) is Hurwitz when its coefficients
are, for example, polynomial functions of q ∈ Bq . In this case, we can take N equi-
spaced points

qi = q−i + k q
+
i − q−i
N − 1

, k = 0,1, . . . ,N − 1

for each parameter qi , i = 1, . . . , �, and check stability for every point in the grid.
This procedure gives an “indication” of the robust stability of the system, which
becomes more and more precise as the number of grid point increases. Clearly,
the answer obtained by checking stability at the grid points does not provide any
guarantee for the entire set Bq . More importantly, the total number of grid points
is Ngrid = N�, which is exponential. This exponential growth is often referred to
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as the curse of dimensionality.2 This fact clearly illustrates that the two issues of
computational complexity and conservatism are indeed closely related and represent
one of the main trade-offs in robustness analysis and design.

A similar situation arises in uncertain systems with nonparametric uncertainty
described in M–Δ form. For example, for systems affected by more than one full
real block or more than three full complex blocks, the computation of μD (and
therefore of the robustness margin) can be generally performed only at the expense
of some conservatism. In fact, in these cases, only upper and lower bounds of μD

can be computed, see Sect. 3.7.3, but it may be difficult to estimate the degree of
conservatism introduced. This issue is further addressed in the next example.

Example 5.6 (Conservatism in robustness margin computation) We consider an ex-
ample concerning a five-mass spring–damper model with parametric uncertainty on
the stiffness and damping parameters and dynamic uncertainty due to unmodeled
dynamics analyzed in Sect. 19.5.

This flexible structure may be modeled as an M–Δ configuration, with M(s)=
C(sI −A)−1B . The matrixΔ is structured and consists of two repeated real param-
eters q1, q2 and one transfer matrix Δ1 ∈RH4,4∞ , i.e.

Δ ∈ D̃= {Δ :Δ= bdiag(q1I5, q2I5,Δ1)
}
.

For this M–Δ system, μD(M(jω)) cannot be computed exactly, and the derivation
of its upper and lower bounds requires the use of branch-and-bound techniques,
which are computationally very expensive. Another approach, similar to the over-
bounding method previously studied, is to neglect the structure of Δ “lumping to-
gether” the uncertainty in one single block. In this case, an upper bound of the
stability radius is immediately given by the small gain theorem studied in Sect. 3.7,
which requires the computation of the H∞ norm of M(s). That is, we obtain the
bound

rD
(
M(s)

)≥ rLTI
(
M(s)

)= 1

‖M(s)‖∞ .

More generally, a wide class of robust synthesis problems can be recast in the
form of nonlinear and nonconvex optimization problems, such as bilinear matrix in-
equalities (BMIs), see, e.g., [182], but such a reformulation does not solve the prob-
lem of efficiently deriving a controller. In fact, algorithms for finding global optimal
solutions to BMI problems, based for instance on branch-and-bound techniques,
have in general very high computational complexity, see comments in Sect. 5.1. On
the other hand, also in this case, methods based on relaxations and overbounding
have been proposed, at the expense of introducing a certain degree of conservatism.

2The frequently used terminology “curse of dimensionality” has been coined by Bellman in 1957
in his classical book on dynamic programming [49].
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5.3 Discontinuity of Robustness Margin

There is another drawback inherent to the robustness paradigm that may arise even
in the simple case when affine parametric uncertainty enters into the system. This is
due to the fact that the robustness margin need not be a continuous function of the
problem data. To show this phenomenon, we revisit a classical example [43] regard-
ing the robustness margin of a system affected by linear parametric uncertainty.

Example 5.7 (Discontinuity of robustness margin) Consider a SISO plant of the
form

Gκ(s, q)= Nκ(s, q)

Dκ(s, q)

where the numerator Nκ(s, q) and denominator Dκ(s, q) polynomials are given by

Nκ(s, q)= 4κ2 + 10κ2q1;
Dκ(s, q)= κ2 + (20 + 8κ + 20κq1 − 20q2)s + (44 + 2κ + 10q1 − 40q2)s

2

+(20 − 20q2)s
3 + s4,

where κ is a given parameter. The uncertain parameters vector q = [q1q2]T varies
within the hyperrectangle of radius ρ

Bq(ρ)=
{
q ∈R

2 : ‖q‖∞ ≤ ρ}.
Taking a unit feedback K(s) = 1, we study robustness of the closed-loop polyno-
mial

pκ(s, q)=Nκ(s, q)+Dκ(s, q)
for “large” variations of the parameters q1 and q2 within Bq(ρ) and infinitesimal
perturbations of κ . From this point of view, κ is considered as problem data, and
not an uncertain parameter. Then, this example studies continuity properties of the
robustness margin rq(κ) for small variations of κ .

More precisely, we study two cases. First, we consider the case where κ is fixed
and set to κ = κ̄ = 3+ 2

√
2. Second, we consider a small perturbation ε > 0 around

κ , i.e.

κ(ε)= κ̄ − ε = 3 + 2
√

2 − ε.
Clearly, κ(ε)→ κ̄ as ε→ 0+. Then, we derive the closed-loop polynomials corre-
sponding to these two cases, obtaining

pκ̄(s, q)=
(
5κ̄2 + 10κ̄2q1

)+ (20 + 8κ̄ + 20κ̄q1 − 20q2)s

+ (44 + 2κ̄ + 10q1 − 40q2)s
2 + (20 − 20q2)s

3 + s4 (5.3)

and

pκ(ε)(s, q)= pκ̄(s, q)− 2κ̄ε(2 + 5q1).
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Fig. 5.2 Subset of the roots
of pκ̄ (s, q), q ∈ Bq(ρ),
ρ = 0.417, for Example 5.7

Subsequently, it can be verified that

0.417 ≈ 1 − κ̄

10
= lim
ε→0+

rq
(
κ(ε)

)
> rq(κ̄)= 7 − κ̄

5
≈ 0.234.

Various robustness interpretations may be given, and we redirect the interested
reader to the original example in [43] and to further discussions in [41]. Here, we
only mention that this example illustrates the phenomenon called the “false sense of
security” of the robustness margin. That is, the closed-loop polynomial pκ(ε)(s, q)
is destabilized by an uncertainty approximately of size 0.234, and the robustness
margin corresponding to the polynomial pκ̄(s, q) is given by 0.417. In other words,
infinitesimal variations around κ̄ (which can be caused, for example, by numerical
round-off), may lead to an overestimate of the robustness margin of about 78 %.
This discontinuity phenomenon can also be illustrated by means of a plot of the
roots of pκ̄(s, q) when q ranges in a hyperrectangle of radius ρ = 0.417. It can be
easily seen that some roots lie on the imaginary axis, see Fig. 5.2, which depicts a
subset of the roots.



Chapter 6
Probabilistic Methods for Uncertain Systems

In this chapter, we introduce a probabilistic approach for analysis and design of
uncertain systems. As pointed out in Chap. 5, many pessimistic results on the
complexity-theoretic barriers of classical robust control have stimulated research
in the direction of finding alternative approaches. One of these approaches, which
constitutes the main subject treated in this book, proceeds by first shifting the mean-
ing of robustness from its usual deterministic sense to a probabilistic one. In this
respect, we shall claim that a certain system property is “almost robustly” satisfied
if it holds for “most” of the instances of the uncertainty. In other words, we ac-
cept the risk of this property being violated by a set of uncertainties having small
probability measure. Such systems may be viewed as being practically robust.

6.1 Performance Function for Uncertain Systems

In the robustness analysis framework discussed in Chap. 3, the main objective is to
guarantee that a certain system property is attained for all uncertainties Δ bounded
within a specified set BD. To this end, it is useful to define a performance function
(which is assumed to be measurable)

J (Δ) :D→R

where D is the uncertainty structured set defined in (3.27), and an associated perfor-
mance level γ . In general, the function J (Δ) can take into account the simultaneous
attainment of various performance requirements.

In the framework of robust synthesis studied in Chap. 4, the performance func-
tion depends also on some “design” parameters θ ∈ R

nθ (e.g. the parameters of the
controller), and takes the form

J (Δ, θ) :D×R
nθ →R.

Two examples showing specific performance functions are now given.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_6,
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Fig. 6.1 M–Δ configuration
of Example 6.1

Example 6.1 (Robust stability) Consider the feedback interconnection shown in
Fig. 6.1, where M(s) is a given transfer function and the uncertainty Δ belongs
to the structured set D defined in (3.27). We are interested in the internal stability of
this interconnection when the uncertainty Δ ∈ D is such that ‖Δ‖∞ < ρ. Consider
a state space realization of the transfer functionM(s)

M(s)= C(sI −A)−1B +D,
where A ∈ R

ns ,ns is stable, B,C,D are real matrices of suitable dimensions and
Δ ∈ BD.

We assume that the well-posedness condition on D holds, i.e. (I −DΔ) is non-
singular for all Δ. Then, from Lemma 3.4, internal stability of the system is equiva-
lent to the matrix A+BΔ(I −DΔ)−1C being stable for all Δ belonging to the set
D defined in (3.27) and with the bound σ̄ (Δ) < ρ. Then, we choose the performance
function J (Δ) :D→R for robust stability of theM–Δ interconnection as

J (Δ)=
{

0 if A+BΔ(I −DΔ)−1C is stable;
1 otherwise.

(6.1)

Setting the performance level for instance to γ = 1/2, robust stability is equivalent
to checking if

J (Δ)≤ γ
for all Δ ∈ D, σ̄ (Δ) < ρ. If this check is satisfied for all Δ, we say that robust
stability is guaranteed.

Example 6.2 (H∞ performance) Consider again the feedback interconnection in
Fig. 6.1. We now study the H∞ norm of the transfer matrix between the disturbances
w and the error z, defined in (3.29) as the upper linear fractional transformation
Fu(M,Δ). Given a level γ , we are interested in checking if the H∞ performance
is smaller than γ for all uncertainties Δ belonging to the structured bounded set BD

defined in (3.28). Assuming that Fu(M,Δ) is stable and strictly proper for all Δ,
we set the performance function to

J (Δ)= ∥∥Fu(M,Δ)∥∥∞.
Then, if J (Δ) ≤ γ for all Δ, we conclude that the performance level γ is robustly
achieved.
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This example can be generalized to the robust satisfaction of a generic control
system property, as now stated.

Problem 6.1 (Robust performance verification) LetΔ be bounded in the set BD de-
fined in (3.28). Given a performance function J (Δ) :D→R and associated level γ ,
check whether

J (Δ)≤ γ
for all Δ ∈ BD.

An associated problem is related to the computation of the so-called worst-case
performance. That is, we are interested in evaluating the optimal guaranteed level of
performance γwc such that J (Δ)≤ γwc for all Δ ∈ BD. This amounts to evaluating
the supremum of J (Δ) when Δ ranges in the set BD. This is shown in the next
example.

Example 6.3 (Worst-case H∞ performance) We now revisit Example 6.2. Suppose
we are interested in determining the smallest level γ such that the H∞ norm of
the transfer matrix between the disturbances w and the error z is less than γ . As in
Example 6.2, we set the performance function to

J (Δ)= ∥∥Fu(M,Δ)∥∥∞.
Then, the worst-case H∞ performance is given by the supremum of J (Δ) computed
with respect to Δ ∈ BD.

This example is now generalized to formally state the worst-case performance
problem.

Problem 6.2 (Worst-case performance) Let Δ be bounded in the set BD defined in
(3.28). Given a performance function J (Δ) :D→R, compute

γwc
.= sup
Δ∈BD

J (Δ).

A related problem, also discussed in Chap. 3, is to compute the largest uncertainty
radius rD = rD(M) such that robust performance is guaranteed for all uncertainties
Δ ∈D with ‖Δ‖< rD.

Example 6.4 (Robust stability radius) Consider the setting of Example 6.1 regarding
robust stability of theM–Δ interconnection. Suppose we are interested in evaluating
the maximum radius rD such that the system is robustly stable for all Δ ∈ BD(rD).
From Theorem 3.5, it follows that

rD(M)= 1

supω∈RμD(M(jω))
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where μD(M(jω)) is the structured singular value defined in Sect. 3.7.2. Choosing
the performance function J (Δ) as in (6.1) and setting γ = 1/2, this problem can be
rewritten as

rD = sup
{
ρ : J (Δ)≤ γ for all Δ ∈ BD(ρ)

}
or equivalently as

rD = inf
{
ρ : J (Δ) > γ for some Δ ∈ BD(ρ)

}
.

We recall that the computation of μD(M(jω)), and consequently rD(M), is NP-hard
and only upper and lower bounds of it are in general available.

In the following, we formally define the robust performance radius, which is a
generalization of Definition 3.6.

Problem 6.3 (Robust performance radius) Given a performance function
J (Δ) :D→R and associated level γ , compute

rD
.= inf

{
ρ : J (Δ) > γ for some Δ ∈ BD(ρ)

}
where the set BD(ρ) is defined in (3.28).

Remark 6.1 (Relationships between the robustness problems) The three robustness
problems previously stated are closely related. In particular, if Problem 6.1 is solv-
able for fixed γ and ρ, then Problem 6.2 can be solved via a one-dimensional
γ -iteration and Problem 6.3 can be solved via a one-dimensional ρ-iteration.

6.2 Good and Bad Sets

We now study the performance problems previously discussed by introducing two
sets, denoted as the good set and the bad set, see also [84, 85]. These are subsets
of BD and represent, respectively, the collection of all Δ which satisfy or violate
the control system property under attention. These sets are constructed so that their
union coincides with the uncertainty set BD and their intersection is empty. For-
mally, we define

BG
.= {Δ ∈ BD : J (Δ)≤ γ };

BB
.= {Δ ∈ BD : J (Δ) > γ }. (6.2)

In the case of purely parametric uncertainty, we usually consider the uncertainty set
Bq defined in (3.45) instead of BD. Hence, the sets BG and BB take the form

BG = {Δ ∈ Bq : J (Δ)≤ γ
};

BB = {Δ ∈ Bq : J (Δ) > γ
}
.

The set BB is sometimes referred to as the violation set, see e.g. [85], since it repre-
sents the subset of uncertainties for which performance is violated. Robustness of a
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Table 6.1 Routh table for
Example 6.5 s4 1 6 + 3q2 2 + q1 + q2

s3 4 + q2 5 + q1 + 3q2

s2 a1(q)/(4 + q2) 2 + q1 + q2

s a2(q)/a1(q)

1 2 + q1 + q2

control system is therefore equivalent to the case when the good set coincides with
BD and the bad set is empty. We now present two examples showing the computa-
tion of BG and BB .

Example 6.5 (Continuous-time stability of a fourth-order system) In this example,
we consider stability of a fourth-order continuous-time system affected by a vec-
tor of two real uncertain parameters. In particular, we study a closed-loop monic
polynomial of the form

p(s, q)= 2 + q1 + q2 + (5 + q1 + 3q2)s + (6 + 3q2)s
2 + (4 + q2)s

3 + s4.

In this case the structured set D coincides with R
2 and the bounding set is the hy-

perrectangle

Bq(ρ)=
{
q ∈R

2 : ‖q‖∞ ≤ ρ}
with ρ = 1.8. Then, we introduce the performance function

J (q)=
{

0 if p(s, q) is Hurwitz;
1 otherwise

(6.3)

and set γ = 1/2. The good set coincides with the set of Hurwitz stable polynomials

BG = {q ∈ Bq(ρ) : p(s, q) �= 0 for all Re(s)≥ 0
}
.

In order to obtain a closed-form characterization of the set BG, we construct the
Routh table, shown in Table 6.1, which leads to the system of polynomial inequali-
ties in q1 and q2⎧⎪⎪⎪⎨

⎪⎪⎪⎩

4 + q2 > 0;
a1(q)= 19 − q1 + 15q2 + 3q2

2 > 0;
a2(q)= (9 + q1 + 4q2)

(
7 − q1 + 8q2 + 2q2

2

)
> 0;

2 + q1 + q2 > 0.

These inequalities lead to the curves delimiting the Hurwitz region in parameter
space shown in Fig. 6.2.

Example 6.6 (Robust H2 performance) Consider a continuous-time system ex-
pressed in state space form

ẋ =A(q)x +Bw;
y = Cx
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Fig. 6.2 Set of stable
polynomials BG for
Example 6.5. The light-blue
region indicates the Hurwitz
region in parameter space

with

A(q)=
[−2 + q1 q1q2

0 −4 + q2

]
, B =

[
1
1

]
, C = [1 0

]
.

The uncertainty is confined in the hyperrectangle

Bq =
{
q ∈R

2 : ‖q‖∞ ≤ 1
}
.

We are interested in checking if the squared H2 norm of the transfer function
G(s, q) = C(sI − A(q))−1B between the disturbance w and the output z is less
then γ = 0.3. Since the matrix A(q) is upper triangular, it is easy to check that the
system is stable for all values of the uncertainty, and therefore G(s, q) ∈H2 for all
q ∈ Bq . Then, letting J (q)= ‖G(s, q)‖2

2 and γ = 0.3, we define the good set as

BG = {q ∈ Bq : J (q)≤ γ
}= {q ∈ Bq :

∥∥G(s, q)∥∥2
2 ≤ 0.3

}
.

We can compute ‖G(s, q)‖2
2 = TrCWcCT , where the controllability Gramian

Wc � 0 is the solution of the Lyapunov equation

A(q)Wc +WcAT (q)+BBT = 0.

For this simple case, straightforward but lengthy manipulations lead to

J (q)=−1

2

q2
1q

2
2 − 2q1q2(−4 + q2)+ (−2 + q1)(−4 + q2)+ (−4 + q2)

2

(−4 + q2)(−2 + q1)2 + (−2 + q1)(−4 + q2)2
. (6.4)

The level curve J (q)= 0.3 and the good set are depicted in Fig. 6.3.
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Fig. 6.3 Good and bad sets
for Example 6.6

6.3 Probabilistic Analysis of Uncertain Systems

In classical robustness analysis, one of the main objectives, discussed in Prob-
lem 6.1, is to check if a given system property is satisfied for all possible values
of the uncertainty. That is, for a given performance level γ , we would like to guar-
antee that

J (Δ)≤ γ
for allΔ ∈ BD. This is equivalent to require that the sets BG = {Δ ∈ BD : J (Δ)≤ γ }
and BD coincide.

In a probabilistic setting, a measure of robustness can instead be related to the
relative volume of the set BG. In words, we require the volume of the good set to be
“sufficiently large”, i.e., that the ratio

Vol(BG)/Vol(BD) (6.5)

be “close” to one. More generally, we may assume that Δ is a random uncertainty
with given density function, and we evaluate the degree of robustness as the proba-
bility measure of BG. We make the following fundamental standing assumption on
the random nature of the uncertainty throughout the book.

Assumption 6.1 (Random uncertainty) The uncertainty Δ is a random matrix with
density function fΔ(Δ) and support BD.

Remark 6.2 (Existence of the pdf) To simplify the derivations and improve read-
ability, the results in this book are derived under the hypothesis that the probability
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density fΔ(Δ) of Δ exists. However, most of the results hold under the less restric-
tive assumption that Δ only admits a distribution.

We recall that the performance function J (Δ) :D→R is assumed to be measur-
able. With these assumptions, probabilistic robustness of a control system is stated
in terms of the probability that the desired performance is satisfied. In other words,
if Δ is a random matrix, then the volume in (6.5) becomes a “weighted” volume,
where the weight is the given probability density function fΔ(Δ). That is, the key
quantity to be computed is the probability of performance satisfaction

PR
{
J (Δ)≤ γ }= ∫

BG
fΔ(Δ)dΔ.

Clearly, if fΔ(Δ) is the uniform density over BD, then this probability is indeed the
(normalized) volume of the good set

PR
{
J (Δ)≤ γ }= Vol(BG)

Vol(BD)
.

We are now ready to formulate the probabilistic counterpart of Problem 6.1.

Problem 6.4 (Probabilistic performance verification) Given a performance func-
tion J (Δ) with associated level γ and a density function fΔ(Δ) with support BD,
compute the probability of performance

p(γ )
.= PR

{
J (Δ)≤ γ }. (6.6)

The probability of performance p(γ ) measures the probability that a level of
performance γ is achieved when Δ ∼ fΔ(Δ). We remark that this probability is
in general difficult to compute either analytically or numerically, since it basically
requires the evaluation of a multidimensional integral. However, in some special
cases it can be evaluated in closed form, as shown in the following examples.

Example 6.7 (Probability of stability) We now revisit Example 6.5 regarding stabil-
ity of a fourth-order system with closed-loop polynomial

p(s, q)= 2 + q1 + q2 + (5 + q1 + 3q2)s + (6 + 3q2)s
2 + (4 + q2)s

3 + s4.

We now assume that q is a random vector with uniform distribution in the set Bq(ρ)
with ρ = 1.8, i.e. q ∼ UBq (1.8). Then, we set J (q) as in (6.3) and γ = 1/2. In this
case, the volume of the good set can be computed by integrating the equations defin-
ing the Hurwitz region derived in Example 6.5, obtaining

Vol(BG)= 10.026.

The probability of stability is then immediately given by

p(γ )= PRq
{
p(s,q) Hurwitz

}= Vol(BG)
Vol(Bq(1.8))

= 10.026

12.96
= 0.7736.
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Fig. 6.4 Good and bad sets
for Example 6.9

Example 6.8 (Probability of H2 performance) We revisit Example 6.6 regarding
robust H2 performance of a continuous-time system expressed in state space form.
We now assume that the uncertainty is random with

q ∼ UBq

and we aim at computing the probability of performance

p(γ )= PRq
{
J (q)≤ γ }= PRq

{∥∥G(s,q)∥∥2
2 ≤ 0.3

}
.

Using the expression of J (q) obtained in (6.4), we compute the probability of per-
formance integrating in closed form the level function J (q) = 0.3, obtaining the
value p(γ )= 0.6791.

Example 6.9 (Probability of stability versus guaranteed stability) This example is
due to Truxal [391], and it has been subsequently reconsidered in [5]. We study
stability of a third-order continuous-time system affected by a vector of uncertainties
q bounded in the set

Bq =
{
q ∈R

2 : 0.3 ≤ q1 ≤ 2.5; 0 ≤ q2 ≤ 1.7
}
.

The closed-loop polynomial is a bilinear function on the uncertainty and is given by

p(s, q)= 1 + α2 + 6q1 + 6q2 + 2q1q2 + (q1 + q2 + 3)s + (q1 + q2 + 1)s2 + s3

where α varies in the interval [0,0.7]. It can be easily verified that the set of unstable
polynomials, the bad set, is a disk in parameter space

BB = {q ∈ Bq : (q1 − 1)2 + (q2 − 1)2 ≤ α2}
with volume Vol(BB) = πα2. The sets BG and BB are displayed in Fig. 6.4 for
α = 0.5.
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Suppose now that the uncertainty is random with uniform density function over
the set Bq . Then, the probability of stability is

PRq
{
p(s,q) Hurwitz

}= 1 − πα2

3.74
.

We notice that by taking α = 0 the set of unstable polynomials becomes a singleton
centered at q1 = 1, q2 = 1. In this case, the probability of stability is equal to one.

Example 6.9 shows some interesting features of the probabilistic approach. In
fact, taking the parameter α equal to zero, we obtain that the system is stable with
probability one. Of course, the system in not robustly stable, even though stability
is violated only in a set of measure zero. This clearly shows the differences between
the two settings.

Example 6.10 (Probability of Schur stability) In this example, we study Schur sta-
bility1 of a discrete-time system affected by a vector q of parametric uncertainty
bounded in the hyperrectangle Bq . The closed-loop polynomial is a monic interval
polynomial of order n

p(z, q)= q0 + q1z+ q2z
2 + · · · + qn−1z

n−1 + zn.
The set of coefficients q ∈R

n leading to Schur stable polynomials (Schur region) is
defined as

Sn
.= {q ∈R

n : p(z, q) Schur
}
. (6.7)

Consider now the case when q is a random vector with uniform density over Bq and
introduce the performance function

J (q)=
{

0 if p(z, q) is Schur;
1 otherwise.

(6.8)

Setting γ = 1/2, the probability that the discrete-time system is stable is

p(γ )= PRq
{
J (q)≤ γ }= PRq

{
p(z,q) Schur

}
.

That is, we define

BG = {q ∈ Bq : p(z, q) Schur
}= Bq ∩ Sn.

The volume of Schur stable polynomials

Vol(Sn)=
∫
Sn

dq

can be explicitly computed by the recursive formulae given in [161]

Vol(Sn+1)= Vol(Sn)2

Vol(Sn−1)
for n odd; (6.9)

Vol(Sn+1)= nVol(Sn)Vol(Sn−1)

(n+ 1)Vol(Sn−2)
for n even (6.10)

where Vol(S1)= 2,Vol(S2)= 4 and Vol(S3)= 16/3.

1A polynomial p(z) is Schur stable if p(z) �= 0 for all |z| ≥ 1.
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Next, we remark that a polytope in coefficient space which is guaranteed to con-
tain the Schur region Sn can be computed using the classical necessary conditions
for Schur stability, see e.g. [273]

0<p(1, q) < 2n;
0< (−1)np(−1, q) < 2n;

|q0|< 1.

(6.11)

Then, if this polytope is contained in the set Bq , we conclude that condition Sn ⊆ Bq
is satisfied. In this case, the good set coincides with Sn and the probability of stabil-
ity is immediately given in closed form as

p(γ )= Vol(Sn)
Vol(Bq)

. (6.12)

To illustrate, consider a fourth-order polynomial p(z, q), whose coefficients lie
in the hyperrectangle

Bq =
{
q ∈R

4 : −1 ≤ q0 ≤ 3; −5 ≤ q1 ≤ 5; −3 ≤ q2 ≤ 6; −4 ≤ q3 ≤ 4
}
.

Using conditions (6.11), it can be checked that Sn ⊆ Bq holds. Then, the probability
of stability is given by

p(γ )= Vol(S4)

Vol(Bq)
= 64/9

2880
= 0.0025.

However, if Sn �⊆ Bq , Eq. (6.12) is no longer valid and other methods should be
devised for computing p(γ ) exactly.

We now consider the second problem presented Sect. 6.1, related to the compu-
tation of the worst-case performance, and introduce its probabilistic counterpart.

Problem 6.5 (Probabilistic worst-case performance) Given a performance function
J (Δ), a density function fΔ(Δ) with support BD and a probability level ε ∈ (0,1),
compute γ̄ such that

γ̄ ≤ γwc = sup
Δ∈BD

J (Δ)

and

PR
{
J (Δ)≤ γ̄ }≥ 1 − ε. (6.13)

Remark 6.3 (Good and bad sets interpretation of Problem 6.5) Equation (6.13) can
be interpreted in terms of good and bad sets. That is, if we define BG = {Δ ∈ BD :
J (Δ)≤ γ̄ }, we write this equation as

PR{Δ ∈ BG} ≥ 1 − ε.
In terms of a bad set, defining BB = {Δ ∈ BD : J (Δ) > γ̄ }, we have

PR{Δ ∈ BB}< ε.
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Fig. 6.5 Level curves
J (q)= γ for different values
of γ for Example 6.11. The
dashed line corresponds to
γ = 0.65

In other words, we accept a ε-risk that the performance is violated, i.e.

PR
{
J (Δ) > γ̄

}
< ε.

The probability PR{J (Δ) > γ̄ } is sometimes called the probability of violation, see
e.g. [79, 85] and Sect. 10.4. For uniform densities, this amounts to requiring that

Vol(BB) < εVol(BD).

Computation of the probabilistic worst-case performance is illustrated in the next
example.

Example 6.11 (Probabilistic worst-case H2 performance) Consider the state space
representation of Example 6.6 and suppose we are interested in computing a level
of performance γ̄ such that

PRq
{
J (q)≤ γ̄ }≥ 0.99.

To this aim, we repeat the procedure outlined in Example 6.8, and compute the
corresponding probability of performance for different values of γ . In Fig. 6.5
we report the level curves J (q) = γ , which were used to compute p(γ ). Us-
ing this procedure, we obtained that the level γ = 0.65 guarantees a probability
PRq{J (q)≤ 0.65} = 0.9931, which is greater than the desired level 1 − ε = 0.99.

We now turn our attention to the third problem introduced in Sect. 6.1 and state
its probabilistic version.
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Fig. 6.6 The set Bq(ρ),
ρ ∈ [0.5,3] for Example 6.12.
The blue region indicates the
Hurwitz region

Problem 6.6 (Probabilistic performance radius) Given a performance function
J (Δ) with associated level γ and a probability level ε ∈ (0,1), compute r̄(ε) as

r̄(ε)
.= inf

{
ρ : PR

{
J (Δ)≤ γ }< 1 − ε, Δ ∈ BD(ρ), Δ ∼ fΔ(Δ)

}
.

We now further elaborate on this problem: for given radius ρ, we assume that Δ

is a random matrix with support BD(ρ) and with given density function fΔ(Δ), also
depending on ρ. Then, we define the performance degradation function as

degrad(ρ)
.= PR

{
J (Δ)≤ γ }, Δ ∈ BD(ρ), Δ ∼ fΔ(Δ). (6.14)

Then, we conclude that the probabilistic performance radius becomes

r̄(ε)
.= inf

{
ρ : degrad(ρ) < 1 − ε}.

We now present an example showing the computation of the performance degrada-
tion function.

Example 6.12 (Performance degradation function) We revisit again Example 6.5,
regarding stability of a fourth-order system. We now assume that q is a random
vector with uniform distribution in the set Bq(ρ). Setting J (q) and γ as before, we
evaluate the probability of stability when ρ varies in the interval [0.5,3], as depicted
in Fig. 6.6.
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Fig. 6.7 Performance
degradation function for
Example 6.12

As in the previous case, the volume of the good set can be computed in closed
form by integrating the equations defining the Hurwitz region

Vol
(
BG(ρ)

)=
⎧⎪⎨
⎪⎩

4ρ2 if ρ ≤ 1;
2
3ρ

3 − 3ρ2 − (α(ρ)− 13)ρ − α(ρ)− 16
3 if 1< ρ ≤ 1.5;

3
2ρ

2 + 4ρ + 7
24 − 9

2α(ρ)
3 if 1.5< ρ ≤ 3

where α(ρ) = 1
3

√
2ρ + 2. Then, the performance degradation function is immedi-

ately obtained as

degrad(ρ)= Vol(BG(ρ))
Vol(Bq(ρ))

which is shown in Fig. 6.7. Fixing a level of probability ε = 0.05, from this figure
we obtain that the probabilistic stability radius is given by

r̄(0.05)= 1.2514.

Finally, we remark that, in this example, the performance degradation function is
monotonically decreasing.

As a final tutorial example, we report an illustrative problem of H∞ performance
first introduced in [85].

Example 6.13 (Probabilistic H∞ performance) Consider the linear system

ẋ =
[

0 1
−a0(q) −a1(q)

]
x +

[
0
1

]
u+

[
0
1

]
w; z= [1 0 ]x (6.15)

with parameters

a0(q)= ā0 + q0, a1(q)= ā1 + q1

and uncertainty vector q
.= [q0 q1]T that belongs to the set

Bq(ρ)=
{
q ∈R

2 : ‖q‖∞ ≤ ρ}
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for some positive ρ (i.e. |q0| ≤ ρ, |q1| ≤ ρ), and nominal values ā0 = 1, ā1 = 0.8.
Suppose that we are interested in computing the peak of the modulus of the fre-
quency response on the w–z channel. When the system is stable, this peak is given
by the H∞ norm of the transfer function G(s, q) of this channel, ‖G(s, q)‖∞ =
supω |G(jω,q)|, see Sect. 3.3. Given a level γ ≥ 1, a (deterministic) robustness
analysis problem requires, for instance, to verify whether the system is stable and
the performance level ‖G(s, q)‖∞ ≤ γ is guaranteed for all q ∈ Bq(ρ). That is, this
is equivalent to verify if the specification “G(s, q) is stable and ‖G(s, q)‖∞ ≤ γ ”
is satisfied for all q ∈ Bq(ρ). To this end, we introduce the performance function

J (q)=
{∞ if G(s, q) is unstable;
‖G(s, q)‖∞ otherwise.

(6.16)

Let for instance γ =√
2. Since (6.15) is in companion form, it can be immediately

seen that the closed-loop transfer function is of interval form

G(s, q)= 1

s2 + [1 − ρ,1 + ρ]s + [0.8 − ρ,0.8 + ρ] ,

so that vertex-type conditions can be used to determine the Bode envelope, and
thus to evaluate the worst-case H∞ norm, see e.g. [41]. Moreover, in this simple
example, the system is of second order, and thus stability and performance can be
assessed by direct calculation. It is immediate to verify that J (q)≤ γ is satisfied for
all q ∈ Bq(ρ) if and only if

ρ < 0.8, (6.17)

(0.8 − ρ)2
2 −√

2
> 1 + ρ ⇒ ρ < ρ̄

.= 0.025, (6.18)

where (6.17) implies robust stability, while (6.18) implies ‖G(s, q)‖∞ ≤ γ , see
Fig. 6.8, where ρ̄ is the deterministic radius of performance for the uncertain system
(6.15).

Notice that, from the point of view of worst-case approach, it is not possible to
go beyond the uncertainty level ρ̄, since after this level the system ceases to sat-
isfy the required robust performance specification. In this sense, worst-case analysis
provides a yes/no answer, and gives no information on the system behavior for un-
certainty level beyond ρ̄.

Probabilistic analysis can nicely complement the information provided by the
deterministic approach, or can be a valid alternative when the deterministic approach
cannot be applied. To this end, assume for instance that q0, q1 are random variables,
independent and uniformly distributed in the interval [−ρ,ρ]. Then, for ρ > ρ̄,
some uncertainty realizations violate the given specifications. However, in practice,
a violation might be tolerated, if it happens “rarely.” To quantify how rare is the
violation, we use probabilities. More precisely, with reference to Fig. 6.9, we admit
a bad set where performance is violated.

In the simple example at hand, the degradation function can be computed explic-
itly for various values of ρ, and the curve shown in Fig. 6.10 can be traced. We can
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Fig. 6.8 The light-blue
region contains coefficients
values for which the system
in Example 6.13 is stable and
‖G(s, q)‖∞ ≤√

2 for all
q ∈ Bq(ρ). The square of
radius ρ̄ is the maximal
admissible uncertainty set
around the nominal
parameters values ā0, ā1

Fig. 6.9 The uncertainty
radius in Example 6.13 is
extended beyond ρ̄ and a
subset of Bq(ρ) violates the
performance specifications
(red area)

infer useful information from this curve: for instance, we see that if a 5 % probabil-
ity of violation is allowed, then the tolerable uncertainty radius can be increased by
about 54 % with respect to the deterministic radius ρ̄.

Example 6.14 (Probabilistic stability radius) We revisit Example 5.7 regarding dis-
continuity of the robustness margin and study Hurwitz stability for κ̄ = 3 + 2

√
2

of the closed-loop polynomial pκ̄(s, q) in (5.3). In Example 5.7, the stability radius
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Fig. 6.10 Degradation of the
reliability level as a function
of the uncertainty radius ρ in
Example 6.13

Fig. 6.11 Set of unstable
polynomials in the box of
radius ρ = 0.417 (dotted
line), and box of radius
ρ = rq(κ̄) (dashed line)

of the polynomial is computed, obtaining rq(κ̄) = 0.234. Following a probabilis-
tic approach, we now take the uncertain parameters q1 and q2 as random variables
with uniform probability density on Bq and study stability degradation as ρ varies
between ρ = 0.234 and ρ = 0.417.

Using the Routh table, and by means of lengthy computations, we conclude that
the stability boundary in parameter space is given by the line segment{

q ∈ Bq : 1 +√
2

2
q1 + q2 = 4 −√

2

5

}
.

This line is tangent to the box of radius ρ = rq(κ̄), see the plot of Fig. 6.11.
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It follows that the set of unstable polynomials BB corresponding to this line is a
set of measure zero. Therefore, the ratio Vol(BB)/Vol(Bq) is equal to zero and the
probability degradation function remains equal to one up to ρ = 0.417, i.e.

degrad(ρ)= 1, for all ρ ∈ [0,0.417].
Notice that for κ = κ̄− ε the diagonal line segment in Fig. 6.11 “disappears,” giving
rise to a discontinuity in the (deterministic) stability radius. This discontinuity is not
present in its probabilistic counterpart.

Remark 6.4 (Relationships between probabilistic problems) Similarly to the robust-
ness problems studied in Sect. 6.1 (see Remark 6.1), the three probabilistic problems
stated in this section are closely related. In particular, if Problem 6.4 is solvable for
fixed γ and ρ, then Problem 6.5 can be solved via a one-dimensional γ iteration and
Problem 6.6 can be solved via a one-dimensional ρ iteration. However, the proba-
bilistic interpretation of these problems and the specific results obtained may be
different.

Remark 6.5 (Closed-form computation) The examples reported in this chapter show
the closed-form computation of the various probabilistic quantities under study. Ob-
viously, these exact computations are limited to special cases. The solution of these
problems requires the evaluation of multidimensional integrals, which is in general a
very difficult task. In subsequent chapters we develop randomized algorithms based
on uncertainty sampling to obtain estimates of the required probabilities, up to a
certain level of confidence.

6.4 Distribution-Free Robustness

In the probabilistic setting described in this chapter, the density function of the un-
certainty Δ is assumed to be known. If this is not the case, then clearly the proba-
bility of performance depends on the specific choice of fΔ(Δ). For example, in the
previous section we have shown that the probability p(γ ) = PR{J (Δ)≤ γ } coin-
cides with the ratio of volumes Vol(BG)/Vol(BD) if the pdf is uniform. For a differ-
ent pdf, the probability p(γ ) may be dramatically different. In other words, without
some reasoning attached to the selection of the probability density, the probabil-
ity of performance obtained may be meaningless. Generally, the probability density
function may be estimated directly from available data or prior information, but if
this prior information is not available, then the selection of the distribution should
be performed with great care.

To address this problem further we now consider an example.

Example 6.15 (Probabilistic stability for various distributions) We now continue
Example 6.9. Consider now the case when α = 0.1 and the density function fq(q)

is a truncated Gaussian pdf with expected value E(q) = [1 1]T , covariance matrix
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Table 6.2 Probability of
stability and constant C for
decreasing values of σ

σ C PR{p(s,q) Hurwitz}

2 0.2955 0.9907

0.4 1.0199 0.9664

0.2 3.9789 0.8824

0.1 15.916 0.6065

0.01 1591.6 → 0

Fig. 6.12 (a) Gaussian pdf centered in [1 1]T with σ = 2. (b) Level curves of the distribution. The
disk of radius 0.1 represents the subset of unstable parameters BB

Cov(q)= diag([σ 2 σ 2]) and support Bq = {q ∈R
2 : 0.3 ≤ q1 ≤ 2.5; 0 ≤ q2 ≤ 1.7}.

That is, we write

fq(q)=
{
Ce−

(q1−1)2+(q2−1)2

2σ2 if q ∈ Bq;
0 otherwise

where C is a normalizing constant obtained by imposing
∫
Bq fq(q)dq = 1. In this

example we compute in closed form the probability of stability by solving explicitly
the multiple integral required to compute the probability

PRq
{
p(s,q) Hurwitz

}= 1 −
∫
BB
fq(q)dq = 1 − 2πσ 2(1 − e

− α2

2σ2
)

where BB = {q ∈ Bq : (q1 − 1)2 + (q2 − 1)2 ≤ α2}.
Table 6.2 shows how different values of σ lead to very different values of the

probability of stability. This behavior is also shown in Figs. 6.12 and 6.13. When
the value of σ decreases, the Gaussian pdf shrinks around the bad set. In the limit
case σ → 0, the probability of stability approaches zero, whereas for σ → ∞ the
Gaussian distribution tends to the uniform distribution and the probability of stabil-
ity approaches the ratio Vol(BG)/Vol(Bq(ρ)). The conclusion is that if the density
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Fig. 6.13 (a) Gaussian pdf centered in [1 1]T with σ = 0.2. (b) Level curves of the distribution.
The disk of radius 0.1 represents the subset of unstable parameters BB

function is chosen without any specific guideline, then the probability of stability
may vary arbitrarily between the extreme values zero and one.

Motivated by these considerations, in [44] the problem of distribution-free ro-
bustness is studied. In other words, the objective of this line of research is to de-
termine the worst-case distribution in a certain class of probability measures. More
precisely, let q be an �-dimensional real vector of independent random variables
with support

Bq =
{
q ∈R

� : ‖q‖∞ ≤ 1
}

and BG ⊂ R
� be a closed, convex and centrally symmetric set. Then, in [44] it is

proven that

min
fq∈F

∫
BG
fq(q)dq =

∫
BG

UBqdq

where UBq is the uniform probability density function with support Bq and F is the
set of probability density functions satisfying two conditions:

1. The cdf Fq(q) is absolutely continuous, so that the density function

fq(q)=
�∏
i=1

fqi (qi)

is well defined;
2. The marginal density functions fqi (qi) are nonincreasing and centrally symmet-

ric.

This result is generally denoted as the uniformity principle. In [44], applications
to robustness analysis of affine polynomial families are also shown, taking BG as
the so-called value set. However, the fact that BG needs to be convex and centrally
symmetric may be a critical requirement that is generally not satisfied for the good
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and bad sets. The convexity assumption has been partially removed in [251] by
introducing the concept of unirectangular sets, while [248] considers the case of
nonsymmetric distributions. In the paper [36], further worst-case properties of the
uniform distribution are proved. Subsequent research along this direction has been
performed in various papers. The interested reader may also refer to the survey
paper [249], which is focused on this particular line of research.

6.5 Historical Notes on Probabilistic Methods

From the historical point of view, probabilistic methods for robustness made some
early appearances in the 1980s, but they did not receive adequate attention in the sys-
tems and control literature at that time. In particular, the notion of “probability of
instability,” which is crucial for probabilistic robustness, was first introduced in the
context of flight control in 1980 by Stengel [366]. Similar ideas were subsequently
revisited in Stengel’s book on stochastic optimal control [367] in 1986. In 1989,
the paper titled “Probabilistic robust controller design” [137] was published in the
Proceedings of the IEEE Conference on Decision and Control. This is presumably
the first paper with a title containing both words “probabilistic” and “robust.” Sten-
gel and co-workers further pursued the line of research on stochastic robustness,
publishing several interesting results. In particular, those papers explored various
techniques, mainly based on Monte Carlo, for the computation of the probability
of instability, and related performance concepts, with specific attention to flight dy-
namics applications within aerospace engineering. However, the absence of newly
developed mathematical tools basically limited these attempts to merge probability
and robustness to analysis problems. We recall that in the context of system iden-
tification and estimation in the presence of noisy measurements, a parallel line of
research is the so-called rapprochement viewpoint, see e.g. [178, 306].

A few years later, in 1996 the papers [233, 381] (developed independently by
Khargonekar and Tikku and by Tempo, Bai and Dabbene) proposed an approach
based on explicit sample size bounds, thus refuelling enthusiasm on randomized
techniques. The study of statistical learning theory and its application to control
conducted by Vidyasagar [404, 405] provided additional impetus and also exposed
researchers to a different viewpoint based on the solid mathematical foundations
of statistical learning theory. This formulation led to the development of random-
ized algorithms for control system design. Subsequently, research on randomized
algorithms and probabilistic methods evolved significantly in particular on the top-
ics of sequential methods, the scenario approach, statistical learning techniques for
control, and on specific applications. At this stage, it is premature to provide an
historical viewpoint on these more recent developments.



Chapter 7
Monte Carlo Methods

In this chapter we discuss Monte Carlo (MC) and quasi-Monte Carlo (QMC) meth-
ods. The Monte Carlo method has been widely used for simulations of various phys-
ical and mathematical systems and has a very long history that officially began in
1949 with the seminal paper of Metropolis and Ulam [284], see also [283]. Such
algorithms were used in the Manhattan Project. The name Monte Carlo probably
originated from the famous casino in Monaco and reflects the random and repet-
itive nature of the process, which is similar to gambling in casinos. We refer e.g.
to [177] for historical remarks and introductory material. The quasi-Monte Carlo
method is more recent and may be regarded as a deterministic version of MC, see
e.g. [303, 305]. A formal definition of a Monte Carlo randomized algorithm is given
in Chap. 10.

7.1 Probability and Expected Value Estimation

In this section, we discuss randomized techniques for probability and expected value
estimation. In Chap. 6 we introduced probabilistic versions of classical robustness
problems, which are based on the computation of the probability of performance.
That is, for a given performance level γ , the objective is to estimate the probability

p(γ )= PRΔ

{
J (Δ)≤ γ }= ∫

BG
fΔ(Δ)dΔ.

The evaluation of this probability requires the solution of multiple integrals.
Hence, its exact computation is very difficult in general, and only in special cases
p(γ ) can be obtained in closed form, see the examples given in the previous chap-
ters.

A classical tool for the numerical evaluation of multiple integrals is the Monte
Carlo method. To estimate the probability p(γ ) with this approach, we generate N
independent identically distributed (iid) random samples within the set BD

Δ(1...N)
.= {Δ(1), . . . ,Δ(N)} (7.1)

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_7,
© Springer-Verlag London 2013
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according to the given density function fΔ(Δ), where Δ(1...N) is called a multisam-
ple of Δ of cardinality N . Then, we evaluate

J
(
Δ(1)

)
, . . . , J

(
Δ(N)

)
.

A Monte Carlo estimate of p(γ ) is given by

p̂N(γ )= NG
N

where NG is the number of “good” samples such that J (Δ(i))≤ γ . More formally,
we define the indicator function associated with the good set

IBG(Δ)=
{

1 if Δ ∈ BG;
0 otherwise

where BG = {Δ ∈ BD : J (Δ)≤ γ } is defined in (6.2). Then, we write

p̂N(γ )= 1

N

N∑
i=1

IBG
(
Δ(i)

)
. (7.2)

That is, the probability p(γ ) is estimated by means of the empirical mean of the
good set indicator function (see further discussions in Remark 7.1). The estimate
p̂N(γ ) is a random variable usually referred to as the empirical probability. The
weak and strong laws of large numbers presented next guarantee asymptotic con-
vergence in probability and with probability one, respectively, of the empirical prob-
ability p̂N(γ ) to p(γ ).

Theorem 7.1 (Laws of large numbers for empirical probability) For any ε ∈ (0,1),
the weak law of large numbers states that

lim
N→∞ PR

{∣∣p(γ )− p̂N(γ )
∣∣> ε}= 0. (7.3)

The strong law of large numbers guarantees that

lim
N→∞ p̂N(γ )= p(γ ) (7.4)

with probability one (a.e.).

The weak law (7.3) is classical, see e.g. [319], and follows directly from the
Bernoulli bound presented in Chap. 8. The strong law (7.4) is a consequence of the
Borel–Cantelli lemma, which gives a sufficient condition for a.e. convergence, see
e.g. [406] for a proof and a discussion on the subject.

The MC approach can be readily used in the more general situation where the
estimation of the expected value is of concern. That is, given a performance function
J (Δ) and a density function fΔ(Δ) with support BD, we aim at estimating

EΔ

(
J (Δ)

)= ∫
BD

J (Δ)fΔ(Δ)dΔ.
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In this case, we take the multisample Δ(1...N) defined in (7.1) and compute the so-
called empirical mean

ÊN
(
J (Δ)

) .= 1

N

N∑
i=1

J
(
Δ(i)

)
. (7.5)

Subsequently, when clear from the context, the empirical mean will be denoted
by ÊN . The two laws of large numbers are now stated for empirical mean esti-
mation.

Theorem 7.2 (Laws of large numbers for empirical mean) For any ε > 0, we have

lim
N→∞ PR

{∣∣EΔ

(
J (Δ)

)− ÊN
(
J (Δ)

)∣∣> ε}= 0.

Moreover, the empirical mean converges a.e. to the expected value, that is

lim
N→∞ ÊN

(
J (Δ)

)= EΔ

(
J (Δ)

)
.

Remark 7.1 (Probability versus expected value) The probability estimation problem
can be seen as a special case of expected value estimation. Indeed, if we define

J̃ (Δ)
.= IBG(Δ)

then it follows that

EΔ

(
J̃ (Δ)

)= ∫
BD

IBG(Δ)fΔ(Δ)dΔ=
∫
BG
fΔ(Δ)dΔ= PRΔ

{
J (Δ)≤ γ }.

The asymptotic convergence of ÊN(J (Δ)) to the expected value E(J (Δ)) is
guaranteed by the laws of large numbers. For finite sample size N , it is of great
interest to compute the expected value of the squared difference between E(J (Δ))
and the empirical mean ÊN(J (Δ)). More precisely, in the next theorem, which is
a classical result in the Monte Carlo literature, see e.g. [303], we explicitly com-
pute

Var(ÊN)
.= EΔ(1...N)

((
E
(
J (Δ)

)− ÊN
)2)

=
∫
BD

· · ·
∫
BD

(
E
(
J (Δ)

)− 1

N

N∑
i=1

J
(
Δ(i)

))2 N∏
k=1

fΔ

(
Δ(k)

)
dΔ(k).

The variance Var(ÊN) is clearly a measure of the “goodness” of the approximation
error of MC methods.

Theorem 7.3 If the variance Var(J (Δ)) is finite, then for any N ≥ 1, we have

EΔ(1...N)
((

E
(
J (Δ)

)− ÊN
)2)= Var(J (Δ))

N
. (7.6)
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Proof First, we define h(Δ)
.= E(J (Δ))− J (Δ). Then, we have∫
BD

h(Δ)fΔ(Δ)dΔ= 0

and

E
(
J (Δ)

)− ÊN = 1

N

N∑
i=1

h
(
Δ(i)

)
.

Hence, we write

EΔ(1...N)
((

E
(
J (Δ)

)− ÊN
)2)

=
∫
BD

∫
BD

· · ·
∫
BD

(
1

N

N∑
i=1

h
(
Δ(i)

))2 N∏
k=1

fΔ

(
Δ(k)

)
dΔ(k)

= 1

N2

N∑
i=1

∫
BD

∫
BD

· · ·
∫
BD

h
(
Δ(i)

)2 N∏
k=1

fΔ

(
Δ(k)

)
dΔ(k)

+ 2

N2

N∑
i=1

N∑
k>i

∫
BD

∫
BD

· · ·
∫
BD

h
(
Δ(i)

)
h
(
Δ(k)

) N∏
k=1

fΔ

(
Δ(k)

)
dΔ(k)

= 1

N

∫
BD

h(Δ)2fΔ(Δ)dΔ= Var(J (Δ))

N
. �

Remark 7.2 (Breaking the curse of dimensionality) As a consequence of this the-
orem, we obtain that the average absolute value of the approximation error of the
MC method is given by σJ /

√
N , where σJ = √

Var(J (Δ)) is the standard devia-
tion. Assuming that the variance Var(J (Δ)) is known, then the number of samples
necessary to guarantee a given error can be established a priori. That is, we compute

N ≥ Var(J (Δ))

Var(ÊN)
. (7.7)

Unfortunately, since Var(J (Δ)) is generally unknown, Eq. (7.6) can only be used to
conclude that the error is of the order O(N−1/2). An important consequence of this
discussion is that the mean square error of the Monte Carlo estimate is independent
of the problem dimension. This is the reason why Monte Carlo methods are said to
break the curse of dimensionality. This issue is further discussed in Sect. 10.5 when
dealing with computational complexity of randomized algorithms.

Remark 7.3 (Probability of rare events) A technique to improve the quality of Monte
Carlo estimation consists in reducing the variance Var(J (Δ)) by shaping the den-
sity function fΔ(Δ) in a suitable way. This leads to the methods of stratified and
importance sampling, see e.g. [177, 334]. These techniques have been developed
to progressively shift the sampling distribution towards the failure region, so as to
gain information from rare events more efficiently. In particular, if the probability
of interest is itself very small (i.e. it is a rare event probability), then we would need
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on average many samples before a “failure” occurs, that is before a random sample
Δ(i) is found such that J (Δ(i)) > γ . To show this fact, let V = PR{J (Δ) > γ } be
small (rare failure), let Δ(1),Δ(2), . . . be a sequence of random samples and define
the random variable

n .= inf
{
i = 1,2, . . . : J (Δ(i))> γ }.

Then, we compute the expected value of n obtaining

E(n)= PR
{
J
(
Δ(1)

)
> γ

}+ 2 PR
{
J
(
Δ(1)

)≤ γ,J (Δ(2))> γ }+ · · ·
+ kPR

{
J
(
Δ(1)

)≤ γ, . . . , J (Δ(k−1))≤ γ, J (Δ(k))> γ }+ · · ·

=
∞∑
k=0

k(1 − V )k−1V = V

1 − V
∞∑
k=0

k(1 − V )k = 1

V
.

We conclude that finding small probabilities thus requires information from the
samples of rare events corresponding to failures and, on average, 1/V samples are
needed before a failure is detected.

Methods for computing small failure probabilities for certain classes of dynami-
cal systems subject to stochastic excitation include the “subset simulation” approach
[30, 107], which is based on the idea of factoring the failure probability in the prod-
uct of larger conditional failure probabilities that can be estimated with lower com-
putational effort. Hence, we are replacing the problem in the original probability
space by a sequence of simulations of more frequent events in the conditional prob-
ability spaces.

Remark 7.4 (Random sample generation) One of the key issues regarding the ap-
plication of MC techniques in systems and control is the availability of efficient
algorithms for the generation of the multisample (7.1) according to a given den-
sity function over the support BD. This problem is fully addressed in Chaps. 16
and 18, where algorithms for generating samples of random vectors and matrices
in the structured set BD are presented. These algorithms reduce the problem to the
univariate generation of uniform samples in the interval [0,1], which is the standard
random number generation problem discussed in Chap. 14.

The techniques and the convergence results presented in this section are at the
basis of Monte Carlo methods for computation of multiple integrals, which are dis-
cussed next.

7.2 Monte Carlo Methods for Integration

Monte Carlo methods address the general problem of computing numerically the
multiple integral ∫

Y
g(x)dx (7.8)
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of a multivariate measurable function g(x) : Rn → R with domain Y ⊂ R
n. The

main idea is to transform this integral into an expected value computation problem.
This can be done by factorizing the function g(x) into the product of two terms J (x)
and fx(x) such that fx(x) is a probability density function with support Y , and

g(x)= J (x)fx(x). (7.9)

With this choice, the integral (7.8) can be viewed as the expected value of J (x) with
respect to the density function fx(x), i.e.∫

Y
g(x)dx =

∫
Y
J (x)fx(x)dx = Ex

(
J (x)

)
. (7.10)

An MC estimate of the integral (7.8) is then immediately obtained via the techniques
described in the previous section. That is, we approximate the expected value in
(7.10) with the empirical mean

ÊN
(
J (x)

)= 1

N

N∑
i=1

J
(
x(i)
)

where the multisample

x(1...N) .= {x(1), . . . ,x(N)} (7.11)

of cardinality N is generated according to the pdf fx(x) with support Y . Recalling
Theorem 7.3, we immediately obtain that the variance of the estimate is equal to

Var
(
ÊN
(
J (x)

))= Var(J (x))
N

.

Various techniques have been developed to reduce this error for finite and fixed
sample size, such as the importance sampling techniques discussed in Remark 7.3.
To conclude this section, in the following example we compare the complexity of
integration based on the MC method with that obtained with a trapezoidal rule of
integration.

Example 7.1 (Trapezoidal rule for integration) The computation of multiple inte-
grals can be performed using the multidimensional trapezoidal rule for integration
of functions with continuous and bounded second partial derivatives. For example,
consider the integral ∫

Y
g(x)dx (7.12)

where g(x) : Rn → R is a twice-differentiable function and the integration domain
Y is the unit cube in R

n. In this case, we construct a trapezoidal approximation of
(7.12) based on N grid points for each xi

N∑
i1=1

· · ·
N∑
in=1

wi1 · · ·wing
(̃
x(i1, . . . , in)

)
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where

x̃(i1, . . . , in)=
[(
i1 − 1

N − 1

)
· · ·

(
in − 1

N − 1

)]T
and the weights are given by

w1 = 1

2N − 2
, w2 = 1

N − 1
, w3 = 1

N − 1
, . . . ,

wN−1 = 1

N − 1
, wN = 1

2N − 2
.

It is well known that the deterministic error given by the trapezoidal rule is of the
order O(N−2/n), see for instance [303]. However, in Theorem 7.3, we have shown
that the average error of MC algorithms is of the order O(N−1/2), where N is
the number of random samples. Hence, comparing these errors we conclude that
Monte Carlo methods improve upon classical deterministic algorithms based on the
trapezoidal rule for integration for n > 4. Obviously, it should be noticed that the
Monte Carlo mean square error given in Theorem 7.3 is of probabilistic, and not
deterministic, nature.

7.3 Monte Carlo Methods for Optimization

In this section we briefly discuss the application of Monte Carlo techniques in op-
timization problems, see [334] for a survey of the literature. In particular, consider
a bounded multivariate function g(x) : Y → R and suppose we are interested in
evaluating

g∗ = g(x∗)= sup
x∈Y

g(x). (7.13)

A simple algorithm for estimating the optimal value of g(x) has been proposed
in [74] using the so-called nonadaptive random search algorithm. First, we draw
N iid points x(i), i = 1, . . . ,N in Y according to a given density fx(x). Then, an
approximation of the maximum in (7.13) is given by the empirical maximum

ĝN = max
i=1,...,N

g
(
x(i)
)
.

The next theorem studies asymptotic convergence of the estimate ĝN to g∗.

Theorem 7.4 (Laws of large numbers for empirical maximum) Assume that the
density function fx(x) assigns a nonzero probability to every neighborhood of x∗,
and g(x) is continuous at x∗. Then, for any ε > 0

lim
N→∞ PR

{
g∗ − ĝN > ε

}= 0.

Moreover, the empirical maximum converges a.e. to the true maximum

lim
N→∞ ĝN = g∗.
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More sophisticated Monte Carlo algorithms for global optimization have been
widely studied in the literature. We recall here the multistart random search, which
performs a series of gradient descents starting from random generating initial points,
and the simulated annealing algorithm, for further details see for instance [421].

7.4 Quasi-Monte Carlo Methods

The quasi-Monte Carlo method is a deterministic version of Monte Carlo with the
primary goal of obtaining guaranteed (instead of probabilistic) errors. Some moti-
vations for studying QMC methods may also come from the difficulty of generating
“truly” random samples, see Chap. 14 for further discussions and the classical ref-
erence [303] for a complete treatment of the subject.

In the quasi-Monte Carlo method, deterministic points chosen according to some
optimality criterion are used instead of random samples generated according to a
given probability density function. For integration of a multivariate function, the
most frequently used criterion is the so-called discrepancy, which is a measure of
how the sample set is “evenly distributed” within the integration domain, which is
usually taken as the unit cube in R

n. The problem therefore is to find specific se-
quences of points which minimize the discrepancy, or upper bounds on it. There are
many such sequences, including Sobol’, Halton, and Niederreiter. For integrands
with a sufficiently low “degree of regularity,” these sequences guarantee a determin-
istic error bound for integration ofO(N−1(logN)n). For fixed dimension n, and for
large N , this error is therefore smaller than the mean square error of the MC esti-
mate, which is O(N−1/2). QMC methods are also used for optimization problems.
In this case, the optimality criterion used is the dispersion, which is a measure of
denseness, rather than equidistribution, as in the case of discrepancy. In this sec-
tion, which is largely based on [303], we study both integration and optimization
problems and the related sequences.

Various applications of QMC methods and numerical comparisons with MC
methods have been developed, in particular in the areas of path integrals for math-
ematical finance, see for instance [389] and references therein, planning algo-
rithms [256], and congestion control of communication networks [17].

7.4.1 Discrepancy and Error Bounds for Integration

In this section we consider the integration of a (measurable) multivariate function
g(x) :Rn→R ∫

[0,1]n
g(x)dx

with domain

[0,1]n .= {x ∈R
n : xi ∈ [0,1], i = 1, . . . , n

}
.
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This integral is approximated by the sum

1

N

N∑
i=1

g
(
x(i)
)

where x(i) ∈ [0,1]n, i = 1, . . . ,N , are now deterministic vector points. The deter-
ministic multisample of cardinality N

x(1...N)
.= {x(1), . . . , x(N)} (7.14)

is usually called a point set. Intuitively, these points should be “evenly distributed,”
so that the irregularity of their distribution within the unit cube is minimized. This
intuitive concept leads to the definition of discrepancy.

Definition 7.1 (Discrepancy) Let S be a nonempty family of subsets of [0,1]n. The
discrepancy DN(S, x(1...N)) of a point set x(1...N) of cardinality N with respect to
S is defined as

DN
(
S, x(1...N)

) .= sup
S∈S

∣∣∣∣
∑N
i=1 IS(x

(i))

N
− Vol(S)

∣∣∣∣ (7.15)

where IS(x) is the indicator function of S and Vol(S) is its volume.

We remark that the discrepancy is a nonnegative quantity and it is upper bounded
by one. Next, we define the star discrepancy D∗

N(x
(1...N)) and the extreme discrep-

ancy DeN(x
(1...N)), obtained by considering specific choices of the family S .

Definition 7.2 (Star discrepancy) Let S∗ be the family of all subintervals of the
semi-open unit cube1 [0,1)n of the form {x ∈R

n : xi ∈ [0, vi), i = 1, . . . , n}. Then,
the star discrepancy D∗

N(x
(1...N)) is defined as

D∗
N

(
x(1...N)

) .=DN (S∗, x(1...N)
)
.

Definition 7.3 (Extreme discrepancy) Let Se be the family of all subintervals of the
semi-open unit cube [0,1)n of the form {x ∈R

n : xi ∈ [ui, vi), i = 1, . . . , n}. Then,
the extreme discrepancy DeN(x

(1...N)) is defined as

DeN
(
x(1...N)

)=DN (Se, x(1...N)).
For any x(1...N) in the unit cube, it can be shown that the extreme and the star dis-
crepancies are related as follows

D∗
N

(
x(1...N)

)≤DeN (x(1...N))≤ 2nD∗
N

(
x(1...N)

)
.

The definition of extreme discrepancy will be used later in Sect. 7.4.4 when studying
the connections with dispersion.

1The semi-open unit cube is defined as [0,1)n .= {x ∈R
n : xi ∈ [0,1), i = 1, . . . , n}.
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By means of the star discrepancy, we can establish error bounds on the integration
error ∣∣∣∣∣

∫
[0,1]n

g(x)dx − 1

N

N∑
i=1

g
(
x(i)
)
.

∣∣∣∣∣ (7.16)

A classical result in this direction, often called the Koksma–Hlawka inequality
[203, 239], can be stated in terms of the total variation. Namely, for functions with
continuous partial derivatives on [0,1]n, the total variation of g in the sense of Vitali
is defined as

V (n)(g)=
∫ 1

0
· · ·
∫ 1

0

∣∣∣∣ ∂ng

∂x1 · · · ∂xn
∣∣∣∣dx1 · · ·dxn.

Then, if g has bounded variation on [0,1]n in the sense of Vitali, and the restriction
of g to each k-dimensional face of [0,1]n, for k = 1, . . . , n, is of bounded variation
in the sense of Vitali, then g is said to be of bounded variation on [0,1]n in the
sense of Hardy and Krause. This concept is an n-dimensional extension of the scalar
variation in the interval [0,1].

Theorem 7.5 (Koksma–Hlawka inequality) Assume that g : Rn → R has bounded
variation V (n)(g) on [0,1]n in the sense of Hardy and Krause. Then, for any x(1...N)

with x(i) ∈ [0,1)n, i = 1, . . . ,N , we have∣∣∣∣∣
∫
[0,1]n

g(x)dx − 1

N

N∑
i=1

g
(
x(i)
)∣∣∣∣∣≤ V (n)(g)D∗

N

(
x(1...N)

)
. (7.17)

From this theorem it follows that, for given variation V (n)(g), the integration
error in (7.17) is minimized if the point set x(1...N) is selected so that the star dis-
crepancy D∗

N(x
(1...N)) is minimized.

Next, we present two results stated in [303] that give a precise characterization
of the star and extreme discrepancies in the special case n= 1.

Theorem 7.6 If n= 1 and 0 ≤ x(1) ≤ · · · ≤ x(N) ≤ 1, then

D∗
N

(
x(1...N)

)= 1

2N
+ max

1≤i≤N

∣∣∣∣x(i) − 2i − 1

2N

∣∣∣∣.
Theorem 7.7 If n= 1 and 0 ≤ x(1) ≤ · · · ≤ x(N) ≤ 1, then

DeN
(
x(1...N)

)= 1

N
+ max

1≤i≤N

(
i

N
− x(i)

)
− min

1≤i≤N

(
i

N
− x(i)

)
.

From these results, it can be easily verified that the two inequalities

D∗
N

(
x(1...N)

)≥ 1

2N
and DeN

(
x(1...N)

)≥ 1

N



7.4 Quasi-Monte Carlo Methods 103

hold for any N ≥ 1. We remark that equality is attained with the choice

x(i) = 2i − 1

2N
. (7.18)

In this case, both star and extreme discrepancy are minimized. That is, if one wants
to place N points in the interval [0,1] in order to minimize the error bound for
integration given in (7.17), then the “optimal gridding” is the one given in (7.18),
which corresponds to the N -panel midpoint integration rule, see e.g. [124]. Notice,
however, that these facts may be used only when N is known a priori. A subsequent
problem, addressed in the next section, is how to construct recursive sequences of
points that guarantee low discrepancy.

7.4.2 One-Dimensional Low Discrepancy Sequences

We first study low discrepancy sequences for n= 1 on the semi-open interval [0,1).
For an integer b ≥ 2, we define

Zb
.= {0,1, . . . , b− 1}.

Every integer k ≥ 0 has a unique digit expansion in base b

k =
∞∑
i=0

ai(k)b
i (7.19)

where ai(k) ∈Zb for all i ≥ 0 and ai(k)= 0 for all sufficiently large i. Then, for an
integer b ≥ 2, we define the radical-reversal function in base b as

φb(k)=
∞∑
i=0

ai(k)b
−i−1 (7.20)

for all integers k ≥ 0 and where ai(k) is given by (7.19). We are now ready to define
the van der Corput sequence [399].

Definition 7.4 (van der Corput sequence) Let n= 1. For an integer b ≥ 2, the van
der Corput sequence in base b is the sequence

x(1,...)
.= x(1), x(2), . . .

where x(i) = φb(i − 1) for all i ≥ 1.

Example 7.2 (Binary van der Corput sequence) We study the van der Corput se-
quence in base b = 2. To illustrate, we compute the element x(24) = φ2(23). First,
we write

23 =
∞∑
i=0

ai(23)2i .
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Fig. 7.1 First 24 points of
the binary van der Corput
sequence

With straightforward computations, we obtain

a0(23)= 1, a1(23)= 1, a2(23)= 1, a2(23)= 0, a4(23)= 1

and ai(23)= 0 for all i ≥ 5. Then, we have

x(24) = φ2(23)= a0(23)

2
+ a1(23)

4
+ a2(23)

8
+ a3(23)

16
+ a4(23)

32

= 1

2
+ 1

4
+ 1

8
+ 1

32
= 0.9063.

Similarly, we construct the other elements x(1) = φ2(0), x(2) = φ2(1), . . . obtaining
the sequence

0, 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, 0.875, 0.0625,
0.5625, 0.3125, 0.8125, 0.1875, 0.6875, 0.4375, 0.9375, 0.0313, 0.5313,
0.2813, 0.7813, 0.1563, 0.6563, 0.4063, 0.9063, . . .

The first 24 points of this sequence are plotted in Fig. 7.1.

The discrepancy of the van der Corput sequence is of the order of magnitude of
O(N−1 logN) for all N ≥ 2 (see Theorem 7.8). It can be shown [303] that this is
the best bound achievable by any sequence of points in [0,1]. This result can be
compared with Theorem 7.6, which states that the discrepancy of an N -point set in
[0,1] is of the order O(N−1).

In the next section, we study low discrepancy sequences for n > 1.

7.4.3 Low Discrepancy Sequences for n > 1

The van der Corput sequence can be extended to any dimension n. This leads to the
definition of the so-called Halton sequence [190].

Definition 7.5 (Halton sequence) Let b1, . . . , bn be integers ≥ 2 and let φbi be de-
fined as in (7.20) for b = bi . The Halton sequence in the bases b1, . . . , bn is the
sequence

x(1,...)
.= x(1), x(2), . . .

where

x(i) = [φb1(i − 1) · · · φbn(i − 1)
]T

for all i ≥ 0.
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Fig. 7.2 Samples of two-dimensional Halton sequence for N = 500 and histogram of the relative
frequency for N = 10,000 (each dimension is partitioned in 15 bins)

Samples of a two-dimensional Halton sequence are shown in Fig. 7.2. We now
present a result which gives an upper bound on the star discrepancy of a Halton
sequence.

Theorem 7.8 For all N ≥ 1, if x(1...N) are the first N points of the Halton sequence
in the pairwise relatively prime bases b1, . . . , bn, then

D∗
N

(
x(1...N)

)
<
n

N
+ 1

N

n∏
i=1

[
bi − 1

2 logbi
logN + bi + 1

2

]
. (7.21)

Combining this result with Theorem 7.5, we conclude that, for functions
with finite variation V (g), the integration error given in (7.16) is of the order
O(N−1(logN)n). It can be easily verified that, asymptotically, this error is much
smaller than O(N−1/2), which is that associated with classical Monte Carlo. How-
ever, when n is large, the factor (logN)n becomes huge, and it takes an imprac-
ticably large sample size N before the performance of QMC becomes superior to
MC.

Many other low discrepancy sequences are studied in the quasi-Monte Carlo lit-
erature. We recall in particular the Sobol’ [361], Faure [163] and Niederreiter [302]
sequences. The basic idea underlying these methods is to suitably permute the ele-
ments of a Halton sequence. In particular, the Sobol’ sequence uses only the basis 2,
whereas in the Faure sequence the basis is the smallest prime number b ≥ n. For il-
lustrative purposes, 1,000 points are generated in the unit box for the case of n= 2
for Halton, Faure, Sobol’ and Niederreiter sequences. These points are shown in
Fig. 7.3.

Finally, we would like to recall that discrepancy is not the only optimality crite-
rion used in QMC methods. For example, as previously discussed, the dispersion is
generally used in the context of optimization.
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Fig. 7.3 Samples of two-dimensional sequences: (a) Halton, (b) Sobol’, (c) Faure and (d) Nieder-
reiter for N = 1,000

7.4.4 Dispersion and Point Sets for Optimization

In this section we study the QMC approach for maximization of a bounded multi-
variate function g(x) :Rn→R over the unit cube [0,1]n

sup
x∈[0,1]n

g(x).

We consider the QMC approximation

max
i=1,...,N

g
(
x(i)
)

where x(i), i = 1, . . . ,N , belong to a deterministic point set x(1...N). Clearly, the
approximation error

sup
x∈[0,1]n

g(x)− max
i=1,...,N

g
(
x(i)
)

(7.22)
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is related to specific properties of the point set. Hence, we define the dispersion of a
point set x(1...N) in the n-dimensional unit cube [0,1]n.

Definition 7.6 (Dispersion) The dispersion dN(x(1...N)) of a point set x(1...N) with
cardinality N is defined as

dN
(
x(1...N)

)= sup
x∈[0,1]n

min
1≤i≤N

∥∥x − x(i)∥∥∞. (7.23)

The next theorem relates the approximation error (7.22) to the dispersion of the
point set x(1...N). Let�(g, r) be the modulus of continuity of g(x), which is defined
for r ≥ 0 as

�(g, r)= sup
x,y∈[0,1]n
‖x−y‖∞≤r

∣∣g(x)− g(y)∣∣.

Theorem 7.9 Let g(x) : Rn → R be a bounded function on the unit cube [0,1]n.
For any point set x(1...N), we have

sup
x∈[0,1]n

g(x)− max
i=1,...,N

g
(
x(i)
)≤� (g,dN (x(1...N))).

From this theorem, we see that point sets with low dispersion are required when
dealing with optimization problems. The following result establishes a precise con-
nection between the dispersion and the extreme discrepancy of a point set.

Theorem 7.10 For any point set x(1...N) of cardinality N we have

dN
(
x(1...N)

)≤ [DeN (x(1...N))]1/n.
Therefore, we conclude that low extreme discrepancy implies low dispersion, but

the converse is not necessarily true.
We now turn our attention to the computation of the dispersion of a given point

set. First, we present a result for the special case n= 1.

Theorem 7.11 If n= 1 and 0 ≤ x(1) ≤ · · · ≤ x(N) ≤ 1, then

dN
(
x(1...N)

)
= max

(
x(1),

1

2

(
x(2) − x(1)), . . . , 1

2

(
x(N) − x(N−1)),1 − x(N)

)
.

It can be easily verified that the same set of points given in (7.18),

x(i) = (2i − 1)/(2N),

guarantees dN(x(1...N)) = 1/(2N), which is the minimum value of dispersion for
any point set x(1...N) in the unit cube.

For the n-dimensional case, we present a universal lower bound on the dispersion
stated in [372], which gives a characterization of the minimum attainable dispersion
for any point set.
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Fig. 7.4 Plot of 100 points
chosen according to the
Sukharev sampling criterion

Theorem 7.12 (Sukharev inequality) For any point set x(1...N) of cardinality N , we
have

dN
(
x(1...N)

)≥ 1

2�N1/n . (7.24)

Remark 7.5 (Sukharev sampling criterion) The implications of this result are now
briefly discussed. To simplify the discussion, suppose that N1/n is an integer, and
suppose we are interested in generating N points in [0,1]n with “optimal” disper-
sion. Then, it can be shown that equality in (7.24) is attained if the points of x(1...N)

are placed in a grid with discretization interval N1/n and the first point is shifted of
(N1/n)/2 from the origin. This particular choice of point set is sometimes called the
Sukharev sampling criterion, see Fig. 7.4. In addition, we notice that, if we solve
Eq. (7.24) for N , we obtain N ≥ (2dN(x(1...N)))−n. Hence, the number of points N
is an exponential function in n, regardless of how the sample set is generated.



Chapter 8
Probability Inequalities

In this chapter we address the issue of finite sample size, i.e., the so-called sample
complexity, in probability estimation. That is, we analyze the reliability of the prob-
abilistic estimates introduced in Chap. 7, for finite values of N . This issue is crucial
in the development of randomized algorithms for uncertain systems and control and
makes a clear distinction with the asymptotic laws of large numbers preliminarily
discussed in Chap. 7.

8.1 Probability Inequalities

This section presents some standard material on probability inequalities, which is
the backbone for the sample size bounds subsequently derived in this chapter. The
first fundamental result is the Markov inequality.

Markov inequality Let x ∈ [0,∞) be a nonnegative random variable with
E(x) <∞. Then, for any ε > 0, we have

PR{x ≥ ε} ≤ E(x)
ε
. (8.1)

Proof The proof of this result is immediate and follows from the chain of inequali-
ties

E(x)=
∫ ∞

0
xfx(x)dx ≥

∫ ∞

ε

xfx(x)dx ≥ ε
∫ ∞

ε

fx(x)dx = εPR{x ≥ ε}. �

Obviously, the Markov inequality, as well as the other inequalities presented in
this section, is meaningful only when the right-hand side of (8.1) is not greater than
one. We now show that various classical inequalities can be derived from the Markov
inequality. To this end, let a and m > 0 be two real numbers and observe that the
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random variable |x − a|m is nonnegative. Then, applying the Markov inequality to
this random variable, we obtain

PR
{|x − a|m ≥ εm}≤ E(|x − a|m)

εm
.

Taking a = E(x), we immediately derive to the so-called Bienaymé inequality

PR
{∣∣x − E(x)

∣∣≥ ε}≤ E(|x − E(x)|m)
εm

. (8.2)

The well-known Chebychev inequality is a special case of Bienaymé inequality,
obtained for m= 2.

Chebychev inequality Let x be a random variable with Var(x) <∞. Then, for any
ε > 0, we have

PR
{∣∣x − E(x)

∣∣≥ ε}≤ Var(x)
ε2

. (8.3)

We remark that, while in the Markov inequality x is a nonnegative random vari-
able, in Bienaymé and Chebychev inequalities there is no sign restriction. However,
these latter inequalities hold only when x has bounded variance or bounded moment
of order m.

Remark 8.1 (Historical remarks) The problems concerning the computation of
probability inequalities given moments of different order of a random variable have
a long history and a rich literature. For example, moment problems have been an-
alyzed in the early works of Stieltjes [370, 371]. An elementary introduction to
Chebychev and Markov inequalities is given in [319]. The interested reader may
also refer to the original paper of Chebychev [100] and to the thesis of his stu-
dent Markov [274]. Multivariate generalizations of these inequalities are studied in
[276, 387] and in [329], which also contains an historical overview of the topic.
Additional related results on large deviation methods can be found in [130].

We now analyze other less well known inequalities. In all these inequalities we
assume ε > 0. The first one we study was derived by Uspensky [397]

PR
{
x ≥ (1 + ε)E(x)}≤ Var(x)

Var(x)+ ε2E(x)2
.

This inequality always improves upon the so-called right-sided Chebychev inequal-
ity

PR
{
x ≥ (1 + ε)E(x)}≤ Var(x)

ε2E(x)2
.

For completeness, we also state the left-sided Chebychev inequality

PR
{
x ≤ (1 − ε)E(x)}≤ Var(x)

Var(x)+ ε2E(x)2
.
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Other inequalities are proved in [329] for the case when moments up to third
order are given. These inequalities are “tight” in a certain sense and have been de-
rived via a general convex optimization reformulation, see [56]. For instance, for a
nonnegative random variable x, it is shown that

PR
{∣∣x − E(x)

∣∣≥ εE(x)}≤ min

(
1,1 + 27

α2 + β4 − ε2

4 + 3(1 + 3ε2)+ 2(1 + 3ε2)
3
2

)

where

α = E(x)E(x3)− E(x2)

E(x)4
and β = Var(x)

E(x)2
.

In the next section we study applications of the previous inequalities (and in particu-
lar of the Markov inequality) to the problem of bounding the probability of deviation
from the mean of sums of random variables.

8.2 Deviation Inequalities for Sums of Random Variables

We here focus our attention on inequalities for the tail probabilities of the sum of
random variables. That is, we considerN independent random variables x1, . . . ,xN ,
define the new random variable

sN
.=
N∑
i=1

xi

and aim to compute bounds on the probability PR{|sN − E(sN)| ≥ ε}.
A first simple inequality for sums of random variables may be directly derived

from the Chebychev inequality, obtaining

PR
{∣∣sN − E(sN)

∣∣≥ ε}≤ Var(sN)
ε2

=
∑N
i=1 Var(xi )
ε2

. (8.4)

A tighter classical inequality, which holds for the case of bounded random variables,
is due to Hoeffding [205]. Before stating and proving the Hoeffding inequality, we
need to introduce a lemma.

Lemma 8.1 Let x ∈ [a, b] be a random variable with E(x)= 0. Then, for any λ > 0

E
(
eλx)≤ eλ

2(b−a)2/8. (8.5)

Proof Since x ∈ [a, b], we write it as a convex combination of a and b, namely
x = ηb+ (1 − η)a, where η = (x − a)/(b− a). So, by convexity of eλx we have

eλx ≤ x − a
b− a eλb + b− x

b− a eλa.

Taking expectation of both sides and using the fact that E(x)= 0, we get

E
(
eλx)≤− a

b− a eλb + b

b− a eλa = (1 − p+ peλ(b−a)
)
e−pλ(b−a)



112 8 Probability Inequalities

where p =−a/(b− a). Next, defining the function

L(u)
.=−pu+ log

(
1 − p+ peu

)
we have, for u= λ(b− a)

E
(
eλx)≤ eL(u).

The first and second derivatives of L(u) are given by

L′(u)=−p+ peu

1 − p+ peu
;

L′′(u)= p(1 − p)eu
(1 − p+ peu)2

≤ 1

4
for all u > 0.

Therefore, using Taylor expansion, we have that for some ξ ∈ (0, u)

L(u)= L(0)+ uL′(0)+ u
2

2
L′′(ξ)= u2

2
L′′(ξ)≤ u

2

8
= λ2(b− a)2

8
which proves the lemma. �

We now state the Hoeffding inequality.

Hoeffding inequality Let x1, . . . ,xN be independent bounded random variables
with xi ∈ [ai, bi]. Then, for any ε > 0, we have

PR
{
sN − E(sN)≥ ε

}≤ e−2ε2/
∑N
i=1(bi−ai )2 (8.6)

and

PR
{
sN − E(sN)≤−ε}≤ e−2ε2/

∑N
i=1(bi−ai )2 . (8.7)

Proof The inequality is derived using the Chernoff bounding method. That is, for
any random variable x, we write the Markov inequality for the random variable eλx

with λ > 0, obtaining

PR
{
eλx ≥ α}≤ E(eλx)

α

for any α > 0. Then, taking α = eλε and replacing x with x − E(x), we write

PR
{
x − E(x)≥ ε}≤ e−λεE

(
eλ(x−E(x))). (8.8)

Applying this bound to the random variable sN , due to the independence of the
random variables xi , we obtain

PR
{
sN − E(sN)≥ ε

}≤ e−λεE
(
eλ
∑N
i=1(xi−E(xi ))

)
= e−λε

N∏
i=1

E
(
eλ(xi−E(xi ))

)
. (8.9)

To complete the proof, we apply the result of Lemma 8.1 in combination with (8.9),
obtaining
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PR
{
sN − E(sN)≥ ε

}≤ e−λε
N∏
i=1

E
(
eλ(xi−E(xi ))

)

≤ e−λε
N∏
i=1

eλ
2(bi−ai )2/8 = e−λεeλ2∑N

i=1(bi−ai )2/8.

Inequality (8.6) is obtained by selecting λ such that the exponent is minimized

λ= 4ε∑N
i=1(bi − ai)2

.

Inequality (8.7) follows from similar derivations. �

The Hoeffding inequality takes a simpler form in the case when the random vari-
ables xi are independent and bounded in the same interval [a, b]. In this case, com-
bining (8.6) and (8.7), we derive the inequality presented next.

Two-sided Hoeffding inequality Let x1, . . . ,xN be independent random variables
such that xi ∈ [a, b]. Then, for any ε > 0, we have

PR
{∣∣sN − E(sN)

∣∣≥ ε}≤ 2e−2ε2/(N(b−a)2). (8.10)

Finally, we state without proof another classical inequality due to Bernstein [55],
see additional details and extensions in [52].

Bernstein inequality Let x1, . . . ,xN be independent random variables with xi ∈
[−a, a], E(xi )= 0 and Var(xi ) <∞. Then, for any ε > 0, we have

PR{sN ≥ ε} ≤ e−ε2/(2Nσ 2+2aε/3) (8.11)

where σ 2 = 1
N

∑N
i=1 Var(xi ).

Remark 8.2 (Concentration inequalities) More general functions (other than sums)
of independent random variables may also be bounded using so-called “concentra-
tion” inequalities, such as the Efron–Stein inequality [155] or Talagrand inequal-
ity, but this topic goes beyond the scope of this discussion. We address the reader
to [66, 377] and the references therein for further details on these issues.

8.3 Sample Complexity for Probability Estimation

In this section we specialize the previous inequalities to derive the sample complex-
ity for the randomized algorithms presented in Chap. 10. In fact, these inequalities
are the key tools for determining the minimum number of samples needed to com-
pute the reliability of the estimate

p̂N(γ )= 1

N

N∑
i=1

IBG
(
Δ(i)

)
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of the probability of performance introduced in Chap. 6

p(γ )= PRΔ

{
J (Δ)≤ γ }.

This reliability is measured in terms of the “closeness” of p̂N(γ ) to the true proba-
bility p(γ ). That is, given ε ∈ (0,1), we wish to assure that the event∣∣̂pN(γ )− p(γ )∣∣< ε
holds with high probability. Since p̂N(γ ) is estimated via random sampling, it is
itself a random variable which depends on the multisample Δ(1...N). Therefore, for
given δ ∈ (0,1), we require that

PRΔ(1...N)
{∣∣̂pN(γ )− p(γ )∣∣< ε}> 1 − δ. (8.12)

The problem is then finding the minimal N such that (8.12) is satisfied for fixed
accuracy ε ∈ (0,1) and confidence δ ∈ (0,1).

The first bound on the sample complexity was derived in 1713 by Jacob
Bernoulli, see [54], and is reported for historical reasons and for its simplicity.

Bernoulli bound For any ε ∈ (0,1) and δ ∈ (0,1), if

N ≥ 1

4ε2δ
(8.13)

then, with probability greater than 1 − δ, we have |̂pN(γ )− p(γ )|< ε.

Proof This result is proved by means of the Chebychev inequality. The empirical
probability p̂N(γ ) is a random variable binomially distributed, with expected value
E( p̂N(γ )) = p(γ ) and variance Var( p̂N(γ )) = p(γ )(1 − p(γ ))/N . Substituting
these values in (8.3) for x = p̂N(γ ), we obtain

PR
{∣∣̂pN(γ )− p(γ )∣∣≥ ε}≤ p(γ )(1 − p(γ ))

Nε2
≤ 1

4Nε2

for all p(γ ) ∈ (0,1). The bound (8.13) then follows immediately from this inequal-
ity. �

A significant improvement on the previous bound is given by the classical Cher-
noff bound [104].

Chernoff bound For any ε ∈ (0,1) and δ ∈ (0,1), if

N ≥ 1

2ε2
log

2

δ
(8.14)

then, with probability greater than 1 − δ, we have |̂pN(γ )− p(γ )|< ε.

Proof The Chernoff bound follows from direct application of the Hoeffding in-
equality to the random variables x1, . . . ,xN , defined as

xi = IBG
(
Δ(i)

)= {1 if Δ(i) ∈ BG;
0 otherwise
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for i = 1, . . . ,N . Since xi ∈ [0,1], letting sN =∑N
i=1 xi and applying inequality

(8.10) we get

PR
{∣∣sN − E(sN)

∣∣≥ ε}≤ 2e−2ε2/N .

Now, observing that p̂N(γ )= sN/N and E( p̂N(γ ))= p(γ ), we write

PR
{∣∣̂pN(γ )− p(γ )∣∣≥ ε}≤ 2e−2Nε2

from which the desired bound follows immediately. �

Remark 8.3 (Chernoff inequalities) In the proof of the Chernoff bound, applying
the two-sided Hoeffding inequality, we obtained the Chernoff inequality

PR
{∣∣̂pN(γ )− p(γ )∣∣≥ ε}≤ 2e−2Nε2

for ε ∈ (0,1).
Similarly, applying the one-sided Hoeffding inequalities, we obtain the one-sided
Chernoff inequalities

PR
{̂
pN(γ )− p(γ )≥ ε

}≤ e−2Nε2; (8.15)

PR
{̂
pN(γ )− p(γ )≤−ε}≤ e−2Nε2

(8.16)

for ε ∈ (0,1). The above inequalities are often denoted as additive Chernoff inequal-
ities to distinguish them from the so-called multiplicative Chernoff inequalities, see
e.g. [406]. For this reason, the bound (8.14) is often called the additive Chernoff
bound. The multiplicative Chernoff inequalities take the form

PR
{̂
pN(γ )− p(γ )≥ εp(γ )

}≤ e−p(γ )Nε2/3; (8.17)

PR
{̂
pN(γ )− p(γ )≤−εp(γ )}≤ e−p(γ )Nε2/2 (8.18)

for ε ∈ (0,1). Contrary to those in the additive form, we observe that these in-
equalities are not symmetric. The associated bounds are the so-called multiplicative
Chernoff bounds. We refer to [406] for additional discussions on these topics.

From the one-sided Chernoff inequality we immediately derive the one-sided
Chernoff bound.

One-sided Chernoff bound For any ε ∈ (0,1) and δ ∈ (0,1), if

N ≥ 1

2ε2
log

1

δ
(8.19)

then, with probability greater than 1 − δ, we have p̂N(γ )− p(γ ) < ε.

We remark that the Chernoff bound largely improves upon the Bernoulli bound.
In particular, whereas the sample size in Bernoulli depends on 1/δ, the Chernoff
bound is a function of log(2/δ). However, in both cases, the dependence on ε is
unchanged and it is inversely proportional to ε2. We conclude that confidence is
“cheaper” than accuracy. Table 8.1 shows a comparison between these bounds for
several values of ε and δ.
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Table 8.1 Comparison of the
sample size obtained with
Bernoulli and Chernoff
bounds for different values
of ε and δ

ε 1 − δ Bernoulli Chernoff

0.05 0.95 2000 738

0.99 1.00×104 1060

0.995 2.00×104 1199

0.999 1.00×105 1521

0.01 0.95 5.00×104 1.84×104

0.99 2.50×105 2.65×104

0.995 5.00×105 3.00×104

0.999 2.50×106 3.80×104

0.005 0.95 2.00×105 7.38×104

0.99 1.00×106 1.06×105

0.995 2.00×106 1.20×105

0.999 1.00×107 1.52×105

0.001 0.95 5.00×106 1.84×106

0.99 2.50×107 2.65×106

0.995 5.00×107 3.00×106

0.999 2.50×108 3.80×106

We observe that the bounds discussed in these sections can be computed a priori
and are explicit. That is, given ε and δ one can find directly the minimum value ofN
without generating the samples Δ(1...N) and evaluating J (Δ(i)) for i = 1, . . . ,N . On
the other hand, when computing the classical confidence intervals, see e.g. [111], the
sample size obtained is not explicit. More precisely, for given δ ∈ (0,1), the lower
and upper confidence intervals pL and pU are such that

PRΔ(1...N)
{
pL ≤ p(γ )≤ pU

}
> 1 − δ.

The evaluation of this probability requires the solution with respect to pL and pU of
equations of the type

N∑
k=NG

(
N

k

)
pLk(1 − pL)N−k = δL; (8.20)

NG∑
k=0

(
N

k

)
pUk(1 − pU)N−k = δU (8.21)

with δL + δU = δ, where NG is the number of samples such that J (Δ(i)) ≤ γ .
Clearly, the probabilities pL and pU are random variables which can be computed
only a posteriori, once the value of NG is known. Moreover, an explicit solution of
the previous equations is not available, so that standard tables or numerical meth-
ods are generally used; see e.g. [332]. Figure 8.1 shows the confidence intervals
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Fig. 8.1 Confidence intervals
for δ = 0.002

for δ = 0.002 and various values of N . The figure should be interpreted as fol-
lows: if, for instance, N = 1,000 and NG = 700, then the estimated probability is
p̂N (γ )=NG/N = 0.7 and the values pU = 0.74, pL = 0.65 can be obtained from
the plot.

8.4 Sample Complexity for Estimation of Extrema

The sample complexity considered in the previous section applies to the estimation
of probabilities, which are essentially expectations of random variables defined by
means of indicator functions. In this section, we deal instead with sample bounds
that apply to the estimation of extrema (as opposed to expectation) of a random
variable. Computing the extremum of a function is directly related to the issue of
assessing the worst-case performance of a system, as defined in Problem 6.2. In
particular, we consider the problem of computing a probabilistic estimate of the
worst-case performance

γwc = sup
Δ∈BD

J (Δ).

To this end, we introduce a random sampling scheme, generating N iid samples of
Δ according to fΔ(Δ) with support BD, and define the empirical maximum

γ̂N = max
i=1,...,N

J
(
Δ(i)

)
.

For this specific problem, a bound on the sample size, derived in [233] and [382], is
now given.
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Theorem 8.1 (Sample size bound for worst-case performance) For any ε ∈ (0,1)
and δ ∈ (0,1), if

N ≥ log 1
δ

log 1
1−ε

(8.22)

then, with probability greater than 1 − δ, we have

PRΔ

{
J (Δ)≤ γ̂N

}≥ 1 − ε.
That is

PRΔ(1...N)
{
PRΔ

{
J (Δ)≤ γ̂N

}≥ 1 − ε}> 1 − δ.

Proof Let α be the minimum value in the interval [infΔ∈BD
J (Δ), γwc] such that

FJ(Δ)(α)≥ 1−ε, where FJ(Δ)(·) is the distribution function of the random variable
J (Δ). Notice that α always exists, since FJ(Δ)(·) is right continuous. Now, we have

PR
{
FJ(Δ)(γ̂N)≥ 1 − ε}= PR{γ̂N ≥ α}

= 1 − PR{γ̂N < α} = 1 − FJ(Δ)
(
α−
)N

where FJ(Δ)(α−) is the limit of FJ(Δ)(α) from the left. In addition, observe that
FJ(Δ)(α

−)≤ 1 − ε. Then

PR
{
FJ(Δ)(γ̂N)≥ 1 − ε}≥ 1 − (1 − ε)N .

Next, notice that if (8.22) holds, then (1 − ε)N ≤ δ. Thus

PR
{
FJ(Δ)(γ̂N)≥ 1 − ε}≥ 1 − δ.

This completes the proof. �

It is shown in [103] that the bound (8.22) is tight if the distribution function is
continuous. This is a consequence of the fact that the bound on the sample size is
minimized if and only if

sup
{γ :FJ(Δ)(γ )≤1−ε}

FJ(Δ)(γ )= 1 − ε.

Comparing the bound (8.22) with the Chernoff bound, it can be observed that in
the former case the bound grows as 1/ε, since log(1/(1 − ε)) ≈ ε, whereas in the
latter case it grows as 1/ε2.

This fact leads to a major reduction in the number of samples needed, as shown
in Fig. 8.2, which compares the worst-case bound of Theorem 8.1 with the Chernoff
bound for various values of ε and δ. This is not surprising, since in the worst-case
bound the performance level is selected a posteriori, once the samples are generated
and γ̂N is computed, while the Chernoff bound holds for any a priori specified value
of γ . Note however that the two bounds apply to different problems. Namely, the
Chernoff bound applies to estimation of expected values or probabilities, while the
bound in Theorem 8.1 applies to the estimation of extrema.
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Fig. 8.2 Comparison
between the Chernoff bound
(dash-dotted line) and the
worst-case bound (solid line)

Fig. 8.3 Interpretation of the
worst-case bound

Remark 8.4 (Worst-case bound interpretation) In general, there is no assurance that
γ̂N is actually close to the maximum γwc. As shown in Fig. 8.3, the bound previ-
ously discussed only guarantees (in probability) that the performance is less than
γ̂N with high probability 1 − ε. In other words, the set of points greater than the
estimated value has a measure smaller than ε, and this is true with a probability at
least 1 − δ. In turn, this implies that, if the function J (Δ) is sufficiently smooth,
then the estimated and actual maximum may be close. For this reason, care should
be exercised when the bound is applied for solving optimization problems with a
randomized approach.

Remark 8.5 (Bounds for one level of probability) We notice that [36] investigates
the minimal sample size problem with one level of probability, when the perfor-
mance function J is in the class of all Lipschitz continuous functions JL. More
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precisely, the problem addressed in [36] is to compute the minimum number of
samples required to satisfy

PRΔ(1...N)

{
sup
J∈JL

|γwc − γ̂N | ≤ ε
}
≥ 1 − δ.

In the same paper, it is also shown that the uniform distribution is “optimal” in the
sense of minimizing the sample size, but the sample size obtained may be an expo-
nential function of the number of variables and, therefore, computational complexity
becomes a critical issue. Contrary to the bounds previously discussed, in this line of
research the performance function is not fixed, rather it varies within the class JL.

In [119], the authors derive a one level of probability bound on the expected
number of samples that have to be drawn for approximating the maximum of a linear
functional on a convex body with precision α. In particular, it is shown that this
number grows exponentially in the dimensionality of the problem, see Sect. 14.4.3
for further details.

8.5 Sample Complexity for the Binomial Tail

This binomial distribution plays a key role in many problems. In our context, for
example, it arises when establishing tight bounds on the violation probability in
the so-called scenario optimization approach discussed in Chap. 12. Here, we study
sample cardinality bounds for the tail of the binomial distribution, see Eq. (2.4) in
Sect. 2.3

BN,d(ε)=
d∑
i=0

(
N

i

)
εi(1 − ε)N−i

where d ≤ N is a nonnegative integer and ε ∈ (0,1) is the accuracy. The objective
is to determine a function Ñ(ε, d, δ) such that the inequality BN,d(ε)≤ δ holds for
any N ≥ Ñ(ε, d, δ), where δ ∈ (0,1) is a confidence parameter.

The following technical lemma, stated in [10], provides an upper bound for the
binomial distribution BN,d(ε).

Lemma 8.2 Let N , d be nonnegative integers with N ≥ d , and ε ∈ (0,1). Then,

BN,d(ε)=
d∑
i=0

(
N

i

)
εi(1 − ε)N−i ≤ ad

(
ε

a
+ 1 − ε

)N

for all a ≥ 1.

We notice that each particular choice of the parameter a ≥ 1 provides an upper
bound for the binomial density BN,d(ε).
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Lemma 8.3 Let N , d be nonnegative integers with N ≥ d , a > 1, ε ∈ (0,1) and
δ ∈ (0,1). If

N ≥ 1

ε

(
a

a − 1

)(
log

1

δ
+ d loga

)
then

BN,d(ε)=
d∑
i=0

(
N

i

)
εi(1 − ε)N−i ≤ δ.

Obviously, the best sample size bound is obtained taking the infimum with re-
spect to a > 1. However, a suboptimal value easily follows setting a equal to the
Euler number e which provides the sample complexity

N ≥ 1

ε

(
e

e − 1

)(
log

1

δ
+ d

)
.



Chapter 9
Statistical Learning Theory

In this chapter, we provide an overview of statistical learning theory and we de-
scribe some results regarding uniform convergence of empirical means and related
sample complexity. This theory provides a fundamental extension of the probability
inequalities studied in Chap. 8 to the case when parameterized families of perfor-
mance functions are considered, instead of a fixed function. For an advanced treat-
ment of this topic, the interested reader may refer to [132, 148, 270, 363, 401, 406].
In Chap. 13, we study applications of statistical learning theory to control systems
design.

9.1 Deviation Inequalities for Finite Families

In Chap. 8 we studied several deviation-type inequalities for random variables. Here,
we begin by reconsidering the two-sided Hoeffding inequality, applied to the general
case of expected value estimation. Consider a performance function J :D→[0,1],
and its empirical mean

ÊN
(
J (Δ)

)= 1

N

N∑
i=1

J
(
Δ(i)

)

computed using a multisample Δ(1...N) of cardinality N . Then, it immediately fol-
lows from (8.10) that the probability of deviation of the empirical mean from the
actual one is bounded as

PR
{∣∣E(J (Δ))− ÊN

(
J (Δ)

)∣∣≥ ε}≤ 2e−2Nε2
. (9.1)

It should be emphasized that this inequality holds for a fixed performance func-
tion J . On the other hand, if we wish to consider m performance functions simulta-
neously, we need to define a finite class of functions, consisting of m elements

Jm
.= {J1, . . . , Jm}

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_9,
© Springer-Verlag London 2013
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where Ji :D→[0,1], i = 1, . . . ,m. We now aim at bounding the probability of de-
viation of the empirical mean from the actual one for all functions in the considered
class. This worst-case probability

q(Jm,N, ε)= PR
{

sup
J∈Jm

∣∣E(J (Δ))− ÊN
(
J (Δ)

)∣∣> ε}
can be bounded by repeated application of the inequality (9.1), obtaining

q(Jm,N, ε)≤ 2me−2Nε2
. (9.2)

Notice that this result is distribution free, i.e. the actual distribution of the data does
not play any role in the upper bound. A similar bound on the expected value of the
maximal deviation

EΔ(1...N)

(
sup
J∈Jm

∣∣E(J (Δ))− ÊN
(
J (Δ)

)∣∣)
can be derived. This bound is reported in the following lemma, whose proof may be
found for instance in [270].

Lemma 9.1 Let Jm be a family of performance functions of finite cardinality m.
Then

EΔ(1...N)

(
sup
J∈Jm

∣∣E(J (Δ))− ÊN
(
J (Δ)

)∣∣)≤
√

log(2m)

2N
.

9.2 Vapnik–Chervonenkis Theory

We remark that the inequality (9.2) implies that the probability q(Jm,N, ε) ap-
proaches zero asymptotically as N goes to infinity for all ε > 0. This convergence
property is therefore satisfied for any family of performance functions Jm having
finite cardinality. The question that naturally arises is whether infinite families of
performance functions enjoy the same property. In this case, the finite class of func-
tions Jm is replaced by the infinite family J of measurable binary-valued functions
mapping R

n into {0,1}. Similarly, the probability q(Jm,N, ε) is replaced by the
probability

q(J ,N, ε)= PR
{

sup
J∈J

∣∣E(J (Δ))− ÊN
(
J (Δ)

)∣∣> ε}.
This probability is sometimes called probability of two-sided failure and the conver-
gence property we are interested in is denoted as uniform convergence of empirical
means (UCEM), which is now formally introduced.

Definition 9.1 (UCEM) Consider a family J of measurable binary-valued func-
tions mapping R

n into {0,1}. The class J enjoys the uniform convergence of em-
pirical means (UCEM) property if q(J ,N, ε)→ 0 as N→∞ for any ε > 0.
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The problem of establishing the UCEM property and deriving bounding inequal-
ities for the probability of two-sided failure is the focal point of statistical learn-
ing theory, which was initiated by Vapnik and Chervonenkis in their seminal paper
[402]. In this chapter, we report some of the key results of this theory, with particular
attention to derive the sample complexity.

Note that, associated to the family of functions J , we may define the correspond-
ing class SJ , whose elements are the sets

SJ
.= {Δ ∈ B : J (Δ)= 1

}
, J ∈ J

where B is a generic set in R
n. In the following, we use families of functions or

families of sets interchangeably, depending on which one is more convenient in
the context. In fact, given a family of functions J , we construct the corresponding
family of sets SJ as shown above. Conversely, to a family of measurable sets S we
associate the family of binary-valued functions J whose elements are

J (Δ)
.= IS(Δ), S ∈ S.

Notice that with these definitions we have

PRΔ{Δ ∈ SJ } = EΔ

(
J (Δ)

)
.

Consider a point set Δ(1...N) = {Δ(1), . . . ,Δ(N)} of cardinality N . For a given fam-
ily J , let

NJ
(
Δ(1...N)

) .= Card
(
Δ(1...N) ∩ SJ ,SJ ∈ SJ

)
be the number of different subsets of Δ(1...N) obtained intersecting Δ(1...N) with
the elements of SJ . When NJ (Δ(1...N)) equals the maximum number of possible
different subsets of Δ(1...N), which is 2N , we say that SJ shatters the set Δ(1...N).
We can hence define the “shatter coefficient” of a set of points Δ(1...N) as follows.

Definition 9.2 (Shatter coefficient) Let J be a family of measurable functions
R
n → {0,1}. The shatter coefficient of the family J , or equivalently of the fam-

ily of sets SJ , is defined as

SJ (N)
.= max
Δ(1...N)

NJ
(
Δ(1...N)

)
. (9.3)

Thus, SJ (N) is the maximum number of different subsets of any point set
Δ(1...N) of cardinality N that can be obtained by intersecting Δ(1...N) with elements
of SJ .

Example 9.1 (Shatter coefficient of a family of half-spaces in R
2) Consider the

family J of binary-valued functions J (Δ) mapping R
2 into {0,1} of the form

J (Δ)=
{

1 if θT1 Δ+ θ2 ≥ 0;
0 otherwise
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Fig. 9.1 A family of half-spaces shatters a point set of cardinality three

with parameters θ1 ∈ R
2, θ2 ∈ R. We associate to the family J the family of sets

SJ formed by all possible linear half-spaces of R2. Then, in Fig. 9.1, we consider a
point set Δ(1,2,3) = {Δ(1),Δ(2),Δ(3)} of cardinality three and observe that

NJ
(
Δ(1,2,3)

)= 8 = 23.

Therefore, we say that the family SJ shatters the point set, and SJ (3)= 8. Similarly,
in Fig. 9.2 we consider a point set Δ(1,...,4) of cardinality four and observe that

NJ
(
Δ(1,...,4)

)= 14.

Since 14< 24, we conclude that the set considered is not shattered by the family. It
can indeed be shown that the shatter coefficient of the family is SJ (4)= 14, i.e. it
is not possible to find any point set of cardinality four that can be shattered by SJ .

The celebrated Vapnik–Chervonenkis inequality [402] states a bound on the
probability of two-sided failure for any ε > 0

q(J ,N, ε)≤ 4SJ (2N) e
−Nε2/8. (9.4)

The Vapnik–Chervonenkis inequality therefore provides a bound on the uniform
deviation of empirical means in terms of the combinatorial parameter SJ (N). This
parameter can be interpreted as a measure of the “richness” of the class of func-
tions J . An important issue therefore is the computation of explicit upper bounds
for SJ (N), so that the probability q(J ,N, ε) can be suitably bounded. To this end,
we now define the Vapnik–Chervonenkis dimension VC of a family of binary-valued
functions.

Definition 9.3 (VC dimension) Let J be a family of measurable binary-valued
functions mapping R

n into {0,1}. The VC dimension VC(J ) of J is defined as the
largest integer k such that SJ (k) = 2k . If SJ (k) = 2k for all k, then we say that
VC(J )=∞.
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Fig. 9.2 A point set of cardinality four is not shattered by SJ . In fact, the subsets in (7) and (10)
cannot be obtained intersecting an element of SJ with Δ(1,...,4)

In other words, the VC dimension of J is the largest integer N such that there
exists a set of cardinality N that is shattered by J .

Example 9.2 (VC dimension of a family of half-spaces in R
2) In Example 9.1 we

considered a family of half-spaces in R
2 and showed that the maximum cardinality

of a point set shattered by SJ is three. We hence conclude that the VC dimension of
this family is VC(J )= 3.

The VC dimension is used to determine a bound on the shatter coefficient, by
means of the so-called Sauer lemma, see [343].

Lemma 9.2 (Sauer) Let J be a family of measurable binary-valued functions
R
n→{0,1} and let VC(J )≤ d <∞. Then

SJ (N)≤
d∑
i=0

(
N

i

)
.
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Moreover, for all N ≥ d , we have

d∑
i=0

(
N

i

)
≤
(
Ne

d

)d
.

One of the direct consequences of this result is that, under the assumption of
finite VC dimension, SJ (N) is bounded by a polynomial function of N . In turn,
this implies that

SJ (2N)e
−Nε2/8 → 0 for N→∞.

Bearing in mind the Vapnik–Chervonenkis inequality (9.4), if the VC dimension is
bounded, we easily obtain

q(J ,N, ε)→ 0 for N→∞.
Furthermore, combining Sauer lemma and the inequality (9.4), we obtain the fol-
lowing fundamental result stated in [402].

Theorem 9.1 (Vapnik–Chervonenkis) Let J be a family of measurable binary-
valued functions mapping R

n into {0,1}. Suppose J has finite VC dimension
VC(J ) ≤ d <∞. Then, J has the UCEM property. In particular, for any ε > 0
and N ≥ d

q(J ,N, ε)≤ 4

(
2eN

d

)d
e−Nε2/8.

Conversely, if J has the UCEM property, then its VC dimension is finite.

As discussed in [9], there exist other results in the literature that allow one to re-
duce by a factor close to 8 the exponent. Basically, these results differ from Eq. (9.4)
in the exponent −Nε2/8 which is replaced by less conservative ones, with almost no
increase in the other constants appearing in the bounds. For example, the exponent
−Nε2 can be found in [321] and [401]. To obtain more significant improvements,
we now introduce other notions of probability of failure. This requires the introduc-
tion a level parameter β ∈ [0,1), which allows broadening the class of problems
that are studied. First, we define the probability of one-sided constrained failure as
follows

p(J ,N, ε,β)
= PR

{∃J ∈ J : ÊN
(
J (Δ)

)≤ β and E
(
J (Δ)

)− ÊN
(
J (Δ)

)
> ε
}
. (9.5)

Notice that taking β > 0 allows one to consider probabilistic constraints of the form
ÊN(J (Δ)) ≤ β , which will turn useful in the learning-theory approach to control
discussed in Chap. 13. Then, we define the probability of relative difference failure
as

r(J ,N, ε)= PR

{
sup
J∈J

E(J (Δ))− ÊN(J (Δ))√
E(J (Δ))

> ε

}
.
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The next theorem summarizes the results [401] and [9], and shows the specific rela-
tions between these probabilities.

Theorem 9.2 Let J be a family of measurable binary-valued functions mapping
R
n into {0,1}. Suppose J has finite VC dimension VC(J )≤ d <∞. Then, for any
ε ∈ (0,1), β ∈ [0,1) and N ≥ d

p(J ,N, ε,β)≤ q(J ,N, ε) < 4e2ε
(

2eN

d

)d
e−Nε2;

p(J ,N, ε,β)≤ r
(
J ,N, ε√

ε + β
)
;

r(J ,N, ε) < 4

(
2eN

d

)d
e−Nε2/4.

To conclude this section, we present an extension given in [270] to infinite fami-
lies of Lemma 9.1 on the expectation of maximal deviations.

Lemma 9.3 Let J be a family of measurable binary-valued functions mapping R
n

into {0,1}. Suppose J has finite VC dimension VC(J ) ≤ d <∞. Then, for any
ε ∈ (0,1) and N ≥ d

EΔ(1...N)

(
sup
J∈J

∣∣E(J (Δ))− ÊN
(
J (Δ)

)∣∣)≤ 2

√
d log(N + 1)+ log 2

N
.

9.3 Sample Complexity for the Probability of Failure

In this section, we focus on the derivation of explicit bounds on the number of
samples required to guarantee that the probability of failure is bounded by given
confidence δ ∈ (0,1). The first result in this direction for statistical learning theory
has been proved in [405] and is stated next.

Theorem 9.3 Let J be a family of measurable binary-valued functions mapping R
n

into {0,1}. Suppose J has finite VC dimension VC(J )≤ d <∞. For any ε ∈ (0,1)
and δ ∈ (0,1), if

N ≥ max

{
16

ε2
log

4

δ
,

32d

ε2
log

32e

ε2

}

then q(J ,N, ε)≤ δ.

This theorem is based on “inverting” Sauer lemma. More generally, the prob-
lem addressed in the next result, see [9] for proof, can be stated as follows: given
δ ∈ (0,1), and real constants a, b, and c, we aim at computing N ≥ d satisfying the
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inequality

a

(
ceN

d

)d
e−bN < δ.

Lemma 9.4 Suppose that a ≥ 1, b ∈ (0,1], c ≥ 1, d ≥ 1 and δ ∈ (0,1) are given.
Then, N ≥ d and

a

(
ceN

d

)d
e−bN < δ

provided that

N ≥ inf
μ>1

μ

b(μ− 1)

(
log
a

δ
+ d log

cμ

b

)
.

Using this lemma, an alternative explicit bound to that presented in Theorem 9.3
can be obtained. From the Vapnik–Chervonenkis theorem, to achieve a probability
of two-sided failure smaller than δ, it suffices to choose N such that

4

(
2eN

d

)d
e−Nε2/8 < δ.

Taking a = 4, b = ε2/8, c = 2 and applying Theorem 9.4, we easily obtain the
bound

N ≥ inf
μ>1

8

ε2

(
μ

μ− 1

)(
log

4

δ
+ d log

16μ

ε2

)
.

Clearly, a more conservative bound may be computed if, instead of evaluating the
infimum with respect to μ > 1, a suboptimal value of μ is chosen. For example,
setting μ equal to 2e, we conclude that it suffices to take

N ≥ 9.81

ε2

(
log

4

δ
+ d log

32e

ε2

)
.

We remark that this bound improves upon Theorem 9.3. Using Theorems 9.2
and 9.4, in the next theorem we provide further improvements.

Theorem 9.4 Let J be a family of measurable binary-valued functions mapping R
n

into {0,1}. Suppose J has finite VC dimension VC(J )≤ d <∞. For any ε ∈ (0,1)
and δ ∈ (0,1), if

N ≥ 1.2

ε2

(
log

4e2ε

δ
+ d log

12

ε2

)
then q(J ,N, ε) < δ.

The Vapnik–Chervonenkis theory provides both necessary and sufficient con-
ditions for the UCEM property to hold. Therefore, improvements may be obtained
only in the derivation of less conservative estimates for the sample-complexity given
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accuracy, confidence and the VC dimension. In particular, Theorem 9.4 is an im-
provement with respect to Theorem 9.3. Note however that the obtained sample
size bound still grows with 1

ε2 log 1
ε2 . This dependence with respect to ε makes the

bound of practical interest only for relatively large values of the accuracy parameter
ε ∈ (0,1).

Next, we concentrate on the probability of one-sided constrained failure intro-
duced in (9.5). In particular, we show that when the parameter β is chosen close to
zero, manageable sample size bounds are obtained for reasonable values of accuracy
and confidence parameters ε and δ. This constitutes a computational improvement
that significantly reduces the required sample size. Notice that it makes sense to
choose β close to zero because in most applications one desires to have a small
probability of violation. This is summarized in the next result [9].

Theorem 9.5 Let J be a family of measurable binary-valued functions mapping R
n

into {0,1}. Suppose J has finite VC dimension VC(J )≤ d <∞. For any ε ∈ (0,1),
δ ∈ (0,1) and β ∈ [0,1), if

N ≥ 5(β + ε)
ε2

(
log

4

δ
+ d log

40(β + ε)
ε2

)
(9.6)

then p(J ,N, ε,β) < δ.

In some applications, a reasonable choice of the level parameter is β = ε. In this
case, taking β = ε in Theorem 9.5 one immediately obtains the bound

N ≥ 10

ε

(
log

4

δ
+ d log

80

ε

)

which grows with 1
ε

log 1
ε

. Another reasonable choice of the level parameter β is to
set it to zero. In this case, we easily obtain the bound

N ≥ 5

ε

(
log

4

δ
+ d log

40

ε

)
.

It is worth remarking that a similar bound for the particular case β = 0 can be
obtained using the notion of “version space” presented in [321]. More generally,
we can introduce a parametrization of the form β = ε�, where � is any nonnegative
scalar, which relates β and ε. With this parametrization the sample size bound grows

as ε
�−1+1
ε

log ε
�−1+1
ε

.

9.4 Bounding the VC Dimension

From the previous results, it appears that it is crucial to assess whether a given
family J has finite VC dimension and, in this case, to determine an upper bound d
on it. We next report without proof some known results on the computation of the
VC dimension for special classes of sets. First, we state a simple result regarding
the VC dimension of hyperrectangles, see e.g. [270].
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Lemma 9.5 If S is the class of all rectangles in R
d , then VC(S)= 2d .

The following result on linear functional spaces is stated in [145].

Lemma 9.6 Let G be an m-dimensional vector space of real-valued functions
g :Rd →R. Define the class of sets

S = {{x ∈R
d : g(x)≥ 0

} : g ∈ G
}
.

Then, VC(S)≤m.

From this lemma we deduce the following corollary.

Corollary 9.1

1. If S is the class of all linear half-spaces {x : aT x ≥ b}, a ∈ R
m, b ∈ R, then

VC(S)≤m+ 1;
2. If S is the class of all closed balls {x : ‖x − a‖2 ≤ r}, a ∈ R

m, r ∈ R+, then
VC(S)≤m+ 2;

3. If S is the class of all ellipsoids in R
m centered at the origin E(0,W),

W =WT � 0, then VC(S)≤m(m+ 1)/2 + 1.

Using a result in [114], one can show that for linear half-spaces the VC dimension
actually equalsm+1. Similarly, in [146] it is proved that for the class of closed balls
the VC dimension equals m+ 1.

Next, we report a general result that is useful to establish upper bounds on the
VC dimension of families of functions that arise as unions, intersections or other
Boolean functions operating on functions belonging to families with known VC
dimension.

Lemma 9.7 Let J1, . . . ,Jm bem families consisting of measurable functions map-
ping R

n into {0,1} and let φ be a given Boolean function φ : {0,1}m → {0,1}.
Consider the class Jφ

Jφ
.= {φ(J1, . . . , Jm) : Ji ∈ Ji , i = 1, . . . ,m

}
.

Then, we have

VC(Jφ)≤ 2m log(em) max
i=1,...,m

{
VC(Ji )

}
.

This lemma is proved for instance in [363]. Results along these lines may also
be found in [147, 325, 406, 412]. In particular, the following lemma deals with the
case of Boolean closures of polynomial classes.

Lemma 9.8 Let J1, . . . ,Jm bem families consisting of measurable functions map-
ping B into {0,1} and let φ be a given Boolean function φ : {0,1}m → {0,1}. Sup-
pose further that each class Ji consists of functions Ji(Δ, θ) that are polynomials
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in the parameter θ ∈ R
� of maximum degree α in the variables θi , i = 1, . . . , �.

Consider the class Jφ

Jφ
.= {φ(J1, . . . , Jm) : Ji ∈ Ji , i = 1, . . . ,m

}
.

Then

VC(Jφ)≤ 2� log2(4eαm).

This result is proven in a more general form in [227], and it is given in the form
stated above in [406]. In Chap. 13 we provide examples showing the explicit com-
putation of the VC dimension for control problems.

9.5 Pollard Theory

The Vapnik–Chervonenkis theory has been extended from binary-valued functions
to families of continuous-valued functions bounded in the interval [0,1]. In this
case, the analogous concept of the VC dimension is the Pollard (or pseudo) di-
mension P of the class of functions. To define the P dimension, consider a fam-
ily of functions J mapping R

n into the closed interval [0,1]. Then, a point set
Δ(1...N) = {Δ(1), . . . ,Δ(N)} is said to be P-shattered by J if there exists a vector

v = [v1 . . . vN ]T , vi ∈ [0,1], i = 1, . . . ,N

such that for every binary vector

b= [b1 . . . bN ]T , bi ∈ {0,1}, i = 1, . . . ,N

there exists a function J ∈ J such that{
J (Δ(i))≥ vi, if bi = 1;
J (Δ(i)) < vi, if bi = 0

for all i = 1, . . . ,N . Then, the P dimension of J is defined as follows.

Definition 9.4 (P dimension) Let J be a family of measurable functions mapping
R
n into [0,1]. The P dimension of J , denoted as P-DIM(J ), is the largest integer
N such that there exists a set of cardinality N that is P-shattered by J .

Note that all the relevant concepts defined in the previous sections for binary-
valued functions, such as the empirical mean, the probability of two-sided fail-
ure q(J ,N, ε), and the UCEM property, can be readily re-defined to the case of
J :Rn→[0,1]. With this understanding, we now state a result, due to [324], which
is the analog of Theorem 9.1 for the case of continuous-valued functions with finite
P dimension.
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Theorem 9.6 (Pollard) Let J be a family of measurable functions mapping R
n into

[0,1]. Suppose J has finite P dimension P-DIM(J ) ≤ d <∞. Then, J has the
UCEM property. In particular, for any ε > 0

q(J ,N, ε)≤ 8

(
16e

ε
log

(
16e

ε

))d
e−Nε2/32.

Remark 9.1 (Relation between VC and P dimensions) If J is a family of measur-
able functions mapping R

n into [0,1], and every function in J is actually binary-
valued, then it can be easily verified that VC(J )= P-DIM(J ). More generally, the
VC and P dimensions are related as follows: given a family J of measurable func-
tions mapping R

n into [0,1], define the associated family of binary functions J̄
whose elements are the functions J̄ (Δ, c)= IJ (Δ)≥c(Δ), for c ∈ [0,1], J ∈ J . Then

VC(J̄ )= P-DIM(J ).

This relationship is explicitly proved in [272], and it is also reported in [406].

Similarly to Theorem 9.3, the Pollard bound can be inverted to derive explicit
sample complexity bounds. In particular, the following result is given in [406].

Theorem 9.7 Let J be a family of measurable functions mapping R
n into [0,1].

Suppose J has finite P dimension P-DIM(J ) ≤ d <∞. For any ε ∈ (0,1) and
δ ∈ (0,1), if

N ≥ 32

ε2

[
log

8

δ
+ d

(
log

16e

ε
+ log log

16e

ε

)]
,

then q(J ,N, ε)≤ δ.

Finally, we state a result on the pseudo dimension of the composition of functions
(h ◦ J )(Δ) .= h(J (Δ)), due to [196].

Lemma 9.9 Let J be a family of measurable functions mapping R
n into [0,1], and

let h be a fixed nondecreasing measurable function h :R→R. Then, we have

P-DIM
({
(h ◦ J ) : J ∈ J

})≤ P-DIM(J ).



Chapter 10
Randomized Algorithms in Systems and Control

In Chap. 6 we introduced the notion of probabilistic performance of a control sys-
tem, as a counterpart to classical worst-case performance. It should be observed that,
except for some special cases which include the examples shown in that chapter, this
probabilistic shift does not imply a simplification of the analysis or design problem.
Indeed, even establishing if a given system satisfies a probabilistic constraint may
be computationally very hard, since it requires the exact evaluation of a multidi-
mensional probability integral. At this point randomization comes into play: the
probabilistic performance may be estimated by randomly sampling the uncertainty,
and tail inequalities are used to bound the estimation error. Since the estimated prob-
ability is itself a random quantity, this method always entails a certain risk of failure,
i.e. there exists a nonzero probability of making an erroneous estimation.

In this chapter we first introduce the formal definitions of Monte Carlo and Las
Vegas randomized algorithms. Then, we overview algorithms for analysis of uncer-
tain systems, which are also based on the Monte Carlo methods studied in Chap. 7.
For control design, the subsequent Chaps. 11, 12 and 13 discuss in detail feasi-
bility and optimization of various convex and nonconvex control problems which
are introduced here. Crucial steps for implementing these algorithms are the deter-
mination of an appropriate sample size N , discussed in Chaps. 8 and 9, and the
construction of efficient algorithms for random sampling the uncertainty Δ within
the structured set BD, see Chaps. 14, 16 and 18.

10.1 Preliminaries

As we shall see in the following, a randomized algorithm for probabilistic analysis
is an algorithm that, based on random extractions of uncertainty samples, returns an
estimated probability of satisfaction of the performance specifications. The estimate
provided by the randomized algorithm should be within an a priori specified accu-
racy ε ∈ (0,1) from the true value, with high confidence 1 − δ, δ ∈ (0,1). That is,
the algorithm may indeed fail to return an approximately correct estimate, but with
probability at most δ.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_10,
© Springer-Verlag London 2013
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A similar situation also arises in the more difficult case of synthesis. The com-
plication stems from the fact that the probability to be estimated is no longer fixed,
but it is instead a function of some unknown controller or, more generally, design
parameters θ . In this case, a randomized algorithm should return a design, repre-
sented by a vector θ ∈ R

nθ , which guarantees the desired performance with an a
priori specified accuracy ε ∈ (0,1). As in the analysis case, this algorithm may fail
with probability at most δ.

We highlight some points that are specific to the randomized approach that we
intend to pursue. First, we aim to establish probabilistic statements with emphasis on
finite sample bounds, as opposed to asymptotic results arising in other branches of
probability theory. In particular, as discussed in Chap. 8, the sample complexity of
a randomized algorithm is the minimum number of uncertainty samples N (sample
size) that need to be drawn in order to achieve the desired levels of accuracy and
confidence.

A conceptual distinction with respect to the common use of randomized algo-
rithms in other fields, such as optimization, is that the randomization process is
(whenever possible) applied only to the actual uncertainties present in the system,
and not to other deterministic decision parameters. Therefore, randomness is not
artificially introduced into the problem by the solution technique. Instead, the “nat-
ural” randomness due to the presence of stochastic uncertainty in the plant is ex-
ploited in the probabilistic solution. Furthermore, we point out that, in principle, de-
sign under probabilistic constraints can be viewed as a chance constrained optimiza-
tion problem, see for instance [330, 396]. However, chance constrained problems are
generally hard to solve exactly, and therefore randomization provides a viable ap-
proach for their solution. Finally, we mention the “mixed deterministic/randomized”
approach studied in [118, 171].

10.2 Randomized Algorithms: Definitions

In agreement with classical notions in computer science [288, 290], a randomized
algorithm (RA) is formally defined as an algorithm that makes random choices dur-
ing its execution to produce a result. This implies that, even for the same input,
the algorithm might produce different results at different runs and moreover the re-
sults may be incorrect. Therefore, statements regarding properties of the algorithms
are probabilistic and these algorithms are sometimes called probably approximately
correct (PAC).

Next, we formally introduce the so-called Monte Carlo randomized algorithms.
We note that most of the probabilistic results studied in systems and control are
based on this type of algorithms.

Definition 10.1 (Monte Carlo randomized algorithm) A Monte Carlo randomized
algorithm (MCRA) is a randomized algorithm that may produce an incorrect result,
but the probability of such an incorrect result is bounded.
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In general, for an MCRA, the results as well as the running times would be
different from one run to another since the algorithm is based on random sampling
which is a random variable. As a consequence, the computational complexity of
such an algorithm is usually measured in terms of its expected running times. An
MCRA is said to be efficient if the expected running time is of polynomial order in
the problem size (at the end of this chapter we discuss more precisely the meaning
of efficient RA).

One simple way to reduce the probability of erroneous results is to run the al-
gorithm repeatedly with independent randomized samples at each time. Therefore,
it is often possible to make the error probability arbitrarily small at the expense of
increasing the running time. In [384], the two classes of one-sided and two-sided
Monte Carlo randomized algorithms are studied, and specific examples in control
are given.

We now introduce another class of randomized algorithms known as Las Vegas
randomized algorithms.

Definition 10.2 (Las Vegas randomized algorithm) A Las Vegas randomized algo-
rithm (LVRA) is a randomized algorithm which always gives the correct answer.
The only difference from one run to another is the running time.

Because of randomization, the running time of a LVRA is random (similarly to
MCRA) and may be different in each execution. Hence, it is of interest to study
the expected running time of the algorithm. It is noted that the expectation is with
respect to the random samples generated during the execution of the algorithm and
not to the input of the algorithm (i.e. regarding the inputs to the problem, no as-
sumption on their distribution is made). Furthermore, if the expected running time
is of polynomial order in the problem size, the LVRA is said to be efficient.

Remark 10.1 (Las Vegas randomized algorithm) In Chap. 7 we briefly discussed
the history of Monte Carlo methods. Regarding Las Vegas, this notion was appar-
ently introduced in 1979 in [33] by the computer scientist Babai. The reason for the
name is not clear, but its relation to gambling is obvious. However, such algorithms
already existed before this name appeared. An example is the Randomized Quick
Sort (RQS) algorithm, which is a well-known Las Vegas type algorithm for sorting
real numbers, see [204, 237]. RQS is implemented in a C library of the Unix operat-
ing system, see [53]. Extensions to sorting matrices instead of numbers are given in
[214] for the special case of Lyapunov equations. More detailed discussions about
LVRA for systems and control are presented in [384].

10.3 Randomized Algorithms for Probabilistic Analysis

We consider the classical M–Δ model, which is frequently used in modern control
theory, see Chap. 3. In Fig. 10.1, M(s) represents the transfer matrix of the known
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Fig. 10.1 Interconnection for
analysis

part of the system, which consists of the extended plant and the controller; w in-
cludes noise, disturbances and reference signals, z represents controlled signals and
tracking errors. According to Assumption 6.1, the uncertainty Δ is a random matrix
with support BD. Associated to the M–Δ configuration, in Chap. 6, we defined a
performance function for analysis (which is assumed to be measurable)

J (Δ) :D→R

where D is the uncertainty structured set defined in (3.27), and an associated perfor-
mance level γ . The function J (Δ) takes into account various performance require-
ments.

Using the M–Δ configuration with random uncertainty, the two basic types
of randomized algorithms for performance analysis presented next address Prob-
lems 6.4 and 6.5 regarding “Probabilistic performance verification” and “Probabilis-
tic worst-case performance” introduced in Chap. 6. First, we specify the character-
istics that an RA for probabilistic performance verification should comply with.

Definition 10.3 (RA for probabilistic performance verification) Let Δ be random
with density fΔ(Δ) having support BD, and let ε ∈ (0,1), δ ∈ (0,1) be assigned
probability levels. Given a performance function J (Δ) :D→R and associated level
γ , the RA should return with probability at least 1 − δ an estimate p̂N(γ ) of the
probability of performance

p(γ )= PR
{
J (Δ)≤ γ }

that is within ε from p(γ ). The estimate p̂N(γ ) should be constructed based on a
finite number N of random samples of Δ ∈ BD.

The probability 1 − p(γ ) is sometimes called probability of violation. This con-
cept is central in the design case, see Sect. 10.4. Note that the concept of approxi-
mate constraint satisfaction has been introduced in [45].

Notice that a simple RA for performance verification is directly constructed by
means of the Monte Carlo method presented in Chap. 7. This is summarized in the
following meta-algorithm.
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Algorithm 10.1 (Probabilistic performance verification) Given ε, δ ∈ (0,1)
and γ , this RA returns with probability at least 1 − δ an estimate p̂N(γ ) such
that ∣∣p(γ )− p̂N(γ )

∣∣< ε.
1. Choose integer N satisfying (10.1)
2. Draw N samples Δ(1), . . . ,Δ(N) according to fΔ;
3. Return the empirical probability

p̂N(γ )= 1

N

N∑
i=1

IBG
(
Δ(i)

)
where IBG(·) is the indicator function of the set BG = {Δ : J (Δ)≤ γ }.

We now comment on step 1 of this algorithm. In Chap. 7 we stated the laws
of large numbers for empirical probability, which guarantee the asymptotic con-
vergence p̂N(γ )→ p(γ ) for N → ∞. However, to use Algorithm 10.1 we need
estimates based on a finite number of samples. This topic has been fully addressed
in Chap. 8, in which lower bounds for N are derived. In particular, if N in Algo-
rithm 10.1 is chosen according to the well-known Chernoff bound (8.14), that is

N ≥ 1

2ε2
log

2

δ
(10.1)

then this RA satisfies the requirements of Definition 10.3.

Example 10.1 (RA for probability of Schur stability) We revisit Example 6.10 re-
garding Schur stability of a discrete-time system affected by parametric uncertainty
q ∈ Bq . In particular, we consider the same fourth-order monic polynomial

p(z, q)= q0 + q1z+ q2z
2 + q3z

3 + z4

but we now take a different hyperrectangle given by

Bq =
{
q ∈R

4 : ‖q‖∞ ≤ 0.5
}
.

In this case, conditions (6.11) do not guarantee that Sn ⊆ Bq , and the formulae
(6.9) and (6.10) cannot be used. Therefore, we estimate the probability of stability
using Algorithm 10.1. In particular, we select the performance function (6.8) and
set γ = 1/2. Then, we assign probability levels ε = 0.005 and δ = 0.001 and, by
means of the Chernoff bound, we determine the sample size

N ≥ 1.52×105.

With this (or larger) sample size we guarantee that with probability at least 1 − δ =
0.999 ∣∣p(γ )− p̂N(γ )

∣∣≤ 0.005.
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In particular, we applied the RA, using N = 155,000 iid samples of the random
vector q ∈ Bq uniformly distributed within Bq , obtaining an estimated probability

p̂N = 0.9906.

In words, we can say with 99.9% confidence that at least 98.56% of the uncertain
polynomials are Schur stable.

Example 10.2 (RA for probability of H∞ performance) In this example, we con-
sider a continuous-time SISO system affected by parametric uncertainty, originally
presented in [41]. The transfer function of the system is

G(s, q)= 0.5q1q2s + 10−5q1

(10−5 + 0.005q2)s2 + (0.00102 + 0.5q2)s + (2×10−5 + 0.5q2
1 )

where the uncertainty q is bounded in the hyperrectangle

Bq =
{
q ∈R

2 : 0.2 ≤ q1 ≤ 0.6, 10−5 ≤ q2 ≤ 3×10−5}.
Assume further that q is random, with uniform distribution over the set Bq . We are
interested in evaluating the probability of attaining an H∞ performance level no
larger than γ = 0.003. We apply a randomized approach, setting the performance
function to J (q) = ‖G(s,q)‖∞. Then, we assign probability levels ε = 0.01 and
δ = 0.001 and apply Algorithm 10.1. By means of the Chernoff bound, we deter-
mine the sample size

N ≥ 3.801×104

which guarantees that with probability at least 1 − δ = 0.999∣∣p(γ )− p̂N(γ )
∣∣≤ 0.01.

To apply the RA, we generated N = 40,000 iid samples of q ∈ Bq , uniformly dis-
tributed within Bq and obtained the empirical mean

p̂N = 0.3482.

In practice, we may conclude with 99.9% confidence that the H∞ performance level
is below γ = 0.003 for at least 34.8% of the uncertain plants.

Similarly to Algorithm 10.1, an RA for probabilistic worst-case performance
should determine a performance level γ̂N which is guaranteed for most of the un-
certainty instances. This is summarized in the next definition.

Definition 10.4 (RA for probabilistic worst-case performance) Let Δ be random
with density fΔ(Δ) having support BD, and let ε ∈ (0,1), δ ∈ (0,1) be assigned
probability levels. Given a performance function J (Δ) : D → R, the RA should
return with probability at least 1 − δ a performance level γ̂N ≤ supΔ∈BD

J (Δ) such
that

PR
{
J (Δ)≤ γ̂N

}≥ 1 − ε.
The performance level γ̂N should be constructed based on a finite number N of
random samples of Δ ∈ BD.

An RA for probabilistic worst-case performance is described in the following
meta-algorithm.
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Algorithm 10.2 (Probabilistic worst-case performance) Given ε, δ ∈ (0,1), this
RA returns with probability at least 1 − δ a level γ̂N ≤ supΔ∈BD

J (Δ) such that

PR
{
J (Δ)≤ γ̂N

}≥ 1 − ε.
1. Choose integer N satisfying (10.2)
2. Draw N samples Δ(1), . . . ,Δ(N) according to fΔ;
3. Return the empirical maximum

γ̂N = max
i=1,...,N

J
(
Δ(i)

)
.

In Chap. 8, a finite sample size bound is computed for this RA. In particular, The-
orem 8.1, derived in [382], shows that if N in Algorithm 10.2 is chosen according to

N ≥ log 1
δ

log 1
1−ε

(10.2)

then this RA satisfies the requirements of Definition 10.4.

Example 10.3 (Randomized algorithm for worst-case H∞ performance) We revisit
Example 10.2 and study H∞ performance of G(s, q). In particular, we are inter-
ested in evaluating a performance level γ̂N which is guaranteed with high proba-
bility 1 − ε = 0.9999. To this aim, we apply Algorithm 10.2. Setting a confidence
level δ = 0.0001, we determine the sample size by means of the bound given in
Theorem 8.1, obtaining

N ≥ 9.210×104.

To apply the RA, we hence generated N = 100,000 iid samples uniformly dis-
tributed within Bq and obtained the empirical maximum

γ̂N = 0.0087.

Then, with confidence greater than 1 − δ = 0.9999, we may conclude that the per-
formance of the uncertain system is below γ̂N for at least 99.99 % of the uncertain
plants.

10.4 Randomized Algorithms for Probabilistic Design

As discussed in Chap. 4, for a fixed plant G(s), the synthesis problem is to design
a controller K(s, θ) such that the interconnection in Fig. 10.2 achieves stability and
performance in the presence of uncertainty, where θ ∈ R

nθ denotes the vector of
design parameters (e.g. the free parameters of the controller). The signals w and z
have the same meaning of Fig. 10.1, and u,y represent inputs and outputs, respec-
tively. In the probabilistic version of the synthesis problem the uncertainty Δ is a
random matrix with structure D and support BD.
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Fig. 10.2 Interconnection for
control design

In this section we study RAs for probabilistic controller synthesis. These tech-
niques are based on the interplay of random sampling in the uncertainty space, and
deterministic optimization in the design parameter space. Formally, we define a per-
formance function that takes into account the design and performance constraints
related to the uncertainty system. These constraints are rewritten in the form of the
inequality

J (Δ, θ)≤ γ (10.3)

where J (Δ, θ) : D×R
nθ → R is a scalar-valued function denoted as performance

function for design. Therefore, the performance function for analysis J (Δ) is a spe-
cial case of J (Δ, θ) for fixed controller parameters θ . We now define the probability
of violation and the reliability of the design.

Definition 10.5 (Probability of violation and reliability) Let ε ∈ (0,1) be a given
accuracy and γ > 0 a performance level. Given θ ∈ R

nθ , we define the probability
of violation for the design θ as

V (θ)
.= PR

{
J (Δ, θ) > γ

}
. (10.4)

Then, the reliability of the design θ is defined as

R(θ)
.= 1 − V (θ). (10.5)

From the previous definition, it follows immediately that θ is a probabilistic reli-
able design if V (θ)≤ ε or, equivalently, R(θ)≥ 1− ε for given accuracy ε ∈ (0,1).
Most of the results available in the literature for finding a probabilistic reliable de-
sign have been derived under the assumption that the function J (Δ, θ) is convex in
θ for all Δ ∈ BD. This assumption is now formally stated and is used in Chaps. 11
and 12. Chapter 13 discusses instead the nonconvex case, which is handled using
the statistical learning techniques introduced in Chap. 9.
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Assumption 10.1 (Convexity) The performance function J (Δ, θ) is convex in θ for
any fixed value of Δ ∈ BD.

Notice that this assumption requires convexity with respect to the design variable
θ , while the only assumption which is needed on the dependence of J (Δ, θ) with
respect to Δ is measurability.

Remark 10.2 (Performance functions for LMIs) A standard example of convex
function J arises when considering performance requirements expressed as uncer-
tain linear matrix inequality (LMI) conditions, as discussed in Sect. 4.3. We recall
that a robust LMI feasibility problem is expressed in the form

Find θ such that F(Δ,θ)� 0 for all Δ ∈ BD.

This problem is rewritten in the scalar-function framework by setting, for instance,

J (Δ, θ)
.= λmax

(
F(Δ,θ)

)
, γ ≡ 0, (10.6)

where λmax denotes the largest eigenvalue. The following alternative choice in the
LMI case was proposed in [86, 328]

J (Δ, θ)= ∥∥[F(Δ,θ)]+∥∥2,

where ‖ · ‖2 is the Frobenius norm and [A]+ denotes the projection on the cone S
n+

of positive semidefinite matrices, i.e.

[A]+ .= arg min
X∈Sn+

‖A−X‖2. (10.7)

This projection can be computed explicitly, for example, by means of the real Schur
decomposition, see [356]. We write

[A]+ =
{0 if A� 0;
UpΛpU

T
p otherwise,

where the matrices Up and Λp are taken from the real Schur decomposition of A.
That is,

A= [Up Un ]
[
Λp 0
0 Λn

][
UTn
UTp

]
where Λp and Λn are diagonal matrices containing, respectively, the nonnegative
and the strictly negative eigenvalues of A, and [Up Un] is an orthogonal matrix.

Remark 10.3 (Multiobjective design) We consider scalar-valued performance func-
tions without loss of generality since a multiobjective design problem subject to
multiple constraints

J1(Δ, θ)≤ γ1, . . . , J�(Δ, θ)≤ γ�
can be easily reduced to a single scalar-valued function by setting

J (Δ, θ)= max
i=1,...,�

Ji(Δ, θ).
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Notice that if the functions Ji(Δ, θ) are convex in θ , then also the point-wise maxi-
mum J (Δ, θ) is convex in θ .

We now define the two design problems that we aim to solve using randomized
algorithms. The first one is a feasibility problem with constraints expressed in prob-
ability.

Problem 10.1 (Find a reliable design) Let Assumption 10.1 be satisfied. Given a
performance function J (Δ, θ) : D × R

nθ → R, a density fΔ(Δ) with support BD

and accuracy ε ∈ (0,1), compute θ ∈R
nθ such that

V (θ)= PR
{
J (Δ, θ) > γ

}≤ ε. (10.8)

The second problem relates to the optimization of a linear function of the design
parameter θ under a probability constraint.

Problem 10.2 (Optimize a reliable design) Let Assumption 10.1 be satisfied. Given
a performance function J (Δ, θ) :D×R

nθ →R, a density fΔ(Δ) with support BD

and accuracy ε ∈ (0,1), solve the optimization problem

min
θ
cT θ

subject to V (θ)= PR
{
J (Δ, θ) > γ

}≤ ε. (10.9)

We remark that Problems 10.1 and 10.2 are generally nonconvex (even when
the convexity Assumption 10.1 is satisfied) and therefore are numerically hard to
solve. The randomized algorithms we discuss in the subsequent chapters provide
a numerically viable way to compute probabilistic approximate solutions to these
problems. In particular, under the convexity assumption, in Chaps. 11 and 12 we
present RAs for probabilistic feasibility and optimization, respectively. In Chap. 13
we study RAs for probabilistic optimization without the convexity Assumption 10.1
and for general nonlinear measurable objective functions

c(θ) :Rnθ → (−∞,∞).
In this case, the obtained results are largely based on the statistical learning tech-
niques analyzed in Chap. 9. To this end, we introduce a binary performance function

J (Δ, θ) :D×R
nθ →{0,1}

which measures the performance of the controlled plant, and we set γ = 1/2. That
is J (Δ, θ) = 0 means that the performance is verified, and J (Δ, θ) = 1 that the
performance is violated. The violation function is defined as follows

V (θ)
.= PR

{
J (Δ, θ)= 1

}
. (10.10)

Then, we define the nonconvex counterpart of Problem 10.2, where the nonconvex-
ity refers to the dependence of J with respect to θ .
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Problem 10.3 (Optimize a nonconvex reliable design) Given a binary performance
function J (Δ, θ) : D× R

nθ → {0,1}, a density fΔ(Δ) with support BD and accu-
racy ε ∈ (0,1), compute a local minimum of the optimization problem

min
θ
c(θ)

subject to V (θ)= PR
{
J (Δ, θ)= 1

}≤ ε. (10.11)

A probabilistic synthesis philosophy follows from the previous discussions and
aims at designing controllers that satisfy the performance specification for “most”
values of the uncertainties, i.e. having small probability of violation. To address
Problems 10.1, 10.2 and 10.3, we specify the features that an RA for reliable design
should satisfy.

Definition 10.6 (RA for reliable design) Let Δ be random with density fΔ(Δ) hav-
ing support BD, and let ε ∈ (0,1), δ ∈ (0,1) be assigned probability levels. Given
a performance function J (Δ, θ) : D × R

nθ → R and associated level γ , the RA
should return with probability at least 1 − δ a design vector θ̂N ∈R

nθ such that

V (̂θN)≤ ε. (10.12)

The controller parameter θ̂N should be constructed based on a finite number N of
random samples of Δ ∈ BD.

10.5 Computational Complexity

The computational complexity of an RA is due to three main sources: the compu-
tational cost of generating random samples of Δ according to the density fΔ(Δ)

having support BD, the computational cost of evaluating the performance J (Δ(i))
for Δ(i), and the minimum numberN of samples required to attain the desired prob-
abilistic levels. A formal definition of an efficient randomized algorithm is presented
next.

Definition 10.7 (Efficient RA) An RA is said to be efficient if:

1. Random sample generation of Δ(i) can be performed in polynomial time;
2. Performance function can be evaluated in polynomial time for Δ(i);
3. Sample size is polynomial in the problem size and probabilistic levels.

The random sample generation depends on the type and structure of the set in
which randomization is performed. This issue is discussed in detail in Chaps. 16
and 18. More precisely, it is shown that in many cases of practical interest in sys-
tems and control, namely vectors and block-structured matrices with norm bound,
uniform sample generation can be performed efficiently in polynomial time.

Concerning the second issue above, we remark that, in the majority of cases
arising in control problems, the performance function J (Δ(i)) can be efficiently
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evaluated for Δ(i). For example, stability tests, as well as other performance tests
based on the solution of linear matrix inequalities, can be performed in polynomial
time.

The third source of complexity is indeed the most critical one for a randomized
algorithm, and it is discussed in detail in Chaps. 8 and 9. In particular, for analysis,
explicit bounds on the sample complexity are available. These bounds depend poly-
nomially on the probabilistic levels, and are actually independent of the problem
size (dimension and structure of the uncertainty, and type of performance function).
For synthesis RAs, similar bounds are shown which are polynomial in the proba-
bilistic levels and in the size and structure of the problem, see previous discussions
and Chaps. 11, 12 and 13.



Chapter 11
Sequential Methods for Probabilistic Design

In this chapter we study sequential algorithms for control design of uncertain sys-
tems with probabilistic techniques. We introduce a unifying theoretical framework
that encompasses most of the sequential algorithms for feasibility that appeared in
the literature for the solution of Problem 10.1. In particular, under convexity As-
sumption 10.1, we develop stochastic approximation algorithms that return a re-
liable design according to the Definition 10.6. First, we state the definition of ν-
feasibility.

Definition 11.1 (ν-feasibility) For given ν > 0 and γ > 0, we say that Problem 10.1
is ν-feasible if the solution set

S = {θ ∈R
nθ : J (Δ, θ)≤ γ for all Δ ∈ BD

}
(11.1)

contains a full-dimensional ball B(ν) of radius ν, called the ν-feasibility ball.

The algorithms presented in the literature for finding a probabilistic feasible so-
lution follow a general iterative scheme, which consists of successive randomization
steps to handle uncertainty and optimization steps to update the design parameters.
In particular, a careful analysis shows that these algorithms share two fundamental
ingredients:

1. A probabilistic oracle, which has the purpose of checking if the probability of
violation, see Definition 10.5, of the current candidate solution is smaller than a
given accuracy ε ∈ (0,1);

2. An update rule, which exploits the convexity of the problem for constructing a
new candidate solution based on the oracle outcome.

With these ingredients in mind, these iterative schemes can be recast in the form
of a general sequential algorithm, as depicted in Fig. 11.1. We now make a few
comments regarding this algorithm. The probabilistic oracle randomly checks if a
candidate solution θ (k) is reliable for given accuracy ε, i.e. R(θ (k))≥ 1 − ε. If this
condition, called eps-reliable, holds, then the candidate solution is returned.
Otherwise, if the probabilistic oracle returns the unfeasibility condition unfeas,

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
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Fig. 11.1 Scheme for
sequential probabilistic
design

then it also provides a violation certificate, which is a realization Δ(k) of the ran-
dom uncertainty Δ such that J (Δ(k), θ (k)) > γ . We remark that the oracle, due
to its probabilistic nature, may possibly declare eps-reliable a solution θ (k)

for which V (θ (k)) ≤ ε is not satisfied, i.e. the violation is larger than ε. However,
this event may only occur with arbitrarily low and prespecified probability. The
probabilistic oracle is described in full details in Sect. 11.1 and the update rule
ψupd(Δ

(k), θ (k)) is discussed in Sect. 11.3. Notice that the methods proposed in the
literature differ only regarding the update rule. This update is applied to the cur-
rent design parameter θ (k), when this parameter leads to a performance violation in
the probabilistic oracle, to determine a new candidate design θ (k+1) based on the
random sample Δ(i).

11.1 Probabilistic Oracle

The probabilistic oracle constitutes the randomized part of the algorithm and its
role is to check feasibility of the current solution, based on random samples of the
uncertainty. More precisely, a multisample of cardinality Nk

Δ(1...Nk) = {Δ(1), . . . ,Δ(Nk)}
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is drawn according to the density fΔ(Δ) with support BD. Then, we say that the
candidate design θ (k) is eps-reliable if

J
(
Δ(i), θ (k)

)≤ γ, i = 1,2, . . . ,Nk.

This leads to the following randomized scheme for the probabilistic oracle.

Algorithm 11.1 (Probabilistic oracle) Given ε ∈ (0,1), Nk and θ (k), this RA
returns either sol=eps-reliable, or sol=unfeas and violation certifi-
cate Δ(k).

1. For i = 1 to Nk do.

$ Draw a random sample Δ(i) according to fΔ;

2. Randomized test.

$ If J (Δ(i), θ (k)) > γ then;

– set sol=unfeas and Δ(k) = Δ(i);
– return sol, Δ(k) and Exit;

$ End if;

3. End for.

Notice that at step k the feasibility of the candidate solution θ (k) is verified with
respect to a finite number Nk of random samples. If the test is passed, the solution
is considered probabilistic feasible, and labeled eps-reliable; otherwise, the
uncertainty realization Δ(k) for which the randomized test failed is returned as a
violation certificate. The sample size Nk depends on k, and has to be chosen to
guarantee the desired probabilistic properties of the solution. A subsequent result
states that, with high probability, the solution θ (k) is indeed a probabilistic feasible
solution.

To this end, we define the probability of misclassification as the probability that
the oracle labels eps-reliable a bad solution, i.e. a solution for which the vio-
lation V (θ (k)) > ε occurs. Formally, we define the event

Misclass
.= {oracle labels θ (k) eps-reliable and

{
V
(
θ (k)

)
> ε
}}
.

Then, we state a theorem regarding the probability of misclassification, see [88].

Theorem 11.1 (Probability of misclassification of the oracle) Let ε ∈ (0,1) be a
given accuracy and let θ (k) be a query point. Then, the probability of misclassifica-
tion of the oracle is less than (1 − ε)Nk , i.e.

PRΔ(1...Nk){Misclass} ≤ (1 − ε)Nk .
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Remark 11.1 (Probability of success) We notice that, by appropriate choice of the
number of iterations Nk , we can make the probability of misclassification of the
probabilistic oracle as close as desired to zero. In particular, to achieve a desired
success probability 1 − δ, where δ ∈ (0,1) is a given confidence, we need a number
of iterations in the oracle given by

Nk ≥Noracle(ε, δ)
.= log 1

δ

log 1
1−ε
. (11.2)

11.2 Unified Analysis of Sequential Schemes

In this section we present a unifying view for studying the probabilistic behavior of
this scheme, which is formally stated in Algorithm 11.2.

Algorithm 11.2 (Sequential probabilistic design) Given ε, δ ∈ (0,1) andNout(ν),
this RA returns either sol=eps-reliable and a design vector θ̂k , or
sol=unfeas.

1. Initialization.

$ Choose θ(0) ∈R
nθ , set k = 0 and sol=unfeas;

2. Outer iteration.

$ While sol=unfeas and k < Nout(ν) do;

– Choose integer Nk according to (11.3);
– Obtain sol and Δ(k) by Algorithm 11.1 (Probabilistic oracle);
– If sol=eps-reliable then Return θ̂k = θ (k) and Exit;
– Else Update θ (k+1) as in Algorithm 11.3 or 11.4 (Update rule);
– End if;
– Set k = k+ 1;

$ End while

To discuss Algorithm 11.2, first notice that, contrary to the probabilistic oracle,
the update step is completely deterministic and does not involve randomization. To
clarify this point, consider again the sequential scheme in Fig. 11.1, and suppose
that an exact oracle were available, that is a deterministic oracle which would be
able to discern exactly feasibility of a candidate solution θ (k). Such an exact oracle
would return exact-feas whenever J (Δ, θ (k)) ≤ γ holds for all Δ ∈ BD, and
unfeas otherwise. In this case, Algorithm 11.2 would be completely determinis-
tic, and its convergence properties could be analyzed in a non-probabilistic setting.
Unfortunately, to verify if the inequality J (Δ, θ (k)) ≤ γ is satisfied for all Δ ∈ BD

is in general very hard, and such an oracle can be rarely constructed in practice.
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However, its introduction is of conceptual importance, since it allows us to formally
unify all the randomized sequential algorithms previously presented in the literature.
We now introduce an assumption regarding convergence with an exact oracle.

Assumption 11.1 (Outer convergence of exact oracle) We assume that the update
rule in Algorithm 11.2 is such that the following implication holds true:

• if the problem is ν-feasible (see Definition 11.1) and an exact oracle is available
• then Algorithm 11.2 converges in a finite number of outer iterations and this

number is bounded from above by a known function Nout(ν).

We notice that Nout(ν) may also depend on other specific parameters, such as the
parameters entering into the update rule.

The probabilistic properties of Algorithm 11.2 are formally derived in the next
theorem, which constitutes a slight improvement upon original results first appeared
in [310] and then in [170] and [88]. The proof follows the same lines of the proof of
Theorem 5.3 in [119].

Theorem 11.2 (Probabilistic properties of Algorithm 11.2) Let convexity Assump-
tion 10.1 and feasibility Assumption 11.1 be satisfied. Let ε, δ ∈ (0,1) be given prob-
ability levels, and assume that at step k of Algorithm 11.2 the probabilistic oracle is
invoked with the sample size

Nk ≥Noracle(ε, δ)+ α log k+ log ζ(α)

log 1
1−ε

, α > 1 (11.3)

where Noracle(ε, δ) is given in (11.2) and ζ(·) is the Riemann zeta function. Then,
the following statements hold:

1. The probability that Algorithm 11.2 terminates at some outer iteration k <
Nout(ν) returning a design vector θ̂k such that

V (̂θk)= PR
{
J (Δ, θ̂k) > γ

}
> ε

is less than δ;
2. If Algorithm 11.2 reaches the number of outer iterations Nout(ν), then the prob-

lem is not ν-feasible.

Remark 11.2 (Number of outer iterations) If Algorithm 11.2 exits at some outer
iteration k, then based on Theorem 11.2, we may declare that the solution θ̂k is re-
liable with accuracy ε and confidence δ, and this corresponds to a successful exit
of the algorithm. On the other hand, if the algorithm exits because no solution has
been found in Nout(ν) iterations, then we state unsuccessful exit. In this case, we
conclude with certainty that the problem is not ν-feasible. Notice that, in practice,
one may not know in advance whether the problem is ν-feasible or not. The de-
scribed randomized schemes can be used also if the problem is not ν-feasible, or
even if no feasible solution exists at all, i.e. the set S is empty. The point is that if
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Algorithm 11.2 terminates at some outer iteration k < Nout(ν), then the returned so-
lution θ̂k is reliable with accuracy ε, unless a rare event of probability smaller than δ
occurred. The probability δ has, of course, to be set to a suitable low value to make
the a priori chance of occurrence of this event negligible in practice. The introduc-
tion of the Nout(ν) limit in the number of iterations has the purpose of guaranteeing
finite-time termination of the sequential scheme in Algorithm 11.2, in cases when
the oracle cannot find a probabilistic solution. If we do not assume ν-feasibility, we
cannot determine Nout(ν), but we can still use the algorithm letting it run indefi-
nitely, without a priori guarantee of finite termination.

Notice that if we set α = 2 in (11.3), then we recover the bound derived in [310].
If we choose, for instance, α = 1.11, we obtain the bound

Nk ≥Noracle(ε, δ)+ 1.11 logk + 2.27

log 1
1−ε

, (11.4)

which improves upon the bound in [310] for k > 3. Notice that any Nk which sat-
isfies (11.3) also satisfies the bound (11.2). It is also important to remark that the
sample size Nk in (11.3) is independent of the number of uncertain and design pa-
rameters, see the discussion in Chap. 10 regarding polynomial time randomized
algorithms.

11.3 Update Rules

Various update rules have been proposed in the literature, among which we recall
gradient, ellipsoid and cutting plane. The update rules we discuss in this section
assume the availability of a subgradient ∂k(θ) of the performance function J (Δ, θ)
atΔ(k). Notice that, if J (Δ, θ) is differentiable at θ , then ∂k(θ) is simply the gradient
of J , i.e. ∂k(θ)=∇θJ (Δ(k), θ).
Remark 11.3 (Subgradient for LMIs) We consider a set of uncertain LMIs as in
Sect. 4.3

F(Δ,θ)� 0, Δ ∈ BD

where

F(Δ,θ)= F0(Δ)+
nθ∑
i=1

θiFi(Δ)

and Fi(Δ) ∈ S
n, i = 0,1, . . . , nθ , Δ ∈ BD and θ ∈R

nθ . Then, according to (10.6) in
Remark 10.2, we set J (Δ(k), θ)= λmax(F (Δ

(k), θ)) and γ ≡ 0, where λmax denotes
the largest eigenvalue of F(Δ(k), θ). A subgradient of J (Δ(k), θ) at θ = θ(k) is given
by, see [86] for details,

∂k
(
θ(k)

)= [ξTmaxF1
(
Δ(k)

)
ξmax · · · ξTmaxFnθ

(
Δ(k)

)
ξmax

]T
where ξmax is a unit norm eigenvector associated to the largest eigenvalue of
F(Δ(k), θ(k)).
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11.3.1 Subgradient Update

The first update rule proposed in the literature, see [86, 328], is also the simplest
one, and is based on a (sub)gradient technique. The main distinguishing feature of
the method lies in the particular choice of the stepsize η(k)

η(k) = J (Δ(k), θ (k))

‖∂k(θ (k))‖
+ ν (11.5)

where ν is the given feasibility radius. This update rule is summarized in the next
algorithm.

Algorithm 11.3 (Update rule—subgradient method) Given θ (k),Δ(k), this RA re-
turns θ (k+1).

1. Subgradient computation.

$ Compute the subgradient ∂k(θ) of J (Δ(k), θ);

2. Stepsize computation.

$ Compute the stepsize according to (11.5);

3. Update.

$ Set θ (k+1) = θ (k) − η(k) ∂k(θ
(k))

‖∂k(θ (k))‖ .

This update rule satisfies Assumption 11.1. In particular, the stepsize (11.5) guar-
antees finite-time convergence of the deterministic version of the algorithm with an
exact oracle in a number of steps bounded by

Nout(ν)= Ω2

ν2
,

where Ω is an a priori upper bound on the distance of the initial solution θ(0) from
the center of the ν-feasibility ball B(ν), see Definition 11.1.

Remark 11.4 (Stochastic approximation and gradient methods) We observe that se-
quential algorithms based on gradient updates have been used in a deterministic set-
ting for adaptive control and unknown but bounded identification, see e.g. [35, 65].
In particular, these iterative algorithms can be traced back to the Kaczmarz projec-
tion method [220] for solving linear equations, which was studied in 1937, and to
the methods given in [6, 291] for studying linear inequalities, which were presented
in 1954. A finite-time version of the latter method was proposed later, see [65] and
references therein. A similar approach for solving convex inequalities can also be
found in [165, 326]. Finally, if compared with the method of alternating projections,
see [356], we observe that the gradient update rule does not require the computation
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of projections. From the numerical point of view, this is a crucial advantage, since
this operation is generally difficult to perform.

More generally, stochastic approximation algorithms have been widely studied in
the optimization literature, see e.g. [102, 244] for detailed discussions on this topic.
However, these algorithms do not have a finite termination criterion, and the sub-
gradient is generally computed numerically, contrary to the closed-form expression
stated in Remark 11.3. For convex problems, we also recall the stochastic optimiza-
tion methods proposed in [297], and more recently discussed in [300].

In the randomized literature, various gradient-based algorithms have been pro-
posed, including [168, 328, 395] which are focused on the design of linear param-
eter systems (LPV), guaranteed-cost quadratic regulator problems, and stochastic
jump systems. Furthermore, the paper [86] studies feasible and unfeasible LMIs
and [117] deals with system identification.

11.3.2 Localization Methods

More sophisticated randomized algorithms, that still guarantee probabilistic prop-
erties of the ensuing solution, and provide improved convergence rates, have been
proposed in the literature. These techniques fall in the class of the so-called local-
ization methods. In these methods, the update rule is based on the computation of a
center of a suitably defined localization set Lk . The set Lk is guaranteed to contain
at each step the feasible set S defined in (11.1), that is S ⊆ Lk , and is constructed
based on the violation certificate Δ(k) returned by the probabilistic oracle. In par-
ticular, the uncertainty realization Δ(k) is used to construct a separating hyperplane
hk
.= {ξ ∈ R

nθ : aTk ξ = bk} having the property that aTk θ (k) ≥ bk and aTk θ ≤ bk for
all θ ∈ S . Specifically, if ∂k(θ (k)) is a subgradient of J (Δ(k), θ) at θ = θ (k), then a
separating hyperplane may be obtained as

ak = ∂k
(
θ (k)

);
bk = ∂Tk

(
θ (k)

)
θ (k) − J (Δ(k), θ (k))+ γ.

The separating hyperplane hk indicates that the half-space {θ : aTk θ > bk} cannot
contain a feasible point and can therefore be eliminated (cut) in subsequent steps of
the algorithm. In this case, we know that S ⊆ Lk ∩Hk , where

Hk
.= {θ : aTk θ ≤ bk}

and the algorithm constructs an updated localization set Lk+1 such that Lk+1 ⊇
Lk ∩ Hk . A new query point θ (k+1) ∈ Lk+1 is then computed, and the process is
repeated. This is summarized in the following scheme.
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Algorithm 11.4 (Update rule—localization methods) Given θ (k),Δ(k), this RA
returns θ (k+1).

1. Subgradient computation.

$ Compute the subgradient ∂k(θ) of J (Δ(k), θ);

2. Half-space construction.

$ Compute the half-space Hk using the subgradient;

3. Update.

$ Update the localization set Lk+1 ⊇ Lk ∩Hk ;
$ Return θ (k+1) = center(Lk).

The convergence of these methods hinges upon the fact that each time a cut is
performed, the localization set shrinks by a certain factor. Intuitively, this guaran-
tees that eventually, for sufficiently large k, either we terminate by finding a feasible
point, or we declare that the problem is not ν-feasible. Regarding center(Lk), dif-
ferent methods follow from different choices of the shape and description of the lo-
calization sets. In particular, in the probabilistic ellipsoid algorithm the localization
set is an ellipsoid and center(Lk) is the center of the ellipsoid. In the probabilistic
cutting plane methods, the localization set is a polytope, and center(Lk) is a cen-
ter of this polytope (usually, the analytic center). These two classes of localization
methods are discussed in the next sections.

11.3.3 Probabilistic Ellipsoid Algorithm

This is the first randomized localization scheme proposed in the literature, see [224].
The method represents a probabilistic extension of the classical ellipsoid algorithm,
see Fig. 11.2, originally studied in [355, 418]. An ellipsoid is described by means
of a center θ ∈R

n and a symmetric positive definite shape matrix W ∈ S
n,

E(θ,W)= {x ∈R
n : (x − θ)T W−1(x − θ)≤ 1

}
.

We assume that an initial ellipsoid E (0) = E(θ(0),W(0)) is given, such that S ⊆ E (0).
The advantage of this method is that the information associated to the localization
set at step k is captured by two parameters only: the center of the ellipsoid and the
shape matrix. This allows us to write the update rule in a simple closed-form. If
∂k(θ

(k)) is a subgradient of J (Δ(k), θ) at θ = θ (k), then the new centers and shape
matrices can be obtained as follows

θ (k+1) = θ (k) − 1

nθ + 1

W(k+1)∂k(θ
(k))√

∂Tk (θ
(k))W(k)∂k(θ

(k))

;

W(k+1) = nθ
2

nθ 2 − 1

(
W(k) − 2

nθ + 1

W(k)∂k(θ
(k))∂Tk (θ

(k))W(k)

∂Tk (θ
(k))W(k)∂Tk (θ

(k))

)
.
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Fig. 11.2 Update step of
ellipsoid method

Fig. 11.3 Update steps of
cutting-plane method

For this algorithm, the results in [224] imply that Theorem 11.2 holds with

Nout(ν)= 2nθ log
Vol(E (0))
Vol(B(ν))

where Vol(E (0)) and Vol(B(ν)) are the volumes of the initial ellipsoid E (0) and of
the ν-feasibility ball B(ν).

11.3.4 Probabilistic Cutting Plane Techniques

Randomized localization schemes based on cutting planes have been proposed in
[88]. In probabilistic cutting plane methods, the localization set is described by
means of a polytope Pk . In the update phase, a new polytope Pk is constructed
as the intersection of the current localization set Pk and the cutting plane Hk . Then,
a new query point is computed as a center of the polytope, see Fig. 11.3.

Various cutting plane methods may be developed based on different strategies
in the outer phase for updating the localization set and constructing the new query
point. This is a very delicate phase, since the numerical complexity and convergence
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of the method critically rely on these choices. Detailed discussions of the various
methods fall outside the scope of this section, so that we only mention some of
the most widely known, and we refer the reader to the specific literature, see, e.g.
[181, 287] for further details. Currently, the most popular family of cutting plane
methods is that based on analytic centers [181, 298]. In this case, the query point is
computed as the analytic center of the polytope Pk , or a suitably pruned version of
it, see [29]. The analytic center is defined as the unique minimizer of the logarithmic
barrier function

φ(θ)=−
∑
i

log
(
bi − aTi θ

)
,

where ai ∈R
nθ , bi ∈R are the parameters of the hyperplanes defining the polytope

Pk . In the probabilistic version of the analytic center cutting plane method analyzed
in [88], an explicit bound is obtained

Nout(ν)= max

{
50nθ ,13.87n2

θ ,8n
2
θ

(
Ω

ν

)2.1}

where Ω is the radius of a hypercube known to contain S and ν is the ν-feasibility
radius.

Remark 11.5 (Complexity of different randomized schemes) If we define the quan-
tity h=Ω/ν, being Ω the radius of a ball inscribing the set S , then it can be seen
that Nout(ν) grows as O(h2) for the gradient rule, and as O(n2

θ log(
√
nθh)) for the

ellipsoid method. For one of the best-known cutting-plane methods detailed in [29],
the convergence is instead of the order ofO(nθ log2(h)). We also remark that all the
update rules satisfy Assumption 11.1.

We now present an example, taken from [120], showing an application of Algo-
rithm 11.2. A similar example studying a gradient update rule is given in [328].

Example 11.1 (LQR design of a lateral motion of an aircraft) We consider a mul-
tivariable example given in [21] (see also the original paper [393] for a slightly
different model and set of data) which studies the design of a controller for the lat-
eral motion of an aircraft. The state space equation consists of four states and two
inputs and is given by

ẋ(t)=

⎡
⎢⎢⎣

0 1 0 0
0 Lp Lβ Lr
g/V 0 Yβ −1

Nβ̇(g/V ) Np Nβ +Nβ̇Yβ Nr −Nβ̇

⎤
⎥⎥⎦x(t)

+

⎡
⎢⎢⎣

0 0
0 Lδa
Yδr 0

Nδr +Nβ̇Yδr Nδa

⎤
⎥⎥⎦u(t) (11.6)
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Table 11.1 Uncertain parameters q and nominal values q̄

Lp Lβ Lr g/V Yβ Nβ̇ Np Nβ Nr Lδa Yδr Nδr Nδa

−2.93 −4.75 0.78 0.086 −0.11 0.1 −0.042 2.601 −0.29 −3.91 0.035 −2.5335 0.31

where x1 is the bank angle, x2 its derivative, x3 is the sideslip angle, x4 the yaw rate,
u1 the rudder deflection and u2 the aileron deflection.

We consider the case when the thirteen aircraft parameters entering into the state
and input matrices of Eq. (11.6) are uncertain. Hence, we consider the system

ẋ(t)=A(q)x(t)+B2(q)u(t),

where we introduced the uncertainty vector q = [q1 · · · q�]T with � = 13. The
vector q is assumed to vary in the hyperrectangle centered at the nominal value q̄ ,
and radius ρ i.e.

Bq(ρ)=
{
q ∈R

� : qi ∈
[
(1 − ρ)q̄i , (1 + ρ)q̄i

]
, i = 1, . . . , �

}
. (11.7)

In particular, we consider the case when each parameter qi is perturbed by a relative
uncertainty equal to ρ = 10 % around its nominal value q̄i , as reported in Table 11.1.
For simplicity, we write in the sequel Bq = Bq(0.1).

We are interested in designing a state feedback controller u=Kx that stabilizes
the system guaranteeing a desired decay rate α > 0, which is equivalent to having all
closed loop eigenvalues with real part smaller than −α. A sufficient condition, see
Sect. 4.2.2, for the existence of a stabilizing controller requires finding a symmetric
positive definite matrix P ∈ R

4,4 and a matrix Y ∈ R
2,4 such that the quadratic

performance criterion is satisfied for all values of q ∈ Bq ,

F(q,P,Y )=A(q)P + PAT (q)+B2(q)Y + YT BT2 (q)+ 2αP � 0. (11.8)

Further, if we find common solutions P � 0 and Y that simultaneously satisfy this
linear matrix inequality for all q ∈ Bq , then a control gain K which guarantees the
desired decay rate can be recovered as K = YP−1.

Next, we assume that q is a random vector uniformly distributed with Bq . Then,
we look for P � 0, Y that satisfies the probability constraint

PR
{
q ∈ Bq : F(q,P ,Y )� 0

}≥ 1 − ε.
If we introduce the performance function

J (q,P ,Y )= λmax
(
F(q,P ,Y )

)
, γ ≡ 0

where λmax(·) denotes the largest eigenvalue of its argument, then we rewrite the
probability constraint as

PR
{
q ∈ Bq : J (q,P ,Y )≤ 0

}≥ 1 − ε. (11.9)

The results of the simulations are now described. First, we set α = 0.5 and look
for a probabilistic feasible solution θ = {P,Y } to the uncertain LMIs
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P � βI ;
A(q)P + PAT (q)+B2(q)Y + YT BT2 (q)+ 2αP � 0

(11.10)

where q ∈ Bq and β = 0.01. We apply Algorithm 11.2 with ellipsoid update rule and
probability levels ε = 0.01, δ = 10−6. With this setting, the algorithm is guaranteed
to return (with 99.9999 % probability) a solution P , Y such that (11.10) holds with
99 % probability.

The algorithm was run with initial random solution θ(0) and terminated after
N = 28 outer iterations returning the solution

P̂N =

⎡
⎢⎢⎣

0.3075 −0.3164 −0.0973 −0.0188
−0.3164 0.5822 −0.0703 −0.0993
−0.0973 −0.0703 0.2277 0.2661
−0.0188 −0.0993 0.2661 0.7100

⎤
⎥⎥⎦ ; (11.11)

ŶN =
[−0.0191 −0.0920 0.0803 0.4496

0.2733 0.4325 −0.3821 −0.2032

]
. (11.12)

This solution is deemed probabilistically feasible by the oracle after checking
(11.10) for Nk = 2,089 uncertainty samples. Then, the probabilistic controller is
constructed as

K̂N =
[−2.9781 −1.9139 −3.2831 1.5169

7.3922 5.1010 4.1401 −0.9284

]
.

Subsequently, we perform a posteriori analysis of the solution that has been ob-
tained. First, we proceed with worst-case analysis. To this end, we notice that the
entries of the state matrices

A(q)=

⎡
⎢⎢⎣

0 1 0 0
0 q1 q2 q3
q4 0 q5 −1
q4q6 q7 q8 + q5q6 q9 − q6

⎤
⎥⎥⎦ , B2(q)=

⎡
⎢⎢⎣

0 0
0 q10
q11 0

q12 + q6q11 q13

⎤
⎥⎥⎦

depend multiaffinely on the uncertainty q . In this case, to detect quadratic perfor-
mance of an uncertain system affected by multiaffine uncertainty, it suffices to check
the simultaneous satisfaction of the uncertain constraint (11.8) for a specific subset
of the vertices of the hyperrectangle Bq , see Sect. 4.2.2 for details. Then, computing
the largest radius ρ of Bq(ρ) amounts to solving a one-dimensional problem in the
variable ρ and, for each value of ρ, to verify if the LMIs (11.10) are satisfied for the
vertices of Bq(ρ). Performing this worst-case analysis for the design matrices P̂N
and ŶN , we obtain

ρwc ≈ 0.12.

We conclude that the controller derived for the aircraft model is stable and attains
quadratic performance for all values of q ∈ Bq(ρ), with ρ ∈ [0, ρwc].

We now perform a probabilistic analysis, which consists of a Monte Carlo ex-
periment which is based on random extractions of uncertainty samples. In this case,
Algorithm 11.2 can be used. Then, we construct the performance degradation func-
tion, which shows how the probability of quadratic stability decreases as a function
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Fig. 11.4 Performance
degradation function

of the radius ρ. This plot may be compared with the worst-case radius of perfor-
mance ρwc that was previously computed. For instance, taking ε = 0.005, δ = 10−6,
by means of the Chernoff bound (8.14) we obtain N = 290,174. Then, we esti-
mated the performance degradation function for 100 equispaced values of ρ in the
range [0.12,0.5]. For each grid point the estimated probability of performance is
computed by means of Algorithm 11.2. For each value of ρ, the accuracy of this
estimate satisfies the inequality with probability at least 1 − δ. The obtained results
showing the estimated probability together with the deterministic radius ρwc are
given in Fig. 11.4.

From this plot we observe, for instance, that if a 2 % loss of probabilistic perfor-
mance may be tolerated, then the performance margin may be increased by approx-
imately 270 % with respect to its deterministic counterpart. In fact, for ρ = 0.34,
the estimated probability of performance is 0.98. In addition, we notice that the
estimated probability is equal to one for values of the radius up to ρ ≈ 0.26.

In Fig. 11.5 we plot the closed-loop eigenvalues for ρ = 0.34.

Example 11.2 (Gain scheduling control) We present an example regarding a gradi-
ent update rule for a control problem that is expressed in the form of an LMI fea-
sibility condition. Consider a linear system depending on a time-varying parameter
q(t)= [q1(t) · · · q�(t)]T

ẋ =A(q(t))x +B2u.

For fixed t , the parameter vector q is constrained in the box Bq = {q ∈ R
� : |qi | ≤

ρi, i = 1, . . . , �}, where ρi denote the allowed limits of variations of the parameters.
We assume that the parameter q(t) can be measured on-line, and hence this infor-
mation is available to the controller. This setup is indeed a special case of a more
general class of control problems usually known as linear parameter varying (LPV)
problems, see Sect. 19.1. Here, we specifically consider a state feedback controller
of the form

u=K(q(t))x
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Fig. 11.5 Closed-loop
eigenvalues for ρ = 0.34

where we set

K
(
q(t)

)=K0 +
�∑
i=1

Kiqi(t).

The control objective is to determine the matrix gains Ki , i = 0,1, . . . , �, such that
the controlled system has a guaranteed exponential decay rate α > 0. Defining the
closed loop matrix

Acl
(
q(t)

)=A(q(t))+B2K
(
q(t)

)
the control objective is met if there exists a symmetric matrix P � 0 such that the
linear matrix inequality

Acl(q)P + PATcl(q)+ 2αP ≺ 0 (11.13)

holds for all q ∈ Bq . We notice that, while there is no actual “uncertainty” in the
plant (since the parameter q(t) is measured on-line), the resulting design condition
(11.13) is a robust matrix inequality, i.e. a condition that should be satisfied for all
possible values of a “formal” uncertain parameter q ∈ Bq , see Sect. 4.2.2 for details.
In particular, introducing the new variables

Yi =KiP
for i = 0,1, . . . , �, the control design problem is expressed as a robust LMI fea-
sibility problem. That is, we determine P = PT ∈ R

4,4, Yi = KiP ∈ R
2,4, for

i = 0,1, . . . , �, such that
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P � 0

0 �A(q)P + PAT (q)+ 2αP

+B2Y0 + YT0 BT2 +
�∑
i=1

qiB2Yi +
�∑
i=1

qiY
T
i B

T
2

(11.14)

for all q ∈ Bq . Equations (11.14) represent a robust LMI condition of the form
F(q, θ) � 0, where the design variable θ contains the free entries of P and Yi ,
i = 0,1, . . . , �, and q represents parametric uncertainty.

For numerical simulations, we considered the same data as in Example 11.1 but
in this case we set to their nominal values the parameters Lδa , Yδr ,Nδr ,Nδa in Ta-
ble 11.1 and we consider the input matrix B2 fixed

B2 =

⎡
⎢⎢⎣

0 0
0 −3.91

0.035 0
−2.53 0.31

⎤
⎥⎥⎦ .

Assume that the values of the �= 9 random uncertainties q of the plant can be mea-
sured on-line, and that the bounds ρi are equal to 15 % of the nominal values given
in Table 11.1. Setting the desired decay rate to α = 0.5, we applied Algorithm 11.2
to determine a probabilistically feasible solution for the system of LMIs (11.14).
The probability levels were set to ε = 0.1 and δ = 0.01, and we selected feasibil-
ity radius equal to 0.05. The probability distribution of the parameters q was set
to the uniform distribution over Bq . Since the LMIs (11.14) are homogeneous in
P , we added a condition number constraint on P of the form I � P � βP , with
β = 1,000. Algorithm 11.2 converged in N = 48 outer iterations to the solution

P̂N =

⎡
⎢⎢⎣

1.2675 −1.1846 −0.0142 0.1013
−1.1846 8.3174 0.2765 −0.5450
−0.0142 0.2765 1.2810 0.5769
0.1013 −0.5450 0.5769 2.4329

⎤
⎥⎥⎦ ;

K̂0N =
[

0.0023 0.0768 −1.0892 0.5657
1.3496 −0.1164 −0.9659 0.1213

]
;

K̂1N =
[

0.0826 0.0353 −0.1685 0.2000
0.3875 0.0808 −0.0610 0.0226

]
;

K̂2N =
[−0.0127 −0.0090 0.0359 −0.0975

0.1151 0.0074 0.2536 −0.0489

]
;

K̂3N =
[

0.0207 0.0039 0.0023 0.0039
0.0291 0.0075 −0.0301 0.0107

]
;

K̂4N =
[

0.0011 0.0005 −0.0026 0.0026
0.0042 0.0009 −0.0016 0.0004

]
;

K̂5N =
[−0.0016 −0.0006 0.0039 −0.0006
−0.0014 −0.0004 0.0018 −0.0018

]
;
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K̂6N =
[−0.1134 −0.0029 −0.1616 0.2304

0.0544 0.0162 −0.0916 −0.0388

]
;

K̂7N =
[

0.0023 0.0002 0.0025 −0.0021
0.0004 0.0001 −0.0004 0.0007

]
;

K̂8N =
[−0.1134 −0.0029 −0.1616 0.2304

0.0544 0.0162 −0.0916 −0.0388

]
;

K̂9N =
[−0.0024 −0.0001 −0.0026 0.0083

0.0012 −0.0001 0.0021 −0.0035

]
.

This solution was tested a posteriori using the Monte Carlo method, showing that it
actually satisfies the design LMIs with estimated probability higher than 0.998.

11.4 Sequential Methods for Optimization

The sequential randomized methods discussed in the previous sections are aimed at
solving feasibility problems. However, these techniques can also be adapted to ad-
dress optimization problems, by suitably embedding them into bisection or similar
techniques. The basic idea is to fix an initial objective level γ and reformulate the
optimization Problem 10.1 into feasibility epigraphic format as

Find θ such that: cT θ ≤ γ,V (θ)≤ ε,
and iteratively adjust the level γ until it cannot be further reduced while maintaining
feasibility. Sequential randomized algorithm for optimization which use stochastic
bisection have been introduced in [169, 410], where an improvement based on iter-
ative decrease of the objective level is proposed. An alternative approach based on
an ellipsoidal algorithm with deep cuts has been recently proposed in [28].



Chapter 12
Scenario Approach to Probabilistic Design

This chapter presents the so-called scenario approach for probabilistic design, as an
alternative to the sequential methods analyzed in Chap. 11. As extensively discussed
in this book, the prime motivation for studying robustness problems in engineering
comes from the fact that the actual system (a “plant,” or in general a problem in-
volving physical data) upon which the engineer should act, is realistically not fixed
and certain, but rather it entails some level of uncertainty. For instance, the charac-
terization of the model of some industrial plant G depends on the value of physical
parameters. If measurements of these parameters are performed, say, on different
days or under different operating conditions, it is likely that we will end up not
with a single plant G but with a finite collection GN = {G(1), . . . ,G(N)} of possible
plants, each corresponding to a different realization (scenario) of the uncertain pa-
rameters upon which the plant depends. If the task of the problem solver is to devise
a once-and-for-all fixed policy that performs well on the actual (unknown) plant,
a sensible strategy would be to design this policy such that it performs well on all
the collected scenarios GN . This is of course a well-established technique which is
widely used in practical problems, and it is for instance the standard way in which
uncertainty is dealt with in difficult financial planning problems, such as multi-stage
stochastic portfolio optimization, see e.g. [122].

While simple and effective in practice, the scenario approach also raises in-
teresting theoretical questions. First, it is clear that a design that performs well
for given scenarios may fail in the standard deterministic worst-case sense, unless
the considered scenarios GN actually contain all possible realizations of the un-
certain parameters. Then, it becomes natural to ask what is the relation between
robustness in the scenario sense and the probabilistic approach discussed exten-
sively in this book. It turns out that a design based on scenarios actually guaran-
tees a specified level of probabilistic robustness, provided that the number N of
scenarios is chosen properly. In this sense, a design based on a number of ran-
domly chosen scenarios fits exactly in the definitions of randomized algorithm
for probabilistic design given in Chap. 10. The scenario approach has been pio-
neered in [79, 87] and further developed in [95] and [78, 96]. A special case where
constraints are affine in θ has also been studied earlier, in the context of system
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identification, in [94, 311], based on the idea of leave-one-out estimation presented
in [401].

12.1 Three Design Paradigms

With the notation set in the previous chapters, we let Δ ∈ BD be the random uncer-
tainty acting on the system, and we let θ ∈ Θ ⊆ R

nθ be the design vector, which
includes controller parameters, as well as possibly other additional variables. The
set Θ represents the domain of the optimization variables, as well as all the con-
straints in the problem that do not depend on the uncertain parameters. We shall
next assume that Θ is a convex and compact set.1 We let further J (Δ, θ) be a per-
formance function for the closed-loop system, and γ an assigned performance level.
We again make a standing assumption on the convexity of J (Δ, θ), see Assump-
tion 10.1.

In this context, a typical design problem is to determine a design parameter θ ∈Θ
such that

J (Δ, θ)≤ γ
holds “robustly” with respect to the possible realizations of Δ. We remain voluntar-
ily vague as to the meaning of robustness, since we now define three different ways
in which this can be intended.

The first paradigm is of course the deterministic worst-case one, in which we
seek θ such that

J (Δ, θ)≤ γ, for all Δ ∈ BD.

To add some generality to this problem, we next consider a situation where an opti-
mization can be performed over the design parameters θ ∈Θ . This gives rise to the
worst-case design problem defined below.

Problem 12.1 (Worst-case design) Let Assumption 10.1 be satisfied. The worst-case
design problem is to determine θ ∈Θ that solves

min
θ
cT θ

subject to J (Δ, θ)≤ γ for all Δ ∈ BD.
(12.1)

Clearly, the feasibility problem, when one is only interested in determining a so-
lution θ that satisfies the constraints, is simply recovered as a special case of the
above optimization problem, introducing a slack variable and rewriting the con-
straint in epigraphic form.

1For problems where the domain of optimization is Rnθ , we shall just assume thatΘ is some “very
large box” representing maximum amplitude limits on the decision variables. This can always be
done in practice, without modifying the nature of the optimization problem at hand.
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A second paradigm is the probabilistic one: if Δ is a random variable with as-
signed probability distribution over BD, then the probabilistic design objective is to
determine a parameter θ such that, for ε ∈ (0,1)

PR
{
J (Δ, θ)≤ γ }≥ 1 − ε

where 1 − ε is a given desired level of accuracy. Again, considering the more gen-
eral situation in which we optimize over the design parameters, we can state a prob-
abilistic design problem, which coincides with the “reliable design optimization
problem” defined in Problem 10.2, and which is reported again below for clarity of
exposition.

Problem 12.2 (Probabilistic design) Let Assumption 10.1 be satisfied. The proba-
bilistic design problem is to determine θ ∈Θ that solves

min
θ
cT θ (12.2)

subject to PR
{
J (Δ, θ)≤ γ }≥ 1 − ε (12.3)

for some assigned probability level ε ∈ (0,1).

Finally, we define the scenario approach: let Δ(1,...,N) denote a multisample
Δ(1), . . . ,Δ(N) of independent samples of Δ extracted according to some probabil-
ity distribution. Since Δ(i) ∈ BD, i = 1, . . . ,N , we have that Δ(1,...,N) ∈ BN

D
, where

BN
D

is the Cartesian product BD × · · · ×BD (N times). Then, Δ(1,...,N) ∈ BN
D

repre-
sents the randomly selected scenarios from the uncertain system, and we define the
following scenario design problem.

Problem 12.3 (Scenario design) Let Assumption 10.1 be satisfied. For randomly
extracted scenarios Δ(1,...,N), the scenario design problem is to determine θ ∈ Θ
that solves

min
θ
cT θ

subject to J
(
Δ(i), θ

)≤ γ, i = 1, . . . ,N.
(12.4)

12.1.1 Advantages of Scenario Design

The scenario design has a distinctive advantage over its two competitors: it is com-
putationally tractable. Indeed, we already know (see, e.g., Chap. 5) that worst-case
design problems are, in general, computationally hard. Even under the convexity
assumption (Assumption 10.1), the optimization Problem 12.1 resulting from the
worst-case design approach usually entails a infinite number of constraints. This
class of problems goes under the name of robust convex programs, which are known
to be NP-hard, [50, 158], see also Sect. 4.3.
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It is worth stressing that the probabilistic design approach does not alleviate the
computational complexity issue. In fact, even under the convexity assumption, Prob-
lem 12.2 is extremely hard to solve exactly in general. This is due to the fact that the
probability in the so-called “chance constraint” (12.3) is hard to compute explicitly
and, more precisely, the restriction imposed on θ by (12.3) is in general nonconvex,
even though J (Δ, θ) is convex in θ , see for instance [51, 330, 396].

Contrary to the two situations above, the scenario design defined in Problem 12.3
is a standard convex program, with a finite number of constraints, and as such it
is usually computationally tractable. For instance, in control problems where the
performance function is expressed (for each given Δ) as linear matrix inequality
constraints on the θ parameter, the scenario design simply amounts to solving a
standard semidefinite program.

In addition to being efficiently computable, the solution θ̂N resulting from a sce-
nario optimal design has an additional fundamental property: with high probability,
it also satisfies the probability constraint (12.3). In other words, if the number N
of scenarios is chosen properly, then the optimal solution returned by the scenario
design is (with high probability) also robust in the probabilistic sense required by
constraint (12.3). In this sense, the scenario approach provides a reliable design,
according to Definition 10.6.

12.2 Scenario Design

In this section we analyze in further detail the properties of the solution of Prob-
lem 12.3. The multisample Δ(1,...,N) ∈ BN

D
contains the collection of iid random

uncertainties Δ(1), . . . ,Δ(N), and events related to Δ(1,...,N) are measured by the
product probability PRΔ(1,...,N) . Clearly, in the absence of further assumptions, it
may happen that for some extraction Δ(1,...,N) the scenario problem (12.4) is un-
feasible. On the contrary, for any extraction for which the problem is feasible, the
problem attains an optimal solution (due to compactness of Θ) and, for simplic-
ity we assume that such a solution is unique. We thus denote with B∗N

D
the sub-

set of BN
D

containing those multiextractions that lead to a feasible scenario prob-
lem (and hence to an optimal solution). Notice that problem (12.4) is certainly
feasible whenever the worst-case problem (12.1) is feasible, since the former in-
volves a subset of the constraints of the latter; in such a special case we have that
B∗N
D

= BN
D

.
Let us denote with θ̂N the optimal solution of (12.4), whenever it exists. The

optimal solution θ̂N is a random variable, since it depends on the sampled random
scenarios Δ(1), . . . ,Δ(N). We thus define the constraint violation probability for the
scenario solution as

V (̂θN)=
{

PR{J (Δ, θ̂N) > γ }, if Δ(1,...,N) ∈ B∗N
D

;
1, otherwise.

(12.5)
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Note that V (̂θN) is itself random variable with support in the interval [0,1], and
events related to V (̂θN) are measured by the product probability PRΔ(1,...,N) . Equiv-
alently, we may define the reliability for a scenario solution as R(̂θN)= 1−V (̂θN),
according to the notation set in Definition 10.5, and we write

R(̂θN)= PR
{
J (Δ, θ̂N)≤ γ

} · IB∗N
D

(
Δ(1,...,N)

)
,

where IB∗N
D

is the indicator function of the set B∗N
D

. Notice that these definitions of

V (̂θN), R(̂θN) coincide with those reported in Definition 10.5, if Problem 12.4 is
feasible with probability one.

The following key result from [78] (see Corollary 3.4 in this reference) estab-
lishes the connection between the scenario approach and the probabilistic approach
to robust design.

Theorem 12.1 (Scenario optimization) Let Assumption 10.1 be satisfied, let Θ be
convex and compact, and assume that Problem 12.3, when feasible, attains a unique
optimal solution. Let ε ∈ (0,1) be a given probability level and let N ≥ nθ + 1.
Then, it holds that

PRΔ(1,...,N)
{{
V (̂θN) > ε

}∩B∗N
D

}≤ BN,ε(nθ ) (12.6)

where BN,ε(nθ ) is the binomial distribution defined in (2.4), i.e.,

BN,ε(nθ )=
nθ∑
k=0

(
N

k

)
εk(1 − ε)N−k. (12.7)

We remark that the right-hand-side term in (12.6) goes to zero rapidly as N in-
creases. This means that, for suitably large number N of scenarios, the probability
of getting a solution which is “bad” in terms of violation probability (i.e. having
violation larger than the assigned ε) is extremely low. Equation (12.6) can also be
“inverted” so to make explicit the dependence of N on the required probability lev-
els, as specified in the next corollary (see Corollary 5.1 in [78]); see also [10] and
Sect. 8.5 for refined bounds which show that the constant 2 in Eq. (12.8) can be
reduced to e/(e − 1)≈ 1.58.

Corollary 12.1 (Scenario optimization) Let the assumptions in Theorem 12.1 be
satisfied, and let ε, δ ∈ (0,1) be given probability levels. If N is an integer such that

N ≥ 2

ε

(
log

1

δ
+ nθ

)
(12.8)

then it holds that

PRΔ(1,...,N)
{{
V (̂θN) > ε

}∩B∗N
D

}≤ δ.
This result states that if the number of scenarios is selected according to the

bound (12.8), then the optimal solution returned by the scenario design has, with
high probability 1 − δ, a guaranteed level of accuracy 1 − ε. Both Theorem 12.1
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and Corollary 12.1 hold with slightly refined bounds under the additional as-
sumption that the scenario problem is feasible with probability one, that is when
PRΔ(1,...,N){B∗N

D
∩BN

D
} = 1. In such a case (12.6) and (12.8) hold substituting nθ − 1

in place of nθ , see [78]. Moreover, the bound in (12.6), with nθ − 1 in place of nθ ,
holds with equality if the problem is feasible with probability one and an additional
technical assumption (fully supported problem) holds, see [95]. We summarize the
scenario-based design approach in the following algorithm.

Algorithm 12.1 (Scenario RA for probabilistic design) Let the hypotheses of The-
orem 12.1 be satisfied, let ε, δ ∈ (0,1) be given, and let N be an integer satisfying
(12.8). Then, with probability at least 1− δ, the following RA is either unfeasible,
or it is feasible and it returns a decision variable θ̂N ∈Θ such that

PR
{
J (Δ, θ̂N)≤ γ

}≥ 1 − ε.
1. Generate N random iid scenarios Δ(1), . . . ,Δ(N);
2. Solve (12.4) with the given scenarios;
3. If feasible, return θ̂N .

Remark 12.1 (Sample complexity and a priori vs. a posteriori probabilities) From
Corollary 12.1, we conclude that the sample complexity, that is the number of con-
straints needed in optimization problem (12.4), is inversely proportional to the prob-
ability level ε, while it only increases with the logarithm of δ−1. This means that
level δ can be set to a very low value, say δ = 10−9, without increasing too much
the number of required scenarios. For such low values of δ, we have that the oc-
currence of the undesirable event {V (̂θN) > ε} ∩B∗N

D
} is immaterial to all practical

purposes. In other words, we may claim a priori that, with practical certainty, either
the problem is unfeasible, or the solution will have small violation probability, i.e.
V (̂θN)≤ ε.

It is important to stress the difference between a-priori and a-posteriori levels of
probability. Specifically, the a-priori levels in Theorem 12.1 are guaranteed before
we run any actual optimization experiment. In contrast, once we run the optimiza-
tion and hence have in our hands a fixed candidate design θ̂N , we can (and should)
test this solution a posteriori, using a Monte Carlo test. This analysis gives us an
estimate of the actual (a-posteriori) probability levels attached to the design. The
a-posteriori test does not involve the solution of any optimization problem and can,
therefore, be performed using a very large sample size, see Chap. 8.

We now study an example, taken from [120], showing an application of the sce-
nario approach.

Example 12.1 (Scenario design) We revisit Example 11.1 which studies LQR de-
sign for the lateral motion of an aircraft subject to 13 uncertain parameters q ∈ Bq .
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In particular, we consider the problem of determining a probabilistic solution
θ = {P,Y } of the uncertain convex optimization problem

min
P,Y

TrP subject to F(q,P,Y )� 0 and P � βI, q ∈ Bq

where

F(q,P,Y )=A(q)P + PAT (q)+B2(q)Y + YT BT2 (q)+ 2αP,

and α = 0.5, β = 0.01. In this example we have nθ = 18 decision variables (cor-
responding to the free entries of P and Y ). Hence, setting ε = 0.01 and δ = 10−6

the bound (12.8) provides a sample size N = 6,364, which means that we need to
solve a convex optimization problem with this number of LMI constraints and 18
design variables. Notice that there is no specific compact domain Θ for the decision
variables in this example, hence we may simply assume that Θ is some “box” of
large side length (this has no practical impact on the optimization problem). Algo-
rithm 12.1 returned the solution

P̂N =

⎡
⎢⎢⎢⎣

0.1445 −0.0728 0.0035 0.0085

−0.0728 0.2192 −0.0078 −0.0174

0.0035 −0.0078 0.1375 0.0604

0.0085 −0.0174 0.0604 0.1975

⎤
⎥⎥⎥⎦ ;

ŶN =
[

0.0109 7.2929 0.0439 0.6087

0.0908 3.4846 −0.0565 −3.9182

]

from which we obtain the probabilistic controller

K̂N =
[

20.0816 40.3852 −0.4946 5.9234

10.7941 18.1058 9.8937 −21.7363

]
.

Example 12.2 (Fixed-order robust control design) The example reported below is
an adaptation of a fixed-order robust controller design problem originally presented
in [228]. Consider a plant described by the uncertain transfer function

G(s, q)= 2(1 + q1)
s2 + 1.5(1 + q2)s + 1

(s − (2 + q3))(s + (1 + q4))(s + 0.236)

where q = [q1 q2 q3 q4]T collects the uncertainty terms acting respectively on
the DC-gain, the numerator damping, and the pole locations of the plant. In this
example, we assume

Bq =
{
q : |q1| ≤ 0.01, |q2| ≤ 0.01, |q3| ≤ 0.02, |q4| ≤ 0.01

}
.

The above uncertain plant can be rewritten in the form

G(s, q)= NG(s, q)

DG(s, q)
= b0(q)+ b1(q)s + b2(q)s

2

a0(q)+ a1(q)s + a2(q)s2 + s3

where
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b0(q)= 2(1 + q1);
b1(q)= 3(1 + q1)(1 + q2);
b2(q)= 2(1 + q1);
a0(q)=−0.236(2 + q3)(1 + q4);
a1(q)=−(2 + q3)(1 + q4)+ 0.236(q4 − q3)− 0.236;
a2(q)= q4 − q3 − 0.764.

Now define the following target stable interval polynomial family

P = {p(s) : p(s)= c0 + c1s + c2s
2 + c3s

3 + s4, ci ∈
[
c−i , c

+
i

]
, i = 0,1, . . . ,3

}
with

c− .=

⎡
⎢⎢⎢⎣
c−0
c−1
c−2
c−3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

38.25
57

31.25
6

⎤
⎥⎥⎦ , c+ .=

⎡
⎢⎢⎢⎣
c+0
c+1
c+2
c+3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

54.25
77

45.25
14

⎤
⎥⎥⎦ .

The robust synthesis problem we consider is to determine (if one exists) a first-order
controller

K(s, θ)= NK(s)

DK(s)
= θ1 + θ2s

θ3 + s
depending on the design parameter θ

.= [θ1 θ2 θ3]T , such that the closed-loop poly-
nomial of the system

pcl(s, q)=NG(s, q)NK(s)+DG(s, q)DK(s)
= (b0(q)θ1 + a0(q)θ3

)+ (b1(q)θ1 + b0(q)θ2 + a1(q)θ3 + a0(q)
)
s

+ (b2(q)θ1 + b1(q)θ2 + a2(q)θ3 + a1(q)
)
s2

+ (b2(q)θ2 + θ3 + a2(q)
)
s3 + s4

belongs to P , for all q ∈ Bq . Then, defining

A(q)
.=

⎡
⎢⎢⎣
b0(q) 0 a0(q)

b1(q) b0(q) a1(q)

b2(q) b1(q) a2(q)

0 b2(q) 1

⎤
⎥⎥⎦ , d(q)

.=

⎡
⎢⎢⎣

0
a0(q)

a1(q)

a2(q)

⎤
⎥⎥⎦

the robust synthesis conditions are satisfied if and only if

c− ≤A(q)θ + d(q)≤ c+ for all q ∈ Bq . (12.9)

To these linear constraints, we associate a linear objective vector cT
.= [0 1 0],

which amounts to seeking the robustly stabilizing controller having the smallest
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high-frequency gain. We thus obtain the robust linear program

min
θ
cT θ, subject to (12.9).

Solving this robust linear program corresponds to determining a worst-case design
for the system, see Problem 12.1. Notice, however, that the numerical solution of this
problem is not “easy,” since the coefficients ai(q), bi(q) do not lie in independent
intervals and depend in a nonlinear way on q . Therefore, the approach of [228]
cannot be directly applied in this case.

We hence proceed via the scenario approach: assuming a uniform density over
Bq and fixing accuracy parameter to ε = 0.01, and the confidence parameter to
δ = 10−9, one can check that for N = 2,903 it holds that BN,ε(nθ ) ≤ δ, hence
the desired a-priori probabilistic levels are attained by the scenario design. Then,
N = 2,903 iid scenarios q(1), . . . ,q(N) are generated, and the scenario prob-
lem

min
θ∈Θ c

T θ

subject to c− ≤A(q(i))θ + d(q(i))≤ c+, i = 1, . . . ,N

is formed (assuming that Θ is a given very large box). The numerical solu-
tion of one instance of the above scenario linear program yielded the solu-
tion

θ̂N = [29.3881 −2.1052 11.0379]T
and hence the controller

K(s, θ̂N )= 29.3881 − 2.1052s

11.0379 + s .

Once we have solved the synthesis problem, we can proceed to a Monte Carlo
test in order to obtain an a-posteriori estimate of the probability of constraint vi-
olation for the computed solution. As discussed in Remark 12.1, we can use a
much larger sample size for this a posteriori analysis, since no numerical optimiza-
tion is involved in the process. Setting for instance ε = 0.001, and δ = 0.00001,
from the Chernoff bound we obtain that the test should be run using at least
N = 6.103 × 106 samples. This test yielded an estimated probability of feasibil-
ity of about 0.997.

12.3 Scenario Optimization with Violated Constraints

In this section we discuss an important generalization of the basic scenario tech-
nique: scenario optimization with violated constraints. The idea of this technique is
that one first collects N randomly generated scenarios (like in the basic scenario ap-
proach) and then purposely discards r < N − nθ of them. The rationale behind this
procedure is that scenarios correspond to constraints in the optimization problem,
hence discarding a suitably selected set of scenarios improves the objective of the
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optimization problem. Clearly, one can intuitively observe that discarding too many
scenarios improves the objective but provides a solution with poor violation proba-
bility. The key issue here is indeed to find a suitable tradeoff between N and r so
to improve the objective while preserving a desired level of probabilistic feasibility
for the solution. To formalize the discussion, we define a rule Rr that selects which
N − r scenarios are retained in the optimization; similarly, Rr denotes the comple-
ment of this rule, indicating the r scenarios (constraints) that are violated by the
optimal solution of the scenario problem with the Rr selected constraints. This rule
is generic, with the only restriction of being invariant to permutations of the scenar-
ios. That is, the rule depends on the set of extracted scenarios, and not on the order
in which the scenarios are collected. For example, the rule can be defined as follows:
remove from the observed multisample the r constraints that yield the best overall
improvement in the objective. This would be a globally optimal constraint removal
strategy (which can indeed be computationally hard to implement). However, we
stress that the results below hold for any rule, hence also for some suboptimal one
(e.g., remove successively the one constraint that gives the best improvement in the
objective, until r constraints are removed).

The scenario problem with violated constraints amounts to solving a random
optimization problem similar to (12.4), but considering only the scenarios selected
by the rule. We thus consider the problem

min
θ∈Θ c

T θ

subject to J
(
Δ(i), θ

)≤ γ, i ∈Rr,
(12.10)

and we denote with B∗(N−r)
D

the subset of BN
D

where problem (12.10) is feasible

and, for Δ(1,...,N) ∈ B∗(N−r)
D

, we denote with θ̂N−r the resulting optimal solution.
The violation probability for this solution is defined as

V (̂θN−r )=
{

PR{J (Δ, θ̂N−r ) > γ }, if Δ(1,...,N) ∈ B∗(N−r)
D

;
1, otherwise.

(12.11)

The following key result from [78] (see Corollary 4.2 in this reference) establishes
the connection between the scenario approach and the probabilistic approach to ro-
bust design, see also [96] for a similar result holding under an additional hypothesis
of feasibility in all realizations.

Theorem 12.2 (Scenario optimization with violated constraints) Let Assump-
tion 10.1 be satisfied, let Θ be convex and compact, and assume that problem
(12.10), when feasible, attains a unique optimal solution. Let ε ∈ (0,1) be a given
probability level, and let N,r be integers such that N − r ≥ nθ + 1. Then, it holds
that

PRΔ(1,...,N)
{{
V (̂θN−r ) > ε

}∩B∗(N−r)
D

}≤ B̃N,r,ε(r + nθ ), (12.12)

where

B̃N,r,ε(r + nθ ) .=
(
r + nθ
r

)
BN,ε(r + nθ ), (12.13)



12.3 Scenario Optimization with Violated Constraints 175

being BN,ε the binomial distribution given in (2.4) and V (·) the constraint violation
probability defined in (12.11).

Following the same approach as in Corollary 12.1, we can “invert” bound (12.12)
to derive an explicit lower bound for the number of scenarios N . Specifically, given
δ ∈ (0,1), we have that the left-hand-side of Eq. (12.12) is no larger than δ, provided
that

N ≥ 2

ε
log

1

δ
+ 4

ε
(r + nθ ), (12.14)

see Corollary 5.1 in [78].
We next report two explicit algorithms for scenario optimization with violated

constraints. Algorithm 12.2 uses a globally-optimal constraints removal rule, and it
is formulated as a mixed-integer optimization problem (as such, it may be hard
to solve numerically). Algorithm 12.3 uses instead a sub-optimal rule for con-
straints removal, based on local sensitivity of the objective, as measured by La-
grange dual variables, and it results in a sequence of efficiently solvable convex
optimization problems. In this second algorithm, the constraints are removed itera-
tively in batches of nrem at a time. At each iteration, the constraints to be removed
are chosen among the active ones as those with highest values of the Lagrange mul-
tipliers. It is well known that the Lagrange multiplier λi represents the sensitivity
of the objective value to variations of the i-th constraint. Hence, this suboptimal
strategy aims at removing those constraints that, at each iteration, provide locally
the largest improvement of the objective value.

Algorithm 12.2 (Scenario with optimal constraint removal) Let the hypotheses
of Theorem 12.2 be satisfied, let ε, δ ∈ (0,1) be given, and let N,r be integers
satisfying (12.14). Then, with probability at least 1− δ, the following RA is either
unfeasible, or it returns θ̂N−r ∈Θ such that

PR
{
J (Δ, θ̂N−r )≤ γ

}≥ 1 − ε.
1. Generate N random iid scenarios Δ(1), . . . ,Δ(N);
2. Solve the following mixed-integer optimization problem (for largeM)

min
θ∈Θ,s∈{0,1}N

cT θ

subject to J
(
Δ(i), θ

)≤ γ +Msi, i = 1, . . . ,N,
N∑
i=1

si = r,

and let θ∗ be the optimal solution (if it exists);
3. If feasible, return θ̂N−r = θ∗.
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Algorithm 12.3 (Scenario with suboptimal constraint removal) Let the hypothe-
ses of Theorem 12.2 be satisfied, let ε, δ ∈ (0,1) be given, and let N,r be integers
satisfying (12.14). Then, with probability at least 1− δ, the following RA is either
unfeasible, or it returns θ̂N−r ∈Θ such that

PR
{
J (Δ, θ̂N−r )≤ γ

}≥ 1 − ε.
1. Let C = {1, . . . ,N}, rmvd= 0, t = r , nrmvd integer such that nrmvd ≤ nθ ;
2. Generate N random iid scenarios Δ(1), . . . ,Δ(N);
3. Solve the following convex optimization problem and its Lagrange dual

min
θ∈Θ c

T θ

subject to J
(
Δ(i), θ

)≤ γ, i ∈ C,
and let θ∗ be its optimal solution (if it exists), and λi , i ∈ C, the optimal La-
grange multipliers associated with the constraints;

4. If t = 0, then return θ̂N−r = θ∗, or unfeas, if the problem is unfeasible;
5. Let t = min(r−rmvd, nrmvd), and letD be the set of indices in C correspond-

ing to the t largest λi ’s;
6. Let C = C \D; rmvd= rmvd+ t ; Goto 3.

12.3.1 Relations with Chance-Constrained Design

In this section we briefly discuss how the optimal objective value obtained from
a scenario approach with violated constraints may approximate arbitrarily well the
optimal value of the chance-constrained Problem 12.2. To setup this comparison,
we next assume that, for ε ∈ (0,1):
1. The optimal value of the chance-constrained problem in (12.2) is denoted by
η∗ccp(ε);

2. Integers N,r are chosen so that B̃N,r,ε(r + nθ ) < 1, where B̃N,r,ε is defined in
(12.13);

3. The optimal value of the scenario problem with globally optimal constraint re-
moval rule described in Algorithm 12.2 is denoted by η∗

sce.

Under this setup, it is stated in Theorem 6.2 of [78] that, for any ε1 < ε, it holds that

PRΔ(1,...,N)
{
η∗ccp(ε)≤ η∗

sce ≤ η∗ccp(ε1)
}≥ BN,ε1(r)− B̃N,r,ε(r + nθ ). (12.15)

Furthermore, it is shown in [78] that one can always find (sufficiently large) N and
r values such that the right-hand side of Eq. (12.15) is larger than 1 − δ, for any
pre-specified δ ∈ (0,1). This means that one can always find values for N and r
such that the optimal value of a scenario problem with r violated constraints (op-
timally chosen) is “sandwiched” between the optimal chance-constrained problems
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Fig. 12.1 Linear separation
with margin

values η∗ccp(ε), η
∗
ccp(ε1), with arbitrarily high probability. Since ε1 can be chosen ar-

bitrarily close to ε, this also means that the optimal scenario value may approximate
arbitrarily well the value of the chance-constrained problem, with high probability.

Example 12.3 (Linear discrimination with soft margin) As an example of appli-
cation of scenario optimization with violated constraints, we consider a classical
problem of data classification using linear separation surfaces, which is commonly
encountered, for instance, in the context of support vector machines with linear ker-
nel, see, e.g., [116, 401].

Let q .= (y, l) represent a random datum-label pair coming from a possibly un-
known distribution, where for each realization y ∈ R

n is the datum and l ∈ {−1,1}
is a corresponding label. Suppose N observations are available from this distribu-
tion: q(i) .= (yi , li ), i = 1, . . . ,N : the problem is to separate the points with label
li = +1 from those with label li = −1, by means of an affine classifying function
f (y)= aT y − b, so to maximize the margin of separation between the two classes.
This problem can formally be written as a convex program withN linear constraints
and one second-order-cone constraint

max
t,b,‖a‖≤1

t (12.16)

subject to li
(
aT yi − b

)≥ t, i = 1, . . . ,N. (12.17)

If the optimal value t∗ of this program is positive, then the observed points are
linearly separable, and it can be proved that ‖a‖ = 1 at the optimum, see, e.g.,
Sect. 8.6 in [70]. The geometric interpretation is the following: aT yi − b represents
the Euclidean distance of point yi from the separating hyperplane H = {z : aT z−
b = 0}. Hence, (12.17) imposes that all points with label li = +1 are at signed
distance at least t from H and that all points with label li =+1 are at signed distance
at least −t from H. Problem (12.16) thus determines the thickest slab separating the
two data sets, where 2t∗ is the maximal thickness of the slab, see Fig. 12.1.

Notice that it may happen that the two labeled data sets are not linearly separa-
ble. To deal with these situations, a standard approach used in linear support vector
classifiers is to introduce slack variables vi ≥ 0 accounting for constraint violations
(thus replacing (12.17) with li (aT yi − b)≥ t − vi ), and then augment the objective
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Fig. 12.2 Separation with margin t∗0 = 0.4753 (no a posteriori removed constraints)

of the optimization problem by subtracting a term proportional to the sum of viola-
tions. Intuitively, a support vector classifier determines a tradeoff between the “soft”
margin of separation (width of the slab) and the number of observed points that fall
inside the slab (shaded area in Fig. 12.1).

A fundamental question that arises at this point is the following one: once a clas-
sifier has been computed, what is the probability with which it will correctly classify
a new unseen datum? This probability measures the generalization capability of the
classifier. It turns out that the scenario theory is able to provide a sound answer to
the previous question: consider (12.16) as an instance of a random convex program
with N sampled constraints, and use a constraints removal procedure as defined in
Sect. 12.3 to select r ≥ 0 constraints to be violated. Clearly, as r increases the width
of the soft separation margin increases (since we allow more and more points to
fall inside the slab), while the generalization capability of the classifier degrades.
However, we can precisely control this latter quantity via the constraint violation
probability ε of the scenario theory. There are different ways to proceed, depending
on which quantities are assigned a priori. For instance, we can fix the desired gen-
eralization probability 1 − ε and a small δ, and then use Eq. (12.12) to determine
a pair (N, r) such that the violation probability on the left-hand side is no larger
than δ. For a numerical example, we generated the data as follows⎧⎪⎪⎨

⎪⎪⎩
y =

[
7
2

]
+
[

1 −0.5
−0.5 1

]
w, l = 1, with probability 0.5;

y =
[

1
1

]
+
[

1 0
0 1

]
w, l =−1, with probability 0.5,

where w is a standard Normal vector. The number of decision variables is nθ =
n+ 2 = 4. Setting ε = 0.01 and δ = 10−6, we have that for N = 1,128 and r = 15
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Fig. 12.3 Separation with margin t∗15 = 1.1280 (r = 15 a posteriori removed constraints)

the left-hand side of (12.12) is smaller than δ. Solving one instance of the scenario
problem with r = 0, we obtained exact separation with an optimal margin t∗0 =
0.4753, see Fig. 12.2. Then, we removed r = 15 constraints via the suboptimal
constraints removal Algorithm 12.3 with nrem = 1, which resulted in an increased
margin of t∗15 = 1.1280, see Fig. 12.3. In both cases, we are guaranteed (with high
a priory confidence 1 − δ) that the resulting classifier will provide separation with
margin t∗ on a new observation, with probability at least 1 − ε.



Chapter 13
Learning-Based Probabilistic Design

In Chap. 9 we provided an overview of some key results of statistical learning
theory, see [401, 406]. In this chapter we discuss their specific application to the
design of systems affected by uncertainty. This line of research was initiated in
[404, 405, 408], see also subsequent developments in [9, 240, 241].

We study a family of uncertain plants {G(s,Δ) :Δ ∈ BD} and a family of param-
eterized controllers of fixed order {K(s, θ) : θ ∈R

nθ }, where θ represents the vector
of controller parameters. Consider a binary measurable performance function

J (Δ, θ) :D×R
nθ →{0,1}

which measures the performance of the controlled plant for given uncertainty Δ
and controller parameters θ . Clearly, as θ varies over Rnθ , J (·, θ) spans an infinite
family J of performance functions. As discussed in Chap. 10, we fix γ = 1/2,
and we say that performance is satisfied when J (Δ, θ)= 0 and it is violated when
J (Δ, θ)= 1.

We now formally define the worst-case design problem for nonconvex perfor-
mance functions.

Problem 13.1 (Worst-case nonconvex design) Given a binary measurable perfor-
mance function J (Δ, θ) : D × R

nθ → {0, 1} and a bounded measurable function
c :Rnθ → (−∞,∞), compute a local minimum of the optimization problem

min
θ
c(θ)

subject to J (Δ, θ)= 0, for all Δ ∈ BD.
(13.1)

We now provide three examples illustrating specific problems that can be refor-
mulated in this form.

Example 13.1 (Design with an infinite number of inequality constraints) We con-
sider a multiobjective control design problem which is subject to a set of uncertain
constraints. Suppose that, given functions fi :D×R

nθ →R, i = 1, . . . ,m, one de-
sires to design θ ∈R

nθ such that the semi-infinite set of constraints

fi(Δ, θ)≤ 0, i = 1, . . . ,m
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is satisfied for all Δ ∈ BD. If this problem is feasible, we may choose a specific
solution within the feasible set to optimize a given criterion. This requires to solve
a semi-infinite optimization problem of the form

min
θ
c(θ)

subject to fi(Δ, θ)≤ 0, i = 1, . . . ,m, for all Δ ∈ BD.

Then, design with an infinite number of inequality constraints can be reformulated
into Eq. (13.1), provided that the binary performance function J :D×R

nθ →{0,1}
is defined as

J (Δ, θ)=
{

0 if fi(Δ, θ)≤ 0, i = 1, . . . ,m;
1 otherwise.

Example 13.2 (Min-max problem with uncertainty) We study a min-max problem
which is analyzed in the theory of differential games [34]. Consider a measurable
function g :D×R

nξ → (−∞,∞) and the min-max design problem

min
ξ∈Ξ sup

Δ∈BD

g(Δ, ξ)

where Ξ ⊂ R
nξ is a bounded set. The binary function J : D × R

nθ → {0,1} is
defined as follows: given Δ ∈ BD define θ = {(ξ, η) : ξ ∈R

nξ , η ∈ (−∞,∞)}, with
nθ = nξ + 1, then

J (Δ, θ)=
{

0 if g(Δ, ξ)≤ η;
1 otherwise

and the objective function is defined as c(θ)= η. Then, the min-max problem above
can be immediately reformulated in the form of Eq. (13.1). We observe that this
optimization problem is always feasible because g is a bounded function.

Example 13.3 (Static output feedback) Consider a strictly proper plant of the form

ẋ =A(q)x +B2(q)u;
y = C(q)u

where x ∈ R
ns is the state, u ∈ R

ni is the control input, y ∈ R
no is the measure-

ment output and q represents real parametric uncertainty affecting the matrices
A(q),B2(q) and C(q). The objective is to find, if it exists, a static output feedback
law

u=Ky
which stabilizes the system for all q ∈ Bq . Equivalently, we seek for a gain matrix
K ∈R

ni ,no such that the closed-loop system

Acl(q,K)=A(q)+B2(q)KC(q)

has all its eigenvalues in a specified region of the complex plane for all q ∈ Bq .
More precisely, we look for the optimal value of the gain matrix K that maximizes
the convergence rate η to the origin. The decision variable θ consists ofK and η, i.e.
θ = (K,η) and nθ = nino+ 1. Then, static output feedback may be reformulated in
terms of Problem 13.1 as follows
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min
η,K
(−η)

subject to Acl(q, θ)+ ηIns is Hurwitz for all q ∈ Bq;
− K̄i� ≤Ki� ≤ K̄i�, i = 1, . . . , ni; �= 1, . . . , no.

In this case, the performance function is defined as

J (q, θ)=
{

0 if Acl(q, θ)+ ηIns is Hurwitz;
1 otherwise.

As discussed in Chap. 5, the static output feedback problem has been shown to be
NP-hard when bounds on the gain matrix are given, even if no uncertainty affects
the plant. Convex relaxations leading to sufficient conditions for the existence of a
stabilizing gain matrix K have been derived in the literature. For example, in [157]
a sufficient condition has been obtained using an LMI approach.

13.1 Sample Complexity of Nonconvex Scenario Design

The binary optimization problem (13.1) is obviously very difficult to solve because
the equality constraint J (Δ, θ) = 0 is generally nonconvex in the decision vari-
able θ . Moreover, the set BD has infinite cardinality. For these reasons, we develop
a randomization approach based on statistical learning theory. We are not making an
attempt to find a global minimum (i.e. we are satisfied with a local minimum), but
rather to reformulate a randomized version of the semi-infinite optimization prob-
lem (13.1) which is subject to a finite number of constraints. To this end, we use
the concept of empirical mean and formally assume that the uncertainty Δ ∈ BD is
random with given pdf and support BD, see Assumption 6.1. In this approach, no
probability density function is introduced in the space of controller parameters, see
Remark 13.1.

Since the uncertainty Δ is random, we drawN samples Δ(1), . . . ,Δ(N) according
to a given pdf fΔ and we introduce the sampled counterpart of Problem 13.1 as
follows.

Problem 13.2 (Nonconvex scenario design) Given a performance function
J (Δ, θ) : D × R

nθ → {0,1}, a density fΔ(Δ) with support BD, compute a local
minimum θ̂N to the nonconvex optimization problem

min
θ
c(θ)

subject to J
(
Δ(i), θ

)= 0, i = 1, . . . ,N.
(13.2)

Note that this is the same spirit of the scenario approach discussed in Chap. 12.
To analyze the sample complexity of the nonconvex scenario problem in the context
of learning theory, we reformulate the constraints in (13.2) in terms of empirical
mean. This is possible since J is a binary function. That is, we form the empirical
mean of J (Δ, θ) as

ÊN
(
J (Δ, θ)

)= 1

N

N∑
i=1

J
(
Δ(i), θ

)
.
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Then, we have

J
(
Δ(i), θ

)= 0 for i = 1, . . . ,N if and only if ÊN
(
J (Δ, θ)

)= 0.

We observe that the empirical mean ÊN(J (Δ, θ)) is a random variable. Since J (·,·)
is a binary function, ÊN(J (Δ, θ)) is always within the closed interval [0,1]. Hence,
we rewrite problem (13.2) as follows

min
θ
c(θ) (13.3)

subject to ÊN
(
J (Δ, θ)

)= 0. (13.4)

Remark 13.1 (Design approaches based on controller randomization) In the absence
of a convexity assumption, Problem 13.2 requires the solution of a nonconvex op-
timization problem. Previous work [169, 405] focused on the use of randomization
in the parameter space to obtain a finite set of random designs. In this way, the so-
called near minima are obtained in polynomial time, employing results for finite
families of controllers. However, for controller design, as discussed in [241], a sim-
ple Monte Carlo optimization scheme can be very misleading because the obtained
empirical minimum may be much larger than the true one with probability practi-
cally equal to one. Moreover, there is no “physical reason” for considering a pdf in
controller space. We observe that the approach proposed in this chapter is not based
on controller randomization.

To derive the sample complexity of nonconvex scenario design, we focus on a
specific class of performance functions J (Δ, θ), namely the class of (α,m)-Boolean
functions.

Assumption 13.1 ((α,m)-Boolean function) The function J : D×R
nθ →{0,1} is

a (α,m)-Boolean function. That is, for fixed Δ, it can be written as an expression
consisting of Boolean operators involving m polynomials

β1(θ), β2(θ), . . . , βm(θ)

in the variables θi , i = 1, . . . , nθ , and the degree with respect to θi of all these
polynomials is no larger than α > 0.

We now formally state a result, see [9] for proof, which establishes the sample
complexity for this class of performance functions, so that a solution of the random-
ized Problem 13.2 complies with the definition of reliable design given in Chap. 10.

Theorem 13.1 (Sample complexity for nonconvex scenario design) Let Assump-
tion 13.1 be satisfied, and let ε ∈ (0,0.14) and δ ∈ (0,1) be given probability levels.
If

N ≥ 4.1

ε

(
log

21.64

δ
+ 4.39nθ log2

(
8eαm

ε

))
(13.5)

then, with probability at least 1 − δ,
1. either Problem 13.2 is unfeasible and, hence, also Problem 13.1 is unfeasible;
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2. or Problem 13.2 is feasible, and then any local solution θ̂N satisfies the inequal-
ity

V (̂θN)= PR
{
J (Δ, θ̂N)= 1

}≤ ε.
We now comment on this theorem. Obviously, the solution θ̂N obtained solving

Problem 13.2 is random, because it is based on the multisample Δ(1...N). We also
observe that PR{J (Δ, θ̂N)= 1} represents indeed the probability that the constraint
J (Δ, θ)= 0 appearing in (13.1) is violated. This is in accordance with the definition
of violation probability for binary performance given in (10.11). Hence, the theorem
above states that any local solution θ̂N of the nonconvex scenario problem (13.2)
violates the constraints in (13.1) with a probability at most ε, and this event occurs
with probability no smaller than 1−δ. We conclude that θ̂N is a reliable design with
high probability.

We remark that Theorem 13.1 does not require the explicit computation of the
VC dimension, which is already embedded into the constants appearing into (13.5).
We also notice that, if ε ∈ (0,0.14) and 2εeαm≤ 1, then

log2
8eαm

ε
≤ log2

4

ε2
= 2 log2

2

ε
.

Therefore, in this case the bound provided in Theorem 13.1 yields

N ≥ 4.1

ε

(
log

21.64

δ
+ 8.78nθ log2

2

ε

)
.

We conclude that, if ε is sufficiently small, we obtain an explicit bound that depends
only on the accuracy ε, confidence δ and on the number of controller parameters nθ .
More general results in which ε is not constrained within the open interval (0,0.14)
can be derived, at the expense of obtaining larger constants appearing in the sample
complexity provided in Theorem 13.1.

The following algorithm summarizes the developments of this section, and com-
plies with the definition of randomized algorithm for reliable design given in Defi-
nition 10.6.

Algorithm 13.1 (Nonconvex scenario design) Let J be a (α,m)-Boolean func-
tion. Given ε, δ ∈ (0,1), this RA is either unfeasible or it returns with probability
at least 1 − δ a design vector θ̂N ∈R

nθ such that

V (̂θN)= PR
{
J (Δ, θ̂N)= 1

}≤ ε.
1. Initialization.

$ Choose integer N satisfying (13.5);

2. Sample generation.

$ Generate N random iid samples Δ(1), . . . ,Δ(N);

3. Solve (13.2) with the given samples.
4. Return θ̂N .
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13.2 Sequential Algorithm for Nonconvex Scenario

Algorithm 13.1 for nonconvex scenario design is based upon the sample complexity
bound (13.5). A more sophisticated sequential randomized algorithm for the so-
lution of nonconvex semi-infinite feasibility and optimization problems has been
proposed in [9] and is studied in this section. This algorithm is more closely related
to the results on statistical learning theory presented in Chap. 9. We recall that other
sequential algorithms based on statistical learning theory have been studied in [241]
for finite families of controllers.

We consider a family of measurable binary-valued functions J having finite VC
dimension VC(J ) ≤ d <∞. For given level β ∈ (0,1), we consider the one-sided
constraint failure defined in (9.6), and apply the sample complexity results of The-
orem 9.5. Then, we provide a strategy that allows one to circumvent the potential
conservativeness of this result for small values of the probabilistic levels ε and δ.
This objective is accomplished by means of a sequence of optimization problems of
increasing complexity, where the number of iterations is bounded by a termination
parameter κ̄ . As it can be seen in the algorithm below, at each iteration, two sets of
samples of cardinality Nk andMk are generated. The first set, consisting of random
samples Δ(1), . . . ,Δ(Nk), is used to obtain a candidate probabilistic solution θ̂Nk to
the nonconvex optimization problem. The performance of this candidate solution is
then tested using the random validation samples v(1), . . . ,v(Mk). The cardinality of
these sets grows at each iteration k as

Nk =
⌈
τ kΔ

(
β + ε
ε2

)⌉
; (13.6)

Mk =
⌈

2τ kv

(
β + ε
ε2

)
log

2κ̄

δ

⌉
(13.7)

where the constants τΔ and τv are chosen such that

Nκ̄ =N; Mκ̄ = max

{
N,

⌈
2

(
β + ε
ε2

)
log

2κ̄

δ

⌉}

where N is the sample size bound (9.6) provided by Theorem 9.5.
The parameter κ̄ limits the maximal number of iterations of the algorithm and

allows the user to control the sample size of the first iteration of the algorithm. In
particular, κ̄ may be chosen in the interval [κ̄−, κ̄+] where

κ̄− =
⌈

log(Ntε2)− log(β + ε)
log 2

⌉
and κ̄+ = 2κ̄−.

With this choice, if κ̄ is equal to κ̄−, then τΔ is close to 2,Nk approximately doubles
at each iteration and the sample size of the first iteration is very close to β+ε

ε2 . The

main idea of the algorithm is that if the candidate solution θ̂Nk satisfies the inequality

1

Mk

Mk∑
i=1

J
(
v(i), θ̂Nk

)≤ β + (1 − τ−
k
2

v

)
ε

at iteration k, then it can be classified as a probabilistic solution with confidence δ,
accuracy ε, level β as in Theorem 9.5, and no further iterations of the algorithm
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are needed. This means that the algorithm may find a solution using a number of
samples much smaller than Nt .

Algorithm 13.2 (Sequential RA for nonconvex scenario) Given ε, δ ∈ (0,1) and
β ∈ [0,1), then, with probability at most δ, this RA returns a design vector θ̂N ∈
R
nθ such that

ÊN
(
J (Δ, θ̂N)

)≤ β and E
(
J (Δ, θ̂N)

)− ÊN
(
J (Δ, θ̂N)

)
> ε. (13.8)

1. Initialization.

$ Choose an integer κ̄ ≥ 1, set k = 0 and

N =
⌈

5(β + ε)
ε2

(
log

8

δ
+ d log

40(β + ε)
ε2

)⌉
;

τΔ =
(
Nε2

β + ε
) 1
κ̄ ;

τv = max

{
1, τΔ

(
2 log

2κ̄

δ

)− 1
κ̄
}
;

2. Iteration.

$ If k ≥ κ̄ then Exit;
$ Else, set k = k + 1 and Nk = 'τ kΔ(β+εε2 )(;

3. Nonconvex scenario with violated constraints.

$ Draw Nk iid samples Δ(1), . . . ,Δ(Nk) according to the pdf fΔ;
$ Compute (if possible) a local minimum θ̂Nk of the problem

min
θ
c(θ)

subject to
1

Nk

Nk∑
i=1

J
(
Δ(i), θ

)≤ β; (13.9)

$ If k = κ̄ , then Exit,

4. Validation.

$ Draw

Mk =
⌈

2τ kv

(
β + ε
ε2

)
log

2κ̄

δ

⌉

iid validation samples v(1), . . . ,v(Mk) according to the pdf fv;
$ If

1

Mk

Mk∑
i=1

J
(
v(i), θ̂Nk

)≤ β + (1 − τ−
k
2

v

)
ε

then Exit;
$ Else, Goto 2;
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We remark that the design vector θ̂N provided by this algorithm guarantees that
the probability of one-sided constrained failure studied in Theorem 9.5 is at most δ,
see further remarks in Sect. 9.3.

Remark 13.2 (Feasibility) As discussed in [9], Algorithm 13.2 guarantees that, if at
iteration k the feasibility step is satisfied for a design vector θ̂Nk , then with proba-
bility no smaller than 1 − δ

V (̂θN)= PR
{
J (Δ, θ̂N)= 1

}≤ β + ε.
On the other hand, if the algorithm terminates without providing a feasible solu-

tion, then, with probability no smaller than 1 − δ, there is no θ ∈R
nθ such that

V (θ)= PR
{
J (Δ, θ)= 1

}≤ β +
√

1

2Nt
log

2

δ
.

The proof of these statements is given in [9].

Remark 13.3 (Optimization with violated constraints) Note that, in step 3 of Al-
gorithm 13.2, one has to find a solution θ such that (13.9) holds. Since J (Δ, θ)
is a binary function, this corresponds to requiring that the solution θ satisfies
J (Δ(i), θ) = 0 holds for all indices i = 1, . . . ,Nk , except for a subset of cardi-
nality 'βNk(. This is in full analogy with the techniques discussed in Sect. 12.3
for the convex case: the optimization problem in step 3 is indeed a nonconvex sce-
nario problem with violated constraints, where r = 'βNk( constraints of the origi-
nal problem are violated on purpose. Hence, the techniques for optimal (or subop-
timal) constraint removal can be adapted to this setup. For a direct comparison of
the VC bounds discussed in this section and the scenario-based bounds, the reader
is referred to Sect. 7 of [78].

Example 13.4 (Stabilization of the lateral motion of an aircraft) We revisit Exam-
ple 11.1 regarding LQR design of the lateral motion of an aircraft. In this case,
we consider nine aircraft uncertain parameters entering into the state matrix A,
while the input matrix B2 is fixed. More precisely, these parameters coincide with
those previously considered: Lp = −2.93, Lβ = −4.75, Lr = 0.78, g/V = 0.086,
Yβ =−0.11, Nβ̇ = 0.1, Np =−0.042, Nβ = 2.601 and Nr =−0.29. Each nominal
parameter is perturbed by a relative uncertainty equal to 15 %. That is, we consider
the uncertain system

ẋ =A(q)x +B2u

where

q = [q1 · · · q9]T = [Lp Lβ Lr g/V Yβ Nβ̇ Np Nβ Nr ]T .
The objective is to design a state feedback u=Kx such that the closed-loop sys-

tem ẋ = (A(q)+B2K)x has all its eigenvalues in a specified region of the complex
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plane for all q ∈ Bq . Moreover, as in [21], we assume a constraint on the magnitude
of the entries of the gain matrix K . That is, we take

−Ki� ≤Ki� ≤Ki�
for i = 1,2 and �= 1,2,3,4, where the matrix K is given by

K =
[

5 0.5 5 5
5 2 20 1

]
.

In particular, we look for the optimal value of K that maximizes the convergence
rate η to the origin. The decision variable θ consists of K and η, i.e. θ = (K,η) and
nθ = 9, and we aim at solving the optimization problem

min
η,K
(−η)

subject to A(q)+B2K + ηI4 is Hurwitz for all q ∈ Bq; (13.10)

−Ki� ≤Ki� ≤Ki�, i = 1,2; �= 1,2,3,4. (13.11)

We notice that checking the constraint (13.10) can be performed using the clas-
sical Hurwitz test. Since the dimension of the state matrix is equal to four, this
requires testing strict positivity of four Hurwitz determinants Hi(q, θ), i = 1, . . . ,4
of the closed-loop system A(q)+B2K + ηI4. That is, (13.10) is equivalent to

HH (q, θ)=
{
H1(q, θ) > 0

}∧ · · · ∧ {H4(q, θ) > 0
}

is positive for all q ∈ Bq
where the symbol ∧ denotes the logic operator “and”. We observe that each deter-
minant Hi(q, θ) is a polynomial in θ whose degree is at most αi = i(i + 1)/2, see
the computations given in [404]. Hence, HH (q, θ) is an (α,4)-Boolean function,
with

α = max
i=1,...,4

αi = 4(4 + 1)/2 = 10.

Additionally, the constraint (13.11) is rewritten as the Boolean condition

HK(θ)
= {K1,1 ≥−K1,1} ∧ {K1,1 ≤K1,1} ∧ · · · ∧ {K2,4 ≥−K2,4} ∧ {K2,4 ≤K2,4}

which is a (1,16)-Boolean function. Hence, the binary function

J (q, θ)=
{

0 if HH (q, θ) is positive and HK(θ) is satisfied;
1 otherwise

is a (10,20)-Boolean function. A bound on the VC dimension can be immediately
computed by means of Lemma 9.8 obtaining that the VC dimension (α,m)-Boolean
functions is bounded by 2nθ log2(4eαm)≤ 200.1

1We recall that bounds on the VC dimension have been computed for various control problems. For
example, in [408], the VC dimension for static output feedback is given by 2nino log2[2en2

s (ns +
1)].
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Fig. 13.1 Closed-loop
eigenvalues for ε = 0.01,
δ = 10−6 and β = 0

In this example, we assume that q is a random vector with uniform pdf within
the set Bq . Then, we set confidence δ, accuracy ε and level β to 10−6, 10−2 and 0
respectively. In this case, using Theorem 9.5 we obtain a sample size N ≥ 835,176;
since β is equal to zero, and we are studying Boolean binary functions, we also
compute the sample size bound N ≥ 310,739 using Theorem 13.1. For the sake of
comparison, the sample size given by Theorem 9.3 is N ≥ 8.75 × 108.

To circumvent the conservativeness of these bounds, we run Algorithm 13.2 with
the exiting parameter κ̄ equal to 20. The algorithm provided a probabilistic solution
at iteration 5. The sample sizes Nk and Mk at the last iteration were equal to 957
and 13,761, respectively. The obtained controller is given by

K =
[

1.9043 0.5000 −5.0000 2.8951
5.0000 1.5080 4.4829 −1.0000

]

and the corresponding value for γ is 3.93. Therefore, we conclude that, with con-
fidence 1 − δ, for the obtained controller 99 % of the uncertain plants (notice that
1−β− ε = 0.99) have a rate of convergence greater or equal to 3.93. We notice that
some of the controller gains are equal to the entries of the bounding matrixK , which
shows that the constraints of the problem take effect into the obtained solution.

Once the controller was computed, we formulated a (deterministic) sufficient
condition for quadratic stability, obtaining a worst-case value for the convergence
rate γ . In particular, we obtained the generalized eigenvalue problem

max
γ,P�0

γ

subject to P
(
A(q)+ γ I +BK)+ (A(q)+ γ I +BK)T P ≺ 0 for all q ∈ Bq .

Since q enters affinely in the matrix A(q), we reformulate this as a generalized
eigenvalue problem subject to 512 constraints, i.e. the number of vertices of the
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Fig. 13.2 Closed-loop
eigenvalues for ε = 0.01,
δ = 10−6 and β = 0.05

hyperrectangle Bq (this number of constraints can be reduced using the results of
[11, 90]). Using an LMI solver, the matrix

P =

⎡
⎢⎢⎣

0.1164 0.0202 −0.0822 0.0297
0.0202 0.0048 0.0105 0.0000
−0.0822 0.0105 0.9472 −0.2042
0.0297 0.0000 −0.2042 0.0475

⎤
⎥⎥⎦

and the value γ = 3.44 have been computed. This guarantees that the controller
K derived with the proposed randomized strategy provides a closed-loop uncertain
system which is stable for all q ∈ Bq . Figure 13.1 shows the eigenvalues of the
closed-loop system for 500 elements randomly drawn from Bq .

We also run the algorithm for ε = 0.01, δ = 10−6, β = 0.05 and κ̄ = 20. In this
case we obtained a controller that, with probability no smaller than 1−δ, guarantees
that 94 % of the uncertain plants (notice that 1 − β − ε = 0.94) have a rate of
convergence greater or equal to 4.0. The deterministic sufficient condition provided
a worst-case rate of convergence equal to 3.43. Figure 13.2 shows the closed-loop
eigenvalues of the system for 500 elements randomly drawn from Bq .



Chapter 14
Random Number and Variate Generation

In this chapter, we discuss various methods for the generation of random samples
distributed according to given probability distributions, in both the univariate and
multivariate cases. These methods can be traced back to the issue of generating uni-
form random numbers in the interval [0,1]. This problem is analyzed in Sect. 14.1,
where a summary of the main existing techniques as well as more recent algorithms
are reported. Subsequently, we study the problem of univariate random generation.
In particular, we present some standard results regarding transformations between
random variables and show specific examples for various classical distributions. The
second part of the chapter describes techniques for multivariate distributions, focus-
ing in particular on rejection methods, on the recursive conditional densities method,
and on asymptotic methods based on Markov chains.

14.1 Random Number Generators

The importance of random numbers in Monte Carlo methods has been discussed
in Chap. 7. Good random number generators (RNGs) should provide uniform and
independent samples, and should be reproducible and fast. Computer methods for
random generation, such as the classical one based on the method of von Neumann
[409] for simulating neutron transport, produce only pseudo-random sequences,
which show cyclicities and correlations. Indeed, RNGs are deterministic algorithms
that provide numbers with certain statistical properties. Roughly speaking, these
numbers should behave similar to realizations of independent, identically distributed
uniform random variables. However, every RNG has its deficiencies, so that no RNG
is appropriate for all purposes. For example, several “good” RNGs for stochastic
simulation are unsuitable for cryptographic applications, because they produce pre-
dictable output streams.

RNGs mainly consist of linear and nonlinear generators. The linear algorithms
are well-known and widely available. However, linear RNGs may sometimes be
inadequate, since these algorithms may produce lattice structures in every dimen-
sion, as shown in Sect. 14.1.1, and this fact may interfere with the simulation
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problem at hand. For this reason, nonlinear generators have been introduced. In
general, these latter methods are computationally slower than linear generators of
comparable size, but they allow for the use of larger strings of samples, see for
instance [197].

Random number generation constitutes a whole field of study in its own. As
a starting point, the reader interested in further understanding these topics may
consult the classical reference [238], as well as the special issue [113], the sur-
vey paper [259] and the edited volume [198]. However, even though this is a well-
established topic, current research is performed with the objective to produce ex-
tremely fast and reliable algorithms for various applications. An example of a re-
cent and extremely efficient RNG is the so-called Mersenne twister (MT) algo-
rithm [279].

We now describe linear congruential generators (LCGs), which are among the
earliest methods for random number generation.

14.1.1 Linear Congruential Generators

Linear congruential generators for uniform distribution in the interval [0,1), have
been proposed by Lehmer [261], and are based on a recursion of the form

x(i+1) = ax(i) + c−mk(i), i = 0,1, . . .

where the multiplier a, the increment c and the modulusm are nonnegative integers,
and k(i) is given by

k(i) =
⌊
ax(i) + c
m

⌋
.

This recursion is often written using the notation

x(i+1) = (ax(i) + c)modm, i = 0,1, . . . (14.1)

This linear congruential generator is denoted as LCG(a, c,m,x(0)). The modu-
lus m is chosen as a “large” positive integer. In particular, this value is gener-
ally set to the word length of the machine, for example m = 232. The multiplier
a ∈ {1, . . . ,m} is selected so that the greatest common divisor of (a,m) is one and
c ∈ {0,1, . . . ,m − 1}. If the increment c is set to zero, the RNG is called “multi-
plicative congruential generator,” otherwise it is called “mixed congruential gener-
ator.”

Given an initial value x(0) ∈ {0,1, . . . ,m− 1}, called the seed, one generates a
sequence x(0), x(1), . . . , x(m−1) according to the recursion (14.1); this sequence is
generally called a Lehmer sequence. Notice that x(i) ∈ {0,1, . . . ,m− 1} for all i;
therefore, numbers y(i) in the interval [0,1) can be subsequently obtained by tak-
ing

y(i) = x(i)

m
∈ [0,1), i = 0,1, . . . .
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Fig. 14.1 Lattice structure of
the two-dimensional vectors
(14.3) obtained from points
generated by LCG(3,0,31,5)

We remark that the sequences x(0), x(1), . . . and y(0), y(1), . . . are both periodic with
the same period, which is no greater than m. For example, taking m = 31, a = 3,
c= 0 and x(0) = 5, using (14.1), we obtain the sequence

5 15 14 11 2 6 18 23 7 21 1 3 9 27 19 26 16 17 20 29 25 13 8 24 10 30 28 22 4 12
5 15 14 11 2 6 18 23 7 21 1 3 · · ·

(14.2)

It can be easily observed that the period in this case is 30.
A critical issue regarding LCGs is that multidimensional samples built using

successive outcomes of the generator lie on a lattice. That is, if we consider the
d-dimensional vectors w(k) = [x(k) x(k+1) · · · x(k+d−1)]T for different values of k,
and study the distribution of the pointsw(k) in [0,1)d , we observe that the generated
points are of the form

w(k) =
d∑
i=1

z
(k)
i vi

where {z(k)1 , . . . , z
(k)
d } are integers, and {v1, . . . , vd} is a set of linearly independent

vectors vi ∈R
d , i = 1, . . . , d , which constitutes a basis of the lattice. For instance, in

the LCG(3,0,31,5) sequence (14.2), the couples obtained considering the nonover-
lapping vectors

w(1) =
[

5
15

]
, w(3) =

[
14
11

]
, w(5) =

[
2
6

]
, w(7) =

[
18
23

]
, . . . (14.3)

lie on three lines, see Fig. 14.1. The IBM random generator RANDU, which was
used for a number of years, is a striking example of a generator providing a lattice
structure in the distribution. RANDU is LCG(216 + 3,0,231, x(0)), see further dis-
cussions in [177, 197]. This discussion pinpoints some of the limits of LCGs and
motivates the study of other more sophisticated generators.
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14.1.2 Random Number Generators

We now briefly describe some standard linear and nonlinear generators. This de-
scription is at introductory level, and the interested reader may consult more specific
references such as [177, 304].

Multiple Recursive Generators A simple generalization of the multiplicative
congruential generator is given by

x(i+1) = (a1x
(i) + a2x

(i−1) + · · · + anx(i−n−1))modm, i = 0,1, . . .

where a1, a2, . . . , an are given multipliers. One of the advantages of this generator
is to exhibit a longer period than the multiplicative congruential generator. Further
statistical properties and specific recommendations regarding the selection of mul-
tipliers are given in [260].

Lagged Fibonacci Generators It is well known that a Fibonacci sequence is
given by

x(i+1) = x(i) + x(i−1), i = 0,1, . . . .

In principle, we can use a Fibonacci sequence as an RNG, with the simple modifi-
cation

x(i+1) = (x(i) + x(i−1))modm, i = 0,1, . . . .

However, this generator does not have nice statistical properties. A simple way to
modify and improve this algorithm is to introduce the so-called lagged Fibonacci
congruential generator. That is, we introduce the terms x(i−�) and x(i−k), where
k > �, obtaining

x(i+1) = (x(i−�) + x(i−k))modm, i = 0,1, . . . .

Clearly, in this sequence a set of seeds, rather than a single seed, needs to be speci-
fied. In [18] it is shown that if the initial sequence, �, k and m are carefully selected,
then this RNG “performs well.” In particular, if m is a prime number and k > �, in
this paper it is shown that the period of the sequence is at most mk − 1.

Nonlinear Congruential Generators Knuth [238] suggested a simple general-
ization of the linear congruential generator proposing the nonlinear congruential
generator

x(i+1) = (d(x(i))2 + ax(i) + c)modm, i = 0,1, . . . .

In general, higher order polynomials could also be used, but the advantages of this
further extension and the rules for selecting the order of the polynomial are unclear.
A special case of this nonlinear congruential generator has been studied in [62, 63]

x(i+1) = (d(x(i))2)modm, i = 0,1, . . .
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where m is the product of two “large” distinct prime numbers, and the output is the
least significant bit of x(i+1), or its k least significant bits. This generator, known
as the Blum Blum Shub (BBS) generator, has interesting theoretical properties that
make it suitable for applications in cryptography.

Remark 14.1 (RNG for cryptography) It should be noted that not any generator
is appropriate for cryptographic applications, as shown in [48, 166]. In particular,
linear congruential generators are not suitable, since it is possible to recover their
parameters in polynomial time, given a sufficiently long observation of the out-
put stream. Unlike LCGs, the BBS generator has very strong cryptographic prop-
erties, which relate the quality of the generator to the difficulty of the “integer fac-
torization problem;” that is, computing the prime factors of a very large integer.
When the prime factors of m are chosen appropriately, and O(log logm) bits of
each x(i) are considered as the output of the BBS recursion, then, for large val-
ues of m, distinguishing the output bits from random numbers becomes at least
as difficult as factoring m. Since integer factorization is largely believed not to
be polynomial-time solvable, then BBS with large m has an output free from any
nonrandom patterns that could be discovered with a reasonable amount of calcula-
tions.

On the other hand, BBS does not seem the preferred choice for stochastic sim-
ulations, since the required nonlinear operations cannot be performed with high
computational efficiency. However, LCGs do have high computational efficiency, as
do the shift register generators discussed in the following paragraph.

Feedback Shift Register Generators A generator that returns binary numbers
x(i) ∈ {0,1} is studied in [380]. This binary generator is of the form

x(i+1) = (cpx(i−p) + cp−1x
(i−p+1) + · · · + c1x

(i−1))mod 2, i = 0,1, . . .

where all variables take binary values {0,1} and p is the order of the recursion. The
name of this generator follows from the fact that recursive operations of this form
can be performed in a feedback shift register. Further properties of the feedback
shift register generators are discussed in [238].

The Mersenne twister generator [279] is itself a twisted generalized shift feed-
back register generator. The “twist” is a transformation which assures equidistri-
bution of the generated numbers in 623 dimensions, while LCGs can at best man-
age reasonable distribution in five dimensions. MT was proved to have a period as
large as 219937 − 1, which, incidentally, explains the origin of the name: the num-
ber 219937 − 1 is a Mersenne prime. Unlike BBS, the MT algorithm in its native
form is not suitable for cryptography. For many other applications, such as stochas-
tic simulation, however, it is becoming the random number generator of preferred
choice.
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14.2 Nonuniform Random Variables

In the previous section we introduced several standard methods for generating
pseudo-random numbers, which can be considered uniformly distributed over the
interval [0,1). Starting from these basic uniform generators, many different distri-
butions can be obtained by means of suitable functional transformations or other
operations.

In this section, we study general operations on random variables and analyze
some well-known univariate random generation methods. These results can be used
for constructing sample generators according to various distributions, as shown in
the examples presented in this section. First, we present a fundamental result that
indicates how the probability density is changed by a functional operation on a ran-
dom variable, see e.g. [334] for proof.

Theorem 14.1 (Functions of scalar random variables) Let x ∈ R be a random
variable with distribution function Fx(x) and pdf fx(x), and let y be related to
x by a strictly monotone and absolutely continuous transformation y = g(x). Let
h(·) .= g−1(·). Then, the random variable y has distribution function

Fy(y)=
{
Fx(h(y)) if g(x) is increasing;
1 − Fx(h(y)) if g(x) is decreasing

and density

fy(y)= fx
(
h(y)

)∣∣∣∣dh(y)dy

∣∣∣∣
for almost all y.

The transformation rule of Theorem 14.1 also has a multivariate extension, which
is stated in Sect. 14.3. Some standard applications of this result are presented in the
following examples.

Example 14.1 (Linear transformation) The simpler transformation on a random
variable x is the linear transformation y = ax + b, a > 0. If x has distribution func-
tion Fx(x) then

Fy(y)= Fx

(
y − b
a

)
.

If the corresponding density fx(x) exists, then we also have

fy(y)= 1

a
fx

(
y − b
a

)
.

Example 14.2 (Linear transformation of the Gamma density) A density widely used
in statistics is the unilateral Gamma density with parameters a, b, defined in (2.12)
as

Ga,b(x)= 1

Γ (a)ba
xa−1e−x/b, x ≥ 0.
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If x is distributed according to Ga,b , then the random variable y = cx, c > 0, ob-
tained by linear transformation, is distributed according to Ga,cb .

Example 14.3 (Power transformation) If a random variable x ≥ 0 has distribution
function Fx(x) and density fx(x), then the variable y = xλ, λ > 0, has distribution

Fy(y)= Fx
(
y1/λ)

and density

fy(y)= 1

λ
y

1
λ−1 fx

(
y1/λ).

Example 14.4 (Generalized Gamma density via power transformation) The (unilat-
eral) generalized Gamma density with parameters a, c, see (2.13), is given by

Ga,c(x)= c

Γ (a)
xca−1e−xc , x ≥ 0.

If x ∼ Ga,1, then the random variable y = x1/c obtained by power transformation
has density function fy(y)=Ga,c(y).

Example 14.5 (Weibull density via power transformation) A random variable with
Weibull density (2.10)

Wa(x)= axa−1e−xa

can be obtained from a random variable distributed according to an exponential
density via power transformation. In fact, if x ∼ e−x , x ≥ 0, then y = x1/a , a > 0,
has density fy(y)=Wa(y).

Example 14.6 (Logarithmic transformation) If a random variable x ≥ 0 has distri-
bution function Fx(x) and density fx(x), then the variable y =− 1

λ
log x, λ > 0, has

distribution

Fy(y)= 1 − Fx
(
e−λy

)
and density

fy(y)= λe−λyfx
(
e−λy

)
.

For instance, if x is uniform in [0,1], then y = − 1
λ

log x has the unilateral Laplace
(exponential) density (2.11), i.e.

fy(y)= λe−λy, y ≥ 0.

A useful consequence of Theorem 14.1 is a standard method for generating a
univariate random variable with a given distribution function. This method is known
as the inversion method, see e.g. [133, 319], and is stated next.
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Fig. 14.2 Graphical
interpretation of the inversion
method

Corollary 14.1 (Inversion method) Let x ∈ R be a random variable with uniform
distribution in the interval [0,1]. Let F be a continuous distribution function on R

with inverse F−1 defined by

F−1(x)= inf
{
y : F(y)= x, 0 ≤ x ≤ 1

}
.

Then, the random variable y = F−1(x) has distribution function F . Also, if a ran-
dom variable y has distribution function F , then the random variable x = F(y) is
uniformly distributed on [0,1].

Proof The statement immediately follows from Theorem 14.1, taking y = g(x) .=
F−1(x), i.e. x = h(y)

.= F(y), and noticing that for the uniform distribution
F(h(y))= h(y). �

A plot showing the idea behind the inversion method is shown in Fig. 14.2: uni-
form samples of x in the vertical axis are mapped into samples of y having distribu-
tion F .

Corollary 14.1 can be used to generate samples of a univariate random variables
with an arbitrary continuous distribution function, provided that its inverse is explic-
itly known, or readily computable. Clearly, the numerical efficiency of the method
relies on how fast the inverse can be numerically computed. Implementation refine-
ments of the above method are discussed for instance in [133]. An application of
the inversion method for generation of samples according to a polynomial density
is presented next.

Example 14.7 (Generation from a polynomial density) The inversion method is use-
ful for the generation of samples according to a generic univariate polynomial den-
sity over the interval [0, c]. Let

fy(y)= p(y)=
n∑
k=0

aky
k
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be a polynomial density with support [0, c]. Notice that the distribution function of
y can be easily computed as

Fy(y)=
∫ y

0
p(y)dy =

n∑
k=0

ak

k+ 1
yk+1.

The condition that the polynomial p(y) is a density function requires that p(y)≥ 0
for all y ∈ [0, c], and that

n∑
k=0

ak

k + 1
ck+1 = 1.

A simple algorithm can hence be used for polynomial sample generation.

Algorithm 14.1 (Generation from a polynomial density) This algorithm returns
a random variable y distributed according to the polynomial density fy(y) =∑n
k=0 aky

k with support [0, c].
1. Generate a random variable x ∼ U[0,1];
2. Compute the unique root y in [0, c] of the polynomial

n∑
k=0

ak

k+ 1
yk+1 − x = 0;

3. Return y.

In step 2, the numerical computation of the root can be performed, up to a given
accuracy, using some standard method such as bisection or Newton–Raphson. We
also remark that more efficient methods for generating samples from polynomial
densities exist, see for instance the method in [8], based on finite mixtures.

In the next section, we briefly discuss two classical tests, the chi-square and the
Kolmogorov–Smirnov (KS) test, that are used in statistics to assess whether a given
batch of sample data comes from a specific distribution, see e.g. [238].

14.2.1 Statistical Tests for Pseudo-Random Numbers

Chi-Square Test The chi-square goodness-of-fit test, see e.g. [360], is used to de-
cide if a batch of sampled data comes from a specific distribution F 0(x). An attrac-
tive feature of this test is that it can be applied to any univariate distribution (contin-
uous or discrete) for which the cumulative distribution function can be calculated.
The chi-square test is applied to binned data, but this is actually not a restriction,
since for nonbinned data one can simply calculate a histogram or frequency table
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before applying the test. However, the value of the chi-square test statistic depends
on how the data is binned. Another disadvantage is that this test requires sufficiently
large sample size for its approximations to be valid. This method is briefly described
below.

Let x(1), . . . ,x(N) be a multisample of sizeN drawn from an unknown cdf Fx(x),
and let F 0(x) be a completely specified candidate cdf. We wish to test the null
hypothesis

H0 : Fx(x)= F 0(x), for all x

against the alternative

H1 : ∃x : Fx(x) �= F 0(x).

In the chi-square test, the data is divided into n bins, i.e. into n intervals [x−i , x+i ].
Then, we introduce the sum known as Pearson’s test statistic

ŷ =
n∑
i=1

( p̂i − pi)2
pi

(14.4)

where p̂i and pi are the empirical probability and the true probability associated
with the ith bin. In particular, pi is given by

pi = F 0(x+i )− F 0(x−i ).
Clearly, the value of ŷ tends to be small when H0 is true, and large when H0 is
false. For large sample size, the distribution of ŷ is approximately chi-square with
n− 1 degrees of freedom, see (2.9). Therefore, under the H0 hypothesis, we expect

PR{ ŷ> x1−α} = α
where α ∈ (0,1) is the significance level, and x1−α is the 1 − α percentile of the
chi-square distribution.

The chi-square test then goes as follows: given samples x(1), . . . ,x(N), and a
candidate cdf F 0(x), compute ŷ from (14.4). Select a significance level α ∈ (0,1)
and compute the chi-square percentile1 x1−α . If ŷ ≤ x1−α , then the test is passed,
and the cdf F 0 is a good fit for the data distribution.

Kolmogorov–Smirnov Test The Kolmogorov–Smirnov test, see e.g. [319], is an
alternative to the chi-square goodness-of-fit test. Given a multisample x(1), . . . ,x(N)

of size N drawn from an unknown cdf Fx(x), the empirical distribution function is
defined as

F̂N(x)
.= k̂(x)
N

where k̂(x) is the number of sample points x(i) which are smaller than x. This is a
step function that increases by 1/N at the value of each data point. The KS test is

1Chi-square percentile tables are available in standard statistics books, e.g. [319].



14.3 Methods for Multivariate Random Generation 203

based on the maximum distance between the empirical distribution and a candidate
distribution F 0(x). Formally, the random quantity

ŷ = sup
x

∣∣̂FN(x)− F 0(x)
∣∣ (14.5)

measures how far F̂N(x) deviates from F 0(x), and is called the Kolmogorov–
Smirnov one-sample statistic. For large sample size N , it holds that

PR
{√
N ŷ ≤ x}�H(x) (14.6)

where

H(x)= 1 − 2
∞∑
k=1

(−1)k−1e−2k2x2
.

The functionH(x) is tabulated, and the approximation (14.6) is practically good for
N > 35.

The KS test goes as follows: given samples x(1), . . . ,x(N), and a candidate cdf
F 0(x), compute ŷ using equation (14.5). Select a significance level α ∈ (0,1) and
compute the 1 − α percentile of H(x). If

√
N ŷ ≤ x1−α , then the test is passed,

and the cdf F 0(x) is a good fit for the empirical distribution. In the case when
F 0(x) is close to the true underlying cdf Fx(x), the probability of failing the test is
smaller than α.

An attractive feature of this test is that the distribution of the KS test statistic ŷ
does not depend on the underlying cdf being tested. Another advantage is that it is an
exact test. Despite these advantages, the KS test has several limitations: (1) it only
applies to continuous distributions; (2) it tends to be more sensitive near the center
of the distribution than at the tails; (3) the distribution should be fully specified.
Owing to these limitations, many analysts prefer to use other, more sophisticated
tests, such as the Anderson–Darling goodness-of-fit test [23].

14.3 Methods for Multivariate Random Generation

In this section, we discuss some standard methods for generating random samples
from multivariate densities. In particular, we discuss rejection-based methods, and
the method based on conditional densities.

We first present a multivariate extension of Theorem 14.1, see for instance [133].
More precisely, the following theorem can be used for obtaining a random vector
y ∈ R

n with desired density fy(y), starting from a random vector x ∈ R
n with pdf

fx(x). This tool is based on the functional transformation y = g(x) and it can be
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used whenever the inverse x = h(y) .= g−1(y) exists. The transformation rule makes
use of the Jacobian of the function x = h(y), defined as

J (x→ y)
.=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x2
∂y1

· · · ∂xn
∂y1

∂x1
∂y2

∂x2
∂y2

· · · ∂xn
∂y2

...
...

...

∂x1
∂yn

∂x2
∂yn

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣
(14.7)

where ∂xi
∂y�

.= ∂hi(y)
∂y�

are the partial derivatives, and | · | denotes the absolute value
of the determinant. The notation J (x → y) means that the Jacobian is computed
taking the derivatives of x with respect to y. It also helps recalling that the Jacobian
J (x → y) is used when determining the pdf of y given the pdf of x, see Theo-
rem 14.2 Various rules for computation of Jacobians are given in Appendix A.2.

Theorem 14.2 (Functions of random vectors) Let x ∈ R
n be a random vector with

density fx(x1, . . . , xn) continuous on the support Yx ⊆R
n, and let y = g(x), where

g : Yx → Yy , Yy ⊆ R
n, is a one-to-one and onto mapping, so that the inverse x =

h(y) .= g−1(y) is well-defined. Then, if the partial derivatives ∂xi
∂y�

.= ∂hi(y)
∂y�

exist and
are continuous on Yy , the random vector y has density

fy(y)= fx
(
h(y)

)
J (x→ y), y ∈ Yy. (14.8)

An extension of this theorem to transformations between random matrices is
presented in Appendix A.1. A classical example of application of this result is the
Box–Muller method for generating normal samples in R

2, starting from uniform
samples.

Example 14.8 (Box–Muller method for normal densities in R
2) Consider the trans-

formation y = g(x), defined by

y1 =√−2 logx1 cos(2πx2);
y2 =√−2 logx1 sin(2πx2)

mapping x ∈ Yx = [0,1]2 into y ∈ Yy = R
2. Then, if x is uniform in Yx , the trans-

formed random variables y1,y2 have independent normal densities. This fact is eas-
ily verified using Theorem 14.2. Indeed, the inverse mapping x = h(y) is

x1 = e−
R2
2 ;

x2 = 1

2π
arcsin

y2

R
, R

.=
√
y2

1 + y2
2 .

The Jacobian of this transformation is given by

J (x→ y)=
∣∣∣∣∣∣
−y1e−R2

2 −y2e−R2
2

− 1
2π

y2
R2

1
2π

y1
R2

∣∣∣∣∣∣=
1

2π
e−

R2
2 .
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Since fx(h(y))= 1 for all y ∈R
2, from (14.8) we have

fy(y)= fx
(
h(y)

)
J (x→ y)= 1

2π
e−

R2
2 =

(
1√
2π

e−
y2
1
2

)(
1√
2π

e−
y2
2
2

)
.

14.3.1 Rejection Methods

We study two classes of rejection methods: the first one is based on the concept
of rejection from a “dominating density.” The second is for uniform generation in
given sets and it is based on rejection from a bounding set. The two methods are
obviously related, and a critical issue in both cases is their numerical efficiency.

Rejection from Dominating Density We now discuss the standard version of a
rejection algorithm for sample generation from a multivariate density fx(x), x ∈R

n.
A basic result on multivariate densities, see for instance [133], is the following.

Theorem 14.3 Let fx(x) : Rn → R be a density function, and consider the set
S ⊂R

n+1 defined as

S =
{[
x

u

]
: x ∈R

n, u ∈R, 0 ≤ u≤ fx(x)

}
.

If the random vector
[ x

u

]
is uniformly distributed in S, then x has density function

fx(x) on R
n. On the other hand, if x ∈ R

n has pdf gx(x) and w ∈ R is uniformly
distributed on the interval [0,1], then the random vector

[ x
ηwgx(x)

]
is uniformly

distributed in the set

Sd =
{[
x

u

]
: x ∈R

n, u ∈R, 0 ≤ u≤ ηgx(x), η > 0

}
.

Using this theorem, we now present the basic rejection scheme. Let fx(x) be a
density function on R

n and let gx(x) be a dominating density for fx(x), i.e. a density
such that

fx(x)≤ ηgx(x) (14.9)

for some constant η ≥ 1. Random samples from fx(x) can be obtained using the
following algorithm.

Algorithm 14.2 (Rejection from a dominating density) Given a density function
fx(x) and a dominating density gx(x) satisfying (14.9), this algorithm returns a
random vector x ∈R

n with pdf fx(x).

1. Generate a random vector x ∈R
n with pdf gx(x);

2. Generate a random variable w ∈R uniform in [0,1];
3. If ηwgx(x)≤ fx(x) return x else goto 1.
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Fig. 14.3 Rejection from a
dominating density

The interpretation of the rejection algorithm is given in Fig. 14.3. First, random
samples [

x(i)

ηw(i)gx(x(i))

]

are generated uniformly inside the dominating set Sd . These uniform samples are
obtained by generating x(i) according to gx(x), and w(i) uniform in [0,1]. Then,
samples lying outside the set S (red crosses) are rejected. The remaining ones (black
dots) are uniform in S and therefore, by Theorem 14.3, their projection onto the x
space is distributed according to fx(x).

It is worth noting that two features are essential for a rejection algorithm to work
properly: first, the sample generation according to the dominating density gx(x)

should be feasible and simple. Second, the value of η should be known and not too
large.

Remark 14.2 (Rejection rate) A critical parameter assessing the efficiency of a re-
jection algorithm is the rejection rate, defined as the expected value of the number
of samples that have to be drawn from the dominating density gx(x) in order to find
one “good” sample. For Algorithm 14.2, the rejection rate coincides with the value
of the constant η. The variance of the rejection rate is also related to η and it is given
by η(η− 1), see for instance [133].

Example 14.9 (A Gamma generator based on rejection) An efficient algorithm for
generation of samples distributed according to Ga,1, a ∈ (0,1), can be derived via
rejection from the Weibull density Wa(x) given in (2.10). In fact

Ga,1(x)≤ ηWa(x), x ≥ 0
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where the rejection constant η is given by

η= e(1−a)aa/(1−a)

Γ (1 + a) < e.

Various other Gamma generators are discussed in detail in [133]. For instance,
Gamma generators for a > 1 may be obtained via rejection from a so-called Burr
XII density.

Uniform Densities in Bounded Sets Via Rejection Rejection methods may also
be used to generate uniform samples in generic bounded domains of R

n. In this
case, these methods are often called “hit-or-miss” and they are related to the tech-
niques based on importance sampling, where the samples are chosen according to
their relevance, see e.g. [177, 334]. The basic idea of rejection methods for uniform
densities in bounded domains is now recalled.

Let S and Sd be bounded sets, such that S ⊆ Sd . Suppose that a uniform generator
in the “dominating set” Sd is available, then to generate uniform samples in S we
proceed according to the following algorithm.

Algorithm 14.3 (Rejection from a dominating set) Given a set S and a dominat-
ing set Sd ⊇ S, this algorithm returns a random vector x, uniformly distributed
in S.

1. Generate a random vector x ∈ Sd ;
2. If x ∈ S return x else goto 1.

The rejection rate η of this method is given by the ratio of the volumes of the two
sets

η= Vol(Sd)

Vol(S)
. (14.10)

The effectiveness of this method is clearly related to three basic factors: first, the
efficiency of the uniform generator in Sd , second the numerical evaluation of the
membership of the sample x(i) in S; and third, the ratio of volumes η, which is in
general the most critical factor. Notice that, in principle, it is often possible to bound
the set S with a suitable n-dimensional hyperrectangle, in which uniform generation
is straightforward. However, this usually results in a dramatically large value of the
rejection rate η, as shown in the following simple example.

Example 14.10 (Uniform generation in a sphere via rejection) Suppose one is in-
terested in generating uniform samples in the Euclidean sphere of unit radius S =
B‖·‖2 = {x ∈ R

n : ‖x‖2 ≤ 1}. Clearly, the sphere is bounded by the n-dimensional
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hypercube Sd = [−1,1]n. The volume of the hypercube is 2n, while the volume of
the sphere is given by the formula

Vol
(
B‖·‖2

(
R
n
))= 2πn/2

nΓ (n/2)
.

The rejection rate grows with respect to the dimension n as

η(n)=
(

2√
π

)n
Γ (n/2 + 1).

For small n, we have η(1) = 1, η(2) = 1.2732, η(3) = 1.9099, whereas for large
n the method is not viable since we have for instance η(20)= 4.06×107, η(30)=
4.90×1013. This “curse of dimensionality” turns out to be a common problem for
set rejection methods, as discussed further in Chap. 15.

14.3.2 Conditional Density Method

The conditional density method is another standard method for random generation
with multivariate distributions [133]. This is a recursive method in which the in-
dividual entries of the multivariate samples are generated according to their con-
ditional probability density. In particular, let fx(x) be the joint pdf of a vector of
random variables x = [x1 · · ·xn]T . This pdf can be written as

fx(x1, . . . , xn)= fx1(x1)fx2|x1(x2|x1) · · ·fxn|x1···xn−1(xn|x1 · · ·xn−1)

where fxi |x1,...,xi−1(xi |x1, . . . , xi−1) are the conditional densities. These densities
are defined, see (2.2), as the ratio of marginal densities

fxi |x1,...,xi−1(xi |x1, . . . , xi−1)= fx1,...,xi (x1, . . . , xi)

fx1,...,xi−1(x1, . . . , xi−1)
.

In turn, the marginal densities fx1,...,xi (x1, . . . , xi) are given by

fx1,...,xi (x1, . . . , xi)=
∫

· · ·
∫
fx(x1, . . . , xn)dxi+1 · · ·dxn.

A random vector x with density fx(x) can therefore be obtained by generating se-
quentially the xi , i = 1, . . . , n, where xi is distributed according to the univariate
density fxi |x1,...,xi−1(xi).

The basic idea of this method, therefore, is to generate the first random variable
according to fx1(x1), then generate the next one conditional on the first one, and
so forth. In other words, the conditional density method reduces an n-dimensional
generation problem to n one-dimensional problems. The main difficulty in its appli-
cation arises from the fact that the computation of the marginal densities is neces-
sary. This is often a very difficult task, since it requires the computation of multiple
integrals, see for instance [134]. The conditional density method is one of the ba-
sic tools used in Chap. 18 for generating random matrices uniformly distributed in
norm bounded sets.
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14.4 Asymptotic Methods Based on Markov Chains

In this section, we briefly account for a large body of literature on sampling meth-
ods generally known as Markov chain Monte Carlo (MCMC). The basic idea be-
hind these methods is to obtain the desired distribution by simulating a random
walk on a graph. The sequence of randomly visited nodes on the graph consti-
tutes a Markov chain, and the output distribution is the stationary distribution of
the Markov chain (when such a distribution exists). Since the stationary distribution
is only achieved after a certain “burn-in” period of time, these methods are asymp-
totic. This makes a substantial difference with the “exact” nonasymptotic methods
previously studied in this chapter. The main difficulty is actually to prove bounds
on the burn-in period (or mixing time), after which one has the guarantee that the
chain has reached steady state. Some of these issues are discussed in the following
sections.

14.4.1 Random Walks on Graphs

In this section, we discuss discrete distributions obtained as asymptotic distributions
(among which the uniform distribution is a particular case) of random walks on the
nodes of undirected graphs. The exposition here is based on the surveys [64, 267],
to which the reader is referred to for a more extensive treatment and pointers to the
existing literature.

Let G(V,E) be an undirected connected graph2 with vertex (or node) set V of
cardinality n, and edge set E of cardinality m. The degree d(v) of a vertex v ∈ V
is defined as the number of edges incident on v; if every vertex has degree d , then
the graph is said d-regular. We now define a random walk on the nodes of G(V,E),
with initial state v0, as a sequence of random variables v0,v1, . . . taking values in V ,
such that for i, j ∈ V and k ≥ 0

pij
.= PR{vk+1 = j |vk = i} =

{
1
d(i)

if i, j ∈ E;
0 otherwise.

(14.11)

This means that, if at the kth step we are at node vk = i, we move to some neighbor-
ing node with probability 1/d(i). Clearly, the sequence of random nodes v0,v1, . . .

is a Markov chain. Denoting with π(k) the probability distribution of the nodes at
time k (i.e. πi(k)

.= PR{vk = i}, for i = 1, . . . , n), we have the recursion

π(k + 1)= PT π(k)
where P is the transition probability matrix having pij in the ith row and j th col-
umn. A standard result from the elementary theory of Markov chains is that the chain
admits a stationary distribution π , which solves π = PT π , and that this distribution
is unique, if the graph is connected (we refer the reader to [285] for a treatment of the

2An undirected graph is connected if there exists a path between all pairs of its vertices i, j ∈ V .
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convergence properties of Markov chains). For the assigned transition probabilities,
the stationary distribution is given by

πi = d(i)

2m
, i = 1, . . . , n.

If the graph is d-regular, then this stationary distribution is the uniform distribu-
tion, since d(i)= d , for all nodes. Notice that for d-regular graphs the correspond-
ing Markov chain is symmetric, meaning that the probability of moving to state j ,
given that the chain is at node i, is the same as the probability of moving to state
i, given that the chain is at node j . Therefore, for d-regular graphs the transition
matrix P is symmetric.

An important property of nonbipartite3 (but not necessarily d-regular) graphs is
that the distribution of π(k) tends to the stationary distribution as k→∞, regardless
of the initial distribution π(0). Therefore, for a d-regular nonbipartite graph with
transition probabilities given by (14.11), the distribution π(k) tends to the uniform
distribution πi = 1/n, for i = 1, . . . , n.

A natural question at this point is how many steps one has to wait before the
distribution of vk is close to the stationary one, which leads to the fundamental
notion of the mixing rate of the Markov chain. The mixing rate is a measure of
how fast the random walk converges to its stationary distribution. If the graph is
nonbipartite, then pij (k) = d(j)/(2m) for k → ∞ and the mixing rate λ > 0 is
defined as

λ= lim sup
k→∞

max
i,j

∣∣∣∣pij (k)− d(j)2m

∣∣∣∣
1/k

.

For a random walk starting at node i, we can express the deviation from stationarity
in terms of the total variation distance |πj (k) − πj |. This quantity is bounded as
follows, see [267]

∣∣πj (k)− πj ∣∣≤ λk
√
d(j)

d(i)
.

The next theorem establishes a key result for the mixing rate of a random walk on a
graph.

Theorem 14.4 The mixing rate of a random walk on a nonbipartite graph is given
by

λ= max
{|λ2|, |λn|

}
where λ1 = 1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of M

.= D−1/2PD1/2,
D = diag([1/d(1) · · · 1/d(n)]).

3A bipartite graph is a graph whose nodes can be partitioned into two subsets, with no edge joining
nodes that are in the same subset. A node in one of the subsets may be joined to all, some, or none
of the nodes in the other. A bipartite graph is usually shown with the two subsets as top and bottom
rows of nodes, or with the two subsets as left and right columns of nodes.
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Very often the matrixM is positive semidefinite (or the graph can be transformed
into one for which M is semidefinite, by adding self-loops to the nodes), in which
case the mixing rate is simply given by λ= λ2.

Unfortunately, however, in the applications where the random walk method is of
interest, the “size” n of the underlying graph is exponentially large, and the esti-
mation of the mixing rate via eigenvalue computation is very difficult. This is the
case for instance in the “card deck shuffling” problem, where we wish to sample
uniformly over all permutations of 52 elements, or we are willing to sample uni-
formly in a convex body4 K ⊂ R

n (with large n), by defining a random walk on
a fine lattice inside K , see for instance [152]. For this reason, a different approach
is usually taken in the literature for proving the “fast mixing” property of a ran-
dom walk. In this approach, further concepts such as the conductance of a graph
and isoperimetric inequalities are introduced, which are outside the scope of this
chapter. The interested reader is referred to [64, 218, 267] and to Sect. 19.2 for re-
sults regarding random walks on directed graphs with applications to the PageRank
computation.

Metropolis Random Walk The so-called Metropolis random walk [283] is a
modification of the simple random walk described in the previous section. This
modification is introduced in order to make the random walk converge asymptot-
ically to an arbitrary desired probability distribution. Let G(V,E) be a d-regular
graph, let f : V →R+, and let v0 be the initial node. Suppose that at time k we are
at node vk , the modified random walk goes as follows: (i) select a random neighbor
u of vk ; (ii) if f (u) ≥ f (vk), then move to u, i.e. vk+1 = u; else move to u with
probability f (u)/f (vk), or stay in vk with probability 1− f (u)/f (vk). Clearly, this
modified random walk is still a Markov chain. The fundamental fact that can be
proven is that this chain admits the stationary distribution

π̃i = f (i)∑
j∈V f (j)

, i = 1, . . . , n.

Unlike the simple random walk, in general it is difficult to estimate the mixing rate
of the Metropolis walk. Relevant results in this direction include [27, 135].

14.4.2 Methods for Continuous Distributions

The idea of constructing random walks on graphs can be extended to the case when
the node set of the graph is a “continuous,” or dense set. In this section, we discuss
some well-known methods to generate (asymptotically) random samples distributed
according to a desired continuous distribution.

4A convex body is a closed, bounded, convex set of nonzero volume.
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Metropolis–Hastings Sampler Suppose that the problem is to sample from a
multivariate probability density f (x), x ∈ R

n, and we can evaluate f (x) (up to a
constant), but have no means to generate a sample directly. As discussed previously,
the rejection method is an option if a dominating density can be found with a com-
putable bound η of moderate magnitude, which is unlikely if the dimension n is
high. We remark that rejection, inversion and the density transformation methods
all produce independent realizations from f (x). If these methods are inefficient, or
difficult to implement, then we can adopt the weaker goal of generating a depen-
dent sequence with marginal distribution equal to (or converging to) f (x), using
some variant of the random walk techniques describer earlier. It should be pointed
out that this necessitates giving up independence of the samples, since the succes-
sive outcomes of a Markov chain (even when the chain is in steady state) are not
independent.

The Metropolis–Hastings (MH) algorithm [192] builds the random walk (with
continuous node space) according to the following rules. Suppose we have a transi-
tion density g(y|x), such that

PR{xk+1 ∈ Y|xk = x} =
∫
Y
g(y|x)dy.

This density is sometimes called a “proposal density” and plays a role similar to
the dominating density in the standard rejection method. Define the Metropolis–
Hastings ratio by

η(x, y)
.=
{

min
(f (y)g(x|y)
f (x)g(y|x) ,1

)
if f (x)g(y|x) > 0;

1 otherwise.
(14.12)

Notice that only density evaluations up to a constant are required, since unknown
normalizing constants cancel out when forming the above ratio. Suppose that at
time k the state is at xk , then we choose the next state according to the follow-
ing procedure: (i) draw a random sample y from the proposal density g(y|xk);
(ii) with probability η(xk, y) move to y, i.e. set xk+1 = y, otherwise stay put, i.e.
set xk+1 = xk .

It can be proved that the resulting Markov chain will reach steady state and
that the stationary density is the target density f (x). The analysis of the mixing
rate of this algorithm is not, however, an easy task. We refer to [282] for a con-
tribution in this direction and to [177] for further references on variations and re-
finements of the basic MH algorithm. Metropolis–Hastings sampling and general
Markov chain Monte Carlo methods for estimation of expectations are presented in
[258, 364, 365]. The explicit Metropolis–Hastings sampling algorithm is reported
next.
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Algorithm 14.4 (Metropolis–Hastings) Given a target probability density f (x),
a “proposal density” g(y|x), and a “burn-in” period T * 0, this algorithm re-
turns a random variable x that is approximately distributed according to f (x)
(the approximating density asymptotically converges to f (x) as T increases).

1. Select an arbitrary initial state x0, and set k = 0;
2. Generate a candidate state y according to g(y|xk);
3. Compute the ratio η(xk, y) in (14.12);
4. Generate w uniformly in [0,1];
5. If w ≤ η(xk, y), set xk+1 = y, else set xk+1 = xk ;
6. Set k = k + 1;
7. If k = T , return xk and end, else goto 2.

Remark 14.3 (Properties of Metropolis–Hastings) It is worth underlining that the
output of Algorithm 14.4 is one single random sample, approximately distributed
according to f (x). Therefore, if another run of the algorithm is executed, and then
a third run, and so on, we would obtain a sequence of samples that are all (approx-
imately) distributed according to f (x), and statistically independent, since after T
steps the Markov chain approximately “forgets” its initial state. However, this pro-
cedure would be very inefficient, since at each run the algorithm should execute T
burn-in iterations, with T that is typically very large.

Notice that this is not in contradiction with our initial statement, that Markov
chain methods produce dependent samples, since the actual use of these algorithms
is to produce not a single sample at step k = T , but the whole sequence of depen-
dent samples that is generated by the chain from step T on. This is obtained by
substituting step 7 in Algorithm 14.4 with “If k ≥ T , return xk , goto 2; else goto 2.”

14.4.3 Uniform Sampling in a Convex Body

Random walk techniques have been successfully adopted to develop polynomial-
time algorithms that produce approximately uniform (although not independent)
samples in a convex body K ⊂R

n. It is further commonly assumed that K contains
the unit ball, and that it is contained in a ball of radius r .

In [152] an algorithm based on random walk on a sufficiently dense lattice in-
side K was originally proposed, and it was proved that the walk mixes in time
polynomial in n (notice that this is far from obvious, since the number of nodes in
the lattice grows exponentially with n). The motivation of [152] was to design a
polynomial-time algorithm to approximate the volume of a convex body, which is
an “ancient” and extremely difficult problem. Indeed, several negative results on the
computational complexity of this problem have appeared in the literature, stating
for instance that any (deterministic) algorithm that approximates the volume within
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a factor of no(n) necessarily takes exponential time [40, 231]. Therefore, the result
of [152] has a particular importance, since it gives a breakthrough in the opposite
direction, showing that randomization provably helps in solving efficiently those
problems that are deterministically hard.

A similar method called “walk with ball steps” may be easily described. Let
x ∈K be the current point: (i) we generate a random point z in the Euclidean ball of
radius δ centered in x; (ii) if z ∈K , we move to z, else we stay at x. This procedure
corresponds to a random walk on the graph whose vertex set is K , with two points
x, z connected by an edge if and only if |x − z| ≤ δ. It has been proved in [226]
that (a slightly modified version of) this walk converges to an approximation of the
uniform distribution in K which gets better as δ is reduced, and that the walk mixes
in O(nr2/δ2) steps, provided that δ < 1/

√
n.

Another popular method for generating (asymptotically) uniform samples in K
is the so-called hit-and-run (HR) method introduced in [359] and reported next.

Algorithm 14.5 (Hit-and-run) Given a convex body K ⊂ R
n and a “burn-in”

period T * 0, this algorithm returns a random variable x that is approximately
uniform withinK (the approximating density asymptotically converges to the uni-
form density in K as T increases).

1. Select an arbitrary initial state x0 in the interior of K , and set k = 0;
2. Generate a random direction v = y/‖y‖, where y ∼N0,In ;
3. Compute the extreme points a,b (on the boundary of K) of the chord in K

through xk along direction v;
4. Generate w uniformly in [0,1];
5. Set xk+1 = wa + (1 − w)b;
6. Set k = k + 1;
7. If k = T , return xk and end, else goto 2.

In the HR method, the random walk is constructed as follows: if the current point
is x, then we generate the next point by selecting a random line through x (uniformly
over all directions) and choosing the next point uniformly from the segment of the
line in K . This walk has the uniform as the stationary distribution, and mixes in
O(n2r2) steps [268].

The techniques for generating uniform samples in convex bodies have been ex-
ploited in the context of convex optimization. In particular, in the work [57, 221]
polynomial-time randomized algorithms for solving convex optimization problems
are derived. These techniques have been specialized in [119], that focuses on the
case when one aims at computing the maximum of a linear function

γmax = max
x∈K c

T x, (14.13)

over the convex body K ⊂ R
n. The paper proposes a sequential method based on

cutting-plane, which is proved to improve with high probability over [57]. The basic
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Fig. 14.4 Setup of
Theorem 14.5

step of this method consists in an empirical maximum estimation, as discussed in
Sect. 8.4. That is, N samples uniformly distributed over K

x(1), . . . , x(N)

are drawn, and the empirical maximum γ̂N = maxi=1,...,N c
T x(i) is constructed.

Then, the following theorem, proved in [119], provides upper and lower bounds on
the expected relative error between the empirical estimate and the true maximum.

Theorem 14.5 Let K ⊂R
n be a convex body. Given c ∈R

n, it holds that

1

nN + 1
≤ Ex(1...N)

(
γmax − γ̂N
γmax − γmin

)
≤ 1

n
B(N + 1,1/n)

≤
(

1

N + 1

) 1
n

, (14.14)

where γmin = minx∈K cT x and B(a, b) is the Beta function

B(a, b)
.=
∫ 1

0
ta−1(1 − t)b−1 dt.

The setup of the theorem is illustrated in Fig. 14.4. We remark that the bound
(14.14) is rather different in nature with respect to the bound provided in Sect. 8.4,
for the following reasons: (i) it hold specifically for uniformly distributed samples,
(ii) it provides a one level of probability type statement. In particular, this result can
be used to prove that the expected number of samples N necessary for obtaining an
estimate with guaranteed error less that α, that is such that

Ex(1...N)

(
γmax − γ̂N
γmax − γmin

)
≤ α,

grows exponentially in α as N = ' 1
αn

(.



Chapter 15
Statistical Theory of Random Vectors

In this chapter we study the statistical properties of random vectors, for a certain
class of symmetric probability distributions. In particular, we introduce the notions
of �p radial and �W2 radial random vectors, and analyze the properties of these dis-
tributions, highlighting the connection among �p radial symmetry and the uniform
distribution in �p norm balls. These properties will be used in the algorithms for
vector sample generation presented in Chap. 16.

15.1 Radially Symmetric Densities

In this section we introduce a class of probability distributions with symmetry prop-
erties with respect to �p norms, and discuss some preliminary concepts that will
be used in later parts of the book. We first formally define the notion of radially
symmetric density functions (or simply radial densities).

Definition 15.1 (�p radial density) A random vector x ∈ F
n, where F is either the

real or complex field, is �p radial if its density function can be written as

fx(x)= g(ρ), ρ = ‖x‖p
where g(ρ) is called the defining function of x.

In other words, for radially symmetric random vectors, the density function is
uniquely determined by its radial shape, which is described by the defining function
g(ρ). When needed, we use the notation gx(ρ) to specify the defining function of
the random variable x. For given ρ, the level set of the density function is an equal
probability set represented by ∂B‖·‖p (ρ). Examples of radial densities for real ran-
dom vectors are, for instance, the normal density and the Laplace density. This is
shown in the next example.

Example 15.1 (Radial densities) The classical multivariate normal density with
identity covariance matrix and zero mean is an �2 radial density. In fact, setting

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_15,
© Springer-Verlag London 2013
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ρ = ‖x‖2, we write

fx(x)= 1√
(2π)n

e−
1
2 x
T x = 1√

(2π)n
e−

1
2ρ

2 = g(ρ).
The multivariate Laplace density with zero mean is an �1 radial density. Indeed,
setting ρ = ‖x‖1, we have

fx(x)= 1

2n
e−

∑n
i=1 |xi | = 1

2n
e−ρ = g(ρ).

Furthermore, the generalized Gamma density, defined in (2.13), is radial with re-
spect to the �p norm. The properties of this density are discussed in more detail in
Sect. 16.2.

Another notable case of radial density is the uniform density over B‖·‖p . In fact,
for a random vector x uniformly distributed in the �p norm ball of unit radius we
have that

fx(x)= UB‖·‖p (x)=
{

1
Vol(B‖·‖p )

if ‖x‖p ≤ 1;
0 otherwise.

Clearly, this density can be expressed as a function of ρ = ‖x‖p , i.e. fx(x)= g(ρ),
with defining function

g(ρ)=
{

1
Vol(B‖·‖p )

if ρ ≤ 1;
0 otherwise.

(15.1)

15.2 Statistical Properties of �p Radial Real Vectors

The next theorem provides a fundamental characterization of �p radial real random
vectors, and relates them to the uniform distribution on the surface of the �p norm
ball.

Theorem 15.1 (�p radial vectors in R
n) Let x ∈ R

n be factored as x = ρu, where
ρ > 0, and u ∈R

n, ‖u‖p = 1. The following statements are equivalent:

1. x is �p radial with defining function g(ρ);
2. ρ, u are independent, and u is uniformly distributed on ∂B‖·‖p .

Moreover, we have that

fρ(ρ)= 2nΓ n(1/p)

pn−1Γ (n/p)
g(ρ)ρn−1; (15.2)

fu1,...,un−1(u1,...,un−1) =
pn−1Γ (n/p)

2n−1Γ n(1/p)
ψ(1−p)/p(u1, . . . , un−1)

|ui |< 1, i = 1, . . . , n− 1
n−1∑
i=1

|ui |p < 1 (15.3)
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where

ψ(u1, . . . , un−1)
.=
(

1 −
n−1∑
i=1

|ui |p
)
. (15.4)

Proof Consider x ∈ R
n. If we assume xn > 0, then x can be factored as x = ρu,

where ρ is positive, and the vector u lies on the unit surface ∂B‖·‖p and is parame-
terized as

u=
[
u1 u2 · · · un−1

(
1 −

n−1∑
i=1

|ui |p
)1/p]T

.

The transformation

xi = ρui, i = 1, . . . , n− 1;

xn = ρ
(

1 −
n−1∑
i=1

|ui |p
)1/p

, ρ > 0, |ui |< 1,
n−1∑
i=1

|ui |p < 1

from the variables x1, . . . , xn, xn > 0, to the variables u1, . . . , un−1, ρ is then one-
to-one. The Jacobian of this transformation is

J (x→ u,ρ)= ρn−1

(
1 −

n−1∑
i=1

|ui |p
)(1−p)/p

. (15.5)

Notice that, if we set xn < 0, similar computations lead to the same Jacobian. Fur-
thermore, the case xn = 0 is neglected, since the event xn = 0 occurs with zero
probability. For each of the two half-spaces (for xn > 0 and for xn < 0), the density
fx(x) restricted to the half-space is given by 2g(ρ), since g(ρ) represents the den-
sity on the whole space. From the rule of change of variables, see Theorem 14.2, we
then have

fu,r(u1, . . . , un−1, ρ)= 2g(ρ)ρn−1

(
1 −

n−1∑
i=1

|ui |p
)(1−p)/p

. (15.6)

Then, it follows that u1, . . . , un−1 are independent from ρ. Since, see for instance
[362] ∫

D

(
1 −

n−1∑
i=1

|ui |p
)(1−p)/p

du1 · · ·dun−1 = 2n−1Γ n(1/p)

pn−1Γ (n/p)
(15.7)

where D = {−1 < ui < 1, i = 1, . . . , n − 1; ∑n−1
i=1 |ui |p < 1}, we obtain the

marginal densities (15.2) and (15.3) by integration of (15.6) with respect to
u1, . . . , un−1 and ρ respectively. �

Remark 15.1 (Uniform density on ∂B‖·‖p (Rn)) The density (15.3) is called the
“�p norm uniform distribution” in [187, 362]. The interested reader is referred to
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those papers for further details on �p radial distributions. The pdf (15.3) is there-
fore a representation of the uniform distribution on the surface of the unit sphere
∂B‖·‖p (Rn) and is denoted by U∂B‖·‖p (Rn). We also notice that Theorem 15.1 can be
stated in the following alternative form: if x ∈R

n is �p radial, then the random vec-
tor u = x/‖x‖p is uniformly distributed on ∂B‖·‖p , and u and ‖x‖p are independent.

Remark 15.2 (Uniform density on ∂B‖·‖2(R
n)) For the case p = 2, a commonly

used parameterization of u is obtained by means of the generalized polar coordinates

u1 = sinφ1;
u2 = cosφ1 sinφ2;
u3 = cosφ1 cosφ2 sinφ3;
...

un−1 = cosφ1 cosφ2 · · · cosφn−2 sinφn−1;
un =± cosφ1 cosφ2 · · · cosφn−2 cosφn−1

where −π/2 < φi ≤ π/2, for i = 1, . . . , n − 1. It is easy to verify that u2
n = 1 −∑n−1

i=1 u
2
i . The Jacobian of the transformation from u1, . . . , un−1 to φ1, . . . , φn−1 is,

see for instance [22]

J (u1, . . . , un−1 → φ1, . . . , φn−1)= cosn−1 φ1 cosn−2 φ2 · · · cosφn−1.

In these coordinates, the uniform density on ∂B‖·‖2 is

fφ1,...,φn−1(φ1, . . . , φn−1)= Γ (n/2)

Γ n(1/2)
cosn−2 φ1 cosn−3 φ2 · · · cosφn−2.

Remark 15.3 (�p norm density and volume of B‖·‖p (r,Rn)) The norm density of
an �p radial random vector x ∈ R

n is defined as the probability density of its norm
ρ = ‖x‖p . The norm density of x is explicitly given in (15.2).

Notice that if x is uniformly distributed in B‖·‖p (r,Rn), then its defining function
is given by (15.1). Therefore, substituting this g(ρ) into (15.2) and integrating for ρ
from 0 to r , we obtain a closed-form expression for the volume of the �p norm ball
of radius r in R

n

Vol
(
B‖·‖p

(
r,Rn

))= 2n
Γ n(1/p+ 1)

Γ (n/p+ 1)
rn. (15.8)

In the next section we study �p radial complex vectors.

15.3 Statistical Properties of �p Radial Complex Vectors

We now present an analogous result to Theorem 15.1 for the case of complex �p
radial vectors.
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Theorem 15.2 (�p radial vectors in C
n) Let x ∈ C

n be factored as x = ρv, where
ρ > 0, v = ejΦu, with u ∈R

n+, ‖u‖p = 1, Φ = diag([ϕ1 · · · ϕn]), ϕi ∈ [0,2π]. The
following statements are equivalent:

1. x is �p radial with defining function g(ρ);
2. ρ, u, Φ are independent, and v is uniformly distributed on ∂B‖·‖p .

Moreover, we have that

fρ(ρ)= (2π)nΓ n(2/p)

pn−1Γ (2n/p)
g(ρ)ρ2n−1; (15.9)

fu1,...,un−1(u1, . . . , un−1)= pn−1Γ (2n/p)

Γ n(2/p)
ψ̃(u1, . . . , un−1); (15.10)

0< ui < 1, i = 1, . . . , n− 1
n−1∑
i=1

|ui |p < 1

fΦ(ϕ1, . . . , ϕn)= 1

(2π)n
(15.11)

where ψ̃ is defined as

ψ̃(u1, . . . , un−1)
.=
(
n−1∏
i=1

ui

)
ψ2/p−1(u1, . . . , un−1)

and

ψ(u1, . . . , un−1)=
(

1 −
n−1∑
i=1

|ui |p
)
.

Proof Observe that, owing to the norm constraint, the vector u has n− 1 free com-
ponents, and it is expressed as u= [u1 · · · un−1ψ

1/p(u1, . . . , un−1)]T , ui ∈ [0,1],
i = 1, . . . , n − 1. Let ai = Re(xi), bi = Im(xi), then the change of variables
ai + jbi = ρejϕi ui is one-to-one, and is explicitly written as

a1 = ρu1 cosϕ1;
b1 = ρu1 sinϕ1;
a2 = ρu2 cosϕ2;
b2 = ρu2 sinϕ2;
...

an−1 = ρun−1 cosϕn−1;
bn−1 = ρun−1 sinϕn−1;
an = ρψ1/p(u1, . . . , un−1) cosϕn;
bn = ρψ1/p(u1, . . . , un−1) sinϕn.
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a1 b1 a2 b2 · · · an−1 bn−1 an bn

ϕ1 −ρu1Sϕ1 ρu1Cϕ1 0 0 · · · 0 0 0 0

u1 ρCϕ1 ρSϕ1 0 0 · · · 0 0 u
p−1
1 Cϕn u

p−1
1 Sϕn

ϕ2 0 0 −ρu2Sϕ2 ρu2Cϕ2 · · · 0 0 0 0

u2 0 0 ρCϕ2 ρSϕ2 · · · 0 0 u
p−1
2 Cϕn u

p−1
2 Sϕn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

ϕn−1 0 0 0 0 · · · −ρun−1Sϕn−1 ρun−1Cϕn−1 0 0

un−1 0 0 0 0 · · · ρCϕn−1 ρSϕn−1 u
p−1
n−1Cϕn u

p−1
n−1 Sϕn

ϕn 0 0 0 0 · · · 0 0 −ρSϕn ρCϕn

ρ u1Cϕ1 u1Sϕ1 u2Cϕ2 u2Sϕ2 · · · un−1Cϕn−1 un−1Sϕn−1 Cϕn Sϕn

To compute the Jacobian of this transformation, we construct the following scheme
of partial derivatives, where Sϕi and Cϕi stand for sinϕi and cosϕi .

Using the Schur determinant rule, and exploiting the block diagonal structure of
the 2(n− 1)× 2(n− 1) upper-left block in the above table, we obtain

J (x→Φ,u,ρ)= ρ2n−1

(
n−1∏
i=1

ui

)
ψ2/p−1(u1, . . . , un−1).

Therefore, we have that

fΦ,u,ρ(Φ,u,ρ)= g(ρ)J (x→Φ,u,ρ)= ρ2n−1g(ρ)ψ̃(u1, . . . , un−1) (15.12)

which proves the statistical independence of Φ,u,ρ. The marginal density fρ(ρ)

in (15.9) is then obtained by integrating this joint pdf over Φ and u, and using the
following facts∫ 2π

0
dϕ1 · · ·dϕn = (2π)n;∫

D
ψ̃(u1, . . . , un−1)du1 · · ·dun−1 = Γ n(2/p)

pn−1Γ (2n/p)

where D = {0 < ui < 1, i = 1, . . . , n − 1;∑n−1
i=1 |ui |p < 1}. The marginal densi-

ties (15.10) and (15.11) are obtained in a similar way, integrating with respect to
Φ,ρ and with respect to u,ρ respectively. Integrating (15.12) with respect to ρ,
we obtain the pdf of v, which is defined as the uniform density over ∂B‖·‖p , see
Remark 15.4. �

Remark 15.4 (Uniform pdf on ∂B‖·‖p (Cn)) Similar to the development for the real
case in [93, 162, 362], the marginal density fΦ,u(Φ,u), obtained by integrating
(15.12) with respect to ρ, is defined as the “(complex) �p norm uniform distribution”
on the surface of the unit sphere ∂B‖·‖p (Cn), and it is denoted by U∂B‖·‖p (Cn). In
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addition, notice that Theorem 15.2 could be stated in the following form: if x ∈ C
n

is �p radial, then v = x/‖x‖p is uniformly distributed on ∂B‖·‖p , and v and ‖x‖p are
independent.

Remark 15.5 (�p norm density and volume of B‖·‖p (r,Cn)) The norm density (see
Remark 15.3 for its definition) of an �p radial random vector x ∈ C

n is explicitly
given in (15.9). We also notice that if x is uniformly distributed in B‖·‖p (r,Cn), its
defining function is given by (15.1), and hence substituting this g(ρ) into (15.9) and
integrating for ρ from 0 to r , we obtain a closed-form expression for the volume of
the �p norm ball of radius r in C

n

Vol
(
B‖·‖p

(
r,Cn

))= πn Γ n(2/p+ 1)

Γ (2n/p+ 1)
r2n. (15.13)

Finally, we observe that the expressions for the norm density (15.9) and (15.2)
can be unified in a single formula that is valid for both the real and complex cases.
This is stated in the next lemma.

Lemma 15.1 (�p norm density) If x ∈ F
n is �p radial, then the random variable

ρ = ‖x‖p has density function fρ(ρ) given by

fρ(ρ)= Vol(B‖·‖p )dρd−1g(ρ) (15.14)

where d = n if F≡R or d = 2n if F≡C.

15.4 �p Radial Vectors and Uniform Distribution in B‖·‖p

The results of the previous sections provide a connection between �p radial distribu-
tions and uniform distributions within �p norm balls, for real and complex random
vectors. This connection is analyzed in [82] and it is stated in the next corollary.

Corollary 15.1 (Uniform vectors in B‖·‖p ) Let d = n if F is the real field, and
d = 2n if F is the complex field. The following two conditions are equivalent:

1. x ∈ F
n is �p radial, with norm density function fρ(ρ)= ρd−1d , ρ ∈ [0,1];

2. x ∈ F
n is uniformly distributed in B‖·‖p .

Proof 1.→ 2. Since x is �p radial, its norm density is given by (15.14), then the
defining function of x is

fx(x)= g
(‖x‖p)= 1

Vol(B‖·‖p )
, ‖x‖p ≤ 1

which implies that the pdf of x is constant on its domain, i.e. x is uniformly dis-
tributed in B‖·‖p .
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2.→1. Since x is uniform in B‖·‖p then

fx(x)=
{

1
Vol(B‖·‖p )

if ‖x‖p ≤ 1;
0 otherwise.

Notice that fx(x) depends only on ‖x‖p . Therefore, x is �p radial, with defining
function g(ρ)= fx(x), ρ = ‖x‖p . Substituting g(ρ) in (15.14), we obtain the norm
density as claimed. �

The next corollary shows how to obtain an �p radial distribution with given defin-
ing function, or with given norm density, starting from any arbitrary �p radial dis-
tribution.

Corollary 15.2 Let x ∈ F
n be �p radial and let z ∈ R

+ be an independent random
variable with density fz(z). Then, the random vector

y = z
x

‖x‖p
is �p radial with norm density function fρ(ρ) = fz(ρ), ρ = ‖y‖p . Moreover, the
defining function of y, gy(ρ), is given by

gy(ρ)= 1

Vol(B‖·‖p )ρd−1d
fρ(ρ). (15.15)

Proof Clearly, y is �p radial, and ‖y‖p = z. Therefore, the norm density function
fρ(ρ) of y coincides with the density function fz(z) of z. Relation (15.15) follows
immediately from (15.14). �

The previous corollary may be used to generate �p radial random vectors with
a given defining function. In the next corollary, we specialize this result to uniform
distributions.

Corollary 15.3 (Uniform vectors in B‖·‖p (r,Fn)) Let x ∈ F
n be �p radial and let

w ∈R be an independent random variable uniformly distributed in [0,1]. Then

y = rz x
‖x‖p , z = w1/d

where d = n if F≡R or d = 2n if F≡C, is uniformly distributed in B‖·‖p (r).

Proof By the inversion method, see Corollary 14.1, it follows that the distribution
of z is Fz(z) = zd , therefore fz(z) = dzd−1. For r = 1, the statement is proved by
means of Theorem 15.1. With a rescaling, it is immediate to show that y is uniformly
distributed in B‖·‖p (r). �

This result can be interpreted as follows: first, an �p radial random vector x is nor-
malized to obtain a uniform distribution on the surface ∂B‖·‖p (r) of the set B‖·‖p (r),
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then each sample is projected into B‖·‖p (r) by the random volumetric factor z.
Therefore, the problem of uniform generation is reduced to that of generation of
�p radially symmetric random vectors. This is discussed in more detail in Chap. 16,
where explicit algorithms for uniform generation are provided.

15.5 Statistical Properties of �W
2 Radial Vectors

In this section we introduce the notion of real random vectors with �W2 radial distri-
bution (or �W2 radial vectors) and discuss their statistical properties. Then, we study
how the uniform distribution on the unit ball in the �2 norm is transformed by a
linear mapping. For further details and references on distributions with ellipsoidal
support, the reader is referred to [186].

We recall that the �W2 norm of a vector x ∈R
n is defined in (3.4) as

‖x‖W2 = (xTW−1x
)1/2

where W =WT � 0 is a given weighting matrix. We first introduce the notion of
�W2 radially symmetric density.

Definition 15.2 (�W2 radial density) A random vector x ∈ R
n is �W2 radial if its

probability density function fx(x) can be expressed in the form

fx(x)= g(ρ), ρ = ‖x‖W2 .

Example 15.2 (Normal density as �W2 radial density) The multivariate normal den-
sity N0,W is �W2 radial since

N0,W (x)= (2π)−n/2|W |−1/2 e−
1
2 g(ρ), ρ = ‖x‖W2 .

We now state a well-known result, see e.g. [22], regarding the linear mapping of
a vector with multivariate normal density.

Lemma 15.2 Let x ∈ R
n ∼ Nx̄,W , and let y = T x, where y ∈ R

m, and T may be
rank deficient. Then, y is also normally distributed, with E(y)= T x̄ and Cov(y)=
TWT T .

The following lemma states the relation between linear transformations of �2
radial vectors and �W2 radial vectors.

Lemma 15.3 Let x ∈ R
n be �2 radial with defining function gx(‖x‖2), and let

y = T x, with T ∈ R
n,n invertible. Then, y is �W2 radial with W = T T T , and has

defining function

gy(ρ)= |W |−1/2gx(ρ), ρ = ‖y‖W2 .
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Proof By assumption, the random vector x is �2 radial, therefore fx(x)= gx(‖x‖2).
Since x = T −1y, from the rule of change of variables, see Theorem 14.2, we have

fy(y)= fx
(
T −1y

)
J (x→ y)

where J (x→ y)= |T |−1. Letting W = T T T , this expression becomes

fy(y)= gx
(∥∥T −1y

∥∥
2

)|W |−1/2 = gx(ρ)|W |−1/2

for ρ = (yT (T T T )−1y)1/2. �

An immediate consequence of this lemma is that if x is uniform in B‖·‖2 , then
the vector y = T x, with T invertible, is uniformly distributed inside the ellipsoid
E(0, T T T ). The subsequent result states the relation between the defining function
gy(ρ) of an �W2 radial vector, and its �W2 norm density fρ(ρ), defined as the pdf of
the random variable ρ = ‖y‖W2 . This result is analogous to Lemma 15.1, which was
stated for �p radial densities.

Lemma 15.4 (�W2 norm density) Let y ∈ R
n be �W2 radial with defining function

gy(ρ), where ρ = ‖y‖W2 . Then, the pdf of ρ is called the �W2 norm density and is
given by

fρ(ρ)= |W |1/2Vol(B‖·‖2)nρ
n−1gy(ρ). (15.16)

Proof We first notice that any �W2 radial vector y can be factored as y = T ru, where
T is such that W = T T T , ρ > 0, and ‖u‖2 = 1. We then compute the joint pdf in
the new variables u,ρ, in a way similar to Theorem 15.1

fu,ρ(u1, . . . , un−1, ρ)= 2fy(y)J (y→ u,ρ).

Now, introducing the slack variable x = ρu, and applying the chain rule for the
computation of Jacobians, see Rule A.1 in Appendix A.2, we have that

J (y→ u,ρ)= J (y→ x)J (x→ u,ρ).

The first factor is equal to J (y → x) = |T | = |W |1/2, since y = T x. The second
factor has been computed in Theorem 15.1, and is equal to

J (x→ u,ρ)= ρn−1ψ−1/2(u1, . . . , un−1)

where ψ is defined in (15.4). Therefore

fu,r(u1, . . . , un−1, ρ)= 2|W |1/2ρn−1gy(ρ)ψ
−1/2(u1, . . . , un−1)

where ρ = ‖y‖W2 . Integrating over u1, . . . , un−1, and using (15.7), we obtain

fρ(ρ)= 2|W |1/2 πn/2

Γ (n/2)
ρn−1gy(ρ).

The statement of the lemma then follows noticing that

2πn/2

Γ (n/2)
= nVol(B‖·‖2). �
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We now extend the previous results to the case when the transformation matrix T
is rectangular. In particular, we address the problem of determining the distribution
on the image of a linear transformation, when the distribution on the domain is
uniform. More precisely, given a random variable x ∈R

n ∼ UB‖·‖2
, and given a full-

rank matrix T ∈R
m,n,m≤ n, we derive the distribution of y = T x. Of course, when

m= n and |T | �= 0, the answer follows from Lemma 15.3, i.e. a nonsingular linear
mapping transforms uniform distributions into uniform distributions. The general
case when m< n is addressed in the next lemma.

Lemma 15.5 Let x ∈R
n be �2 radial with defining function gx(‖x‖2), and let T ∈

R
m,n be full-rank, with m< n. Then, the random vector y = T x is �W2 radial with
W = T T T , and in particular the pdf fy(y) is given by

fy(y)= gy(ρ)= |Σ |−1Surf
(
B‖·‖2

(
1,Rn−m

))
∫ ∞

0
gx
((
ρ̃ 2 + ρ2)1/2)ρ̃ n−m−1dρ̃, ρ = ‖y‖W2

(15.17)

where Σ is a diagonal matrix containing the singular values of T .

Proof Consider the singular value decomposition T = UΣV T , where U ∈ R
m,m,

V ∈R
n,m are orthogonal andΣ ∈R

m,m is the diagonal matrix of the singular values
of T . Take Ṽ ∈R

n,n−m, such that Ṽ T Ṽ = In−m, V T Ṽ = 0m,n−m, and define

T̃ =
[
T

Ṽ T

]
∈R

n,n.

Then, T̃ is invertible, and T̃ −1 = [VΣ−1UT Ṽ ], |T̃ | = |Σ |. Next, consider the
change of variables w = T̃ x, where wT = [yT ỹT ]. Hence, it follows that

fw(w)
.= fy,̃y(y, ỹ)= fx

(
T̃ −1w

)
J (x→w)= gx

(∥∥T̃ −1w
∥∥

2

)|T̃ |−1.

Since ‖T̃ −1w‖2
2 = ỹT ỹ + yT (T T T )−1y, we have that

fy,̃y(y, ỹ)= gx
((
ρ̃ 2 + ρ2)1/2)|Σ |−1

where ρ̃ = ‖ỹ‖2, and ρ = ‖y‖W2 , with W = T T T . The marginal density fy(y) can
be derived by integrating fy,̃y(y, ỹ) over ỹ. This integration can be performed using
a radial element of volume, obtaining

fy(y)= |Σ |−1Surf
(
B‖·‖2

(
R
n−m))∫ ∞

0
gx
((
ρ̃ 2 + ρ2)1/2)ρ̃ n−m−1dρ̃ = gy(ρ)

which proves that y is �W2 radial with W = T T T . �

We now explicitly determine the distribution of y, under the assumption that x is
uniformly distributed in the unit ball.
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Theorem 15.3 Let x ∈ R
n ∼ UB‖·‖2

and let T ∈ R
m,n be full-rank, with m < n.

Then, the pdf of the random vector y = T x is given by

fy(y)= |W |−1/2 Γ (n/2 + 1)

Γ m(1/2)Γ ((n−m)/2 + 1)

(
1 − ρ2)(n−m)/2 (15.18)

where ρ = ‖y‖W2 , with W = T T T . Moreover, the �W2 norm density of y is given by

fρ(ρ)= 2Γ (n/2 + 1)

Γ (m/2)Γ ((n−m)/2 + 1)
ρm−1(1 − ρ2)(n−m)/2. (15.19)

Proof Using (15.17) of Lemma 15.5, we first observe that |Σ | = |T T T |1/2. Then,
we introduce the change of variables s = (ρ̃2 + ρ2)1/2, from which dρ̃ = (s2 −
ρ2)−1/2sds, and the integral in (15.17) becomes

gy(ρ)=
∣∣T T T ∣∣−1/2Surf

(
B‖·‖2

(
R
n−m))∫ ∞

ρ

gx(s)
(
s2 − ρ2)(n−m)/2−1

s ds.

Since x is uniform in B‖·‖2 , we have that

gx(s)=
{

1
Vol(B‖·‖2 (R

n))
if s < 1;

0 otherwise.

Therefore, gy(ρ) can be written as

gy(ρ)=
∣∣T T T ∣∣−1/2 Surf(B‖·‖2(R

n−m))
Vol(B‖·‖2(R

n))

∫ 1

ρ

(
s2 − ρ2)(n−m)/2−1

s ds.

Using the fact that ∫ (
s2 − ρ2)q+1/2

s ds = (s2 − ρ2)q+3/2

2q + 3

with q = (n−m)/2 − 3/2, and substituting the values for Surf(B‖·‖2(R
n−m)) and

Vol(B‖·‖2(R
n)), we obtain gy(ρ) as stated in (15.18). Now, substituting the ex-

pression of gy(ρ) into (15.16), we finally derive the �W2 norm density as given
in (15.19). �

Remark 15.6 (Rectangular transformation of uniform densities) An important con-
sequence of Theorem 15.3 is that if a uniform distribution is transformed by a rect-
angular full-rank linear mapping, then the resulting image density is no longer uni-
form. A linear (rectangular) transformation therefore changes the nature of the uni-
form distribution on a ball. In particular, the transformed vector y = T x tends to con-
centrate towards the center of the image of the support set (the ellipsoid E(0, T T T )),
rather than to its surface, see Fig. 15.1 for an illustration of this phenomenon. An
extension of Lemma 15.5 and Theorem 15.3 to the complex case is reported in [80].

Remark 15.7 (Probabilistic predictors) The result of Theorem 15.3 has been proved
in [327], using an alternative derivation. This result is then exploited to determine
probabilistic confidence ellipsoids for random vectors, and to construct probabilistic
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Fig. 15.1 �W2 norm density
of y = T x, when x ∼ UB‖·‖2
and T ∈R

m,n is full-rank.
The plot shows the case n= 6
and m= 1, . . . ,6

predictors of certain sets in R
n. The predictors are subsequently applied to various

systems and control problems.



Chapter 16
Vector Randomization Methods

In this chapter we address the issue of real and complex vector randomization in
�p norm balls, according to the uniform distribution. We present efficient algorithms
based upon the theoretical developments of Chap. 15 regarding the statistical prop-
erties of random vectors. The presentation is partly based on the results reported in
[82]. We recall that the uniform density in the �p norm ball B‖·‖p (r) is a special case
of the more general �p radial densities. Hence, random vector generation for �p ra-
dial densities is an immediate extension of uniform generation and follows from the
application of Corollary 15.2.

We also observe that the algorithms for vector generation presented in this chap-
ter are based on simple algebraic transformations on samples obtained from the uni-
variate generalized Gamma densityGa,c defined in (2.13). If a generator forGa,c is
available (such as that presented in Example 14.4), uniform generation in �p norm
balls can be readily performed. We remark that these methods are non-asymptotic,
contrary to the techniques introduced in Sect. 14.4. Therefore, the methods dis-
cussed in this chapter can be implemented on parallel and distributed architectures,
see e.g. [167].

16.1 Rejection Methods for Uniform Vector Generation

We first discuss an application of the rejection technique for uniform generation of
n-dimensional vector samples in �p norm balls. As already observed in Sect. 14.3.1,
we expect these methods to be inefficient for large n, due to the curse of dimension-
ality. These rejection techniques are discussed here mainly to motivate the need for
more efficient methods such as those presented in Sect. 16.3 for real vectors and in
Sect. 16.4 for complex vectors.

To show the application of the rejection technique, we first construct an outer
bounding set for the ball B‖·‖p . Notice that the norm inequality

‖x‖p2 ≥ ‖x‖p1, for p2 >p1

implies the set inclusion B‖·‖p1
⊆ B‖·‖p2

, for p2 >p1.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_16,
© Springer-Verlag London 2013
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Table 16.1 Rejection rates
for generating samples
uniformly in B‖·‖p (Rn) from
uniform samples
in B‖·‖∞ (Rn)

p = 1 p = 1.5 p = 2

n= 2 2 1.4610 1.2732

n= 3 6 2.7185 1.9099

n= 4 24 6.0412 3.2423

n= 5 120 15.446 6.0793

n= 10 3.62×106 7.21×103 401.54

n= 20 2.43×1018 1.15×1011 4.06×107

n= 30 2.65×1032 5.24×1019 4.90×1013

Assuming that generation in B‖·‖p2
is easier to perform than generation in B‖·‖p1

(see Example 16.1), the idea is therefore to generate samples uniformly in the outer
bounding set B‖·‖p2

and then to reject those which fall outside the set B‖·‖p1
. The

rejection rate of such an algorithm is equal to the ratio of volumes, see (14.10), and
is given by

η(n)= Vol(B‖·‖p2
(Fn))

Vol(B‖·‖p1
(Fn))

.

In the subsequent examples, we compute rejection rates for real and complex balls.

Example 16.1 (Rejection method for real random vectors) Observe that the norm
ball B‖·‖p2

(Rn) with p2 = ∞ contains all the other norm balls. Clearly, generation
of uniform samples in B‖·‖∞(Rn) is straightforward, since

B‖·‖∞
(
R
n
)= {x ∈R

n : ‖x‖∞ ≤ 1
}

is an n-dimensional hypercube whose edges have length equal to two. Hence, a ran-
dom vector x ∈R

n uniformly distributed in B‖·‖∞ can be immediately obtained gen-
erating independently the n components of x, each uniform in the interval [−1, 1].
Using the volume formulae (15.8), the rejection rate of an algorithm for uniform
generation in B‖·‖p (Rn) based on samples in B‖·‖∞(Rn) is given by

η(n)= Γ (n/p+ 1)

Γ n(1/p+ 1)
.

Table 16.1 presents the rejection rate η(n) for different values of n and p.
The values of the rejection rates reported in this table clearly show that this re-

jection technique may be useful only for small values of n, whereas it becomes
extremely inefficient for large values of n.

Example 16.2 (Rejection method for complex random vectors) As with the previous
case, a rejection method may be based on the complex hypercube{

x ∈C
n : ‖x‖∞ ≤ 1

}
.

A random vector x uniformly distributed in this set is obtained by generating in-
dependently each component xi uniformly in the complex disk of radius one. The
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Table 16.2 Rejection rates
for generating samples
uniformly in B‖·‖p (Cn) from
uniform samples
in B‖·‖∞ (Cn)

p = 1 p = 1.5 p = 2

n= 2 6 2.8302 2

n= 3 90 14.219 6

n= 4 2.52×103 106.50 24

n= 5 1.13×105 1.08×103 120

n= 10 2.38×1015 2.60×109 3.63×106

n= 20 7.78×1041 1.10×1026 2.43×1018

n= 30 7.75×1072 4.35×1045 2.65×1032

rejection rate of this method can be easily computed by means of the formula for
the volume (15.13), obtaining

η(n)= Γ (2n/p+ 1)

Γ n(2/p+ 1)
.

Table 16.2 reports several values of the rejection rate, showing the extreme ineffi-
ciency of this method for large values of n.

16.2 Generalized Gamma Density

The main technical tool used in the algorithms for random vector generation pre-
sented in this chapter is the generalized Gamma density, defined in (2.13) as

Ga,c(x)= c

Γ (a)
xca−1e−xc , x ≥ 0.

We notice that Ga,c(x) is a unilateral density, since x ≥ 0. A bilateral generalized
Gamma density is defined accordingly as

fx(x)= c

2Γ (a)
|x|ca−1e−|x|c .

We recall that the generalized Gamma density coincides with classical density func-
tions, such as Gaussian and Laplace, for a specific choice of the parameters a and c.
This is further discussed in the next example.

Example 16.3 (Generalized Gamma density) We illustrate the densityGa,c for spe-
cific values of a, c. First, we set a = 1/p and c = p. Taking p = 1, we obtain the
unilateral Laplace density with maximum value equal to one

fx(x)= e−x, x ≥ 0. (16.1)

For p = 2 we have the unilateral normal density with mean value zero and variance
equal to 1/2

fx(x)= 2√
π

e−x2
, x ≥ 0.
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Fig. 16.1 Generalized
Gamma density G1/p,p for
different values of p

In addition, it can be shown that

lim
p→∞

p

Γ (1/p)
e−xp =

{
1 if x ∈ (0,1);
0 if x > 1.

Thus, the generalized Gamma density approaches the uniform density on [0,1] for
large values of p. Figure 16.1 shows a plot of the unilateral generalized Gamma
density for various values of p.

To conclude this example, we discuss the relation betweenGa,c and the unilateral
Gamma density Ga,b . The unilateral Gamma density, see (2.12), is

Ga,b(x)= 1

Γ (a)ba
xa−1e−x/b, x ≥ 0.

In Example 14.4 it is shown that a random variable x ∼ Ga,c is obtained from a
random variable with Gamma density z ∼Ga,1 by means of the change of variables
x = z1/c. Hence, it is straightforward to generate samples according to Ga,c if a
random generator for Ga,b is available.

Finally, we remark that samples distributed according to a bilateral univariate
density x ∼ fx(x) can be immediately obtained from a unilateral univariate density
z ∼ fz(z) taking x = sz, where s is an independent random sign that takes the values
±1 with equal probability.

16.3 Uniform Sample Generation of Real Vectors

In this section we present an efficient algorithm for uniform generation of samples
in B‖·‖p (r,Rn), based on the results of Corollary 15.3. Let each component of x be
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independently distributed according to the (bilateral) generalized Gamma density
with parameters 1/p,p. Then, the joint density fx(x) is

fx(x)=
n∏
i=1

p

2Γ (1/p)
e−|xi |p = pn

2nΓ n(1/p)
e−‖x‖pp .

Hence, it follows immediately that fx(x) is �p radial with defining function

g(ρ)= pn

2nΓ n(1/p)
e−ρp , ρ = ‖x‖p.

Further, we have from Corollary 15.3 that if w is uniform in [0,1] then y =
rw1/nx/‖x‖p is uniform in B‖·‖p (r,Rn).

The algorithm for uniform sample generation in real �p balls is summarized next.

Algorithm 16.1 (Uniform generation in real �p norm ball) Given n, p and r , this
algorithm returns a real random vector y uniformly distributed in B‖·‖p (r,Rn).

1. Generate n independent random real scalars ξ i ∼G1/p,p;
2. Construct the vector x ∈R

n of components xi = siξ i , where si are independent
random signs;

3. Generate z = w1/n, where w is uniform in [0,1];
4. Return y = rz x

‖x‖p .

We remark that this algorithm is an extension of the method proposed in [200,
292] for generating random points uniformly distributed on n-dimensional spheres
starting from normally distributed real vectors.

Example 16.4 (Uniform generation in B‖·‖p (R2)) For illustrative purposes, in this
example we consider the case n= 2, p = 1.5 and r = 1. Figure 16.2 shows the three
steps involved in uniform generation:

1. Each vector sample x(i) is generated according to a generalized Gamma density
with parameters 1/p,p;

2. Each sample is normalized taking x(i)/‖x(i)‖p , obtaining a uniform distribution
on the contour ∂B‖·‖p ;

3. Each normalized sample is scaled by the volumetric factor
√

w(i), where
w(i) ∼ U[0,1], which smudges the samples uniformly inside B‖·‖p .

We remark that Algorithm 16.1 can be also used when p ∈ (0,1). However, in this
case ‖x‖pp =∑n

i=1 |xi |p is not a norm and the set

B‖·‖p (r)=
{
x ∈R

n : ‖x‖p ≤ r}
is not convex. Figure 16.3 shows 1,000 samples of real two-dimensional vectors
uniformly distributed in B‖·‖p for p = 0.7 and p = 1.
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Fig. 16.2 Generation of 1,000 uniform samples in B‖·‖p , for p = 1.5

Next, we discuss sample generation within an ellipsoid

E(x̄,W)= {x ∈R
n : xTW−1x ≤ 1

}
, W � 0,

and show that it can be easily performed using the techniques discussed in
Sect. 15.5. This is described in the following algorithm.

Algorithm 16.2 (Uniform generation in an ellipsoid) Given n, x̄, W � 0, this
algorithm returns a random vector y ∈ R

n uniformly distributed in the ellip-
soid E(x̄,W).

1. Compute a matrix T such that W = T T T ;
2. Generate a random vector x ∼ UB‖·‖2

using Algorithm 16.1;
3. Return y = T x + x̄.
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Fig. 16.3 Generation of 1,000 uniform samples in B‖·‖p , for p = 0.7 (left) and p = 1 (right)

Fig. 16.4 Uniform
generation in the ellipse
(16.2)

Example 16.5 (Uniform generation in an ellipse) Consider the ellipse

E(x̄,W)= {x ∈R
2 : xTW−1x ≤ 1

}
(16.2)

where

x̄ =
[

1
2

]
, W =

[
5 6
6 8

]
.

Figure 16.4 shows uniform generation of 1,000 random vector samples inside the
ellipse E(x̄,W).

Example 16.6 (Uniform sample generation in a simplex) We describe in this exam-
ple a simple method for generating uniform points in the standard simplex, based on
the generalized Gamma density G1,1, which corresponds to the unilateral Laplace
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density (16.1). The standard unit simplex, also known as probability simplex, is de-
fined as

PS(n)
.=
{
x ∈R

n :
n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

}
.

Notice that the probability simplex is the intersection between the nonnegative or-
thant of Rn and the surface of the unit ball in the �1 norm, i.e.

PS(n)=R
n+ ∩B‖·‖1 .

As discussed in Remark 15.1, if a random vector x is �1 radial, then y = x/‖x‖1 is
uniformly distributed on the surface of the unit �1 norm ball. Therefore, the uniform
distribution on the unit simplex can be obtained by projecting the y samples onto
the nonnegative orthant. The explicit algorithm is given next.

Algorithm 16.3 (Uniform generation in the unit simplex) Given n, this algorithm
returns a real random vector y uniformly distributed in PS(n).

1. Generate n independent random real scalars xi ∼G1,1;
2. Return y = x

‖x‖1
.

Uniform samples in the probability simplex can be used to generate uniform sam-
ples in generic simplices. A generic (k − 1)-dimensional simplex in R

n is defined
as the convex hull of k affinely independent vectors

Simplex(v1, . . . , vk)=
{
ξ = x1v1 + · · · + xkvk, x = [x1 · · · xk]T ∈ PS(k)

}
where vi ∈ R

n, i = 1, . . . , k, and [v2 − v1 v3 − v1 · · · vk − v1] is full-rank. There-
fore, defining the simplex vertex matrix V

.= [v1 · · · vk] ∈ R
n,k , it can be verified

that if the random vector x is uniformly distributed in PS(k), then the random vector

y = V x

is uniformly distributed in Simplex(v1, . . . , vk).

16.4 Uniform Sample Generation of Complex Vectors

In this section we present an algorithm based on Corollary 15.3 for generating com-
plex vectors uniformly distributed in �p norm balls. Let

x = [x1 · · · xn]T ∈C
n

be a complex random vector. Clearly, each component xi of x is equivalent to a two-
dimensional real vector zi = [Re(xi ) Im(xi )]T ∈ R

2, so that the absolute value of
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xi coincides with the �2 norm of zi . Let the components zi be independent �2 radial
vectors, with defining function

fzi (zi)=
p

2πΓ (2/p)
e−ρ

p
i = gi(ρi), ρi = ‖zi‖2.

Therefore, using (15.14) the corresponding norm density function is

fρi (ρi)=
p

Γ (2/p)
ρie

−ρpi , ρi ≥ 0.

This density is a (unilateral) generalized Gamma density with parameters (2/p,p).
Since the components of x are independent, the density function fx(x) is obtained
as the (bilateral) joint density function

fx(x)=
n∏
i=1

p

2πΓ (2/p)
e−|xi |p = pn

2nπnΓ n(2/p)
e−‖x‖pp .

As in the real case, from this expression it follows that the random vector x is �p ra-
dial, with defining function

g(ρ)= pn

2nπnΓ n(2/p)
e−ρp , ρ = ‖x‖p

and the results of Corollary 15.3 can be applied. The algorithm is given next.

Algorithm 16.4 (Uniform generation in complex �p norm ball) Given n, p and
r , this algorithm returns a complex random vector y uniformly distributed in
B‖·‖p (r,Cn).

1. Generate n independent random complex numbers si = ejθ , where θ is uni-
form in [0,2π];

2. Construct the vector x ∈ C
n of components xi = siξ i , where the ξ i are inde-

pendent random variables ξ i ∼ Ḡ2/p,p ;
3. Generate z = w1/(2n), where w is uniform in [0,1];
4. Return y = rz x

‖x‖p .

16.5 Uniform Generation of Stable Polynomials

In this section we briefly review techniques for generating stable polynomials of
given degree. The analysis is carried out for discrete-time polynomials, since most
results are specific to this class: the interested reader is referred to [354] for a more
detailed review of these topics.

We recall that the discrete-time monic polynomial of degree n

p(z)= q0 + q1z+ · · · + qn−1z
n−1 + zn (16.3)
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with real coefficients q ∈R
n is said to be Schur stable if all its roots zk , k = 1, . . . , n,

lie in the open unit disk on the complex plane. We are interested in generating uni-
form samples of q in the Schur region defined in (6.7) as follows

Sn =
{
q ∈R

n : p(z, q) Schur
}
. (16.4)

Note that the Schur region for monic polynomials is bounded (contrary to the Hur-
witz region), and this fact facilitates the design of efficient generation schemes.
Moreover, in many applications of randomized algorithms to system analysis prob-
lems, it is of importance to obtain samples uniformly distributed in the coefficient
space. Indeed, randomly generated Schur polynomials can be used to represent sta-
ble uncertain dynamics affecting the system.

In [354] various techniques for generating random samples inside Sn are dis-
cussed, including rejection, direct root generation, random walks and the so-called
backward discrete Hermite–Biehler (DHB) method. However, none of these tech-
niques leads to uniform samples of q ∈ Sn. To this regard, the most interesting gen-
eration scheme discussed in [354] is based on the following parameterization

Lemma 16.1 (Levinson–Durbin parameterization) Given a polynomial p(z) of the
form (16.3), define the following reverse-order polynomial

pn(z)
.= znq(z−1)= q0z

n + q1z
n−1 + · · · + qn−1z+ 1. (16.5)

Then, any monic Schur stable polynomial1 pn(z) of degree n can be obtained via
the following recursion:

p0(z)= 1,

pk(z)= zpk−1(z)+ tkpk−1(z), |tk|< 1, k = 1, . . . , n.
(16.6)

In the control literature, this parametrization has been introduced in [160], where
the coefficients tk , k = 1, . . . , n, are referred to as canonical parameters, and has
been later exploited in [308, 309] to derive results on robust stability analysis and
design. However, the recursion (16.6) has been known in the signal processing com-
munity much earlier, at least since the works of Durbin [150] and Levinson [262].

The lemma states that sweeping the unit cube B‖·‖∞(Rn) in the space of these pa-
rameters yields all stable monic polynomials of degree n, and it can be easily seen
that this mapping is one-to-one. Moreover, all stable polynomials of all degrees up
to n are generated. Hence, Schur stable polynomials can be immediately obtained
by generating random samples t ∈ B‖·‖∞(Rn). Clearly, various probability distribu-
tions for the coefficients t lead to different coefficient distributions. In particular,
since there exists a one-to-one mapping between the parameters t and the polyno-
mial coefficients q, we can explicitly determine what density function should be
adopted for the t’s in order to obtain a uniform density over Sn. Interestingly, this
idea was considered for the first time in the field of signal processing: in particular,
in the work [47] the authors explicitly compute the Jacobian of the reverse mapping
between q and t, deriving a recursive expression as reported in the next lemma.

1Here, pk(z) denotes a polynomial of degree k obtained at the kth step of the recursion.
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Fig. 16.5 Uniform Schur
polynomials of degree three

Lemma 16.2 If t1 is uniform over the interval (0,1) and, for k = 2, . . . , n, tk has
pdf ftk (tk) proportional to∣∣Jk(tk)∣∣= ∣∣(tk + (−1)k

)
Jk−1(tk)

∣∣, J1 ≡ 1 (16.7)

then the coefficients of the polynomial (16.6) are uniform over Sn.

In the above lemma, Jk(tk) represents the Jacobian of the transformation induced
by the recursion (16.6), and it is itself given in recursive form. Hence, the lemma
provides a direct way of generating Schur stable polynomials with coefficients uni-
formly distributed in the Schur region Sn. We refer to these polynomials shortly
as uniform Schur stable. This is summarized in Algorithm 16.5. Note that the gen-
eration of tk can be performed using Algorithm 14.1 discussed in Chap. 14, since
ftk (tk) is a univariate polynomial density. Figure 16.5 depicts the coefficients of 300
uniform Schur stable polynomials inside S3.

Algorithm 16.5 (Uniform generation of Schur polynomials) Given n, this algo-
rithm returns a uniform Schur stable polynomial pn(z).

1. Set t1 = 1, J1 = 1 and p0(z)= 1.
2. For k = 2 to n

$ Construct Jk(tk) using recursion (16.7);
$ Generate tk according to ftk (tk)∝ |Jk(tk)|;
$ Construct pk according to (16.6);

3. End for.

Remark 16.1 (Hurwitz Polynomials) Since the Hurwitz region is unbounded, the
case of continuous-time polynomials differs significantly from the discrete-time
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one. Hence, for this situation uniform generation does not make sense, since the
uniform density is not even defined for unbounded sets. One might think of forcing
the coefficients to be bounded in, say, given intervals, generate uniformly the coeffi-
cient vector inside the bounded rectangular domain, and then use rejection to obtain
uniform distribution for Hurwitz polynomials with bounded coefficients. However,
it has been shown in [296] that the probability of picking a Hurwitz polynomial
rapidly decreases to zero as the degree of the polynomial grows. A possibility is to
use the bilinear transformation [175]

s = z+ 1

z− 1
,

between the interior of the unit disk on the complex plane and the open left-half
plane to map Schur stable polynomials into Hurwitz ones. The reader is referred
to [354], where this method is discussed together with other techniques based on
backward Routh table.

Finally, we note that the generation of stable polynomials can be seen as a first
step towards generating stable random dynamic uncertainties. On this line, the work
[374] presents an algorithm for approximately generating uniform samples in the
H∞ ball. These random samples can be applied for probabilistic model validation,
see e.g. [264, 265, 271].



Chapter 17
Statistical Theory of Random Matrices

In this chapter we study the statistical properties of random matrices whose proba-
bility density belongs to the class of matrix radial densities. The results presented in
this chapter constitute the theoretical foundations of the algorithms for generation of
random matrices uniformly distributed in norm bounded sets presented in Chap. 18.

This chapter has the following structure. In Sect. 17.1 we introduce the notion of
�p induced radial matrix density, which is a direct extension of the concept of radial
vector densities introduced in Chap. 15. In Sects. 17.2 and 17.3 we state specific
results for �p induced radial densities for the cases p = 1,∞ and p = 2 respec-
tively. For the case p = 2, we first study symmetric real matrices, and then extend
these results to real and complex rectangular matrices. The contents of Sect. 17.2 are
based on concepts of multivariate statistical analysis. The reader interested in this
topic may refer to [22] for an introductory presentation. More specific material on
the theory of random matrices can be found in [153, 154, 186, 281]. Additional ma-
terial is available in [180, 210]. An overview of random matrix theory for wireless
communication systems is available in [392]. The results presented in this chapter
are based on [81, 83].

17.1 Radial Matrix Densities

In Chap. 15 we defined a particular class of vector densities which depend only on
the norm of the random vector. This definition is now extended to random matrices.
We first discuss Hilbert–Schmidt �p radial densities.

17.1.1 Hilbert–Schmidt �p Radial Matrix Densities

Definition 17.1 (Hilbert–Schmidt �p radial matrix densities) A random matrix
X ∈ F

n,m is radial in the Hilbert–Schmidt �p norm if its density function can be
written as

fX(X)= g(ρ), ρ = ‖X‖p
where g(ρ) is the defining function of X.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_17,
© Springer-Verlag London 2013
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Using the vectorization operator vec(·) introduced in (3.8), the Hilbert–Schmidt
�p norm of X can be written as

‖X‖p = ∥∥vec(X)
∥∥
p
.

Then, the statistical properties of an �p radial matrix X are equivalent to the proper-
ties of the �p radial random vector x = vec(X) studied in Chap. 15.

17.1.2 �p Induced Radial Matrix Densities

In this chapter we mainly concentrate on the properties of the class of random ma-
trices whose densities depend only on the �p induced norm, and refer to this class
as �p induced radial densities. A formal definition is given below.

Definition 17.2 (�p induced radial matrix densities) A random matrix X ∈ F
n,m is

radial in the �p induced norm if its density function can be written as

fX(X)= g(ρ), ρ = ‖|X‖|p
where g(ρ) is the defining function of X.

Example 17.1 (Uniform matrices in B‖|·‖|p are �p induced radial) Consider the def-
inition of uniform density in the �p induced norm unit ball

fX(X)= UB‖|·‖|p (X)=
{

1
Vol(B‖|·‖|p )

if ‖|X‖|p ≤ 1;
0 otherwise.

It is easy to verify that this pdf depends only on the norm of X. That is,

fX(X)= g(ρ), ρ = ‖|X‖|p
where the defining function g(ρ) is given by

g(ρ)=
{

1
Vol(B‖|·‖|p )

if ρ ≤ 1;
0 otherwise.

(17.1)

The fact that the uniform density is �p induced radial turns out to be crucial for
the development of efficient algorithms for random matrix generation in �p induced
norm ball presented in Chap. 18.

17.2 Statistical Properties of �1 and �∞ Induced Densities

In this section we study �1 and �∞ radial densities for real and complex random
matrices.
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17.2.1 Real Matrices with �1/�∞ Induced Densities

The �1 induced norm of a given matrix X ∈ F
n,m is equal to the maximum of the �1

norms of its columns, see (3.10), that is

‖|X‖|1 = max
i=1,...,m

‖ξi‖1

where ξ1, . . . , ξm are the columns of X. The pdf of an �p induced radial matrix
X ∈ F

n,m can therefore be written as

fX(X)= g(ρ̄), ρ̄
.= max
i=1,...,m

ρi

where ρi
.= ‖ξi‖1, for i = 1, . . . ,m.

The following theorem defines a decomposition of an �1 induced radial real ma-
trix X in two terms: a normalized matrix U and a diagonal matrix R containing
the norms of the columns, and provides a closed-form expression for their proba-
bility densities. This theorem is the counterpart, for �1 induced radial matrices, of
Theorem 15.1.

Theorem 17.1 (�1 induced radial matrices in R
n,m) Let the random matrix

X ∈R
n,m be factored as UR, where

U = [u1 · · · um], ‖ui‖1 = 1;
R = diag

([ρ1 · · · ρm]
)
, ρi > 0

being ui ∈R
n the ith column of U. The following statements are equivalent:

1. X is �1 induced radial with defining function g(ρ̄), ρ̄ = maxi=1,...,m ρi ;
2. U and R are independent, and their densities are given by

fU(U)=
m∏
i=1

fui (ui), fui (ui)= U∂B‖·‖1 (R
n);

fR(R)=
[

2n

(n− 1)!
]m
g(ρ̄)

m∏
i=1

ρn−1
i .

Proof The proof follows the same lines as Theorem 15.1. For each column ξi of the
matrix variable X we write

ξi = ρiui, i = 1, . . . ,m.

Then, we assume [X]n,i > 0, i = 1, . . . , n, and observe that in this case the transfor-
mation from X to U,R is one-to-one. The Jacobian of this transformation is easily
computed as

J (X→U,R)=
m∏
i=1

J (ξi → ui, ρi)=
m∏
i=1

ρn−1
i
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where the last equality follows from Eq. (15.5) with p = 1. From Theorem A.1 (see
Appendix A.1) on the transformation of random matrices, we write

fU,R(U,R)= 2mg(ρ̄)
m∏
i=1

ρn−1
i

where the factor 2m is introduced to consider all possible combinations of signs in
the terms [X]n,i , and thus to remove the condition [X]n,i > 0. From this equation, it
follows that U and R are independent, and that the pdf of each ui is a constant that
can be computed by setting p = 1 in Eq. (15.3). The density fR(R) is then obtained
integrating the joint density fU,R(U,R) with respect to U . �

The following corollary, based on the results of Theorem 17.1, provides a statis-
tical characterization of real matrices uniformly distributed in the norm ball B‖|·‖|1 .

Corollary 17.1 (Uniform real matrices in B‖|·‖|1 ) Let X ∈ R
n,m and let ξ1, . . . , ξm

be the columns of X. The following statements are equivalent:

1. X is uniformly distributed in the set B‖|·‖|1(Rn,m);
2. ξ1, . . . , ξm are independent and uniformly distributed in B‖·‖1(R

n).

Proof The defining function of X is given by

g(ρ̄)=
{

1
Vol(B‖|·‖|1 )

if ρ̄ ≤ 1;
0 otherwise

where ρ̄ = maxi=1,...,m ρi and ρi = ‖ξi‖1, for i = 1, . . . ,m.
From Theorem 17.1, we immediately obtain

fU(U)=
m∏
i=1

fui (ui), fui (ui)= U∂B‖·‖1 (R
n);

fR(R)=
[

2n

(n− 1)!
]m 1

Vol(B‖|·‖|1)

m∏
i=1

ρn−1
i , ρ̄ ≤ 1.

Since fR(R) is a density function, we impose∫
fR(R)dR =

∫
ρ̄≤1

[
2n

(n− 1)!
]m 1

Vol(B‖|·‖|1)

m∏
i=1

ρn−1
i dρ1 · · ·dρm = 1

obtaining

Vol(B‖|·‖|1)=
[

2n

n!
]m
.

Moreover, substituting this expression in fR(R), we have

fR(R)=
m∏
i=1

nρn−1
i , ρ̄ ≤ 1.
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The joint density of R, U is then given by

fU,R(U,R)= fR(R)fU(U)=
m∏
i=1

nρn−1
i fui (ui)=

m∏
i=1

fui ,ρi (ui, ρi)

being fui (ui)= U∂B‖|·‖|1 . The statement then follows from Theorem 15.1, observing
that ξi = ρiui , i = 1, . . . ,m. �

Remark 17.1 (Volume of the �1 induced norm ball in R
n,m) From the proof of

Corollary 17.1, we obtain a closed-form expression for the volume of the �1 induced
norm ball of radius r in R

n,m

Vol
(
B‖|·‖|1

(
r,Rn,m

))= [2n

n!
]m
rnm.

Remark 17.2 (�∞ induced radial densities in R
n,m) The case of �∞ induced ra-

dial matrices may be treated in a similar way. Indeed, the �∞ induced norm is the
maximum of the �1 norms of the rows of X, i.e.

‖|X‖|∞ = max
i=1,...,n

‖ηi‖1

where ηT1 , . . . , η
T
n are the rows of X.

The statistical properties of a real �∞ induced radial random matrix X can be im-
mediately deduced, noticing that ‖|X‖|∞ = ‖|XT ‖|1. Therefore, if a random matrix
X has an �∞ induced radial density, then its transpose XT is �1 induced radial. In
particular, the volume of an �∞ induced norm ball in R

n,m is given by

Vol
(
B‖|·‖|∞

(
r,Rn,m

))= [2m

m!
]n
rnm.

17.2.2 Complex Matrices with �1/�∞ Induced Densities

The previous results for �1 and �∞ induced radial real matrices are immediately
extended to the complex case. The results are reported without proof.

Theorem 17.2 (�1 induced radial matrices in C
n,m) Let the random matrix

X ∈C
n,m be factored as UR, where

U = [u1 · · · um], ‖ui‖1 = 1;
R = diag

([ρ1 · · · ρm]
)
, ρi > 0

being ui ∈C
n the ith column of U. The following statements are equivalent:

1. X is �1 induced radial with defining function g(ρ̄), ρ̄
.= maxi=1,...,m ρi ;
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2. U and R are independent, and their densities are given by

fU(U)=
m∏
i=1

fui (ui), fui (ui)= U∂B‖·‖1 (C
n);

fR(R)=
[
(2π)n

(2n− 1)!
]m
g(ρ̄)

m∏
i=1

ρ2n−1
i .

Next, we present a corollary which gives a characterization of uniformly dis-
tributed complex matrices in �1 induced norm balls.

Corollary 17.2 (Uniform complex matrices in B‖|·‖|1 ) Let X ∈ C
n,m and let

ξ1, . . . , ξm be the columns of X. The following statements are equivalent:

1. X is uniformly distributed in the set B‖|·‖|1(Cn,m);
2. ξ1, . . . , ξm are independent and uniformly distributed in B‖·‖1(C

n).

Remark 17.3 (�∞ induced radial densities in C
n,m) Similar to the real case, the

statistical properties of a complex �∞ induced radial random matrix X can be im-
mediately derived. In fact, if a complex random matrix X has an �∞ induced radial
density, then X∗ is �1 induced radial.

Remark 17.4 (Volume of the �1 and �∞ induced norm balls in C
n,m) The volume

of the �1 and �∞ induced norm balls of radius r in C
n,m are given by

Vol
(
B‖|·‖|1

(
r,Cn,m

))= [ (2π)n
(2n)!

]m
r2nm;

Vol
(
B‖|·‖|∞

(
r,Cn,m

))= [ (2π)m
(2m)!

]n
r2nm.

Next, we study in detail the important case of �2 induced radial matrices, also
denoted as σ radial matrices.

17.3 Statistical Properties of σ Radial Densities

In this section we consider random matrices with radial distribution with respect to
the �2 induced norm. We recall that the �2 induced norm of a matrix X ∈ F

n,m is
usually referred to as the spectral norm (or σ norm), which is defined in (3.11) as

‖|X‖|2 = σ̄ (X)
where σ̄ (X) is the largest singular value ofX. We now define σ radial matrix density
functions.
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Definition 17.3 (σ radial matrix densities) A random matrix X ∈ F
n,m is radial in

the �2 induced norm, or σ radial, if its density can be written as

fX(X)= g(σ̄ ), σ̄ = σ̄ (X)
where g(σ̄ ) is the defining function of X.

17.3.1 Positive Definite Matrices

We first consider the case of a real positive definite matrix X � 0 and define a
normalized singular value decomposition (SVD) of X.

Definition 17.4 (Normalized SVD of positive definite matrices) Any positive defi-
nite matrix X ∈ S

n, X � 0, can be written in the form

X =UΣUT (17.2)

where Σ = diag(σ ), σ = [σ1 · · · σn]T , with σ1 ≥ · · · ≥ σn ≥ 0, and U ∈ R
n,n has

orthonormal columns, normalized so that the first nonvanishing component of each
column is positive.

Remark 17.5 (The orthogonal group) The set of orthogonal matrices in R
n,n forms

a group. This group is generally referred to as the orthogonal group and is denoted
by

GnO
.= {U ∈R

n,n :UT U = I}. (17.3)

Moreover, the real manifold

Rm,n .= {U ∈R
m,n :UT U = I ; [U ]1,i > 0, i = 1, . . . , n

}
(17.4)

represents the set of matrices U ∈ R
m,n, m ≥ n, whose columns are orthonormal

with positive first component.

Remark 17.6 (Haar invariant distributions) In the literature, see e.g. [22], the uni-
form distribution over the orthogonal group GnO is known as the Haar invariant dis-
tribution, which is denoted here as UGnO . Similarly, the uniform distribution over the
manifold Rn,n of normalized orthogonal matrices is known as the conditional Haar
invariant distribution, denoted as URn,n . The Haar invariant distribution is the only
distribution with the property that if U ∈ GnO is distributed according to Haar, then
QU ∼ U for any fixed orthogonal matrix Q.

The objective of this section is to relate the density function of the positive def-
inite random matrix X to the pdfs of its SVD factors U and Σ , using the mapping
defined in (17.2). However, we notice that this mapping presents some ambiguity,
in the sense that X may not be uniquely defined by a U,Σ pair, i.e. the mapping is
not one-to-one. This is discussed in the next example.
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Example 17.2 (Nonuniqueness of the SVD) Consider the identity matrix X ≡ I . In
this case, for any U1 ∈ GnO , U2 ∈ GnO such that U1 �= U2, we can write the SVD of
X either as

X =U1ΣU
T
1 , Σ = I

or as

X =U2ΣU
T
2 .

Furthermore, consider a positive definite matrix X � 0 with singular value decom-
position X =U1ΣU

T
1 , U1 ∈ GnO . It can be easily seen that

X =U2ΣU
T
2 , U2 =−U1.

Remark 17.7 (One-to-one SVD) The matrices with at least two coincident singu-
lar values are not uniquely represented by (17.2). However, this mapping may be
made one-to-one by considering strict inequalities in the ordering of the singular
values. That is, we consider σ ∈Dσ , where the singular value ordered domain Dσ
is defined as

Dσ
.= {σ ∈R

n : 1 ≥ σ1 > · · ·> σn > 0
}
. (17.5)

For a similar reason, to avoid the possible ambiguities shown in Example 17.2,
a normalization condition may be imposed on every first element of the columns
ofU . That is, in (17.2) we fix the signs of the rows of the matrixU , takingU ∈Rn,n.

We notice that these normalizations do not affect the probabilistic results de-
veloped in the following. In fact, we are excluding a set of measure zero from the
decomposition (17.2). In other words, for the class of densities under study, the prob-
ability of two singular values being equal is zero and the probability of [U]1,i = 0
is also zero. Finally, we remark that these normalizations are in agreement with
classical literature on this topic, see e.g. [22], where strict inequalities in the order-
ing of the eigenvalues of symmetric matrices and a normalization condition on the
columns of the eigenvector matrices are considered.

The next result relates the density function of a σ radial positive definite matrix
to the densities of its SVD factors Σ and U .

Theorem 17.3 (Positive definite σ radial matrices) Let the positive definite random
matrix X ∈ S

n, X � 0, be factored as UΣUT according to Definition 17.4, with
σ ∈Dσ and U ∈Rn,n. The following statements are equivalent:

1. X is σ radial with defining function g(σ̄ );
2. U and Σ are independent, and their densities are given by

fU(U)= URn,n; (17.6)

fΣ (Σ)= ΥSg(σ̄ )
∏

1≤i<k≤n
(σi − σk) (17.7)
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where the normalization constant ΥS is

ΥS = π n
4 (n+1)

n∏
i=1

1

Γ (n−i+1
2 )

. (17.8)

Proof Consider the transformation X = UΣUT . The strict inequalities in the or-
dering of the singular values and the normalization conditions on the columns of
U make the mapping between X and U , Σ one-to-one. The joint pdf in the new
variables U , Σ may be obtained applying Theorem A.1 (see Appendix A.1) on the
transformation of random variables

fU,Σ (U,Σ)= g(σ̄ )J (X→U,Σ). (17.9)

To compute the Jacobian J (X→ U,Σ), we make use of the rules stated in Ap-
pendix A.2. In particular, using Rule A.2 on the Jacobian of the differentials, we
have that J (X→U,Σ)= J (dX→ dU,dΣ). The differential of X is given by

dX = dU ΣUT +U dΣ UT +UΣ dUT .

Multiplying this equation by UT on the left and by U on the right, we obtain

Z
.=UT dXU =UT dU Σ + dΣ +Σ dUT U. (17.10)

Applying the chain rule for Jacobians (Rule A.1), we have

J (dX→ dU,dΣ)= J (dX→ Z)J (Z→ dU,dΣ).

Since, by Rule A.4, J (dX→ Z)= 1, it follows that

J (X→U,Σ)= J (Z→ dU,dΣ).

Next, we rewrite (17.10) in the form

Z = SuΣ + dΣ +ΣSTu
where Su

.= UT dU ∈ R
n,n. We notice that the Jacobian J (Su,dΣ → dU,dΣ) is

equal to one by Rule A.4. Then, applying the chain rule again, we have

J (Z→ dU,dΣ)= J (Z→ Su,dΣ)J (Su,dΣ→ dU,dΣ)= J (Z→ Su,dΣ).

We now concentrate on the evaluation of J (Z→ Su,dΣ). First, notice that Su
is skew-symmetric. This is easily seen by differentiating the identity UT U = I ,
obtaining dUT U + UT dU = 0. The matrix Z may therefore be rewritten in the
form

Z = SuΣ −ΣSu + dΣ.

Then, we examine the number of free variables that describe the quantities of in-
terest. The symmetric matrix X is described by means of n2 (n+ 1) real variables,
the orthogonal matrix U by nu

.= n
2 (n− 1) real variables, and Σ by means of its n

diagonal entries. The differentials dU and dΣ are described by the same number of
free variables of U and Σ respectively. Therefore, Su is described by nu variables.
Since dΣ is diagonal, we choose its n free variables as the diagonal entries ηi = dσi ,
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1 ≤ i ≤ n. Since Su is skew-symmetric, we choose the nu free variables μik as the
coefficients of the standard orthonormal basis of the space of n×n skew-symmetric
matrices. In particular

Su =
∑

1≤i<k≤n
μikB

R

ik

where BR

ik are the elements of the basis. Denoting by Eik an n× n matrix having
one in position (i, k) and zero otherwise, the elements of the basis are defined as

BR

ik

.= 1√
2
(Eik −Eki), 1 ≤ i < k ≤ n. (17.11)

The (i, k) entry of Z may now be expressed as

[Z]i,k =
{
μik(σk − σi); 1 ≤ i < k ≤ n;
ηi; i = k, 1 ≤ i ≤ n.

To compute the Jacobian J (Z→ Su,dΣ), we construct the following scheme of
partial derivatives

[Z]i,i
1 ≤ i ≤ n

[Z]i,k
1 ≤ i < k ≤ n

ηi;
1 ≤ i ≤ n I 0

μik;
1 ≤ i < k ≤ n 0 C −D

where

C = 1√
2

bdiag
(
diag

([σ2 · · · σn]
)
,diag

([σ3 · · · σn]
)
, . . . , σn

);
D = 1√

2
bdiag(σ1In−1, σ2In−2, . . . , σn−2I2, σn−1).

The matrix of partial derivatives is block diagonal and, therefore, its determinant is
given by

J (Z→ Su,dΣ)= |C −D| = 2
n
4 (1−n)

∏
1≤i<k≤n

(σi − σk).

Now, from (17.9) it follows that

fU,Σ (U,Σ)= g(σ̄ )2 n4 (1−n)
∏

1≤i<k≤n
(σi − σk). (17.12)

From this equation we immediately conclude that U and Σ are statistically indepen-
dent. It also follows that fU(U) is constant over its domain, and this proves (17.6).
Finally, integrating (17.12) with respect to U we get

fΣ (Σ)=
∫
fU,Σ (U,Σ)dU = ΥSg(σ̄ )

∏
1≤i<k≤n

(σi − σk).
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The constant ΥS is given by

ΥS = 2
n
4 (1−n)

∫
Rn,n

dU

where (see for instance [210])∫
Rn,n

dU = 1

2n

∫
GnO

dU = (8π)
n
4 (n−1)

2n

n∏
i=1

Γ ( i−1
2 )

Γ (i − 1)
.

Simple computations finally lead to Eq. (17.8). �

This theorem is closely related to a classical result, given in [22], on the density
function of the eigenvalues of a symmetric matrix whose density depends only on
its eigenvalues.

Remark 17.8 (Symmetric σ radial matrices) A result analogous to Theorem 17.3
can be easily obtained for symmetric (not necessarily positive definite) σ radial
matrices X ∈ S

n. In this case we consider the factorization X = UΣSUT , where U
and Σ are given in Definition 17.4, and S is a diagonal matrix of signs. In this case,
the densities of U and Σ are as in Theorem 17.3 and the random signs in S are
uniform. Therefore, the joint density of the factors is given by

fU,Σ,S(U,Σ,S)= 1

2n
fU(U)fΣ (Σ)

where the constant 1/2n takes into account all possible combinations of signs.

The following corollary, based on the results of Theorem 17.3, provides a char-
acterization of positive definite matrices uniformly distributed in the σ norm ball

Bσ
(
S
n+
) .= {X ∈ S

n, X � 0 : σ̄ (X)≤ 1
}
.

Corollary 17.3 (Uniform positive definite matrices in Bσ (Sn+)) Let the positive def-
inite random matrix X ∈ S

n, X � 0, be factored as UΣUT according to Defini-
tion 17.4, with σ ∈Dσ and U ∈Rn,n. The following statements are equivalent:

1. X is uniformly distributed in Bσ (Sn+);
2. U and Σ are independent, and their densities are given by

fU(U)= URn,n;
fΣ (Σ)=KS

∏
1≤i<k≤n

(σi − σk) (17.13)

where the normalization constant KS is

KS = π n
2

n∏
i=1

Γ (n+i2 + 1)

Γ ( i2 )Γ
2( i+1

2 )
.
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Proof To obtain (17.13) we substitute the defining function (17.1) of the uniform
pdf in Bσ (Sn+) into Eq. (17.7) of Theorem 17.3. The normalization constant KS can
be computed by imposing ∫

Dσ
fΣ (Σ)dΣ = 1.

To solve this integral we use a standard technique (see e.g. [281]) that consists in
removing the ordering condition on the singular values, introducing an absolute
value sign, and dividing the resulting integral by n!. That is, we obtain∫

Dσ
KS

∏
1≤i<k≤n

(σi − σk)dσ = 1

n!
∫ 1

0
· · ·
∫ 1

0
KS

∏
1≤i<k≤n

|σi − σk|dσ.

The corollary is then proved, noticing that the right-hand side of this equation is a
Selberg integral with parameters γ = 1/2, α = β = 1, see Appendix A.3. �

Remark 17.9 (Volumes of Bσ (r,Sn+) and Bσ (r,Sn)) From the proof of Corol-
lary 17.3, comparing Eqs. (17.7) and (17.13), we derive a closed-form expression for
the volume of the σ norm ball of radius r in the space of positive definite matrices

Vol
(
Bσ
(
r,Sn+

))= ΥS

KS

= π n
4 (n−1)

n∏
i=1

Γ 2( i+1
2 )

Γ (n+i2 + 1)
rn

2
.

Similarly, uniform symmetric matrices in Bσ (Sn) (not necessarily positive definite)
have the same singular values density (17.13), but the volume of the norm ball is in
this case given by

Vol
(
Bσ
(
r,Sn

))= 2nπ
n
4 (n−1)

n∏
i=1

Γ 2( i+1
2 )

Γ (n+i2 + 1)
rn

2
.

Next, we consider the general case of rectangular real matrices with σ radial
density.

17.3.2 Real σ Radial Matrix Densities

Consider the normalized singular value decomposition given below.

Definition 17.5 (Normalized SVD of real matrices) Any matrix X ∈ R
n,m can be

written in the form

X =UΣV T
where Σ = diag(σ ), σ = [σ1 · · · σn]T , with σ1 ≥ · · · ≥ σn ≥ 0, U ∈ R

n,n and
V ∈ R

m,n have orthonormal columns, and V is normalized so that the first non-
vanishing component of each column is positive.
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We now state a result that relates the pdf of a σ radial real matrix to the pdfs of
its SVD factors. In order to make the SVD mapping one-to-one, the next theorem
requires the additional conditions V ∈Rm,n and σ ∈Dσ (see Definitions (17.4) and
(17.5)). This issue is also discussed in Remark 17.7 for positive definite matrices,
and a similar reasoning applies here.

Theorem 17.4 (σ radial matrices in R
n,m) Let the real random matrix X ∈ R

n,m,
m ≥ n, be factored as UΣVT according to Definition 17.5, with σ ∈ Dσ and
V ∈Rm,n. The following statements are equivalent:

1. X is σ radial with defining function g(σ̄ );
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnO ; (17.14)

fΣ (Σ)= ΥRg(σ̄ )
n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

); (17.15)

fV(V )= URm,n (17.16)

where the normalization constant ΥR is

ΥR = 2nπ
n
2 (m+1)

n∏
i=1

1

Γ (n−i+1
2 )Γ (m−i+1

2 )
. (17.17)

Proof This proof is similar to that of Theorem 17.3. The SVD X = UΣV T , with
the strict ordering of the singular values σ ∈Dσ and the normalization condition on
the columns of V ∈Rm,n, is one-to-one. Using Theorem A.1 (see Appendix A.1),
the joint pdf of the random matrices U,Σ,V is

fU,Σ,V(U,Σ,V )= g(σ̄ )J (X→U,Σ,V ). (17.18)

The differential of X is given by

dX = dU ΣV T +U dΣ V T +UΣ dV T . (17.19)

If m> n, then let V1 ∈ R
m,m−n be such that V̄

.= [V V1] is orthogonal; otherwise,
if m= n, then let V̄ = V . Then, multiplying (17.19) by UT on the left and by V̄ on
the right, we obtain

Z
.=UT dXV̄ = [UT dU Σ 0

]+ [dΣ 0] +Σ dV T V̄ .

Proceeding as in the proof of Theorem 17.3, we write

J (X→U,Σ,V )= J (dX→ dU,dΣ,dV )

= J (dX→Z)J (Z→ dU,dΣ,dV )

= J (Z→ dU,dΣ,dV ) (17.20)

since J (dX→ Z)= 1. Next, we rewrite this equation in the form

Z = [SuΣ 0] + [dΣ 0] +ΣS̄Tv
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where

Su
.=UT dU ∈R

n,n and S̄v
.= V̄ T dV ∈R

m,n.

By Rule A.4, the Jacobian J (Su,dΣ, S̄v → dU,dΣ,dV ) is equal to one and, ap-
plying the chain rule, we have

J (Z→ dU,dΣ,dV )= J (Z→ Su,dΣ, S̄v)J (Su,dΣ, S̄v → dU,dΣ,dV )

= J (Z→ Su,dΣ, S̄v). (17.21)

We now concentrate on the evaluation of J (Z→ Su,dΣ, S̄v). We notice that Su
is skew-symmetric and, if m> n, S̄v can be partitioned as

S̄v =
[
Sv
QT

]

where Sv
.= V T dV ∈ R

n,n is skew-symmetric and Q
.= dV T V1 ∈R

n,m−n. The ma-
trix Z is finally rewritten in the form

Z = [SuΣ −ΣSv + dΣ ΣQ].
Clearly, if m= n, then S̄v ≡ Sv and Z = SuΣ −ΣSv + dΣ .

We now examine the number of free variables that describe the quantities of inter-
est. The matrix X is described by means of nm real variables, the orthogonal matrix
U by nu

.= n
2 (n− 1) real variables, and Σ by means of its n diagonal entries; there-

fore, V is described by the remaining nv
.= nm− n

2 (n−1)−n= n(m−n)+ n
2 (n−1)

real variables.1 The differentials dU , dV , and dΣ are described by the same num-
ber of free variables as, respectively, U , V , and Σ . Therefore, Su and S̄Tv = [STv Q]
are described by nu and nv variables respectively. Since dΣ is diagonal, we choose
its n free variables as the diagonal entries ηi = dσi , 1 ≤ i ≤ n. Since Su is skew-
symmetric, we choose the nu free variables μik as the coefficients of the standard
orthonormal basis of the space of n× n skew-symmetric matrices. Therefore, using
the notation introduced in the proof of Theorem 17.3, we write

Su =
∑

1≤i<k≤n
μikB

R

ik.

Similarly, considering that the matrix S̄v = [STv Q]T is the first (block) column of
the m×m skew-symmetric matrix V̄ T dV̄ , we choose n(n− 1)/2 free variables νik
such that

Sv =
∑

1≤i<k≤n
νikB

R

ik

1The number nv = nm − n
2 (n + 1) of free variables needed to represent an m × n matrix

V = [v1 · · · vn], m ≥ n with orthonormal columns can be constructed as follows: the first col-
umn v1 can be chosen in m− 1 different ways (m free variables with one norm constraint), v2 can
be chosen inm−2 different ways (m free variables with one norm constraint and one orthogonality
constraint), . . . , vn can be chosen in m− n different ways.
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where BR

ik are defined in (17.11). The remaining nv − n(n− 1)/2 = n(m− n) free
variables are needed to describe Q. Hence, we write

[Q]i,k = 1√
2
qik, 1 ≤ i ≤ n; 1 ≤ k ≤m− n.

The (i, k) entry of Z may now be expressed as

[Z]i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μikσk − νikσi; 1 ≤ i < k ≤ n;
−μkiσk + νkiσi; 1 ≤ k < i ≤ n;
ηi; i = k, 1 ≤ i ≤ n;
qirσi; r = k− n; 1 ≤ i ≤ n; n < k ≤m.

To compute the Jacobian J (Su,dΣ, S̄v;Z), we construct the following scheme
of partial derivatives

[Z
] i,i

1
≤
i
≤
n

[Z
] i,k

1
≤
i
<
k
≤
n

[Z
] i,k

1
≤
k
<
i
≤
n

[Z
] i,k

1
≤
i
≤
n
;

1
≤
n
<
k
≤
m

ηi;
1 ≤ i ≤ n I 0 0 0

μik;
1 ≤ i < k ≤ n 0 C −D 0

νik;
1 ≤ i < k ≤ n 0 −D C 0

qik;
1 ≤ i ≤ n;
1 ≤ k ≤m−m

0 0 0 F

where

C = 1√
2

bdiag
(
diag

([σ2 · · · σn]
)
,diag

([σ3 · · · σn]
)
, . . . , σn

);
D = 1√

2
bdiag(σ1In−1, σ2In−2, . . . , σn−2I2, σn−1);

F = 1√
2

bdiag(σ1Im−n, σ2Im−n, . . . , σn−1Im−n, σnIm−n).

The matrix of partial derivatives is block diagonal and, therefore, its determinant is
given by

J (Z→ Su,dΣ, S̄v)= |F |
∣∣∣∣ C −D
−D C

∣∣∣∣ .
Using the Schur complement, we have

J (Z→ Su,dΣ, S̄v)= |F |∣∣C2 −D2
∣∣= 2

n
2 (1−m)

n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)
.
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Now, from (17.18), (17.20), and (17.21) it follows that

fU,Σ,V(U,Σ,V )= g(σ̄ )2 n2 (1−m)
n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)
. (17.22)

From this equation we immediately obtain that U,Σ,V are statistically indepen-
dent. It also follows that fU(U) and fV(V ) are constant over their respective do-
mains, which proves (17.14) and (17.16). Finally, integrating (17.22) with respect
to U and V we get the marginal density (17.15)

fΣ (Σ)=
∫

· · ·
∫
fU,Σ,V(U,Σ,V )dU dV

= ΥRg(σ̄ )
n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)
where ΥR is a constant computed as

ΥR = 2
n
2 (1−m)

∫
GnO

dU
∫
Rm,n

dV.

The above integrals evaluate to (see for instance [210])

∫
GnO

dU = (8π)n4 (n−1)
n∏
i=1

Γ ( i−1
2 )

Γ (i − 1)
;

∫
Rm,n

dV = (8π)
mn
2 − n

4 (n+1)

2n

m∏
i=m−n+1

Γ ( i−1
2 )

Γ (i − 1)

where, for continuity, we take
Γ ( i−1

2 )

Γ (i−1) = 2 for i = 1. Finally, simple computations
lead to Eq. (17.17). �

The following corollary, based on the results of Theorem 17.3, provides a char-
acterization of real matrices uniformly distributed in Bσ (Rn,m).

Corollary 17.4 (Uniform real matrices in Bσ (Rn,m)) Let the real random matrix
X ∈R

n,m, m≥ n, be factored as UΣVT according to Definition 17.5, with σ ∈Dσ
and V ∈Rm,n. The following statements are equivalent:

1. X is uniformly distributed in Bσ (Rn,m);
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnO ;

fΣ (Σ)=KR

n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

);
fV(V )= URm,n

(17.23)
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where the normalization constant KR is

KR = (4π)n2
n∏
i=1

Γ (m+i+1
2 )

Γ ( i2 )Γ (
i+1

2 )Γ (
m−n+i

2 )
. (17.24)

Proof The proof is similar that of Corollary 17.3. To obtain (17.23) we substitute
the defining function (17.1) of the uniform pdf in Eq. (17.15).The normalization
constant KR can be computed by imposing∫

fΣ (Σ)dΣ = 1.

With some algebraic manipulations, we notice that this integral is a Selberg integral
with parameters γ = 1/2, α = m−n+1

2 , β = 1, see Appendix A.3. Therefore, we
obtain KR as given in (17.24). �

Remark 17.10 (Volume of Bσ (r,Rn,m)) From the proof of Corollary 17.4, compar-
ing Eqs. (17.15) and (17.23), we derive a closed-form expression for the volume of
the σ norm real ball of radius r

Vol
(
Bσ
(
r,Rn,m

))= π nm
2

n∏
i=1

Γ ( i+1
2 )Γ (

m−n+i
2 )

Γ (m+i+1
2 )Γ (m−i+1

2 )
rnm. (17.25)

Next, we derive similar results for complex matrices with σ radial density.

17.3.3 Complex σ Radial Matrix Densities

To analyze the complex case, we first introduce the following normalized SVD de-
composition.

Definition 17.6 (Normalized SVD of complex matrices) Any matrixX ∈C
n,m can

be written in the form

X =UΣV ∗

where Σ = diag(σ ), σ = [σ1 · · · σn]T , with σ1 ≥ · · · ≥ σn ≥ 0, U ∈ C
n,n and

V ∈ C
m,n have orthonormal columns, and V is normalized so that the first non-

vanishing component of each column is real and positive.

Remark 17.11 (The unitary group) The set of unitary matrices in C
n,n forms a

group, called the unitary group, which is denoted by

GnU
.= {U ∈C

n,n :U∗U = I}. (17.26)

Similar to the real case, see Remark 17.5, we also define the following complex
manifold

Cm,n .= {V ∈C
m,n : V ∗V = I ; Re

([V ]1,i
)
> 0, Im

([V ]1,i
)= 0, i = 1, . . . , n

}
.

(17.27)
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Remark 17.12 (Complex Haar invariant distributions) The uniform distribution over
the unitary group GnU is the (complex) Haar invariant distribution, here denoted as
UGnU . Similarly, the uniform distribution over the complex manifold Cn,n of normal-
ized unitary matrices is denoted as UCn,n .

The next result relates the pdf of a σ radial complex matrix to the pdfs of its
SVD factors. In order to make the SVD mapping one-to-one, the theorem requires
the additional conditions V ∈ Cm,n and σ ∈ Dσ , see Remark 17.7 for a discussion
regarding the case of positive definite matrices. A similar reasoning also applies to
complex matrices.

Theorem 17.5 (σ radial matrices in C
n,m) Let the complex random matrix

X ∈ C
n,m, m≥ n, be factored as UΣV∗ according to Definition 17.6, with σ ∈Dσ

and V ∈ Cm,n. The following statements are equivalent:

1. X is σ radial with defining function g(σ̄ );
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnU ; (17.28)

fΣ (Σ)= ΥCg(σ̄ )
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2; (17.29)

fV(V )= UCm,n (17.30)

where the normalization constant ΥC is

ΥC = 2nπnm
n∏
i=1

1

Γ (n− i + 1)Γ (m− i + 1)
. (17.31)

Proof This proof is similar to that of Theorem 17.4. Indeed, the derivation up to the
expression of Z as

Z = [SuΣ −ΣSv + dΣ ΣQ]
is identical to the real case, considering that all the quantities involved are now
complex (and, therefore, matrix transpose should be treated as conjugate transpose),
and Sv,Su are skew-Hermitian. In particular, we have that

J (X→U,Σ,V )= J (Z→ Su,dΣ, S̄v). (17.32)

We now examine the number of free variables that describe the quantities of
interest. The matrix X is described by means of 2nm real variables, the unitary
matrix U by nu

.= n2 real variables, andΣ by means of its n diagonal entries; there-
fore, V is described by the remaining nv

.= 2nm− n2 − n real variables. Since an
m× n complex matrix with orthonormal columns is described by 2nm− n2 vari-
ables, see e.g. [210], we notice that the normalization imposed by Definition 17.6
on the columns of V fixes n of the free variables. The differentials dU , dV , dΣ are
described by the same number of free variables as U , V , and Σ . Therefore, Su and
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S̄∗v = [S∗v Q] are described by nu and nv variables respectively. Since dΣ is real
diagonal, we choose its n free variables as the diagonal entries ηi = dσi , 1 ≤ i ≤ n.
Since Su is skew-Hermitian, we choose the nu free variables μR

ik , μ
I

ik as the co-
efficients of the standard orthonormal basis of the space of n× n skew-Hermitian
matrices. In particular, we write

Su =
∑

1≤i<k≤n

(
μR

ikB
R

ik +μI

ikB
I

ik

)+ n∑
i=1

μI

iiDi

where BR

ik,B
I

ik , and Di are the elements of the basis. Denoting by Eik an n × n
matrix having one in position (i, k) and zero otherwise, the elements of the basis are
defined as

BR

ik

.= 1√
2
(Eik −Eki), 1 ≤ i < k ≤ n;

BI

ik

.= j√
2
(Eik +Eki), 1 ≤ i < k ≤ n;

Di
.= jEii, 1 ≤ i ≤ n.

Similarly, considering that the matrix S̄v = [S∗v Q] is the first (block) column of the
m×m skew-Hermitian matrix V̄ ∗dV̄ , we choose n2 − n free variables νRik, ν

I

ik such
that

Sv =
∑

1≤i<k≤n

(
νRikB

R

ik + νIikBI

ik

)+ n∑
i=1

hi
(
νR, νI

)
Di

where hi(νR, νI) is a function of the variables νR, νI. The remaining nv−(n2−n)=
2n(m− n) free variables qRik , q

I

ik are needed to describe Q

[Q]i,k = 1√
2

(
qRik + jqIik

)
, 1 ≤ i ≤ n; 1 ≤ k ≤m− n.

The (i, k) entry of Z may now be expressed as

[Z]i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
(μR

ik + jμI

ik)σk − 1√
2
(νRik + jνIik)σi; 1 ≤ i < k ≤ n;

− 1√
2
(μR

ki + jμI

ki)σk + 1√
2
(νRki − jνIki)σi; 1 ≤ k < i ≤ n;

ηi + jμI

iiσi − jhi(νR, νI)σi; i = k, 1 ≤ i ≤ n;
1√
2
(qRir + jqIir )σi; r = k− n;

1 ≤ i ≤ n; n < k ≤m.
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To compute the Jacobian J (Z→ Su,dΣ, S̄v), we construct the following scheme
of partial derivatives

R
e(
[Z

] i,i
)

1
≤
i
≤
n

Im
([Z

] i,i
)

1
≤
i
≤
n

R
e(
[Z

] i,k
)

1
≤
i
<
k
≤
n

R
e(
[Z

] i,k
)

1
≤
k
<
i
≤
n

Im
([Z

] i,k
)

1
≤
i
<
k
≤
n

Im
([Z

] i,k
)

1
≤
k
<
i
≤
n

R
e(
[Z

] i,k
)

1
≤
i
≤
n
;

1
≤
n
<
k
≤
m

Im
([Z

] i,k
)

1
≤
i
≤
n
;

1
≤
n
<
k
≤
m

ηi I 0 0 0 0 0 0 0
μI

ii

1 ≤ i ≤ n 0 Σ 0 0 0 0 0 0

μR

ik
0 0 C −D 0 0 0 0

νRik
1 ≤ i < k ≤ n 0 HR −D C 0 0 0 0

μI

ik
0 0 0 0 C D 0 0

νIik
1 ≤ i < k ≤ n 0 H I 0 0 −D −C 0 0

qRik 0 0 0 0 0 0 F 0
qIik 0 0 0 0 0 0 0 F

1 ≤ i ≤ n
1 ≤ k ≤m− n

where

C = 1√
2

bdiag
(
diag

([σ2 · · · σn]
)
,diag

([σ3 · · · σn]
)
, . . . , σn

);
D = 1√

2
bdiag(σ1In−1, σ2In−2, . . . , σn−2I2, σn−1);

F = 1√
2

bdiag(σ1Im−n, σ2Im−n, . . . , σn−1Im−n, σnIm−n).

Since the matrix of partial derivatives is block triangular, the matrices HR, H I do
not affect the value of its determinant. Therefore, we obtain

J (Z→ Su,dΣ, S̄v)= |Σ ||F |2
∣∣∣∣ C −D
−D C

∣∣∣∣
∣∣∣∣ C D

−D −C
∣∣∣∣ .

Using the Schur complement, we have that

J (Z→ Su,dΣ, S̄v)= |Σ ||F |2∣∣C2 −D2
∣∣2

= 2n(1−m)
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2
. (17.33)

Now, by means of Theorem A.1 (see Appendix A.1), we write the joint pdf of the
random matrices U,Σ,V as

fU,Σ,V(U,Σ,V )= g(σ̄ )J (X→U,Σ,V ).
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Using Eqs. (17.32) and (17.33) we immediately obtain

fU,Σ,V(U,Σ,V )= g(σ̄ )2n(1−m)
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2
. (17.34)

From this equation we conclude that U,Σ,V are statistically independent. It also
follows that fU(U) and fV(V ) are constant over their respective domains, which
proves (17.28) and (17.30). Finally, integrating (17.34) with respect to U and V , we
get the marginal density (17.29) as

fΣ (Σ)=
∫

· · ·
∫
fU,Σ,V(U,Σ,V )dUdV

= ΥCg(σ̄ )
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2
where the constant ΥC is given by

ΥC = 2n(1−m)
∫
GnU

dU
∫
Cm,n

dV

and the measure of the unitary group GnU and of the complex manifold Cm,n are
given by (see for instance [210])∫

GnU
dU = (2π)n(n+1)/2

n∏
i=1

1

(n− i)! ;∫
Cm,n

dV = (2π)mn−n(n−1)/2

(2π)n

n∏
i=1

1

(m− i)! . �

The following corollary, based on the results of Theorem 17.5, provides a char-
acterization of complex matrices uniformly distributed in Bσ .

Corollary 17.5 (Uniform complex matrices in Bσ (Cn,m)) Let the complex random
matrix X ∈ C

n,m, m ≥ n, be factored as UΣV∗ according to Definition 17.6, with
σ ∈Dσ and V ∈ Cm,n. The following statements are equivalent:

1. X is uniformly distributed in Bσ (Cn,m);
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnU ;

fΣ (Σ)=KC

n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2;
fV(V )= UCm,n

(17.35)

where the normalization constant KC is

KC = 2n
n∏
i=1

Γ (m+ i)
Γ 2(i)Γ (m− n+ i) . (17.36)
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Proof The proof is similar to that of Corollaries 17.3 and 17.4. To obtain (17.35)
we substitute the defining function (17.1) of the uniform pdf in Eq. (17.29). The
normalization constant KC can be computed by imposing∫

fΣ (Σ)dΣ = 1.

With some algebraic manipulations, we notice that this is a Selberg integral with
parameters γ = 1, α =m− n+ 1, β = 1, see Appendix A.3. �

Remark 17.13 (Volume of Bσ (r,Cn,m)) From the proof of the above corollary, com-
paring Eqs. (17.29) and (17.35), we derive a closed-form expression for the volume
of the σ norm complex ball of radius r

Vol
(
Bσ
(
r,Cn,m

))= πnm n∏
i=1

Γ (i)Γ (m− n+ i)
Γ (m+ i)Γ (m− i + 1)

r2nm. (17.37)

17.4 Statistical Properties of Unitarily Invariant Matrices

The results presented in the previous two sections can be immediately extended to
the more general class of unitarily invariant random matrices defined below.

Definition 17.7 (Unitarily invariant matrices) A random matrix X ∈ F
n,m is unitar-

ily invariant if its density function can be written as

fX(X)= g(Σ) (17.38)

where g(Σ) is the defining function of X and Σ is the (diagonal) singular values
matrix of X.

The name unitarily invariant follows from the fact that if X ∈C
n,m has a unitarily

invariant density, then QX ∼ X and XW ∼ X, for any given unitary matrices Q
and W . Clearly, any σ radial matrix is also unitarily invariant. However, there are
some important examples of unitarily invariant matrices that are not σ radial. One
of these examples is the so-called Wishart density, which is discussed next.

Example 17.3 (Wishart density) Let X = [x1 · · · xm], where x1, . . . ,xm ∈ R
n,

m ≥ n, are iid random vectors normally distributed, i.e. xi ∼ N0,W , i = 1, . . . ,m.
Construct the random matrix Y = XXT , Y ∈ S

m. It can be shown, see e.g. [22], that
Y is positive definite (with probability one) and has the Wishart density, defined as

WW
.=KW |Y |(m−n−1)/2e−

1
2 TrW−1Y , Y � 0

where the normalization constant KW is given by

KW =
(

2nm/2|W |m/2πn(n−1)/4
n∏
i=1

Γ
(
(m− i + 1)/2

))−1

.
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When W = I the Wishart density WI is unitarily invariant. In fact, |Y | = |Σ | and
TrY = TrΣ , where Σ is the singular values matrix of Y . Therefore WI = g(Σ)
where the defining function g(Σ) is given by

g(Σ)=KW |Σ |(m−n−1)/2e−
1
2 TrΣ.

When W �= I , the distribution of Y is no longer unitarily invariant, but it belongs
to the more general class of elliptically contoured matrix distributions, which are
studied for instance in [186].

Example 17.4 (Radial densities in the Frobenius norm) For p = 2, the Hilbert–
Schmidt �p matrix norm is also known as the Frobenius norm. For a matrix
X ∈ F

n,m, the Frobenius norm is given by

‖X‖2 = TrXXT = ‖Σ‖2

whereΣ is the singular values matrix ofX. Therefore, the Hilbert–Schmidt �2 radial
densities studied in Sect. 17.1.1 are also unitarily invariant.

The three theorems stated next, without proof, provide the extensions of The-
orems 17.3, 17.4 and 17.5 to the case of random matrices with unitarily invariant
distribution.

Theorem 17.6 (Unitarily invariant positive definite matrices) Let the positive def-
inite random matrix X ∈ S

n, X � 0, be factored as UΣUT according to Defini-
tion 17.4, with σ ∈Dσ and U ∈Rn,n. The following statements are equivalent:

1. X is unitarily invariant with defining function g(Σ);
2. U and Σ are independent, and their densities are given by

fU(U)= URn,n;
fΣ (Σ)= ΥSg(Σ)

∏
1≤i<k≤n

(σi − σk)

where the normalization constant ΥS is given in (17.8).

Theorem 17.7 (Unitarily invariant real matrices) Let the real random matrix
X ∈R

n,m, m≥ n, be factored as UΣVT according to Definition 17.5, with σ ∈Dσ
and V ∈Rm,n. The following statements are equivalent:

1. X is unitarily invariant with defining function g(Σ);
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnO ;

fΣ (Σ)= ΥRg(Σ)
n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

);
fV(V )= URm,n

where the normalization constant ΥR is given in (17.17).
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Theorem 17.8 (Unitarily invariant complex matrices) Let the complex random ma-
trix X ∈ C

n,m, m ≥ n, be factored as UΣV∗ according to Definition 17.6, with
σ ∈Dσ and V ∈ Cm,n. The following statements are equivalent:

1. X is unitarily invariant with defining function g(Σ);
2. U, Σ and V are independent, and their densities are given by

fU(U)= UGnU ;

fΣ (Σ)= ΥCg(Σ)
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2;
fV(V )= UCm,n

where the normalization constant ΥC is given in (17.31).



Chapter 18
Matrix Randomization Methods

In this chapter we present algorithms for uniform matrix sample generation in norm
bounded sets. First, we discuss the simple case of matrix sampling in sets defined by
�p Hilbert–Schmidt norm, which reduces to the vector �p norm randomization prob-
lem. Subsequently we present an efficient solution to the more challenging problem
of uniform generation in sets defined by the spectral norm. The algorithms presented
here are available in [81, 83]. The reader interested in random generation of matrices
with a Toeplitz structure may refer to [423].

18.1 Uniform Sampling in Hilbert–Schmidt Norm Balls

As discussed in Sect. 17.1.1, the vectorization operation x = vec(X) defined in (3.8)
reduces the �p Hilbert–Schmidt matrix sample generation problem into an equiva-
lent problem concerning vector samples. Therefore, the vector randomization algo-
rithms presented in Chap. 16 can be used directly for the �p Hilbert–Schmidt matrix
sampling problem. A simple illustration of this idea is reported next for matrix gen-
eration in the Frobenius norm ball.

Example 18.1 (Uniform matrices in the Frobenius norm ball) Suppose we are inter-
ested in generating samples of a real matrix X ∈ R

2,3 uniformly distributed in the
unit Frobenius norm ball, i.e. the �2 Hilbert–Schmidt norm ball

B‖·‖2

(
R

2,3)= {X ∈R
2,3 : ‖X‖2 ≤ 1

}
.

Using the vectorization operator x = vec(X), we observe that this problem is equiv-
alent to the generation of uniform random vectors in the �2 norm ball B‖·‖2(R

6),
which can be easily performed by means of Algorithm 16.1.

Next, we discuss uniform generation of matrix samples in the �p induced norm
balls, for p = 1 and p =∞.

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0_18,
© Springer-Verlag London 2013
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18.2 Uniform Sampling in �1 and �∞ Induced Norm Balls

The algorithm for matrix sample generation in the �1 induced norm ball follows
directly from Corollary 17.1. That is, to generate a matrix X ∈ R

n,m with uniform
distribution in B‖|·‖|1(Rn,m), it suffices to generate its columns independently and
uniformly in the �1 vector norm ball B‖·‖1(R

m) using Algorithm 16.1. The complex
case follows from direct application of Corollary 17.2, and hence Algorithm 16.4
can be used for random generation. Similarly, to generate a matrix sample X (real or
complex) uniformly distributed in the �∞ induced norm ball B‖·‖∞(Fn,m), it suffices
to generate XT (or X∗, in the complex case) uniformly in the �1 induced norm ball
B‖·‖1(F

m,n).
We now discuss the problem of uniform generation in the spectral norm ball,

which turns out to be technically more difficult than the cases previously considered.
This difficulty is mainly due to the special structure of the spectral norm, which
depends on the entries of the matrix only through an implicit relation given by the
singular value decomposition. In Sect. 18.3 we present several sampling schemes
based on rejection, and show that these methods become rapidly inefficient as the
dimension of the matrix increases. This motivates the development of the algorithms
subsequently studied in Sections 18.4 and 18.5.

18.3 Rejection Methods for Uniform Matrix Generation

A simple algorithm for generating uniform matrix samples in the �2 induced (spec-
tral) norm unit ball Bσ is given by the rejection method from a bounding set dis-
cussed in Sect. 14.3.1. We notice that for a matrix X ∈ F

n,m,m≥ n, the well-known
norm inequalities hold

‖X‖2 ≤√
n‖|X‖|2;

‖X‖∞ ≤ ‖|X‖|2
where ‖|X‖|2 = σ̄ (X). These inequalities in turn imply the set inclusions

Bσ
(
1,Fn,m

)⊆ B‖·‖2

(√
n,Fn,m

); (18.1)

Bσ
(
1,Fn,m

)⊆ B‖·‖∞
(
1,Fn,m

)
. (18.2)

A tighter set inclusion can also be obtained by considering the inequality

‖|X‖|2 = max
‖y‖2=1

‖Xy‖2 = max
‖y‖2=1

∥∥∥∥∥
m∑
i=1

ξiyi

∥∥∥∥∥
2

≥ max
i=1,...,m

‖ξi‖2

where ξi is the ith column of X. In this case, it follows that

Bσ
(
1,Fn,m

)⊆ Bcol
(
1,Fn,m

) .= {X ∈ F
n,m : max

i=1,...,m
‖ξi‖2 ≤ 1

}
.
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Table 18.1 Rejection rates for generating samples uniformly in Bσ (1,Fn,n) with overbounding
sets given by B‖·‖∞ (1,Fn,n), B‖·‖2 (

√
n,Fn,n) and Bcol(1,Fn,n)

n Bσ (Rn,n) Bσ (Cn,n)
B‖·‖∞ B‖·‖2 Bcol B‖·‖∞ B‖·‖2 Bcol

2 2.432 3 1.5 12 8 3

3 29.57 26.72 4.244 8640 468.6 40

4 2720 640 24.61 8.71×1008 1.79×1005 2625

5 2.53×1006 3.95×1004 305 2.21×1016 4.25×1008 8.89×1005

6 2.99×1010 6.14×1006 8290 2.23×1026 6.17×1012 1.60×1009

7 5.38×1015 2.38×1009 5.03×1005 1.28×1039 5.41×1017 1.55×1013

8 1.72×1022 2.28×1012 6.88×1007 5.75×1054 2.84×1023 8.23×1017

9 1.12×1030 5.38×1015 2.14×1010 2.63×1073 8.92×1029 2.41×1023

10 1.67×1039 3.12×1019 1.53×1013 1.56×1095 1.67×1037 3.93×1029

Uniform generation in the bounding sets B‖·‖2(
√
n,Fn,m) and B‖·‖∞(1,Fn,m) can

be easily performed by means of the methods described in Sect. 18.1. Uniform sam-
ple generation in the set Bcol(1,Fn,m) can also be easily obtained by generating
independent columns ξ i , i = 1, . . . ,m, uniformly distributed in the �2 norm ball
B‖·‖2(1,F

n).
The efficiency of the rejection method is dictated by the rejection rate, defined

in Sect. 14.3.1 as the expected number of samples that should be generated in the
outer set in order to have one sample in the set of interest Bσ . In the case of uniform
densities, the rejection rate is given by the ratio of the volumes of the outer bounding
set and the set of interest.

The volume of the spectral norm ball has been derived in (17.25) and (17.37)
for real and complex matrices respectively. The volumes of the �2 and �∞ Hilbert–
Schmidt norm balls may be computed using Eqs. (15.8) and (15.13) for real and
complex matrices respectively. As for the set Bcol, its volume may be derived as the
product of the volumes of the m unit balls in the �2 norm in F

n, obtaining

Vol
(
Bcol

(
1,Rn,m

))= (π)nm/2

Γ m(n2 + 1)
;

Vol
(
Bcol

(
1,Cn,m

))= (π)nm

Γ m(n+ 1)
.

Therefore, we can compute in closed form the rejection rates when different bound-
ing sets are used. These rejection rates are reported in Table 18.1.

This table shows that, using Bcol as the bounding set, we can construct “good”
rejection schemes up to n= 4 for the real case and n= 3 for the complex case. For
larger values of n, the rejection method becomes highly inefficient.

Next, we report two simple algorithms for generating uniform (real or complex)
samples in the spectral norm ball by rejection from Bcol(1,Fn,m).
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Algorithm 18.1 (Uniform generation in Bσ (r,Rn,m) by rejection) Given n, m
and r this algorithm returns a random matrix X ∈ R

n,m uniformly distributed in
the (real) spectral norm ball of radius r .

1. Generate m independent random columns ξ i ∼ UB‖·‖2 (R
n), i = 1, . . . ,m, using

Algorithm 16.1;
2. Construct matrix X = [ξ1 · · · ξm];
3. If σ̄ (X)≤ 1 return rX else goto 1.

Algorithm 18.2 (Uniform generation in Bσ (r,Cn,m) by rejection) Given n, m
and r this algorithm returns a random matrix X ∈ C

n,m uniformly distributed in
the (complex) spectral norm ball of radius r .

1. Generate m independent random columns ξ i ∼ UB‖·‖2 (C
n), i = 1, . . . ,m, using

Algorithm 16.4;
2. Construct matrix X = [ξ1 · · · ξm];
3. If σ̄ (X)≤ 1 return rX else goto 1.

The inefficiency of the rejection method for large dimension motivates the need
for more sophisticated techniques for direct generation of uniform samples, which
are discussed in the next section. We first concentrate on the complex case, which
turns out to be easier than the real one.

18.4 Uniform Generation of Complex Matrices

In this section we show how to generate uniform matrix samples X ∈C
n,m, by first

generating the samples of the SVD factors U , Σ , V according to their respective
densities, and then constructing X = UΣV ∗. We analyze the generation of Σ in
the next section, and subsequently discuss a technique for generating U and V in
Sect. 18.4.2.

18.4.1 Sample Generation of Singular Values

We recall that if the random matrix X ∈ C
n,m, m≥ n, is uniformly distributed over

the set Bσ (Cn,m), then from Corollary 17.5 the pdf of Σ is

fΣ (Σ)=KC

n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2
, σ ∈Dσ (18.3)

where the (ordered) domain Dσ is defined in (17.5) and the constant KC is
given in (17.36). For subsequent developments, it is useful to remove the ordering
condition σ ∈Dσ on the singular values, obtaining the (unordered) density function
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fΣ (Σ)= KC

n!
n∏
i=1

σ
2(m−n)+1
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)2 (18.4)

defined on the domain {σ ∈R
n : σi ∈ (0,1), i = 1, . . . , n}. We remark that the fac-

torial term (n!) in this equation is obtained by observing that the ordered case is one
of the n! possible permutations of the n unordered singular values. For convenience,
we introduce the change of variables

ςi = σ 2
i , i = 1, . . . , n.

The Jacobian of the transformation from the random variable ς to σ is

J (ς→ σ)= 1

2n

n∏
i=1

ς
−1/2
i .

Then, applying Theorem 14.2 on the transformation between random variables, we
obtain the density function of ς

fς (ς)= KC

n!2n
n∏
i=1

ςm−n
i

∏
1≤i<k≤n

(ςi − ςk)2 (18.5)

with domain {ς ∈ R
n : ςi ∈ (0,1), i = 1, . . . , n}. This density function can be writ-

ten in terms of the determinant of a Vandermonde matrix, as detailed in the following
remark.

Remark 18.1 (Vandermonde determinant) Given ς = [ς1 · · · ςn]T , define the vec-
tor

V(ςi)
.= [1 ςi ς2

i · · · ςn−1
i

]T
, i = 1, . . . , n. (18.6)

Then, the Vandermonde matrix V(ς1, . . . , ςn) associated with vector ς is defined as

V(ς1, . . . , ςn)=
[
V(ς1) · · · V(ςn)

]
. (18.7)

Similarly, for i = 1, . . . , n we define the truncated Vandermonde matrix as

V(ς1, ς2, . . . , ςi)=
[
V(ς1) · · · V(ςi)

]
. (18.8)

For notational convenience, we write Vi to indicate V(ς1, . . . , ςi). It is well known
that the determinant of a Vandermonde matrix is given by

detV(ς1, . . . , ςn)=
∏

1≤i<k≤n
(ςi − ςk).

Using this fact, it follows immediately that the density function (18.5) can be written
as

fς (ς)= KC

n!2n
∣∣V(ς1, . . . , ςn)

∣∣2 n∏
i=1

ςm−n
i . (18.9)

We now focus on the generation of random samples distributed according
to (18.5). To this end, we apply the conditional density method introduced in
Sect. 14.3.2. That is, we write the density (18.5) as

fς1,...,ςn(ς1, . . . , ςn)= fς1(ς1)fς2|ς1(ς2|ς1) · · ·fςn|ς1,...,ςn−1(ςn|ς1, . . . , ςn−1)
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where the conditional densities fς i |ς1,...,ςi−1(ςi |ς1, . . . , ςi−1) are defined as the ratio
of marginal densities

fς i |ς1,...,ςi−1(ςi |ς1, . . . , ςi−1)= fς1,...,ς i (ς1, . . . , ςi)

fς1,...,ς i−1(ς1, . . . , ςi−1)
. (18.10)

In turn, the marginal densities fς1,...,ς i (ς1, . . . , ςi) are given by

fς1,...,ς i (ς1, . . . , ςi)=
∫ 1

0
· · ·
∫ 1

0
fς (ς1, . . . ,ςn)dςi+1 · · ·dςn. (18.11)

Therefore, a random vector ς with density (18.5) can be obtained by generating
sequentially the random variables ς i , i = 1, . . . , n, where ς i is distributed according
to the univariate conditional density fς i |ς1,...,ςi−1(ςi |ς1, . . . , ςi−1). The following
theorem provides a closed-form expression for the marginal density (18.11), without
requiring symbolic computation of the integral.

Theorem 18.1 The marginal density (18.11) is equal to

fς1,...,ς i (ς1, . . . , ςi)

=KC

(n− i)!
n!2n|H |2

∣∣V(ς1, . . . , ςi)
T HT HV(ς1, . . . , ςi)

∣∣ i∏
k=1

ςm−n
k (18.12)

with ςk ∈ (0,1), k = 1, . . . , i, and where V(ς1, . . . , ςi) is defined in (18.8), and
H
.= R−T , being R the upper-triangular factor of the Cholesky decomposition

M =RT R of the symmetric matrix with entries

[M]r,� .= 1

r + �+m− n− 1
, r, �= 1, . . . , n.

Proof Following the discussion in Remark 18.1, we rewrite (18.5) in the form (18.9)

fς (ς)= KC

n!2n |Vn|
2
n∏
k=1

ςm−n
k

where Vn = V(ς1, . . . , ςn) is the Vandermonde matrix. Then, for any given nonsin-
gular matrix H ∈R

n,n, we have that

fς (ς)= KC

n!2n|H |2
∣∣VTn HT HVn

∣∣ n∏
k=1

ςm−n
k . (18.13)

Notice further that

HV(ς)= [L0(ς) L1(ς) L2(ς) · · · Ln−1(ς)
]T

where Lk(ς), k = 0, . . . , n− 1, are polynomials of degree n− 1 in the variable ς

Lk(ς)= hk,0 + hk,1ς + hk,2ς2 + · · · + hk,n−1ς
n−1 (18.14)

and hr−1,�−1 = [H ]r,� denotes the (r, �) entry of H .
We observe in particular that the matrix H can be chosen such that the poly-

nomials Lk(ς), k = 0,1, . . . , n − 1, form an orthogonal polynomial basis on the
interval ς ∈ [0,1], with respect to the weight function ςm−n. That is, for k, � =
0,1, . . . , n− 1, we impose that
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∫ 1

0
Lk(ς)L�(ς)ς

m−n dς =
{

1 if k = �;
0 otherwise.

(18.15)

This condition can be written in matrix form as

HMHT = In (18.16)

where

M =
(∫ 1

0
V(ς)VT (ς)ςm−n dς

)
.

The integral termM is easily evaluated as

[M]r,� = 1

r + �+m− n− 1

for r, � = 1, . . . , n. Let M = RT R be the Cholesky decomposition of M , where
R is upper triangular. Then, the orthogonality condition (18.16) is satisfied for the
choice H =R−T , where the resulting matrix H is lower triangular. Define now, for
i = 1, . . . , n, the symmetric matrix

Zi = Zi(ς1, . . . , ςi)
.= VTi HT HVi . (18.17)

It is straightforward to show that the matrix Zi satisfies the conditions of the Dyson–
Mehta theorem for the integral of certain determinants; see Appendix A.4. In partic-
ular, we have that the (r, �) entry of Zi is function of ςr, ς�, i.e. [Zi]r,� =ψ(ςr, ς�),
with

ψ(ςr, ς�)=
n−1∑
k=0

Lk(ςr)Lk(ς�).

The conditions of the Dyson–Mehta theorem are met for the function ψ(ςr, ς�)with
dμ(ς)= ςm−ndς . In particular, we have∫ 1

0
ψ(ςi, ςi)ς

m−n
i dςi = n.

Therefore, from Theorem A.3 in Appendix A.4 we obtain∫ 1

0
det
(
Zi(ς1, . . . , ςi)

)
ςm−n
i dςi = (n− i + 1)det

(
Zi−1(ς1, . . . , ςi−1)

)
.

Applying this equation recursively, going backwards from n to i + 1, and noticing
that |Zi | = det(Zi) since det(Zi) is always positive, we have∫ 1

0
· · ·
∫ 1

0

∣∣Zn(ς1, . . . , ςn)
∣∣(ςi+1 · · ·ςn)m−n dςi+1 · · ·dςn

= (n− i)!∣∣Zi(ς1, . . . , ςi)
∣∣.

Then, by means of (18.13) we obtain the marginal density

fς1,...,ς i (ς1, . . . , ςi)=KC

(n− i)!
n!2n|H |2

∣∣Zi(ς1, . . . , ςi)
∣∣ i∏
k=1

ςm−n
k . (18.18)

The proof is then completed by substituting (18.17) in this expression. �
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Remark 18.2 (Relationship with orthogonal polynomials) In the proof of Theo-
rem 18.1, the polynomials (18.14) of degree n− 1 in the variable ς

Lk(ς)= hk,0 + hk,1ς + hk,2ς2 + · · · + hk,n−1ς
n−1

should satisfy the orthogonality condition (18.15). Indeed, such polynomial basis
may be recognized as the family of Jacobi polynomials Gn−1(p, q, ς) with p =
q = (m− n+ 1). Therefore, the entries of the matrix H may be derived in closed
form using the formulas in [4] for the coefficients of Gn−1(p, q, ς), thus obtaining

[H ]r,� = (−1)r−�
(
r

�

)
�
√
m− n+ 2r − 1

r!
Γ (m− n+ r + �− 1)

Γ (m− n+ �) (18.19)

for r = 1, . . . , n, � = 1, . . . , r , and [H ]r,� = 0 for r > �. From this expression, we
immediately obtain

|H | =
n∏
�=1

√
m− n+ 2�− 1

(�− 1)!
Γ (m− n+ 2�− 1)

Γ (m− n+ �) .

Theorem 18.1 provides a closed-form expression for the multiple integral
(18.11). To apply the conditional density method, we need to compute recur-
sively the conditional density (18.10) of the random variable ς i when the values
ς1, . . . , ςi−1 are given. This is shown in the following corollary.

Corollary 18.1 Let i = 2, . . . , n. Then, the conditional density of ς i given ς1 = ς1,
ς2 = ς2, . . . ,ς i−1 = ςi−1, is a polynomial of order 2(n− 1) expressed as

fς i |ς1,...,ςi−1(ςi |ς1, . . . , ςi−1)= (n− i + 1)−1ςm−n
i

2(n−1)∑
k=0

bi,kς
k
i . (18.20)

The coefficients bi,k = bi,k(ςi |ς1, . . . , ςi−1), k = 0,1, . . . ,2(n− 1), are given by

bi,k
.=

∑
{r+�=k+2}

[Wi−1]r,� (18.21)

where

Wi−1
.=HT (I −HVi−1Z

−1
i−1V

T
i−1H

T
)
H ; (18.22)

Zi−1
.= VTi−1H

THVi−1 (18.23)

and H is given in (18.19). Moreover, the marginal density of ς1 is given by the
polynomial

fς1(ς1)= KC

n2n|H |2 ς
m−n
1

2(n−1)∑
k=0

b1,kς
k
1 (18.24)

where b1,k
.=∑{r+�=k+2}[W0]r,� and W0 =HTH .

Proof As in (18.17) in the proof of Theorem 18.1, we define

Zi = Zi(ς1, . . . , ςi)
.= VTi HT HVi .
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Next, recalling that Vi = [Vi−1V(ςi)], we obtain

|Zi | =
∣∣∣∣ Zi−1 VTi−1H

THV(ςi)
VT (ςi)HT HVi−1 VT (ςi)HT HV(ςi)

∣∣∣∣ .
Using the Schur rule for this determinant, for i = 2, . . . , n, we get∣∣Zi(ς1, . . . , ςi)

∣∣= ∣∣Zi−1(ς1, . . . , ςi−1)
∣∣VT (ςi)Wi−1V(ςi) (18.25)

where

Wi−1 =HT (I −HVi−1Z
−1
i−1V

T
i−1H

T
)
H.

The term VT (ςi)Wi−1V(ςi) can be written as a polynomial in the variable ςi , with
coefficients depending on ς1, . . . , ςi−1. It is straightforward to verify that these co-
efficients are given by the sum of the elements of the anti-diagonals of Wi−1. That
is, we have

VT (ςi)Wi−1V(ςi)=
2(n−1)∑
k=0

bi,kς
k
i (18.26)

where, for k = 0,1, . . . ,2(n− 1),

bi,k =
∑

{r+�=k+2}
[Wi−1]r,�.

Moreover, |Z1(ς1)| = VT1 W0V1, with W0 =HTH .
Combining the expressions (18.18), (18.25) and (18.26) we obtain that the

marginal density (18.11) is given by

fς1,...,ς i (ς1, . . . , ςi)=KC

(n− i)!
n!2n|H |2 ς

m−n
i

2(n−1)∑
k=0

bi,kς
k
i .

Taking i = 1 in the latter expression, we prove (18.24). Equation (18.20) is then
immediately obtained using the definition of conditional density (18.10). �

Remark 18.3 (Application of the conditional density method) Corollary 18.1 gives
an expression of the conditional densities in the form of the polynomial (18.20),
where the variables ς1, . . . , ςi−1 are separated from the variable ςi . In fact, at the ith
step of the conditional density method the variables up to i − 1 are given, and only
the dependence on ςi is required. In this case, Eq. (18.20) represents a polynomial
in the ςi variable. The coefficients bi,k = bi,k(ς1, . . . , ςi−1) can be easily computed
according to (18.21), once the values of ς1, ς2, . . . , ςi−1 are known.

Remark 18.4 (Computational improvements) We observe that, for i ≥ 2, the factor
Z−1
i−1 appearing in (18.22) can be computed recursively, so that no matrix inversion

or determinant computation is required. In particular, we have

Zi = VTi HT HVi =
[

Zi−1 VTi−1H
THV(ςi)

VT (ςi)HT HVi−1 VT (ςi)HT HV(ςi)

]
.
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Using the block matrix inversion formula, we obtain

Z−1
i =

[
Z−1
i−1 +ΩiΩTi /δi −Ωi/δi

−ΩTi /δi 1/δi

]
(18.27)

where Ωi = Z−1
i−1VTi−1H

THV(ςi) and δi = VT (ςi)Wi−1V(ςi) > 0.

The generation of samples of the singular values distributed according to the pdf
(18.4) is reported in Algorithm 18.3.

In this algorithm, each ς i is generated according to a univariate polynomial den-
sity. Standard and efficient algorithms for the generation of samples distributed ac-
cording to a given polynomial density are available in the literature. Among these
techniques we recall a classical one based on the inversion method presented in
Algorithm 14.1.

Algorithm 18.3 (Singular values generation) Given n,m, m ≥ n, this algorithm
returns a random vector σ = [σ 1 · · · σ n]T distributed according to the pdf (18.4).

1. Initialization.

$ Set i = 1,W0 =HTH , where H is given in (18.19);
$ Let b1,k

.=∑{r+�=k+2}[W0]r,�;
$ Generate ς1 according to the polynomial marginal density

fς1(ς1)= KC

n2n|H |2 ς
m−n
1

2(n−1)∑
k=0

b1,kς
k
1 ;

$ Let Z1 = VT (ς1)W0V(ς1);

2. Update.

$ Set δi = VT (ς i )Wi−1V(ς i ) and Ωi = Z−1
i−1VTi−1H

THV(ς i );
$ Compute

Z−1
i =

[
Z−1
i−1 +ΩiΩTi /δi −Ωi/δi

−ΩTi /δi 1/δi

]
;

Wi =HT
(
I −HViZ−1

i V
T
i H

T
)
H ;

3. Generation.

$ Set bi,k =∑{r+�=k+2}[Wi−1]r,�, k = 1, . . . ,2(n− 1);
$ Generate ς i ∈ (0,1) according to the polynomial density

fς i |ς1,...,ς i−1(ςi |ς1, . . . ,ς i−1)= (n− i + 1)−1ςm−n
i

2(n−1)∑
k=0

bi,kς
k
i ;

4. Loop.

$ If i < n, set i = i + 1 and goto 2;

5. Return σ = [√ς1 · · · √ςn]T .
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18.4.2 Uniform Generation of Unitary Matrices

In this section we concentrate on the generation of samples of U and V accord-
ing to the Haar invariant distribution (17.28) and to the conditional Haar invariant
distribution (17.30) respectively.

We first consider the problem of generating a random matrix U uniformly dis-
tributed in the unitary group GnU . From the properties of the Haar invariant distri-
bution, we have that the distribution of U should be the same as the distribution
of WU, for any given unitary matrix W . Consider a random matrix X ∈ C

n,n =
Re(X) + j Im(X), such that the entries of Re(X) and Im(X) are independent and
normally distributed with zero mean and variance equal to one. The invariance
property of the normal distribution under unitary transformations implies that, for
any unitary matrix W , the distribution of WX is the same of the distribution of X.
Now, let X = QR be the QR factorization of X, where the diagonal entries of R
are forced to be real and positive in order to make the representation unique. Then,
since WX ∼ X, it follows that WQ ∼ Q. That is, Q is distributed according to the
Haar invariant distribution.

This discussion suggests the following simple algorithm for the generation of
samples according to the Haar invariant distribution.

Algorithm 18.4 (Generation of Haar unitary matrices) Given n, the algorithm
returns a sample of the random unitary matrix U ∈C

n,n distributed according to
the Haar invariant distribution (17.28).

1. Generation of Gaussian Y.

$ Generate YR,YI ∈ R
n,n, where each entry of YR and YI is distributed ac-

cording to N0,1;
$ Construct Y = YR + jYI;

2. QR factorization.

$ Factorize Y as [Q,R] = QR(Y);
$ Set U = Q diag([e−jφ1 · · · e−jφn]), where φi is the phase of the (i, i) entry
of R;

3. Return U.

This algorithm is one of the simplest methods for generation of uniform unitary
matrices. Other known methods are based, for example, on products of elementary
Euler transformations; see e.g. [424]. We remark that the Haar invariant distribu-
tion may also be introduced for rectangular random matrices V ∈ C

m,n having or-
thonormal columns. In this case, it can be observed that uniform samples of V can
be obtained from uniform samples of a square m×m unitary matrix, using Algo-
rithm 18.4, and simply neglecting the last m− n columns. This fact follows from
properties of the unitary group, see for instance [210].
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Finally, we consider the generation of random matrices V with conditional Haar
invariant distribution, i.e. uniform in the manifold Cm,n defined in (17.27). We notice
that the normalization condition on the columns of V may be written as V = ṼΘ ,
where Ṽ ∈ C

m,n is a (non-normalized) unitary matrix and Θ is a diagonal uni-
tary matrix Θ = diag([e−jθ1 · · · e−jθn]), where θ i is the phase of [Ṽ]1,i . It can be
shown that if Ṽ is distributed according to the Haar invariant distribution, then V is
distributed according to the conditional Haar invariant distribution. Samples of ma-
trices drawn from the latter distribution may, therefore, be obtained by normalizing
the samples drawn from the Haar invariant distribution.

We conclude this section by reporting the algorithm for direct generation of com-
plex random matrices uniformly distributed in the spectral norm ball.

Algorithm 18.5 (Uniform generation in Bσ (r,Cn,m)) Given n,m, m ≥ n, and
r this algorithm returns a sample of the random matrix X ∈ C

n,m with uniform
distribution in the (complex) spectral norm ball of radius r .

1. Generation of Σ .

$ Generate σ = [σ 1 · · · σ n]T using Algorithm 18.3;
$ Construct Σ = diag(σ );

2. Generation of U and V.

$ Generate U ∈C
n,n and V ∈C

m,n using Algorithm 18.4;

3. Return X = rUΣV∗.

18.5 Uniform Generation of Real Matrices

Similar to the developments of the complex case, we now study the generation of
uniform matrix samples in the ball Bσ (Rn,m). This approach is based on the gen-
eration of the samples of the SVD factors U, Σ , V according to their respective
densities derived in Corollary 17.4, and then on the construction of X = UΣVT . In
the next section, we analyze the generation of Σ , and subsequently we discuss a
technique for generating U and V in Sect. 18.5.2.

18.5.1 Sample Generation of Singular Values

If we assume that the random matrix X ∈R
n,m,m≥ n, is uniformly distributed over

the set Bσ (Rn,m), then it follows from Corollary 17.4 that the pdf of Σ is given by

fΣ (Σ)=KR

n∏
i=1

σm−n
i

∏
1≤i<k≤n

(
σ 2
i − σ 2

k

)
, σ ∈Dσ (18.28)
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where the (ordered) domain Dσ is defined in (17.5) and the constant KR is given in
(17.24). As in Sect. 18.4, we introduce the change of variables

ςi = σ 2
i , i = 1, . . . , n

so that the density may be written in terms of a Vandermonde determinant, see
Remark 18.1. Therefore, we obtain

fς (ς1, . . . , ςn)= KR

2n
∣∣V(ς1, . . . , ςn)

∣∣ n∏
i=1

ςνi , ν = (m− n− 1)/2 (18.29)

defined over the ordered domain

Dς
.= {ς ∈R

n : 1> ς1 > · · ·> ςn > 0
}
. (18.30)

Remark 18.5 (Ordering condition on the singular values) We recall that in the com-
plex case the ordering condition σ ∈Dσ has been removed to facilitate the computa-
tion of the marginal density. In the real case, the same approach is not helpful. This
is due to the different form of the pdf, and in particular to the fact that in (18.29)
the Vandermonde factor |V(ς1, . . . , ςn)| appears without the square power, which is
present in (18.9).

To generate a vector ς distributed according to the density (18.29), we apply
the conditional density method described in Sect. 14.3.2. To this end, we need to
compute the marginal density

fς1,...,ς i (ς1, . . . , ςi)= KR

2n
I(ς1, . . . , ςi)

i∏
k=1

ςνk (18.31)

where

I(ς1, . . . , ςi)=
∫

· · ·
∫ ∣∣V(ς1, . . . , ςn)

∣∣ n∏
k=i+1

ςνk dςk (18.32)

with domain of integration {ςi > · · ·> ςn > 0}, and ν = (m− n− 1)/2.
The following theorem gives an explicit closed-form solution for the multiple

integral (18.32).

Theorem 18.2 The multiple integral (18.32) is given by

I(ς1, . . . , ςi)= ςαii det 1/2

⎡
⎣ Z(ςi)

V(ς1, . . . , ςi−1)

0
−VT (ς1, . . . , ςi−1) 0 0

⎤
⎦ (18.33)

for i = 2, . . . , n, and

I(ς1)= ςα1
1 det 1/2Z(ς1)

where αi
.= (ν + 1)(n− i), and
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Z(ςi)
.=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
H(ςi) V(ςi)

−VT (ςi) 0

]
if n− i even;⎡

⎣ H(ςi) V(ςi) h(ςi)

−VT (ςi) 0 0
−hT (ςi) 0 0

⎤
⎦ if n− i odd;

(18.34)

[
H(ςi)

]
r,�

.= r − �
(r + ν)(�+ ν)(r + �+ 2ν)

ςr+�−2
i , r, �= 1, . . . , n;

(18.35)

h�(ςi)
.= ς�−1

i

�+ ν , �= 1, . . . , n. (18.36)

Remark 18.6 (Theory of skew-symmetric matrices) The proof of this result, given
in [81], is quite involved and it is based on the theory of skew-symmetric matrices
and, in particular, on the so-called de Bruijn integral, see [126]. Notice that the ma-
trix appearing in (18.33) is a skew-symmetric polynomial matrix of even order and,
therefore, its determinant is always a perfect square in the entries of the matrix, see
e.g. [403]. We remark that the square root of the determinant of a skew-symmetric
matrix of even order is related to the so-called Pfaffian, see e.g. [281] for definitions
and properties.

Remark 18.7 (Algorithm for generation of the singular values) Theorem 18.2 pro-
vides a closed-form expression for the marginal density (18.31), so that the con-
ditional density method can be applied. This result has been exploited in [81] to
develop an efficient recursive algorithm for the generation of the singular values.
This algorithm is similar to Algorithm 18.3, but more complicated. In fact, four dif-
ferent cases, corresponding to the combinations of n and i in (18.31) being even
or odd, need to be considered. The main feature of the algorithm given in [81] is
to reduce the sample generation of a vector σ distributed according to (18.28) to
n univariate generations according to a polynomial density. The only operations
required are polynomial matrix additions and multiplications, and no polynomial
matrix inversion or computation of determinants are needed. As previously ob-
served, the generation of samples according to the resulting univariate polynomial
density may be performed very efficiently. For illustrative purposes, some plots
of conditional densities for square real matrices of order n = 4,5,6 are shown in
Fig. 18.1.

18.5.2 Uniform Generation of Orthogonal Matrices

In this section we present an algorithm, similar to Algorithm 18.4, for the generation
of orthogonal Haar matrices. This algorithm is based on the QR decomposition and
is also reported in [369].
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Fig. 18.1 Conditional probability densities of the first four singular values for uniform real square
matrices of order n= 4,5,6

Algorithm 18.6 (Generation of Haar orthogonal matrices) Given n, this algo-
rithm returns a sample of the random orthogonal matrix U ∈ R

n,n distributed
according to the Haar invariant distribution (17.14).

1. Generation of Gaussian Y.

$ Generate Y ∈R
n,n, where each entry of Y is N0,1;

2. QR factorization.

$ Factorize Y as [Q,R] = QR(Y);
$ Set U = Q diag([s1 · · · sn]), where si is the sign of the (i, i) entry of R;

3. Return U.

Regarding the generation of samples distributed according to the conditional
Haar invariant distribution, i.e. uniform in the manifold Rm,n defined in (17.4),
comments similar to those made for the complex case in Sect. 18.4.2 also apply
here.
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We conclude this chapter by reporting the algorithm for direct generation of real
random matrices uniformly distributed in the spectral norm ball.

Algorithm 18.7 (Uniform generation in Bσ (r,Rn,m)) Given n,m, m ≥ n, and r
this algorithm returns a random matrix X ∈R

n,m with uniform distribution in the
(real) spectral norm ball of radius r .

1. Generation of Σ .

$ Generate σ = [σ 1 · · · σ n]T using the algorithm in [81];
$ Construct Σ = diag(σ );

2. Generation of U and V.

$ Generate U ∈R
n,n and V ∈R

m,n using Algorithm 18.6;

3. Return X = rUΣVT .



Chapter 19
Applications of Randomized Algorithms

Probabilistic design methods and randomized algorithms have been developed for
several applications related to systems and control. In this chapter, we first present an
overview, which also provides pointers to the relevant literature, of some of the main
areas where these methods have been successfully used. However, we do not discuss
computer science, computational geometry and optimization, since applications in
these areas are extensively covered, for instance, in [288, 290, 293]. Subsequently,
we provide a more detailed description of some selected applications, which in-
clude the computation of PageRank in the Google search engine, control design of
UAVs (unmanned aerial vehicles), congestion control of high-speed communication
networks, robustness of flexible structures and quadratic stability of sampled-data
quantized systems.

19.1 Overview of Systems and Control Applications

Multi-agent Systems and PageRank Computation The current approaches ad-
dressing distributed control over networks concentrate on traffic management of
multiple vehicle systems. Problems in this domain include, for example, traffic con-
trol of autonomous vehicles, and may have different and possibly conflicting ob-
jectives (e.g., free cruise assistance for boats near the harbor, collision avoidance
between cars at street intersections or platoon formation of underwater vehicles).
Multi-agent systems may offer obvious significant advantages with respect to single-
agent systems, such as speedup in task execution and robustness with respect to fail-
ure of one or more agents. On the other hand, a multi-agent approach is conceptually
and algorithmically much more involved, in particular when dealing with distributed
information, choice of communication protocols, verification and validation of de-
centralized control laws and coordination between agents. In [316] a decentralized
approach for studying collision avoidance of a large number of autonomous vehi-
cles moving in an uncertain environment is considered. The proposed method is
based on a classical Monte Carlo analysis to provide a probabilistic assessment on
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the satisfaction of certain design specifications. In [307] a Monte Carlo analysis for
distributed abstract optimization via constraint consensus is presented, while par-
titioning and coverage control for gossiping robots is studied in [151]. Quantized
consensus and averaging is studied in [77]. Distributed filtering with H∞ consensus
of estimates subject to LMI constraints is studied in [394] using a gradient-based
approach.

An apparently unrelated problem deals with ranking web pages for facilitating
the search of specific engines such as Google or Yahoo!. The core of the problem,
as originally stated in [72], requires the computation of the eigenvector (called the
PageRank) corresponding to the largest eigenvalue of a positive stochastic matrix
representing the link structure of the web. It is reported that PageRank is computed
at Google once a month, and this operation requires about a week due to the size
of the link matrix which currently consists of at least 10 billion pages. The compu-
tation is performed centrally at Google, where the data on the whole web structure
is collected by crawlers continuously browsing the web, see [252]. A decentral-
ized randomized algorithm having the objective of facilitating the computation of
PageRank is proposed in [215]. In the same paper, the close connections between
PageRank and multi-agent consensus problems are also outlined. In [216] a tech-
nique for aggregating the web pages into groups by exploiting the sparsity of the
web is presented, and in [164] a general class of PageRank optimization problems
which consists in finding an optimal outlink strategy for a website subject to design
constraints is discussed. Other relevant contributions include [128] and [294].

Systems Biology Systems biology is receiving increasing attention within the
control community, see the special issues [15, 232]. In this area, a key problem is
to construct hypothesis that can be subsequently tested by means of biological ex-
periments. Probabilistic models are particularly appealing in this context because of
the large number of uncertainty factors that are present in the experiments. In [242]
the objective is to study the so-called genomic machine, which is a set of genes that
cooperate to achieve a common objective. The random walk algorithm NetWalk is
introduced to score the relevance of each interaction using a given set of data and
also information regarding the local connectivity of the biological network. In [407]
this genomic machine problem is formulated in the identification context using a
Markov chain approach. This requires the computation of the stationary distribu-
tion of the chain and a flow parameter called the “doublet frequency.” For a number
of genes (or genes products) of the order 20,000 to 30,000, the PageRank algorithm
[72, 215] is analyzed for performing this ranking and for a computation with reduced
complexity. In particular, in [407] the goal is to develop randomized algorithms for
approximately computing the stationary distribution and the doublet frequency. The
approximation should be sufficiently accurate so that the sign of the figure of merit
(which represents the flow of the connection between genes) is correctly computed.
The PageRank algorithm has been used for protein ranking in [419].

Aerospace Control Aerospace control is a particularly appealing area of ap-
plication of randomized methods. In this area of research, a probabilistic setup is
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appropriate to describe changes in the flight conditions, uncertainties in the aerody-
namic model, and inaccuracies in geometric and inertial data. In addition, since the
mathematical plant models are generally obtained via linearization of the full-order
nonlinear system representing aircraft dynamics, analytic relationships between the
state space matrices of the linearized system and the uncertain parameters are not
available. In these cases, simulation-based methods and lookup tables are often used.

The first paper studying the impact of parameter variations into the lateral-
directional stability of aircraft by means of a randomized approach is probably
[366]. In this and other subsequent papers, see, e.g., [275, 332, 411], various tech-
niques, mainly based on Monte Carlo simulations, have been successfully utilized
for the computation of the so-called probability of instability, and related perfor-
mance criteria. More sophisticated design techniques, based on statistical learning
theory, have been developed in [404] for the longitudinal stabilization of an unsta-
ble fighter aircraft. For unmanned aerial vehicles for surveillance and fire detection
missions, other randomized methods are proposed in [266]. A different line of re-
search, based on linear parameter-varying (LPV) methods, is discussed in [269] for
the control of an F-16 aircraft. Applications of Monte Carlo methods for conflict res-
olution in air traffic control have been studied in [257]. In particular, optimization of
the expected value of a given resolution criterion is carried out through an iterative
procedure based on Markov chain Monte Carlo. In [174], the scenario approach is
developed for H∞ controller design of a multivariable LV100 gas turbine engine
represented by a continuous-time state space model with five states, two inputs and
two outputs.

Control of Hard Disk Drives Presently, it is estimated that more than 52 % of
the entire data storage is dedicated to hard disk drives [201] and the gap between
the available capacity and the amount of digital data that is generated worldwide
is dramatically increasing. In order to reduce this gap, it is necessary to augment
the so-called aerial density by designing more accurate control positioning algo-
rithms which provide higher track per inch. Unfortunately, classical control tech-
niques based on PID or Lead-Lag, which are currently used in disk drive servo
systems, have already reached their limits of performance, and the development of
more advanced techniques and algorithms is needed. A very interesting line of re-
search regarding randomized sequential algorithms for track following servo control
design of hard disk drives has been recently initiated in [97–99]. We refer to these
papers for further details and experimental results.

Congestion Control of High-Speed Networks High-speed communication net-
works have received increasing attention in the control literature. One of the criti-
cal issues at the heart of efficient operations is congestion control, in particular for
Available Bit Rate (ABR) in Asynchronous Transmission Mode (ATM) networks.
The objective is to develop feedback controllers for improving the so-called Qual-
ity of Service (QoS). This involves the problem of regulating the source rates in
a decentralized and distributed fashion, so that the available bandwidths on differ-
ent links are used more efficiently while minimizing, or totally eliminating, loss of
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packets due to queues at buffers exceeding their capacities. This goal needs to be
accomplished under variations in network conditions (which can be probabilisti-
cally described) such as packet delays due to propagation as well as to queuing and
bottleneck nodes.

Stability and QoS performance of communication networks have been addressed
in [17] using simulation techniques. Specific randomized algorithms, based on
Monte Carlo as well as on Quasi-Monte Carlo methods, have been developed for
various network topologies. The results obtained provide a complete analysis of
congestion control algorithms for Internet style networks with a single bottleneck
node as well as for networks with more general random topologies. In [2] conges-
tion control in the ABR class of ATM networks is studied by means of probabilistic
methods and statistical learning theory. In this paper, a probabilistic robust con-
troller with fixed structure for a high-speed communication network with multiple
uncertain propagation delays is designed.

Stability of Quantized and Switched Systems When dealing with feedback
loops that include digital channels, the need for quantization of control signals in-
evitably arises. Hence, it is of interest to reduce the data rate necessary for the trans-
mission of these signals. A fundamental issue in this case is to determine the mini-
mum information required to achieve the control objectives. Clearly, if a quantized
discrete-time signal takes only a finite number of fixed values, then the trajectories
may go close to an equilibrium but not converge. The result is that asymptotic sta-
bility may not be achieved and various technical problems arise. For example, it is
of interest to clarify how close the trajectories get to the equilibrium point and, if
the sampling period is large, how close do the trajectories stay at the equilibrium
between sampling instants.

An approach based on Lyapunov functions (and quadratically attractive sets in
particular) for quantized sampled-data systems has been developed in [211]. This
study leads to the construction of specific sequential randomized algorithms. The
proposed method provides a tool to determine less conservative estimates of the
performance of the designed system, at the expense of obtaining a probabilistic
solution instead of a guaranteed one.

For switched systems, classical stability problems require the construction of
common quadratic Lyapunov functions. In [263] sequential randomized algorithms
are developed for both finite and infinite families so that probabilistic and determin-
istic convergence results may be obtained. Extensions to multimodal systems are
considered in [212]. In this case, due to the nonconvexity of the problem, probabil-
ity one results are derived using a suitable combination of randomization techniques
and branch-and-bound methods. Finally, other recent developments include the con-
struction of switching rules to select the most stable system in a certain class. This
rule is based on the ordering of the systems using a common Lyapunov function
approach. In particular, randomized algorithms (of Las Vegas type) for ordering the
systems as well as for finding a subset of systems for which a common Lyapunov
function exists are provided in [214].



19.1 Overview of Systems and Control Applications 287

Reachability Analysis Probabilistic reachability over a finite horizon is investi-
gated in [1] for stochastic hybrid systems with control inputs. In this framework,
the reachability problem amounts to determining a set of initial conditions which
guarantee with a given probability that the system will evolve within a desired safe
region of the state space. Randomized algorithms for controllability analysis for
discrete-time piecewise affine (PWA) systems are discussed in [32].

In the works [193, 194], randomized algorithms based on sequential design meth-
ods are developed for the construction of a probabilistic output admissible (POA)
set for uncertain systems with output constraints, where the POA is defined as a set
of initial states which probabilistically guarantee the constraint satisfaction.

MPC, Fault Detection and ILC Model predictive control (MPC) has emerged as
a very effective strategy in process industry, and numerous successful applications
have been reported over the years, see for instance [92]. Nevertheless, in some cases,
the use of MPC is still difficult, for example when general (nonlinear) uncertainty
terms enter into the plant. An approach which consists of a combination of Kalman
filtering and finite-horizon MPC for robust output feedback has been developed in
[225]. More precisely, the MPC problem is reformulated as a min-max (worst-case)
optimization problem. The class of uncertainties considered in this setting is quite
general, so that nonlinear relationships between system matrices and uncertain pa-
rameters can be handled. The resulting optimization problem may be solved at each
time instant in a probabilistic framework by means of an iterative randomized el-
lipsoid algorithm. Randomized methods for receding horizon navigation have been
presented in [378]. Recently, an approach based on scenario optimization has been
proposed in [91].

Fault detection and isolation (FDI) problems have been the subject of intense
research, leading to a variety of solutions. Amongst them, model-based approaches
are specially appealing, since they do not require additional hardware implemen-
tation. Early FDI methods were based on the availability of an accurate model of
the monitored system. However, in practice such an assumption is hardly satisfied
because of modeling errors. The resulting mismatch between the actual plant and
the model used in the FDI algorithm may give raise to false alarms. For this reason,
more recently, robust FDI methods have been introduced. A potential disadvantage
of these methods is the difficulty to isolate the exact location of the fault and to
detect simultaneous faults. The problem further complicates when the faults en-
ter nonlinearly in the system matrices, thus becoming computationally intractable.
Furthermore, deterministic methods based on relaxations unavoidably lead to con-
servative results. An alternative approach based on probabilistic assumptions of the
faults has been developed in [271]. In this case, the resulting randomized algorithm
has polynomial-time complexity and the solution obtained guarantees an a-priori
determined (small) risk of failure.

Regarding fault diagnosis of analog electric circuits, various issues have been
carefully analyzed. In particular, the complex nature of the fault mechanism (i.e.
the physical/chemical process leading to a failure) and the unknown values of the
actual component parameters are taken into account. Parameter deviations, how-
ever, depend on the intrinsic nature of the production process of the component and
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on-the-field deviations, such as those related to aging or thermal effects. Such situa-
tions, which do not affect the circuit topology, are commonly defined as “soft faults”
and may lead to unpredictable incorrect operations depending on their influence on
the circuit performance. In [14] a methodology for selecting the appropriate test
input stimuli and nodes is presented for analog circuits. The method is based on a
sensitivity analysis carried out by means of a probabilistic approach based on Monte
Carlo simulations.

Recently, randomized algorithms have been developed in the area of iterative
learning control (ILC), see [188] and references therein. In particular, in this pa-
per, bounds on the model uncertainty of the ILC system representation in the trial
domain are obtained. Weighting matrices of the so-called norm-optimal ILC are
derived, so that robust monotonic convergence conditions are guaranteed.

Electric Circuits and Embedded Systems The design of embedded systems re-
quires the development of sophisticated computer-aided tools to meet the high-level
specifications which are nowadays needed. In particular, various physical sources of
uncertainties (including finite precision representation, fluctuations of physical pa-
rameters and battery power variations) entering into the embedded system should be
analyzed by means of an accurate probabilistic description. This information is sub-
sequently exploited by suitably choosing hardware and software requirements be-
fore an architectural design implementation takes place. In [12, 13] a randomization-
based methodology is proposed for estimating the performance degradation of em-
bedded systems in the presence of uncertainty. The final objective of this research
is to address various issues related to analog versus digital (or fixed versus floating
point) in order to validate a specific architectural choice.

Furthermore, the performance analysis of complex electrical circuits cannot dis-
regard the unavoidable parametric uncertainty entering each network component.
This uncertainty usually arises from physical tolerances introduced in the manufac-
turing process and/or, in the case of thin-film circuits, imprecisions in the deposition
processes. In the classical approach used in circuit analysis, a stochastic description
of the parametric uncertainty is considered with the goal of estimating the average
behavior of the circuit. In other words, the objective is to estimate the probabil-
ity that a given system property holds. Contrary to standard approaches aiming at
computing “soft bounds” using randomized algorithms, in [250] a different method
which provides “hard bounds” on the probability of performance is proposed. The
resulting randomized algorithm has no longer polynomial-time complexity.

In [230], a different type of simulation-based approach for circuits is consid-
ered. Specific results are obtained for the class of resistive networks. More precisely,
given suitable upper and lower bounds on the value of each resistor (but no prob-
ability distribution in this interval is given a priori), the problem of determining a
suitable probabilistic measure of performance is studied. In other words, since no a
priori probability distribution for the uncertain resistors is assumed, a certain type
of “distributional robustness” is analyzed. Some of the performance levels obtained
via this approach may differ considerably from those computed using Monte Carlo
techniques.
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The problem of synthesizing real-time embedded controllers taking into account
constraints deriving from the implementation platform, and hence exploring the re-
lation between the processors time, is studied in [317], where a validation approach
based on randomized algorithms is presented.

Structural Analysis and Design In the context of the analysis and design of me-
chanical structures, uncertainty arises from imprecise knowledge of material char-
acteristics and/or loading configurations. In [358], a Monte Carlo based algorithm
for the simulation of the dynamic response of tall buildings under turbulent winds
is presented. In [89] a reliable structural design is obtained using techniques based
on the interplay of convex optimization and randomization.

Linear Parameter Varying (LPV) Systems In various applications, linear pa-
rameter varying (LPV) systems provide a good starting point for analysis and de-
sign of more general gain scheduling problems. Since the original motivation for
introducing gain scheduling is to cope with plant nonlinearities, the resulting LPV
model generally depends on the scheduling parameters in a nonlinear fashion. From
the computational point of view, this observation implies that, in principle, the solu-
tion of some parameter-dependent linear matrix inequalities (LMIs) is required. To
address this critical issue, a specific functional dependence on the scheduling param-
eters needs to be enforced. Two different approaches are generally followed in the
related literature. The first approach, denoted as approximation, amounts to restrict-
ing the attention to a specific class of functions of the scheduling parameters. For
example, one can assume that the matrices of the LPV model are multiaffine func-
tions or linear fractional transformations of the underlying parameters. The original
problem is then reduced to more tractable formulae which involve a finite number of
LMIs but, unfortunately, some conservatism is introduced in the approximation. The
second approach, often denoted as gridding, is to grid the bounding set of parame-
ters. In this case, the original problem is reformulated by means of the solution of
a finite number of LMIs, but this number depends on the grid points and generally
increases exponentially with the number of scheduling parameters. Moreover, the
fulfillment of the LMIs at the grid points does not give any guarantee that they are
also satisfied for the whole parameter set. A third alternative approach has been de-
veloped in [168]. In this case, the scheduling parameters are treated as random vari-
ables and a sequential randomized algorithm (gradient-based) is developed. Other
randomized algorithms for LPV problems in the context of aerospace applications
are proposed in [269].

Automotive and Driver Assistance Systems The increasing demand of safer
passenger vehicles receives a growing attention in the automotive industry. This
task requires the development of advanced driver assistance systems (ADAS) which
are in fact adaptive cruise control systems used for precrash sensing. Hence, these
systems improve the driving comfort and can also assist the driver in reacting to
dangerous situations to avoid collisions between vehicles. However, the complex-
ity of these intelligent vehicle control systems contradicts the increasing demand
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for reliability. To improve fault management, therefore, redundant components and
fault tolerant controllers are often implemented in ADAS. In various practical sit-
uations, unfortunately, it may be difficult to validate their effectiveness. Therefore,
simulations and prototype test drives are used to check the effectiveness of ADAS,
but these tests are costly. It is therefore very important to develop efficient method-
ologies to conduct hardware-in-the-loop experiments in a laboratory environment
with full-scale intelligent vehicles. To this end, a methodology to cope with various
failure modes, as well as complex operating conditions, is developed in [179]. This
approach relies on randomized algorithms that form the basis for off-line Monte
Carlo simulations with the ADAS control system. The strength of this approach is
that the control system analysis does not depend on the level of complexity of the
underlying system (in contrast to a deterministic approach which is often adopted).

Quantum Systems and Control Randomized methods for quantum systems and
control have been addressed in various papers, including [341] which identifies
control scenarios where a randomized design may substantially improve the perfor-
mance of dynamical decoupling methods. In [289] a probabilistic characterization of
quantum dynamics and quantum process tomography in the presence of noisy mea-
surements is discussed. The advantages of randomization at long evolution times
in closed quantum systems is studied in [342]. This paper also analyzes the conse-
quences of faulty control in deterministic versus randomized schemes and discusses
mixed strategies and protocols. In [75] methods for efficiently generating random
quantum states and unitary operators are analyzed for arbitrary statistical moments
of quantum circuits. We refer to these papers for pointers to the related literature.

19.2 PageRank Computation and Multi-agent Systems

In the search engine of Google, the PageRank algorithm quantifies the importance
of each webpage based on the link structure of the web. We first provide an overview
of the original problem and then we analyze a distributed randomized scheme based
on a local update of the webpages. Finally, we discuss the relations between the
PageRank computation and consensus of multi-agent systems.

19.2.1 Search Engines and PageRank

In the last decade, search engines have become indispensable tools for searching the
web. In these engines, the search results need to suitably rank the pages so that the
web users may have a quick access to the most relevant information. The PageR-
ank algorithm at Google is one of the successful algorithms which quantify the
importance of each webpage. This algorithm was initially proposed in [72] and an
overview can be found in, e.g., [252].
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One of the main features of the PageRank algorithm is that it is based entirely on
the link structure of the web. The idea behind this algorithm is that links from impor-
tant pages make a page more important. In other words, each page is considered to
be voting the pages to which it is linked to. Then, in the ranking of a page, the total
number of votes as well as the importance of the voters are reflected. This problem
is mathematically formulated as determining the eigenvector corresponding to the
largest eigenvalue of a certain (column) stochastic matrix1 associated with the web
structure.

For the PageRank computation, a critical aspect is the size of the web, which
currently consists of at least 10 billion pages. In practice, the class of algorithms
that can be applied is limited: the well-known power method is employed, but it
is reported that this computation takes about a week [252]. In this regard, some
alternative approaches have been proposed. For example, in [223] an adaptive com-
putation method is developed. This method classifies webpages into groups based
on the speed of convergence to the PageRank values and allocates computational
resources accordingly. Another line of research is based on Monte Carlo methods
for distributed computation performed on multiple servers communicating to each
other, see [31].

In this section, we study the randomized distributed approach introduced
in [215]. This approach enjoys the following three main features:

1. Each page can compute its own PageRank value locally by communicating with
the pages that are connected by direct links. That is, each page exchanges its
value with the pages that it is linked to and those linked to it;

2. The pages make the decision to initiate this communication at random times
which are independent from page to page. This means that, in its implementation,
there is neither a fixed order among the pages nor a centralized agent in the web
that determines the pages that need to update their values;

3. The computation required for each page is very mild.

The main result of [215] shows that the randomized algorithm converges to the true
PageRank value in a mean square sense. This is achieved by computing the time
average of the local rankings at each page. From a technical viewpoint, a crucial
feature of the proposed approach is that the stochasticity of the matrix in the original
problem is preserved and exploited.

19.2.2 PageRank Problem

We now provide a brief introductory description of the PageRank problem; this
material can be found in, e.g. [72, 252]. We study a network of n webpages which
is represented by the directed graph G = (V,E) where V = {1,2, . . . , n} is the set of

1A nonnegative matrix A ∈ R
n,n, [A]i,� ≥ 0, i = 1, . . . , n;� = 1, . . . , n, is said to be column

stochastic if
∑n
i=1[A]i,� = 1 for �= 1, . . . , n.
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vertices corresponding to the webpage indices and E is the set of edges representing
the links among the pages. The vertex i is connected to the vertex � by an edge, i.e.
(i, �) ∈ E , if page i has an outgoing link to page �, or, in other words, page � has an
incoming link from page i. To avoid trivial situations, we assume n≥ 2.

The objective of the PageRank algorithm is to provide some measure of impor-
tance of each webpage. The PageRank value, or simply the value, of page i ∈ V is
a real number in [0,1] denoted by x∗i . The values are ordered such that x∗i > x∗�
implies that page i is “more important” than page �. The basic idea in ranking the
pages in terms of the values is that a page having links from important pages is also
important. This is realized by determining the value of one page as a sum of the
contributions from all pages that have links to it. In particular, the value x∗i of page
i is defined as

x∗i =
∑
�∈Li

x∗�
n�

where Li = {� : (�, i) ∈ E} is the index set of pages linked to page i and n� is
the number of outgoing links from page �. The values are suitably normalized as∑n
i=1 x

∗
i = 1.

Letting the values be in the vector form x∗ ∈ [0,1]n, the PageRank is then defined
as

x∗ =Ax∗, x∗ ∈ [0,1]n,
n∑
i=1

x∗i = 1

where the matrix A ∈R
n,n, called the link matrix, is given by

[A]i,� =
{

1
n�

if � ∈ Li;
0 otherwise.

Note that the value vector x∗ is a nonnegative unit eigenvector corresponding to
the eigenvalue 1 of the nonnegative matrix A. In general, for existence and unique-
ness of this eigenvector, it is sufficient that the web as a directed graph is strongly
connected,2 see e.g. [207]. However, the web is not strongly connected.

To address existence and uniqueness issues, the PageRank problem needs to be
suitably redefined. First, we observe that in the web the so-called dangling nodes,
which are pages having no outgoing links to other pages, are abundant. An example
of a dangling node is a pdf file having no outgoing link. These pages introduce
zero columns into the link matrix making it substochastic instead of stochastic. To
resolve this issue, an artificial link may be added to represent the back button of the
browser. The result is that the graph is redefined so that the link matrix A becomes a
column stochastic matrix. This implies that there exists at least one eigenvalue equal
to 1.

2A directed graph is said to be strongly connected if, for any two vertices i, � ∈ V , there exists a
sequence of edges which connects i to �. In terms of the link matrix A, strong connectivity of the
graph is equivalent to A being irreducible.
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Next, to guarantee uniqueness, a modified version of the PageRank problem has
been introduced in [72] as follows: letm be a parameter such thatm ∈ (0,1), and let
the modified link matrixM ∈R

n,n be defined as a convex combination of the matrix
link A and a rank-one matrix S ∈ R

n,n having all entries equal to 1. The entries of
the matrix S represent the equal probability that a web surfer is “teleported” to a
certain page during the random walk between webpages. To this end, the matrix
M is often called the teleportation matrix. Following the choice made in [72], the
parameter m is generally fixed to 0.15 and this value is used in this section, see
further discussions in [252]. Formally, we write

M = (1 −m)A+ m
n
S.

Notice thatM is a positive column stochastic matrix because it is a convex combina-
tion of the nonnegative matrices A and S andm ∈ (0,1). By the Perron theorem, see
e.g. [207], it follows that this matrix is primitive.3 In particular, the eigenvalue 1 is
of multiplicity 1 and it is the unique eigenvalue of maximum modulus (i.e. with the
maximum absolute value). Furthermore, the corresponding eigenvector is positive.
We now formally redefine the PageRank value x∗ by using the matrix M instead
of A.

Problem 19.1 (PageRank computation) Compute the PageRank value x∗ ∈ R
n de-

fined as

x∗ =Mx∗, x∗ ∈ [0,1]n,
n∑
i=1

x∗i = 1

where

M = (1 −m)A+ m
n
S

and A ∈ R
n,n is a column stochastic matrix, S ∈ R

n,n is a rank-one matrix having
all entries equal to 1 and m= 0.15.

As previously discussed, due to the large dimension of the link matrix, the com-
putation of PageRank is very difficult. The solution that is used in practice is based
on the power method, see e.g. [207]. That is, the value vector x∗ is computed through
the recursion

x(k + 1)=Mx(k)= (1 −m)Ax(k)+ m
n
b (19.1)

where b= [1 · · · 1]T , x(k) ∈R
n and the initial condition x(0) ∈R

n is a probability
vector.4 The second equality above immediately follows from the fact Sx(k)= b=
[1 · · · 1]T for all k > 0. This equation is useful because it is certainly preferable to

3A nonnegative matrix A ∈ R
n,n is said to be primitive if it is irreducible and has only one eigen-

value of maximum modulus.
4A probability vector is a nonnegative vector x ∈R

n, xi ≥ 0, i = 1, . . . , n, such that
∑n
i=1 xi = 1.
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Fig. 19.1 A web with four
pages

compute x∗ using the sparse matrix A instead of the dense matrix M . Convergence
of the power method is stated in the next result, see, e.g. [207].

Lemma 19.1 (Convergence of the power method) For any initial condition
x(0) ∈R

n which is a probability vector, we have

x(k)→ x∗ for k→∞
where x(k) is given by (19.1).

We now make a few comments about the convergence rate of this scheme. Denote
by λ1(M) and λ2(M) the largest and the second largest eigenvalues of M in mag-
nitude, respectively. The asymptotic rate of convergence of the power method is ex-
ponential and depends on the ratio |λ2(M)/λ1(M)|. SinceM is a positive stochastic
matrix, we have λ1(M)= 1 and it can be easily shown that |λ2(M)| ≤ 1−m= 0.85.
Next, we provide a simple example for illustration.

Example 19.1 (PageRank computation) Consider the web with four pages shown
in Fig. 19.1. As a graph, this web is strongly connected, and there are no dangling
nodes. The link matrix A and the modified link matrix M can be easily determined
obtaining

A=

⎡
⎢⎢⎢⎢⎣

0 0 0 1
3

1 0 1
2

1
3

0 1
2 0 1

3

0 1
2

1
2 0

⎤
⎥⎥⎥⎥⎦ , M =

⎡
⎢⎢⎣

0.0375 0.0375 0.0375 0.3208
0.8875 0.0375 0.4625 0.3208
0.0375 0.4625 0.0375 0.3208
0.0375 0.4625 0.4625 0.0375

⎤
⎥⎥⎦ .

Then, the value vector x∗ is computed

x∗ = [0.119 0.331 0.260 0.289]T .
We notice that page 2 has the largest value since it is linked from three pages while
page 1, which has only one link to it, has the smallest value. On the other hand,
pages 3 and 4 have the same number of incoming links, but page 4 has a larger
value. This is because page 4 has more outgoing links, and thus it receives more
contribution from page 3 than what it gives back.
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19.2.3 Distributed Randomized Approach

We now study a distributed randomized approach to compute the PageRank
value x∗. The basic protocol of the scheme is as follows: at time k, page i initi-
ates its PageRank value update

1. sending the value of page i to the page having outgoing links from page i;
2. requesting the values from the pages having incoming links to page i.

We notice that the first step of this protocol is feasible in a real web, while the
second one is not realistic because it may be very difficult to collect the values from
the pages having incoming links to page i. However, this step present in [215] has
been subsequently removed in [216].

To implement the scheme in a distributed manner, we assume that the pages
taking the update action are determined in a random fashion. This is specified by
the random process ξ(k) ∈ V , k > 0. If at time k, ξ(k) = i, then page i initiates
an update of the value by communicating and exchanging the values with the pages
connected by incoming and outgoing links according to the protocol outlined above.
Specifically, ξ(k) is assumed to be an iid random process with uniform probability
distribution given by

PR
{
ξ(k)= i}= 1

n
(19.2)

for all k > 0. This means that each page takes the update action with probability
equal to 1/n. This scheme may be implemented asynchronously without requiring
a centralized clock, a common decision maker or any fixed order among the pages.

In particular, consider the distributed update scheme of the form

x(k + 1)= (1 − m̂)Aξ(k)x(k)+ m̂
n
b (19.3)

where ξ(k) ∈ {1, . . . , n}, x(k) ∈R
n is the random state whose initial condition x(0)

is a probability vector, m̂ ∈ (0,1) is a design parameter, b = [1 · · · 1]T and Ai ,
i = 1, . . . , n, are called the distributed link matrices which are specially constructed
in the next section. The objective is to design this distributed update scheme by
finding the appropriate link matrices Ai and the parameter m̂ so that the PageRank
values are computed through the time average of the state x(k). Let y(k) be the
average of the sample path x(0), . . . , x(k)

y(k)= 1

k+ 1

k∑
�=0

x(�).

We say that, for the distributed update scheme, the PageRank value x∗ is obtained
through the time average y(k) if, for each initial state x(0) that is a probability
vector, y(k) converges to x∗ in the mean square sense as follows

Eξ(0),...,ξ(k)
(∥∥y(k)− x∗∥∥2)→ 0 for k→∞.

We remark that expectation E(·) is taken with respect to the random process
ξ(0), . . . , ξ(k). This type of convergence is called ergodicity for stochastic pro-
cesses, see [319].
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19.2.4 Distributed Link Matrices and Their Average

In agreement with the protocol outlined in Sect. 19.2.3, we further develop the dis-
tributed update scheme of (19.3) by means of two steps: first we define the dis-
tributed link matrices Ai , then we select the parameter m̂. For each i, the matrix
Ai ∈R

n,n is obtained as follows:

1. The ith row and column of Ai coincide with those of A;
2. The remaining diagonal entries are equal to 1 − [A]i,�, �= 1, . . . , n, � �= i;
3. All the remaining entries are equal to zero.

More formally, we have

[Ai]j,� =
⎧⎨
⎩

[A]j,� if j = i or �= i;
1 − [A]i,� if j = � �= i;
0 otherwise

for i = 1, . . . , n. We observe that these matrices are column stochastic by construc-
tion because the original link matrix A possesses this property, which is critical for
convergence of the scheme.

Example 19.2 (Distributed link matrices) We continue with the Example 19.1. The
link matrices Ai are given by

A1 =

⎡
⎢⎢⎢⎣

0 0 0 1
3

1 1 0 0

0 0 1 0

0 0 0 2
3

⎤
⎥⎥⎥⎦ ; A2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

1 0 1
2

1
3

0 1
2

1
2 0

0 1
2 0 2

3

⎤
⎥⎥⎥⎥⎦ ;

A3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1
2

1
2 0

0 1
2 0 1

3

0 0 1
2

2
3

⎤
⎥⎥⎥⎥⎦ ; A4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1
3

0 1
2 0 1

3

0 0 1
2

1
3

0 1
2

1
2 0

⎤
⎥⎥⎥⎥⎦ .

To clarify the properties of the link matrices Ai , we consider the simple update
scheme

x(k + 1)=Aξ(k)x(k)

where x(k) is the state, x(0) is a probability vector and the random process ξ(k) is
specified in (19.2). In particular, in [215] various properties regarding the average
dynamics are shown. Since ξ(k) is an iid random process, in this paper it is shown
that the expected value E(x(k)) of the state x(k) evolves according to the recursion

E
(
x(k + 1)

)=
[

1

n

n∑
i=1

Ai

]
E
(
x(k)

)
.
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19.2.5 Convergence of Distributed Update Scheme

To guarantee uniqueness of the eigenvector, we introduced the teleportation ma-
trix M . Therefore, we now study a modified version of the distributed link matri-
ces Ai . Since the link matrices Ai are column stochastic, we write the distributed
update scheme in (19.3) as

x(k + 1)=Mξ(k)x(k), (19.4)

where the modified distributed link matricesMξ(k) are given by

Mi = (1 − m̂)Ai + m̂
n
S

for i = 1, . . . , n, and m̂ ∈ (0,1) is a design parameter. Notice that Mi are positive
stochastic matrices. Similarly to the argument for the link matrices Ai defined in the
previous section, we observe that the expected value of x(k + 1) evolves according
to the recursion

E
(
x(k + 1)

)=
[

1

n

n∑
i=1

Mi

]
E
(
x(k)

)
.

The next result shows that the time average indeed converges to the PageRank value
in a mean square sense, provided that the parameter m̂ is appropriately chosen.

Theorem 19.1 Let m̂ be given by

m̂= 2m

n−m(n− 2)
∈ (0,1).

Then, for any initial state that is a probability vector, the time average y(k) of the
distributed update scheme (19.4) converges to the PageRank value x∗ in the mean
square sense as follows

Eξ(0),...,ξ(k)
(∥∥y(k)− x∗∥∥2)→ 0 for k→∞.

This theorem highlights an ergodic property in the proposed update scheme. Its
proofs can be shown by general Markov process results as in, e.g. [109]. A more
specific proof is given in [215]. Regarding the convergence of this algorithm, it can
be shown that it is of order 1/k and moreover depends on the size of n linearly
through the parameter m̂. This convergence result has been extended in various di-
rections, which include simultaneous update of multiple webpages, link failure and
aggregation of web pages, see [216].

19.2.6 Relations to Consensus Problems

The randomized distributed techniques previously discussed have been also moti-
vated by the research on distributed consensus, agreement and flocking problems,
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see e.g. [3, 26]. We now outline the relations between consensus and PageRank.
First, we describe a stochastic version of consensus, which has been studied in, e.g.
[69, 195, 376, 414]; see also [384] for an introductory overview from the viewpoint
of randomized algorithms. We consider a network of agents represented by the di-
rected graph G = (V,E), where V is the set of vertices and E is the set of edges. If
agent i has a communication link to agent �, then the vertex i is connected to the
vertex � by an edge (i, �) ∈ E . We assume that the graph is strongly connected. The
objective is that all agents reach a common value by communicating to each other,
where the pattern in the communication protocol is randomly determined at each
time.

In particular, let xi(k) be the value of agent i at time k, and let x(k) =
[x1(k) · · · xn(k)]T ∈R

n. The values are updated via the recursion

x(k + 1)=Aξ(k)x(k) (19.5)

where ξ(k) ∈ {1, . . . , d} is the mode specifying the random communication pattern
among the agents and d is the number of such patterns. The communication pattern
we consider is an iid random process with uniform probability distribution given by

PR
{
ξ(k)= i}= 1

d

for all k > 0. The communication pattern is constructed such that each i ∈ {1, . . . , d}
corresponds to the subset Ei ⊂ E of the edge set. Then, the entries [Ai]j,� are non-
negative if and only if (�, j) ∈ Ei . We now present an example illustrating the con-
struction of the matrices Ai .

Example 19.3 (Communication patterns for consensus) Consider the graph in Ex-
ample 19.1 with four agents. We introduce four communication patterns arising
from the protocol in the distributed PageRank algorithm: the edge subset Ei con-
tains all (i, j) and (j, i) in the original edge set E including (i, i) that corresponds
to a self-loop for i, j = 1,2,3,4. The matrices Ai can be constructed as

A1 =

⎡
⎢⎢⎢⎣

1
2 0 0 1

2
1
2

1
2 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ; A2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
1
4

1
4

1
4

1
4

0 1
2

1
2 0

0 1
2 0 1

2

⎤
⎥⎥⎥⎥⎦ ;

A3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1
2

1
2 0

0 1
3

1
3

1
3

0 0 1
2

1
2

⎤
⎥⎥⎥⎥⎦ ; A4 =

⎡
⎢⎢⎢⎢⎣

1
2 0 0 1

2

0 1
2 0 1

2

0 0 1
2

1
2

0 1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎦ .

The main difference with the link matrices Ai in Example 19.2 is that these matrices
are row stochastic and moreover the diagonal entries are all positive, which indicates
the presence of self-loops which are absent in the web.
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Table 19.1 Consensus and distributed PageRank

Consensus PageRank

all agent values become equal page values converge to a constant

strongly connected graph of agents web is not strongly connected

row stochastic matrices Ai column stochastic matrices Ai,Mi
presence of self-loops in the graph no self-loops are present in the web

PR{limk→∞ |xi(k)− x�(k)| = 0} = 1 E(‖y(k)− x∗‖2)→ 0 for k→∞
any initial condition x(0) ∈R

n x(0) ∈R
n stochastic vector

time averaging not necessary time averaging y(k) required

We say that consensus is achieved if the relation

PR
{

lim
k→∞

∣∣xi(k)− x�(k)∣∣= 0
}
= 1 (19.6)

holds for all i, � ∈ V and for any initial condition x(0) ∈R
n. A well-known approach

to achieve consensus is to update the value of each agent by taking the average of
the values received at time k. In this case, the matrix Ai is constructed as

[Ai]j,� =
{ 1
nij

if (�, j) ∈ Ei;
0 otherwise

where nij is the number of agents � with (�, j) ∈ Ei , i.e. those transmitting their
values to agent j .

We now present a convergence result for consensus, see e.g. [376] for proof.

Lemma 19.2 Assume that the graph is strongly connected and the properties

1. (�, �) ∈ Ei for all �;
2.
⋃d
i=1 Ei = E ;

3. The matrix Ai is a row stochastic matrix

are satisfied. Then, the scheme (19.5) achieves consensus in the sense of (19.6).

To conclude this section, in Table 19.1 we summarize some of the key differences
and similarities between consensus and the distributed PageRank problems.

19.3 Control Design of Mini-UAVs

Unmanned aerial vehicles (UAVs) are flying objects, often of reduced dimensions,
that behave like aerial robots whose mobility can deploy a useful micropayload
to a remote or hazardous location, where they may perform a variety of missions,
see [125]. Many successful UAV designs have been built for either research, com-
mercial or military purposes by several universities, companies and government-
funded agencies. Recently, UAVs have been the subject of considerable interest and
development within the systems and control community, see e.g. [398].
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Fig. 19.2 MH1000 platform (left) and MH2000 platform (right). These platforms have been de-
signed for archaeological sites reconnaissance, natural disaster and fire detection monitoring, in the
frame of several projects, including ITHACA. MH1000 and MH2000 are based on the MicroHawk
configuration, developed at the Mechanical and Aerospace Engineering Departments, Politecnico
di Torino, Italy

Fig. 19.3 The archaeological site of Bene Vagienna located in Italy. The picture has been taken
during a flight test of MH2000 using a visual camera. On the left, the dark shadow of the UAV may
be recognized when flying over the trees

The aerial platform discussed in this section is named MH1000, see [185], see
Figs. 19.2 and 19.3. This is a small autonomous aerial vehicle characterized by
3.28 ft wingspan and a total take-off weight of approximately 3.3 lb. This platform
is based on a conventional layout, characterized by a fixed wing, tailless integrated
wing-body, tractor propeller driven. MH1000 flies at speed ranging from 33 ft/s to
66 ft/s and maximum operating altitude of about 32 ft. Experimental on-site tests
demonstrated that a 40 minutes flight can be achieved at an average speed of about
40 ft/s. The platform includes an embedded real-time control system and is equipped
with various onboard sensors and two cameras (color and infrared) to detect environ-
mental conditions and to gather images, which are transmitted on-line to a ground
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station, of the target area. Depending on the user’s need, MH1000 has been em-
ployed for autonomous flight as well as for a remotely piloted flight. Trajectory
optimization, dynamic response analysis, controller architecture design and con-
trol synthesis have been carried out by modeling the aircraft dynamics and the sur-
rounding environment conditions. The performance and the compliance to project
requirements have been tested by means of simulations regarding mission profiles,
see [266].

19.3.1 Modeling the MH1000 Platform

The nonlinear model of the aerial platform is characterized by a set of 12 coupled
nonlinear differential equations. The equations of motion are given with reference
to the wind-axes frame, i.e. a system having origin at the vehicle center of gravity
and axes aligned to the flight trajectory. Four blocks of three state variables each
have been identified. The first three state variables are flight speed, angle of at-
tack and sideslip angle, respectively, the next three variables are the stability-axes
components of the angular velocity vector, the third block consists of Euler angles
describing aircraft attitudes. The last block contains the aircraft position coordinates
with respect to the local navigation reference system, see details about the nonlinear
model in [368].

The sensitivity to changes in flight conditions, the assumptions related to the
aerodynamic model, the inaccuracies in geometric and inertial data represent un-
certainties in plant and environment modeling. The design of a flight control sys-
tem which guarantees a suitable level of tolerance to environmental changes and
platform manufacturing/modeling inaccuracies plays a key role whenever stability
and performance requirements should be satisfied. Furthermore, the mathematical
model under attention is obtained by numerical linearization of the full-order non-
linear system representing the aircraft dynamics, so that explicit relationships be-
tween the state space matrices and the uncertain parameters are not available. In
fact, the linearization step should be repeated whenever the values of the uncertain
parameters change, and this leads to a new linearized model. For these reasons, a
simulation-based approach which utilizes randomized algorithms is particularly at-
tractive, while standard robustness tools or gain scheduling techniques do not seem
very effective in this case. The simulation-based approach makes use of uncertainty
randomization for both controller synthesis as well as probabilistic analysis.

The numerical simulations that have been performed are based on the assumption
of decoupled dynamics and deal with the longitudinal plane dynamics stabilization.
In particular, attention is focused on a full state feedback longitudinal control of the
form u= −Kx = ηe, which is controlled by the symmetrical elevon deflection ηe .
The state vector is defined as x = [V α β θ ]T , where V is the flight speed, α is
the angle of attack, β is the pitch rate and θ is the pitch angle. The state and input
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Table 19.2 Plant and flight condition uncertainties

Index Parameter pdf q̄i % q−i q+i

1 flight speed [ft/s] U 42.65 ±15 36.25 49.05

2 altitude [ft] U 164.04 ±100 0.00 328.08

3 mass [lb] U 3.31 ±10 2.98 3.64

4 wingspan [ft] U 3.28 ±5 3.12 3.44

5 mean aero chord [ft] U 1.75 ±5 1.67 1.85

6 wing surface [ft2] U 5.61 ±10 5.06 6.18

7 moment of inertia [lb ft2] U 1.34 ±10 1.21 1.48

matrices that have been obtained by numerical linearization at the nominal reference
condition V = 43 ft/s and h= 164 ft are given by

A=

⎡
⎢⎢⎣
−0.293 −0.486 −0.0002 −9.812
−0.113 −6.181 0.914 −0.0003
0.000 −64.83 −8.074 0.000
0.000 0.000 1.000 0.000

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

−0.7914
−3.9250
−443.487

0.000

⎤
⎥⎥⎦ .

19.3.2 Uncertainty Description

Structured parametric uncertainties include flight conditions (dynamic pressure),
aerodynamic data (stability and control derivatives), geometric and inertial data,
which may take into account manufacturing inaccuracies. Uncertainties related to
the flight conditions can be ascribed to the real flight in a non-ideally-calm air and
to the need to cover a portion of the flight envelope as large as possible. Uncertain-
ties concerning the aerodynamic data may be related to experimental measurement
errors or computational approximations due to round-off errors.

Uniform and Gaussian probability density functions have been used to describe
random parametric uncertainties. In particular, 7 geometric, inertial and opera-
tional uncertainties are characterized by a uniform probability density function U
with given lower and upper bounds q−i , q+i , i = 1,2, . . . ,7. The uncertainties re-
lated to the aerodynamic database are characterized by a Gaussian probability den-
sity function N with mean value q̄i , i = 8,9, . . . ,16 and standard deviation σi ,
i = 8,9, . . . ,16. Gaussian pdf has been chosen in this case due to the different na-
ture of the parameters: the value of the aerodynamic derivative, for example, should
have higher probability close to the nominal value experimentally or numerically
obtained. Although the uncertainties are partially coupled through the aerodynamic
database, they are treated as independent, so that the random samples may be gen-
erated by iid Monte Carlo simulations.

Table 19.2 shows the nominal values q̄i of 7 uncertain parameters, the prescribed
relative values of uncertainty and the resulting lower and upper bounds q−i , q

+
i
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Table 19.3 Aerodynamic
database uncertainties Index Parameter pdf q̄i σi

8 CX coefficient [–] N −0.01215 0.00040

9 CZ coefficient [–] N −0.30651 0.00500

10 Cm coefficient [–] N −0.02401 0.00040

11 CXq coefficient [rad−1] N −0.20435 0.00650

12 CZq coefficient [rad−1] N −1.49462 0.05000

13 Cmq coefficient [rad−1] N −0.76882 0.01000

14 CXq coefficient [rad−1] N −0.17072 0.00540

15 CZq coefficient [rad−1] N −1.41136 0.02200

16 Cmq coefficient [rad−1] N −0.94853 0.01500

(for simplicity only approximate values of these bounds are given in the table).
Table 19.3 shows the numerical values of 9 aerodynamic coefficients q̄i which en-
ter in the nonlinear model and their standard deviation σi , see [266] for a precise
definition of these coefficients. They are considered as random parameters with a
Gaussian density with the mean value and standard deviation shown in the table.

19.3.3 Randomized Control Algorithms

Three randomized algorithms, which should be used sequentially, have been devel-
oped in [266]; the block diagrams are shown in Figs. 19.4 and 19.5. The main tasks
performed by these algorithms are now summarized.

1. Algorithm RGS (Random Gain Synthesis) is based upon the selection of two
“critical uncertain parameters” which are the flight speed and the mass. The se-
lection of a reduced number of critical uncertain parameters reduces the compu-
tational workload in the design phase. All the remaining 14 parameters are set to
their nominal values. Taking a uniform pdf for the controller gains, and impos-
ing suitable bounds, Algorithm RGS provides a set of candidate controller gains
which satisfy a given specification property. A termination criterion regarding the
number of randomly generated samples, which guarantees a given probabilistic
accuracy and confidence, is imposed.

2. Algorithm RSRA (Random Stability Robustness Analysis) uses the set of can-
didate gains previously obtained and a given specification property regarding a
root confinement region for the closed-loop poles of the linearized system. This
algorithm is based on randomization of all uncertain parameters (and not only
the critical ones), according to the specified probability distributions. Empirical
probabilities that the closed-loop specification property is satisfied are computed
using the Chernoff bound.

3. Algorithm RPRA (Random Performance Robustness Analysis) has a structure
similar to Algorithm RSRA, but uses a different specification property, based on



304 19 Applications of Randomized Algorithms

Fig. 19.4 Block diagrams of the algorithms RGS (left) and RSRA (right)

Fig. 19.5 Block diagram of
the algorithm RPRA

performance metrics such as flying and handling qualities, see [24]. Empirical
probabilities of achieving these performance metrics are also computed.

The set of controller gains which have been obtained in [266] is given by

K = [0.000109 0.091832 0.015300 −0.004044]T .
These gains satisfy a good compromise between stability and performance require-
ments, in terms of probability degradation features. For validation purposes, the
time domain responses of the complete nonlinear system have been analyzed in the
closed-loop configuration, by implementing these controller gains, see the numeri-
cal values reported in [266].
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Fig. 19.6 Examples of two network topologies

19.4 Performance of High-Speed Networks

Wired and wireless communication networks have received increasing attention in
the control literature, as evidenced by the appearance of several special issues, see
[19, 25, 26, 76, 183]. Various approaches and solutions have been developed in
this context, including modeling of TCP/IP traffic, congestion control for available
bit rate (ABR) service in asynchronous transmission mode (ATM) networks, packet
marking schemes and protocols for the Internet, application of low-order controllers
for active queue management (AQM) and related problems. One of the critical issues
at the heart of efficient operations of high-speed networks is congestion control. This
involves the problem of regulating the source rates in a decentralized and distributed
fashion, so that the available bandwidths on different links are used most efficiently
while minimizing or totally eliminating loss of packets due to queues at buffers
exceeding their capacities. This issue needs to be accomplished under variations in
network conditions such as packet delays due to propagation as well as to queuing
and bottleneck nodes.

In this section, which is based on [17], randomized algorithms are used to per-
form a stability analysis of a model introduced in [16], which makes use of nonco-
operative game theory [34].

19.4.1 Network Model

Fluid models, which replace discrete packets with continuous flows, are widely used
in addressing a variety of network control problems, such as congestion control,
routing and pricing. The topology of the network studied here is characterized by a
set of nodes N = {1, . . . ,N} and a set of links L= {1, . . . ,L}, with each link � ∈ L
having a fixed capacity C� > 0 and an associated buffer size b� ≥ 0. The set of users
is denoted by M = {1, . . . ,M}. Each user is associated with a unique connection
between a source and a destination node. The connection is a path that connects
various nodes, see Fig. 19.6 for an illustration.
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For the ith user, we consider a path Li which is a subset of L. The nonnegative
flow xi sent by the ith user over the path Li satisfies the bounds

0 ≤ xi ≤ xi,max

where the upper bound xi,max on the ith user’s flow rate may be a user-specific
physical limitation. This upper bound cannot exceed the minimum capacity of the
links on the route

xi,max ≤ min
�∈Li

C�.

As in [229], the model studied here makes use of a binary routing matrix R that
describes the relation between the set of routes associated with the users and links.
That is, for each user i ∈M and link � ∈ L the entries of the routing matrix R are
given by

[R]�,i =
{

1 if source i uses link �;
0 otherwise.

Using this matrix representation, we have the inequality

Rx ≤ C
where x = [x1 · · · xM ]T is the users flow rate vector and C = [C1 · · · CL]T is the
link capacity vector. If the aggregate sending rate of users whose flows pass through
link � exceeds the capacity C� of the link, then the arriving packets are queued in
the buffer b� of the link. The total flow on link � is denoted as x�(t) and is given by

x�(t)=
∑

{i:�∈Li }
xi(t).

Ignoring boundary effects, the buffer level b� at link � evolves in agreement with
the differential equation

ḃ�(t)= x� −C�.

19.4.2 Cost Function

For Internet-style networks, an important indication of congestion is the variation in
queuing delay, defined as the difference between the actual delay experienced by a
packet and the propagation delay of the connection. If the incoming flow rate to a
router exceeds the capacity of the outgoing link, then packets are queued, generally
on a first-come first-served basis, in the corresponding buffer of the router, thus
leading to an increase in the round-trip time (RTT) of packets. Hence, the RTT
on a congested path is longer than the base RTT, which is defined as the sum of
propagation and processing delays on the path of a packet. The queuing delay τ� at
a link can be modeled as

τ̇�(x, t)= 1

C�
ḃ�(t)= 1

C�

(
x�(t)−C�

)
.
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Thus, the queuing delay that a user experiences is the sum of queuing delays on its
path

τ i(x, t)=
∑
�∈Li

τ�(x, t).

The goal is to make use of variations in RTT to devise a congestion control and
pricing scheme. Then, the cost function for the ith user at time t is the difference
between a linear pricing function proportional (through a parameter qi ) to the queu-
ing delay, and a strictly increasing logarithmic utility function multiplied by a user
preference parameter ui

Ji(x, t)=
∑
�∈Li

(
qiτ�(x, t)xi

)− ui log(xi + 1).

Since the users pick their flow rates in a way that would minimize their cost func-
tions, we adopt a dynamic update model whereby each user changes the flow rate
proportional to the gradient of the cost function with respect to the flow rate. Thus,
the algorithm for the ith user is defined as

ẋi (t)=−J̇i (x, t)= ui

xi + 1
− qiτ i(t)

where we have ignored the effect of the ith user’s flow on the delay τ i .
Next, we observe that the users update their flow rates only at discrete time in-

stances corresponding to multiples of RTT. Hence, we discretize this equation, ob-
taining

xi(k + 1)= xi(k)+ κi
[

ui

xi(k)+ 1
− qi

∑
�∈Li

τ�(k)

]
(19.7)

where xi(0) = 0 and κi is a user-specific stepsize constant, which can be set to
one without loss of generality. The queue model is discretized in a similar manner,
obtaining

τ�(k + 1)= τ�(k)+ 1

C�

∑
{i:�∈Li }

xi(k)− 1 (19.8)

where τ�(0)= 0.

19.4.3 Robustness for Symmetric Single Bottleneck

In the case of a single bottleneck node we essentially have a single link of interest,
for which we denote the associated delay with τ = τ� and the capacity with C = C�.
Then, the unique equilibrium state of the system described by (19.7) and (19.8) is
given by
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x∗i = ui

qiτ ∗
− 1;

τ ∗ = 1

C +M
M∑
i=1

ui

qi
.

(19.9)

Letting x̃i (k)
.= xi(k)− x∗i and τ̃

.= τ(k)− τ ∗, the system (19.7) and (19.8) with
a single bottleneck link and κi = 1 can be rewritten around the equilibrium state as

x̃i (k + 1)= x̃i (k)+ ui

x̃i(k)+ x∗i + 1
− qi

(̃
τ(k)+ τ ∗);

τ̃ (k + 1)= τ̃ (k)+ 1

C

M∑
i=1

x̃i (k).

(19.10)

Linearizing this equation around x̃∗ = 0 and τ̃ ∗ = 0, we easily obtain

x̃i (k + 1)=
[

1 − ui

(x∗i + 1)2

]
x̃i (k)− qi τ̃ (k);

τ̃ (k + 1)= τ̃ (k)+ 1

C

M∑
i=1

x̃i (k).

(19.11)

Letting

q = [q1 · · · qM ]T ;

v =
[

u1

(x∗1 + 1)2
· · · uM

(x∗M + 1)2

]T
we rewrite (19.11) in matrix form[

x̃(k + 1)
τ̃ (k + 1)

]
=A(q, v,C)

[
x̃(k)

τ̃ (k)

]
(19.12)

where the matrix A(q, v,C) is given by

A(q, v,C)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − v1 0 0 . . . −q1

0 1 − v2 0 . . . −q2

0 0 1 − v3 . . . −q3

...
...

...
. . .

...

1
C

1
C

1
C

. . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

This system is (locally) stable if and only if A(q, v,C) is a Schur matrix, i.e.
all its eigenvalues λ(q, v,C) lie in the open unit circle. Thus, the objective is to
determine conditions on the parameters q , v and C such that |λ(q, v,C)|< 1. This
task proves to be prohibitively complex in general, and hence we consider first the
special situation when the parameter v is symmetric across all M users. That is,



19.4 Performance of High-Speed Networks 309

Fig. 19.7 Eigenvalues of the
matrix A(q, v,C) in the
complex plane for the
symmetric bottleneck case
with 20 users

we take vi = v for all i = 1, . . . ,M . In this case, the characteristic equation of the
matrix A(q, v,C) is given by

det
(
λI −A(q, v,C))= (λ− 1 + v)M−1

[
λ2 − (2 − v)λ+ 1 − v+

M∑
i=1

qi

C

]

and the matrix A(q, v,C) has M − 1 repeated real eigenvalues at 1 − v and two
(possibly complex) eigenvalues at

1 − v
2
±
√√√√v2

4
−

M∑
i=1

qi

C
.

First, in order to gain further insight into stability properties, the eigenvalues
of the matrix A(q, v,C) for qi = 1,000, i = 1, . . . ,20, v = 1 and C = 20,000 are
computed and shown in Fig. 19.7. We note that this matrix is ill-conditioned with a
condition number in the order of 105.

Finally, we conclude that the single bottleneck link system given by (19.10) is
(locally) stable around its equilibrium state (19.9) if and only if the parameters
q1, . . . , qM, v and C lie in the region defined by the inequalities

1

C

M∑
i=1

qi < v < 2.

The general nonsymmetric case is studied next using randomized algorithms.

19.4.4 Randomized Algorithms for Nonsymmetric Case

We saw in the previous section that (local) stability and robustness can be studied
analytically when the user utility preference parameters are the same for all users.
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If this is not the case, however, the eigenvalues of A(q, v,C) cannot be expressed
in closed form, and robustness of the system (19.12) is studied using randomized
algorithms.

In particular, we investigate stability and robustness under parameter variations
of the linearized single bottleneck link system (19.12) through randomization. That
is, we investigate the effect of pricing and user parameters on the (local) stability
of the system when q and v are random vectors with given pdfs fq(q) and fv(vu)

and support Bq and Bv , respectively. More precisely, for various values of C, the
objective is to compute the probability

PR{network stability} =
∫
BG
fq(q)fv(v)dq dv

where the good set is given by

BG = {q ∈ Bq, v ∈ Bv :A(q, v,C) Schur
}
.

In particular, we performed simulations for the case ofM = 4 users with param-
eter ranges

Bq =
{
q ∈R

4 : qi ∈
[
0,1×103], i = 1, . . . ,4

};
Bv =

{
v ∈R

4 : vi ∈ [0,1], i = 1, . . . ,4
} (19.13)

and 22 fixed values of capacity in the interval C ∈ [0,3×104]. The values of C are
chosen by performing a set of experiments regarding the stability of the network for
different values of link capacity, obtaining

C = {0.1,0.5,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,18,20,22,25,30}×103.

(19.14)

19.4.5 Monte Carlo Simulation

We now present the results of the simulations, which are obtained by means of Al-
gorithm 10.1. This randomized algorithm is based upon the Monte Carlo method
discussed in Chap. 7. In particular, we consider random vectors with uniform prob-
ability density functions fq(q) and fv(v) and support sets given in (19.13). Since
these sets are rectangles, linear congruential generators described in Sect. 14.1.1,
or more sophisticated methods studied in the same chapter, can be immediately
used for generation of pseudo-random samples of q and v. First, we choose a level
of confidence δ = 0.001 and accuracy ε = 0.003, and we determine the sample
size N necessary to guarantee the required probabilistic levels. To this end, we use
the Chernoff bound given in (8.14), obtaining N ≥ 4.23×105. Then, we choose
N = 450,000 and construct the multisample

q(1...N) = {q(1), . . . ,q(N)}.
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Similarly, we generate

v(1...N) = {v(1), . . . ,v(N)}.
Subsequently, for fixed values of C given in (19.14), we compute

A
(
q(i),v(i),C

)
for i = 1, . . . ,N . Then, the empirical probability that the system (19.12) is stable is
given by

p̂N = NG
N

where NG is the number of “good” samples for which the system is stable. More
precisely, we construct the indicator function of the good set

IBG(q, v,C)=
{

1 if q, v ∈ BG;
0 otherwise.

(19.15)

Then, the empirical probability is given by

p̂N = 1

N

N∑
i=1

IBG
(
q(i),v(i),C

)
.

Hence, we conclude that the inequality∣∣PR{network stability} − p̂N
∣∣≤ 0.003

holds with probability at least 0.999.

19.4.6 Quasi-Monte Carlo Simulation

To validate the results, different sampling schemes for the parameters q and v are
studied. That is, for comparison, we also compute an estimate of the volume of BG
using the quasi-Monte Carlo method (see Chap. 7 for a presentation of this method),
which is a deterministic mechanism for generating samples which are “evenly dis-
tributed” within the sets of interest. In this case, no probability density function is
specified for the parameter vectors q and v and the samples are constructed within
the unit box. The samples obtained are then subsequently rescaled in the set Bq de-
fined in (19.13). In particular, the Halton sequence, see Definition 7.5, is used for
generation of the point sets

q(1...N) = {q(1), . . . , q(N)};
v(1...N) = {v(1), . . . , v(N)}.

These point sets have the property to minimize an upper bound on the star discrep-
ancies D∗

N(q
(1...N)) and D∗

N(v
(1...N)), see Theorem 7.8. In particular, considering

a binary base (i.e. bi = 2 for i = 1,2,3,4), a sample size N = 300,000 guaran-
tees thatD∗

N(q
(1...N)) < 0.0421, see the bound (7.21). Obviously, the same bound is



312 19 Applications of Randomized Algorithms

obtained for the point set v(1...N). Notice that, in principle, these bounds on the dis-
crepancy cannot be used to estimate the integration error (i.e. the error made when
estimating Vol(BG)) using the Koksma–Hlawka inequality, see Theorem 7.5, since
the function to be integrated is the indicator function of the set BG and does not have
bounded variation V (n)(g). Nevertheless, for comparison purposes, we still employ
the QMC technique here, without relying on the theoretical bound of Theorem 7.5.
Hence, for fixed values of C given in (19.14), we evaluate

A
(
q(i), v(i),C

)
for i = 1, . . . ,N , and we compute

NG

N
= 1

N

N∑
i=1

IBG
(
q(i), v(i),C

)
where the sample size N = 300,000 is used.

The same approach for computing NG/N is then followed using the Sobol’ and
Niederreiter sequences instead of the Halton sequence. Additional experiments re-
garding the stability of the network are performed using the quasi-Monte Carlo
method for optimization, see Sect. 7.3. In this case, we construct an “optimal” grid
minimizing the dispersions dN(q(1...N)) and dN(v(1...N)) according to the Sukharev
sampling criterion, see Theorem 7.12. In particular, the point set q(1...N) is con-
structed as follows

q
(k)
i = 25(2k− 1)

for i = 1,2,3,4 and k = 1, . . . ,20. The sample size is therefore N = 204 =
160,000. It can be immediately verified, see Theorem 7.12, that this sample size
guarantees dN(q(1...N))≥ 0.025. Similarly, for v(1...N), we take

v
(k)
i = 0.025(2k− 1)

for i = 1,2,3,4 and k = 1, . . . ,20. Then, we compute

NG

N
= 1

N

N∑
i=1

IBG
(
q(i), v(i),C

)
where N = 160,000.

19.4.7 Numerical Results

The results of the numerical experiments involving Monte Carlo and quasi-Monte
Carlo methods are given in Figs. 19.8 and 19.9, which show the network stability
degradation versus capacity. In particular, for the Monte Carlo method the empirical
probability p̂N is plotted for the 22 values of capacity given in (19.14). For the
quasi-Monte Carlo method, deterministic estimates NG/N of Vol(BG) for Halton,
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Fig. 19.8 Network stability
versus capacity forM = 4
users using Monte Carlo and
quasi-Monte Carlo methods

Fig. 19.9 A closer look at
Fig. 19.8 for larger values of
network stability

Sobol’, Niederreiter sequences as well as for the optimal grid are also shown for the
same values of capacity.

As a general comment, as expected, we observe that the stability of the system
improves as capacityC increases. We also notice that the difference between the var-
ious sampling schemes is relatively small. However, the gridding method produces
results which are slightly more “optimistic.” Additional simulations show that these
results are quite accurate even with a smaller sample size. One explanation for this
phenomenon may be that the linearized system has relatively simple stability bound-
aries in the parameter space, see [17] for details. In the same paper, further results
for a larger number of users are given, and stability properties of general network
topologies with multiple bottleneck links are analyzed.
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Fig. 19.10 Flexible structure with four noncolocated sensors and actuators

19.5 Probabilistic Robustness of Flexible Structures

We consider an example concerning a five-mass spring–damper model with four
force actuators and four position sensors, as shown in Fig. 19.10. This plant has a
standard second-order representation of the form

Mξ̈ +Lξ̇ +Kξ =Eau;
y =Esξ

where ξ ∈ R
5 is the mass displacement vector, u ∈ R

4 is the input force vector,
y ∈R

4 is the output displacement vector, and

Ea =

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎦
T

, Es =

⎡
⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦

are the input and output influence matrices. The mass, damping and stiffness matri-
ces,M , L, K , are given by

M = diag
([m m m m m]);

L=

⎡
⎢⎢⎢⎢⎣

2b −b 0 0 0
−b 2b −b 0 0
0 −b 2b −b 0
0 0 −b 2b −b
0 0 0 −b 2b

⎤
⎥⎥⎥⎥⎦ ;

K =

⎡
⎢⎢⎢⎢⎣

2k −k 0 0 0
−k 2k −k 0 0
0 −k 2k −k 0
0 0 −k 2k −k
0 0 0 −k 2k

⎤
⎥⎥⎥⎥⎦ .

The nominal values of the parameters are (in normalized units)m= 1, k = 100, and
b= 1. A regulator R(s) has been synthesized based on the nominal plant model, in
order to improve the dynamic response of the plant. The state space representation
of this regulator is given by
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AR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.1654 −0.0761 −0.0301 −0.0095
0 −0.3897 −0.1951 −0.0858 −0.0301
0 −0.1951 −0.3983 −0.1948 −0.0764
0 −0.0858 −0.1948 −0.3882 −0.1644
0 −0.0301 −0.0764 −0.1644 −0.3114

−200.0136 100.0057 −0.0012 −0.0139 −0.0084
99.9777 −199.6176 99.9514 −0.0224 −0.0139
−0.0157 99.8529 −199.6369 99.9510 −0.0003
−0.0019 −0.0900 99.8533 −199.6191 100.0042

0 −0.0272 −0.0578 99.9230 −199.5654

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−2.3073 0.8348 −0.0769 −0.0304 −0.0096
0.8348 −2.3845 0.8042 −0.0864 −0.0303
−0.0769 0.8042 −2.3947 0.8039 −0.0767
−0.0304 −0.0864 0.8039 −2.3860 0.8339

0 0 0 1 −2.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

BR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1654 0.0761 0.0301 0.0095
0.3897 0.1951 0.0858 0.0301
0.1951 0.3983 0.1948 0.0764
0.0858 0.1948 0.3882 0.1644
0.0301 0.0764 0.1644 0.3114
−0.0073 0.0085 0.0167 0.0098
−0.4009 0.0561 0.0378 0.0229
0.1167 −0.3798 0.0715 0.0343
0.0719 0.1109 −0.3885 0.0555
0.0272 0.0578 0.0770 −0.4346

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

CR =

⎡
⎢⎢⎣
−0.0136 −0.0016 0.0073 0.0029 0.0014
−0.0223 −0.0185 0.0074 0.0154 0.0090
−0.0157 −0.0305 −0.0166 0.0225 0.0340
−0.0019 −0.0181 −0.0357 −0.0076 0.0596

−0.3073 −0.1652 −0.0769 −0.0304 −0.0096
−0.1652 −0.3845 −0.1958 −0.0864 −0.0303
−0.0769 −0.1958 −0.3947 −0.1961 −0.0767
−0.0304 −0.0864 −0.1961 −0.3860 −0.1661

⎤
⎥⎥⎦

and DR = 04,4. Notice that, although the uncontrolled system is structurally sta-
ble, the introduction of feedback may cause instabilities for some parameter values.
Hence, the objective is to analyze the robustness properties of the feedback con-
nection of the plant and the above regulator, with respect to variations of the plant
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Fig. 19.11 Controlled flexible structure with uncertainty

parameters and unmodeled dynamics. Specifically, we consider parametric uncer-
tainty on the damping and stiffness parameters

b= b0 + 0.5q1, k = k0 + 0.5q2

with |q1| ≤ 1 and |q2| ≤ 1, and dynamic uncertainty with a frequency shape de-
scribed by the weight function

W(s)= 0.1035s + 1

0.02071s + 1
.

With a standard procedure, we express the uncertain plant as a feedback connection
of an augmented nominal plant (say P0) and the uncertainty. The augmented plant
P0 has ten additional inputs and outputs, corresponding to the uncertain parameters
b and k, each of which is repeated five times in the state space representation of
the plant. The flexible structure with controller and uncertainty is then modeled
in the classical M–Δ form, as shown in Fig. 19.11, where the “M” part of the
interconnection is enclosed in the dashed box.

The matrixΔ representing the uncertainty in the system is structured and consists
of two repeated real parameters q1, q2 and one full dynamic block Δ1 ∈ C

4,4. That
is, Δ is assumed to belong to the structured set

D= {Δ :Δ= bdiag(q1I5, q2I5,Δ1)
}
.

For this M–Δ system, lower and upper bounds 1/μ+ and 1/μ− of the robustness
margin 1/μ have been computed with the Matlab μ Analysis and Synthesis Toolbox
[38], obtaining

1/μ+ = 1.172, 1/μ− = 1.185.

This deterministic analysis shows that the system interconnection is stable for all
structured perturbations Δ having norm smaller than 1/μ+, see Sect. 3.7.

Next, we proceed to a probabilistic analysis of the robust stability properties of
the system for perturbations whose radius goes beyond the deterministic margin
1/μ+. That is, we study how the probability of stability degrades with increasing
radius of the uncertainty. Formally, for fixed ρ > 0, we consider the structured set

BD(ρ)=
{
Δ ∈D : σ̄ (Δ)≤ ρ}
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and assume that the uncertainty Δ is a random matrix with uniform probability
distribution in this set. Hence, letting (A,B,C,D) be a state space representation
of systemM , we define

PR{stability} = PR
{
Δ ∈ BD(ρ) :A+BΔ(I −DΔ)−1C is stable

}
and, for given ε ∈ (0,1), we define the probabilistic stability radius

r̄(ε)
.= sup

{
ρ : PR{stability} ≥ 1 − ε}.

Given a probability level ε, the probabilistic stability radius r̄(ε) gives the maxi-
mum size of the perturbation Δ, measured according to the spectral norm, so that
the probability PR{stability} is at least 1 − ε. Once PR{stability} is estimated by
means of a randomized algorithm (see e.g. Sect. 10.3), we construct the perfor-
mance degradation function, i.e. the plot of the probability of stability as a function
of the radius ρ. This plot may be compared with the classical worst-case stability
margin 1/μ+, obtaining

r̄(ε)≥ 1/μ+
for any ε ∈ (0,1). This fact, in turn, implies that the margin computed with proba-
bilistic methods is always larger than the classical worst-case margin, at the expense
of a risk expressed in probability.

Taking ε = δ = 0.02, by means of the Chernoff bound (see Sect. 8.3)

N ≥ log 2
δ

2ε2

we obtainedN ≥ 23,026. Then, we estimated the performance degradation function
for 40 equispaced values of ρ in the range [0.15,2.1]. For each grid point ρk ∈
[0.15,2.1] the probability of stability is estimated as

p̂N(ρk)= 1

N

N∑
i=1

I
(
Δ(i)

)
where

I
(
Δ(i)

)= {1 if A+BΔ(i)(I −DΔ(i))−1C is stable;
0 otherwise.

where Δ(i) is extracted uniformly at random in the set BD(ρk). The accuracy of this
estimation is such that

PR
{∣∣̂pN(ρk)− PR{stability}∣∣≤ 0.02

}≥ 0.98.

The plot of the obtained realizations of p̂N(ρ) as a function of ρ is shown in
Fig. 19.12 together with the deterministic robustness margin 1/μ+. From this plot
we observe, for instance, that if a 1 % loss of probabilistic performance may be
tolerated, then the stability margin may be increased by approximately 64 % with
respect to its deterministic counterpart. In fact, the risk-adjusted stability margin for
a probability level ε = 0.01 is r̄(0.01) ≈ 1.93. In addition, we notice that the esti-
mated probability is equal to one up to ρ ≈ 1.4. We conclude that, in this example,
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Fig. 19.12 Degradation of
the probability of stability for
the controlled structure

even if the upper and lower bounds of μ approximately coincide, so that 1/μ is a
nonconservative deterministic measure of robustness, this measure turns out to be
quite conservative in a probabilistic sense.

19.6 Stability of Quantized Sampled-Data Systems

In this section we study the application of RAs for quadratic stability of sampled-
data systems with memoryless quantizers, see [211] for a more detailed analysis.
Quantization involved in control systems has recently become an active research
topic, see e.g. [73, 159, 213]. The need for quantization inevitably arises when dig-
ital networks are part of the feedback loop and it is of interest to reduce the data
rate necessary for the transmission of control signals. Then, a fundamental issue is
to determine the minimum information to achieve the control objectives. Clearly,
if a quantized discrete-time signal takes only a finite number of fixed values, then
the trajectories may go close to an equilibrium but not converge, so that asymptotic
stability is not achieved. Then, various problems may be posed. For example, it is
of interest to clarify how close the trajectories get to the equilibrium point and, if
the sampling period is large, how close do the trajectories stay at the equilibrium
between sampling instants. These questions are addressed in the references previ-
ously listed, and bounds on the trajectories are determined analytically, albeit at the
expense of crude conservatism.

19.6.1 Problem Setting

We now present the setup of quantized control systems and formulate the re-
lated quadratic stability problem. Consider the continuous-time system depicted in
Fig. 19.13.
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Fig. 19.13 Quantized
sampled-data system where
ST is the sampler, HT is the
zero-th order hold and Qd is
the quantizer

The pair (A,B2), which is assumed stabilizable, represents a linear time-
invariant plant with the state equation

ẋ =Ax +B2u (19.16)

with initial state x(0)= x0 ∈ R
ns given but arbitrary. We study the case when A is

not stable, because otherwise the problem becomes trivial. The output of the sampler
ST is a discrete-time signal given by

xd(k)= x(kT )
where k is a positive integer and T > 0 is the sampling period. The output of zero-th
order hold HT is a continuous-time signal defined by

u(t)= ud(k)
where t ∈ [kT , (k + 1)T ).

We now introduce the definitions of cell and (memoryless) quantizer.

Definition 19.1 (Cell of the quantizer) Given a countable index set I , a partition
{Qi}i∈I ⊂R

ns consists of bounded sets (called the cell of the quantizer) such that:

1. Qi ∩Qk = ∅ for i �= k and
⋃
i∈I Qi =R

ns ;
2. 0 ∈Q0;
3. 0 /∈ ∂Qi , i ∈ I .

Definition 19.2 (Memoryless quantizer) Given a set of cells {Qi}i∈I and a set of
inputs {ui}i∈I , a quantizer Qd is a mapping from R

ns to {ui}i∈I defined by

Qd(x)= ui if x ∈Qi , i ∈ I. (19.17)

In words, a quantizer Qd maps a state x ∈ R
ns in a cell Qi to the correspond-

ing input ui . Various types of quantizer are studied, including the uniform and the
logarithmic quantizer, see Fig. 19.14 for an illustration of the latter.

Next, following the quadratic stabilizability approach described in Sect. 4.2.2,
we define a quadratic Lyapunov function V (x)= xT Px, for positive definite P � 0.
The time derivative of this function along trajectories of the system (19.16) is given
by

V̇ (x,u)= d

dt
V
(
x(t)

)= (Ax +B2u)
T Px + xT P (Ax +B2u).
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Furthermore, for positive definite R � 0, the set{
x ∈R

ns : V̇ (x,u)≤−xT Rx}
is the set of states at which the Lyapunov function decreases when the control u is
applied. In fact, taking the state feedback u=Kx, we compute

V̇ (x,u)= xT (A+B2K)
T Px + xT P (A+B2K)x.

Hence, we can choose

R = (A+B2K)
T P + P(A+B2K).

Based on this control Lyapunov function approach, we study quadratically attrac-
tive sets for quantized sampled-data systems. This study leads to the construction of
a specific randomized algorithm. We now state the definition of a quadratically at-
tractive set.

Definition 19.3 (Quadratically attractive set) Given r > 0, positive definite matrices
P,R � 0 and a fixed quantizer Qd , for the closed-loop system in Fig. 19.13, the
ball B‖·‖2(r) = {x ∈ R

ns : ‖x‖2 ≤ r} of radius r > 0, is quadratically attractive
from B‖·‖2(r) with respect to P,R if every trajectory of the system (19.16) with
x(0) ∈ B‖·‖2(r) satisfies either

V̇
(
x(t), u(t)

)≤−x(t)T Rx(t)
or

x(t) ∈ E
(
0, r2λminP

−1)= {x ∈R
ns : xT Px ≤ r2λmin

}
. (19.18)

for all t ≥ 0, where λmin denotes the smallest eigenvalue of P .

We note that quadratic attractiveness coincides with (asymptotic) stability if
r = 0 and r =∞. We also observe that this definition of attractiveness for sampled-
data system is in the continuous-time domain. Hence, the Lyapunov function
V (x(t))must decrease at a certain rate even between sampling instants and the ellip-
soid E(0, r2λminP

−1)= {x ∈R
ns : V (x)≤ r2λmin} is an invariant set. In particular,

E(0, r2λminP
−1) is the largest level set of V (x)= xT Px contained in B‖·‖2(r). We

now formally define the quadratic stability problem of quantized sampled-data sys-
tems.

Problem 19.2 (Quadratic stability of quantized systems) Given r > 0, a fixed quan-
tizer Qd , a sampling period T > 0 and R � 0, find P � 0 and r > 0 such that, for
the closed-loop system in Fig. 19.13, the ball B‖·‖2(r) is quadratically attractive
from the ball B‖·‖2(r) with respect to P , R.

Remark 19.1 (Quadratic attractiveness of quantized systems) The setup of this prob-
lem is similar to that in [213], where stabilization of linear sampled-data systems
with memoryless quantizers is studied. More precisely, the quantizer design prob-
lem considered in this reference can be roughly summarized as follows: given r > 0,
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Fig. 19.14 Invariant sets and
partition of a logarithmic
quantizer

state feedback u=Kx such that A+B2K is stable, and matrices P,R � 0, design a
quantizerQd with sampling period T and r for quadratic attractiveness with respect
to P,R. As discussed previously, we can easily verify that, taking the state feedback
u=Kx, the closed-loop continuous-time system ẋ = (A+B2K)x is quadratically
stable with respect to P,R, where R = (A+B2K)

T P + P(A+B2K).
The class of quantizers considered in [213] is somewhat restricted compared with

that in Definition 19.2, but it allows the finding of an analytic solution. However, the
drawback of the approach proposed in [213] lies in the conservatism in the design,
especially in the derivation of T and r . The analysis method based on randomized
algorithms provides a way to obtain less conservative estimates of the performance
of the designed system, at the expense of obtaining a probabilistic solution instead
of a guaranteed one.

We denote by φ(x0, u, t) the state of the system (19.16) at time t corresponding
to the initial conditions x0 = x(0) ∈ R

ns and the constant control input u. That is,
we have

φ(x0, u, t)= eAtx0 +
[∫ t

0
eAτB2 dτ

]
u.

Similar to (19.18), we also consider the ellipsoid

E
(
0, r2λmaxP

−1)= {x ∈R
ns : V (x)≤ r2λmax

}
where λmax is the largest eigenvalue of P . We note that E(0, r2λmaxP

−1) is
the smallest ellipsoid containing B‖·‖2(r). In addition, we consider two ellipsoids
E ⊆ E ⊂ R

ns which provide estimates of the invariant sets E(0, r2λminP
−1) and

E(0, r2λmaxP
−1). A sketch of these sets and a partition of a logarithmic quantizer

is given in Fig. 19.14. We notice that the partition cells are strips orthogonal to the
subspace spanned by KT and become wider as the distance from the origin grows.

We now state without proof a simple sufficient condition for quadratic attractive-
ness, see [211] for details.

Lemma 19.3 (Quadratic attractiveness) Suppose that P � 0 and r > 0 satisfy the
following conditions:

1. E ⊂ E(0, r2λminP
−1)⊂ E(0, r2λmaxP

−1)⊂ E ;
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2. For every x0 ∈ E and t ∈ [0, T ], we have

φ
(
x0,Qd(x0), t

) ∈ {x ∈R
ns : V̇ (x,Qd(x0)

)≤−xT Rx}∪ E . (19.19)

Then, the ball B‖·‖2(r) is quadratically attractive from B‖·‖2(r) with respect to P ,
R for the closed-loop system shown in Fig. 19.13.

There are several consequences of this lemma. First, since the ellipsoid
E(0, r2λminP

−1) is an invariant set contained in E , all trajectories starting in the
ball B‖·‖2(r) remain in this set. A second consequence is that the region where the
Lyapunov function V (x(t)) increases is contained in E . Therefore, all trajectories
of the system (19.16) enter E(0, r2λminP

−1), because this is also an invariant set.

19.6.2 Randomized Algorithm

In this section, we describe the iterative algorithm used for constructing a quadratic
Lyapunov function and for finding P � 0 such that the second condition in
Lemma 19.3 holds. This algorithm falls in the general category of sequential ran-
domized algorithms described in Chap. 11. However, we require probability density
functions having supporting sets depending on the ellipsoid E and the quantization
cells Qi and we perform random generation in both state and time. In particular, we
consider a probability density function fx,i(x, i) associated with the state x and the
cell index i of the quantizer and a pdf ft(t) > 0 for t ∈ [0, T ]. At the kth iteration,
the algorithm randomly generates a pair of state and index (x(k), i(k)) according to
fx,i(x, i) and also randomly generates a set of � time instants {t(i)}�−1

i=0 ⊂ [0, T ] ac-
cording to ft(t). In particular, for P,R � 0, x, i and t ∈ [0, T ], we consider the
function

v(P,x, i, t)= V̇ (φ(x,ui, t), ui)+ φ(x,ui, t)T Rφ(x,ui, t). (19.20)

Clearly, this function has the property that

v(P,x, i, t)≤ 0 (19.21)

if and only if

φ(x,ui, t) ∈
{
x ∈R

ns : V̇ (x,ui)≤−xT Rx}.
Therefore, checking whether the state of the system at time t enters the set of states
{x ∈ R

ns : V̇ (x,ui) ≤ −xT Rx} at which the Lyapunov function decreases can be
executed by a verification of the sign of the function (19.20). Then, at each step of
the algorithm, for randomly generated (x, i) and t, a matrix P is sought for achieving
condition (19.21). Since v is linear in P , its gradient can be easily computed in
closed form. Taking an arbitrary initial matrix P , an update in P may be computed
using a gradient-based or ellipsoid algorithm, see Chap. 11 for details.
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Remark 19.2 (Randomized algorithm for quantized systems) In [211], the various
steps of the algorithm are described precisely. In particular, it is shown that conver-
gence to a feasible solution P � 0 in a finite number of iterations is achieved with
probability one, provided that a solution exists and minor technical assumptions are
satisfied. This feasible solution is a matrix P � 0 which meets the two conditions
given by Lemma 19.3.

The algorithm provides a systematic way to analyze the quantized system with
less conservatism than other approaches, but with the drawback that probabilistic re-
sults, instead of guaranteed solutions, are found. On the other hand, the algorithm is
based on the simple sufficient condition of Lemma 19.3 and has certain redundancy.
For example, the lemma requires that trajectories for all x0 ∈ E and all t ∈ [0, T ]
satisfy (19.19). Therefore, the number of trajectories is generally very high and the
randomized algorithm may become practically intractable. In order to improve its
efficiency, in [211] it is shown that the number of random trajectories which are
generated can be greatly reduced. In particular, it is shown that it is not necessary
to define density functions and perform randomization of the set E , but it suffices to
consider the boundaries of E , E and of the quantization cells Qi .

More generally, in [211] the specific structure of the quantized sampled-data sys-
tems is exploited in order to reduce the computational complexity of the randomized
algorithm. For nonlinear systems, deterministic computational methods are sought
for obtaining less conservative invariant sets, see e.g. [59, 60]. Hence, this method
can be viewed as an alternative to finding probabilistically invariant sets for quan-
tized systems.

19.6.3 Numerical Experiments

The randomized algorithm has been utilized for the magnetic ball levitation system
shown in Fig. 19.15. Details regarding this apparatus are given in [213], where the
quadratic attractiveness for the sampled-data system with a logarithmic quantizer
designed by an analytic method is analyzed. This method, however, is known to
be subject to conservatism. In this section we present numerical results regarding
probabilistic bounds obtained by means of a randomized algorithm, and clarify the
extent of conservatism of the analytic deterministic condition.

In Fig. 19.15, a steel ball of mass M is levitated by the electromagnet. The po-
sition y of the ball is kept at an equilibrium through controlling the voltage v. The
current in the coil is i, and the resistance and inductance of the magnet are R and
L respectively. The system is linearized around an equilibrium [y0 ẏ0 i0]T for the
nominal voltage v0 = 10 V. The resulting state is given by

x = [y − y0 ẏ − ẏ0 i − i0]T
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Fig. 19.15 Magnetic ball
levitation system

and the system matrices A and B2 are

A=

⎡
⎢⎢⎣

0 1 0

2Rg
v0

√
Mg
κ

0 −2Rg
v0

0 0 −R
L

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎣

0

0
1
L

⎤
⎥⎦

where M = 0.068 kg, R = 10Ω , L = 0.41 H, κ = 3.3×10−5 Nm2/A2 and g =
9.8 m/s2.

The sampled-data controller designed in [213] for this system is now described.
First, the optimal state feedback K is determined solving a Riccati equation corre-
sponding to the linear quadratic regulator

AT P0 + P0A− P0B2Q
−1
uu B

T
2 P0 +Qxx = 0

where Quu = 0.878 and

Qxx =
⎡
⎢⎣ 1.15×107 2.17×105 −5.52×104

2.17×105 4.11×103 −1.04×103

−5.52×104 −1.04×103 265

⎤
⎥⎦ .

Further details regarding the selection of these values are given in [213]. The solu-
tion P0 of the Riccati equation is given by

P0 =
⎡
⎢⎣

7.80×105 1.48×104 −3.75×103

1.48×104 279 −70.9

−3.75×103 −70.9 18.0

⎤
⎥⎦

whose eigenvalues are

λ(P0)=
[
7.81×105 2.09×10−4 9.40×10−5]T .

Then, a logarithmic quantizer Qd and a sampling period T are designed so that the
ball B‖·‖2(r) is quadratically attractive from B‖·‖2(r) with respect to P0, γR0, where
r = 32, r = 10, γ = 0.10 and

R0 = (A+B2K)
T P0 + P0(A+B2K).
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We notice that the presence of sampling and quantization requires sacrificing the
decay rate by introducing γ .

We now describe the quantizer considered here. That is, the index set is I =
{0,±1,±2, . . .} and the partition cells Qi , i ∈ I , are given by

Qi =
{ {x :Kx ∈ (−α,α)} if i = 0;
{x :Kx ∈ [sgn(i)αδ|i|−1, sgn(i)αδ|i|)} otherwise

where α = 0.451 and δ = 1.78. The control input values are

ui = sgn(i)βδ|i|−1

where β = 0.652 and i ∈ I . The designed sampling period is Ts = 3.07× 10−3. We
observe that the data considered here are different than the original in [213] for a
change in the coordinate system.

We now discuss the conservatism in the deterministic design considered. First,
although r = 32 is a relatively large value, we observed in simulation that the trajec-
tories of the resulting system generally entered a ball of radius 0.02. We notice that
the different orders of magnitude are partially due to the largest eigenvalue of P0,
which is equal to 7.81×105 and makes its level sets very “narrow.” Moreover, even
when the size of T was doubled, the trajectories still entered a ball of a similar ra-
dius. To obtain less conservative results, we had to run the algorithm several times
consecutively, starting each run with the matrix P resulting from the previous run.
For each run, we used 10,000 samples in state and, for each sampled state, four
samples in time. When there was no update for two runs in a row, we modified r
and/or T .

We now describe the runs with T = 1.5Ts . In the first run, we set P (1) = P0 and
we also took E and E to be level sets of P (1) so that B‖·‖2(r)⊂ E and E ⊂ B‖·‖2(r)

with r = 6.0. Two updates in the cells of the quantizer were observed and P (2) was
obtained. In the next run, we started with P (2) and the corresponding sets E and E .
In this case there was no update in this run nor in the next. Therefore, we set r
to 0.50 and continued in this manner. The results of the runs are summarized in
Table 19.4. After 19 runs with 28 updates, we obtained r = 0.053. The resulting
matrix is given by

P (19) =
⎡
⎣ 7.80×105 1.48×104 −3.75×103

1.48×104 290 −70.3
−3.75×103 −70.3 21.2

⎤
⎦

with eigenvalues

λ
(
P (19))= [7.81×105 11.3 3.20

]T
.

We remark that the largest eigenvalues of P (1) and P (19) almost coincide, but
the others are much larger in P (19). This implies that the level sets of P (19) are
“rounder,” and hence a smaller attractive ball could be obtained.

Subsequently, a time response was calculated for the initial state

x(0)= [0.70×10−3 0 0
]T
.
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Table 19.4 The results of the 19 runs for different values of r and T = 1.5Ts

Run r Number of updates Cell indices at updates

1 6 2 0, −10

2, 3 6 0 none

4 0.5 15 0, 1, −14

5 0.5 9 −6, −11, 13

6 0.5 1 12

7 0.5 1 13

8, 9 0.5 0 none

10–19 0.25–0.053 0 none

Fig. 19.16 Plot of Euclidean
norm of x(t) as a function
of t

The plot of the Euclidean norm of x(t) is depicted in Fig. 19.16 as a function of t .
The horizontal line is shown for r = 0.053. The trajectory of the system goes below
this line; for this trajectory we plotted V (x(t)) and the related function v(P,x, i, t)
in Fig. 19.17 where the solid lines are for P = P (19) and the dashed lines for
P = P (1).

In the top plot the horizontal line corresponds to the size of the level set
E(0, r2λminP

−1) corresponding to P (19) entered by all trajectories. A similar line
for the level set corresponding to P (1) is plotted as well, but this is not visible be-
cause it is too close to zero. For quadratic attractiveness, the function in the bottom
plot should be smaller than zero whenever V (x(t)) is above the horizontal line in
the top plot for every t . The solid lines satisfy this, but not the dashed lines. In a
similar way, we obtained r = 0.040 for T = Ts and r = 0.062 for T = 1.7Ts .
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Fig. 19.17 Top: plot of
V (x(t)) for P (19) (solid) and
V (x(t)) for P (1) (dashed).
Bottom: plot of v(P,x, i, t)
for P (19) (solid) and
v(P,x, i, t) for P (1) (dashed)

19.7 Randomized Algorithms Control Toolbox

A MATLAB toolbox has been developed in order to facilitate and diffuse the use
of randomized techniques within the systems and control community. The RAN-
DOMIZED ALGORITHMS CONTROL TOOLBOX (RACT), see [390], provides con-
venient uncertain object manipulation and implementation of randomized methods
using state-of-the-art theoretical and algorithmic results. Two main features of the
package are a functional approach with m-file templates and a definition of design
problems in generic LMI format using the widely used YALMIP syntax. This first
release of the toolbox provides an easy-to-use interface of current randomized algo-
rithms for control and is intended to be used by researchers, engineers and students
interested in uncertain systems, robust control, optimization and related applica-
tions. The package can be freely downloaded from http://ract.sourceforge.net.

RACT features currently include

1. Definition of a variety of uncertain objects: scalar, vector and matrix uncertain-
ties, with different density functions;

2. Easy and fast sampling of uncertain objects of almost any type;
3. Randomized algorithms for probabilistic performance verification and proba-

bilistic worst-case performance;
4. Randomized algorithms for feasibility of uncertain LMIs using stochastic gradi-

ent, ellipsoid or cutting plane methods;
5. Optimal design methods using scenario approach.

http://ract.sourceforge.net


Appendix

A.1 Transformations Between Random Matrices

We next give a generalization of Theorem 14.2 to the case of functions of random
matrices, see for instance [312].

Theorem A.1 (Functions of random matrices) Let X and Y be two random matrices
with the same number of free elements (x1, . . . , xp) and (y1, . . . , yp) respectively.
Let the pdf of X be fX(X), and let X,Y be related by a one-to-one transformation
Y = g(X). Let h(·) .= g−1(·), then the pdf fY(Y ) is

fY(Y )= fX
(
h(Y )

)
J (X→ Y)

where the Jacobian J (X→ Y) is defined as

J (X→ Y)
.=

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x2
∂y1

· · · ∂xp
∂y1

∂x1
∂y2

∂x2
∂y2

· · · ∂xp
∂y2

...
...

...
∂x1
∂yp

∂x2
∂yp

· · · ∂xp
∂yp

∣∣∣∣∣∣∣∣∣∣∣
.

For the purpose of calculation, it is sometimes desirable to express the Ja-
cobian in terms of the free elements of X and Y , for example J (X → Y)

might be written as J (x1, . . . , xp → y1, . . . , yp). More generally, if the matri-
ces X1, . . . ,Xk and Y1, . . . , Ym satisfy the equations Yi = gi(x1, . . . , xk), i =
1, . . . ,m, and (X1, . . . ,Xk), (Y1, . . . , Ym) have the free elements (x1, . . . , xp) and
(y1, . . . , yp) respectively, then the Jacobian of the transformation from (X1, . . . ,Xk)
to (Y1, . . . , Ym) will be denoted as J (X1, . . . ,Xk → Y1, . . . , Ym).

Remark A.1 (Many-to-few mappings) To handle the case when a transformation
maps the random variables x ∈R

n to y ∈R
m, with m< n (i.e. the transformation is

not one-to-one, but maps many to fewer variables) we may proceed as follows. Let
the original transformation be

yi = gi(x1, . . . , xn), i = 1, . . . ,m; m< n.
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If additional slack functions yi = gi(x1, . . . , xn), i = m + 1, . . . , n, can be deter-
mined such that the transformation between x1, . . . , xn and the augmented set of
variables ỹ

.= [y1 · · ·ymym+1 · · ·yn]T satisfy the hypotheses of Theorem 14.2, then
the pdf of y can be obtained by computing the marginal density

fy(y1, . . . , ym)=
∫

· · ·
∫
fx
(
g−1(y1, . . . , yn)

)
J (x→ ỹ)dym+1 · · ·dyn.

A.2 Jacobians of Transformations

We report here several rules for the computation of Jacobians of matrix transfor-
mations. More comprehensive results related to Jacobians are given for instance in
[129, 186, 312].

Rule A.1 (Chain rule for Jacobians)

J (Y →X)= J (Y → Z)J (Z→X).

Rule A.2 (Jacobian of the derivatives) Given a matrix transformation (linear or
not) Y = F(X), then the transformation of the differentials, dY = dF(X) is linear,
and

J (Y →X)= J (dY → dX).

Rule A.3 (Jacobian of Y =AX) The Jacobian of the linear matrix transformation

Y =AX
where X ∈R

n,m, A ∈R
n,n, is given by

J (Y →X)= |A|m.
Similarly, the Jacobian of the matrix transformation Y = XB , with B ∈R

m,m, is
given by

J (Y →X)= |B|n.

Rule A.4 (Jacobian of real Y =AXB) The Jacobian of the matrix transformation

Y =AXB
where X ∈R

n,m, A ∈R
n,n, B ∈R

m,m, is given by

J (Y →X)= |A|m|B|n.
If A and B are orthogonal, then J (Y →X)= 1.

Rule A.5 (Jacobian of complex Y =AXB) The Jacobian of the matrix transforma-
tion

Y =AXB
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where X ∈C
n,m, A ∈C

n,n, B ∈C
m,m, is given by

J (Y →X)= |Ã|2m|B̃|2n

where

Ã=
[

Re(A) −Im(A)
Im(A) Re(A)

]
, B̃ =

[
Re(B) −Im(B)
Im(B) Re(B)

]
.

Proof To prove this, notice that, by Rule A.1, J (Y →X)= J (Y → Z)J (Z→X),
where Z = AX. Write then the linear equation Z = AX in terms of the real and
imaginary parts [

Re(Z)
Im(Z)

]
= Ã

[
Re(X)
Im(X)

]

then, by Rule A.3, J (Z→X)= |Ã|2m. Similarly, J (Y → Z)= |B̃|2n. �

Notice that if A is unitary, then it can be easily seen that Ã is orthogonal. There-
fore, for A, B unitary, J (Y →X)= 1.

A.3 Selberg Integral

We present the solution of the so-called Selberg integral, derived in [353].

Theorem A.2 (Selberg integral) For any positive integer n, let

ϕ(x)= ϕ(x1, . . . , xn)=
∏

1≤i<k≤n
(xi − xk)

if n > 1 and ϕ(x)= 1 for n= 1, and

Φ(x)= ∣∣ϕ(x)∣∣2γ n∏
i=1

xα−1
i (1 − xi)β−1.

Then

∫ 1

0
· · ·
∫ 1

0
Φ(x)dx1 · · ·dxn =

n−1∏
i=0

Γ (1 + γ + iγ )Γ (α + iγ )Γ (β + iγ )
Γ (1 + γ )Γ (α + β + (n+ i − 1)γ )

,

for any α,β, γ ∈C such that

Re(α) > 0, Re(β) > 0, Re(γ ) >−min

{
1

n
,

Re(α)

n− 1
,

Re(β)

n− 1

}
.
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A.4 Dyson–Mehta Integral

The next theorem reports a result on the computation of the integral of certain de-
terminants. The proof of this theorem can be found in [281].

Theorem A.3 (Dyson–Mehta) Let Zn ∈ R
n,n be a n × n symmetric matrix such

that:

1. [Zn]i,j =ψ(xi, xj ), i.e. [Zn]i,j depends only on xi and xj ;
2.
∫
ψ(x, x)dμ(x)= c;

3.
∫
ψ(x, y)ψ(y, z)dμ(y)=ψ(x, z)

where dμ(x) is a suitable measure and c is a constant. Then∫
det(Zn)dμ(xn)= (c− n+ 1)det(Zn−1) (A.1)

where Zn−1 is the (n− 1)× (n− 1) matrix obtained from Zn by removing the row
and the column containing xn.



List of Symbols1

Vector Spaces and Cones
R
n space of real n-dimensional vectors

C
n space of complex n-dimensional vectors

F
n space of n-dimensional vectors with entries from R or C

R
n,m space of real n-by-m matrices

C
n,m space of complex n-by-m matrices

F
n,m space of n-by-m matrices with entries from R or C

R
n+ nonnegative orthant

S
n space of n-by-n real symmetric matrices

S
n+ cone of n-by-n positive semidefinite real symmetric matrices

SK
n space of n-by-n real skew-symmetric matrices

H
n space of n-by-n complex Hermitian matrices

HK
n space of n-by-n complex skew-Hermitian matrices

GnO group of orthogonal matrices in R
n,n; (17.3)

GnU group of unitary matrices in C
n,n; (17.26)

Hn,m2 H2 space of n-by-m transfer functions; Definition 3.3
RHn,m2 RH2 space of n-by-m transfer functions; Definition 3.3
Hn,m∞ H∞ space of n-by-m transfer functions; Definition 3.2
RHn,m∞ RH∞ space of n-by-m transfer functions; Definition 3.1
[0,1]n n-dimensional unit cube

Basic Operations
'x( minimum integer greater or equal to x ∈R

�x largest integer smaller or equal to x ∈R

log(x) natural logarithm (to the base e) of x ∈R

log2(x) binary logarithm (to the base 2) of x ∈R

In n-by-n identity matrix

1We denote vector or scalar variables with lower case letters and matrix variables with upper case.
Boldface indicates random variables and matrices.
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0n,m n-by-m zero matrix
XT transpose of X
X∗ Hermitian of X
X−1 inverse of (nonsingular) X
rankX rank of matrix X
X⊥ orthogonal complement of X, i.e. a matrix of maximum rank

such that XTX⊥ = 0, X⊥T X⊥ = I
detX determinant of X
|X| absolute value of the determinant of X
[X]i,k (i, k) entry of X
Re(x), Im(x) real and imaginary parts of x ∈C

〈x, y〉 inner product of vectors x and y
TrX trace of X
vec(X) column vectorization of matrix X; (3.8)
diag (x) diagonal matrix formed with the entries of vector x
bdiag (X1, . . . ,Xn) block diagonal matrix formed with X1, . . . ,Xn
ρλ(X) spectral radius of X
[X]+ projection of X ∈ S

n onto the cone S
n+; (10.7)

X � 0 positive definite symmetric matrix
X � 0 positive semidefinite symmetric matrix
X ≺ 0 negative definite symmetric matrix
X � 0 negative semidefinite symmetric matrix
IS(·) indicator function of the set S
Vol (S) volume of the set S; (3.14)
Surf (S) surface of the set S
Card (S) cardinality of the finite set S
Γ (·) Gamma function

Vector Norms and Balls
‖x‖p �p norm of the vector x; (3.1)
B‖·‖p (ρ,Fn) ball of radius ρ in the �p norm in F

n; (3.2)
∂B‖·‖p (ρ,Fn) boundary of B‖·‖p (ρ,Fn); (3.3)
‖x‖W2 weighted �2 norm of the vector x; (3.4)
B‖·‖W2 (ρ,R

n) ball of radius ρ in the �W2 norm in F
n; (3.5)

E (m,W) ellipsoid of center m and shape matrix W � 0; (3.6)

Matrix Norms and Balls
‖X‖p �p Hilbert–Schmidt norm of the matrix X; (3.7)
‖|X‖|p �p-induced norm of the matrix X; (3.9)
B‖|·‖|p (ρ,Fn,m) ball of radius ρ in the �p-induced norm in F

n,m; (3.12)
Bσ (ρ,Fn,m) ball of radius ρ in the spectral norm in F

n,m; (3.13)

Probability
(Ω,S,PR {S}) probability space
fX(X) probability density function of X
FX(X) cumulative distribution function of X
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EX (J (X)) expected value of J (X) taken with respect to X
Var(x) variance of the random variable x
Cov(x) covariance matrix of the random vector x
fx1,...,xi marginal density function; (2.1)
fxi |x1...xi−1 conditional density function; (2.2)
J (x→ y) Jacobian of the function x = h(y); (14.7)

Density Functions
bn,p binomial density with parameters n,p; (2.3)
Bn,p binomial distribution with parameters n,p; (2.4)
Nx̄,σ 2 normal density with mean x̄ and variance σ 2; (2.5)
Nx̄,W multivariate normal density with mean x̄ and covariance W ;

(2.6)
U[a,b] uniform density in the interval [a, b]; (2.7)
US uniform density over the set S; (2.8)
Ga,b Gamma density with parameters a, b; (2.12)
Ga,c generalized Gamma density with parameters a, c; (2.13)

Robust Control
D̃ structured operator uncertainty set; (3.25)
D structured matrix uncertainty set; (3.27)
B
D̃
= B

D̃
(ρ) ball of radius ρ in D̃; (3.26)

BD = BD(ρ) ball of radius ρ in D; (3.28)
Bq = Bq(ρ) ball of radius ρ of parametric uncertainty; (3.45)
Fu (·) upper linear fractional transformation; (3.29)
Fl (·) lower linear fractional transformation; (4.3)
μD(M) structured singular value of the matrixM ; (3.38)
rR, rC real and complex stability radii; (3.36)
rD stability radius under structured perturbations; (3.40)
J (Δ) performance function for analysis
J (Δ, θ) performance function for design
BG,BB good and bad sets; (6.2)

Randomization and Learning
p(γ ) probability of performance; (6.6)
Δ(1...N) multisample Δ(1), . . . ,Δ(N) of Δ; (7.1)
p̂N(γ ) empirical probability of performance; (7.2)
ÊN (J (Δ)) empirical mean of J (Δ); (7.5)
degrad(ρ) performance degradation function; (6.14)
x(1...N) deterministic point set; (7.14)
DN(S, x(1...N)) discrepancy of x(1...N) with respect to S ; (7.15)
dN(x

(1...N)) dispersion of x(1...N); (7.23)
SJ (N) shatter coefficient of the family J ; (9.3)
VC (J ) VC dimension of the family J ; Definition 9.3
P-DIM (J ) P dimension of the family J ; Definition 9.4
V (θ) probability of violation for the design θ ; (10.4)
R(θ) reliability of the design θ ; (10.5)
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17. Alpcan T, Başar T, Tempo R (2005) Randomized algorithms for stability and robustness
analysis of high speed communication networks. IEEE Trans Neural Netw 16:1229–1241

R. Tempo et al., Randomized Algorithms for Analysis and Control of Uncertain Systems,
Communications and Control Engineering, DOI 10.1007/978-1-4471-4610-0,
© Springer-Verlag London 2013

337

http://dx.doi.org/10.1007/978-1-4471-4610-0


338 References

18. Altman NS (1988) Bitwise behavior of random number generators. SIAM J Sci Stat Comput
9:941–949

19. Anantharam V, Walrand J (1990) Special issue on control methods for communication
networks—editorial. Automatica 35:1891

20. Anderson BDO, Bose NK, Jury EI (1975) Output feedback stabilization and related
problems—solution via decision methods. IEEE Trans Autom Control 20:53–66

21. Anderson BDO, Moore JB (1990) Optimal control: linear quadratic methods. Prentice-Hall,
Englewood Cliffs

22. Anderson TW (1958) An introduction to multivariate statistical analysis. Wiley, New York
23. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness-of-fit” criteria

based on stochastic processes. Ann Math Stat 23:193–212
24. Anonymous (1997) Flying qualities of piloted aircraft. Technical Report MIL-HDBK-1797,

Department of Defense, USA
25. Antsaklis PJ, Baillieul J (2004) Guest editorial—special issue on networked control systems.

IEEE Trans Autom Control 49(9):1421–1422
26. Antsaklis PJ, Baillieul J (2007) Special issue on the technology of networked control sys-

tems. Proc IEEE 95:5–8
27. Applegate D, Kannan R (1991) Sampling and integration of near log-concave functions. In:

Proceedings of the ACM symposium on theory of computing
28. Ataei A, Wang Q (2012) An ellipsoid algorithm for linear optimization with uncertain LMI

constraints. In: Proceedings of the American control conference
29. Atkinson DS, Vaidya PM (1995) A cutting plane algorithm for convex programming that

uses analytic centers. Math Program, Ser B 69:1–43
30. Au SK, Beck JL (2001) Estimation of small failure probability in high dimensions simula-

tion. Probab Eng Mech 16:263–277
31. Avrachenkov K, Litvak N, Nemirovsky D, Osipova N (2007) Monte Carlo methods in PageR-

ank computation: when one iteration is sufficient. SIAM J Numer Anal 45:890–904
32. Azuma S-I, Imura J-I (2007) Polynomial-time probabilistic controllability analysis of

discrete-time piecewise affine systems. IEEE Trans Autom Control 52:470–482
33. Babai L (1979) Monte Carlo algorithms in graph isomorphism testing. Technical report,

Départment de Mathématique et de Statistique, Université de Montréal
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A
Aerospace control, 284, 299–304
ARE, see Riccati equation
ARI, see Riccati inequality
Automotive systems, 289

B
Bad set, see set
Ball, see norm, ball
Bilinear matrix inequality, 67
Bit model, 61
BMI, see bilinear matrix inequality
Boolean functions, 132, 184
Bound

Bernoulli, 114–116
Chernoff, 114–118, 139, 317
worst-case, 117–119

Bounded real lemma, 22, 23, 43, 44, 47

C
Cdf, see distribution, function
Central controller, see H∞
Chi-square test, 201, 202
Cholesky decomposition, 14, 272, 273
Circuits

electric, 288
embedded, 288

Communication networks, 285, 305–313
Computational complexity, 60–64

of RAs, see randomized algorithms
Conditional density, see density
Conditional density method, 208, 271–275,

279
Confidence intervals, 116, 117
Consensus, 297–299
Convergence

almost everywhere, 12

in probability, 12
in the mean square sense, 12
with probability one, see convergence

almost everywhere
Convex body, 211, 213, 214
Convex set, 21
Covariance matrix, 10
Curse of dimensionality, 67, 96, 208
Cutting plane methods, 156, 157

D
Decidable problem, 60
Defining function, 217, 243, 249
Density
�W2 radial, 225–229
�p induced radial, 244–264
�p radial, 217–225, 243, 244
binomial, 11, 120
chi-square, 11
conditional, 10
conditional method, see conditional density

method
exponential, see density, Laplace
function, 8
Gamma, 12, 199, 206, 207
generalized Gamma, 12, 199, 218, 233–239
joint, 9
Laplace, 12, 199, 218
marginal, 10
normal, 11, 217, 225
polynomial, 200, 201
uniform, 11, 218, 244
Weibull, 12, 199, 206
Wishart, 264, 265

Discrepancy, 100–105
extreme, 101–103, 107
star, 101–103
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Dispersion, 106–108
Distribution

binomial, 11, 120
function, 8
joint, 9

Distribution-free robustness, 88–91
D–K iteration, see μ synthesis
Dyson–Mehta integral, 273, 332

E
Edge theorem, 37, 38
Ellipsoid algorithm, 155, 156
Empirical

maximum, 99, 117
mean, 95, 123–134
probability, see probability

EXP-complete, 63
Expected value, 9
Extreme discrepancy, see discrepancy

F
Fault detection and isolation, 287
FDI, see fault detection and isolation
Flexible structure, 314–318

G
Gamma function, 11
Gaussian, see density, normal
Good set, see set
Gradient update, 152–157
Gramian

controllability, 22
observability, 22

Guaranteed-cost control, 53–55

H
Haar invariant distribution, 249, 260, 277, 280
Hard disk drives, 285
H2

design, 50–55
regularity conditions, 51

norm, 20, 22
space, 17, 20

H∞
central controller, 46
design, 41–49

regularity conditions, 45
norm, 19, 22, 23
space, 18, 19

Hit-and-run, 214
Hurwitz stability, see stability
Hybrid systems, 287

I
ILC, see iterative learning control

Independence, 9
Indicator function, 94
Inequality

Bernstein, 113
Bienaymé, 110
Chebychev, 110, 114
Chernoff, 115
Hoeffding, 111–115
Koksma–Hlawka, 102, 312
Markov, 109–111
Sukharev, 107
Uspensky, 110

Interval
matrix, 38, 54
polynomial, 37, 66

Inversion method, 199, 200
Iterative learning control, 288

J
Jacobian, 204, 329–331
Joint density, see density

K
Kharitonov

theorem, 37
theory, see uncertainty, parametric

Kolmogorov–Smirnov test, 202, 203

L
Las Vegas randomized algorithms, 137
Laws of large numbers

for empirical maximum, 99
for empirical mean, 95
for empirical probability, 94

LCG, see random number generator
Levitation system, 323–326
LFT, see linear fractional transformation
Linear fractional transformation, 24, 42
Linear matrix inequality, 20

feasible set, 21
robust, 54, 55

Linear parameter varying, 289
Linear quadratic

Gaussian, 52
regulator, 52–55

LMI, see linear matrix inequality
Localization methods, 154–157
LQG, see linear quadratic Gaussian
LQR, see linear quadratic regulator
LVRA, see Las Vegas randomized algorithms
Lyapunov

equation, 22
function, 319, 320, 322
inequality, 22
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M
M–Δ configuration, 23
Marginal density, see density
Markov chain, 209–214

Monte Carlo, 209
MC, see Monte Carlo
MCMC, see Markov chain
MCRA, see Monte Carlo randomized

algorithms
Mean, 10
Measurable function, 8
Mehta integral, see Dyson–Mehta integral
Metropolis random walk, 211
Metropolis–Hastings, 211–213
Mixing rate, 210, 211
Model predictive control, 287
Moment problems, 57, 64
Monte Carlo, 93–100, 310, 312

estimate, 94
method for integration, 97
method for optimization, 99

Monte Carlo randomized algorithms, 136
MPC, see model predictive control
MT, see random number generator
μ

analysis, 30–34, 316
rank-one, 33, 34
small μ theorem, 31
synthesis, 48, 49

Multi-agent systems, 283, 297–299
Multisample, 94, 95

deterministic, 101
Multivariable stability margin, see μ

N
Norm, 13–15

ball, 13–15
Euclidean, 13
Frobenius, 14
H2, see H2 norm
H∞, see H∞ norm
matrix �p induced, 15
matrix Hilbert–Schmidt, 14
spectral, 15
vector �p , 13, 14

Norm density, 220, 223, 226
NP-complete, 60, 62, 63
NP-hard, 60, 62–64

O
Oracle, see probabilistic
Orthogonal group, 249
Outer iteration loop, 151

P
P dimension, 133, 134
PAC, 136
PageRank computation, 283, 284, 290–299
Parametric uncertainty, see uncertainty
Pdf, see density, function
Percentile, 8
Performance

degradation function, 83, 317
function, 71
function for analysis, 138
function for design, 142
probability of, see probability

Point set, 101
Pollard

dimension, see P dimension
theory, 133, 134

Polynomial-time algorithm, 61–63
Polytope of polynomials, 37
Probabilistic oracle, 147–150, 154
Probability

density function, see density
empirical, 94, 311, 312
inequality, see inequality
of misclassification, 149
of performance, 78
of stability, 78–80, 317
space, 7

Probably approximately correct, see PAC
Pseudo dimension, see P dimension
Pseudo-random number, 193, 201

Q
QMC, see quasi-Monte Carlo
QMI, see quadratic matrix inequality
Quadratic attractiveness, 320–322, 324
Quadratic matrix inequality, 55
Quadratic stability, see stability
Quantifier elimination, 60, 64
Quantizer, 318–325
Quantum systems and control, 290
Quasi-Monte Carlo, 100–108, 311, 312

R
RACT, 327
RAM model, 61
Random

matrix, 9, 329
�1 induced radial, 244–248
�∞ induced radial, 244–248
�p induced radial, 244–264
�p radial, 243, 244
σ radial, 248–264
unitarily invariant, 264–266
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Random (cont.)
number generator, 193–198

feedback shift register, 197
lagged Fibonacci, 196
linear congruential, 194, 195
Mersenne twister, 197
multiple recursive, 196
nonlinear congruential, 196

uncertainty, 77
variable, 8
vector
�W2 radial, 225–229
�p radial, 217–225

walk, 209–211
Randomized algorithms, 135–146

analysis, 137–141
computational complexity of, 145
control design, 141–145, 181–191
definitions, 136, 137
for generation

from polynomial density, 201
in a simplex, 238
in an ellipsoid, 236
in Bσ (Cn,m), 270, 278
in Bσ (Rn,m), 269, 282
in B‖·‖p (Rn), 235
in B‖·‖p (Cn), 239
of Haar matrices, 277, 280
of singular values, 276
of stable polynomials, 241

for rejection from dominating
density, 205
set, 207

for scenario optimization, 170, 175, 176
nonconvex feasibility and optimization,

187
nonconvex optimization, 183–186
sampled optimization, 185

Randomized algorithms control toolbox, see
RACT

Randomized Quick Sort, see RQS
Rank-one μ, see μ
Rare events, 96
RAs, see randomized algorithms
Rejection method, 205–208, 231–233,

268–270
RH2 space, see H2 space
RH∞ space, see H∞ space
Riccati

equation, 45, 51, 324
inequality, 46

RNG, see random number generator
Robust

LMI, see linear matrix inequality
stability, see stability

Robustness margin, see stability radius
RQS, 137

S
Sample complexity, 113–121, 129–131, 136,

184–186
Sampled-data systems, 318–326
SAT problem, 62, 63
Sauer lemma, 127
Scenario approach, 165–179

with violated constraints, 173–179
Schur stability, see stability
SDP, see semidefinite programming
Selberg integral, 254, 259, 264, 331
Semidefinite programming, 21
Sequence

Faure, 105
Halton, 100, 104, 105, 311–313
Niederreiter, 100, 105, 312, 313
Sobol’, 100, 105, 312, 313
van der Corput, 103, 104

Sequential methods
feasibility, 147–157
optimization, 163
probabilistic design, 147–157

Set
bad, 74, 79, 81
good, 74–81, 310, 311
invariant, 320–323

Shatter coefficient, 125–127
Signal, 16–18

deterministic, 16
stochastic, 17

Simplex, 237
Singular value decomposition, 15, 250

normalized, 249, 254, 259
Small μ theorem, see μ
Small gain theorem, 28, 29, 41
SOS, see sum of squares
Spectral radius, 31
Stability

Hurwitz, 18, 39
internal, 25
network, 310, 311
parametric, see uncertainty
probability of, see probability
quadratic, 53–55, 318, 320
radius, 25, 27–32, 59

conservatism of, 65–67
discontinuity of, 68, 69

robust, 25, 27
Schur, 80, 308, 310
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Standard deviation, 10
Star discrepancy, see discrepancy
Static output feedback, 64, 182
Statistical learning theory, 123–134

for control design, 181–191
Stochastic approximation, 153
Structured singular value, see μ
Sukharev criterion, 108, 312
Sum of squares, 57, 64
Support, 8
Surface, 16
SVD, see singular value decomposition
Switched systems, 286
Systems biology, 284

T
Trapezoidal rule, 98

U
UAVs, 285, 299–304
UCEM, 124, 128, 134
Uncertainty

parametric, 25, 33–39
unmodeled dynamics, 26
unstructured, 25

Undecidable problem, 60, 61
Uniform convergence of empirical means, see

UCEM

Uniformity principle, 90
Unitary group, 259
Unmanned aerial vehicles, see UAVs
Update rules, 147, 152

V
Vandermonde matrix, 271
Vapnik–Chervonenkis dimension, see VC

dimension
Vapnik–Chervonenkis theory, 124–134
Variance, 10
Variation, 102
VC dimension, 126–134, 186, 189
VC theory, see Vapnik–Chervonenkis theory
Violated constraints, see scenario approach
Violation certificate, 148
Volume, 16

of Bσ (Cn,m), 264
of Bσ (Rn,m), 259
of Bσ (Sn+), 254
of Bσ (Sn), 254
of B‖|·‖|1 (Cn,m), 248
of B‖|·‖|1 (Rn,m), 247
of B‖|·‖|∞ (Cn,m), 248
of B‖|·‖|∞ (Rn,m), 247
of B‖·‖p (Rn), 220
of B‖·‖p (Cn), 223

Volumetric factor, 224, 235
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