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Preface

THE last decade has witnessed a tremendous growth in the area of randomized
algorithms. During this period, randomized algorithms went from being a tool in
computational number theory to finding widespread application in many types
of algorithms. Two benefits of randomization have spearheaded this growth:
simplicity and speed. For many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both.

This book presents the basic concepts in the design and analysis of randomized
algorithms at a level accessible to advanced undergraduates and to graduate
students. We expect it will also prove to be a reference to professionals wishing
to implement such algorithms and to researchers seeking to establish new results
in the area.

Organization and Course Information

We assume that the reader has had undergraduate courses in Algorithms and
Complexity, and in Probability Theory. The book is organized into two parts.
The first part, consisting of seven chapters, presents basic tools from probability
theory and probabilistic analysis that are recurrent in algorithmic applications.
Applications are given along with each tool to illustrate the tool in concrete
settings. The second part of the book also contains seven chapters, each
focusing on one area of application of randomized algorithms. The seven
areas of application we have selected are: data structures, graph algorithms,
geometric algorithms, number theoretic algorithms, counting algorithms, parallel
and distributed algorithms, and online algorithms. Naturally, some of the
algorithms used for illustration in Part I do fall into one of these seven categories.
The book is not meant to be a compendium of every randomized algorithm
that has been devised, but rather a comprehensive and representative selection.
The Appendices review basic material on probability theory and the analysis
of algorithms.

ix



PREFACE

We have taught several regular as well as short-term courses based on the
material in this book, as have some of our colleagues. It is virtually impossible
to cover all the material in the book in a single academic term or in a week’s
intensive course. We regard Chapters 1-4 as the core around which a course may
be built. Following the treatment of this material, the instructor may continue
with that portion of the remainder of Part I that supports the material of Part II
(s)he wishes to cover. Chapters 5-13 depend only on material in Chapters 1-4,
with the following exceptions:

1. Chapter 5 on Probabilistic Methods is a prerequisite for Chapters 6 (Random
Walks) and 11 (Approximate Counting).

2. Chapter 6 on Random Walks is a prerequisite for Chapter 11 (Approximate
Counting).

3. Chapter 7 on Algebraic Techniques is a prerequisite for Chapters 14 (Number
Theory and Algebra) and 12 (Parallel and Distributed Algorithms).

We have included three types of problems in the book. Exercises occur
throughout the text, and are designed to deepen the reader’s understanding of
the material being covered in the text. Usually, an exercise will be a variant,
extension, or detail of an algorithm or proof being studied. Problems appear
at the end of each chapter and are meant to be more difficult and involved
than the: Exercises in the text. In addition, Research Problems are listed in the
Discussion section at the end of each chapter. These are problems that were
open at the time we wrote the book; we offer them as suggestions for students
(and of course professional researchers) to work on.

Based on our experience with teaching this material, we recommend that the
instructor use one of the following course organizations:

e A comprehensive basic course: In addition to Chapters 1-4, this course would
cover the material in Chapters 5, 6, and 7 (thus spanning all of Part 1).

¢ A course oriented toward algebra and number theory: Following Chapters 1-4,
this course would cover Chapters 7, 14, and 12.

e A course oriented toward graphs, data structures, and geometry: Following
Chapters 14, this course would cover Chapters 8, 9, and 10.

e A course oriented toward random walks and counting algorithms: Following
Chapters 14, this course would cover Chapters 5, 6, and 11.

Each of these courses may be pruned and given in abridged form as an intensive
course spanning 3-5 days.

Paradigms for Randomized Algorithms

A handful of general principles lies at the heart of almost all randomized
algorithms, despite the multitude of areas in which they find application. We
briefly survey these here, with pointers to chapters in which examples of these
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PREFACE

principles may be found. The following summary draws heavily from ideas in
the survey paper by Karp [243].

Foiling an adversary. The classical adversary argument for a deterministic
algorithm establishes a lower bound on the running time of the algorithm by
constructing an input on which the algorithm fares poorly. The input thus
constructed may be different for each deterministic algorithm. A randomized
algorithm can be viewed as a probability distribution on a set of deterministic
algorithms. While the adversary may be able to construct an input that foils
one (or a small fraction) of the deterministic algorithms in the set, it is difficult
to devise a single input that is likely to defeat a randomly chosen algorithm.
While this paradigm underlies the success of any randomized algorithm, the
most direct examples appear in Chapter 2 (in game tree evaluation), Chapter 7
(in efficient proof verification), and Chapter 13 (in online algorithms).

Random sampling. The idea that a random sample from a population is
representative of the population as a whole is a pervasive theme in randomized
algorithms. Examples of this paradigm arise in almost all the chapters, most
notably in Chapters 3 (selection algorithms), 8 (data structures), 9 (geometric
algorithms), 10 (graph algorithms), and 11 (approximate counting).

Abundance of witnesses. Often, an algorithm is required to determine whether
an input (say, a number x) has a certain property (for example, “is x prime?”).
It does so by finding a witness that x has the property. For many problems,
the difficulty with doing this deterministically is that the witness lies in a search
space that is too large to be searched exhaustively. However, by establishing
that the space contains a large number of witnesses, it often suffices to choose
an element at random from the space. The randomly chosen item is likely to be
a witness; further, independent repetitions of the process reduce the probability
that a witness is not found on any of the repetitions. The most striking examples
of this phenomenon occur in number theory (Chapter 14).

Fingerprinting and hashing. A long string may be represented by a short
fingerprint using a random mapping. In some pattern-matching applications, it
can be shown that two strings are likely to be identical if their fingerprints are
identical; comparing the short fingerprints is considerably faster than comparing
the strings themselves (Chapter 7). This is also the idea behind hashing, whereby
a small set S of elements drawn from a large universe is mapped into a
smaller universe with a guarantee that distinct elements in S are likely to have
distinct images. This leads to efficient schemes for deciding membership in
S (Chapters 7 and 8) and has a variety of further applications in generating
pseudo-random numbers (for example, two-point sampling in Chapter 3 and
pairwise independence in Chapter 12) and complexity theory (for instance,
algebraic identities and efficient proof verification in Chapter 7).

Random re-ordering. A striking use of randomization in a number of problems
in data structuring and computational geometry involves randomly re-ordering
the input data, followed by the application of a relatively naive algorithm. After
the re-ordering step, the input is unlikely to be in one of the orderings that is
pathological for the naive algorithm. (Chapters 8 and 9).

xi



PREFACE

Load balancing. For problems involving choice between a number of re-
sources, such as communication links in a network of processors, randomization
can be used to “spread” the load evenly among the resources, as demonstrated
in Chapter 4. This is particularly useful in a parallel or distributed environment
where resource utilization decisions have to be made locally at a large number
of sites without reference to the global impact of these decisions.

Rapidly mixing Markov chains. For a variety of problems involving count-
ing the number of combinatorial objects with a given property, we have ap-
proximation algorithms based on randomly sampling an appropriately defined
population. Such sampling is often difficult because it may require computing
the size of the sample space, which is precisely the problem we would like to
solve via sampling. In some cases, the sampling can be achieved by defining a
Markov chain on the elements of the population and showing that a short ran-
dom walk using this Markov chain is likely to sample the population uniformly
(Chapter 11).

Isolation and symmetry breaking. In parallel computation, when solving a
problem with many feasible solutions it is important to ensure that the different
processors are working toward finding the same solution. This requires isolating
a specific solution out of the space of all feasible solutions without actually
knowing any single element of the solution space. A clever randomized strategy
achieves isolation, by implicitly choosing a random ordering on the feasible
solutions ‘and then requiring the processors to focus on finding the solution of
lowest rank. In distributed computation, it is often necessary for a collection of
processors to break a deadlock and arrive at a consensus. Randomization is a
powerful tool in such deadlock-avoidance, as shown in Chapter 12.

Probabilistic methods and existence proofs. It is possible to establish that an
object with certain properties exists by arguing that a randomly chosen object
has the properties with positive probability. Such an argument gives no clue
as to how to find such an object. Sometimes, the method is used to guarantee
the existence of an algorithm for solving a problem; we thus know that the
.algorithm exists, but have no idea what it looks like or how to construct it. This
raises the issue of non-uniformity in algorithms (Chapters 2 and 5).

Conventions

Most of the conventions we use are described where they first arise. One worth
mentioning here is the issue of integer breakage: as long as it does not materially
affect the algorithm or analysis being considered (and the intent is unambiguous
from the context), we omit ceilings and floors from numbers that strictly should
be integers. Thus, we might say “choose ,/n elements from the set of size n”
even when n is not a perfect square. Our intent is to present the crux of the
algorithm/analysis without undue notational clutter from ceilings and floors.
The expression log x denotes log, x, and the expression In x denotes the natural
logarithm of x.
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CHAPTER 1

Introduction

CoONSIDER sorting a set S of n numbers into ascending order. If we could find
a member y of S such that half the members of S are smaller than y, then we
could use the following scheme. We partition S \ {y} into two sets S, and S,
where S; consists of those elements of S that are smaller than y, and S; has the
remaining elements. We recursively sort S; and S, then output the elements of
S, in ascending order, followed by y, and then the elements of S, in ascending
order. In particular, if we could find y in cn steps for some constant ¢, we could
partition S\ {y} into S; and S; in n — 1 additional steps by comparing each
element of S with y; thus, the total number of steps in our sorting procedure
would be given by the recurrence .

T(n) £2T(n/2) + (c + )n, (1.1)

where T(k) represents the time taken by this method to sort k numbers on the
worst-case input. This recurrence has the solution T'(n) < c¢'nlogn for a constant
¢, as can be verified by direct substitution.

The difficulty with the above scheme in practice is in finding the element y
that splits S \ {y} into two sets S; and S, of the same size. Examining (1.1), we
notice that the running time of O(nlogn) can be obtained even if S; and S, are
approximately the same size — say, if y were to split S \ {y} such that neither S,
nor S, contained more than 3n/4 elements. This gives us hope, because we know
that every input S contains at least n/2 candidate splitters y with this property.
How do we quickly find one?

One simple answer is to choose an element of S at random. This does not
always ensure a splitter giving a roughly even split. However, it is reasonable to
hope that in the recursive algorithm we will be lucky fairly often. The result is
an algorithm we call RandQS, for Randomized Quicksort.

Algorithm RandQS is an example of a randomized algorithm — an algorithm
that makes random choices during execution (in this case, in Step 1). Let us
assume for the moment that this random choice can be made in unit time; we
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INTRODUCTION

will say more about this in the Notes section. What can we prove about the
running time of RandQS?

Algorithm RandQS:

Input: A set of numbers S.

Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from S: every element in S has
equal probability of being chosen.

2. By comparing each element of S with y, determine the set S; of elements
smaller than y and the set S, of elements larger than y.

3. Recursively sort Sy and S,. Output the sorted version of S;, followed by vy,
and then the sorted version of S,.

As is usual for sorting algorithms, we measure the running time of RandQS
in terms of the number of comparisons it performs since this is the dominant
cost in any reasonable implementation. In particular, our goal is to analyze the
expected number of comparisons in an execution of RandQS. Note that all the
comparisons are performed in Step 2, in which we compare a randomly chosen
partitioning element to the remaining elements. For 1 < i < n, let S;; denote the
element of rank i (the ith smallest element) in the set S. Thus, S(;) denotes the
smallest element of S, and S, the largest. Define the random variable X;; to
assume the value 1 if S; and S are compared in an execution, and the value 0
otherwise. Thus, Xj; is a count of comparisons between S;;, and S; j)» and so the
total number of comparisons is 3_.; 3., Xi;. We are interested in the expected
number of comparisons, which is clearly

n n
ED D Xyl=)_ > EX (12)
is=l j>i i=1 j>i
This equation uses an important property of expectations called linearity of
expectation; we will return to this in Section 1.3.
Let p;; denote the probability that Sg; and S;;) are compared in an execution.
Since X;; only assumes the values 0 and 1,

E[X;] = pij x 1+ (1 —p;j) X0 = p;;. (1.3)

To facilitate the determination of p;;, we view the execution of RandQS as a
binary tree T, each node of which is labeled with a distinct element of S. The
root of the tree is labeled with the element y chosen in Step 1, the left sub-tree
of y contains the elements in S; and the right sub-tree of y contains the elements
in S;. The structures of the two sub-trees are determined recursively by the
executions of RandQS on §; and S,. The root y is compared to the elements in
the two sub-trees, but no comparison is performed between an element of the
left sub-tree and an element of the right sub-tree. Thus, there is a comparison

4



INTRODUCTION

between S(; and S; if and only if one of these elements is an ancestor of the
other.

The in-order traversal of T will visit the elements of S in a sorted order,
and this is precisely what the algorithm outputs; in fact, T is a (random)
binary search tree (we will encounter this again in Section 8.2). However, for
the analysis we are interested in the level-order traversal of the nodes. This
is the permutation n obtained by visiting the nodes of T in increasing order
of the level numbers, and in a left-to-right order within each level; recall that
the ith level of the tree is the set of all nodes at distance exactly i from the
root.

To compute p;;, we make two observations. Both observations are deceptively
simple, and yet powerful enough to facilitate the analysis of a number of more
complicated algorithms in later chapters (for example, in Chapters 8 and 9).

1. There is a comparison between Sg;) and Sy if and only if S or S(; occurs earlier
in the permutation = than any element S, such that i < ¢ < j. To see this, let
Sk be the earliest in = from among all elements of rank between i and j. If
k ¢ {i, j}, then S; will belong to the left sub-tree of Sk while S(;, will belong
to the right sub-tree of Sy), implying that there is no comparison between S;
and S(;. Conversely, when k € {i, j}, there is an ancestor-descendant relationship
between S; and Sy, implying that the two elements are compared by RandQS.

2. Any of the elements S;), Si+1),-..,8) is equally likely to be the first of these
elements to be chosen as a partitioning element, and hence to appear first in
n. Thus, the probability that this first element is either S or ;) is exactly
2/(j—i+1). ’

We have thus established that p;; = 2/(j — i+ 1). By (1.2) and (1.3), the
expected number of comparisons is given by

n n 2
g;p” B ;?L:(j—i+l
n n-—i+12
= ZZ;
i=1 k=]
n n 1

< 2222.

i=1 k=1

It follows that the expected number of comparisons is bounded above by 2nH,,
where H, is the nth Harmonic number, defined by H, = >_;_, 1/k.

Theorem 1.1: The expected number of comparisons in an execution of RandQS is
at most 2nH,.

From Proposition B.4 (Appendix B), we have that H, ~ Inn + ©(1), so that
the expected running time of RandQS is O(nlog n).

5



INTRODUCTION

Exercise 1.1: Consider the (random) permutation 7 of S induced by the level-order
traversal of the tree T corresponding to an execution of RandQS$. Is 7 uniformly
distributed over the space of all permutations of the elements S, ..., S?

It is worth examining carefully what we have just established about RandQS.
The expected running time holds for every input. It is an expectation that
depends only on the random choices made by the algorithm, and not on any
assumptions about the distribution of the input. The behavior of a randomized
algorithm can vary even on a single input, from one execution to another. The
running time becomes a random variable, and the running-time analysis involves
understanding the distribution of this random variable.

We will prove bounds on the performances of randomized algorithms that rely
solely on their random choices and not on any assumptions about the inputs.
It is important to distinguish this from the probabilistic analysis of an algorithm,
in which one assumes a distribution on the inputs and analyzes an algorithm
that may itself be deterministic. In this book we will generally not deal with
such probabilistic analysis, except occasionally when illustrating a technique for
analyzing randomized algorithms.

Note also that we have proved a bound on the expected running time of the
algorithm. In many cases (including RandQS, see Problem 4.15), we can prove
an even stronger statement: that with very high probability the running time of
the algorithm is not much more than its expectation. Thus, on almost every
execution, independent of the input, the algorithm is shown to be fast.

The randomization involved in our RandQS algorithm occurs only in Step
1, where a random element is chosen from a set. We define a randomized
algorithm as an algorithm that is allowed access to a source of independent,
unbiased, random bits; it is then permitted to use these random bits to influence
its computation. It is easy to sample a random element from a set S by choosing
O(log|S|) random bits and then using these bits to index an element in the
set. However, some distributions cannot be sampled using only random bits.
For example, consider an algorithm that picks a random real number from
some interval. This requires infinitely many random bits. While we will usually
not worry about the conversion of random bits to the desired distribution, the
reader should keep in mind that random bits are a resource whose use involves
a non-trivial cost. Moreover, there is sometimes a non-trivial computational
overhead associated with sampling from a seemingly well-behaved distribution.
For example, consider the problem of using a source of unbiased random bits
to sample uniformly from a set S whose cardinality is not a power of 2 (see
Problem 1.2).

There are two principal advantages to randomized algorithms. The first is
performance — for many problems, randomized algorithms run faster than the
best known deterministic algorithms. Second, many randomized algorithms are
simpler to describe and implement than deterministic algorithms of comparable

6



11 A MIN-CUT ALGORITHM

performance. The randomized sorting algorithm described above is an exam-
ple. This book presents many other randomized algorithms that enjoy these
advantages.

In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algorithms. The reader wishing
to review some of the background material on the analysis of algorithms or on
elementary probability theory is referred to the Appendices.

1.1. A Min-Cut Algorithm

Two events £, and &, are said to be independent if the probability that they
both occur is given by

Pr[£, N &,] = Pr[€,] x Pr[€,] (14)

(see Appendix C). In the more general case where £, and £, are not necessarily
independent,

Pr[€, N &y =Pr[€, | £2] x Pr[€2] = Pr[€; | £1] x Pr[£}], (L5)

where Pr[€, | £,] denotes the conditional probability of £, given £,. Sometimes,
when a collection of events is not independent, a convenient method for com-
puting the probability of their intersection is to use the following generalization
of (1.5).

Print €] = Pri6)] x Pr[€2 | €11 x Pr[€3 | €10 &) Prl€x | NSIE]. (16)

Consider a graph-theoretic example. Let G be a connected, undirected multi-
graph with n vertices. A multigraph may contain multiple edges between any pair
of vertices. A cut in G is a set of edges whose removal results in G being broken
into two or more components. A min-cut is a cut of minimum cardinality. We
now study a simple algorithm for finding a min-cut of a graph.

We repeat the following step: pick an edge uniformly at random and merge
the two vertices at its end-points (Figure 1.1). If as a result there are several
edges between some pairs of (newly formed) vertices, retain them all. Edges
between vertices that are merged are removed, so that there are never any
self-loops. We refer to this process of merging the two end-points of an edge
into a single vertex as the contraction of that edge. With each contraction, the
number of vertices of G decreases by one. The crucial observation is that an
edge contraction does not reduce the min-cut size in G. This is because every
cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at
this point, the set of edges between these two vertices is a cut in G and is output
as a candidate min-cut.

Does this algorithm always find a min-cut? Let us analyze its behavior after
first reviewing some elementary definitions from graph theory.

7
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1,2

2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge ¢ = (1,2) is
shown.

» Definition 1.1: For any vertex v in a multigraph G, the neighborhood of G,
denoted I'(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of S, denoted I'(S), is the union of the neighborhoods of the
constituent vertices.

Note that d(v) is the same as the cardinality of I'(v) when there are no self-loops
or multiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let £; denote the event of not picking an edge of C at the ith step, for
1 <i < n—2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[£,] > 1 —2/n. Assuming that £; occurs,
during the second step there are at least k(n — 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n — 1), so that Pr[£, | £;] > 1—-2/(n—1).
At the ith step, the number of remaining vertices is n — i + 1. The size of the
min-cut is still at least k, so the graph has at least k(n—i+1)/2 edges remaining
at this step. Thus, Pr[¢; | nj;‘lf: i1 21—=2/(n—i+1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

n—2 = 2 z
Prin=?e) = [ (1— n—i+1) ~ =1y

i=1

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n2. Thus our algorithm may err
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat
the above algorithm n?/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n?/2
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attempts is at most

n/2
(1 — %) <l1/e.

By this process of repetition, we have managed to reduce the probability of fail-
ure from 1—2/n? to a more respectable 1/e. Further executions of the algorithm
will make the failure probability arbitrarily small - the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud-
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi-
cantly smaller than that of the best known algorithms based on network flow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inputs on which the probability that this
modified algorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
instance is YES or NO), there are two kinds of Monte Carlo algorithms: those
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
outputs either YES or No. It is said to have one-sided error if the probability that
it errs is zero for at least one of the possible outputs (YES/NO) that it produces.

9
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We will see examples of all three types of algorithms — Las Vegas, Monte Carlo
with one-sided error, and Monte Carlo with two-sided error — in this book.

Which is better, Monte Carlo or Las Vegas? The answer depends on the
application — in some applications an incorrect solution may be catastrophic.
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error
probability 0. The following exercise gives us a way of deriving a Las Vegas
algorithm from a Monte Carlo algorithm. Note that the efficiency of the
derivation procedure depends on the time taken to verify the correctness of a
solution to the problem.

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem N whose expected
running time is at most T(n) on any instance of size n and that produces a correct
solution with probability y(n). Suppose further that given a solution to I, we can verify
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always
gives a correct answer to 1 and runs in expected time at most (T(n) + t(n))/y(n).

In attempting Exercise 1.3 the reader will have to use a simple property of the
geometric random variable (Appendix C). Consider a biased coin that, on a toss,
has probability p of coming up HEADs and 1 — p of coming up TaIiLs. What is
the expected number of (independent) tosses up to and including the first head?
The number of such tosses is a random variable that is said to be geometrically
distributed. The expectation of this random variable is 1/p. This fact will prove
useful in numerous applications.

Exercise 1.4: Let 0 < ¢; < €; < 1. Consider a Monte Carlo algorithm that gives the
correct solution to a problem with probability at least 1— ¢,, regardless of the input.
How many independent executions of this algorithm suffice to raise the probability
of obtaining a correct solution to at least 1 — ¢, regardless of the input?

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on
any input its expected running time is bounded by a polynomial function of the
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte
Carlo algorithm if on any input its worst-case running time is bounded by a
polynomial function of the input size.

1.3. Binary Planar Partitions

We now illustrate another very useful and basic tool from probability theory:
linearity of expectation. For random variables X1, X, ...,

E[}_Xil =D E[Xi. (1.7)

10



13 BINARY PLANAR PARTITIONS

(See Proposition C.5.) We have implicitly used this tool in our analysis of
RandQS. A point that cannot be overemphasized is that (1.7) holds regardless
of any dependencies between the X|.

» Example 1.1: A ship arrives at a port, and the 40 sailors on board go ashore
for revelry. Later at night, the 40 sailors return to the ship and, in their state
of inebriation, each chooses a random cabin to sleep in. What is the expected
number of sailors sleeping in their own cabins?

The inefficient approach to this problem would be to consider all 40% ar-
rangements of sailors in cabins. The solution to this example will involve the
use of a simple and often useful device called an indicator variable, together with
linearity of expectation. Let X; be 1 if the ith sailor chooses her own cabin, and 0
otherwise. Thus X; indicates whether or not a certain event occurs, and is hence
called an indicator variable. We wish to determine the expected number of sailors
who get their own cabins, which is E[E,,,l Xi]. By linearity of expectation, this
is E,,l E[X;]. Since the cabins are chosen at random, the probability that the ith
sailor gets her own cabin is 1/40, so E[X;] = 1/40. Thus the expected number of
sailors who get their own cabins is 370, 1/40 = 1.

Our next illustration is the construction of a binary planar partition of a set
of n disjoint line segments in the plane, a problem with applications to computer
graphics. A binary planar partition consists of a binary tree together with some
additional information, as described below. Every internal node of the tree
has two children. Associated with each node v of the tree is a region r(v) of
the plane. Associated with each internal node v of the tree is a line £(v) that
intersects r(v). The region corresponding to the root is the entire plane. The
region r(v) is partitioned by /(v) into two regions r1(v) and r,(v), which are
the regions associated with the two children of v. Thus, any region r of the
partition is bounded by the partition lines on the path from the root to the node
corresponding to r in the tree.

Given a set S = {s1,5,,...,5,} of non-intersecting line segments in the plane,
we wish to find a binary planar partition such that every region in the partition
contains at most one line segment (or a portion of one line segment). Notice
that the definition allows us to divide an input line segment s; into several
segments s;;, S, ..., €ach of which lies in a different region. The example of
Figure 1.2 gives such a partition for a set of three line segments (dark lines).

Exercise 1.5: Show that there exists a set of line segments for which no binary
planar partition can avoid breaking up some of the segments into pieces, if each
segment is to lie in a different region of the partition.

Binary planar partitions have two applications in computer graphics. Here,
we describe one of them, the problem of hidden line elimination in computer

11
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Figure 1.2: An example of a binary planar partition for a set of segments (dark lines).
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity.

graphics. The second application has to do with the constructive solid geometry
(or CSG) representation of a polyhedral object.

In rendering a scene on a graphics terminal, we are often faced with a
situation in which the scene remains fixed, but it is to be viewed from several
directions (for instance, in a flight simulator, where the simulated motion of the
plane causes the viewpoint to change). The hidden line elimination problem is
the following: having adopted a viewpoint and a direction of viewing, we want
to draw only the portion of the scene that is visible, eliminating those objects
that are obscured by other objects “in front” of them relative to the viewpoint.
In such a situation, we might be prepared to spend some computational effort
preprocessing the scene so that given a direction of viewing, the scene can be
rendered quickly with hidden lines eliminated.

One approach to this problem uses a binary partition tree. In this chapter we
consider the simple case where the scene lies entirely in the plane, and we view it
from a point in the same plane. Thus, the output is a one-dimensional projected
“picture.” We can assume that the input scene consists of non-intersecting line
segments, since any line that is intersected by another can be broken up into
segments, each of which touches other lines only at its endpoints (if at all).
Once the scene has been thus decomposed into line segments, we construct a
binary planar partition tree for it. Now, given the direction of viewing, we use
an idea known as the painter’s algorithm to render the scene: first draw the
objects that are furthest “behind,” and then progressively draw the objects that
are in front. Given the binary planar partition tree, the painter’s algorithm
can be implemented by recursively traversing the tree as follows. At the root
of the tree, determine which side of the partitioning line L; is “behind” from
the viewpoint and render all the objects in that sub-tree (recursively). Having
completely rendered the portion of the tree corresponding to that sub-tree,
do the same for the portion in “front” of L,, “painting over” objects already
drawn.

The time it takes to render the scene depends on the size of the binary planar
partition tree. We therefore wish to construct a binary planar partition that is
as small as possible. Notice that since the tree must be traversed completely to

12
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render the scene, the depth of the tree is immaterial in this application. Because
the construction of the partition can break some of the input segments s; into
smaller pieces, the size of the partition need not be n; in fact, it is not clear that
a partition of size O(n) always exists.

In this chapter we consider only the planar case just described; in Chapter 9
we generalize the idea of a binary planar partition to handle the rendition of
a three-dimensional scene on a two-dimensional screen (a far more interesting
case for computer graphics).

For a line segment s, let I(s) denote the line obtained by extending (if necessary)
s on both sides to infinity. For the set S = {s,,5,,...5,} of line segments, a simple
and natural class of partitions is the set of autopartitions, which are formed by
only using lines from the set {I(s1),(s2),...l(s,)} in constructing the partition.
We only consider autopartitions from here on. )

Algorithm RandAuto:

Input: A set S = {sy,s,,....8,} of non-intersecting line segments.

Output: A binary autopartition P, of S.

1. Pick a permutation  of {1,2,..., n} uniformly at random from the n! possible
permutations.

2. while a region contains more than one segment, cut it with /(s;) where i is
first in the ordering 7 such that s; cuts that region.

In the partition resulting from an execution of RandAuto, a segment may
lie on the boundary between two regions of the partition. We declare such a
segment to lie in one region or the other in any convenient way.

Theorem 1.2: The expected size of the autopartition produced by RandAuto is
O(nlogn).

PROOF: For line segments u and v, define index(u,v) to be i if I(u) intersects
i — 1 other segments before hitting v, and index(u,v) = oo if I(u) does not
hit v. Since a segment u can be extended in two directions, it is possible
that index(u,v) = index(u,w) for two different lines v and w (in Figure 1.3,
index(u,v,) = index(u,v,) = 2).

Let us denote by u - v the event that /(u) cuts v in the constructed partition.
Let index(u,v) = i, and let u;, uy, ... u;—, be the segments that I(u) intersects before
hitting v. The event u - v happens only if u occurs before any of {u;,u,,...u;_;,v}
in the randomly chosen permutation n. The probability that this happens is
1/(i+1).

Let C,, be an indicator variable that is 1 if ¥ 4 v and 0 otherwise; clearly,
E[C,,] = Pr{u - v] < 1/(index(u,v)+ 1). The size of P, equals n plus the number
of intersections due to cuts. Thus, its expectation is n + E[S_, 3", C,,] and by
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AN—\

Figure 1.3: An illustration of index(u,v).

linearity of expectation this equals

n+ZZPr[u—{v]$n+Z;m-l—. (1.8)

u  vu u

For any line segment u and any finite positive integer i, there are at most two
vertices v and w such that index(u,v) and index(u, w) equals i. This is because
the extension of the segment u along either of the two possible directions will
meet any other line segment at most once. Thus, in each of the two directions,
there is a total ordering on the points of intersection with other segments and
the index values increase monotonically. This implies that

1 = 2
—_ <« _
; index(u,v) +1 — ; i+1

Combining this with (1.8) implies that the expected size of P, is bounded above
by

—1
rzﬁtzznzi—;l—T <n+2nH,

u =]

which is O(nlog n). O

Note that in computing the expected number of intersections, we only made
use of linearity of expectation. We do not require any independence between
the events u < v and u < w, for segments u,v, and w. Indeed, these events need
not be independent in general.

One way of interpreting Theorem 1.2 is as follows: since the expected size
of the binary planar partition constructed by the algorithm is O(nlogn) on
any input, there must exist a binary autopartition of size O(nlogn) for every
input. This follows from the simple fact that any random variable assumes at
least one value that is no greater than its expectation (and, indeed, one that is
no less than its expectation). Thus we have used a probabilistic argument to
assert that a combinatorial object — in this case a binary autopartition of size
O(nlog n) — exists with absolute certainty rather than with some probability. This
is an example of the probabilistic method in combinatorics. We will study the
probabilistic method in greater detail in Chapter $.
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1.4. A Probabilistic Recurrence

Frequently, we express a random variable of interest as a recurrence in terms of
other random variables. In this section, we study one such situation using the
Find algorithm analyzed in detail in Problem 1.9. The material in this section,
although useful, is not an essential prerequisite for subsequent topics and may
be omitted in the first reading.

The Find algorithm for selecting the kth smallest of a set S of n elements
works as follows. We pick a random element y and partition S \ {y} into two
sets S; and S (elements smaller and larger than y respectively) as in RandQS.
Suppose |S;| = k — 1; then y is the desired element and we are done. Otherwise,
if |S1] = k, we recurswely find the kth smallest element of S;; else we recurswely
find the (k — |S;| — 1)th smallest element in S,.

The expected number of comparisons made by the Find algorithm is the
subject of Problem 1.9. Suppose instead that we were to ask the following
question: what is the expected number of times we make the recursive call in
the algorithm? Equivalently, what is the expected number of times we pick a
random element in the algorithm? While this question may not be especially
important for the Find algorithm, it is the kind of question that arises in the
analysis of a number of parallel and geometric algorithms. Intuitively, we
expect that the size of the residual problem in the Find algorithm is divided
by a constant factor at each recursive level, so that we expect that the number
of recursive invocations is O(logn). Below, we show that this intuition can be
formalized in a general setting.

Let g(x) be a monotone non-decreasing function from the positive reals to the
positive reals. Consider a particle whose position changes at discrete time steps
and is always at a positive integer. If the particle is currently at position m > 1,
it proceeds at the next step to the position m — X, where X is a random variable
ranging over the integers 1,...,m—1. All we know about X is that E[X] > g(m),
and that X is chosen independently of the past. It is clear that the particle will
always reach position 1 and the process terminates in that state. The interesting
question is, assuming that the particle starts at position n, what is the expected
number of steps before it reaches position 1? The reader may associate the
position of the particle with the size of the problem in a recursive call of the
Find algorithm. Although we have more information about the distribution of
X in the case of Find’s analysis, it turns out that the bound on the expected size
of the residual problem suffices for proving the following result.

Theorem 1.3: Let T be the random variable denoting the number of steps in
which the particle reaches the position 1. Then, E[T] < [ dx/g(x).

proOF: The proof is by induction on n; let us suppose the theorem holds for
values of m smaller than n. Let f(m) = ;" dx/g(x) for m > 1. We wish to show
that E[T] < f(n).
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Consider the first step, during which the particle proceeds from position n to
position n — X, where X is chosen from a distribution for which E[X] > g(n).
We have

E[T] < 1+4E[f(n —X)] (1.9)

n dy
t [/1 g(y) / -x g(y) (110)
= 14+ f(n)— E[/ g(y) (1.11)

_gf[ &

< 14+ f(n)—E[ 2 (1.12)
= 1+10)- 2] (113)
< f(n). (1.14)
The inequality (1.12) follows from the assumption that g(y) is non-decreasing,
while (1.14) follows from the lower bound on E[X]. O

Exercise 1.6: If X were to range over all integers having value at most m—1 (possibly
including negative integers), how would the statement and proof of Theorem 1.3
change?.

For the Find algorithm, we can show (following the analysis of Problem 1.9)
that g(m) > m/4. We may then apply the above theorem to bound the expected
number of recursive calls to Find by 4Inn. '

Exercise 1.7: What prevents us from using Theorem 1.3 to bound the expected
number of levels of recursion in the RandQS algorithm?

1.5. Computation Model and Complexity Classes

In this section we discuss models of computation used in this book, and follow
this with a review of complexity classes.

1.5.1. RAMs and Turing Machines

Following common practice, throughout this book we use the Turing machine
model to discuss complexity-theory issues. As is common, however, we switch to
the RAM (random access machine) as the model of computation when describ-
ing and analyzing algorithms (except in the study of parallel and distributed
algorithms in Chapter 12, where we define a version of the RAM model for
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machines working in parallel). We begin by defining the Turing machine, which
is an abstract model of an algorithm.

» Definition 1.2: A deterministic Turing machine is a quadruple M = (S,Z,9,s).
Here S is a finite set of states, of which s € S is the machine’s initial state. The
machine uses a finite set of symbols, denoted X; this set includes special symbols
BLANK and FIRST. The function 4 is the transition function of the Turing machine,
mapping § X I to (S U {HALT,YES,NO}) XZ x {«,—, sTAY}. The machine has
three halting states HALT (the halting state), YEs (the accepting state), and NoO (the
rejecting state) (these are states, but formally not in S).

The input to the Turing machine is generally thought of as being written on
a tape; unless otherwise specified, the machine may read from and write on this
tape. We assume that HALT, YES, and NO, as well as the symbols «,—, and STAY,
are not in S U Z. The machine begins in the initial state s with its cursor at the
first symbol of the input x (i.e., the left end of the tape); this symbol is always
FIRST. The rest of the input is a string of finite length from (X\{BLANK, FIRST})";
the left-most BLANK on the tape identifies the end of the input string.

The transition function dictates the actions of the machine, and may be
thought of as its program. In each step, the machine reads the symbol « of the
input currently pointed to by the cursor; based on this symbol and the current
state of the machine, it chooses a next state, a symbol B to be overwritten on
a and a cursor motion direction from {«,—,sTAaY} (here « and — specify a
motion by one step to the left and right, respectively, while sTAy specifies that
the cursor remain in its present position). The transition function is ‘designed
to ensure that the cursor never falls off the left end of the input, identified by
FIRST. The machine may of course overwrite the BLANK symbol.

If the machine halts in the YES state, we say that it has accepted the input x.
If the machine halts in the NO state, we say that it has rejected the input x. The
third halting state, HALT, is for the computation of functions whose range is not
Boolean; in such cases, the output of the function computation is written onto
the tape. An algorithm corresponds to a Turing machine that always halts.

A probabilistic Turing machine is a Turing machine augmented with the ability
to generate an unbiased coin flip in one step. It corresponds to a randomized
algorithm. On any input x, a probabilistic Turing machine accepts x with some
probability, and we study this probability.

In the light of these definitions, we may speak of an algorithm accepting or
rejecting an input (we visualize the Turing machine underlying the algorithm as
accepting or rejecting), and similarly speak of a randomized algorithm accepting
or rejecting an input with some probability.

In the RAM model, we have a machine that can perform the following types
of operations involving registers and main memory: input-output operations,
memory-register transfers, indirect addressing, branching, and arithmetic opera-
tions. Each register or memory location may hold an integer that can be accessed
as a unit, but an algorithm has no access to the representation of the number.
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The arithmetic instructions permitted are +,—, %, /. In addition, an algorithm
can compare two numbers, ind evaluate the square root of a positive number.

Two types of RAM modcls are defined based on the cost used for measuring
the running time of a program. In the unit-cost RAM (sometimes also called the
uniform RAM), each instruction can be performed in one time step. This model
is believed to be much too powerful since there is no known polynomial-time
simulation of this model by Turing machines. This situation arises because
the unit-cost RAM, unlike the more restricted Turing machine, is able to use
multiplication to quickly compute extremely large integers. However, if we
disallow all arithmetic operations besides addition and subtraction, then it is
possible to show that the resulting model is equivalent to Turing machines under
polynomial-time simulations.

A more realistic version of the RAM is the so-called log-cost RAM where each
instruction requires time proportional to the logarithm of the size of its operands.
It turns out that the log-cost RAM with the complete arithmetic instruction set
is equivalent to Turing machines under polynomial-time simulations.

For simplicity, we will work with the general unit-cost RAM model. At the
same time, we will avoid misuse of its power by ensuring that in all algorithms
under consideration the size of the operands is polynomially bounded in the
input size. Thus, our algorithm can be transformed to the log-cost RAM model
with only a small (logarithmic in the input size) multiplicative slow-down in the
running fime. We also assume that the RAM can in a single step choose an
element uniformly at random from a set of cardinality polynomial in the size of
the problem input. Standard texts on automata and complexity (see the Notes
section) give proofs of the following basic fact.

Proposition 1.4: Any Turing machine computation of length polynomial in the size
of the input can be simulated by a RAM computation of length polynomial in the
size of the input. Any RAM computation of length polynomial in the size of the
input can be simulated by a Turing machine computation of length polynomial in
the size of the input.

1.5.2, Complexity Classes

We now define some basic complexity classes focusing on those involving ran-
domized algorithms. For these definitions, the underlying model of computation
is assumed to be the Turing machine, but by the preceding discussion it could
be substituted by a log-cost RAM or the restricted form of the unit-cost RAM.

In complexity theory, it is common to concentrate on the decision problem
derived from some hard optimization problem. This enables the development
of an elegant theoretical framework, and the decision problem is usually not
significantly different in structure from its optimization counterpart. For in-
stance, consider the satisfiability problem, in which an instance consists of a set
of clauses in conjunctive normal form (CNF). Because the satisfiability problem
appears at various points in this book, we define some terminology relating
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to it. The Boolean inputs are called variables, which may appear in either
uncomplemented or complemented form in a clause. The uncomplemented or
complemented variables in a clause are known as literals (respectively, unnegated
and negated literals). A clause is said to be satisfied if at least one of the literals
in it is TRUE. A solution consists either of an assignment of Boolean values to the
variables that ensures that every clause is satisfied (such an assignment is known
as a truth assignment), or a negative answer that it is not possible to assign
inputs so as to satisfy all the clauses simultaneously. The decision version of this
problem, commonly abbreviated SAT, seeks only a YES or NO answer depend-
ing on whether or not all the clauses can simultaneously be satisfied, without
demanding an assignment of values to the inputs (in case the answer is YES).

» Example 1.2: Consider the following instance of satisfiability:
(X1 VX2 V Xa) A (X3 V Fa V x5) A (F1 V X2 V X4 V ).

In this example, there are three clauses. The first stipulates that either x; should
be TRUE, or x; should be FALSE, or x4 should be TRUE. The literal X, denotes
that one way of satisfying the first clause is to set x, FALSE. The first two clauses
have three literals each, while the third has four. The assignments x; = TRUE,
x3 = FALSE, and xs = FALSE suffice to satisfy all the clauses (regardless of the
values assigned to x; and x4). Thus the solution to this instance for the decision
question (SAT) is YEs.

Any decision problem can be treated as a language recognition problem. Fix
a finite alphabet Z, usually X = {0, 1}, and let " be the set of all possible strings
over this alphabet. Denote by |s| the length of a string s. A language L < X*
is any collection of strings over X. The corresponding language recognition
problem is to decide whether a given string x in £* belongs to L. An algorithm
solves a language recognition problem for a specific language L by accepting
(output YES) any input string contained in L, and rejecting (output.No) any input
string not contained in L. The SAT problem can easily be cast in the form of
a language recognition problem by devising a suitable encoding of formulas as
bit-strings.

A complexity class is a collection of languages all of whose recognition
problems can be solved under prescribed bounds on the computational resources.
We are primarily interested in various forms of efficient algorithms, where
efficient is defined as being polynomial time. Recall that an algorithm has
polynomial running time if it halts within n®V time on any input of length n.
The following definitions list some interesting complexity classes.

» Definition 1.3: The class P consists of all languages L that have a polynomial-
time algorithm A such that for any input x € °,

e x € L = A(x) accepts.
e x ¢ L = A(x) rejects.
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» Definition 1.4: The class NP consists of all languages L that have a polynomial-
time algorithm A such that for any input x € Z°,

e x € L =3y € X" A(x,y) accepts, where |y| is bounded by a polynomial
in |x|.

e x¢ L =VyeZ® A(x,y) rejects.

A useful view of P and NP is the following. The class P consists of all
languages L such that for any x in L a proof of the membership x in L
(represented by the string y) can be found and verified efficiently. On the other
hand, NP consists of all languages L such that for any x in L, a proof of the
membership of x in L can be verified efficiently. Obviously, P = NP, but it is
not known whether P = NP. If P = NP, the existence of an efficiently verifiable
proof implies that it is possible to actually find such a proof efficiently.

For any complexity class C, we define the complementary class co-C as the
set of languages whose complement is in the class C. That is,

co-C={L|L eC}.

It is obvious that P = co-P and P < NP N co-NP. We do not know whether
P = NP Nco-NP or whether NP = co-NP, although both statements are widely
believed to be false.

Likewise, we can define deterministic and non-deterministic complexity classes
for different bounds on the running time. Let exponential time denote a running
time which is 2?™ for some polynomial p(n) in the input size. Allowing expo-
nential time instead of polynomial time in Definitions 1.3 and 1.4 gives us the
complexity classes EXP and NEXP. Clearly, EXP < NEXP, but once again we
do not know whether this inclusion is strict. On the other hand, we do know
that if P = NP, then EXP = NEXP.

We can also define space complexity classes by leaving the running time
unconstrained and instead placing a bound on the space used by an algorithm.
In the case of Turing machines, the space used is determined by the number
of distinct positions on the tape that are scanned during an execution; for
RAMs, the space requirement is simply the number of words of memory
required by an algorithm. In Definitions 1.3 and 1.4, requiring polynomial
space instead of polynomial time yields the definition of the class PSPACE and
NPSPACE. A PSPACE algorithm may run for super-polynomial time. These
classes behave differently from the time complexity classes; for example, we
know that PSPACE = NPSPACE and PSPACE = co-PSPACE.

We next review the notions of polynomial reductions and completeness for a
complexity class.

» Definition 1.5: A polynomial reduction from a language L; < " to a language
L, < X' is a function f : £* — X" such that:

1. There is a polynomial-time algorithm that computes f.
2. Forall x € I*, x € L, if and only if f(x) € L,.
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Exercise 1.8: Show that if there is a polynomial reduction from L, to L,, then L, € P
implies that L, € P.

» Definition 1.6: A language L is NP-hard if, for all L' € NP, there is a polynomial
reduction from L' to L.

Thus, if any NP-hard decision problem can be solved in polynomial time,
then so can all problems in NP.

» Definition 1.7: A language L is NP-complete if it is in NP and is NP-hard.

Intuitively the decision problems corresponding to NP-complete languages
are the “hardest” problems in NP. Note that the notion of NP-completeness
applies only to decision problems; the optimization problem corresponding to an
NP-complete decision problem is NP-hard, but is not NP-complete because it is
not in NP by definition. As with NP, the notions of hardness and completeness
can be generalized to any class C, for an appropriate notion of reduction. Unless
otherwise specified, the default notion of a reduction is a polynomial reduction,
and this is typically used for defining hardness and completeness in complexity
classes that are a superset of P, such as PSPACE.

We generalize these classes to allow for randomized algorithms. The basic
idea is to replace the existential and universal quantifiers in the definition of NP
by probabilistic requirements.

» Definition 1.8: The class RP (for Randomized Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in X°,

e x € L = Pr[A(x) accepts] > %

e x ¢ L = Pr[A(x) accepts] = 0.

The choice of the bound on the error probability 1/2 is arbitrary. In fact, as
was observed in the case of the min-cut algorithm, independent repetitions of
the algorithm can be used to go from the case where the probability of success
is polynomially small to the case where the probability of error is exponentially
small while changing only the degree of the polynomial that bounds the running
time. Thus, the success probability can be changed to an inverse polynomial
function of the input size without significantly affecting the definition of RP.

Observe that an RP algorithm is a Monte Carlo algorithm that can err only
when x € L. This is referred to as one-sided error. The class co-RP consists of
languages that have polynomial-time randomized algorithms erring only in the
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case when x ¢ L. A problem belonging to both RP and co-RP can be solved by
a randomized algorithm with zero-sided error, i¢., a Las Vegas algorithm.

» Definition 1.9: The class ZPP (for Zero-error Probabilistic Polynomial time)
is the class of languages that have Las Vegas algorithms running in expected
polynomial time.

Exercise 1.9: Show that ZPP = RPN co-RP.

Consider now the class of problems that have randomized Monte Carlo
algorithms making two-sided errors.

» Definition 1.10: The class PP (for Probabilistic Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in Z°,

1
e x € L = Pr[A(x) accepts] > 3

e x ¢ L = Pr[A(x) accepts] < -;—
To reduce the error probability of a two-sided error algorithm, we can perform
several independent iterations on the same input and produce the output (accept
or reject) that occurs in the majority of these iterations. Unfortunately, the
definition of the class PP is rather weak: because we have no bound on how
far from 1/2 the probabilities are, it may not be possible to use a small number
of repetitions of an algorithm A with such two-sided error probability to obtain
an algorithm with significantly smaller error probability.

Exercise 1.10: Consider a randomized algorithm with two-sided error probabilities
as in the definition of PP. Show that a polynomial number of independent repetitions
of this algorithm need not suffice to reduce the error probability to 1/4. (Consider
the case where the error probability is 1/2 4+ 1/2".)

A more useful class of two-sided error randomized algorithms corresponds
to the following complexity class.

» Definition 1.11: The class BPP (for Bounded-error Probabilistic Polynomial
time) consists of all languages L that have a randomized algorithm A running in
worst-case polynomial time such that for any input x in X°,

e x € L = Pr[A(x) accepts] = 3-
e x ¢ L = Pr[A(x) accepts] <

a1
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In a later chapter (see Problem 4.8) we will show that for this class of
algorithms the error probability can be reduced to 1/2" with only a polynomial
number of iterations. In fact, the probability bounds 3/4 and 1/4 can be changed
to 1/2+4 1/p(n) and 1/2.— 1/p(n), respectively, for any polynomially bounded
function p(n) without affecting this error reduction property or the definition of
the class BPP to a significant extent.

The reader is referred to Problems 1.11-1.14 for several basic relationships
between these complexity classes. There are several interesting open questions
regarding the relationships between these randomized complexity classes, for
example:

1. Is RP = co-RP?

2. Is RP = NPNco-NP? (Note that since co-RP < co-NP, showing that RP =co-RP
would imply RP < NP Nco-NP.)

3. Is BPP = NP?

Although these classes are defined in terms of decision problems, they can be
used to classify the complexity of a broader class of problems such as search
or optimization problems. We will overload our notation a bit by using the
complexity class labels for referring to algorithms. For example, RandQS will
be called a ZPP algorithm.

Consider the following decision version of the min-cut problem: given a graph
G and integer K, verify that the min-cut size in G equals K. Assume that we
have modified (by incorporating sufficiently many repetitions) the Monte Carlo
min-cut algorithm to reduce its probability of error below 1/4. This algorithm
can solve the decision problem by computing a cut value k and comparing it
with K. This gives a BPP algorithm. In the case where K is indeed the min-cut
value, the algorithm may not come up with the right value and, hence, may
reject the input. Conversely, if the min-cut value is smaller than K, the algorithm
may only find cuts of size K and, hence, may accept the input.

We may modify this decision problem: given G and K, verify that the min-cut
size in G is at most K. Now, the algorithm described above translates into an
RP algorithm for this problem. In the case where the actual min-cut size C is
larger than K, the algorithm will never accept the input. This is because it can
only find cuts of size k no smaller than C and hence greater than K.

Notes

The ideas underlying randomized algorithms can be traced back to Monte Carlo
methods used in numerical analysis, statistical physics, and simulation. In the con-
text of computability theory, the notion of a probabilistic Turing machine was proposed
by de Leeuw, Moore, Shannon, and Shapiro [122] and further explored in the pioneering
work of Rabin [340] and Gill [166]. Berlekamp [57], Rabin [341], and Solovay and
Strassen [382] gave early examples of concrete randomized algorithms. Rabin [341] pro-
posed randomized algorithms for problems in computational geometry and in number
theory. Around the same time, Solovay and Strassen [382] gave a randomized Monte
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Carlo algorithm for testing for primality; this problem is explored further in Chapter 14,
as is the randomized algorithm for factoring polynomials due to Berlekamp [57].

In the last twenty years, the array of techniques for devising and analyzing randomized
algorithms has grown. We develop these techniques in the chapters to follow. Karp [243],
Maffioli, Speranza, and Vercellis [289], and Welsh [415] give excellent surveys of ran-
domized algorithms. Johnson [220] surveys the probabilistic (or “average-case”) analysis
of algorithms (sometimes also referred to as “distributional complexity”), contrasting it
with randomized algorithms surveyed in his following bulletin [221].

Our RandQS algorithm is based on Hoare’s algorithm [201]. The min-cut algorithm
of Section 1.1, together with many variations and extensions, is due to Karger [231].

Monte Carlo methods have been popular in the sciences for over a hundred years now.
The classic experiment on approximating the value of n by dropping needles on a sheet
of paper with parallel lines is described in an eighteenth-century paper by Buffon [86]
(see also Hall [190]). The origin of the modern theory of Monte Carlo methods in the
physical sciences is widely attributed to Ulam, von Neumann, and Fermi [116]. The
term Las Vegas algorithm was introduced by Babai [37], although he uses the term in a
slightly different sense. Our usage conforms to the currently accepted notion of a Las
Vegas algorithm.

An important issue, alluded to in the discussion following the analysis of RandQS but
otherwise not covered in detail in this book, is the generation of random samples from
various types of distributions. First, there is the question of generating randomness within
the inherently deterministic computers that will implement our randomized algorithms.
This leads into the area of pseudo-random number generation, which is surveyed in the
article by Boppana and Hirschfeld [73] and in Knuth’s book [259]. Even if we assume
that a source of truly random bits is available, there is the issue of converting this into
the various types of distributions that may be required in randomized algorithms (for
example, see Problems 1.2 and 1.3). This problem is studied in the context of Monte
Carlo simulations, for example in the work of von Neumann [409, 410], and Knuth [259]
covers this in great detail. A comprehensive study of this important family of problems
in terms of its computational complexity was undertaken by Knuth and Yao [264].
The complexity of random sampling of combinatorial structures, such as graphs with
specified properties, has been studied by Pruhs and Manber [338]; as discussed in
Chapter 11, the problem of counting the number of combinatorial structures with
specified properties, often a difficult computational problem, can sometimes be reduced
to random sampling.

The idea of using independent iterations to reduce the error probability of Monte
Carlo algorithms has an analog for Las Vegas algorithms. Alt, Guibas, Mehlhorn, Karp,
and Wigderson [25] study the possibility of reducing the probability that the running
time of a Las Vegas algorithm substantially exceeds its expected value by employing
the following strategy: choose a sequence (T;) and use independent iterations of the
Las Vegas algorithm, aborting the ith iteration in T; steps, until one of the iterations
terminates successfully within the allotted time. These results were strengthened by Luby,
Sinclair, and Zuckerman [286], who also considered the minimization of the expected
total running time of such strategies.

The material of Section 1.3 is drawn from Paterson and Yao [329]. The Find algo-
rithm described in Section 1.4 is due to Hoare [200]. Theorem 1.3 is given in a paper by
Karp, Upfal and Wigderson [250]. Karp [244] gives a number of additional results on
probabilistic recurrence relations.
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The reader is referred to introductory texts on algorithms and complexity such
as those by Aho, Hopcroft, and Ullman [5, 6] and Papadimitriou [326] for more
details on the Turing machine model and the RAM model. It is known, for in-
stance, that sorting n numbers requires Q(nlogn) operations in the RAM model of
computation. The books by Bovet and Crescenzi [81] and by Papadimitriou [326]
contain a more detailed treatment of the complexity classes described in this chapter.

11

1.2

1.3

14

Problems

(Due to J. von Neumann [409].)

(a) Suppose you are given a coin for which the probability of HEADS, séy p, is
unknown. How can you use this coin to generate unbiased (i.e., Pr[HEADS] =
Pr[TAILS] = 1/2) coin-flips? Give a scheme for which the expected number of
flips of the biased coin for extracting one unbiased coin-flip is no more than
1/[p(1 — p)]. (Hint : Consider two consecutive flips of the biased coin.)

(b) Devise an extension of the scheme that extracts the largest possible
number of independent, unbiased coin-flips from a given number of flips of
the biased coin.

(Due to D.E. Knuth and A. C-C. Yao [264].)

(a) Suppose you are provided with a source of unbiased random bits. Explain
how you will use this to generate uniform samples from the setS = {0,...,n—
1}. Determine the expected number of random bits required by your sampling
algorithm. :

(b) What is the worst-case number of random bits required by your sampling
algorithm? Consider the case when n is a power of 2, as well as the case
when it is not.

(c) Solve (a) and (b) when, instead of unbiased random bits, you are required
to use as the source of randomness uniform random samples from the set
{0,....p — 1}; consider the case when n is a power of p, as well as the case
when it is not.

(Due to D.E. Knuth and A. C-C. Yao [264].) Suppose you are provided with a
source of unbiased random bits. Provide efficient (in terms of expected running
time and expected number of random bits used) schemes for generating
samples from the distribution over the set {2, 3,..., 12} induced by rolling two
unbiased dice and taking the sum of their outcomes.

(a) Suppose you are required to generate a random permutation of size n.
Assuming that you have access to a source of independent and unbiased
random bits, suggest a method for generating random permutations of size
n. Efficiency is measured in terms of both time and number of random bits.
What lower bounds can you prove for this task?

(b) Consider the following method for generating a random permutation of
size n. Pick n random values X;, ..., X, independently from the uniform
distribution over the interval [0,1]. Now, the permutation that orders the
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random variables in ascending order is claimed to be a random permutation,
and it can be determined by sorting the random values. Is the claim correct?
How efficient is this scheme?

(c) Consider the following “lazy” implementation of the scheme suggested
in (b). The binary representation of the fraction X; is a sequence of unbiased
and independent random bits. At any given stage of the sorting algorithm, we
would have chosen only as many bits of each X; as necessary to resolve all
the comparisons performed up to that point. When comparing X; to X, if the
current prefixes of their binary expansions do not determine the outcome of
the comparisons, then we extend their prefixes by choosing further random
bits until this happens. Compute tight bounds on the expected number of
random bits used by this implementation.

Consider the problem of using a source of unbiased random bits to generate
samples from the set S = {0,..., n — 1} such that the element i is chosen with
probability p;. Show how to perform this sampling using O(logn) random bits
per sample, regardless of the values of p;. Use the result from part (c) of
Problem 1.4.

Consider a sequence of n flips of an unbiased coin. Let H; denote the absolute
value of the excess of the number of HEADS over the number of TAILS seen
in the first i flips. Define H = max; H;. Show that E[H;] = ©(,/i), and that
E[H] = G(ﬁ).

Suppose we choose a permutation 7 of the ordered set N = {1,2,...n}
uniformly at random from the space of all permutations of N. Let L(r7) denote
the length of the longest increasing subsequence in permutation .

(a) For large n and some positive constant c, prove that E[L(7)] > c./n.
(b) Is the bound in (a) tight?

Consider adapting the min-cut algorithm of Section 1.1 to the problem of
finding an s-t min-cut in an undirected graph. In this problem, we are given
an undirected graph G together with two distinguished vertices s and t. An s-t
cut is a set of edges whose removal from G disconnects s from t; we seek an
s-t cut of minimum cardinality. As the algorithm proceeds, the vertex s may
get amalgamated into a new vertex as a result of an edge being contracted;

.we call this vertex the s-vertex (initially the s-vertex is s itself). Similarly,

we have a t-vertex. As we run the contraction algorithm, we ensure that we
never contract an edge between the s-vertex and the t-vertex.

(a) Show that there are graphs in which the probability that this algorithm
finds an s-t min-cut is exponentially small.

(b) How large can the number of s-t min-cuts in an instance be?
Consider the Find algorithm described in Section 1.4 for selecting the kth

smallest of a set S of n elements. Show that the algorithm finds the kth
smallest element in § in expected time O(n).

Consider the setting of Example 1.1. Show that the probability that no sailor
returns to her own cabin approaches 1/e as the number of sailors grows
large.
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PROBLEMS

Verify the following inclusions:

P< RP = NP < PSPACE ¢ EXP c NEXP.
It is not known whether these inclusions are strict.
Verify the following inclusions:

RP < BPP < PP.

It is not known whether these inclusions are strict.
Show that PP = co-PP and BPP = co-BPP.
Show that NP < PP < PSPACE.
(Due to K-I. Ko [265].) Show that NP = BPP implies NP = RP.
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CHAPTER 2

Game-Theoretic Techniques

IN this chapter we study several ideas that are basic to the design and analysis
of randomized algorithms. All the topics in this chapter share a game-theoretic
viewpoint, which enables us to think of a randomized algorithm as a proba-
bility distribution on deterministic algorithms. This leads to the Yao’s Minimax
Principle, which can be used to establish a lower bound on the performance of
a randomized algorithm.

2.1. Game Tree Evaluation

We begin with another simple illustration of linearity of expectation, in the
setting of game tree evaluation. This example will demonstrate a randomized
algorithm whose expected running time is smaller than that of any deterministic
algorithm. It will also serve as a vehicle for demonstrating a standard technique
for deriving a lower bound on the running time of any randomized algorithm for
a problem.

A game tree is a rooted tree in which internal nodes at even distance from
the root are labeled MIN and internal nodes at odd distance are labeled MAx.
Associated with each leaf is a real number, which we call its value. The evaluation
of the game tree is the following process. Each leaf returns the value associated
with it. Each MAX node returns the largest value returned by its children, and
each MIN node returns the smallest value returned by its children. Given a
tree with values at the leaves, the evaluation problem is to determine the value
returned by the root.

The evaluation of game trees plays a central role in artificial intelligence,
particularly in game-playing programs. The reader may readily associate the
children of a node with the options available to one of the two players in
a game. The leaves represent the value of the game for either player. One
player seeks to maximize this value, while the other tries to minimize it.
At each step, an evaluation algorithm chooses a leaf and reads its value.
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We study the number of such steps taken by an algorithm for evaluat-
ing a game tree. We do not charge the algorithm for any other computa-
tion.

We will limit our discussion to the special case in which the values at the
leaves are bits, 0 or 1. Thus, each MIN node can be thought of as a Boolean
AND operation and each MAX node as a Boolean OrR operation. This special
case is of interest in its own right, having applications in mechanical theorem
proving. Let T,; denote a uniform tree in which the root and every internal
node has d children and every leaf is at distance 2k from the root. Thus, any
root-to-leaf path passes through k AND nodes (including the root itself) and k or
nodes, and there are d* leaves. An instance of the evaluation problem consists
of the tree T, together with a Boolean value for each of the d* leaves. Given
an algorithm, we study the maximum number of steps it takes to evaluate any
instance of Ty.

An algorithm begins by specifying a leaf whose value is to be read at the first
step. Thereafter, it specifies such a leaf at each step, based on the values it has
read on previous steps. In a deterministic algorithm, the choice of the next leaf
to be read is a deterministic function of the values at the leaves read so far. For
a randomized algorithm, this choice may be randomized.

In Problem 2.1, the reader is asked to show that for any deterministic evalua-
tion algorithm, there is an instance of T, that forces the algorithm to read the
values on all d* leaves.

We now give a simple randomized algorithm and study the expected number
of leaves it reads on any instance of T,;. To simplify our presentation, we
restrict ourselves to the case d = 2. Any deterministic algorithm for this case can
be made to read all 2% = 4* leaves on some instance of T»,. Our randomized
algorithm is based on the following simple observation. Consider a single AND
node with two leaves. If the node were to return 0, at least one of the leaves
must contain 0. A deterministic algorithm inspects the leaves in a fixed order,
and an adversary can therefore always “hide” the O at the second of the two
leaves inspected by the algorithm. Reading the leaves in a random order foils
this strategy. With probability 1/2, the algorithm chooses the hidden O on the
first step, so its expected number of steps is 3/2, which is better than the worst
case for any deterministic algorithm. Similarly, in the case of an OR node, if it
were to return a 1, then a randomized order of examining the leaves will reduce
the expected number of steps to 3/2.

The reader may wonder how the randomized algorithm can benefit if the AND
node were to return 1, or if the orR node were to return a 0. If the two children
of these nodes are leaves, then clearly both leaves must be examined. The point
is that at an internal AND node in a tree returning a 1, examining the two OR
children (and evaluating their sub-trees) in a random order is still beneficial.
The two OR children of an AND node must also return 1, and this is the easy
case for the OR nodes. Similarly, at an internal or node returning 0, the two AND
children must return 0, and this is the easy case for the AND nodes. To explain
this better, we specify the complete algorithm.
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To evaluate an AND node v, the algorithm chooses one of its children (a sub-
tree rooted at an OR node) at random and evaluates it by recursively invoking
the algorithm. If 1 is returned by the sub-tree, the algorithm proceeds to evaluate
the other child (again by recursive application). If O is returned, the algorithm
returns O for v. To evaluate an OR node, the procedure is the same with the roles
of 0 and 1 interchanged. We now argue by induction on k that the expected
cost of evaluating any instance of T, is at most 3%,

The basis (k = 1) is an easy extension of our illustration above. Assume now
that the expected cost of evaluating any instance of T,;_; is at most 3*~!, We
establish the inductive step. Consider first a tree T whose root is an OR node,
each of whose children is the root of a copy of T,4—;. If the root of T were to
evaluate to 1, at least one of its children returns 1. With probability 1/2 this
child is chosen first, incurring (by the inductive hypothesis) an expected cost of
at most 3*~! in evaluating T. With probability 1/2 both sub-trees are evaluated,
incurring a net cost of at most 2 x 3*~!. Putting these observations together, the
expected cost of determining the value of T is at most

x 3k=1, (2.1)

N W

%x3"‘1+% x2x31=
If on the other hand the OR were to evaluate to 0, both children must be
evaluated, incurring a cost of at most 2 x 3*~1,

Consider next the root of the tree T4, an AND node. If it evaluates to 1, then
both its sub-trees rooted at OrR nodes return 1. By the discussion in the previous
paragraph and by linearity of expectation, the expected cost of evaluating Ty
to 1 is at most 2 x (3/2) x 3*=! = 3% On the other hand, if the instance of T
evaluates to 0, at least one of its sub-trees rooted at orR nodes returns 0. With
probability 1/2 it is chosen first, and so the expected cost of evaluating T is
at most

2x#4+%x%x#4s#.
Here the first term bounds the cost of evaluating both sub-trees of the OrR node
that returns O; the second term accounts for the fact that with probability 1/2,
an additional cost of (3/2)3*~! may be incurred in evaluating its sibling that
returns 1.

Theorem 2.1: Given any instance of Ty, the expected number of steps for the
above randomized algorithm is at most 3*.

Since n = 4* the expected running time of our randomized algorithm is n'o%3,
which we bound by n®73. Thus, the expected number of steps is smaller than
the worst case for any deterministic algorithm. We will see other instances in
later chapters. Note that the algorithm above is a Las Vegas algorithm and
always produces the correct answer.
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Scissors Paper Stone

Scissors 0 1 -1
Paper -1 0 1
Stone 1 -1 0

Figure 2.1: Matrix for scissors-paper-stone.

2.2. The Minimax Principle

The randomized algorithm of the preceding section has an expected Tunning
time of n%” on any uniform binary AND-OR tree with n leaves. Can we establish
that no randomized algorithm can have a lower expected running time? We are
thus seeking a lower bound on the running time of any randomized algorithm
for this problem. As a first step toward this end, we introduce a standard
technique for proving such lower bounds: the minimax principle. Indeed, it is the
only known general technique for proving lower bounds on the running times of
randomized algorithms. This technique only applies to algorithms that terminate
in finite time on all inputs and sequences of random choices. In Section 2.2.3,
we will apply this technique to the game tree evaluation problem. We begin with
a review of some elementary concepts in game theory. Note that the notion of
game theory is not directly related to the game tree evaluation problem studied
above. Rather, the game theory studied below yields the minimax principle, a
general tool, which we will then apply to randomized algorithms for the game
tree evaluation problem.

2.2.1. Game Theory

Consider the following game. Roberta and Charles put their hands behind
their backs and make a sign for one of the following: stone (closed fist), paper
(open palm), and scissors (two fingers). They then simultaneously display their
chosen sign. The winner is determined by the following rules: paper beats stone
by wrapping it, scissors beats paper by cutting it, and stone beats scissors by
dulling it. The loser pays $1 to the winner, and the outcome is a draw when
the two players choose the same sign. We can represent this game by the matrix
in Figure 2.1. The rows of the matrix represent Roberta’s choices; the columns,
Charles’ choices. The entries in the matrix are the amounts to be paid by Charles
to Roberta.

This is an instance of a two-person zero-sum game, and the matrix is called
the payoff matrix. It is called a zero-sum game because the net amount won
by Roberta and Charles is always exactly zero. In general, any two-person
zero-sum game can be represented by an n x m payoff matrix M with real
entries. (Throughout this book, we use boldface to denote vectors and matrices;
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Scissors Paper Stone

Scissors 0 1 2
Paper -1 0 1
Stone -2 -1 0

Figure 2.2: Matrix for modified scissors-paper-stone.

generally, vectors will be lower-case symbols, and matrices upper-case symbols.
For a vector x, we denote by Xx; its ith component. All vectors are column vectors
unless otherwise specified.) The set of possible strategies of the row player R
is in correspondence with the rows of M, and likewise for the strategies of the
column player C. The entry M;; is the amount paid by C to R when R chooses
strategy i and C chooses strategy j.

Naturally, the goal of the row (column) player is to maximize (minimize) the
payoff. Assume that this is a zero-information game, in that neither player has
any information about the opponent’s strategy. If R chooses strategy i, then
she is guaranteed a payoff of min; M;;, regardless of C’s strategy. An optimal
strategy for R is an i that maximizes min; M;;. Let Vx = max; min; M;; denote
the lower bound on the value of the payoff to R when she uses an optimal
strategy. An optimal strategy for C is a j that gives the best possible upper
bound on the payoff from C to R. A similar argument establishes that C’s
optimal strategy ensures that his payoff to R is at most V¢ = min; max; M;;.

Exercise 2.1: Show that the following inequality is valid for all payoff matrices.

max min M; < min maxM;;.
i i i i

In general, the inequality in Exercise 2.1 is strict; for example, in scissors-
paper-stone, Vg = —1 and V¢ = 1. When these two quantities are equal, the
game is said to have a solution and the value of the game is V = Viz = V.
The solution (or the saddle-point) is the specific choice of (optimal) strategies
that lead to this payoff. For games with a solution, let p and y denote optimal
strategies for R and C, respectively; clearly, V = M,,. In general, a player could
have more than one optimal strategy.

Figure 2.2 shows a modified version of the scissors-paper-stone game, where
the amount to be paid in certain cases is changed. It is easy to verify that this
game has value V = 0 and the solution is p =1 and y = 1. (Do you see why
the other diagonal entries do not correspond to saddle-points?)

What happens when a game has no solution? Then there is no clear-
cut optimal strategy for any player. In fact, any knowledge of the opponent’s
strategy can be used to improve the payoff, unlike the case of games with saddle-
points. An interesting way to get around this is to introduce randomization in
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the choice of strategies. So far we have been talking about deterministic or
pure strategies, but now we focus on randomized or mixed strategies. A mixed
strategy is a probability distribution on the set of possible strategies. The row
player picks a vector p = (py,...,ps), Which is a probability distribution on the
rows of M, i.e., p; is the probability that R will choose strategy i; similarly, the
column player has a vector ¢ = (qy,...,qm), Which is a probability distribution
on the columns of M. The payoff is now a random variable, and its expectation
is given by '

E[payoff] = p"Mq = > pMq;.
=1 jm=l
As before, using Vi to denote the best possible lower bound on the expected
payoff to R that can be ensured by choosing a strategy p, and using- V¢ to
denote the best possible upper bound on the expected payoff by C by choosing
a strategy ¢, we obtain

VR = m:lx rr:iinMq
Ve = minmaxp’ Mq.
T »

Here, the min and max range over all possible distributions. The well-known
Minimax Theorem of von Neumann implies that this game always has a solution
and that Vz = V.

Theorem 2.2 (von Neumann’s Minimax Theorem): For any two-person zero-sum
game specified by a matrix M,

maxmin p” Mq = minmax p” Mgq.
P g g »

In other words, the largest expected payoff that R can guarantee by choosing
a mixed strategy is equal to the smallest expected payoff that C can guarantee
using a mixed strategy. This common expected payoff value, called the value of
the game, is denoted by V. A pair of mixed strategies (p,§) which respectively
maximize the left-hand side and minimize the right-hand side of the equation
in Theorem 2.2 is called a saddle-point, and the two distributions are called
optimal mixed strategies.

Observe that once p is fixed, pT Mq is a linear function of ¢ and is minimized
by setting to 1 the g; with the smallest coefficient in this linear function.
The implications of this observation are rather interesting. If C knows the
distribution p being used by R, then his optimal strategy is a pure strategy. A
similar comment applies in the other direction. Also, this observation leads to a
simplified version of the minimax theorem. Let e, denote a unit vector with a 1
in the kth position and Os elsewhere.

Theorem 2.3 (Loomis’ Theorem): For any two-person zero-sum game specified
by a matrix M,

maxmin p” Me; = minmax e Mgq.
P ¢ i
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2.2.2. Yao’s Technique

We now describe the application of the above game-theoretic results to proving
lower bounds on the performance of randomized algorithms. The idea is to view
the algorithm designer as the column player C and the adversary choosing the
input as the row player R. The columns correspond to the set of all possible
algorithms; the rows correspond to the set of all possible inputs (of a fixed size).
It is important to keep in mind that each column corresponds to a deterministic
algorithm that always produces a correct solution. The payoff from C to R
is some real-valued measure of the performance of an algorithm, such as the
running time, the quality of the solution obtained, communication cost, or space.
(In all the examples we will encounter in this book, the entries in the payoff
matrix will be positive integers.) For the sake of concreteness, we assume in this
chapter that the payoff refers to the running time, but it should be obvious that
the following observations apply to any other measure. The algorithm designer
would like to choose an algorithm that minimizes the payoff, while the adversary
would like to maximize the payoff.

Consider a problem where the number of distinct inputs of a fixed size is
finite, as is the number of distinct (deterministic, terminating, and always correct)
algorithms for solving that problem. A pure strategy for C corresponds to the
choice of a deterministic algorithm, while a pure strategy for R corresponds
to a specific input. Notice that an optimal pure strategy for C corresponds
to an optimal deterministic algorithm, and V¢ is the worst-case running time
of any deterministic algorithm for the problem, which we call the deterministic
complexity of the problem. (The meaning of Vy is related to the non-deterministic
complexity of the problem. If the game has a solution, then the non-deterministic
and deterministic complexities coincide.)

Our interest is in the interpretation of the mixed strategies for the algorithm
designer and the adversary. A mixed strategy for C is a probability distribution
over the space of (always correct) deterministic algorithms, so it is a Las Vegas
randomized algorithm. An optimal mixed strategy for C is an optimal Las Vegas
algorithm. A mixed strategy for R is a distribution over the space of all inputs.

Let us define the distributional complexity of the problem at hand as the
expected running time of the best deterministic algorithm for the worst distribu-
tion on the inputs. This complexity is smaller than the deterministic complexity,
since the algorithm knows the input distribution.

Theorem 2.3 implies that the distributional complexity equals the least possible
expected running time achievable by any randomized algorithm. (We reiterate
that these observations apply only to scenarios where the number of algorithms
is finite.) We restate von Neumann’s and Loomis’s theorems in the language of
algorithms as follows.

Corollary 2.4: Let I1 be a problem with a finite set T of input instances (of a
fixed size), and a finite set of deterministic algorithms A. For input I € T and
algorithm A € A, let C(I, A) denote the running time of algorithm A on input I.
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For probability distributions p over I and q over A, let I, denote a random input
chosen according to p and A, denote a random algorithm chosen according to q.
Then,

m;lx rrzin E[C(,,A4,)] = rrzin m‘?x E[C(I,,A,)]

and

m;lx min E[C(,,A4)] = rr!’m max E[C(I,A,)].

From this corollary, we obtain the following proposition, which provides the
desired lower bound technique.

Proposition 2.5 (Yao’s Minimax Principle): For all distributions p over T and q
over A,

min E[C(I,,A)] < max E[C(I,A,)].

In other words, the expected running time of the optimal deterministic al-
gorithm for an arbitrarily chosen input distribution p is a lower bound on the
expected running time of the optimal (Las Vegas) randomized algorithm for
I1. Thus, to prove a lower bound on the randomized complexity, it suffices
to choose any distribution p on the input and prove a lower bound on the
expected running time of deterministic algorithms for that distribution. The
power of this technique lies in the flexibility in the choice of p and, more
importantly, the reduction to a lower bound on deterministic algorithms. It is
important to remember that the deterministic algorithm “knows” the chosen
distribution p.

The above discussion dealt only with lower bounds on the performance of
Las Vegas algorithms. We conclude this section with a brief discussion of
Monte Carlo algorithms with error probability ¢ € [0,1/2]. Let us define the
distributional complexity with error e, denoted minye4 E[C.(I,,A4)], to be the
minimum expected running time of any deterministic algorithm that errs with
probability at most e under the input distribution p. Similarly, we denote
by max;ez E[C.(I,A,)] the expected running time (under the worst input) of
any randomized algorithm that errs with probability at most ¢ (again, the
randomized algorithm is viewed as a probability distribution ¢ on deterministic
algorithms). Analogous to Proposition 2.5, we then have:

Proposition 2.6: For all distributions p over T and q over A and any e € [0,1/2],
1, .
5(31612 E[Co(Ip,4)]) < r;lea'IXE[Ce(I,Aq)]-

A pointer to the source of Proposition 2.6 is given in the Notes section.
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2.2.3. Lower Bound for Game Tree Evaluation

We now apply Yao’s Minimax Principle to the problem of game tree evaluation.
The lower bound that results only applies to algorithms that terminate in a
finite number of steps on any input and sequence of random choices. Note that
a randomized algorithm for game tree evaluation can in fact be viewed as a
probability distribution over deterministic algorithms, because the length of the
computation as well as the number of choices at each step are both finite. We may
imagine that all of these coins are tossed before the beginning of the execution.

Once again, we limit our attention to instances of the AND-OR tree Tyy.
While we could continue our discussion in the language of alternating levels of
AND and OR nodes, the following exercise will lead to a.slightly more compact
representation.

Exercise 2.2: Show that the tree T,, is equivalent to a balanced binary tree all of
whose leaves are at distance 2k from the root, and all of whose internal nodes
compute the NOR function: a node returns the value 1 if both inputs are 0, and 0
otherwise.

We proceed with the analysis of this tree of NORs of depth 2k. In order to prove
a lower bound on the expected number of leaves evaluated by any randomized
algorithm, we have to specify a distribution on instances (values for the leaves),
and then prove a lower bound on the expected running time of any deterministic
algorithm on such inputs. It is important to distinguish between the expected
running time of the randomized algorithm (which is over the random choices
made by the algorithm), and the expected running time of the deterministic
algorithm when proving the lower bound (this being over the random instances).
We also remind the reader that our lower bound will only apply to Las Vegas
randomized algorithms that always evaluate the tree correctly.

Let p=(3— \/5)/2. Each leaf of the tree is independently set to 1 with
probability p. Note that if each input to a NOR node is independently 1 with
probability p, then the probability that its output is 1 is the probability that
both its inputs are 0, which is

(\/5—1)2 3-

2 =7 ~PF

Thus the value of every node of the NOR tree is 1 with probability p, and the
value of a node is independent of the values of all the other nodes on the same
level. Consider a deterministic algorithm that is evaluating a tree furnished with
such random inputs; let v be a node of the tree whose value the algorithm is
trying to determine. Intuitively, the algorithm should determine the value of one
child of v before inspecting any leaf of the other sub-tree. By doing so, it can
try to maximize the benefit of information obtained by inspecting leaves. An
alternative view of this process is that the deterministic algorithm inspects leaves
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visited in a depth-first search of the tree, except of course that it ceases to visit
sub-trees of a node v once the value of v has been determined. Let us call such
algorithms depth-first pruning algorithms, referring to the order of traversal and
the fact that sub-trees that supply no additional information are “pruned” away
without being inspected.

Proposition 2.7: Let T be a NOR tree each of whose leaves is independently set
to 1 with probability q for a fixed value q € [0,1]. Let W(T) denote the minimum,
over all deterministic algorithms, of the expected number of steps to evaluate T.
Then, there is a depth-first pruning algorithm whose expected number of steps to
evaluate T is W(T).

A formal proof of Proposition 2.7 by induction is omitted here and can be found
in the reference given at the end of this chapter.

Proposition 2.7 tells us that for the purposes of our lower bound, we may
restrict our attention to depth-first pruning algorithms. We return to a NOR
tree with n leaves, each of which is set to 1 independently with probability
p = (3 —./5)/2. For a depth-first pruning algorithm evaluating this tree, let
W (h) be the expected number of leaves it inspects in determining the value of
a node at distance h from the leaves. Clearly

Wh)=Wh—1)+(1—p) x Wh—1),

where the first term represents the work done in evaluating one of the sub-trees
of the node, and the second term represents the work done in evaluating the
other sub-tree (which will be necessary if the first sub-tree returns the value O,
an event occurring with probability 1 — p). Letting h be log, n and solving, we
get W(h) > n0%4,

Theorem 2.8: The expected running time of any randomized algorithm that always
evaluates an instance of T,y correctly is at least n®%°*, where n = 2% is the number
of leaves.

We note that our lower bound of n%®% is less than the upper bound of n®7?
that follows from Theorem 2.1. Could it be that our lower bound technique is
weak? Corollary 2.4 precludes this possibility, since the identity it gives is an
equality; thus for any lower bound on the expected running time there must be
a distribution on the inputs such that the running time of the best deterministic
algorithm matches this lower bound. One possibility is that we have not chosen
the best possible probability distribution for the values of the leaves. Indeed, in
the NOR tree if both inputs to a node are 1, no reasonable algorithm will read
leaves of both sub-trees of that node. Thus, to prove the best lower bound,
we have to choose a distribution on the inputs that precludes the possibility
that both inputs to a node will be 1; in other words, the values of the inputs
are chosen at random but not independently. This stronger (and considerably
harder) analysis shows that our algorithm of Section 2.1 is optimal.
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2.3. Randomness and Non-uniformity

A basic issue in the study of randomized algorithms is the extent to which
randomization is necessary for solving a problem. When is it possible to remove
the randomization in a randomized algorithm? The answer depends on a
number of aspects of the problem being solved. The goal of this section is to
show that this question is more subtle than appears at first, and touches on the
issue of uniformity in algorithms. We now study the notion of a randomized
circuit, and a general technique by which randomization can be removed in
polynomial-sized randomized circuits.

A Boolean circuit with n inputs is a directed acyclic graph with the following
properties:

1. There are n vertices of in-degree 0; these are called the inputs to the circuit and
are labeled x;,x3,...,x,. There is one vertex with out-degree O; this is called the
output of the circuit.

2. Every vertex v that is not an input or the output is labeled with one Boolean
function b(v) from the set {AND,OR,NOT}. A vertex labeled NoT has in-degree 1.

3. Every input to the circuit is assigned a Boolean value. Under such an assignment
of input values, each vertex v computes the Boolean function b(v) of the values on
the incoming edges, and assigns this value to its outgoing edges. The value of the
output is thus a Boolean function of x1,x,,...,x,; the circuit is said to compute
this function.

4. The size of a circuit is the number of vertices in it.

A randomized circuit is very similar, except that there may be more than n
vertices of in-degree 0, and these are partitioned into two classes: (1) random
inputs, each of which is assigned an independent random value from {0, 1}, and
(2) the n circuit inputs, which are labeled xi,x,,...,x,. A randomized circuit is
said to compute a function f of the inputs x,, x;,.. ., x, if the following properties
hold:

1. For inputs xy,x,,...,X, for which f(x,...,x,) = 0, the output of the circuit is 0
regardless of the values of random inputs.

2. If, on the other hand, f(xi,...,x,) = 1, the output of the circuit is 1 with
probability at least 1/2.

Consider a Boolean function f : {0,1}" — {0, 1}. We denote by f, the function
f restricted to inputs from {0,1}". A sequence C = C;,C,,... of circuits is a
circuit family for f if C, has n inputs and computes f,(x;, x, ..., X,) at its output
for all n-bit inputs (x;,...,x,). The family C is said to be polynomial-sized if the
size of C, is bounded above by p(n) for every n, where p(.) is a polynomial. A
randomized circuit family for f is a circuit family for f that, in addition to the n
inputs xy,..., X, takes m random bits ry,...,r,, each of which is equiprobably 0
or 1. In addition, for every n, circuit C, must satisfy two properties:
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L. If fa(x1,...,Xs) = O, then the output of the circuit is 0 regardless of the values of
random inputs ry,...,".

2. If fa(x1,...,Xs) = 1, then the output of the circuit is 1 with probability at least
1/2. In other words, at least one half of the 2™ choices of the bits ry,...,r, will
result in the circuit evaluating to 1. We will refer to such m-tuples ry,...,r, as
witnesses for (xi,...,x,), in that they testify to the correct value of fn(x15...5Xn)
when it is 1.

Theorem 2.9 below asserts that randomization can be eliminated in poly-
nomial-sized circuits.

Theorem 2.9 (Adleman’s Theorem): If a Boolean function has a randomized,
polynomial-sized circuit family, then it has a polynomial-sized circuit family.

PrOOF: The proof is by a simple counting argument.

We show how to turn a given randomized polynomial-sized circuit C, for
fa(x1, ...,xn) using random inputs ry,...,r,, into a deterministic polynomial-
sized circuit D, that computes f,(xy,..., X,).

Form a matrix M with 2" rows, one for each possible input from {0,1}". The
matrix has 2" columns, one for each of the possible m-tuples from {0, 1}™ that the
r; can assume. The entry My is 1 if the setting of the ry,...,r, corresponding to
column k is a witness for the input x;,...,x, corresponding to row j; otherwise,
the entry is 0. Eliminate all rows of M corresponding to inputs for which f,
evaluates to 0.

By definition, at least half the entries of every surviving row of M equal 1.
Therefore, there must be a column with at least half its entries 1; in other words,
there is an assignment of Os and 1s to the r; that serves as a witness to at least
half of the possible inputs. Let this witness be r;(1),...,7(1). Build a circuit T,
which is a copy of C, with the random inputs “hard-wired” to ry(1),...,7m(1).
Delete the column in M corresponding to ry(1),...,rx(1), and all rows that had
1s in this column. Thus T; computes the correct value of f,(xy, ..., x,) whenever
the input corresponds to one of the rows we have just eliminated.

The matrix that remains still has the property that every row has at least half
its entries equal to 1, since the string r(1),...,r,(1) was not a witness for any of
these rows whereas half the entries in these rows are guaranteed to be 1s. Repeat
the construction above, picking a second string r;(2),...,r»(2) that is a witness
for at least half the remaining inputs and building a circuit T>. Continuing in
this manner, we will have deleted all the rows of M while building at most n
circuits Ty,..., T,.

Now we take the or of the outputs of the circuits Tj,...,T,, and this is a
(deterministic) circuit whose size is O(n) times that of the randomized circuit we
started with. O

The technique in Theorem 2.9 is the first example we have seen of derandom-
ization — where we take a randomized algorithm or computation, and diminish
or entirely remove the randomness in it. This is often a useful technique for the
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design of deterministic algorithms. Does Theorem 2.9 mean that randomization
is dispensable in all polynomial-time computations? The answer is no, and has
to do with the issue of non-uniformity in computation. The deterministic circuit
generated by the above process is one that works for a particular value of n. In-
deed, the circuit it produces for n inputs may have very little resemblance to the
circuit it produces for n+ 1 inputs, even if the original randomized circuits were
similar. Any “practical” algorithm or circuit will in fact exhibit this property of
similarity, which is formalized in the literature under the name uniformity.

Complexity theory formalizes this intuition by classifying algorithms as being
uniform or non-uniform as follows. Let a(n) be a function from the positive
integers to strings in X°. An algorithm A is said to use advice a if on an input
of length n it is given the string a(n) on a read-only tape. We say that A decides
a language L with advice a if on an input x it uses the the read-only string
a(|x|) to decide the membership of x in L. In other words, a single advice string
a(n) enables the algorithm A to decide the membership of x in L for all inputs
x having length n. Uniform algorithms- are those that use no advice strings at
all, whereas non-uniform algorithms are those that use such advice. For the
complexity class P, we define the class P/poly to consist of all languages L that
have a non-uniform polynomial-time algorithm A such that the length of the
advice string a(n) is bounded by a polynomial in n. Likewise, we may define the
class RP/poly.

Exercise 2.3: Consider any language L < {0,1}'. We define a Boolean function f
corresponding to the language L as follows. For any positive integer n, let f, be the
Boolean function such that for any x € {0, 1}", f,(x) assumes the value 1 if x € L and
0 otherwise. If there is a circuit family for f, we refer to it as a circuit family for L.
Show that L € P/poly if and only if it has a polynomial-sized circuit family.

In an analogous fashion, we may speak of a language L as having a ran-
domized circuit family. Clearly, L € RP/poly if and only if it has a randomized
polynomial-sized circuit family. In the light of this discussion, we may interpret
Theorem 2.9 as proving that RP/poly & P/poly. We thus have:

Corollary 2.10: RP < P/poly.

In summary, the removal of randomness in Theorem 2.9 only shows that this
can be done in principle; it i1s not known how to do this in any uniform or
practical way.

Notes

The material of Section 2.1 is based on a paper of Snir [381].

Most of the material in Section 2.2 is covered in textbooks on game theory. Some
good sources are the books by Wang [213], Luce and Raiffa [287], and von Neumann
and Morgenstern [411]. Theorem 2.2 is due to von Neumann [408], and Theorem 2.3
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is due to Loomis [279]. The application of the minimax theorems to proving lower
bounds on randomized algorithms was pointed out by Yao [419]. Proposition 2.6 is
also from [419]. In fact, for proving lower bounds, we do not require the equality
established in Corollary 2.4; all we require is the inequality of Proposition 2.5. It is
possible to give a direct proof of the inequality (not the equality) without resorting to
game theory; the reader can find this in the paper of Fich. Meyer auf der Heide, Ragde,
and Wigderson [147].

In our lower bound for game tree evaluation, the principle that any deterministic
algorithm may as well determine the value of one sub-tree before inspecting any leaves
of its sibling (used in Section 2.2.3) is due to Tarsi [393]. Saks and Wigderson [362]
refined the lower bound of Section 2.2.3 to show that Snir’s algorithm is optimal among
all randomized algorithms.

Theorem 2.9 is due to Adleman [1]; a version of this theorem applicable to circuit
families with two-sided error is due to Gill [166]. The notion of non-uniformity is studied
in depth in the paper by Karp and Lipton [245]. The reader interested in the material
of Sections 2.2.2 and 2.3 may wish to explore recent related work of Althofer [26] and
of Lipton and Young [278].

Problems

2.1 Show that for any deterministic evaluation algorithm, there is an instance of
T4« that forces the algorithm to read the values on all d% leaves.

2.2 Generalize the randomized algorithm and analysis of Section 2.1 to trees T,
for d > 2.

2.3 (Due to R. Boppana [362].) Consider a uniform rooted tree of height h — every
leaf is at distance h from the root. The root, as well as any internal node,
has three children. Each leaf has a Boolean value associated with it. Each
internal node returns the value returned by the majority of its children. The
evaluation problem consists of determining the value of the root; at each step,
an algorithm can choose one leaf whose value it wishes to read.

(a) Show that for any deterministic algorithm, there is an instance (a set of
Boolean values for the leaves) that forces it to read all n = 3" leaves.

{b) Consider the recursive randomized algorithm that evaluates two sub-trees
of the root chosen at random. If the values returned disagree, it proceeds to
evaluate the third sub-tree. Show that the expected number of leaves read by
this algorithm (on any instance) is at most n®?.

2.4 Determine the value Vg of the following 2 x 2 matrix game and give optimal
mixed strategies for the two players.

5 6
7 4
2.5 (Due to R.M. Karp.) Let (a;;) be a m xn matrix, let the vector (py, p..... Pm) €ON-

sist of reals in [0, 1] such that 3" . p, = 1, and let (g1, q.. .., ga) consist of reals
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in [0, 1] such that 3_._, g; = 1. Prove algebraically that max, min, Z,'.’=1 a;q; <
minp max; Zzﬂ piaij.

Use Yao’s Minimax Principle to prove a lower bound on the expected running
time of any Las Vegas algorithm for sorting n numbers.

(Due to R.M. Karp.) You are given an array A containing n numbers in sorted
order. In one step, an algorithm may specify an integer i € [1, n], and is given
the value of A[/] in return. Determine lower and upper bounds on the expected
number of steps taken by a Las Vegas randomized algorithm to determine
whether or not a given key k is present in the array.

(Due to R.M. Karp.) In a graph with n vertices, where n is even, a perfect
matching is a set of n/2 edges, no two of which meet at a common vertex.
Consider a randomized algorithm that takes an n-vertex graph as input and
correctly determines whether the graph has a perfect matching. At each step
the algorithm asks a question of the form “Is there an edge between vertex i
and vertex j?” The complexity of the algorithm is defined as the maximum,
over all n-vertex graphs G, of the expected number of questions C(n) asked
when the input graph is G. Prove: C(n) = Q(n?).

(Due to R.M. Karp.) Give lower bounds on the expected number of steps for
Las Vegas algorithms for the following problems:

(a) Given a string of n bits, the algorithm must determine whether the string
contains three consecutive 1s. In one step, it is allowed to inspect one bit of
the string. All other computation is free.

(b) Given a graph on n vertices, the algorithm must determine whether the
graph contains a vertex of degree 0. In one step, it specifies two vertices and
is told whether there is an edge between the specified vertices (just as in
Problem 2.8). All other computation is free.

(Due to R.M. Karp.) Given a list of n values vy, v,,..., vn, the majority element
problem is to determine.the index i, if one exists, such that the value v; occurs
more than n/2 times in the list. Determine lower and upper bounds on the
expected running time of any Las Vegas algorithm that solves the majority
element problem under the assumption that the algorithm can at each step
specify two indices, and is told whether or not the corresponding list entries
are equal.

What happens to the proof of Theorem 2.9 if in the second condition in the
definition of a randomized circuit we were to replace “at least half” by “at
least 1/k for k > 2"?

Show that BPP < P/poly.
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CHAPTER 3

Moments and Deviations

IN Chapters 1 and 2, we bounded the expected running times of several ran-
domized algorithms. While the expectation of a random variable (such as a
running time) may be small, it may frequently assume values that are far higher.
In analyzing the performance of a randomized algorithm, we often like to show
that the behavior of the algorithm is good almost all the time. For example, it is
more desirable to show that the running time is small with high probability, not
just that it has a small expectation. In this chapter we will begin the study of
general methods for proving statements of this type. We will begin by examining
a family of stochastic processes that is fundamental to the analysis of many
randomized algorithms: these are called occupancy problems. This totivates
the study (in this chapter and the next) of general bounds on the probability
that a random variable deviates far from its expectation, enabling us to avoid
such custom-made analyses. The probability that a random variable deviates
by a given amount from its expectation is referred to as a tail probability for
that deviation. Readers wishing to review basic material on probability and
distributions may consult Appendix C.

3.1. Occupancy Problems

We begin with an example of an occupancy problem. In such problems we
envision each of m indistinguishable objects (“balls”) being randomly assigned
to one of n distinct classes (“bins”). In other words, each ball is placed in
a bin chosen independently and uniformly at random. We are interested in
questions such as: what is the maximum number of balls in any bin? what is the
expected number of bins with k balls in them? Such problems are at the corc
of the analyses of many randomized algorithms ranging from data structures
to routing in parallel computers. Later, in Section 3.6, we will encounter a
variant of the occupancy problem, known as the coupon collector’s problem; in
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Chapter 4, we will apply sophisticated techniques to various random variables
arising in occupancy problems.

Our discussion of the occupancy problem will illustrate a recurrent tool in the
analysis of randomized algorithms: that the probability of the union of events is
no more than the sum of their probabilities. This is a special case of the Boole-
Bonferroni Inequalities (Proposition C.2) and can be formally stated as follows:
for arbitrary events £y, €, ..., £,, not necessarily independent,

PriULE] <3 PrE].

i=1

This principle is extremely useful because it assumes nothing about the de-
pendencies between the events. Thus, it enables us to analyze phenomena
involving events with very complicated interactions, without having to unravel
the interactions.

Consider first the case m = n. For 1 < i < n, let X; be the number of balls
in the ith bin. Following Example 1.1, we have E[X;] = 1 for all i. Yet we do
not expect that during a typical experiment every bin receives exactly one ball.
Rather, we expect some bins to have no balls at all, and others to have many
more than one.

Let us try now to make a statement of the form “with very high probability,
no bin réceives more than k balls,” for a suitably chosen k. Let £;(k) denote the
event that bin j has k or more balls in it. We concentrate on analyzing £(k).
The probability that bin 1 receives exactly i balls is

() (-6 Q) -6

The second inequality results from an upper bound for binomial coefficients
(Proposition B.2). Thus, ‘

Pri£.i(k)] < %‘: (?) < (g)k (1 +z+ (1%)2 +- ) . (3.1)
Let k* = [(elnn)/ Inlnn]. Then,

. e\ 1 -2
Pri&i(k )] < () = S
The same computation tells us that this upper bound applies to Pr[€;(k*)] for
all i, but can we say that no bin is likely to have more than k* balls in it? For
this we invoke the principle mentioned at the beginning of this section: the
probability of the union of the events £;(k°) is no more than their sum. We
obtain that

PriUL,EK)] < D PHEK)] < -

i=1
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Thus we have established:

Theorem 3.1: With probability at least 1 — 1/n, no bin has more than k* =
(elnn)/Inlnn balls in it.

Interestingly, when m is of the order of nlogn, the bin with the most balls
has about the same number of balls as the expected number of balls in any bin.
This phenomenon is exploited in a number of randomized algorithms (see, for
instance, Section 4.2).

Exercise 3.1: For m = nlogn, show that with probability 1 — o(1) every bin contains
O(log n) balls.

We turn to a classic combinatorial problem. Suppose that m balls are
randomly assigned to n bins. We study the probability of the event that they
all land in distinct bins. The special case n = 365 is popular in mathematical
lore as the birthday problem. The interpretation is that the 365 days of the
year correspond to 365 bins, and the birthday of each of m people is chosen
independently and uniformly from all 365 days (ignoring leap years). How large
must m be before two people in the group are likely to share their birthdays?

Consider the assignment of the balls to the bins as a sequential process: we
throw the first ball into a random bin, then the second ball, and so on. For
2 <i<m,let £ denote the event that the ith ball lands in a bin not containing
any of the first i — 1 balls. We will bound Pr[",£;] from above. From (1.6), we
can write

Pr(N2,E] = PrE2]Pr{Es | E>]Pr(E4 | E2NE3]- - PrEm | NIS'E].

Now, it is easy to compute Pr[£; | ﬂj;‘zé' j]: this is simply the probability that
the ith ball lands in an empty bin given that the first i — 1 all fell into distinct
bins, and is thus 1 — (i — 1)/n. Making use of the fact that 1 — x < e™*, we have

m . m
Pr[n;';zgi] < H (1 - l_r_l_l.) < He—(i—l)/n = g~ mim=1)/2n
i=2 =2

Thus, we see that for m equal to [/2n + 1], the probability that all m balls land
in distinct bins is at most 1/e; as m increases beyond this value, the probability
drops rapidly.

3.2. The Markov and Chebyshev Inequalities

We have seen above that making statements about the probability that a random
variable deviates far from its expectation may involve a detailed, problem-specific
analysis. Often, one can avoid such detailed analyses by resorting to general
inequalities on such tail probabilities.
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We begin with the Markov inequality, a fundamental tool we will invoke
repeatedly when we develop more sophisticated bounding techniques. Let X
be a discrete random variable and f(x) be any real-valued function. Then the
expectation of f(X) is given by (see Appendix C)

E[f(X)] =D f(x)Pr[X = x].

Theorem 3.2 (Markov Inequality): Let Y be a random variable assuming only
non-negative values. Then for all t € R,

Pr[Y > 1] < F—[;Y;]

Equivalently,

Pr[Y > KE[Y]] <

& -

PROOF: Define a function f(y) by f(y) = 1if y > t, and O otherwise. Then
Pr[Y > 1] = E[f(Y)]. Since f(y) < y/t for all y,
E[f(Y)] <E [Y] _ ElY]

3 t
and the theorem follows. O

This is the tightest possible bound when we know only that Y is non-negative
and has a given expectation. Unfortunately, the Markov inequality by itself
is often too weak to yield useful results. The following exercise may help the
reader appreciate this; it shows that the Markov inequality is tight only for
rather uninteresting distributions.

Exercise 3.2: Given a positive integer k, describe a random variable X assuming
only non-negative values, such that

Pr(X > kE[X]] =

x| -

The following generalization of Markov’s inequality underlies its usefulness
in deriving stronger bounds.

Exercise 3.3: Let Y be any random variable and h any non-negative real function.
Show that for all t € RY,

Pr{h(Y) 2 t] < .l::_[ﬂt(l)_]
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We now show that the Markov inequality can be used to derive better bounds
on the tail probability by using more information about the distribution of the
random variable. The first of these is the Chebyshev bound, which is based
on the knowledge of the variance of the distribution; we will apply this to the
analysis of a simple randomized selection algorithm.

For a random variable X with expectation uy, its variance ¢% is defined to
be E[(X — ux)?). The standard deviation of X, denoted oy, is the positive square
root of g%. (See Appendix C.)

Theorem 3.3 (Chebyshev’s Inequality): Let X be a random variable with expec-
tation px and standard deviation ox. Then for any t € RY,

1
Pr(|X — uy| > tox] < 7

PROOF: First, note that
Pr(|X — pux| > tox] = Pr[(X — px)? > 0%].

The random variable Y = (X — uy)? has expectation ¢%, and applying the
Markov inequality to Y bounds this probability from above by 1/12. a

3.3. Randomized Selection

We now consider the use of random sampling for the problem of selecting the
kth smallest element in a set S of n elements drawn from a totally ordered
universe. We assume that the elements of S are all distinct, although it is not
very hard to modify the following analysis to allow for multisets. Let rg(z)
denote the rank of an element ¢ (the kth smallest element has rank k) and let
S denote the ith smallest element of S. We extend the use of this notation to
subsets of S as well. Thus we seek to identify S,.

In Step 1 (see following page), we sample with replacement: for instance, if
an element s of S is chosen to be in R on the first of our n*/* drawings, the
remaining n** — 1 drawings are all as likely to pick s again as any other element
in S. This style of sampling appears to be wasteful, but we employ it here
because it keeps our analysis clean. Sampling without replacement would result
in a marginally sharper analysis, but in practice this may be slightly harder to
implement: throughout the sampling process, we would have to keep track of
the elements chosen so far.

Figure 3.1 illustrates Step 3, where small elements are at the left end of the
picture and large ones at the right. Determining (in Step 4) whether Sy, € P is
easy since we know the ranks rg(a) and rs(b) and we compare either or both of
these to k, depending on which of the three if statements in Step 4 we execute.
The sorting in Step 5 can be performed in O(n**logn) steps.
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Algorithm LazySelect:

Input: A set S of n elements from a totally ordered universe, and an integer k
in [1,n].
Output: The kth smallest element of S, S,.

1. Pick n*/* elements from S, chosen independently and uniformly at random
with replacement; call this multiset of elements R.

2. SortR in 0(n3/‘ log n) steps using any optimal sorting algorithm.

3. Let x = kn~'4. For ¢ = max{|x — \/n]. 1} and h = min{[x + /n],n%*}, let
a =Ry, and b = Ry,. By comparing a and b to every element of S, determine
rs(a) and rs(b).

4. ifk <n/* thenP ={y eS|y <b};
else fk>n—n'" letP={yeS|y=>a};
else ifke[n'/ n—n'*,letP={yeS|a<y<b);

Check whether Sy € P and |P| < 4n%* + 2. If not, repeat Steps 1-3 until such
a set P is found.

5. By sorting P in O(|P|log|P|) steps, identify Py_rs(a)+1), Which is Sy.

h —l‘

N/ Sy H

Elements of R

Figure 3.1: The LazySelect algorithm.

Thus the idea of the algorithm is to identify two elements a and b in S such
that both of the following statements hold with high probability:

1. The element Sy that we seek is in P.

2. The set P of elements between a and b is not very large, so that we can sort P
inexpensively in Step 5.

We examine how either of these requirements could fail. We focus on the most
interesting case when k € [n'/4,n —n!/4], so that P = {y € S | a < y < b};
the analysis for the other two cases of Step 4 is similar and in fact somewhat
simpler.

If the element a is greater than Sy, (or if b is smaller than or equal to Sy)),
we fail because P does not contain Sy). For this to happen, fewer than ¢ of the
samples in R should be smaller than Sy, (respectively, at least 7 of the random
samples should be smaller than Sy)). We will bound the probability that this
happens using the Chebyshev bound.
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The second type of failure occurs when P is too big. To study this, we define
k, = max{1,k — 2n**} and k;, = min{k + 2n%* n}. To obtain an upper bound on
the probability of this kind of failure, we will be pessimistic and say that failure
occurs if either a < Sy,) or b > Sy,). We prove that this is also unlikely, again
using the Chebyshev bound. Before we perform this analysis, we establish an
important property of independent random variables. Recall the definition of a
joint density function p(x, y) for random variables X and Y (Definition C.9).

» Definition 3.1: Let X and Y be random variables and f(x,y) be a function of
two real variables. Then,

E[f(X,Y)] = f(x,y)p(x,y).
x,y

For independent random variables X and Y we have from Proposition C.6

E[XY] =E[X]E[Y]. (3.2)

Lemma 34: Let X,X,,...,Xn be independent random variables. Let X =
Y, X:. Then 6% =Y I, 0%.

PROOF: Let y; denote E[X,], and u = 37, u;. The variance of X is given by

E[(X — w?] = E(3 (X, — w))].

i=1

Expanding the latter and using linearity of expectations, we obtain

E[(X —u] = > E[Xi — w)] +2)_El(X; — w)(X; — py)].
i=1 i<j

Since all pairs X, X; are independent, so are the pairs (X; — i), (X; — p;).
By (3.2), each term in the latter summation can be replaced by E[(X; — w)]
E[(X; — uj)]. Since E[(X; — ;)] = E[X;] —u; = O, the latter summation vanishes.
It follows that

E(X —p’] =) El(Xi—p)1=) o}
i=1 i=1

a

As in the analysis of RandQS in Chapter 1, we measure the running time of
LazySelect in terms of the number of comparisons performed by it.

Theorem 3.5: With probability 1 — O(n~'/4), LazySelect finds Sy on the first
pass through Steps 1-5, and thus performs only 2n + o(n) comparisons.

prooOF: The time bound is easily established by examining the algorithm; Step 3
requires 2n comparisons, and all other steps perform o(n) comparisons, provided
the algorithm finds Sy, on the first pass through Steps 1-5. We now consider

49



MOMENTS AND DEVIATIONS

the first mode of failure listed above: a > Sy, because fewer than ¢ of the
samples in R are less than or equal to Sy) (so that Si) ¢ P). Let X; =1 if the
ith random sample is at most S), and 0 otherwise; thus Pr[X; = 1] = k/n, and

Pr[X;=0] =1—k/n Let X = Z:’:; X; be the number of samples of R that
are at most Si). Note that we really do mean the number of samples, and not
the number of distinct elements. The random variables X; are Bernoulli trials
(Appendix C): each may be thought of as the outcome of a coin toss. Then,
using Lemma 3.4 and the variance of a Bernoulli trial with success probability p

3/4
kn — k1,

Ux =

k 3/4
G- (3) (1-3) =T

This implies that oy < n*%/2. Applying the Chebyshev bound to X,

and

Pr(lX — ux| = Jn] =Pr[IX — ux| = 2n'ox] = o(n—l/‘*).
An essentially identical argument shows that
Pr{b < Sg)] = o(n-lf“).

Since the probability of the union of events is at most the sum of their probabil-
ities, the probability that either of these events occurs (causing Sy, to lie outside
P) is O(n~1/4).

Now for the second mode of failure — that P contains more than 4n¥* 42
elements. For this, the analysis is very similar to that above in studying the first
mode of failure, with k, and k, playing the role of k. The analysis shows that
Prla < Si,)] and Pr[b > Sg,)] are both O(n~'/4) (the reader should verify these
details). Adding up the probabilities of all of these failure modes, we find that
the probability that Steps 1-3 fail to find a suitable set P is O(n="/4). O

Exercise 3.4: The failure probability can be driven down further at the expense of
increased running time. For a suitable definition of the o(n) term, give an upper
bound on the probability that the algorithm does not find S, in ¢n + o(n) steps for
c>2

Exerclise 3.5: Theorem 3.5 tells us that the probability that LazySelect terminates in
2n + o(n) steps goes to 1 as n — . Suggest a modification in the algorithm that
brings the constant in the linear term down to 1.5 from 2. We will refine this further
in Problem 4.16.

This adds to the significance of LazySelect: the best known deterministic
selection algorithms use 3n comparisons in the worst case and are quite com-
plicated to implement. Further, it is known that any deterministic algorithm for
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finding the median requires at least 2n comparisons, so we have a randomized
algorithm that is both fast and has an expected number of comparisons that is
provably smaller than that of any deterministic algorithm. The high probability
bound of the previous exercise can be easily converted into a bound on the
expected running time:

Exerclse 3.6: Show that as a direct corollary of Theorem 3.5, the expected running
time of the LazySelect algorithm is 2n + o(n).

Consider what happens when we modify LazySelect to be recursive as follows:
in Step 5, instead of sorting P we recursively use LazySelect to find Py—rga)+1)-
In this recursive version, the size of the candidate set P in which we are seeking
Sk is shrinking as the recursion proceeds. Using our analysis we can prove
that at a typical stage of recursion the probability of failure at that stage is
O(|P|~"/%). But |P| is diminishing, so that this probability of failure is rising
as the algorithm proceeds! Thus, when the candidate set is down to a constant
size, for instance, the failure probability is up to a constant and there is very
little we can do about it. This is a fundamental barrier, not a weakness of our
analysis. This is a typical problem with recursive randomized algorithms, and
rears its head again in parallel randomized algorithms (where we always try to
break a problem into smaller sub-problems) as well. A standard solution is to
stop the recursion when the problem size is down to a certain size, and switch
to a different, more expensive but deterministic technique — as we did by sorting
in Step 5 of LazySelect. .

3.4. Two-Point Sampling

We have so far been making use of the fact that the variance of the sum of
independent random variables equals the sum of their variances. In fact, we can
make a stronger statement. Let X and Y be discrete random variables defined
on the same probability space. The joint density function of X and Y is the
function

p(x,y) =Pr[{X =x} n{Y = y}].
Thus Pr[Y =y] =}, p(x,y), and

Pr[X=x|Y=y]=—l-)?p[£;li—)—ﬁ.

These definitions extend to a set X;, X,... of more than two random variables.
Such a set of random variables is said to be pairwise independent if for all i # j,
and x, y € R,

Pr(Xi=x| X; =y] =Pr[X; =x].
We will use the result from the following exercise.
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Exercise 3.7: Let n be a prime number and Z, denote the field of integers modulo
n. For a and b chosen independently and uniformly at random from Z,, let Y; =
ai + b mod n. Show that for i £ j (mod n), Y; and Y, are uniformly distributed on
Z, and pairwise independent. (Make use of the fact that in the field Z,, given fixed
values for y; and y;, we can solve y; = ai+b (mod n) and y; = aj+b (mod n) uniquely
for a and b.)

The following exercise is similar to Lemma 3.4.

Exercise 3.8: Let Xy, X5,..., X, be pairwise independent random variables, and X =
Y, Xi. Show that 03 = Y| 0% .

i=1

We now consider an application of these concepts to the reduction of the
number of random bits used by RP algorithms (see Definition 1.8). Consider
an RP algorithm A for deciding whether input strings x belong to a language
L. Given x, A picks a random number r from the range Z, = {0,...,n — 1},
for a suitable choice of a prime n, and computes a binary value A(x,r) with the
following properties:

o If x € L, then A(x,r) =1 for at least half the possible values of r.
o If x ¢ L, then A(x,r) = 0 for all possible choices of r.

For a randomly chosen r, A(x,r) = 1 is conclusive proof that x € L, while
A(x,r) =0 is evidence that x ¢ L. '

For any x € L, we refer to the values of r for which A(x,r) = 1 as witnesses
for x; clearly, at least n/2 of the n possible values of r are witnesses. Of course,
for x ¢ L, there are no witnesses at all. The definition allows different x € L
to have different sets of witnesses. Generally, n will be too large for us to test
efficiently all the n potential witnesses for a given input x. However, for any
x € L, a random choice of r is a witness with probability at least 1/2.

The fear is that x € L but the randomly chosen value of r yields A(x,r) = 0.
However, we can drive down this probability of incorrectly classifying x by
picking ¢t > 1 values ry,...,r, independently from the range Z,, and computing
A(x,r;) for all of them — in other words, by performing ¢ independent iterations
of the algorithm A on the same input x. If for any i we obtain A(x,r;) = 1, we
declare that x is in L, else we declare that x is not in L. By the independence
of the trials, we are guaranteed that the probability of incorrectly classifying an
input x € L (by declaring that it is not in L) is at most 2.

Choosing t independent random numbers is expensive in that it requires
Q(tlogn) random bits. Suppose instead that we are only willing to use O(log n)
random bits. In particular suppose that we wish to use only two independent
samples from Z,. For a,b chosen independently from Z,, the naive usage of a
and b as potential witnesses, i.e., computing A(x,a) and A(x, b), yields an upper
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bound of only 1/4 on the probability of incorrect classification. Here is a better
scheme: let r; = ai + b mod n, and compute A(x,r;) for 1 < i <t. As before, if
for any i we obtain A(x,r;) = 1, we declare that x is in L, else we declare that x
is not in L. What is the probability of incorrectly classifying any input x? We
show that this probability is much smaller than 1/4.

We need to worry about the possibility of making error only in the case
where the input x is in L. Our analysis will be insensitive to the actual values
of r in Z, which are witnesses for x; we will only rely on the fact that at least
half the values of r are witnesses. Clearly A(x,r;) is a random variable over the
probability space of pairs a and b chosen independently from Z,. By the result
of Exercise 3.7, the random r;’s are pairwise independent and, therefore, so are
the random variables A(x,r;), for 1 <i <t Let Y = Y i, A(x,r;). Assuming
that x € L, E[Y] > t/2 and ¢ < t/4, or oy < ./t/2. The probability that the
pairwise independent iterations produce an incorrect classification corresponds
to the event {Y = 0}, and

Pr(Y =0] < Pr[|]Y — E[Y]| >t/2].

By the Chebyshev inequality, the latter is at most 1/t. Thus, the error probability
is at most 1/t, which is a considerable improvement over the error bound of 1/4
achieved by the naive use of a and b. This improvement is sometimes referred
to as probability amplification.

For a random variable X with expectation ux, we define the kth central
moment to be u% = E[(X — ux)¥], if it exists (Appendix C). For example, the
variance is the second central moment.

Exerclse 3.9: The use of the variance of a random variable in bounding its deviation
from its expectation is called the second moment method. In an analogous fashion,
we can speak of the kth moment method: let k be even, and suppose we have a
random variable X for which u% = E[(X — ux)¥] exists. Show that

1
Pr(|X —ux| > ty/uk] < -

Why is the kth moment method difficult to invoke for odd values of k?

The second moment method is generally useful for a random variable X if
ox is o(ux). In a manner similar to “two-point” sampling (the name comes from
the independent choice of two points a and b from which the r; are derived), one
can speak of k-point sampling for k > 2. The reader is referred to Appendix C
for a further discussion of k-wise independence.

3.5. The Stable Marriage Problem

Consider a society in which there are n men (denoted by capital letters
AB,C, ..) and n women (denoted by a,b.c...). A marriage M is a 1-1 correspon-
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dence between the men and the women. Assume a monogamous, heterosexual
society. Each person has a preference list of the members of the opposite sex
organized in a decreasing order of desirability. A marriage is said to be unstable
if there exist two married couples X-x and Y-y such that X desires y more than
X, and y desires X more than Y, implying that X-y will have a tendency to leave
their current mates to marry each other. The pair X-y is said to be dissatisfied
under this marriage. A marriage M in which there are no dissatisfied couples is
called a stable marriage.

» Example 3.1:
For n = 4, consider the following preference lists.

A :abcd B : bacd C :adcb D :dcab
a:ABCD b:DCBA c:ABCD d:CDAB

Consider the marriage M given by A-a, B-b, C-c, and D-d. Here Cd is a
dissatisfied couple, implying that M is unstable. However, if C and d marry each
other, and ¢ and D marry each other, we obtain the stable marriage given by
A-a, B-b, C-d, D-c.

The problem of finding stable marriages has several interesting applications,
for example in matching medical graduates to residency positions in hospitals.
It can be shown that for every choice of preference lists there exist at least
one stable marriage. (Curiously enough, this is not the case in a homosexual,
monogamous society with an even number of inhabitants.) We will prove this
by presenting an algorithm to find a stable marriage. The naive approach of
starting with an arbitrary marriage and trying to stabilize it by pairing up
dissatisfied couples does not work.

Fortunately, an equally simple algorithm — the Proposal Algorithm — does
the trick. The basic idea behind this algorithm can be summarized as “man
proposes, woman disposes”: each currently unattached man proposes to the
most desirable woman on his list who has not already rejected him, and this
woman then decides whether to accept or reject a proposal. The Proposal
Algorithm is used by hospitals in North America in the match program that
assigns medical graduates to residency positions.

More precisely, at any step, this algorithm will have a partial marriage.
Assume that the men are numbered in some arbitrary manner. The lowest-
numbered unmarried man X proposes to the most desirable woman on his list
who has not already rejected him, call her x. The woman x will accept the
proposal if she is currently unmarried, or if her current mate Y is less desirable
to her than X (poor Y is jilted and reverts to the unmarried state). The algorithm
repeats this process, terminating when every person has been married.

We show that this algorithm always terminates with a stable marriage. A
woman once married will stay married during the course of the algorithm,
although her mates may change with time. Furthermore, the desirability of her
mates (in her view) can only improve with time. Thus at each step either a
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woman gets married for the first time, or an already married woman obtains a
more desirable mate.

An unattached man always has at least one woman available that he can
proposition. This is because every woman he has already proposed to is currently
married, and if he runs out of women then all women are married - this cannot
happen unless all men are married too. Since at each step the proposer will
eliminate one woman on his list, and the total size of the lists is n%, we conclude
that the algorithm uses at most n*> proposals.

We claim that the final marriage M is stable. Otherwise, let X-y be a
dissatisfied pair, where in M they are paired as X-x and Y-y. Since X prefers
y to X, he must have proposed to y before getting married to x. Since y either
rejected X, or accepted him only to jilt him later, her mates thereafter (including
Y) must be more desirable to her than X. Therefore, y must prefer Y to X,
contradicting the assumption that y is dissatisfied.

Our interest here is in performing an average-case analysis of this algorithm.
Thus we are considering a probabilistic analysis of a deterministic algorithm.
We introduce this analysis here because it touches upon several tools that are
important in the analysis of randomized algorithms.

For this average-case analysis, we assume that the men’s lists are chosen
independently and uniformly at random; the women’s lists can be arbitrary but
must be fixed in advance. Let the random variable Tp denote the number of
proposals made during the execution of the Proposal Algorithm. It is clear that
the running time of the algorithm is proportional to Tp. At first glance, it may
appear that the distribution Tp is extremely difficult to analyze, owing to the
various dependencies between the proposals. For instance, the choice of the
proposer at any step is severely conditioned by the history of the process. The
choice of the woman at each step also depends on the past proposals of the
current proposer.

We present a very simple technique — the Principle of Deferred Decisions —
for getting around such problems using the example of the card game called
Clock Solitaire. In this game we start with a standard deck of 52 cards, which
is assumed to be randomly shuffled. The pack is then divided into 13 piles
of 4 cards each. Each pile is arbitrarily labeled with a distinct member of
{4,2,3,...,J,0,K}. On the first move we draw a card from the pile labeled K.
At each subsequent move. a card is drawn from the pile whose label is the face
value of the card drawn at the previous move (the suits of the cards are ignored
in this game). The game ends when an attempt is made to draw a card from an
empty pile. We win the game if, on termination, all 52 cards have been drawn;
in all other cases we lose the game.

Let us estimate the probability of winning the game. Observe that the game
always terminates in an attempt to draw a card from the K pile: the last card
drawn has to be a K. This is because there are 4 cards of each denomination,
and except for the K pile. each pile initially has 4 cards.

A naive view of the probability space for this game considers all possible
ways of dealing out the cards. Each point in this space corresponds to some
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partition of the 52 cards into 13 distinct piles, with an ordering defined on the
4 cards in each pile. Using this approach, computing the probability of a win
would be a formidable task, since at each move of the game we introduce a new
source of dependency.

We now examine a second probability space that better captures the dynamics
of the game. The idea is to let the random choices unfold with the progress of
the game, rather than fix the entire set of choices in advance. At each draw any
unseen card is equally likely to appear. Thus, the process of playing this game
is exactly equivalent to repeatedly drawing a card uniformly at random from a
deck of 52 cards. A winning game corresponds to the situation where the first
51 cards drawn in this fashion contain exactly 3 Kings. The probability of the
52nd card drawn being a King is exactly 1/13; this is also the probability of
winning the game.

The idea of the Principle of Deferred Decisions is to not assume that the
entire set of random choices is made in advance. Rather, at each step of the
process we fix only the random choices that must be revealed to the algorithm.

The Principle of Deferred Decisions can be used to simplify the average-case
analysis of the Proposal Algorithm as follows. We do not assume that the men
have chosen their (random) preference list in advance. In fact, let us suppose
that men do not know their lists to start with. Each time a man has to make
a proposal, he picks a random woman from the set of women not already
propositioned by him, and proceeds to propose to her. Clearly, this is equivalent
to choosing the random preference lists prior to the execution of the algorithm.

The only dependency that remains is that the random choice of a woman at
any step depends on the set of proposals made so far by the current proposer.
We can eliminate even this dependency, albeit at the cost of modifying the
behavior of the algorithm. Suppose that each time a man makes a proposal, he
chooses a woman uniformly at random from the set of all n women, including
those to whom he has already proposed. In other words, he forgets the fact that
these women have already rejected him. Call this new algorithm the Amnesiac
Algorithm.

How does the performance of the new algorithm relate to that of the original
one? Every proposal a man makes to a woman who has already rejected him
will be rejected again. Thus, the output produced by the Amnesiac Algorithm is
exactly the same as that of the original Proposal Algorithm. The only difference
is that there are some wasted proposals in the Amnesiac Algorithm. Let T,
denote the number of proposals made by the Amnesiac Algorithm. Clearly, T,
stochastically dominates Tp (Appendix C): for all m, Pr[T, > m] > Pr[Tp > m).
Therefore, it suffices for an upper bound to analyze the distribution of T.

A benefit of analyzing T, is that we need only count the total number of
proposals made, without regard to the name of the proposer at each stage. This
is because each proposal is independently made to one of the n women chosen
uniformly at random. Moreover, the algorithm terminates with a stable marriage
once all women have received at least one proposal each. As will become clear
shortly, bounding the value of T, is a special case of the Coupon Collector’s
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Problem described in the next section. The following theorem is implied by
Theorem 3.8, a result about deviations in the Coupon Collector’s Problem that
we will prove below in Section 3.6.

Theorem 3.6: For any constant ¢ € R, and m = nlnn + cn,

lim Pr{T, >m] =1—¢~".

3.6. The Coupon Collector’s Problem

In the coupon collector’s problem, there are n types of coupons and at each
trial a coupon is chosen at random. Each random coupon is equally likely to
be of any of the n types, and the random choice of the coupons are mutually
independent. Let m be the number of trials. The goal is to study the relationship
between m and the probability of having collected at least one copy of each
of the n types. The reader may wish to make the correspondence between this
process and an occupancy problem (Section 3.1) in which m balls are randomly
distributed in n bins. This process will arise again in the study of random walks
(Chapter 6). In this section we provide an amazingly precise answer to this
question, while illustrating some fundamental ideas in the analysis of stochastic
processes of the type that arise in randomized algorithms.

3.6.1. An Elementai'y Analysis

Let X be a random variable defined to be the number of trials required to collect
at least one of each type of coupon. We first determine the expected value of X.
Let Cy, Cy, ..., Cx denote the sequence of trials, where C; € {1,...,n} denotes
the type of the coupon drawn in the ith trial. Call the ith trial C; a success if
the type C; was not drawn in any of the first i — 1 selections. Clearly C, and Cx
are always successes.

We divide the sequence into epochs, where epoch i begins with the trial
following the ith success and ends with the trial on which we obtain the (i + 1)st
success. Define the random variable X;, for 0 <i < n — 1, to be the number of
trials in the ith epoch, so that

n-1

X=X
i=0

Further, let p; denote the probability of success on any trial of the ith epoch.
This is the probability of drawing one of the n — i remaining coupon types and
SO,

n—i

Di = "

The random variable X; is geometrically distributed with parameter p; (see
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 Appendix C). Thus, the expected value of X; is 1/p; and its variance is

(1—p)/p2.
By linearity of expectation,

n—1 n—1 n n
E[X] —E(Y_X]=Y EX]=Y "= =nd - =nH,
i=1

-1
i=0 i=0 i=0
By Proposition B.4 the nth Harmonic number H, is asymptotically equal to
Inn + ©(1), implying that
E[X] =nlnn+ O(n).

Since the X;’s are independent, we can determine the variance of X using
Proposition C.9.

n—1
2 _ § : 2
Oy = O'X,_
i=0
n—1

- Yot

oo
i=0(n l)
n

(n—1i)
— Znniz 1

i=1

= nziilz—nH,,.

i=1

The sum Y7, 1/i converges to the constant n2/6 for n approaching co; hence

Our next goal is to derive sharper estimates of the typical value of X. More
precisely, we will show that the value of X is unlikely to deviate far from its
expectation, or is sharply concentrated around its expected value. This entails
bounding the tail probabilities of the distribution of X. The second moment
method does not go far toward establishing such a result.

Exercise 3.10: Use the Chebyshev inequality to find an upper bound on the proba-
bility that X > Bnlnn, for a constant 8 > 1.

Let £; denote the event that coupon type i is not collected in the first r trials.
Using Proposition B.3 (Appendix B), we obtain that

Pr[&]] = (1 - %) <e'/m

This bound is n# for r = fnlnn.
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Using the fact that the probability of a union of events 3 always less than
the sum of the probabilities of these events, we obtain for r = Snlnn,

PriX >r] =PrlUL, &1 <) Prg] <Y nf =D,
i=1 i=1
We now study the probability that X deviates from its expeczation nH, by the
amount cn, for any real-valued constant c. We will see t&z1 this probability
drops very quickly as we increase the absolute value of c.

3.6.2. The Poisson Heuristic

Before we show the sharp concentration result for X, the “ollowing heuristic
argument will help to establish some intuition. The heuristic zrgument is based
on the approximation of the binomial distribution by the Poisson distribution
(see Appendix C for definitions of these distributions). Toa= material in this
section, although useful, is not an essential prerequisite for snbsequent topics
and may be omitted in the first reading.

Let N denote the number of times the coupon of type : is chosen during
the first r trials; the event £] is the same as the event {N] = 0}. The random
variable N] has the binomial distribution with parameters » and p = 1/n (see
Appendix C). This means that the probability that N =x. Zor 0 < x <r, is as
follows:

Pr[N = x] = (;) p*(1—p)™.

Let A be a positive real number. A (non-negative integer) ~=ndom variable Y
has the Poisson distribution with parameter A if for any non-a=gative integer y,
Ve

y!

Pr(Y =y] =

For suitably small A and as r approaches oo, the Poissoz distribution with
parameter A = rp is a good approximation to the binomiz . distribution with
parameters r and p. In the current setting, we can approximz== the distribution
of N] by the Poisson distribution with parameter A = r/n. W&z will ignore the
fact that 4 may not be “suitably small” and that there co>z1d be significant
error in this approximation; after all, this is only intendeC o be a heuristic
calculation. Using this approximation, we calculate the prot:=mility of the event
&} as follows:
Ae=*
mm=mm=mzo'=wm (3.3)
The main benefit in using the Poisson approximation iz Z2at now we can
claim that the events &£, for 1 <i < n, are “almost indepenc==-" even though it
is quite easy to see that there is indeed some dependence be—==zen these events.
In particular, we make the following informal claim to cor=oiete the heuristic
calculation.
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Claim: For 1 <i < n, and for any set of indices {ji,...,ji} not containing i,

Pri€] | N, €] = Prl€]].

prooF: The proof follows from the following approximate calculations,

Pr(€; N (NE,€5)]
PrN_,&;]
(1-52)

(-3

e—r(k+l)/ n

Pr(&] | N, &5

-~

e—rk/n
= e—r/n'
The first line follows from the definition of conditional expectation (Defini-
tion C.4), the second from an elementary probability calculation, and the third
from Proposition B.3 (Appendix B). Since the last expression is the approximate
value of Pr[€]], we obtain the desired result. O

If the approximation in (3.3) were exact, we would obtain that the events £;
are truly independent (Appendix C). In the following computation, we make
the heuristic assumption of independence based on the approximation of (3.3).
We then obtain that for 1 < i < n, the probability that all coupon types are
collected in the first m trials is given by:

Pr[—~(UL,E™)] =Pr[N,(~EM] = (1 — ™" m e ™",

=1
Let m = n(Inn + c) for any constant ¢ € R. Then, by the preceding argument,
we obtain that

PrIX>m=n(lnn+c)] = Pr[U_,ET]
~ Prlni(=€M)]

e—C

= l—e—

Observe that this probability e~ is close to 1 for large positive ¢, and is
negligibly small for large negative c. Thus, the probability of having collected
all n coupon types abruptly changes from nearly zero to almost one in a small
interval centered around nlnn. Of course, all this is contingent on our heuristic
estimates being close to the true values. The power of this Poisson heuristic
is that it gives a quick back-of-the-envelope type estimation of probabilistic
quantities, which hopefully provides some insight into the true behavior of those
quantities. As we will see in Section 3.6.3, a more rigorous but cumbersome
argument can often be used to justify the conclusions obtained from such
heuristic arguments.
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3.6.3. A Sharp Threshold

We now convert the heuristic argument from the previous section into a rigorous
(but significantly more complex) proof using the Boole-Bonferroni Inequalities
(Proposition C.2). But first we prove the following technical lemma.

Lemma 3.7: Let c be a real constant, and m = nlnn + cn for positive integer n.
Then, for any fixed positive integer k,

. [n k™ e
,!%(k) (1-3) =%

prOOF: Using Proposition B.3.2, we have that

2 % m
e (1—5-) s(l—’f) <e™.
n n

Observe that e*™" = p~*e=%_ Further,

2\
lim (1 - ,i—) =1
n—o n

lim " —fk—
nso \k| kI

Putting all this together yields the desired result. ] O

and (by Proposition B.2),

Theorem 3.8: Let the random variable X denote the number of trials for collecting
each of the n types of coupons. Then, for any constant c € R, and m = nlnn+cn,

lim Pr(X >m] =1—¢".

PROOF: We have that the event {X > m} = U’ ™. By the Principle of
Inclusion-Exclusion,

n

PrlU£ =) (—1)*'p;

k=1
where
nd k m
Pr= Y PrlrkEn.
1<i << <ig<n
Let Sf = P{'— P} + P{ — --- 4+ (—1)**' P! denote the partial sum formed by the

first k terms of this series. By the Boole-Bonferroni inequalities (Proposition C.2),
we have the bracketing property of the partial sums:

S, < Pr[UE™ < Si.,.
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By symmetry, all the k-wise intersections of the events £ are equally likely.
This implies that

Pl = (:) Pr[n M.

Moreover, the probability of the intersection of the k events £T, ..., EF is the
probability of not collecting any of the first k coupons in m trials, namely

(1 — k/n)™. Therefore
n _ n — E "

For all positive integers k, define P, = e~ /k!. By Lemma 3.7 we have that
for each k

lim P! = P,.

n—aoo

Define the partial sums of the terms P, as
k ) k e
Se=)Y (-1)*'p; = Z(—l)f“—jT.
J=1 Jj=1 :

Notice that the right-hand side consists precisely of the first k terms of the power
series expansion of f(c) =1 —e™¢ . We conclude that

I}im St = f(c).
That is, for all € > 0, there exists k* > 0 such that for any k > k",
ISk — f(c)l <e.

Since lim,_, P = P, it follows that lim,., S = S;. Equivalently, for all
€ > 0 and k, when n is sufficiently large, |S — Si| < e. Thus, for all € > 0, any
fixed k > k°, and n sufficiently large,

ISp — 8¢ < € and IS, — f()] <,

which implies that
IS¢ — f(e)l < 2e
and that
1S — Sos1| < de.

Using the bracketing property of partial sums, we obtain that for any € > 0 and
n sufficiently large,

IPr[U:ET] — f(c)| < 4e.
This implies the desired result that
'}gg PrlUM =f(c)=1—e""".
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By this theorem, for any real constant c, we have
lim Pr(X < n(lnn—c)] = e

and

limPr[X > n(lnn+c)j=1—e"*"

n—ao

Thus, we obtain that

—c

lim Pr{n(lnn —c) < X <n(lnn+c)] =e™* —e™".

As the value of c is increased, it can be verified that this probability rapidly
approaches 1. In other words, with extremely high probability, the number of
trials for collecting all n coupon types lies in a small interval centered about its
expected value. This result is almost like a deterministic result since it so sharply
identifies the threshold value for collecting all coupons. We refer to such results
as sharp threshold results.

Notes

Comprehensive treatises on occupancy problems are the books by Johnson and
Kotz [222], and by Kolchin, Chistiakov, and Sevastianov [266]. However, most of
the results in these books concern the behavior of the distributions of various random
variables in the limit as n becomes large. (See also the various discussions of occupancy
problems in the books by Feller [142, 143].) Generally, we will be concerned with
statements resembling the ones in Section 3.1, involving asymptotic estimates on random
variables and probabilities. We will return to such estimates for occupancy problems in
Chapter 4. Recent work by Azar, Broder, Karlin, and Upfal [35] builds on the basic
occupancy problem and points out many applications to computer science.

The history of tail inequalities such as the Chebyshev bound dates back to the early
days of probability theory. Following Chebyshev’s bound [394], Markov [293] observed
that the same idea could be used with higher moments. Kolmogorov [267] went further
and remarked that Pr[X > r] < E[f(X)]/s for any function f(X), provided that E[f(X)]
exists and f(x) > s > O for all x > r. The latter idea was exploited by Bernstein and by
Chernoff in a manner we will describe in Chapter 4.

Classic sources for deterministic selection algorithms are the papers of Blum, Floyd,
Pratt, Rivest, and Tarjan [65], and of Schénhage, Paterson, and Pippenger [364].
The LazySelect algorithm presented here is a variant on one reported by Floyd and
Rivest [151]). The algorithm described therein is a recursive algorithm, and does not sort
after the first level of random sampling as we do. The lower bound of 2n for median
selection is due to Bent and John [54].

The construction of pairwise independent random variables in Exercise 3.7 is given in
Joffe [214]. Its application to the reduction of random bits used by abstract randomized
algorithms is due to Chor and Goldreich [97]; Luby [282] presented this idea in the
context of a concrete problem we will study in Chapter 12. The two-point sampling tech-
nique has been developed into a powerful technique for reducing the use of randomness,
especially for the derandomization of algorithms (see the Notes section of Chapter 12).

The Proposal Algorithm for stable marriages is due to Gale and Shapley [161). The
book by Gusfield and Irving [188] provides a comprehensive treatment of results related
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to stable marriages. Our presentation of the average-case analysis of the Proposal
Algorithm is drawn from Knuth’s monograph [263]. The power and applicability of the
Poisson heuristic is explored in great detail in the monograph by Aldous [12].

3.1

3.2

3.3

3.4

3.5

Problems

Consider an occupancy problem in which n balls are independently and
uniformly distributed in n bins. Show that, for large n, the expected number
of empty bins approaches n/e, where e is the base of the natural logarithm.
What is the expected number of empty bins when m balls are thrown into n
bins? (See Theorem 4.18.)

Suppose m balls are thrown into n bins. Give the best bound you can on m to
ensure that the probability of there being a bin containing at least two balls
is at least 1/2.

A parallel computer consists of n processors and n memory modules. During a
step, each processor sends a memory request to one of the memory modules.
A memory module that receives either one or two requests can satisfy its
request(s); modules that receive more than two requests will satisfy two
requests and discard the rest.

(ay Assuming that each processor chooses a memory module independently
and uniformly at random, what is the expected number of processors whose
requests are satisfied? Use the approximation (1 — 1/n)" =~ 1/e if necessary.

(b) Repeat the computation for the case where each memory module can
satisfy only one request during a step.

Consider the following experiment, which proceeds in a sequence of rounds.
For the first round, we have n balls, which are thrown independently and
uniformly at random into n bins. After round i, for i > 1, we discard every ball
that fell into a bin by itself in round i. The remaining balls are retained for
round i + 1, in which they are thrown independently and uniformly at random
into the n bins. Show that there is a constant ¢ such that with probability
1 —0(1), the number of rounds is at most c loglogn.

Let X be a random variable with expectation iy and standard deviation oy.
(a) Show that for any t € R™,
1
PriX —pux 2 tox] < T—-ﬁi

This version of the Chebyshev inequality is sometimes referred to as the
Chebyshev-Cantelll bound.

(b) Prove that

2
PriiX —pux| 2 tox] < T—ﬁi

Under what circumstances does this give a better bound than the Chebyshev
inequality?
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3.6

3.7

3.8

3.9

3.10

3.11

PROBLEMS

Let Y be a non-negative integer-valued random variable with positive expec-
tation. Prove the following inequalities.

(a)
E[Y?] —E[Y]?

Pr[Y =0] < VT
(b)
2
%% <PriY + 0] < E[Y]

(c) Explain why the second inequality always gives a stronger bound than the
first inequality.

Let a and b be chosen independently and uniformly at random from Z, =
{0.1,2....n—1}, where n is a prime. Suppose we generate t pseudo-random
numbers from Z, by choosing r, = ai+b mod n, for 1 < i < t. For any € € [0, 1],
show that there is a choice of the witness set W < Z, such that |W| > en and
the probability that none of the r;’s lie in the set W is at least (1 — €)?/4t.

Suggest a scheme for “four-point” sampling from the range Z, where n is a
prime. For t < n samples ry,.... r; using this scheme, give an upper bound on
the probability that all t attempts fail to discover a witness given x € L and
compare this with the bound of 1/16 that the naive use of four samples would
yield. En route, derive an upper bound on the fourth central moment of the
sum of four-way independent random variables.

(Due to D.R. Karger and R. Motwani [233].)

(a) Let S, T be two disjoint subsets of a universe U such that |S| = |T| = n.
Suppose we select a random set R < U by independently sampling each
element of U with probability p. We say that the random sample R is good
if the following two conditions hold: RNS =0 and RN T # @. Show that for
p = 1/n, the probability that R is good is larger than some positive constant.

(b) Suppose now that the random set R is chosen by sampling the elements
of U with only pairwise independence. Show that for a suitable choice of the
value of p, the probability that R is good is larger than some positive constant.

The sharp threshold result in the coupon collector’'s problem does not imply
that the probability of needing more than cnlogn trials goes to zero at a
doubly exponential rate if ¢ were not a constant, but were allowed to grow
with n. Let the probability of requiring more than cnlogn trials be p{c).
For constant ¢, show that 1/p(c) can be bounded from above and below by
polynomials in n.

Consider the extension of the coupon collector’s problem to that of collecting
at least k copies of each coupon type. Show that the sharp threshold for the
number of selections required (denoted X)) is centered at n(Inn+(k—1) Ininn).
In other words, for any positive integer k and constant ¢ € R, prove that

lim Pr{X® > n(lnn+ (k —1)Inlnn+c¢c)] =e~*"

n—x
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3.13

3.14

3.15

MOMENTS AND DEVIATIONS

Consider the following process related to the coupon collector problem. There
are n bins and n players, and each player has an infinite supply of balls. The
bins are all initially empty. We have a sequence of rounds: in each round,
each player throws a ball into an empty bin chosen independently at random
from all currently empty bins. Let the random variable Z be the number of
rounds before every bin is non-empty. Determine the expected value of Z.
What can you say about the tail of Z's distribution?

Let B be a random bipartite graph on two independent sets of vertices U
and V, each with n vertices. For each pair of vertices u € U and v € V, the
probability that the edge between them is present is p(n), and the presence
of any edge is independent of all other edges. Let p(n) = (Inn+¢)/n for some
ceR.

(a) Show that the probability that B contains an isolated vertex is asymptoti-
cally equal to e~2¢°,

(b) Suggest and prove a generalization of this to random non-bipartite graphs.

(Due to R.M. Karp.) Consider a bin containing d balls chosen at random
(without replacement) from a collection of n distinct balls. Without being able
to see or count the balls in the bin, we would like to simulate random sampling
with replacement from the original set of n balls. Our only access to the balls
is that we can sample without replacement from the bin.

Consider the following strategy. Suppose that k < d balls have been drawn
from the bin so far. Flip a coin with the probability of HEADS being k/n. If
HEADS appears, then pick one of the k previously drawn balls uniformly at
random; otherwise, draw a random ball from the bin. Show that each choice
is independently and uniformly distributed over the space of the n original
balls. How many times can we repeat the sampling?

(Due to D. Angluin and L.G. Valiant [28].) Let B denote a random bipartite
graph with n vertices in each of the vertex sets U and V. Each possible
edge, independently, is present with probability p(n). Consider the following
algorithm for constructing a perfect matching (see Section 7.3) in such a
random graph. Modify the Proposal Algorithm of Section 3.5 as follows. Each
u € U can propose only to adjacent v € V. A vertex v € V always accepts a
proposal, and if a proposal causes a “divorce,” then the newly divorced v € U
is the next to propose. The sampling procedure outlined in Problem 3.14 helps
implement the Principle of Deferred Decisions. How small can you make the
value of p(n) and still have the algorithm succeed with high probability? The
following fact concerning the degree d(v) of a vertex v in B proves useful:

Prld(v) < (1 — B)np] = o(e-’*""/z).



CHAPTER 4

Tail Inequalities

IN this chapter we present some general bounds on the tail of the distribution of
the sum of independent random variables, with some extensions to the case of
dependent or correlated random variables. These bounds are derived via the use
of moment generating functions and result in “Chernoff-type” or “exponential”
tail bounds. These Chernoff bounds are applied to the analysis of algorithms
for global wiring in chips and routing in parallel communications networks. For
applications in which the random variables of interest cannot be modeled as
sums of independent random variables, martingales are a powerful probabilistic
tool for bounding the divergence of a random variable from its expected value.
We introduce the concept of conditional expectation as a random wariable,
and use this to develop a simplified definition of martingales. Using measure-
theoretic ideas, we provide a more general description of martingales. Finally,
we present an exponential tail bound for martingales and apply it to the analysis
of an occupancy problem.

4.1. The Chernoff Bound

In Chapter 3 we initiated the study of techniques for bounding the probability
that a random variable deviates far from its expectation. In this chapter we
focus on techniques for obtaining considerably sharper bounds on such tail
probabilities.

The random variables we will be most concerned with are sums of independent
Bernoulli trials; for example, the outcomes of tosses of a coin. In designing
and analyzing randomized algorithms in various settings, it is extremely useful
to have an understanding of the behavior of this sum. Let X, ..., X, be
independent Bernoulli trials such that, for 1 < i < n, Pr[X;=1] = p and
Pr(X;=0] = 1—p. Let X =3 X;; then X is said to have the binomial
distribution. More generally, let X, ..., X, be independent coin tosses such that,
for 1 <i<n Pr[X;=1] = p; and Pr[X; =0] = 1 — p;. Such coin tosses are
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referred to as Poisson trials. Our discussion below will focus on the random
variable X = }! | X;, where the X; are Poisson trials. Of course, all our
bounds apply to the special case when the X; are Bernoulli trials with identical
probabilities, so that X has the binomial distribution.

We consider two questions regarding the deviation of X from its expectation
u =Y., p. For a real number § > 0, we might ask “what is the probability
that X exceeds (1 + 6)u?” We thus seek a bound on the tail probability of the
sum of Poisson trials. An answer to this type of question is useful in analyzing
an algorithm, showing that the chance it fails to achieve a certain performance
is small. We face a different type of question in designing an algorithm: how
large must & be in order that the tail probability is less than a prescribed value
€?

Tight answers to such questions come from a technique known as the Chernoff
bound. This technique proves to be extremely useful in designing and analyzing
randomized algorithms. We focus on the Chernoff bound on the sum of
independent Poisson trials.

For a random variable X, the quantity E[e'*] is called the moment generating
Sunction of X. This is because E[¢'X] can be written as a power-series with terms
of the form t*E[X*]/k!, and E[X*] is the kth moment of X for any positive
integer k. The basic idea behind the Chernoff bound technique is to take the
moment generating function of X and apply the Markov inequality to it. The
sum of independent random variables appears in the exponent, and this turns
into the product of random variables whose expectation we then bound.

Theorem 4.1: Let X;, X;, ..., X, be independent Poisson trials such that, for
l <i<n Pr[X;=1] = p;, where 0 < p; < 1. Then, for X = " X, u =
E[X] =3 ,pi and any 6 > 0,

5 K
PrlX > (1+6)y] < [(ﬁ%’)mﬁ] : (4.1)

PrRooOF: For any positive real ¢,
Pr(X > (14 6)u] = Prlexp(tX) > exp(t(1 + &)p)].

Applying the Markov inequality to the right-hand side, we have

E[exp(tX)]
exp(t(1 +d)n)’

Notice that the inequality is strict: this stems from our assumption that the
p: are not all identically O or 1, so that X assumes more than one value. The
reader may wish to recall the proof of the Markov inequality to see this.

We bound the right-hand side by observing that

Pr[X > (1+6)u] < 4.2)

Efexp(tX)] = E[exp(t ) _ X)] = E[J ] exp(eX,).

i=1 i=1
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Since the X; are independent, the random variables exp(tX;) are also inde-
pendent. It follows that E[J]i_, exp(tX;)] = [T~ E[exp(tX;)]. Using these facts
in (4.2) gives
[Ti=; Elexp(tX;)]

exp(t(l +do)u)
The random variable ¢'* assumes the value ¢ with probability p;, and the

value 1 with probability 1 — p;,. Computing E[¢*X/] from these observations, we
have that

PriX > (14+9d)u] <

(4.3)

[T, [piet + 1 —p|]
PriX > +oul < =T Tom

[Tiei [1 + pi(e' — 1))
exp(t(1 + d)u)

Now we use the inequality 1 + x < & with x = p,(¢' — 1), to obtain

(4.4)

PriX >(14+d8)y] < [T, exp(pi(e’ — 1))

exp(t(1 + d)u)
exp(> iy pi(e’ — 1))
exp(t(1 + &)p)
exp((e’ — 1)p)
= — = IR 4.5
exp(t(1 + 8)u) *3)
Observe that all of the above has been proved for any positive real ¢; we are
now free to choose a particular value for ¢ that yields the best possible bound.
For this, we differentiate the last expression with respect to t and set to zero;
solving for ¢ now yields ¢t = In(1 + ), which is positive for § > 0. Substituting
this value for ¢, we obtain our theorem. |

There were three main ingredients in the above proof:

1. We studied the random variable ¢’* rather than X.

2. The expectation of the product of the e'*: turns into the product of their expec-
tations owing to independence.

3. We pick a value of t to obtain the best possible upper bound - indeed, we choose
a value of t that depends on the deviation 4.

These ingredients are generic and do not hinge on the particular case of the
sum of Poisson trials. For example, Problem 4.4 is concerned with applying this
technique to the sum of geometrically distributed random variables.

For succinctness in what follows, we define an upper tail bound function for
the sum of Poisson trials.

> Definition 4.1: F*(u,8) £ [¢3/(1 4 5)1+9)]*,

» Example 4.1: The Arkansas Aardvarks win each game they play with probability
1/3. Assuming that the outcomes of the games are independent, derive an upper
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bound on the probability that they have a winning season in a season lasting n
games.

Let X; be 1 if the Aardvarks win the ith game and O otherwise; let Y, = Z,":l Xi.
Applying Theorem 4.1 to Y,, we find that Pr[Y, > n/2] < F*(n/3,1/2) < (0.965)".
Thus, the probability that the Aardvarks have a winning season in n games is
exponentially small in n, suggesting that the longer they play the more likely it is
that their true colors show through.

The reader should verify that the term within the brackets in F*(u,d) is always
strictly less than 1. Since the power u is always positive, we will always get an
upper bound that is less than 1.

The right-hand side of (4.1) is difficult to interpret, especially since we will
require answers to questions such as “how large need 6 be in order that
Pr(X > (1 + d)u] is at most 0.01?” We will presently work on simplifying it. But
first, we consider deviations of X below its expectation u.

Theorem 4.2: Let X,, X, ..., X, be independent Poisson trials such that, for
1<i<n PriX;=1] = p;, where 0 < p; < 1. Then, for X = Y X;, p =
EX]=Y1,pand 0<dé <1,

Pr[X < (1 —8)u] < exp(—ud?/2). (4.6)

prOOF: The proof is very similar to the proof for the upper tail we saw in
Theorem 4.1. As before,
PriX <(1-98)u] = Pr[-X > —(1-46)y]
= Prlexp(—tX) > exp(—t(1 — é)u)],

for any positive real t. Applying the Markov inequality and proceeding as in
equations (4.2-4.3), we obtain that

[Ti= Elexp(—tX)]
exp(—t(1 —d)u)
Computing E[exp(—tX;)] and proceeding as in equations (4.4-4.5),

Pr[X <(1-9)u] <

exp(u(e™ — 1))
PriX <(1-96)u] < exp(—t(l —8))"

This time, we let t = In(1/(1 — 8)) to obtain that

-5 u
PriX < (1-8)u < [a-—_e—a)-(—l_é—)] .

We simplify this by noting that for é € (0, 1],
(1—=06)"7% > exp(—4 + 6%/2),
using the McLaurin expansion for In(1 — 8). This yields the desired result. [J

We define the lower tail bound function for the sum of Poisson trials as
follows.
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» Definition 4.2: F—(y,J) 4 exp (:-‘2@—2) .

It is immediate that F~(u,d) is always less than 1 for positive # and 8. Note
two differences between the proofs of Theorems 4.1 and 4.2. First, we directly
apply the basic Chernoff technique to the random variable —X rather than
apply Theorem 4.1 to Y = n— X (a plausible option, which leads, however,
to a slightly weaker bound than the one derived below). Second, the form of
the McLaurin expansion for In(1 — §) allows us to obtain a “cleaner” closed
form here, whereas the McLaurin expansion for In(1 + &) did not permit this in
Theorem 4.1.

» Example 4.2: The Arkansas Aardvarks hire a new coach, and critics revise their
estimates of the probability of their winning each game to 0.75. What is the
probability that the Aardvarks suffer a losing season assuming the critics are
right and the outcomes of their games are independent of one another?

Setting up the random variable Y, as before, we find that Pr[Y, < n/2]
< F7(0.75n,1/3), which evaluates to < (0.9592)". Thus, this probability is also
exponentially small in n.

The bounds in Theorems 4.1 and 4.2 do not depend on n, but only on u and
6. These bounds do not distinguish, for instance, between 1000 trials each with
pi = 0.02 and 100 each with p; = 0.2, even though the distributions of X are
different in the two cases. Thus, even if the actual tail probabilities are different
in these cases, our estimates are the same in both cases. .

We make the following definitions to facilitate our second kind of question,
ie.,“how large need & be for Pr[X > (1 + &)u] to be less than €?”

» Definition 4.3: For any positive u and €, A*(y, €) is that value of & that satisfies

F*(u,A*(n€) =e. (4.7)
Similarly, A=(u, €) is that value of § that satisfies

F7 (1, A" (n,€)) = €. (4.8)

In other words, a deviation of § = A*(y, €) suffices to keep Pr(X > (1 + d)y]
below e, irrespective of the values of n and the p;’s.

A nice feature of the bound in Theorem 4.2 is the convenient form of the
right-hand side: it is easy to derive A~(u,¢) explicitly. Equating the right-hand

side of (4.6) to ¢ yields
A ne) = 22 49)

» Example 4.3: Suppose that p; = 0.75. How large must § be so that Pr[X < (1—
d)u] is less than n=3? Using (4.9), we find that the value of § that suffices for €
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1
A=(0.75n,n7%) = 4/ 1007’5‘:.

Thus, to obtain a tail probability that is inversely polynomial in n, we need only
go slightly away from the expectation - in this case out to é = 1/(13.3331nn)/n.

What if we wanted that Pr[X < (1 — &)u] be less than e~15"? Using (4.9), we
find that for € = e7157,

to be less than n=3 is

3n _
0.75n ~

which tells us nothing (for deviations below the expectation, values of & bigger
than 1 cannot occur).

A™(0.75n,e7 ") =

2,

We return to the simplification of (4.1) to obtain tractable estimates for
A*(u,€).

Exercise 4.1: Prove that
Ft(u,8) < [e/(1 4 8)]1+om, (4.10)
Hence infer that if § > 2e — 1,

Fr(u,8) < 27U+om

Exercise 4.1 gives us a simple form for F*(u,d) when é is “large.” For such
deviations, we have the bound

Aty €) < I-‘Zgz—#—lﬁ -1 (4.11)

We now present the following simplification of F*(u,4d) for é in a restricted
range (0, U]. A pointer to the proof is given in the Notes section.
Theorém 4.3: For 0 <6 < U,
F*(1,8) < exp(—c(U)us?),
where ¢(U) = [(1 + U)In(1 + U) — U}/ U2

For U = 2e — 1, this simplifies to F*(u,8) < exp(—ud?/4). Consequently,
provided é < 2e — 1, we can use the estimate

At(pe) <y /41“#1/ < (4.12)

Thus, between Theorem 4.3 and Exercise 4.1, we have bounds on A*(u,e¢);
however, we require some idea of the correct value of A*(y,e€) before deciding
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which of these forms to use. Moreover, the result of Exercise 4.1 may be slack
for some values of u and €, as i the following example. This example uses
Chernoff bounds to approach the occupancy problem considered in Section 3.1.

» Example 44: Consider throwing n balls uniformly and independently into n
bins. Let the random variable Y; denote the number of balls that fall into the
first bin. We wish to determine z quantity m such that Pr[Y; > m] < 1/n2.

Consider the Bernoulli trials mdicating whether or not the ith ball falls into
the first bin. Each of the p;’s is thus 1/n. It follows that u = 1; the number m
we seek is 1+ A*(1,1/n?). Guessing that A*(1,1/n?) is larger than 2e, we use the
result in (4.11) to obtain A*(1,1 n?) <2log,n— 1.

Unfortunately, this is not the nghtest possible answer in this case. Returning
to (4.1), we can apply it with 6 = (1.5Inn)/Inlnn and simplify to obtain F*(u,J)
less than n=2, so that our original estimate of 2log, n — 1 was asymptotically an
overestimate.

A good rule of thumb from examples like this is: for e of the order of n*
(a value arising often in algorithmic applications), estimates such as (4.11) and
(4.12) are satisfactory provided u is Q(logn); when u is smaller, we must return
to (4.1) in order to obtain the tighiest possible estimate.

» Example 4.5 (Set Balancing): This problem is known variously as set-balancing,
or two-coloring a family of vectors. Given an n x n matrix 4 all of whose entries
are 0 or 1, find a column vector » € {—1,+1}" minimizing ||48||e.

Consider the following algoritam for choosing b: each entry of b is indepen-
dently and equiprobably chosen from {—1,+1}. Note that this choice ignores the
given matrix 4. Clearly the inner product of any row of 4 with our randomly
chosen b has expectation 0. We now study the deviation of this inner product
from 0.

Consider the ith row of 4. Applying (4.9), the probability that the inner
product of this row with b is bounded by —4./nInn is less than n~2. An identical
argument shows that the probability that the inner product of this row with b
exceeds 4./nlnn is less than n—2. Thus, the probability that the absolute value of
the inner product exceeds 4./nln = is less than 2n~2.

Let us say that the ith bad event occurs if the absolute value of the inner
product of the ith row of 4 witk b exceeds 4./nlnn. There are n possible bad
events, one for each row, and the argument of the previous paragraph shows that
the probability that any of them occurs is at most 2n~2. The probability of the
union of the bad events is no more than the sum of their probabilities, which
is 2/n. In other words, with protability at least 1 — 2/n, we find a vector b for
which [[4b]|x < 4+/ninn.
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4.2. Routing in a Parallel Computer

Our first application of the Chernoff bound is another case where a randomized
algorithm yields a performance that is provably superior to any deterministic
algorithm. This application concerns a communication problem in a network of
parallel processors.

We model a network of parallel processors by a directed graph on N nodes,
each of which is a processing element. Edges in the graph represent communica-
tion links between processing elements. All communication between processors
proceeds in a sequence of synchronous steps. Each link can carry a unit message,
or packet, in a step. During a step, a processor can send at most one packet to
each of its neighbors. Each processor has a unique identifying number, between
1 and N.

We consider the permutation routing problem on such a network. Each pro-
cessor initially contains one packet destined for some processor in the network.
Let v; denote the packet originating at processor i; we denote its destination by
d(i). We consider the case when the d(i)’s, for 1 < i < N, form a permutation
of {1,...,N}, ie, every processor is the destination of exactly one packet. How
many steps are necessary and sufficient to route an arbitrary permutation request
d(1), ..., d(N)? This special case is important in realizing abstract models of
parallel computation (such as the PRAM model described in Chapter 12) by
means of more feasible models.

A route for a packet is a sequence of edges it can follow from its source to
its destination. An algorithm for the permutation routing problem must specify
a route for each packet. In following a route, a packet may occasionally have
to wait at an intermediate node because the next edge on its route is “busy”
transmitting another packet. We assume that each node contains one queue for
each edge leaving the node; the queue holds packets waiting to leave via that
edge. A routing algorithm must also specify a queueing discipline for resolving
conflicts between packets that simultaneously wish to follow the same edge out
of a node.

We focus on a class of algorithms that are especially simple to implement in
parallel computer hardware. An oblivious algorithm for the permutation routing
problem satisfies the following property: the route followed by v; depends on
d(i) alone, and not on d(j) for any j # i. An oblivious algorithm specifies,
for each pair (i,d(i)), a route between node i and node d(i). Oblivious routing
algorithms are attractive for their simplicity of implementation: the communi-
cation hardware at each node in the network can determine the next link on its
route, simply by looking at the source and destination information carried by
a packet. Often, the topology of the network makes this operation very simple.
The communication hardware at a node does not have to compare the sources
and destinations of different packets in its queues.

The following theorem gives a limit on the performance of deterministic
oblivious algorithms; its proof is beyond the scope of this book (see the Notes
section).
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Theorem 4.4: For any deterministic oblivious permutation routing algorithm on
a network of N nodes each of out-degree d, there is an instance of permutation

routing requiring Q(1/N/d) steps.

Consider the implications of this theorem for the case when the network
is the Boolean hypercube, a popular network for parallel processing The
Boolean hypercube has N = 2" nodes connected in the following manner. Let
(io,- . .,in—1) € {0, 1}" be the (ordered) binary representation of i, i.e., i = Z;':é ij20.
There is a link (a directed edge) from node i to node j if and only if (iy,. .., ir_1)
and (jo, .., jn—1) differ in exactly one position. Every node in the hypercube
has n = log, N directed edges leaving it. Each edge incident on a node is
associated with a distinct bit position in the node label, and traversing an edge
corresponding to the position j will lead to a node whose label differs in exactly
that bit position. Theorem 4.4 then tells us that for any deterministic oblivious
routing algorithm on the hypercube, there is a permutation requiring Q(y/N/n)
steps. :

We now establish a special case of the lower bound of Theorem 4.4 for the
hypercube, showing that for a natural algorithm there is a natural permutation
that results in poor performance. Given that the source and destination addresses
are n-bit vectors, consider the following simple choice of route to send v; from i
to the node o (i): scan the bits of ¢(i) from left to right, and compare them with
the address of the current location of v;. Send v; out of the current node along
the edge corresponding to the left-most bit in which the current position and
o(i) differ. Thus, in going from (1011) to (0000) in a 4-dimensional hypercube,
the packet would pass through (0011) and then (0001) en route. This is referred
to as the bit-fixing routing strategy for obvious reasons.

Exercise 4.2: Suppose that n is even. Consider the transpose permutation: writing i
as the concatenation of two binary strings a; and b; each of length n/2, the destination
of v; is the concatenation of b, and a;. Show that the transpose permutation causes
the bit-fixing strategy to take Q(,/N/n) steps. Why is this permutation called a
transpose?

We now study a randomized oblivious routing algorithm and show that its
expected number of steps is considerably smaller than \/N/n. This algorithm
uses a simple two-phase scheme for permutation routing. Under this scheme,
packet v; executes the following two phases independently of all the other
packets.

Phase 1: Pick a random intermediate destination ¢(i) from { 1,...,n}. Packet v;
travels to node o (i).

Phase 2: Packet v; travels from o(i) on to its destination d(i).

In each phase, each packet uses the bit-fixing strategy to determine its route.
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Since each packet chooses its intermediate destination (in Phase 1) indepen-
dently of the remaining packets, the scheme is oblivious. Because the o(i) are
chosen independently at random, it may be that a(i) = o(j) for i # j; thus o
is not a permutation. The choice of routes is now clear; it remains to specify
the queueing discipline. For the above choice of routes, any of several queueing
disciplines will in fact yield a result similar to Theorem 4.7 below. All that is
required is that if at least one packet is ready to follow an edge e on a step, some
packet follows e on that step. For concreteness, we adopt the following queueing
discipline: each node maintains a queue for each outgoing edge, with packets
leaving in FIFO (first in, first out) order. Ties occur only when two packets
simultaneously arrive at a node and wish to leave by the same edge; these ties
are broken arbitrarily. The reader should verify that any pair of packets may
engage in such a tie at most once.

How many steps elapse before packet v; reaches its destination? Let us first
consider this question for Phase 1. Let p; denote the route for v; in Phase 1. The
number of steps taken by v; is equal to the length of p;, which is at most n, plus
the number of steps for which it is queued (delayed) at intermediate nodes in p;.
What is the delay encountered by packet v;? To tackle this problem we require
two additional facts; the first is a simple exercise.

Exercise 4.3: View each route in Phase 1 as a directed path in the hypercube from
the source to the intermediate destination. Prove that once two routes separate, they
do not rejoin.

We now establish an important step in the analysis. Like the statement in
Exercise 4.3 above, it is a deterministic assertion that is independent of the
randomization in our routing algorithm. In preparation for this step, the reader
- should first attempt the following exercise.

Exercise 4.4: Does the statement in Exercise 4.3 imply that for any two packets v;
and v;, there is at most one queue q such that v; and v; are in the queue q at the
same step?

Lemma 4.5: Let the route of v; follow the sequence of edges p; = (ey,ez,...,e).
Let S be the set of packets (other than v;) whose routes pass through at least one
of {e1,ez,...,ex}. Then, the delay incurred by v; is at most |S|.

PROOF: A packet in § is said to leave p; at that time step at which it traverses
an edge of p; for the last time. If a packet is ready to follow edge e; at time
t, we define its lag at time t to be t — j. The lag of v; is initially zero, and the
delay incurred by v; is its lag when it traverses e;. We will show that each step
at which the lag of v; increases by one can be charged to a distinct member of
S.
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We argue that if the lag of v; reaches £ + 1, some packet in S leaves p; with
lag ¢£. When the lag of v; increases from ¢ to £ + 1, there must be at least one
packet (from S) that wishes to traverse the same edge as v; at that time step,
since otherwise v; would be permitted to traverse this edge and its lag would not
increase. Thus, S contains at least one packet whose lag reaches the value /.

Let ¢ be the last time step at which any packet in S has lag 7. Thus there is
a packet v ready to follow edge e; at ¢, such that ¢ — j/ = /. We argue that
some packet of S leaves p; at ¢'; this establishes the lemma since by the result
of Exercise 4.3, a packet that has left p; will never again delay v;.

Since v is ready to follow e; at ¢, some packet w (which may be v itself) in
S follows ey at ¢. Now w leaves p; at ¢; if not, some packet will follow ey,
at step ¢ + 1 with lag still at Z, violating the maximality of ¢. We charge to w
the increase in the lag of v; from ¢ to £ + 1; since w leaves p;, it will never be
charged again. Thus, each member of S whose route intersects p; is charged for
at most one delay, establishing the lemma. |

Let the random variable H;; = 1 if p; and p; share at least one edge, and 0
otherwise. It follows that the total delay incurred by v; is at most Z}Ll H;j. Since
the routes of the various packets are chosen independently at random, the H;;’s
are independent Poisson trials for j s i. Thus, to bound the delay of packet v;
from above using the Chernoff bound, it suffices to obtain an upper bound on
Z}Ll H;j. To do this, we first bound E[E}Ll Hyl.

For an edge e in the hypercube, let the random variable T(e) denote the
number of routes that pass through e. Fix any route p; = (e, e3,...,€), with

k < n. Then,

N k
ZHij < Z T(e),
j=1 I=1

and therefore
N k
E} " Hyl <Y E[T(e). (4.13)
j=1 I=1
The following is an easy consequence of symmetry.

Exercise 4.5: Let o, and e, be any two edges in the hypercube. Prove that E[T(e;)]
= E[T (em)]. In other words, the expected number of routes passing through an edge
is the same for all edges in the hypercube.

The expected length of p; (number of edges traversed by v;) is n/2 for all j,
so that the expectation of the total route length summed over all the packets is
Nn/2. The number of edges in the hypercube is Nn; by the result of Exercise 4.5,
it follows that E[T(e)] = 1/2 for all edges e. Using this in (4.13) gives

Al k
E)_Hyl<3 <
j=1

[T~
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By the Chernoff bound (the form in Exercise 4.1 is most convenient), the
probability that ZN H;; exceeds 6n is less than 275", An important point: we

apply the Chernoff bound to 3% j=1 Hij and not to Z',;l T(e;). We cannot apply

the Chernoff bound to Zz=1 T(e;) because the random variables T'(e;) are not
independent (and in fact are not Poisson trials). We use the quantity 3"+, T(e;)
only to obtain an upper bound on E[Z?':l Hyj], and then apply the Chernoff
bound to Zjil Hjj, which is the sum of independent random variables.

Now Z?’:l H;j is an upper bound on the delay incurred by v;, so this delay
exceeds 6n with probability less than 276", Since the total number of packets is
N = 2", the probability that any of the N packets experiences a delay exceeding
6n is less than 2" x 27" = 27", Adding the length of the route to the delay
gives 7n as the number of steps taken by v; in Phase 1.

Theorem 4.6: With probability at least 1 — 27", every packet reaches its interme-
diate destination in Phase 1 in Tn or fewer steps.

What happens to the packets in Phase 2? Observe that the routing scheme
for Phase 2 can be viewed as the scheme for Phase 1 “run backwards.” The
same analysis then shows that with probability at least 1 — (1/32)", every packet
reaches its destination in 7n or fewer steps. The probability that any packet fails
to reach its target in either phase is less than 2(1/32)", which is less than 1/N
for n > 1. Combining these facts, we have:

Theorem 4.7: With probability at least 1 — (1/N), every packet reaches its des-
tination in 14n or fewer steps.

Note that we have bounded the delay of a packet in each phase by assuming
it is delayed only by packets executing that phase. To avoid packets in Phase
1 delaying packets in Phase 2 and vice versa, rather than allow Phases 1 and
2 to proceed unchecked for the various packets, we make packets wait at their
intermediate destinations until 7n steps have elapsed before beginning their
Phase 2 travel.

An interesting feature of this scheme is that the distribution of the number
of steps to completion is insensitive to the instance to be routed. Indeed, it is
likely to take as long to route the identity permutation as any other “hard”
permutation!

Exercise 4.6: Show that the expected number of steps within which all packets are
delivered is less than 15n.

Comparing the performance of the randomized algorithm with the negative
result of Theorem 4.4, we find that our randomized oblivious algorithm is prov-
ably better in that it achieves an expected running time that no deterministic

78



43 A WIRING PROBLEM

oblivious algorithm can achieve. In fact, any deterministic oblivious algorithm
must have performance exponentially worse than that of our randomized obliv-
ious algorithm.

4.3. A Wiring Problem

We now consider another application of the Chernoff bound. The problem is
that of global wiring in gate-arrays. A gate-array is a two-dimensional Jrx . n
array of gates abutting each other, arranged at regularly spaced points in the
plane. The gates are numbered from 1 through n. A logic circuit is implemented
on such an array by connecting together some of the gates using wires. A
net is a set of gates to be connected by a wire. Wires run over the array
in “Manhattan” form, i.., they run parallel to the axes of orientation of the
gate-array. In Figure 4.1, n is 9, and we have 4 wires each of which connects
a pair of gates. Each gate is represented as a square with thin lines defining
the boundaries. Each net connects a pair of gates, and has the same number
marking its end-points (i, the thick lines 1-1, 2-2, 3-3, and 4-4). Note that in
some cases a gate contains the end-point of more than one net.

The wiring problem is the following: we are given a set of nets, each of which
is a set of gates to be connected together (to form one electrical connection).
Here we consider only the simplest case, where each net consists of two gates
to be joined by a wire. We wish to specify for each net a physical path between
the two gates in the net, subject to space constraints.

In practice, the wiring problem is usually accomplished in two sequential
phases: global wiring and detailed wiring. In the global wiring phase, we only
specify which gates a wire will pass over in connecting its end-points. Thus, in
Figure 4.1, the global route for net 4-4 passes through the three gates in the
right-most column of the array. This is followed by the detailed wiring phase,
in which the exact positions of the wires along their routes are specified - in
our example, we would specify that the wire for net 4-4 lies to the right of the
wire for net 3-3 as it leaves the top-right gate, and so on. Here we only concern
ourselves with the global wiring phase.

The boundary between adjacent gates in an array has a fixed physical dimen-
sion and can therefore accommodate only a prescribed maximum number of
wires, say w. We wish to find an assignment of global routes to all the nets in
the wiring problem, such that no more than w nets pass through any boundary.
In Figure 4.1, the set of routes we have indicated is a feasible solution provided
w is at least 2. It is not hard to see that in this instance, we cannot find a feasible
global wiring of the wires if w were only 1 — four wires must leave the top row
of gates, and we have only three boundaries through which they must all pass.

We will solve a somewhat harder optimization problem instead of the fea-
sibility problem - for a boundary b between two gates in the array, let ws(b)
denote the number of wires that pass through b in a solution S to the global
wiring problem. Let ws = max;, wg(b) be the maximum number of wires through
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&

Figure 4.1: A gate-array with 9 gates.

any boundary in the solution S. If we can minimize ws, we can surely decide
the feasibility problem.

As a further simplification in our presentation, we assume that the global
route for each net contains at most one 90° turn; we refer to such a route as
a “one-bend” route. Thus, in joining the two end-points of a net, the wire will
either first traverse the horizontal dimension and then the vertical dimension,
or the other way around. In Figure 4.1, every net has been routed under this
restriction. For net 4-4, which connects two gates in the same column of the
array, we have only one choice under our restricted class of routes — to go right
down the column; the reader should verify that the existence of such nets does
not affect the following analysis. Our problem now becomes one of deciding,
for each net, which of the two options to use. :

This can be cast as a zero-one linear program as follows. For net i, we use
two variables x;o and x; to indicate which one of the two routes will be used
for it. Thus, x; would be 1 if we chose the route that goes horizontally first,
starting from the left end-point of net i, and 0 otherwise. For x;; we adopt the
opposite convention. In Figure 4.1, x;0 = 0 and x;; = 1, whereas x3 = 1 and
x3; = 0. For each boundary b in the array, let

Tywo = {i | net i passes through b if xjo = 1}
and
Ty = {i | net i passes through b if x; = 1}.
With these definitions, our integer program can be expressed as:
minimize w
where X0, xi € {0,1} (V nets i) (4.14)

subject to
X0+ xn =1 (V nets i) (4.15)

80



43 A WIRING PROBLEM

Z X0 + Z xi1 < w (V boundaries b). (4.16)

i€Two €Ty

The constraint (4.15) ensures that a unique route is specified for every net.
The constraint (4.16) specifies that at most w wires pass through any boundary
b. The objective function seeks a solution of minimum w, with the zero-one
constraint imposed. The optimum solution to this zero-one integer program
gives the minimum ws among the class of solutions allowing only one-bend
routes. In general, allowing a less restrictive set of routes could result in a
solution with a lower wg.

Denote by wo the value of the objective w in the optimum solution to (4.14-
4.16). The general problem of zero-one linear programming is /NP-hard, and
in fact even the particular class of zero-one linear programs (4.14-4.16) arising
from our global wiring problem is known to be NP-hard (i.e., our global wiring
problem is NP-hard). Thus we do not hope to compute wy efficiently.

We solve instead the linear program relaxation of (4.14-4.16). This is a linear
program in which the integrality constraint in (4.14) is replaced by the constraints
xio, X1 € [0,1] for each i. In other words, we allow the x;, and x; to assume
real values between 0 and 1. This is a linear programming problem, and we
know of several efficient methods for solving it (see Chapter 9.10). Let X and
Xi1, for 1 < i < n, be the solutions provided by the linear program, and let w
be the value of the objective function for this solution. Since the linear program
is a relaxation of (4.14-4.16), it is clear that wo > w. The Xp’s and X;’s may
be fractional values, and therefore may not constitute a feasible solution to our
integer program. We must therefore “round” these fractional values to 0’s and
I’s to obtain a feasible global wiring; in doing so, we hope not to allow the
objective w to drift too far from wy.

We now describe a technique known as randomized rounding that rounds these
fractional values to 0’s and 1’s. It finds a global wiring S with wg provably not
much larger than w, and thus wo. Note that the fractional solutions X and Xj
still satisfy the other constraints of the original integer program; in particular,
Xio + X1 = 1 for each i. We will denote by Xj the rounded value of X, and
define X;; similarly.

Randomized rounding is the following process: independently for each i, set
Xp to 1 and X; to O with probability Xj; otherwise set X to 0 and X; to 1.
Thus, for each i, Pr[Xy = 1] = Xjo and Pr[x;; = 1] = X;;. The idea of randomized
rounding is to interpret the fractional solutions provided by the linear program
as probabilities for the rounding process. Another interpretation is to imagine
that the linear program, given the choice of two routes for wiring each net,
routes the wire using two “fractional wires.” Randomized rounding then picks
one of these fractional wires, in proportion to its fraction. A nice property of
randomized rounding is that if the fractional value of a variable is close to 0 (or
1), it is likely to be set to O (or 1).

Theorem 4.8: Let € be a real number such that 0 < € < 1. Then with probability
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1 — €, the global wiring S produced by randomized rounding satisfies

ws < W(1 + At (W,€/2n)) < wo(1 + At (wo,€/2n)).

PROOF: We establish that following the rounding process, with probability at
least 1 — ¢, no boundary in the array has more than w(l + A*(w,e/2n)) wires
passing through it. We will do so by showing that for any particular boundary
b, the probability that ws(b) > w(1 + A*(w,€/2n)) is at most €/2n; then, since a
Jnx \/n array contains fewer than 2n boundaries, we can sum this probability
of failure over all the boundaries b to get an upper bound of € on the failure
probability.
Consider a boundary b; since the solutions of the linear program satisfy its
constraints, we have
Z Xio + Z Xy < w. (4.17)

i€Two €Ty
The number of wires passing through b in the solution S is

ws(b) =D X+ > X (4.18)

i€Tw i€Ty;

But X and X; are Poisson trials with probabilities Xy and X;;, respectively.
Further, X and X;; are each independent of X, and X; for i # j. Therefore,
ws(b) is the sum of independent Poisson trials and, by (4.17) and (4.18),

Ews®)] = ) ElXo]l+ > EXal=3 S0+ > % <.

i€Tho €T i€Tho i€y
Now, by the definition of A*(y, ¢€) in (4.7),
Pr{ws(b) > W(1 + A*(w,€e/2n)] < ¢/2n,
and the theorem follows. a

Neither the theorem nor its proof makes any assumption on the value of e
- it can in fact be o(1), even n=¢ for some constant ¢. Let us return to the
guarantee provided by Theorem 4.8; how good is it? The answer depends on
the value of wp. Suppose we seek € = 1/n, so that €/2n = 1/2n®. Then wg <
wo(l + At(wo, €/2n)).

Consider first the case where wo = n?, for some positive constant y. We can
use Theorem 4.3 to show that with probability 1 — e,

ws < 1 (1 4 41n2n/€) .

74

Thus, we find a solution with an additive term that is vanishingly small as n
grows. Suppose, on the other hand, that wy = 20. In this case, a calculation sim-
ilar to that in Example 4.4 shows that ws is O((log n)/ log log n) with probability
1 —1/n. Randomized rounding is likely to perform well provided wy is “not too
small,” and this appears to be the case in practice. When wy is small (as in the
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latter case), we can in fact do substantially better than the O((logn)/loglogn)
guarantee provided by randomized rounding, as Exercise 4.7 below illustrates.

Exercise 4.7: Give a simple rounding procedure that obtains rounded solutions ¥
from X so that ws < 2wy, where wp is the optimum solution for our restricted class
of one-bend routes.

We have focused on the quality of the solution produced in the probabilistic
statement of Theorem 4.8. Our algorithm can be shown to run in time polynomial
in the number of gates and nets in the instance. This is an example where we
are interested in random variables other than running time of a randomized
algorithm.

4.4. Martingales

Our discussion so far has centered on the sums of independent random variables.
Frequently, it is necessary to consider the sum of random variables that are not
totally independent. When relatively little knowledge of the random variables is
available, we may resort to the Markov inequality or the Chebyshev inequality;
in such cases, we cannot hope to show that a random variable is sharply
concentrated about its expectation. There are, however, cases in which we can
exploit additional structure in the random variables. An important case of
such additional structure is that of martingales. (The material in this section,
although useful, is not an essential prerequisite for subsequent chapters and may
be omitted.)

Martingales originally referred to systems of betting in which a player in-
creased his stake (usually by doubling) each time he lost a bet. Assuming
unlimited capital, this system is guaranteed to eventually result in a net profit
in any fair betting game; in the case of limited capital, it will eventually lead
to net profit or total bankruptcy. It is no wonder that such systems have been
outlawed in most casinos! Here we are interested in a far more general def-
inition of martingales, which has proved to be very useful in showing that a
random variable is sharply concentrated about its expectation. The following
exposition concentrates on discrete martingales, as the continuous case seldom
arises in computer science applications. The definition of martingales requires
some exposure to the measure-theoretic underpinnings of probability theory,
and we recommend a review of the material in Appendix C.

We begin by defining conditional distributions and expectations. Let X be a
random variable and £ any event that occurs with a non-zero probability. The
conditional density function of X given £ is given by Pr[X = x | £]. In particular,
& can be the event that some other random variable Y takes on a specific value
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y. Denoting the joint density function of X and Y by p(x, y), we have

pxy)  _ _p(x,y)
Pr(Y =y] 3, p(x.y)

PriX=x|Y =y]=

and -
< XP(X, ¥)
Y == o)
where E[X | Y = y] is the conditional expectation of X given that Y equals y.
These definitions apply only for the values y for which Pr[Y = y] > 0.
We can express the conditional expectation as a function of y, say f(y). If
the value of Y is not known, then the conditional expectation is itself a random
variable. This is the random variable f(Y).

» Definition 4.4: The random variable E [X | Y] is defined to be the random
variable f(Y) such that f(y) =E[X | Y =y].

Suppose that the random variables X and Y are defined over the probability
space (Q,IF, Pr). Consider the partition of Q into the events {Y = y} as y ranges
over the subset of reals in which Pr[Y = y] > 0. The function f(y) is the average
value of X over the various elementary events in the set {Y = y}. The random
variable E [X | Y] takes on the value f(y) when evaluated at some elementary
outcome w € {Y = y}. We can generalize this to define the random variable
EX|Y,...,Y]

» Example 4.6: Consider independent throws of an unbiased 6-sided die. For
1 <i <6, let X; denote the number of times the value i appears in n throws of
the die. Consider the following conditional expectations:

- X

E[X,|X;] = = =,
-X-—-X
E[X) | X2, X5] = "-——-——-j 3.

These equations define the expected value of the random variable X, given the
number of times 2 and 3 appear. Of course, the number of occurrences of 2 and
3 are themselves random variables, and so the expectation of X, is a random
variable defined as a function of X; and Xj.

If we knew that there are a occurrences of 2, we can compute the expected
value of X as (n—a)/5; given the further information that there are f occurrences
of 3, we can compute the expected value of X, as (n — a — f)/4. More succinctly,

EXj | X;=0a] = n;a,
EX; | X2=0X3=0] = n_:__ﬁ

We leave both the proofs of the following lemmas and their generalization to
random variables such as E [X | Yy,..., Y,] as an exercise.
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Lemma 4.9: E[E[X | Y]] = E[X].

Lemma 4.10: E[Y XE[X | Y]] = E[XY].

44.1. A Simple Definition

We start with a simplified definition of a martingale. No assumptions are made
about the independence or the precise distributions of the random variables in
this definition. In fact, this is just the reason why martingales are so powerful!

» Definition 4.5: A sequence of random variables X,, Xj, ... is said to be a
martingale sequence if for all i > 0,

E [Xl I X0>'-'aXi—1] = Xi—l-

Consider the example of a gambler who makes a sequence of bets. Her initial
capital is Xo, and X; represents the capital after the ith bet. Assume that the
game is fair, so that the expected gain/loss from each bet is zero. We can
then claim that the sequence Xy, Xj, ... forms a martingale. This is without
the knowledge of the gambler’s strategy; the gambler bets an arbitrary amount
of money each time, and the amount bet may depend in any way upon the
history (i.e., the previous results Xy, X, ..., X;—1). The following lemma is an
immediate consequence of Definition 4.5 and Lemma 4.9; it implies that the
expected capital at any stage is exactly the initial amount X,.

Lemma 4.11: Let Xo, X, ... be a martingale sequence. Then, for all i > 0,
E[X;] = E[X,).

An alternate view of the gambling example is provided by letting the random
variable Y; denote the net gain or loss from the ith bet. We can relate the
sequences Xo, X, ... and Yy, Yy, ... as follows: ¥; = X; — X, ; and X; =
Xo + Z’j,,, Y;. By fairness, regardless of the past history, the expected gain from
each bet is zero, ie, E[Y; | Y},..., Y] = 0. Since the two views of the process
are exactly equivalent, we make an alternate definition of a martingale.

» Definition 4.6: A sequence of random variables Y;, Ya, ... is said to be a
martingale difference sequence if for all i > 1,

E[Yll Yla"'>Yi—1] =0.

Of course, in a casino the games are known to be unfair to the gamblers. In
that case, the sequence of capitals forms what is known as a super-martingale;
from the point of view the casino, the situation is represented by what is called
a sub-martingale.
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» Definition 4.7: A sequence of random variables Xy, X, ... is said to be a
super-martingale if for all i,

E[X;| Xo,..., Xi~1] < X
It is called a sub-martingale if for all i,
E[X;| Xo,..., Xi~1] = Xi_1.

This definition can be adapted to a martingale difference sequence. Moreover,
a super-martingale can be converted into a martingale by accounting for the
expectation at each stage. In the case of a gambler playing an unfair game,
suppose that the expected return on a bet of value 1 is the amount 1 —u. Assume
that the gambler bets one dollar each time and gets a return of Y;; let X; be her
net capital after the ith bet. Then the sequence Z,, Z,, ... forms a martingale,
where

Z A Xi+ip=Xo+ 3 (Y, +u—1).
Jj=1

A similar conversion can be performed for the sub-martingale corresponding to
the casino’s viewpoint.

Exercisé 4.8 (Polya’s Urn Scheme): Consider an urn that initially contains b black
balls and w white balls. We perform a sequence of random selections from this urn,
where at each step the chosen ball is replaced by ¢ balls of the same color. Let X;
denote the fraction of black balls in the urn after the ith trial. Show that the sequence
Xo, X4, ... is a martingale.

Exercise 4.9 (Occupancy Probiem): Suppose that m balls are thrown independently
and uniformly at random into n bins. Let Z denote the number of bins that remain
empty. Define time t to be the time at which exactly t balls have been thrown into
the bins. For 0 <t < m, define the random variable Z, to be the expectation at time
t of the number of bins that are empty at time m. The random variable Z, depends
on the placement of the first t balls, and is defined under the assumption that the
remaining balls are placed at random. Show that the sequence of random variables
2y, ..., Zy is a martingale, and that Z, = E[Z] and Z,, = Z.

Given our current description of a martingale, the latter exercise is non-trivial.
In Section 4.4.2, we will develop a more general view of martingales that will
reduce this exercise to a triviality.

4.4.2. A General Definition

Let us return to the example of the gambler discussed at the beginning of
Section 4.4.1. Recall that X, represents the gambler’s capital at time ¢, i.e., after
t bets have been placed. We observed that this sequence forms a martingale,
and that E [X; | X,...,X; ;] = X,_,. We would like to claim that this captures

86



44 MARTINGALES

the fairness of the game in that, irrespective of the history and the gambler’s
strategy, the expected gain from each bet is exactly 0. However, this definition
only says that the knowledge of the amounts won or lost in past bets does not
help to predict the future. But what about other past information such as the
exact set of cards dealt to various people, or the number of times a particular
color or number shows up on the roulette table?

Specifically, suppose the gambler is playing roulette, and denote by Z; the
outcome on the roulette table during the ith bet; this random variable includes
all information about the happenings on the roulette table, and not just the
amount won or lost by this specific gambler. The gambler knows the value of Z;
and makes use of this knowledge in placing future bets. For example, if Zi, ...,
Z; indicate that the outcome on the table was always a red number, the gambler
might then choose to bet on one of the red numbers the next time around. It is
intuitively obvious that even this more refined knowledge of the past cannot help
the gambler in the future, but the current definition of a martingale does not
cater to the full generality of this intuition. The problem is that the conditioning
is based on the amount of money lost or gained by the gambler from each bet,
rather than the actual outcomes on the table. We would like a definition which
gives

E [Xi ZO>---,Zi—1] = Xi—1.

In fact, some authors define the notion of a martingale sequence X, X}, ... with
respect to a second sequence of random variables Zy, Z), ... using precisely this
equation.

Recall the definition of a ¢-field (Q,JF) from Appendix C. In particular, we
will consider only the probability spaces where the sample space Q is a finite set
and IF = 29 contains all possible events in this sample space. Typically, we will
assume that Q is clear from the context and refer to IF itself as a g-field.

» Definition 4.8: Given the o-field (Q IF) with F = 2%, a filter (sometimes also
called a filtration) is a nested sequence IFy = IF; < - = IF, of subsets of 22 such
that

1. Fy = {0,Q}
2. F,=2¢
. forO0<i<n (QIF) is a o-field

Let £, &,, ... be any collection of events over the sample space Q. The o-field
generated by these events is the minimal collection of subsets IF that contains ¢
and each of £, £, ..., and is closed under complement and union. If £, £,, ...
are disjoint events that partition ), then an event is in the generated o-field FF if
and only if it can be expressed as the union of some subset of the events £, £,
...; we refer to the events £, £.. ... as the elementary events in the o-field IF.

An intuitive view of Definition 4.8 can now be obtained by associating with
each IF; a partition of Q into blocks Bi, Bi, ... such that the events Bj- generate
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the o-field IF;. Furthermore, the partition associated with IF;,, is a refinement
of the partition associated with IF;, and IF, is generated by the trivial partition
while IF, is generated by the partition of Q into the singleton sets containing the
sample points.

» Example 4.7: Consider a randomized algorithm A that uses a total of n random
bits. The elementary events in the underlying sample space Q are all possible 2"
choices of the n bits. For 0 < i < n and w € {0, 1}/, let B,, denote the event that
the first i random bits equal the bit string w. Let IF; be the o-field generated by
the partition of Q into the blocks B,,, for w € {0,1}". Then the sequence IF, FF,,
..., IF, forms a filter. In the o-field IF;, the only valid events are the ones that
depend on the values of the first i bits, and all such events are valid therein.

Recall that a random variable X over a probability space (Q,IF,Pr) can be
viewed as a function X: Q — R. In other words, given a sample w € Q, the
random variable takes on the value X(w). Given a filter IF, ..., IF, with respect
to this probability space, it is not clear that we can define the distribution of
X relative to an arbitrary IF;. This is because events of the type {X = x} or
{X > x} may not exist in IF;, although they will always be contained in the set
IF, = IF. We formalize this as follows.

» Definition 4.9: A random variable X is said to be IF;-measurable if for each
x € R, the event {X < x} is contained in IF;.

Since we are dealing only with the discrete case, the above definition could
be made using the events {X = x} rather than {X < x}.

» Example 4.8: Continuing with Example 4.7, consider the random variable X
which is the parity of the n random bits used by algorithm .A. Clearly, X is
IF;-measurable only for i = n. On the other hand, let Y; denote the number of
ones in the first j random bits; then Y; is IF;-measurable for all i > J-

In general, a random variable X is IF,-measurable if its value is constant
over each block in the partition generating IF;. Since the partitions generating
the o-fields in a filter are successively more refined, it follows that if X is
IF;-measurable, it is also IF;-measurable for all j > i.

Suppose now that X is IF;-measurable. What can we say about X with respect
to the o-field IF,_;? An elementary event B in IF,_, is a block from its partition
of €, and this is the union of some blocks By, ..., B, from the refined partition
generating IF;. Viewing X as a function over Q, we know that X is constant
over each of the blocks B;, but is not necessarily so over B. However, the
expected value of X is well-defined (and constant) over B. Thus, we can define
E [X | IF;,_1] as the expected value of X conditioned on the events in IF;_,. This
conditional expectation is a random variable that can be viewed as a function
into the reals from the blocks in the partition of IF;_;. Moreover, this random
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variable is a constant if X is also IF;_;-measurable. The converse is not always
true; for example, when X is independent of the elementary events in IF;_;, then
E [X | IF,_;] may be constant even though X is not IF,_,-measurable.

There is nothing special about working with IF;_; in this discussion, and we
can similarly define E [X | IF;] for any j. The following is a general definition of
conditional expectations.

» Definition 4.10: Let (Q, IF) be any o-field, and Y any random variable that takes
on distinct values on the elementary events in IF. Then E[X |F]=E[X | Y].

Notice that the conditional expectation E [X | Y] does not really depend on
the precise value of Y on a specific elementary event. In fact, Y is merely an
indicator of the elementary events in IF. Conversely, we can write E[X Y] =
E[X | 6(Y)], where o(Y) is the o-field generated by the events of the type
{Y =y}, ie., the smallest g-field over which Y is measurable.

» Example 4.9: Consider the sample space Q of all Americans, and let X be
the random variable denoting the weight of a randomly chosen sample point.
Consider the following filter with respect to Q: IFy is the trivial o-field; IF, is the
o-field generated by the partition of Q2 into males and females; IF; is the o-field
generated by the refinement of the previous partition into sets corresponding to
different heights; IF; is the further refinement of the partition based on age; and,
IF, is the partition into singleton sets, each of which corresponds to an individual
American.

Define X; = E[X | FF}], for 0 <i < 4. Then X, = E[X] denotes thé average
weight of an American, X, is the average weight of Americans as a function of
their sex, X, is the average weight of Americans as a function of their sex and
height, and X3 is the average weight of Americans as a function of their sex,
height and age. Of course, X4 = X is the original random variable.

The “randomness” in these random variables results from the fact that a
random American does not have a predetermined sex, weight, or age. For
example, the sex of a random American is a random variable, and X, is a
function of this random variable. Once the sex is known, the value of X, is
completely determined.

» Example 4.10: Going back to Example 4.7, let T be the running time of the
algorithm A on a specific input I. Clearly, T is a random variable whose value
depends upon the specific values of the random bits used by .A. Observe that T
is IF,-measurable, but in general is not IF;-measurable for any i < n.

Define the conditional expectation T; = E [T | IF;]. Verify that To = E[T]
and that T, = T. Also, T; is a function of the values of the first i random bits
denoting the expected running time for a random choice of the remaining n — i
bits. Given the value of the first i random bits, we may evaluate this random
variable and obtain a constant. In fact, as will become clear shortly, the sequence
To, ..., T, is a martingale.
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We are now ready to give the more general definition of martingales.

» Definition 4.11: Let (Q, IF,Pr) be a probability space with a filter IFy, F; ...
Suppose that Xo, X;, ... are random variables such that for all i > 0, X; is
IF;-measurable. The sequence Xy, ..., X, is a martingale provided, for all i > 0,

E[Xi | F] =X

As before, we can define martingale difference sequences using Y; = X; — X;_,,
and requiring that E[Y;,, | IF;] = 0. We leave it as an exercise to verify that the
definitions of Section 4.4.1 are special cases of Definition 4.11.

Suppose that X, X}, ... is a martingale. Then it is intuitively clear that the
sequence Xo, X,, X4, ... is also a martingale. This can be proved rigorously
using the definition given above. The following theorem gives a general form of
this result and the proof is left as Problem 4.18.

Theorem 4.12: Any subsequence of a martingale is also a martingale (relative to
the corresponding subsequence of the underlying filter ).

The following theorem gives us a way to construct a martingale sequence
from any random variable. Martingales obtained in this manner are sometimes
referred to as Doob martingales.

Theorem 4.13: Let (L, FF,Pr) be a probability space, and let Iy, ..., FF, be a
Sfilter with respect to it. Let X be any random variable over this probability space
and define X; = E[X | IF;]. Then, the sequence Xy, ..., X, is a martingale.

The proof of this theorem is based on the following lemma, and these proofs
are posed as Problems 4.19 and 4.20.

Lemma 4.14: Let (Q,IF) and (Q, G) be two o-fields such that IF = G. Then, for
any random variable X, E[E[X | G] |F] = E[X | F].

» Example 4.11: Consider again the occupancy problem discussed in Exercise 4.9.
There is an underlying filter IFy, ..., IF, where I, is the o-field generated by the
events corresponding to the placement of the first ¢ balls. It then follows that
the random variable Z; equals E [Z | IF,], and that the sequence Z, ..., Z, is a
martingale.

» Example 4.12 (Edge Exposure Martingale): Let G be a random graph on
the vertex set ¥V = {1,...,n} obtained by independently choosing to include each
possible edge with probability p. The underlying probability space is called G,,.
Arbitrarily label the m = n(n — 1)/2 possible edges with the sequence 1, ..., m.
For 1 < j < m, define the indicator random variable I;, which takes value 1 if
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edge j is present in G, and has value O otherwise. These indicator variables are
independent and each takes value 1 with probability p.

Consider any real-valued function F defined over the space of all graphs, e.g.,
the clique number, which is defined as being the size of the largest complete
subgraph. The edge exposure martingale is defined to be the sequence of random
variables Xy, ..., X, such that

Xk = E[F(G) | Ily'-'alk]y

while Xy = E[F(G)] and X,, = F(G). The fact that this sequence of random
variables is a (Doob) martingale is easy to verify — simply define the filter where
IF; is the o-field generated by the events corresponding to Iy, ..., Ii.

Exercise 4.10 (Vertex Exposure Martingale): In the same setting as in Example 4.12,
we define a vertex exposure martingale as follows. For 1 <7 < n, let E; be the set
of all possible edges with both end-points in {1,...,i}. Define Y; as the (conditional)
expectation of F(G), conditioned by the knowledge of the indicator variables J; for all
j € E;. Show that the sequence Y, = E[F(G)], Y1, ..., Y, forms a martingale.

At this point it is useful to review the intuition behind the above series of
definitions. Recall the sequence Ty, T, ..., T, of conditional expectations of
the running times defined in Example 4.10. This is a Doob martingale. We view
the o-field sequence IFy, ..., IF, as representing the evolution of the algorithm,
with each successive g-field providing more information about the behavior of
the algorithm (this information is determined by the values of the random bits
given a fixed input). The random variables Ty, ..., T, represent the changing
expectation of the running time as more information is revealed about the choice
of the random bits. As we will see in the next section, if it can be shown that the
absolute difference | T; — T;—,| is suitably bounded, then the random variable T,
behaves like Ty in the limit. In other words, the running time of the algorithm
is sharply concentrated around its expected value provided that the choice of
each individual random bit does not influence the behavior of the algorithm
too dramatically. Similar arguments applied to the edge or vertex exposure
martingales allow us to conclude that the value of a graph-theoretic function
applied to a random graph is sharply concentrated around its expected value.

4.4.3. Martingale Tail Inequalities

In this section we present some inequalities for martingales that are reminiscent
of the inequalities seen earlier for independent random variables. The reader
may find it instructive to adapt these inequalities to the case of martingale
difference sequences. The first inequality bears a resemblance to the Markov
inequality.
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Theorem 4.15 (Kolmogorov-Doob Inequality): Let X,, X), ... be a martingale.
Then, for any 1 > 0,

Pr[max X; > 1] < E[IX"I].
O<i<n A

The next bound is similar to the Chernoff bound for the sum of Poisson
trials. Notice that X, equals E[X] in the case of a Doob martingale obtained
from a random variable X, and so the following gives an exponentially small
tail bound for X. It should also be noted that the tail bound does not require
any knowledge of the expectation of X.

Theorem 4.16 (Azuma’s Inequality): Let X,, X, ... be a martingale sequence
such that for each k,

| Xk — Xi—1| < e,y

where ¢, may depend on k. Then, for all t > 0 and any A > 0,

22
Pr[|X; — Xo| > 4] < 2exp ( 3 c,f) .

It is easy to see the connection between this bound and the Chernoff bound
for the sum of Poisson trials. Let Z,, ..., Z, be independent variables that take
values 0 or 1 each with probability 1/2. The random variable S = Y\, Z; has
the binomial distribution with parameters n and p = 1/2. Define a martingale
sequence Xy, Xy, ..., X, by setting Xo = E[S], and, for 1 < i< n X; =
E[S | Z,,...,Z]. It is clear that for 1 <i < n, |[X; — X;_;| < 1, since fixing the
value of any one variable Z; can only affect the expected value of the sum S by
at most 1. It follows that the probability that S deviates from its expected value
Xo = E[S] = n/2 by more than 1 is bounded by 2 exp(—A%/2n), a slightly weaker
result than can be inferred from the Chernoff bound for binomial distributions.

The following is a useful corollary.

Corollary 4.17: Let Xo, X,, ... be a martingale sequence such that for each k,
Xk — Xial < ¢
where c is independent of k. Then, for all t > 0 and any A > 0,

Pr[|X, — Xo| > Ac\/f] < 2e7#/%,

The application of Azuma’s inequality is sometimes called “the method of
bounded differences.” In applying this method to a martingale sequence, it is
essential to set up the martingale in such a way as to guarantee the “bounded
difference” property. We identify a general situation where this property is easily
obtained.
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» Definition 4.12: Let f : D; x -+ x D, — R be a real-valued function with n
arguments from possibly distinct domains. The function f is said to satisfy the
Lipschitz condition if for any x; € Dy, ..., x, € Dy, any i € {1,... ,n}, and any
Yi € Di’

|f(X1, v Xiely Xiy Xigtls -y Xn) — f(xl,- s Xim1, Vis Xig1s-- -5 Xn)| £ 1.

Basically, a function satisfies the Lipschitz condition if an arbitrary change
in the value of any one argument does not change the value of the function
by more than 1. Suppose we have a sequence of random variables X, ..., X,,
and a function f(Xj,...,X,) defined over them such that f satisfies the Lipschitz
condition. Define the Doob martingale sequence Y,, Y, ..., Y, by setting
Yo = E[f(X;,....X,)] and, for 1 <i < n, Y; = E[f(X),...,X,) | X1,...,X]].
It 1s easy to verify that the Lipschitz condition implies that for 1 < i < n,
|Y; — Yi_1| < 1. We can now employ the method of bounded differences. Of
course, there is no particular reason to restrict the Lipschitz condition to absolute
differences of 1, and we can appropriately generalize the definition to permit the
exploitation of Azuma’s inequality in its full generality.

The following exercise illustrates the power of the method of bounded differ-
ences.

Exercise 4.11: A legal coloring of a graph G with vertex set V = {1,...,n} is an
assignment of colors (say, positive integers) to the vertices of the graph such that
no two adjacent vertices receive the same color; the chromatic number of the
graph G, denoted X(G), is the minimum number of distinct colors needed for this
purpose.

Consider a random graph G as defined in Example 4.12. Using the vertex exposure
martingale from Exercise 4.10, employ the method of bounded differences to show
that

Pr(|X(G) — E[X(G)]| > A./n] < 2exp(—A?%/2).
Note that you will have to model the chromatic number as a function of n argu-

ments, where the ith argument specifies the neighbors of vertex i from among
the vertices {1,...,i — 1}, and then show that this satisfies the Lipschitz condition.

It may seem a bit surprising at first that such a sharp concentration result can
be proved without even determining the expected value, but such is the power
of martingale arguments.

4.4.4. Occupancy Revisited

We return to the occupancy problem and apply the martingale tail inequalities
to it. We have m balls thrown independently and uniformly into n bins. Let Z
denote the number of bins that remain empty. Our goal is to prove a sharp
concentration result for Z.
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Consider first the following easy application of the Lipschitz condition and
the method of bounded differences. For 1 < i < m, let the random variable X;
denote the bin chosen for the ith ball. We can view Z as a function F(X},..., Xn»).
It is easy to verify that this function satisfies the Lipschitz condition since moving
any ball from one bin to another can change the number of empty bins by at
most 1.

Exercise 4.12: Based on the Lipschitz condition deduced in the preceding paragraph,
apply Corollary 4.17 to obtain that the probability that Z deviates from its expected
value by more than A is bounded by 2exp(—A2/2m).

However, exploiting the full generality of Azuma’s inequality allows us to
derive a significantly stronger result for the case where m > n.

Theorem 4.18: Let r = m/n, and Z be the number of empty bins when m balls
are thrown randomly into n bins. Then,

u=E[Z]=n(1—%) ~ ne”’
and for /. > 0,

Pr{|Z — pu| = 7] <2exp (—M) .

n? — 12

PrROOF: The expected number of empty bins is studied in Problem 3.1. We
concentrate here on proving the tail bound. Let time ¢ refer to the point at
which the first ¢ balls have been thrown. Let IF, be the o-field generated by the
random choice of bins for the first ¢ balls, i.e., the events corresponding to the
state of the bins at time t. Let Z be the random variable denoting the number of
empty bins at time m, and let Z, = E[Z | IF,] denote the conditional expectation
of Z at time t. The random variables Z,, Z,, ..., Z, form a martingale, with
Zy=E[Z]and Z, = Z.

Define z(Y,t) as the expectation of Z given that Y bins are empty at time
t. The probability that any of these bins does not receive a ball during the last
m — t time units is given by (1 — 1/n)"*. By linearity of expectations, we obtain
that the number of these bins that remain empty at the end is given by

z(Y,t) = E[Z|Y bins are empty at time {]

m—t
=Y (1 - l) .
n
Let the random variable Y, denote the number of empty bins at time ¢. Then,

1 m—t+1
Ziy=2z2(Y,t—1)=Y,, (1 - ;) .

Suppose we are at time ¢t — 1 (i.e., in the o-field IF,_,.), so that the values of Y,
and Z,_, are determined. At time ¢, there are two possibilities:
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1. With probability 1 — Y,_;/n, the tth ball goes into a currently non-empty bin.

Then, Y, = Y,_;, and

3 1 m—t
Zt = Z(Yt, t) = Z(Yt_],t) = Y,_l (1 - ;) .

2. With probability Y,_;/n, the tth ball goes into a currently empty bin. Then,
Y't Yt—l - 1 and

Let us now focus on the difference random variable A, = Z, — Z,_;. Cor-
responding to Z,, the distribution of A, (given the state at time t — 1) can be
characterized as follows.

1. With probability 1 — Y,_;/n, the value of A, is

m—t m—t+1
b = Yo (1 1) ~ Y, (1 - 1)
n n
m—t
- va(1-0)" (1= (1-3))
n n
m—t
= Y (1 - _1.) .
n n
2. With probability Y,_;/n, the value of A, is
m—t m—t+1
5 = (Yo —1) (1 - 1) — Y, (1 - 1)
n n
m—t m—t
e (-3) (- (-5)) - (-3)
n n n
- -(-2) (-3
n n

Observing that 0 < Y,_; < n, it follows that the value of the difference is

bounded as follows:
m—t m—t
_(1_1) sA,s(l_l) .
n n

Forl1<i<m wesetce = (1— %)m_', and we have that |Z,—Z,_,| <c. Bya
straightforward calculation,

m 2m 2_ 2
;cf = 11——((11——11//nn))2 = ’;n——#l'
Invoking Azuma’s inequality now gives the desired result. a
For large r, this tail bound is asymptotically equal to
2exp (—A*/[n(1 —e7¥)]).
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Compare this with a heuristic tail bound that can be obtained by using the fact
that the distribution of Z approaches the normal distribution in the limit.

Pr(|Z — u| > 2] < 2exp (=A% /[2n(1 — e™)]).

Notes

The general ideas behind the use of probability tail bounds derived from the moment
generating function were presented by Chernoff [93]. The idea of using the moment-
generating function to derive tail bounds is generally attributed to S. N. Bernstein [357].
The proof of Theorem 4.3 may be found in Raghavan’s thesis [350]. Hoeffding [202] gives
a similar bound that is insignificant unless ud > n—u(1+4). An alternative approach to
proving these bounds in the setting of k-wise independent random variables is developed
by Schmidt, Siegel, and Srinivasan [363]; they also provide general techniques for
inferring Chernoff tail bounds for the sums of certain other types of correlated random
variables. Janson [209] gives strong Chernoff-type bounds for the tail probabilites of the
sum of Bernoulli variables that are either independent or negatively correlated. Hagerup
and Riib [189] give a detailed survey of Chernoff bounds on the tail of the binomial
distribution.

Lower bounds on deterministic oblivious permutation routing such as Theorem 4.4
stemmed from work of Borodin and Hopcroft [75]; the form given here is an improvement
due to Kaklamanis, Krizanc, and Tsantilas [225]. The power of randomization in solving
the permutation routing problem was first demonstrated by Valiant [403]; his analysis
was subsequently simplified by Valiant and Brebner [400]. Our presentation here is an
adaptation of the latter analysis.

Notice that Valiant’s scheme is an oblivious randomized algorithm: the route followed
by a packet depends on its source, destination, and choice of random intermediate
destination, but not on the sources, destinations, or choices of other packets. In
Problem 4.11 below, we derive a result showing a limit on the performance of Valiant’s
scheme on an N-node, degree d network. In fact, such a lower bound has been shown
for any randomized oblivious scheme by Borodin, Raghavan, Schieber, and Upfal [77],
using the minimax principle of Section 2.2. In our model for parallel communication, we
assumed that a node could transmit packets along all its links at each step. When the
degree of a node is large, this assumption is unrealistic. Aleliunas [14] and Upfal [399]
have addressed this problem by showing that there are bounded-degree networks for
which Valiant’s scheme routes any permutation in O(log N) steps with high probability.

The technique of solving a linear programming problem and then randomly rounding
is due to Raghavan and Thompson [353]. Generalizations of the global wiring problem
to more realistic settings and other details are also given in the paper by Raghavan
and Thompson [353]. This technique has also been applied to the MAX-SAT problem
in recent work of Goemans and Williamson [169]; we will explore this application in
Section 5.2. Bertsimas and Vohra [58] explore randomized rounding in detail, applying
the approach to unify approximation algorithms for a number of covering problems.
Recent work of Goemans and Williamson [170], and Karger, Motwani, and Sudan [230],
has extended the randomized rounding technique from linear programming relaxations
to semi-definite programming relaxations, with applications to approximations for MAX-
SAT and graph coloring. The idea here is to relax the requirement that the solutions
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be scalars, and instead allow them to be vectors in some high-dimensional space,
thereby obtaining a polynomial-time solvable version of an NP-hard problem; as before,
randomization is then used to obtain approximate scalar solutions from the vector
solutions. The article by Motwani, Naor, and Raghavan [314] surveys approximation
algorithms for NP-hard problems based on the randomized rounding of both linear
programming and semi-definite programming relaxations of NP-hard problems.

Several books on advanced probability theory cover martingales. Grimmett and
Stirzaker [185] give an eminently readable description of martingale theory, as do
Dubins and Savage [131]. The more measure-theoretic approach to martingales can
be found in the books of Billingsley [61] and Feller [142, 143]. The reader seeking an
in-depth understanding of martingales may refer to more advanced books such as those
by Doob [129] and Hall and Heyde [191].

The tail inequality referred to as Azuma’s inequality is due to Hoeffding [202] and
Azuma [36]. The “method of bounded differences” has its origins in a paper by
Maurey [300], and its various forms and applications are surveyed by McDiarmid [302].
The occupancy tail bound is due to Kamath, Motwani, Palem, and Spirakis [228],
who provide a sequence of tail bounds for this problem. The classical results for
occupancy problems can be found in the books by Johnson and Kotz [222] and Kolchin,
Chistiakov, and Sevastianov [266]. While martingale arguments have been extremely
useful for proving sharp concentration about expected values, it is only recently that
they have attracted widespread attention in the computer science community, mainly due
to the work of Shamir and Spencer [373] and Bollobas [70] on the chromatic number
of random graphs; the book by Alon and Spencer [24] gives an excellent account
of this work. Some notable successes in the application of martingales to computer
science problems include: the work of McDiarmid and Reed [305] and Hayward and
McDiarmid [198] on algorithms for building heaps; the results of McDiarmid and
Hayward [304] on sharp concentration for quicksort; and the work of Aspnes and
Waarts [34] on distributed algorithms for consensus.

Problems

4.1 Suppose you are given a biased coin that has Pr[HEADS] = p > a, for
some fixed a, without being given any other information about p. Devise a
procedure for estimating p by a value p such that you can guarantee that
Pr[lp — p| > ep] < 6, for any choice of the constants 0 < a,€,8 < 1. Let N be
the number of times you need to flip the biased coin to obtain the estimate.
What is the smallest value of N for which you can still give this guarantee?

4.2 Let X be a random variable. Define the kth factorial moment of X, E[X*], as
the expected value of X* = X(X —1)---(X —k + 1). Let G, denote a random
graph on n vertices where each edge independently is present with probability
p. and G, denote a graph on n vertices that has m edges chosen uniformly
at random. Let X, denote the number of isolated vertices in G,, and let Y,
be the number of isolated vertices in G,. Consider the case p = (logn+¢)/n
and m = n(logn +c)/2, for a real value c. Prove that E[X}] and E[Y*] are
asymptotically equal to A*, where A = e~°.
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For ¢ in the range [1,Inn], use (4.1) to obtain a closed-form upper bound for
A*(u,1/n?) (as a function of g and n) that is within a constant factor of the
best possible.

Let X;, X,, ..., X, be independent geometrically distributed random variables
each having expectation 2 (each of the X; is an independent experiment
counting the number of tosses of an unbiased coin up to and including the
first HEADS). Let X = _7_, X; and & be a positive real constant. Use moment
generating functions and the Chernoff technique to derive the best upper
bound you can on Pr[X > (1 + &)(2n)].

The result of Theorem 4.2 bounds the probability of the sum of Poisson trials
deviating far below its expectation. Use this to give a bound on the probability
of the sum of independent geometric random variables deviating above its
expectation, thus providing an alternative approach to that in Problem 4.4.

(Hoeftding’s Bound [202]). Suppose Yi, ..., Y, are independent Poisson trials
such that Pr{Y; = 1] = p;. LetY =35 Y, u =E[Y] =3 pi and p = u/n.

i=1

Our goal is to show that from the standpoint of deviations from the mean, the
worst case is when the p;'s are all equal. Let X be the sum of n independent
Bernoulli trials each having probability p of assuming the value 1. Then, for
anya>py+1and any b <y —1, show that

Pr(Y > a] < Pr[X > a),
and

Pr[Y < b] < Pr[X <b].
(Due to W. Hoeffding [202].) This problem deals with a useful generalization
of the Hoeffding bound in Problem 4.6.

(a) A function f : R — R is said to be convex if for any x4, x, and 0 <A <1,
the following inequality is satisfied:

f(AX1 + (1 —A)Xz) < Af(X1) + (1 —A)f(XZ)

Show that the function f(x) = e’ is convex for any t > 0. What can you say
when t < 0?

(b) Let Z be a random variable that assumes values in the interval [0, 1], and

_let p = E[Z]. Define the Bernoulli random variable X such that Pr[X =1]=p

and Pr[X = 0] = 1 — p. Show that for any convex function f, E[f(Z)] < E[f(X)].

(c) LetYy,..., Y, be independent and identically distributed random variables
over [0,1], and define Y = Z;’a Y;. Using parts (a) and (b), derive upper
and lower tail bounds for the random variable Y using the Chernoff bound
technique. In particular, show that

Pr(Y — E[Y] > 6] < exp(—262/n).

Remark: While the results in this problem hold for continuous random vari-
ables, they may be a bit easier to prove in the case where Z, Yy, ..., Y, take
on a discrete set of values in the interval [0, 1). Also, it should be easy to

generalize this to distributions defined over arbitrary intervals [/, h]. See also
Problem 4.21.
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4.10

4.1

4.12

4.13

4.14

PROBLEMS

Consider a BPP algorithm that has an error probability of 1/2 — 1/p(n), for
some polynomially bounded function p(n) of the input size n. Using the
Chernoff bound on the tail of the binomial distribution, show that a polynomial
number of independent repetitions of this algorithm suffice to reduce the error
probability to 1/2".

Consider now the following variant of the bit-fixing algorithm. Each packet
randomly orders the bit positions in the label of its source, and then corrects
the mismatched bits in that order. Show that there is a permutation for which
with high probability this algorithm requires 22 steps to complete the routing.

Suppose we run Valiant's scheme on an N-node network in which every
node is of degree d; each packet first goes to a random destination chosen
uniformly from all the nodes and then on to its final destination. Show that
the expected number of steps for the completion of the first phase is

logN logN
Q (dloglogN + Iogd)'

The lattice approximation problem is an extension of the set-balancing prob-
lem (Example 4.5). As before, we are given an n x n matrix 4 all of whose
entries are 0 or 1. In addition, we are given a column vector p with n entries,
all of which are in the interval [0, 1]. We wish to find a column vector ¢ with n
entries, all of which are from the set {0, 1}, so as to minimize ||4(p — q)||.. We
think of the vector ¢ as an “integer approximation” to the given real vector
P, in the sense that Aq is close to Ap in every component. This has applica-
tions to approximating certain integer programs given solutions to their linear
programming relaxations, along the lines of Section 4.3. Derive a bound on
[|A(p —9)ll assuming that g were derived from p using randomized rounding.

Consider the global wiring problem of Section 4.3. We wish to approximate
the best possible solution without the restriction that only one-bend routes
are used. Adapt the approach in Section 4.3 to devise an algorithm running in
time polynomial in the number of gates and nets, achieving an approximation
similar to that in Theorem 4.8.

The set-cover problem is the following: given sets S,, ..., S, over a universe
U, find the smallest set T < U such that for 1 <i < n, TNS; # . An alternative
formulation of this problem is the following: given a 0-1 matrix M, find a 0-1
column vector ¢ such that the dot product of each row of M with ¢ is positive
while minimizing ||c|[|y. The matrix M has n rows, and the ith row is the
incidence vector of the set S;.

Given a matrix M, let C(M) denote the size of the smallest set-cover for M.
Let n be the number of rows in M. Show that we can adapt the technique of
linear programming followed by randomized rounding to find a set-cover of
size O(logn) times C(M).

Show that the RandQS algorithm of Chapter 1 runs in time O(n log n) with high
probability.
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4.20

4.21
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Redesign the parameters of the LazySelect algorithm of Chapter 3 and invoke
the Chernoff bound to show that with high probability it finds the kth smallest
of n elements in n + k + /nlog®" n steps, with probability 1— o(1).

Prove Lemmas 4.9 and 4.10. Also, formulate and prove their generalizations
to the case where the conditioning is done on more than one random variable.
Finally, using these, prove Lemma 4.11.

Prove Theorem 4.12.
Prove Lemma 4.14.
Using Lemma 4.14, prove Theorem 4.13.

Derive the tail bounds described in Problem 4.4.7 (c) by applying Azuma’s
inequality (Corollary 4.17) to the Doob martingale sequence obtained from Y
by setting Xo = E[Y] and, for 1 <i <n, X, =E[Y|Y;,...,Y;]. How does this
bound compare with the one obtained in Problem 4.7?

Prove Azuma’s inequality (Theorem 4.16) for the case where ¢, = 1 for all k.
Note that this is the same as Corollary 4.17 with ¢ = 1. Do you see how to
generalize this to the case of arbitrary c,’s? (Hint: Concentrate on the upper
tail bound, since the lower tail bound can be obtained by negating the random
variables. Consider the martingale difference sequence Y;, Y., ... obtained
by setting Y, = X; — X;_y, and note that X, = Zfﬂ Y;. You can essentially
mimic the proof of Theorem 4.1, but be careful to use conditional expectations
and the martingale property in going from the analog of equation (4.2) to
that of equation (4.3). Since the random variables Y; could have arbitrary
distributions over the interval [—1, 1], you will also have to make use of an
argument similar to that in Problem 4.7.)

(Due to A. Kamath, R. Motwani, K. Palem, and P. Spirakis [228].) Consider
again the issue of tail bounds on the number of empty bins studied in Theo-
rem 4.18. In this setting, let /; be the indicator variable whose value is 1 if and
only if bin / is empty, and define Z = 27‘1 I; as the number of empty bins.
Define p = E[/;] = (1—1/n)™, and let I/ be mutually independent Bernoulli
random variables that take value 1 with probability p and value 0 with prob-
ability 1 p; note that the sum Y = 3_7_ I/ has the binomial distribution with
parameters n and p.

(a) Show that for all t > 0, E(e'?] < E[e']. Conclude that any Chernoff
bound on the upper tail of Y’'s distribution also applies to the upper tail
of Z's distribution, even though the Bernoulli variables /; are not mutually
independent. (The point is that their correlation is negative and only helps to
reduce the tail probability.) How does the resulting bound on the upper tail of
Z’s distribution compare with the bound given in Theorem 4.18?

(b) Can you show that for all t < 0, E[e*?] < E[e'']? Repeat the exercise in
part (a) for the lower tail.
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CHAPTERS

The Probabilistic Method

IN this chapter we will study some basic principles of the probabilistic method,
a combinatorial tool with many applications in computer science. This method
is a powerful tool for demonstrating the existence of combinatorial objects. We
introduce the basic idea through several examples drawn from earlier chapters,
and follow that by a detailed study of the maximum satisfiability (MAX-SAT)
problem. We then introduce the notion of expanding graphs and apply the
probabilistic method to demonstrate their existence. These graphs have powerful
properties that prove useful in later chapters, and we illustrate these properties
via an application to probability amplification.

In certain cases, the probabilistic method can actually be used to demonstrate
the existence of algorithms, rather than merely combinatorial objects. We
illustrate this by showing the existence of efficient non-uniform algorithms for
the problem of oblivious routing. We then present a particular result, the Lovasz
Local Lemma, which underlies the successful application of the probabilistic
method in a number of settings. We apply this lemma to the problem of finding
a satisfying truth assignment in an instance of the SAT problem where each
variable occurs in a bounded number of clauses. While the probabilistic method
usually yields only randomized or non-uniform deterministic algorithms, there
are cases where a technique called the method of conditional probabilities can
be used to devise a uniform, deterministic algorithm; we conclude the chapter
with an exposition of this method for derandomization.

5.1. Overview of the Method

There are two recurrent ideas in the probabilistic method.

1. Any random variable assumes at least one value that is no smaller than its
expectation, and at least one value that is no greater than its expectation. We
know of many intuitive versions of this principle in real life ~ for instance, if
we are told that the average annual income of theoretical computer scientists is
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$20,000, we know that there is at least one theoretical computer scientist whose
income is $20,000 or greater.

2. If an object chosen randomly from a universe satisfies a property with positive
probability, then there must be an object in the universe that satisfies that property.
For instance, if we were told that a ball chosen randomly from a bin is red with
probability 1/3, then we know that the bin contains at least one red ball.

While these ideas may seem too obvious to be of much use, they turn out
to give us a surprising amount of power. The power comes from our ability
to recast counting arguments in the language of probability, and then bring to
bear the tools of probability theory. In fact, we have already seen instances
of the probabilistic method implicitly at work earlier in this book. Below we
review some examples from earlier chapters, and then proceed to study some
new techniques. This chapter is not meant to be a comprehensive guide to the
probabilistic method in combinatorics, but rather a study of some ideas that
have proved useful in randomized algorithms.

» Example 5.1: Theorem 1.2 asserts that for any set of n disjoint line segments
in the plane, the expected size of the autopartition found by the RandAuto
algorithm is O(nlogn). From this we may conclude that for any set of n disjoint
line segments in the plane, there is always an autopartition of size O(nlogn). This
follows directly from the fact that if we were to run the RandAuto algorithm, the
random variable defined to be the size of the autopartition can assume a value
that is no more than its expectation; thus, there is an autopartition of this size
on any instance.

Our second example comes from the game tree evaluation problem of Sec-
tion 2.1.

» Example 5.2: Any algorithm for game tree evaluation that produces the correct
answer on every instance develops a certificate of correctness: for each instance,
it can exhibit a set of leaves whose values together guarantee the value it declares
is the correct answer. By Theorem 2.1, the expected number of leaves inspected
by the algorithm of Section 2.1 on any instance of Ty is at most n%"3, where
n = 2%_ It follows that on any instance of Ty, there is a set of n®’ leaves
whose values certify the value of the root for that instance. Note that we assert
the existence of such a certificate with certainty, even though the technique used
for establishing it was probabilistic. (Problem 5.2 describes a stronger version of
this result.)

Our final example from an earlier chapter is the set-balancing problem de-
scribed in Example 4.5.

» Example 5.3: We saw that for every n x n 0-1 matrix A, for a randomly chosen
vector b € {—1,+1}", we have ||4b||, < 4/nInn, with probability at least 1 —2/n.
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From this we may conclude that for every such matrix A4, there always exists a
vector b € {—1,+1}" such that ||4b||, < 4/ninn.

The examples above show that the probabilistic method consists of two
stages. First, we design a “thought experiment” in which a random process
plays a role. In the case of set-balancing, for example, the thought experiment
consists of independently and equiprobably assigning to each component of b
either the value +1 or the value —1. The second part consists of analyzing the
random experiment and then drawing a conclusion independent of the particular
experiment.

Let us consider another example concerning the problem of finding a large
cut in a graph. Given an undirected graph G(V, E) with n vertices and m edges,
we wish to partition the vertices of G into two sets 4 and B so as to maximize
the number of edges (u,v) such that u € 4 and v € B. This problem is sometimes
referred to as the max-cut problem. The problem of finding an optimal max-
cut is VP-hard; in contrast, the min-cut problem studied in Section 1.1 has a
polynomial time algorithm.

Theorem 5.1: For any undirected graph G(V,E) with n vertices and m edges,
there is a partition of the vertex set V into two sets A and B such that

H{uv)€e E|lue Aand v € B}| > m/2.

PproOF: Consider the following experiment. Each vertex of G is independently
and equiprobably assigned to either 4 or B. .

For an edge (u,v), the probability that its end-points are in different sets is
1/2. By linearity of expectation, the expected number of edges with end-points
in different sets is thus m/2. It follows that there must be a partition satisfying
the theorem. a

We have viewed the process of partitioning the vertices of G as a thought
experiment that yields the results mentioned. However, we could as well view
it as a randomized algorithm. This would then require a further analysis
bounding the probability that the algorithm fails to find a good partition on
a given execution. The main difference between a thought experiment in the
probabilistic method and a randomized algorithm is the end that each yields.
When we use the probabilistic method, we are only concerned with showing
that a combinatorial object exists; thus, we are content with showing that a
favorable event occurs with non-zero probability. With a randomized algorithm,
on the other hand, efficiency is an important consideration — we cannot tolerate
a miniscule success probability. For instance, if we were only able to show that
the experiment used in the proof of Theorem 5.1 succeeded with probability 27"
in finding a cut of size m/2, we would be unable to derive from it an efficient
randomized algorithm for finding a large cut. In this case however, the expected
size of the cut is m/2 and so random partitioning can be viewed as an efficient
randomized algorithm.
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One of the questions we will deal with in this chapter and others is the
following: having shown the existence of a combinatorial object using the
probabilistic method, can we find the object efficiently? The answer to this
general question varies widely. In some cases it is affirmative, and we have
a deterministic polynomial-time algorithm that finds the combinatorial object
whose existence is guaranteed by the probabilistic method. In others, we instead
have a randomized polynomial-time algorithm that works with high probability.
In yet others, we have a deterministic or randomized algorithm, but one that
is non-uniform. And finally, we have instances where we know of no efficient
algorithm for finding the object in question.

5.2. Maximum Satisfiability

We turn to the satisfiability problem defined in Section 1.5.2: given a set of
m clauses in conjunctive normal form over n variables, decide whether there
is a truth assignment for the n variables that satisfies all the clauses. We may
assume without loss of generality that no clause contains both a literal and its
complement, since such clauses are satisfied by any truth assignment. Consider
the following optimization version of the satisfiability problem: rather than
decide whether there is an assignment that satisfies all the clauses, we instead
seek an assignment that maximizes the number of satisfied clauses. This problem,
called the MAX-SAT problem, is known to be NP-hard, but the following simple
probabilistic argument shows that for any set of m clauses, there is an assignment
to the input variables that satisfies at least m/2 clauses. Note that this is the best
possible universal guarantee, since the instance may consist of the two clauses x
and X, in which case no better guarantee is possible.

Theorem 5.2: For any set of m clauses, there is a truth assignment for the vari-
ables that satisfies at least m/2 clauses.

PROOF: Suppose that each variable is set to TRUE or FALSE independently and
equiprobably. For 1 < i < m, let Z; = 1 if the ith clause is satisfied and 0
otherwise. For any clause containing k literals, the probability that it i1s not
satisfied by this random assignment is 2%, since this event takes place if and
only if each literal gets a specific value, and the (distinct) literals in a clause
are assigned independent values. This implies that the probability that a clause
with k literals is satisfied is 1 — 27 > 1/2, implying that E[Z;] > 1/2 for
all i. The expected number of clauses satisfied by this random assignment is
S 1 E[Z;] = m/2. Thus, there exists at least one assignment of values to the
variables for which 37", Z; > m/2. O

i=1

Exercise 5.1: Consider the following weighted version of the MAX-SAT problem.
Each clause has a positive real weight, and the goal is to maximize the sum of the
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weights of the satisfied clauses. Generalizing Theorem 5.2, show that there is a truth
assignment that satisfies clauses the sum of whose of weights is at least half of the
total clause weight.

This result holds regardless of whether the instance has a satisfying assign-
ment. Let us continue with the MAX-SAT problem, in which our goal is to
maximize the number of clauses that are satisfied. This problem being NP-hard,
we seek approximation algorithms. It turns out that variants of the probabilis-
tic existence proof of Theorem 5.2 can actually be turned into approximation
algorithms; we explore this theme for the remainder of this section.

Given an instance I, let m.(I) be the maximum number of clauses that can
be satisfied, and let m,(I) be the number of clauses satisfied by an algorithm
A. The performance ratio of an algorithm A is defined to be the infimum (over
all instances I) of m4(I)/m.(I). If A achieves a performance ratio of «, we call
it an a-approximation algorithm. For a randomized algorithm A, the quantity
m4(I) may be a random variable, in which case we replace m4(I) by E[m4(I)]
in the definition of the performance ratio. Note that unlike the satisfiability
problem (in which we seek to satisfy all clauses), we may choose to leave some
clauses unsatisfied in the MAX-SAT problem. Indeed this may be inevitable, for
instance, as in the case of a set of contradictory clauses. Thus, our definition
requires us to satisfy a number of clauses close to the best possible for the
instance at hand, rather than satisfying all m clauses.

We now give a simple randomized algorithm that achieves a performance
ratio of 3/4. Before we begin, we observe that the proof of Theorem 5.2 actually
yields a randomized 1/2-approximation algorithm. In fact, we can say more: the
procedure in the proof of Theorem 5.2 yields an algorithm whose performance
guarantee is 1 — 27, provided every clause contains at least k literals.

It follows that we have a randomized 3/4-approximation algorithm for in-
stances of MAX-SAT in which every clause has at least two literals. It appears
that the bottleneck for achieving a performance ratio of 3/4 stems from clauses
consisting of a single literal. We now give a second algorithm that performs
especially well when there are many clauses consisting of single literals. We then
argue that on any instance, one of the two algorithms will yield a randomized
3/4-approximation. Thus, given an instance, we run both algorithms and take
the better of the two solutions.

The algorithm we describe will not be entirely new to us: we have already
encountered a variant in our study of the wiring problem in Section 4.3. The idea
again is to formulate the problem as an integer linear program, solve the linear
programming relaxation, and then to round using the randomized rounding
technique of Section 4.3. With each clause C; in the instance, we associate an
indicator variable z; € {0,1} in the integer linear program to indicate whether
or not that clause is satisfied. For each variable x;, we use an indicator variable
yi in the integer linear program to indicate the value assumed by that variable;
thus y; = 1 if the variable x; is set TRUE, and y; = 0 otherwise. Let C;" be the set
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of indices of variables that appear in the uncomplemented form in clause Cj,
and C; be the set of indices of variables that appear in the complemented form
in clause C;. We may then formulate the MAX-SAT problem as follows:
maximize

m
>z

j=1
where
vi» zj € {0,1} (¥i and j) (5.1)
subject to
Sovi+ D (—y) =z (V)) (52)
ieC;y ieC;y

The inequalities (5.1) ensure that a clause is deemed to be true (by assigning
value 1 to its variable) only if at least one of the literals in that clause is assigned
the value 1. Since z; = 1 when clause C; is satisfied, the objective function }_; z;
counts the number of satisfied clauses. As in Section 4.3, we solve the relaxation
linear program in which we relax the integrality constraints (5.2), i.e., we allow
yi and z; to assume real values in the interval [0, 1]. Let y; be the value obtained
for variable y; by solving this linear program, and let Z; be the value obtained
for z;. Clearly 3_;Z; is an upper bound on the number of clauses that can be
satisfied in this instance. We first show that using randomized rounding, we
obtain a truth assignment with which the expected number of clauses satisfied
is at least (1—1/e) 3_;2;. This is already an improvement over the guarantee we
get from Theorem 5.2; we will then show that for any instance, the number of
clauses satisfied by the better of these two solutions is at least (3/4) 3 ;2.

For randomized rounding, each variable y; is independently set to 1 (corre-
sponding to x; being set to TRUE) with probability 3;. For any positive integer k,
let B denote 1—(1 —1/k)k. We will first show that for a clause C; with k literals,
the probability that it is satisfied by randomized rounding is at least §;2;. Noting
that B, = 1 — 1/e for all positive integers k, and using linearity of expectation,
we infer that the expected number of clauses satisfied by randomized rounding
is at least (1 —1/e) 3_,2;.

Lemma 5.3: Let C; be a clause with k literals. The probability that it is satisfied
by randomized rounding is at least Biz;.

PROOF: Since we are focusing on a single clause C;, we may assume without loss
of generality that all the variables contained in it appear in uncomplemented
form. Moreover, we may assume that it is of the form x; V- - -V x;. By constraint
(5.1) in the linear program,

it +h=2?;
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Clause C; remains unsatisfied by randomized rounding only if every one of the
variables y; is rounded to 0. Since each variable is rounded independently, this
occurs with probability 1"[;‘:1( 1 —¥;). It remains to show that

k
1— H(l =) = BiZ;.

=1

The expression on the left is minimized when y; = Z;/k for all i. Therefore,
it suffices to show that 1 — (1 — z/k)* > Bz for all positive integers k and
0 <z < 1. Since f(x) =1 — (1 —x/k)* is a concave function, to show that it is
never less than a linear function g(x) over the interval [0, 1], it suffices to verify
the inequality at the end-points x = 0 and x = 1 (see Problem 5.4). Applying
this principle to the linear function g(z) = Bz, the lemma follows. ’ ()

By Lemma 5.3 and from linearity of expectation we have:

Theorem 5.4: Given an instance of MAX-SAT, the expected number of clauses
satisfied by linear programming and randomized rounding is at least (1—1/e) times
the maximum number of clauses that can be satisfied on that instance.

While Theorem 5.4 represents an improvement over Theorem 5.2, we will in
fact be able to do even better. We have studied two randomized algorithms
MAX-SAT: one that rounded each variable to 1 with probability 1/2, and a
second that used the solutions to the linear program as a basis for randomized
rounding. Figure 5.1 may help the reader appreciate the dependencies of these
two algorithms on the clause length k.

k 1=27% B

1 05 1.0

2 075 0.75
3 0875 0.704
4 0938 0.684
5 0969 0.672

Figure 5.1: Performance of the two algorithms as a function of k.

We now argue that on any instance, one of the algorithms is a 3/4-
approximation algorithm. Given any instance, we run both algorithms and
choose the better solution. Let n; denote the expected number of clauses that
are satisfied when each variable is independently set to 1 with probability 1/2
(corresponding to the procedure that yields Theorem 5.2). Let n, denote the ex-
pected number of clauses that are satisfied when we use the linear programming
followed by randomized rounding (corresponding to Theorem 5.4).
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Theorem 5.5:
3 -
max{n;,ny} > 2 Ej Zj.

prooF: It suffices to show that (n; + n3)/2 = (3/4) Zj zZ;. Letting S* denote the
set of clauses that contain k literals, we know that

m=Y 3 (1-2%2>" Y (1-2Mz (5.3)
k

Cjesk k C,-es"
By Lemma 5.3, we have

ny > Z Bz;. (54)
!

Thus

An easy calculation shows that (1 — 27%) + B, > 3/2 for all k, so that we have

+ 3 ~ 3 -
n12n22—4—2k:22j=zzj:zj'.

C,-es"

5.3. Expanding Graphs

We now turn to a classic application of the probabilistic method, one that shows
the existence of a class of graphs known as expanding graphs. Expanding graphs
have found many uses in computer science and in telephone switching networks,
and we will encounter them again in Chapters 6 and 11.

Intuitively, an expanding graph is a graph in which the number of neighbors
of any set of vertices S is larger than some positive constant multiple of |S]|.
The following is a definition of a particular type of expanding graph called
an OR-concentrator. It is important to keep in mind that several alternate
definitions have been used in the literature; while they are similar in spirit, the
precise definition varies (see for instance the slightly different definition used
in Chapter 6). Recall that in a graph G(V,E) for any set S < V, the set of
neighbors of Sis I'(S) = {we V |Iv € S,(v,w) € E}.

» Definition 5.1: An (n.d,a,c) OR-concentrator is a bipartite multigraph
G(L,R,E), with the independent sets of vertices L and R each of cardinality
n, such that

1. Every vertex in L has degree at most d.
2. For any subset S of vertices from L such that |S| < an, there are at least
c|S| neighbors in R.
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In most applications, it is desirable to have d as small as possible and ¢ as
large as possible. Of particular interest is the study of OR-concentrators in
which a, ¢, and d are constants fixed independently of n, with ¢ > 1. These
are rather stringent requirements and it may seem quite surprising at first that
such graphs can be constructed. Indeed, finding explicit constructions of such
OR-concentrators is a non-trivial task, so we focus on the easier problem of
demonstrating their existence. We will use the probabilistic method to show
that a random graph chosen from a suitable probability space has a positive
probability of being an (n, 18, 1/3,2) OR-concentrator. The particular constants
in the proof are somewhat arbitrary, and the reader may easily adapt the proof
to study other combinations of 4, «, and c.

Theorem 5.6: There is an integer ny such that for all n > ng, there is an
(n, 18,1/3,2) OR-concentrator.

PROOF: We give most of the proof in terms of general d, c, and a, pinning these
constants down toward the end of the proof. Consider a random bipartite graph
on the vertices in L and R, in which each vertex of L chooses its neighbors
by sampling (with replacement) d vertices independently and uniformly from R.
Since the sampling is with replacement, a vertex of L may choose a vertex in
R more than once; we discard all but one copy of such multiple edges. Let &,
denote the event that a subset of s vertices of L has fewer than cs neighbors
in R. We will first bound Pr[£;], and then sum Pr[€,] over the values of s no
larger than an to obtain an upper bound on the probability that the random
graph fails to be an OR-concentrator with the parameters we seek.

Fix any subset S < L of size s, and any subset T < R of size cs. There are
(;) ways of choosing S, and () ways of choosing T. The probability that T
contains all of the at most ds neighbors of the vertices in S is (cs/n)%. Thus, the
probability of the event that all the ds edges emanating from some s vertices of
L fall within any cs vertices of R is bounded as follows,

n\ /n\ scs\4%
Pri&,) < (s) (cs) (7) '
Invoking the identity () < (ne/k)* from Proposition B.2 (Appendix B), we
obtain
ne\s sne\<s scs\4s
pie) s (5) () (5)

§\d—c—1 _
= (_) el+ccd cf |
| \n

Simplifying for « = 1/3 and using s < an, we have

[ 1 d—c—1 s
Pr[£] < (§> e“’ccd‘c}

< .(g)d(3e)c+l]s.
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Using ¢ = 2 and d = 18, we have

) 18 §
Pri£] < [(§> (3e)3:| .

Let r = (2/3)'%(3e)?, and note that r < 1/2. We obtain that
SPrigl<Y P = lir <1,

s21 s21

and the desired result follows. ad

The reader may easily see that by bounding the probabilities Pr[€;] carefully,
we can in fact show that our random graph has a fairly good (rather than merely
non-zero) probability of being an (n, 18,1/3,2) OR-concentrator. However, even
if we were to generate a random graph and argue that it has a very high
probability of being an OR-concentrator, we still do not know of an efficient
way of verifying that the graph generated is indeed an OR-concentrator with
the given parameters.

This is true of the verification of the expanding property of graphs for a variety
of definitions of expansion, some of which we will encounter in Chapter 6. For
instance, in Chapter 6 we will define and use a class of expanding graphs known
as expanders. This indicates that the Monte Carlo algorithm implicit in the
preceding discussion cannot be turned into a Las Vegas algorithm.

For many applications of expanding graphs, such a Monte Carlo guarantee
is unacceptable — for instance, a telephone company may be uncomfortable that
the network it plans to build may by chance be inadequate. Unfortunately, it is
considerably harder to give a succinct “formula” or a deterministic algorithm
that, given n, always generates such an expanding graph. We do have “explicit
constructions” that will, given n, generate OR-concentrators with guaranteed
bounds for d, a, and c; but these bounds are somewhat weaker than the bounds
attainable using the probabilistic method (the Notes section contains more
information on these).

This is another recurrent theme in the probabilistic method: whereas the exis-
tence proof can give strong (often the best possible) bounds for a combinatorial
object, the version that can be constructed efficiently may be much weaker. We
will see another instance of this in Section 5.5.

5.3.1. Probability Amplification

We now make use of an expanding bipartite graph to build on the idea of two-
point sampling used in Section 3.4. Consider an RP algorithm A4 for deciding
whether input strings x belong to a language L. Given x, 4 picks a random
number r from the range Z, = {0,...,n — 1}, for a suitable choice of a prime n,
and computes a binary value A(x,r) with the following properties:

e If x € L, then A(x,r) = 1 for at least half the possible values of r (we call these
values of r the witnesses for x).
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o If x ¢ L, then A(x,r) =0 for all possible choices of r.

By the two-point sampling approach of Section 3.4, we know that using 2logn
random bits to sample two numbers randomly from the range {0,...,n — 1}, we
can achieve an error probability of less than 1/t in t (non-independent) trials of
the algorithm A4 on a given input x. In this section, we will describe a way of
achieving an error probability close to 1/n'°8" using only log? n random bits. The
naive use of log? n bits to pick logn random numbers in the range {0,...,n — 1}
only yields a failure probability of 1/n, so the scheme we will describe can be
thought of as achieving “probability amplification.”

We first establish the existence of an expanding graph that will serve our
purpose, and then proceed to describe its application to amplifying randomness.

Theorem 5.7: For n sufficiently large, there is a bipartite graph G(L, R, E) with
IL| = n, |R| = 2"°8'" such that:

1. Every subset of n/2 vertices of L has at least 2'°8' " — n neighbors in R.
2. No vertex of R has more than 121og® n neighbors.

prooOF: Consider a random graph in which each vertex of L independently and
uniformly chooses d = 2log’n(4 log? n)/n neighbors in R. As before, the choices
are made with replacement, ie., a vertex of L may choose a vertex of R as
neighbor more than once. We will show that this random graph violates each
of the two properties with probability at most 1/2. It follows that with positive
probability this random graph satisfies both properties, and we are done.
Following the reasoning in our proof of Theorem 5.6, the probability that
there is a set of n/2 vertices in L having fewer than 216" — n neighbors in R is

at most
n 2log2 n : n dn/2
n/2 n " login ’

Using as before the upper bound for binomial coefficients from Proposition B.2
(Appendix B) together with the fact that 1 —n/21°8'" < exp(—n/2!°¢'"), it follows
that the probability that property 1 is violated is (considerably) less than 1/2.
For property 2, we note that the expected number of neighbors for a vertex
in R is 4log’n; the Chernoff bound (4.10) now shows that the probability of
exceeding 12log? n neighbors is less than (e/3)'215'". Since R contains 2198’
vertices, this probability is small enough to guarantee that the probability that
property 2 is violated at any vertex in R is also (considerably) less than 1/2. O

We return to probability amplification. Theorem 5.7 only guarantees the
existence of a graph with the desired properties; in the sequel we will assume
that we have an explicit graph with these properties. Of course, this graph has a
super-polynomial number of vertices and it may not seem possible to perform
polynomial-time computations based on its structure. However, we do not
need an explicit representation of the graph; all we need is a polynomial-time
neighborhood algorithm that can compute the neighbors of any given vertex in
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R: we assume that the graph is represented by means of such a neighborhood
algorithm. As we will see later, in Section 6.7, there do exist expanding graphs
for which such neighborhood algorithms are known.

Given log? n bits of randomness, we use them to index a vertex in R, say v.
Next, we use the neighborhood algorithm to identify the neighbors of v in L,
which we denote rq,...,r«. We then compute A(x,r;) for 1 < i < k; note that
k < 12log?n. If all k invocations of A return 0, we declare that x does not
belong to L; else we declare that x does belong to L.

If x & L, our answer will be correct. But if x € L, what is the probability
that we fail to detect it using our procedure? The set of witnesses for x is a set
of at least n/2 vertices of L. We err only if the vertex of R we choose is not a
neighbor of any of the witnesses. By Theorem 5.7, the fraction of such vertices
in R is at most n/2‘°82 " no matter how the witnesses are distributed in R. Thus
using log? n random bits, we achieve a failure probability of at most n/nl°s",

The reader may argue that the extra randomness we obtain is from the
randomness “built into” the graph. However, we note that once we have built
such a graph, it may be used over and over again for executions on arbitrarily
many inputs x. More interestingly, it can be used on any RP algorithm, since
the procedure works for any choice of n/2 witnesses in L. Thus the “one-time”
randomness built into the graph serves as a reservoir that we can tap over and
over again, for probability amplification. We know of no explicit construction
for such graphs, nor do we know of an efficient procedure for verifying that a
random graph has the properties we desire.

In Section 6.8 we will describe an alternative strategy for performing probabil-
ity amplification without any of the drawbacks discussed above. Not surprisingly,
this new scheme is also based on the use of expanders. But there we will use
explicitly constructed expanders that have explicit polynomial time algorithms
for determining the neighbors of a vertex.

5.4. Oblivious Routing Revisited

We turn now to another aspect of the probabilistic method. In the examples
we have seen, the probabilistic method is used to prove the existence of a
combinatorial object: an autopartition that is small, a vector b with certain
properties in the case of set-balancing, or an expanding graph. The probabilistic
method can also be used to design algorithms. We study one example here and
will encounter other examples later in the book.

Let us return to the problem of oblivious permutation routing on the hyper-
cube, studied in Section 4.2. In this section we focus on the number of random
bits used by the randomized oblivious algorithm in Section 4.2. We first give
a lower bound that suggests that the algorithm of Section 4.2 uses many more
random bits than necessary. We then use the probabilistic method to show the
existence of a randomized algorithm using (within a constant factor) the optimal
number of random bits.
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Comparing the performance of the randomized algorithm (the result of Ex-
ercise 4.6) with the negative result of Theorem 4.4, we find that our randomized
oblivious algorithm achieves an expected running time that no deterministic
oblivious algorithm can achieve. Given that randomness is absolutely necessary
to beat the lower bound of \/N/n steps for deterministic oblivious algorithms
(Theorem 4.4), we can ask the following question: how much randomness is
actually needed to achieve an algorithm with an expected running time of O(n)?

We formulate the question more precisely. A randomized oblivious algorithm
for permutation routing is a probability distribution on a set of deterministic
oblivious routing algorithms. Each deterministic oblivious algorithm for an
N-node network is a set of N? routes, one for each source-sink pair. Every
randomized oblivious algorithm can be expressed as a pair of sets, {4;,...,Ar}
and {pi,...,pr}, where each 4; is a deterministic oblivious algorithm and p; is
the probability that we use 4; on a run of the randomized algorithm. Naturally,
Zf,l p; = 1. For instance, in the randomized oblivious scheme of Section 4.2,
each algorithm 4; is a set of possible routes of the form i — (i) — d(i). There
are N choices of o(i) for each i and d(i).

Theorem 4.4 can be interpreted as follows: with zero bits, the expected
running time of the algorithm is Q(,/N/n). At the other extreme, the randomized
algorithm of Section 4.2 has expected running time O(n) = O(log N) with Nn
random bits; but are so many bits necessary?

Theorem 5.8: Consider any randomized oblivious algorithm for permutation rout-
ing on the hypercube with N = 2" nodes. If this algorithm uses k random bits,
then its expected running time is Q(2~%\/N/n).

PROOF: We have observed that any randomized oblivious algorithm is a prob-
ability distribution on deterministic oblivious algorithms. Since only k random
bits are used, at least one of these deterministic algorithms is chosen with prob-
ability at least 27%, on any execution. Denote this deterministic algorithm by
A;. By the lower bound of Theorem 4.4, there is an input that requires time
Q(y/N/n) on the deterministic algorithm A4,. Feed this input to the randomized
algorithm; with probability 2, the randomized algorithm chooses 4; and takes
time Q(y/N/n). Thus, the expected running time of the randomized algorithm
is Q(27*/N/n). g

Corollary 5.9: Any randomized oblivious algorithm for permutation routing on
the hypercube with N = 2" nodes must use S(n) random bits in order to achieve
expected running time O(n).

The randomized oblivious algorithm of Section 4.2 uses about N times the
number of bits of randomness deemed necessary by Corollary 5.9. Can we match
this lower bound? The answer comes from an application of the probabilistic
method.
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Theorem 5.10: For every n, there exists a randomized oblivious scheme for per-
mutation routing on a hypercube with N = 2" nodes that uses 3n random bits and
runs in expected time at most 15n.

PrROOF: We will say that a set B = {By,B,,...,B,} of deterministic oblivious
permutation routing algorithms on the N-node hypercube is an efficient N-
scheme if, for any instance, the expected number of steps using a randomly
chosen algorithm from B is at most 15n. To prove the theorem, we will show
that for every N = 2", there is an efficient N-scheme for t = N3.

The algorithm of Section 4.2 randomly chooses one of N¥ possible determin-
istic algorithms on an execution: there are N sources, and we may choose from
N possible intermediate destinations for each. Let us denote these NV deter-
ministic algorithms by A4;, for 1 < j < N¥. On an N-node network, there are
N! distinct possible instances of permutation routing, one for each permutation
on {1,...,N}. For an instance n;, 1 <i < N!, call the deterministic algorithm 4;
good if A; routes m; in 14n or fewer steps, and bad otherwise. By Theorem 4.7,
for any particular instance #; of the permutation routing problem, a fraction of
at most 1/N of the algorithms A; are bad. Which algorithms are bad may differ
from instance to instance — we only know that for any particular instance =;, at
most 1/N of the A;’s are bad.

Consider now the following experiment: sample N* indices iy, is,...,iys in-
dependently and uniformly at random (for simplicity, with replacement) from
the range {1,2,...,NV}. We show that the set of deterministic algorithms
A ={4;,...,A;,} is an efficient N-scheme with positive probability. From this,
we will conclude that an efficient N-scheme exists for every N = 2",

For any instance 7;, a fraction of at most 1/N of the algorithms A,,..., Ayx is
bad; thus the expected number of algorithms in .4 that are bad for =; is at most
N3(1/N) < N2 Let the indicator variable X; be 1 if 4; is bad, for 1 < j < N?,
and 0 otherwise. Thus E[}_; X;] < N2. Since the X; are independent Poisson
trials, we may apply the Chernoff bound (the form in Exercise 4.1) to obtain
that the probability that more than 2N? of the algorithms in A are bad for
7; is less than exp(—N?2/4). Let B; denote the bad event that more than 2N2
algorithms in .A are bad for 7;. Then, for n > 2 (or N > 4),

N!
PriufiB] < Y Pr(B)]

i=1
< N!xexp(—N?/4)
< 1,

where the last inequality follows from an application of Stirling’s Formula
(Proposition B.1, Appendix B).

Therefore, with positive probability, no more than 2N? of the algorithms in
A are bad for any instance n; of permutation routing on the N-node hypercube.
This means that there exists a subset of N* algorithms from {4;,..., Ay~} with
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the property that at most 2N? algorithms in this subset are bad for any instance
7;; let us denote this subset by B = {B,, B,,..., Bx3}.

It is easy to see now that B is an efficient N-scheme: on any instance m;,
a randomly chosen algorithm from B fails to route n; within 14n steps with
probability at most 2N2/N3 = 2/N. By reasoning similar to that in Exercise 4.6,
the expected number of steps using an algorithm randomly chosen from B is
less than 15n. O

We have used the probabilistic method to show the existence of a randomized
algorithm meeting the lower bound of Corollary 5.9. It is important that the
reader keep the two levels of randomization in the proof distinct — the first was
to show probabilistically that a certain combinatorial object (the set B) existed,
and the second was to study the effect of choosing an algorithm at random from
B.

Does Theorem 5.10 settle the problem of designing a randomized algorithm
for permutation routing using few random bits? It does not, for the following
reason. The construction in the proof of Theorem 5.10 is not uniform: given N,
we do not know how to obtain B efficiently. The reader is invited to draw a
parallel between this result and that presented in Section 2.3.

5.5. The Lovasz Local Lemma

The Lovasz Local Lemma is a tool in the probabilistic method that has found
many applications in extremal graph theory, in Ramsey theory, and in the theory
of random graphs. Applications to algorithms and computer science have been
fewer, so far, but it appears that this powerful technique will surely prove useful.

Suppose that we have n events, each of which occurs with probability at
most 1/2. In an instance of the probabilistic method, each of the n events may
correspond to one of n ways in which the probabilistic experiment could fail.
If the events were independent. we could then assert that with probability at
least 27", none of these events occurs. The Lovasz Local Lemma generalizes this
notion to the case where each of these events is independent of all but a small
number of other events. In this section we give the lemma and apply it to show
that any instance of SAT meeting certain conditions always has a satisfying
assignment. We then give an algorithm that finds a satisfying assignment. Let £;,
1 < i < nbe events in a probability space. Recall that £; is mutually independent
of a set S of events if Pr[€;|Njer €] = Pr[&;], where T is any subset of events
(or their complements) from S. The main device in establishing Lemma 5.11
below is a digraph we call the dependency graph G, in which there is a vertex
representing each event £;. An event &; is mutually independent of all other
events £; such that (£;,£;) is not an edge of the graph. Before proceeding with
the lemma, the reader may attempt the following exercise to better understand
the notion of a dependency graph.
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Exercise 5.2: Suppose that the events £; are pairwise independent. What can you
say about the structure of a dependency graph? Is the dependency graph always
unique?

Lemma 5.11 (Lovasz Local Lemma): Let G(V,E) be a dependency graph for
events £,,...,E, in a probability space. Suppose that there exist x; € [0,1] for
1 < i < n such that

Prl&] <x; H (1 —=x;).
(ij)€E

Then
Pr[n, & = [Ja - x).

i=1

PROOF: Let S denote a subset of the indices from {1,...,n}. We first establish
by induction on k = |S| that for any S and for any i such that i ¢ S,
Pr[€; | NjesE;] < x;.

The base case, S = @, follows from our assumption on the probabilities Pr[E;].
For the inductive step, we let S; = {j € S : (i, j) € E}, and let S; = S\S,. By the
definition of conditional probability,

Pr€i N (Njes,&;) | Nmes,Em)

Pr[njeslzj I nmeszzm]

We can bound the numerator of (5.5) from above as follows:

Pr[£,- N (njeslzj) I mmeszzm] < Pl'[gi I mmeszzm]
o= Pl'[gi]

< X H (1 _xj)a

(J)eE

Pr€i| Njes€j] = (5.5)

since £; is mutually independent of {£, : m € S,}. Also, we can bound the
denominator from below as follows. Suppose that S; = {ji,..., j.}. If r = 0, then
the denominator is 1; for r > 0, we invoke the induction hypothesis:

Pri€, N NE; | Nmes,em) = (1 =Pr[€},| Nmes, Em))
(11— Pl‘[gj, IEjl Nn--: nfj,_l Nmes, f,,,])

2 (1-x;)-(1-x)= [Ja-x)
(Lj)eE

It follows that Pr[€; | Njes€;] < x;. To complete the proof, we note that
Prn &) = (1—Pr[£)1 =Pr[Ey | E1])--- (1 — PrE, | MS'ED)

> ﬁ(l - X;).

i=1
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Corollary 5.12: Let £,,...,E, be events in a probability space, with Pr[£;]] < p
Sfor all i. If each event is mutually independent of all other events except for at
most d, and if ep(d + 1) < 1, then Pr[n_,E;] > 0.

We now apply Corollary 5.12 to show that an instance of SAT meeting certain
conditions must have a satisfying truth assignment. Consider an instance of the
k-CNF problem: we are given a CNF formula in which each clause contains k
literals. This is also known as the k-SAT problem. Suppose further that each
of the n variables appears (complemented or uncomplemented) in at most 2+/%
clauses. Let m denote the number of clauses.

Consider a random truth assignment of values to the variables, in which
each variable is independently fixed to be 0 or 1 with probability 1/2. For
1 <i<m,let & denote the event that the ith clause is not satisfied by this
random assignment. Since each clause contains k literals, we have Pr[€;] = 27*,
for 1 < i < m. The event £; that the ith clause is not satisfied is independent
of all other events £;, except those j such that clause i and clause j share
at least one variable. The number of clauses j that share a variable with
a specific clause i cannot exceed the total number of clauses containing the
variables that appear in clause i, and this is at most k2¥/5°. We now apply
Corollary 5.12 with d = k2*/%°, and conclude that with positive probability the
random truth assignment satisfies all m clauses. Thus, there must be a satisfying
truth assignment for any instance of SAT meeting these conditions.

Corollary 5.12 merely tells us that a random assignment is good with positive
probability, but this probability may be miniscule. We may have to try the
random assignment many times before we succeed in finding one that’satisfies
all m clauses. We now describe a Las Vegas randomized algorithm that runs in
time polynomial in m (but not in k), yielding a satisfying truth assignment. From
here on, the reader should think of k (and therefore d = k2+/°) as a constant
fixed independent of m, when we use the big-oh, O(), notation below.

Let G denote the dependency graph — each clause corresponds to a vertex of
G, and two vertices are adjacent in G if the corresponding clauses share one or
more variables. Note that if clause C, contains literal x,, and clause C, contains
literal X;, then the vertices C; and C; are adjacent. We know that every vertex
of G has at most d neighbors.

At any point in the algorithm, some variables will have been fixed to 0
or 1, while others will remain unspecified as yet; initially, all variables are
unspecified. The algorithm consists of two stages; the first stage will fix values
for some of the variables and defer the rest to the second stage. In the first
stage of the algorithm, we proceed sequentially through the variables, fixing
each equiprobably to 0 or 1. We call a clause dangerous if both the following
conditions hold:

1. k/2 literals of the clause C; have been fixed.
2. C; is not satisfied yet.

After fixing each variable, we identify any clause C; that has turned dangerous.
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For any dangerous clause, we defer its remaining unspecified variables to the
second stage, skipping over them in the sequential random assignment. At the
end of the first stage, we say that a clause has survived if it is not satisfied by
the variables fixed in the first stage.

For the second stage we need only consider the variables that were unspecified
at the end of the first stage, and the clauses that survived. A clause C; can survive
the first stage for one of two reasons:

1. It became dangerous, or
2. All variables corresponding to its unspecified literals were deferred because other
clauses containing these variables (and, hence, adjacent to C;) became dangerous.

Therefore, a clause C; may survive as a result of any one of up to d + 1 clauses
becoming dangerous — C; itself, and its d neighbors. Every clause that survived
has at least k/2 unspecified variables.

Exercise 5.3: Apply Corollary 5.12 to show that there is a truth assignment of the
deferred variables that satisfies all the surviving clauses. (Again, consider a random
assighment.)

The second stage will find a truth assignment guaranteed by Exercise 5.3. The
probability that any particular clause becomes dangerous during the first stage
is at most 27%/2, since exactly k/2 of its literals have their values fixed, and none
of these random values satisfy the clause. This implies that the probability that
a clause survives is at most (d + 1)2-+/2,

Consider the subgraph of G induced by the vertices corresponding to the
surviving clauses. In Lemma 5.13 below, we will show that with high probability,
all connected components of this induced subgraph of G have size O(logm).
Notice that two surviving clauses: from different connected components of this
subgraph cannot share a deferred variable. Therefore, the deferred variables
can be uniquely assigned to distinct connected components of the subgraph of
G induced by the surviving clauses. For any particular connected component,
the total number of deferred variables in its clauses must be O(logm); in time
polynémial in m, we can enumerate the 2°U®™ truth assignments for these
variables until we that one that satisfies all clauses in this component. The
second stage consists of repeating this process independently for each connected
component, giving a polynomial time algorithm for assigning values to the
deferred variables so as to satisfy all surviving clauses.

Lemma 5.13: With probability 1 — o(1), all connected components of G induced
by the clauses that survive the first stage have size at most zlogm, for a fixed
constant z.

prooF: Consider a collection of clauses Cy, ..., C, such that every pair of these
has distance at least 4 in G. Each clause C; survives only if at least one of the
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d+ 1 clauses at distance at most 1 from it turns dangerous during the first stage.
For each C;, let D; be any one dangerous clause at distance at most 1 from it.
Since the C;’s are at distance 4 from each other, the D;’s must be distinct.
There are at most (d + 1) possible ways of choosing the clauses Dy, ..., D,.
Since each of the clauses Dy, ..., D, is at distance at most 1 from some clause
in the set C, ..., C,, they must be at distance at least 2 from each other and
hence have disjoint sets of variables. The probability that D, ..., D, all become
dangerous is at most 27"*/2. Thus, for a set of r clauses every pair of which is
distance at least 4 apart in G, the probability that they all survive is at most

[(d + 1)27%/%), (5.6)

We must bound the probability that some connected subgraph of G of size
exceeding zlogm survives. To this end we introduce a graph-theoretic device
known as a 4-tree. Call a subset T of clauses a 4-tree if the following two
properties hold:

1. The distance in G between every pair of these clauses is at least 4.

2. If we form a new graph in which two clauses are adjacent if their distance
in G is exactly 4, T is connected.

We first bound the number of 4-trees of size r and use this to bound the
probability that a large 4-tree survives. By arguing that a large connected
subgraph of G must contain a large 4-tree, we will finally conclude it is unlikely
that a large connected subgraph survives.

Let us define a new graph G, as follows: there is a vertex for each clause,
and two vertices are adjacent in G, if their distance in G is 4. Each vertex of G,
has O(d*) neighbors. The number of 4-trees of size r in G is no more than the
number of connected subgraphs in G, of size r. Problem 5.7 considers a general
graph-theoretic bound on the number of connected subgraphs of a given size
in a graph. The particular result from there that we now use is: the number of
subgraphs of G4 of size r is at most

amd® (5.7)

for some constant a, and this is an upper bound on the number of 4-trees of
size r in G. Multiplying (5.6) and (5.7), we conclude that the probability that any
4-tree of size larger than blogm survives the first round is o(1), for a suitably
large constant b.

What does this tell us about the probability that some connected subgraph of
G of size exceeding z log m survives? For any connected subgraph in G there is a
maximal 4-tree T, together with at most 3d®> — 1 other vertices within distance 3
of a vertex of T. Thus the size of this subgraph is at most 3|T|d?>. We conclude
that the probability of survival of any connected subgraph of size exceeding
3bd® log m is o(1). O

If the first stage results in a connected component larger than this bound, we
repeat it; the expected number of repetitions is less than 2. Thus, we assume
that we enter the second stage of the algorithm with every surviving connected
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component having size O(log m). The number of unspecified variables associated
with each of these components is also O(log m), and in time polynomial in m we
can find values for them that satisfy all the clauses. Since no variable is shared
by two or more components, we can treat each component in isolation. Clearly
the expected running time of this algorithm is polynomial in m.

Theorem 5.14: The above algorithm finds a satisfying truth assignment for any
instance of k-SAT containing m clauses in which each variable is contained in at
most 2K/ clauses, in expected time polynomial in m.

It is worth noting that the constant 50 above can be strengthened somewhat;
Problem 5.9 explores this further. The degree to which it can be strengthened
depends on our aim: if we only wish to show that a satisfying truth assignment
exists, we can obtain a better constant than if we actually want to show that
the algorithm above will succeed in finding one. This is a feature of all known
algorithms that, in polynomial time, find objects whose existence is guaranteed
by the Lovasz Local Lemma: the constants required for the algorithms are
somewhat weaker than those for the corresponding existence proofs.

5.6. The Method of Conditional Probabilities

In Section 2.3 we saw that a randomized computation could sometimes be
“derandomized.” The derandomization in Section 2.3, however, led to a non-
uniform deterministic algorithm. In this section, we will examine a technique that
can derandomize certain randomized algorithms uniformly. We illustrate this
method, known as the method of conditional probabilities, using the set-balancing
problem of Example 4.5.

Recall the definition of the set-balancing problem: we are given an n x n
matrix A4 all of whose entries are 0 or 1. We wish to find a column vector
b € {—1,+1}", so as to minimize ||4b||,. In Example 4.5, we used the following
randomized algorithm: each entry of b is independently and equiprobably chosen
from {—1,+1}. We argued that with probability at least 1 — 2/n, this algorithm
finds a vector b for which ||4b||, < 4/nInn. We now describe the method
of conditional probabilities, and use it to obtain a deterministic algorithm that
finds a vector b for which ||4b||, < 4/ninn.

Let us view the randomized algorithm as a computation tree. This tree is a
complete binary tree of height n (there are n 4+ 1 nodes on any root-leaf path,
including the root and the leaf). The level of a node is its distance from the
root. The computation begins at the root. Each node at the ith level is labeled
by a distinct string from {—1,+1}, and corresponds to a setting of by,...,b; in
the obvious fashion. From any node whose level is less than n, the computation
proceeds equiprobably to one of its children. If a node is labeled ¢, its left child
is labeled /[—1] and its right child /[+1], where s[x] denotes the string that
results when the bit x is appended to the string s. Each leaf of the tree is thus
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labeled by a distinct vector in {—1,+1}". An execution of the algorithm begins
at the root and terminates on reaching a leaf. This process is a sequential view
of the randomized algorithm of Example 4.5.

Call a leaf good if the vector v labeling it satisfies ||Av||, < 4+/nlnn, and bad
otherwise. From the argument of Example 4.5, we know that the randomized
algorithm reaches a good leaf with probability at least 1 —2/n. For a node a
in the tree, let P(a) denote the probability that, starting from a, the randomized
algorithm reaches a bad leaf. Thus P(a) is the probability that the algorithm
fails, conditional on its having reached the partial assignment that labels a. For
the root r of the tree, we have P(r) <2/n <1 for n > 2.

Letting ¢ and d denote the children of node a, we have

P(c) + P(d)

P(a) = 3 . (5.8)

From (5.8), it follows that
min{P(c), P(d)} < P(a).

In other words, every node has a child whose conditional probability of failure
is no more than its own. This suggests the following deterministic algorithm for
walking down the tree from r to a good leaf. Start from r; in general, from a
node a, proceed to the child of a whose conditional probability of failure is no
more than P(a). Since P(a) < 1 when a = r, and never increases in the course
of this walk, we arrive at a leaf # for which P(¢) < 1. But a leaf ¢/ corresponds
to a complete assignment to b, so that its probability of being bad is either 0
or 1; since P(¢) < 1, it must be the case that P(¢) = 0. Thus this algorithm is
guaranteed to arrive at a good leaf.

This scheme for derandomizing a randomized computation tree is quite
general. Unfortunately, in most cases there is an obstacle to applying it: in order
to choose which of the children (¢ or d) to proceed to from a node a, we must
determine P(c) and P(d) (or at least determine which of them is smaller). We
know of very few randomized algorithms for which this choice can be made
efficiently. In the Notes section we will mention an approach to dealing with
this problem. For the moment, we will tackle this problem for our set-balancing
algorithm.

For 1 < i < n, let us say that the ith bad event, denoted &; occurs if
the absolute value of the inner product of the ith row of A with b exceeds
4. /nlnn. By the analysis of Example 4.5, we know that Pr[€;] < 2/n?, and so
>_;Pr[€i] < 2/n. For a node a in the computation tree, let P(£; | a) denote the
probability that £; occurs conditional on the algorithm being at the intermediate
stage a; clearly, P(&; | r) < 2/n?. Let P(a) denote >_iP(&i | a); thus P(a) < P(a)
for all a. The deterministic algorithm now follows from the following three
properties of ﬁ(a). The first property has already been established; the reader
may prove the other two in Problem 5.11.
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1. Pry< 1.
2. For any node a with children ¢ and 4,

min{P(c), P(d)} < P(a).
3. For any node g, we can compute P(a) in time polynomial in n.

The deterministic algorithm is clear: use the method of conditional probabilities
as before, but with the value P(a) instead of P(a) at every step.

Theorem 5.15: The algorithm based on the method of conditional probabilities
determines a vector b such that ||Ab||, < 4\/nlnn, in time polynomial in n.

Notes

A comprehensive guide to the state of the art of the probabilistic method is the book by
Alon and Spencer [24]. The books by Erdds and Spencer [139] and by Spencer [384] are
quicker introductions to the field. The set-balancing problem has been widely studied,
and the best known result is due to Spencer [383]: for every 0-1 matrix A, there is a
vector b such that ||4b|| < 6\/71. It must be stressed that this result is existential, and
there is no efficient (randomized or deterministic) algorithm known to find the vector
whose existence is guaranteed by Spencer’s result [383].

» Research Problem 5.1: Devise an efficient algorithm that for any 0-1 matrix 4
will find a vector b for which | 4B, is o(viTnn).

The large cut example of Theorem 5.1 is taken from Luby [283). The MAX-SAT
problem is a classic problem in the theory of approximation algorithms. Johnson [219]
gives a deterministic 1/2-approximation algorithm for the MAX-SAT problem that
can be viewed as the derandomization (via the method of conditional probabilities) of
the randomized algorithm in Theorem 5.2. Yannakakis [418] improved this result by
presenting a deterministic 3/4-approximation algorithm. Our presentation in Section 5.2
is based on the work of Goemans and Williamson [169], who also describe how the
algorithm may be made deterministic. In subsequent work [170], they have improved
this using techniques from semidefinite programming to obtain a 0.878-approximation
algorithm for instances of the MAX-SAT in which every clause has at most 2 literals
(sometimes referred to as the MAX-2SAT problem). This implies an a-approximation
algorithm for MAX-SAT, for a value of a that is slightly larger than 3/4. Improving on
these bounds is an interesting challenge:

» Research Problem 5.2: Determine the largest value « for which there is a
polynomial-time a-approximation algorithm for MAX-SAT.

Arora, Lund, Motwani, Sudan, and Szegedy [32] have shown that for a small constant
€ > 0 there is no polynomial time (1 — €)-approximation algorithm for MAX-3SAT,
unless P = NP. Bellare and Sudan [50] have proved a similar result for € close to 0.015
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under a slightly weaker assumption than P # NP. These results carry over to other
approximation problems, including the other versions of maximum satisfiability and the
max-cut problem.

The history of expanding graphs can be traced to their origins in the construction of
telephone networks. Cohen and Wigderson [108] provide a useful survey of the many
different types of expanding graphs and their applications. Bien [59] also gives a good
survey of the history of expanding graphs. The use of the probabilistic method for
proving the existence of expanding graphs can be traced back to Pinsker [333]. The
first explicit construction is due to Margulis [292]. Gabber and Galil [158] developed
an explicit construction that we will use in Chapter 6. The probability amplification
technique described in Section 5.3.1 is due to Sipser [378]. The use of expanding graphs
for augmenting randomness is an idea that first appeared in work of Karp, Pippenger,
and Sipser [248]. .

The number of bits used by an oblivious randomized permutation routing algorithm
was studied by Peleg and Upfal [331]; they study a slightly more general question than
that treated in Section 5.4. The following question remains open:

» Research Problem 5.3: Devise a uniform, randomized, oblivious scheme for
permutation routing on the hypercube that uses ¢;n bits of randomness and
whose expected number of steps is c;n on any instance of permutation routing
on a hypercube with N = 2" nodes, for any constants ¢; and c;.

The best known construction is due to Peleg and Upfal [331]: there is a uniform,
randomized, oblivious scheme that uses O(n?) bits of randomness and runs in expected
time O(n).

The Lovasz Local Lemma first appears in a paper by Erdés and Lovasz [137]. Broder,
Frieze, and Upfal have applied the Lovasz Local Lemma to finding disjoint paths in
expanders [84]. Leighton, Maggs, and Rao [272] have applied it to obtain an elegant
result on packet routing, while Hastad, Leighton, and Newman have applied it to the
probabilistic analysis of hypercubes with random faults [196]. The example of Section 5.5
is due to Beck [48]. A version of the algorithm that can be implemented as a “parallel
algorithm” (see Chapter 12) is described by Alon [18].

The method of conditional probabilities is implicit in a paper of Erdds and Self-
ridge [138]. The connection to deterministic polynomial-time algorithms was developed
by Spencer [384]. There are many applications for which we do not know how to
compute the conditional probabilities that are compared at each step. One solution to
this problem is the method of pessimistic estimators introduced by Raghavan [351]. The
idea is to replace the conditional probability of failure at each stage by an efficiently
computable estimate of the conditional probability. These papers [284, 351] demonstrate
a number of algorithmic applications of the method of conditional probabilities. Chazelle
and Friedman [91] have applied these tools to a number of problems in computational
geometry. Berger and Rompel [55] and Motwani, Naor, and Naor [313] have applied a
variant of the method of conditional probabilities to the derandomization of a variety
of parallel algorithms.
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Problems —

5.1

5.2

53

5.4

(Due to J. Naor.) Let X be a random variable with expectation - 3 .ch that
moment generating function E[exp(t|X|}] is finite for some t > 0. A= ~an use
the following two kinds of tail inequalities for X.

Chernoff Bound:
E[e”xll
eté :

Pr(|X| 2 6] < min
t>0

kth-Moment Bound:
E[|X|“]

LI
(a) Show that for each &, there exists a choice of k such thz* *he kth-
moment bound is stronger than the Chernoff bound. (Hint: Consider -« Taylor
expansion of the moment generating function and apply the p-~ #bilistic
method.)
(b) Why would we still prefer the Chernoff bound to the (seeming!y, s~tronger
kth-moment bound?

Pr[|X| 2 46] <

In Example 5.2, we applied the probabilistic method to certificates for the
value of a game tree in the setting of Section 2.1. We showed that for any
instance of T, there is a set of n®’® |eaves whose values certify the value
of the root for that instance. Show that, in fact, for any instance of 7,,, there
is a set of 28 = _/n leaves whose values certify the value of the rout for that
instance.

Let G be a graph on n vertices, with nd/2 edges. Consider the fuilowing
probabilistic experiment for finding an independent set in G. Delote each
vertex of G (together with its incident edges) independently with probability
1-1/d.

(a) Compute the expected number of vertices and edges that remain sfter the
deletion process.

(b) From these, infer that there is an independent set with at leatit n/2d
vertices in any graph on n vertices with nd/2 edges.

(c) Let G be a 3-regular graph. Suppose that we wish to turn this probabilistic
‘experiment into a randomized algorithm as follows. We delete each vertex
independently with probability 2/3. For every edge that remains, delote one
of its end-points. Derive an upper bound on the probability that this algorithm
finds an independent set smaller than n(1 — €)/6.

A function f : R — R is said to be concave if for any x;, x, and 0 < 4 - 1, the
following inequality is satisfied:

f(Axy + (1= A)xz) = Af(x1) + (1 — A)f(x2).

The reader may wish to compare this with the notion of convex functions
defined in Problem 4.7.

(a) Suppose that f is a concave function and g is a linear function such that
g(0) < f(0) and g(1) < f(1). Show that for any x in the interval [0, 1], g(x) < f(x).
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5.5

5.6

5.7

5.8

5.9

5.10

PROBLEMS

(b) Show that the function f(x) = 1 —(1— x/k)* is concave for any k > 0. What
can you say when k < 0?

(c) Let f(x) =1—(1—x/k)* and g(x) = (1 — (1 — 1/k)*)x. Show that f(x) > g(x)
for positive k and 0 < x < 1.

Use the probabilistic method to show that an expanding graph with the
following properties exists for n sufficiently large:

o |L| =|R|=n.

e Every vertex in L has degree n¥*, and every vertex in R has degree at
most 3n%/4.

e Every subset of n®* vertices in L has at least n — n®* neighbors in R.

Suppose that you had access to the expanding graph described in Problem 5.5
for a certain value of n. Show that it can be used to run the LazySelect
atgorithm of Section 3.3 on any instance of size n, using logn random bits
to choose the entire sample R. Show that the expected running time of this
implementation is O(n).

Let G be a d-regular graph on n vertices.

(a) Show that the number of connected subgraphs of G of size r is at most
nd?.

(b) Suppose that each vertex of G is deleted independently with probability
1 —1/2d2. Show that with probability 1 —n—=, there is no surviving connected
component of size exceeding logn, for a suitable constant a.

Lemma 5.11 guarantees that with positive probability, none of the'events E;
occurs. In this problem, we see how small this positive probability can be.
Consider again the probabilistic experiment suggested in Problem 5.3 Let G
be a ﬁ-regular graph. Suppose that we delete vertices of G independently
with probability 1 —1/(3n'/4).

(a) Use Lemma 5.11 to make the (obvious) argument that with positive proba-
bility, an independent set remains after the deletion.

(b) Use the Chernoff bound to show that the probability that fewer than n¥*/6
vertices survive is less than exp(—n®4/12).

(c) Now consider what happens when the above experiment is run on a ﬁ-
regular graph containing no independent set of size exceeding ,/n. What does
this say about the positive probability in part (a)?

In Section 5.5, we assumed that a variable appears in at most 2¢/% cjauses.
Replace the constant 50 by the smallest constant you can for the following
results:

(a) The existence proof using Corollary 5.12.
(b) The algorithm of Section 5.5.
(Due to J. Naor.) For a graph G(V.E), and any T < V, define the cut function

¢(T) as the number of edges in E which have exactly one end-point in T.
For a suitably small function f(n) and large enough even integer n, show that
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5.12

5.13

5.14

THE PROBABILISTIC METHOD

there exists a graph G(V, E) with |V| = n such that for every subset T = V of
size n/2,
2

c(T)— % <f(n).

How small can you make the function f(n)?
In this problem, we will complete establishing the properties of 3(a) leading
td ™ heorem 5.15.

(a) Show that for a node a at the ith level of the computation tree, 3(a) is of
the form N(a)/2"~', where N(a) is a sum of binomial coefficients. Prove that
for any node a with children ¢ and d,

min{P(c), P(d)} < P(a),
and that for any node a, we can compute 3(a) in time polynomial in n.
(b) Give an upper bound on the running time of the deterministic algorithm.

Show how the method of conditional probabilities can be applied to deran-
domize the RandAuto algorithm.

Consider the randomized algorithm implicitly described in the proof of The-
orem 5.1, which finds a cut of expected size m/2 in a graph with m edges.
Use the method of conditional probabilities to derandomize this algorithm and
obtain a deterministic polynomial time algorithm that computes a cut of size
at least m/2.

(Due to D.R. Karger and R. Motwani [233].) An (n, m)-safe set instance consists

of a urifPerse U of size n, a safe set S < U, and m targetsets T, ..., TmS U
such that
o [S|=|Th| =" =|Tml,

e and, for1<i<m, SnNT, =0.

An jsolator for a safe set instance is a sef I = U that intersects all the target
sets but not the safe set. An (n, m)-universal isolating family F is a collection
of subsets of U such that ¥ contains an isolator for any (n, m)-safe set instance.

Show that there exists a (n, m)-universal isolating family ¥ such that |F| is
polynomially bounded in n and m.
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CHAPTER 6

Markov Chains and Random Walks

THE study of random walks on graphs is fascinating in its own right. In addition,
it has a number of applications to the design and analysis of randomized
algorithms. This chapter will be devoted to studying random walks on graphs,
and to some of their algorithmic applications. We start by describing a simple
algorithm for the 2-SAT problem, and analyze it by studying the properties of
random walks on the line. Following a brief treatment of the basics of Markov
chains, we consider random walks on undirected graphs. It is shown that there is
a strong connection between random walks and the theory of electric networks.
Random walks are then applied to the problem of determining the connectivity
of graphs. Next, we turn to the study of random walks on expander graphs.
We define a class of expanders and use algebraic graph theory to characterize
their properties. Finally, we illustrate the special properties of random walks on
expanders via an application to probability amplification.

Let G = (V,E) be a connected, undirected graph with n vertices and m edges.
For a vertex v € V, I'(v) denotes the set of neighbors of v in G. A random walk on
G is the following process, which occurs in a sequence of discrete steps: starting
at a vertex vo, we proceed at the first step to a randomly chosen neighbor of v,.
This may be thought of as choosing a random edge incident on vy and walking
along it to a vertex v; € I'(vp). At the second step, we proceed to a randomly
chosen neighbor of v, and so on. Unless otherwise stated, “randomly chosen
neighbor” will mean a neighbor chosen uniformly at random; the choice at each
step is independent of all previous choices.

Here are some typical questions about the simple random walk that we study:
what is the expected number of steps to get from vertex u to another vertex v?
Starting from a given vertex u, what is the expected number of steps to visit
every vertex in the graph?

Exercise 6.1: Let G be the complete graph K, on n vertices. Let u and v be two
vertices in G. Prove that:
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1. The expected number of steps in a simple random walk that begins at v and ends
upon first reaching v is n — 1.

2. The expected number of steps to visit all the vertices in G starting from v is (n—1)H,_4,
where H,_4 = Z/’: 1/j is the Harmonic number.

Is the random walk on K, exactly the same process as coupon collection with n — 1
coupons?

6.1. A 2-SAT Example

Recall that the k-SAT problem is the special case of the SAT problem in
which each clause in the input formula contains exactly k literals. We seek
an assignment of (Boolean) values to the variables such that all the clauses
are satisfied, or an assurance that no such assignment exists. While the k-SAT
problem is NP-hard for k > 3, it is solvable in polynomial time for k = 1
or k = 2. In this section we present a simple polynomial-time (Monte Carlo)
algorithm for solving the 2-SAT problem.

Suppose we start with an arbitrary assignment of values to the literals. As
long as there is a clause that is unsatisfied, we modify the current assignment
as follows: we choose an arbitrary unsatisfied clause, and pick one of the
(two) literals in it uniformly at random; the new assignment is obtained by
complementing the value of the chosen literal. After each such step, we check
to see if there exists an unsatisfied clause under the current assignment; if not,
the algorithm terminates successfully with a satisfying assignment. If there is a
satisfying assignment for this instance, how long does it take for this process to
discover it?

Given an instance with a satisfying assignment, let us fix our attention on
a particular satisfying assignment A, and refer to the values assigned by 4 to
the literals as the “correct values.” Let n be the number of variables in an
instance. The progress of this algorithm can be represented by a particle moving
between the integers {0, 1,...,n} on the real line. The position of the particle
indicatés how many variables in the current solution have the correct values.
At each iteration, we complement the current value of one of the literals of
some unsatisfied clause, so that the particle’s position changes by 1 at each
step. In particular, a particle currently at position i, for 0 < i < n, can only
move to positions i — 1 or i + 1. A particle at location 0 can only move to
1, and the process terminates when the particle reaches position n, although
it may terminate at some other position with a satisfying assignment other
than A.

The crucial observation is the following: in an unsatisfied clause, at least
one of the two literals has an incorrect value. With probability at least 1/2
we increase (by one) the number of variables having their correct values. The
motion of the particle thus resembles a random walk on the line.
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62 MARKOV CHAINS

The reader may relate this process to a familiar gambling experience (see also
Section 4.4). A gambler goes to a casino with n dollars. At each step he bets $1,
and loses it with probability at least 1/2. If he wins, his bet of $1 is returned to
him, and in addition he is given $1. The gambler must quit when his capital is
reduced to 0. Note the similarity to the process in the previous paragraph, with
the coordinates on the line reversed.

The random walk on the line is one of the most extensively studied stochastic
processes. Using the tools developed in this chapter, we will be able to prove:

Theorem 6.1: The expected number of steps for the above 2-SAT algorithm to
find a satisfying assignment is O(n?).

Exercise 6.2: Using Theorem 6.1, devise a one-sided error Monte Carlo algorithm
for the 2-SAT problem. This algorithm should run in polynomial time, always return
UNSATISFIABLE for unsatisfiable formulas, and with high probability it should return
a satisfying truth assignment for satisfiable formulas.

6.2. Markov Chains

Although we can deal with some of the questions concerning random walks
using basic probability theory (as in Exercise 6.1), they are more conveniently
studied using an abstraction known as a Markov chain. A Markov chain M is
a discrete-time stochastic process defined over a set of states S in terms of a
matrix P of transition probabilities. The set S is either finite or countably infinite.
The transition probability matrix P has one row and one column for each state
in S. The Markov chain is in one state at any time, making state-transitions at
discrete time-steps t = 1,2,.... The entry P;; in the transition probability matrix
is the probability that the next state will be j, given that the current state is i.
Thus, for all i, j € S, we have 0 < P;; < 1, and Zj Py =1

An important property of a Markov chain is the memorylessness property: the
future behavior of a Markov chain depends only on its current state, and not on
how it arrived at the present state. This follows from the observation that the
transition probabilities P;; depend only on the current state i. We will denote
by X, the state of the Markov chain at time ¢; thus, the sequence {X,} specifies
the history or the evolution of the Markov chain. The memorylessness property
can be stated more formally as follows:

PriXip1=j| Xo=io, Xy =1i1,...,.X; =il =Pr[X,1, = j| X, =i] = P;.

A Markov chain (indeed, a random walk) need not have a prespecified initial
state; in general, its initial state X, is permitted to be chosen according to some
probability distribution over S. Of course, an initial probability distribution
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includes as a special case the deterministic specification that the initial state
Xo be i. Given a distribution for the initial state X,, we have a probability
distribution for the history {X,}.

For states i,j € S, define the t-step transition probability as P,-S-” = Pr[X, =
j | Xo =1i]. Given an initial state X, = i, thg) probability that the first transition

into state j occurs at time ¢ is denoted by r;;/ and is given by

r) =Pr[X,=j,and, for 1 <s<t—1, X, # j| Xo = i].

Also, for X, = i, the probability that there is a visit to (transition into) state j
at some time ¢ > 0 is denoted by f;;, and is given by

4]
fu=Zr.8--
>0

Finally, the expected number of time steps to reach state j starting from state i
is denoted by h;; and is given by

h,‘j = Ztrg-).

>0

If fi; <1 then h;; = oo, but the converse need not be true.

» Definition 6.1: A state i for which f; < 1 (and hence h; = o) is said to be
transient, and one for which f; = 1 is said to be persistent. Those persistent states
i for which h; = oo are said to be null persistent and those for which h; # oo are
said to be non-null persistent.

We restrict our attention to finite Markov chains, i.e., Markov chains whose
states are finite in number. We claim that every state in such a Markov chain is
either transient or non-null persistent. We define the underlying directed graph
of a Markov chain as follows: there is one vertex in the graph for each state of
the Markov chain; and there is an edge directed from vertex i to vertex j if and
only if Pij > 0.

» Definition 6.2: A strong component of a directed graph G is a maximal subgraph
C of G such that for any pair of vertices i and j in the vertex set of C, there is a
directed path from i to j, as well as a directed path from j to i.

> Definition 6.3: A strong component C is said to be a final strong component if
there is no edge going from a vertex in C to a vertex not in C.

In a finite Markov chain, starting from any vertex in a strong component C,
there is a non-zero probability of reaching any other vertex in the same strong
component in a finite number of steps. If C is a final strong component, this
probability is 1 since the Markov chain can never leave the component C once
it enters it. It follows that a state is persistent if and only if it lies in a final
strong component.
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» Definition 6.4: A Markov chain is said to be irreducible whenever its underlying
graph consists of a single strong component.

The unique strong component in an irreducible Markov chain must be final,
and hence all states are persistent.

» Definition 6.5: Define ¢ = (q(l'),qg'),...,qf,"), the state probability vector (also
called the distribution of the chain at time t), to be the row vector whose ith
component is the probability that the chain is in state i at time .

Henceforth, whenever we mention a probability distribution on the states of a
Markov chain, we mean such a vector. It is easy to check that ¢+ = WP,
so we have by induction that ¢9 = ¢@P'. It follows that a Markov chain’s
behavior for all time is specified by its initial distribution ¢'© and its transition
matrix P.

Some remarks about our notation are in order. Throughout this chapter,
when multiplying a probability vector ¢ with a transition probability matrix P,
we will use ¢P instead of Pgq since the correct interpretation is that the entry
P;; represents the probability of going from state i to state j, and that the entry
gi is the probability of being in state i. For notational convenience, we interpret
a probability vector as a row vector whenever it premultiplies a matrix in this
fashion.

» Definition 6.6: A stationary distribution for the Markov chain with transition
matrix P is a probability distribution n such that n = nP.

Intuitively, if the Markov chain is in the stationary distribution at step ¢,
it remains in the stationary distribution at step ¢t + 1. Thus the stationary
distribution is thought of as a description of the steady-state behavior of the
Markov chain.

» Definition 6.7: The periodicity of a state i is the maximum integer T for which
there exists an initial distribution ¢'© and positive integer a such that, for all
t, if at time ¢t we have qf') > 0, then ¢ belongs to the arithmetic progression
{a+ Ti|ix=0}. A state is said to be periodic if it has periodicity greater than
1, and is said to be aperiodic otherwise. A Markov chain in which every state is
aperiodic is known as an aperiodic Markov chain.

Consider a Markov chain in which the underlying graph is bipartite. It follows
that every state is periodic with periodicity at least 2. As we will see later, this
is really the only possible source of periodicity in Markov chains obtained from
random walks. Periodic Markov chains cause complications (for example, they
do not converge to the stationary distribution), but we will show that there is a
simple trick for dealing with this source of periodicity.
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» Definition 6.8: An ergodic state is one that is aperiodic and non-null persistent.
» Definition 6.9: An ergodic Markov chain is one in which all states are ergodic.

The following basic theorem on Markov chains may be found in most texts
on stochastic processes.

Theorem 6.2 (Fundamental Theorem of Markov Chains): Any irreducible, finite,
and aperiodic Markov chain has the following properties.

1. All states are ergodic.

2. There is a unique stationary distribution = such that, for 1 <i<n, m; > 0.

3 Fori<i<n fi=1and h;=1/n,.

4. Let N(i,t) be the number of times the Markov chain visits state i in t steps.

Then,
NG.t) _

lim = 7;.

t—0 t

6.3. Random Walks on Graphs

Let G = (V,E) be a connected, non-bipartite, undirected graph where [V| = n
and |[E| = m. It induces a Markov chain M as follows: the states of the M are
the vertices of G, and for any two vertices u, v € V,

P, = { J(Iu—) if (u,v).e E
0 otherwise,

where d(w) is the degree of vertex w. Because G is connected, Mj is irreducible.
For a connected, undirected graph G, the periodicity of the states in Mg is the
greatest common divisor (ged) of the length of all closed walks in G, where
a closed walk is any walk that starts and ends at the same vertex. As G is
undirected, there are closed walks of length 2 that traverse the same edge twice
in succession. Further, since G is non-bipartite it has odd cycles that give closed
walks of odd length. It follows that the gcd of the closed walks is 1, and hence
Mg is aperiodic. Noting that G is finite, Theorem 6.2 now implies that M¢ has
a unique stationary distribution 7.

Lemma 6.3: Forallv eV, n, = d(v)/2m.

PROOF: Let [nP], denote the component corresponding to vertex v in the
probability vector nP. Then,

[=P), = ZnuPuv
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-y, 1
(a0 eE 2m  d(u)
1

(wv)eE 2m
d(v)
2m’
O

As a direct consequence of Theorem 6.2 and Lemma 6.3, we obtain the
following lemma.

Lemma 64: For allveV, h,, = 1/n, =2m/d(v).

» Definition 6.10: The hitting time h,, (sometimes called the mean first passage
time) is the expected number of steps in a random walk that starts at u and ends
upon first reaching v.

» Definition 6.11: We define C,,, the commute time between u and v, to be C,, =
hw + hy = Cyu. This is the expected time for a random walk starting at u to
return to u after at least one visit to v.

» Definition 6.12: Let C,(G) denote the expected length of a walk that starts at

u and ends upon visiting every vertex in G at least once. The cover tlme of G,
denoted C(G), is defined by C(G) = max, C.(G).

» Example 6.1: A graph that tells us a great deal about the behavior of random
walks is the n-vertex lollipop graph L, (Figure 6.1). This graph consists of a clique
on n/2 vertices, and a path on the remaining vertices. There is a vertex u in the
clique to which the path is attached; let v denote the other end of the path.

Flgure 6.1: The lollipop graph L,.

By elementary probability (or using methods for studying random walks that
we will encounter shortly), it turns out that in L,, h,, is ©(n®), whereas h,, is
©(n?). Thus, in general, hy, # hy,, and the asymptotic difference (as in this case)
can be as much as a factor of n.

Another misconception that L, dispels is that “adding more edges should help
reduce the cover time C(G).” This is false, because L, has cover time ®(n’); on
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the other hand, it can be built by adding edges to a chain on n vertices, which
can be shown to have cover time ©(n?). In turn, the complete graph K, can be
built by adding edges to L,, and the cover time of K, is ®(nlogn). Thus the
cover time of a graph is not monotone in the number of edges.

The following lemma establishes an important property of the commute time
across an edge and will prove useful in Section 6.5 below.

Lemma 6.5: For any edge (u,v) € E, hy, + h,, < 2m.

PROOF: The proof considers a new Markov chain defined on the edges of G.
The current state is defined to be the pair composed of the edge most recently
traversed in the random walk, together with the direction of this traversal;
equivalently, replacing each undirected edge by two oppositely directed edges,
the directed edges form the state space. There are 2m states in this new Markov
chain. The transition matrix Q for this Markov chain has non-zero entry

Q(u,v),(v,w) = va = l/d(v)’

corresponding to an edge (v, w). This matrix is doubly stochastic, meaning that
not only do the rows sum to one (as in every Markov chain), but the columns
sum to one as well. To see this, fix a (directed) edge (v, w) and observe that the
column sum corresponding to this state is given by

> Qunom = Y Quorem

xeV, yel(x) uell(v)

= Zva

uel(v)

1
= d(U) X E(U_)
= 1

Noting the result in Problem 6.6, it follows that the uniform distribution on the
edges is stationary for this Markov chain, so the stationary probability of each
directed edge is 1/2m. By part (3) of Theorem 6.2, we can conclude that the
expected time between successive traversals of the directed edge (v, u) is 2m.
Consider now h,, + h,,, and interpret this as the expected time for a walk
starting from vertex u to visit vertex v and return to u. Conditioned on the
event that the initial entry into u was via the directed edge (v,u), we conclude
that the expected time to go from there to v and then to u along (v,u) is 2m.
The memorylessness property of a Markov chain now allows us to remove the
conditioning: since the sequence of transitions from u onward is independent
of the fact that we arrived at u along (v,u) at the start of the commute, the
expected time back to u is at most 2m. O

We emphasize that the result in Lemma 6.5 is valid only for vertices u and v
that are connected by an edge in G.
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6.4. Electrical Networks

Many random variables associated with the simple random walk on an undi-
rected graph are studied conveniently using the tools and the language of
electrical network theory. Our focus here will be on characterizing h,, and C,,
in terms of properties of the graph G. We begin with a review of some basics of
resistive electrical networks.

A resistive electrical network is an undirected graph; each edge has associated
with it a positive real branch resistance. The flow of current in such networks
is governed by two rules: Kirchhoff’s Law and Ohm’s Law. Kirchhoff’s Law
stipulates that the sum of the currents entering a node in the network equals
the sum of the currents leaving it. Ohm’s Law states that the voltage across a
resistance equals the product of the resistance and the current through it.

Figure 6.2: A resistive electrical network. Each rectangle signifies a branch resistance.

Consider the simple example in Figure 6.2. If a current of one ampere
were injected into node b and removed from node c in this network, a simple
calculation using Kirchhoff’s Law and Ohm’s Law yields the following: half an
ampere of current flows along the branch bc, and the other half ampere through
branch ba and onto ac. The voltage difference between ¢ and b is one volt, while
the voltage difference between ¢ and a (and between a and b) is half a volt.

One final notion we need is that of the effective resistance between two nodes
in a network. The effective resistance between two nodes u and v is the voltage
difference between u and v when one ampere is injected into u and removed
from v; equivalently, one ampere could be injected into v and removed from u.
The effective resistance between u and v is always at most the branch resistance
between u and v and can be much less, as we shall see. This distinction between
branch and the effective resistances is important. In the example in Figure 6.2,
for instance, the effective resistance between b and ¢ is 1, whereas the branch
resistance is 2.

Given an undirected graph G, let N(G) be the electrical network defined as
follows: it has a node for each vertex in V; for every edge in E, it has a one ohm
resistance between the corresponding nodes in A/(G). For two vertices u,v € V,
Ry, denotes the effective resistance between the corresponding nodes in N(G).
The following theorem establishes a close relation between commute times for
the simple random walk on G and effective resistances in the electrical network

N(G).
Theorem 6.6: For any two vertices u and v in G, the commute time C,, = 2mR,,.
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PROOF: For a vertex x in G, let I'(x) denote the set of vertices in V that are
adjacent to x, and let d(x) denote its degree |I'(x)|. Let ¢,, denote the voltage
at u in NV(G) with respect to v, if d(x) amperes of current are injected into each
node x € V, and 2m amperes are removed from v. We will first prove that for
alluelV,

hy = Gu. (6.1)
Using Kirchhoff’s Law and Ohm’s Law, we obtain that for all u € V \ {v}),
dw) = Y (duw — bwo)- (62)
wel(u)

By the definition of expectation, for all u € V' \ {v}),

1
hy = —— (1 + hyy). (6.3)
Wezr(u) d(u)

Equations (6.2) and (6.3) are both linear systems with unique solutions; further-
more, they are identical if we identify ¢,, in (6.2) with h,, in (6.3). This proves
(6.1). To complete the proof of the theorem, we note that h,, is the voltage ¢,,
at v in M (G) measured with respect to u, when currents are injected into all
nodes and removed from u. Changing signs, ¢,, is now the voltage at u relative
to v when current is injected at u, and removed from all other nodes. Since
resistive networks are linear, we can determine C,, by super-posing (taking care
with the sign!) the networks on which ¢,, and ¢,, are measured. Currents at all
nodes except u and v cancel, resulting in C,, being the voltage between u and v
when " ., d(w) = 2m amperes are injected into u and removed from v, which
yields the theorem by Ohm’s Law. a

Exercise 6.3: Verify all the hitting times claimed in Example 6.1 using the ideas in
the above proof.

Exercise 6.4: Consider a random walk on the integer points 1,2,..., n, starting at 1.
If the walk is at 1, it always proceeds to 2 at the next step; when the walk is at a point
i > 1, it proceeds at the next step to i — 1 or to i + 1 with equal probability. Show that
the expected number of steps that elapse before the walk first reaches n is (n — 1)2.

Exercise 6.5: Prove Theorem 6.1. Why does the bound of O(n?) steps hold only for
finding some satisfying assignment, rather than the specified assignment A? What
happens if each clause has 3 literals rather than 2?

The effective resistance between two nodes u and v is at most the length of
the shortest path between them in G. This observation yields an alternative
proof of Lemma 6.5. The length of the shortest path between any two vertices
of G is at most the diameter of G. We thus have the following corollary, which
by Example 6.1 is asymptotically tight.
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Corollary 6.7: In any n-vertex graph, and for all vertices u and v,

Cn < n.

6.5. Cover Times

We are now ready to prove a classic theorem on the cover time of the simple
random walk on G.

Theorem 6.8: C(G) < 2m(n—1).

PROOF: Let T be any spanning tree of G. There is a traversal of T, visiting
vertices vo,v1,...,02,—2 = Up that traverses each edge of T exactly once in each
direction. Further, every vertex of G appears at least once in the sequence
Vo, U1, ...,V2—2. Consider a random walk that starts at vy and terminates upon
returning to vy, having visited the vertices v,v,,... in the order prescribed by
the traversal. Since this walk has visited every vertex in G, an upper bound on
the expected length of this walk is an upper bound on C,,(G). Now

2n-3
Cvo(G) s Z hv,,vjﬂ = Z Cuw-
Jj=0 (uw)eT

Since the vertices vj, vj,; are adjacent for all j, we have by Lemma 6.5 that
Cojj < 2m.

Since there are n — 1 edges in T, C,(G) < 2m(n — 1). But this upper bound
holds no matter which vertex of G we designate to be the starting point v, in
the traversal; therefore C(G) < 2m(n —1). O

Note that Theorem 6.8 gives (asymptotically) the right answer for the lollipop
graph: C(L,) is ©(n’). On the other hand, it gives the same O(n®) upper bound
for the complete graph K,, whereas we have already seen (Exercise 6.1) that
C(Kp) is ©(nlog n). Theorem 6.8 can be slack for some graphs: in the proof, we
measure the time for the vertices of G be visited in one specific order. In fact,
we can often refine the upper bound on cover time as follows.

Let R(G) = max, ey Ru; we call R the resistance of G. The resistance of a
graph characterizes its cover time fairly tightly:

Theorem 6.9: mR(G) < C(G) < 2¢*mR(G)Inn + n.

PROOF: The proof of the lower bound follows from the fact that there exist
vertices u,v such that R(G) = R,, and max(hy,,h,) = C,/2; the bound then
follows from Theorem 6.6.
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For the upper bound, we will show that the probability that all the vertices
are not visited within 2¢’mR(G)Inn steps is at most 1/n?; this, together with
Corollary 6.7 will yield the result.

Divide the random walk of length 2¢*mR(G)Inn into Inn epochs each of
length 2¢’mR(G). For any vertex v, the hitting time h,, is at most 2mR(G),
regardless of the vertex u at which an epoch starts. By the Markov inequality,
the probability that v is not visited during any single epoch is at most 1/¢°.
Thus, the probability that v is not visited during any of the Inn epochs is at
most 1/n. Summing this probability over the n choices of the vertex v, the
probability that any vertex is not visited within 2¢*mR(G)Inn steps is at most
1/n?*. When this happens (there is a vertex that has not been visited within
2¢mR(G)Inn steps), we continue the walk until all vertices are visited, and
n’ steps suffice for this (by Corollary 6.7). Thus the expected total time is at
most

2¢’mR(G)Inn + (1/n*)n® = 2¢*mR(G)Inn + n.
O

The bounds in Theorem 6.9 cannot in general be improved; the upper bound
is tight (within constant factors) for the complete graph (Problem 6.10 below)
and the lower bound is tight for the chain on n vertices.

There are also graphs for which neither bound of Theorem 6.9 is tight. Note
that Theorem 6.9 gives an estimate for the cover time that is tight to within a
factor of logn. This is because effective resistances in a graph (and therefore
the resistance of the graph, R(G)) can be computed efficiently using matrix
inversions. Note also that neither Theorem 6.8 nor 6.9 is universally superior;
we have already seen that for the complete graph K,, Theorem 6.8 gives a loose
upper bound. For the lollipop graph L,, Theorem 6.9 gives an upper bound of
O(n?log n), which is an overestimate by a factor of log n.

Often, we are interested not so much in determining the cover time of a single
graph, as in bounding the cover times of a family of graphs. A simple fact that is
of great use in bounding effective resistances in electrical networks is following
Rayleigh’s Short-cut Principle:

Effective resistance is never raised by lowering the resistance on an edge (e.g., by
“shorting” two nodes together), and is never lowered by raising the resistance on
an edge (e.g., by “cutting” it). Similarly, resistance is never lowered by “cutting” a
node, leaving each incident edge attached to only one of the two resulting halves of
the node.

A second useful fact about effective resistances in an electrical network is that
they obey the triangle inequality. As one very simple application of these facts,
observe that in a graph with minimum degree d, R > 1/d: short all vertices
except the one of minimum degree. Another simple application is the following
lemma.

138



66 GRAPH CONNECTIVITY

Lemma 6.10: Suppose that g contains p edge-disjoint paths of length at most ¢
from s to t. Then, R, < ¢/p.

6.6. Graph Connectivity

We are now ready for our first algorithmic application of random walks. Two
vertices in an undirected graph G are said to be connected if there exists a path
between them. A connected component of G is a (maximal) subset of vertices in
which every pair of vertices is connected.

6.6.1. Undirected Graphs

The undirected s-t connectivity (USTCON) problem is the following: given an
undirected graph G and two vertices s and ¢ in G, decide whether s and t are
in the same connected component. The USTCON problem is important in the
study of space-bounded complexity classes and is a natural abstraction of a
number of graph search problems. It is easy to see that a standard graph search
algorithm such as depth-first search solves the problem in O(m) steps. In doing
so, the algorithm keeps track of all the vertices of G that the search has visited
and, therefore, uses workspace at least linear in n.

A probabilistic log-space Turing machine for a language L is a probabilistic
Turing machine using space O(log n) on instances of size n, and running in time
polynomial in n. We say that a language (equivalently, a decision problem) 4 is
in RLP if there exists a probabilistic log-space Turing machine M such that on
any input x,
=>1/2 x€A

Pr[M accepts x]{ 0 xé A

(6.4)
Here space O(log n) refers to the workspace of the Turing machine; the input is
given on a read-only tape, and the only storage available to it with write-access
is a log-space tape.

Theorem 6.11: USTCON € RLP.

PROOF: The log-space probabilistic Turing machine simulates a (simple) random
walk of length 2n® through the input graph, starting from s. If it encounters
the vertex ¢ in the course of this walk, it outputs YES; otherwise it outputs No.
Clearly the machine will never output YEs on an instance of USTCON in which
s and ¢t are not in the same connected component. What is the probability that
it outputs NO when it should have said YEs?

By Theorem 6.6, h, < n®. By the Markov inequality, if ¢ is in the same
component of G as s, the probability that it is not visited in a random walk of
2n? steps starting from s is at most 1/2. The Turing machine uses its workspace
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to count up to 2n*, and to keep track of its position in the graph during the
walk; both of these require only space O(log n). d

We have thus seen a uniform, randomized algorithm for deciding USTCON
in log-space and polynomial time. This randomized algorithm can also be
made deterministic while still using logarithmic space, albeit non-uniformly. We
consider a specific class of non-uniform, deterministic log-space algorithms for
USTCON known as universal traversal sequences. We focus on n-vertex graphs
that are regular of degree d — every vertex has degree d — throughout our
discussion of universal traversal sequences. Such a graph is said to be labeled
if, at each vertex in the graph, each of the d edges incident on that vertex
has a unique (integer) label in {1,...,d}. There is no requirement that an edge
receive the same label at both end-points. Figure 6.3 gives an example of a
labeled 3-vertex, 2-regular graph. Note that the edge joining vertices a and b
has different labels at its end-points.

Any sequence of symbols ¢ = (g1,02,...) from {1,...,d} together with a
starting vertex v in a labeled graph describes a walk through the graph in the
following natural fashion. The walk begins at v, and at its first step walks along
the edge incident on v whose label is g;. It now arrives at another vertex, say u,
and leaves by the edge whose label is ,, and so on. For example, in Figure 6.3,
if the starting vertex were a and ¢ were (1,2, 1,1,2), the walk would proceed to
visit the vertices b, a, b, c,a. On the other hand, if the starting vertex were b, the
same sequence ¢ Vvisits the vertices c,a, b, ¢, a.

Figure 6.3: A labeled 3-vertex, 2-regular graph.

A sequence ¢ is said to traverse a labeled graph G if the walk it prescribes
visits every vertex of G regardless of the starting vertex. The reader may verify
that the sequence (1,2,2) traverses the labeled graph in Figure 6.3, and that no
shorter sequence does so. A sequence ¢ is said to be universal traversal sequence
for a class of labeled graphs if it traverses every labeled graph in the class. By
this we mean every labeling of every graph in the class, and for every starting
vertex.

A universal traversal sequence whose length is polynomial in n can be used
by a deterministic log-space Turing machine to decide instances of USTCON of
size n as follows. The sequence is stored in the finite-state control of the Turing
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machine and is used to traverse G starting from s on an instance of USTCON.
(However, in order for it to be a uniform log-space algorithm, the universal
traversal sequence should be constructible by the log-space Turing machine,
rather than be encoded in the machine’s finite-state control.)

Let G be a family of connected labeled d-regular graphs on n vertices. Each
member of each graph counts as a distinct member of G. Let U(G) denote the
length of the shortest universal traversal sequence for all the labeled graphs in
G. Let R(G) denote the maximum resistance between any pair of vertices in any
graph in G.

Theorem 6.12: U(G) < 5mR(G)log,(n|G)).

PrROOF: Given a labeled graph G € G, let v be a vertex of G. Consider a random
walk of length 5SmR(G) log,(n|G|), divided into log,(n|G|) “epochs” each of length
5mR(G). The probability that the walk fails to visit v in any epoch is at most
2/5 by Theorem 6.6 and Markov’s inequality, regardless of the vertex of G at
which the epoch began. The probability that v is not visited during any of the
log,(n|G|) epochs is thus at most (n|G|)~ for a value of ¢ > 1. Summing this
probability over all n choices of the vertex v and all |G| choices of the labeled
graph G, the probability that the random walk (sequence) fails to be universal
is less than one. Thus there is a sequence of this length that is universal for the
class G. a

The constant 5 in Theorem 6.12 can be improved slightly. Let U(d,n) denote
the length of the shortest universal traversal sequence for connected, .labeled,
n-vertex, d-regular graphs.

Exercise 6.6: Show that the number of labeled n-vertex graphs that are d-regular is
(nd)O(nd)_

Putting together Theorem 6.12 and the result of Exercise 6.6, we have:
Corollary 6.13: U(d,n) = O(n’dlogn).

PROOF: The diameter of every connected n-vertex, d-regular graph is O(n/d)
and so, therefore, is its resistance. The number of edges m = nd /2.
The result now follows from Exercise 6.6 and Theorem 6.12. O

This suggests that there is a deterministic log-space Turing machine that
decides USTCON on n-vertex, d-regular graphs. Unfortunately, all we have
given here is a proof (by the probabilistic method) that such a universal traversal
sequence exists, and thus a non-uniform deterministic log-space machine. We
do not know how to construct such a sequence by a deterministic log-space
machine; in fact, we do not in general know how to do this even with a
polynomial-time machine.
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6.6.2. Directed Graphs

Are the techniques of Section 6.6.1 applicable to s—t connectivity (STCON) in
directed graphs? There is certainly no immediate way of using the results on
random walks, since the cover time of the random walk may no longer be finite.
For instance, a directed graph may contain vertices with no outgoing edges, so
that a random walk may get trapped at such a vertex. What if we were to
perform a random walk from the vertex s, and to jump back to s whenever we
are stuck at such a vertex? We will use a variant of this idea to give a Monte
Carlo algorithm that decides st connectivity in directed graphs using space
O(log n). The running time of this algorithm may be large — its expectation may
be of the order of n". The algorithm has one-sided error: whenever it terminates
and outputs YES, it is correct, but when it outputs No, it is wrong with some
probability.

As before, let the edges leaving a vertex v be labeled 1,2,...,d(v). Thus any
path in the graph can be associated with a string whose symbols are drawn
from {1,2,...,n — 1}, as in our discussion of universal traversal sequences. If
we could begin at s and enumerate the walks corresponding to all such strings
of length n — 1, we would be assured of discovering a path from s to ¢ if one
existed. The number of such strings being of the order of n", we would require
Q(nlogn) space to maintain a counter that could index these strings. Since we
only wish to use O(log n) space, we use randomization to achieve this reduction
in space.

The algorithm consists of repeatedly executing the following two steps until
either step results in termination.

1. Starting at s, simulate a random walk of n—1 steps. Each step consists of choosing
an edge leaving the current vertex uniformly at random. If ¢ is reached, output
vEs and stop. If the walk reaches a vertex with no outgoing edge, or a vertex
other than t after n — 1 steps, return to s. This step can be implemented using
O(logn) bits of memory.

2. Flip logn" unbiased coins. If they all come up HEADs, halt and output No. This
can be implemented by a counter that keeps track of the number of coins that
have been flipped. The number of bits required in this counter is log(logn”),
which is O(logn), as required.

We wish to bound the probability of terminating and erroneously outputting NO
when in fact there is a path from s to ¢. Since the number of distinct walks from
s is at most n", the probability of discovering an s—t path on a trial (in Step 1) is
at least n™". The probability of terminating in Step 2 on a trial is the probability
that all the coins come up HEADS, and this is n™". Thus on each trial, the
algorithm terminates successfully with probability at least n™", and erroneously
with probability at most (1 — n™")n™" < n™". Let p, denote the probability of
outputting YES on termination; then we have

pw=n"+ (1 =2n"")py,
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where the first term on the right-hand side denotes the probability of succeeding
on the very first trial, while the second term denotes success thereafter. Solving,
we have p, > 1/2.

Theorem 6.14: The above algorithm will, given an instance of STCON,
1. Always output No if there is no path from s to t.
2. Output YEs with probability at least 1/2 if there is a path from s to t.
The algorithm uses space O(log n).

Exercise 6.7: Derive a bound on the expected running time of the above algorithm.

6.7. Expanders and Rapidly Mixing Random Walks

In previous sections of this chapter, we have focused on the expected lengths of
random walks. In this section, we study a different aspect of random walks. We
know by Theorem 6.2 that the probability vector of the random walk eventually
converges to the stationary distribution whenever one exists. We now study the
rate at which the probability vector approaches this stationary distribution. This
study will yield useful applications here and in Chapter 11.

In particular, we will focus our attention on random walks on a special class
of graphs called expanders. An expander (see also Section 5.3) is a graph in
which the neighborhood of any set of vertices S is large relative to the size of
S. Since the expansion property cannot be destroyed by the addition of edges
to the graph, a complete graph is the best possible expander. However, in most
applications we require sparse expander graphs; ideally, the graph should have
a linear number of edges, and in fact be of bounded degree. Henceforth, we
will use the term expander to refer to bounded-degree graphs with the desired
expansion properties; a formal definition appears below in Section 6.7.1.

In Section 5.3 we saw that a sparse random graph is quite likely to be
an expanding graph. We also noted there that giving an explicit construc-
tion of an expander is a much harder problem. That this is a non-trivial
task is supported by the fact that the problem of deciding whether a graph
is an expander is known to be co-NP-complete. The bottleneck appears to
be that we need to verify the expansion of an exponentially large number of
subsets of vertices. Happily for us, there exists a partial characterization of
expanders using the machinery of algebraic graph theory. The power of these
algebraic methods lies in their ability to simultaneously describe the proper-
ties of all possible subsets of vertices, although some precision is lost in the
process. This leads to a proof that certain explicitly specified graphs are ex-
panders.
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After studying this algebraic characterization, we turn to random walks on
expanders. An important property of random walks on expanders is that they
are rapidly mixing: the corresponding Markov chain will quickly converge to its
stationary distribution regardless of the starting state. The major result of this
section determines just how quickly this convergence occurs.

6.7.1. Expanders and Eigenvalues

This section assumes knowledge of elementary linear algebra, and the reader
may wish to review the material in Appendix B before proceeding further. Recall
that in a multigraph there can be more than one undirected edge between any
pair of vertices. The discussion in this section is more easily stated in terms
of multigraphs, and we allow all graphs under consideration to have multiple
edges. A multigraph may also have self-loops at vertices.

Consider an undirected (multi)graph G(V, E) with n vertices. The adjacency
matrix A(G) of G is the n X n symmetric matrix where 4;; = A4;; is the number
of edges between the vertices v; and v;. When G is bipartite, we assume that it
has two independent sets of vertices X = {vy,...,0,2} and Y = {v,/241,...,Un}.
Observe that in this case the adjacency matrix can be decomposed into four
blocks of equal size as shown below, where O denotes the all-zeros matrix and
B encodes the edges between X and Y.

0 B
46) = gr ¢ |
Since A(G) is symmetric, even if the eigenvalues 4; > 4, > --- > 4, are not
necessarily all distinct, we can fix corresponding eigenvectors ey, ..., e, that form
an orthonormal basis.

We state without proof the following basic result from algebraic graph theory;
pointers may be found in the Notes section; the reader is asked to verify some
parts of this theorem in Problems 6.20-6.23.

Theorem 6.15 (Fundamental Theorem of Algebraic Graph Theory): Let G(V,E)
be an n-vertex, undirected (multi )graph with maximum degree d. Then, under the
canonical labeling of eigenvalues A; and orthonormal eigenvectors e; for the matrix

A(G),
1. If G is connected, then A; < A;.
2. For1<i<n, |4 <d
3. d is an eigenvalue if and only if G is regular.
4

. If G is d-regular, then the eigenvalue Ay = d has the eigenbector e = 1
(L,1,1,...,1).

5. The graph G is bipartite if and only if for every eigenvalue A there is an
eigenvalue —J of the same multiplicity.

6. Suppose that G is connected. Then, G is bipartite if and only if —1, is an
eigenvalue.
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7. If G is d-regular and bipartite, A, = —d and e, = 71;(1,..., 1,—1,...,—~1) (the
last n/2 entries in e, are —1).

If G consists of more than one connected component, Theorem 6.15 can be
applied independently to each connected component. For convenience, in the
sequel we will restrict our attention to studying the eigenvalue properties only
for graphs that are connected, bipartite, and regular. For a d-regular graph G,
A(G) is a symmetric matrix with all row and column sums equal to d.

What does all this have to do with expanders? Consider the algebraic
characterization of connectedness in terms of a separation between the first and
the second eigenvalues. Note also that a graph is connected if and only if
every set of vertices S has at least one neighbor outside of S. We can view the
expansion property as a stronger version of this connectivity condition. Might it
not be the case that the property of being an expander is equivalent to having a
strong separation between these two eigenvalues? It turns out that this is close
to the truth. But first we formally define an expander; while the usual definition
of an expander requires a graph of maximum degree d, we prefer to work with
d-regular graphs.

» Definition 6.13: An (n,d,c)-expander is a d-regular bipartite (multi)graph
G(X,Y,E) with |X| =|Y| = n/2 such that for any § = X,

2|S|
I0(S)| = (1 +e (1 - T)) S|,

As we remarked above, it will be convenient to assume that any expander
under consideration is connected. In most applications, it is desirable to have d
as small as possible and ¢ as large as possible. In particular, we would like d
to be bounded and c to be a constant greater than 0. Much as in Section 5.3,
it is possible to give a probabilistic proof of existence of expanders for suitable
values of n,d, and ¢ by showing that a random graph chosen from an appropriate
probability space is likely to be an expander. Several explicit constructions of
such expanders are also known, but we describe only the so-called Gabber-Galil
expanders.

For a positive integer m, let n = 2m?. Each vertex in X is given a distinct label
consisting of a pair (a,b) for a, b € Z,,; the vertices in Y are labeled similarly.
A vertex labeled (x,y) in X has edges going to the vertices in Y whose labels
are: (x,y), (x,x+y), (x,x+y+1), (x+y,y), and (x + y + 1,y). The addition
is done modulo m. Each of these linear functions is a permutation and defines
a perfect matching between X and Y. The graph is 5-regular, and it can be
shown that the expansion factor for this graph is « = (2 — 1/3)/4, giving us a
family of (n, 5, 2)-expanders. We can obtain (n, 7, 2a)-expanders using instead the
following seven linear functions modulo m: (x,y), (x,2x + ¥), (x,2x + y + 1),
(x,2x+y+2), (x+2y,y), (x+2y+1,y), and (x + 2y + 2, y). The proof of the
expansion property is beyond the scope of this book. Note that both graphs
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have multiple edges but these could be removed without affecting the expansion
properties.

Usually, explicit construction of expanders such as these is required to specify
an (n,d,c)-expander family. This means that the construction must provide an
infinite sequence of graphs Gi, G, ..., such that the number of vertices in these
graphs forms a strictly increasing sequence. Since the choice of the number m is
arbitrary, the Gabber-Galil expander definition is easily seen to specify such a
family of graphs.

As we saw in Section 5.3.1, in some applications we have to use expanders
with a super-polynomial number of vertices. This presents problems when
we are trying to perform some polynomial-time computation based on the
structure of such graphs. However, we do not need to explicitly represent
the Gabber-Galil expanders. It is easy to see that there is a polynomial-time
neighborhood algorithm that can compute the neighbors of any given vertex
in R; we can implicitly represent the graph by means of this neighborhood
algorithm.

Finally, we note the following theorems, which make explicit the connection
between the expansion properties of graphs and their eigenvalues. A pointer
to their proofs is given in the Notes section. The proofs of these theorems are
somewhat complicated and involve numerous calculations and estimates, but
below we derive a closely related result (Theorem 6.19) that captures much of
the intuition behind their proofs.

Theorem 6.16: If G is an (n,d, c)-expander, then A(G) has

2

<4 - —r.
o < d 1024 + 2¢2

Theorem 6.17: If A(G) has |A;] < d — €, then G is an (n,d,c)-expander with

2de — €?
= ——

c 2

Since the largest eigenvalue 4, is exactly d, this gives a (partial) characterization
of the expansion factor c in terms of the gap between the absolute values of the
first and second eigenvalues.

Exercise 6.8: Given an (n, d, c)-expander, Theorem 6.16 yields a bound on A,; if we
were now to use this bound on A; in Theorem 6.17, what bound on ¢ do we obtain
and how does it compare with the value ¢ that we started with?

Note that we are assuming that the expanders are connected; otherwise,
A2 = A1 and we will have to use the eigenvalue of the second-largest absolute
value to play the role of 4,. It should be easy to see that relaxing this
assumption makes no essential difference to the following discussion, but does
make the notation more cumbersome.
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We now give a result related to Theorems 6.16 and 6.17 to motivate the
intuition behind these theorems. For a d-regular graph G = (V, E), define

) . le(X, V\X)|
split(G) = min ——————,
PIG) = min e AX]

where e(A4, B) denotes the multiset of edges of G between subsets of vertices
A, B. We now relate split(G) to 4,, the second eigenvalue of the adjacency matrix
A(G) of G. First, we give a technical lemma concerning 4,.

Lemma 6.18:
A2 = max{2 Z XiXj},

(L))EE

where the max is taken over vectors x such that ||x|| =1 and 3 _, x; = 0.

The proof of Lemma 6.18 follows from the Courant-Fisher equalities established
in Problem 6.19. ‘

Theorem 6.19: If G is d-regular, then

split(G) > d —n’b.

PROOF: Let W < V and |W| = k. Define the vector x by

- nk ifiew;
;=
k . .
—\/n(n_—ki lfl¢W.

Then e/ x = 0 and ||x|| = 1. By Lemma 6.18,

bz 2) xxg=d— ) (xi—x;) (6.5)

(iJ)€E Gf)EE

2
In—k / k
= d—|e(W,V\W) ( T + m) (6.6)
_nle(W,V\W)|

d T (6.7)
The result now follows from the definition of split(G). O

Corollary 6.20: If G is d-regular then for any W c V,
IWUL'(W)| 2 [1+ (1 —12/d)/2] |W|.

In the applications of expanders discussed here, we are primarily concerned
with the eigenvalue separation for the adjacency matrix and we do not explicitly
employ the expansion property itself. In fact, we could very well have defined
expanders in terms of the eigenvalue separation, but the expansion property
does serve to provide some intuition behind the algebraic machinery.
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6.7.2. Random Walks on Expanders

Consider the simple random walk on an (n,d, c)-expander G. Since we permit
multigraphs in the definition of expanders, it is necessary to generalize the
definition of the random walk, as follows: at each step, the random walk
proceeds along a randomly chosen edge among those incident on the current
vertex v; thus, if there are k edges from v to w, then the probability that
the random walk goes from v to w is k/d(v). For an (n,d,c)-expander G,
this corresponds to a Markov chain with the probability transition matrix
P = A(G)/d.

Simple algebra shows that the eigenvalues of P are given by 4;/d, and
the corresponding eigenvectors remain unchanged. Notice that now all the
eigenvalues liec between 1 and —1, and the gap between the first and second
eigenvalue is reduced by a factor of d. A technical problem is that the random
walk on such a bipartite graph results in a periodic Markov chain. We use a
standard trick to get around this problem: reduce all transition probabilities by
a factor of 2, and add a self-loop of probability 1/2 at each vertex. Observe
that the new Markov chain still has G as its underlying graph, but the transition
probability matrix Q = (I + P)/2 now has a stationary distribution.

Let the eigenvalues of Q be 1), ..., 4. Since the identity matrix has all its
eigenvalues equal to 1, it can be verified (see Problem 6.26) that the eigenvalues
of Q are given by

1+ 4;/d)

|
b=

Thus, 1 =4} 243 = - - = 4, = 0 and, assuming that 1, = d — ¢, we have that
A, =1 —€/2d. The eigenvectors of Q can be chosen to form an orthonormal
basis since it is a symmetric matrix. In fact, the first eigenvector e, is the same
as that of 4, ie., 7‘;(1, 1,1,...,1).

Exercise 6.9: Verify that Q is a doubly stochastic matrix. Using the result from
Problem 6.6, conclude that for the transition matrix Q, the stationary distribution is
necessarily the uniform distribution.

We show that the Markov chain defined by Q is “rapidly mixing™ in the
following sense. Starting from any initial distribution, the Markov chain con-
verges to its stationary distribution in a small number of steps. To make this
notion more precise, we first define measure of convergence to the stationary
distribution.

> Definition 6.14: Let ¢! denote the state probability vector of a Markov chain
defined by Q at time ¢ > 0, given any initial distribution ¢®. Let n denote the
stationary distribution of Q. The relative pointwise distance (r.p.d.) of the Markov
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chain at time ¢ is a measure of deviation from the limit and is defined as

t

A(t) = max ‘i'(-)————n—"
i T

Intuitively, the change in A with ¢ measures the rate of convergence to the
stationary distribution, independent of the choice of the initial distribution
q%. There are several types of distance functions defined in the literature for
measuring the difference between two probability distributions; in Problem 6.24,
we explore the connections between the relative pairwise distance and these
other measures.

The next theorem shows that the relative pointwise distance for the random
walk on an expander converges to zero at an exponential rate.

Theorem 6.21: Let Q be the transition matrix of the aperiodic random walk on
a (n,d,c)-expander G with A, < d — €. Then, for any initial distribution q'©, the
relative pointwise distance is bounded as follows:

A(t) < nl's(l'z)‘ < nl.5 (1 _ 56‘3)1? .

PROOF: We know that the distribution of the Markov chain at time ¢ is given
by the following equation:

q° = 490", (6.8)

Now the eigenvectors of Q are chosen to form an orthonormal basis for R".
This implies that we can write ¢® as a linear combination of those vectors, as
follows:

49 => ce. (6.9)

i=1
Combining (6.8) and (6.9), we obtain

n

q° = Xn: ceiQ' = c(A)e;.

=1 i=1

Let £ = R" be the vector space spanned by the first eigenvector e;. This
space contains all scalar multiples of the all-ones vector; the orthogonal space
L* contains all linear combinations of the remaining n — 1 eigenvectors. Then
g% =x+yforsomex € L and y € £L!;in fact, x = c,e; and y = 3o, ciei. Since
x and y are orthogonal, the Pythagoras Inequality (Proposition B.8) implies that
llxl| < llgIl and ||yl < |Ig®I.

Since 4] = 1, xQ = x and we can write

q(‘) = q(O)Qt =(x+ y)Qt =x++ Z ci()‘;)tei-
i=2
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We now obtain the following bounds on the L,-norm of ¢ — x.

g9 —xllh < /nllg? — x| (6.10)

= M) cli)ell (6.11)

=2

= ﬁ\ zn:c,.z(z,-)h (6.12)

=2

< ﬁ\ch(zg)Zr (6.13)
i=2
< \/sz«lZc? (6.14)
=2
< Ay (6.15)
< V() ligOll (6.16)

The inequality (6.13) relies on the fact that 1) has the second largest absolute
value; the inequality (6.15) follows from the fact that y = 3%, cie;; the in-
equality (6.16) is a consequence of the Pythagoras Inequality. Since ¢© is a
probability distribution, its components are all non-negative and sum to 1; thus,
by Proposition B.10, ||¢g©@|| < ||¢@||; = 1. We obtain that

llg? — xIlh < /n(2y)'.

By Problem 6.6 we know that for any doubly stochastic matrix, the stationary
distribution # must be uniform. Since 1, < 1, we know that as t increases,
|lg" — x|| goes to 0 and ¢ converges to x. We conclude that x = x, and that

llg® — =ll; < /n(A5)".
The relative pointwise distance can now be bounded as follows.
g, — =
T

A(t)

max
]

n x max|q;”
]

— |

nx||q" - =,
nx /n(A)

nl.S(ilz)t.

A A

O

Exercise 6.10: For any 0 < § < 1, let T(5) denote the time at which the relative
pointwise distance of the random walk defined by Q first falls below &. Show that
logn'$/é

)< oo
2
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By this exercise, to get a relative pointwise distance that is bounded from
above by an inverse polynomial in n, it suffices to run the random walk for only
a logarithmic number of steps. Notice that this is the best possible bound since
the length of the random walk must be at least the diameter of the expander.
Since our expander has bounded degree, it has diameter Q(logn).

6.8. Probability Amplification by Random Walks on Expanders

Recall the 2-point sampling scheme of Section 3.4. Given an RP algorithm,
which uses n random bits to obtain a probability of error 1/2, this scheme
reduced the probability of error to O(1/t) while using only 2n random bits
and t trials of the algorithm. Even using k-point sampling for k > 2, there
is no hope of achieving a probability of error that is exponentially small in
the number of trials, without using a significantly larger number of random
bits. Also, in Section 5.3 we saw that expander-type graphs could be used
to achieve a stronger probability amplification, but several important issues
remained unresolved in that discussion and in any case that scheme did not
provide the desired exponentially small error probability with a small number.
of random bits. Here we present a related technique that achieves the desired
exponential behavior, even in the case of BPP algorithms, and without any of
the drawbacks of the earlier scheme based on expanders. The version of this
technique that establishes the same result for RP algorithms is slightly easier to
analyze (see Problem 6.29).

Without loss of generality, we modify the standard definition of BPP such
that the probability of error is 1/100; clearly, this can be achieved via O(1)
independent iterations of an algorithm meeting only the standard definition.

» Definition 6.15: The class BPP consists of all languages L that have a random-
ized polynomial-time algorithm A such that for any x € Z°, given a suitably long
random string r,

o x € L = Pr[A(x,r) rejects] < 155.
o x ¢ L = Pr[A(x,r) accepts] < 1 -

Fix an input x, and consider a BPP algorithm .4 that uses n random bits on
inputs of length |x|. Suppose we choose k independent n-bit random strings r;,
..., ', and compute A(x,ry), ..., A(x,r;). By the Chernoff bound, the probability
that the majority of these outputs is incorrect is 1/2%%). Thus, we have made the
error probability exponentially small in k using nk random bits. The probability
amplification problem is that of achieving this error probability while using the
minimum possible number of random bits. What is the minimum number of
random bits required for the exponentially small error probability of 1/2¢?

Consider forming a crude estimate as follows. Imagine that a single execution
of the algorithm consumes n random bits and delivers one bit as the result of
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execution (ie., a decision on the membership of x in L); it appears plausible
that n — 1 random bits remain available for future executions of the algorithm.
Intuitively then, we should not have to use more than n+ k — 1 random bits for
k repeated executions of the algorithm. The following scheme comes very close
to realizing this intuition, using as it does n + O(k) bits.

Consider the (N, 7, 2a)-expander family described in Section 6.7.1. We assume
that n is odd; otherwise we can increase by one the number of random bits
used by A by throwing in a dummy random bit. Choose m = 2"1/2 gnd
N =2m? = 2", and label each vertex with a distinct sequence of bits from {0, 1}".
Let A4 be the adjacency matrix of the resulting expander. Let Q = (I + 4/7)/2
be the probability transition matrix of the ergodic Markov chain obtained by
performing a random walk on this graph, with a self-loop of probability 1/2
at each vertex. We assume that the random walk starts at a uniformly chosen
initial vertex. Denote by Xo, X, ... the states of the resulting Markov chain.
Note that each X; corresponds to a particular setting of the random bits used
by A

Choose a positive integer f such that lg < 1/10, where 4; is the ith largest
eigenvalue of Q. Since the graph is an expander, 4, is bounded away from 1
and we are guaranteed that a value of § that is O(1) will suffice.

Given the output from the random walk process described above, the prob-
ability amplification scheme works as follows. For 0 < i < 7k, let r; = Xig.
Run the algorithm A(x,*) using these 7k different choices of random inputs.
Declare the majority of these 7k YES/NO decisions to be the final decision;
for convenience, we assume that k is odd. We will show that the resulting
decision is wrong with probability at most 1/2%. Note that the total num-
ber of random bits used is n + O(k): we need n bits to choose the starting
vertex of the random walk, and 4 bits for each of the 7kf subsequent steps
of the random walk. Also, the locally defined neighborhood structure of the
Gabber-Galil expander has the crucial advantage that we do not need to ex-
plicitly construct the entire graph, whose size is exponential in n (the number
of random bits given to .A). In particular, given the index for any vertex in the
expander, it is possible to compute the indices of the neighboring vertices in
time polynomial in the length of the index, ie., n. This suffices for the purposes
of obtaining a polynomial time implementation of each step of the random
walk.

The intuition behind this scheme is as follows. We know that the random
walk on an expander is rapidly mixing. In other words, given any starting vertex,
after a small number of steps we expect the random walk to be at a uniformly
distributed vertex independent of the choice of the initial vertex. We can view
the above process as using the composition of 7k different random walks, each
generating a different random string r;. The catch here is that each of these
smaller random walks has length = O(1), whereas we would require O(log N)
steps to get close to the stationary distribution. On the other hand, we choose
the initial vertex according to the stationary distribution, and this should work
in our favor.
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Let us denote the probability distribution vector for r; = X;5 as p%). Define
B = QF; this is the transition matrix for the Markov chain corresponding to the
sequence of r;’s. We have that p®) = pO B’ where p© is the uniform distribution
that we start with.

Let W denote the set of witnesses for the input x. In other words, W = {r €
{0,1}" | A(x,r) is correct}. We are guaranteed that [W| = 0.99N. The set of
non-witnesses has cardinality [W| < 0.01N. We define the 0-1 N x N diagonal
matrix W such that W; = 1 if and only if the ith vertex corresponds to a string
that is a witness for x; similatly, the 0-1 N x N diagonal matrix W = I — W.
The reader is invited to verify that |[p® W ||, and ||pY W ||, are the probabilities
that r; is a witness or a non-witness, respectively. This is because the linear
transformation W zeros out the entries corresponding to the non-witnesses,
leaving the others untouched; the transformation W does the converse. ’

Consider the sequence of strings ry, ..., r%. Let the event sequence of matrices
S =(Sy,...,8%) € {W,W}™ be such that S; = W if and only if r; € W. Thus,
S encodes the pattern of errors in the various executions of the algorithm. The
following lemma is a direct consequence of these definitions.

Lemma 6.22: For any fixed event sequence S,

Pr[S occurs] = ||p*/(BS1)(BS2) - - (BSw-1)(BSu)|lr-

The proof of the next lemma is deferred for the moment.

Lemma 6.23: For all vectors p € RY,
1. |[pBW|| < |Ipll,
2. ||pBW|| < ilipll-

We now prove that this probability amplification scheme gives the desired
error probability, and then we complete the analysis by giving the proof of
Lemma 6.23.

Theorem 6.24: The probability that the majority of the outputs A(x,r), ...,
A(x,r) is incorrect is at most 1/2*.

PROOF: Note that the majority of the outputs is incorrect only if the event
sequence S has more than half of its elements equal to W. Fix any particular
S whose elements contain a majority of W’s, say k > 7k/2 of them. By
Lemma 6.22,

Pr[S occurs] = |[p©(BS,)(BS2)- - (BSn-1)(BS%)Ix (6.17)
< /N|p©(BS,)(BS;) - (BS%-1)(BS%)| (6.18)
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IA

JN (%) el (6.19)
1 Tk/2
< VR(3) 1o (6.20)

where the inequality (6.19) follows from a repeated application of Lemma 6.23.
Since we chose p® to be uniform on the N vertices, it is clear that its L, norm
is exactly 1/ \/ﬁ Finally, using the overestimate that the number of sequences
S with a majority of W’s is at most 27, we obtain

N 1\ *2
Pr[Majority vote is incorrect] < 27 /N (§> 1Pl

27k
= wwn
1
< o

We complete the analysis by giving the proof of Lemma 6.23.

Proof of Lemma 6.23: Recall that the eigenvalues of Q are all in the interval
[0,1] with 4, = 1 and lg < 1/10. Let e, ..., ey be an orthonormal set of

eigenvectors corresponding to these eigenvalues. The vector p can be expressed as
N N

i=1 Ciei; further, ||pl| = /3.1, &

a linear combination of the eigenvectors, say 3 ie1 €

To prove the first part of the lemma, note that |[pBW|| < ||pB]||. This
is because the diagonal matrix W only has 1’s on its diagonal, and this can
zero out only some of the components of the vector pB, thereby decreasing its
Lp-norm. Moreover, pB = "N cie;B = S°N  cife;. We thus have

N N N
lPBWII < lIpBIl = IS ciibeill = chgggﬂ < ch,.z,

=] =1 =1

The last inequality makes use of the fact that each 4; lies in [0, 1]. Since the last
expression is ||p||, we obtain the desired result.

Consider now the second part of the lemma. Let us decompose p = x + ,
where x = cje; and y = Z.iz cie;. By the Pythagoras Inequality (Proposition B.8),
|lx[l < |lp|l and ||y|| < ||p||. We first derive independent inequalities for x and y.

Observe that xB = c;e;B = c;A1e; = x, since A; = 1. We claim that
lxW|| < ||x||/10. Recall that W is a 0-1 diagonal matrix, where the fraction
of non-zero entries on its diagonal is no more than 1/100. Therefore, it zeros
out all but a 1/100 fraction of the entries in x. Moreover, x is a scalar multiple
of the all-ones vector, and so all its components are equal. Reducing all but

a 1/100 fraction of its components to 0 will reduce its L,-norm by a factor of
J100. Thus, ||xBW|| = |[xW|| < ||x||/10.
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A similar inequality can be obtained for y as follows. Observe that yB =
SN ceB =N, c.ife. It is also clear that ||yBW)|| < ||yB|| since W is only
zeroing out some entries in the vector yB. Since lg < 1/10 corresponds to the
second largest eigenvalue,

N
_ 1
BW| < 2 < 2wl
lyBW|| < < Tl

=2

Using the triangle inequality, we obtain that
— — — 1
lpBW|| < ||xBW|| + |lyBW|| < 10 (1l + 11pll) -

Finally, applying inequalities ||x|| < ||p|| and ||y|| < ||p||, we obtain the desired
bound.

Notes

Aldous [13] is a comprehensive source for random walks on graphs, as well as some
advanced algorithmic applications that are beyond the scope of this book. The 2-
SAT algorithm of Section 6.1 is due to Papadimitriou [325]. McDiarmid [303] has
independently given a number of applications of this technique to coloring the vertices
of a hypergraph. An excellent source for basic Markov chain theory is the book
by Kemeny, Snell, and Knapp [253]. The relationship of random walks to electrical
networks has been known for over a century. Doyle and Snell [130] demonstrate many
interesting relations between random walks in graphs and electrical networks. Their
work deals with finite as well as infinite graphs and highlights many tools from electrical
network analysis that are useful in the study of random walks. Theorem 6.6 is due to
Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Tetali [396] gives an interesting
refinement and generalization of Theorem 6.6. The Short-cut Principle is due to Rayleigh
and is described in [130, 301].

Theorem 6.8 is due to Aleliunas, Karp, Lipton, Lovasz, and Rackoff [15] and builds
on work of Gobel and Jagers [168]. A version of Theorem 6.12 is derived in [15]; our
presentation follows Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Our proof
of Theorem 6.9 is also taken from [89], although in fact a stronger version of Theorem 6.9
appears earlier in work of Matthews [296, 297]. Matthews gives an elegant approach
to proving upper and lower bounds on cover times in terms of hitting times (this is the
subject of Problem 6.9). Broder and Karlin [85] give a number of relations between
the cover time of a graph and the second-largest eigenvalue of its adjacency matrix.
Undirected s—t connectivity is a natural abstraction of many graph search procedures;
in addition, it has applications to complexity theory [276]. Borodin, Cook, Dymond,
Ruzzo, and Tompa [74] have given a Las Vegas algorithm for USTCON whose running
time is polynomial in n. The idea of using a probabilistic counter for a space-efficient
algorithm for directed s—t connectivity is due to Gill [166]. The reader may refer to the
paper by Borodin, Ruzzo, and Tompa [78] for further material on universal traversal
sequences.

The books by Biggs [60] and Cvetkovic, Doob, and Sachs [117] provide comprehensive
treatments of algebraic graph theory. The article by Bien [59] surveys the definitions,
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properties, and explicit construction of expanders, as well as many other related classes
types of graphs such as magnifiers. The co-NP-completeness of the problem of verifying
the expansion property in graphs is due to Blum, Karp, Vornberger, Papadimitriou, and
Yannakakis [67]. The explicit expanders introduced in Section 6.7.1 are due to Gabber
and Galil [158]. Theorems 6.16 and 6.17 are due to Alon [17] and are extensions of the
earlier work of Tanner [389] and Alon and Milman [23]. Theorem 6.19 is due to Donath
and Hoffman [128], and Corollary 6.20 due to Alon and Milman [23]. The rapid mixing
property of random walks was first exploited by Ajtai, Komlos, and Szemerédi [9] in
a complexity-theoretic setting. The result on probability amplification is due to Cohen
and Wigderson [108], and independently due to Impagliazzo and Zuckerman [205].
The former paper is also a good source for the known results on expanders and their
applications. Gillman [167] bounds the probability that in a random walk on an
expander, the frequency of visits to any subset of vertices deviates substantially from the
sum of the stationary probabilities of those vertices. Dinwoodie [126] provides further
results along these lines.

Problems

6.1 Consider a random walk on the infinite line. At each step, the position of the
particle is one of the integer points. At the next step, it moves to one of the
two neighboring points equiprobably. Show that the expected distance of the
particle from the origin after n steps is ©(,/n).

6.2 Consider the randomized algorithm for 2-SAT discussed in Section 6.1. Show
that the analysis is tight, in that there exist satisfiable 2-SAT formulas with n
variables such that the expected time for this algorithm to find a satisfying
truth assignment is Q(n?).

6.3 Consider a 71-dimensional random walk with a reflecting barrier, which is
defined as follows. For each natural number i, there is a state i. At state 0,
with probability 1 the walk will move to state 1. At every other state i > 0,
the walk will move to state i + 1 with probability p and to state i — 1 with
probability 1— p. Prove the following for the resulting Markov chain:

(a) For p > 1, each state is transient.

(b) For p = 1, each state is null persistent.

(c) For p < 1, each state is non-null persistent.
2

6.4 Consider a Markov chain with the states 0, 1, ..., N. This Markov chain
induces a sequence of random variables X,, X;, ..., each of which takes an
integer value between 0 and N, i.e. X; is the state at time t. Suppose this
sequence of random variables forms a martingale.

(a) A state q is said to be an absorbing state if the transition probability
P = 1. Identify all the absorbing states and the transient states of this
Markov chain.

(b) Given that the initial state of this Markov chain is i, compute the probability
of being absorbed into each of the absorbing states.
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6.5

6.7

PROBLEMS

(Due to C.J.H. McDiarmid [303].) Let G be a 3-colorable graph. Consider
the following algorithm for coloring the vertices of G with 2 colors so that
no triangle of G is monochromatic. The algorithm begins with an arbitrary
2-coloring of G. While there is a monochromatic triangle in G, it chooses
one such triangle, and changes the color of a randomly chosen vertex of that
triangle. Derive an upper bound on the expected number of such recoloring
steps before the algorithm finds a 2-coloring with the desired property.

An n x n matrix P is said to be stochastic if all its entries are non-negative
and for each row i, )~ P; = 1. It is said to be doubly stochastic if, in addition,
Zi P,'l' = 1

(a) Show that for any stochastic matrix P, there exists an n-dimensional vector
n with non-negative entries such that >, 7, =1 and P = .

(b) Suppose that the transition probability matrix P for a Markov chain is
doubly stochastic. Show that the stationary distribution for this Markov chain
is necessarily the uniform distribution.

Consider a random walk on a graph whose edges have positive real costs:
the interpretation of these costs is that every time the random walk traverses
an edge (ij), it incurs a given cost ¢;; > 0; ¢;; = ¢;;, and ¢; = 0. Consider the
random walk on a graph G with m edges that have such costs associated with
them, with transition probabilities

ey
] Zk 1/Cik :
Let S,, denote the expected total cost incurred by a walk that begins at vertex

v and terminates upon returning to v after having visited v at léast once.
Show that

P

Sw =2mR,.,

where R,, is the effective resistance between node v and node v in an elec-
trical network whose underlying graph is G, and where the branch resistance
between j and j is ¢;;.

In a connected graph G, an edge is called a bridge if the removal of the edge
disconnects the graph. Let G be a connected graph with n vertices and m
edges. Let (u,v) be any edge in G. For the simple random walk on G, show
that

huy + hyy = 2m
if and only if the edge (u, v) is a bridge.

(Due to P.C. Matthews [296, 297].) The goal of this problem is to derive
a cleaner version of Theorem 6.9. Consider a random permutation of the
vertices of a connected graph G, and let J; denote the ith vertex in this
permutation. For 1 < k < n, define F, = max; T,, to be the time by which all
of {i.da, ..., Jx} have been visited (in some order). Let L, be the last of the
vertices in {J;,J, ..., Jx} to be visited. Let &(ij) be the delta function, defined
to be 1if i =j and 0 otherwise.
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6.11

6.12

6.13

6.14

6.15

6.16
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(a) Show that conditioned on the sequence of vertices visited until time F,_,,
and for a fixed set {Ji, Ja,..., i},

E[Fy — Fi—1] = 8 (Lydi )P,y

(b) Hence infer that

E[Fy —Fi]l 2 m’!n hiiPl'[Lk = Ji].
¥

(c) Now use the fact that the J; are randomly ordered to show that

mlnCu(G) = Hn_1 min h,'l'.
u i#f

(d) Repeat the above arguments to obtain an upper bound on cover time:

maxC,(G) < Hn_1 nlmgx hi;.
/)

By showing that the resistance of the complete graph K, is ©(1/n), show that
the upper bound of Theorem 6.9 cannot be improved in general.

Let G be a regular graph with every vertex having degree d. Show that Cg is
O(n?logn).

Remark: This shows that regular graphs have lower cover times than graphs
that have large disparities in their vertex-degrees (such as the lollipop graph,
which had C.,(G) as large as ©(n®)). In fact, using a more careful argument,
Kahn, Linial, Nisan, and Saks [224] show that for every regular graph, C; is
O(n?).

The result in Problem 6.11 can be improved for dense regular graphs. Let G
be a regular graph with every vertex having degree > 2n/3. Show that Cg; is
O(nlogn). Complement this upper bound by showing that for d < n/2 such
that d 4 1 divides n, there exists a d-regular graph whose cover time is Q(n?).
Derive an upper bound on U(d, n) for d > 2n/3.

Consider the two-dimensional mesh: a graph in which each vertex is a point
with integer coordinates in the plane, all coordinates being in the interval
[1.n'/2]. An edge connects two vertices if they differ in one coordinate by 1.
Show that the maximum commute time in this graph is ©(n logn).

Consider next the three-dimensional mesh: a graph in which each vertex is
thought of as a point with integer coordinates in three dimensions, all coor-
dinates being in the interval [1,n'/?]. Show that the cover time for this graph
is O(nlogn). Derive upper bounds for the lengths of the universal traversal
sequences for labeled two-dimensional and three-dimensional meshes.

(a) Show that for n = 3 and d = 2, there exists a universal traversal sequence
U(d, n) of length 3.

(b) What is the smallest UTS you can construct for the case n = 4 and d = 2?
Show that the expected time for a random walk to visit every vertex of a

strongly connected directed graph is not bounded above by any polynomial
function of n, the number of vertices. In other words, construct a directed
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6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

PROBLEMS

graph that is strongly connected and where the expected cover time is super-
polynomial.

Show that any probabilistic, log-space, polynomial-time Turing machine can
be simulated by a deterministic, non-uniform, log-space, polynomial-time
Turing machine. (Hint: Use the ideas of Section 2.3.)

(Due to D. Zuckerman [424].) Let G(V, E) be a graph with n vertices such that
for some constant a > 0 and every set S < V with n/2 vertices,

{weV|3dves, (v,w)eE}Iz—g--i-an.

For any positive integer k, let W,, ..., W, be subsets of V of size at least
(1 —a)n each. Show that there exists a path (v,...,v,) in G such that, for
1Si$k,V,'€W/. .

(Courant-Fisher equalities.) Let A be an n x n symmetric matrix with real
entries, and let e, denote the eigenvector corresponding to the first eigenvalue
Ay. Show that .

(1) Ay = max{x" 4x}, where the max is taken over x such that ||x|| = 1.

(2) A, = min{x" Ax}, where the min is taken over x such that ||x|| = 1.

(3) A2 = max{x" Ax}, where the max is taken over x such that ||x|| = 1 and
xTe,=0.

Let G(V, E) be a connected, d-regular, undirected (multi)graph with n vertices.
Show that for the adjacency matrix 4(G), A, =d and ¢, = 7‘;(1, 1,1,..., 1).

Let G(V, E) be a connected, d-regular, undirected (multi)graph. Show that for
the adjacency matrix 4(G), each eigenvalue A; has absolute value bounded
by d.

Show that a connected graph G with maximum eigenvalue A, is bipartite if
and only if —A, is also an eigenvalue.

Show that a graph G is bipartite if and only if for every eigenvalue A, there is
an eigenvalue —A of the same multiplicity.

Consider the setting of Definition 6.14 and the following measures of deviation
from the limit. Let S denote the set of states of the Markov chain under
consideration. The total variation distance is defined as

ANl — ty _ .
At)=max|Y g = ml.
ie€T ieT

(a) Define the L, distance as

t
|mm—ﬂh=§:mﬁ—mL
i

Determine the relation between the L, distance and the total variation distance.

(b) Suppose that the relative pointwise distance is bounded by € at time t.
Give the tightest bound you can on the total variation distance at time t.

(c) Suppose that the total variation distance at time t is bounded by €. What
can you say about the relative pointwise distance at time t?
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6.26

6.27

6.28

6.29
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Does Theorem 6.21 hold true if the relative pointwise distance is replaced by
the total variation distance defined in Problem 6.24?

Let G be d-regular, and define the matrix Q = (I + A(G)/d)/2. Show that if the
ith eigenvalue of A(G) is A;, then the ith eigenvalue of Q equals (1 +4;/d)/2.

(Due to N. Alon and F.R.K. Chung [20].) Let G(X,Y,E) be a d-regular, con-
nected, bipartite (multi)graph. Show that for any sets S < X and 7 c Y, the
number of edges connecting S and T is at least

ASHIT]
n
(Hint: Consider the adjacency matrix of G premultiplied by the characteristic
vector of S, and postmultiplied by the characteristic vector of T. (The char-
acteristic vector of S is a vector of dimension equal to the cardinality of S,
with a 1 in every position corresponding to a member of S, and 0 everywhere
else.)

—A2\/ISIITI.

Remark: Note that in a random d-regular graph, the expected number of
edges from S to T is d|S||T|/n, which is A4|S||T|/n. This result can be viewed
as bounding the deviation from the behavior of a random graph in terms of
the eigenvalue A, thereby adding to the intuition that an expander “looks”
like a random graph.

(Due to M. Ajtai, J. Komios, and E. Szemerédi [9].) Let G be an (n,d,c)-
expander. Show that there exist constants 8, § > 0 such that for any “bad”
set of vertices B of cardinality at most 8n, the foliowing property holds: the
probability that, starting from a vertex chosen uniformly at random, a random
walk of length / does not visit any vertex outside of B is at most exp(—d&7).
Exactly what properties of G are essential for your proof of this fact?

Using the result in Problem 6.28, obtain a probability amplification result for
RP aigorithms similar to that obtained in Section 6.8 for BPP algorithms.

Remark: While it is an easy consequence of the result for BPP algorithms,
this problem requires you to derive a direct proof based only on the property
stated in Problem 6.28.
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CHAPTER 7

Algebraic Techniques

SoME of the most notable results in theoretical computer science, particularly
in complexity theory, have involved a non-trivial use of algebraic techniques
combined with randomization. In this chapter we describe some basic random-
ization techniques with an underlying algebraic flavor. We begin by describing
Freivalds’ technique for the verification of identities involving matrices, polyno-
mials, and integers. We describe how this generalizes to the Schwartz-Zippel
technique for identities involving multivariate polynomials, and we illustrate this
technique by applying it to the problem of detecting the existence of perfect
matchings in graphs. Then we present a related technique that leads to an effi-
cient randomized algorithm for pattern matching in strings. We conclude with
some complexity-theoretic applications of the techniques introduced here. In
particular, we define interactive proof systems and demonstrate such systems for
the graph non-isomorphism problem and the problem of counting the number of
satisfying truth assignments for a Boolean formula. We then refine this concept
into that of an efficiently verifiable proof and demonstrate such proofs for the
satisfiability problem. We indicate how these concepts have led to a completely
different view of classical complexity classes, as well as the new results obtained
via the resulting insight into the structure of these classes.

Most of these techniques and their applications involve (sometimes indirectly)
a fingerprinting mechanism, which can be described as follows. Consider the
problem of deciding the equality of two elements x and y drawn from a large
universe U. Under any “reasonable” model of computation, testing the equality
of x and y then has a deterministic complexity of at least log |U|. An alternative
approach is to pick a random mapping from U into a significantly smaller
universe V in such a way that there is a good chance that x and y are identical
if and only if their images are identical. The images of x and y are their
fingerprints, and their equality can be verified in log|V| time by comparing the
fingerprints.

Throughout this chapter we will be working over some unspecified field IF.
Part of the reason we do not explicitly specify the underlying field is that
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typically the randomization will involve uniform sampling from a finite subset
of the field; in such cases, we do not have to worry about whether the field is
finite or not. The reader may find it helpful to think of IF as the field @ of the
rational numbers; when we restrict ourselves to finite fields, it may be useful to
assume that IF is Z,, the field of integers modulo some prime number p. We will
use the unit-cost RAM model from Section 1.5.1 to measure the running time
of an algorithm over the field IF. In this model each field operation (addition,
subtraction, multiplication, division, comparison, or choosing a random element)
takes unit time, provided the operand magnitude is polynomially related to the
input size. For example, over the field of rationals we will assume that operations
involving O(log n)-bit numbers take unit time. This is not completely realistic
as arithmetic operations are significantly more expensive in practice. However,
in most applications described below this small additional factor in the running
time is inconsequential, and we would get essentially the same result in the more
expensive model.

7.1. Fingerprinting and Freivalds’ Technique

We illustrate fingerprinting by describing a technique for verifying matrix mul-
tiplication. The fastest known algorithm for matrix multiplication runs in time
O(n**76), which improves significantly on the obvious O(n’) time algorithm but
has the disadvantage of being extremely complicated. Suppose we are given an
implementation of this algorithm and would like to verify its correctness. Since
program verification is a difficult task, a reasonable goal might be to verify
the correctness of the output produced on specific executions of the algorithm.
(Such verification on specific inputs has been studied in the theory of program
checking.) In other words, given n x n matrices A4, B, and C over the field F,
we would like to verify that AB = C. We cannot afford to use a simpler but
slower algorithm for matrix multiplication to verify the output C, as this would
defeat the purpose of using the fast matrix multiplication algorithm. Moreover,
we would like to use the fact that we do not have to compute C; rather, our
task is to verify that this product is indeed C. The following technique, known
as Freivalds’ technique, provides an elegant solution. It gives an O(nz) time
randomized algorithm with a bounded error probability.

The randomized algorithm first chooses a random vector r € {0,1}"; each
component of r is chosen independently and uniformly at random from 0 and 1,
the additive and multiplicative identities of the field IF. We can compute x = Br,
y = Ax = ABr, and z = Cr in O(n?) time; clearly, if AB = C then y = z.
We now show that for AB # C, the probability that y # z is at least 1/2. The
algorithm errs only if AB # C but y and z turn out to be equal.

Theorem 7.1: Let A, B, and C be n x n matrices over IF such that AB + C.
Then for r chosen uniformly at random from {0,1}", Pr[ABr = Cr] < 1/2.
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PROOF: Let D = AB — C; we know that D is not the all-zeroes matrix. We
wish to bound the probability that y = z, or, equivalently, the probability that
Dr = 0. Without loss of generality, we may assume that the first row in D has
a non-zero entry, and that all the non-zero entries in that row precede the zero
entries. Let d be the vector consisting of the entries from the first row in D, and
assume that the first k > O entries in d are non-zero. We concentrate on the
probability that the inner product of d and r is non-zero; since the first entry in
Dr is exactly d”r, this yields a lower bound on the probability that y  z.
Now, the inner product d”r = 0 if and only if

k
Y=L} (7.1)

dy
We invoke the Principle of Deferred Decisions (Section 3.5) and assume that all
the other random entries in r are chosen before r;. Then the right-hand side
of (7.1) is fixed at some value v € IF. Since r, is uniformly distributed over a set
of size 2, the probability that it equals v cannot exceed 1/2. a

Exercise 7.1: Verify that there is nothing magical about choosing r to have only
entries drawn from {0, 1}. In fact, any two elements of IF may be used instead.

Thus, in O(n?) time we have reduced the matrix product verification problem
to that of verifying the equality of two vectors, and the latter can be done in
O(n) time. This gives an overall running time of O(n?) for this Monte Carlo
procedure. The probability of error can be reduced to 1/2* by performing k
independent iterations. The following exercise gives an alternative approach to
reducing the probability of error.

Exercise 7.2: Suppose that each component of r is chosen uniformly and indepen-
dently from some subset S < IF. Show that the probability of error in the verification
procedure is no more than 1/|8|. Compare the usefuiness of the two different methods
for reducing the error probability.

Freivalds’ technique is applicable to verifying any matrix identity X = Y. Of
course, if X and Y are explicitly provided, just comparing their entries takes
only O(n?) time. But as in the case of matrix multiplication, there are situations
where computing X explicitly is expensive (or even infeasible, as we will see in
Section 7.8), whereas computing Xr is easy.

7.2. Verifying Polynomial Identities

Freivalds’ technique is fairly general in that it can be applied to the verification
of several different kinds of identities. In this section we show that it also applies
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to the verification of identities involving polynomials. Two polynomials P(x)
and Q(x) are said to be equal if they have the same coefficients for corresponding
powers of x. Verifying identities of integers, or, in general, strings over any fixed
alphabet, is a special case since we can represent any string of length n as a
polynomial of degree n. This is achieved by treating the kth element in the string
as the coefficient of the kth power of a symbolic variable.

We first consider the polynomial product verification problem: given polyno-
mials P;(x), P»(x), Py(x) € IF[x], verify that Py(x) x P,(x) = P3(x). Assume that
the polynomials P;(x) and P,(x) are of degree at most n; then P3(x) cannot have
degree exceeding 2n. Polynomials of degree n can be multiplied in O(nlogn)
time using Fast Fourier Transforms, whereas the evaluation of a polynomial at
a fixed point requires O(n) time.

The basic idea underlying the randomized algorithm for polynomial product
verification is similar in spirit to the algorithm for matrices. Let § = IF be a set
of size at least 2n+ 1. Pick r € S uniformly at random and evaluate P,(r), P»(r),
and P;(r) in O(n) time. The polynomial identity P;(x)P,(x) = P3(x) is declared
correct unless Py(r)P,(r) # P3(r). This algorithm errs only when the polynomial
identity is false but the evaluation of the polynomials at r fails to detect this.

Define the polynomial Q(x) = Pi(x)P,(x) — P3(x) of degree 2n. We say that
a polynomial P is identically zero, or P = 0, if all of its coefficients are zero.
Clearly, Q(x) is identically zero if and only if the polynomial product is correct.
We complete the analysis of the randomized verification algorithm by showing
that if Q(x) # 0, then with high probability Q(r) = Py(r)Py(r) — Ps(r) # O.
Elementary algebra tells us that Q can have at most 2n distinct roots. Hence,
unless Q = 0, not more that 2n different choices of r € S will have Q(r) = 0.
Thus, the probability of error is at most 2n/|S|. This probability can be reduced
by either using independent iterations of the entire algorithm or by choosing a
sufficiently large set S.

In the case where FF is an infinite field (such as the reals), the error probability
can be reduced to 0 by choosing r uniformly from the entire field IF. Unfortu-
nately, this requires an infinite number of random bits! We could also use a
deterministic version of this algorithm where each choice of r € 8§ is tried once.
But this requires 2n + 1 different evaluations of each polynomial, and the best
algorithm for this requires ®(nlog’n) time, which is more than the time required
to actually multiply P;(x) and P,(x).

This verification procedure is not restricted to polynomial product verification.
It is a generic procedure for testing any polynomial identity of the form P;(x) =
P;(x), by transforming it into the identity Q(x) = P;(x) — P,(x) = 0. Obviously,
if the polynomials P, and P, are explicitly provided, we can perform this task
deterministically in O(n) time by comparing corresponding coefficients. The
randomized algorithm will take as long to just evaluate the polynomials at
a random point. However, the verification procedure pays off in situations
where the polynomials are provided implicitly, such as when we have only a
“black box” for computing the polynomial, with no means of accessing its
coefficients. There are also situations where the polynomials are provided in
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a form where computing the actual coefficients is exceedingly expensive. One
example is provided by the following problem concerning the determinant of a
symbolic matrix; in fact, this problem will turn out to be the same as that of
verifying a polynomial identity involving multivariate polynomials, necessitating
a generalization of the idea used for univariate polynomials.

Let M be an n x n matrix. The determinant of M is defined by

n
det(M) =Y sgn(x) [ [ M, (7.2)

neS, i=1
where S, is the symmetric group of permutations of size n, and sgn(r) is the
sign of the permutation n. Recall that sgn(n) = (—1)!, where t is the number of
pairwise element exchanges required to transform the identity permutation into
n. Although the determinant has n! terms, it can be evaluated in polynomial

time given explicit values for the matrix entries M;;.

» Definition 7.1: The Vandermonde matrix M(x,..., x,) is defined in terms of the

indeterminates x;, ..., x, such that M;; = x/~', that is
( 1 x x} ... xp! \
1 x; x3 ... xp!
M=
\ 1 x, x2 ... xr! )

Vandermonde’s identity states that for this matrix M, det(M) = [] j<i(Xi = Xj)-
Suppose that we did not have a proof of this identity and would like to verify it
efficiently. Computing the determinant of this symbolic matrix is prohibitively
expensive since it has n! terms. Instead, we will formulate this as the problem of
verifying that the polynomial Q(xy,...,x,) = det(M)—]] j<i(Xi —x;) is identically
zero. Drawing upon our experience with Freivalds’ technique, it seems natural to
substitute random values for each x; and check whether Q = 0. The polynomial
Q is easy to evaluate at a specific point since the determinant can be computed
in polynomial time for specified values of the variables x;,..., x,.

We formalize this intuition by extending the analysis of Freivalds’ technique
for univariate polynomial identity verification to the multivariate case. In a
multivariate polynomial Q(x;,...,x,), the degree of any term is the sum of the
exponents of the variables, and the total degree of Q is the maximum of the
degrees of its terms.

Theorem 7.2 (Schwartz-Zippel Theorem): Let Q(xy,...,x,) € F[xy,...,x,] be
a multivariate polynomial of total degree d. Fix any finite set S < IF, and let
ri,...,Ts be chosen independently and uniformly at random from S. Then

d

PriQ(ry,...,ra) = 0] Q(x1,...,xs) #0] < S
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prROOF: The proof is by induction on the number of variables n. The base
case n = 1 involves a univariate polynomial Q(x;) of degree d, and by the
preceding discussion we already know that for Q(x;) # 0, the probability that
Q(ry) = 0 is at most d/|S|. Assume now that the induction hypothesis is true
for a multivariate polynomial with up to n — 1 variables, for n > 1.

Consider the polynomial Q(x;,...,x,), and factor out the variable x, to obtain

k
Q(X1, v ’xn) = in]Qi(xZ’ s ’xn)’
i=0

where k < d is the largest exponent of x,; in Q. (Assume that x; affects Q, so that
k > 0). The coefficient of x}, Qi(x2,...,xn), is not identically zero by our choice
of k. Since the total degree of Q; is at most d — k, the induction hypothesis
implies that the probability that Qi(r2,...,r,) = 0 is at most (d — k)/|S|.
Suppose that Qy(r2,...,r») # 0. Consider the following univariate polynomial:

k
q(x1) = Q(x1, 72,73, 1) = 3 X1 Qilr2, ..., 7).
i=0

The polynomial g(x;) has degree k, and it is not identically zero since the
coefficient of x! is Qi(ra,...,rs). The base case now implies that the probability
that q(ry) = Q(r1,72,...,r,) evaluates to O is at most k/|S)|.

Thus, we have shown the following two inequalities.

PriQi(rs,...,) =0] < "_'S‘_"f;
VPr[Q(rer’---’rn) =0 | Qk(rz,...,r,,) % 0] < l_g-i'

Invoking the result in Exercise 7.3, we find that the probability that
Q(r1,72,...,r,) = 0 is no more than the sum of these two probabilities, which is
d/|S|. This completes the induction. O

Exercise 7.3: Show that for any two events £, and &,

Pr(€1] < P& | £5] + Pr(E,).

The randomized verification procedure for polynomials has one potential
problem. In the case of infinite fields, the intermediate results in the evaluation
of the polynomial could involve enormous values. This problem can be avoided
in the case of integers by performing all the computations modulo a small
random prime number, without adversely affecting the error probability. We
will return to this issue in Example 7.1.

As suggested in Problem 7.1, Theorem 7.2 can be viewed as a generalization
of Freivalds’ technique from Section 7.1. A generalized version of this theorem
is described in Problem 7.6.
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7.3. Perfect Matchings in Graphs

We illustrate the power of the techniques of Section 7.2 by giving a fascinating
application. Consider a bipartite graph G(U, V,E) with the independent sets of
vertices U = {u,...,u,} and V = {v,,...,v,}. A matching is a collection of edges
M < E such that each vertex occurs at most once in M. A perfect matching
is a matching of size n. Each perfect matching M in G can be viewed as a
permutation from U into V. More precisely, the perfect matchings in G can be
put into a one-to-one correspondence with the permutations in S,, where the
matching corresponding to a permutation n € S, is given by the pairs (u;, vx()),
for 1 <i < n. The following theorem draws a connection between determinants
and matchings.

Theorem 7.3 (Edmonds’ Theorem): Let A be the n x n matrix obtained from
G(U,V,E) as follows:
A = { Xij (u,-,vj) €E
v 0 (u,-, Uj) ¢ E
Define the multivariate polynomial Q(x11,X12,...,Xm) as being equal to det(A).
Then, G has a perfect matching if and only if Q # 0.

Remark: The matrix of indeterminates is sometimes referred to as the Edmonds
matrix of a bipartite graph. We do not explicitly specify the underlying field
because any field will do for the purposes of this theorem.

PROOF: The determinant of A4 is given by

det(A) = Z sgn(n)Al,,,(l)Az,,,(z) . An,n(n)~
neS,
Since each indeterminate x;; occurs at most once in A, there can be no cancella-
tion of the terms in the summation. Therefore the determinant is not identically
zero if and only if there is a permutation = for which the corresponding term in
the summation is non-zero. The latter happens if and only if each of the entries
Aiz), for 1 <i < n, is non-zero. This is equivalent to having a perfect matching
(the one corresponding to =) in G. |

We can now construct a simple randomized test for the existence of perfect
matchings. Using the algorithm from Section 7.2, we can determine whether
the determinant is identically zero or not. The time required is dominated by
the cost of computing a determinant, which is essentially that of multiplying
two matrices. As it turns out, there are algorithms for constructing a maximum
matching in a graph in time O(mﬁ), where m = |E|. Since the time to compute
the determinant exceeds m,/n for small m, the payoff in using this randomized
decision procedure is marginal at best. However, we will see later (in Section 12.4)
that this decision procedure is essential for devising a fast parallel algorithm for
computing a maximum matching in a graph. In Problem 7.8 we will see that
this technique also applies to the case of non-bipartite graphs.
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7.4. Verifying Equality of Strings

We have seen that the idea of fingerprinting is useful in verifying identities of
algebraic objects. In this section we introduce a different form of fingerprinting,
motivated by the problem of testing the equality of two strings. As mentioned
earlier, the string equality verification problem can be reduced to that of verifying
polynomial identities. However, the new type of fingerprint introduced here has
important benefits when extended to the pattern matching problem discussed
later in Section 7.6.

Suppose that Alice maintains a large database of information. Bob maintains
a second copy of the database. Periodically, they must compare their databases
for consistency. Because transmission between Alice and Bob is expensive, they
would like to discover the presence of an inconsistency without transmitting
the entire database between them. Denote Alice’s data by the sequence of
bits (ay,...,a,), and Bob’s by the sequence (by,...,b,). It is clear that any
deterministic consistency check that transmits fewer than n bits will fail if an
adversary could decide which bits of either database to modify. We describe a
randomized strategy that detects an inconsistency with high probability while
transmitting far fewer than n bits of information.

We use the following simple fingerprint mechanism. Interpret the data as
n-bit integers a and b, by defining a = Y";_; 42" and b = T}, b;2""!. Define
the fingerprint function F,(x) = x mod p for a prime p. Then Alice can transmit
F,(a) to Bob, who in turn can compare this with F;(b). The hope is that if
a # b, then it will also be the case that F,(a) # F,(b). The number of bits to
be transmitted is O(log p), which will be much smaller than n for a small prime
p. This strategy can be easily foiled by an adversary for any fixed choice of p
since, for any p and b, there exist many choices of a for which a = b (mod p).
We get around this problem by choosing p at random.

For any number k, let n(k) be the number of distinct primes less k. A well-
known result in number theory is the Prime Number Theorem, which states that
n(k) is asymptotically k/In k. Consider now the non-negative integer ¢ = |a —b|.
The fingerprint defined above fails only when ¢ # 0 and p divides c. How many
primes can divide ¢? Define N = 2"; we know that ¢ < N.

Lemma 7.4: The number of distinct prime divisors of any number less than 2" is
at most n.

PROOF: Each prime number is greater than 1. If N has more than ¢ distinct
prime divisors, then N > 2! O

Choose a threshold 7 that is larger than n = log N. The number of primes
smaller than 7 is n(t) ~ 7/ In 7. Of these, at most n can be divisors of ¢ and cause
our fingerprint function to fail. Therefore, we pick a random prime p smaller
than 7 for defining F,. The number of bits of communication is O(log 7). Choose
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7 = tnlogtn, for large t. The following theorem is immediate. The probability is
taken over the random choice of p.

Theorem 7.5: Pr[F,(a) = F,(b) | a # b] < % = o(%).

Thus, we get an error probability of at most O(1/t), and the number of
bits to be transmitted is O(logt + logn). Choosing ¢t = n gives us an excellent
strategy for this problem. We remark that the task of picking a random prime
is non-trivial, primarily because verifying the primality of a number is difficult.
Some algorithms for this purpose will be presented in Chapter 14.

» Example 7.1: This integer equality verification technique can be used to solve
the problem alluded to at the end of Section 7.2. In verifying that a multivariate
polynomial Q(xi,...,x,) is identically zero, we evaluate the polynomial at a ran-
dom point. The problem is that the intermediate values arising in the evaluation
of g = Q(ry,...,rs) could be extremely large. Of course, we do not really wish to
compute g; our goal is to merely verify that ¢ = 0. By the preceding discussion,
it suffices to verify that ¢ mod p = 0 for some small random prime p.

But how can we possibly hope to perform the verification without evaluating
q explicitly? The trick is to use arithmetic modulo p while evaluating Q(ry,...,r,)
and thereby obtain the residue of ¢ modulo p directly, rather than first computing
q and then reducing it modulo p. The intermediate values are all smaller than p,
and p itself is chosen to be a small random prime. By Theorem 7.5, the probability
of error does not increase significantly for a suitable choice of t. ’

7.5. A Comparison of Fingerprinting Techniques

It is useful at this point to compare the two types of fingerprinting techniques
that we have seen so far. Suppose that we wish to verify the equality of two
strings or vectors @ = (ay,...,a,) and b = (by,...,b,) with each component
drawn from a finite alphabet . We can encode the alphabet symbols using the
set of numbers I = {0,1,...,k — 1}, where k = |Z|. It is then possible to view
the two strings as the polynomials A(z) = 37— a;z' and B(z) = 3.1 biz', each
of which has integer coefficients and degree at most n. Clearly, the two vectors
are identical if and only if the two polynomials are identical.

The fingerprinting technique of Sections 7.1 and 7.2 can be summarized as
follows. Fix a prime number p greater than both 2n and k. View the polynomials
A(z) and B(z) as polynomials over the field Z,. By our choice of p, the set I is
contained in this field and arithmetic modulo p will not render identical any two
non-identical polynomials. The fingerprint of the two polynomials is obtained by
choosing a random element r € Z, and substituting it for the symbolic variable
z. If a = b, then the two polynomials are identical and the fingerprint will also
be identical; on the other hand, when a # b, the two polynomials are distinct
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and the probability that their fingerprints turn out to be the same is at most
n/p, and this is bounded by 1/2 for our choice of p. For k = 2 and p = O(n),
this can be viewed as reducing the problem of comparing n-bit numbers to that
of comparing O(log n)-bit numbers.

The fingerprinting technique from Section 7.4 is in some sense a dual of the
first technique. In this approach, we fix z = 2 and choose a random prime g of
a reasonably small magnitude. The fingerprints are obtained by evaluating 4(2)
and B(2) over the field Z,. Thus, instead of fixing the field and evaluating at a
random point in the field, the second type of fingerprint is obtained by fixing
the point of evaluation and choosing a random field over which the evaluation
is to be performed. By our analysis in Section 7.4, this also reduces the problem
of comparing n-bit numbers to that of comparing (log n)-bit numbers. However,
as we will see in the next section, there are certain applications where the second
type of fingerprinting proves to be more useful.

A third version of the fingerprinting approach works as follows. Assume that
k = 2, and interpret the bit vectors @ and b as the n-bit integers a and b. Fix
a prime number p > 2". Choose a random polynomial P(z) over the field Z,,
and obtain the fingerprints by evaluating this polynomial at the integers a and
b, performing all arithmetic over the field Z,, and then reducing the resulting
values modulo a number of magnitude close to logn. This is the main idea
behind the construction of the so-called universal hash functions discussed in
Section 8.4.

7.6. Pattern Matching

Consider now the problem of pattern matching in strings. A text is a string
X = x1x3...x, and a pattern is a string Y = y;y,...ym, both over a fixed
finite alphabet X, such that m < n. Without loss of generality, we restrict
ourselves to the case T = {0,1}. The pattern occurs in the text if there is a
j€{1,2,...,n—m+1} such that for 1 <i < m, x;;;_; = y;. The pattern matching
problem is that of finding an occurrence (if any) of a given pattern in the text.
This problem can be trivially solved in O(nm) time by trying for a match at all
possible locations i; moreover, there are deterministic algorithms that achieve
the best possible running time of O(n + m).

We describe a Monte Carlo algorithm that also achieves a running time of
O(n + m); later, we will convert this into a Las Vegas algorithm. This algorithm
is interesting despite the existence of linear-time deterministic algorithms because
it is significantly simpler, has a “real-time” implementation (this is explained
below), and generalizes to the problem of pattern matching in two-dimensional
strings (or matrices).

Define the string X(j) = X;Xj41...Xj4m-1 as the sub-string of length m in
X that starts at position j. A match occurs if there is a choice of j, for
1 <j<n—m+1, for which Y = X(j). We make the solution unique by
requiring that the algorithm find the smallest value of j such that X(j) =Y.
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The brute-force O(nm) time algorithm compares Y with each of the strings X(j).
Our randomized algorithm will choose a fingerprint function F and compare
F(Y) with each of the fingerprints F(X(j)). An error occurs if F(Y) = F(X(j))
but Y # X(j). We would like to choose a function F that has a small probability
of error and can be efficiently computed.

In fact, we use the same fingerprint function as in Section 7.4: for any
string Z € {0, 1}™, interpret Z as an m-bit integer and define F,(Z) = Z mod p.
Assume that p is chosen uniformly at random from the set of primes smaller
than a threshold 7. Suppose that we interpret the strings Y and X(j) as m-bit
integers, and compare their fingerprints F,(Y) and F,(X(j)) instead of trying to
match each symbol in the two strings. The only possible error is that we get
identical fingerprints when Y # X(j). By Theorem 7.5, we bound the probability
of such a false match as follows:

. . m mlogzt
PRLF,(Y) = F(X()) | ¥ # X()] < = 0 12%5),
n(t) T
Then, the probability that a false match occurs for any of the at most n values
of j is O((nmlogt)/t). We choose T = n?mlogn®m, and this gives

Pr(a false match occurs) = O(%)

The Monte Carlo version of this algorithm simply compares the fingerprints
of all X(j) to that of Y, and outputs the first j for which a match occurs; the
Las Vegas version will be described below. We first show that the runmng time
of this algorithm is as claimed. For | < j<n—m+1,

X(+1)=2[X()—2""%;] + Xj4m
From this we obtain the recurrence
Fp(X(j + 1)) = 2 [F(X(j)) — 2" 'x;] + xj4m mod p.

It is now clear that given the fingerprint of X(j), the incremental cost of
computing the fingerprint of X(j + 1) is O(1) field operations. In fact, there is
no need to use the more expensive operations of multiplication and division,
because each x; is 0 or 1. Thus, the total time required for this algorithm is
O(n + m) even under the more stringent log-cost RAM model. This efficient
incremental update property is the main motivation for using the second form
of fingerprinting; the reader may verify that more complex computations would
be required if the first form of fingerprinting was used instead (see Section 7.5).

Theorem 7.6: The Monte Carlo algorithm for pattern matching requires O(n + m)
time and has a probability of error O(1/n).

It is easy to convert this into a Las Vegas algorithm. Whenever a match
occurs between the fingerprints of Y and some X(j), we compare the strings
Y and X(j) in O(m) time. If this is a false match, we detect it and abandon
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the whole process in favor of using the brute-force O(nm) time algorithm.
The new algorithm does not make any errors and has expected running time
O((n+m)(1 —1/n) + nm(1 /n)), which works out to be O(n + m). An alternative
Las Vegas version of this algorithm restarts the entire algorithm with a new
random choice of p whenever a false match is detected. In the latter approach,
the probability of having to restart more than ¢ times is bounded by 1/n’. This
leads to a very small variance in the running time. In contrast, the first approach
has a relatively high probability of being forced to use the O(nm) time algorithm,
and hence has a high variance in the running time.

An alternative fingerprint function with a similar behavior is described in
Problem 7.12. In Problem 7.13 it is required to show that this algorithm extends
to the case of two-dimensional pattern matching.

The method for computing the fingerprints of the various X(j)’s will work
well in on-line or real-time settings where the string X is provided incrementally,
possibly a bit at a time. This feature is also useful when the text is extremely
large and cannot be completely stored in the primary memory of a machine.

Exercise 7.4: Consider the fingerprint function used for polynomial identities and
adapt it to the problem of testing string equality. Why is this not a good choice of a
fingerprint for the pattern matching problem?

7.7. Interactive Proof Systems

We have seen the power of combining randomization and algebra in devising
fingerprinting techniques with applications to efficient verification of simple
identities involving objects such as matrices, polynomials, and strings. We have
also seen that the basic idea used in the verification of the equality of two strings
x and y could be taken a step further and be used for the efficient detection of
a pattern y in a string x. How far can we push this approach?

Suppose, for example, the string x represents a graph G, and the “pattern” y
represents some graph property P. Can we then use the ideas developed here
for efficient “pattern matching” in terms of verifying the property P in G? More
specifically, suppose that the pattern y corresponds to the property of not being
an expanding graph. The problem of verifying this property belongs to NP and
so there exist short proofs of non-expansion. Moreover, given such a proof, it is
possible to efficiently verify its correctness. Thus, the pattern matching task can
be efficiently performed provided the pattern y includes a “proof™ of this fact,
i.e., a description of a set of vertices in G that do not have too many neighbors.
In this context, efficiency means time polynomial in the length of the inputs,
and this requires that the proof itself be of polynomial length.

Suppose instead the pattern matching task corresponds to the verification of
the property of being an expander. As we mentioned earlier (Section 6.7), this
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problem is co-VP-complete and it is quite unlikely that there is a polynomial
length proof of this property. Intuitively, verifying the expander property
requires checking almost all subsets of the vertices. But could it be that it
is possible to verify such proofs efficiently, even though their length is not
polynomially bounded? At an intuitive level this seems impossible, since we at
least have to read a proof completely to verify its correctness. Quite surprisingly,
however, we will show how the use of randomization combined with elementary
algebra allows us to efficiently verify an exponential length proof of such co-NP
properties, provided the proof itself is written in a specific format. In fact,
there are more profound complexity-theoretic results that can be obtained using
randomized algebraic techniques. In this section and the next, we will describe
some aspects of these complexity-theoretic results.

1.7.1. Verifying Graph Non-Isomorphism

Let us start by considering the problem of graph isomorphism. Informally, two
graphs are isomorphic if they have exactly the same structure. We make a
formal definition for the case of labeled graphs.

» Definition 7.2: Let G((V,E;) and Gy(V, E;) be two graphs on the same set of
labeled vertices V = {1,...,n}. The two graphs are said to be isomorphic if there
exists a permutation © € S, such that an edge (i, j) € E; if and only if the edge
(m(i), (j)) € E2; the permutation = is referred to as an isomorphism from G, to
G>. Two graphs are non-isomorphic if there does not exist any isomorphism from
one graph to the other. ’

Consider the graph isomorphism (GI) problem: given two graphs G; and G,,
decide whether they are isomorphic to each other. This problem lies in NP since
it is possible to “guess” an isomorphism and verify that it maps edges correctly.
That is, there is a short proof of isomorphism (the description of a permutation
m), and its validity can be verified efficiently. It is believed that GI does not
belong to P, and yet there is no proof that this problem is NP-complete. In
fact, there is strong evidence that this problem is not NP-complete, making it
one of the few natural problems believed to have this property. This evidence is
derived from results closely related to those discussed in this section.

The complementary problem, graph non-isomorphism (GNI), is that of ver-
ifying that G, and G, are non-isomorphic. By definition, this problem lies
in co-NP. Unlike the case of isomorphism, there is no known short proof of
non-isomorphism, and it appears that verifying non-isomorphism will essentially
require checking that none of the n! permutations provides an isomorphism from
G, to G,. However, as we show next, using a more active “prover” instead of a
passive “proof” together with randomization in the verification process leads to
an efficient scheme for verifying non-isomorphism.

The model that we adopt is the following. A verifier V that can perform
any randomized polynomial-time computation is attempting to verify that two
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graphs G; and G, are non-isomorphic. The verifier can enlist the help of a
prover P, which is an all-powerful adversarial entity whose goal is to convince
the verifier that G, is not isomorphic to G,, even if the two graphs are indeed
isomorphic. The prover’s computational power is not constrained in any way;
in particular, it is not restricted to polynomial-time computations, and it knows
precisely the strategy employed by the verifier V. The only limitation on the
prover is that it does not have access to the random bits used by V' in the course
of its computations, except as revealed in the information communicated to it
by V.

The interaction between the two entities can be viewed as being composed
of a sequence of rounds of communication, where in each round V poses a
question to P, and P responds with a possibly maliciously chosen incorrect
answer. Upon termination, V decides to either accept that G, is not isomorphic
to G,, or else reject the prover’s answers as being incorrect or unconvincing. A
protocol is the specification of a randomized polynomial-time algorithm for V
such that: when G; and G, are non-isomorphic, it is possible for a prover P to
convince V to accept; and when G; and G, are isomorphic, even a malicious
prover cannot respond so as to persuade V' to accept with probability more than
1/2 (say).

It turns out that the following simple protocol suffices. In the description
of the protocol, a(G) denotes the graph isomorphic to G that is obtained by
applying the permutation ¢ to the labels of the vertices in G.

Verifier V:
e picks index i € {1,2} and permutation ¢ € §,, both uniformly at random;
e computes H = a(G;);
e specifies H to the prover P and asks for an index j such that H is
isomorphic to G;;
Prover P: responds with an index j;

Verifier V: if j = i then it accepts that G; and G, are non-isomorphic, else it
rejects.

Fix any two graphs Gy(V,E;) and G»(V, E,). Consider the execution of this
protocol with prover P following an adversarial strategy as discussed earlier.
The following theorem shows that if the verifier V follows this protocol, then it
achieves the desired result.

Theorem 7.7: If G, and G, are non-isomorphic, an honest prover P can ensure
that V will accept; otherwise, for any (possibly maliciously dishonest) prover P’,
the probability that V accepts is 1/2.

prooF: Consider first the case where the two graphs are non-isomorphic. Sup-
pose that V used i = 1. Then, H and G, are isomorphic, while H and G, are
non-isomorphic since G; is not isomorphic to G,. An honest prover can use
its unbounded power to determine that H is isomorphic to G; but not to G,.
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Therefore, the prover can ensure that it sends back j = 1, thereby persuading V
to accept. A similar argument applies in the case when i = 2.

Suppose now that G, and G, are isomorphic to each other. The graph H
must then be isomorphic to both G, and G,. Let o, denote an isomorphism
from G, to H, and o, an isomorphism from G, to H. Given that the verifier
follows the protocol,

Prlc =0, and i =1 | V specifies H] = Pr[oc = 0, and i = 2| V specifies H].

The prover does not know the value of i or the permutation ¢ used to determine
H from G;. We claim that even knowing H and regardless of its strategy for
choosing j, the probability that j = i is'exactly 1/2. It follows that the probability
that V accepts is 1/2.

To verify the claim, we invoke the Principle of Deferred Decisions (Section 3.5)
as follows: assume that the verifier first decides upon H, using it to obtain the
value of j from the prover, and only then does it decide upon the choice of i
and ¢. This is equivalent to assuming that ¥V chooses H at random from the
uniform distribution on the space of all graphs isomorphic to G, and G,. Then,
after it has forced the prover to commit to the value of j, it makes a random
choice of i and determines the isomorphism o; from G; to H. Of course, this
would require V to solve the GI problem efficiently, which is not believed to be
possible for any randomized polynomial-time algorithm. But the point is that
as far as the prover is concerned, it cannot distinguish between the two types
of verifiers and we postulate the existence of a “deferring” verifier only for the
purposes of our analysis. We assume that this verifier is still honest in that it
chooses i at random even though it already knows the value of j; this is because
the verifier just wants to ensure that it does not get cheated by the prover, and
it does not gain anything by cheating itself. a

Exercise 7.5: Verify that independent iterations of this protocol can be used to reduce
the probability that the verifier accepts erroneously. Argue that the prover does not
gain additional power to cheat as the iterations proceed.

7.7.2. The Class IP and #3SAT

We now formalize the notion of an interactive proof system used in Section 7.7.1.
Given any language L over an alphabet X, an interactive proof system for L
consists of a verifier ¥V and prover P such that: the verifier V can perform
any randomized polynomial-time computation and can communicate with the
prover P in an attempt to verify that an input x belongs to L; the prover P
can perform arbitrary computations but does not have access to the random
bits used by V. Typically, we use the symbol P to denote an honest prover that
always provides truthful responses to the queries posed by V. Let V(x, P’) be the
outcome (acceptance or rejection) of the computation performed by the verifier
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given an input string x and communicating with a prover P’, where P’ denotes
a prover that does not necessarily behave in the manner expected of the honest
prover P. We define a complexity class consisting of all languages (or decision
problems) that have interactive proof systems such as the one demonstrated for
graph non-isomorphism.

» Definition 7.3: The class IP consists of all languages L that have an interactive
proof system (P, V) with a randomized polynomial-time verifier ¥ and an honest
prover P such that for any x € X°,

e x € L = for the honest prover P, Pr[V(x, P) accepts] = 1.

e x ¢ L = for all provers P’, Pr[V(x, P’) accepts] <

N =

We have already shown that GNI € IP, and it is not very hard to verify that
GI € IP. As we will see shortly, this is not a coincidence since both NP and
co-NP are contained in IP. Intuitively, IP can be viewed as a generalization of
NP obtained by permitting randomization. It turns out that IP = PSPACE, the
class of languages whose membership can be decided using only a polynomial
amount. of space (see Problems 7.16-7.17). While it is relatively easy to argue
that IP = PSPACE, the proof of PSPACE < IP turns out to be more difficult,
and this is where randomized algebraic techniques prove to be useful. We
illustrate some of the key ideas behind the latter proof by showing that the
problem of verifying the number of satisfying truth assignments for a 3-CNF
Boolean formula lies in IP.

Let Xy, ..., X, be Boolean variables whose values can be either TRUE or FALSE.
A 3-CNF formula F(X,,..., X,) is the conjunction of a collection of clauses C;,
..., Cm, where each clause is a disjunction of three literals L;;, L5, and L;. Recall
that a formula F is said to be satisfiable if there exists an assignment of values
to its variables that results in F evaluating to TRUE, and then the assignment is
called a satisfying truth assignment.

In the 3-SAT problem, we are required to determine whether a given 3-CNF
formula F is satisfiable. We are interested in a counting version of this problem
called #3SAT: given a 3-CNF formula F and an integer s, verify that the number
of distinct satisfying truth assignments for F is s. We will establish the following
theorem.

Theorem 7.8: #3SAT € IP.

What are the implications of this result? Recall that the 3-SAT problem is
NP-complete, which implies that if 3-SAT € P, then any L € NP is also in P
(and therefore P = NP). The 3-SAT problem is a special case of #3SAT and
this means that 3-SAT € IP. The following exercise then implies that NP < IP.
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Exercise 7.6: Let L, and L, be two languages such that L, € IP and there is a
polynomial reduction from L, to L,. Show that L, € IP.

This is not very interesting since it is easy to argue directly that NP < IP
(see Problem 7.14). However, consider now the special case of #3SAT where
s = 0. This is the problem of deciding that a 3-CNF formula is not satisfiable;
since verifying unsatisfiability is a co-NP-complete problem, it follows that
co-NP < IP. This is much more interesting since it is not immediately obvious
from the definition of IP that it contains co-NP. Actually, #3SAT is complete
for a class of problems called #P, which is defined formally in Chapter 11. It
follows that #P < IP. It is known that #P < PSPACE, and so we are proving
a weaker result than IP = PSPACE. We choose to focus on this weaker result
since it introduces some of the key ideas involving randomization that are used
in the proof of IP = PSPACE. Problems 7.16-7.17.

7.7.3. Arithmetization of Satisfiability

A key step in the proof of #3SAT € IP is the conversion of the Boolean formula
F into an algebraic formula. This process is called the arithmetization of a
Boolean formula. Let us view any truth assignment A4 for the variables in F as
an n-dimensional vector over the integers. More precisely, we represent it by a
vector a = (ay, ay,...,a,) such that .

71 0 if A, = FALSE

At the same time, we convert F into a polynomial with the variables xy,...,x,,
as follows. Any literal L;; is turned into a linear polynomial l;; by replacing
a Boolean variable X; by 1 — x;, and a negated variable X; by x;. A clause
Ci=L; VL,V Lj is replaced by a degree 3 polynomial ¢; = 1 — I;;l1;;. Finally,
the Boolean formula F(X,,...,X,) is represented by the following polynomial
of degree 3m:

fx,ee,x0) = [T = [J(1 = k).
i=1

=1
» Example 7.2: Consider the 3-CNF Boolean formula
F(X1,X2,X3,Xs) = (X; VX, VX3) A (X1 VX3V Xy).
Then, the arithmetization of F yields the following polynomial of degree 6:

f(x1,x2,x3,x4) = (1 = (1 — x1)(1 — x2)x3) X (1 = x1x3(1 — x4)).
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Exercise 7.7: Show that there is no essential difference between the Boolean formula
F and its arithmetization f: let 4 be any truth assignment, and a the corresponding
vector over {0, 1}. Show that F(A,,..., A,) = TRUE if and only if f(a,..., a,) =1.

Let #F denote the number of satisfying truth assignments for F, and define

11 1
#=D D Y X1y Xn),
x1=0 x3=0 Xn=0

Since #F = #f, the problem of verifying that #F = s is the same as the
problem of verifying that #f = s.

It will be convenient to work over a finite field and so we treat the polynomial
f as a polynomial over the field Z,, for some prime p. Since the value of #f
cannot exceed the total number of truth assignments, this restriction to a finite
field will not affect the value of #f provided we choose p > 2". By Bertrand’s
Postulate, there is a prime p such that 2" < p < 2"*! and we can use any such
prime number. A technical issue is that there is no known polynomial time
algorithm for finding such a prime. But this issue can be easily handled in the
setting of an interactive proof system. The verifier asks the prover to specify
such a prime p, and to prevent cheating it also asks for a proof of the primality
of p. As we will see in Section 14.6, there exist polynomial length “certificates of
primality” that can be verified in polynomial time, and the all-powerful prover
can easily provide such a certificate of primality along with the value of p.

The following notation will be useful in describing the interactive proof
system. For any polynomial f(xy,...,x,), and for 0 < i < n, define the partial
sum polynomials

1 1
filx1y...,x) = Z --~Zf(x1,...,x,,).

Xi41=0 Xp=0

The proof of the following set of properties for the partial sum polynomial is
left as Problem 7.15.

Lemma 7.9: The partial sum polynomials have the following properties:
L fo=#{.
2. ful(X1y...,%n) = f(X1,..., Xn).
for1<i<nm, fi(x1,...,%xi1) = flx1,-.., Xi—1,0) + filx1, ..., Xi—1, 1).

7.7.4. The Interactive Proof System for #3SAT

We now provide an interactive proof system that takes as input a polynomial
f(x1,...,x,) over Z, and an integer s € Z,, and verifies that #f = s. Since
a verifier can easily compute the arithmetization of a 3-CNF formula F, this
suffices to show that #3SAT € IP.
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The basic step in the interactive proof system is for the verifier to ask the
prover for the description of the polynomial f;(z), where z is a symbolic variable.
Suppose that the prover responds with a polynomial g(z), which may or may
not be the desired polynomial fy(z). Assuming that the prover does not cheat,
it must be the case that #f = g(0) + g(1). Therefore, the verifier compares s
with g(0) + g(1) and rejects if the two are unequal. It must now verify that g is
indeed the same polynomial as f;.

Of course, we have to concern ourselves only with the case where #f # s,
since it will be clear that an honest prover can always make the verifier accept by
providing correct responses. Now, since g(0)+g(1) = s, and #f = f1(0)+f1(1) #
s, it follows that g(z) # fi(z). The verifier's goal is to make sure that the
polynomial equality g(z) = fy(z) is satisfied, so as to ensure that it catches a
prover that is attempting to cheat by sending a polynomial g(z) # f,(z) such
that g(0) + g(1) = s. The only problem is that while the verifier knows g(z)
explicitly, the polynomial f,(z) is only implicitly defined by the equation

1 1
fiz) = Z"'Zf(z,xz,...,x,,).
Xp=0

Xy=0

Computing f(z) explicitly from this equation would require super-polynomial
time. But this is precisely the kind of situation where we use the technique
described in Section 7.2 for verifying polynomial identities.

The verifier chooses an element r € Z, uniformly at random, evaluates
s’ = g(r), and asks the prover to show that & = f,(r). Again, we are only
interested in analyzing the case where g(z) # fi(z). Of course, it is still possible
that ' = fi(r). In this case, the prover will succeed in cheating the verifier as
it will be able to pass all subsequent tests (described next). But this “error”
happens with a small probability since the polynomials in question are of low
degree; in particular, the error probability is given by

Prig(r) = £u(r) | g(2) # fi(2)] < 3—p—’"

as the degree of these polynomials is at most 3m.

Assuming that this error does not occur, the verifier has a value s’ # f,(r),
and the subsequent interaction is geared toward detecting this fact. The verifier
now asks the prover to show that s’ = f,(r), or equivalently that

1 1
§ = Z...Zf’(xz,...,xn),

X3=0 xp=0

where we define the polynomial f'(x,,...,x,) = f(r,xa,...,%,). This is exactly
the original verification problem all over again, but the crucial point is that the
number of variables has been reduced to n— 1 from n.

The verifier can perform this new verification by recursively running the
same protocol, and the recursion bottoms out with the problem of verifying the
equality of two degree O polynomials, which is a trivial task. The probability of

179



ALGEBRAIC TECHNIQUES

error accumulates over the various stages of recursion, but since the number of
stages is n, we can bound the overall error probability by 3mn/p. Recall that p
was chosen to be larger than 2" and so the error probability is small. The net
running time of the verifier is bounded by a polynomial in n and m.

7.8. PCP and Efficient Proof Verification

We continue with our excursion into complexity theory and describe the appli-
cation of Freivalds’ technique to a problem in proof verification. In Section 1.5.2,
we defined VP in terms of the verification of proofs by deterministic polynomial-
time verifiers. In Section 7.7, we replaced the notion of a proof with that of
an active prover and, in addition, we permitted the verifier to use randomness
in the verification process. A natural question to ask is: what is the additional
power of a polynomial-time verifier working with proofs (as opposed to provers)
when they use randomization? It turns out that the answer to this question
again involves the use of algebraic methods together with randomization.

Before addressing the question posed above, it is important to understand the
difference between a proof and a prover. A prover is active in the sense that it
can cheat in an adaptive and online manner by using its knowledge of the earlier
queries from the verifier to decide upon its responses to subsequent queries. A
proof, on the other hand, is passive and non-adaptive. We can view the proof
as being written down by an adversarial prover that knows the particular input
x being tested for membership in L, as well as a description of the protocol that
will be followed by the verifier. The prover can attempt to use this knowledge to
write down a fallacious proof of x’s membership in L, even though it is the case
that x ¢ L. In effect, a proof is a predetermined set of responses to all possible
questions that could be asked by a specific verifier when its random bits are
as yet undetermined. The crucial difference is that unlike the responses of an
online prover, a proof cannot change in response to the questions posed by the
verifier, and thus it cannot adapt to even the partial information of the verifier’s
random bits that can be inferred from the questions themselves. Since a prover
can simulate an offline proof, a prover has more power to cheat and, conversely,
a verifier working with a proof has more power than a verifier working with a
prover.

We modify the definition of IP to that of PCP (for Probabilistically Checkable
Proofs), the only difference being that the prover is replaced by a proof. By the
preceding discussion, this is a possibly wider class of languages than IP. We
define PCP as the class of all languages whose proofs of membership can be
verified by a randomized polynomial time verifier V with random access to a
proof, ie., the verifier can query arbitrary bits in the proof by specifying their
indices or positions.

» Definition 7.4: The class PCP consists of all languages L that have a randomized
polynomial-time verifier V' such that for any x € °,
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e x € L = there exists a proof I, such that Pr[V(x, IT) accepts] = 1.
 x ¢ L = for all purported proofs IT, Pr[V(x, IT) accepts] < 1.

When x ¢ L, all purported proofs I1 must be erroneous, and the verifier is
required to spot an error with high probability.

We would like to point out that an equivalent definition of PCP is in terms
of a multi-prover interactive proof system where the verifier has access to two
or more provers, and the provers are not allowed to communicate with each
other once the verifier starts the interaction with the provers (see Problem 7.18).
It has been shown that the class PCP is the same as NEXP (non-deterministic
exponential time), clearly a superset of VP. Our interest is in a restricted version
of PCP where we account for the use of randomness and the number of bits in
the proof examined by the verifier.

» Definition 7.5: The class PCP[r(n), q(n)] consists of all languages L € PCP that
have a randomized polynomial-time verifier ¥V which, on inputs of length n, uses
O(r(n)) random bits and examines O(q(n)) bits of a purported proof I.

Let poly(n) denote a function of n that is polynomially bounded. It follows
that P = PCP[0,0], NP = PCP[0, poly(n)] and co-RP = PCP[poly(n),0] (see
Problem 7.19). Our goal is to establish the following result, which is far less
obvious; the rest of this section is devoted to the proof of this theorem.

Theorem 7.10: NP < PCPlpoly(n),1].

It is possible to improve Theorem 7.10 by reducing r(n) to a logarithmic
function of n, but we omit the rather intricate proof of the stronger version.
This result is quite amazing in the sense that it requires a proof that can be
verified by examining only O(1) of its bits, regardless of the length of the input.
The power of Theorem 7.10 can be fully appreciated by noting that it may be
applied to the verification of the (suitably encoded) proof of any mathematical
statement.

7.8.1. Arithmetization Revisited

To prove Theorem 7.10, it suffices to show that the NP-complete problem
3-SAT belongs to PCP[poly(n),1]. A proof of the satisfiability of a 3-SAT
formula F is easy to construct: write down the satisfying truth assignment
A = (A, A4,,...,A,) € {TRUE,FALSE}" for the variables in F. A verifier can
substitute these values into the definition of F and verify that it evaluates to
TRUE. Unfortunately, this requires that the verifier access all n bits of the proof.
If the verifier were to access only a small number of bits in the proof, that
would not give sufficient information to decide whether the truth assignment
would satisfy F. We will get around this problem by requiring that the proof
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IT be a very redundant encoding of 4, much like an error-correcting code. To
do this, we convert this Boolean formula F into an algebraic formula using an
arithmetization similar to that in Section 7.7.

This time we convert F into a polynomial over the field Z,, as follows. A
clause C; = L;; V L, V L3 is replaced by a polynomial ¢; of degree 3 obtained
by replacing any Boolean variable X; by (1 — x;), any negated variable X; by
xj, and the Boolean operation Vv by the field operation of multiplication. For
example, when C; = X;; VX2 VX3, we obtain the term ¢; = (1—x;1)x;2(1—x3); for
notational convenience, we omit the dependence of ¢; on the variables by writing
¢; instead of c;(x;1, X, X;3). The assignment A causes C; to evaluate to TRUE if
and only if the corresponding vector a causes c; to evaluate to 0. We replace the
Boolean operator A by the field operation of addition. The arithmetization of F
is now given by the degree 3 multivariate polynomial f(xy,...,x,) = > o, ¢;. Itis
important to keep in mind that all additions and multiplications are performed
modulo 2.

The reason we choose this different arithmetization is that it yields a polyno-
mial of degree 3 instead of 3m, and this is important for reducing the number
of random bits and queries used by the verifier. The problem with this arith-
metization is that the polynomial f does not correspond exactly to the Boolean
formula F, as indicated in the following exercise.

Exercise 7.8: Let 4 be a truth assignment for F, and a the corresponding integer
vector. Show that if F(4) = TRUE, then f(a) = 0. Show also that the converse need
not be true, i.e., f(a) could evaluate to 0 even though F(A4) # TRUE.

To get around this problem we use a variant of Freivalds’ technique: choose
a random vector r = (ry,...,r,) uniformly at random from Z7, and redefine f
to be

flx1,00,%0) = Zrici.

i=]

The proof of the following lemma is very similar to the argument used in the
proof of Theorem 7.1.

Lemma 7.11: If F(A) = FALSE, then Pr[f(a) = 0] = 1/2.

Thus, with sufficiently high probability (which can be further boosted by repeat-
ing the entire verification protocol several times), the polynomial f has a root
(in Z}) if and only if the Boolean formula F is satisfiable. We concentrate on
the verification of the existence of a root of a multivariate degree 3 polynomial
over Z,. More precisely, we seek a verifier V such that: if f has a root, there
exists a proof that will convince the verifier; if not, any proof will deceive the
verifier with probability at most 1/2.
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7.8.2. A Proof of Satisfiability

In this section we describe a proof of satisfiability (actually of the existence of
a root for f) that the verifier would expect to see in the case when the formula
is satisfiable. Later we will see how the verifier can efficiently look for errors or
fallacies in the proof.

» Definition 7.6: Given an n-dimensional vector x and an m-dimensional vector
y, their outer product z = x oy is an n X m matrix z such that z;; = x;y;.

We will sometimes view the matrix z as an (nm)-dimensional vector by writing
it in a row-major form; this should be clear from the context. (The row-major
form of a matrix is obtained by concatenating its rows in the order of increasing
row indices.) Consider the vector a of the assignment of values to the variables
in f. Define b = aoa and ¢ = a o b, where the second definition views b as a
vector; then, b;; = a;a; and c;jx = a;bjx = a;a;ax. The vectors a, b, and ¢ will be
used to define three linear functions over Z, as follows.

n
Ga(z1y...,20) = Z aizi,

i=1

n n
Gb(zu,...,z,,,,) = Zbijzij=ZZa,-ajz,-j,
Lj

i=1 jml

n n n
Ge(z111s- -5 2Znmm) = Zcijkzijk=zzzaiajakzijk~

ijk i=l j=1 k=1

Note that G, : Z; — Z,, G, :Z’z'2 — Z,, and G, :Z'z'3 — Z,. These functions
allow us to compute the sum of a subset of the entries in a, b, or ¢, by encoding
the subset into a characteristic vector, which is then used as an assignment to
the variables.

The coefficients of the terms in any polynomial over Z, must be either 0 or
1. Applying this fact to the degree 3 polynomial f, we can assume that it is of

the form
fx) =a+2xi+ Z Xixj + Z XiXj Xk

i€$, (iL.))eS, (Ljk)eSs

where a is a fixed element of Z,, S, is a set of indices, S, is a set of pairs
of indices, and S; is a set of triples of indices. For a fixed assignment e, this
expression can be simplified into the following.

fla) = a+Za,~+ Z aa; + Z a;a;a

€S (i)ES (Lik)ESs
= a+ Gu(Xs,) + Gp(Xs,) + Ge(Xs,)-

Here X5 denotes the characteristic vector of a set S, i.e., the ith component of Xs
is 1 if and only if the ith element of the universe belongs to S. Our definition of

183



ALGEBRAIC TECHNIQUES

the linear functions G,, G, and G, is such that the three sums can be determined
by evaluating each of these functions at a single point.

The desired proof IT of the existence of a root of f consists of the values of
G,, Gy, and G, at all points in their respective domains. Thus, the verifier V can
determine the value of f(a) by examining three bits, one each to determine the
values of G,(Xs,), Gu(Xs,), and G.(Xs,). This would solve the proof verification
problem with r(n) = O(n®) random bits and and g(n) = 3 in the case of correct
proofs. But the whole point is to be able to deal with erroneous proofs. What
if the function f does not have a root but an adversary chooses some functions
G., Gy, and G, that result in the verifier being deceived with high probability?
Of course, the adversary has to fix the proof by writing down G,, G, and G,
before the verifier chooses the random bits r used to obtain f from F, but this
may not prevent the adversary from cheating successfully. In fact, the adversary
may not even choose G,, G, and G, to be linear functions. For example, if they
are random functions, the probability of acceptance of an incorrect proof is 1/2.

7.8.3. The Verification

We now complete the argument by showing how the verifier can test a proof
that is purported to be correct and in the form described above. There are
two properties of the proof that the verifier would like to ensure. First, that
the functions G,, G, and G. are linear functions. Second, they should all
be determined by the same vector a. Given these two properties, the strategy
described above will work. The constraint is that V is allowed to expend only
polynomially many random bits and to examine only a constant number of bits
in the proof to achieve this goal. In the verification procedure described below,
there are several sub-verifications to be performed. Each of these will be shown
to succeed with a constant probability, where failure means that the verifier
fails to detect a particular type of error in the proof. We will not compute
these probabilities explicitly; it suffices to observe that they can all be made
smaller than any fixed constant by repeating the sub-verification O(1) times.
Since the whole process makes only O(1) probes into the proof, the number of
sub-verifications is also bounded and the total probability of error is no more
than the sum of the error probabilities at each stage. We can thus guarantee
that the overall probability of error is bounded away from 1/2.

» Definition 7.7: Let f, g : T — O be two functions with identical finite domain
and finite range. Their distance A(f, g) is defined as

A(f,g) = Pr[f(x) # g(x)],

where x is chosen uniformly at random from Z.

In other words, the distance between these functions is the fraction of the
domain in which they take on different values.
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» Definition 7.8: For 0 < § < 1, the functions f and g are said to be d-close if
A(f,g) <.

A linear function f(x) : Z, — Z, is one that can be expressed as f(x) = ax+b,
for some choice of the coefficients a, b € Z,. For historical reasons, in the rest
of this section we will abuse terminology somewhat by defining linear functions
to be those functions that can be expressed as f(x) = ax. It can be shown that
a univariate function f(x) : Z, — Z, is linear if and only if for all a and b,
f(a) + f(b) = f(a+ b). In the case of multivariate functions f(x) : Z; — Z,, we
say that f is linear if it is of the form ) ", a;x;. Again, it can be shown that f
is linear if and only if for all @ and b, f(a) + f(b) = f(a + b) (see Problem 7.22).
We define a nearly linear function as one that satisfies this property for random
choices of @ and b with probability bounded away from zero.

The following lemma is intuitively obvious, but the proof is non-trivial. We
outline the proof in Problem 7.24.

Lemma 7.12: Fix any 6 such that 0 < 6 < 1/3. Suppose that G : Z, - Z, is

a function such that for x and y chosen independently and uniformly at random
from Z3,

~ ~ ~ o
PrG(x) + G(y)=G(x+y)l =1 — 3
Then, there exists a linear function G : Z3 — Z, such that G and G are d-close.

Essentially, this lemma says that if G satisfies the linearity condition ‘on most
pairs of points, then modifying its value at a few points will make it a linear
function.

Suppose now that the proof IT contains the values of three arbitrary (possibly
non-linear) functions E;,,, E;,,, and E;c. The verifier uses the lemma to ensure that
they are all nearly linear and can then assume that the d-close linear functions
G,, Gp, and G, are actually presented in the proof. We illustrate this for the
case of G,. Suppose the verifier V chooses x and y uniformly at random from
Z}. Then it probes the proof and verifies that G.(x) + Ga(y) = Ga(x + ). If this
test fails, the entire proof can be rejected since it is clear that G, is not a linear
function. When the function passes this test, however, it is not guaranteed that
it is indeed a linear function. But with high probability, the function G, satisfies
the above lemma and is nearly linear. Repeating this test boosts the probability
of spotting a function that is not -close to a linear function.

At this point, V knows that with high probability, each of the three functions
in the proof is d-close to some linear function. In fact, the verifier can now
evaluate these linear functions at arbitrary points via the following self-correction
mechanism. Suppose that the verifier needs to compute Gu(z) for an arbitrary
z € Z;, while using the values of the function G,. It chooses x _€ Z, uniformly
at random, and evaluates G,(z) = G (2 — x) + G.(x). Since G, is é-close to
G,, evaluating it at random points gives us the value of G, at those points
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with probability 1 — é. Even though the random points z — x and x are highly
correlated, the probability that they are both evaluated correctly is at least 1—24.
This can be repeated for independent choices of x to reduce the probability of
error below any desired constant. We may now assume that ¥ can evaluate the
linear functions G,, G, and G, at O(1) points each, with the error probability
being smaller than any desired constant. Thus, we may as well assume that the
proof contains the correct values of G,, Gy, and G, at all points.

Of course, the functions G,, G,, and G. could be linear but not related in
the desired fashion. Suppose V could verify that these functions are determined
by some coefficients a, b, and ¢ such that b = aoa and ¢ = a o b, with a small
probability of error. Then it is possible to verify the existence of a root for
f as described earlier. Let us now concentrate on verifying the outer product
property.

The following lemma can be proved in a manner similar to Theorem 7.1.

Lemma 7.13: Let r, s € Z; be chosen independently and uniformly at random.
Suppose that b + a o a, then

PrirT(aca)s # rTbs] >

Note that aoa and b are now being interpreted as n x n matrices, and we are
applying Freivalds’ matrix identity verification technique to determine whether
(@ o a)s = bs. To verify the equality of these two vectors, we merely apply the
technique once more by taking the inner product with the random vector r.
This test of the outer product construction can be performed with access
to the functions G, and G, by observing that a”s = G,(s), rTa = G,(r), and
rTbs = Gy(r o s); thus, V merely confirms that G,(r)G.(s) = Gy(r os). This
requires only three probes into the proof. A similar test will verify that ¢ = ac .
Finally, we invite the reader to check that the total number of probes into the
proof is O(1). In making any probe, the only use of randomness is in the choice
of the point at which the function is being evaluated, and each of these uses
O(n*) random bits. We conclude by pointing out that the length of the proof is
enormous, being 28). As we remarked earlier, this proof verification process
can be improved such that the length of the proof reduces to a polynomial in n
and the number of random bits reduces to a logarithmic function of n, while still
preserving the property that only O(1) bits of the proof need to be examined.

Notes

The notion of program checking alluded to in Section 7.1 is due to Blum and Kannan [66).
The technique for verifying matrix and univariate polynomial multiplication is due to
Freivalds [157]. More efficient versions of this test (in terms of the number of random
bits used) have been devised by Naor and Naor [319], with further improvements by
Kimbrel and Sinha [254]. Blum, Chandra, and Wegman [64] have applied Freivalds’
technique to obtain an RP algorithm for deciding the equivalence of free Boolean graphs,
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also known as ordered Boolean decision diagrams (see Problem 7.3). The generalization
to multivariate polynomial identities has been rediscovered many times. Although it
is usually attributed to the independent and simultaneous articles by Schwartz [367]
and Zippel [422], essentially the same result appears in an article by DeMillo and
Lipton [123] on the testing of algebraic programs.

The fast matrix multiplication algorithm, running in O(n376) time, is due to Copper-
smith and Winograd [113]. The book by Aho, Hopcroft, and Ullman [5] is a good source
for deterministic algorithms for problems involving polynomials and matrices, and most
of the basic results assumed in this chapter can be found therein. Zippel’s book [423]
provides comprehensive coverage of randomized and deterministic algorithms for com-
putations with polynomials. For general information on prime numbers, in particular
Bertrand’s Postulate and the Prime Number Theorem, the reader may refer to the books
on number theory mentioned in the Notes section of Chapter 14. .

Tutte [398] first pointed out the close connection between matchings in graphs and
matrix determinants, as described in Problem 7.8. The simpler relation between bipartite
matchings and matrix determinants was given by Edmonds [134], who also showed that
the size of the maximum matching equals the rank of the matrix (see Problem 7.7). The
application of the randomized polynomial identity verifier to the problem of matchings
in graphs was first pointed out by Lovasz [280], who also established a tight relation
between the matrix rank and the size of the maximum matching (see Problem 7.9 for
a simpler proof). These ideas were applied to the construction of simple algorithm for
maximum matchings by Rabin and Vazirani [348, 349]. Although their randomized
algorithms for matchings are simple and elegant, they are slower than the deterministic
O(m./n) time algorithms for bipartite matchings due to Hopcroft and Karp [203], and
for non-bipartite matchings due to Micali and Vazirani [308, 406] ; the bound for bipartite
matchings has been marginally improved to O(n23/logn) by Feder and Motwani [140].
As we shall see in Chapter 12, this algebraic view of matchings and the algorithmic ideas
of Rabin and Vazirani have had considerable influence on the development of efficient
parallel algorithms for matchings.

The discussion on randomized pattern matching algorithms is based on the work of
Karp and Rabin [249]. The deterministic linear time algorithms for pattern matching
mentioned above are due to Knuth, Morris, and Pratt [262] and to Boyer and Moore [82].

The survey articles by Babai [39, 40], Goldreich [174, 175], and Johnson [217, 218]
give excellent and comprehensive accounts of results in the area of interactive proof
systems and proof verification. The protocol for graph non-isomorphism is due to
Goldreich, Micali, and Wigderson [176]. The concept of an interactive proof system
was introduced by Goldwasser, Micali, and Rackoff [179]. Their motivation was derived
from cryptography, and with this application in mind they defined a special type of
interactive proof system called a zero-knowledge interactive proof system in which the
prover would like to prevent the verifier from gaining any useful information while
participating in the protocol. Around the same time, Babai [38] introduced the notion
of Arthur-Merlin games which are essentially the same as interactive proof systems, the
key difference being that the prover (Merlin) has access to the random bits of the verifier
(Arthur). Babai’s definition was motivated by the desire to classify the complexity of
certain group-theoretic problems. A related concept is that of “games against nature”
introduced by Papadimitriou [324]. The evidence that graph isomorphism is unlikely
to be NP-complete is obtained by combining the results of Boppana, Hastad, and
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Zachos [72] with those of Goldreich, Micali, and Wigderson [176] and Schoning [365];
the details are beyond the scope of this book; we refer the reader to Johnson [217] for
an overview of this argument.

The result that #3SAT is in IP is originally due to Lund, Fortnow, Karloff, and
Nisan [288]. The proof presented here also includes ideas from Babai and Fortnow [41]
and Shamir [372]. In showing that IP = PSPACE, the easy direction that IP <
PSPACE follows from the work of Papadimitriou [324], while the more difficult proof
of PSPACE < IP was devised by Shamir [372] based on the techniques used by Lund,
Fortnow, Karloff, and Nisan [288] (see Problems 7.16-7.17). The techniques used in
these results were inspired by the ideas used in program checking by Blum, Luby, and
Rubinfeld [68] and Lipton [277], as well as the idea of representing Boolean formulas
as polynomials in the work of Beaver and Feigenbaum [47). The generalization of IP
to MIP, via the introduction of multiple provers, is due to Ben-Or, Goldwasser, Kilian,
and Wigderson [53]. Fortnow, Rompel, and Sipser [153] showed that MIP = NEXP,
while the more difficult direction NEXP < MIP was established by Babai, Fortnow, and
Lund [43].

The complexity class PCP was defined by Arora, and Safra [33] based on a notion
implicit in the work of Feige, Goldwasser, Lovasz, Safra, and Szegedy [141]. Efficiently
and probabilistically checkable proofs are sometimes also referred to as transparent
proofs — a terminology introduced earlier by Babai, Fortnow, Levin, and Szegedy [42].
These concepts are variants of the probabilistic oracle machines introduced by Fortnow,
Rompel, and Sipser [153] as an alternate view of multiprover systems. Refer to the
survey articles cited above for a more thorough discussion of proof systems and the
evolution of the current definitions.

Theorem 7.10 is due to Arora, Lund, Motwani, Sudan, and Szegedy [32]; they also
established that NP < PCP[logn, 1], combining ideas from various articles mentioned
above. The theses by Sudan [388] and Arora [31] contains more complete expositions of
the latter result. An important motivation for this work on the PCP model was to derive
the hardness of approximation results for problems such as cliques in graphs [141] and
MAX-SAT [32] (see the Notes section of Chapter 5). Lemma 7.12 is originally due to
Blum, Luby, and Rubinfeld [68]. The version we state here can be inferred from the
results of Rubinfeld [360] and Gemmell, Lipton, Rubinfeld, Sudan, and Wigderson [165].

Problems

7.1 In this problem we will see that Theorem 7.1 is actually just a special case of
Theorem 7.2. In the setting of Theorem 7.1, construct a multivariate polynomial
Q such that Q = 0 if and only if AB = C, and then apply Theorem 7.2 to derive
result in Theorem 7.1.

7.2 Two rooted trees 7, and 7, are said to be isomorphic if there exists a one-
to-one onto mapping f from the vertices of T, to those of T, satisfying the
following condition: for each internal vertex v of T, with the children v,, ...,
v, the vertex f(v) has as children exactly the vertices f(v,), ..., f(vi). Observe
that no ordering is assumed on the children of any internal vertex. Devise an
efficient randomized algorithm for testing the isomorphism of rooted trees and
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7.4

7.5

7.6
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analyze its performance. (Hint: Associate a polynomial P, with each vertex
v in a tree T. The polynomials are defined recursively, the base case being
that the leaf vertices all have P = x;. An internal vertex v of height h with the
children v4, ..., v, has its polynomial defined to be

(xh = Py, )(xp — Py,) -~ (xn — Py,).

Note that there is exactly one indeterminate for each level in the tree.)

Remark: There is a linear time deterministic algorithm for this problem based
on a similar approach. Refer to Aho, Hopcroft and Uliman [5].

(Due to M. Blum, A.K. Chandra, and M.N. Wegman [64].) A labeled directed
acyclic graph G(V,E) may be used to represent a Boolean function of n
variables x, ..., x,, as follows. One vertex of V is the start vertex, and another
the finish vertex. Every vertex has out-degree zero or two; if two edges
leave a vertex, one must be labeled with a variable and the other by the
complement of this variable. Such a graph is said to be free if there is at most
one occurrence of every variable - complemented or not - on any (directed)
path of G. The Boolean function represented by such a graph is the sum of
all product terms, where each product term is a product of all the variables
on a path from the start vertex to the finish vertex.

Devise a randomized algorithm that, given two free graphs, decides whether
they represent the same Boolean function. If the functions are different, the
algorithm should output NO; otherwise, it should output YES with probability
at least 1/2.

(Due to R.J. Lipton [277]; see also M. Blum and S. Kannan [66].) Consider the
problem of deciding whether two integer multisets S; and S, are identical in
the sense that each integer occurs the same number of times in both sets.
This problem can be solved by sorting the two sets in O(nlogn) time, where
n is the cardinality of the multisets. Suggest a way of representing this as a
problem involving a verification of a polynomial identity, and thereby obtain
an efficient randomized algorithm. Discuss the relative merits of the two
algorithms, keeping in mind issues such as the model of computation and the
size of the integers being operated upon. (See also Problem 8.20.)

(Due to J. Naor.) Two n x n matrices 4 and B over a field Z, are said to be
similar if there exists a non-singular matrix T such that TAT ' = B. Devise a
randomized algorithm for testing the similarity of the matrices 4 and B. (Hint:
View the entries in T as a collection of variables, and from the definition of
similarity, obtain a homogeneous set of linear equations that these variables
must satisfy. Any solution T must be a linear combination of the basic
solutions to this family of equations. Apply the randomized techniques from
this chapter to determining whether there exists a linear combination of the
basic solutions that yields a non-singular matrix 7.)

Let Q(xy, x,, ..., x,) be a multivariate polynomial over a field Z, with the degree
sequence (d,, d,,....d,). A degree sequence is defined as follows: let d, be
the maximum exponent of x, in Q, and Q;(x,, ..., x,) be the coefficient of x."
in Q; then, let d, be the maximum exponent of x; in Q;, and Q,(xs,..., x,) be
the coefficient of x§? in Q,; and, so on.
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LetS,, S, ..., S, = Z, be arbitrary subsets. For r;€S, chosen independently
and uniformly at random, show that

N PR
Pr[Q(r1,r2,...,rn)—0|Q5*—0]5(|S1|+|Sz|+ +|S,,|)'

(Due to J. Edmonds [134].) Let G(U.V, E) be a bipartite graph, and let 4 be
the corresponding matrix of indeterminates as defined in Section 7.3. Show
that the size of a maximum matching in G is exactly equal to the rank of the
matrix A.

(Tutte’s Theorem [398]) In this problem we generalize Theorem 7.3 to the case
of an arbitrary (possibly non-bipartite) graph G(V, E) where V = {v,,...,v,}. A
skew-symmetric matrix 4 is defined to be a matrix in which for all i and j,
A; = —A;;. Let 4 be the n x n skew-symmetric matrix obtained from G(V. E)
as follows. A distinct indeterminate x;; is associated with the edge (v;,v;),
where i < j, and the corresponding matrix entries are given by A; = x;; and
A;; = —x;;; more succinctly,

Xij (v, V,') €cEandij<j
A = —Xjj (vi. V]) €Eandi>j
0 otherwise

This matrix is called the Tutte matrix of the graph G. Define the multivariate
polynomial Q(x11, X42,..., Xap) @s being equal to det(4). Show that G has a
perfect matching if and only if Q # 0.

(Due to M.O. Rabin and V.V. Vazirani [348, 349].) Consider the Tutte matrix of
a (non-bipartite) graph G(V, E) defined in Problem 7.8. Show that the rank of
the Tutte matrix of G is twice the size of a maximum matching in G.

Hint: Let 4 be an n x n skew-symmetric matrix of rank r. For any two sets S,
T < {1.....n}, denote by Asr the sub-matrix of 4 obtained by including only
the rows with indices in S and columns with indices in 7. Then, for any two
sets S, T < {1,...,n} of size r,

det(Ass) x det(Arr) = det(Asr) X det(Ars).

Given a randomized algorithm for testing the existence of a perfect matching
in a graph G, describe how you would actually construct such a matching.
Assuming that you use the randomized testing algorithm from Problem 7.8,
compare the running time of your approach with that of the best known
deterministic algorithm perfect matching mentioned in the Notes section.

Given a randomized algorithm for testing the existence of a perfect matching
in a graph, describe how we can use this to construct a maximum matching
in a graph G.

(Due to R.M. Karp and M.O. Rabin [249].) In this problem we will use a
different fingerprinting technique to solve the pattern matching problem. The
idea is to map any bit string s into a 2 x 2 matrix M(s), as follows.

e For the empty string €, M(¢e) = [ ; ? ]
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.M(0)=[:: (1’]

.M(1)=[; 1]

e For non-empty strings x and y, M(xy) = M(x) x M(y).
Show that this fingerprint function has the following properties.

1. M(x) is well-defined for all x € {0, 1}".
2 Mx)=M(y)=>x=y.

3. For x € {0, 1}, the entries in M(x) are bounded by Fibonacci number F,
(see Appendix B).

By considering the matrices M(x) modulo a suitable prime p, show how you
would perform efficient randomized pattern matching. Explain how you would
implement this as a “real-time” algorithm.

(Due to R.M. Karp and M.O. Rabin [249].) Consider the two-dimensional
version of the pattern matching problem. The text is an n x n matrix X, and
the pattern is an m x m matrix Y. A pattern match occurs if Y appears as a
(contiguous) sub-matrix of X. To apply the randomized algorithm described
above, we convert the matrix Y into an m2-bit vector using the row-major
format. The possible occurrences of Y in X are the m?2-bit vectors X{(j)
obtained by taking all (n —m + 1)? sub-matrices of X in a row-major form. It is
clear that the earlier algorithm can now be applied to this scenario. Analyze
the error probability in this case, and explain how the fingerprints of each
X(j) can be computed at a small incremental cost.

Prove the following relations directly from the definition of IP, i.e., without
invoking any results regarding IP stated in this chapter.

(a) Show that NP c IP.

(b) Show that if the definition of IP is modified to require that the probability
of error be zero, then the resulting complexity class would be exactly the
class NP.

(c) Show that co-RP < IP.
Prove Lemma 7.9.

(Due to C.H. Papadimitriou [324].) Let PSPACE be the class of all languages
whose membership can be decided using space polynomial in the input size,
with no explicit constraint on the running time. Show that IP = PSPACE.

(Due to A. Shamir [372].) A quantified Boolean formula (QBF) is a Boolean
formula @ of the form

(Q1x1)(Qax2) - (QnXn)F (X1, Xa. ..., Xn).

where each x; is a Boolean variable, each Q; is either the universal (V) or the
existential (3) quantifier, and F is quantifier-free Boolean formula. It is known
that QBF is PSPACE-complete. By devising an interactive proof system for
QBF, show that PSPACE < IP.
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Hint: The following is a brief sketch of a reformulation of Shamir’s proof
as presented by A. Shen. The first step is to arithmetize the QBF formula
®. For any Boolean expression G, possibly a smgle Boolean variable or a
quantified formula, construct an integer polynomial G using the following rules
recursively: replace TRUE by 1 and FALSE by 0 replace Boolean variables x;
by arithmetic variables x,, replace P AQ by__ x Q; replace the negation of
an expression P by 1— P, replace PV Q by P AQ and apply the prevnous two
rules; replace (vx;)P(x;) by P(O) x P(1) and, replace (3x;)P(x;) by P(0)+P(1)—
(P(O) X P(1)). Apply the ideas used in devising an interactive proof system
for the arithmetized version of #3SAT to the problem of verifying the value of
the arithmetized version, @, of the QBF formula ®@. One serious problem in
the case of QBF is that the intermediate polynomials need not be of a small
degree, primarily to the arithmetization of the the quantifiers. To handle this
problem, assume that the arithmetization of the sequence of quantifiers A,

, O, is interleaved with the application of the following reduce operation:
for each (integer) variable X, replace any non-zero power X} by x;. Argue
that in the case where we assign only the values 0 or 1 to each X;, the reduce
operation does not change the value of the resulting polynomial.

Remark: Combining this result with that of Problem 7.17, we conclude that
IP = PSPACE. It is known that PSPACE is closed under complementation,
and so it follows that IP = co-IP.

(Due to L. Fortnow, J. Rompel, and M. Sipser [1563].) Define the complexity
class MIP as the generalization of IP where the verifier has access to two
provers and the provers are not allowed to communicate with each other once
the verifier starts executing. Show that MIP = PCP.

Prove the following relations directly from the definition of PCP, i.e., without
invoking any results regarding PCP stated in this chapter.

(a) Show that P = PCP[0, 0].

(b) Show that NP = PCP([0, poly(n)].

(c) Show that co-RP = PCP[poly(n), 0].
(Due to S. Arora and S. Safra [33].) Show that PCP{logn, 1] = NP.
Prove Lemma 7.11.

Consider a multivariate function f(x) : Z; — Z,. Show that f is linear if and
only if for all @ and b, f(a) +f(b) = f(a + b).

This problem is concerned with some properties of the distance measure
defined in Definition 7.7.
(a) Show that the distance measure A satisfies the triangle inequality: for all
functions f,g.h: T — O,

A(t, h) < A(f, g) + A(g. h).

(b) For a class of functions F = {f : T — O}, define An,(F) as the minimum
distance between any two functions in F. Show that for any function g (not
necessarily in F), there is at most one function from F at distance Ap;,(F)/2
or less.
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(c) Suppose that F is the set of all linear functions from Z; to Z,. What is
Amin(F)?

(Due to M. Blum, M. Luby, and R. Rubinfeld [68].) Prove Lemma 7.12 using
the following sketch of a proof due to D. Coppersmith. Define the function G
such that for each x,

G(x) = majority, [G(x +y) = G V)]

where the “majority” denotes the value occurring most often over all choices
of y, breaking ties arbitrarily.

(a) Show that for all x, and for y chosen uniformly at random,
PriG(x) =G(x+y)-G()] = 1-6.
(b) Show that the functions G and G are &-close.

(c) Show that G is a linear function.
(d) Show that G is uniquely defined.

Prove Lemma 7.13.

Appropriately generalizing Lemma 7.13, describe how the verifier can check
thatc =aob.
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CHAPTER 8

Data Structures

The fundamental data-structuring problem is that of maintaining sets of items
drawn from an ordered universe so as to efficiently support search queries,
update operations, and operations involving entire sets. This chapter begins by
identifying some drawbacks in traditional approaches to data structuring using
either balanced search trees or self-adjusting search trees. We then describe
simple and elegant solutions to these problems using randomization.

8.1. The Fundamental Data-structuring Problem

Consider the fundamental data-structuring problem: we are required to maintain
a collection {S), S,,...} of sets of items so as to efficiently support certain types
of queries and operations. Each item i is an arbitrary record indexed by a key
k(i) drawn from a totally ordered universe {/{. We assume that each item belongs
to a unique set and that the keys are all distinct. The operations to be supported
are:

MAKESET(S): create a new (empty) set S.

INSERT(i, S): insert item i into the set S.

DELETE(k, S): delete the item indexed by the key value k from the set S.
FIND(k, S): return the item indexed by the key value k in the set S.

JOIN(Sy, i, S,): replace the sets S; and S, by the new set S = S; U {i} U S,, where

e for all items j € Sy, k(j) < k(i),
e for all items j € Sy, k(j) > k(i).

PASTE(S], S;): replace the sets S; and S, by the new set S = S; U S,, where for all
items i € S; and j € §,, k(i) < k().
spLIT(k, S): replace the set S by the new sets S; and S, where

o Sy =1{j€S|k(j) <k},
o S, ={j€S|k(j) >k}
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Since it is clear that the structure of the record constituting an item i is irrelevant,
we will not distinguish between an item and its key. For example, we will refer
to the INSERT operation as INSERT(k, S) and omit all references to the actual item
indexed by the key value k. It should be clear that a solution that works when
the items consist only of their key values will generalize to more complex record
structures. We will refer to the FIND operation as a search, and the INSERT and
DELETE operations as an update.

A standard solution to this problem is to represent the set S as a binary
search tree. Recall that in a binary search tree the keys are stored at the nodes
of a binary tree, and the assignment of keys to nodes must satisfy the following
search tree property: at a node containing a key value k, the left sub-tree contains
only key values smaller than k and the right sub-tree contains only key values
larger than k. The keys associated with the nodes in a binary tree are said to be
in a symmetric order if the search tree property is satisfied. It will be convenient
to assume that any node v in a binary search tree contains three pointers in
addition to the key value: L(v) points to the left child of v, R(v) points to the
right child of v, and P(v) points to the parent of v.

We will assume that the binary search trees we deal with are endogenous, in
that all key values are stored at internal nodes, and all leaf nodes are empty.
This will ensure that the trees are full, which means that every non-leaf (internal)
node has gxactly two children. The pointers L(v) and R(v) are NIL pointers if and
only if v is a leaf node, and the pointer P(v) is a NIL pointer if and only if v is the
root. In pictorial representations, we will use circles for internal nodes, rectangles
for leaf nodes (although usually these are not explicitly specified), and triangles
for sub-trees whose internal structure is not relevant (see Figure 8.1). While it is
not essential to introduce the dummy leaf nodes or to ensure endogenousness,
this does help to simplify the description of the implementation of the various
operations.

Figure 8.1: A full, endogenous binary search tree for the set of keys {7,9,13,15}.
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81 THE FUNDAMENTAL DATA-STRUCTURING PROBLEM

Exercise 8.1: In the implementation of a binary search tree described above, we are
using three pointers per node. Show that it is possible to reduce this to two pointers
per node such that the children and the parent of any node can be accessed by
following at most two pointers.

Let us now briefly review the standard implementation of the operations
using the binary search tree representation. The operation MAKESET(S) is trivial
- simply initialize an empty tree for the set S. To perform a FIND(K,S) is
also easy and requires just the standard binary search process. To implement
INSERT(k, S), perform FIND(k, S) and, if the value k is not found, insert k into
the (empty) leaf node where the search terminates with failure. The operation
JOIN(S;, k,S;) can be performed by creating a new node containing thé key k,
and making it the root of a new tree with the trees representing S; and S, as its
left and right sub-trees, respectively. It is easy to handle DELETE(k, S) if the node
v containing k (which can be located by a FIND(k, S)) has a leaf as one of its
two children. For example, if the right child of v is a leaf, then replace v by L(v)
as the child of P(v). If neither of the children is a leaf, then let kK’ be the key
value that is the predecessor of k in the set S; clearly, K must be at the node
arrived at by starting at L(v) and doing FIND(co, L(v)). Now, we can delete the
node containing k’ since its right child is a leaf, and replace the key value k by
k' in the node v, preserving the search tree property. The operation PASTE(S;, ;)
can be implemented by first deleting the largest key value, say k, from S; and
then applying JOIN(S;, k, ;). Notice that k can be found by doing a FIND(co, S;).
Finally, doing a SPLIT(k, S) is easy if k is at the root of S; simply do the reverse
of the steps employed in JOIN(S;,k, S;). When k is not at the root, we can make
use of rotations to move it to the root as described in Exercise 8.2.

Each operation can be performed in time proportional to the height(s) of
the tree(s), although some operations like JOIN can be performed in constant
time. Ideally, the height of a tree would be logarithmic in the size n of the set
it represents. Unfortunately, it is easy to devise a sequence of INSERT operations
that creates a tree of height linear in n. Several strategies have been devised
to handle this problem, usually involving balancing operations to ensure that
the tree has height O(logn). The most commonly used strategy is to perform
rotations during the update operations so as to ensure that all leaves remain
within a distance O(logn) of the root. In Figure 8.2, we illustrate the two basic
types of rotations that are needed.

Each type of rotation moves a node together with one of its sub-trees closer
to the root (and some others away from the root), while preserving the search
tree property. We will not discuss the specific details of implementing balanced
trees using rotations.

Exercise 8.2: Devise a strategy for moving any specified node of a binary search
tree to the root using rotations, while preserving the search tree property.
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Figure 8.2: The basic rotations.

A balanced search tree guarantees a worst-case time bound of O(logn) for
each of the operations described above. There is an inherent logarithmic lower
bound on the number of comparisons required for searching in an ordered
list; this lower bound generalizes to randomized searching. Some of the other
operations (for example, DELETE) are at least as hard as the FIND operations,
and so the lower bound applies to them also. This means that a balanced binary
search tree is optimal, at least with respect to the comparison-based model of
computation (see Section 8.4 for a further discussion on this issue).

A different strategy, called splaying, is used in “self-adjusting” search trees
to guarantee an amortized time bound of O(logn); the splay operation moves
a specified node to the root via a sequence of rotations. Amortization is the
partitioning of the total cost of a sequence of operations among the individual
operations in that sequence; thus, an amortized time bound can be viewed as
the average cost of the operations in a sequence.

The idea behind self-adjusting trees is to use a particular implementation of
the splay operation to move to the root a node accessed by a FIND operation.
If a node is accessed often enough, it will remain close to the root and will not
contribute much to the total running time; an infrequently accessed node cannot
contribute much to the total running time in any case. While these self-adjusting
trees guarantee only amortized logarithmic time per operation, they have the
advantage of being relatively simple to implement and do not require explicit
balance information to be stored at nodes. Furthermore, splay trees can be
shown to be optimal with respect to arbitrary access frequencies for the items
being stored; in fact, they achieve this optimality without having any explicit
information about the access frequencies.

Although self-adjusting trees provide optimal (amortized) solutions to the
fundamental data structuring problem, they suffer from some drawbacks. First
of all, they restructure the entire tree not only during updates but also while
performing simple search operations. This extensive restructuring can cause a
significant slowdown in practice in caching and paging environments. Moreover,’
during any given operation splay trees may perform a logarithmic number of
rotations. This is particularly inefficient in implementing higher dimensional
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search trees common in computational geometry. The reason is that there are
secondary data structures associated with each node of these higher dimensional
trees, and the secondary data structure at any node depends on the set of keys
stored in the sub-tree rooted at that node. Since the entire secondary data
structure has to be recomputed during each rotation, the cost of performing a
single rotation could increase from a constant to some super-linear function of
the sub-tree size. Finally, by its very nature, an amortized time bound leads
to the unsatisfying situation where we do not have the guarantee that every
operation will run quickly; instead, we obtain bounds only on the total cost of
the operations.

We describe an elegant and efficient randomized alternative to the balanced
tree and self-adjusting tree, called treaps. Treaps achieve essentially the same time
bounds in the expected sense, do not require any explicit balance information,
and the expected number of rotations performed is small for each operation.
They have the further advantage of being extremely simple to implement. We
also describe an alternative (but closely related) randomized data structure called
skip lists with similar benefits. Next, we consider the possibility of circumventing
the logarithmic lower bound on searching in some interesting special cases. We
show that using hash tables, we can guarantee that the expected time required for
a search can be made O(1). In the process, we introduce the notion of universal
hash functions, which have found numerous applications outside the domain
of data structures. Finally, we focus on the version of the data structuring
problem without any update operations and provide a hashing scheme that has
worst-case search time O(1).

8.2. Random Treaps

A (full, endogenous) binary tree whose nodes have key values associated with
them is a binary search tree if the key values are in the symmetric order. If
the key values decrease monotonically along any root-leaf path, we call the
structure a heap and say that the keys are stored in a heap order.

Consider a binary tree where each node v contains a pair of values: a key
k(v) as well as a priority p(v). We call this structure a treap if it is a binary search
tree with respect to the key values and, simultaneously, a heap with respect to
the priorities. More precisely, consider a set of items S = {(k1,p1),.--,(Kn, Pn)}
such that the key value of item i is k;, and its priority is p;. Assume that the
key values and the priorities are drawn from (possibly different) totally ordered
universes and that all key values and priorities are distinct. A treap for S will
ensure that the k’s are stored in symmetric order, while the p/’s are stored in
heap order. The reader may verify that for the set

{(2,13),(4,26),(6,19),(7,30), (9, 14),(11,27),(12, 22)}
the tree shown in Figure 8.3 is a valid treap.
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Figure 8.3: A treap.

It is not immediately obvious that any such set has a valid treap but, as
we show in the following theorem, there exists a unique treap for any set of
key-priority pairs.

Theorem 8.1: Let S = {(k1,p1),..-,(kn, Pn)} be any set of key-priority pairs such
that the keys and the priorities are distinct. Then, there exists a unique treap T(S)
for it.

PROOF: Our proof is constructive, and the construction is recursive. It is obvious
that the theorem is true for n = 0 and for n = 1. Suppose now that n > 2, and
assume that (k;,p;) has the highest priority in S. Then, a treap for S can be
constructed by putting item 1 at the root of T(S). A treap for the items in S of
key value smaller than k; can be constructed recursively, and this is stored as
the left sub-tree of item 1. Similarly, a treap for the items of key value larger
than k; is constructed recursively and becomes the right sub-tree of item 1. It is
also fairly easy to see that any treap for S must have this decomposition at the
root. O

The shape of the tree underlying the treap is determined by the relative
priorities of the key values, and any particular shape can be obtained by
choosing the priorities suitably. To solve the fundamental data structuring
problem, we must somehow pick a good set of priorities for the items being
stored and then implement the various operations as described below.

We implement a MAKESET(S) or a FIND(k, S) operation exactly as before. The
update operation INSERT(k, S) is implemented by starting as before and doing a
FIND(k,S) and inserting k at the empty leaf node where the search terminates
with failure. While this maintains the binary search tree property, it will violate
the heap order property if the priority of the key k is higher than that of its
parent. However, a rotation of k will maintain the heap property at all nodes,
except that the order of the node containing k and its parent is now reversed.
Thus, we can restore the heap order by using rotations to move k towards the
root until its priority value is smaller than that of its parent. A DELETE(k,S)
operation is exactly the reverse of an insertion: rotate the node containing k
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downward until both its children are leaves, and then simply discard the node.
The choice of the rotation (left or right) at each stage depends on the relative
order of the priorities of the children of the node being deleted. It is easy to
verify that the DELETE operation can be implemented such that it preserves the
treap property.

We implement a JOIN(Sy, k, S;) operation as before, and the resulting structure
is a treap provided the priority of k is higher than that of any item in S, or S,. If
the new root (containing k) violates the heap order, we simply rotate that node
downward until each of the two children of the node has a smaller priority or
is a leaf. A PASTE(S), S,) operation can be implemented exactly as in the case of
binary search trees. Finally, a sPLIT(k,S) operation can be implemented easily
by first deleting k from S, and then inserting it into S with a priority of oo.
Clearly, the node containing k is the root of the new tree and its sub-trees S,
and S, constitute the desired partition of S. These trees can be easily extracted.

Exercise 8.3: The JOIN, PASTE, and SPLIT operations are implemented in terms of the
INSERT and DELETE operations. Show how the INSERT and DELETE operations can be
implemented in terms of JOIN, PASTE, and SPLIT, and how the latter can be implemented
directly.

Clearly, we need only analyze the performance of the FIND, INSERT, and
DELETE operations. It is easy to verify that these take time proportional to the
depth of the tree representing the treap. However, a slightly stronger statement
can be made about the number of rotations required during a DELETE, and by
symmetry, during an INSERT operation. Define the left spine of a tree as the path
obtained by starting at the root and repeatedly moving to the left child until a
leaf is reached; the right spine is defined similarly.

Exercise 8.4: Show that the number of rotations during a DELETE operation on a node
v is equal to the sum of the lengths of the left spine of the right sub-tree and the
right spine of the left sub-tree of v.

Before we analyze the running times of the various operations, we must
specify how the priorities are chosen for any given key. The idea is to create a
random treap by choosing the priorities p; independently from some probability
distribution D. The only restriction on the choice of D is that it should ensure
that with probability 1 the priorities are all distinct; in general, it suffices to use
any continuous distribution such as the uniform distribution &[0, 1] on the real
interval [0,1]. The priority of an item is chosen at random from D when the
item is first inserted into a set, and the priority for this item remains fixed until
it is deleted; moreover, if the item is re-inserted after a deletion, a completely
new random priority is assigned to it. The following technicality arises: in our
model of computation, we cannot sample a continuous distribution. However,
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for simplicity of presentation, we temporarily assume in this section that such
sampling from a continuous distribution is permissible. Later, in Problem 8.12,
we show that treaps can in fact be implemented in our model of computation
using only a finite number of random bits.

The ordering of the priorities associated with the various items is completely
uncorrelated with the ordering of their key values, ensuring that the tree un-
derlying the treap will remain balanced and have expected depth O(logn). The
choice of the priorities is an implementation detail that is kept hidden, so that
an adversary cannot request a sequence of operations that is likely to cause the
tree to be unbalanced. The formal verification of this intuition uses the analysis
of a set of probabilistic games called Mulmuley games, which are described in
the next section.

8.2.1. Mulmuley Games

Mulmuley games are useful abstractions of processes underlying the behavior of
certain geometric algorithms. We use this abstraction here only for pedagogical
purposes; a more direct analysis is possible.

The cast of characters in these games is:

a set P={P,...,Pp} of players;
asetS = {S1,...,Ss} of stoppers;

aset T ={T,...,T;} of triggers;

a set B={By,..., By} of bystanders.

The set P US is drawn from a totally ordered universe and all players are
smaller than all stoppers: for all i and j, P; < S;. We assume that the sets are
pairwise disjoint. Depending upon the set of active characters, we formulate
four different games, with each game being more general than the previous one.
Before we describe and analyze the games, it will be useful to list an important
property of the Harmonic numbers.

Exercise 8.5: Let H, = >, 1/i denote the kth Harmonic number. Show that
k=t Hi = (0 + WHppr — (0 +1).

Recall that Hy = Ink + O(1) (Proposition B.4).

Game A. This game starts with the initial set of characters X = P U B. The
game proceeds by repeatedly sampling from X without replacement, until the
set X becomes empty. Each sample is a character chosen uniformly at random
from the remaining pool in X. Let the random variable V denote the number of
samples in which a player P; is chosen such that P; is larger than all previously
chosen players. We define the value of the game A4, to be E[V].
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Lemma 8.2: Forallp>0, A, =H,.

PROOF: Assume that the set of players is ordered as Py, > P, > -+ > P,. The
key observation is that the bystanders are irrelevant to the game: the value of
the game is not influenced by the number of bystanders. Thus, we can assume
that the initial number of bystanders b = 0. Conditional upon the first random
sample being a particular player P;, the expected value of the game is 1 + A4;_,.
This is because the players P.y,..., P, cannot contribute to the game any more
and are effectively reduced to being bystanders. Since i is uniformly distributed
over the set {1,...,p}, we obtain the following recurrence.

p . p .
A,,=Zl+:'"l —14+ 5 A @D

i=] i==]

Upon rearrangement, using the fact that 4y = 0, we obtain that Zf:‘ A; =

pA,—p. Now, by the property of the Harmonic numbers described in Exercise 8.5,
it is easy to see that the Harmonic numbers are the solution to (8.1). a

Game C. In this game, the initial pool is given by X = PUBUS. The process
is exactly the same as that in Game A, treating the stoppers as players as well.
The only difference is that the game stops when a stopper is chosen for the first
time. Note that since all players are smaller than all stoppers, we will always get
a contribution of 1 to the game value from the first stopper. The value of the
game is C, = E[V + 1] = 1+ E[V], where V is defined exactly as in Game A.

Lemma 83: For all p,s >0, C,=1+Hy,,—H,

PROOF: As before, we assume that the set of players is ordered as P, > P, >
"=+ > Pp and that the number of bystanders is 0. Now, if the first sample is a
stopper then the game value is 1, and if the first sample is a player P; then the
game value is 1 + C;_,. Noting that the probability of the first event is s/(s + p)
and that of the second event is 1/(s + p), we obtain the following recurrence:

s 1 L4
S= [ —— x 1 _— 1 3 .
c: (s+p>‘ )+(s+px§,-.;l( +c,-,))

Upon rearrangement, using the fact that C§ = 1, we obtain that

cioS*ptl Y G
P s+p s+p

which is equivalent to

p—1
Y Ci=(s+pCi—(s+p+1).
i=1

Once again, using Exercise 8.5 it can be verified that the solution to the recurrence
is given by C; = 1 + H,y, — H,. a
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Games D and E. Games D and E are similar to Games A and C, the only
difference being that their initial pools consist of X = PUBUT and & =
PUBUSUT, respectively. The role of the triggers is that the counting process
begins only after the first trigger has been chosen. More precisely, a player or
a stopper contributes to V only if it is sampled after a trigger and before any
stopper, and if it is larger than all previously chosen players. Letting D, and
E;' denote the expected values of the two games, the following lemmas can be
proved as before.

Lemma 84: For all p,t >0, D, = Hy, + H, — Hpy.,.

t
Lemma 85: For all p,s,t >0, E = Py + (Hs4p — Hy) — (Hgypy: — Hsy).

The proofs of these lemmas are left as problems.

8.2.2. Analysis of Treaps

In order to apply the games described above to the analysis of the performance
of random treaps, it will be useful to identify an important property of random
treaps — the memoryless property. Consider a random treap obtained by inserting
the elements of a set S into an initially empty treap. Since the random priorities
for the elements of S are chosen independently, we can assume that the priorities
are chosen before the insertion process is initiated. Once the priorities have been
fixed, Theorem 8.1 implies that the treap T is uniquely determined. This implies
that the. order in which the elements are inserted does not affect the structure
of the tree. Thus, without loss of generality, we can assume that the elements
of set S are inserted into T in the order of decreasing priority. An advantage
of this view is that it implies that all insertions take place at the leaves and no
rotations are required to ensure the heap order on the priorities.

Exercise 8.6: Using the memoryless property, derive a connection between the
structure of a treap and the behavior of the Quicksort algorithm (see Chapter 1).

Define the depth of a node in a treap as its distance from the root. The
following lemma establishes that the expected depth of the element of rank k in
S is O(logk + log(n — k + 1)), which is always O(log n).

Lemma 8.6: Let T be a random treap for a set S of size n. For an element x € S
having rank k,

E[depth(x)] = Hy + Hy_s1 — 1.

PROOF: Define the sets S ={yeS|y<x}and St ={y € S|y > x}. Since
x has rank k, it follows that |S™| =k and |S*| =n—k + 1. Denote by Q, = S
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the set of elements that are stored at nodes on the path from the root of T to
the node containing x, ie., the ancestors of x. Let Q7 denote S~ N Q,. We will
establish that E[|Q7|] = Hi. By symmetry, it follows that the expected size of
Q0 =St NQ, is Hy_k41. This will imply that the expected length of the path
from the root to x is Hy + Hy_x41 — 1, since @y N QF = {x}.

Consider any ancestor y € Q7 of the node x. By the memoryless assumption,
y must have been inserted prior to x, and the priorities must satisfy the inequality
py > Px. Since y < x, it must be the case that x lies in the right sub-tree of y. In
fact, we claim that all elements z such that y < z < x lie in the right sub-tree of
y. Consider the searches for the elements x, y, and z in T. Clearly, the searches
for x and y will follow the path from the root to the node containing y. But
then there cannot be any node on this path whose value is between y and x.
This implies that the search for every element whose value lies between y and x
must follow the path from the root to y, and in fact go into the right sub-tree
of y. We conclude that y is an ancestor of every node containing an element
of value between y and x. By our assumption about the order of insertion, this
implies that every element whose value lies between y and x must have been
inserted after y, and hence is of lower priority than y.

The preceding argument establishes that an element y € S~ is an ancestor
of x, or a member of @7, if and only if it was the largest element of S~ in
the treap at the time of its insertion. Since the order of insertion is determined
by the order of the priorities, and the latter is uniformly distributed, the order
of insertion can be viewed as being determined by uniform sampling without
replacement from the pool S. We can now claim that the distribution of |Q7] is
the same as that of the value of Game A when P = S~ and B = S\S™. Since
|S~| = k, the expected size of |Q7| = H;. a

Exercise 8.7: Obtain an alternate proof of Lemma 8.6 by using the analysis of Game
C when x is a stopper, P = S™\{x}, and B = S*\{x}.

The next lemma helps us bound the expected number of rotations required
during an update operation (see Exercise 8.4). For any element x in a treap,
let L, denote the length of the left spine of the right sub-tree of x, and R, the
length of the right spine of the left sub-tree of x.

Lemma 8.7: Let T be a random treap for a set S of size n. For an element x € S
of rank k,

1
E[Rx]—l_E
and
E[L]—l—-——l—-——
- n—k+1
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PROOF: We prove only the first result. The second result follows by symmetry
since the rank of x becomes n —k + 1 if we invert the total order underlying the
key values. We will demonstrate that the distribution of R, is the same as that
of the value of Game D with the choice of characters P = S™\{x}, T = {x},
and B = S*\{x}, where S ={yeS|y<x}and St={yeS|y=x}as
before. Since we now have p=k —1,t =1, and b = n — k, Lemma 8.4 implies
that

1
E[Rx] = DI:—I = Hk—l +H1 - Hk =1~ E

To relate the length of the right spine of the left sub-tree of x to Game D, we
make the following claim: an element z < x lies on the right spine of the left
sub-tree of x if and only if z is inserted after x, and all elements whose values
lie between z and x are inserted after z. The proof relies on the memoryless
property of treaps.

We first prove the backward implication in the claim. Consider the path
followed by the insertion procedure in locating the leaf at which z is inserted.
This path must go through the node containing x, since the only way to
distinguish between z and x is via a comparison with some element that lies
between them, and all such elements are inserted after z. Since z is smaller than
x and inserted after x, it must lie in the left sub-tree of x. Moreover, since all
the elements in the left sub-tree of x are smaller than x, and z is the largest of
these at the time of its insertion, z must lie on the right spine of this sub-tree.

The forward implication in the claim is proved similarly. Since z lies in the
left sub-tree of x, it must have been inserted after x and be of value smaller
than x. Moreover, all elements with value between those of z and x must be
in the left sub-tree of x, and since z lies on the right spine these elements must
have been inserted after z. a

The following theorem summarizes the performance bounds for random
treaps. The proof is an easy consequence of the preceding lemmas and is left as
an exercise. Note that the search time for a key x ¢ S is essentially the search
time for the elements of S that would have been its predecessor or successor
had it belonged to S.

Theorem 8.8: Let T be a random treap for a set S of size n.

1. The expected time for a FIND, INSERT, or DELETE operation on T is O(logn).

2. The expected number of rotations required during an INSERT or DELETE opera-
tion is at most 2.

3. The expected time for a JOIN, PASTE, or SPLIT operation involving sets S; and
S> of sizes n and m, respectively, is O(logn + logm).
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8.3. Skip Lists

We now turn to another elegant randomized data structure called skip lists.
Consider a set S = {x; < x2 < -+ < x,} drawn from a totally ordered universe.

» Definition 8.1: A leveling with r levels of an ordered set S is a sequence of nested
subsets (called levels)

L,EL,-]E"'C_:ngLl

such that L, =@ and L; = S.

» Definition 8.2: Given an ordered set S and a leveling for it, the level of any
element x € S is defined as

I(x) = max{i | x € L;}.

Given any leveling of the set S, we can define an ordered list data structure
as follows. For convenience, we will assume that two special elements —oo and
+o0 belong to each of the levels, where —oo is smaller than all elements in S
and +oo is larger than all elements in S. Observe that both —oo and 40 are
of level r. The level L, is stored in a sorted linked list, and each node x in this
linked list has a pile of /(x) — 1 nodes sitting above it. There are horizontal and
vertical pointers between nodes as illustrated in Figure 8.4. This data structure
is the skip list corresponding to a specific leveling of S.

.
1
-

1
=
=

‘ ‘ o \
,AI, T 2 \4J

.
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e
e
Eh

Figure 8.4: A skip list.

In Figure 8.4, the skip list represents the set S = {1,2, 3,4, 5}, and the leveling
that determines this skip list consists of the following 6 levels: Ls = 9, Ls = {2},
Ly={2,3}, Ly ={2,3,5}, L, = {2,3,4,5}, and L, = {1,2,3,4,5}. A pile of I(x)
nodes sits above each element x of S. Further, starting at the ith node from the
bottom in the left-most column of nodes and following the horizontal pointers
will yield a set of nodes corresponding to the elements of the level L;.
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» Definition 8.3: An interval at level i is the set of elements of S spanned by a
specific horizontal pointer at level i.

The sequence of levels L; can be viewed as successively coarser partitions of
S into a collection of intervals. In the example shown in Figure 8.4, we can view
the levels as determining the following successive partitions:
Ly = [-o0,1]U[L2]U[2,3]U[3,4]U[4,5] U [5,+x]
L, = [~0,2]U[2,3]U[3,4]U[4,5]U 5, +o0]

Ly = [-00,2]U[2,31U[3,5]U[5,+0]
Li = [—00,2]U[2,3]1U [3,400]

Ls = [—00,2]U [2,40]

Ly = [~o0,+o]

The interval partition structure is more conveniently viewed as a tree (see
Figure 8.5) where each node corresponds to an interval, and all intervals at the
same level are represented by nodes at the same level in the tree. If an interval
J at level i + 1 contains as a subset an interval I at the level i, then node J is
the parent of node I in the tree. For an interval I at level i + 1, ¢(I) denotes
the number of children it has at level i. Since ¢(I) can be arbitrarily large, the
tree is not binary in general. The skip list representation can be viewed as a
threaded version of this tree, where each thread is a series of pointers forming
an ordered linked list of the nodes in a level. In Figure 8.5, the horizontal
pointers correspond to the threads.

‘ Eﬁ
______ | [2‘,3] === B - (45) o S L

I R !

—= 23] ——~] B4 - — @5 == 54 L

Figure 8.5: Tree representation of a skip list.

Consider an element y, which is not necessarily a member of S. Define I;(y)
as the interval at level j that contains y. If y lies on the boundary between two
intervals, we assign it to the left-most one. We can now view the nested sequence
of intervals I,(y) € I,_;(y) € --- € I,(y) containing y as a root-leaf path in the
tree representation of the skip list. To complete the description of a skip list,
we have to specify the choice of the leveling that underlies it. The basic idea is
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to choose a random leveling, thereby defining a random skip list. The analysis
will show that there is a high probability that the search tree corresponding to
a random skip list is balanced.

8.3.1. Analyzing Random Skip Lists

A random leveling of the set S is defined as follows: given the choice of the level
L;, the level Ly, 1s defined by independently choosing to retain each element
x € L; with probability 1/2. This process starts with L; = S, and it terminates
when, for the first time, a newly constructed level is empty. An alternate view
of this construction is as follows: let the levels I(x) for x € S be independent
random variables, each with the geometric distribution with parameter p = 1/2.
Let r be one more than the maximum of these random variables. Plaée x in
each of the levels L,, ..., L. As was the case with the random priorities in
treaps, a random level is chosen for every element of S upon its insertion, and
this remains fixed until the element is deleted.

Exercise 8.8: Show that the expected space requnremem of a random skip list for a
set S of size n is O(n).

Lemma 8.9: The number of levels r in a random leveling of a set S of size n has
expected value E[r] = O(logn). Moreover, r = O(log n) with high probability.

PROOF: We prove only the high probability result; the bound on the expected
value is left as an exercise. The number of levels r = 1 + max,¢s I(x), and the
levels I(x) are i1d. random variables distributed geometrically with parameter

= 1/2. We may thus view the levels of the members of S as independent
geometrically distributed random variables X\, ..., X,,. It is easy to verify that
Pr[X; > t] < (1 — p)' and, therefore,

Pr[m?xX,- >t]<n(l-p)= ;7,

since p = 1/2 in this case. Using t = alogn and r = max; X;, we obtain the
desired result that

Pr[r > alogn] < a1

for any o > 1. O

Exercise 8.9:

1. Use the ideas in the proof of Lemma 8.9 to show that E[r] = O(log n).
2. Use Theorem 1.3 to show that E[r] = O(logn).
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This result implies that the tree representing the skip list has height O(logn)
with high probability. Unfortunately, since the tree need not be binary, it does
not immediately follow that the search time is similarly bounded. To understand
this, we first specify an efficient implementation of the FIND operation.

We will describe the implementations of all operations in terms of the tree
representation of skip lists and then translate this description back into the skip
list representation. The implementation of FIND(x, S) corresponds to walking
down the path I.(y) = I,_1(y) € - - € I,(y), as follows: at level j, starting at the
node I;(y), use a vertical pointer to descend to the leftmost child of the current
interval; then, using the horizontal pointers, move rightward till the node I;(y)
is reached. It is easy to determine whether y belongs to a given interval, or to
an interval to its right. Also, in the original skip list representation, the vertical
pointers allow access to only the left-most child of an interval, and hence it is
essential to use the horizontal pointers to traverse the list of its children.

The cost of the FIND(y,S) operation is proportional to the number of levels
as well as the number of intervals (or nodes) visited at each level. The number
of nodes visited at level j does not exceed the number of children of the interval
Ij41(y). It is now clear that the cost of a FIND operation depends not only on
the number of levels, but is proportional to the total number of children of the
nodes on the search path. This cost can be bounded by

0 (Z(l + c(I,-(y)))) :

J=1

Fortunately, as shown in the following lemma, this quantity has expectation
bounded by O(logn) as well. '

Lemma 8.10: Let y be any element and consider the search path I,(y), ..., I(y)
Sollowed by FIND(y, S) in a random skip list for the set S of size n. Then,

E[D (1 + cI;(»)))] = O(logn).

j=1

ProoF: We will show that for any specific interval I in a random skip list,
E[c(I)] = O(1). Since Lemma 8.9 guarantees that r = O(logn) with high
probability, this will yield the desired result. Note that we do need the high
probability bound on r - it is not correct to multiply the expectation of r with
that of 1 4 c(I) since the two random variables are not independent. On the
other hand, since we know that r > alogn with probability at most 1/a*"!, and
since y_;(1+ c(Ij(y))) = O(n), we can argue that the case r > 2logn does not
contribute significantly to the expectation of ¥ ;¢ i(y)) = O(n).

Let J be any interval at level i of the skip list. We will prove that the expected
number of siblings of J (children of its parent) is bounded by a constant, and
this will imply that the expected number of children of an interval is bounded
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by a constant. In fact, it will suffice to prove that the number of siblings of J to
its right is bounded by a constant.

Let the intervals to the right of J be J; = [x,x3], J2 = [x3,x3], ..., Jk =
[xx, +o0]. These intervals exist at level i if and only if each of the elements x,

., X; belong to L;. If J has s siblings to its right, then it must be the case that
X1, ..., Xs & Liy, and X,y € Liy,. Since each element of L; is independently
chosen to be in Ly, with probability 1/2, the number of right siblings of J is
stochastically dominated by a random variable that is geometrically distributed
with parameter 1/2. It follows that the expected number of right siblings of J
is at most 2. O

In Problem 8.14 we suggest a different approach, which leads to a precise
determination of the expected cost of the FIND operation.

We now describe the implementation of the update operations on a Sklp
list. Consider the operation INSERT(y,S), and assume that a random level I(y)
is chosen for y as described earlier. If the value of I(y) exceeds r, then start
by creating new levels from r + 1 to I(y) in the original skip list. This can be
done in time O(r) since the new levels are all empty prior to the insertion of
y. Then, perform the operation FIND(y,S) and determine the search path I,.(y),

, I)(y), where r is updated to its new value if necessary. Given the search
path, the actual insertion process can be accomplished in time O(I(y)) since all it
requires is the splitting around y of the intervals I,(y), ..., I);)(y), and of course
updating the pointers as appropriate. The DELETE operation is the converse
of the INSERT operation, and it involves performing FIND(y, S) followed by the
collapsing of the intervals that have y as an end-point. In addition to the cost of
a FIND operation, both operations require additional work proportional to I(y).
Combining this with Lemmas 8.9 and 8.10, we obtain the following theorem.

Theorem 8.11: In a random skip list for a set S of size n, the operations FIND,
INSERT, and DELETE can be performed in expected time O(logn).

These results extend to the other operations described in treaps.

Exercise 8.10: Describe an implementation of operations JOIN, PASTE, and SPLIT for
random skip lists. Analyze the running time of your implementation, and compare
the result with the same operations in the case of treaps.

8.4. Hash Tables

In the rest of this chapter, we restrict ourselves to the following special cases of
the data-structuring problem considered in the previous sections:

1. In the static dictionary problem we are given a set of keys S and must organize it
into a data structure that supports the efficient processing of FIND queries.
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2. In the dynamic dictionary problem the set S is not provided in advance. Instead it
is constructed by a series of INSERT and DELETE operations that are intermingled
with the FIND queries.

These problems can be solved using data structures discussed earlier, i.e., bal-
anced search trees, random treaps, and random skip lists. For a set S of size
s, these data structures require Q(log s) time (worst-case or expected) to process
any search or update operation. The time bounds achieved are optimal in the
sense that for data structures based on pointers and search trees, we are faced
with a logarithmic lower bound on the cost of a search. These lower bounds
are based on the assumption that the only computation we can perform over
the keys is to compare them and thereby determine their relationship in the
underlying total order.

We now present an entirely different approach that allows us to circum-
vent this lower bound and achieve O(1) search time. We mention briefly the
reasons why the logarithmic lower bounds will not apply to the dictionary
problem we will consider. We will assume that the keys in S are chosen from
a totally ordered universe M of size m; without loss of generality, we define
M ={0,...,m —1}. We will also assume that the keys are represented as inte-
gers in a manner that permits us to perform arithmetic operations over them.
Finally, we will choose to work in the RAM model of computation in its full
generality.

To better understand the difference in the models, we describe a scheme that
enables us to obtain search and update times that are bounded independently of
the size of S. In this scheme, we create a table T of size m; a table is simply an
array supporting random access. For each k € M, we set T[k] = 1 if and only
if k € S. We can perform search or update operations for a key in unit time by
accessing the corresponding entry in the table. The problem with this approach
is that the key space is typically many orders of magnitude larger than the set
S. For example, in a 32-bit machine we have m = 232, 5o such a table of size
m will consume the entire memory of the machine. In fact, the preprocessing
cost of initializing the table is equally large in this solution. Even though this
approach is impractical, it serves to illustrate the point that the new model
permits us to get around the comparison-based lower bounds on searching in a
totally ordered set. This is because we are now making use of the full power of
the RAM model of computation including random access and indirect indexing
(which permits an m-way branch in a single step), not to mention the dual use
of key values as table indices.

In this section we focus on the dynamic dictionary problem, and our goal is
to obtain a more practical version of the table-based scheme. The main issue is
that of reducing the size of the table to a value close to |S|, while maintaining
the property that a search or update operation can be performed in O(1) time.
To this end, we introduce hashing, a data structuring technique in which we
use a fingerprint function (see Chapter 7) to determine where a key should be
located in the table.
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A hash table is a data structure for the dictionary problem that consists of
the following components: a table T consisting of n cells indexed by N =
{0,1,...,n — 1}, and a hash function h, which is a mapping from M into N. We
assume that n is smaller than m, since otherwise the dictionary problem is trivial.
Each cell 1s a memory word that can hold exactly as many bits as required to
encode an element of M, i.e., the word size is logm. The hash function is a
fingerprint function for the keys in M, and it specifies a location in the table for
each element of M. Ideally, we would want the hash function to map distinct
keys in S to distinct locations in the table. A collision is said to occur between
two distinct keys x and y if h(x) = h(y) and they are said to collide at the
corresponding location in T.

» Definition 8.4: A hash function h : M — N is said to be perfect for a set § € M
if h does not cause any collisions among the keys of the set S.

Exercise 8.11: Show that a perfect hash function can be constructed for any set § of
size at most n.

Given a perfect hash function for a set S, we can use the hash table to process
a sequence of FIND operations in O(1) time each: store each element k € S at
the location T[h(k)]; to search for a key q, just check whether T[h(q)] = q. A
problem arises when we try to use this hash function to process updates. The
problem is that no hash function can be perfect for all possible sets S ="M ; this
follows from the observation that for n < m, any function & must map some
two elements of M to the same location, and so it cannot be perfect for any set
containing those two elements. Thus, perfect hash functions are useless for the
dynamic dictionary problem. It is still possible that they can be used to obtain
a good solution to the static dictionary problem, and we will return to this issue
in Section 8.5.

A natural approach to solving the dynamic dictionary problem is to relax
the definition of perfect hash functions to that of “near-perfect” hash functions,
which are allowed to cause a small number of collisions at each location in the
table. There has been great deal of research into the design of such near-perfect
hash functions, but typically this is under the assumption that the sequence
of operations to be performed is drawn from some well-behaved probability
distribution. Under this assumption, it is possible to come up with simple hash
functions that cause only O(1) collisions on the average at any table location,
provided the number of items present in the hash table is bounded by some
linear function in the table size n. The keys colliding at any given location are
usually organized into a secondary data structure accessible from that location,
or they can be rehashed into a secondary hash table using a new hash function.
To process any operation, the hash function is used to determine the appropriate
location in the table, and the operation is then performed on the secondary data
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structure associated with that location. Since the expected size of the secondary
data structure 1s O(1), it follows that each operation has expected cost O(1) in
addition to the cost of evaluating the hash function. Hash functions are chosen
so that they can be evaluated in O(1) time.

We will present a randomized hashing scheme for the dynamic dictionary
problem that processes search and update operations in expected time O(1),
without making any probabilistic assumptions about the operation sequence.
The expectation is with respect to the random choices internal to the hash table.

8.4.1. Universal Hash Families

Our solution requires the construction of a class of hash functions that have
found a surprisingly large number of applications in areas far removed from
the original problem, such as routing in networks and complexity theory. The
idea is to choose a family of hash functions H = {h : M — N}, where each
h € H is easily represented and evaluated. While any one function h € H
may not be perfect for very many choices of the set S, we can ensure that
for every set S of small cardinality, a large fraction of the hash functions in
H are near-perfect for S in the sense that the number of collisions is small.
Thus, for any particular set S, a random choice of h € H will give the desired
performance. The hash functions described here can also be used to solve some
of the problems discussed in earlier sections.

» Definition 85: Let M = {0,1,...,m—1} and N ={0,1,...,n— 1}, withm > n.
A family H of functions from M into N is said to be 2-universal if, for all x,
y € M such that x # y, and for h chosen uniformly at random from H,

Prh(x) = h) < -

A totally random mapping from M to N has a collision probability of exactly
1/n; thus, a random choice from a 2-universal family, of hash functions gives
a seemingly random function. The collection of all possible functions from M
to N is a 2-universal family, but it has several disadvantages. Picking a random
function requires Q(mlogn) random bits. This is also the number of bits of
storage required to represent the chosen function. Our goal is to obtain smaller
2-universal families of functions that require a small amount of space and are
easy to evaluate; in particular, we would like to construct 2-universal families
containing only a small subset of all possible functions. The reason this is
possible is that a randomly chosen function h € H is required to behave like a
random function only with respect to pairs of elements. In fact, as x ranges over
M, the values h(x) behave somewhat like pairwise independent random variables,
which is precisely the reason for the name “2-universal.” On the other hand, for
a purely random function f, the values f(x) have complete independence. In
Section 8.4.4 we will discuss “strong” 2-universal hash families, which have an
exact correspondence with pairwise independent random variables.
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From here on fix the sets M, N, and H as in Definition 8.5. For any x, y € M
and h € H, define the following indicator function for a collision between the
keys x and y under the hash function h:

1 for h(x) = h(y) and x # y
0 otherwise.

5(x,y,h) = {
For all X, Y = M, define the following extensions of the indicator function 4:

8y, H) = Y 8(x,y,h),
heH

S(x,Y,h) = ) &(x,y,h),
yeY
S(X,Y,h) = ) (x,Y,h),
x€X
S, Y,H) = > 8(xy H),
yey
S(X,Y,H) = Y 8(X,Y,h).
heH
For a 2-universal family H and any x # y, we have d(x,y,H) < |H|/n.
The following theorem shows that our definition of 2-universality is essentially
the best possible, since a significantly smaller collision probability cannot be
obtained for m > n.

Theorem 8.12: For any family H of functions from M to N, there exist x,y € M
such that
HI _H|

5(X,y,H) > — -
n m

PRoOF: Fix some function h € H, and for each z € N define the set of elements
of M mapped to z as

A, ={x e M| hx) =1z}
The sets A4,, for z € N, form a partition of M. It is easy to verify that

0 w#z

5(Aw, Ay, h) ={ Al oD Wil

This is because any two elements that collide must belong to the same set A,, and
the number of collisions within the elements of A4, is exactly |4;|(JA;| — 1). The
total number of collisions between all possible pairs of elements is minimized
when these sets 4, are all of the same size. We obtain

SM,M,k) = " |A4;|(4.| —1)

ZeN

]

217



DATA STRUCTURES

This calculation was for any fixed choice of h € H, and so §(M,M,H) =
S hen 6(M,M,h) > |Him*(1/n — 1/m). By the pigeonhole principle there must
exist a pair of elements x, y € M such that

5(M,M,H
seyb) 2z JLILH)
|H|6(M, M, h)
— -—————-;2——————
|H|m? (1/n — 1/m)
> -

n(s7h)

8.4.2. Application to Dynamic Dictionaries

Before we provide a construction for a 2-universal hash family, let us see why it
gives a good solution to the dynamic dictionary problem. The following lemma
will prove useful in the analysis of a dynamic dictionary scheme based on a
2-universal family H.

Lemma-8.13: Forall xe M, S = M, and random h € H,
S|

n

E[6(x,S,h)] <

prooF: The following simple calculation constitutes the proof.

E[6(x,S,h)] = 25_(3%_@
heH

= E Y8y

heH yeS

- ST s

y€S heH

1
= — o(x,y, H)
IHlyzeg

1« [H]
< H X
yes

Is|
23

a

Our dynamic dictionary scheme first chooses a hash function h € H uniformly
at random, and then processes the entire sequence of updates and queries using
h. Note that the hash function remains fixed during any given invocation of
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the hash table. An inserted key x is stored at the location h(x), and due to
collisions there could be other keys also stored at that location. The keys
colliding at a given location are organized into a linked list and a pointer to
the head of the list is maintained in that cell. The time to perform an INSERT,
DELETE, or FIND operation involving a key x is essentially determined by the
time required to perform that operation on the linked list stored at the location
h(x), and the latter is at most the length of the list itself. Assuming that the
set of keys currently stored in the table is S = M, the length of the linked list
is &(x, S, h), which has expectation |S|/n. Of course, we could use a balanced
binary search tree instead of a linked list to reduce the cost of each operation
to O(log d(x, S, h)), but this does not seem worthwhile given that we expect that
the number of collisions at each location will be fairly small.

Consider a request sequence R = R|R;... R, of update and search operations
starting with an empty hash table. Suppose that this sequence contains s INSERT
operations; then, the table will never contain more than s keys. Let p(h, R)
denote the total cost of processing these requests using the hash function h € H
and the linked list scheme for collision resolution. The following theorem is easy
to prove.

Theorem 8.14: For any sequence R of length r with s INSERTs, and h chosen
uniformly at random from a 2-universal family H,

Elp(h R} <7 (1+ %)

If we pick the table size n to be larger than the maximum number of elements
ever present in the table, we conclude that the expected time per operation is
at most 2. By the Markov inequality, the probability that the total cost of the
request sequence will exceed 2rt is at most 1/t. We emphasize that this analysis
does not assume anything about the request sequence R except a bound on the
table occupancy.

8.4.3. Constructing Universal Hash Families

We now turn to the task of devising explicit constructions of 2-universal hash
families. Our construction of a 2-universal family is algebraic. Fix m and n,
and choose a prime p > m. We will work over the field Z, = {0,1,...,p — 1}.
Let g : Z, — N be the function given by g(x) = x mod n. For all g, b € Z,
define the linear function f, : Z, — Z, and the hash function h,} : Z, — N as
follows.

fap(x) = ax+b mod p,
hap(x) = g (fa,b(x)) .

We the family of hash functions H = {h,; | a,b € Z, with a # 0} and claim that
it is 2-universal. Although H uses Z, as its domain, the claim applies to the
restriction of H to any subset of Z,,.in particular to the domain M.
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Lemma 8.15: For all x, y € Z, such that x #+ y,
o(x,y,H) = 0(Z,,Z,,g).

PROOF: We show that the number of hash functions in H that cause x and y to
collide is determined by the size of the residue classes of Z, modulo n. Suppose
that x and y collide under a specific function h,p. Let f,,(x) =r and f,,(y) = s,
and observe that r # s since a # 0 and x # y. A collision takes place if and
only if g(r) = g(s), or equivalently, r = s (mod n). Now, having fixed x and y,
for each such choice of r # s the values of a and b are uniquely determined as
the solution to the following system of linear equations over the field Z,.

ax+b = r (mod p)
ay+b = s (modp)

Thus, the number of hash functions h,j, that cause x and y to collide is exactly
the number of choices of r # s such that r = s (mod n). The latter is given by
0Z,Z,3g) a

Given the similarity of the definition of 2-universality to pairwise indepen-
dence, it is not surprising that the constructions and their proofs are also very
similar (see Section 3.4).

Theorem 8.16: The family H = {h,; | a,b € Z, with g # O} is a 2-universal fam-
ily.

PROOF: For each z € N, let 4, = {x € Z, | g(x) = z}; it is clear that
|4:| < [p/n]. In other words, for every r € Z, there are at most [p/n] different
choices of s € Z, such that g(r) = g(s). Since there are p different choices of
r € Z, to start with,

PY _ p(p—1)

0(Zy,Z,,g) < p (l’;l"l 1) < —
Lemma 8.15 now implies that for any distinct x and y in Z,, §(x,y,H) <
p(p — 1)/n. Since the size of [H| is exactly p(p — 1), this gives the desired result
that 6(x,y, H) < |H|/n. O

A well-known result in number theory called Bertrand’s Postulate states that
for any number m, there exists a prime between m and 2m. Thus we can
choose p = O(m), and the number of random bits needed to sample a hash
function from H is no more than 2logp = O(logm). Choosing, storing, and
evaluating hash functions from H is remarkably simple and efficient. Pick a and
b independently and uniformly at random from Z,. These are stored using very
little memory, and computing h,; is a trivial task. Contrast this with the use of
a totally random function as a hash function.
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8.4.4. Strongly Universal Hash Families

The definition of 2-universality merely constrains the probability that two dis-
tinct keys get mapped to the same location. This does not fully capture the
pairwise independence property (Section 3.4) inherent in the construction of 2-
universal hash functions presented in Section 8.4.3. In fact, essentially the same
construction gives the stronger guarantee required by the following definition.

» Definition 8.6: Let M = {0,1,....,m—1} and N = {0,1,...,n— 1}, withm > n.
A family H of functions from M into N is said to be strongly 2-universal if for
all x; # x; € M, any y, y; € N, and h chosen uniformly at random from H,

1
Pr[h(x;) = y1 and h(x;) = y2] = r

Note the similarity to pairwise independence and use this to solve the following
exercise.

Exercise 8.12: Assume that n = m = p is a prime number. Show that the hash
function family H = {h,» | a.b € Z,} is strongly 2-universal.

Most known constructions of 2-universal hash families actually yield a
strongly 2-universal hash family. For this reason, the two definitions are gener-
ally not distinguished from one another. This definition generalizes to strongly
k-universal hash families in the obvious way: for any set S containing k distinct
elements from M, and any set T containing k elements from N, the probability
that a random hash function h € H maps the ith element of S to the ith element
of T is 1/n*. This is closely related to k-wise independent random variables (see
Section 3.4).

8.5. Hashing with O(1) Search Time

While the hashing scheme described in Section 8.4 achieves a bounded expected
search time for |S| = O(n), it has the disadvantage of requiring unbounded time
in the worst case. In this section, we describe a hashing scheme that processes
the FIND operation using O(1) time in the worst case. The catch is that our
solution applies only to the static dictionary problem, i.e., we assume that a
set S of size s is fixed in advance and that we only need to support the FIND
operation.

Recall that if we do not restrict the table size, there is a trivial solution that
takes unit time per query, although it does have the disadvantage of requiring
Q(m) time for the preprocessing. Our goal is to devise a hashing strategy that
uses linear space, while guaranteeing bounded search cost and a polynomially
bounded preprocessing cost. Therefore, in the ensuing discussion we will focus
exclusively on tables of size n = O(s).
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8.5.1. Nearly Perfect Hash Families

One way of achieving our goal is to use a hash function h that is perfect for S.
Since a hash function cannot be perfect for every possible set S, we will actually
need a family of perfect hash functions.

» Definition 8.7: A family of hash functions H = {h : M — N} is said to be a
perfect hash family if for each set S = M of size s < n there exists a hash function
h € H that is perfect for S.

For notational convenience, we do not explicitly specify the parameters m,
n, and s that go into the definition of perfect hash functions and some of the
related definitions that follow. The reader should keep in mind that the notion
of perfection is defined only with reference to these values.

It is clear that perfect hash families exist: for example, the family of all
possible functions from M to T is a perfect hash family. Given a perfect
hash family H, we solve the static dictionary by finding h € H perfect for S,
storing each key x € S at the location T [h(x)], and then responding to a search
query for a key q by examining the contents of T [h(q)]. The preprocessing cost
depends on the cost of identifying a perfect hash function for a specific choice
of S, while the search cost depends on the time required to evaluate the hash
function.” Moreover, since the choice of the hash function will depend on the
set S, its description must also be stored in the table. We assume that some
auxiliary cells are added to T for just this purpose. Suppose that the size of the
perfect hash family H is r. Then, storing the description of a hash function from
H will require Q(logr) bits. Since we cannot afford to spend more than O(1)
time per search, it is essential that the description of the hash function should
fit into O(1) locations in the table T. A cell in the table is only large enough
to accommodate a key from M, and so it can be used to encode at most logm
bits of information; therefore, we will only be interested in constructing hash
families whose size r is bounded by a polynomial in m. It is also essential that
given an encoding of a hash function into O(logm) bits, we should be able to
evaluate this hash function efficiently on arbitrary keys.

Consider the universal hash function family H defined in Section 8.4.3: each
hash function h,p is determined by the elements a,b € Z,. Given a choice of p
reasonably close to m, the functions h,; can be stored in O(1) cells in the table;
given a and b, the hash function h,; can be evaluated in O(1) time. The only
problem is that the universal hash family is not a perfect hash family. Let us try
to determine the conditions under which a perfect hash family can be shown to
exist, ignoring for now the issue of efficient storage and evaluation.

Exercise 8.13: Assume for simplicity that n = s. Show that for m = 29¢), there exist
perfect hash families of size polynomial in m. (Hint: Use the probabilistic method.)
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The existence of a perfect hash family is guaranteed only for values of m that
are extremely large relative to n. This stems from the requirement that the hash
family should have size polynomial in m. The following exercise shows that this
restriction is unavoidable and that the bound in the Exercise 8.13 is close to the
best possible.

Exercise 8.14: Assuming that n = s, show that any perfect hash family must have
size 206,

Thus, we need to have m = 229 or s = O(logm), to guarantee even the
existence of a perfect hash family of size polynomial in m. Unfortunately, in
practice the case s = O(log m) is not very interesting for typical values of m, e.g.,
for m = 2%,

To circumvent this inherent problem in the use of perfect hash functions, we
will employ the strategy of double hashing. The idea is to relax the property of
perfection and allow for a few collisions; the keys that are hashed to a particular
location of the primary table are handled by using a new hash function to map
them into a secondary hash table associated with that location. The set of keys
colliding at a specific location of the primary hash table is called a bin. In fact,
we can view the application of a hash function h : M — N to the data set S as
a partition of S into n bins (some of which may be empty).

» Definition 88: LetS < M and h: M — N. For each table location0 < i < n—1,
we define the bin :

Bi(h,S) = {x € S | h(x) = i}.
The size of a bin is denoted by b;(h, S) = |Bi(h, S)|.

A perfect hash function ensures that all bins are of size at most 1. Consider
the following generalization of perfect hash functions.

» Definition 8.9: A hash function h is b-perfect for S if bi(h,S) < b, for each i. A
family of hash functions H = {h : M — N} is said to be a b-perfect hash family
if for each S = M of size s there exists a hash function h € H that is b-perfect
for S.

Exercise 8.15: Show that there exists a b-perfect hash family H such that b = O(log n)
and |H| < m, for any m > n. (Hint: Use the probabilistic method.)

Using the preceding exercise, we can now outline a scheme for double hashing.
At the first level we use a (log m)-perfect hash function h to map S into the
primary table T. The description of h can be stored in one auxiliary cell
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Consider the bin B; consisting of all keys from S mapped into a particular cell
T[i]. In this cell we store the description of a secondary hash function h;, which
is used to map the elements of the bin B; into the secondary table T; associated
with that location. Since the size of B; is bounded by b, we know from the earlier
discussion that we can find a hash function h; that is perfect for B; provided 2°
is polynomially bounded in m. For b = O(logm) this condition holds, and so
the double hashing scheme can be implemented with O(1) query time, for any
mzn.

One problem with this approach is that it uses Q(slogm) space, since there
must be a secondary table of size O(logm) for each of the n = O(s) locations
in the primary table. While the space bound could possibly be reduced using
clever memory allocation schemes, a more serious concern is the issue of efficient
construction and evaluation of the hash functions being used. Both the primary
and secondary hash families are shown to exist via the probabilistic method, and
we do not know of any efficient construction. But we can infer the following
crucial insight from this scheme: the goal of the primary hash functions should
be to create bins small enough that some perfect hash functions can be used
as the secondary hash functions. The following exercise describes how we may
ensure the existence of suitable secondary hash functions.

Exercise 8.16: Consider a table of size r indexed by R = {0,..., r — 1}, Show that
there exists a perfect hash family H = {h : M — R} with |H| < m provided that
r=Q(s?), forallmz>s.

We are now ready to describe our final solution. We will use a primary table
of size n = s, choosing a primary hash function that ensures that the bin sizes
are small; the perfect hash functions from Exercise 8.16 are then used to resolve
the collisions by using secondary hash tables of size quadratic in the bin sizes,
thereby guaranteeing perfect hashing at the secondary level. It follows that total
space required by the double hashing scheme is

s+0(§b§).

This is linear space provided the sum of the squares of the bin sizes is linearly
bounded in s. Also, the time required for a search operation is clearly O(1).

8.5.2. Achieving Bounded Query Time

Our goal now is to find primary hash functions which ensure that the sum of the
squares of the bin sizes is linear, and perfect hash functions for the secondary
tables, which use at most quadratic space. It turns out that the nearly-2-universal
hash functions discussed in Problem 8.22 are the appropriate choice for both
primary and secondary hashing.
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The following notation will be used for these hash functions. For the sake of
simplicity, we assume that p = m + 1 is a prime number.

» Definition 8.10: Consider any V < M with |V| =y, and let R = {0,...,r — 1}
with r > v. For 1 < k < p— 1, define the function h, : M — R as follows,

hi(x) = (kx mod p) mod r.
For each i € R, the bins corresponding to the keys colliding at i are denoted as
Bik,r,V)y={x€ V| lh(x) = i}
and their sizes are denoted by bi(k,r, V) = |B;(k,r, V).

We include r as a parameter in the bin sizes since we do not assume that r
is linearly related to v, unlike in Definition 8.8 where we had n = O(s). The
hash functions h; have a rather simple description since they are completely
determined by the value of k. Since k € {1,...,m}, this description can be
encoded into a key value in M = {0,...,m — 1} and stored in a single cell in the
table. (The function hy is identically 0, and this is why we choose k from the
set {1,...,m} instead of from M.) The following lemma summarizes the critical
property of these hash functions that motivates their use in this application. For
b; < 2, we define (';') to be 0.

Lemma 8.17: For all V = M of size v, and all r > v,

polr-d bi(k,r, V) (p—1w? m? .
;;0( 2 )< —— = —. (8.2)

PROOF: The left-hand side of (8.2) counts the number of tuples (k, {x,y}) such
that h; causes x and y to collide. Equivalently, it is the number of tuples that
satisfy the following two conditions:

1. x, y € V with x # y, and
2. ((kx mod p) mod r) = ((ky mod p) mod r).

Fix any (unordered) pair {x,y} = V with x # y. The total contribution of
this pair to the summation is the number of choices of k satisfying the second
condition. In other words, this pair’s contribution is the number of choices of k
such that

k(x —y) mod p € {£r,+2r,+3r,...,+|(p — 1)/r]r}.

Since p is a prime and Z, is a field, for any fixed value of x — y there is a unique
solution for k satisfying the equation

k(x — y) mod p = jr

for any value of j. This immediately implies that the number of values of k that
cause a collision between x and y is at most 2(p — 1)/r.
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Finally, noting that the number of choices of the pair {x, y} is (3), we obtain

p—1 r—1 bi(k,r,V) v 2(p—1) (P_1)02
ZZ( 2 >$(2) T

k=1 i=0

The pigeonhole principle immediately yields the following corollary.

Corollary 8.18: Forall V = M of size v, and all r > v, there exists k € {1,...,m}

such that
r—1 . 2
Z (bl(ka r, V)) < 2_.
2 r

i=0

The primary hash function h, maps a set S & M of size s into a hash table
T of size n = s. The keys in Bj(k,r, V) (the elements of S that are mapped to
T[i]) are then hashed into a secondary table of size bi(k,r,V)?* = |Bi(k,r, V)|?
using the secondary hash function h,,, which is guaranteed to be perfect. The
processing of a search query works in the obvious way. The performance of this
scheme is summarized in the following theorem, which guarantees the existence
of k, ky, ..., ks € {1,...,m} with the desired properties.

Theorem 8.19: For any S = M with |S| = s and m > s, there exists a hash table
representation of S that uses space O(s) and permits the processing of a FIND
operation in Q(1) time.

PrROOF: The double hashing scheme is as described above, and all that remains
to be shown is that there are choices of the primary hash function h; and the
secondary hash functions hy,, ..., h that ensure the promised performance
bounds. :

Consider first the primary hash function h;. The only property desired of this
function is that the sum of squares of the colliding sets (the bins) be linear in
n to ensure that the space used by the secondary hash tables is O(s). Applying
Corollary 8.18 to the case where ¥V = S and R = T, implying that v = r = s, we
obtain that there exists a k € {1,...,m} such that

s—1
5 (b,.(k,zs,S)) -

i=0
or that
s—1
> " bilk, s, S)[bi(k,s,5) — 1] < 2s.
i=0

Since U3 Bi(k,s,S) = S and Y37 bi(k,s,S) =,
s—1 s—1
Y bilk,s,S)? <25+ Y _bi(k,s,S) = 3s.
i=0 i=0
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Consider now the secondary hash function hy, for the set S; = By(k,s,S) of
size 5;. Applying Corollary 8.18 to the case where V = S; (or v = s;) and using a
secondary hash table of size r = s?, it follows that there exists a k; € {1,...,m}

such that
s2—1
. 'kia '29 i
T (b,( X S)> <1

Jj=0

where bj(k;, s?, S;) is the number of collisions at the Jjth location of the secondary
hash table for T'[i]. This can be the case only when each term of the summation
is zero, implying that b;(k;,s?,S;) < 1 for all J- Thus, it follows that there exists
a perfect secondary hash function hy,.

This scheme requires a total of 6s + 1 cells: s+ 1 cells for the primary
hash table and the description of the primary hash function, 3s cells for the
secondary hash tables, and 2s cells to store the size of the secondary tables and
the description of their hash functions. The processing of a query consists of
examining 5 cells: the value of k and one cell in the primary hash table, the
cells storing the size and hash function for the secondary hash table, as well as
the actual location in that table. A bounded number of arithmetic operations
suffices for computing the two hash functions. Finally, the entire data structure
can be stored in an array of size 6s + 1, provided m > 6s + 1 to ensure that it
is possible to encode pointers to secondary tables as keys in the primary table.

O

> Example 8.1: We illustrate the hashing scheme for the following setting® m = 30,
p=31l,s=6,and § = {2,4,5,15,18,30}. The key for the primary hash function
is k = 2, and the keys for the various secondary hash functions are shown in
Figure 8.6. Notice that the entire data structure is stored in one array of size 25.
The pointer entries are merely an index to the location in the array where the
appropriate secondary table begins.

Consider the query for the key g = 30. We compute the location in the primary
hash table as follows: h,(30) = (2 x 30 mod 31) mod 6 = 5. Following the pointer
at the location T [5], we reach the appropriate secondary table. Noting that ks = 3
and that the square of the secondary table size is 4, we compute that location
in the secondary hash table as follows: h3(30) = (3 x 30 mod 31) mod 4 = 0.
Examining cell 0 in this table shows that 30 € S.

Consider now the query for the key ¢ = 8. We compute the location in the
primary hash table as follows: h(8) = (2 x 8 mod 31) mod 6 = 4. Following the
pointer at the location T[4], we reach the appropriate secondary table. Noting
that k4 = 1 and that the square of the secondary table size is 4, we compute that
location in the secondary hash table as follows: h;(8) = (1x8 mod 31) mod 4 = 0.
Examining cell 0 in this table shows that 8 & .

All aspects of this scheme are realistic and efficient, barring one minor
detail. The previous theorem guarantees only the existence of good primary and
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k=2

oyl TP bo=1 k=1 is
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Figure 8.6: An example of double hashing.

secondary hash functions, but gives no clue as to how these may be identified.
Of course, since we know the set S a priori, we could exhaustively try all
possible keys in {1,...,m} as potential choices for k by computing the sizes of
the collision bins, and repeating the procedure for the secondary keys. However,
for the primary key alone, this will require work at least linear in m. But the
value of m could be super-polynomial in s, and having such a large preprocessing
cost is impractical. Fortunately, a simple trick using randomization can reduce
the total preprocessing cost to a polynomial in s at the expense of increasing
the space requirement by a small constant factor. This trick is based on the
following modification of Corollary 8.18. The proof is left as Problem 8.25.

Corollary 8.20: For all V = M of sizev, and all r > v,

< [bilk,r, V) v?

=0
for at least one-half of the choices of k € {1,...,m}.

A value k satisfying the inequality in the corollary can be found in expected
time O(v) by random sampling from {1,...,m}, since the validity of the inequality
for a specific value of k is easily verified in O(v) time by applying h; to all
elements of ¥ and keeping track of the bucket sizes. Problem 8.26 requires you
to show that the weaker inequality in this corollary does not affect the validity
of Theorem 8.19, except that it increases the space bound by a small constant
factor.

Notes

Comprehensive descriptions of balanced search trees may be found in most textbooks
on data structures. Self-adjusting binary search trees (or splay trees) are due to Sleator
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PROBLEMS

and Tarjan [380]). Tarjan [391] gives an excellent description of splay trees, balanced
search trees, and other related data structures. The material on random treaps is drawn
from the work of Aragon and Seidel [30], and the games used in the analysis are based
on the techniques of Mulmuley [315]. Skip lists are due to Pugh [339].

Knuth’s book [260] gives information on early work on hashing, especially under
the assumption of a distribution on the input elements. The issue of using hashing to
exploit the power of the RAM model, and thereby circumventing the logarithmic lower
bound on searching, was first raised by Yao [420]. Perfect hash functions were defined
by Sprugnoli [385]. Some efficient constructions of perfect hash families and bounds
on were provided by Yao [420], Tarjan and Yao [392], Graham (cited in [420]), and
Fredman and Komlos [155]. The paper of Tarjan and Yao also gives a solution to the
hashing problems for small key space size, ie., when the value of m is polynomially
bounded in n. .

Universal hash functions were defined by Carter and Wegman [88], with the stronger
definition given in the paper by Wegman and Carter [414]. Universal hashing has found
application in a wide variety of areas; for example, see Nisan [320] for an application
to pseudo-random generation and complexity theory. Section 8.5 is based on the work
of Fredman, Komlos, and Szemerédi [156]. A version of the hash table for dynamic
dictionaries has been provided by Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der
Heide, Rohnert, and Tarjan [124]. Their data structure guarantees constant search time,
and the update time is bounded by a constant only in the amortized and expected sense.
They also prove lower bounds showing that the worst-case amortized time for an update
must be at least logarithmic, unless one is willing to increase the search time.

Problems
8.1 Prove Lemma 8.4.
8.2 Prove Lemma 8.5.

8.3 (Due to K. Mulmuley {315].) Consider the following version of the Mulmuley
games. The pool consists of the sets P, B, 7, and S, where P is a set of p
players, B a set of b bystanders, 7 a set of t triggers, and S a set of s stoppers.
Assume that the players are totally ordered and that all sets are non-empty
and pairwise disjoint. The game consists of picking random elements of the
pool, without replacement, until the pool is empty. The value of the game, G**,
is defined as the expected value of the following quantity: after all triggers
have been chosen, and before any stopper has been chosen, the number
of players who, when chosen, are larger than all previously chosen players.
This is the same as Game E except for the requirement that we start counting
only after all triggers have been picked.

Determine the expected value of G.*.

8.4 Given a set of keys S = {ky, k»,...,k,}, consider constructing a random treap
for S where we do not introduce the dummy leaves needed for the endogenous
property. Is every element of S equally likely to be a leaf in this treap? Discuss
the implications of your result for the performance of a treap.
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We have shown that for any element in a set S of size n, the expected depth
of a random treap for S is O(logn). Show that the depth is O(logn) with
high probability. Conclude a similar high probability bound on the height
of a random treap. (Hint: One of way achieving this bound is to derive a
Chernoff-type bound on the tail of the distribution of the value of Game A.)

Let T be a random treap for a set S of size n. Determine the expected size of
the sub-tree rooted at an element x € S whose rank is k.

(Due to C.R. Aragon and R.G. Seidel [30].) Let 7 be a random treap for the
set S, and let x,y € S be two elements whose ranks differ by r. Prove that
the expected length of the (unique) path from x to y in T is O(logr).

While the Mulmuley games are useful for explaining the analysis of random
treaps, they are easily dispensed with. To see this. attempt to provide a direct
proof of Lemmas 8.6 and 8.7.

A finger search tree is a binary search tree with a special pointer (the finger)
associated with it. The finger always points to the last item accessed in the
tree. Describe how you would implement the ¥IND operation starting from
the finger, rather than the root. Finger search trees perform especially well
on a sequence of FINDs that has some locality of reference. Analyze the
performance of a random treap in terms of the ranks of the keys accessed
during a sequence of FIND operations. (The result in Problem 8.7 may be
useful for this purpose.)

(Due to C.R. Aragon and R.G. Seidel [30].) Another important property of
random treaps is that they adapt well to scenarios where the elements have
specific access frequencies. Suppose that each key in S will be accessed a
prespecified number of times, but the exact order of the accesses is unknown.
Equivalently, consider accesses that involve an element of S chosen at random
according to a specific distribution that is not necessarily uniform. In either
case, the following notion of a weighted treap provides an optimal solution to
the resulting data-structuring problem.

(a) Consider a random treap T for a set S. Associate a positive integer weight
f. with each x € S, and define F = Y~ _ f,. Define a random weighted treap
as a treap obtained by choosing priorities for each x € S as follows: p, is
the maximum of f, independent samples from a continuous distribution D.
Describe how you will maintain a random weighted treap under the full set of
operations supported by an unweighted treap.

(b) Prove the following performance bounds for random weighted treaps with
an arbitrary choice of the weights f,.

1. The expected time for a FIND, INSERT, Or DELETE operation involving a key
x is

F
O{1+log —F—m——
( t+ gmin{f,,f,,f,})'

where F includes the weight of x, and the keys y and z are the prede-
cessor and successor of x in the set S.
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2. The expected number of rotations needed for an INSERT Or DELETE oper-
ation involving a key x is

O(1_+Iog fy + f, +log f,+f,),
f, f,

where the keys y and z are the predecessor and successor of x in the
set S.

3. The expected time to perform a JOIN, PASTE, or sPLIT operation involving
sets S; and S; of total weight F, and F,, respectively, is

0(1 + log il + log -F—z)
fe 1,

where x is the largest key in S, and y is the smallest key in S,.

In Problem 8.10, it was assumed that the access frequency or probability is
known in advance, and this knowledge was important in the choice of an
appropriate distribution for the elements’ priorities. Explain how weighted
treaps can be made to adapt to the observed frequency of access of the
elements in the treaps. There is a solution that does not explicitly keep track
of the observed frequency and will use no more random bits than in the case
where the frequencies are known in advance.

Let us now analyze the number of random bits needed to implement the
operations of a treap. Suppose we pick each priority p; uniformly at random
from the unit interval [0,1]. Then, the binary representation of each p;
can be generated as a (potentially infinite) sequence of bits that are the
outcome of unbiased coin flips. The idea is to generate only as many
bits in this sequence as is necessary for resolving comparisons between
different priorities. Suppose we have only generated some prefixes of the
binary representations of the priorities of the elements in the treap 7. Now,
while inserting an item y, we compare its priority py to others’ priorities to
determine how y should be rotated. While comparing p, to some p;, if their
current partial binary representation can resolve the comparison, then we are
done. Otherwise, they have the same partial binary representation and we
keep generating more bits for each till they first differ.

Compute a tight upper bound on the expected number of coin flips or random
bits needed for each update operation. (See also Problem 1.5.)

Compute a tight upper bound on the expected number of coin flips or random
bits needed for each update operation for random skip lists.

In Lemma 8.10 we gave an upper bound on the expected cost of a FIND
operation in a random skip list. Determine the expectation of this random
variable as precisely as you can. (Hint: We suggest the following approach.
For each element x;, determine the probability that it lies on the search path
for a particular query y, and sum this over i to get the desired expectation.
To determine the probability, find a characterization of the level numbers that
will lead to x; being on the search path.)
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We have shown that the expected cost of a FIND operation in a random skip
list is O(log n). Prove that the cost is bounded by O(log n) with high probability,
using a Chernoff-type bound for the sum of geometrically distributed random
variables. Can you prove a similar probability bound for the INSERT and DELETE
operations?

Give a high probability bound on the space requirement of a random skip list
for a set S of size n.

(Due to W. Pugh [339].) In defining a random leveling for a skip list, we
sampled the elements from L; with probability 1/2 to determine the next level
L;,1. Consider instead the skip list obtained by performing the sampling with
probability p (at each level), where 0 <p < 1.

(a) Determine the expectation of the number of levels r, and prove a high
probability bound on the value of r.

(b) Determine as precisely as you can the expected cost of each operation in
this skip list.

(c) Discuss the relation between the choice of the value p and the performance
of the skip list in practice.

Formulate and prove results similar to those in Problems 8.7 and 8.9 for
random skip lists.

Consider the scenario described in Problem 8.10 for random treaps. Adapt the
random skip list structure to prove similar results, and compare the bounds
obtained in the two cases.

(Due to M.N. Wegman and J.L. Carter [414]; see also M. Blum and S. Kan-
nan [66).) Consider the problem of deciding whether two integer multisets S,
and S, are identical in the sense that each integer occurs the same number
of times in both sets. This problem can be solved by sorting the two sets in
O(nlog n) time, where n is the cardinality of the multisets. In Problem 7.4, we
considered applying the randomized techniques for verifying polynomial iden-
tities to the solution of the multiset identity problem. Suggest a randomized
algorithm for solving this problem using universal hash functions. Compare

your solution with the randomized algorithm suggested in Problem 7.4.

(Due to J.L. Carter and M.N. Wegman [88].) Suppose that M = {0, 1}" and
N = {0, 1}". Let M = {0, 1}\m*1x" denote the space of Boolean matrices with
m + 1 rows and n columns. For any x € M, denote by x!" the (m + 1)-bit
vector obtained by appending a 1 to the end of x. For 4 € M, define
h4(x) = x4 mod 2. Show that H = {h, | A € M} is a 2-universal hash family.
Is it also strongly 2-universal? Why did we augment the vector x to x("?
Compare the complexity and the use of randomness in this construction with
that of the construction described in Section 8.4.

(Due to J.L. Carter and M.N. Wegman [88].) In this problem we consider a
weakening of the notion of 2-universal families of hash functions. Let g(x) =
x mod n be as before. For each a € Z,, define the function f,(x) = ax mod p,
and h,(x) = g(fu(x)), and let H = {h, | a € Z,, a ¥ 0}. Show that H is
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nearly-2-universal in that, for all x # y,
2/H|
—
Also, show that the bound on the collision probability is close to the best
possible for this family of hash functions.

S(x,y.H) <

(Due to M.N. Wegman and J.L. Carter [414].) Define a super-strong universal
hash family to be a family of hash functions from M to N that is strongly
k-universal for all values of k (simultaneously). Provide a complete charac-
terization of function families that satisfy this definition.

(Due to N. Nisan [320].) An interesting property of a strongly 2-universal hash
function is the following. For any A = M define p(A) = |A|/|M|; similarly, for
any B = N, define p(8) = |B|/|N|. For any € > 0, A< M, and B = N, a hash
function h : M — N is said to be e-good for A and B if for x chosen uniformly
at random from M

[Pr[x € A and h(x) € B] —p(A)p(B)| < €.

Let h be chosen uniformly at random from a strongly 2-universal hash family
H. Show that for any € > 0, A = M, and B = N, the probability that h is not
€-good for A and B is at most

pP(A)p(B)(1—p(B))
€2|M| '

Prove Corollary 8.20.

(Due to M.L. Fredman, J. Komlés, and E. Szemeredi [156].) Show that the
hash table representation analyzed in Theorem 8.19 can be constructed with
expected O(sz) preprocessing time, using 13s + 1 cells and the same search
time.

(Due to M.L. Fredman, J. Komlos, and E. Szemerédi [156]).) Show that the
hash table representation described in Theorem 8.19 can be constructed with
worst-case O(s’logs) preprocessing time, using 13s + 1 cells and the same
search time.

(Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156]).) Show that the
hashing scheme of Section 8.5 can be modified to use space s+ o(s) while still
requiring only polynomial preprocessing time and constant query time. (Hint:
Increase the size of the primary hash table and observe that most of the bins
will be empty. Find an efficient scheme for packing together the non-empty
bins, while creating secondary hash tables only for the bins of size greater
than 1.)
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CHAPTER 9

Geometric Algorithms and Linear
Programming

IN this chapter we consider algorithms that manipulate geometric objects such
as points, lines, and planes. In Chapter 1 we encountered one such algorithm:
the RandAuto algorithm for line segments in the plane. We will use the RAM
of Section 1.5.1, with the following additional observations. We will deal with
points whose coordinates are real numbers; we assume that we can compare
these coordinates and perform arithmetic operations (including the square-root
operation) in constant time. Similarly, we can check in constant time whether
or not two line segments intersect. Unless otherwise specified, we use the
Euclidean metric, by which the distance between points (x;,y;) and (x3, y2) is
V(x1 — x2)2 + (31 — y3)2. Our use of randomness will as usual be “discrete”
rather than “continuous”: we will use random numbers to select objects at
random from a finite population (say the points or lines that constitute an
instance of a geometric problem), but not to choose, say, a random point from
the interior of a triangle.

9.1. Randomized Incremental Construction

In many computational problems, the use of randomization yields algorithms
that are substantially faster than their known deterministic counterparts. In
computational geometry, however, randomized algorithms often only match the
running times of known deterministic algorithms, but are usually much simpler
to understand and implement.

One strikingly simple approach to designing randomized geometric algorithms
is that of randomized incremental construction. Here the n objects comprising the
input to the problem are considered one at a time, in a random order, and the
effect of each added object on the solution is computed. For many geometric
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91 RANDOMIZED INCREMENTAL CONSTRUCTION

problems, this paradigm bears a strong resemblance to algorithms favored (and
used) by programmers, except that programmers process the objects in the order
present in the input rather than in a random order.

Before proceeding to geometric problems, we give a simple non-geometric
algorithm that motivates randomized incremental construction. Consider ran-
domized incremental sorting: given n numbers to be sorted, we use the following
scheme to sort them. After the ith of n steps (1 < i < n), we will make sure that
we have i of the input numbers in a sorted list. Clearly these i sorted numbers
will partition the ranks of the remaining n — i (yet unsorted) numbers into i + 1
intervals. The (i + 1)th step consists of choosing one of the n — i yet unsorted
numbers uniformly at random, and inserting it into the sorted list. After n
such insertion steps, we are left with a list of all the input numbers, in sorted
order. ’

There are many ways of performing this insertion step, and we will study
one that is simple to understand and analyze. Throughout the algorithm, we
maintain a pointer for each number yet to be inserted into the sorted list. After
the ith step, the pointer for each uninserted number specifies which of the i + 1
intervals in the sorted list it would be inserted into, if it were the next to be
inserted (assume for the moment that all the numbers in the input are distinct).
The pointers are bidirectional, so that given an interval we can determine the
numbers whose pointers point to it. What is the work required to maintain these
pointers? Suppose we insert a number x whose pointer points to interval I. On
inserting x, we have three tasks: (i) find all numbers whose pointers point to
I; (ii) update the pointers of all numbers whose pointers point to I ; (iii) delete
the pointer from x to I. The important task is (ii). The update task consists of
changing each of the pointers to point to one of the two new sub-intervals of
I created by the insertion of x. Clearly, the work done in this update step is
proportional to the number of pointers pointing to I.

Consider the work done in the ith step when the objects in the input are
considered in a random order. While we could directly analyze this random
variable, we use this occasion to introduce backwards analysis, a tool that will
often prove useful. In this view of things, we imagine that the algorithm is run
backwards starting from the sorted list we have at the end. Thus, in analyzing
the ith step, we imagine that we are deleting one of the i numbers in the sorted
list and updating the pointers. A moment’s thought shows that the work done
in updating the pointers in this case is the same as if we had run the algorithm
forward as usual. There is a second crucial component to backwards analysis:
since the numbers were added in random order in the original algorithm, in the
backwards analysis we may assume that each of the i numbers in the sorted
list is equally likely to be deleted at this step. What is the expected number of
pointers to be updated at this step? Since there are i intervals and n —i + 1
pointers remaining after the deletion, the expected number of pointers that were
altered at the ith step is O((n —i)/i), which is O(n/i). Now, we use linearity
of expectation to sum the work done over all the steps, to obtain a bound of
O(X;n/i) = O(nlogn) on the expectation of the total work.
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Viewed as yet another variant of quicksort, the above may not be especially
interesting. However, it paves the way for our study of randomized incremental
algorithms for a number of geometric problems.

9.2. Convex Hulls in the Plane

Given a set S of n points, their convex hull is the smallest convex set that
contains all of the n points (see Figure 9.1). In the plane, intuitively, if we
were to surround the points of S by a large, stretched rubber band, the convex
hull is the (convex) polygonal shape that would be enclosed by the band when
released. Similarly, for points in three dimensions the analogy would be one of
“gift-wrapping” the points in S to form their convex hull. We will be interested
in algorithms for computing the convex hull of S given S. We denote by conv(S)
the convex hull of S. We begin with the case when the points in § are in the
plane.

Figure 9.1: The convex hull of 12 points in the plane.

The boundary of conv(S) forms a convex polygon whose vertices are a subset
of S; whenever there is no risk of confusion, we will refer to the polygon as
conv(S). The problem of computing a convex hull in the plane is then the
following: given S, we are to compute the polygon (bounding) conv(S). The
output is to be given as a list containing the points of S that appear as vertices
of conv(S), in counterclockwise order as they appear on the polygon; the starting
point for the list may be arbitrary. For definiteness, we prescribe that the first
point in this ordering is the point in S with the smallest x-coordinate. Assume
that no three points in S lie on a straight line. This assumption can be dispensed
with in an implementation by exercising due care. We now show that the
randomized incremental paradigm described above in the context of sorting can
be applied to this problem.

Before we describe the algorithm, we note some basic facts about computing
convex hulls in the plane.
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92 CONVEX HULLS IN THE PLANE

Exercise 9.1: By making use of the fact that sorting n numbers requires Q(nlogn)
steps in our model of computation, prove that finding the convex hull of n points
requires Q(nlogn) steps. Indeed, the lower bound for sorting (and as a consequence
of this exercise, finding the convex hull) holds even for randomized algorithms.

Exercise 9.2: Let S be a set of n points in the plane each represented by a pair of
coordinates. Given another point p = (x,y), how many steps suffice to determine
whether p lies in the convex hull of §?

The algorithm first randomly permutes the points in the input set S; let p;
be the ith point in this random ordering, for 1 < i < n. Let S; denote the set
{p1,...,pi}. Next, the algorithm proceeds through n stages. After the ith step,
the algorithm will have computed conv(S;). During the ith step, it adds p; to
conv(S;-1), forming conv(S;) in the process. We now specify the details of this
update step.

We maintain at all times a point in the interior of conv(S); in particular,
we could utilize the centroid of conv(S;) (which can be computed in constant
time) for this purpose. Call this point p,. We also maintain after the ith step a
(circular) linked list containing the vertices of conv(S;). In addition, for simplicity
of description, we imagine that this linked list also contains the edges joining
successive vertices in this list (this can easily be avoided in an implementation,
with minor additional work). Let S\S; denote the set of points yet to be added
after the ith step, for 3 < i < n— 1. For each such point p € S\S;, we maintain a
(bidirectional) pointer from p to the edge of conv(S;) cut by the ray erhanating
from py, and passing through p. We say that p cuts this edge of conv(S;). Thus,
given any edge of conv(S;), we can enumerate all points p that cut the edge in
time linear in the number of such points.

Having specified the data structures, we describe the actions required to
update these structures at each step. The point p; inserted at the ith step is either
inside or outside conv(S;—;). Using the line segment p;p; and the associated
pointer, we can in constant time detect which of these two cases holds (our
assumption that no three points are collinear precludes the possibility that p;
lies on the boundary of conv(S;_;)). If p; is inside conv(S;_;), we delete the pointer
from p; and proceed to step i + 1. On the other hand, if p; is outside conv(Si_;),
we must update the linked list representing the polygon bounding the hull. The
vertices of conv(S;_;) are partitioned into three sets by the addition of p;:

1. Vertices of conv(S;—;) that have to be deleted because they are not vertices of
conv(S;).

2. Two vertices of conv(S;-;) that become the neighbors of p; on conv(S;). Let us
denote these vertices vy and v,.

3. Vertices of conv(S;_;) that remain in conv(S;) with their incident edges unchanged.

Clearly the end-points of the edge n intersected by the line-segment p;p; are of
type (1) or (2). By marching away from #n (on both sides) along the linked list
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representing conv(S;-;), we can detect the vertices of types (1) and (2). We do so
in time linear in the number of such vertices. As we do so, we detect the points
in S\S; that cut the edges being deleted, and update their pointers to either the
edge piv; or pv;. This takes constant time (since we have to check only two
edges pio; and piv7) for each point of S\S; whose pointer needs to be updated
(see Figure 9.2).

P
i

Figure 9.2: The addition of p; results in the deletion of vertices s and ¢, and the pointer
for q requires updating while that for r does not.

What is the total work done at the ith step? The cost of deleting an edge
of conv(S;—;) can be charged against the cost of creating it, since an edge can
be deleted only once after being created. Since only two edges are created at
each step, the total number of these edge creations/deletions (over all steps) is
at most 2n. What about the cost of updating the pointers at the ith step? This
is the number of points p in S\S; such that pp; cuts an edge that is deleted
during the step. To bound the expectation of this random variable, we resort
to backwards analysis. Imagine running the algorithm backward, and deleting a
point of conv(S;\S3) to form conv(S;_;). Then, the number of pointers updated
in the ith step of the original algorithm is the same as the number deleted in
the corresponding step of the backward algorithm. We show that the expected
number of pointers updated is O(n/i), conditioned on any fixed set of points
S:\S; from which we delete a random point in the backward step. Since this
upper bound holds for any set of i points, the conditioning on a particular set
S;\S; can be removed.

For a point p € S\S,, let e, be the edge of conv(S;) cut by pp;. The probability
that p’s pointer is updated is precisely the probability that e, is deleted as a result
of the deletion step. Now, e, is deleted if one of its two end-points is deleted
in the backward step. Since the point being deleted from S; is chosen uniformly
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from the i — 3 points in S;\S;, this probability is O(1/i). The expected number
of pointers updated is O((n —i)/i), so that the total work done at this step is
O(n/i). A crucial point is that in the deletion step of the backward algorithm,
we delete a random point in S;, not a random vertex of cornv(S;). We now invoke
linearity of expectation to bound the expected running time of the algorithm by
O(nlogn).

Theorem 9.1: The expected running time of the above randomized incremental
algorithm for computing the convex hull of n points in the plane is O(nlogn).

We should stress again that the chief advantage of the above algorithm is its
extreme simplicity of implementation. An incremental approach such as this is
natural to program. The (expected) running time is asymptotically the same as
that of many known deterministic convex hull algorithms and matches the lower
bound. More importantly, the same simple approach lends itself to computing
convex hulls of points in higher dimensions, where deterministic algorithms
are rather complicated. Before we proceed to the three-dimensional case, we
introduce the notion of geometric duality.

9.3. Duality

The notion of geometric duality is fundamental to computational geometry and
plays a key role in designing algorithms. The dual of the point p = (a, b) in the
plane is the straight line whose equation is ax + by + 1 = 0; conversely, the dual
of the straight line defined by ax + by + 1 = 0 is the point (a, b). Thus duality in
the plane maps points to lines, and lines to points. The mapping is involutary:
the dual of the dual of a point is the point itself, and a similar statement holds
for a line. A simple calculation shows that if a point p is at distance d from
the origin, its dual (a line #) is perpendicular to the line joining p to the origin.
Further, the distance between the origin and the closest point on ¢ is 1/d, and
¢ does not pass through the quadrant containing p. Figure 9.3 illustrates this.
In this definition, we disallow lines through the origin and points at infinity. We
also disallow the point (0,0).

Exercise 9.3: Let p, and p; be two points, and /; and /, be their respective dual lines.
Show that the line ¢/ passing through p, and p; is the dual of the point of intersection
of Iy and /.

We will apply the duality relationship to map the convex hull problem into
another geometric problem in the plane. The half-plane intersection problem
is the following: the input is a set H of half-planes {hi,h,...,h,}; we are to
determine the intersection of these half-planes. This will be a convex polygon
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ax+by+1=0 4

p=(a,b)

1/d

Figure 9.3: Duality between a point and a line.

if the intersection is non-empty, and we ask for the algorithm to output it as a
linked list of vertices much as we did in the convex hull problem.

We will show that, in a sense, the half-plane intersection problem is the dual
of the convex hull problem. Assume for the moment that the convex hull of the
given set S contains the origin of the coordinate system (see Exercise 9.4 below)
and that the origin is not one of the input points. Given a line [ in the plane
that does not pass through the origin, we let I* denote the half-plane bounded
by ! containing the origin. Throughout this chapter, all half-planes/half-spaces
will be open half-planes/half-spaces. Let I; be the dual of p; € S, and h; = I
The proof of the following theorem is elementary, and is a consequence of the
result in Exercise 9.3.

Theorem 9.2: Let the convex hull of S contain the origin, and let the origin not
be one of the points in S. Let p;,pi,, and p;,, be three vertices of the convex hull of
S, occurring in that order in the output. Then h;, h;,, and h;, bound the intersection
of the half-spaces h;, appearing on the boundary of the intersection in that order.

Exercise 9.4: Give a linear-time transformation that shifts the points of S to ensure
that the origin lies inside their convex hull. Once we perform this operation, it is
easy to satisfy the condition that the origin not be in S: since the origin is inside the
convex hull of S, it need no longer be considered for computing the convex hull and
can therefore be deleted from S even if it occurs in S.

Each h; can be determined from p; in constant time. Given the intersection
of the half-spaces, we can identify in linear time the line segments (and hence
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the lines) that actually appear on the boundary of the intersection. Each line
bounding the intersection now corresponds to a point on the convex hull of S,
and we can read these off in order in linear time. In other words, an algorithm
that computes the intersection of half-planes yields an algorithm that computes
the convex hull of points in the plane.

Given an algorithm, data structure, or analysis that works in the “primal”
space (in this case, points whose convex hull we wish to compute), there is a
corresponding algorithm, data structure, or analysis that works in the dual space
(in this case, half-planes whose intersections we wish to compute). Indeed, in
Problem 9.2 we derive a randomized incremental algorithm for computing the
intersection of n given half-planes.

In the next section we will exploit the notion of duality in higher dimensions.
The following exercise will pave the way for computing convex hulls in three
dimensions, by reducing the problem to computing half-space intersections in
three dimensions.

Exercise 9.5: Extend the notion of duality to three dimensions, working through the
statements of Exercises 9.3 and 9.4, and of Theorem 9.2. In fact, the correspondence
can be made in d > 3 dimensions as well.

9.4. Half-space Intersections

The goal of this section is to develop a randomized incremental algorithm for
computing the intersection of n half-spaces in three dimensions. The algorithm
will be shown to have an expected running time of O(nlogn); by applying the
results of Exercise 9.5, we will then have an algorithm for computing the convex
hull of n points in three dimensions with an expected running time of O(nlogn).

Given a set S of n half-spaces in three dimensions, their intersection inter(S)
is a (possibly empty) convex polyhedral set in space. Note that the intersection
need not be bounded. Every facet of this polyhedron is contained in a plane
bounding one of the half-spaces. We assume that each half-space is given to
us as a linear inequality whose variables are the coordinates; the corresponding
equality gives the equation defining the plane bounding the half-space. Since
inter(S) is a polyhedron (when non-empty), we can represent it as a graph each
of whose vertices corresponds to a vertex of this polyhedron, with vertices of
the graph being adjacent if the corresponding vertices on the polyhedron are
joined by a line formed on its surface by the intersection of two half-spaces
in S. When inter(S) is unbounded, we assume for convenience that there is a
point at “infinity” that is the common end-point of all semi-infinite edges of the
polyhedron. Given S, our goal is to compute the graph representing the facets
of the polyhedron inter(S); we represent this graph by giving the positions (in
space) of all its vertices, together with the adjacencies between vertices.
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Since every facet of this polyhedron is contained in a plane bounding one of
the half-spaces and no plane contains more than one facet, the number of facets
is at most n. Further, the graph representation of inter(S) is a planar graph,
in which the number of vertices and the number of edges are both O(n). We
assume that no four such bounding planes pass through a common point, so
that every vertex of the polyhedron/graph (except possibly the “infinity” vertex,
when necessary) has degree three. Just as we speak of the edges adjacent to a
vertex, we may also speak of the facets of the polyhedron (corresponding to the
faces of the graph) adjacent to a vertex; thus there are three facets adjacent to
each (finite) vertex of inter(S). Likewise, we may speak of the edges bounding a
facet, and of the two facets on either side of an edge.

The randomized algorithm for computing inter(S) is very similar to the one
we have described for computing the convex hull of points in the plane, in
Section 9.2. The algorithm first randomly permutes the half-spaces in the input
set S; let h; be the ith half-space in this random ordering, for 1 < i < n. Let
S: denote the set {hy,...,h;}. Next, the algorithm proceeds through n stages.
After the ith step, the algorithm will have computed inter(S;). During the ith
step, it adds h; to inter(S;-;), forming inter(S;) in the process. Geometrically,
this can be viewed as cutting away the portion of inter(S;_;) not contained
in h;. In the process, some vertices of the polyhedron inter(S;-;) are deleted,
and some new vertices are added. We describe the details of this addition
process now, and then give the analysis. We assume first for simplicity that
the intersection of {hy,hy, hs,hs} is bounded; thus inter(S;) will be a bounded
polyhedron throughout the execution of the algorithm. This assumption can
easily be removed and is the subject of Exercise 9.8.

Let S\S; denote the set of half-spaces yet to be added after the ith step. In the
following description, we concern ourselves only with half-spaces in S\S; whose
bounding plane intersects inter(S;-;); it will be clear that the remaining half-
spaces are easily dealt with. For any half-space h, let h denote the complement
of h. For a half-space h, we say that a vertex of inter(S;_,) conflicts with h if that
vertex is in h.

Assume for the moment that for each half-space h € S\S;, we have a (bidi-
rectional) pointer to some vertex of inter(S;-;) that conflicts with h. (The
precise choice of this vertex will become apparent from the discussion fol-
lowing Exercise 9.7.) Under this assumption, the details of the algorithm are
fairly straightforward. The process of adding h; to form inter(S;) begins at the
vertex of inter(S;-;) that conflicts with h;. Starting at this vertex, we search
the graph representing inter(S;-;), ensuring throughout that we do not “enter”
inter(S;-1) N h;. In the course of this search, we determine the vertices and the
edges of inter(S;-;) that are destroyed by the addition of h;, and the newly
created vertices of inter(S;) (all of which lie on the plane bounding h;).

Exercise 9.6: Show that the vertices destroyed by the addition of h, form a connected
component of the graph representing inter(S,_,).
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Clearly, the cost of this search is proportional to the sum of the number of
vertices destroyed and the number of vertices created. As in our analysis of the
convex hull algorithm in two dimensions, we may ignore the cost of the deletions,
since a vertex is deleted at most once and thus it suffices to count vertices when
they are created. To analyze the expected number of vertices created by the
addition of h;, we resort to backwards analysis again. Thus, we imagine that we
have inter(S;), from which we delete a randomly chosen half-space. Using the
fact that the number of vertices and edges in a planar graph with k faces is O(k),
the following exercise requires an analysis very similar to that in Section 9.2.
The approach once more is to first derive the result conditioned on S; being a
fixed set of half-spaces one of which (chosen at random) is deleted, and then
removing the conditioning by noting that the result is independent of the set S;
we start with. ’

Exercise 9.7: The expected number of vertices created at any step of the randomized
incremental half-space intersection algorithm is a constant.

It remains to substantiate the assumption that for each half-space h € S\S;,
we have a (bidirectional) pointer to a vertex of inter(Si—;) that conflicts with
h. We now describe how this information can be maintained, and then analyze
the cost of doing so. In particular, we must specify how the pointers for the
half-spaces in S\S; are updated following the addition of h;.

When we destroy a vertex v of inter(S;-;) during the addition of h;, we check
whether there are any pointers from v to half-spaces in S\S; (recall- that our
pointers are bidirectional). For each such pointer (pointing to a half-space
h € S\S;), we must shift it to a new vertex w € hn inter(S;). How do we find
such a vertex w? The process is similar to that used in updating inter(Si—;) to
form inter(S;). Note that the vertex v is in hN hi. We perform a walk on the
graph representing inter(S;-;) starting at v, taking care never to enter h, until we
first arrive at a vertex of inter(S;). On arriving at such a vertex of inter(S;), we
have found the new vertex w we seek, since it is in h and thus conflicts with h.
We move the bidirectional conflict pointer for h to point to w.

It remains to analyze the cost of this search. As in the analysis yielding
the statement of Exercise 9.7, we use the fact that every vertex of the graph
has degree 3. Therefore, the cost of this search is proportional to the number
of vertices in h N h; N inter(S;—,). Equivalently, this is the number of destroyed
vertices of inter(Si—;) in conflict with h, plus the number of newly created
vertices of inter(S;) in conflict with h. In considering the asymptotic total cost
for maintaining the pointer for h, it suffices to count only the newly created
vertices, since any vertex that is destroyed has been counted once when created.

We now wish to bound the expected number of such newly created vertices
in conflict with h, summed over all h € S\S;. This is exactly

Z i{h € S\S; : h conflicts with v}, 5.1

v
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the summation being taken over the set of the vertices of inter(S;) newly created
by the addition of h;. We bound the expectation of (9.1).

For a set of half-spaces H, let ¢(H,h) denote the number of vertices of
inter(H) in conflict with h. Resorting again to backwards analysis, we consider
first a fixed set S; from which a random half-space is deleted to give inter(S;-,).
Noting that each vertex of inter(S;) has degree 3, the expectation of (9.1) is thus
bounded by

23 ds.hy 92)

hes\S;
Since h;,; is chosen uniformly at random from S\§S;,
1
E[c(S;, hiy1)] = — Z c(Si, h). (9.3)
hes\S;
Combining (9.2) and (9.3), the expectation of (9.1) is bounded above by

3(n—i)
i

E[c(S;, hiy1)]-

The random variable c¢(S;, k1) also counts the expected number of vertices
destroyed by the addition of h;i, the half-space added at step i + 1. Thus, the
expectation of the sum over all i of (9.1) (which measures the total work in
updating pointers over the course of the entire algorithm) is bounded above by

Z 3(ni— l)E[ Number of vertices destroyed at time i + 1]. (94)
i=1
For a vertex v created in the course of the algorithm, let t.(v) denote the time

(step number) at which it is created, and t,(v) the time at which it is destroyed.
Then, (9.4) can be rewritten as

3(n—ta(v) —1)
Z ti(v)—1 ’

(9.5)

where v ranges over all vertices ever created during and execution of the
algorithm. Since t.(v) < t4(v) — 1, we can bound (9.5) from above by

dn—t, " 3(n—
32 Ll) §= 3= Dene ) ) =i,

t(v) i

i=]

But we have already seen in Exercise 9.7 that E[|{v | t.(v) = i}|] is a constant.
We thus have:

Theorem 9.3: The expected running time of the randomized incremental algorithm
JSor computing the intersection of n half-spaces in three dimensions is O(nlog n).
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Exercise 9.8: In the above description, we assumed that the intersection inter(S))
was bounded for all i > 4. How can this assumption be removed?

9.5. Delaunay Triangulations

Let P = {p),...,pn} be a set of n points in the plane. For a point p; € P, let
cell(p;) denote the set of points in the plane that are closer to p; than to any
pj € P, for j#i.

Exercise 9.9: Show that ce//(p;) is a (possibly unbounded) convex polygonal region
for each i, and that the regions cel/l/(p;) form a decomposition of the plane into n
open convex polygonal regions. ‘

The partition of the plane described in Exercise 9.9 is known as the Voronoi
diagram of P, and we will denote it by vor(P). The convex polygonal region
cell(p;) corresponding to p; is known as the Voronoi cell of p;. The notion of
Voronoi cells and diagrams can in fact be readily formulated for points in higher
dimensional space, but we will focus on points in the plane here.

The Voronoi diagram of a set of points is a fundamental structure in computa-
tional geometry, and has many applications. We will be interested in algorithms
for constructing vor(P) and related structures, given P. We assume henceforth
that no four points of P lie on any circle, and that no three lie on any straight
line. These assumptions greatly simplify the descriptions of the algorithms dis-
cussed below and may be removed with some care. The Voronoi diagram of a
set of points in the plane has a number of properties that are easy to verify:

Exercise 9.10:

1. Show that the boundary between any two cells (known as a Voronoi edge) is the locus
of points equidistant from two points of P.

2. Viewing vor(P) as a planar graph, show that every vertex of the graph has degree 3.

3. Show that if cell(p;), cell(p;), and cell(pi) share a vertex in the Voronoi diagram,
then the circle passing through p;, p;, and p; contains no other points of P.

4. Show that if p, is a point of P on the convex hull of P, then cell/(p,) is unbounded. Is
the converse also true?

Let us view vor(P) as a planar graph, each of whose faces corresponds to a
point p; € P. Consider the planar dual of this graph, with a vertex at each point
p: € P (representing the face cell(p;)), and an edge between two vertices if the
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corresponding cells share an edge in vor(P). This dual graph is known as the
Delaunay triangulation of P, which we denote by del(P) (see Figure 9.4). From
property 2 of Exercise 9.10, it follows that del(P) is indeed a triangulation (i.c.,
each of its facets except for the outermost one is a triangle). Clearly, given P
and vor(P), we can construct del(P) in time O(n).

Figure 9.4: A Voronoi diagram (dashed lines) and the corresponding Delaunay triangula-
tion (solid lines), for a set of seven points in the plane.

Exercise 9.11: Show that vor(P) can be constructed from de/(P) in time O(n).

In the remainder of this section, we concentrate on algorithms for constructing
del(P); by Exercise 9.11 above, this will readily imply an algorithm for computing
vor(P). We first describe a parabolic transformation that reduces the problem of
computing del(P) to one of computing the intersection of n half-spaces in three
dimensions. Given the points of P in the xy-plane, consider the paraboloid
z = x2 +y2 Denote by g; the point (x;y;,x2 + y?) on the surface of the
paraboloid that is directly “above” p; = (x;,y;,0). Let h; denote the half-space
that is above the plane tangent to the paraboloid at g; (see Figure 9.5). Consider
the polyhedron formed by the intersection of the h;.

Exercise 9.12: Let p be a point in the xy-plane at distance d; from pi, and let g be
the point on the paraboloid directly above p. Show that vertical distance between q
and the tangent plane bounding h; is d?.

Exercise 9.12 has the following consequence, which is easy to prove; a detailed
proof may be found in any of the texts on computational geometry listed in the
Notes section.
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Figure 9.5: The parabolic transformation.

Theorem 9.4: Given P = {p,,...,p,}, let H = {h,,...,h,} as described above.
Let inter(H) denote the intersection of the half-spaces above the tangents at the
points in H. The Delaunay triangulation of P results from projecting the edges of
inter(H) vertically down to the xy-plane.

Corollary 9.5: Given inter(H), we can compute del(P) in time O(n).

By Corollary 9.5, we thus have a randomized incremental algorithm for
computing del(P) that runs in expected time O(nlogn): we transform P to H
using the parabolic transformation and invoke the algorithm of Section 9.4 to
compute inter(H).

We now focus on a special case of the problem of computing del(P), in
which the points of P are the vertices of a convex polygon. We will show
in Section 9.5.1 below that a simple randomized algorithm runs in expected
time O(n) for this case. Before we do so, we will require the following easy
consequence of Exercise 9.6.

Exercise 9.13: Let de/(P) denote the Delaunay triangulation of a set P of points in
the plane. Consider the addition of a new point g; the Delaunay triangulation of PU{q}
can be formed by deleting some triangles of de/(P), and retriangulating the affected
region. Show that the set of triangles destroyed forms a connected component of the
graph del(P).

247



GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

9.5.1. Chew’s Algorithm

We now show that a simple randomized algorithm computes del(P) in expected
time O(n) when the points of P are the vertices of a convex polygon. We will
require the points of P to be given to us in the order in which they appear on
this convex polygon.

The algorithm is recursive, and is as follows. We pick a random point p € P;
let ¢ and r denote its neighbors on the boundary of the given convex polygon.
We recursively compute del(P\{p}), while |P\{p}| > 3. Having computed
del(P\{p}), we augment it to form del(P) by the following three steps:

1. Add the triangle pqr to del(P\{p}). Let D denote the resulting graph.

2. Identify all triangles of del(P\{p}) whose circumcircle contains p (such triangles
can no longer be Delaunay triangles), by a depth-first search of the dual graph
of del(P\{p}), much as in the search for conflicting vertices in the half-space
intersection algorithm of Section 9.4. By Exercise 9.13, these triangles form a
connected component of del(P\{p}). Let S denote the set consisting of these
“bad” triangles together with the triangle pgr.

3. Remove from D all edges that have triangles of S on both sides and retriangulate
the resulting face by introducing all diagonals that have p as an end-point.

The second step above can be performed in time linear in the number of
triangles in S. This number, in turn, is one more than the number of edges
introduced in the third (retriangulation) step above. Thus the expected cost
of the update is proportional to the expected degree of the vertex p in del(P).
Since del(P) is a planar graph, this expected degree is a constant (since p was
chosen uniformly at random from the n points in P, and del(P) has O(n) edges).
Summing this expected cost over the n — 3 recursive steps, we have:

Theorem 9.6: The above dlgorithm computes del(P) in expected time O(n), pro-
vided the points of P are vertices of a convex polygon given in the order in which
they appear on the boundary of the polygon.

Exercise 9.14: Why does the above running time guarantee fail if the vertices of P
are not vertices of a convex polygon?

9.6. Trapezoidal Decompositions

Our next example of a randomized incremental algorithm (sometimes also
known as the vertical decomposition) comes from the construction of a trape-
zoidal decomposition for a set of line segments in the plane. The trapezoidal
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decomposition is a basic structure for representing and manipulating an ar-
rangement of line segments. Let S denote a set of n (possibly intersecting) line
segments in the plane; we assume that the x-coordinates of the segments are
all distinct. Let k denote the number of points at which two or more segments
intersect. Imagine passing a vertical line through each end-point of each segment
of S, as well as through each of the k intersection points. These vertical lines
continue until they hit one of the other segments, where they stop. Some of these
lines will continue to infinity, because they do not hit any other line segments.

Figure 9.6: A trapezoidal decomposition of three segments.

The resulting decomposition of the plane is known as a trapezoidal decompo-
sition (see Figure 9.6); each of the regions into which the plane is partitioned
is in general a trapezium with two parallel vertical sides. Some regions are
infinite, of course. By imagining that the region containing the segments in S
is enclosed in a large rectangular “bounding box,” we can view the trapezoidal
decomposition of S as a planar graph each of whose vertices is either (i) an
end-point of a segment in S, or (ii) a point at which two or more segments of S
intersect, or (iii) a point at which the vertical line through a vertex of type (i) or
(ii) hits a line segment or the bounding box. It is important to note that a face
of this planar graph may have an arbitrary number of vertices, even though it
is geometrically a trapezium.

Exercise 9.15: Consider computing the trapezoidal decomposition of S, and repre-
senting the output as a planar graph. The size of this graph is Q(n + k), which is
clearly a lower bound on the number of steps in the computation. Show that the
computation also requires Q(nlogn) comparisons.
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Let trap(S) denote the trapezoidal decomposition of S, represented as a planar
graph. We now give a simple randomized incremental algorithm for computing
trap(S), with expected running time O(n log n + k). By the result of Exercise 9.15,
this is the best possible.

Assume without loss of generality that no line in the input is vertical. The
algorithm first randomly permutes the line segments in S; let s; be the ith
segment in this random ordering. Let S; denote {sy,...,s;}. The algorithm
proceeds through n stages, after the ith of which it will have computed trap(Ss;).
During the ith step, i > 1, it adds s; to trap(S;_,), forming trap(S;) in the process.
We first specify the details of this update step, and then proceed to analyze the
running time.

For i > 1, let S\S; denote the set of points of S to be added in the incremental
construction after the ith step (i.e., the set {si;1,Si42,...5,}). For each segment in
S\S;, we maintain a bidirectional pointer to the face of trap(S;) containing its
left end-point. Thus, given a face of trap(S;), we can read off the segments in
S\S; contained in that face in time linear in the number of such points.

Next, we describe how trap(S;_,) is updated to trap(S;) by the addition of s;.
We begin by identifying the face of trap(S;_) containing the left end-point of s;.
We then march along s; to its other end-point, updating the data structures as
we go along. Let us consider the different update actions that may be necessary.
We first pass a vertical line through the left end-point of s;, determining the
upper and lower end-points of this vertical line (the points above and below
where it first hits a segment in S;_;, or a horizontal edge of the bounding box);
let us refer to the resulting vertical line segment(s) as the vertical attachment(s)
for the left end-point of s;.

As we proceed along s;, we have to split each face of S;_; that it cuts into
two faces. In particular, whenever a segment in S;_; is cut by s; vertical
attachments are computed for the point of intersection (Figure 9.7). On arriving
at the right end-point of s;, vertical attachment(s) are again computed for this
point.

Having computed the new vertical attachments resulting from the addition
of s;, we make a second pass through the resulting planar graph (call it G;).
Whenever s; cuts a vertical edge of trap(S;—,), one portion of that vertical edge
is deleted, and consequently two faces of G; are merged (Figure 9.8).

The final update step involves updating the bidirectional pointers of the
segments in S\S;. We need only update the pointers of segments whose left
end-points were contained in faces of trap(S;_,) intersected by s;.

For a face f of trap(Si_), let n(f) denote the number of vertices of trap(Si_,)
bounding f, and let /(f) denote the number of segments of S\S; whose left
end-points lie in f. We use backwards analysis to analyze the expected cost of
updating trap(S;-;) to obtain trap(S;). Imagine that at step i line segment in
trap(S;) chosen uniformly at random is deleted. As before, this is valid since
any of the i segments in S; is equally likely to have been labeled s; in the initial
random permutation. The following is an easy consequence of the preceding
discussion, and we invite the reader to verify it:
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Figure 9.7: The planar graph G; resulting from the addition of s;.

Exercise 9.16: The expected update cost on adding s; is proportional to
1
=2 2 )+, (9.6)
SES; feF(s)

where F(s) is the set of those faces of trap(S;) whose boundary contains at least one
point of the segment s.

It remains to bound the expression in (9.6) in terms of n and k. Clearly,
the term .. 3" cr( £(f) is proportional to the total number of pointers for
segments in S\S;, which is n — i (no two segments have end-points with the
same x-coordinate, so that a face f occurs in F(s) for at most four segments
s). We next observe that 3 . 3 o, n(f) is proportional to i + k;, where k; is
the number of points at which two or more segments of §; intersect. Thus the
expected update cost when adding s; is proportional to (n + E[k;])/i. It remains
to compute the expectation of k;, given that S; is a random subset of i segments
from S. Let x be one of the k points at which two segments (say r and s) of S
intersect. Now, x occurs in trap(S;) if and only if both the segments r and s are
in S;. The probability of this is proportional to i?/n?. By linearity of expectation
over the k possible choices of x, it follows that E[k] is O(ki?/n?). Here we
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_ Figure 9.8: Truncating vertical attachments to convert G; to trap(S;).

explicitly make use of the fact that S; is a random subset of S, a fact we did
not explicitly use in our previous backwards analyses (where we used only the
fact that given a set S;, a random element is deleted from it for the backwards
analysis). Summing the update costs over all the steps, we then have:

Theorem 9.7: The expected cost of building the trapezoidal decomposition of n
line segments in the plane is O(nlogn + k), where k is the number of points at
which two or more of the segments intersect.

9.7. Binary Space Partitions

In this section we study the binary space partition problem (Section 1.3) in three
dimensions. We begin with a different analysis of the RandAuto algorithm of
Section 1.3, making use of a notion known as free cuts. Although this will afford
no asymptotic performance improvement in the planar case, it will be of crucial
importance in the three-dimensional case that we will consider next.

Recall that in the binary planar partition problem, we are given a set S =
{51,52,...,5.} of non-intersecting line segments in the plane. We wish to find a
binary planar partition such that every region in the partition contains one line
segment, or a portion of one line segment. The RandAuto algorithm considers
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the lines one at a time, in a random order. When a line segment is chosen, it is
extended until it partitions the region containing it into two regions.

Suppose that at some stage of the RandAuto algorithm we have a region
R and a segment s that passes right through R. Clearly it is advantageous to
partition R along s immediately (Figure 9.9), since this prevents sN R from ever
being cut at some later stage. Further, we can make this cut at no additional
increase in the number of segments that are cut, since s partitions R. Such a cut
is called a free cut.

Figure 9.9: An example of a free cut.

The observation that we make no extra cuts (and thus do not increase the
size of our binary autopartition tree) by making use of free cuts implies (by
Theorem 1.2) that RandAuto augmented by the use of free cuts produces an
autopartition whose expected size is O(nlogn). However, it is instructive to
prove this directly in preparation for the three-dimensional case.

Theorem 9.8: The expected size of the autopartition produced by RandAuto with
free cuts is O(nlogn).

PROOF: As in Section 1.3, we denote by P, the autopartition induced by the
permutation n. For an input segment s, consider those segments u such that /(u)
intersects s, and label them u;, u,,...,u; based on the left-to-right order of the
intersections of the lines /(u;) with s. We study how many of these are likely to
cut s in P,.

Consider Figure 9.10. Suppose that the ordering induced by the randomly
chosen permutation 7 is uy, u3, u4, 4p, v. Then v is cut by u;,u;, and us but
not by u;. When v has been cut by u; and u;, the part of v between these cuts
partitions a region and therefore makes a free cut of that region. It is helpful to
think of an input segment in the problem (such as v) as being rigidly moored
at its end-points — when two cuts are made on v, the portion in between the
cuts “falls off” and drops out for the remainder of the problem; it will never be
cut again. Two pieces of v remain, each moored at one end-point; in the course
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Figure 9.10: The effect of free cuts.

of further processing, each piece may lose more pieces because of cuts causing
the unmoored end to “fall off.” This continues until v occurs in =, at which
point /(v) becomes a partitioning line for the region(s) containing the surviving
piece(s) of v, and v is not cut again.

Thus, I(u;) cuts v only if u; precedes all of v,u,u,,...,u;_; or if u; precedes all
of v,uiyq,...,u, in n. The probability of the former event is 1/(i + 1), and that
of the latter is 1/(k — i + 2). Both events include the event that u; is the first
of v,u;,uy,...,u in the order induced by =, which has probability 1/(k + 1). As
in Section 1.3, we use the notation u - v to mean that during the execution, an
extension of segment u cuts the segment v. Therefore,

1 1 1

Priv, 4] <~ + 53 o r

Summing this over all v and all u; yields O(nlogn) for the expected number of
cuts, as in Theorem 1.2. O

We now consider the three-dimensional version of the binary partition prob-
lem. The input is a set S of n non-intersecting triangles {fi,fs,...,f,}. We
assume that more complex polyhedral scenes are first decomposed into such
triangles, just as we assumed that a planar scene had been broken up into line
segments. For a triangle f, we define h(f) to be the (infinite) two-dimensional
plane containing f.

One interesting aspect of the three-dimensional problem is the following.
In three dimensions, unlike the two-dimensional case, a total ordering of the
triangles may not exist with respect to the occlusion relation; cyclic dependencies
may exist. We will nevertheless be able to build a binary partition in three-
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dimensional space by methods very similar to those used in the two-dimensional
case.

In an analogous way to a binary partition of the plane, we can speak of a
binary partition in three-dimensional space. The partition consists of a binary
tree together with the following additional information. Associated with a node
v of the tree is a convex polyhedral region r(v). Associated with each internal
node v of the tree is a plane h(v) that intersects r(v). The region corresponding
to the root is all of three-dimensional space. The region r(v) is partitioned by
h(v) into two regions ry(v) and r,(v), which are associated with the two children
of v. We use a random permutation n of {1,2,...,n} and free cuts to obtain
a partition of expected size O(n?) of the planes {h(f,),h(f2),...,h(f.)}. Thus
the algorithm for three dimensions is the obvious extension of the RandAuto
algorithm with free cuts.

Theorem 9.9: The expected size of the autopartition generated by a random
permutation n with free cuts is O(n?).

PROOF: In three dimensions, when a plane h(u) intersects a triangle v, it can cut
a number of sub-facets of v that lie in different regions of the partition created
so far. Let Y, be the total number of additional cuts created by u.), and let
Y., be the number of these on input triangle u € {uj,uy,..., un}\{ttrx)}. Thus
the total “fragmentation” — the number of cuts — is 3", Yx = 3, 3°, Yiu. The
goal is to show that E[Y,,] is O(1), and the result then follows from linearity of
expectation.

To calculate Y,, we consider the sub-facets of u that are cut by h(ug)).
Consider the arrangement L, of line segments {lz(1), lx(2), . - - Iz} ON the triangle
u, where the line segment l,; is the intersection of h(u,;) with triangle u, for
1 <i < k (see Figure 9.11). Without free cuts, the sub-facets would be exactly
those regions of L.x_; intersected by I,x). However, because of free cuts by u,
any of the internal sub-facets of L,;x_; would have already “dropped out.” Thus
Y, is the number of external regions intersected by ln).

For an arrangement L of k lines I}, b,..., I on triangle u and for 1 <i <k, let
x(L,i) denote the number of external regions in the arrangement L—{/;} that are
cut by ;. Observe that E,=1 x(L,i) equals the total number of edges bounding
the external sub-facets of L. In Figure 9.11, for instance, 31, x(L,i) = 12. We
now invoke a standard result in combinatorial geometry (see the Notes section
for a reference): E,_ x(L,i) = O(k) for any arrangement L on a triangle u.

Since = is a random permutation, I, is equiprobably any of the lines in the
arrangement L. Thus

k

ElYial = 1 3" x(L,) = O(1). ©7)

i=]

a
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Figure 9.11: An arrangement of four lines on a triangle; only region Q is internal.

Exercise 9.17: Consider using a random permutation 7 to obtain an autopartition of
a set of n triangles in three dimensions, but without using free cuts. Show that the
expected size of the autopartition is O(n®). How does the proof depend on the fact
that i is randomly chosen?

9.8. The Diameter of a Point Set

Given a set S of n points in three dimensions, the diameter of S, denoted D(S),
is the distance between the points in S that are furthest apart. (The definition
could be made for points in any number of dimensions, and with any distance
metric defined between pairs of points.) In this section, we will study a fast
randomized algorithm for computing the diameter of a set of points in three
dimensions. Thus, unlike the algorithms of the previous sections, which built
a geometric structure on the input points, here we seek to determine a single
number. However, we will build a geometric structure in order to compute this
quantity. In particular, we will show that constructing the intersection of a set of
suitably defined spheres provides a key tool in the computation of the diameter.

For a positive real number p, let 1,(S) denote the convex body formed by the
intersection of the n closed spheres centered at the n points of S, each of radius
p. For a point p € S, let F(p) denote the distance between p and the point in S
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that is farthest from p. Consider the spherical intersection I,(S) when p = F(p)
for some p € S. For any point g € S, if q 1s in I,(S), we have F(q) < F(p) < D(S).
On the other hand, if q lies outside I,(S), we F(p) < F(q) < D(S).

The following randomized algorithm now suggests itself:

1. Pick a point p € S at random. In time O(n) we compute F(p) and we set p = F(p).
2. Compute I,(S).
3. Find the points of S outside I,(S); denote this subset by So.

4. If Sp is empty, we know that the diameter is p and can stop. If not, we recur on
So.

Clearly the running time of a single pass through Steps 1-4 is dominated by
Steps 2 and 3. In addition, we must consider the effect of the randomized
recursive call in Step 4. In particular, we must determine the expectation of |Sy|.

Consider an ordering of the points of S in non-increasing order of the values
F(p). Since Step 1 chooses the point p uniformly at random, the rank of
F(p) is uniformly distributed on [1,n] (ties are broken arbitrarily); thus |Sp| is
uniformly distributed on [0,n—1]. Let T(n) denote the expected running time of
the algorithm when |S| = n, and T»(n) denote the corresponding cost of Steps
2 and 3. Then, we have

ZtSI T(l)

T(n) <cn+ Ty(n) + ==——- (9.8)

What can we say about T(n)? In Problem 9.5 we will show that these steps
can be performed in expected time O(nlogn) for the Euclidean metric in three
dimensions, by adapting the half-space intersection algorithm of Section 9.4.
Here we will consider the simpler case of the L; metric in three dimensions. A
sphere in the L; metric in three dimensions is a polyhedron with eight facets
and six vertices; the polyhedron can be thought of as the intersection of eight
half-spaces.

Exercise 9.18: Show that the half-space intersection algorithm of Section 9.4 can be
adapted to find the intersection /,(S) of L, spheres and also to determine the set Sp
in expected time O(nlogn), for |S| =n.

Using this result in (9.8), it follows that the expected running time of the
randomized L; diameter algorithm is O(nlogn). In fact, for the L; metric, it is
not necessary to resort to the half-space intersection algorithm of Section 9.4 in
order to perform Steps 2 and 3 of our diameter algorithm. A simpler algorithm
running in time O(n) will be considered in Problem 9.6. In this case, the
recurrence (9.8) solves to T(n) = O(n). From these observations, we have:

Theorem 9.10: The above scheme for computing the diameter of n points runs in
expected time O(nlogn) for the L, metric, and in expected time O(n) for the L,
metric.
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9.9. Random Sampling

There are situations for which randomized incremental construction might not
be appropriate. For instance, randomized incremental construction is inherently
sequential, and may thus be unsuitable for designing parallel randomized geo-
metric algorithms. In addition, one often builds a geometric structure (such as
the Voronoi diagram) not as an end in itself, but as a means for solving search
problems. For instance, the Voronoi diagram serves as the basis for nearest-
neighbor queries: each query is a point in the space containing the n input points,
and we are required to report the input point that is closest to the query point.
In such cases, we wish to build, not only the geometric structure itself, but
some additional structures that will enable rapid query processing. Here, again,
randomized incremental construction by itself often does not suffice. We now
turn to a different paradigm for designing randomized geometric algorithms,
known variously as random sampling or as randomized divide-and-conquer. We
first give a high-level outline of the technique, and then illustrate it using a
point-location problem.

We begin with a familiar non-geometric problem. Suppose that we are given
a set S of n numbers, and wish to answer membership queries: a query is a
number, and we are to report whether or not the query number is a member
of S. Consider the following approach, which is a simple generalization of the
standard binary search tree. We pick a random sample R of r numbers from
S, where r is a constant whose choice will become apparent from the following
analysis. We sort the elements of R (in constant time), and then partition S\R
(in time O(n)) into r + 1 subsets; the ith subset contains those elements of S\R
that are larger than exactly i elements of R. Let us call the sample R good if
every one of the r + 1 resulting subsets of S\R has size at most (anlogr)/r, for
a fixed, suitable (as will be clear from the analysis below) constant a.

Exercise 9.19: Show that R is good with probability at least 1/2, for a suitably large
constant a.

The solution to Exercise 9.19 may also be obtained by adapting the proof of
Lemma 9.11 below. Given a sample R, we can check whether it is good in time
O(n). Thus, by Exercise 9.19, in expected time O(n) we can find a good sample
(by repeating the sample process whenever the sample chosen is not good).

For each subset containing more than b elements, for a suitable constant
value of b > r, we recur by again choosing a random subset of r elements from
it, and so on. This process induces a search-tree in a natural fashion, and the
search process for a query is clear. Given a query g, we identify (in constant
time) one of the r + 1 subsets of S in which to continue the search for g. We
search recursively in the sub-tree associated with this subset.
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Exercise 9.20: Show that the expected number of steps to construct the entire search
structure is O(nlogn).

Given the above search structure, what is the cost of a search? Letting Q(n)
be the cost of a search on a set containing n elements, we have the recurrence

Om<c+Q (an lrogr) , 9.9)

where a 1s small compared with r/logr and c is a constant representing the cost
of descending one level of the tree. This is easily seen to solve to Q(n) = O(logn).
Notice that this bound on the search cost is a fixed constant and not a random
variable. This is because in the process of constructing the search tree, we
ensured that the random sample at every level was good.

Although the above example does not have a geometric flavor, it captures the
essence of random sampling methods in the construction of geometric search
structures. We now give a geometric example that uses random sampling and
illustrates the major principles of the technique.

9.9.1. Point Location in Arrangements

Let L be a set of n lines in the plane. The lines in L partition the plane into O(n?)
convex polygonal regions (some of which may be unbounded). The resulting
structure is known as an arrangement of lines. Our description will be simplified
by assuming that we are only interested in the portion of this arrangement that
lies within a fixed triangle 7 that contains in its interior all points of intersection
between lines in L. This can be viewed as a planar graph as follows. There
is a vertex of the graph for each point at which two lines meet (for simplicity,
we assume for the remainder of the section that no three lines of L meet at a
point). In addition, there is also a vertex for each point at which a line of L
intersects the boundary of 7. An edge between two vertices corresponds in the
natural sense to the line segment between two vertices that are adjacent in the
arrangement. Each face of this planar graph is one of the polygonal regions into
which 7 is partitioned by the lines in L. We study the following query problem:
given a query point q in the plane, what facet of this graph contains the query
point? This is known as the point location problem in an arrangement of lines.

For convenience, we will triangulate each facet of the planar graph. We
will refer to this as a triangular arrangement of the lines in L, and denote it
by 7(L). We note that this notation is slightly ambiguous, since the precise
geometric structure 7(L) depends on the large triangle within which we enclose
the intersection points of the lines in L. However, we tolerate this imprecision
for the following reasons: (1) in the point location problem, the identity of
the facet within which a point lies is unaffected by the choice of the bounding
triangle, even though the exact shape of the facet may vary; (2) for the most
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part (in the description of the algorithm below), the enclosing triangle will be
implicit and unique.

Exercise 9.21: Show that given L, a triangular arrangement of the lines in L can be
computed in time O(n?).

We now turn to the problem of point location in the triangular arrangement
of lines T(L). The algorithm and data structure are as follows:

1. Pick a random sample R of r lines from L, where r is a suitably large constant
that can be determined from the analysis below. Construct the arrangement 7(R).
The number of facets in 7(R) is O(r?), and is thus a constant.

2. For each (triangular) facet f in 7(R), determine the set of lines of L\R intersecting
f; denote by Ly this set of lines. This can be done in time O (nrz). We say a facet
f is good if it is intersected by no more than (anlogr)/r lines of L for a suitable
constant a. We say the random sample R is good if every facet of T(R) is good.
If the chosen sample R is not good, we repeatedly pick samples R until we get a
good sample R.

3. For each facet f of T(R) for which |Ls| > b for a constant b, we recur on this
process. Note that in the recursive steps, the enclosing triangle is just the triangle
bounding the facet f. We maintain a pointer from each facet f to the triangular
arrangement of the recursive random sample of lines intersecting f. These pointers
will facilitate the search process.

Exercise 9.22: Show that step 2. can in fact be implemented in time O(nr).

Before we analyze the expected runing time of the above construction pro-
cedure, we explain the search process. Given the query point g, we determine
(in time O(1)) the facet f of T(R) that contains q. We then recursively con-
tinue the search within 7(Ls). Since we know that |Ls| < (anlogr)/r, we
immediately know that the search time Q(n) satisfies the recursion (9.9), so that
Q(n) = O(logn). We stress again that this upper bound on the query time is an
absolute guarantee, and not an expectation.

We turn now to the cost of constructing and storing the recursive search
structure. We first establish the analog of Exercise 9.19 for the present problem.

Lemma 9.11: The probability that any facet of T(R) is intersected by more than
(anlogr)/r lines of L is less than 1/2, for a suitably large constant a.

PROOF: Let S denote the set of all points at which either two lines of L intersect,
or a line of L intersects the perimeter of the bounding triangle. Let A denote
the set of all triplets of points from S. What is the probability that the triangle
defined by a triplet from A occurs in 7(R), and is intersected by more than
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(anlogr)/r lines of L? Given a triplet 6 € A, let I(8) denote the set of lines
of L that intersect the triangle induced by 8. Let G(6) denote the lines of L
that form the points in J (clearly |G(5)| < 6). To bound the probability that the
triplet é defines a facet of T(R), we write it as the product of two probabilities
as follows. Let £,(d) denote the event that all lines of G(8) are in R, and £,(5)
denote the event that none of the lines in () are in R. Clearly both &£,(8) and
£1(6) must occur in order for J to define a facet of R (although these events are
not sufficient — why?). Then,

Pr[6 appears as a facet of T(R)] < Pr[€1(8)IPr[E2(6)IE1(5)].

We now bound Pr{[€,(5)|£1(d)]: having picked the lines in G(8), we consider
what happens on the remaining r — |G(J)| drawings of R. In particular, consider
the probability that none of the r — |G(8)| remaining drawings picks any line in
I(6). This is bounded by

r—|G(8)|—-1 ()| II(é)I r—|G(d)| o 1()2m

I (-imeor=) = (-5 =

i=0
for any value of r > 12 (since |G(6)| < 6). We are only interested in & such
that 1(6) > (anlogr)/r; call these large triplets. Thus, for large triplets we have
Pr[£,(8)] <r~*2. Then,

Pr[A large triplet appears as a facet of 7(R)]

<r % 3 Prl£,) (9.10)
large triplets &

Now, the summation in (9.10) is exactly the expected number of large triplets
in R. Since R is an arrangement of r lines, and each point of a triplet is formed
by at most 2 lines, it follows that this summation is never more than r®. Then,
for a > 12 the lemma follows. a

Corollary 9.12: The expected number of trials before we obtain a good sample R
is at most 2.

We now complete the analysis of the construction of the data structure. By
the preceding discussion, the construction time satisfies the recurrence

an logr)

T(n) <n® +cr’T ( -

where c is a constant and T(k) denotes the upper bound on the expected cost
of constructing the data structure for an arrangement of k lines. This solves to
T(n) = O(n**™), where €(r) is a positive constant that becomes smaller as r
gets larger. ’

Theorem 9.13: The above algorithm constructs a data structure in expected time
O(n**€) for a set of n lines in the plane for any fixed € > 0, and this data structure
can support point location queries in time O(log n).
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Exercise 9.23: What are the effects of increasing r on the construction time for the
search structure, and on the query time?

9.10. Linear Programming

We continue the study of random sampling by considering the linear pro-
gramming problem. The linear programming problem is a particularly notable
example of the two main benefits of randomization — simplicity and speed. In
Section 9.10.1 we will study randomized incremental algorithms for this problem.

The linear programming problem is to find the extremum of a linear objective
function of several real variables, subject to constraints that are linear functions
of these variables. Hereafter, we will let d denote the number of variables,
and n the number of constraints. Each of the n constraints may be thought
of as delineating a half-space in d-dimensional space, stipulating that our ex-
tremization is restricted to points in this half-space. The intersection of these
half-spaces is a polyhedron in d-dimensional space (which may be empty, or
possibly unbounded), which we will refer to as the feasible region. Throughout,
we will measure the amount of computation we perform by the number of arith-
metic operations, treating the operands as real numbers on which an arithmetic
operation can be performed in constant time. This is consistent with our view
throughout this chapter, but the reader is cautioned that much of the work in the
linear programming literature deals with operands of finite precision. For such
finite precision operands, there has been considerable work on the number of
bit operations performed by various algorithms. We will not concern ourselves
with such bit operations, but will treat all numbers as atomic operands.

Let xj,...,xs denote the d variables in the linear program. Let cy,...,cq
denote the coefficients of these variables in the objective function, and let 4;;,
1 <i<nand 1< j<ddenote the coefficient of x; in the ith constraint. Letting
A denote the matrix (A;;), ¢ the vector (cy,...,cs), and x the vector (xy,...,X,),
the linear programming problem may be expressed as

minimize ¢’ x (9.11)
subject to
Ax < b, (9.12)

where b is a column vector of constants.

We denote by F(A,b) the feasible region defined by 4 and b. The vector
c specifies a direction in d-space. Geometrically, we seek the furthest point in
F (A, b) in the direction opposite to ¢ (since we are minimizing), if such a finite
point exists. The linear programming problem has a long history, a partial
summary of which is given in the Notes section. The starting point in our
treatment will be the following set of assumptions, which is known (see the Notes
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section and the references therein) to capture the general linear programming
problem; these assumptions do not specialize or simplify the problem from the
standpoint of designing algorithms. All of these assumptions can be removed
by standard techniques; this- will be explored further in Problem 9.8.

1. The polyhedron F(A, b) is non-empty and bounded. Note that we are not assuming
that we can test an arbitrary polyhedron for non-emptiness or boundedness; this
is known to be equivalent to solving a linear program. We only make this
assumption about F(A4, b).

2. The objective function we are minimizing is x;; in other words, ¢ = (1,0,...,0).
Thus we seek a point of F(A,b) with the minimum value of x;.

3. The minimum we seek occurs at a unique point which is a vertex of F(A, b).

4. Each vertex of F(A4, b) is defined by exactly d constraints.

Let H denote the set of constraints defined by 4 and . Let S < H be a
subset of constraints from H. We will frequently consider the linear program
defined by such a subset S, together with ¢. When such a linear program attains
a finite minimum, we will assume that versions of assumptions 3—4 above still
hold: (i) the minimum occurs at a unique point; (ii) each vertex of the feasible
region is defined by d constraints. We denote by (O(S) the value of the objective
function for the linear programming problem defined by ¢ and S (it is possible
that O(S) = —o0). A basis is a set of constraints, B, such that O(B) > —oo0 and
O(B') < O(B) for any B’ = B. The basis of H, denoted B(H), is a minimal
subset B = H with O(B) = O(H). Our goal is to find B(H). Since B(H) defines
the optimal vertex of our linear program, we will sometimes refer to B(H) or to
O(B(H)) as the optimum of the linear program.

One approach to solving the linear programming problem would be to use a
half-space intersection algorithm to compute F(A4,b) and to then evaluate the
objective function at each vertex of the polyhedron F(A4, b). Such an exhaustive
evaluation process could in general be very slow, since the number of vertices of
F(A,b) may be Q(nl%/21). We therefore seek algorithms that do not enumerate
the vertices of F(A, b).

Before proceeding to our study of randomized algorithms for linear program-
ming, we will recall the elements of the classic simplex algorithm. This is a
deterministic algorithm that starts from a vertex of (4, ) and, at each subse-
quent iteration, proceeds to a neighboring vertex at which the objective function
has a lower value. If no such vertex exists, we have reached the minimum
we seek. While this is the essential idea of the simplex algorithm, a number
of complications arise when adjacent vertices have the same objective function
value, and from problems with no finite minimum. We will avoid a detailed
discussion of the simplex algorithm; in our discussion it will suffice to assume
the existence of a function Simplex that will solve linear programs by visiting
the vertices of F(4,b) in turn until the optimum is found, if one exists.

We call a constraint h € H extreme if O(H\{h}) < O(H); thus these are the
constraints in B(H). Intuitively, the constraints of H that are not extreme are
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redundant constraints whose absence would not alter the optimum. Our first
algorithm SampLP uses random sampling to throw away redundant constraints
quickly. Starting from the empty set, SampLP builds up a set S of constraints
over a series of phases. In each phase, a set ¥V < H\S is added to S. The set V
will have two important properties: (i) it will be small, and (ii) it will contain at
least one extreme constraint from B(H) that is not in S. Since |B(H)| = d, we
terminate after at most d phases.

We will describe SampLP in pseudocode below, and then proceed to the more
sophisticated algorithm IterSampLP. We will finish by analyzing IterSampLP.

Algorithm SamplLP:

Input: A set of constraints H.
Output: The optimum B(H).

1. S(—¢;
2. it n <9d?

return Simplex (H)
else

21. V«H;S ¢,
2.2. while |V|>0
Choose R = H\S at random, with |R| = r = min{d./n, |H\S|};
x — SampLP(RUS);
V « {h € H|vertex defined by x violates h};
It\vi<2/n
then S —~SuUV;
2.3. return x;

Thus, for n > 94> SampLP chooses a random subset R of r constraints. The
value of r is normally d,/n, unless H\S contains fewer than d,/n constraints. It
recursively solves the linear program defined by RU S, and determines the set
V < H of constraints that are violated by this optimum; note that these violated
constraints will in fact be from H\S. If ¥ has no more than 2,/n elements (we
will argue that this is likely), we add V to S. When V becomes empty (meaning
that B(H) is contained in S), we return x.

Exercise 9.24: Construct a simple example to show that after one pass through the
while loop of SampLP, V may not contain all of B(H). Hence, we may only infer that
V contains at least one constraint of B(H) that is not aiready in S.

The routine Simplex is invoked only with 942 or fewer constraints. For such
“small” linear programming problems, we may bound the cost of invoking
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Simplex as follows. The tota! number of vertices in the polyhedron for such a
problem is no more than (;3/,), which is at most (49d)/%/?\. There is a constant
a such that the simplex algorithm spends at most time d? at each vertex, so that
we have:

Lemma 9.14: The total cost in an invocation of Simplex with 9d* or fewer
constraints is O(d4/2+%).

Next, we wish to argue that V, the set of constraints that violate x, is small.

Lemma 9.15: Let S < H, and let R = H\S be a random subset of size r. Let m
denote |H\S|. The expected number of constraints of H violated by O(RU S) is
no more than d(m —r + 1)/(r — d).

PROOF: We define two sets of optima for linear programs formed by subsets of
the constraints. Let Cy denote the set of optima {O(T US) | T < H\S}. Thus,
the call the SampLP(R U S) returns an element of this set. Similarly, we define
Cr to be the set of optima {O(T US) | T < R} for a particular subset R. Now,
O(R U S) is the unique element in Cr that satisfies every constraint in R. For
each element x € Cy, let v, denote the number of constraints of H violated by
x. Let the indicator i, be 1 whenever x is O(RU S), and 0 otherwise.
We may now write

E[VI] =E[Y_ vsix] = Y v:El[ii] JERCRE)

x€Cy x€Cy

Now, E[i,] is simply the probability that x is the optimum O(RU S). For
this event to occur, d given constraints must be in R, and the remaining r — d
constraints of R must be from among the m — v, — d constraints of H\S that
neither define nor are violated by x. Thus

m—u,—d
E[ix]=( r—d ). (9.14)

(7)

Exercise 9.25: By combining (9.13) and (9.14) and simplifying, show that

m—v,—d
E[V|] < '"—r:'—;f—l 3 o, Lrmdt) 9.15)
xeCy (r)

We will complete the proof by showing that the summation on the right-hand
side of (9.15) is no more than d. The factor ("%7%)/(7) is the probability that
x is an element of Cr that violates exactly one constraint of R. Weighting this
by v, and summing yields the expected number of elements of Cr that violate
exactly one constraint of R. However, the number of such elements is at most d,

since each such element is the optimum of the set R U S\{h} for a constraint h
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that defines the optimum O(RUS). There are d constraints defining the optimum
O(RUS). a

With this bound on the expected number of violated constraints, the Markov
inequality now implies that following any random sample in SampLP, Pr[|V| >
2./} < 1/2. Tt follows that the expected number of iterations of Step 2.2
between augmentations to S is at most 2. Let T(n) denote the maximum
expected running time of SampLP. The set S is initially empty, and in each of
d phases adds at most 2,/n constraints. Thus, |R U S| never exceeds 3d,/n. For
each of d phases, we perform at most n constraint violation tests at a cost of
O(d) for each test; thus the total work in constraint checking is O(d’n). When
in a recursive call the number of constraints drops to 9d or less, we resort to
the time bound on the call to Simplex (Lemma 9.14). Putting these observations
together, we have

T(n) < 2dT(3d,/n) + O(d’n), for n > 9d°. (9.16)

Exercise 9.26: Derive the best possible upper bound on T(n) in (9.16}, in conjunction
with Lemma 9.14.

We now describe the algorithm IterSampLP. Rather than try to discover B(H)
little by little, it uses a technique known as iterative reweighting to increase the
probability of including a useful constraint in the sample. We choose a random
subset of constraints R and determine the subset V = H of constraints violated
by the optimum of the linear program defined by R. Instead of adding V to a
set S as in SampLP, we put the constraints of V back in H after first increasing
the probability that they are chosen in future rounds. Intuitively, the constraints
of B(H) will repeatedly find themselves in V, and hence their probabilities of
being included in R increase rapidly. After relatively few such iterations (as we
will show), all the constraints of B(H) are likely to be in R, and we terminate. A
detailed description of IterSampLP follows. We will associate a positive integral
weight w, with each constraint h € H; the constraint h will be put in R with
probability proportional to the current value of wy,.

In Step 2.2, the probability that a constraint h is chosen is proportional to
w;. We turn to the analysis of IterSampLP.

Call an execution of the while loop successful if

D_wh <2 wi)/(9d—1)

hevV heH

(thus, we double w;, for each h € V).
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Algorithm lterSampLP:

Input: A set of constraints H.
Output: The optimum B(H).

1. YheH, set w, « 1;

2. it n <9d?
return Simplex (H)
else

21. V «H;
2.2. while |V| >0
Choose R — H at random, with |R| = r = 9d2;
x «— Simplex(R);
V « {h € H|x violates h};
D ey Wn < (23,0 Wn)/(9d — 1)
then Yh € V set w, « 2w,;

2.3. return x;

Lemma 9.16: The expected number of iterations of the while loop between suc-
cessful iterations is at most 2.

Note that we cannot directly invoke the result of Lemma 9.15 for the analysis
of IterSampLP, since the constraints in the random subset R are not chosen
equiprobably. The proof of Lemma 9.16 is an extension of the analysis leading
to Lemma 9.15; the reader may follow the hint in Problem 9.9 to complete the
proof.

Theorem 9.17: There exist constants ¢y, ¢, and c3 such that the expected running
time of IterSampLP is at most

cid*nlogn + (cadlog n)d?/¥*<.

PROOF: We will argue that the expected number of executions of the while loop
is O(dlogn). The idea is that 3, gy wh grows much faster than 5, . wy, so
that after dlogn iterations V = ¢ unless 3, gy Wh > >4y Wi, Which would
be a contradiction.

After each successful execution of the loop, the weight w;, is doubled for at
least one constraint h € B(H) (since V must contain at least one constraint
h € B(H)). Following kd successful executions of the loop, we have ¥, 5y Wi =
2 _hesry 2™, where ny, is the number of times h entered V. Clearly 3,54, M = kd.
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These facts together imply that

Z wy = d2*. (9.17)
heB(H)

On the other hand, after each successful execution of the while loop, the net
increase in ),y Wi is no more than (23,4 ws)/(9d—1). Initially >, wi = n.
Following kd successful iterations it is no more than

n[l +2/(9d — 1)]* < nexp[2kd/(9d — 1)]. (9.18)

Comparing (9.17) and (9.18), it follows that after O(d logn) iterations we drop
out of the loop.

How much time do we spend between successful iterations of the while loop?
By Lemma 9.16, the expected number of iterations between successful iterations
is 2. During each iteration, we incur the cost of a Simplex call (whose running
time we have bounded in Lemma 9.14 above), and determine V in time O(nd).
Putting these facts together yields the theorem. O

9.10.1. Incremental Linear Programming

We have so far studied linear programming algorithms based on random sam-
pling. We now explore randomized incremental algorithms for linear program-
ming. The following algorithm suggests itself immediately: add the n constraints
in random order, one at a time. After adding each constraint, determine the
optimum of the constraints added so far. This algorithm may also be viewed in
the following “backward” manner, which will prove useful in the sequel.

Algorithm SeidelP:

Input: A set of constraints H.
Output: The optimum of the LP defined by H.

0. if |[H| =d, output B(H) = H.

1. Pick a random constraint h € H;
Recursively find B(H\{h});

2.1. it B(H\{h}) does not violate h, output B(H\{h}) to be the optimum B(H);

2.2. else project all the constraints of H\{h} onto h and recursively solve this
new linear programming problem;

The idea of the algorithm is simple. Either h (the constraint chosen randomly
in Step 1) is redundant (in which case we execute Step 2.1), or it is not. In the
latter case, we know that the vertex formed by B(H) must lie on the hyperplane
bounding h. In this case, we project all the constraints of H\{h} onto h and
solve this new linear programming problem (which has dimension d — 1). When
the number of constraints is down to d, SeideLP stops recurring.
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Since there are at most d extreme constraints in H, the probability that the
randomly chosen constraint h is one of the extreme constraints we seek is at
most d/n. Let T(n,d) denote an upper bound on the expected running time of
the algorithm for any problem with n constraints in d dimensions. Then, we
may write

T(nd) < T(n—1,d) + O(d) + g[O(dn) +T(n—1,d—1)). (9.19)

In (9.19), the first term on the right denotes the cost of recursively solving the
linear program defined by the constraints in H\{h}. The second accounts for
the cost of checking whether h violates B(H\{h}). With probability d/n it does,
and this is captured by the bracketed expression, whose first term counts the
cost of projecting all the constraints onto h. The second counts the cost of
(recursively) solving the projected problem, which has one fewer constraint and
dimension. The following theorem may be verified by substitution, and proved
by induction.

Theorem 9.18: There is a constant b such that the recurrence (9.19) satisfies the
solution T (n,d) < bnd!.

The above incremental algorithm is thus likely to be slow unless d is rather
small. The reader may wonder why, when solving the problem of dimen-
sion d — 1 in Step 2.2, we completely discard any information obtained from
the solution of the linear program H\{h} (Step 1). We now proceed to a
more sophisticated algorithm that retains such information carefully. Before
doing so, the following exercise is provided to strengthen the reader’s intu-
ition.

Exercise 9.27: Consider the algorithm SeideLP. Construct an example to show that
the optimum of the linear program defined by the constraints in B(H\h) U {h} may
be different from the optimum of the linear program defined by H. Thus, if the test
in Step 2.1 fails and we proceed to Step 2.2, it does not suffice to consider the
constraints in B(H\h) U {h} alone.

By the above exercise, it follows that we must once again consider all the
constraints in H in Step 2.2 of SeideLP. However, it is still reasonable to hope
that B(H\h) will in fact contain many of the constraints in B(H). Could we
somehow use B(H\h) to “jump-start” the recursive call in Step 2.2 of SeideLP?
The result of this idea is the algorithm BasisLP, which is invoked with two
arguments, a set G & H of constraints, and a basis T = G (not in general the
basis of G). BasisLP returns the basis of G.
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Algorithm BasisLP:

Input: G, 7.
Output: A basis B for G.

0. fG=T,output T;

1. Pick a random constraint h € G\T;
T’ = BasisLP(G\{h}, T);

2.1. if h does not violate 7', output T’;
2.2. else output BasisLP(G, Basis(T' U {h}));

The function Basis returns a basis for a set of d 4+ 1 or fewer constraints,
if such a basis exists. In our algorithm, we always invoke Basis on a given
basis T’ with d constraints, together with a new constraint h. By computing the
intersection of h with each of the d subsets of T’ that have cardinality d — 1,
and evaluating O at each of these d points, we may determine Basis (T’ U {h}).

Exercise 9.28: Show that the above description of Basis will terminate in O(d*)
steps. (Note that a system of d linear equations can be solved in O(d?) steps.)

Exercise 9.29: The routine BasisLP requires a basis T as one of the inputs. Suggest
a scheme for starting the algorithm initially with a suitable basis, so that when
finished we have the optimum O(H). (Hint: Use a bounding box.)

Each invocation of Basis is preceded by a violation test (in the if statement).
In our analysis below we will bound the number of violation tests, and from
this infer a bound on the number of invocations of Basis and thus the overall
running time. What is the probability that we fail a violation test in a given
execution of BasisLP? Suppose that |G| = i. We are reintroducing a constraint
h € G\T that was chosen at random, and wish to bound the probability that
h violates the optimum of G\{h}. Clearly this is at most d/(i — |T|), since at
most d constraints of G determine B(G) and h is equally likely to be any of
the i — |T| constraints in G\T. We now refine this estimate on the probability.
The intuition is that this probability decreases further if T contains some of
the constraints of B(G); indeed, this was our motivation for refining SeideLP to
obtain BasisLP. To this end, we introduce some additional notions.

Given T = G = H, we call a constraint h € G enforcing in (G,T) if
O(G\{h}) < O(T). This concept is illustrated in Figure 9.12. In this figure, there
are four constraints, numbered 1,2, 3, and 4. Each constraint is a line that allows
the half-plane above itself as the feasible region. Clearly constraints 1 and 4 are
the extreme constraints for the set {1,2, 3,4}. Consider for the moment a view of
BasisLP played “backward,” and a situation in which the constraints are added
back in the order 1,2,3,4. Observe that constraint 1 is not enforcing in G, T for
G={1,2,3,4} and T = {1,2}.
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Figure 9.12: Extreme and enforcing constraints.

Exercise 9.30: If the constraints are deleted in the order 4,3,2,1, trace the course
of the call to BasisLP(G, {1,2}), determining the arguments of the various recursive
calls. Repeat this if the order of deletion of constraints is 1,4,3,2.

Exercise 9.31: If h is enforcing in (H, T), show that (i) h € T, and (ii) h is ex'treme in
allG suchthat TG ¢ H.

If all d constraints in T are enforcing in (G, T), we have T = B(G). Given
T < G € H, let Agr denote d minus the number of constraints that are
enforcing in (G, T). We call Agr the hidden dimension of (G, T). The number
of constraints of B(G) that are not already in T. From the above discussion,
the probability that a violation occurs in the if statement can be bounded by
Ag,r/(i —|T|). We will first establish that the hidden dimension decreases by at
least 1 at each recursive call in Step 2.2; later, we will improve this by arguing
that it is likely to decrease much faster.

Exercise 9.32: Let T = F = G < H, and let h € F\T be an extreme constraint in F.
Let S be a basis of B(F\{h}) U {h}. Show that

1. any constraint g that is enforcing in (G, T) is also enforcing in (F, S);
2. his enforcing in (F, S);
3. Ars < Agr—1.
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Thus, as we proceed down the recursion (in a sequence of executions of Step
2.2), the numerator of the probability bound decreases by at least 1 at each
execution. We will now show that the decrease in the hidden dimension (and
thus the decrease in the probability) is likely to be faster. Given sets F and T
such that T « F < G, and a random h € F\T, we bound the probability that
the addition of h to F\{h} causes a recursive call. When it does, we study the
probability distribution of the hidden dimension of the arguments of such a call.

Exercise 9.33: Let g1, g, ...9s be the extreme constraints of F that are not in T,
numbered so that

O(F\{g1}) < O(F\{g2}) < ---
Show that for all # and for 1 <j </, g; is enforcing in (F, Basis(B(F\{g,}) U {g/})).

In other words, when h = g,, all of {g;,gs,...,8,} will be enforcing in
(F,Basis(B(F\{h}) U {h})). Then, the arguments of the recursive call will have
hidden dimension Ag,r — ¢. The crucial observation is that since any of the g; is
equally likely to be h (by backwards analysis!), £ is uniformly distributed on the
integers in [1,s]. Thus the hidden dimension of the arguments of the recursive
call is uniformly distributed on the integers in [0,s — 1].

For a call to BasisLP with arguments (G, T'), where |G| = m and Agr =k,
let us denote by T(m,k) the maximum expected number of violation tests
(executions of the if statement).

Exercise 9.34: Show that T(m,0) =m —d.

Form > d+1 and k > 1, the above discussion on the probability distribution
of the hidden dimension yields the following recurrence:
T(m0)+T(m1)+---+T(mk—1)

m—d )

T(mk) < Tm—Lk)+1+ (9.20)

Exercise 9.35: Verify that T(m, k) < 2(m — d).

By combining the results of Exercises 9.29 and 9.35, we have:

Theorem 9.19: The expected running time of BasisLP on a problem with n con-
straints in d dimensions is O(d*2n).

Note the improvement over Theorem 9.18. By a slightly more careful analysis,
and a more complicated analysis of the recurrence that results, the time bound
of Theorem 9.19 can be improved considerably. This will be discussed briefly in
the Notes section. '
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Notes

The first algorithms for all of the geometric problems we have considered were deter-
ministic; rather than give sources for each of these deterministic algorithms, we refer
the reader to textbooks on computational geometry [133, 336]. A comprehensive intro-
duction to the design and analysis of randomized geometric algorithms is the book by
Mulmuley [316]. Rabin’s [341] description of a randomized algorithm for the problem of
finding nearest neighbors in a set of n points is perhaps the earliest use of randomization
in a geometric algorithm. The systematic use of randomization in geometric algorithms
was pioneered in a series of papers by Clarkson [101, 102, 103, 105], Clarkson and
Shor [106, 107], and Mulmuley [315]. Below, we give more detailed pointers to the
various problems and algorithms we have studied.

The RandAuto algorithm for binary space partitions is due to Paterson and Yao
(see [329] and references therein). They also prove that there are inputs for the three-
dimensional case for which every autopartition has size Q(n?). The result used in the
proof of Theorem 9.9 concerning the number of edges bounding external sub-facets is
described in the book by Edelsbrunner [133].

» Research Problem 9.1: Paterson and Yao show that in the case where the line
segments are all parallel to two (orthogonal) axes, a binary partition of size O(n)
can be found. Is it always possible to find a partition of size O(n)? Is there a
configuration of n segments that forces a lower bound of Q(nlogn) on the size of
any autopartition for that configuration?

» Research Problem 9.2: Since any partition must have size Q(n) and we can find
one of size O(nlog n) using the RandAuto, it is clear that we find a partition whose
size is within O(log n) of the optimal size. Can we prove something stronger, say,
find a partition of size is within a constant (or any factor better than logn) of
the optimum? It is plausible that this question can be answered independently of
Research Problem 9.1,

» Research Problem 9.3: Can we give a high confidence estimate for the size of
the autopartition produced by the random permutation algorithm (with free cuts)
in three dimensions? In other words, we require a statement of the form “with
probability 1 — f(n), the size of the autopartition does not exceed g(n).”

» Research Problem 9.4: As in the two-dimensional case, can we say whether our
algorithm is provably good in that it always finds a partition whose size is within
some provable factor of the optimum? Notice that there is more room for leeway
here than in the planar case — the optimum could be anywhere from n —1 to
Q(n?).

Randomized incremental constructions are simple to implement, and their power was
demonstrated in a series of papers by Clarkson, Shor, Mulmuley, and others [107, 315,
368, 369]; the algorithms we have described for convex hulls and for trapezoidal de-
compositions appear in these papers. Prior to this work, Chazelle and Edelsbrunner [90]
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gave a deterministic but relatively complicated algorithm for trapezoidal decompositions
with running time O(nlogn + k). The key idea of backwards analysis appeared first in a
paper by Chew [94]; the algorithm of Section 9.5.1 for finding the Delaunay triangula-
tion of the vertices of a convex polygon is from this paper. However, the generality and
widespread applicability of this idea (to geometric as well as non-geometric problems)
went unnoticed prior to the work of Seidel [371]. Guibas, Knuth, and Sharir [187]
showed that this paradigm can be applied directly to the construction of Voronoi dia-
grams. The incremental construction paradigm has been applied to a diverse collection
of geometric problems; the interested reader should consult Mulmuley’s treatise [316]
for further pointers. The use of random sampling was pioneered by Clarkson [102], who
proved a general version of Lemma 9.11; this paper also describes the data structure of
Section 9.9.1 for point location in an arrangement of lines. The application of sampling
to geometric problems owes its origins to a paper by Haussler and Welzl [197]. A
variant of the random sampling technique has been used by Chazelle and Friedman [92],
improving the expected running time from O(n?*€) to O(n?). Random sampling, too,
has been applied to a large number of geometric problems, and the reader may again
consult Mulmuley [316] for further pointers. One theoretical benefit of randomized
geometric algorithms is that they can be derandomized to yield deterministic algorithms
that are faster than known algorithms. Chazelle and Friedman [91] pioneered this study;
see also the survey by Matousek [294].

The linear programming problem has a long and rich history; the reader is referred to
treatises by Chvatal [100] and by Schrijver [366] for the history of the problem and the
classical Simplex algorithm invoked in Section 9.10. These books (as well as several of
the papers we mention below) also discuss how to remove the assumptions we have made
at the beginning of Section 9.10. Megiddo [307] gave a deterministic algorithm for linear

programming running in time 0(n22‘ ) Much subsequent work focused on reducing

the 2% term in the running time, and indeed all the algorithms we have described have
variants whose running time can be bounded as O(nf(d)) where f(d) is some (typically
exponential) function of d. This also applies to the random sampling algorithms of
Section 9.10; these algorithms are due to Clarkson [104]. The iterative reweighting
technique of Section 9.10 was first applied to geometric algorithms by Welzl [417]. The
SeideLP algorithm of Section 9.10.1 is due to Seidel [369].

In the discussion leading to Lemma 9.14, we invoked a bound on the maximum
number of vertices that a polyhedron with 942 constraints can have; this bound is a
special case of general bounds on the number of vertices of a polyhedron. Such bounds
are given, for instance, in Edelsbrunner’s book [133].

The BasisLP algorithm and its analysis are due to Sharir and Welzl [374]. Kalai [226)
achieved a breakthrough by giving a randomized algorithm whose expected running
time is at most

min{n“m, n2“‘/'7__d\ﬁ°—g—d }

for an absolute constant a. Following this, Matousek, Sharir, and Welzl [295] showed
that the BasisLP algorithm in [374] in fact runs in time

0 (nd exp( </¢71rl(T+l_))) :

By augmenting the analysis of [295] with Clarkson’s sampling technique, it is possible
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to obtain the slightly improved time bound of
O(dzr_z + by/dlosd o0 n)

for an absolute constant b. Goldwasser [177] gives an eminently readable account of the
algorithms and analyses of Kalai [226] and of Matousek, Sharir, and Welzl [295]. In
fact, he points out that the algorithm of Matousek, Sharir, and Welzl is exactly dual (in
the sense of linear programming duality [100]) to one variant of Kalai’s.

Sharir and Welzl [374] in fact describe their algorithm as being applicable to a general
class of abstract optimization problems that includes linear programming as a special case.
We explore this theme further in Problem 9.11. Girtner [163] extended this approach
and applied it to obtain sub-exponential algorithms for such problems as finding the
minimum distance between two polytopes in d dimensions.

The Random Simplex algorithm is the following: starting from any vertex of F(A, b),
proceed to a random adjacent vertex of F(A,b) that improves the objective function.
Algorithms that only move between adjacent vertices of F(A, b) are generally known as
simplex algorithms, following Danzig [119, 120].

» Research Problem 9.5: Derive a sub-exponential upper bound on the expected
running time of the Random Simplex algorithm.

Gartner and Ziegler [164] have established a tight, polynomial upper bound for a
restricted class of polytopes known as Klee-Minty cubes. Any simplex algorithm is
condemned to incur a running time that is at least the diameter of the polytope F(4, b).
The best upper bound known on the diameter of polytopes defined by n constraints in
d dimensions is n2*'°84, due to Kalai and Kleitman [227]. The major open problem left
open by these papers is:

» Research Problem 9.6: Devise a randomized algorithm for linear programming
that runs in expected time polynomial in n and d.

Thus, in order to resolve Research Problem 9.6 one either has to improve the Kalai-
Kleitman diameter bound, or devise a non-simplex algorithm.

Problems
9.1 Prove Theorem 8.8 using backwards analysis.

9.2 By “dualizing” the randomized incremental algorithm for convex hulls in the
plane (Section 9.2), derive a randomized incremental algorithm for computing
the intersection of n given half-planes. Show that its expected running time is
O(nlogn).

9.3 Use the Mulmuley games of Section 8.2.1 to derive Theorem 9.8,
94 The object of this problem is to show that the time bound in Theorem 9.1
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holds with high probability. For a point p € S, define the indicator variable
Xj(p) as follows:

X.(p) = 1 if p’s pointer is updated at the jth step;
iP)=19 0 otherwise

Thus the total work done in updating p’s pointer is 3. X;(p). By showing
that EI. X;(p) is O(logn) with probability 1 —n2, show that the total work is
O(nlogn) with high probability.

Show that the randomized incremental half-space intersection algorithm of
Section 9.4 can be adapted to construct /,(S), the intersection of n spheres in
three dimensions, in expected time nlogn.

Show that the set Sy resulting from Steps 2 and 3 in the randomized diameter
algorithm (Section 9.8) can be found in time linear in the size of S, for the L,
metric.

Let S be a set of n points in the plane. For any positive integer k < n, show
that there is a subset S, consisting of k points in S with the property that
no triangle in del/(S,) contains more than (cnlogk)/k points, for a suitably
chosen constant c.

In this problem, we discuss the removal of the simplifying assumptions made
atthe beginning of our discussion of linear programming algorithms. We focus
on the non-degeneracy assumptions 3—4. Consider a set of d + 1 constraints
whose defining hyperplanes intersect at a common point p; without loss of
generality, let these be defined by the first d + 1 rows of 4 (together with the
first d + 1 components of b). Consider adding €’ to the ith component of b, for
1<i<d+1, where € is a small positive real. Show that for every choice
of A and b, there is a choice € such that (i) the hyperplanes intersecting at
p no longer intersect at a single point, and (ii) if p were the optimum of the
linear program determined by 4 and b, the new optimum is defined by d of
the constraints that originally intersected at p.

Prove Lemma 9.16. (Hint: For every constraint h of weight w, > 1, replace
it by w, “virtual copies” of h each of weight 1, and consider sampling this

multiset.)

The Boolean n-cube is an undirected graph that has N = 2" nodes connected
in the following manner. Let (iy, ..., i»—) be the (ordered) binary representation
of vertex i, i.e., i =3/ ij2/, i; € {0, 1}. Then there is an edge between vertex
i and vertex j if and only if (ip,...,in_1) @and (jo,...,jn-1) differ in exactly one
position. Thus every vertex in the n-cube has degree n = log, N. An acyclic
orientation of the cube is an assignment of a direction to each edge, such that
the resulting directed graph is acyclic. A sink in the digraph is a node with no
edges directed out of it. Consider a random walk on an n-cube with an acyclic
orientation: at each step, the walk proceeds along an outgoing edge chosen
uniformly at random. Show that for every n, there is an acyclic orientation of
the n-cube and a starting vertex such that expected number of steps for the
walk to reach a sink is 22,
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This has the following significance. The n-cube can be realized as a polyhe-
dron defined by the intersection of 2n half-spaces in n-dimensions. Consider
the Random Simplex algorithm on this polyhedron. The directions on the
edges are meant to model directions of improving objective function. The
above lower bound suggests that if we had to give a sub-exponential upper
bound on the performance of the Random Simplex algorithm, we would have
to take into account the geometry of the polytope, using it to preclude the kind
of arbitrary acyclic orientation that led to the lower bound.

In this problem, we consider the extension of the BasisLP algorithm to op-
timization problems more general than linear programming. Consider the
following framework for an abstract optimization problem. There is a set H
of n constraints, and a function O that maps every subset G of H to the real
numbers; we think of O as the optimum value for G. Let F =« G <.H, and
h e H. For any such F, G, and h, we further require that

1. O(F) < O(G), and
2. O(F) = O(G) implies that

O(F U{h}) > O(F) = O(G U {h}) > O(G).

Defining the concept of a basis as for Iir'xea_r programming, let us call the
maximum cardinality of any basis as the combinatorial dimension of the
instance.

Modify the BasisLP algorithm so that it works for such abstract optimization
problems, and show that the analysis of BasisLP may be applied with d
replaced by the combinatorial dimension.

Consider the smallest enclosing ball problem: given n points in d-dimensional
space, find the radius of the smallest ball that contains all n points. By showing
that this fits the paradigm of an abstract optimization problem, show that a
suitably modified version of the BasisLP algorithm can be used to solve it.
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CHAPTER 10

Graph Algorithms

IN this chapter we consider several fundamental optimization problems involving
graphs: all-pairs shortest paths, minimum cuts, and minimum spanning trees.
In each case, deterministic polynomial time algorithms are known, but the use
of randomization allows us to obtain significantly faster solutions for these
problems. We show that the problem of computing all-pairs shortest paths is
reducible, via a randomized reduction, to the problem of multiplying two integer
matrices. We present a fast randomized algorithm for the min-cut problem in
undirected graphs, thereby providing evidence that this problem may be easier
than the max-flow problem. Finally, we present a linear-time randomized
algorithm for the problem of finding minimum spanning trees.

Unless stated otherwise, all the graphs we consider are assumed to be undi-
rected and without multiple edges or self-loops. For shortest paths and min-cuts
we restrict our attention to unweighted graphs, although in some cases the
results generalize to weighted graphs; we give references in the discussion at the
end of the chapter.

10.1. All-pairs Shortest Paths

Let G(V, E) be an undirected, connected graph with V = {1,...,n} and |E| = m.
The adjacency matrix 4 is an n x n 0-1 matrix with 4;; = 4;; = 1 if and only if
the edge (i, j) is present in E. Given A, we define the distance matrix D as an
n X n matrix with non-negative integer entries such that D;; equals the length
of a shortest path from vertex i to vertex j. The diagonal entries in both A
and D are zeroes. Since G is connected, all entries in D are finite; this is not a
restrictive assumption since a graph can be decomposed easily into connected
components in linear time.

The all-pairs shortest paths (APSP) problem is to compute a representation
of the shortest paths between all pairs of vertices, i.e., the paths that determine
the entries in the distance matrix. To make this precise, we will compute an
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implicit representation of the shortest paths such that for any specific pair of
vertices, the shortest path between them can be determined in time proportional
to its length. A restricted version of this problem requires us to compute only
the distance matrix; we refer to this as the all-pairs distances (APD) problem.

The APSP problem can be solved in O(nm) time, as follows: from each vertex
i € V, compute the breadth-first search tree T; rooted at i. Each such tree can
be computed in O(m) time, and, in any tree T;, the (unique) path from i to any
vertex j is the shortest path between them. Given the collection of breadth-first
search trees, the distance matrix can be computed in O(n?) time by assigning
level numbers to the vertices in each tree.

We consider only unweighted graphs, although the above definitions have
obvious generalizations to the case where the edges have real-valued weights
(or lengths). The classical algorithms of Dijkstra, Floyd-Warshall, and Johnson
solve APSP in O(n®) time; the first and the last of these can actually be
implemented in O(nm + n?logn) time.

While it is clear that the APSP or APD problem would require Q(n?) time in
the worst case, there is no reason to believe that the O(nm) time bound (which
can be as much as ©(n®)) is even close to the best possible. We now show that
a substantial improvement can be obtained for the unweighted case with the
use of randomization and fast matrix multiplication. While these results do not
generalize completely to the weighted case, there is some indication that this
should be possible.

What does matrix multiplication have to do with the shortest path problem?
Consider first the problem of Boolean matrix multiplication: given nxn Boolean
matrices A and B, their product C has entries

- ZA,,‘B,(,.

k=1

where the product of two Boolean values denotes the Boolean AND operation,
and the sum denotes the Boolean OR operation. Suppose that 4 = B is the
adjacency matrix of the graph G. Then the product C = A? has its (i, j) entry
equal to 1 if and only if there is a path of length 2 between the vertices i and j;
the matrix 4’ corresponds to paths of length /. A related concept is that of the
closure of a Boolean matrix A, which is defined as the infinite sum A” = 3"2, 4/,
where A° is the identity matrix. The closure matrix 4" has its (i, j) entry equal
to 1 if and only if there is some path between the vertices i and j.

Computing all powers of 4 from 1 to n will thus enable us to solve the
APD problem. Unfortunately, this takes time O(n*) using the obvious Boolean
matrix multiplication algorithm, which runs in time O(n*). On the other hand,
computing the closure A of the Boolean matrix A requires only as much time
as a single Boolean matrix multiplication (see Problem 10.1).

Actually, it is possible to embed Boolean matrix multiplication into integer
matrix multiplication by treating the Boolean entries as the integers 0 and
1. This corresponds to embedding the closed semiring of Boolean algebra
into the ring of integers. Let MM(n) denote the time required to multiply two
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n x n matrices with integer entries. All known integer matrix multiplication
algorithms are applicable to an arbitrary ring, rather than the ring of integers
alone.

Exercise 10.1: Show that Boolean matrix multiplication for n x n matrices can be
performed via integer matrix multiplication in time O(MM(n)). How large are the
integer values that arise during this computation?

Currently, the best integer matrix multiplication algorithm runs in time
O(n*3%). By the preceding exercise this result carries over to Boolean matrix
multiplication. Unfortunately, even the use of this observation gives a super-
cubic algorithm for the APD problem in unweighted graphs. There is, however,
another trick that permits the solution of the APD problem in time O(MM(n)).
The idea is to reduce the problem of computing the distance matrix for a graph
to a matrix multiplication over the closed semiring of the reals augmented
with co, where scalar addition is replaced by the “min” operator, and scalar
multiplication is replaced by scalar addition. Let 4 now be the matrix in which
the (i, j) entry is the weight of the edge (i, j) if it exists, and oo otherwise. The
semiring product of matrices 4 and B has entries

iy = 13ig,(As + Biy)

It can be verified that the closure matrix 4" is exactly the solution to the APD
problem. Some non-trivial ideas are needed to show that the semiring closure
can be computed via integer matrix multiplication; we omit the details. This
technique applies to weighted graphs too.

There are two serious deficiencies in the solution described in the previous
paragraph - the algorithm does not generalize from the APD problem to
the APSP problem and, more importantly, the reduction to integer matrix
multiplication creates integer matrices whose entries are integers whose length
is super-linear in n. In any real machine, this implies that each arithmetic
operation takes super-linear time, and the usual unit-cost assumption for basic
arithmetic operations is invalid. We present a different approach for reducing the
APD problem to integer matrix multiplication using integers of only logarithmic
length. Then, we show that this can be extended, via randomization, to actually
solve the APSP problem using a black-box for matrix multiplication. The
algorithm is practical to the extent that the fast matrix multiplication algorithm
being invoked is practical.

10.1.1. Computing Distances

Our first goal is to present a (deterministic) algorithm to solve the APD problem
using a black-box for integer matrix multiplication. In the ensuing discussion,
all matrix multiplications are over the ring of integers and the adjacency matrix
is treated as an integer matrix.
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Let G'(V,E’) be the graph obtained from G(V, E) by placing an edge between
every pair of vertices i # j € V that are at distance 1 or 2 in G. The graph G
is a subgraph of G’, and we could view G’ as the “square” of the graph G. For
G/, let A’ denote the adjacency matrix and D’ denote the distance matrix. The
proof of the following lemma is left as an exercise.

Lemma 10.1: Let Z = A%, where A is the adjacency matrix of the graph G.
Then there is a path of length 2 in G between a pair of vertices i and j if and
only if Z;j > 0. Further, the value of Z;; is the number of distinct length 2 paths
between i and j.

The matrix Z = A* can be computed in O(MM(n)) time, and if we know A
and Z it is easy to determine the matrix A’ in O(n?) time. The diagonal entries
in Z = A* will be non-zero in general (corresponding to cycles of length 2), and
care must be taken in constructing A4’ to ensure that it has a zero diagonal. In
particular, we compute 4’ by setting A;j =1 if and only if i # j and at least one
of 4;; and Z;; is non-zero.

Observe that G’ is complete if (and only if) G has diameter at most 2, where
the diameter of a graph is the maximum shortest path length over all pairs of -
vertices. In this case, the APD matrix D = 24’ — A is easily obtained from A
and A4’ in time O(n?).

In general, of course, the graph G could have arbitrarily large diameter. The
following sequence of observations will allow us to handle the general case. The
proof of the next lemma is left as an exercise.

Lemma 10.2: Consider any pair of vertices i, j € V.
. IfD,'j is even then D,’j = 2D;J
e If D;j is odd then D;j = 2D;; — 1.

An immediate implication of this lemma is that given the APD matrix D’
for G', the APD matrix D for G can be computed quickly provided we know
the parity of each of the shortest path lengths in D. This suggests a recursive
algorithm for APD that first computes 4’ and G, uses recursion to determine
D', and then computes D from D’ using the observation in Lemma 10.2. The
only remaining detail is the method for computing the parities of the shortest
path lengths. The proof of the next lemma is an easy exercise.

Lemma 10.3: Consider any pair of distinct vertices i and j in G.
e For any neighbor k of i, D;j — 1 < Dyj < D;j + 1.
o There exists a neighbor k of i such that Dyj = D;; — 1.

We now present a structural property of shortest paths that allows us to
compute the parities of their lengths.
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Lemma 10.4: Consider any pair of distinct vertices i and j in G.

o If Dyj is even, then Dk P D ; Jor every neighbor k of i in G.

o If Djj is odd, then D;(j < D:.j for every neighbor k of i in G. Moreover, there
exists a neighbor k of i in G such that D, ;< D;.j.

PrOOF: Consider first the case where D;; = 2¢ is even. By Lemma 10.3, for any
neighbor k of i we have Dy; > 2¢ — 1. Lemma 10.2 implies that Dj; = ¢. Also
by Lemma 10.2 we have D, j 2 Dij/2 2 ¢ —1/2, and since distances are integral
we conclude that D;; > ¢ = Dj;.

A similar argument applies in the case where D;; = 2/ — 1 is odd. By
Lemma 10.3 we have D;; < 2¢ for any neighbor k of i, and therefore, by
Lemma 10.2, D;; ; < (Dj+1)/2 < ¢+ 1/2. By integrality it follows that Dk <Y,
and by Lemma 10.2 we have D;; ; = ¢, implying the desired result that D ; ;< D
Further, there exists a nelghbor k of i such that Dy =Dy—1=2¢-2, and
therefore Lemma 10.2 yields D, ; j=f—1<(= D O

Let I'(i) denote the set of neighbors of i in G, and let d(i) be the degree of
i. Note that Z; = d(i), for all i. Summing the inequalities in Lemma 10.4 over
the neighbors of the vertex i, and noting that the two resulting inequalities are
mutually exclusive, we obtain the following resullt.

Lemma 10.5: Consider any pair of distinct vertices i and j in G.
e D;; is even if and only if Ekel"(i) D;( = D;.jd(i).
o Dy is odd if and only if ¥ycrq Di; < Dijd(i).

This gives us an efficient method for determining the parities of the shortest
path lengths in G. The resulting recursive algorithm is summarized in Algorithm
APD.

In Step 5 we are using matrix multiplication to compute

> D= AuD; =Sy

kel'(i) k=1

The correctness of the algorithm follows from the preceding discussion. We
summarize the running time analysis in the following theorem. The length of
the integers in the matrices will never exceed O(log n).
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Algorithm APD.

Input: Graph G(V,E) in form of an adjacency matrix 4.
Output: The APD matrix D for G.

1. Z —~ A2
2. compute matrix 4’ such that A',.i =1 if and only if

i #jand (A; =1orZ;>0).

3. if A, =1foralli#jthen return D =24 — 4.

4. Recursively compute the APD matrix D’ for the graph G’ with adjacency
matrix A4'.
5. S~ AD.
20, it Sy = D;Zy
6. return matrix D with D;; =
20, —1 if S; <D,z

Theorem 10.6: The APD algorithm computes the distance matrix for an n-vertex
graph G in time O(MM(n)logn) using integer matrix multiplication on matrices
with entries of value bounded by O(n?).

PROOF: Suppose that the graph G has diameter 6. Then the graph G’ has
diameter [4/2]. Let T(n,d) denote the running time of the APD algorithm on
input graphs with n vertices and diameter J. In the case § = 1, G is a complete
graph, and in the case 6 = 2 we have that T(n, ) = MM(n) + O(n?).

Exercise 10.2: Verify that T(n, §) satisfies the following recurrence for 6 > 2,

T(n. &) =2mMM(n) + T(n, [6/2]) + O(n?).

Noting that § < n and MM(n) = Q(n?), and that the recursion depth is O(log n),
the desired result follows immediately. Finally, since the integers in the distance
matrices are bounded by n, it follows that the integers in the S matrices are
bounded by n’. O

10.1.2. Witnessing Boolean Matrix Multiplication

We now extend the above technique to solving the APSP problem; this is where
randomization proves useful. The extension is based on solving the problem of
finding “witnesses” for Boolean matrix multiplication. Suppose 4 and B are
n X n Boolean (or, 0-1) matrices and P = AB is their product under Boolean
matrix multiplication. A witness for P;; is an index k € {1,...,n} such that
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Ay = Byj = 1. Observe that P;; = 1 if and only if it has some witness k. A
Boolean product witness matrix (BPWM) for P is an integer matrix W such that
each entry W;; contains a witness k for P;; if any, and is O if there is no such
witness. The matrix W has entries drawn from the set {0, 1,...,n}. The BPWM
problem is to find a witness matrix W, given the matrices 4 and B (and, if
necessary, also the matrix P).

There could be as many as n witnesses for each entry in P. In fact, the
integer matrix multiplication of 4 and B, treating their entries as the integers 0
and 1, yields a matrix C whose entry C;; corresponds exactly to the number of
witnesses for the Boolean matrix entry P;;.

Recall that if 4 = B is the adjacency matrix of a graph G, then P; =1if and
only if there exists a path of length 2 from i to j, and C;; is the number of such
paths. A witness k for P;; is the intermediate vertex on a length-2 path from
i to j. It thus appears that finding witnesses for Boolean matrix multiplication
is closely related to the issue of extending the APD algorithm to finding the
shortest paths. The problem is that the obvious brute-force approach of trying
each k € {l,...,n} as a potential witness for P;; requires Q(n) time and gives
only an O(n®) time algorithm for the BPWM problem.

Consider first the issue of finding a witness matrix when there is a unique
witness for each entry in P. There is a simple reduction of the BPWM problem to
integer matrix multiplication in this case, as suggested in the following exercise.
In the rest of this section, except in the computation of P, all matrix products
involve integer matrix multiplication.

Exercise 10.3: Consider the matnx 4 obtained by setting A,k = kAix. Show that the
integer matrix multiplication of 4 and B yields a matrix that contains the witness for
all entries in the matrix P that have a unique witness. In particular, if each entry of
P has a unique witness, then W = 4B is a solution to the BPWM problem.

Of course, there is no a priori guarantee that there is a unique witness for
any particular entry in P. However, we can use randomization to achieve the
effect of such a guarantee for a sufficiently large number of entries in P. This
approach bears some resemblance to the use of the isolating lemma used in
devising a parallel algorithm for maximum matching, described in Section 12.4.

Let us focus our attention on a specific entry P;;. Assume that the number of
witnesses for this entry has been determined to be w. We may find the number
of witnesses w by using integer matrix multiplication to compute C = AB, and
then looking at the entry C;;. We assume that w > 2, since it is easy to find
the witness (if any), otherwise. Let r be an integer such that n/2 < wr < n. We
claim that a random set of indices R < {1,...,n} of cardinality r is very likely to
contain a unique witness for P;;. To verify this claim, consider an urn containing
n balls, one for each of the n indices; the balls corresponding to witnesses are
colored white, and the rest are colored black. The following lemma then shows
that the probability that R contains a unique witness is reasonably large.
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Lemma 10.7: Suppose an urn contains n balls of which w are white, and n — w
are black. Consider choosing r balls at random (without replacement), where
n/2 < wr <n. Then

Pr[exactly one white ball is chosen] > 51;.

PROOF: By elementary counting, the desired probability can be bounded as
follows.

(D G=1) rl (n=w)!  (n—r)!
@) r=1)! n (m=w—r+1)!

w—1 w—2
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—

1 1\*!
> 5(1-%)
The last inequality follows from the observations that wr/n > 1/2 and (r —

1)/(n —w) < 1/w, which in turn follow from the assumption that n/2 < wr < n.
Finally, applying Proposition B.3, the last expression is bounded by 1/2e. O

Assuming that the set R contains a unique witness for Pj;, it is easy to modify
the technique described in Exercise 10.3 to identify this witness. Suppose that
R is represented as an incidence vector that has R, =1 fork € Rand R, =0
for k ¢ R. Let AR be the matrix obtained from A by setting AX = kR Ay;
further, let B® be the matrix obtained from B by setting B,fj = RyBy;. The only
difference between A® and BR and the two matrices used in Exercise 10.3 is that
each column of A% and each row of B® corresponding to the indices not chosen
in R is turned into an all-zero vector. The reason behind this construction is
explicated in the next exercise.

Exercise 10.4: Suppose that the entry P;; has a unique witness in the set R. Show
that the corresponding entry in the integer matrix multiplication of 4% and B” is the
index of this unique witness.
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A key point is that the product of A® and BR yields witnesses for all entries
in P that have a unique witness in R. By Lemma 10.7, there is a constant
probability that a random set R of size r has a unique witness for an entry
in P with w witnesses. where n/2r < w < n/r. Repeating this for O(logn)
independent choices of R makes it extremely unlikely that witnesses are not
identified for such entries in P, and these missing witnesses can be found by
brute-force enumeration. Of course, we will need to use several different values
of r to take care of the range of values possible for w, but it suffices to try only
those values of r that are powers of 2 between 1 and n. The resulting algorithm
is presented below.

Algorithm BPWM:

Input: Two n x n 0-1 matrices 4 and B.
Output: Witness matrix W for the Boolean matrix P = 4B.

1. W « —A4B.
2. fort=0,..., llogn] do
21. r « 2.

2.2. repeat [3.77 logn] times

2.2.1. choose random R < {1,..., n} with |R| =r.
2.2.2. compute A" and B”.
223. Z —~ A"B".

2.2.4, for all (i, j) do
if W; <0and Z; is witness then W;; « Z;;.

3. for all (i,j) do _
if W, <0 then find witness W,; by brute force.

The initial setting of W ensures that the only negative entries are those where
the value of P;; is non-zero and there is a need to find a witness. Thereafter, the
negative entries mark the locations in P for which witnesses have not yet been
found. The brute-force search in the last step for the witnesses not identified by
the randomized strategy ensures that the algorithm is Las Vegas. We now turn
to the task of analyzing the expected running time.

Theorem 10.8: The BPWM algorithm is a Las Vegas algorithm for the BPWM
problem with expected running time O(MM(n) log? n)

PROOF: Step 1 takes time MM(n). There are O(log2 n) iterations of the innermost

loop body in Step 2, and the most expensive operation performed there is an
integer matrix multiplication of matrices of dimension at most n x n. This would
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yield the desired time bound, provided that the brute-force computations in Step
3 are not too expensive. We claim that for any non-zero P;;, a witness is found
in Step 2 with probability at least 1 —1/n. This implies that the expected number
of witnesses remaining to be found at the start of Step 3 is n, and since each of
these is then found by brute force in O(n) time, it follows that the expected cost
of Step 3 is O(n?).

To verify the claim, consider any specific non-zero P;; and assume that it
has w witnesses. There will be at least one iteration of the outer loop with a
value r such that n/2 < wr < n. During that iteration, the probability that a
random choice of R does not have a unique witness for P;; is at most 1 —1/2e,
by Lemma 10.7. Since the inner loop is repeated 3.77 log n times, it follows that
the probability that no witness is found for this entry before the end of Step 2

.

is at most (1 — 1/2¢)>7"1%8" < 1 /n. O

10.1.3. Determining Shortest Paths

Finally, we show how the Algorithms APD and BPWM can be used to solve
the APSP problem. The first problem we face is that there exist graphs with
many pairs of vertices for which the shortest path length is linear in n, and so
any explicit representation of all-pairs shortest paths will require Q(n®) time to
compute.

Exercise 10.5: Construct an n-vertex graph with Q(n?) pairs of vertices at distance
Q(n).

To circumvent this problem, we will compute an implicit representation of
the shortest paths such that for any specific pair of vertices their shortest path
can be extracted in time proportional to its length.

» Definition 10.1: A successor matrix S for an n-vertex graph G is an n x n matrix
such that §;; is the index k of a neighbor of vertex i that lies on a shortest path
from i to j.

Exercise 10.6: Given a successor matrix S and a pair of vertices /, j, explain how
you would obtain an explicit representation of the shortest path from i to j in time
proportional to the length of the path.

Suppose we are provided with the adjacency matrix 4 and the distance matrix
D for a graph G. Consider a pair of vertices i and j that are at distance d from
each other. The entry S;; can be k if and only if D;; =d — 1 and Dy =1 (or
Ay = 1). Let B* denote the n x n 0-1 matrix in which Bf; = 1 if and only if
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Dy; = d — 1. Observe that B can be computed from D in O(n?) time. As the
following exercise indicates, finding the successor entry for any pair i and j at
distance d is easy given the matrix B’

Exercise 10.7: Applying the BPWM algorithm to compute the witness matrix for
the Boolean matrices 4 and B, show that the successor matrix entries for all
pairs of vertices at distance d can be simultaneously determined in expected time
O(MM(n) log® n).

The only problem with this approach is that the entire process must be
repeated for the n different values of d, leading to a super-cubic algorithm for
APSP. However, a simple observation leads to a reduction of the number of
witness matrix computations from n down to 3.

Recall from Lemma 10.3 that for any pair of vertices i and j, and any
neighbor k of i, it must be the case that D;; — 1 < D,; < D;; + 1. Furthermore,
any neighbor k with Dy; = D;; — 1 is a valid candidate for the successor matrix
entry S;;. It follows that any k such that 43 = 1 and D, j=D;j—1 (mod 3)isa
valid candidate for S;;.

For s € {0, 1,2}, define the n x n 0-1 matrix D to be such that D‘s) =1if and
only if Dy; + 1 = s (mod 3). The successor matrix can be computed by finding
the witnesses of the Boolean matrix multiplication of 4 with each of D©, D,
and D@, as described in Algorithm APSP.

Algorithm APSP:

Input: An n x n adjacency matrix A4 for a graph G.
Output: The successor matrix S for G.

1. compute the distance matrix D = APD(4).
2. for s ={0,1,2} do

2.1. compute 0-1 matrix D* such that D{ = 1 if and only if D,; +1 = s
" (mod 3).

2.2. compute the witness matrix W) = BPWM(4, D*)).

3. compute successor matrix S such that Sy = w” mod 3

Given the performance bounds on the algorithms APD and BPWM, the
following theorem is easily verified.

Theorem 10.9: Algorithm APSP computes the successor matrix for an n-vertex
graph G in expected time O(MM(n) log? n).
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10.2. The Min-Cut Problem

We now return to the min-cut problem considered in Section 1.1. Let G(V, E) be
an undirected multigraph with n vertices and m edges. A multigraph is permitted
more than one edge between any given pair of vertices. A cut in G is a partition
of the vertices ¥ = (C,C) into two non-empty sets; we refer to this as the cut
C with the understanding that C is V \ C.

The value or size of a cut C is the number of edges crossing the cut, ie.,
edges with one end-point in each of the two sets C and C. A multiple edge will
contribute its multiplicity to the value of the cut. A min-cut is a cut of minimum
value; the min-cut problem is that of finding a min-cut in an input graph G.
The value of a min-cut is sometimes referred to as the edge connectivity of the
graph, as it is the minimum number of edges that must be removed from the
graph to render it disconnected.

We assume that the input graph G is connected, since otherwise the problem
is trivially solved by determining the connected components of G in time O(m).
The above definitions generalize to weighted graphs, where the value of a cut is
defined to be the sum of the weights of the edges crossing the cut. We restrict
ourselves to non-negative edge weights. Permitting negative edge weights would
make the problem NP-complete since it would then include as a special case the
max-cut problem, a classical NP-complete problem.

The min-cut problem should be contrasted with the s-t min-cut problem. In
the latter, two distinguished vertices s and ¢ are specified in the input, and the
solutions are restricted to the cuts C with the property that s € C and ¢t ¢ C.

Exercise 10.8: Show that the min-cut problem for a graph G can be solved via a
polynomial number of invocations of an s-t min-cut algorithm applied to the same
graph.

The classical duality result in network flows states that the value of a maxi-
mum s-t flow in a network equals the value of a s-t min-cut. In fact, computing
a maximum s-t flow yields an s-t min-cut as a side-effect. It follows that the
min-cut problem can be solved via a polynomial number of invocations of a
maximum flow algorithm. Actually, it can be shown that n—1 flow computations
suffice for this purpose. Since the best deterministic maximum flow algorithm
runs in time O(mnlog(n’/m)), this approach to the min-cut problem would
require Q(mn?) time. Fortunately, the n — 1 maximum flow computations needed
for the min-cut problem can be implemented in time proportional to the cost of
a single maximum flow computation, and so we can compute a min-cut in time
O(mnlog(n?/my)).

A very interesting question is whether the s-t min-cut problem can be solved
faster than the s-t max-flow problem. Note that whereas a flow computation
immediately yields the cut, the converse does not seem to be true. In this section
we show that at least for the min-cut problem (without the s-t requirement),
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there is an efficient randomized algorithm running in O(n2 logq”n) time. For
dense graphs this is significantly better than the running time of the best-known
max-flow algorithm.

10.2.1. The Contraction Algorithm Revisited

We start by reviewing the the contraction algorithm described in Section 1.1.
Actually, we present only an abstract version of this algorithm and leave the
implementation details as an exercise.

Given an edge (x, y) in a multigraph G(V, E), a contraction of the edge (x,y)
corresponds to replacing the vertices x and y by a new vertex z, and for each
v € {x,y} replacing any edge (x,v) or (y,v) by the edge (z,v); the rest of the
graph remains unchanged. Any multiple edges created are to be retained. The
graph obtained by this contraction is denoted by G/(x, y).

Given a collection of edges F < E, the effect of contracting the edges in F
is independent of the order of contraction, and the resulting graph is denoted
by G/F. The vertex set and edge set of a graph G/F are denoted by V/F and
E/F. The “meta-vertices” in V /F correspond to a (connected) set of vertices in
V, and the edges in E/F are exactly those edges in E whose end-points do not
get collapsed into the same meta-vertex in V' /F. In Problem 10.9, the reader is
asked to show that it is possible to maintain the graph G/F under an online
sequence of edge contractions at a cost of O(n) time per contraction, keeping
track of the correspondence between the elements of V' /F and V, and E/F and
E.

The basic idea behind the contraction algorithm is summarized below. We
assume that the Algorithm Contract uses the data structure developed in Prob-
lem 10.9 to implement the edge contractions.

Algorithm Contract:

Input: A multigraph G(V. E).

Output: A cutC.

1. H «<G.

2. while H has more than 2 vertices do

2.1. choose an edge (x, y) uniformly at random from the edges in H.
22. F—FU{{x.y)}.
23. H—H/{(x.y).

3. (C.C) « the sets of vertices corresponding to the two meta-vertices in
H=G/F.
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The only implementation issue remaining in this algorithm is the selection of
the edge (x, y) uniformly at random from the set of all edges in the graph H. In
Problem 10.10, the reader is asked to show that this can be done in O(n) time
per random selection. The results from Problems 10.9-10.11 yield the following
theorem.

Theorem 10.10:  Algorithm Contract can be implemented to run in O(n?) time on
any n-vertex multigraph G.

The running time of this algorithm is independent of the number of (multi)
edges in the graph G. This may seem surprising at first since the number of
such edges is not bounded by (7). However, as suggested in Problem 10.9, the
multiplicity of an edge can be represented by an integer weight on the edge and
hence the number of edges can effectively be bounded by ().

Of course, this just shows that the Contract algorithm terminates in O(n?)
time with a cut C. There is no guarantee that the cut will indeed be a min-cut.
We now briefly review the argument from Section 1.1 that established that this
algorithm finds a min-cut with a non-negligible probability.

Lemma 10.11: A4 cut C is produced as output by Algorithm Contract if and only
if none of the edges crossing this cut is contracted by the algorithm.

Fix any one min-cut K in the graph G. Let k denote the value of a min-cut
in G; in particular, k is the value of the cut K. We would like to compute
the probability that K is produced as the output of Algorithm Contract. By
Lemma 10.11, this will happen if and only if none of the k edges crossing the
cut is contracted during the course of the algorithm’s execution. To determine
the probability of this event, we make use of the following obvious facts.

Lemma 10.12: In an n-vertex multigraph G with min-cut value k, no vertex has
degree smaller than k. Further, the total number of edges in the graph satisfies
m > nk/2.

Lemma 10.13: Given an edge (x,y) in a graph G, the min-cut value in G/(x, y)
is at least as large as the min-cut value in G.

The number of vertices in the graph H decreases b exactly one during each
iteration of Algorithm Contract. After n — 2 iteratior.s the number of vertices
is reduced from n to 2. At the ith iteration, there ar= n; = n —i+ 1 vertices
in H. Suppose that none of the edges in K is contracted during the first i — 1
iterations. Since K is also a cut in H, Lemma 10.13 ir:plies that H has min-cut
value k, and then Lemma 10.12 implies that the nuraber of edges in H is at
least n;k/2. Thus, the probability that any edge of K is contracted during this
iteration is at most 2/n;. It follows that the probability that no edge of K is ever
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contracted can be bounded as follows.

Pr(K is output by Algorithm Contract] >

We have established the following theorem.

Theorem 10.14: Any specific min-cut K is output by Algorithm Contract with
probability Q(n=?).

Since the graph must have at least one min-cut, it follows that the probability
of success of this algorithm is Q(n~2). Repeating the algorithm O(n’logn) times
gives a reasonable probability that some invocation of the algorithm produces
a min-cut; then, the smallest cut produced by these invocations is very likely
to be thé min-cut. This gives a Monte Carlo algorithm running in O(n*logn)
time. Before trying to improve this result, we note the following variant of
Theorem 10.14.

Lemma 10.15: Suppose that the Algorithm Contract is terminated when the num-
ber of vertices remaining in the contracted graph is exactly t. Then any specific
min-cut K survives in the resulting contracted graph with probability at least

(2)/G)==(G)):

10.2.2. A Faster Min-Cut Algorithm

We now modify the implementation of the contraction algorithm to reduce its
running time to O(n2 logql)n). The basic problem with Algorithm Contract is

that it succeeds in finding a min-cut only with probability Q(n~2). This entails
running the algorithm at least Q(n?) times to ensure a reasonable probability of
success. Thus, the obvious approach to improving the running time is to increase
the probability that a min-cut is produced by Algorithm Contract.

Suppose we focus our attention on a specific min-cut K and wish to have the
algorithm produce this as its output. The initial contractions are quite unlikely
to involve the edges crossing the cut K ; in particular, the very first iteration will
contract an edge of K with probability at most 2/n. The key insight is that it is
only toward the end of the contraction process that there is any non-negligible
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probability that an edge of K gets contracted; in particular, this probability
could be as large as 2/3 in the very last iteration.

This suggests that we contract the edges until the number of vertices decreases,
but not by too much, and then use some slower algorithm that guarantees
a higher probability of success. The first stage guarantees that the slower
algorithm will not require too much time to find a min-cut, but at the same
time, since the contractions are performed on graphs with a large number of
vertices, the probability that one of K’s edges gets contracted is reasonably
small. Unfortunately, the best deterministic algorithm known requires O(n?)
time, and the following exercise shows that the above approach will fail to
achieve a running time close to O(n?).

Exercise 10.9: Consider running the contraction algorithm until the number of ver-
tices is reduced to t and then using a cubic-time algorithm to find the min-cut in the
contracted graph. Show that repeating this process as many times as necessary to
ensure a probability of success at least 1/2 leads to an algorithm with running time
Q(n®?3).

The crucial insight is that instead of using a slower deterministic algorithm, it
is better to use two independent invocations of the Algorithm Contract itself on
the contracted graph with ¢t vertices. This is because the two repetitions boost
the probability of success on the smaller instance, while the cost of the repetition
on this instance is not as much as the cost of repeating the entire algorithm; in
fact, this effect multiplies with each successive stage of the recursion., We now
specify the algorithm more precisely: first use contractions to reduce the number
of vertices to roughly n/ ﬁ, and then recursively compute the min-cut in the
resulting graph; perform this twice and choose the smaller of the two min-cuts
obtained as the final output. The resulting recursive algorithm is summarized
below, and the reasons behind this precise choice of the parameters will become
clear shortly.

Algorithm FastCut:

input: A multigraph G(V.E).

Output: A cut C.

1. n«|V].

2. it n < 6 then compute min-cut of G by brute-force enumeration eise

21. t « [1+n/2].

2.2. Using Algorithm Contract, perform two independent contraction se-
quences to obtain graphs H; and H, each with t vertices.

2.3. Recursively compute min-cuts in each of H; and H,.
2.4. return the smaller of the two min-cuts.
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The recursion is stopped when n < 6 since at that point ¢t will not be smaller
than n. An intuitive way of viewing this algorithm is in terms of a binary
computation tree. The root corresponds to the graph G. For any node of this
tree with an associated graph H, we associate with the two children the graphs
H, and H; obtained by performing independent sequences of contractions that
reduce the number of vertices in H by a factor of /2. The depth of the tree
is roughly 2logn, and the number of leaves is O(n?). In contrast, the O(n?)
independent iterations of Algorithm Contract can be viewed as a tree of depth
1 with one root and O(n?) leaves that are direct descendants of the root. Thus,
the speed-up in this algorithm does not come from generating a smaller set of
potential min-cuts, but instead it is due to the sharing of work between the
various contraction sequences required to generate these potential min-cuts.

Algorithm FastCut is guaranteed to return some cut in G. We first bound the
time and space requirements of this algorithm.

Theorem 10.16: Algorithm FastCut runs in O(n? log n) time and uses O(n?) space.

PROOF: The depth of recursion is O(log n) since the size of the graph is reduced
by a constant factor at each level of recursion. Algorithm Contract uses O(n?)
time to reduce an n-vertex graph to a 2-vertex graph, and so it can certainly
perform a partial reduction to both H; and H, in O(n?) time. We obtain the
following recurrence for the running time T'(n) of Algorithm FastCut when given
an n-vertex graph as input:

T(n) = 2T ([1 + %D +0(n?).
The solution to this recurrence is given by T(n) = O(n?logn).
Turning to the space requirement, observe that at any time only one graph
needs to be stored at each level of recursion. Since the graphs at depth d

of recursion have O(n/2%2) vertices, it follows that the total space needed is
bounded by

O(g ;—j) =0(n).

We also have to keep track of the best min-cut found at each level of the
recursion, but this can certainly be done with space O(n?). This completes the
proof. O

It remains to show that this algorithm has reasonably high probability of
returning a min-cut.

Theorem 10.17: Algorithm FastCut succeeds in finding a min-cut with probability
Q(1/logn).
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PROOF: Suppose that the input graph G has min-cut value k. Assume that a
cut of value k has survived up to some point in the recursion where the size of
the residual graph H is t. This can be viewed as a node labeled by the graph H
in the recursion tree discussed earlier. Let H; and H, be the graphs associated
with the children of the node associated with H; these are the two contracted
versions of H on which the algorithm will recur further.

The invocation of the recursive algorithm on graph H will return a min-cut
for G provided the following two conditions are met: a cut value of k survives
one of the two contraction sequences leading to H, and H,; and, the FastCut
algorithm succeeds in finding the min-cut in that same graph H;.

By Lemma 10.15, the probability that any specific min-cut in H (which must
also be a min-cut in G) survives a contraction sequence that reduces the number
of vertices from ¢ to [1+t/,/2] is at least

[1+y/2(1+/y21 -1 1
tit—1) 2

Let P(t) denote the probability that Algorithm FastCut succeeds in finding a
min-cut in a graph with ¢ vertices. It follows that

Pt)=1— (1 - %P ([1 +t/ﬁ])>2.

To solve this recurrence, it will be convenient to perform a change of variables
and turn it into an equality. Let k = ©(log t) denote the depth of recursion, and
p(k) be a lower bound on the success probability. Then, we have p(O) =1 and
the recurrence:

pli+ 1) = plky — &L

A further change of variables with q(k) = 4/p(k) — 1, or p(k) = 4/(q(k) + 1),
yields the following upon simplification:

1
k+1)=gqk)+1 + .
A simple inductive argument now establishes that
k < q(k) <k+ Hi_; +3,

where H; is the ith Harmonic number and is ©(logi). It follows that g(k) =
k + ©(logk), implying that p(k) = ©(1/k), and this in turn implies that P(t) =
©(1/logt). Using n instead of ¢ in the last expression gives the desired result.

g

A reader familiar with the theory of branching processes may see that this
proof is essentially bounding the probability of extinction of the graphs having
min-cut value exactly that of the original graph G. Finally, we leave it as an
exercise to verify that this algorithm can be implemented in the promised time
bounds as was done for Algorithm Contract in Problems 10.9-10.11.
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10.3. Minimum Spanning Trees

Let G(V,E) be a connected graph with real-valued edge weights w : E — R,
having n vertices and m edges. A spanning tree in G is an acyclic subgraph of G
that includes every vertex of G and is connected; every spanning tree has exactly
n— 1 edges. The weight of a tree is defined to be the sum of the weights of its
edges. A minimum spanning tree (MST) is a spanning tree of minimum weight.
The minimum spanning tree problem (MSTP) is: given G, find an MST of G.

The algorithm we present here will recurse on subgraphs that are not nec-
essarily connected. When the input graph G is not connected, a spanning tree
does not exist and we generalize the notion of a minimum spanning tree to that
of a minimum spanning forest (MSF). A forest F is an acyclic subgraph of G
that consists of a collection of disjoint trees in G; we treat isolated vertices in
F as trees of size 1. A spanning forest is a forest whose trees are spanning trees
for the connected components of the graph G. A spanning forest is a spanning
tree if and only if the graph is connected. The weight of a forest is the sum of
the weights of its edges, and a minimum spanning forest is a spanning forest of
minimum weight. By considering each connected component of G separately, it
is easy to modify any algorithm for the MSTP to compute the MSF.

We will assume that all edge weights in G are distinct. This is not a restrictive
assumption since we can use any canonical numbering of the edges to resolve
ties when edge weights are being compared. Given the distinctness of the edge
weights, it follows that the minimum spanning tree must be unique.

The exact weight of the edges will be irrelevant to the following discussion
since the algorithms will work in the unit-cost RAM model and only perform
comparisons between the edge weights; in particular, these algorithms only
depend upon the total ordering of the edge weights and are otherwise insensitive
to the values of the weights.

The MSTP is one of the best-studied problems in combinatorial optimization.
A variety of algorithms have been developed for this problem, most of which
are based on a greedy strategy and run in near-linear O(mlogn) time, e.g,
Boruvka’s algorithm, Kruskal’s algorithm, and Prim’s algorithm. Currently,
the best deterministic algorithm runs in time O(mlog B(m,n)), where B(m,n) =
min{i | log? n < m/n} and log? n denotes the ith iterated logarithm of n. While
this is a linear time algorithm for all practical purposes, the data structures are
complicated enough that the simpler algorithms running in time O(mlogn) are
preferable to use. In any case, there is still the theoretical issue of devising a
linear time algorithm for this problem. In this section, we present a randomized
algorithm for the MSTP and show that its expected running time is O(m). In
fact, the running time of this algorithm is O(m) with high probability, but we
omit this high-probability analysis in our discussion (see the Notes section).

The randomized algorithm we present requires a black-box access to an MST
verification algorithm. A verification algorithm takes as input a graph G and a
spanning tree T, and determines whether T is an MST for the graph G. Clearly,
the verification problem for MST should be no harder than the MSTP. Indeed,
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several deterministic linear-time verification algorithms are known. We omit the
details of these algorithms and use them as black boxes (see the Notes section).
An important property of some of these linear-time verification algorithms is
that when T is not an MST, they produce a list of edges in G any of which can
be used to improve T. We will make this more precise later.

10.3.1. Boriivka’s Algorithm

We start by describing a particular greedy strategy for MST called Boruvka’s
algorithm, which runs in time O(mlogn). Later we will show that using ran-
domization in conjunction with this algorithm leads to a linear-time algorithm.
Boruvka’s algorithm is based on the following simple observation.

Exercise 10.10: Let v € V be any vertex in G. Show that the MST for G must contain
the edge (v, w) that is the minimum-weight edge incident on v.

The basic idea in Boruvka’s algorithm is to contract simultaneously the
minimum weight edges incident on each of the vertices in G. Recall from
Section 10.2 that contracting an edge (v,w) involves collapsing the two end-
points into a single vertex that has all the incident edges of both vertices, except
that self-loops are eliminated. In fact, a contraction can create multiple edges
between some pairs of vertices but only the minimum weight edge needs to
be retained out of any set of multiple edges. This process of contracting the
minimum-weight incident edge for each vertex in the graph is called a Boruvka
phase. A good implementation of a Boruvka phase is the following: mark
the edges to be contracted; determine the connected components formed by
the marked edges; replace each connected component by a single vertex; and,
finally, eliminate the self-loops and multiple edges created by these contractions.

Exercise 10.11: Given a graph G with n vertices and m edges, show that a Borlvka
phase can be implemented in time O(n + m).

Exercise 10.12: Show that the set of edges marked for contraction during a Boruvka
phase induces a forest in G.

We claim that the graph G’ obtained from the Boruvka phase has at most
n/2 vertices. This is because each contracted edge can be the minimum incident
edge on at most two vertices. The number of marked edges is thus at least n/2.
Since each vertex chooses exactly one edge to mark, it is easy to verify that each
marked edge must eliminate a distinct vertex. The number of edges in G’ is no
more than m since no new edges are created during this process.

Let us now examine the benefit of performing a Boruvka phase. By Exer-
cise 10.10, each of the contracted edges must belong to the MST of G. In fact,
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the forest induced by the edges marked for contraction is a subgraph of the
MST.

Exercise 10.13: Let G’ be the graph obtained from G after a Boruvka phase. Show
that the MST of G is the union of the edges marked for contraction during this phase
with the edges in the MST of G'.

Boruvka’s algorithm thus reduces the MST problem in an n-vertex graph
with m edges to the MST problem in an (n/2)-vertex graph with at most m
edges. The time required for the reduction is only O(m + n). It follows that the
worst-case running time of this algorithm is O(mlog n).

10.3.2. Heavy Edges and MST Verification

Before describing how randomization can be used to speed up Boruvka’s algo-
rithm, we develop a technical lemma on random sampling of edges from the
graph G.

Fix a forest F in G and consider any pair of vertices u, v € V. If they lie
in the same connected component (i.e., tree) of F, there exists a unique path
P(u,v) between them in the graph F. Let wr(u,v) denote the maximum weight
of an edge on the path P(u,v) if it exists, and set wr(u,v) = 00 when u and v are
disconnected in F. The value wg(u,v) should not be confused with the weight
w(u,v) of the edge (u,v) in G, if indeed such an edge exists.

» Definition 10.2: An edge (u,v) € E is said to be F-heavy if w(u,v) > wr(u,v).
The edge (u,v) is said to be F-light if w(u,v) < wr(u,v).

Note that all edges in F must be F-light. An edge (u,v) is F-heavy if the forest
F contains a path from u to v using only edges of weight smaller than that of
(u,v) itself. The following exercise illustrates the importance of this notion. The
crucial point is that the choice of the forest F is irrelevant to the result in this
exercise.

Exercise 10.14: Let F be any forest in the graph G. Show that if an edge (u,v) is
F-heavy, then it does not lie in the MST for G. Verify that the converse is not true.

An edge “improves” a forest if adding it to the forest either reduces the
number of trees in that forest, or removing the edge of largest weight in the
unique cycle created by its addition leads to a forest of weight no larger than
F. An F-light edge can be used to improve the forest F, while an F-heavy
edge cannot. It is possible to design a greedy algorithm (essentially, Kruskal’s
algorithm) that starts with an empty forest F and, considering the edges of G
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in order of increasing weight, checks whether each successive edge is F-light, in
which case the edge is used to improve the current forest.

A verification algorithm for the MST can be viewed as taking as input a
tree T in a graph G, and checking that the only T-light edges are the edges
in T itself. It should be clear that this is equivalent to verifying that T is
an MST. Such verification algorithms are easily adapted to verifying minimum
spanning forests. In fact, there exist linear-time verification algorithms that can
be adapted to go a step further and identify all F-heavy and F-light edges with
respect to any forest F. We omit the details of these algorithms and instead only
summarize their performance in the following theorem.

Theorem 10.18: Given a graph G and a forest F, all F-heavy edges in G can be
identified in time O(n + m).

10.3.3. Random Sampling for MSTs

The only use of randomization in the MST algorithm to be presented shortly
is in the use of random sampling to identify and eliminate edges that are
guaranteed not to belong to the MST. Consider a (random) graph G(p) obtained
by independently including each edge of G in G(p) with probability p. The graph
G(p) has n vertices and expected number of edges mp. There is no guarantee
that G(p) will be connected.

Let F be the minimum spanning forest for G(p). For reasonably large values
of p, the forest F should be a good approximation to the MST for G. More
precisely, we expect very few edges in G to be F-light. This intuition is made
concrete in the lemma presented below.

We first review some elementary probability theory. Recall that a random
variable X has the negative binomial distribution with parameters n and p if it
corresponds to the number of independent trials required for n successes when
each trial has a probability of success p (see Appendix C); further, the expectation
of X is given by n/p. A random variable X stochastically dominates another
random variable Y if, for all z € R, Pr[X > z] > Pr[Y > z]. Proposition C.7
states that if X stochastically dominates Y, then E[X] > E[Y].

Exercise 10.15: Let X have the negative binomial distribution with parameters n,
and p, and Y have the negative binomial distribution with parameters n, and p. For
n, = n;, show that X stochastically dominates Y.

Lemma 10.19: Let F be the minimum spanning forest in the random graph G(p)
obtained by independently including each edge of G with probability p. Then the
number of F-light edges in G is stochastically dominated by a random variable X
that has the negative binomial distribution with parameters n and p. In particular,
the expected number of F-light edges in G is at most n/p.
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PROOF: Let ey, ..., e, be the edges of G arranged in order of increasing weight.
Suppose that we construct G(p) by traversing the list of edges in this order,
flipping a coin with probability of HEADS equal to p for each edge in turn, and
including an edge e; in G(p) if the ith coin flip turns up HEADS. (This is an
application of the Principle of Deferred Decisions from Section 3.5.)

The minimum spanning forest F for G(p) can be constructed online during
this process. Initially F is empty. At step i, after we flip the coin for the edge
e; = (u,v), if ¢; is chosen for G(p), we consider e; for inclusion in F. The edge
is added to F if and only if the two end-points u and v belong to different
connected components of F. Recall that e¢; = (u,v) is F-light if and only if F
does not contain a path from u to v consisting entirely of edges of smaller weight
than e¢;; given the order of examination of the edges, an edge is F-light when
examined if and only if its end-points lie in different connected components.

The crucial observations are:

o the F-lightness of e; depends only on the outcome of the coin flips for the
edges preceding it in the ordering;

e edges are never removed from F during this process;

e and the edge e; is F-light at the end if and only if it is F-light at the start of
step i.

Define phase k as starting after the forest F has k — 1 edges and continuing
until it has k edges. Every edge that is F-light during this phase has probability
p of being included in G(p), and hence of being added to F. The phase ends
exactly when an F-light edge is added to G(p) for the first time during the phase.
It follows that the number of F-light edges considered during this phase has the
geometric distribution with parameter p (see Appendix C). The F-heavy edges
processed during this phase are entirely irrelevant.

Suppose the forest F grows in size from 0 to s. It follows that the total number
of F-light edges processed till the end of phase s is distributed as the sum of
s independent geometrically distributed random variables, each with parameter
p. To account for the F-light edges processed after that but not chosen for
G(p), we continue flipping coins (for dummy edges) until a total of n HEADS
have appeared. The total number of coin flips is a random variable which has
the negative binomial distribution with parameters n and p (see Appendix C).
Since s is at most n — 1, it follows that the total number of F-light edges
is stochastically dominated by the random variable which represents the total
number of coin flips. The expected number of F-light edges is bounded from
above by the expectation of this random variable, which is n/p. O

10.3.4. The Linear-Time MST Algorithm

The randomized linear time MST algorithm interleaves Boruvka phases that
reduce the number of vertices with random sampling phases that reduce the
number of edges. After a random sampling phase, the minimum spanning
forest F of the sampled edges is computed using recursion, and the verification
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algorithm is used to eliminate all but the F-light edges. Then, the MST with
respect to the residual (F-light) edges is computed using another recursive
invocation of the algorithm. This is summarized in Algorithm MST.

Although we refer to this algorithm as MST, it actually computes a minimum
spanning forest and does not require that the input graph be connected.

Algorithm MST:

Input: Weighted, undirected graph G with n vertices and m edges.

Output: Minimum spanning forest F for G.

1. Using three applications of Borivka phases interleaved with simplification of
the contracted graphs, compute a graph G, with at most n/8 vertices and let

C be the set of edges contracted during the three phases. if G is empty then
exit and return F =C,

2, Let G2 = Gi(p) be a randomly sampled subgraph of G, where p = 1/2.

3. Recursively applying Algorithm MST, compute the minimum spanning forest
F;, of the graph G..

4. Using a linear-time verification algorithm, identify the F,-heavy edges in G,
and delete them to obtain a graph G;.

5. Recursively applying Algorithm MST, compute the minimum spanning forest
F; for the graph G;.

6. return forest F =C UF;.

We now prove that this algorithm has linear expected running time. In
Problem 10.21 the reader is asked to show that it has the same worst-case
running time as Borivka’s algorithm.

Theorem 10.20: The expected running time of Algorithm MST is O(n + m).

PROOF: Let T(n,m) be the expected running time of Algorithm MST on graphs
with n vertices and m edges. Consider the cost of the various steps in this
algorithm for such input graphs.

Step 1 uses three applications of Boruvka’s algorithm, which runs in O(n + m)
time, and produces a graph G; with at most n/8 vertices and m edges. Step
2 performs a random sampling to produce the graph G, = G;(1/2) with n/8
vertices and an expected number of edges equal to m/2, and this also runs in
O(n + m) time. Finding the minimum spanning forest of G, has expected cost
T(n/8,m/2), by induction and linearity of expectation. The verification in Step
4 runs in time O(n +m) and produces a graph G; with at most n/8 vertices
and an expected number of edges at most n/4, by Lemma 10.19. Finding the
minimum spanning forest of G; in Step 5 has expected cost T(n/8,n/4). Finally,
O(n) time suffices for Step 6.
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Putting all this together, we obtain that
T(n,m) < T(n/8,m/2) + T(n/8,n/4) + c(n +m),

for some constant c. A solution to this recurrence is given by 2c(n+m), implying
that the expected running time of the MST algorithm is O(n + m). O

Notes

The various algorithms for all-pairs shortest paths mentioned above (Dijkstra [125],
Floyd-Warshall [150, 413], and Johnson [215]) are discussed in detail in the books by
Aho, Hopcroft, and Ullman [5], Cormen, Leiserson, and Rivest [114], and Tarjan [391].
The issue of matrix multiplication over closed semirings or rings, and the applications to
shortest path problems, is discussed in the book by Aho, Hopcroft, and Ullman [5] (see
also Pan [322]). The best known algorithm for (unweighted) all-pairs shortest paths that
does not resort to matrix multiplication is due to Feder and Motwani [140] and this runs
in time O(n®/ logn); it runs in O(nm) time for sparse graphs. The matrix multiplication
algorithm running in time O (n*3"®) is due to Coppersmith and Winograd [113]. The
idea of using integer matrix multiplication for solving the all-pairs distances problem,
using integer entries of super-logarithmic length, has been explored by Romani [359]
and Yuval [421].

The results on the all-pairs shortest paths problem described here originated in the
work of ‘Alon, Galil, and Margalit [21]. They show how to solve the APD problem in
O(MM(n) log n) time for undirected graphs, and in O (\/MM(n)n3 log? n) time for directed
graphs. These results generalize to integer edge weights of absolute value bounded
by L while increasing the number of vertices by a factor of L with a concomitant
increase in the running time. The randomized algorithm described here is an adaptation
of an algorithm due to Seidel [370]; similar algorithms have been designed by Alon,
Galil, Margalit, and Naor [22], and Karger (see [370]). Alon, Galil, Margalit, and
Naor [22] have also derandomized the BPWM algorithm at the cost of an increase by
polylogarithmic factors in the running time.

» Research Problem 10.1: Devise an algorithm for the all-pairs shortest paths
problem that does not use matrix multiplication and runs in time O(n*~) for a
positive constant e.

» Research Problem 10.2: Devise an algorithm for computing the diameter of
an unweighted graph that does not use matrix multiplication and runs in time
O(n*~) for a positive constant e.

The early algorithms for finding min-cuts (or s-t min-cuts) relied on the duality to
maximum flows in networks. The flow-cut duality was first observed by Elias, Feinstein,
and Shannon [136], and Ford and Fulkerson [152, 223]. The observation that min-cuts
could be computed by performing n — 1 maximum flow computations is due to Gomory
and Hu [180]. It was shown that in the unweighted case the cost of the flow computations
could be reduced to just O(nm) by Podderyugin [334], Karzanov and Timofeev [252],
and Matula [299]. Later, Hao and Orlin [192] obtained essentially the same bounds
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for the weighted case by showing that a min-cut could be computed in roughly the
same time as a max-flow. Currently, the faster maximum flow algorithms all derive
from the push-relabel algorithm of Goldberg and Tarjan [171]; their time bound of
O(nmlog(n?/m)) has been improved slightly by King, Rao, and Tarjan [256], and by
Phillips and Westbrook [332].

The contraction algorithm is based on a deterministic algorithm for min-cuts with
running time O(mn + n? logn) due to Nagamochi and Ibaraki [318). Algorithm Contract
is due to Karger [231], and Algorithm FastCut is due to Karger and Stein [234]. The last
two papers also gave fast parallel implementations of the randomized contraction-based
algorithm, and Karger and Motwani [233] derandomized a variant of these algorithms
to obtain a fast deterministic parallel algorithm for min-cuts (see also the Notes section
of Chapter 12).

> Research Problem 10.3: Devise a Las Vegas or a deterministic algorithm for
min-cuts with running time close to O(n?).

> Research Problem 10.4: Is there a randomized algorithm for min-cuts with
expected running time close to O(m)?

An excellent treatment of network optimization problems, including minimum span-
ning trees, can be found in the books by Ahuja, Magnanti and Orlin [7] and by
Tarjan [391]. The reader may refer to the survey article by Graham and Hell [181] for
a history of developments concerning the minimum spanning tree problem up to 1985.
Boruvka’s algorithm [80] is perhaps the earliest complete description of an MST algo-
rithm. The other classical algorithms are due to Kruskal [270] and Prim [337].(see also
Dijkstra [125]). The current best deterministic algorithm, requiring O(mlog f(m, n)) time,
is due to Gabow, Galil, and Spencer [160, 159]. Deterministic linear-time algorithms are
known for more powerful models of computation that permit bit-manipulation of the
representation of the edge weights (see Fredman and Willard [154]).

Tarjan [390] gave an efficient algorithm for MST verification that has running time
O(mx(m, n)), where a(m,n) is the inverse Ackerman function. The first linear-time ver-
ification algorithm is due to Komlos [268] — this performs only O(m) edge weight
comparisons, but requires super-linear time to choose the comparisons. The first com-
pletely linear-time verification algorithm is due to Dixon, Rauch, and Tarjan [127], but
this algorithm is complex and combines ideas from the previous verification algorithm
with a table look-up strategy. A substantially simpler linear-time algorithm, based on
the work of Komlo6s [268], has been devised by King [255]. The latter two algorithms
have the desired features of being able to identify all F-heavy edges, as discussed above.

The randomized linear-time MST algorithm is based on an approach due to
Karger [229]; Karger originally proved only a super-linear running time bound for
this algorithm, and the linear-time analysis is based on the work of Klein and Tar-
jan [257]. A complete description of this algorithm and its analysis can be found in the
article by Karger, Klein, and Tarjan [232].

» Research Problem 10.5: Devise a simple randomized MST verification algorithm
with expected running time O(n + m).
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» Research Problem 10.6: Is there a deterministic MST algorithm with running
time O(n +m)?

Problems

101

10.2
103
104
10.5
10.6

10.7

10.8

10.9

10.10

10.11

10.12

Suppose that the time required for Boolean matrix multiplication is BM(n).
Show that the closure of a Boolean matrix can be computed in time O(BM(n)).

Prove Lemma 10.1.
Prove Lemma 10.2.
Prove Lemma 10.3
Prove Lemma 10.5.

Modify the BPWM algorithm so as to obtain a high probability bound on its
running time.

Show that the product of A" and B* can be computed in time O((n/r)2MM(r))
by omitting the columns of 4% and the rows of B® corresponding to the
indices not present in R, and then multiplying these n x r and r x n matrices

jn blocks of r x r matrices.

Suppose that MM(n) = Q(n?*€) for some € > 0. Show that it is possible to
implement Algorithm BPWM such that its expected running time becomes
O(MM(n) logn). Why does this not work for MM(n) = O(n?)? (Hint: Use the
idea suggested in Problem 10.7.)

Let G(V,.E) be a muiltigraph. Devise a data structure that processes any
arbitrary sequence of edge contractions in G, such that at any given point
where the set of edges contracted is F, the graph G/F is available in
the adjacency matrix format. Furthermore, it should possible to efficiently
determine for any edge in E/F the corresponding edge in £E. Your data
structure should require O(n) time per contraction and use a polynomial
amount of space. Can you modify this to provide the adjacency list format

, for G/F using only O(m) space?

Remark: Note that the time bound is independent of the number of edges.
For this, the multigraph needs to be represented as a graph with integer
edge weights that represent the multiplicities of the edges. You may assume
that the number of edges in the multigraph is polynomial in n, although this
is not strictly necessary.

Given a multigraph G(V. E), show that an edge can be selected uniformly at
random from E in time O(n), given access to a source of random bits. (See
the remark in Problem 10.9.)

Combining the solutions to Problems 10.9 and 10.10, prove Theorem 10.10.
What is the space requirement for this implementation?

Prove Lemma 10.15.
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10.13

10.14

10.15

10.16

1017

10.18

PROBLEMS

(Due to D.R. Karger [231].) For any a > 1, define an a-approximate cut in a
multigraph G as any cut whose cardinality is within a multiplicative factor a
of the cardinality of a min-cut in G. Determine the probability that a single
iteration of the randomized algorithm for min-cuts will produce as output
some a-approximate cut in G.

(Due to D.R. Karger [231].)

(a) Using the analysis of the randomized min-cut algorithm, show that the
number of distinct min-cuts in a multigraph G cannot exceed n(n — 1)/2,
where n is the number of vertices in G.

(b) Formulate and prove a similar result for the number of a-approximate
cuts in a multigraph G (see Problem 10.16).

Consider the min-cut problem in weighted graphs. Describe how you would
generalize Algorithm Contract to this case. What is the running time and
space requirement for your implementation?

Suppose that the edges of a graph are presented in an arbitrary order, and
the number of edges m is not known in advance. Using the idea for a greedy
algorithm described in Section 10.3.2, devise an online MST algorithm that
runs in time O(mlogn).

Show that Borlvka's algorithm can be implemented to run in time
O(min{mlogn, n?}).

Show that the Algorithm MST has the same worst-case running time as
Borlvka 's algorithm, i.e., O(min{mlogn. n?}).
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CHAPTER 11

Approximate Counting

IN this chapter we apply randomization to hard counting problems. After
defining the class #P, we present several #P-complete problems. We present
a (randomized) polynomial time approximation scheme for the problem of
counting the number of satisfying truth assignments for a DNF formula. The
problem of approximate counting of perfect matchings in a bipartite graph is
shown to be reducible to that of the uniform generation of perfect matchings.
We describe a solution to the latter problem using the rapid mixing property of
a suitably defined random walk, provided the input graph is sufficiently dense.
We conclude with an overview of the estimation of the volume of a convex
body.

We say that a decision problem II is in NP if for any YEs-instance I of I,
there exists a proof that I is a YES-instance that can be verified in polynomial
time. Equivalently, we can cast the decision problem as a language recognition
problem, where the language consists of suitable encodings of all YEs-instances
of I1. A proof now certifies the membership in the language of an encoded
instance of the problem. Usually the proof of membership corresponds to a
“solution” to the search version of the decision problem IT: for instance, if IT
were the problem of deciding whether a given graph is Hamiltonian, a possible
proof of this for a Hamiltonian graph (YEs-instance) would be a Hamiltonian
cycle in the graph. In the counting version of this problem, we wish to compute
the number of proofs that an instance I is a YES-instance. Thus we would be
interested in how many Hamiltonian cycles, if any, the input graph contains. In
Section 7.7.2 we encountered a counting version of the 3-SAT problem.

An algorithm for a counting problem takes as input an instance I of the
decision problem II, and produces as output a non-negative integer that is the
number of solutions (or proofs) for the instance I. If IT is in NP, then the
maximum possible number of solutions is O(exp(p(n))), where n is the size of
the input and p(n) is a polynomial. Thus the output of the counting algorithm
is of length polynomial in the input size. A closely related class of problems is
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that of listing the solutions rather than merely counting them. Our focus will be
on the counting problems associated with NP decision problems.

While counting problems are of interest for various purely theoretical reasons,
they also arise naturally in a range of applications. One application of such
counting problems stems from the study of network reliability problems: we
are given an undirected graph, together with a probability of failure p, for
each edge e. We are interested in questions such as the following: what is the
probability that the graph remains connected if each edge e fails independently
with probability p.? This provides the motivation behind the first problem we
will study — the problem of counting the number of satisfying truth assignments
for a Boolean formula in the disjunctive normal form (DNF) formula. A second
application comes from statistical physics, and this motivates the second problem
we study - counting the number of perfect matchings in a bipartite graph.

Clearly, a counting problem is at least as hard as the corresponding decision
problem. Thus the counting problem associated with an NP-complete decision
problem is NP-hard. What about the counting problem associated with.decision
problems in P? Consider for example the decision problem of verifying the
connectivity of an input graph. This problem can be solved in polynomial time.
A proof of connectivity corresponds to a spanning tree in the input graph.
The associated counting problem can also be solved in polynomial time: by a
classical result, the number of spanning trees in a graph equals the determinant
of a matrix derived from the adjacency matrix of the graph. On the other hand,
while the problem of deciding whether a graph has a perfect matching is in P,
the associated counting problem is not believed to be in P. Interestingly, the
number of perfect matchings in a bipartite graph equals the permanént of the
matrix of adjacencies between the vertices on the two sides of the graph. While
the determinant is easy to compute, computing the closely related permanent
function is extremely difficult. There are other decision problems in P whose
associated counting problems are not known to have polynomial time algorithms.

The class of counting problems associated with NP decision problems is
denoted by #P. Intuitively, the class #P consists of all counting problems
associated with the decision problems in NP. Formally, a problem II belongs to
#P if there is a non-deterministic polynomial time Turing machine that, for any
instance I, has a number of accepting computations that is exactly equal to the
number of distinct solutions to instance I. We say that I is #P-complete if for
any problem IT in #P, IT" can be reduced to IT by a polynomial time Turing
machine.

While there are “easy” problems in #P such as counting spanning trees
(where polynomial time algorithms are known), a large number of such counting
problems appear to be intractable. Quite clearly, a #P-complete problem can be
solved in polynomial time only if P = NP, implying that it is quite unlikely that
we can efficiently solve such problems. In the face of this apparent intractability,
it is natural to ask whether instead we can compute approximate solutions to
such counting problems. Unfortunately, we do not know of a good deterministic
approximation algorithms for any #P-complete problem. However, the situation
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changes appreciably if we permit ourselves the use of randomization in the
approximation algorithm. The rest of this chapter is devoted to presenting such
algorithms.

11.1. Randomized Approximation Schemes

We start by introducing the notion of an approximation scheme. Consider a
problem IT, and let #(I) denote the number of distinct solutions for an instance
I of I1. For example, when II is the problem of testing for Hamiltonian cycles,
for an input graph I we denote by #(I) the number of such cycles in the graph.
An approximation algorithm .4 takes as input I and outputs an integer A(I),
which is purported to be close to #(I).

» Definition 11.1: A polynomial approximation scheme (PAS) for a counting prob-
lem IT is a deterministic algorithm .4 that takes an input instance I and a real
number € > 0, and in time polynomial in n = |I| produces an output 4(I) such
that

(1 —e)# () < AU) < (1 + e)#().

A full); polynomial approximation scheme (FPAS) is a polynomial approximation
scheme whose running time is polynomially bounded in both n and 1/e.

The output A(I) is called an e-approximation to #(I). Suppose that € < 1.
The length of the description of € only adds a factor of ®(log 1/¢) to the size of
the input, yet we allow the approximation algorithm .A to run in time polynomial
in 1/e.

Exercise 11.1: Show that if we were to modify the definition of an approximation
scheme to read “polynomial in n and log 1/¢€,” the existence of such an approximation
scheme for a #P-complete problem would imply that P = #P.

Since only a multiplicative error is permitted in an e-approximation, it can
be used to distinguish between the case #(I) = 0 and the case #(I) > 0, thereby
implying a polynomial time algorithm for the decision version of the problem.
Thus, such schemes can only be devised for counting problems whose decision
versions are in P. Unless P = NP, it would be necessary to relax this definition
(possibly by permitting some additive error also) to enable its applicability to
counting versions of NP-complete problems.

No deterministic approximation schemes are known for #P-complete prob-
lems. However, randomized versions of such approximation schemes are known,
and so we make the following definition.
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111 RANDOMIZED APPROXIMATION SCHEMES

» Definition 11.2: A polynomial randomized approximation scheme (PRAS) for a
counting problem IT is a randomized algorithm .4 that takes an input instance I
and a real number € > 0, and in time polynomial in n = |I| produces an output
A(I) such that

Pri(1 — (1) < AU) < (1 + D] = 3.

A fully polynomial randomized approximation scheme (FPRAS) is a polynomial
randomized approximation scheme whose running time is polynomially bounded
in both n and 1/e.

The probability is taken over the random choices of the algorithm. Notice that
when #(I) is not in the range [A(I (1 —¢), A(I)(1 +€)], an event that occurs with
probability at most 1/4, we assume nothing about how far A(I) is from #(I).
By an argument similar to that required in Exercise 11.1, modifying the running
time requirement to “polynomial in n and log 1/€” would preclude a randomized
approximation scheme for a #P-complete problem unless BPP = #P.

Exercise 11.2: The quantity 3/4 for the success probability in the definition of a
randomized approximation scheme is somewhat arbitrary; in fact, we could replace
it by practically any value that exceeds 1/2 by a constant. Devise a “bootstrapping
scheme” which, given any & € (0, 1], invokes a randomized approximation scheme
N times and outputs an integer B(/} such that #(/) € [B(/)(1 — €), B(/)(1 + €)] with
probability at least 1 — 4, where N is polynomial in log1/d. (Hint: Consider the
median of the results of independent repetitions.) .

A randomized approximation scheme can be used to distinguish between the
case #(I) = 0 and the case #(I) > O, thereby implying a randomized polynomial
time algorithm for the decision version of the problem. Thus, such schemes
can only be devised for counting problems whose decision versions are in BPP.
Since it is unlikely that NP is contained in BPP, we do not expect to find such
schemes for counting versions of NP-complete problems.

» Definition 11.3: An (¢,5)-FPRASfor a counting problem IT is a fully polynomial
randomized approximation scheme that takes an input instance I and computes
an e-approximation to #(J) with probability at least 1 — é in time polynomial in
n, 1/¢, and log1/4.

Approximate counting is an area in which randomization makes a dramatic
difference in our ability to (approximately) solve problems. Indeed, there are
problems (such as the volume estimation problem in Section 11.4) for which
randomization results in efficient algorithms where no efficient deterministic
algorithm is possible. In the sequel, we describe such schemes for some counting
problems that are #P-complete. Observe that such approximation schemes are
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Monte Carlo. (Why is it difficult to convert this into a Las Vegas approximation
scheme?)

11.2. The DNF Counting Problem

Let F(X},...,X,) be a Boolean formula in disjunctive normal form (DNF) over
the n Boolean variables X|,..., X,. In other words, F is a disjunction C;V---VC,,
of clauses C;, where each clause C; is a conjunction L; A --- A L,, of r; literals.
Each literal L; is either a variable X; or its negation X:. We may assume that
each variable occurs at most once in any given clause.

The variables are to be assigned values in {0, 1}, where 0 corresponds to FALSE
and 1 corresponds to TRUE. A truth assignment @ = (ay,...,a,) is an assignment
of value g; to the variable X; for each i. A truth assignment a is said to satisfy F
if F(ay,...,a,) evaluates to 1 or TRUE. We denote by #F the number of distinct
satisfying assignments of a given formula F. Clearly, 0 < #F < 2".

The DNF counting problem is to compute the value of #F. This problem is
known to be #P-complete and hence it is unlikely to have an exact polynomial
time algorithm. We describe an (€,5)-FPRAS for this problem. The input size is
at most nm. We desire that the approximation scheme have a running time that
is polynomial in n, m, 1/¢, and log 1/4.

11.2.1. An Unsuccessful Attempt

To understand the difficulty of finding an (e, 5)-FPRAS for the DNF counting
problem, we formulate a more abstract problem.

Let U be a finite set of known size, and let f : U — {0,1} be a Boolean
function over U. We define the set G = {u € U | f(u) = 1} as the pre-image
of 1. Assume that given a particular u € U, f(u) can be computed quickly.
Assume also that it is possible to sample uniformly at random from U. In our
abstraction, both of these operations can be assumed to take unit time. The
problem is to estimate the size of G.

This formulation includes the DNF counting problem as a special case. Let
U = {0,1}" be the set of all 2" truth assignments, and define f(a) = F(a) for
each a € U. Now, the set G consists of all satisfying truth assignments for F. It
is easy to verify that we can compute f and sample from U in polynomial time.

An obvious randomized approach to estimating |G| is to use the classical
Monte Carlo method. This involves choosing N independent samples from
U, say uy, ..., uy, and using the value of f on these samples to estimate the
probability that a random choice will lie in G. More formally, define the random
variables Y, ..., Yy as follows:

Y.-={ 1 if fu) =1

0 otherwise.
By this definition, Y; = 1 if and only if u; € G. Finally, define the estimator
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random variable

Ny,
Z=\U —.
VI ¥
It is easy to verify that E[Z] = |G| and we might hope that with high probability
the value of Z is an e-approximation to |G|. Of course, the probability that the
approximation is good depends upon the choice of N. The following theorem
relates the value of N to € and 6.

Theorem 11.1 (Estimator Theorem): Let p = |G|/|U|. Then the Monte Carlo
method yields an e-approximation to |G| with probability at least 1 — § provided

4 2
> ——In=.
N_Ezpln(s

PROOF: Fix some € € (0,1] and é € (0,1]. Notice that the random variables
Y; have the Bernoulli distribution with parameter p. Define Y = YN, Y;
and observe that this has the binomial distribution with parameters N and p.
Moreover, the estimator Z = |U|Y /N. By a straightforward application of the

Chernoff bound (see Theorems 4.2 and 4.3), we obtain that
Pr((1-¢)IGl < Z < (1+¢)|G|]
Pri(l1—e)Np <Y < (1+¢€)Np]

> 1—F*(Np,e) — F~(Np,e) > 1 — 2e~Noe/4,

It is easy to see that for the given lower bound on N, the latter expression is
bounded by 1 — 6. O

At this point it may appear that we have the desired approximation scheme.
But there is a flaw in this approach - it has a running time of at least N, where
N = 1/p. First of all, we do not know the value of p; in fact, the problem
is exactly that of estimating p. However, this problem could be circumvented
by using a successively refined lower bound on p to determine the number of
samples to be chosen. A more disturbing problem is that the running time is
inversely proportional to p, and at least for the DNF counting problem this
could be exponentially large. (Consider for example the case where F only has
a polynomial number of satisfying truth assignments.) The following exercise
shows that if we were to relax the requirement of obtaining an e-approximation
relative to the size of G, and instead required only that the approximation have
a small error with respect to |U|, then the sampling technique is indeed efficient.

Exercise 11.3: Devise a randomized approximation scheme for the DNF counting
problem that computes an estimator Z such that

Pr['-cﬂ—z

ol Ul
The running time should be polynomial in n, m, 1/€, and log1/é.

Ze] <4.
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This problem is fundamental to this approach and not an artifact of the
analysis, since the Chernoff bound gives a fairly tight estimate of the tail
probability of a binomial distribution. Fortunately, there is a standard statistical
technique called importance sampling for dealing with the following problem: if
we sample uniformly from a large population to estimate the size of a small
subset of the population, it is necessary that the number of samples be extremely
large to ensure that the estimator is a good relative approximation. The idea is
to modify the process from a uniform sampling of the population to a skewed
sampling that concentrates the probability on the sub-population of interest (the
area of “importance”). We now apply this idea to our problem.

11.2.2. The Coverage Algorithm

We want to reduce the size of the sample space so as to ensure that the ratio p
is relatively large, while ensuring that the set G is still completely represented.
We start by formulating a slightly different abstract problem — the union of sets
problem. This formulation captures the essential structure of the DNF counting
problem, and has applications to several other problems in reliability.

Let V be a finite universe. We are given m subsets H,, ..., H,,  V such that
the following assumptions are valid.

1. For all i, |H;| is computable in polynomial time.
2. It is possible to sample uniformly at random from any H;.

3. For all v € V, it can be determined in polynomial time whether v € H;.

The goal is to estimate the size of the union H = Hy U - - U H,,. The brute-force
approach to computing |H| is inefficient when the universe V and the sets H; are
of large cardinality. The inclusion—exclusion formula (Proposition C.1) is also
extremely inefficient for large m, since it requires computing roughly 2™ terms.
However, the assumptions 1-3 turn