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Preface 

THE last decade has witnessed a tremendous growth in the area of randomized 
algorithms. During this period, randomized algorithms went from being a tool in 
computational number theory to finding widespread application in many types 
of algorithms. Two benefits of randomization have spearheaded this growth: 
simplicity and speed. For many applications, a randomized algorithm is the 
simplest algorithm available, or the fastest, or both. 

This book presents the basic concepts in the design and analysis of randomized 
algorithms at a level accessible to advanced undergraduates and to graduate 
students. We expect it will also prove to be a reference to professionals wishing 
to implement such algorithms and to researchers seeking to establish new results 
in the area. 

Organization and Course Information 

We assume that the reader has had undergraduate courses in Algorithms and 
Complexity, and in Probability Theory. The book is organized into two parts. 
The first part, consisting of seven chapters, presents basic tools from probability 
theory and probabilistic analysis that are recurrent in algorithmic applications. 
Applications are given along with each tool to illustrate the tool in concrete 
settings. The second part of the book also contains seven chapters, each 
focusing on one area of application of randomized algorithms. The seven 
areas of application we have selected are: data structures, graph algorithms, 
geometric algorithms, number theoretic algorithms, counting algorithms, parallel 
and distributed algorithms, and online algorithms. Naturally, some of the 
algorithms used for illustration in Part I do fall into one of these seven categories. 
The book is not meant to be a compendium of every randomized algorithm 
that has been devised, but rather a comprehensive and representative selection. 
The Appendices review basic material on probability theory and the analysis 
of algorithms. 
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PREFACE 

We have taught several regular as well as short-term courses based on the 
material in this book, as have some of our colleagues. It is virtually impossible 
to cover all the material in the book in a single academic term or in a week's 
intensive course. We regard Chapters 1-4 as the core around which a course may 
be built. Following the treatment of this material, the instructor may continue 
with that portion of the remainder of Part I that supports the material of Part II 
(s)he wishes to cover. Chapters 5-13 depend only on material in Chapters 1-4, 
with the following exceptions: 

1. Chapter 5 on Probabilistic Methods is a prerequisite for Chapters 6 (Random 
Walks) and 11 (Approximate Counting). 

2. Chapter 6 on Random Walks is a prerequisite for Chapter 11 (Approximate 
Counting). 

3. Chapter 7 on Algebraic Techniques is a prerequisite for Chapters 14 (Number 
Theory and Algebra) and 12 (Parallel and Distributed Algorithms). 

We have included three types of problems in the book. Exercises occur 
throughout the text, and are designed to deepen the reader's understanding of 
the material being covered in the text. Usually, an exercise will be a variant, 
extension, or detail of an algorithm or proof being studied. Problems appear 
at the end of each chapter and are meant to be more difficult and involved 
than the- Exercises in the text. In addition, Research Problems are listed in the 
Discussion section at the end of each chapter. These are problems that were 
open at the time we wrote the book; we offer them as suggestions for students 
(and of course professional researchers) to work on. 

Based on our experience with teaching this material, we recommend that the 
instructor use one of the following course organizations: 

• A comprehensive basic course: In addition to Chapters 1-4, this course would 
cover the material in Chapters 5, 6, and 7 (thUS spanning all of Part 1). 

• A course oriented toward algebra and number theory; Following Chapters 1-4, 
this course would cover Chapters 7, 14, and 12. 

• A course oriented toward graphs, data struc:!tures, and geometry: Following 
Chapters 1-4, this course would cover Chapters 8, 9, and 10. 

• A course oriented toward random walks and counting algorithms: Following 
Chapters 1-4, this course would cover Chapters 5, 6, and 11. 

Each of these courses may be pruned and given in abridged form as an intensive 
course spanning 3-5 days. 

Paradigms for Randomized Algorithms 

A handful of general principles lies at the heart of almost all randomized 
algorithms, despite the multitude of areas in which they find application. We 
briefly survey these here, with pointers to chapters in which examples of these 
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PREFACE 

principles may be found. The following summary draws heavily from ideas in 
the survey paper by Karp [243]. 

Foiling an adversary. The classical adversary argument for a deterministic 
algorithm establishes a lower bound on the running time of the algorithm by 
constructing an input on which the algorithm fares poorly. The input thus 
constructed may be different for each deterministic algorithm. A randomized 
algorithm can be viewed as a probability distribution on a set of deterministic 
algorithms. While the adversary may be able to construct an input that foils 
one (or a small fraction) of the deterministic algorithms in the set, it is difficult 
to devise a single input that is likely to defeat a randomly chosen algorithm. 
While this paradigm underlies the success of any randomized algorithm, the 
most direct examples appear in Chapter 2 (in game tree evaluation), Chapter 7 
(in efficient proof verification), and Chapter 13 (in online algorithms). 

Random sampling. The idea that a random sample from a population is 
representative of the population as a whole is a pervasive theme in randomized 
algorithms. Examples of this paradigm arise in almost all the chapters, most 
notably in Chapters 3 (selection algorithms), 8 (data structures), 9 (geometric 
algorithms), 10 (graph algorithms), and 11 (approximate counting). 

Abundance of witnesses. Often, an algorithm is required to determine whether 
an input (say, a number x) has a certain property (for example, "is x prime?"). 
It does so by finding a witness that x has the property. For many problems, 
the difficulty with doing this deterministically is that the witness lies in a search 
space that is too large to be searched exhaustively. However, by establishing 
that the space contains a large number of witnesses, it often suffices to choose 
an element at random from the space. The randomly chosen item is likely to be 
a witness; further, independent repetitions of the process reduce the probability 
that a witness is not found on any of the repetitions. The most striking examples 
of this phenomenon occur in number theory (Chapter 14). 

Fingerprinting and hashing. A long string may be represented by a short 
fingerprint using a random mapping. In some pattern-matching applications, it 
can be shown that two strings are likely to be identical if their fingerprints are 
identical; comparing the short fingerprints is considerably faster than comparing 
the strings themselves (Chapter 7). This is also the idea behind hashing, whereby 
a small set S of elements drawn from a large universe is mapped into a 
smaller universe with a guarantee that distinct elements in S are likely to have 
distinct images. This leads to efficient schemes for deciding membership in 
S (Chapters 7 and 8) and has a variety of further applications in generating 
pseudo-random numbers (for example, two-point sampling in Chapter 3 and 
pairwise independence in Chapter 12) and complexity theory (for instance, 
algebraic identities and efficient proof verification in Chapter 7). 

Random re-ordering. A striking use of randomization in a number of problems 
in data structuring and computational geometry involves randomly re-ordering 
the input data, followed by the application of a relatively naive algorithm. After 
the re-ordering step, the input is unlikely to be in one of the orderings that is 
pathological for the naive algorithm. (Chapters 8 and 9). 
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Load balancing. For problems involving choice between a number of re
sources, such as communication links in a network of processors, randomization 
can be used to "spread" the load evenly among the resources, as demonstrated 
in Chapter 4. This is particularly useful in a parallel or distributed environment 
where resource utilization decisions have to be made locally at a large number 
of sites without reference to the global impact of these decisions. 

Rapidly mixing Markov chains. For a variety of problems involving count
ing the number of combinatorial objects with a given property, we have ap
proximation algorithms based on randomly sampling an appropriately defined 
population. Such sampling is often difficult because it may require computing 
the size of the sample space, which is precisely the problem we would like to 
solve via sampling. In some cases, the sampling can be achieved by defining a 
Markov chain on the elements of the population and showing that a short ran
dom walk using this Markov chain is likely to sample the population uniformly 
(Chapter 11). 

Isolation and symmetry breaking. In parallel computation, when solving a 
problem with many feasible solutions it is important to ensure that the different 
processors are working toward finding the same solution. This requires isolating 
a specific solution out of the space of all feasible solutions without actually 
knowing any single element of the solution space. A clever randomized strategy 
achieves isolation, by implicitly choosing a random ordering on the feasible 
solutions' and then requiring the processors to focus on finding the solution of 
lowest rank. In distributed computation, it is often necessary for a collection of 
processors to break a deadlock and arrive at a consensus. Randomization is a 
powerful tool in such deadlock-avoidance, as shown in Chapter 12. 

Probabilistic methods and existence proofs. It is possible to establish that an 
object with certain properties exists by arguing that a randomly chosen object 
has the properties with positive probability. Such an argument gives no clue 
as to how to find such an object. Sometimes, the method is used to guarantee 
the existence of an algorithm for solving a problem; we thus know that the 

. algorithm exists, but have no idea what it looks like or how to construct it. This 
raises the issue of non-uniformity in algorithms (Chapters 2 and 5). 

Conventions 

Most of the conventions we use are described where they first arise. One worth 
mentioning here is the issue of integer breakage: as long as it does not materially 
affect the algorithm or analysis being considered (and the intent is unambiguous 
from the context), we omit ceilings and floors from numbers that strictly should 
be integers. Thus, we might say "choose In elements from the set of size n" 
even when n is not a perfect square. Our intent is to present the crux of the 
algorithm/analysis without undue notational clutter from ceilings and floors. 
The expression log x denotes log2 x, and the expression In x denotes the natural 
logarithm of x. 
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CHAPT ER 1 

Introduction 

CONSIDER sorting a set S of n numbers into ascending order. If we could .find 
a member y of S such that half the members of S are smaller than y, then we 
could use the following scheme. We partition S \ {y} into two sets SI and S2, 
where SI consists of those elements of S that are smaller than y, and S2 has the 
remaining elements. We recursively sort SI and S2, then output the elements of 
SI in ascending order, followed by y, and then the elements of S2 in ascending 
order. In particular, if we could find y in en steps for some constant c, we could 
partition S \ {y} into SI and S2 in n - 1 additional steps by comparing each 
element of S with y; thus, the total number of steps in our sorting procedure 
would be given by the recurrence 

T(n) S; 2T(nj2) + (c + 1)n, (1.1) 

where T(k) represents the time taken by this method to sort k numbers on the 
worst-case input. This recurrence has the solution T(n) < c'n log n for a constant 
c', as can be verified by direct substitution. 

The difficulty with the above scheme in practice is in finding the element y 
that splits S \ {y} into two sets SI and S2 of the same size. Examining (1.1), we 
notice that the running time of O(n log n) can be obtained even if SI and S2 are 
approximately the same size - say, if y were to split S \ {y} such that neither SI 
nor S2 contained more than 3n/4 elements. This gives us hope, because we know 
that every input S contains at least n/2 candidate splitters y with this property. 
How do we quickly find one? 

One simple answer is to choose an element of S at random. This does not 
always ensure a splitter giving a roughly even split. However, it is reasonable to 
hope that in the recursive algorithm we will be lucky fairly often. The result is 
an algorithm we call RandQS, for Randomized Quicksort. 

Algorithm RandQS is an example of a randomized algorithm - an algorithm 
that makes random choices during execution (in this case, in Step 1). Let us 
assume for the moment that this random choice can be made in unit time; we 

3 



INTRODUCTION 

will say more about this in the Notes section. What can we prove about the 
running time of RandQS? 

Algorithm RalidQS: 

Input: A set of numbers S. 

Output: The elements of S sorted in increasing order. 

1. Choose an element y uniformly at random from S: every element in S has 
equal probability of being chosen. 

2. By comparing each element of S with y, determine the set Sl of elements 
smaller than y and the set S2 of elements larger than y. 

3. Recursively sort Sl and S2. Output the sorted version of Sl, followed by y, 
and then the sorted version of S2. 

As is usual for sorting algorithms, we measure the running time of RandQS 
in terms of the number of comparisons it performs since this is the dominant 
cost in any reasonable implementation. In particular, our goal is to analyze the 
expected number of comparisons in an execution of RandQS. Note that all the 
comparisons are performed in Step 2, in which we compare a randomly chosen 
partitioning element to the remaining elements. For 1 < i < n, let S(i) denote the 
element of rank i (the ith smallest element) in the set S. Thus, S(l) denotes the 
smallest element of S, and S(n) the largest. Define the random variable Xij to 
assume the value 1 if S(i) and S(j) are compared in an execution, and the value 0 
otherwise. Thus, Xij is a count of comparisons between S(i) and S(j), and so the 
total number of comparisons is E7-1 Ej>i Xij' We are interested in the expected 
number of comparisons, which is clearly 

n n 

E[L L Xij] = L L E[Xij]. (1.2) 
i-I j>i i=1 j>i 

This equation uses an important property of expectations called linearity of 
expectation; we will return to this in Section 1.3. 

Let pij denote the probability that S(i) and S(j) are compared in an execution. 
Since Xij only assumes the values 0 and 1, 

E[Xij] = Pij x 1 + (1 - Pij) x 0 = Pij. (1.3) 

To facilitate the determination of Pij, we view the execution of RandQS as a 
binary tree T, each node of which is labeled with a distinct element of S. The 
root of the tree is labeled with the element y chosen in Step 1, the left sub-tree 
of y contains the elements in SI and the right sub-tree of y contains the elements 
in S2. The structures of the two sub-trees are determined recursively by the 
executions of RandQS on SI and S2. The root y is compared to the elements in 
the two sub-trees, but no comparison is performed between an element of the 
left sub-tree and an element of the right sub-tree. Thus, there is a comparison 
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between S(i) and S(j) if and only if one of these elements is an ancestor of the 
other. 

The in-order traversal of T will visit the elements of S in a sorted order, 
and this is precisely what the algorithm outputs; in fact, T is a (random) 
binary search tree (we will encounter this again in Section 8.2). However, for 
the analysis we are interested in the level-order traversal of the nodes. This 
is the permutation 1t obtained by visiting the nodes of T in increasing order 
of the level numbers, and in a left-to-right order within each level; recall that 
the ith level of the tree is the set of all nodes at distance exactly i from the 
root. 

To compute Pij, we make two observations. Both observations are deceptively 
simple, and yet powerful enough to facilitate the analysis of a number of more 
complicated algorithms in later chapters (for example, in Chapters 8 and 9). 

1. There is a comparison between S(i) and S(j) if and only if S(i) or S(j) occurs earlier 
in the permutation 1t than any element S(t) such that i < t < j. To see this, let 
S(k) be the earliest in 1t from among all elements of rank between i and j. If 
k f¢ {i, j}, then S(i) will belong to the left sub-tree of S(k) while S(j) will belong 
to the right sub-tree of S(k), implying that there is no comparison between S(i) 

and S(j). Conversely, when k E {i,j}, there is an ancestor-descendant relationship 
between S(i) and S(j), implying that the two elements are compared by RandQS. 

2. Any of the elements S(i), S(i+l),' •• , S(j) is equally likely to be the first of these 
elements to be chosen as a partitioning element, and hence to appear first in 
1t. Thus, the probability that this first element is either S(i) or S(j) is exactly 
2/(j-i+1). . 

We have thus established that Pij = 2/(j - i + 1). By (1.2) and (1.3), the 
expected number of comparisons is given by 

n 

LLPij 
i=1 j>i 

n 2 

- ~~j-i+1 
1=1 J>I 

n n-i+1 2 
< LLk 

i=1 k=1 

n n 1 

< 2LLk' 
i=1 k=1 

It follows that the expected number of comparisons is bounded above by 2nHn, 
where Hn is the nth Harmonic number, defined by Hn = E~=1 11k. 

Theorem 1.1: The expected number of comparisons in an execution of RandQS is 
at most 2nHn. 

From Proposition B.4 (Appendix B), we have that Hn - Inn + 9(1), so that 
the expected running time of RandQS is O(nlog n). 
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Exercise 1.1: Consider the (random) permutation" of S induced by the level-order 
traversal of the tree T corresponding to an execution of RandQS. Is " uniformly 
distributed over the space of all permutations of the elements S(1)' ... , S(n)? 

It is worth examining carefully what we have just established about RandQS. 
The expected running time holds for every input. It is an expectation that 
depends only on the random choices made by the algorithm, and not on any 
assumptions about the distribution of the input. The behavior of a randomized 
algorithm can vary even on a single input, from one execution to another. The 
running time becomes a random variable, and the running-time analysis involves 
understanding the distribution of this random variable. 

We will prove bounds on the performances of randomized algorithms that rely 
solely on their random choices and not on any assumptions about the inputs. 
It is important to distinguish this from th~ probabilistic analysis of an algorithm, 
in which one assumes a distribution on the inputs and analyzes an algorithm 
that may itself be deterministic. In this book we will generally not deal with 
such probabilistic analysis, except occasionally when illustrating a technique for 
analyzing randomized algorithms. 

Note also that we have proved a bound on the expected running time of the 
algorithm. In many cases (including RandQS, see Problem 4.15), we can prove 
an even stronger statement: that with very high probability the running time of 
the algorithm is not much more than its expectation. Thus, on almost every 
execution, independent of the input, the algorithm is shown to be fast. 

The randomization involved in our RandQS algorithm occurs only in Step 
1, where a random element is chosen from a set. We define a randomized 
algorithm as an algorithm that is allowed access to a source of independent, 
unbiased, random bits; it is then permitted to use these random bits to influence 
its computation. It is easy to sample a random element from a set S by choosing 
O(log lSI) random bits and then using these bits to index an element in the 
set. However, some distributions cannot be sampled using only random bits. 
For example, consider an algorithm that picks a random real number from 
some interval. This requires infinitely many random bits. While we will usually 
not worry about the conversion of random bits to the desired distribution, the 
reader should keep in mind that random bits are a resource whose use involves 
a non-trivial cost. Moreover, there is sometimes a non-trivial computational 
overhead associated with sampling from a seemingly well-behaved distribution. 
For example, consider the problem of using a source of unbiased random bits 
to sample uniformly from a set S whose cardinality is not a power of 2 (see 
Problem 1.2). 

There are two principal advantages to randomized algorithms. The first is 
performance - for many problems, randomized algorithms run faster than the 
best known deterministic algorithms. Second, many randomized algorithms are 
simpler to describe and implement than deterministic algorithms of comparable 
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performance. The randomized sorting algorithm described above is an exam
ple. This book presents many other randomized algorithms that enjoy these 
advantages. 

In the next few sections, we will illustrate some basic ideas from probability 
theory using simple applications to randomized algorithms. The reader wishing 
to review some of the background material on the analysis of algorithms or on 
elementary probability theory is referred to the Appendices. 

1.1. A Min-Cut Algorithm 

Two events C 1 and C2 are said to be independent if the probability t~at they 
both occur is given by 

(1.4) 

(see Appendix C). In the more general case where Cl and C2 are not necessarily 
independent, 

where Pr[cl I C2] denotes the conditional probability of Cl given C2' Sometimes, 
when a collection of events is not independent, a convenient method for com
puting the probability of their intersection is to use the following generalization 
of (1.5). 

Pr[n~=It'il = Pr[t'd x Pr[t'21 t'd x Pr[t'31 t'1 nt'2l' "Pr[t'k I n~==-lt'i]' (1.6) 

Consider a graph-theoretic example. Let G be a connected, undirected multi
graph with n vertices. A multigraph may contain multiple edges between any pair 
of vertices. A cut in G is a set of edges whose removal results in G being broken 
into two or more components. A min-cut is a cut of minimum cardinality. We 
now study a simple algorithm for finding a min-cut of a graph. 

We repeat the following step: pick an edge uniformly at random and merge 
the two vertices at its end-points (Figure 1.1). If as a result there are several 
edges between some pairs of (newly formed) vertices, retain them all. Edges 
between vertices that are merged are removed, so that there are never any 
self-loops. We refer to this process of merging the two end-points of an edge 
into a single vertex as the contraction of that edge. With each contraction, the 
number of vertices of G decreases by one. The crucial observation is that an 
edge contraction does not reduce the min-cut size in G. This is because every 
cut in the graph at any intermediate stage is a cut in the original graph. The 
algorithm continues the contraction process until only two vertices remain; at 
this point, the set of edges between these two vertices is a cut in G and is output 
as a candidate min-cut. 

Does this algorithm always find a min-cut? Let us analyze its behavior after 
first reviewing some elementary definitions from graph theory. 
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Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge e = (1,2) is 
shown. 

~ Definition 1.1: For any vertex v in a multigraph G, the neighborhood of G, 
denoted r(v), is the set of vertices of G that are adjacent to v. The degree of v, 
denoted d(v), is the number of edges incident on v. For a set S of vertices of G, 
the neighborhood of S, denoted r(S), is the union of the neighborhoods of the 
constituent vertices. 

Note that d(v) is the same as the cardinality of r(v) when there are no self-loops 
or mUltiple edges between v and any of its neighbors. 

Let k be the min-cut size. We fix our attention on a particular min-cut C with 
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of 
degree less than k, and its incident edges would be a min-cut of size less than k. 
We will bound from below the probability that no edge of C is ever contracted 
during an execution of the algorithm, so that the edges surviving till the end are 
exactly the edges in C. 

Let Ej denote the event of not picking an edge of C at the ith step, for 
1 < is n-2. The probability that the edge randomly chosen in the first step is in 
C is at most k/(nk/2) = 2/n, so that Pr[EI] > 1- 2/n. Assuming that EI occurs, 
during the second step there are at least k(n - 1)/2 edges, so the probability of 
picking an edge in C is at most 2/(n - 1), so that Pr[E2 lEI] > 1 - 2/(n - 1). 
At the ith step, the number of remaining vertices is n - i + 1. The size of the 
min-cut is still at least k, so the graph has at least k(n - i + 1)/2 edges remaining 
at this step. Thus, Pr[E j I n~:.\Ej] > 1 - 2/(n - i + 1). What is the probability 
that no edge of C is ever picked in the process? We invoke (1.6) to obtain 

n-2 ( 2) 2 
Pr[ni.:lEd > p 1- n _ i + 1 = n(n -I}" 

1",,1 

The probability of discovering a particular min-cut (which may in fact be 
the unique min-cut in G) is larger than 2/n2. Thus our algorithm may err 
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat 
the above algorithm n2/2 times, making independent random choices each 
time. By (1.4), the probability that a min-cut is not found in any of the n2/2 
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attempts is at most 

( 
2 ),,2/2 

1- n2 < lie. 

By this process of repetition, we have managed to reduce the probability of fail
ure from 1-2/n2 to a more respectable lie. Further executions of the algorithm 
will make the failure probability arbitrarily small - the only consideration being 
that repetitions increase the running time. 

Note the extreme simplicity of the randomized algorithm we have just stud
ied. In contrast, most deterministic algorithms for this problem are based on 
network flows and are considerably more complicated. In Section 10.2 we will 
return to the min-cut problem and fill in some implementation details that 
have been glossed over in the above presentation; in fact, it will be shown 
that a variant of this algorithm has an expected running time that is signifi
cantly smaller than that of the best known algorithms based on network flow. 

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing 
a random edge for contraction we choose two vertices at random and coalesce them 
into a single vertex. Show that there are inputs on which the probability that this 
modified algorithm finds a min-cut is exponentially small. 

1.2. Las Vegas and Monte Carlo 

The randomized sorting algorithm and the min-cut algorithm exemplify two 
different types of randomized algorithms. The sorting algorithm always gives 
the correct solution. The only variation from one run to another is its running 
time, whose distribution we study. We call such an algorithm a Las Vegas 
algorithm. 

In contrast, the min-cut algorithm may sometimes produce a solution that is 
incorrect. However, we are able to bound the probability of such an incorrect 
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we 
observed a useful property of a Monte Carlo algorithm: if the algorithm is run 
repeatedly with independent random choices each time, the failure probability 
can be made arbitrarily small, at the expense of running time. Later, we will see 
examples of algorithms in which both the running time and the quality of the 
solution are random variables; sometimes these are also referred to as Monte 
Carlo algorithms. For decision problems (problems for which the answer to an 
instance is YES or NO), there are two kinds of Monte Carlo algorithms: those 
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is 
said to have two-sided error if there is a non-zero probability that it errs when it 
outputs either YES or NO. It is said to have one-sided error if the probability that 
it errs is zero for at least one of the possible outputs (YES/NO) that it produces. 
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We will see examples of all three types of algorithms - Las Vegas, Monte Carlo 
with one-sided error, and Monte Carlo with two-sided error - in this book. 

Which is better, Monte Carlo or Las Vegas? The answer depends on the 
application - in some applications .an incorrect solution may be catastrophic. 
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error 
probability o. The following exercise gives us a way of deriving a Las Vegas 
algorithm from a Monte Carlo algorithm. Note that the efficiency of the 
derivation procedure depends on the time taken to verify the correctness of a 
solution to the problem. 

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem n whose expected 
running time is at most T(n) on any instance of size n and that produces a correct 
solution with probability y(n). Suppose further that given a solution to n, we can verify 
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always 
gives a correct answer to n and runs in expected time at most (T(n) + t(n))/y(n). 

In attempting Exercise 1.3 the reader will have to use a simple property of the 
geometric random variable (Appendix C). Consider a biased coin that, on a toss, 
has probability p of coming up HEADS and I - p of coming up TAILS. What is 
the expe~ted number of (independent) tosses up to and including the first head? 
The number of such tosses is a random variable that is said to be geometrically 
distributed. The expectation of this random variable is lip. This fact will prove 
useful in numerous applications. 

Exercise 1.4: Let 0 < £2 < £1 < 1. Consider a Monte Carlo algorithm that gives the 
correct solution to a problem with probability at least 1 - £1. regardless of the input. 
How many independent executions of this algorithm suffice to raise the probability 
of obtaining a correct solution to at least 1 - £2. regardless of the input? 

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on 
any input its expected running time is bounded by a polynomial function of the 
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte 
Carlo algorithm if on any input its worst-case running time is bounded by a 
polynomial function of the input size. 

1.3. Binary Planar Partitions 

We now illustrate another very useful and basic tool from probability theory: 
linearity of expectation. For random variables X.,X2, ••• , 

E[2: Xd = 2: E[Xd. (1.7) 
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(See Proposition C.S.) We have implicitly used this tool in our analysis of 
RandQS. A point that cannot be overemphasized is that (1.7) holds regardless 
of any dependencies between the Xi. 

~ Example 1.1: A ship arrives at a port, and the 40 sailors on board go ashore 
for revelry. Later at night, the 40 sailors return to the ship and, in their state 
of inebriation, each chooses a random cabin to sleep in. What is the expected 
number of sailors sleeping in their own cabins? 

The inefficient approach to this problem would be to consider all 4()40 ar
rangements of sailors in cabins. The solution to this example will involve the 
use of a simple and often useful device called an indicator variable, together with 
linearity of expectation. Let Xi be 1 if the ith sailor chooses her own cabin, and 0 
otherwise. Thus Xi indicates whether or not a certain event occurs, and is hence 
called an indicator variable. We wish to determine the expected number of sailors 
who get their own cabins, which is E[L:l Xi]. By linearity of expectation, this 
is L~l E[Xa· Since the cabins are chosen at random, the probability that the ith 
sailor gets her own cabin is 1/40, so E[Xj ] = 1/40. Thus the expected number of 
sailors who get their own cabins is L:l 1/40 = 1. 

Our next illustration is the construction of a binary planar partiti~" of a set 
of n disjoint line segments in the plane, a problem with applications to computer 
graphics. A binary planar partition consists of a binary tree together with some 
additional information, as described below. Every internal node of the tree 
has two children. Associated with each node v of the tree is a regio.n r(v) of 
the plane. Associated with each internal node v of the tree is a line t(v) that 
intersects r(v). The region corresponding to the root is the entire plane. The 
region r(v) is partitioned by t(v) into two regions rl(v) and r2(v), which are 
the regions associated with the two children of v. Thus, any region r of the 
partition is bounded by the partition lines on the path from the root to the node 
corresponding to r in the tree. 

Given a set S = {S}'S2, ••• ,Sn} of non-intersecting line segments in the plane, 
we wish to find a binary planar partition such that every region in the partition 
contains at most one line segment (or a portion of one line segment). Notice 
that the definition allows us to divide an input line segment Si into several 
segments Sil, Si2, ••• , each of which lies in a different region. The example of 
Figure 1.2 gives such a partition for a set of three line segments (dark lines). 

Exercise 1.5: Show that there exists a set of line segments for which no binary 
planar partition can avoid breaking up some of the segments into pieces, if each 
segment is to lie in a different region of the partition. 

Binary planar partitions have two applications in computer graphics. Here, 
we describe one of them, the problem of hidden line elimination in computer 
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Figure 1.2: An example of a binary planar partition for a set of segments (dark lines). 
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity. 

graphics. The second application has to do with the constructive solid geometry 
(or CSG) representation of a polyhedral object. 

In rendering a scene on a graphics terminal, we are often faced with a 
situation in which the scene remains fixed, but it is to be viewed from several 
direc~ions (for instance, in a flight simulator, where the simulated motion of the 
plane causes the viewpoint to change). The hidden line elimination problem is 
the following: having adopted a viewpoint and a direction of viewing, we want 
to draw only the portion of the scene that is visible, eliminating those objects 
that are 'obscured by other objects "in front" of them relative to the viewpoint. 
In such a situation, we might be prepared to spend some computational effort 
preprocessing the scene so that given a direction <lL viewing, the scene can be 
rendered quickly with hidden lines eliminated. 

One approach to this problem uses a binary partition tree. In this chapter we 
consider the simple case where the scene lies entirely in the plane, and we view it 
from a point in the same plane. Thus, the output is a one-dimensional projected 
"picture." We can assume that the input scene consists of non-intersecting line 
segments, since any line that is intersected by another can be broken up into 
segments, each of which touches other lines only at its endpoints (if at all). 
Once the scene has been thus decomposed into line segments, we construct a 
binary planar partition tree for it. Now, given the direction of viewing, we use 
an idea known as the painter's algorithm to render the scene: first draw the 
objects that are furthest "behind," and then progressively draw the objects that 
are in front. Given the binary planar partition tree, the painter's algorithm 
can be implemented by recursively traversing the tree as follows. At the root 
of the tree, determine which side of the partitioning line Ll is "behind" from 
the viewpoint and render all the objects in that sub-tree (recursively). Having 
completely rendered the portion of the tree corresponding to that sub-tree, 
do the same for the portion in "front" of Ll, "painting over" objects already 
drawn. 

The time it takes to render the scene depends on the size of the binary planar 
partition tree. We therefore wish to construct a binary planar partition that is 
as small as possible. Notice that since the tree must be traversed completely to 
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render the scene, the depth of the tree is immaterial in this application. Because 
the construction of the partition can break some of the input segments Sj into 
smaller pieces, the size of the partition need not be n; in fact, it is not clear that 
a partition of size O(n) always exists. 

In this chapter we consider only the planar case just described; in Chapter 9 
we generalize the idea of a binary planar partition to handle the rendition of 
a three-dimensional scene on a two-dimensional screen (a far more interesting 
case for computer graphics). 

For a line segment s, let I(s) denote the line obtained by extending (if necessary) 
S on both sides to infinity. For the set S = {Sh S2, . .. Sn} of line segments, a simple 
and natural class of partitions is the set of autopartitions, which are formed by 
only using lines from the set {1(SI), I(S2), ... I(sn)} in constructing the partition. 
We only consider autopartitions from here on. . 

Algorithm RandAuto: 

Input A set S = {S1, S2, ... , Sn} of non-intersecting line segments. 

Output: A binary autopartition p" of S. 

1. Pick a permutation" of {1, 2. ... , n} uniformly at random from the n! possible 
permutations. 

2. while a region contains more than one segment, cut it with I(s/) where i is 
first in the ordering" such that Sj cuts that region. 

In the partition resulting from an execution of RandAuto, a segment may 
lie on the boundary between two regions of the partition. We declare such a 
segment to lie in one region or the other in any convenient way. 

Tbeorem 1.2: The expected size of the autopartition produced by RandAuto is 
O(n log n). 

PROOF: For line segments u and v, define index(u, v) to be i if I(u) intersects 
i - 1 other segments before hitting v, and index(u, v) = 00 if I(u) does not 
hit v. Since a segment u can be extended in two directions, it is possible 
that index( u, r;) = index( u, w) for two different lines v and w (in Figure 1.3, 
index(u, vd = index(u, V2) = 2). 

Let us denote by u -l v the event that I(u) cuts v in the constructed partition. 
Let index(u, r;) = i, and let Uh U2, ••• Uj-l be the segments that I(u) intersects before 
hitting v. The event u -l v happens only if u occurs before any of {Ul' U2, •• ' U/-h v} 
in the randomly chosen permutation n. The probability that this happens is 
1/(i + 1). 

Let Cu,v be an indicator variable that is 1 if u -l v and 0 otherwise; clearly, 
E[Cu,v] = Pr[u -l v] < 1/(index(u, v) + 1). The size of P1t equals n plus the number 
of intersections due to cuts. Thus, its expectation is n + E[Lu Lv Cu,v] and by 
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Figure 1.3: An illustration of index(u, v). 

linearity of expectation this equals 

1 
n + :L:L Pr[u -l v] ~ n + :L:L . d ( ) 1· 

oJ. oJ. In ex u,v + 
U VrU U vru 

(1.8) 

For any line segment u and any finite positive integer i, there are at most two 
vertices v and w such that index ( u, v) and index( u, w) equals i. This is because 
the extension of the segment u along either of the two possible directions will 
meet any other line segment at most once. Thus, in each of the two directions, 
there is a total ordering on the points of intersection with other segments and 
the index values increase monotonically. This implies that 

1 n-l 2 

:L index(u,v) + 1 ~ ~ i + r 
V-FU ~l 

Combining this with (1.8) implies that the expected size of P1t is bounded above 
by 

which is O(n log n). D 

Note that in computing the expected number of intersections, we only made 
use of linearity of expectation. We do not require any independence between 
the events u .; v and u .; w, for segments u, v, and w. Indeed, these events need 
not be independent in general. 

One way of interpreting Theorem 1.2 is as follows: since the expected size 
of the binary planar partition constructed by the algorithm is O(n log n) on 
any input, there must exist a binary autopartition of size O(n log n) for every 
input. This follows from the simple fact that any random variable assumes at 
least one value that is no greater than its expectation (and, indeed, one that is 
no less than its expectation). Thus we have used a probabilistic argument to 
assert that a combinatorial object - in this case a binary autopartition of size 
O(n log n) - exists with absolute certainty rather than with some probability. This 
is an example of the probabilistic method in combinatorics. We will study the 
probabilistic method in greater detail in Chapter 5. 

14 



lA A PROBABILISTIC RECURRENCE 

1.4. A Probabilistic Recurrence 

Frequently, we express a random variable of interest as a recurrence in terms of 
other random variables. In this section, we study one such situation using the 
Find algorithm analyzed in detail in Problem 1.9. The material in this section, 
although useful, is not an essential prerequisite for subsequent topics and may 
be omitted in the first reading. 

The Find algorithm for selecting the kth smallest of a set S of n elements 
works as follows. We pick a random element y and partition S \ {y} into two 
sets SI and S2 (elements smaller and larger than y respectively) as in RandQS. 
Suppose lSI I = k - 1; then y is the desired element and we are done. Otherwise, 
if lSI I > k, we recursively find the kth smallest element of Sl; else we recursively 
find the (k -1St! - l)th smallest element in S2. 

The expected number of comparisons made by the Find algorithm is the 
subject of Problem 1.9. Suppose instead that we were to ask the following 
question: what is the expected number of times we make the recursive call in 
the algorithm? Equivalently, what is the expected number of times we pick a 
random element in the algorithm? While this question may not be especially 
important for the Find algorithm, it is the kind of question that arises in the 
analysis of a number of parallel and geometric algorithms. Intuitively, we 
expect that the size of the residual problem in the F"md algorithm is divided 
by a constant factor at each recursive level, so that we expect that the number 
of recursive invocations is O(1og n). Below, we show that this intuition can be 
formalized in a general setting. 

Let g(x) be a monotone non-decreasing function from the positive rears to the 
positive reals. Consider a particle whose position changes at discrete time steps 
and is always at a positive integer. If the particle is currently at position m > 1, 
it proceeds at the next step to the position m - X, where X is a random variable 
ranging over the integers 1, ... ,m-1. All we know about X is that E[X] ~ g(m), 
and that X is chosen independently of the past. It is clear that the particle will 
always reach position 1 and the process terminates in that state. The interesting 
question is, assuming that the particle starts at position n, what is the expected 
number of steps before it reaches position I? The reader may associate the 
position of the particle with the size of the problem in a recursive call of the 
Find algorithm. Although we have more information about the distribution of 
X in the case of Find's analysis, it turns out that the bound on the expected size 
of the residual problem suffices for proving the following result. 

Tbeorem 1.3: Let T be the random variable denoting the number of steps in 
which the particle reaches the position 1. Then, E[T] < It dx/g(x). 

PROOF: The proof is by induction on n; let us suppose the theorem holds for 
values of m smaller than n. Let f(m) = It dx/g(x) for m > 1. We wish to show 
that E[T] < f(n). 
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Consider the first step, during which the particle proceeds from position n to 
position n - X, where X is chosen from a distribution for which E[X] > g(n). 

We have 

E[T] ~ 1 + E[f(n - X)] (1.9) 

- I+E[l
n 

dy -in d
y

] (1.10) 
1 g(y) n-X g(y) 

in d - 1 + f(n) -E[ t)] (1.11) 
n-X g Y 

in d ~ l+f(n)-E[ t)] (1.12) 
n-X g n 

- 1 + f(n) _ E[X] (1.13) 
g(n) 

~ f(n). (1.14) 

The inequality (1.12) follows from the assumption that g(y) is non-decreasing, 
while (1.14) follows from the lower bound on E[X]. D 

Exercise 1.6: If X were to range over all integers having value at most m-1 (possibly 
including negative integers), how would the statement and proof of Theorem 1.3 
change? 

For the Find algorithm, we can show (following the analysis of Problem 1.9) 
that g(m) ~ m/4. We may then apply the above theorem to bound the expected 
number of recursive calls to Find by 41n n. 

Exercise 1.7: What prevents us from using Theorem 1.3 to bound the expected 
number of levels of recursion in the RandQS algorithm? 

1.5. Computation Model and Complexity Classes 

In this section we discuss models of computation used in this book, and follow 
this with a review of complexity classes. 

1.5.1. RAMs and Turing Machines 

Following common practice, throughout this book we use the Turing machine 
model to discuss complexity-theory issues. As is common, however, we switch to 
the RAM (random access machine) as the model of computation when describ
ing and analyzing algorithms (except in the study of parallel and distributed 
algorithms in Chapter 12, where we define a version of the RAM model for 
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machines working in parallel). We begin by defining the Turing machine, which 
is an abstract model of an algorithm. 

~ Definition 1.2: A deterministic Turing machine is a quadruple M = (S, 1:, c5, s). 
Here S is a finite set of states, of which s E S is the machine's initial state. The 
machine uses a finite set of symbols, denoted 1:; this set includes special symbols 
BLANK and FIRST. The function c5 is the transition function of the Turing machine, 
mapping S x 1: to (S U {HALT,YES,NO}) x1: x {-,-,STAY}. The machine has 
three halting states HALT (the halting state), YES (the accepting state), and NO (the 
rejecting state) (these are states, but formally not in S). 

The input to the Turing machine is generally thought of as being written on 
a tape; unless otherwise specified, the machine may read from and write on this 
tape. We assume that HALT, YES, and NO, as well as the symbols -, ..... , and STAY, 

are not in S U 1:. The machine begins in the initial state s with its cursor at the 
first symbol of the input x (i.e., the left end of the tape); this symbol is always 
FIRST. The rest of the input is a string of finite length from (l:\{BLANK, FIRST})*; 

the left-most BLANK on the tape identifies the end of the input string. 
The transition function dictates the actions of the machine, and may be 

thought of as its program. In each step, the machine reads the symbol (X of the 
input currently pointed to by the cursor; based on this symbol and the current 
state of the machine, it chooses a next state, a symbol P to be overwritten on 
(X and a cursor motion direction from {-, ..... ,STAY} (here - and ..... specify a 
motion by one step to the left and right, respectively, while STAY specifies that 
the cursor remain in its present position). The transition function is "designed 
to ensure that the cursor never falls off the left end of the input, identified by 
FIRST. The machine may of course overwrite the BLANK symbol. 

If the machine halts in the YES state, we say that it has accepted the input x. 
If the machine halts in the NO state, we say that it has rejected the input x. The 
third halting state, HALT, is for the computation of functions whose range is not 
Boolean; in such cases, the output of the function computation is written onto 
the tape. An algorithm corresponds to a Turing machine that always halts. 

A probabilistic Turing machine is a Turing machine augmented with the ability 
to generate an unbiased coin flip in one step. It corresponds to a randomized 
algorithm. On any input x, a probabilistic Turing machine accepts x with some 
probability, and we study this probability. 

In the light of these definitions, we may speak of an algorithm accepting or 
rejecting an input (we visualize the Turing machine underlying the algorithm as 
accepting or rejecting), and similarly speak of a randomized algorithm accepting 
or rejecting an input with some probability. 

In the RAM model, we have a machine that can perform the following types 
of operations involving registers and main memory: input-output operations, 
memory-register transfers, indirect addressing, branching, and arithmetic opera
tions. Each register or memory location may hold an integer that can be accessed 
as a unit, but an algorithm has no access to the representation of the number. 
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The arithmetic instructions permitted are +, -, x, j. In addition, an algorithm 
can compare two numbers, lind evaluate the square root of a positive number. 

Two types of RAM models are defined based on the cost used for measuring 
the running time of a program. In the unit-cost RAM (sometimes also called the 
uniform RAM), each instruction can be performed in one time step. This model 
is believed to be much too powerful since there is no known polynomial-time 
simulation of this model by Turing machines. This situation arises because 
the unit-cost RAM, unlike the more restricted Turing machine, is able to use 
multiplication to quickly compute extremely large integers. However, if we 
disallow all arithmetic operations besides addition and subtraction, then it is 
possible to show that the resulting model is equivalent to Turing machines under 
polynomial-time simulations. 

A more realistic version of the RAM is the so-called log-cost RAM where each 
instruction requires time proportional to the logarithm of the size of its operands. 
It turns out that the log-cost RAM with the complete arithmetic instruction set 
is equivalent to Turing machines under polynomial-time simulations. 

For simplicity, we will work with the general unit-cost RAM model. At the 
same time, we will avoid misuse of its power by ensuring that in all algorithms 
under consideration the size of the operands is polynomially bounded in the 
input size. Thus, our algorithm can be transformed to the log-cost RAM model 
with only a small (logarithmic in the input size) multiplicative slow-down in the 
running time. We also assume that the RAM can in a single step choose an 
element uniformly at random from a set of cardinality polynomial in the size of 
the problem input. Standard texts on automata and complexity (see the Notes 
section) give proofs of the following basic fact. 

Proposition 1.4: Any Turing machine computation of length polynomial in the size 
of the input can be simulated by a RAM computation of length polynomial in the 
size of the input. Any RAM computation of length polynomial in the size of the 
input can be simulated by a Turing machine computation of length polynomial in 
the size of the input. 

1.5.2. Complexity Classes 

We now define some basic complexity classes focusing on those involving ran
domized algorithms. For these definitions, the underlying model of computation 
is assumed to be the Turing machine, but by the preceding discussion it could 
be substituted by a log-cost RAM or the restricted form of the unit-cost RAM. 

In complexity theory, it is common to concentrate on the decision problem 
derived from some hard optimization problem. This enables the development 
of an elegant theoretical framework, and the decision problem is usually not 
significantly different in structure from its optimization counterpart. For in
stance, consider the satisfiability problem, in which an instance consists of a set 
of clauses in conjunctive normal form (CNF). Because the satisfiability problem 
appears at various points in this book, we define some terminology relating 
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to it. The Boolean inputs are called variables, which may appear in either 
uncomplemented or complemented form in a clause. The uncomplemented or 
complemented variables in a clause are known as literals (respectively, unnegated 
and negated literals). A clause is said to be satisfied if at least one of the literals 
in it is TRUE. A solution consists either of an assignment of Boolean values to the 
variables that ensures that every clause is satisfied (such an assignment is known 
as a truth assignment), or a negative answer that it is not possible to assign 
inputs so as to satisfy all the clauses simultaneously. The decision version of this 
problem, commonly abbreviated SAT, seeks only a YES or NO answer depend
ing on whether or not all the clauses can simultaneously be satisfied, without 
demanding an assignment of values to the inputs (in case the answer is YEs). 

~ Example 1.2: Consider the following instance of satisfiability: 

(Xl V X2 V X4) 1\ (X3 V X4 V xs) 1\ (Xl V x2 V X4 V xs). 

In this example, there are three clauses. The first stipulates that either Xl should 
be TRUE, or X2 should be FALSE, or X4 should be TRUE. The literal X2 denotes 
that one way of satisfying the first clause is to set X2 FALSE. The first two clauses 
have three literals each, while the third has four. The assignments Xl = TRUE, 

X3 = FALSE, and Xs = FALSE suffice to satisfy all the clauses (regardless of the 
values assigned to X2 and X4). Thus the solution to this instance for the decision 
question (SAT) is YES. 

Any decision problem can be treated as a language recognition problem. Fix 
a finite alphabet 1:, usually 1: = {a, I}, and let 1:* be the set of all possible strings 
over this alphabet. Denote by lsi the length of a string s. A language L £; 1:* 
is any collection of strings over 1:. The corresponding language recognition 
problem is to decide whether a given string X in 1:* belongs to L. An algorithm 
solves a language recognition problem for a specific language L by accepting 
(output YEs) any input string contained in L, and rejecting (output ,NO) any input 
string not contained in L. The SAT problem can easily be cast in the form of 
a language recognition problem by devising a suitable encoding of formulas as 
bit-strings. 

A complexity class is a collection of languages all of whose recognition 
problems can be solved under prescribed bounds on the computational resources. 
We are primarily interested in various forms of efficient algorithms, where 
efficient is defined as being polynomial time. Recall that an algorithm has 
polynomial running time if it halts within na: l ) time on any input of length n. 
The following definitions list some interesting complexity classes. 

~ Definition 1.3: The class P consists of all languages L that have a polynomial
time algorithm A such that for any input X E 1:*, 

• X E L => A(x) accepts . 

• X tI. L => A(x) rejects. 
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~ Definition 1.4: The class NP consists of all languages L that have a polynomial
time algorithm A such that for any input x E 1:*, 

• x E L => 3y E 1:*, A(x,y) accepts, where Iyl is bounded by a polynomial 
in Ixl . 

• x tI. L => Tty E 1:*, A(x, y) rejects. 

A useful view of P and NP is the following. The class P consists of all 
languages L such that for any x in L a proof of the membership x in L 
(represented by the string y) can be found and verified efficiently. On the other 
hand, NP consists of all languages L such that for any x in L, a proof of the 
membership of x in L can be verified efficiently. Obviously, P £; NP, but it is 
not known whether P = NP. If P = NP, the existence of an efficiently verifiable 
proof implies that it is possible to actually find such a proof efficiently. 

For any complexity class C, we define the complementary class co-C as the 
set of languages whose complement is in the class C. That is, 

co-C = {L I L E C}. 

It is obvious that P = co-P and P £; NP n co-NP. We do not know whether 
P = NP n co-NP or whether NP = co-NP, although both statements are widely 
believed to be false. 

Likewjse, we can define deterministic and non-deterministic complexity classes 
for different bounds on the running time. Let exponential time denote a running 
time which is 2P(n) for some polynomial p(n) in the input size. Allowing expo
nential time instead of polynomial time in Definitions 1.3 and 1.4 gives us the 
complexity classes EXP and NEXP. Clearly, EXP £; NEXP, but once again we 
do not know whether this inclusion is strict. On the other hand, we do know 
that if P = NP, then EXP = NEXP. 

We can also define space complexity classes by leaving the running time 
unconstrained and instead placing a bound on the space used by an algorithm. 
In the case of Turing machines, the space used is determined by the number 
of distinct positions on the tape that are scanned during an execution; for 
RAMs, the space requirement is simply the number of words of memory 
require4 by an algorithm. In Definitions 1.3 and 1.4, requiring polynomial 
space instead of polynomial time yields the definition of the class PSPACE and 
NPSPACE. A PSPACE algorithm may run for super-polynomial time. These 
classes behave differently from the time complexity classes; for example, we 
know that PSPACE = NPSPACE and PSPACE = co-PSPACE. 

We next review the notions of polynomial reductions and completeness for a 
complexity class. 

~ Definition 1.5: A polynomial reduction from a language Ll S;;; 1:* to a language 
L2 S;;; 1:* is a function f : 1:* -+ 1:* such that: 

1. There is a polynomial-time algorithm that computes f. 
2. For all x E 1:*, x E Ll if and only if f(x) E L2. 
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Exercise 1.8: Show that if there is a polynomial reduction from Ll to L2• then L2 E P 
implies that Ll E P. 

~ Definition 1.6: A language L is NP-hard if, for all L' E NP, there is a polynomial 
reduction from L' to L. 

Thus, if any NP-hard decision problem can be solved in polynomial time, 
then so can all problems in NP. 

~ Definition 1.7: A language L is NP-complete if it is in NP and is NP-hard. 

Intuitively the decision problems corresponding to NP-complete languages 
are the "hardest" problems in NP. Note that the notion of NP-completeness 
applies only to decision problems; the optimization problem corresponding to an 
NP-complete decision problem is NP-hard, but is not NP-complete because it is 
not in NP by definition. As with NP, the notions of hardness and completeness 
can be generalized to any class C, for an appropriate notion of reduction. Unless 
otherwise specified, the default notion of a reduction is a polynomial reduction, 
and this is typically used for defining hardness and completeness in complexity 
classes that are a superset of P, such as PSPACE. 

We generalize these classes to allow for randomized algorithms. The basic 
idea is to replace the existential and universal quantifiers in the definition of NP 
by probabilistic requirements. 

~ Definition 1.8: The class RP (for Randomized Polynomial time) consists of 
all languages L that have a randomized algorithm A running in worst-case 
polynomial time such that for any input x in r, 

1 
• x E L => Pr[A(x) accepts] ~ :2 . 

• x tI. L => Pr[A(x) accepts] = o. 

The choice of the bound on the error probability 1/2 is arbitrary. In fact, as 
was observed in the case of the min-cut algorithm, independent repetitions of 
the algorithm can be used to go from the case where the probability of success 
is polynomially small to the case where the probability of error is exponentially 
small while changing only the degree of the polynomial that bounds the running 
time. Thus, the success probability can be changed to an inverse polynomial 
function of the input size without significantly affecting the definition of RP. 

Observe that an RP algorithm is a Monte Carlo algorithm that can err only 
when x E L. This is referred to as one-sided error. The class co-RP consists of 
languages that have polynomial-time randomized algorithms erring only in the 
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case when x ¢ L. A problem belonging to both RP and co-RP can be solved by 
a randomized algorithm with zero-sided error, i.e., a Las Vegas algorithm. 

~ Definition 1.9: The class ZPP (for Zero-error Probabilistic Polynomial time) 
is the class of languages that have Las Vegas algorithms running in expected 
polynomial time. 

Exercise 1.9: Show that ZPP = RP () co-RP. 

Consider now the class of problems that have randomized Monte Carlo 
algorithms making two-sided errors. 

~ Definition 1.10: The class PP (for Probabilistic Polynomial time) consists of 
all languages L that have a randomized algorithm A running in worst-case 
polynomial time such that for any input x in 1:*, 

1 
• x E L => Pr[A(x) accepts] > 2. 

1 
• x ¢ L => Pr[A(x) accepts] < 2. 

To reduce the error probability of a two-sided error algorithm, we can perform 
several independent iterations on the same input and produce the output (accept 
or reject) that occurs in the majority of these iterations. Unfortunately, the 
definition of the class PP is rather weak: because we have no bound on how 
far from 1/2 the probabilities are, it may not be possible to use a small number 
of repetitions of an algorithm A with such two-sided error probability to obtain 
an algorithm with significantly smaller error probability. 

Exercise 1.10: Consider a randomized algorithm with two-sided error probabilities 
as in the definition of PP. Show that a polynomial number of independent repetitions 
of this algorithm need not suffice to reduce the error probability to 1/4. (Consider 
the case where the error probability is 1/2 + 1/2n.) 

A more useful class of two-sided error randomized algorithms corresponds 
to the following complexity class. 

~ Definition 1.11: The class BPP (for Bounded-error Probabilistic Polynomial 
time) consists of all languages L that have a randomized algorithm A running in 
worst-case polynomial time such that for any input x in r, 

3 
• x E L => Pr[A(x) accepts] ~ 4. 

1 
• x ¢ L => Pr[A(x) accepts] ~ 4. 
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In a later chapter (see Problem 4.8) we will show that for this class of 
algorithms the error probability can be reduced to 1/2n with only a polynomial 
number of iterations. In fact, the probability bounds 3/4 and 1/4 can be changed 
to 1/2 + l/p(n) and 1/2·- l/p(n), respectively, for any polynomially bounded 
function p(n) without affecting this error reduction property or the definition of 
the class BPP to a significant extent. 

The reader is referred to Problems 1.11-1.14 for several basic relationships 
between these complexity classes. There are several interesting open questions 
regarding the relationships between these randomized complexity classes, for 
example: 

1. Is RP = co-RP? 

2. Is RP S; NPnco-NP? (Note that since co-RP S; co-NP, showing that RP == 'co-RP 
would imply RP S; NP n co-NP.) 

3. Is BPP ~ NP? 

Although these classes are defined in terms of decision problems, they can be 
used to classify the complexity of a broader class of problems such as search 
or optimization problems. We will overload our notation a bit by using the 
complexity class labels for referring to algorithms. For example, RanclQS will 
be called a ZPP algorithm. 

Consider the following decision version of the min-cut problem: given a graph 
G and integer K, verify that the min-cut size in G equals K. Assume that we 
have modified (by incorporating sufficiently many repetitions) the Monte Carlo 
min-cut algorithm to reduce its probability of error below 1/4. This algorithm 
can solve the decision problem by computing a cut value k and comparing it 
with K. This gives a BPP algorithm. In the case where K is indeed the min-cut 
value, the algorithm may not come up with the right value and, hence, may 
reject the input. Conversely, if the min-cut value is smaller than K, the algorithm 
may only find cuts of size K and, hence, may accept the input. 

We may modify this decision problem: given G and K, verify that the min-cut 
size in G is at most K. Now, the algorithm described above translates into an 
RP algorithm for this problem. In the case where the actual min-cut size C is 
larger than K, the algorithm will never accept the input. This is because it can 
only find cuts of size k no smaller than C and hence greater than K. 

Notes 

The ideas underlying randomized algorithms can be traced back to Monte Carlo 
methods used in numerical analysis, statistical physics, and simulation. In the con
text of computability theory, the notion of a probabilistic Turing machine was proposed 
by de Leeuw, Moore, Shannon, and Shapiro [122] and further explored in the pioneering 
work of Rabin [340] and Gill [166]. Berlekamp [57], Rabin [341], and Solovay and 
Strassen [382] gave early examples of concrete randomized algorithms. Rabin [341] pro
posed randomized algorithms for problems in computational geometry and in number 
theory. Around the same time, Solovay and Strassen [382] gave a randomized Monte 
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Carlo algorithm for testing for primality; this problem is explored further in Chapter 14, 
as is the randomized algorithm for factoring polynomials due to Berlekamp [57]. 

In the last twenty years, the array of techniques for devising and analyzing randomized 
algorithms has grown. We develop these techniques in the chapters to follow. Karp [243], 
Maffioli, Speranza, and Vercellis [289], and Welsh [415] give excellent surveys of ran
domized algorithms. Johnson [220] surveys the probabilistic (or "average-case") analysis 
of algorithms (sometimes also referred to as "distributional complexity"), contrasting it 
with randomized algorithms surveyed in his following bulletin [221]. 

Our RandQS algorithm is based on Hoare's algorithm [201]. The min-cut algorithm 
of Section 1.1, together with many variations and extensions, is due to Karger [231]. 

Monte Carlo methods have been popular in the sciences for over a hundred years now. 
The classic experiment on approximating the value of 1t by dropping needles on a sheet 
of paper with parallel lines is described in an eighteenth-century paper by Buffon [86] 
(see also Hall [190]). The origin of the modem theory of Monte Carlo methods in the 
physical sciences is widely attributed to Ulam, von Neumann, and Fermi [116]. The 
term Las Vegas algorithm was introduced by Babai [37], although he uses the term in a 
slightly different sense. Our usage conforms to the currently accepted notion of a Las 
Vegas algorithm. 

An important issue, alluded to in the discussion following the analysis of RandQS but 
otherwise not covered in detail in this book, is the generation of random samples from 
various types of distributions. First, there is the question of generating randomness within 
the inherently deterministic computers that will implement our randomized algorithms. 
This leads into the area of pseudo-random number generation, which is surveyed in the 
article by Boppana and Hirschfeld [73] and in Knuth's book [259]. Even if we assume 
that a source of truly random bits is available, there is the issue of converting this into 
the various types of distributions that may be required in randomized algorithms (for 
example, see Problems 1.2 and 1.3). This problem is studied in the context of Monte 
Carlo simulations, for example in the work of von Neumann [409,410], and Knuth [259] 
covers this in great detail. A comprehensive study of this important family of problems 
in terms of its computational complexity was undertaken by Knuth and Yao [264]. 
The complexity of random sampling of combinatorial structures, such as graphs with 
specified properties, has been studied by Pruhs and Manber [338]; as discussed in 
Chapter 11, the problem of counting the number of combinatorial structures with 
specified properties, often a difficult computational problem, can sometimes be reduced 
to random sampling. 

The idea of using independent iterations to reduce the error probability of Monte 
Carlo algorithms has an analog for Las Vegas algorithms. Alt, Guibas, Mehlhorn, Karp, 
and Wigderson [25] study the possibility of reducing the probability that the running 
time of a Las Vegas algorithm substantially exceeds its expected value by employing 
the following strategy: choose a sequence (Tj) and use independent iterations of the 
Las Vegas algorithm, aborting the ith iteration in Tj steps, until one of the iterations 
terminates successfully within the allotted time. These results were strengthened by Luby, 
Sinclair, and Zuckerman [286], who also considered the minimization of the expected 
total running time of such strategies. 

The material of Section 1.3 is drawn from Paterson and Yao [329]. The Find algo
rithm described in Section 1.4 is due to Hoare [200]. Theorem 1.3 is given in a paper by 
Karp, Upfal and Wigderson [250]. Karp [244] gives a number of additional results on 
probabilistic recurrence relations. 
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The reader is referred to introductory texts on algorithms and complexity such 
as those by Aho, Hopcroft, and Ullman [5, 6] and Papadimitriou [326] for more 
details on the Turing machine model and the RAM model. It is known, for in
stance, that sorting n numbers requires O(n log n) operations in the RAM model of 
computation. The books by Bovet and Crescenzi [81] and by Papadimitriou [326] 
contain a more detailed treatment of the complexity classes described in this chapter. 

Problems -----------

1.1 (Due to J. von Neumann [409].) , 
(a) Suppose you are given a coin for which the probability of HEADS, say p, is 
unknown. How can you use this coin to generate unbiased (i.e., Pr[HEADS] = 
Pr[TAILS] = 1/2) coin-flips? Give a scheme for which the expected number of 
flips of the biased coin for extracting one unbiased coin-flip is no more than 
1/[P(1 - p)]. (Hint: Consider two consecutive flips of the biased coin.) 

(b) Devise an extension of the scheme that extracts the largest possible 
number of independent, unbiased coin-flips from a given number of flips of 
the biased coin. 

1.2 (Due to D.E. Knuth and A. C-C. Yao [264].) 
(a) Suppose you are provided with a source of unbiased random bits. Explain 
how you will use this to generate uniform samples from the set S = {O, ... , n-
1}. Determine the expected number of random bits required by your sampling 
algorithm. 

(b) What is the worst-case number of random bits required by your sampling 
algorithm? Consider the case when n is a power of 2, as well as the case 
when it is not. 

(c) Solve (a) and (b) when, instead of unbiased random bits, you are required 
to use as the source of randomness uniform random samples from the set 
{O, ... ,p -1}; consider the case when n is a power of p, as well as the case 
when it is not. 

1.3 (Due to D.E. Knuth and A. C-C. Yao [264].) Suppose you are provided with a 
source of unbiased random bits. Provide efficient (in terms of expected running 
time and expected number of random bits used) schemes for generating 
samples from the distribution over the set {2, 3, ... , 12} induced by rolling two 
unbiased dice and taking the sum of their outcomes. 

1.4 (a) Suppose you are required to generate a random permutation of size n. 
Assuming that you have access to a source of independent and unbiased 
random bits, suggest a method for generating random permutations of size 
n. Efficiency is measured in terms of both time and number of random bits. 
What lower bounds can you prove for this task? 

(b) Consider the following method for generating a random permutation of 
size n. Pick n random values Xl, ... , Xn independently from the uniform 
distribution over the interval [0,1]. Now, the permutation that orders the 
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random variables in ascending order is claimed to be a random permutation, 
and it can be determined by sorting the random values. Is the claim correct? 
How efficient is this scheme? 

(c) Consider the following "lazy" implementation of the scheme suggested 
in (b). The binary representation of the fraction Xj is a sequence of unbiased 
and independent random bits. At any given stage of the sorting algorithm, we 
would have chosen only as many bits of each Xj as necessary to resolve all 
the comparisons performed up to that point. When comparing Xi to Xj, if the 
current prefixes of their binary expansions do not determine the outcome of 
the comparisons, then we extend their prefixes by choosing further random 
bits until this happens. Compute tight bounds on the expected number of 
random bits used by this implementation. 

1.5 Consider the problem of using a source of unbiased random bits to generate 
samples from the set S = {O, ... , n - 1} such that the element i is chosen with 
probability PI. Show how to perform this sampling using O(log n) random bits 
per sample, regardless of the values of Pi. Use the result from part (c) of 
Problem 1.4. 

1.6 Consider a sequence of n flips of an unbiased coin. Let Hi denote the absolute 
value of the excess of the number of HEADS over the number of TAILS seen 
in the first i flips. Define H = maXi HI. Show that E[H;] = 9(.jJ), and that 
E[H] = 9(Jn). 

1.7 Suppose we choose a permutation rr of the ordered set N = {1, 2, ... n} 
uniformly at random from the space of all permutations of N. Let L(rr) denote 
the length of the longest increasing subsequence in permutation rr. 

(a) For large n and some positive constant c, prove that E[L(rr)] ~ cJn. 

(b) Is the bound in (a) tight? 

1.8 Consider adapting the min-cut algorithm of Section 1.1 to the problem of 
findi·ng an s-t min-cut in an undirected graph. In this problem, we are given 
an undirected graph G together with two distinguished vertices sand t. An s-t 
cut is a set of edges whose removal from G disconnects s from t; we seek an 
s-t cut of minimum cardinality. As the algorithm proceeds, the vertex s may 
get amalgamated into a new vertex as a result of an edge being contracted; 

. we call this vertex the s-vertex (initially the s-vertex is s itself). Similarly, 
we have a t-vertex. As we run the contraction algorithm, we ensure that we 
never contract an edge between the s-vertex and the t-vertex. 

(a) Show that there are graphs in which the probability that this algorithm 
finds an s-t min-cut is exponentially small. 

(b) How large can the number of s-t min-cuts in an instance be? 

1.9 Consider the Find algorithm described in Section 1.4 for selecting the kth 
smallest of a set S of n elements. Show that the algorithm finds the kth 
smallest element in S in expected time O(n). 

1.10 Consider the setting of Example 1.1. Show that the probability that no sailor 
returns to her own cabin approaches 1/8 as the number of sailors grows 
large. 

26 



PROBLEMS 

1.11 Verify the following inclusions: 

P ~ RP ~ NP ~ PSPACE ~ EXP ~ NEXP. 

It is not known whether these inclusions are strict. 

1.12 Verify the following inclusions: 

RP~ BPP~ PP. 

It is not known whether these inclusions are strict. 

1.13 Show that PP = co-PP and BPP = co-BPP. 

1.14 Show that NP ~ PP ~ PSPACE. 

1.15 (Due to K-I. Ko [265].) Show that NP ~ BPP implies NP = RP. 
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CHAPT ER 2 

Game-Theoretic Techniques 

IN this chapter we study several ideas that are basic to the design and analysis 
of randomized algorithms. All the topics in this chapter share a game-theoretic 
viewpoint, which enables us to think of a randomized algorithm as a proba
bility distribution on deterministic algorithms. This leads to the Yao's Minimax 
Principle, which can be used to establish a lower bound on the performance of 
a randomized algorithm. 

2.1. Game Tree Evaluation 

We begin with another simple illustration of linearity of expectation, in the 
setting of game tree evaluation. This example will demonstrate a randomized 
algorithm whose expected running time is smaller than that of any deterministic 
algorithm. It will also serve as a vehicle for demonstrating a standard technique 
for deriving a lower bound on the running time of any randomized algorithm for 
a problem. 

A game tree is a rooted tree in which internal nodes at even distance from 
the root are labeled MIN and internal nodes at odd distance are labeled MAX. 

Associated with each leaf is a real number, which we call its value. The evaluation 
of the game tree is the following process. Each leaf returns the value associated 
with it. Each MAX node returns the largest value returned by its children, and 
each MIN node returns the smallest value returned by its children. Given a 
tree with values at the leaves, the evaluation problem is to determine the value 
returned by the root. 

The evaluation of game trees plays a central role in artificial intelligence, 
particularly in game-playing programs. The reader may readily associate the 
children of a node with the options available to one of the two players in 
a game. The leaves represent the value of the game for either player. One 
player seeks to maximize this value, while the other tries to minimize it. 
At each step, an evaluation algorithm chooses a leaf and reads its value. 
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We study the number of such steps taken by an algorithm for evaluat
ing a game tree. We do not charge the algorithm for any other computa
tion. 

We will limit our discussion to the special case in which the values at the 
leaves are bits, 0 or 1. Thus, each MIN node can be thought of as a Boolean 
AND operation and each MAX node as a Boolean OR operation. This special 
case is of interest in its own right, having applications in mechanical theorem 
proving. Let TdJ< denote a uniform tree in which the root and every internal 
node has d children and every leaf is at distance 2k from the root. Thus, any 
root-to-Ieaf path passes through k AND nodes (including the root itself) and k OR 

nodes, and there are d2k leaves. An instance of the evaluation problem consists 
of the tree TdJ< together with a Boolean value for each of the d2k leaves. Given 
an algorithm, we study the maximum number of steps it takes to evaluate any 
instance of TdJ<. 

An algorithm begins by specifying a leaf whose value is to be read at the first 
step. Thereafter, it specifies such a leaf at each step, based on the values it has 
read on previous steps. In a deterministic algorithm, the choice of the next leaf 
to be read is a deterministic function of the values at the leaves read so far. For 
a randomized algorithm, this choice may be randomized. 

In Problem 2.1, the reader is asked to show that for any deterministic evalua
tion algorithm, there is an instance of TdJ< that forces the algorithm to read the 
values on all d2k leaves. 

We now give a simple randomized algorithm and study the expected number 
of leaves it reads on any instance of TdJ<. To simplify our presentation, we 
restrict ourselves to the case d = 2. Any deterministic algorithm for this case can 
be made to read all 22k = 4k leaves on some instance of T2J<. Our randomized 
algorithm is based on the following simple observation. Consider a single AND 

node with two leaves. If the node were to return 0, at least one of the leaves 
must contain O. A deterministic algorithm inspects the leaves in a fixed order, 
and an adversary can therefore always "hide" the 0 at the second of the two 
leaves inspected by the algorithm. Reading the leaves in a random order foils 
this strategy. With probability 1/2, the algorithm chooses the hidden 0 on the 
first step, so its expected number of steps is 3/2, which is better than the worst 
case for any deterministic algorithm. Similarly, in the case of an OR node, if it 
were to return a 1, then a randomized order of examining the leaves will reduce 
the expected number of steps to 3/2. 

The reader may wonder how the randomized algorithm can benefit if the AND 

node were to return 1, or if the OR node were to return a O. If the two children 
of these nodes are leaves, then clearly both leaves must be examined. The point 
is that at an internal AND node in a tree returning a 1, examining the two OR 

children (and evaluating their sub-trees) in a random order is still beneficial. 
The two OR children of an AND node must also return 1, and this is the easy 
case for the OR nodes. Similarly, at an internal OR node returning 0, the two AND 

children must return 0, and this is the easy case for the AND nodes. To explain 
this better, we specify the complete algorithm. 
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To evaluate an AND node v, the algorithm chooses one of its children (a sub
tree rooted at an OR node) at random and evaluates it by recursively invoking 
the algorithm. If 1 is returned by the sub-tree, the algorithm proceeds to evaluate 
the other child (again by recursive application). If 0 is returned, the algorithm 
returns 0 for v. To evaluate an OR node, the procedure is the same with the roles 
of 0 and 1 interchanged. We now argue by induction on k that the expected 
cost of evaluating any instance of T2J< is at most 3k

• 

The basis (k = 1) is an easy extension of our illustration above. Assume now 
that the expected cost of evaluating any instance of T 2J<-1 is at most 3k- 1• We 
establish the inductive step. Consider first a tree T whose root is an OR node, 
each of whose children is the root of a copy of T 2J<-1. If the root of T were to 
evaluate to 1, at least one of its children returns 1. With probability 1/2 this 
child is chosen first, incurring (by the inductive hypothesis) an expected cost of 
at most 3k- 1 in evaluating T. With probability 1/2 both sub-trees are evaluated, 
incurring a net cost of at most 2 x 3k- 1• Putting these observations together, the 
expected cost of determining the value of T is at most 

(2.1 ) 

If on the other hand the OR were to evaluate to 0, both children must be 
evaluated, incurring a cost of at most 2 x 3k- 1• 

Consider next the root of the tree T2J<, an AND node. If it evaluates to 1, then 
both its sub-trees rooted at OR nodes return 1. By the discussion in the previous 
paragraph and by linearity of expectation, the expected cost of evaluating T2J< 

to 1 is at most 2 x (3/2) X 3k- 1 = 3k
• On the other hand, if the instance of T2J< 

evaluates to 0, at least one of its sub-trees rooted at OR nodes returns O. With 
probability 1/2 it is chosen first, and so the expected cost of evaluating T 2.)< is 
at most 

Here the first term bounds the cost of evaluating both sub-trees of the OR node 
that returns 0; the second term accounts for the fact that with probability 1/2, 
an additional cost of (3/2)3k

- 1 may be incurred in evaluating its sibling that 
returns 1. 

Theorem 2.1: Given any instance of T2.)<, the expected number of steps for the 
above randomized algorithm is at most 3k • 

Since n = 4k the expected running time of our randomized algorithm is n1os.. 3, 

which we bound by nO.793 . Thus, the expected number of steps is smaller than 
the worst case for any deterministic algorithm. We will see other instances in 
later chapters. Note that the algorithm above is a Las Vegas algorithm and 
always produces the correct answer. 
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Scissors Paper Stone 

Scissors o 1 -1 

-Paper -1 o 1 

Stone 1 -1 o 

Figure 2.1: Matrix for scissors-paper-stone. 

2.2. The Minimax Principle 

The randomized algorithm of the preceding section has an expected .running 
time of nO.793 on any uniform binary AND-OR tree with n leaves. Can we establish 
that no randomized algorithm can have a lower expected running time? We are 
thus seeking a lower bound on the running time of any randomized algorithm 
for this problem. As a first step toward this end, we introduce a standard 
technique for proving such lower bounds: the minimax principle. Indeed, it is the 
only known general technique for proving lower bounds on the running times of 
randomized algorithms. This technique only applies to algorithms that terminate 
in finite time on all inputs and sequences of random choices. In Section 2.2.3, 
we will apply this technique to the game tree evaluation problem. We begin with 
a review of some elementary concepts in game theory. Note that the notion of 
game theory is not directly related to the game tree evaluation problem studied 
above. Rather, the game theory studied below yields the minimax principle, a 
general tool, which we will then apply to randomized algorithms for the game 
tree evaluation problem. 

2.2.1. Game Theory 

Consider the following game. Roberta and Charles put their hands behind 
their backs and make a sign for one of the following: stone (closed fist), paper 
(open palm), and scissors (two fingers). They then simultaneously display their 
chosen sign. The winner is determined by the following rules: paper beats stone 
by wrapping it, scissors beats paper by cutting it, and stone beats scissors by 
dulling it. The loser pays $1 to the winner, and the outcome is a draw when 
the two players choose the same sign. We can represent this game by the matrix 
in Figure 2.1. The rows of the matrix represent Roberta's choices; the columns, 
Charles' choices. The entries in the matrix are the amounts to be paid by Charles 
to Roberta. 

This is an instance of a two-person zero-sum game, and the matrix is called 
the payoff matrix. It is called a zero-sum game because the net amount won 
by Roberta and Charles is always exactly zero. In general, any two-person 
zero-sum game can be represented by an n x m payoff matrix M with real 
entries. (Throughout this book, we use boldface to denote vectors and matrices; 
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Scissors Paper Stone 

Scissors o 1 2 

Paper -1 o 1 

Stone -2 -1 o 

Figure 2.2: Matrix for modified scissors-paper-stone. 

generally, vectors will be lower-case symbols, and matrices upper-case symbols. 
For a vector x, we denote by Xi its ith component. All vectors are column vectors 
unless otherwise specified.) The set of possible strategies of the row player R 
is in correspondence with the rows of M, and likewise for the strategies of the 
column player C. The entry Mij is the amount paid by C to R when R chooses 
strategy i and C chooses strategy j. 

Naturally, the goal of the row (column) player is to maximize (minimize) the 
payoff. Assume that this is a zero-information game, in that neither player has 
any information about the opponent's strategy. If R chooses strategy i, then 
she is guaranteed a payoff of minj M ij, regardless of C's strategy. An optimal 
strategy for R is an i that maximizes minj M ij• Let VR = maxi minj Mij denote 
the lower bound on the value of the payoff to R when she uses an optimal 
strategy. An optimal strategy for C is a j that gives the best possible upper 
bound on the payoff from C to R. A similar argument establishes that C's 
optimal strategy ensures that his payoff to R is at most Ve = minj maXi Mij. 

Exercise 2.1: Show that the following inequality is valid for all payoff matrices. 

max min Mij ~ min max M'j. 
'j j i 

In general, the inequality in Exercise 2.1 is strict; for example, in scissors
paper-stone, VR = -1 and Ve = 1. When these two quantities are equal, the 
game is said to have a solution and the value of the game is V = VR = Ve. 
The solution (or the saddle-point) is the specific choice of (optimal) strategies 
that lead to this payoff. For games with a solution, let p and'}' denote optimal 
strategies for Rand C, respectively; clearly, V = Mpy. In general, a player could 
have more than one optimal strategy. 

Figure 2.2 shows a modified version of the scissors-paper-stone game, where 
the amount to be paid in certain cases is changed. It is easy to verify that this 
game has value V = 0 and the solution is p = 1 and'}' = 1. (Do you see why 
the other diagonal entries do not correspond to saddle-points?) 

What happens when a game has no solution? Then there is no clear
cut optimal strategy for any player. In fact, any knowledge of the opponent's 
strategy can be used to improve the payoff, unlike the case of games with saddle
points. An interesting way to get around this is to introduce randomization in 
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the choice of strategies. So far we have been talking about deterministic or 
pure strategies, but now we focus on randomized or mixed strategies. A mixed 
strategy is a probability distribution on the set of possible strategies. The row 
player picks a vector p = (PI, . .. ,Pn), which is a probability distribution on the 
rows of M, i.e., Pi is the probability that R will choose strategy i; similarly, the 
column player has a vector q = (q., ... , qm), which is a probability distribution 
on the columns of M. The payoff is now a random variable, and its expectation 
is given by 

n m 

E[payoff] = pTMq = LLPiMijqj. 
i-I j-I 

As before, using VR to denote the best possible lower bound on the expected 
payoff to R that can be ensured by choosing a strategy p, and using- Ve to 
denote the best possible upper bound on the expected payoff by C by choosing 
a strategy q, we obtain 

VR - maxminpTMq 
P II 

Ve - minmaxpT Mq. 
II P 

Here, the min and max range over all possible distributions. The well-known 
Minimax Theorem of von Neumann implies that this game always has a solution 
and that VR = Ve. 

Theorem 22 (von Neumann's Minimax Theorem): For any two-person zero-sum 
game specified by a matrix M, 

maxminpTMq = minmaxpTMq. 
P II II P 

In other words, the largest expected payoff that R can guarantee by choosing 
a mixed strategy is equal to the smallest expected payoff that C can guarantee 
using a mixed strategy. This common expected payoff value, called the value of 
the game, is denoted by V. A pair of mixed strategies (jj, q) which respectively 
maximize the left-hand side and minimize the right-hand side of the equation 
in Theorem 2.2 is called a saddle-point, and the two distributions are called 
optimal mixed strategies. 

Observe that once p is fixed, p T M q is a linear function of q and is minimized 
by setting to 1 the qj with the smallest coefficient in this linear function. 
The implications of this observation are rather interesting. If C knows the 
distribution p being used by R, then his optimal strategy is a pure strategy. A 
similar comment applies in the other direction. Also, this observation leads to a 
simplified version of the minimax theorem. Let ek denote a unit vector with a 1 
in the kth position and Os elsewhere. 

Theorem 2.3 (Loomis' Theorem): For any two-person zero-sum game specified 
by a matrix M, 

maxm~npTMej = minm~xeTMq. 
P } II I 
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2.2.2. Yao's Technique 

We now describe the application of the above game-theoretic results to proving 
lower bounds on the performanc~ of randomized algorithms. The idea is to view 
the algorithm designer as the column player C and the adversary choosing the 
input as the row player R. The columns correspond to the set of all possible 
algorithms; the rows correspond to the set of all possible inputs (of a fixed size). 
It is important to keep in mind that each column corresponds to a deterministic 
algorithm that always produces a correct solution. The payoff from C to R 
is some real-valued measure of the performance of an algorithm, such as the 
running time, the quality of the solution obtained, communication cost, or space. 
(In all the examples we will encounter in this book, the entries in the payoff 
matrix will be positive integers.) For the sake of concreteness, we assume in this 
chapter that the payoff refers to the running time, but it should be obvious that 
the following observations apply to any other measure. The algorithm designer 
would like to choose an algorithm that minimizes the payoff, while the adversary 
would like to maximize the payoff. 

Consider a problem where the number of distinct inputs of a fixed size is 
finite, as is the number of distinct (deterministic, terminating, and always correct) 
algorithms for solving that problem. A pure strategy for C corresponds to the 
choice of a deterministic algorithm, while a pure strategy for R corresponds 
to a specific input. Notice that an optimal pure strategy for C corresponds 
to an optimal deterministic algorithm, and Vc is the worst-case running time 
of any deterministic algorithm for the problem, which we call the deterministic 
complexity of the problem. (The meaning of VR is related to the non-deterministic 
complexity of the problem. If the game has a solution, then the non-deterministic 
and deterministic complexities coincide.) 

Our interest is in the interpretation of the mixed strategies for the algorithm 
designer and the adversary. A mixed strategy for C is a probability distribution 
over the space of (always correct) deterministic algorithms, so it is a Las Vegas 
randomized algorithm. An optimal mixed strategy for C is an optimal Las Vegas 
algorithm. A mixed strategy for R is a distribution over the space of all inputs. 

Let us define the distributional complexity of the problem at hand as the 
expected running time of the best deterministic algorithm for the worst distribu
tion on the inputs. This complexity is smaller than the deterministic complexity, 
since the algorithm knows the input distribution. 

Theorem 2.3 implies that the distributional complexity equals the least possible 
expected running time achievable by any randomized algorithm. (We reiterate 
that these observations apply only to scenarios where the number of algorithms 
is finite.) We restate von Neumann's and Loomis's theorems in the language of 
algorithms as follows. 

Corollary 2.4: Let n be a problem with a finite set I of input instances (of a 
fixed size), and a finite set of deterministic algorithms A. For input I E I and 
algorithm A E A, let C(l, A) denote the running time of algorithm A on input I. 
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For probability distributions p over I and q over A. let I p denote a random input 
chosen according to p and Af denote a random algorithm chosen according to q. 
Then. 

and 

maxminE[C(Ip,A)] = min max E[C(I,Af )]. 
p AEA f leI 

From this corollary, we obtain the following proposition, which provides the 
desired lower bound technique. 

Proposition 2.5 (Yao's Minimax Principle): For all distributions p over I and q 
over A. 

minE[C(Ip,A)] < maxE[C(I,Af )]· 
AEA lEI 

In other words, the expected running time of the optimal deterministic al
gorithm for an arbitrarily chosen input distribution p is a lower bound on the 
expected running time of the optimal (Las Vegas) randomized algorithm for 
TI. Thus, to prove a lower bound on the randomized complexity, it suffices 
to choose any distribution p on the input and prove a lower bound on the 
expected running time of deterministic algorithms for that distribution. The 
power of this technique lies in the flexibility in the choice of p and, more 
importantly, the reduction to a lower bound on deterministic algorithms. It is 
important to remember that the deterministic algorithm "knows" the chosen 
distribution p. 

The above discussion dealt only with lower bounds on the performance of 
Las Vegas algorithms. We conclude this section with a brief discussion of 
Monte Carlo algorithms with error probability € E [0,1/2]. Let us define the 
distributional complexity with error €, denoted minAEA E[Ce(/p, A)], to be the 
minimum expected running time of any deterministic algorithm that errs with 
probability at most € under the input distribution p. Similarly, we denote 
by maXlEI E[Ce(/,Af )] the expected running time (under the worst input) of 
any randomized algorithm that errs with probability at most € (again, the 
randomized algorithm is viewed as a probability distribution q on deterministic 
algorithms). Analogous to Proposition 2.5, we then have: 

Proposition 2.6: For all distributions p over I and q over A and any € E [0,1/2]. 

A pointer to the source of Proposition 2.6 is given in the Notes section. 
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2.2.3. Lower Bound for Game Tree Evaluation 

We now apply Yao's Minimax Principle to the problem of game tree evaluation. 
The lower bound that results only applies to algorithms that terminate in a 
finite number of steps on any input and sequence of random choices. Note that 
a randomized algorithm for game tree evaluation can in fact be viewed as a 
probability distribution over deterministic algorithms, because the length of the 
computation as well as the number of choices at each step are both finite. We may 
imagine that all of these coins are tossed before the beginning of the execution. 

Once again, we limit our attention to instances of the AND-OR tree T 2)<. 

While we could continue our discussion in the language of alternating levels of 
AND and OR nodes, the following exercise will lead to a.slightly more compact 
representation. 

Exercise 2.2: Show that the tree T2.k is equivalent to a balanced binary tree all of 
whose leaves are at distance 2k from the root, and all of whose internal nodes 
compute the NOR function: a node returns the value 1 if both inputs are 0, and 0 
otherwise. 

We proceed with the analysis of this tree of NORS of depth 2k. In order to prove 
a lower bound on the expected number of leaves evaluated by any randomized 
algorithm, we have to specify a distribution on instances (values for the leaves), 
and then prove a lower bound on the expected running time of any deterministic 
algorithm on such inputs. It is important to distinguish between the expected 
running time of the randomized algorithm (which is over the random choices 
made by the algorithm), and the expected running time of the deterministic 
algorithm when proving the lower bound (this being over the random instances). 
We also remind the reader that our lower bound will only apply to Las Vegas 
randomized algorithms that always evaluate the tree correctly. 

Let p = (3 - J"S)/2. Each leaf of the tree is independently set to 1 with 
probability p. Note that if each input to a NOR node is independently 1 with 
probability p, then the probability that its output is 1 is the probability that 
both its inputs are 0, which is 

(J"S_1)2 = 3-J"S = 
2 2 p. 

Thus the value of every node of the NOR tree is 1 with probability p, and the 
value of a node is independent of the values of all the other nodes on the same 
level. Consider a deterministic algorithm that is evaluating a tree furnished with 
such random inputs; let v be a node of the tree whose value the algorithm is 
trying to determine. Intuitively, the algorithm should determine the value of one 
child of v before inspecting any leaf of the other sub-tree. By doing so, it can 
try to maximize the benefit of information obtained by inspecting leaves. An 
alternative view of this process is that the deterministic algorithm inspects leaves 
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visited in a depth-first search of the tree, except of course that it ceases to visit 
sub-trees of a node v once the value of v has been determined. Let us call such 
algorithms depth-first pruning algorithms, referring to the order of traversal and 
the fact that sub-trees that supply no additional information are "pruned" away 
without being inspected. 

Proposition 2.7: Let T be a NOR tree each of whose leaves is independently set 
to 1 with probability q for afixed value q E [0,1]. Let W(T) denote the minimum, 
over all deterministic algorithms, of the expected number of steps to evaluate T. 
Then, there is a depth-first pruning algorithm whose expected number of steps to 
evaluate T is W(T). 

A formal proof of Proposition 2.7 by induction is omitted here and can be found 
in the reference given at the end of this chapter. 

Proposition 2.7 tells us that for the purposes of our lower bound, we may 
restrict our attention to depth-first pruning algorithms. We return to a NOR 

tree with n leaves, each of which is set to 1 independently with probability 
p = (3 - .j5)/2. For a depth-first pruning algorithm evaluating this tree, let 
W(h) be the expected number of leaves it inspects in determining the value of 
a node at distance h from the leaves. Clearly 

W (h) = W (h - 1) + (1 - p) x W (h - 1), 

where the first term represents the work done in evaluating one of the sub-trees 
of the node, and the second term represents the work done in evaluating the 
other sub-tree (which will be necessary if the first sub-tree returns the value 0, 
an event occurring with probability 1 - p). Letting h be log2 n and solving, we 
get W(h) ~ nO.694 • 

Theorem 2.8: The expected running time of any randomized algorithm that always 
evaluates an instance of T2J< correctly is at least nO.694 , where n = 22k is the number 
of leaves. 

We note that our lower bound of nO.694 is less than the upper bound of nO.793 

that follows from Theorem 2.1. Could it be that our lower bound technique is 
weak? Corollary 2.4 precludes this possibility, since the identity it gives is an 
equality; thus for any lower bound on the expected running time there must be 
a distribution on the inputs such that the running time of the best deterministic 
algorithm matches this lower bound. One possibility is that we have not chosen 
the best possible probability distribution for the values of the leaves. Indeed, in 
the NOR tree if both inputs to a node are 1, no reasonable algorithm will read 
leaves of both sub-trees of that node. Thus, to prove the best lower bound, 
we have to choose a distribution on the inputs that precludes the possibility 
that both inputs to a node will be 1; in other words, the values of the inputs 
are chosen at random but not independently. This stronger (and considerably 
harder) analysis shows that our algorithm of Section 2.1 is optimal. 
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2.3. Randomness and Non-uniformity 

A basic issue in the study of randomized algorithms is the extent to which 
randomization is necessary for solving a problem. When is it possible to remove 
the randomization in a randomized algorithm? The answer depends on a 
number of aspects of the problem being solved. The goal of this section is to 
show that this question is more subtle than appears at first, and touches on the 
issue of uniformity in algorithms. We now study the notion of a randomized 
circuit, and a general technique by which randomization can be removed in 
polynomial-sized randomized circuits. 

A Boolean circuit with n inputs is a directed acyclic graph with the following 
properties: 

1. There are n vertices of in-degree 0; these are called the inputs to the circuit and 
are labeled XI. X2, . .. ,Xn. There is one vertex with out-degree 0; this is called the 
output of the circuit. 

2. Every vertex v that is not an input or the output is labeled with one Boolean 
function b( v) from the set {AND, OR, NOT}. A vertex labeled NOT has in-degree l. 

3. Every input to the circuit is assigned a Boolean value. Under such an assignment 
of input values, each vertex v computes the Boolean function b(v) of the values on 
the incoming edges, and assigns this value to its outgoing edges. The value of the 
output is thus a Boolean function of Xl, X2, ... ,Xn; the circuit is said to compute 
this function. 

4. The size of a circuit is the number of vertices in it. 

A randomized circuit is very similar, except that there may be more than n 
vertices of in-degree 0, and these are partitioned into two classes: (1) random 
inputs, each of which is assigned an independent random value from {a, I}, and 
(2) the n circuit inputs, which are labeled x}, X2,' .. , Xn. A randomized circuit is 
said to compute a function f of the inputs x}, X2,' .. , Xn if the following properties 
hold: 

1. For ipputs x}, X2, . .. , Xn for which I(x}, . .. , xn) = 0, the output of the circuit is ° 
regardless of the values of random inputs. 

2. If, on the other hand, I(x}, ... ,xn) = 1, the output of the circuit is 1 with 
probability at least 1/2. 

Consider a Boolean function I : {a, 1 r --+ {a, I}. We denote by In the function 
I restricted to inputs from {O, l}n. A sequence C = C}, C2, ..• of circuits is a 
circuit family for I if Cn has n inputs and computes In (X}, X2, ... , xn) at its output 
for all n-bit inputs (x}, ... , xn). The family C is said to be polynomial-sized if the 
size of Cn is bounded above by p(n) for every n, where p(.) is a polynomial. A 
randomized circuit family for I is a circuit family for I that, in addition to the n 
inputs x}, . .. , X n, takes m random bits r}, . .. ,r m, each of which is equiprobably ° 
or 1. In addition, for every n, circuit Cn must satisfy two properties: 
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1. If !n(XI, ... ,xn) = 0, then the output of the circuit is 0 regardless of the values of 
random inputs r}, • •• ,r m. 

2. If !n(x}, ... , xn) = 1, then the output of the circuit is 1 with probability at least 
1/2. In other words, at least one half of the 2m choices of the bits rl, ... , r m will 
result in the circuit evaluating to 1. We will refer to such m-tuples rl, ... ,rm as 
witnesses for (x}, ... , xn), in that they testify to the correct value of !n(X}, ... , xn) 
when it is 1. 

Theorem 2.9 below asserts that randomization can be eliminated in poly
nomial-sized circuits. 

Theorem 2.9 (Adleman's Theorem): If a Boolean function has a randomized, 
polynomial-sized circuit family, then it has a polynomial-sized circuit family. 

PROOF: The proof is by a simple counting argument. 
We show how to turn a given randomized polynomial-sized circuit Cn for 

!n(XI, ... ,xn) using random inputs rI, ... , rm, into a deterministic polynomial
sized circuit Dn that computes !n(XI, . .. , xn). 

Form a matrix M with 2n rows, one for each possible input from {O, l}n. The 
matrix has 2m columns, one for each of the possible m-tuples from {O, l}m that the 
rj can assume. The entry Mjk is 1 if the setting of the rl, ... , rm corresponding to 
column k is a witness for the input X}, .•• ,Xn corresponding to row j; otherwise, 
the entry is o. Eliminate all rows of M corresponding to inputs for which !n 
evaluates to o. 

By definition, at least half the entries of every surviving row of M equal 1. 
Therefore, there must be a column with at least half its entries 1; in other words, 
there is an assignment of Os and Is to the rj that serves as a witness to at least 
half of the possible inputs. Let this witness be rl (1), ... ,r m( 1). Build a circuit T1, 

which is a copy of Cn with the random inputs "hard-wired" to rl (l), ... ,r m(l). 
Delete the column in M corresponding to rl (l), ... ,r m(l), and all rows that had 
Is in this column. Thus TI computes the correct value of !n(X}, ... , xn) whenever 
the input corresponds to one of the rows we have just eliminated. 

The matrix that remains still has the property that every row has at least half 
its entries equal to 1, since the string rl (l), ... ,r m(l) was not a witness for any of 
these rows whereas half the entries in these rows are guaranteed to be Is. Repeat 
the construction above, picking a second string rl (2), ... , rm(2) that is a witness 
for at least half the remaining inputs and building a circuit T2• Continuing in 
this manner, we will have deleted all the rows of M while building at most n 
circuits T}, ... , Tn. 

Now we take the OR of the outputs of the circuits T}, ... , Tn> and this is a 
(deterministic) circuit whose size is O(n) times that of the randomized circuit we 
started with. 0 

The technique in Theorem 2.9 is the first example we have seen of derandom
ization - where we take a randomized algorithm or computation, and diminish 
or entirely remove the randomness in it. This is often a useful technique for the 
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design of deterministic algorithms. Does Theorem 2.9 mean that randomization 
is dispensable in all polynomial-time computations? The answer is no, and has 
to do with the issue of non-uniformity in computation. The deterministic circuit 
generated by the above process is one that works for a particular value of n. In
deed, the circuit it produces for n inputs may have very little resemblance to the 
circuit it produces for n + 1 inputs, even if the original randomized circuits were 
similar. Any "practical" algorithm or circuit will in fact exhibit this property of 
similarity, which is formalized in the literature under the name uniformity. 

Complexity theory formalizes this intuition by classifying algorithms as being 
uniform or non-uniform as follows. Let a(n) be a function from the positive 
integers to strings in 1: •. An algorithm A is said to use advice a if on an input 
of length n it is given the string a(n) on a read-only tape. We say that A decides 
a language L with advice a if on an input x it uses the the read-only string 
a(lxl) to decide the membership of x in L. In other words, a single advice string 
a(n) enables the algorithm A to decide the membership of x in L for all inputs 
x having length n. Uniform algorithms are those that use no advice strings at 
all, whereas non-uniform algorithms are those that use such advice. For the 
complexity class P, we define the class P/poly to consist of all languages L that 
have a non-uniform polynomial-time algorithm A such that the length of the 
advice string a(n) is bounded by a polynomial in n. Likewise, we may define the 
class RPjpoly. 

Exercise 2.3: Consider any language L s; {O,1}o. We define a Boolean function f 
corresponding to the language L as follows. For any positive integer n, let fn be the 
Boolean function such that for any x E {O, 1}n, fn{x) assumes the value 1 if x ELand 
o otherwise. If there is a circuit family for f, we refer to it as a circuit family for L. 

Show that L E Pjpoly if and only if it has a polynomial-sized circuit family. 

In an analogous fashion, we may speak of a language L as having a ran
domized circuit family. Clearly, L E RP / poly if and only if it has a randomized 
polynomial-sized circuit family. In the light of this discussion, we may interpret 
Theorem 2.9 as proving that RP/poly c: P/poly. We thus have: 

Corollary 2.10: RP c: P/poiy. 

In summary, the removal of randomness in Theorem 2.9 only shows that this 
can be done in principle; it is not known how to do this in any uniform or 
practical way. 

Notes 

The material of Section 2.1 is based on a paper of Snir [381]. 
Most of the material in Section 2.2 is covered in textbooks on game theory. Some 

good sources are the books by Wang [213], Luce and Raift'a [287], and von Neumann 
and Morgenstern [411]. Theorem 2.2 is due to von Neumann [408], and Theorem 2.3 
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is due to Loomis [279]. The application of the minimax theorems to proving lower 
bounds on randomized algorithms was pointed out by Yao [419]. Proposition 2.6 is 
also from [419]. In fact, for proving lower bounds, \\"\! do not require the equality 
established in Corollary 2.4; all we require is the ineqw.1ity of Proposition 2.5. It is 
possible to give a direct proof of the inequality (not the equality) without resorting to 
game theory; the reader can find this in the paper of Fica Meyer auf der Heide, Ragde, 
and Wigderson [147]. 

In our lower bound for game tree evaluation, the principle that any deterministic 
algorithm may as well determine the value of one sub-tree before inspecting any leaves 
of its sibling (used in Section 2.2.3) is due to Tarsi [393]. Saks and Wigderson [362] 
refined the lower bound of Section 2.2.3 to show that Snir's algorithm is optimal among 
all randomized algorithms. 

Theorem 2.9 is due to Adleman [1]; a version of this theorem applicable tq circuit 
families with two-sided error is due to Gill [166]. The notion of non-uniformity is studied 
in depth in the paper by Karp and Lipton [245]. The re'.1der interested in the material 
of Sections 2.2.2 and 2.3 may wish to explore recent related work of Althofer [26] and 
of Lipton and Young [278]. 

Problems -----------

2.1 Show that for any deterministic evaluation algorithm, there is an instance of 
Td•k that forces the algorithm to read the values on all d 2k leaves. 

2.2 Generalize the randomized algorithm and analysis of Section 2.1 to .trees Td•k 

for d > 2. 

2.3 (Due to A. Boppana [362].) Consider a uniform rooted tree of height h - every 
leaf is at distance h from the root. The root, as well as any internal node, 
has three children. Each leaf has a Boolean value associated with it. Each 
internal node returns the value returned by the majority of its children. The 
evaluation problem consists of determining the value of the root; at each step, 
an algorithm can choose one leaf whose value it wishes to read. 

(a) Show that for any deterministic algorithm, there is an instance (a set of 
Boolean values for the leaves) that forces it to read all n = 3h leaves. 

(b) Consider the recursive randomized algorithm that evaluates two sub-trees 
of the root chosen at random. If the values returned disagree, it proceeds to 
evaluate the third sub-tree. Show that the expected number of leaves read by 
this algorithm (on any instance) is at most no.g

• 

2.4 Determine the value VR of the following 2 x 2 matrix game and give optimal 
mixed strategies for the two players. 

2.5 (Due to A.M. Karp.) Let (aij) be am xn matrix, let the vector (P"P2,. .. ,Pm) con
sist of reals in [0,1] such that 2:::, Pi = 1, and let (q" q2, . .. , qn) consist of reals 
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2.6 Use Yao's Minimax Principle to prove a lower bound on the expected running 
time of any Las Vegas algorithm for sorting n numbers. 

2.7 (Due to A.M. Karp.) You are given an array A containing n numbers in sorted 
order. In one step, an algorithm may specify an integer i E [1, n), and is given 
the value of A[i) in return. Determine lower and upper bounds on the expected 
number of steps taken by a Las Vegas randomized algorithm to determine 
whether or not a given key k is present in the array. 

2.8 (Due to A.M. Karp.) In a graph with n vertices, where n is even, a perfect 
matching is a set of n/2 edges, no two of which meet at a common vertex. 
Consider a randomized algorithm that takes an n-vertex graph as input and 
correctly determines whether the graph has a perfect matching. At each step 
the algorithm asks a question of the form "Is there an edge between vertex i 
and vertex j?" The complexity of the algorithm is defined as the maximum, 
over all n-vertex graphs G, of the expected number of questions C (n) asked 
when the input graph is G. Prove: C(n) = O(n2). 

2.9 (Due to A.M. Karp.) Give lower bounds on the expected number of steps for 
Las Vegas algorithms for the following problems: 

(a) Given a string of n bits, the algorithm must determine whether the string 
contains three consecutive 1s. In one step, it is allowed to inspect one bit of 
the string. All other computation is free. 

(b) Given a graph on n vertices, the algorithm must determine whether the 
graph contains a vertex of degree O. In one step, it specifies two vertices and 
is told whether there is an edge between the specified vertices (just as in 
Problem 2.8). All other computation is free. 

2.10 (Due to A.M. Karp.) Given a list of n values Vl,V2, .•. ,Vn , the majority element 
problem is to determine the index i, if one exists, such that the value Vi occurs 
more than n/2 times in the list. Determine lower and upper bounds on the 
expected running time of any Las Vegas algorithm that solves the majority 
element problem under the assumption that the algorithm can at each step 
specify two indices, and is told whether or not the corresponding list entries 
are equal. 

2.11 What happens to the proof of Theorem 2.9 if in the second condition in the 
definition of a randomized circuit we were to replace "at least half" by "at 
least 1/k for k > 2"? 

2.12 Show that BPP ~ P/poly. 
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CHAPT ER 3 

Moments and Deviations 

IN Chapters 1 and 2, we bounded the expected running times of several ran
domized algorithms. While the expectation of a random variable (such as a 
running time) may be small, it may frequently assume values that are far higher. 
In analyzing the performance of a randomized algorithm, we often like to show 
that the behavior of the algorithm is good almost all the time. For example, it is 
more desirable to show that the running time is small with high probability, not 
just that it has a small expectation. In this chapter we will begin the study of 
general methods for proving statements of this type. We will begin by examining 
a family of stochastic processes that is fundamental to the analysis of many 
randomized algorithms: these are called occupancy problems. This motivates 
the study (in this chapter and the next) of general bounds on the probability 
that a random variable deviates far from its expectation, enabling US to avoid 
such custom-made analyses. The probability that a random variable deviates 
by a given amount from its expectation is referred to as a tail probability for 
that deviation. Readers wishing to review basic material on probability and 
distributions may consult Appendix C. 

3.1. Occupancy Problems 

We begin with an example of an occupancy problem. In such problems we 
envision each of m indistinguishable objects ("balls") being randomly assigned 
to one of n distinct classes ("bins"). In other words, each ball is placed in 
a bin chosen independently and uniformly at random. We are interested in 
questions such as: what is the maximum number of balls in any bin? what is the 
expected number of bins with k balls in them? Such problems are at the core 
of the analyses of many randomized algorithms ranging from data structures 
to routing in parallel computers. Later, in Section 3.6, we will encounter a 
variant of the occupancy problem, known as the coupon collector's problem; in 
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Chapter 4, we will apply sophisticated techniques to various random variables 
arising in occupancy problems. 

Our discussion of the occupancy problem will illustrate a recurrent tool in the 
analysis of randomized algorithms: that the probability of the union of events is 
no more than the sum of their probabilities. This is a special case of the Boole
Bonferroni Inequalities (Proposition C.2) and can be formally stated as follows: 
for arbitrary events £}, £2, ... , en, not necessarily independent, 

n 

Pr[U?=I£d < L Pr[£i]. 
i=1 

This principle is extremely useful because it assumes nothing about the de
pendencies between the events. Thus, it enables US to analyze phenomena 
involving events with very complicated interactions, without having to unravel 
the interactions. 

Consider first the case m = n. For 1 < i < n, let Xi be the number of balls 
in the ith bin. Following Example 1.1, we have E[Xi ] = 1 for all i. Yet we do 
not expect that during a typical experiment every bin receives exactly one ball. 
Rather, we expect some bins to have no balls at all, and others to have many 
more than one. 

Let us try now to make a statement of the form "with very high probability, 
no bin receives more than k balls," for a suitably chosen k. Let £Ak) denote the 
event that bin j has k or more balls in it. We concentrate on analyzing £1(k). 
The probability that bin 1 receives exactly i balls is 

The second inequality results from an upper bound for binomial coefficients 
(Proposition B.2). Thus, 

Pr[e,(k)] "~mi,, m' (1+~+m2 +--} 
Let k··= r(e In n)/ In In n 1. Then, 

• ( e )kO 1 -2 
Pr[t'I(k )] ~ k. 1 _ elk. ~ n . 

(3.1) 

The same computation tells us that this upper bound applies to Pr[£j(k·)] for 
all i, but can we say that no bin is likely to have more than k· balls in it? For 
this we invoke the principle mentioned at the beginning of this section: the 
probability of the union of the events £j(k·) is no more than their sum. We 
obtain that 

Pr[u?=It'j(k·)] ~ t Pr[t'j(k·)] ~ !. 
j=1 n 
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Thus we have established: 

Theorem 3.1: With probability at least 1 - l/n, no bin has more than k· -
(e In n)/ In In n balls in it. 

Interestingly, when m is of the order of n log n, the bin with the most balls 
has about the same number of balls as the expected number of balls in any bin. 
This phenomenon is exploited in a number of randomized algorithms (see, for 
instance, Section 4.2). 

Exercise 3.1: For m = n log n, show that with probability 1 - 0(1) every bin contains 
O(log n) balls. 

We turn to a classic combinatorial problem. Suppose that m balls are 
randomly assigned to n bins. We study the probability of the event that they 
all land in distinct bins. The special case n = 365 is popular in mathematical 
lore as the birthday problem. The interpretation is that the 365 days of the 
year correspond to 365 bins, and the birthday of each of m people is chosen 
independently and uniformly from all 365 days (ignoring leap years). How large 
must m be before two people in the group are likely to share their birthdays? 

Consider the assignment of the balls to the bins as a sequential process: we 
throw the first ball into a random bin, then the second ball, and so on. For 
2 :s; i :s; m, let £i denote the event that the ith ball lands in a bin not containing 
any of the first i-I balls. We will bound Pr[n~2£a from above. From (1.6), we 
can write 

Pr[n~2t'il = Pr[t'2]Pr[t'3 I t'2]Pr[t'4 I t'2 n t'3]··· Pr[t'm I n~21t'd. 

Now, it is easy to compute Pr[£ i I n~-:~£ j]: this is simply the probability that 
the ith ball lands in an empty bin given that the first i-I all fell into distinct 
bins, and is thus 1 - (i - l)/n. Making use of the fact that 1 - x :s; e-X, we have 

m ( • 1) m Pr[n~2t'il :s; IT 1 - I ~ :s; IT e-(i-l)/n = e-m(m-l)/2n. 

i=2 i=2 

Thus, we see that for m equal to r J2n + 11, the probability that all m balls land 
in distinct bins is at most l/e; as m increases beyond this value, the probability 
drops rapidly. 

3.2. The Markov and Chebyshev Inequalities 

We have seen above that making statements about the probability that a random 
variable deviates far from its expectation may involve a detailed, problem-specific 
analysis. Often, one can avoid such detailed analyses by resorting to general 
inequalities on such tail probabilities. 
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We begin with the Markov inequality, a fundamental tool we will invoke 
repeatedly when we develop more sophisticated bounding techniques. Let X 
be a discrete random variable and f(x) be any real-valued function. Then the 
expectation of f(X) is given by (see Appendix C) 

Elf(X)] = L f(x)Pr[X = x]. 
x 

Theorem 3.2 (Markov Inequality): Let Y be a random variable assuming only 
non-negative values. Then for all t E R + , 

Equivalently, 

Pr[Y ~ t] ::;; E[Y]. 
t 

1 
Pr[Y ~ kE[Y]] ::;; k' 

PROOF: Define a function f(y) by f(y) = 1 if y ~ t, and 0 otherwise. Then 
Pr[Y ~ t] = Elf(Y)]. Since f(y) ::;; y/t for all y, 

Elf(Y)] ::;; E [~] = E[t
Y

] , 

and the theorem follows. 0 

This is the tightest possible bound when we know only that Y is non-negative 
and has a given expectation. Unfortunately, the Markov inequality by itself 
is often too weak to yield useful results. The following exercise may help the 
reader appreciate this; it shows that the Markov inequality is tight only for 
rather uninteresting distributions. 

Exercise 3.2: Given a positive integer k, describe a random variable X assuming 
only non-negative values, such that 

1 
Pr[X ~ kE[X)) = "j{' 

The following generalization of Markov's inequality underlies its usefulness 
in deriving stronger bounds. 

Exercise 3.3: Let Y be any random variable and h any non-negative real function. 
Show that for all t E R + , 

Pr[h(Y) ~ t] ::; E[h(Y)). 
t 
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We now show that the Markov inequality can be used to derive better bounds 
on the tail probability by using more information about the distribution of the 
random variable. The first of these is the Chebyshev bound, which is based 
on the knowledge of the variance of the distribution; we will apply this to the 
analysis of a simple randomized selection algorithm. 

For a random variable X with expectation Jlx, its variance uk is defined to 
be E[(X - Jlx )2]. The standard deviation of X, denoted ux, is the positive square 
root of uk. (See Appendix C.) 

Theorem 3.3 (Chebyshev's Inequality): Let X be a random variable with expec
tation Jlx and standard deviation Ux. Then for any t E R+, 

PROOF: First, note that 

1 
Pr[lX - Jlxl ;::: tux] ~ t2 • 

The random variable Y = (X - JlX)2 has expectation uk, and applying the 
Markov inequality to Y bounds this probability from above by 1/t2• 0 

3.3. Randomized Selection 

We now consider the use of random sampling for the problem of selecting the 
kth smallest element in a set S of n elements drawn from a totally ordered 
universe. We assume that the elements of S are all distinct, although it is not 
very hard to modify the following analysis to allow for multisets. Let rs(t) 
denote the rank of an element t (the kth smallest element has rank k) and let 
S(i) denote the ith smallest element of S. We extend the use of this notation to 
subsets of S as well. Thus we seek to identify S(k). 

In Step 1 (see following page), we sample with replacement: for instance, if 
an element s of S is chosen to be in R on the first of our n3/ 4 drawings, the 
remaining n3/ 4 - 1 drawings are all as likely to pick s again as any other element 
in S. This style of sampling appears to be wasteful, but we employ it here 
because it keeps our analysis clean. Sampling without replacement would result 
in a marginally sharper analysis, but in practice this may be slightly harder to 
implement: throughout the sampling process, we would have to keep track of 
the elements chosen so far. 

Figure 3.1 illustrates Step 3, where small elements are at the left end of the 
picture and large ones at the right. Determining (in Step 4) whether S(k) E P is 
easy since we know the ranks rs(a) and rs(b) and we compare either or both of 
these to k, depending on which of the three if statements in Step 4 we execute. 
The sorting in Step 5 can be performed in 0 (n3/410g n) steps. 
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Algorithm LazySelect: 

Input: A set S of n elements from a totally ordered universe, and an integer k 

in [1, n]. 

Output: The kth smallest element of S, S(k)' 

1. Pick n3/ 4 elements from S, chosen independently and uniformly at random 
with replacement; call this multiset of elements R. 

2. Sort R in O(n3/410gn) steps using any optimal sorting algorithm. 

3. Let x = kn-1/ 4 • For t = max{lx - .JilJ, 1} and h = min{fx + .Jill, n3
/
4
}, let 

a = R(() and b = R(h)' By comparing a and b to every element of S, determine 
fs(a) and rs(b). 

4. if k < n1/4, then P = {y E Sly ~ b}; 
else if k > n - n1/4, let P = {y E Sly ~ a}; 
else if k E [n1/4, n - n1/4], let P = {y E S I a ~ y :s; b}; 

Check whether S(k) E P and IP I ~ 4n3/ 4 + 2. If not, repeat Steps 1-3 until such 
a set P is found. 

5. By sorting P in O(IPllog IPI) steps, identify P(k-rs(a)+1). which is S(k)' 

• p • 

I I I I I I I I I I 
\/ L S(k) H 

Elements of R 

Figure 3.1: The LazySelect algorithm. 

Thus the idea of the algorithm is to identify two elements a and b in S such 
that both of the following statements hold with high probability: 

1. The. element S{k) that we seek is in P. 

2. The set P of elements between a and b is not very large, so that we can sort P 
inexpensively in Step 5. 

We examine how either of these requirements could fail. We focus on the most 
interesting case when k E [nl/4, n - nl/4], so that P = {y E S I a ::; y < b}; 
the analysis for the other two cases of Step 4 is similar and in fact somewhat 
simpler. 

If the element a is greater than S{k) (or if b is smaller than or equal to S(k)' 

we fail because P does not contain S{k)' For this to happen, fewer than ( of the 
samples in R should be smaller than S{k) (respectively, at least h of the random 
samples should be smaller than S{k). We will bound the probability that this 
happens using the Chebyshev bound. 
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The second type of failure occurs when P is too big. To study this, we define 
kt = max{1,k-2n3/

4
} and kh = min{k+2n3/4,n}. To obtain an upper bound on 

the probability of this kind of failure, we will be pessimistic and say that failure 
occurs if either a < S{k() or b > S{k~)' We prove that this is also unlikely, again 
using the Chebyshev bound. Before we perform this analysis, we establish an 
important property of independent random variables. Recall the definition of a 
joint density function p(x,y) for random variables X and Y (Definition C.9) . 

• Definition 3.1: Let X and Y be random variables and f(x,y) be a function of 
two real variables. Then, 

E[f(X, Y)] = Lf(x,y)p(x,y). 
X,Y 

For independent random variables X and Y we have from Proposition C.6 

E[XY] = E[X]E[Y]. (3.2) 

Lemma 3.4: Let Xt,X2,,,,,Xm be independent random variables. Let X = 

L:::'1 Xi. Then uk = L:::'1 ut 
PROOF: Let J1.i denote E[Xi]' and J1. = L:::'1 J1.i. The variance of X is given by 

m 

E[(X - J1.)2] = E[(L(Xi - J1.i»2]. 
i=1 

Expanding the latter and using linearity of expectations, we obtain 
m 

E[(X - J1.)2] = L E[(Xi - J1.i)2] + 2 L E[(Xi - J1.i)(Xj - J1.j)]. 
i=1 i<j 

Since all pairs Xi,Xj are independent, so are the pairs (Xi - J1.i), (Xj - J1.j). 
By (3.2), each term in the latter summation can be replaced by E[(Xi - J1.i)] 
E[(Xj - J1.j)]. Since E[(Xi - J1.i)] = E[Xi] - J1.i = 0, the latter summation vanishes. 
It follows that 

m m 

E[(X - J1.)2] = L E[(Xi - J1.i)2] = L uk
i

• 

i=1 i=1 

o 
As in the analysis of RandQS in Chapter 1, we measure the running time of 

LazySelect in terms of the number of comparisons performed by it. 

Theorem 3.5: With probability 1 - O(n-l/4), LazySelect finds S{k) on the first 
pass through Steps 1-5, and thus performs only 2n + o(n) comparisons. 

PROOF: The time bound is easily established by examining the algorithm; Step 3 
requires 2n comparisons, and all other steps perform o(n) comparisons, provided 
the algorithm finds S{k) on the first pass through Steps 1-5. We now consider 
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the first mode of failure listed above: a > S{k) because fewer than ( of the 
samples in R are less than or equal to S{k) (so that S{k) ~ P). Let Xi = 1 if the 
ith random sample is at most S{k), and 0 otherwise; thus Pr[Xi = 1] = kin, and 

3/4 

Pr[Xi = 0] = 1 - kin. Let X = L:~=l Xi be the number of samples of R that 
are at most S{k)' Note that we really do mean the number of samples, and not 
the number of distinct elements. The random variables Xi are Bernoulli trials 
(Appendix C): each may be thought of as the outcome of a coin toss. Then, 
using Lemma 3.4 and the variance of a Bernoulli trial with success probability p 

and 

kn3/ 4 

Jl.x = -- = kn-l/4, 
n 

(k) ( k) n
3
/
4 

ui = n3/4;; 1 -;; =:; 4' 

This implies that Ux =:; n 3/ 8/2. Applying the Chebyshev bound to X, 

Pr[lX - Jl.xl ~ .In] = Pr[lX - Jl.xl ~ 2n1
/
8ux] = o( n-l/4). 

An essentially identical argument shows that 

Pr[b < S{k)l = o( n-l/4). 

Since the probability of the union of events is at most the sum of their probabil
ities, the probability that either of these events occurs (causing S{k) to lie outside 
P) is O(n-l/4). 

Now for the second mode of failure - that P contains more than 4n3/ 4 + 2 
elements. For this, the analysis is very similar to that above in studying the first 
mode of failure, with kt and kh playing the role of k. The analysis shows that 
Pr[a < S{k()] and Pr[b > S{k~)] are both O(n-l/4) (the reader should verify these 
details). Adding up the probabilities of all of these failure modes, we find that 
the probability that Steps 1-3 fail to find a suitable set P is O(n-l/4). 0 

Exercl~ 3.4: The failure probability can be driven down further at the expense of 
increased running time. For a suitable definition of the o(n) term, give an upper 
bound on the probability that the algorithm does not find S(k) in en + o(n) steps for 
e > 2. 

Exercise 3.5: Theorem 3.5 tells us that the probability that LazySelect terminates in 
2n + o(n) steps goes to 1 as n - 00. Suggest a modification in the algorithm that 
brings the constant in the linear term down to 1.5 from 2. We will refine this further 
in Problem 4.16. 

This adds to the significance of LazySelect: the best known deterministic 
selection algorithms use 3n comparisons in the worst case and are quite com
plicated to implement. Further, it is known that any deterministic algorithm for 
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finding the median requires at least 2n comparisons, so we have a randomized 
algorithm that is both fast and has an expected number of comparisons that is 
provably smaller than that of any deterministic algorithm. The high probability 
bound of the previous exercise can be easily converted into a bound on the 
expected running time: 

Exercise 3.6: Show that as a direct corollary of Theorem 3.5, the expected running 
time of the LazySelect algorithm is 2n + o(n). 

Consider what happens when we modify LazySelect to be recursive as follows: 
in Step 5, instead of sorting P we recursively use LazySelect to find P{k-rs{a)+l). 

In this recursive version, the size of the candidate set P in which we are seeking 
S{k) is shrinking as the recursion proceeds. Using our analysis we can prove 
that at a typical stage of recursion the probability of failure at that stage is 
O(IPI-1/ 4). But IPI is diminishing, so that this probability of failure is rising 
as the algorithm proceeds! Thus, when the candidate set is down to a constant 
size, for instance, the failure probability is up to a constant and there is very 
little we can do about it. This is a fundamental barrier, not a weakness of our 
analysis. This is a typical problem with recursive randomized algorithms, and 
rears its head again in parallel randomized algorithms (where we always try to 
break a problem into smaller sub-problems) as well. A standard solution is to 
stop the recursion when the problem size is down to a certain size, and switch 
to a different, more expensive but deterministic technique - as we did by sorting 
in Step 5 of LazySelect. 

3.4. Two-Point Sampling 

We have so far been making use of the fact that the variance of the sum of 
independent random variables equals the sum of their variances. In fact, we can 
make a stronger statement. Let X and Y be discrete random variables defined 
on the same probability space. The joint density function of X and Y is the 
function 

p(x,y) = Pr[{X = x} n {Y = y}]. 

Thus Pr[Y = y] = L:xp(x,y), and 

Pr[X = x I Y = y] = p(x,y) 
Pr[Y = y] 

These definitions extend to a set Xt,X2, .•. of more than two random variables. 
Such a set of random variables is said to be pairwise independent if for all i =1= j, 
and x, y E JR., 

Pr[Xj = x I Xj = y] = Pr[Xj = x]. 

We will use the result from the following exercise. 
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Exercise 3.7: Let n be a prime number and 'lLn denote the field of integers modulo 
n. For a and b chosen independently and uniformly at random from 'lLn, let Yi = 
ai + b mod n. Show that for i =1= j (mod n), Yi and Yj are uniformly distributed on 
'lLn and pairwise independent. (Make use of the fact that in the field 'lLn, given fixed 
values for Yi and Yj, we can solve Yi == ai +b (mod n) and Yj == aj +b (mod n) uniquely 
for a and b.) 

The following exercise is similar to Lemma 3.4. 

Exercise 3.8: Let Xl, X2, ••• , Xm be pairwise independent random variables, and X = 

L:::l Xi. Show that u~ = L:::l u~; . 

We now consider an application of these concepts to the reduction of the 
number of random bits used by RP algorithms (see Definition 1.8). Consider 
an RP algorithm A for deciding whether input strings x belong to a language 
L. Given x, A picks a random number r from the range Zn = {O, ... ,n - I}, 
for a suitable choice of a prime n, and computes a binary value A(x, r) with the 
following properties: 

• If x E L, then A(x,r) = 1 for at least half the possible values of r . 

• If x ~ L, then A(x, r) = 0 for all possible choices of r. 

For a randomly chosen r, A(x, r) = 1 is conclusive proof that x E L, while 
A(x, r) = 0 is evidence that x ~ L. 

For any x E L, we refer to the values of r for which A(x,r) = 1 as witnesses 
for x; clearly, at least nl2 of the n possible values of r are witnesses. Of course, 
for x ~ L, there are no witnesses at all. The definition allows different x E L 
to have different sets of witnesses. Generally, n will be too large for us to test 
efficiently all the n potential witnesses for a given input x. However, for any 
x E L, a random choice of r is a witness with probability at least 1/2. 

The fear is that x E L but the randomly chosen value of r yields A(x, r) = O. 
However, we can drive down this probability of incorrectly classifying x by 
picking t > 1 values rh .. " r t independently from the range Zn, and computing 
A(x, rj) for all of them - in other words, by performing t independent iterations 
of the algorithm A on the same input x. If for any i we obtain A(x, rj) = 1, we 
declare that x is in L, else we declare that x is not in L. By the independence 
of the trials, we are guaranteed that the probability of incorrectly classifying an 
input x E L (by declaring that it is not in L) is at most 2-t • 

Choosing t independent random numbers is expensive in that it requires 
n(t log n) random bits. Suppose instead that we are only willing to use O(log n) 
random bits. In particular suppose that we wish to use only two independent 
samples from Z". For a, b chosen independently from Zn, the naive usage of a 
and b as potential witnesses, Le., computing A(x,a) and A(x,b), yields an upper 
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bound of only 1/4 on the probability of incorrect classification. Here is a better 
scheme: let rj = ai + b mod n, and compute A(x, rj) for 1 ~ i ~ t. As before, if 
for any i we obtain A(x, rj) = 1, we declare that x is in L, else we declare that x 
is not in L. What is the probability of incorrectly classifying any input x? We 
show that this probability is much smaller than 1/4. 

We need to worry about the possibility of making error only in the case 
where the input x is in L. Our analysis will be insensitive to the actual values 
of r in Zn which are witnesses for x; we will only rely on the fact that at least 
half the values of r are witnesses. Clearly A(x, rj) is a random variable over the 
probability space of pairs a and b chosen independently from Zn. By the result 
of Exercise 3.7, the random r;'s are pairwise independent and, therefore, so are 
the random variables A(x, rj), for 1 ~ i ~ t. Let Y = L:~""l A(x, rj). Assuming 
that x E L, E[Y] ~ tl2 and u? ~ t14, or Uy ~ .ji12. The probability tHat the 
pairwise independent iterations produce an incorrect classification corresponds 
to the event {Y = O}, and 

Pr[Y = 0] S Pr[lY - E[Y]I ~ tI2]. 

By the Chebyshev inequality, the latter is at most lit. Thus, the error probability 
is at most lit, which is a considerable improvement over the error bound of 1/4 
achieved by the naive use of a and b. This improvement is sometimes referred 
to as probability amplification. 

For a random variable X with expectation J1.x, we define the kth central 
moment to be J1.~ = E[(X - J1.x )k], if it exists (Appendix C). For example, the 
variance is the second central moment. 

Exercise 3.9: The use of the variance of a random variable in bounding its deviation 
from its expectation is called the second moment method. In an analogous fashion, 
we can speak of the kth moment method: let k be even, and suppose we have a 
random variable X for which J,/~ = E[(X - J,/x )k] exists. Show that 

Pr[lX-J,/xl > tV'PI] s t:· 
Why is the kth moment method difficult to invoke for odd values of k? 

The second moment method is generally useful for a random variable X if 
Ux is o(J1.x). In a manner similar to "two-point" sampling (the name comes from 
the independent choice of two points a and b from which the rj are derived), one 
can speak of k-point sampling for k > 2. The reader is referred to Appendix C 
for a further discussion of k-wise independence. 

3.5. The Stable Marriage Problem 

Consider a society in which there are n men (denoted by capital letters 
A,B,C, ... ) and n women (denoted by a,b,c ... ). A marriage M is a 1-1 correspon-
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dence between the men and the women. Assume a monogamous, heterosexual 
society. Each person has a preference list of the members of the opposite sex 
organized in a decreasing order of desirability. A marriage is said to be unstable 
if there exist two married couples X-x and Y-y such that X desires y more than 
x, and y desires X more than Y, implying that X-y will have a tendency to leave 
their current mates to marry each other. The pair X-y is said to be dissatisfied 
under this marriage. A marriage M in which there are no dissatisfied couples is 
called a stable marriage . 

• Example 3.1: 
For n = 4, consider the following preference lists. 

A : abed B : baed C : adeb D: deab 
a : ABCD b: DCBA e: ABCD d: CDAB 

Consider the marriage M given by A-a, B-b, C-c, and D-d. Here C-d is a 
dissatisfied couple, implying that M is unstable. However, if C and d marry each 
other, and c and D marry each other, we obtain the stable marriage given by 
A-a, B-b, C-d, D-c. 

The problem of finding stable marriages has several interesting applications, 
for example in matching medical graduates to residency positions in hospitals. 
It can oe shown that for every choice of preference lists there exist at least 
one stable marriage. (Curiously enough, this is not the case in a homosexual, 
monogamous society with an even number of inhabitants.) We will prove this 
by presenting an algorithm to find a stable marriage. The naive approach of 
starting with an arbitrary marriage and trying to stabilize it by pairing up 
dissatisfied couples does not work. 

Fortunately, an equally simple algorithm - the Proposal Algorithm - does 
the trick. The basic idea behind this algorithm can be summarized as "man 
proposes, woman disposes": each currently unattached man proposes to the 
most desirable woman on his list who has not already rejected him, and this 
woman then decides whether to accept or reject a proposal. The Proposal 
Algorithm is used by hospitals in North America in the match program that 
assigns medical graduates to residency positions. 

More precisely, at any step, this algorithm will have a partial marriage. 
Assume that the men are numbered in some arbitrary manner. The lowest
numbered unmarried man X proposes to the most desirable woman on his list 
who has not already rejected him, call her x. The woman x will accept the 
proposal if she is currently unmarried, or if her current mate Y is less desirable 
to her than X (poor Y is jilted and reverts to the unmarried state). The algorithm 
repeats this process, terminating when every person has been married. 

We show that this algorithm always terminates with a stable marriage. A 
woman once married will stay married during the course of the algorithm, 
although her mates may change with time. Furthermore, the desirability of her 
mates (in her view) can only improve with time. Thus at each step either a 
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woman gets married for the first time, or an already married woman obtains a 
more desirable mate. 

An unattached man always has at least one woman available that he can 
proposition. This is because every woman he has already proposed to is currently 
married, and if he runs out of women then all women are married - this cannot 
happen unless all men are married too. Since at each step the proposer will 
eliminate one woman on his list, and the total size of the lists is n2, we conclude 
that the algorithm uses at most n2 proposals. 

We claim that the final marriage M is stable. Otherwise, let X-y be a 
dissatisfied pair, where in M they are paired as X-x and V-yo Since X prefers 
y to x, he must have proposed to y before getting married to x. Since y either 
rejected X, or accepted him only to jilt him later, her mates thereafter (including 
Y) must be more desirable to her than X. Therefore, y must prefer Y' to X, 
contradicting the assumption that y is dissatisfied. 

Our interest here is in performing an average-case analysis of this algorithm. 
Thus we are considering a probabilistic analysis of a deterministic algorithm. 
We introduce this analysis here because it touches upon several tools that are 
important in the analysis of randomized algorithms. 

For this average-case analysis, we assume that the men's lists are chosen 
independently and uniformly at random; the women's lists can be arbitrary but 
must be fixed in advance. Let the random variable T p denote the number of 
proposals made during the execution of the Proposal Algorithm. It is clear that 
the running time of the algorithm is proportional to Tp. At first glance, it may 
appear that the distribution Tp is extremely difficult to analyze, owing to the 
various dependencies between the proposals. For instance, the choice of the 
proposer at any step is severely conditioned by the history of the process. The 
choice of the woman at each step also depends on the past proposals of the 
current proposer. 

We present a very simple technique - the Principle of Deferred Decisions -
for getting around such problems using the example of the card game called 
Clock Solitaire. In this game we start with a standard deck of 52 cards, which 
is assumed to be randomly shuffled. The pack is then divided into 13 piles 
of 4 cards each. Each pile is arbitrarily labeled with a distinct member of 
{A,2,3, ... ,J,Q,K}. On the first move we draw a card from the pile labeled K. 
At each subsequent move. a card is drawn from the pile whose label is the face 
value of the card drawn at the previous move (the suits of the cards are ignored 
in this game). The game ends when an attempt is made to draw a card from an 
empty pile. We win the game if, on termination, all 52 cards have been drawn; 
in all other cases we lose the game. 

Let us estimate the probability of winning the game. Observe that the game 
always terminates in an attempt to draw a card from the K pile: the last card 
drawn has to be a K. This is because there are 4 cards of each denomination, 
and except for the K pile. each pile initially has 4 cards. 

A naive view of the probability space for this game considers all possible 
ways of dealing out the cards. Each point in this space corresponds to some 
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partition of the 52 cards into 13 distinct piles, with an ordering defined on the 
4 cards in each pile. Using this approach, computing the probability of a win 
would be a formidable task, since at each move of the game we introduce a new 
source of dependency. 

We now examine a second probability space that better captures the dynamics 
of the game. The idea is to let the random choices unfold with the progress of 
the game, rather than fix the entire set of choices in advance. At each draw any 
unseen card is equally likely to appear. Thus, the process of playing this game 
is exactly equivalent to repeatedly drawing a card uniformly at random from a 
deck of 52 cards. A winning game corresponds to the situation where the first 
51 cards drawn in this fashion contain exactly 3 Kings. The probability of the 
52nd card drawn being a King is exactly 1/13; this is also the probability of 
winning the game. 

The idea of the Principle of Deferred Decisions is to not assume that the 
entire set of random choices is made in advance. Rather, at each step of the 
process we fix only the random choices that must be revealed to the algorithm. 

The Principle of Deferred Decisions can be used to simplify the average-case 
analysis of the Proposal Algorithm as follows. We do not assume that the men 
have chosen their (random) preference list in advance. In fact, let us suppose 
that men do not know their lists to start with. Each time a man has to make 
a proposal, he picks a random woman from the set of women not already 
propositioned by him, and proceeds to propose to her. Clearly, this is equivalent 
to choosing the random preference lists prior to the execution of the algorithm. 

The only dependency that remains is that the random choice of a woman at 
any step depends on the set of proposals made so far by the current proposer. 
We can eliminate even this dependency, albeit at the cost of modifying the 
behavior of the algorithm. Suppose that each time a man makes a proposal, he 
chooses a woman uniformly at random from the set of all n women, including 
those to whom he has already proposed. In other words, he forgets the fact that 
these women have already rejected him. Call this new algorithm the Amnesiac 
Algorithm. 

How does the performance of the new algorithm relate to that of the original 
one? Every proposal a man makes to a woman who has already rejected him 
will be rejected again. Thus, the output produced by the Amnesiac Algorithm is 
exactly the same as that of the original Proposal Algorithm. The only difference 
is that there are some wasted proposals in the Amnesiac Algorithm. Let TA 
denote the number of proposals made by the Amnesiac Algorithm. Clearly, TA 
stochastically dominates Tp (Appendix C): for all m, Pr[TA > m] ~ Pr[Tp > m]. 
Therefore, it suffices for an upper bound to analyze the distribution of TA• 

A benefit of analyzing TA is that we need only count the total number of 
proposals made, without regard to the name of the proposer at each stage. This 
is because each proposal is independently made to one of the n women chosen 
uniformly at random. Moreover, the algorithm terminates with a stable marriage 
once all women have received at least one proposal each. As will become clear 
shortly, bounding the value of TA is a special case of the Coupon Collector's 
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Problem described in the next section. The following theorem is implied by 
Theorem 3.8, a result about deviations in the Coupon Collector's Problem that 
we will prove below in Section 3.6. 

Theorem 3.6: For any constant CElt, and m = n In n + cn, 

lim Pr[TA > m] = 1 _ e-e-c. 
n ..... CXl 

3.6. The Coupon Collector's Problem 

In the coupon collector's problem, there are n types of coupons and at each 
trial a coupon is chosen at random. Each random coupon is equally likely to 
be of any of the n types, and the random choice of the coupons are mutually 
independent. Let m be the number of trials. The goal is to study the relationship 
between m and the probability of having collected at least one copy of each 
of the n types. The reader may wish to make the correspondence between this 
process and an occupancy problem (Section 3.1) in which m balls are randomly 
distributed in n bins. This process will arise again in the study of random walks 
(Chapter 6). In this section we provide an amazingly precise answer to this 
question, while illustrating some fundamental ideas in the analysis of stochastic 
processes of the type that arise in randomized algorithms. 

3.6.1. An Elementary Analysis 

Let X be a random variable defined to be the number of trials required to collect 
at least one of each type of coupon. We first determine the expected value of X. 
Let Ch C2, ... , Cx denote the sequence of trials, where Ci E {l, ... ,n} denotes 
the type of the coupon drawn in the ith trial. Call the ith trial Ci a success if 
the type Ci was not drawn in any of the first i-I selections. Clearly Cl and Cx 
are always successes. 

We divide the sequence into epochs, where epoch i begins with the trial 
following the ith success and ends with the trial on which we obtain the (i + l)st 
success. Define the random variable X;, for 0 ~ i ~ n - 1, to be the number of 
trials in the ith epoch, so that 

i-o 

Further, let Pi denote the probability of success on any trial of the ith epoch. 
This is the probability of drawing one of the n - i remaining coupon types and 
so, 

n-i 
Pi= --. 

n 

The random variable Xi IS geometrically distributed with parameter Pi (see 
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Appendix C). Thus, the expected value of Xi is l/Pi and its variance is 
(1 - Pi)/Pr. 

By linearity of expectation, 

n-l n-l n-l n 1 
E[X] = E[L Xi] = L E[Xd = L n n i = n L i = nHn• 

i=O i=O i=O i= 1 

By Proposition B.4 the nth Harmonic number Hn is asymptotically equal to 
In n + 9( 1), implying that 

E[X] = n In n + O(n). 

Since the X;'s are independent, we can determine the variance of X using 
Proposition C.9. 

n-l . 
_ ~ nz 
~ (n-i)2 
1=0 

_ ~ n(n-i) 
L- i2 
i=l 

The sum L:~=l 1/i2 converges to the constant 1[2/6 for n approaching 00; hence 

Our next goal is to derive sharper estimates of the typical value of X. More 
precisely, we will show that the value of X is unlikely to deviate far from its 
expectation, or is sharply concentrated around its expected value. This entails 
bounding the tail probabilities of the distribution of X. The second moment 
method does not go far toward establishing such a result. 

Exercise 3.10: Use the Chebyshev inequality to find an upper bound on the proba
bility that X > pn In n, for a constant p > 1. 

Let £~ denote the event that coupon type i is not collected in the first r trials. 
Using Proposition B.3 (Appendix B), we obtain that 

Pr[£~] = (1- ~)r < e-r/n. 

This bound is n-P for r = pn In n. 
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Using the fact that the probability of a union of events is .always less than 
the sum of the probabilities of these events, we obtain for r = fJn In n, 

n n 

Pr[X > r] = Pr[U7=1£~] < LPr[£~] < Ln-P = YJ-\p-l). 

i=1 i-I 

We now study the probability that X deviates from its expe."""7ation nHn by the 
amount cn, for any real-valued constant c. We will see t:-.n this probability 
drops very quickly as we increase the absolute value of c. 

3.6.2. The Poisson Heuristic 

Before we show the sharp concentration result for X, the ~nowing heuristic 
argument will help to establish some intuition. The heuristic zrgument is based 
on the approximation of the binomial distribution by the P.::tlsson distribution 
(see Appendix C for definitions of these distributions). T~ material in this 
section, although useful, is not an essential prerequisite for 5Ilbsequent topics 
and may be omitted in the first reading. 

Let N[ denote the number of times the coupon of type -; is chosen during 
the first r trials; the event £~ is the same as the event {NT = O}. The random 
variable N[ has the binomial distribution with parameters T .and p = lin (see 
Appendix C). This means that the probability that N[ = x. :.:"T 0 < x < r, is as 
follows: 

Pr[N; =x] = (:)p"(l-prX
, 

Let A be a positive real number. A (non-negative integer) ~dom variable Y 
has the Poisson distribution with parameter A if for any nOIl-:legative integer y, 

AYe-A. 
Pr[Y = y] = -,-. 

y. 

For suitably small A and as r approaches 00, the Poissoc distribution with 
parameter A = rp is a good approximation to the binon:ria::. distribution with 
parameters rand p. In the current setting, we can approxim :-.:. the distribution 
of N[ by the Poisson distribution with parameter A = r In" V-"e will ignore the 
fact that A may not be "suitably small" and that there c-..:>::ld be significant 
error in this approximation; after all, this is only intende-":' :'0 be a heuristic 
calculation. Using this approximation, we calculate the proc:~ :lliity of the event 
£~ as follows: 

lO -A. 
Pr[£~] = Pr[N[ = 0] ~ ;! = e-r

/
n

• (3.3) 

The main benefit in using the Poisson approximation 15 ~at now we can 
claim that the events £~, for I < i < n, are "almost independ~:.. - even though it 
is quite easy to see that there is indeed some dependence be:-.--een these events. 
In particular, we make the following informal claim to cor:::,1ete the heuristic 
calculation. 
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Claim: For 1 < i < n, and for any set of indices Uh ... , A} not containing i, 

Pr[£~ I n~=l£jJ ~ Pr[£~]. 

PROOF: The proof follows from the following approximate calculations, 

Pr[£~ n (~=l£jJ] 
Pr[~=l£jl] 

(1-~r 
(1- ~r 

e-r(k+l)/n 

e-rk/ n 

-r/n - e . 

The first line follows from the definition of conditional expectation (Defini
tion C.4), the second from an elementary probability calculation, and the third 
from Proposition B.3 (Appendix B). Since the last expression is the approximate 
value of Pr[£~], we obtain the desired result. 0 

If the approximation in (3.3) were exact, we would obtain that the events £~ 
are truly independent (Appendix C). In the following computation, we make 
the heuristic assumption of independence based on the approximation of (3.3). 
We then obtain that for 1 < i < n, the probability that all coupon types are 
collected in the first m trials is given by: 

Pr[""(U7=1£~)] = Pr[n7=1(""£~)] ~ (1- e-m/nt ~ e-ne-
rn
/". 

Let m = n(ln n + c) for any constant c E R Then, by the preceding argument, 
we obtain that 

Pr[X > m = n(ln n + c)] - Pr[u7=1 £r] 

~ Pr[ni=l(-,£r)] 
_ l_e-e-C. 

Observe that this probability e-e-c is close to 1 for large positive c, and is 
negligibly small for large negative c. Thus, the probability of having collected 
all n coupon types abruptly changes from nearly zero to almost one in a small 
interval centered around n In n. Of course, all this is contingent on our heuristic 
estimates being close to the true values. The power of this Poisson heuristic 
is that it gives a quick back-of-the-envelope type estimation of probabilistic 
quantities, which hopefully provides some insight into the true behavior of those 
quantities. As we will see in Section 3.6.3, a more rigorous but cumbersome 
argument can often be used to justify the conclusions obtained from such 
heuristic arguments. 
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3.6.3. A Sharp Threshold 

We now convert the heuristic argument from the previous section into a rigorous 
(but significantly more complex) proof using the Boole-Bonferroni Inequalities 
(Proposition C.2). But first we prove the following technical lemma 

, 

Lemma 3.7: Let c be a real constant. and m = n In n + cn for positive integer n. 
Then. for any fixed positive integer k. 

I
. n e 
un 1-- =-. ( ) ( k) m -d 

n ..... oo k n k! 

PROOF: Using Proposition B.3.2, we have that 

-km ( k
2

) ~ ( k ) m =5!!1 e-' 1 - -; < 1 - ;; ::5; e'. 

Observe that e-km/n = n-ke-ck • Further, 

k2 ~ 
lim (1- -) = 1 
n ..... oo n 

and (by Proposition B.2), 

~(~) = ~. 
Putting all this together yields the desired result. o 

Theorem 3.8: Let the random variable X denote the number of trials for collecting 
each of the n types of coupons. Then. for any constant c E R, and m = n In n + cn, 

lim Pr[X > m] = 1 - e-e~. 
n ..... oo 

PROOF: We have that the event {X > m} = ur=I£~' By the Principle of 
Inclusion-Exclusion, 

where 

n 

Pr[ui£~] = ~)_I)k+1 Pk' 

Pn~ k -

k=1 

Let Sr = Pi' - Pf + P3 - ... + (-1 )k+1 Pk' denote the partial sum formed by the 
first k terms of this series. By the Boole-Bonferroni inequalities (Proposition C.2), 
we have the bracketing property of the partial sums: 

S; < Pr [Ui£~] < S;+ I' 
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By symmetry, all the k-wise intersections of the events £r are equally likely. 
This implies that 

P, = (~)Pr[n'""e~l. 
Moreover, the probability of the intersection of the k events £~, ... , £~ is the 
probability of not collecting any of the first k coupons in m trials, namely 
(1 - k/n)m. Therefore 

For all positive integers k, define Pk = e-ck /k!. By Lemma 3.7 we have that 
for each k 

Define the partial sums of the terms Pk as 
k k_~ 

Sk = L)-ly+lPj = L)-l)j+l~. 
j=l j=l J. 

Notice that the right-hand side consists precisely of the first k terms of the power 
series expansion of f(c) = 1 - e-e-

c
• We conclude that 

lim Sk = f(c). 
k ..... oo 

That is, for all £ > 0, there exists k· > 0 such that for any k > k·, 

ISk - f(c)1 < £. 

Since limn ..... oo Pk = Ph it follows that limn ..... oo Sk = Sk. Equivalently, for all 
£ > 0 and k, when n is sufficiently large, ISk - Ski < £. Thus, for all £ > 0, any 
fixed k > k·, and n sufficiently large, 

ISk - Ski < £ and ISk - f(c)1 < £, 

which implies that 

ISk - f(c)1 < 2£ 

and that 

ISik - Sik+ll < 4£. 

Using the bracketing property of partial sums, we obtain that for any £ > 0 and 
n sufficiently large, 

IPr[uj£rl - f(c)1 < 4£. 

This implies the desired result that 

lim Pr[uj£rl = f(c) = 1 - e-e-c
• 

n ..... oo 

o 
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By this theorem, for any real constant c, we have 

lim Pr[X < n(ln n - c)] = e-tf 
n ..... oo 

and 

lim Pr[X > n(ln n + c)] = 1 - e-e-c. 
n ..... oo 

Thus, we obtain that 

lim Pr[n(ln n - c) < X < n(ln n + c)] = e-tf _ e-e-c. 
n ..... oo 

As the value of c is increased, it can be verified that this probability rapidly 
approaches 1. In other words, with extremely high probability, the number of 
trials for collecting all n coupon types lies in a small interval centered about its 
expected value. This result is almost like a deterministic result since it so sharply 
identifies the threshold value for collecting all coupons. We refer to such results 
as sharp threshold results. 

Notes 

Comprehensive treatises on occupancy problems are the books by Johnson and 
Kotz [222], and by Kolchin, Chistiakov, and Sevastianov [266]. However, most of 
the results in these books concern the behavior of the distributions of various random 
variables in the limit as n becomes large. (See also the various discussions of occupancy 
problems in the books by Feller [142, 143].) Generally, we will be concerned with 
statements resembling the ones in Section 3.1, involving asymptotic estimates on random 
variables and probabilities. We will return to such estimates for occupancy problems in 
Chapter 4. Recent work by Azar, Broder, Karlin, and Upfal [35] builds on the basic 
occupancy problem and points out many applications to computer science. 

The history of tail inequalities such as the Chebyshev bound dates back to the early 
days of probability theory. Following Chebyshev's bound [394], Markov [293] observed 
that the same idea could be used with higher moments. Kolmogorov [267] went further 
and remarked that Pr[X ~ r] ~ E[f(X)]/s for any function f(X), provided that E[f(X)] 
exists and f(x) ~ s > 0 for all x ~ r. The latter idea was exploited by Bernstein and by 
Chernoff in a manner we will describe in Chapter 4. 

Classic sources for deterministic selection algorithms are the papers of Blum, Floyd, 
Pratt, Rivest, and Tarjan [65], and of Schonhage, Paterson, and Pippenger [364]. 
The LazySelect algorithm presented here is a variant on one reported by Floyd and 
Rivest [151]. The algorithm described therein is a recursive algorithm, and does not sort 
after the first level of random sampling as we do. The lower bound of 2n for median 
selection is due to Bent and John [54]. 

The construction of pairwise independent random variables in Exercise 3.7 is given in 
Joffe [214]. Its application to the reduction of random bits used by abstract randomized 
algorithms is due to Chor and Goldreich [97]; Luby [282] presented this idea in the 
context of a concrete problem we will study in Chapter 12. The two-point sampling tech
nique has been developed into a powerful technique for reducing the use of randomness, 
especially for the derandomization of algorithms (see the Notes section of Chapter 12). 

The Proposal Algorithm for stable marriages is due to Gale and Shapley [161]. The 
book by Gusfield and Irving [188] provides a comprehensive treatment of results related 
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to stable marriages. Our presentation of the average-case analysis of the Proposal 
Algorithm is drawn from Knuth's monograph [263]. The power and applicability of the 
Poisson heuristic is explored in great detail in the monograph by Aldous [12]. 

Problems -----------

3.1 Consider an occupancy problem in which n balls are independently and 
uniformly distributed in n bins. Show that, for large n, the expected number 
of empty bins approaches n/e, where e is the base of the natural logarithm. 
What is the expected number of empty bins when m balls are thrown into n 
bins? (See Theorem 4.18.) 

3.2 Suppose m balls are thrown into n bins. Give the best bound you can on m to 
ensure that the probability of there being a bin containing at least two balls 
is at least 1/2. 

3.3 A parallel computer consists of n processors and n memory modules. During a 
step, each processor sends a memory request to one of the memory modules. 
A memory module that receives either one or two requests can satisfy its 
request(s): modules that receive more than two requests will satisfy two 
requests and discard the rest. 

(aT Assuming that each processor chooses a memory module independently 
and uniformly at random, what is the expected number of processors whose 
requests are satisfied? Use the approximation (1 - 1/n)n ~ 1/e if necessary. 

(b) Repeat the computation for the case where each memory module can 
satisfy only one request during a step. 

3.4 Consider the following experiment, which proceeds in a sequence of rounds. 
For the first round, we have n balls, which are thrown independently and 
uniformly at random into n bins. After round;, for ; ~ 1, we discard every ball 
that fell into a bin by itself in round;. The remaining balls are retained for 
round; + 1, in which they are thrown independently and uniformly at random 
into the n bins. Show that there is a constant c such that with probability 
1- 0(1), the number of rounds is at most clog logn. 

3.5 Let X be a random variable with expectation Jlx and standard deviation Ux. 

(a) Show that for any t E R.+, 

1 
Pr[X - Jlx ~ tux] s 1 + t2· 

This version of the Chebyshev inequality is sometimes referred to as the 
Chebyshev-Cantelll bound. 

(b) Prove that 

2 
Pr[IX -Jlxl ~ tux] s 1 +t2· 

Under what circumstances does this give a better bound than the Chebyshev 
inequality? 
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3.6 Let Y be a non-negative integer-valued random variable with positive expec
tation. Prove the following inequalities. 

(a) 

(b) 

E[y]2 
E[y2] S Pr[Y :f= 0] s E[Y] 

(c) Explain why the second inequality always gives a stronger bound than the 
first inequality. 

3.7 Let a and b be chosen independently and uniformly at random from Zn = 
{O, 1, 2. ... , n - 1}, where n is a prime. Suppose we generate t pseudo-random 
numbers from Zn by choosing,/ = ai+b mod n, for 1 SiS t. For any £ E [0,1], 
show that there is a choice of the witness set We Zn such that IWI ~ £n and 
the probability that none of the ,/'s lie in the set W is at least (1 - £)2/4t. 

3.8 Suggest a scheme for "four-point" sampling from the range Zn where n is a 
prime. For t < n samples '1, . .. ,'t using this scheme, give an upper bound on 
the probability that all t attempts fail to discover a witness given x ELand 
compare this with the bound of 1/16 that the naive use of four samples would 
yield. En route, derive an upper bound on the fourth central moment of the 
sum of four-way independent random variables. 

3.9 (Due to D.R. Karger and R. Motwani [233].) 
(a) Let S, T be two disjoint subsets of a universe U such that lSI = ITI = n. 
Suppose we select a random set R s; U by independently sampling each 
element of U with probability p. We say that the random sample R is good 
if the following two conditions hold: R n S = 0 and R n T :f= 0. Show that for 
p = 1/n, the probability that R is good is larger than some positive constant. 

(b) Suppose now that the random set R is chosen by sampling the elements 
of U with only pai,wise independence. Show that for a suitable choice of the 
value of p, the probability that R is good is larger than some positive constant. 

3.10 The sharp threshold result in the coupon collector's problem does not imply 
that the probability of needing more than en log n trials goes to zero at a 
doubly exponential rate if e were not a constant, but were allowed to grow 
with n. Let the probability of requiring more than en log n trials be p(e). 
For constant e, show that 1/p(e) can be bounded from above and below by 
polynomials in n. 

3.11 Consider the extension of the coupon collector's problem to that of collecting 
at least k copies of each coupon type. Show that the sharp threshold for the 
number of selections required (denoted X(k)) is centered at n(ln n+(k-1) In In n). 

In other words, for any positive integer k and constant e E R., prove that 

lim Pr[X(k) > n(ln n + (k - 1) In In n + e)] = e-e-c
• 

n-oo 
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3.12 Consider the following process related to the coupon collector problem. There 
are n bins and n players, and each player has an infinite supply of balls. The 
bins are all initially empty. We have a sequence of rounds: in each round, 
each player throws a ball into an empty bin chosen independently at random 
from all currently empty bins. Let the random variable Z be the number of 
rounds before every bin is non-empty. Determine the expected value of Z. 
What can you say about the tail of Z's distribution? 

3.13 Let B be a random bipartite graph on two independent sets of vertices U 

and V, each with n vertices. For each pair of vertices u e U and v e V, the 
probability that the edge between them is present is p(n), and the presence 
of any edge is independent of all other edges. Let p(n) = (In n + c )/n for some 
c eR. 
(a) Show that the probability that B contains an isolated vertex is asymptoti
cally equal to e-2e-

c
• 

(b) Suggest and prove a generalization of this to random non-bipartite graphs. 

3.14 (Due to R.M. Karp.) Consider a bin containing d balls chosen at random 
(without replacement) from a collection of n distinct balls. Without being able 
to see or count the balls in the bin, we would like to simulate random sampling 
with replacement from the original set of n balls. Our only access to the balls 
is that we can sample without replacement from the bin. 

Consider the following strategy. Suppose that k < d balls have been drawn 
from the bin so far. Flip a coin with the probability of HEADS being kin. If 
HEADS appears, then pick one of the k previously drawn balls uniformly at 
random; otherwise, draw a random ball from the bin. Show that each choice 
is independently and uniformly distributed over the space of the n original 
balls. How many times can we repeat the sampling? 

3.15 (Due to D. Angluin and L.G. Valiant [28].) Let B denote a random bipartite 
graph with n vertices in each of the vertex sets U and V. Each possible 
edge, independently, is present with probability p(n). Consider the following 
algorithm for constructing a perfect matching (see Section 7.3) in such a 
random graph. Modify the Proposal Algorithm of Section 3.5 as follows. Each 
u e U can propose only to adjacent v e V. A vertex v e V always accepts a 
proposal, and if a proposal causes a "divorce," then the newly divorced u e U 
is the next to propose. The sampling procedure outlined in Problem 3.14 helps 
implement the Principle of Deferred Decisions. How small can you make the 
value of p(n) and still have the algorithm succeed with high probability? The 
following fact concerning the degree d(v) of a vertex v in B proves useful: 

Pr[d(v):s; (1-fJ)np] = O(e-P2nP/2). 
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CHAPT ER 4 

Tail Inequalities 

IN this chapter we present some general bounds on the tail of the distribution of 
the sum of independent random variables, with some extensions to the case of 
dependent or correlated random variables. These bounds are derived via the use 
of moment generating functions and result in "Chernoff-type" or "exponential" 
tail bounds. These Chernoff bounds are applied to the analysis of algorithms 
for global wiring in chips and routing in parallel communications networks. For 
applications in which the random variables of interest cannot be modeled as 
sums of independent random variables, martingales are a powerful probabilistic 
tool for bounding the divergence of a random variable from its expected value. 
We introduce the concept of conditional expectation as a random -variable, 
and use this to develop a simplified definition of martingales. Using measure
theoretic ideas, we provide a more general description of martingales. Finally, 
we present an exponential tail bound for martingales and apply it to the analysis 
of an occupancy problem. 

4.1. The Chernoff Bound 

In Chapter 3 we initiated the study of techniques for bounding the probability 
that a random variable deviates far from its expectation. In this chapter we 
focus on techniques for obtaining considerably sharper bounds on such tail 
probabilities. 

The random variables we will be most concerned with are sums of independent 
Bernoulli trials; for example, the outcomes of tosses of a coin. In designing 
and analyzing randomized algorithms in various settings, it is extremely useful 
to have an understanding of the behavior of this sum. Let XI. ... , Xn be 
independent Bernoulli trials such that, for 1 ~ i ~ n, Pr[Xi = 1] = P and 
Pr[Xi = 0] = 1 - p. Let X = L:7=1 Xi; then X is said to have the binomial 
distribution. More generally, let XI. ... , Xn be independent coin tosses such that, 
for 1 ~ i ~ n, Pr[Xi = 1] = Pi and Pr[Xi = 0] = 1 - Pi. Such coin tosses are 
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referred to as Poisson trials. Our discussion below will focus on the random 
variable X = E~=I Xi, where the Xi are Poisson trials. Of course, all our 
bounds apply to the special case when the Xi are Bernoulli trials with identical 
probabilities, so that X has the binomial distribution. 

We consider two questions regarding the deviation of X from its expectation 
J.l = E~=I Pi· For a real number b > 0, we might ask "what is the probability 
that X exceeds (1 + b)J.l?" We thus seek a bound on the tail probability of the 
sum of Poisson trials. An answer to this type of question is useful in analyzing 
an algorithm, showing that the chance it fails to achieve a certain performance 
is small. We face a different type of question in designing an algorithm: how 
large must b be in order that the tail probability is less than a prescribed value 
e? 

Tight answers to such questions come from a technique known as the Chernoff 
bound. This technique proves to be extremely useful in designing and analyzing 
randomized algorithms. We focus on the Chernoff bound on the sum of 
independent Poisson trials. 

For a random variable X, the quantity E[eX] is called the moment generating 
function of X. This is because E[etX] can be written as a power-series with terms 
of the form fE[Xk]jk!, and E[Xk] is the kth moment of X for any positive 
integer k. The basic idea behind the Chernoff bound technique is to take the 
moment generating function of X and apply the Markov inequality to it. The 
sum of independent random variables appears in the exponent, and this turns 
into the product of random variables whose expectation we then bound. 

Theorem 4.1: Let XI, X2, ••• , Xn be independent Poisson trials such that, for 
1 < i < n, Pr[Xi = 1] = Pi, where 0 < Pi < 1. Then, for X = E~=I Xi, J.l = 
E[X] = E~=I Pi, and any b > 0, 

[ 
elJ ] II 

Pr[X > (1 + b)J.l] < (1 + b)(l+lJ) . 

PROOF; For any positive real t, 

Pr[X > (1 + b)J.l] = Pr[exp(tX) > exp(t(1 + b)J.l)]. 

Applying the Markov inequality to the right-hand side, we have 

Pr[X > (1 + b) ] < E[exp(tX)] . 
J.l exp(t(1 + b)J.l) 

(4.1) 

(4.2) 

Notice that the inequality is strict: this stems from our assumption that the 
Pi are not all identically 0 or 1, so that X assumes more than one value. The 
reader may wish to recall the proof of the Markov inequality to see this. 

We bound the right-hand side by observing that 

n n 

E[exp(tX)] = E[exp(t LXi)] = E[II exp(tXi)]. 
i=1 i=1 
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Since the Xi are independent, the random variables exp(tXi) are also inde
pendent. It follows that E[n~=l exp(tXi)] = n~=l E[exp(tXi)]. Using these facts 
in (4.2) gives 

P [X (1 ~)] n~=l E[exp(tXi)] 
r > + u J.l < exp(t(1 + b)J.l) . (4.3) 

The random variable etXi assumes the value e with probability Pi, and the 
value 1 with probability 1 - Pi. Computing E[etXi ] from these observations, we 
have that 

Pr[X > (1 + b)J.l] 
n~=l [Piet + 1 - p;] 

< 
exp(t(1 + b)J.l) 

n~=l [1 + Pi(e - 1)] 
exp(t(1 + b)J.l) 

Now we use the inequality 1 + x < if' with x = Pi( et - 1), to obtain 

Pr[X > (1 + b)J.l] < n~=l exp(Pi(e - 1» 
exp(t(1 + b)J.l) 

exp(E~=l Pi(et 
- 1» 

exp(t(1 + b)J.l) 

exp«et 
- 1)J.l) 

-
exp(t(1 + b)J.l)' 

. (4.4) 

(4.5) 

Observe that all of the above has been proved for any positive real t; we are 
now free to choose a particular value for t that yields the best possible bound. 
For this, we differentiate the last expression with respect to t and set. to zero; 
solving for t now yields t = In(1 + b), which is positive for b > O. Substituting 
this value for t, we obtain our theorem. 0 

There were three main ingredients in the above proof: 

1. We studied the random variable elx rather than X. 

2. The expectation of the product of the etXi turns into the product of their expec
tations owing to independence. 

3. We pick a value of t to obtain the best possible upper bound - indeed, we choose 
a value of t that depends on the deviation b. 

These ingredients are generic and do not hinge on the particular case of the 
sum of Poisson trials. For example, Problem 4.4 is concerned with applying this 
technique to the sum of geometrically distributed random variables. 

For succinctness in what follows, we define an upper tail bound function for 
the sum of Poisson trials. 

~ Definition 4.1: F+(J.l,b) 1.\ rtf /(1 + b)(l+b)Y . 

~ Example 4.1: The Arkansas Aardvarks win each game they play with probability 
1/3. Assuming that the outcomes of the games are independent, derive an upper 
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bound on the probability that they have a winning season in a season lasting n 
games. 

Let Xi be 1 if the Aardvarks win the ith game and 0 otherwise; let Yn = E~=l Xi. 
Applying Theorem 4.1 to Yn, we find that Pr[Yn > n/2] < F+(n/3, 1/2) < (0.965)n. 
Thus, the probability that the Aardvarks have a winning season in n games is 
exponentially small in n, suggesting that the longer they play the more likely it is 
that their true colors show through. 

The reader should verify that the term within the brackets in F+(J.l.,b) is always 
strictly less than 1. Since the power J.l is always positive, we will always get an 
upper bound that is less than 1. 

The right-hand side of (4.1) is difficult to interpret, especially since we will 
require answers to questions such as "how large need b be in order that 
Pr[X> (1 + b)J.ll is at most 0.01?" We will presently work on simplifying it. But 
first, we consider deviations of X below its expectation J.l. 

Theorem 4.2: Let Xl, X2, ••• , Xn be independent Poisson trials such that, for 
1 < i < n, Pr[Xi = 1] = Pi, where 0 < Pi < 1. Then, for X = E~=l Xi, J.l = 
E[X] = E~=l Pi, and 0 < b < 1, 

Pr[X < (1 - b)J.l] < exp(-J.lb2/2). (4.6) 

PROOF: The proof is very similar to the proof for the upper tail we saw in 
Theorem 4.1. As before, 

Pr[X < (1- b)J.l] = Pr[-X > -(1- b)J.l] 

= Pr[exp(-tX) > exp(-t(1- b)J.l)], 

for any positive real t. Applying the Markov inequality and proceeding as in 
equations (4.2-4.3), we obtain that 

Pr[X < (1- b)J.l] < n~=l E[exp(-tXi )]. 

exp( -t( 1 - b)J.l) 

Computing E[exp( -tXi )] and proceeding as in equations (4.4-4.5), 

exp(J.l( e-t - 1» 
Pr[X < (1 - b)J.l] < p( (1 b r ex -t - )J.l 

This time, we let t = In(l/(l - b» to obtain that 

Pr[X < (1 - b)J.l] < [(1_e~;(l_li)] II • 
We simplify this by noting that for b E (0,1], 

(1 - b)l-li > exp( -b + b2/2), 

using the McLaurin expansion for In(1- b). This yields the desired result. 0 

We define the lower tail bound function for the sum of Poisson trials as 
follows. 
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~ Definition 4.2: F-(14 b) 1.\ exp ( -It) . 

It is immediate that P-(J.l, b) is always less than 1 for positive J.l and b. Note 
two differences between the proofs of Theorems 4.1 and 4.2. First, we directly 
apply the basic Chernoff technique to the random variable -X rather than 
apply Theorem 4.1 to Y = n - X (a plausible option, which leads, however, 
to a slightly weaker bound than the one derived below). Second, the form of 
the McLaurin expansion for In(1 - b) allows us to obtain a "cleaner" closed 
form here, whereas the McLaurin expansion for In(1 + b) did not permit this in 
Theorem 4.1. 

~ Example 4.2: The Arkansas Aardvarks hire a new coach, and critics revise their 
estimates of the probability of their winning each game to 0.75. What is the 
probability that the Aardvarks suffer a losing season assuming the critics are 
right and the outcomes of their games are independent of one another? 

Setting up the random variable Yn as before, we find that Pr[Yn < n12] 
< F-(0.75n,1/3), which evaluates to < (0.9592)n. Thus, this probability is also 
exponentially small in n. 

The bounds in Theorems 4.1 and 4.2 do not depend on n, but only on J.l and 
b. These bounds do not distinguish, for instance, between 1000 trials each with 
Pi = 0.02 and 100 each with Pi = 0.2, even though the distributions of X are 
different in the two cases. Thus, even if the actual tail probabilities are different 
in these cases, our estimates are the same in both cases. 

We make the following definitions to facilitate our second kind of question, 
i.e.,"how large need b be for Pr[X > (1 + b)J.l] to be less than €?" 

~ Definition 4.3: For any positive J.l and €, .:\ +(J.l, €) is that value of b that satisfies 
... 

(4.7) 

Similarly, .:\ -(J.l. E) is that value of b that satisfies 

(4.8) 

In other words, a deviation of b = ':\+(J.l,€) suffices to keep Pr[X > (1 + b)J.l] 
below €, irrespective of the values of n and the p/s. 

A nice feature of the bound in Theorem 4.2 is the convenient form of the 
right-hand side: it is easy to derive .:\-(J.l,€) explicitly. Equating the right-hand 
side of (4.6) to € yields 

A-( ) _ V21nl/e 
L..1 J.l,€ - . 

J.l 
(4.9) 

~ Example 4.3: Suppose that Pi = 0.75. How large must b be so that Pr[X < (1-
b)J.l] is less than n-5? Using (4.9), we find that the value of b that suffices for € 
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10lnn 
0.75n· 

Thus, to obtain a tail probability that is inversely polynomial in n, we need only 
go slightly away from the expectation - in this case out to b = V(13.333Inn)/n. 

What if we wanted that Pr[X < (1- b)jl] be less than e-1.5n ? Using (4.9), we 
find that for € = e-1.5n, 

£\-(0.75n,e-1.5n) = J o.~~n = 2, 

which tells us nothing (for deviations below the expectation, values of b bigger 
than 1 cannot occur). 

We return to the simplification of (4.1) to obtain tractable estimates for 
£\ +(jl, €). 

Exercise 4.1: Prove that 

(4.10) 

Hence infer that if 6 > 29 - 1, 

Exercise 4.1 gives us a simple form for P+(jl, b) when b is "large." For such 
deviations, we have the bound 

(4.11) 

We now present the following simplification of P+(Jl, b) for b in a restricted 
range (0, U]. A pointer to the proof is given in the Notes section. 

Theorem 4.3: Por 0 < b < U, 

F+(Jl,b) < exp(-c(U)jlb2), 

where c(U) = [(1 + U)ln(1 + U) - U]/U2• 

For U = 2e - 1, this simplifies to P+(jl,b) < exp(-jlb2/4). Consequently, 
provided b < 2e - 1, we can use the estimate 

A+( ) V41Rl/e 
L..1 jl,€ < . 

jl 
(4.12) 

Thus, between Theorem 4.3 and Exercise 4.1, we have bounds on a+(Jl,€); 
however, we require some idea of the correct value of a+(jl,€) before deciding 
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which of these forms to use. MOn!Over, the result of Exercise 4.1 may be slack 
for some values of J.l and €, as in the following example. This example uses 
Chernoff bounds to approach the occupancy problem considered in Section 3.1. 

~ Example 4.4: Consider thro\'\ing n balls uniformly and independently into n 
bins. Let the random variable Y1 denote the number of balls that fall into the 
first bin. We wish to determine a quantity m such that Pr[YI > m] ~ 1/n2• 

Consider the Bernoulli trials indicating whether or not the ith ball falls into 
the first bin. Each of the p;'s is thus l/n. It follows that J.l = 1; the number m 
we seek is 1 + £\+(1, 1/ n2

). Gue~-mg that £\+(1, 1/ n2) is larger than 2e, we use the 
result in (4.11) to obtain £\+(1, 1 n2) < 210g2 n-1. 

Unfortunately, this is not the tightest possible answer in this case. Returning 
to (4.1), we can apply it with b =:: (1.5Inn)/lnlnn and simplify to obtain F+(j.l,b) 
less than n-2, so that our origina.] estimate of 210g2 n - 1 was asymptotically an 
overestimate. 

A good rule of thumb from ex.amples like this is: for € of the order of n-C 

(a value arising often in algorithmic applications), estimates such as (4.11) and 
(4.12) are satisfactory provided J.l is Q(log n); when J.l is smaller, we must return 
to (4.1) in order to obtain the tightest possible estimate. 

~ Example 4.5 (Set Balancing): This problem is known variously as set-bjllancing, 
or two-coloring a family of vectors. Given an n x n matrix A all of whose entries 
are 0 or 1, find a column vector h E {-I, + l}n minimizing IIAblla). 

Consider the following algori6m for choosing b: each entry of b is indepen
dently and equiprobably chosen from {-1,+1}. Note that this choice ignores the 
given matrix A. Clearly the inner product of any row of A with our randomly 
chosen b has expectation O. We now study the deviation of this inner product 
from o. 

Consider the ith row of A. Applying (4.9), the probability that the inner 
product of this row with b is bounded by -4Jn In n is less than n-2• An identical 
argument shows that the probability that the inner product of this row with b 
exceeds 4Jn In n is less than n-2• Thus, the probability that the absolute value of 
the inner product exceeds 4Jn In., is less than 2n-2• 

Let us say that the ith bad e-:-'ent occurs if the absolute value of the inner 
product of the ith row of A witt b exceeds 4Jn In n. There are n possible bad 
events, one for each row, and the .ugument of the previous paragraph shows that 
the probability that any of them occurs is at most 2n-2• The probability of the 
union of the bad events is no mure than the sum of their probabilities, which 
is 2/n. In other words, with probability at least 1 - 2/n, we find a vector b for 
which IIAblla) ~ 4Jn In n. 
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4.2. Routing in a Parallel Computer 

Our first application of the Chernoff bound is another case where a randomized 
algorithm yields a performance that is provably superior to any deterministic 
algorithm. This application concerns a communication problem in a network of 
parallel processors. 

We model a network of parallel processors by a directed graph on N nodes, 
each of which is a processing element. Edges in the graph represent communica
tion links between processing elements. All communication between processors 
proceeds in a sequence of synchronous steps. Each link can carry a unit message, 
or packet, in a step. During a step, a processor can send at most one packet to 
each of its neighbors. Each processor has a unique identifying number, between 
1 and N. 

We consider the permutation routing problem on such a network. Each pro
cessor initially contains one packet destined for some processor in the network. 
Let Vi denote the packet originating at processor i; we denote its destination by 
d(i). We consider the case when the d(i)'s, for 1 < i < N, form a permutation 
of {I, ... , N}, i.e., every processor is the destination of exactly one packet. How 
many steps are necessary and sufficient to route an arbitrary permutation request 
d(1), ''', d(N)? This special case is important in realizing abstract models of 
parallel computation (such as the PRAM model described in Chapter 12) by 
means of more feasible models. 

A route for a packet is a sequence of edges it can follow from its source to 
its destination. An algorithm for the permutation routing problem must specify 
a route for each packet. In following a route, a packet may occasionally have 
to wait at an intermediate node because the next edge on its route is "busy" 
transmitting another packet. We assume that each node contains one queue for 
each edge leaving the node; the queue holds packets waiting to leave via that 
edge. A routing algorithm must also specify a queueing discipline for resolving 
conflicts between packets that simultaneously wish to follow the same edge out 
of a node. 

We focus on a class of algorithms that are especially simple to implement in 
parallel computer hardware. An oblivious algorithm for the permutation routing 
problem satisfies the following property: the route followed by Vi depends on 
d(i) alone, and not on dU) for any j =1= i. An oblivious algorithm specifies, 
for each pair (i, d(i», a route between node i and node d(i). Oblivious routing 
algorithms are attractive for their simplicity of implementation: the communi
cation hardware at each node in the network can determine the next link on its 
route, simply by looking at the source and destination information carried by 
a packet. Often, the topology of the network makes this operation very simple. 
The communication hardware at a node does not have to compare the sources 
and destinations of different packets in its queues. 

The following theorem gives a limit on the performance of deterministic 
oblivious algorithms; its proof is beyond the scope of this book (see the Notes 
section). 
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Theorem 4.4: For any deterministic oblivious permutation routing algorithm on 
a network of N nodes each of out-degree d, there is an instance of permutation 
routing requiring Q( V N I d) steps. 

Consider the implications of this theorem for the case when the network 
is the Boolean hypercube, a popular network for parallel processing. The 
Boolean hypercube has N = 2n nodes connected in the following manner. Let 
(io, ... , in-d E {O, l}n be the (ordered) binary representation of i, i.e., i = Ej:l, ij2j. 
There is a link (a directed edge) from node i to node j if and only if (io, ... , in-d 
and (jo, ... , jn-d differ in exactly one position. Every node in the hypercube 
has n = log2 N directed edges leaving it. Each edge incident on a node is 
associated with a distinct bit position in the node label, and traversing an edge 
corresponding to the position j will lead to a node whose label differs in exactly 
that bit position. Theorem 4.4 then tells us that for any deterministic oblivious 
routing algorithm on the hypercube, there is a permutation requiring Q( VN In) 
steps. 

We now establish a special case of the lower bound of Theorem 4.4 for the 
hypercube, showing that for a natural algorithm there is a natural permutation 
that results in poor performance. Given that the source and destination addresses 
are n-bit vectors, consider the following simple choice of route to send Vi from i 
to the node O'(i): scan the bits of O'(i) from left to right, and compare them with 
the address of the current location of Vi' Send Vi out of the current node along 
the edge corresponding to the left-most bit in which the current position and 
O'(i) differ. Thus, in going from (1011) to (0000) in a 4-dimensional hypercube, 
the packet would pass through (0011) and then (0001) en route. This is referred 
to as the bit-fixing routing strategy for obvious reasons. 

Exercise 4.2: Suppose that n is even. Consider the transpose permutation: writing i 
as the concatenation of two binary strings B; and b; each of length n12, the destination 
of VI is the concatenation of b; and B;. Show that the transpose permutation causes 
the bit-fixing strategy to take Q( VN In) steps. Why is this permutation called a 
transpose? 

We now study a randomized oblivious routing algorithm and show that its 
expected number of steps is considerably smaller than VN In. This algorithm 
uses a simple two-phase scheme for permutation routing. Under this scheme, 
packet Vi executes the following two phases independently of all the other 
packets. 

Phase 1: Pick a random intermediate destination O'(i) from {I, ... , n}. Packet Vi 

travels to node O'(i). 

Phase 2: Packet Vi travels from O'(i) on to its destination d(i). 

In each phase, each packet uses the bit-fixing strategy to determine its route. 

75 



TAIL INEQUALITIES 

Since each packet chooses its intermediate destination (in Phase 1) indepen
dently of the remaining packets, the scheme is oblivious. Because the O'(i) are 
chosen independently at random, it may be that O'(i) = O'(j) for i =1= j; thus 0' 

is not a permutation. The choice of routes is now clear; it remains to specify 
the queueing discipline. For the above choice of routes, any of several queueing 
disciplines will in fact yield a result similar to Theorem 4.7 below. All that is 
required is that if at least one packet is ready to follow an edge e on a step, some 
packet follows e on that step. For concreteness, we adopt the following queueing 
discipline: each node maintains a queue for each outgoing edge, with packets 
leaving in FIFO (first in, first out) order. Ties occur only when two packets 
simultaneously arrive at a node and wish to leave by the same edge; these ties 
are broken arbitrarily. The reader should verify that any pair of packets may 
engage in such a tie at most once. 

How many steps elapse before packet Vi reaches its destination? Let us first 
consider this question for Phase 1. Let Pi denote the route for Vi in Phase 1. The 
number of steps taken by Vi is equal to the length of Pi, which is at most n, plus 
the number of steps for which it is queued (delayed) at intermediate nodes in Pi' 
What is the delay encountered by packet Vi? To tackle this problem we require 
two additional facts; the first is a simple exercise. 

Exercise. 4.3: View each route in Phase 1 as a directed path in the hypercube from 
the source to the intermediate destination. Prove that once two routes separate, they 
do not rejoin. 

We now establish an important step in the analysis. Like the statement in 
Exercise 4.3 above, it is a deterministic assertion that is independent of the 
randomization in our routing algorithm. In preparation for this step, the reader 
should first attempt the following exercise. 

Exercise 4.4: Does the statement in Exercise 4.3 imply that for any two packets Vi 

and Vj, there is at most one queue q such that Vi and Vj are in the queue q at the 
same step? 

Lemma 4.5: Let the route of Vi follow the sequence of edges Pi = (e., e2, .. . , ed. 
Let S be the set of packets (other than Vi) whose routes pass through at least one 
of {e.,e2, ... ,ed. Then, the delay incurred by Vi is at most lSI. 

PROOF: A packet in S is said to leave Pi at that time step at which it traverses 
an edge of Pi for the last time. If a packet is ready to follow edge ej at time 
t, we define its lag at time t to be t - j. The lag of Vi is initially zero, and the 
delay incurred by Vi is its lag when it traverses ek. We will show that each step 
at which the lag of Vi increases by one can be charged to a distinct member of 
S. 

76 



4.l ROUTING IN A PARALLEL COMPUTER 

We argue that if the lag of Vi reaches t + 1, some packet in S leaves Pi with 
lag t. When the lag of Vi increases from t to t + 1, there must be at least one 
packet (from S) that wishes to traverse the same edge as Vi at that time step, 
since otherwise Vi would be permitted to traverse this edge and its lag would not 
increase. Thus, S contains at least one packet whose lag reaches the value t. 

Let t' be the last time step at which any packet in S has lag t. Thus there is 
a packet V ready to follow edge ej' at t', such that t' - j' = t. We argue that 
some packet of S leaves Pi at t'; this establishes the lemma since by the result 
of Exercise 4.3, a packet that has left Pi will never again delay Vi. 

Since V is ready to follow ej' at t', some packet co (which may be V itself) in 
S follows ej' at t'. Now co leaves Pi at t'; if not, some packet will follow ej'+1 
at step t' + 1 with lag still at t, violating the maximality of t'. We charge to co 
the increase in the lag of Vi from t to t + 1; since co leaves Pi, it will never be 
charged again. Thus, each member of S whose route intersects Pi is charged for 
at most one delay, establishing the lemma. 0 

Let the random variable Hij = 1 if Pi and P j share at least one edge, and 0 
otherwise. It follows that the total delay incurred by Vi is at most 2:7=1 Hij. Since 
the routes of the various packets are chosen independently at random, the Hij's 
are independent Poisson trials for j =1= i. Thus, to bound the delay of packet Vi 

from above using the Chernoff bound, it suffices to obtain an upper bound on 
2:7=1 Hij. To do this, we first bound E[2:7=1 Hij]. 

For an edge e in the hypercube, let the random variable T(e) denote the 
number of routes that pass through e. Fix any route Pi = (e.,e2, ... ,ek), with 
k < n. Then, 

N k 

L Bij ~ L T(el), 
j=1 1=1 

and therefore 
N k 

E[L Bij] ~ L E[T(ed]. (4.13) 
j=1 1=1 

The following is an easy consequence of symmetry. 

Exercise 4.5: Let 9, and 9m be any two edges in the hypercube. Prove that E[T(9,)] 
= E[T(9m)]. In other words, the expected number of routes passing through an edge 
is the same for all edges in the hypercube. 

The expected length of Pj (number of edges traversed by Vj) is n/2 for all j, 
so that the expectation of the total route length summed over all the packets is 
N n/2. The number of edges in the hypercube is N n; by the result of Exercise 4.5, 
it follows that E[T(e)] = 1/2 for all edges e. Using this in (4.13) gives 

N k n 
E[""' B··] < - < -~ I] - 2 - 2· 

j=1 
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By the Chernoff bound (the form in Exercise 4.1 is most convenient), the 
probability that 2:7=1 Hij exceeds 6n is less than 2-6n . An important point: we 
apply the Chernoff bound to 2:7=1 Hij and not to 2:~=1 T(e/). We cannot apply 
the Chernoff bound to 2:~=1 T(ed because the random variables T(ed are not 
independent (and in fact are not Poisson trials). We use the quantity 2:~=1 T(e/) 
only to obtain an upper bound on E[2:7=1 H ij], and then apply the Chernoff 
bound to 2:7=1 Hij. which is the sum of independent random variables. 

Now 2:7=1 Hij is an upper bound on the delay incurred by Vi, so this delay 
exceeds 6n with probability less than 2-6n . Since the total number of packets is 
N = 2n, the probability that any of the N packets experiences a delay exceeding 
6n is less than 2n x 2-6n = 2-5n. Adding the length of the route to the delay 
gives 7n as the number of steps taken by Vi in Phase 1. 

Theorem 4.6: With probability at least 1 - 2-5n, every packet reaches its interme
diate destination in Phase 1 in 7n or fewer steps. 

What happens to the packets in Phase 2? Observe that the routing scheme 
for Phase 2 can be viewed as the scheme for Phase 1 "run backwards." The 
same analysis then shows that with probability at least 1 - (1/32)n, every packet 
reaches its destination in 7n or fewer steps. The probability that any packet fails 
to reach its target in either phase is less than 2(1/32)n, which is less than 1/ N 
for n ~ 1. Combining these facts, we have: 

Theorem 4.7: With probability at least 1 - (1/ N), every packet reaches its des
tination in 14n or fewer steps. 

Note that we have bounded the delay of a packet in each phase by assuming 
it is delayed only by packets executing that phase. To avoid packets in Phase 
1 delaying packets in Phase 2 and vice versa, rather than allow Phases 1 and 
2 to proceed unchecked for the various packets, we make packets wait at their 
intermediate destinations until 7n steps have elapsed before beginning their 
Phase 2 travel. 

An interesting feature of this scheme is that the distribution of the number 
of steps to completion is insensitive to the instance to be routed. Indeed, it is 
likely to take as long to route the identity permutation as any other "hard" 
permutation! 

Exercise 4.6: Show that the expected number of steps within which all packets are 
delivered is less than 15n. 

Comparing the performance of the randomized algorithm with the negative 
result of Theorem 4.4, we find that our randomized oblivious algorithm is prov
ably better in that it achieves an expected running time that no deterministic 
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oblivious algorithm can achieve. In fact, any deterministic oblivious algorithm 
must have performance exponentially worse than that of our randomized obliv
ious algorithm. 

4.3. A Wiring Problem 

We now consider another application of the Chernoff bound. The problem is 
that of global wiring in gate-arrays. A gate-array is a two-dimensional Jiz x Jiz 
array of gates abutting each other, arranged at regularly spaced points in the 
plane. The gates are numbered from 1 through n. A logic circuit is implemented 
on such an array by connecting together some of the gates using wires. A 
net is a set of gates to be connected by a wire. Wires run over the °array 
in "Manhattan" form, i.e., they run parallel to the axes of orientation of the 
gate-array. In Figure 4.1, n is 9, and we have 4 wires each of which connects 
a pair of gates. Each gate is represented as a square with thin lines defining 
the boundaries. Each net connects a pair of gates, and has the same number 
marking its end-points (i.e., the thick lines 1-1, 2-2, 3-3, and 4-4). Note that in 
some cases a gate contains the end-point of more than one net. 

The wiring problem is the following: we are given a set of nets, each of which 
is a set of gates to be connected together (to form one electrical connection). 
Here we consider only the simplest case, where each net consists of two gates 
to be joined by a wire. We wish to specify for each net a physical path between 
the two gates in the net, subject to space constraints. 

In practice, the wiring problem is usually accomplished in two sequential 
phases: global wiring and detailed wiring. In the global wiring phase, we only 
specify which gates a wire will pass over in connecting its end-points. Thus, in 
Figure 4.1, the global route for net 4-4 passes through the three gates in the 
right-most column of the array. This is followed by the detailed wiring phase, 
in which the exact positions of the wires along their routes are specified - in 
our example, we would specify that the wire for net 4-4 lies to the right of the 
wire for net 3-3 as it leaves the top-right gate, and so on. Here we only concern 
ourselves with the global wiring phase. 

The boundary between adjacent gates in an array has a fixed physical dimen
sion and can therefore accommodate only a prescribed maximum number of 
wires, say w. We wish to find an assignment of global routes to all the nets in 
the wiring problem, such that no more than w nets pass through any boundary. 
In Figure 4.1, the set of routes we have indicated is a feasible solution provided 
w is at least 2. It is not hard to see that in this instance, we cannot find a feasible 
global wiring of the wires if w were only 1 - four wires must leave the top row 
of gates, and we have only three boundaries through which they must all pass. 

We will solve a somewhat harder optimization problem instead of the fea
sibility problem - for a boundary b between two gates in the array, let ws(b) 
denote the number of wires that pass through b in a solution S to the global 
wiring problem. Let Ws = maXb ws(b) be the maximum number of wires through 
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Figure 4.1: A gate-array with 9 gates. 

any boundary in the solution S. If we can minimize ws, we can surely decide 
the feasibility problem. 

As a further simplification in our presentation, we assume that the global 
route for each net contains at most one 900 turn; we refer to such a route as 
a "one-bend" route. Thus, in joining the two end-points of a net, the wire will 
either first traverse the horizontal dimension and then the vertical dimension, 
or the other way around. In Figure 4.1, every net has been routed under this 
restrictitm. For net 4-4, which connects two gates in the same column of the 
array, we have only one choice under our restricted class of routes - to go right 
down the column; the reader should verify that the existence of such nets does 
not affect the following analysis. Our problem now becomes one of deciding, 
for each net, which of the two options to use. 

This can be cast as a zero-one linear program as follows. For net i, we use 
two variables XiO and XiI to indicate which one of the two routes will be used 
for it. Thus, XiO would be 1 if we chose .the route that goes horizontally first, 
starting from the left end-point of net i, and 0 otherwise. For XiI we adopt the 
opposite convention. In Figure 4.1, XIO = 0 and Xll = 1, whereas X30 = 1 and 
X3I = O. For each boundary b in the array, let 

TbO = {i I net i passes through b if XiO = I} 

and 

Tbi = {i I net i passes through b if XiI = I}. 

With these definitions, our integer program can be expressed as: 

minimize W 

where XiO, XiI E {O, I} (V nets i) (4.14) 

subject to 

XiO + X/l = 1 (V nets i) (4.15) 
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L XiO + L Xii ~ w (V boundaries b). (4.16) 
iETbO iETM 

The constraint (4.15) ensures that a unique route is specified for every net. 
The constraint (4.16) specifies that at most w wires pass through any boundary 
b. The objective function seeks a solution of minimum w, with the zero-one 
constraint imposed. The optimum solution to this zero-one integer program 
gives the minimum Ws among the class of solutions allowing only one-bend 
routes. In general, allowing a less restrictive set of routes could result in a 
solution with a lower Ws. 

Denote by Wo the value of the objective w in the optimum solution to (4.14-
4.16). The general problem of zero-one linear programming is NP-hard, and 
in fact even the particular class of zero-one linear programs (4.14-4.16) -arising 
from our global wiring problem is known to be NP-hard (i.e., our global wiring 
problem is NP-hard). Thus we do not hope to compute Wo efficiently. 

We solve instead the linear program relaxation of (4.14-4.16). This is a linear 
program in which the integrality constraint in (4.14) is replaced by the constraints 
XiO, Xii E [0,1] for each i. In other words, we allow the XiO and Xii to assume 
real values between 0 and 1. This is a linear programming problem, and we 
know of several efficient methods for solving it (see Chapter 9.10). Let XiO and 
Xii, for 1 < i < n, be the solutions provided by the linear program, and let w 
be the value of the objective function for this solution. Since the linear program 
is a relaxation of (4.14-4.16), it is clear that Wo > w. The XiO'S and Xii'S may 
be fractional values, and therefore may not constitute a feasible solution to our 
integer program. We must therefore "round" these fractional values to O's and 
l's to obtain a feasible global wiring; in doing so, we hope not to allow the 
objective w to drift too far from woo 

We now describe a technique known as randomized rounding that rounds these 
fractional values to O's and l's. It finds a global wiring S with Ws provably not 
much larger than W, and thus woo Note that the fractional solutions XiO and Xii 
still satisfy the other constraints of the original integer program; in particular, 
XiO + Xii = 1 for each i. We will denote by XiQ the rounded value of XiO, and 
define Xii similarly. 

Randomized rounding is the following process: independently for each i, set 
XiO to 1 and Xii to 0 with probability XiO; otherwise set XiO to 0 and Xii to 1. 
Thus, for each i, Pr[XiO = 1] = XiQ and Pr[xil = 1] = Xii' The idea of randomized 
rounding is to interpret the fractional solutions provided by the linear program 
as probabilities for the rounding process. Another interpretation is to imagine 
that the linear program, given the choice of two routes for wiring each net, 
routes the wire using two "fractional wires." Randomized rounding then picks 
one of these fractional wires, in proportion to its fraction. A nice property of 
randomized rounding is that if the fractional value of a variable is close to 0 (or 
1), it is likely to be set to 0 (or 1). 

Theorem 4.8: Let E be a real number such that 0 < E < 1. Then with probability 
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1 - E, the global wiring S produced by randomized rounding satisfies 

Ws < w(l + A+(~',E/2n)) ~ wo(1 + A+(wo,E/2n)). 

PROOF: We establish that following the rounding process, with probability at 
least 1 - E, no boundary in the array has more than w(l + A+(w,E/2n)) wires 
passing through it. We will do so by showing that for any particular boundary 
b, the probability that ws(b) > w(1 + A+(w,E/2n)) is at most E/2n; then, since a 
.In x .In array contains fewer than 2n boundaries, we can sum this probability 
of failure over all the boundaries b to get an upper bound of E on the failure 
probability. 

Consider a boundary b; since the solutions of the linear program satisfy its 
constraints, we have 

L XiO + L XiI ~ w. 
iETbO iETbl 

The number of wires passing through b in the solution S is 

ws(b) = L XiO + LXiI. 
iETbO iETbl 

(4.17) 

(4.18) 

But XiO and XiI are Poisson trials with probabilities XiO and XiI, respectively. 
Further, XiO and XiI are each independent of XjO and XjI for i =1= j. Therefore, 
ws(b) is the sum of independent Poisson trials and, by (4.17) and (4.18), 

E[ws(b)) = L E[XiO) + L E[XiI] = L XiO + LXiI :::;;; W. 
iETbO 

Now, by the definition of A+(JL,E) in (4.7), 

Pr[ws(b) > w(l + A+(w,E/2n)] < E/2n, 

and the theorem follows. o 
Neither the theorem nor its proof makes any assumption on the value of E 

- it can in fact be o( 1), even n-C for some constant c. Let us return to the 
guarantee provided by Theorem 4.8; how good is it? The answer depends on 
the value of woo Suppose we seek E = l/n, so that E/2n = 1/2n2• Then Ws < 
wo(1 + A+(wo,E/2n)). 

Consider first the case where Wo = n"l, for some positive constant y. We can 
use Theorem 4.3 to show that with probability 1 - E, 

Ws < n' (1+ 41nn~/E). 

Thus, we find a solution with an additive term that is vanishingly small as n 
grows. Suppose, on the other hand, that Wo = 20. In this case, a calculation sim
ilar to that in Example 4.4 shows that Ws is O( (log n) / log log n) with probability 
1- l/n. Randomized rounding is likely to perform well provided Wo is "not too 
small," and this appears to be the case in practice. When Wo is small (as in the 
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latter case), we can in fact do substantially better than the O((log n)j log log n) 
guarantee provided by randomized rounding, as Exercise 4.7 below illustrates. 

Exercise 4.7: Give a simple rounding procedure that obtains rounded solutions x 
from x so that Ws ~ 2wo. where Wo is the optimum solution for our restricted class 
of one-bend routes. 

We have focused on the quality of the solution produced in the probabilistic 
statement of Theorem 4.8. Our algorithm can be shown to run in time polynomial 
in the number of gates and nets in the instance. This is an example w~ere we 
are interested in random variables other than running time of a randomized 
algorithm. 

4.4. Martingales 

Our discussion so far has centered on the sums of independent random variables. 
Frequently, it is necessary to consider the sum of random variables that are not 
totally independent. When relatively little knowledge of the random variables is 
available, we may resort to the Markov inequality or the Chebyshev inequality; 
in such cases, we cannot hope to show that a random variable is sharply 
concentrated about its expectation. There are, however, cases in which we can 
exploit additional structure in the random variables. An important case of 
such additional structure is that of martingales. (The material in this section, 
although useful, is not an essential prerequisite for subsequent chapters and may 
be omitted.) 

Martingales originally referred to systems of betting in which a player in
creased his stake (usually by doubling) each time he lost a bet. Assuming 
unlimited capital, this system is guaranteed to eventually result in a net profit 
in any fair betting game; in the case of limited capital, it will eventually lead 
to net profit or total bankruptcy. It is no wonder that such systems have been 
outlawed in most casinos! Here we are interested in a far more general def
inition of martingales, which has proved to be very useful in showing that a 
random variable is sharply concentrated about its expectation. The following 
exposition concentrates on discrete martingales, as the continuous case seldom 
arises in computer science applications. The definition of martingales requires 
some exposure to the measure-theoretic underpinnings of probability theory, 
and we recommend a review of the material in Appendix C. 

We begin by defining conditional distributions and expectations. Let X be a 
random variable and & any event that occurs with a non-zero probability. The 
conditional density function of X given & is given by Pr[X = x I &]. In particular, 
& can be the event that some other random variable Y takes on a specific value 

83 



TAIL INEQUALITIES 

y. Denoting the joint density function of X and Y by p(x, y), we have 

and 

Pr[X = x I Y = ] = p(x,y) _ p(x,y) 
y Pr[Y=y] LxP(x,y) 

E[X I Y =y] = LxxP(x,y), 
LxP(x,y) 

where E[X I Y = y] is the conditional expectation of X given that Y equals y. 
These definitions apply only for the values y for which Pr[Y = y] > o. 

We can express the conditional expectation as a function of y, say f(y). If 
the value of Y is not known, then the conditional expectation is itself a random 
variable. This is the random variable f(Y). 

~ Definition 4.4: The random variable E [X I Y) is defined to be the random 
variable f(Y) such that f(y) = E[X I Y = y). 

Suppose that the random variables X and Yare defined over the probability 
space (O,F',Pr). Consider the partition of 0 into the events {Y = y} as y ranges 
over the subset of reals in which Pr[Y = y] > O. The function f(y) is the average 
value of X over the various elementary events in the set {Y = y}. The random 
variable E [X I Y] takes on the value f(y) when evaluated at some elementary 
outcome ()) E {Y = y}. We can generalize this to define the random variable 
E [X I Yl, ... , Yr]. 

~ Example 4.6: Consider independent throws of an unbiased 6-sided die. For 
1 :::;;;. i ~ 6, let Xi denote the number of times the value i appears in n throws of 
the die. Consider the following conditional expectations: 

These equations define the expected value of the random variable Xl given the 
number of times 2 and 3 appear. Of course, the number of occurrences of 2 and 
3 are themselves random variables, and so the expectation of Xl is a random 
variable defined as a function of X2 and X 3. 

If we knew that there are ex occurrences of 2, we can compute the expected 
value of Xl as (n-ex)/5; given the further information that there are p occurrences 
of 3, we can compute the expected value of Xl as (n - ex - P)/4. More succinctly, 

n-ex 
- -5-' 

n-ex-p 
4 

We leave both the proofs of the following lemmas and their generalization to 
random variables such as E [X I YI , ... , Yr ] as an exercise. 

84 



« MARTINGALES 

Lemma 4.9: E[E [X I Y]] = E[X]. 

Lemma 4.10: E[Y x E [X I Y]] = E[XY]. 

4.4.1. A Simple Definition 

We start with a simplified definition of a martingale. No assumptions are made 
about the independence or the precise distributions of the random variables in 
this definition. In fact, this is just the reason why martingales are so powerful! 

~ Definition 4.5: A sequence of random variables Xo, XI. .. , is said to be a 
martingale sequence if for all i > 0, 

E [Xi I Xo, ... ,Xi-tl = Xi-I. 

Consider the example of a gambler who makes a sequence of bets. Her initial 
capital is Xo, and Xi represents the capital after the ith bet. Assume that the 
game is fair, so that the expected gain/loss from each bet is zero. We can 
then claim that the sequence Xo, XI, '" forms a martingale. This is without 
the knowledge of the gambler's strategy; the gambler bets an arbitrary amount 
of money each time, and the amount bet may depend in any way upon the 
history (i.e., the previous results Xo, X I, ... , Xi-I). The following lemma is an 
immediate consequence of Definition 4.5 and Lemma 4.9; it implies that the 
expected capital at any stage is exactly the initial amount Xo. 

Lemma 4.11: Let Xo, Xl, ... be a martingale sequence. Then, for all i > 0, 
E[X;] = E[Xo]. 

An alternate view of the gambling example is provided by letting the random 
variable Yj denote the net gain or loss from the ith bet. We can relate the 
sequences Xo, XI. ... and Yt. Y2, ••• as follows: Yj = Xi - Xj- l and Xj = 
Xo + E~""l Yj • By fairness, regardless of the past history, the expected gain from 
each bet is zero, i.e., E [Yj I Yt. ... , Yj-tl = 0. Since the two views of the process 
are exactly equivalent, we make an alternate definition of a martingale. 

~ Definition 4.6: A sequence of random variables Yt. Y:, ... is said to be a 
martingale difference sequence if for all i > 1, 

E [Yi I YI. ... , Yj-tl = o. 

Of course, in a casino the games are known to be unfair to the gamblers. In 
that case, the sequence of capitals forms what is known as a super-martingale; 
from the point of view the casino, the situation is represented by what is called 
a sub-martingale. 
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~ Definition 4.7: A sequence of random variables Xo, XI. .,. is said to be a 
super-martingale if for all i, 

E [Xi I Xo,.·· ,Xi-tl < Xi-I. 

It is called a sub-martingale if for all i, 

E [Xi I Xo, ... ,Xi-tl > Xi-I. 

This definition can be adapted to a martingale difference sequence. Moreover, 
a super-martingale can be converted into a martingale by accounting for the 
expectation at each stage. In the case of a gambler playing an unfair game, 
suppose that the expected return on a bet of value 1 is the amount 1-J1. Assume 
that the gambler bets one dollar each time and gets a return of Yi ; let Xi be her 
net capital after the ith bet. Then the sequence Zo, Z 1. ••• forms a martingale, 
where 

i 

Zi II X i +iJ1=Xo+ L(Yj +J1-1). 
j-l 

A similar conversion can be performed for the sub-martingale corresponding to 
the casino's viewpoint. 

Exercise 4.8 (Polya'. Urn Scheme): Consider an urn that initially contains b black 
balls and w white balls. We perform a sequence of random selections from this urn, 
where at each step the chosen ball is replaced by c balls of the same color. Let Xi 
denote the fraction of black balls in the urn after the ith trial. Show that the sequence 
Xo, X1 , '" is a martingale. 

Exercise 4.9 (Occupancy Problem): Suppose that m balls are thrown independently 
and uniformly at random into n bins. Let Z denote the number of bins that remain 
empty. Define time t to be the time at which exactly t balls have been thrown into 
the bins. For 0 s: t s: m, define the random variable Z, to be the expectation at time 
t of the number of bins that are empty at time m. The random variable Z, depends 
on the placement of the first t balls, and is defined under the assumption that the 
remaining balls are placed at random. Show that the sequence of random variables 
Zo, ...• Zm is a martingale, and that Zo = E[Z] and Zm = Z. 

Given our current description of a martingale, the latter exercise is non-trivial. 
In Section 4.4.2, we will develop a more general view of martingales that will 
reduce this exercise to a triviality. 

4.4.2. A General Definition 

Let us return to the example of the gambler discussed at the beginning of 
Section 4.4.1. Recall that Xl represents the gambler'S capital at time t, i.e., after 
t bets have been placed. We observed that this sequence forms a martingale, 
and that E [Xi I Xo, ... , Xi- tl = Xi-I. We would like to claim that this captures 
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the fairness of the game in that. irrespective of the history and the gambler's 
strategy, the expected gain from each bet is exactly O. However, this definition 
only says that the knowledge of the amounts won or lost in past bets does not 
help to predict the future. But what about other past information such as the 
exact set of cards dealt to various people, or the number of times a particular 
color or number shows up on the roulette table? 

Specifically, suppose the gambler is playing roulette, and denote by Zi the 
outcome on the roulette table during the ith bet; this random variable includes 
all information about the happenings on the roulette table, and not just the 
amount won or lost by this specific gambler. The gambler knows the value of Zi 
and makes use of this knowledge in placing future bets. For example, if ZI, ... , 
Zi indicate that the outcome on the table was always a red number, the gambler 
might then choose to bet on one of the red numbers the next time around. It is 
intuitively obvious that even this more refined knowledge of the past cannot help 
the gambler in the future, but the current definition of a martingale does not 
cater to the full generality of this intuition. The problem is that the conditioning 
is based on the amount of money lost or gained by the gambler from each bet, 
rather than the actual outcomes on the table. We would like a definition which 
gIves 

E [Xi ZO, ... ,Zi-tl = Xi-I. 

In fact, some authors define the notion of a martingale sequence Xo, XI. ... with 
respect to a second sequence of random variables Zo, Z I, ... using precisely this 
equation. 

Recall the definition of au-field (0, F) from Appendix C. In particular, we 
will consider only the probability spaces where the sample space n is a finite set 
and F = 2° contains all possible events in this sample space. Typically, we will 
assume that n is clear from the context and refer to F itself as au-field. 

~ Definition 4.8: Given the u-field (o,F) with F = 2°, a filter (sometimes also 
called afiltration) is a nested sequence Fo ~ FI ~ ... ~ Fn of subsets of 2° such 
that 

1. Fo = {0,n} 

2. Fn = 2° 

3. for 0 ~ i ~ n, (0, F i ) is au-field 

Let & I, &2, ... be any collection of events over the sample space n. The u-field 
generated by these events is the minimal collection of subsets F that contains (/) 
and each of &1. &2, ... , and is closed under complement and union. If &1. &2,'" 
are disjoint events that partition 0, then an event is in the generated u-field F if 
and only if it can be expressed as the union of some subset of the events &1, &2, 
... ; we refer to the events &1. &: •... as the elementary events in the u-field F. 

An intuitive view of Definition 4.8 can now be obtained by associating with 
each F t a partition of n into blocks B~, B~, ... such that the events B; generate 
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the O'-field 1Fj • Furthermore, the partition associated with 1Fj+1 is a refinement 
of the partition associated with 1Fj, and 1Fo is generated by the trivial partition 
while 1Fn is generated by the partition of Q into the singleton sets containing the 
sample points. 

~ Example 4.7: Consider a randomized algorithm A that uses a total ofn random 
bits. The elementary events in the underlying sample space Q are all possible 2n 

choices of the n bits. For ° < i < nand w E {a, 1 }i, let Bw denote the event that 
the first i random bits equal the bit string w. Let 1Fi be the O'-field generated by 
the partition of Q into the blocks Bw, for w E {a, 1 Y Then the sequence 1Fo, FJ, 
... , 1Fn forms a filter. In the O'-field 1Fi, the only valid events are the ones that 
depend on the values of the first i bits, and all such events are valid therein. 

Recall that a random variable X over a probability space (Q, 1F, Pr) can be 
viewed as a function X: Q -+ R. In other words, given a sample OJ E Q, the 
random variable takes on the value X(OJ). Given a filter 1Fo, ... , 1Fn with respect 
to this probability space, it is not clear that we can define the distribution of 
X relative to an arbitrary 1Fj • This is because events of the type {X = x} or 
{X ~ x} may not exist in 1Fj , although they will always be contained in the set 
1Fn = 1F. We formalize this as follows. 

~ Definition 4.9: A random variable X is said to be Fj-measurable if for each 
x E R, the event {X < x} is contained in 1Fi• 

Since we are dealing only with the discrete case, the above definition could 
be made using the events {X = x} rather than {X < x}. 

~ Example 4.8: Continuing with Example 4.7, consider the random variable X 
which is the parity of the n random bits used by algorithm A Clearly, X is 
1Fj-measurable only for i == n. On the other hand, let Yj denote the number of 
·ones in the first j random bits; then Yj is 1Fi-measurable for all i > j. 

In general, a random variable X is 1Fi-measurable if its value is constant 
over each block in the partition generating 1Fj • Since the partitions generating 
the O'-fields in a filter are successively more refined, it follows that if X is 
1Fi-measurable, it is also 1Fr measurable for all j > i. 

Suppose now that X is 1Fj -measurable. What can we say about X with respect 
to the O'-field 1Fi- 1 ? An elementary event B in 1Fi- 1 is a block from its partition 
of Q, and this is the union of some blocks B1, ... , Br from the refined partition 
generating 1Fj • Viewing X as a function over Q, we know that X is constant 
over each of the blocks Bj , but is not necessarily so over B. However, the 
expected value of X is well-defined (and constant) over B. Thus, we can define 
E [X l1Fi- 1] as the expected value of X conditioned on the events in 1Fi- 1. This 
conditional expectation is a random variable that can be viewed as a function 
into the reals from the blocks in the partition of 1Fj - 1• Moreover, this random 

88 



4.4 MARTINGALES 

variable is a constant if X is also 1Fi_ I-measurable. The converse is not always 
true; for example, when X is independent of the elementary events in 1Fi- 1, then 
E [X l1Fi-d may be constant even though X is not 1Fi_I-measurable. 

There is nothing special about working with 1Fi- 1 in this discussion, and we 
can similarly define E [X l1Fj] for any j. The following is a general definition of 
conditional expectations. 

~ Definition 4.10: Let (Q, F) be any O'-field, and Y any random variable that takes 
on distinct values on the elementary events in F. Then E [X IF'] = E [X I Y]. 

Notice that the conditional expectation E [X i Y] does not really depend on 
the precise value of Y on a specific elementary event. In fact, Y is merely an 
indicator of the elementary events in 1F. Conversely, we can write E [X 1 Y] = 

E [X I 0'( Y )], where 0'( Y) is the O'-field generated by the events of the type 
{Y = y}, i.e., the smallest O'-field over which Y is measurable. 

~ Example 4.9: Consider the sample space Q of all Americans, and let X be 
the random variable denoting the weight of a randomly chosen sample point. 
Consider the following filter with respect to Q: Fo is the trivial O'-field; FI is the. 
O'-field generated by the partition of Q into males and females; F2 is the O'-field 
generated by the refinement of the previous partition into sets corresponding to 
different heights; F3 is the further refinement of the partition based on age; and, 
F4 is the partition into singleton sets, each of which corresponds to an individual 
American. 

Define Xi = E [X I F i], for 0 < i < 4. Then Xo = E[X] denotes the average 
weight of an American, Xl is the average weight of Americans as a function of 
their sex, X2 is the average weight of Americans as a function of their sex and 
height, and X3 is the average weight of Americans as a function of their sex, 
height and age. Of course, X4 = X is the original random variable. 

The "randomness" in these random variables results from the fact that a 
random American does not have a predetermined sex, weight, or age. For 
example, the sex of a random American is a random variable, and Xl is a 
function of this random variable. Once the sex is known, the value of Xl is 
completely determined. 

~ Example 4.10: Going back to Example 4.7, let T be the running time of the 
algorithm A on a specific input I. Clearly, T is a random variable whose value 
depends upon the specific values of the random bits used by A. Observe that T 
is Fn-measurable, but in general is not Fi-measurable for any i < n. 

Define the conditional expectation Ti = E [T I FJ Verify that To = E[T] 
and that Tn = T. Also, Ti is a function of the values of the first i random bits 
denoting the expected running time for a random choice of the remaining n - i 
bits. Given the value of the first i random bits, we may evaluate this random 
variable and obtain a constant. In fact, as will become clear shortly, the sequence 
To, ... , Tn is a martingale. 
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We are now ready to give the more general definition of martingales. 

~ Definition 4.11: Let (0, F, Pr) be a probability space with a filter Fo, Fl .... 
Suppose that Xo, XI. ... are random variables such that for all i > 0, Xi is 
Fi-measurable. The sequence Xo, ... , Xn is a martingale provided, for all i > 0, 

As before, we can define martingale difference sequences using Yi = Xi - Xi-I. 
and requiring that E [Yi+1 IFi] = O. We leave it as an exercise to verify that the 
definitions of Section 4.4.1 are special cases of Definition 4.11. 

Suppose that Xo, XI. ... is a martingale. Then it is intuitively clear that the 
sequence Xo, X 2, X4, ••• is also a martingale. This can be proved rigorously 
using the definition given above. The following theorem gives a general form of 
this result and the proof is left as Problem 4.18. 

Theorem 4.12: Any subsequence of a martingale is also a martingale (relative to 
the corresponding subsequence of the underlying filter). 

The following theorem gives us a way to construct a martingale sequence 
from any random variable. Martingales obtained in this manner are sometimes 
referred to as Doob martingales. 

Theorem 4.13: Let (0, F, Pr) be a probability space, and let F o, ... , Fn be a 
filter with respect to it. Let X be any random variable over this probability space 
and define Xi = E [X I Fi]. Then, the sequence Xo, ... , Xn is a martingale. 

The proof of this theorem is based on the following lemma, and these proofs 
are posed as Problems 4.19 and 4.20. 

Lemma 4.14: Let (0, F) and (0, eG) be two (1-.fields such that F c eG. Then, for 
any random variable X, E [E [X I eG] I Fl = E [X I Fl· 

~ Example 4.11: Consider again the occupancy problem discussed in Exercise 4.9. 
There is an underlying filter Fo, ... , Fn where F t is the (1-field generated by the 
events corresponding to the placement of the first t balls. It then follows that 
the random variable Zt equals E [Z IF,], and that the sequence Zo, ... , Zm is a 
martingale. 

~ Example 4.12 (Edge Exposure Martingale): Let G be a random graph on 
the vertex set V = {I, ... , n} obtained by independently choosing to include each 
possible edge with probability p. The underlying probability space is called Qn.p. 
Arbitrarily label the m = n(n - 1)/2 possible edges with the sequence 1, ... , m. 
For 1 < j < m, define the indicator random variable I j , which takes value 1 if 
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edge j is present in G, and has value 0 otherwise. These indicator variables are 
independent and each takes value 1 with probability p. 

Consider any real-valued function F defined over the space of all graphs, e.g., 
the clique number, which is defined as being the size of the largest complete 
subgraph. The edge exposure martingale is defined to be the sequence of random 
variables Xo, ... , Xm such that 

while Xo == E[F(G)] and Xm == F(G). The fact that this sequence of random 
variables is a (Doob) martingale is easy to verify - simply define the filter where 
Fk is the O'-field generated by the events corresponding to I}, ... , Ik. 

Exercise 4.10 (Vertex Exposure Martingale): In the same setting as in Example 4.12, 
we define a vertex exposure martingale as follows. For 1 S; f S; n, let E; be the set 
of all possible edges with both end-points in {1, ... , f}. Define Y; as the (conditional) 
expectation of F(G), conditioned by the knowledge of the indicator variables 1/ for all 
j E E;. Show that the sequence Yo == E[F(G)), Yb ... , Yn forms a martingale. 

At this point it is useful to review the intuition behind the above series of 
definitions. Recall the sequence To, T}, ... , Tn of conditional expectations of 
the running times defined in Example 4.10. This is a Doob martingale. We view 
the O'-field sequence 1Fo, ... , 1Fn as representing the evolution of the algorithm, 
with each successive O'-field providing more information about the behavior of 
the algorithm (this information is determined by the values of the random bits 
given a fixed input). The random variables To, ... , Tn represent the changing 
expectation of the running time as more information is revealed about the choice 
of the random bits. As we will see in the next section, if it can be shown that the 
absolute difference I Ti - Ti-11 is suitably bounded, then the random variable Tn 
behaves like To in the limit. In other words, the running time of the algorithm 
is sharply concentrated around its expected value provided that the choice of 
each individual random bit does not influence the behavior of the algorithm 
too dramatically. Similar arguments applied to the edge or vertex exposure 
martingales allow us to conclude that the value of a graph-theoretic function 
applied to a random graph is sharply concentrated around its expected value. 

4.4.3. Martingale Tail Inequalities 

In this section we present some inequalities for martingales that are reminiscent 
of the inequalities seen earlier for independent random variables. The reader 
may find it instructive to adapt these inequalities to the case of martingale 
difference sequences. The first inequality bears a resemblance to the Markov 
inequality. 
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Theorem 4.15 (Kolmogorov-Doob Inequality): Let Xo. Xl .... be a martingale. 
Then. for any A > O. 

The next bound is similar to the Chernoff bound for the sum of Poisson 
trials. Notice that Xo equals E[X] in the case of a Doob martingale obtained 
from a random variable X, and so the following gives an exponentially small 
tail bound for X. It should also be noted that the tail bound does not require 
any knowledge of the expectation of X. 

Theorem 4.16 (Azuma's Inequality): Let Xo. XJ, ... be a martingale sequence 
such that for each k. 

where Ck may depend on k. Then. for all t > 0 and any A > O. 

Pr[IXt - Xol > A] < 2exp (- L:~2 2)' 
2 k=l ck 

I t is easy to see the connection between this bound and the Chernoff bound 
for the sum of Poisson trials. Let Zh ... , Zn be independent variables that take 
values 0 or 1 each with probability 1/2. The random variable S = L:~l Zi has 
the binomial distribution with parameters nand p = 1/2. Define a martingale 
sequence Xo, XI. ... , Xn by setting Xo = E[S], and, for 1 < i < n, Xi = 
E [S I Zh ... ,ZtJ. It is clear that for 1 < i < n, IXi - Xi-II < 1, since fixing the 
value of anyone variable Zi can only affect the expected value of the sum S by 
at most 1..1t follows that the probability that S deviates from its expected value 
Xo = E[S] = n /2 by more than A is bounded by 2 exp( - A 2 /2n), a slightly weaker 
result than can be inferred from the Chernoff bound for binomial distributions. 

The following is a useful corollary. 

Corollary 4.17: Let Xo. Xl .... be a martingale sequence such that for each k. 

where c is independent of k. Then. for all t > 0 and any A > O. 

Pr[lXt - Xol > ACy't] < 2e-).2/2. 

The application of Azuma's inequality is sometimes called "the method of 
bounded differences." In applying this method to a martingale sequence, it is 
essential to set up the martingale in such a way as to guarantee the "bounded 
difference" property. We identify a general situation where this property is easily 
obtained. 
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~ Definition 4.12: Let f : VI x ... x V,. - R be a real-valued function with n 
arguments from possibly distinct domains. The function f is said to satisfy the 
Lipschitz condition if for any Xl E VI, ... , Xn E V,., any i E {I, ... , n}, and any 
YiEVi, 

Basically, a function satisfies the Lipschitz condition if an arbitrary change 
in the value of anyone argument does not change the value of the function 
by more than 1. Suppose we have a sequence of random variables X}, ... , X n, 

and a function f(X}, ... ,Xn) defined over them such that f satisfies the Lipschitz 
condition. Define the Doob martingale sequence Yo, Y}, ... , Yn by setting 
Yo = E[f(XJ, ... ,Xn)] and, for 1 < i < n, Yi = E [f(X}, ... ,Xn) I X}, ... ,Xa, 
It is easy to verify that the Lipschitz condition implies that for 1 < i < n, 
I Yi - Yi-II < 1. We can now employ the method of bounded differences. Of 
course, there is no particular reason to restrict the Lipschitz condition to absolute 
differences of 1, and we can appropriately generalize the definition to permit the 
exploitation of Azuma's inequality in its full generality. 

The following exercise illustrates the power of the method of bounded differ
ences. 

Exercise 4.11: A legal coloring of a graph G with vertex set V = {1, ... ,n} is an 
assignment of colors (say, positive integers) to the vertices of the graph such that 
no two adjacent vertices receive the same color; the chromatic number of the 
graph G, denoted X(G), is the minimum number of distinct colors needed for this 
purpose. 

Consider a random graph G as defined in Example 4.12. Using the vertex exposure 
martingale from Exercise 4.10, employ the method of bounded differences to show 
that 

Pr[lX(G) - E[X(G)11 > A.ji71 ;5; 2 exp(-A 2 /2). 

Note that you will have to model the chromatic number as a function of n argu
ments, where the ith argument specifies the neighbors of vertex i from among 
the vertices {1, ... ,i - 1}, and then show that this satisfies the Lipschitz condition. 

It may seem a bit surprising at first that such a sharp concentration result can 
be proved without even determining the expected value, but such is the power 
of martingale arguments. 

4.4.4. Occupancy Revisited 

We return to the occupancy problem and apply the martingale tail inequalities 
to it. We have m balls thrown independently and uniformly into n bins. Let Z 
denote the number of bins that remain empty. Our goal is to prove a sharp 
concentration result for Z. 
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Consider first the following easy application of the Lipschitz condition and 
the method of bounded differences. For 1 < i < m, let the random variable Xi 
denote the bin chosen for the ith ball. We can view Z as a function F(XI , ... , Xm)· 
It is easy to verify that this function satisfies the Lipschitz condition since moving 
any ball from one bin to another can change the number of empty bins by at 
most 1. 

Exercise 4.12: Based on the Lipschitz condition deduced in the preceding paragraph. 
apply Corollary 4.17 to obtain that the probability that Z deviates from its expected 
value by more than A is bounded by 2exp(-A2/2m). 

However, exploiting the full generality of Azuma's inequality allows us to 
derive a significantly stronger result for the case where m> n. 

Theorem 4.18: Let r = mIn. and Z be the number of empty bins when m balls 
are thrown randomly into n bins. Then. 

p = E[Z] = n ( 1 _ ~) m '" ne-r 

and for A > O. 

( 
A2(n - 1/2») 

Pr[lZ - pi ~ A] < 2 exp n2 _ p2 . 

PROOF: The expected number of empty bins is studied in Problem 3.1. We 
concentrate here on proving the tail bound. Let time t refer to the point at 
which the first t balls have been thrown. Let 1F, be the O"-field generated by the 
random choice of bins for the first t balls, i.e., the events corresponding to the 
state of the bins at time t. Let Z be the random variable denoting the number of 
empty bins at time m, and let Z, = E[Z 11F,] denote the conditional expectation 
of Z at time t. The random variables Zo, Zh ... , Zn form a martingale, with 
Zo = E[Z] and Zm = Z. 

Define z(Y, t) as the expectation of Z given that Y bins are empty at time 
t. The probability that any of these bins does not receive a ball during the last 
m - t time units is given by (1 - l/n)m-,. By linearity of expectations, we obtain 
that the number of these bins that remain empty at the end is given by 

z(Y, t) - E[Z I Y bins are empty at time t] 

( 
l)m-, 

= Y 1-;; 

Let the random variable Y, denote the number of empty bins at time t. Then, 

( l)m-t+1 
Z,_I = Z(Y,-h t - 1) = Y,_I 1 - ;; 

Suppose we are at time t - 1 (i.e., in the O"-field 1F,_I.), so that the values of Y,_I 
and Z,_I are determined. At time t, there are two possibilities: 

, 
94 



4. .. MARTINGALES 

1. With probability 1- Yt- I In, the tth ball goes into a currently non-empty bin. 
Then, Yt = Yt- h and 

( 
l)m-t 

Zt = z(Y"t) = z(Yt-ht) = Yr-l 1- 11 

2. With probability Yt-I!n, the tth ball goes into a currently empty bin. Then, 
Yt = Yt- 1 - 1, and 

( 
l)m-t 

Zt = z(Y" t) = z(Yt- 1 - 1, t) = (YX-l - 1) 1 - 11 

Let us now focus on the difference random variable L\t = Zt - Zt-l. Cor
responding to Zt, the distribution of L\t (given the state at time t - 1) can be 
characterized as follows. 

1. With probability 1 - Yt-I!n, the value of A, is 

<50 = 

_ Y;1 (1 _ ~) m-t 

2. With probability Yt-I!n, the value of At is 

( 
l)m-t (l)m-t+l 

(Yt - 1 - 1) 1 - 11 - l"r-l 1 - 11 

( 
1 ) m-t ( ( 1 ) ) ( 1 ) m-t - Yt- 1 1 - 11 1 - 1 - 11 - 1 - 11 

_ _ (1- Y;I) (1 _~) m-I 

Observing that 0 < Yt- 1 < n, it follows that the value of the difference is 
bounded as follows: 

( 1 ) m-t (1 ) m-t 
- 1 - 11 < L\t < 1 - 11 

For 1 < i < m, we set Ct = (1 - ~t-t, and we have that IZt - Zt-ll < Ct. By a 
straightforward calculation, 

m 1 - (1 - I/n)2m 112 - p2 

L C~ = 1 - (1 - 1 I n )2 = 2n - 1 . 
t=1 

Invoking Azuma's inequality now gives the desired result. 

For large r, this tail bound is asymptotically equal to 

2exp (-A,2/[n(1- e-2r
)]). 
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Compare this with a heuristic tail bound that can be obtained by using the fact 
that the distribution of Z approaches the normal distribution in the limit. 

Pr[IZ - III ~ A,] ::; 2 exp (_A,2er j[2n(1 - e-r )1) . 

Notes 

The general ideas behind the use of probability tail bounds derived from the moment 
generating function were presented by Chernoff [93]. The idea of using the moment
generating function to derive tail bounds is generally attributed to S. N. Bernstein [357]. 
The proof of Theorem 4.3 may be found in Raghavan's thesis [350]. Hoeffding [202] gives 
a similar bound that is insignificant unless J.L~ ::> n - J.L( 1 + ~). An alternative approach to 
proving these bounds in the setting of k-wise independent random variables is developed 
by Schmidt, Siegel, and Srinivasan [363]; they also provide general techniques for 
inferring Chernoff tail bounds for the sums of certain other types of correlated random 
variables. Janson [209] gives strong Chernoff-type bounds for the tail probabilites of the 
sum of Bernoulli variables that are either independent or negatively correlated. Hagerup 
and RUb [189] give a detailed survey of Chernoff bounds on the tail of the binomial 
distribution. 

Lower bounds on deterministic oblivious permutation routing such as Theorem 4.4 
stemmed from work of Borodin and Hopcroft [75]; the form given here is an improvement 
due to Ka1damanis, Krizanc, and Tsantilas [225]. The power of randomization in solving 
the permutation routing problem was first demonstrated by Valiant [403]; his analysis 
was subsequently simplified by Valiant and Brebner [400]. Our presentation here is an 
adaptation of the latter analysis. 

Notice that Valiant's scheme is an oblivious randomized algorithm: the route followed 
by a packet depends on its source, destination, and choice of random intermediate 
destination, but not on the sources, destinations, or choices of other packets. In 
Problem 4.11 below, we derive a result showing a limit on the performance of Valiant's 
scheme on an N-node, degree d network. In fact, such a lower bound has been shown 
for any randomized oblivious scheme by Borodin, Raghavan, Schieber, and Upfal [77], 
using the minimax principle of Section 2.2. In our model for parallel communication, we 
assumed that a node could transmit packets along all its links at each step. When the 
degree of a node is large, this assumption is unrealistic. Aleliunas [14] and Upfal [399] 
have addressed this problem by showing that there are bounded-degree networks for 
which Valiant's scheme routes any permutation in O(1og N) steps with high probability. 

The technique of solving a linear programming problem and then randomly rounding 
is due to Raghavan and Thompson [353]. Generalizations of the global wiring problem 
to more realistic settings and other details are also given in the paper by Raghavan 
and Thompson [353]. This technique has also been applied to the MAX-SAT problem 
in recent work of Goemans and Williamson [169]; we will explore this application in 
Section 5.2. Bertsimas and Vohra [58] explore randomized rounding in detail, applying 
the approach to unify approximation algorithms for a number of covering problems. 
Recent work of Goemans and Williamson [170], and Karger, Motwani, and Sudan [230], 
has extended the randomized rounding technique from linear programming relaxations 
to semi-definite programming relaxations, with applications to approximations for MAX
SAT and graph coloring. The idea here is to relax the requirement that the solutions 
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be scalars, and instead allow them to be vectors in some high-dimensional space, 
thereby obtaining a polynomial-time solvable version of an NP-hard problem; as before, 
randomization is then used to obtain approximate scalar solutions from the vector 
solutions. The article by Motwani, Naor, and Raghavan [314] surveys approximation 
algorithms for NP-hard problems based on the randomized rounding of both linear 
programming and semi-definite programming relaxations of NP-hard problems. 

Several books on advanced probability theory cover martingales. Grimmett and 
Stirzaker [185] give an eminently readable description of martingale theory, as do 
Dubins and Savage [131]. The more measure-theoretic approach to martingales can 
be found in the books of Billingsley [61] and Feller [142, 143]. The reader seeking an 
in-depth understanding of martingales may refer to more advanced books such as those 
by Doob [129] and Hall and Heyde [191]. 

The tail inequality referred to as Azuma's inequality is due to Hoeffding [202] and 
Azuma [36]. The "method of bounded differences" has its origins in a paper by 
Maurey [300], and its various forms and applications are surveyed by McDiarmid [302]. 
The occupancy tail bound is due to Kamath, Motwani, Palem, and Spirakis [228], 
who provide a sequence of tail bounds for this problem. The classical results. for 
occupancy problems can be found in the books by Johnson and Kotz [222] and Kolchin, 
Chistiakov, and Sevastianov [266]. While martingale arguments have been extremely 
useful for proving sharp concentration about expected values, it is only recently that 
they have attracted widespread attention in the computer science community, mainly due 
to the work of Shamir and Spencer [373] and Bollobas [70] on the chromatic number 
of random graphs; the book by Alon and Spencer [24] gives an excellent account 
of this work. Some notable successes in the application of martingales to computer 
science problems include: the work of McDiarmid and Reed [305] and Hayward and 
McDiarmid [198] on algorithms for building heaps; the results of McDiarmid and 
Hayward [304] on sharp concentration for quicksort; and the work of Aspnes and 
Waarts [34] on distributed algorithms for consensus. 

Problems 

4.1 Suppose you are given a biased coin that has Pr[HEADS) = p ~ a, for 
some fixed a, without being given any other information about p. Devise a 
procedure for estimating p by a value p such that you can guarantee that 
Pr[lp - pi > £p) < 6, for any choice of the constants 0 < a, £, 6 < 1. Let N be 
the number of times you need to flip the biased coin to obtain the estimate. 
What is the smallest value of N for which you can still give this guarantee? 

4.2 Let X be a random variable. Define the kth factorial moment of X, E[X!k), as 
the expected value of X!k = X(X - 1)'" (X - k + 1). Let G1 denote a random 
graph on n vertices where each edge independently is present with probability 
p, and G2 denote a graph on n vertices that has m edges chosen uniformly 
at random. Let Xn denote the number of isolated vertices in G1t and let Yn 
be the number of isolated vertices in G2 • Consider the case p = (log n + c)jn 
and m = n(log n + c)j2, for a real value c. Prove that E[X~k) and E[y~k) are 
asymptotically equal to A k, where A = e-c • 
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4.3 For JJ in the range [1, In n], use (4.1) to obtain a closed-form upper bound for 
fj.+(P,1in 2 ) (as a function of JJ and n) that is within a constant factor of the 
best possible. 

4.4 Let X,. X2 • •••• Xn be independent geometrically distributed random variables 
each having expectation 2 (each of the Xi is an independent experiment 
counting the number of tosses of an unbiased coin up to and including the 
first HEADS). Let X = L:~=, Xi and 6 be a positive real constant. Use moment 
generating functions and the Chernoff technique to derive the best upper 
bound you can on Pr[X > (1 + 6)(2n)]. 

4.5 The result of Theorem 4.2 bounds the probability of the sum of Poisson trials 
deviating far be/ow its expectation. Use this to give a bound on the probability 
of the sum of independent geometric random variables deviating above its 
expectation, thus providing an alternative approach to that in Problem 4.4. 

4.6 (Hoeffdlng's Bound [202]). Suppose Y" ... , Yn are independent Poisson trials 
such that Pr[Yi = 1] = Pi. Let Y = L:~=, Vi, JJ = E[Y] = L:~=,Pi and P = JJin. 
Our goal is to show that from the standpoint of deviations from the mean. the 
worst case is when the p/s are all equal. Let X be the sum of n independent 
Bernoulli trials each having probability P of assuming the value 1. Then, for 
any a ~ JJ + 1 and any b ;:5; JJ - 1. show that 

Pr[Y ~ a] ;:5; Pr[X ~ a], 

and 

Pr[Y ;:5; b] ;:5; Pr[X ;:5; b]. 

4.7 (Due to W. Hoeffding [202].) This problem deals with a useful generalization 
of the Hoeffding bound in Problem 4.6. 

(a) A function f : R. _ R. is said to be convex if for any x" X2 and 0 ;:5; A ;:5; 1, 
the following inequality is satisfied: 

f(A x, + (1 - A )X2) ;:5; Af(x,) + (1 - A )f(X2). 

Show that the function f(x) = e/x is convex for any t > O. What can you say 
when t ~ 01 

(b) Let Z be a random variable that assumes values in the interval [0,1], and 
. let P = E[Z]. Define the Bernoulli random variable X such that Pr[X = 1] = P 
and Pr[X = 0] = 1 - p. Show that for any convex function f, E[f(Z)] ;:5; E[f(X)]. 

(c) Let Y" ... , Yn be independent and identically distributed random variables 
over [0,1]. and define Y = L:~-, YI. Using parts (a) and (b), derive upper 
and lower tail bounds for the random variable Y using the Chernoff bound 
technique. In particular, show that 

Pr[Y - E[Y] > 6] ;:5; exp(-262 / n). 

Remark: While the results in this problem hold for continuous random vari
ables, they may be a bit easier to prove in the case where Z, Y" ... , Yn take 
on a discrete set of values in the interval [0,1]. Also, it should be easy to 
generalize this to distributions defined over arbitrary intervals [I, h]. See also 
Problem 4.21. 
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4.8 Consider a BPP algorithm that has an error probability of 1/2 - 1/p(n), for 
some polynomially bounded function p(n) of the input size n. Using the 
Chernoff bound on the tail of the binomial distribution, show that a polynomial 
number of independent repetitions of this algorithm suffice to reduce the error 
probability to 1/2n. 

4.9 Consider now the following variant of the bit-fixing algorithm. Each packet 
randomly orders the bit positions in the label of its source, and then corrects 
the mismatched bits in that order. Show that there is a permutation for which 
with high probability this algorithm requires 20 (nl steps to complete the routing. 

4.10 Suppose we run Valiant's scheme on an N-node network in which every 
node is of degree d; each packet first goes to a random destination chosen 
uniformly from all the nodes and then on to its final destination. Show that 
the expected number of steps for the completion of the first phase is 

Q (109N 109N) 
d log log N + log d . 

4.11 The lattice approximation problem is an extension of the set-balancing prob
lem (Example 4.5). As before, we are given an n x n matrix A all of whose 
entries are 0 or 1. In addition, we are given a column vector p with n entries, 
all of which are in the interval [0,1]. We wish to find a column vector q with n 
entries, all of which are from the set {O, 1}, so as to minimize IIA(P -q)lloo. We 
think of the vector q as an "integer approximation" to the given real vector 
p, in the sense that Aq is close to Ap in every component. This has applica
tions to approximating certain integer programs given solutions to their linear 
programming relaxations, along the lines of Section 4.3. Derive a bound on 
IIA(P-q)lloo assuming that q were derived from p using randomized rounding. 

4.12 Consider the global wiring problem of Section 4.3. We wish to approximate 
the best possible solution without the restriction that only one-bend routes 
are used. Adapt the approach in Section 4.3 to devise an algorithm running in 
time polynomial in the number of gates and nets, achieving an approximation 
similar to that in Theorem 4.8. 

4.13 The set-cover problem is the following: given sets S17 •.. , Sn over a universe 
U, fi nd the smallest set T s;;; U such that for 1 ::5; i ::5; n, Tn SI ::/= 0. An alternative 
formulation of this problem is the following: given a 0-1 matrix M, find a 0-1 
column vector c such that the dot product of each row of M with c is positive 
while minimizing Ilclll. The matrix M has n rows, and the ith row is the 
incidence vector of the set S/. 

Given a matrix M, let C(M) denote the size of the smallest set-cover for M. 
Let n be the number of rows in M. Show that we can adapt the technique of 
linear programming followed by randomized rounding to find a set-cover of 
size O(log n) times C(M). 

4.14 Show that the RandQS algorithm of Chapter 1 runs in time O(n logn) with high 
probability. 
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4.15 Redesign the parameters of the LazySelect algorithm of Chapter 3 and invoke 
the Chernoff bound to show that with high probability it finds the kth smallest 
of n elements in n + k + .ji7log0(11 n steps, with probability 1 - 0(1). 

4.16 Prove Lemmas 4.9 and 4.10. Also, formu late and prove thei r generalizations 
to the case where the conditioning is done on more than one random variable. 
Finally, using these, prove Lemma 4.11. 

4.17 Prove Theorem 4.12. 

4.18 Prove Lemma 4.14. 

4.19 Using Lemma 4.14, prove Theorem 4.13. 

4.20 Derive the tail bounds described in Problem 4.4.7 (c) by applying Azuma's 
inequality (Corollary 4.17) to the Doob martingale sequence obtained from Y 
by setting Xo = E[Y] and, for 1 ~ i ~ n, XI = E [Y I Y1, ... , Yd. How does this 
bound compare with the one obtained in Problem 4.7? 

4.21 Prove Azuma's inequality (Theorem 4.16) for the case where Ck = 1 for all k. 
Note that this is the same as Corollary 4.17 with C = 1. Do you see how to 
generalize this to the case of arbitrary ck's1 (Hint: Concentrate on the upper 
tail bound, since the lower tail bound can be obtained by negating the random 
variables. Consider the martingale difference sequence Y1> Y2 , ••• obtained 
by setting Y I = Xi - XI -1> and note that X, = 2::-1 YI' You can essentially 
mjmic the proof of Theorem 4.1, but be careful to use conditional expectations 
and the martingale property in going from the analog of equation (4.2) to 
that of equation (4.3). Since the random variables YI could have arbitrary 
distributions over the interval [-1, 1], you will also have to make use of an 
argument similar to that in Problem 4.7.) 

4.22 (Due to A. Kamath, R. Motwani, K. Palem, and P. Spirakis [228].) Consider 
again the issue of tail bounds on the number of empty bins studied in Theo
rem 4.18. In this setting, let II be the indicator variable whose value is 1 if and 
only if bin j Is empty, and define Z = 2:7-1/1 as the number of empty bins. 
Define p = E[/d = (1 - 1jn)m, and let I: be mutually independent Bernoulli 
random variables that take value 1 with probability p and value 0 with prob
ability 1 - p; note that the sum Y = 2:7-1': has the binomial distribution with 
parameters nand p. 

'(a) Show that for all t ~ 0, E[e 'Z ] ~ E[e 'Y ]. Conclude that any Chernoff 
bound on the upper tail of V's distribution also applies to the upper tail 
of Z's distribution, even though the Bernoulli variables II are not mutually 
independent. (The point is that their correlation is negative and only helps to 
reduce the tail probability.) How does the resulting bound on the upper tail of 
Z's distribution compare with the bound given in Theorem 4.181 

(b) Can you show that for all t < 0, E[e 'Z ] ~ E[e 'Y ]1 Repeat the exercise in 
part (a) for the lower tail. 
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CHAPT ER 5 

The Probabilistic Method 

IN this chapter we will study some basic principles of the probabilistic method, 
a combinatorial tool with many applications in computer science. This method 
is a powerful tool for demonstrating the existence of combinatorial objects. We 
introduce the basic idea through several examples drawn from earlier chapters, 
and follow that by a detailed study of the maximum satisfiability (MAX-SAT) 
problem. We then introduce the notion of expanding graphs and apply the 
probabilistic method to demonstrate their existence. These graphs have powerful 
properties that prove useful in later chapters, and we illustrate these properties 
via an application to probability amplification. 

In certain cases, the probabilistic method can actually be used to demonstrate 
the existence of algorithms, rather than merely combinatorial objects. We 
illustrate this by showing the existence of efficient non-uniform algorithms for 
the problem of oblivious routing. We then present a particular result, the Lovasz 
Local Lemma, which underlies the successful application of the probabilistic 
method in a number of settings. We apply this lemma to the problem of finding 
a satisfying truth assignment in an instance of the SAT problem where each 
variable occurs in a bounded number of clauses. While the probabilistic method 
usually yields only randomized or non-uniform deterministic algorithms, there 
are cases where a technique called the method of conditional probabilities can 
be used to devise a uniform, deterministic algorithm; we conclude the chapter 
with an exposition of this method for derandomization. 

5.1. Overview of the Method 

There are two recurrent ideas in the probabilistic method. 

1. Any random variable assumes at least one value that is no smaller than its 
expectation, and at least one value that is no greater than its expectation. We 
know of many intuitive versions of this principle in real life - for instance, if 
we are told that the average annual income of theoretical computer scientists is 
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$20,000, we know that there is at least one theoretical computer scientist whose 
income is $20,000 or greater. 

2. If an object chosen randomly from a universe satisfies a property with positive 
probability, then there must be an object in the universe that satisfies that property. 
For instance, if we were told that a ball chosen randomly from a bin is red with 
probability 1/3, then we know that the bin contains at least one red ball. 

While these ideas may seem too obvious to be of much use, they turn out 
to give us a surprising amount of power. The power comes from our ability 
to recast counting arguments in the language of probability, and then bring to 
bear the tools of probability theory. In fact, we have already seen instances 
of the probabilistic method implicitly at work earlier in this book. Below we 
review some examples from earlier chapters, and then proceed to study some 
new techniques. This chapter is not meant to be a comprehensive guide to the 
probabilistic method in combinatorics, but rather a study of some ideas that 
have proved useful in randomized algorithms. 

~ Example 5.1: Theorem 1.2 asserts that for any set of n disjoint line segments 
in the plane, the expected size of the autopartition found by the RandAuto 
algorithm is O(n log n). From this we may conclude that for any set of n disjoint 
line se~ents in the plane, there is always an auto partition of size O(n log n). This 
follows directly from the fact that if we were to run the RandAuto algorithm, the 
random variable defined to be the size of the autopartition can assume a value 
that is no more than its expectation; thus, there is an autopartition of this size 
on any instance. 

Our second example comes from the game tree evaluation problem of Sec
tion 2.1. 

~ Example 5.2: Any algorithm for game tree evaluation that produces the correct 
answer on every instance develops a certificate of correctness: for each instance, 
it can exhibit a set of leaves whose values together guarantee the value it declares 
is the correct answer. By Theorem 2.1, the expected number of leaves inspected 
by the algorithm of Section 2.1 on any instance of T2,k is at most nO.793, where 
n = 22k. It follows that on any instance of T2,k, there is a set of nO.793 leaves 
whose values certify the value of the root for that instance. Note that we assert 
the existence of such a certificate with certainty, even though the technique used 
for establishing it was probabilistic. (Problem 5.2 describes a stronger version of 
this result.) 

Our final example from an earlier chapter is the set-balancing problem de
scribed in Example 4.5. 

~ Example 5.3: We saw that for every n x n 0-1 matrix A, for a randomly chosen 
vector bE {-1, +1 }", we have IIAblioo ~ 4.Jnln n, with probability atleast 1-2/n. 
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From this we may conclude that for every such matrix A, there always exists a 
vector b E {-l,+l}" such that IIAbll oo ~ 4v'nlnn. 

The examples above show that the probabilistic method consists of two 
stages. First, we design a "thought experiment" in which a random process 
plays a role. In the case of set-balancing, for example, the thought experiment 
consists of independently and equiprobably assigning to each component of b 
either the value + 1 or the value -1. The second part consists of analyzing the 
random experiment and then drawing a conclusion independent of the particular 
experiment. 

Let us consider another example concerning the problem of finding a large 
cut in a graph. Given an undirected graph G(V, E) with n vertices and m edges, 
we wish to partition the vertices of G into two sets A and B so as to maximize 
the number of edges (u, v) such that u e A and v e B. This problem is sometimes 
referred to as the max-cut problem. The problem of finding an optimal max
cut is NP-hard; in contrast, the min-cut problem studied in Section 1.1 has a 
polynomial time algorithm. 

Theorem 5.1: For any undirected graph G(V,E) with n vertices and m edges, 
there is a partition of the vertex set V into two sets A and B such that 

I{(u,v) EEl u E A and v E B}I ~ m/2. 

PROOF: Consider the following experiment. Each vertex of G is independently 
and equiprobably assigned to either A or B. 

For an edge (u, v), the probability that its end-points are in different sets is 
1/2. By linearity of expectation, the expected number of edges with end-points 
in different sets is thus m/2. It follows that there must be a partition satisfying 
the theorem. 0 

We have viewed the process of partitioning the vertices of G as a thought 
experiment that yields the results mentioned. However, we could as well view 
it as a randomized algorithm. This would then require a further analysis 
bounding the probability that the algorithm fails to find a good partition on 
a given execution. The main difference between a thought experiment in the 
probabilistic method and a randomized algorithm is the end that each yields. 
When we use the probabilistic method, we are only concerned with showing 
that a combinatorial object exists; thus, we are content with showing that a 
favorable event occurs with non-zero probability. With a randomized algorithm, 
on the other hand, efficiency is an important consideration - we cannot tolerate 
a miniscule success probability. For instance, if we were only able to show that 
the experiment used in the proof of Theorem 5.1 succeeded with probability 2-" 
in finding a cut of size m/2, we would be unable to derive from it an efficient 
randomized algorithm for finding a large cut. In this case however, the expected 
size of the cut is m/2 and so random partitioning can be viewed as an efficient 
randomized algorithm. 
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One of the questions we will deal with in this chapter and others is the 
following: having shown the existence of a combinatorial object using the 
probabilistic method, can we find the object efficiently? The answer to this 
general question varies widely. In some cases it is affirmative, and we have 
a deterministic polynomial-time algorithm that finds the combinatorial object 
whose existence is guaranteed by the probabilistic method. In others, we instead 
have a randomized polynomial-time algorithm that works with high probability. 
In yet others, we have a deterministic or randomized algorithm, but one that 
is non-uniform. And finally, we have instances where we know of no efficient 
algorithm for finding the object in question. 

S.2. Maximum Satisfiability 

We turn to the satisfiability problem defined in Section 1.5.2: given a set of 
m clauses in conjunctive normal form over n variables, decide whether there 
is a truth assignment for the n variables that satisfies all the clauses. We may 
assume without loss of generality that no clause contains both a literal and its 
complement, since such clauses are satisfied by any truth assignment. Consider 
the following optimization version of the satisfiability problem: rather than 
decide w.hether there is an assignment that satisfies all the clauses, we instead 
seek an assignment that maximizes the number of satisfied clauses. This problem, 
called the MAX-SAT problem, is known to be NP-hard, but the following simple 
probabilistic argument shows that for any set of m clauses, there is an assignment 
to the input variables that satisfies at least m/2 clauses. Note that this is the best 
possible universal guarantee, since the instance may consist of the two clauses x 
and X, in which case no better guarantee is possible. 

Theorem 5.2: For any set of m clauses, there is a truth assignment for the vari
ables that satisfies at least m/2 clauses. 

PROOF: Suppose that each variable is set to TRUE or FALSE independently and 
equiprobably. For 1 < i < m, let Zj = 1 if the ith clause is satisfied and 0 
otherwise. For any clause containing k literals, the probability that it is not 
satisfied by this random assignment is 2-k, since this event takes place if and 
only if each literal gets a specific value, and the (distinct) literals in a clause 
are assigned independent values. This implies that the probability that a clause 
with k literals is satisfied is 1 - 2-k > 1/2, implying that E[Za > 1/2 for 
all i. The expected number of clauses satisfied by this random assignment is 
2:;:1 E[Zil > m/2. Thus, there exists at least one assignment of values to the 
variables for which 2:;:1 Zj ~ m/2. 0 

Exercise 5.1: Consider the following weighted version of the MAX-SAT problem. 
Each clause has a positive real weight, and the goal is to maximize the sum of the 
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weights of the satisfied clauses. Generalizing Theorem 5.2. show that there is a truth 
assignment that satisfies clauses the sum of whose of weights is at least half of the 
total clause weight. 

This result holds regardless of whether the instance has a satisfying assign
ment. Let us continue with the MAX-SAT problem, in which our goal is to 
maximize the number of clauses that are satisfied. This problem being NP-hard, 
we seek approximation algorithms. It turns out that variants of the probabilis
tic existence proof of Theorem 5.2 can actually be turned into approximation 
algorithms; we explore this theme for the remainder of this section. 

Given an instance I, let m.(1) be the maximum number of clauses that can 
be satisfied, and let mA(I) be the number of clauses satisfied by an algorithm 
A. The performance ratio of an algorithm A is defined to be the infimum (over 
all instances 1) of mA(1)/m.(1). If A achieves a performance ratio of ~, we call 
it an ~-approximation algorithm. For a randomized algorithm A, the quantity 
mA(I) may be a random variable, in which case we replace mA(I) by E[mA(1)] 
in the definition of the performance ratio. Note that unlike the satisfiability 
problem (in which we seek to satisfy all clauses), we may choose to leave some 
clauses unsatisfied in the MAX-SAT problem. Indeed this may be inevitable, for 
instance, as in the case of a set of contradictory clauses. Thus, our definition 
requires us to satisfy a number of clauses close to the best possible for the 
instance at hand, rather than satisfying all m clauses. 

We now give a simple randomized algorithm that achieves a performance 
ratio of 3/4. Before we begin, we observe that the proof of Theorem 5.2 actually 
yields a randomized 1/2-approximation algorithm. In fact, we can say more: the 
procedure in the proof of Theorem 5.2 yields an algorithm whose performance 
guarantee is 1 - 2-k , provided every clause contains at least k literals. 

It follows that we have a randomized 3/ 4-approximation algorithm for in
stances of MAX-SAT in which every clause has at least two literals. It appears 
that the bottleneck for achieving a performance ratio of 3/4 stems from clauses 
consisting of a single literal. We now give a second algorithm that performs 
especially well when there are many clauses consisting of single literals. We then 
argue that on any instance, one of the two algorithms will yield a randomized 
3/4-approximation. Thus, given an instance, we run both algorithms and take 
the better of the two solutions. 

The algorithm we describe will not be entirely new to us: we have already 
encountered a variant in our study of the wiring problem in Section 4.3. The idea 
again is to formulate the problem as an integer linear program, solve the linear 
programming relaxation, and then to round using the randomized rounding 
technique of Section 4.3. With each clause Cj in the instance, we associate an 
indicator variable Zj E {O, I} in the integer linear program to indicate whether 
or not that clause is satisfied. For each variable Xi, we use an indicator variable 
Yi in the integer linear program to indicate the value assumed by that variable; 
thus Yi = 1 if the variable Xi is set TRUE, and Yi = 0 otherwise. Let ct be the set 
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of indices of variables that appear in the uncomplemented form in clause Cj, 
and C; be the set of indices of variables that appear in the complemented form 
in clause Cj. We may then formulate the MAX-SAT problem as follows: 
maXImIZe 

where 

Yj, Zj E {O, I} (Vi and j) (5.1) 

subject to 

LYi + L(1- Yi) ~ Zj (Vj). (5.2) 

iECt iEC; 

The inequalities (5.1) ensure that a clause is deemed to be true (by assigning 
value 1 to its variable) only if at least one of the literals in that clause is assigned 
the value 1. Since Zj = 1 when clause Cj is satisfied, the objective function L,jZj 
counts the number of satisfied clauses. As in Section 4.3, we solve the relaxation 
linear program in which we relax the integrality constraints (5.2), i.e., we allow 
Yi and Zj to assume real values in the interval [0,1]. Let Yi be the value obtained 
for variable Yi by solving this linear program, and let Zj be the value obtained 
for Zj. Clearly L,j Zj is an upper bound on the number of clauses that can be 
satisfied in this instance. We first show that using randomized rounding, we 
obtain a truth assignment with which the expected number of clauses satisfied 
is at least (1 - II e) L,j Zj. This is already an improvement over the guarantee we 
get from Theorem 5.2; we will then show that for any instance, the number of 
clauses satisfied by the better of these two solutions is at least (3/4) L,jZj. 

For randomized rounding, each variable Yi is independently set to 1 (corre
sponding to Xi being set to TRUE) with probability Yi. For any positive integer k, 
let Pk denote 1-(l-l/k)k. We will first show that for a clause Cj with k literals, 
the probability that it is satisfied by randomized rounding is at least PkZj. Noting 
that Pk ~ 1 - lie for all positive integers k, and using linearity of expectation, 
we infer that the expected number of clauses satisfied by randomized rounding 
is at least (1 - lie) L,j Zj. 

Lemma 5.3: Let Cj be a clause with k literals. The probability that it is satisfied 
by randomized rounding is at least PkZj. 

PROOF: Since we are focusing on a single clause Cj. we may assume without loss 
of generality that all the variables contained in it appear in uncomplemented 
form. Moreover, we may assume that it is of the form Xl V' .. V Xk. By constraint 
(5.1) in the linear program, 

YI + ... + Yk ~ Zj. 
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Clause Cj remains unsatisfied by randomized rounding only if every one of the 
variables Yi is rounded to O. Since each variable is rounded independently, this 
occurs with probability n~1 (1 - yJ It remains to show that 

k 

1-II(1- Yi) > PkZj. 
i=1 

The expression on the left is minimized when Yi = zj/k for all i. Therefore, 
it suffices to show that 1 - (1 - z/k)k > PkZ for all positive integers k and 
o < z ::;; 1. Since f(x) = 1 - (1 - x/kt is a concave function, to show that it is 
never less than a linear function g(x) over the interval [0,1], it suffices to verify 
the inequality at the end-points x = 0 and x = 1 (see Problem 5.4). Applying 
this principle to the linear function g(z) = PkZ, the lemma follows. 0 

By Lemma 5.3 and from linearity of expectation we have: 

Theorem 5.4: Given an instance of MAX-SAT, the expected number of clauses 
satisfied by linear programming and randomized rounding is at least (1-1/ e) times 
the maximum number of clauses that can be satisfied on that instance. 

While Theorem 5.4 represents an improvement over Theorem 5.2, we will in 
fact be able to do even better. We have studied two randomized algorithms 
MAX-SAT: one that rounded each variable to 1 with probability 1/2, and a 
second that used the solutions to the linear program as a basis for randomized 
rounding. Figure 5.1 may help the reader appreciate the dependencies of these 
two algorithms on the clause length k. 

k 1- 2-k 
fJk 

1 0.5 1.0 

2 0.75 0.75 

3 0.875 0.704 

4 0.938 0.684 

5 0.969 0.672 

Figure 5.1: Performance of the two algorithms as a function of k. 

We now argue that on any instance, one of the algorithms is a 3/4-
approximation algorithm. Given any instance, we run both algorithms and 
choose the better solution. Let nl denote the expected number of clauses that 
are satisfied when each variable is independently set to 1 with probability 1/2 . 
(corresponding to the procedure that yields Theorem 5.2). Let n2 denote the ex
pected number of clauses that are satisfied when we use the linear programming 
followed by randomized rounding (corresponding to Theorem 5.4). 
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max{nl,n2} > ~ LZj. 
j 

PROOF: It suffices to show that (nl + n2)/2 > (3/4) Lj Zj. Letting Sk denote the 
set of clauses that contain k literals, we know that 

nl = L L (1 - 2-k
) ~ L L (1 - 2-k )zj. (5.3) 

k CjESk k CjESk 

By Lemma 5.3, we have 

n2 ~ L L PkZj. (5.4) 
k CjESk 

Thus 

An easy calculation shows that (1 - 2-k ) + {lk > 3/2 for all k, so that we have 

nl + n2 ~ ~ ~ ~. _ ~ ~~. 
2 ~ 4 L- L- z) - 4 L-z), 

k CjESk j 

o 

5.3. Expanding Graphs 

We now turn to a classic application of the probabilistic method, one that shows 
the existence of a class of graphs known as expanding graphs. Expanding graphs 
have found many uses in computer science and in telephone switching networks, 
and we will encounter them again in Chapters 6 and 11. 

Intuitively, an expanding graph is a graph in which the number of neighbors 
of any set of vertices S is larger than some positive constant multiple of lSI. 
The following is a definition of a particular type of expanding graph called 
an OR-concentrator. It is important to keep in mind that several alternate 
definitions have been used in the literature; while they are similar in spirit, the 
precise definition varies (see for instance the slightly different definition used 
in Chapter 6). Recall that in a graph G(V, E) for any set S c: V, the set of 
neighbors of Sis r(S) = {w E V 13v E S,(v, w) E E}. 

~ Definition 5.1: An (n, d, ex, c) OR-concentrator is a bipartite mUltigraph 
G(L, R, E), with the independent sets of vertices Land R each of cardinality 
n, such that 

1. Every vertex in L has degree at most d. 

2. For any subset S of vertices from L such that IS I ~ exn, there are at least 
clSI neighbors in R. 
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In most applications, it is desirable to have d as small as possible and c as 
large as possible. Of particular interest is the study of OR-concentrators in 
which (x, c, and d are constants fixed independently of n, with c > 1. These 
are rather stringent requirements and it may seem quite surprising at first that 
such graphs can be constructed. Indeed, finding explicit constructions of such 
OR-concentrators is a non-trivial task, so we focus on the easier problem of 
demonstrating their existence. We will use the probabilistic method to show 
that a random graph chosen from a suitable probability space has a positive 
probability of being an (n, 18, 1/3,2) OR-concentrator. The particular constants 
in the proof are somewhat arbitrary, and the reader may easily adapt the proof 
to study other combinations of d, (x, and c. 

Theorem 5.6: There is an integer no such that for all n > no, there is an 
(n, 18, 1/3,2) OR-concentrator. 

PROOF: We give most of the proof in terms of general d, c, and (x, pinning these 
constants down toward the end of the proof. Consider a random bipartite graph 
on the vertices in Land R, in which each vertex of L chooses its neighbors 
by sampling (with replacement) d vertices independently and uniformly from R. 
Since the sampling is with replacement, a vertex of L may choose a vertex in 
R more than once; we discard all but one copy of such multiple edges. Let £s 
denote the event that a subset of s vertices of L has fewer than cs neighbors 
in R. We will first bound Pr[£s], and then sum Pr[£s] over the values of s no 
larger than exn to obtain an upper bound on the probability that the random 
graph fails to be an OR-concentrator with the parameters we seek. 

Fix any subset S £; L of size s, and any subset T c: R of size cs. There are 
(;) ways of choosing S, and (:s) ways of choosing T. The probability that T 
contains all of the at most ds neighbors of the vertices in S is (cs/n)ds. Thus, the 
probability of the event that all the ds edges emanating from some s vertices of 
L fall within any cs vertices of R is bounded as follows, 

Pr[£s] ~ (:) (~) (~) ds • 

Invoking the identity (~) < (ne/k)k from Proposition B.2 (Appendix B), we 
obtain 

Simplifying for ex = 1/3 and using s < exn, we have 

[ ( 
1 ) d-c-l 1 s 

Pr[£s] ~ 3 el+ccd- c 

~ [(~r (3e)C+lf 
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Using c = 2 and d = 18, we have 

Pr[&,] < (0)" (3e)'], 

Let r = (2/3)18(3e)3, and note that r < 1/2. We obtain that 

~Pr[t's] < ~rs = _r_ < 1, 
L- L- l-r 
s~l s~l 

and the desired result follows. o 
The reader may easily see that by bounding the probabilities Pr[t's] carefully, 

we can in fact show that our random graph has a fairly good (rather than merely 
non-zero) probability of being an (n, 18, 1/3,2) OR-concentrator. However, even 
if we were to generate a random graph and argue that it has a very high 
probability of being an OR-concentrator, we still do not know of an efficient 
way of verifying that the graph generated is indeed an OR-concentrator with 
the given parameters. 

This is true of the verification of the expanding property of graphs for a variety 
of definitions of expansion, some of which we will encounter in Chapter 6. For 
instance, in Chapter 6 we will define and use a class of expanding graphs known 
as expanders. This indicates that the Monte Carlo algorithm implicit in the 
preceding discussion cannot be turned into a Las Vegas algorithm. 

For many applications of expanding graphs, such a Monte Carlo guarantee 
is unacceptable - for instance, a telephone company may be uncomfortable that 
the network it plans to build may by chance be inadequate. Unfortunately, it is 
considerably harder to give a succinct "formula" or a deterministic algorithm 
that, given n, always generates such an expanding graph. We do have "explicit 
constructions" that will, given n, generate OR-concentrators with guaranteed 
bounds for d, (x, and c; but these bounds are somewhat weaker than the bounds 
attainable using the probabilistic method (the Notes section contains more 
information on these). 

This is another recurrent theme in the probabilistic method: whereas the exis
tence proof can give strong (often the best possible) bounds for a combinatorial 
objeci, the version that can be constructed efficiently may be much weaker. We 
will see another instance of this in Section 5.5. 

5.3.1. Probability Amplification 

We now make use of an expanding bipartite graph to build on the idea of two
point sampling used in Section 3.4. Consider an RP algorithm A for deciding 
whether input strings x belong to a language L. Given x, A picks a random 
number r from the range Zn = {O, ... , n - I}, for a suitable choice of a prime n, 
and computes a binary value A(x, r) with the following properties: 

• If x E L, then A(x, r) = 1 for at least half the possible values of r (we call these 
values of r the witnesses for x). 
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• If x ~ L, then A(x,r) = 0 for all possible choices of r. 

By the two-point sampling approach of Section 3.4, we know that using 2 log n 
random bits to sample two numbers randomly from the range {O, ... ,n -I}, we 
can achieve an error probability of less than l/t in t (non-independent) trials of 
the algorithm A on a given input x. In this section, we will describe a way of 
achieving an error probability close to 1/n1ogn using only log2 n random bits. The 
naive use of log2 n bits to pick log n random numbers in the range {O, ... , n - I} 
only yields a failure probability of l/n, so the scheme we will describe can be 
thought of as achieving "probability amplification." 

We first establish the existence of an expanding graph that will serve our 
purpose, and then proceed to describe its application to amplifying randomness. 

Theorem 5.7: For n sufficiently large, there is a bipartite graph G(L, R, E) with 
ILl = n, IRI = 210r n such that: 

1. Every subset of n/2 vertices of L has at least 210r n - n neighbors in R. 

2. No vertex of R has more than 1210g2 n neighbors. 

PROOF: Consider a random graph in which each vertex of L independently and 
uniformly chooses d = 210g2 n(410i n)/n neighbors in R. As before, the choices 
are made with replacement, i.e., a vertex of L may choose a vertex of R as 
neighbor more than once. We will show that this random graph violates each 
of the two properties with probability at most 1/2. It follows that with positive 
probability this random graph satisfies both properties, and we are done. 

Following the reasoning in our proof of Theorem 5.6, the probability that 
there is a set of n/2 vertices in L having fewer than 210r n - n neighbors in R is 
at most 

( 
n ) (2

10g2 n) (1 _ _ n ) dn/2 

n/2 n 210r n 

Using as before the upper bound for binomial coefficients from Proposition B.2 
(Appendix B) together with the fact that 1 - n/2lor n ~ exp( -n/2Ior n), it follows 
that the probability that property 1 is violated is (considerably) less than 1/2. 

For property 2, we note that the expected number of neighbors for a vertex 
in R is 410g2 n; the Chernoff bound (4.10) now shows that the probability of 
exceeding 1210g2 n neighbors is less than (e /3) 12 10r n. Since R contains 210g2 n 

vertices, this probability is small enough to guarantee that the probability that 
property 2 is violated at any vertex in R is also (considerably) less than 1/2. 0 

We return to probability amplification. Theorem 5.7 only guarantees the 
existence of a graph with the desired properties; in the sequel we will assume 
that we have an explicit graph with these properties. Of course, this graph has a 
super-polynomial number of vertices and it may not seem possible to perform 
polynomial-time computations based on its structure. However, we do not 
need an explicit representation of the graph; all we need is a polynomial-time 
neighborhood algorithm that can compute the neighbors of any given vertex in 
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R; we assume that the graph is represented by means of such a neighborhood 
algorithm. As we will see later, in Section 6.7, there do exist expanding graphs 
for which such neighborhood algorithms are known. 

Given log2 n bits of randomness, we use them to index a vertex in R, say v. 
Next, we use the neighborhood algorithm to identify the neighbors of v in L, 
which we denote rl,"" rk. We then compute A(x, ri) for 1 ~ i < k; note that 
k ~ 1210g2 n. If all k invocations of A return 0, we declare that x does not 
belong to L; else we declare that x does belong to L. 

If x ~ L, our answer will be correct. But if x E L, what is the probability 
that we fail to detect it using our procedure? The set of witnesses for x is a set 
of at least nl2 vertices of L. We err only if the vertex of R we choose is not a 
neighbor of any of the witnesses. By Theorem 5.7, the fraction of such vertices 
in R is at most nl21og2 n, no matter how the witnesses are distributed in R. Thus 
using log2 n random bits, we achieve a failure probability of at most nlnlogn. 

The reader may argue that the extra randomness we obtain is from the 
randomness "built into" the graph. However, we note that once we have built 
such a graph, it may be used over and over again for executions on arbitrarily 
many inputs x. More interestingly, it can be used on any RP algorithm, since 
the procedure works for any choice of nl2 witnesses in L. Thus the "one-time" 
randomness built into the graph serves as a reservoir that we can tap over and 
over again, for probability amplification. We know of no explicit construction 
for such graphs, nor do we know of an efficient procedure for verifying that a 
random graph has the properties we desire. 

In Section 6.8 we will describe an alternative strategy for performing probabil
ity amplification without any of the drawbacks discussed above. Not surprisingly, 
this new scheme is also based on the use of expanders. But there we will use 
explicitly constructed expanders that have explicit polynomial time algorithms 
for determining the neighbors of a vertex. 

5.4. Oblivious Routing Revisited 

We turn now to another aspect of the probabilistic method. In the examples 
we have seen, the probabilistic method is used to prove the existence of a 
combinatorial object: an autopartition that is small, a vector b with certain 
properties in the case of set-balancing, or an expanding graph. The probabilistic 
method can also be used to design algorithms. We study one example here and 
will encounter other examples later in the book. 

Let us return to the problem of oblivious permutation routing on the hyper
cube, studied in Section 4.2. In this section we focus on the number of random 
bits used by the randomized oblivious algorithm in Section 4.2. We first give 
a lower bound that suggests that the algorithm of Section 4.2 uses many more 
random bits than necessary. We then use the probabilistic method to show the 
existence of a randomized algorithm using (within a constant factor) the optimal 
number of random bits. 
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Comparing the performance of the randomized algorithm (the result of Ex
ercise 4.6) with the negative result of Theorem 4.4, we find that our randomized 
oblivious algorithm achieves an expected running time that no deterministic 
oblivious algorithm can achieve. Given that randomness is absolutely necessary 
to beat the lower bound of ..j N Insteps for deterministic oblivious algorithms 
(Theorem 4.4), we can ask the following question: how much randomness is 
actually needed to achieve an algorithm with an expected running time of O( n)? 

We formulate the question more precisely. A randomized oblivious algorithm 
for permutation routing is a probability distribution on a set of deterministic 
oblivious routing algorithms. Each deterministic oblivious algorithm for an 
N-node network is a set of N 2 routes, one for each source-sink pair. Every 
randomized oblivious algorithm can be expressed as a pair of sets, {AI, ... , AR } 

and {PI, ... ,PR}, where each Aj is a deterministic oblivious algorithm and Pi is 
the probability that we use Aj on a run of the randomized algorithm. Naturally, 
2:7",,1 Pj = 1. For instance, in the randomized oblivious scheme of Section 4.2, 
each algorithm Aj is a set of possible routes of the form i -+ O'(i) -+ d(i). There 
are N choices of O'(i) for each i and d(i). 

Theorem 4.4 can be interpreted as follows: with zero bits, the expected 
running time of the algorithm is Q(..jN In). At the other extreme, the randomized 
algorithm of Section 4.2 has expected running time O(n) = O(logN) with Nn 
random bits; but are so many bits necessary? 

Theorem 5.8: Consider any randomized oblivious algorithm for permutation rout
ing on the hypercube with N = 2n nodes. If this algorithm uses k random bits, 
then its expected running time is Q(2-k ..jN In). . 

PROOF: We have observed that any randomized oblivious algorithm is a prob
ability distribution on deterministic oblivious algorithms. Since only k random 
bits are used, at least one of these deterministic algorithms is chosen with prob
ability at least 2-k , on any execution. Denote this deterministic algorithm by 
AI. By the lower bound of Theorem 4.4, there is an input that requires time 
Q(..jN In) on the deterministic algorithm AI' Feed this input to the randomized 
algorithm; with probability 2-k , the randomized algorithm chooses Al and takes 
time Q(..jN In). Thus, the expected running time of the randomized algorithm 
isQ(2-k ..jNln). 0 

Corollary 5.9: Any randomized oblivious algorithm for permutation routing on 
the hypercube with N = 2n nodes must use Q(n) random bits in order to achieve 
expected running time O(n). 

The randomized oblivious algorithm of Section 4.2 uses about N times the 
number of bits of randomness deemed necessary by Corollary 5.9. Can we match 
this lower bound? The answer comes from an application of the probabilistic 
method. 
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Theorem 5.10: For every n, there exists a randomized oblivious scheme for per
mutation routing on a hypercube with N = 2n nodes that uses 3n random bits and 
runs in expected time at most 15n~ 

PROOF: We will say that a set B = {B I ,B2, ... ,Bt } of deterministic oblivious 
permutation routing algorithms on the N -node hypercube is an efficient N
scheme if, for any instance, the expected number of steps using a randomly 
chosen algorithm from B is at most 15n. To prove the theorem, we will show 
that for every N = 2n, there is an efficient N-scheme for t = N 3• 

The algorithm of Section 4.2 randomly chooses one of NN possible determin
istic algorithms on an execution: there are N sources, and we may choose from 
N possible intermediate destinations for each. Let us denote these NN deter
ministic algorithms by A j, for 1 < j < NN. On an N -node network, there are 
N! distinct possible instances of permutation routing, one for each permutation 
on {I, ... , N}. For an instance Xi, 1 < i < N!, call the deterministic algorithm A j 
good if Aj routes Xi in 14n or fewer steps, and bad otherwise. By Theorem 4.7, 
for any particular instance Xi of the permutation routing problem, a fraction of 
at most liN of the algorithms Aj are bad. Which algorithms are bad may differ 
from instance to instance - we only know that for any particular instance Xi, at 
most liN of the A/s are bad. 

Consider now the following experiment: sample N 3 indices ii, i2, .. " iN3 in
dependently and uniformly at random (for simplicity, with replacement) from 
the range {I, 2, ... , NN}. We show that the set of deterministic algorithms 
A = {Ail' ... ,AiNJ is an efficient N-scheme with positive probability. From this, 
we will conclude that an efficient N -scheme exists for every N = 2n. 

For any instance Xi, a fraction of at most liN of the algorithms AI,.'" ANN is 
bad; thus the expected number of algorithms in A that are bad for Xi is at most 
N 3(11 N) ~ N 2. Let the indicator variable Xj be 1 if Aj is bad, for 1 < j ~ N 3, 

and 0 otherwise. Thus E£LjXj] ~ N 2. Since the Xj are independent Poisson 
trials, we may apply the Chernoff bound (the form in Exercise 4.1) to obtain 
that the probability that more than 2N2 of the algorithms in A are bad for 
Xi is less than exp( - N 2 14). Let Bi denote the bad event that more than 2N2 

algorithms in A are bad for Xi. Then, for n > 2 (or N ~ 4), 

N! 

Pr[uf!,!1 Bi] < L Pr[Bi] 

:::; N! x exp(-N2/4) 

< 1, 

where the last inequality follows from an application of Stirling's Formula 
(Proposition B.1, Appendix B). 

Therefore, with positive probability, no more than 2N2 of the algorithms in 
A are bad for any instance Xi of permutation routing on the N-node hypercube. 
This means that there exists a subset of N 3 algorithms from {AI, ... ,ANN} with 
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the property that at most 2N2 algorithms in this subset are bad for any instance 
Xi; let us denote this subset by B = {Bl' B2, ..• , BN3}. 

It is easy to see now that B is an efficient N -scheme: on any instance Xi, 

a randomly chosen algorithm from B fails to route Xi within 14n steps with 
probability at most 2N2 / N 3 = 2/ N. By reasoning similar to that in Exercise 4.6, 
the expected number of steps using an algorithm randomly chosen from B is 
less than 15n. 0 

We have used the probabilistic method to show the existence of a randomized 
algorithm meeting the lower bound of Corollary 5.9. It is important that the 
reader keep the two levels of randomization in the proof distinct - the first was 
to show probabilistically that a certain combinatorial object (the set B) existed, 
and the second was to study the effect of choosing an algorithm at random from 
B. 

Does Theorem 5.10 settle the problem of designing a randomized algorithm 
for permutation routing using few random bits? It does not, for the following 
reason. The construction in the proof of Theorem 5.10 is not uniform: given N, 
we do not know how to obtain B efficiently. The reader is invited to draw a 
parallel between this result and that presented in Section 2.3. 

5.5. The Lovasz Local Lemma 

The Lovasz Local Lemma is a tool in the probabilistic method that has found 
many applications in extremal graph theory, in Ramsey theory, and in the theory 
of random graphs. Applications to algorithms and computer science have been 
fewer, so far, but it appears that this powerful technique will surely prove useful. 

Suppose that we have n events, each of which occurs with probability at 
most 1/2. In an instance of the probabilistic method, each of the n events may 
correspond to one of n ways in which the probabilistic experiment could fail. 
If the events were independent- we could then assert that with probability at 
least 2-n, none of these events occurs. The Lovasz Local Lemma generalizes this 
notion to the case where each of these events is independent of all but a small 
number of other events. In this section we give the lemma and apply it to show 
that any instance of SAT meeting certain conditions always has a satisfying 
assignment. We then give an algorithm that finds a satisfying assignment. Let £i, 
1 s: is: n be events in a probability space. Recall that £i is mutually independent 
of a set S of events if Pr[£d njET £j] = Pr[£i], where T is any subset of events 
(or their complements) from S. The main device in establishing Lemma 5.11 
below is a digraph we call the dependency graph G, in which there is a vertex 
representing each event £i. An event £i is mutually independent of all other 
events £j such that (£i, £j) is not an edge of the graph. Before proceeding with 
the lemma, the reader may attempt the following exercise to better understand 
the notion of a dependency graph. 
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Exercise 5.2: Suppose that the events E; are pairwise independent. What can you 
say about the structure of a dependency graph? Is the dependency graph always 
unique? 

Lemma 5.11 (Lovasz Local Lemma): Let G(V, E) be a dependency graph for 
events EI, ... ,En in a probability space. Suppose that there exist Xi E [0,1] for 
1 :::; i ~ n such that 

Then 

Pr[Ei] < Xi IT (1 - Xj). 

(i,j)EE 

n 

Pr[n7=IEi] ~ IT(1 - Xi). 

i-I 

PROOF: Let S denote a subset of the indices from {1, ... , n}. We first establish 
by induction on k = lSI that for any S and for any i such that i ~ S, 

Pr[Ei I njEsEj] < Xi· 

The base case, S = (/), follows from our assumption on the probabilities Pr[Eil. 
For the inductive step, we let SI = U E S : (i,j) E E}, and let S2 = S\SI. By the 
definition of conditional probability, 

Pr[Ei I njES£j] = Pr[Ei n (njES'£j) I n mES2£m] . 
Pr[njES.t'j I n mES2t'm] 

We can bound the numerator of(5.5) from above as follows: 

Pr[Ei n (njES.£j) I n mES2£m] :::; Pr[Ei I n mES2£m] 

- Pr[Ei] 

:::; Xi IT (1- Xj), 

(i,j)EE 

(5.5) 

since Ei is mutually independent of {Em: m E S2}. Also, we can bound the 
denominator from below as follows. Suppose that SI = UI' ... , jr}. If r = 0, then 
the dellominator is 1; for r > 0, we invoke the induction hypothesis: 

Pr[£i1 n··· n £jr I n mES2£m] = (1- Pr[Eill n mES2 Em]) 

... (1 - Pr[E jr 1£i1 n ... n £jr-. n mES2 Em]) 

~ (1 - X j.) ... (1 - X jr) ~ IT (1 - X j)' 

(i,j)EE 

It follows that Pr[Ei I njES£j] < Xi. To complete the proof, we note that 

Pr[n7_1Ed - (1-Pr[Ed)(1-Pr[E21 £1])"'(1-Pr[En I n7,:-l£i]) 
n 

~ IT(1- Xi). 

i-I 
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Corollary 5.12: Let £l"",£n be events in a probability space, with Pr[£j] ~ p 
for all i. If each event is mutually independent of all other events except for at 
most d, and if ep(d + 1) < 1, then Pr[ni_l£d > O. 

We now apply Corollary 5.12 to show that an instance of SAT meeting certain 
conditions must have a satisfying truth assignment. Consider an instance of the 
k-CNF problem: we are given a CNF formula in which each clause contains k 
literals. This is also known as the k-SAT problem. Suppose further that each 
of the n variables appears (complemented or uncomplemented) in at most 2k/ SO 

clauses. Let m denote the number of clauses. 
Consider a random truth assignment of values to the variables, in which 

each variable is independently fixed to be 0 or 1 with probability 1/2. For 
1 < i :::; m, let £j denote the event that the ith clause is not satisfied 6y this 
random assignment. Since each clause contains k literals, we have Pr[£d = 2-k

, 

for 1 :::; i :::; m. The event £j that the ith clause is not satisfied is independent 
of all other events £ j, except those j such that clause i and clause j share 
at least one variable. The number of clauses j that share a variable with 
a specific clause i cannot exceed the total number of clauses containing the 
variables that appear in clause i, and this is at most k2k/ 50 • We now apply 
Corollary 5.12 with d = k2k / SO , and conclude that with positive probability the 
random truth assignment satisfies all m clauses. Thus, there must be a satisfying 
truth assignment for any instance of SAT meeting these conditions. 

Corollary 5.12 merely tells us that a random assignment is good with positive 
probability, but this probability may be miniscule. We may have to try the 
random assignment many times before we succeed in finding one that" satisfies 
all m clauses. We now describe a Las Vegas randomized algorithm that runs in 
time polynomial in m (but not in k), yielding a satisfying truth assignment. From 
here on, the reader should think of k (and therefore d = k2k/SO) as a constant 
fixed independent of m, when we use the big-oh, 00, notation below. 

Let G denote the dependency graph - each clause corresponds to a vertex of 
G, and two vertices are adjacent in G if the corresponding clauses share one or 
more variables. Note that if clause CI contains literal Xl, and clause C2 contains 
literal Xl, then the vertices CI and C2 are adjacent. We know that every vertex 
of G has at most d neighbors. 

At any point in the algorithm, some variables will have been fixed to 0 
or 1, while others will remain unspecified as yet; initially, all variables are 
unspecified. The algorithm consists of two stages; the first stage will fix values 
for some of the variables and defer the rest to the second stage. In the first 
stage of the algorithm, we proceed sequentially through the variables, fixing 
each equiprobably to 0 or 1. We call a clause dangerous if both the following 
conditions hold: 

1. k/2 literals of the clause Cj have been fixed. 

2. Cj is not satisfied yet. 

After fixing each variable, we identify any clause Cj that has turned dangerous. 
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For any dangerous clause, we defer its remaining unspecified variables to the 
second stage, skipping over them in the sequential random assignment. At the 
end of the first stage, we say that a clause has survived if it is not satisfied by 
the variables fixed in the first stage. 

For the second stage we need only consider the variables that were unspecified 
at the end of the first stage, and the clauses that survived. A clause Cj can survive 
the first stage for one of two reasons: 

1. It became dangerous, or 

2. All variables corresponding to its unspecified literals were deferred because other 
clauses containing these variables (and, hence, adjacent to Cj ) became dangerous. 

Therefore, a clause Cj may survive as a result of anyone of up to d + 1 clauses 
becoming dangerous - Cj itself, and its d neighbors. Every clause that survived 
has at least k/2 unspecified variables. 

Exercise 5.3: Apply Corollary 5.12 to show that there is a truth assignment of the 
deferred variables that satisfies all the surviving clauses. (Again, consider a random 
aSSignment.) 

The second stage will find a truth assignment guaranteed by Exercise 5.3. The 
probability that any particular clause becomes dangerous during the first stage 
is at most 2-k/ 2, since exactly k/2 of its literals have their values fixed, and none 
of these random values satisfy the clause. This implies that the probability that 
a clause survives is at most (d + 1)2-k/ 2• 

Consider the subgraph of G induced by the vertices corresponding to the 
surviving clauses. In Lemma 5.13 below, we will show that with high probability, 
all connected components of this induced subgraph of G have size O(logm). 
Notice that two surviving clauses from different connected components of this 
subgraph cannot share a deferred variable. Therefore, the deferred variables 
can be uniquely assigned to distinct connected components of the subgraph of 
G induced by the surviving clauses. For any particular connected component, 
the total number of deferred variables in its clauses must be O(log m); in time 
polynomial in m, we can enumerate the 20 (Iogm) truth assignments for these 
variables until we that one that satisfies all clauses in this component. The 
second stage consists of repeating this process independently for each connected 
component, giving a polynomial time algorithm for assigning values to the 
deferred variables so as to satisfy all surviving clauses. 

Lemma 5.13: With probability 1 - 0(1), all connected components of G induced 
by the clauses that survive the first stage have size at most z log m, for a fixed 
constant z. 

PRO OF: Consider a collection of clauses C., ... , Cr such that every pair of these 
has distance at least 4 in G. Each clause Cj survives only if at least one of the 
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d + 1 clauses at distance at most 1 from it turns dangerous during the first stage. 
For each Cj, let Dj be anyone dangerous clause at distance at most 1 from it. 
Since the Cj's are at distance 4 from each other, the Dj's must be distinct. 

There are at most (d + It possible ways of choosing the clauses D., ... , Dr. 
Since each of the clauses D1, ••• , Dr is at distance at most 1 from some clause 
in the set C1, ••• , Cr , they must be at distance at least 2 from each other and 
hence have disjoint sets of variables. The probability that D., ... , Dr all become 
dangerous is at most 2-rk/ 2• Thus, for a set of r clauses every pair of which is 
distance at least 4 apart in G, the probability that they all survive is at most 

(5.6) 

We must bound the probability that some connected subgraph of G of size 
exceeding z log m survives. To this end we introduce a graph-theoretic 'device 
known as a 4-tree. Call a subset T of clauses a 4-tree if the following two 
properties hold: 

1. The distance in G between every pair of these clauses is at least 4. 

2. If we form a new graph in which two clauses are adjacent if their distance 
in G is exactly 4, T is connected. 

We first bound the number of 4-trees of size r and use this to bound the 
probability that a large 4-tree survives. By arguing that a large connected 
subgraph of G must contain a large 4-tree, we will finally conclude it is unlikely 
that a large connected subgraph survives. 

Let us define a new graph G4 as follows: there is a vertex for each clause, 
and two vertices are adjacent in G4 if their distance in G is 4. Each vertex of G4 

has O(d4
) neighbors. The number of 4-trees of size r in G is no more than the 

number of connected subgraphs in G4 of size r. Problem 5.7 considers a general 
graph-theoretic bound on the number of connected subgraphs of a given size 
in a graph. The particular result from there that we now use is: the number of 
sub graphs of G4 of size r is at most 

(5.7) 

for some constant a, and this is an upper bound on the number of 4-trees of 
size r in G. Multiplying (5.6) and (5.7), we conclude that the probability that any 
4-tree of size larger than b log m survives the first round is o( 1), for a suitably 
large constant b. 

What does this tell us about the probability that some connected subgraph of 
G of size exceeding z log m survives? For any connected subgraph in G there is a 
maximal4-tree T, together with at most 3d3 -1 other vertices within distance 3 
of a vertex of T. Thus the size of this subgraph is at most 31 Tld3• We conclude 
that the probability of survival of any connected subgraph of size exceeding 
3bd3 10g m is 0(1). 0 

If the first stage results in a connected component larger than this bound, we 
repeat it; the expected number of repetitions is less than 2. Thus, we assume 
that we enter the second stage of the algorithm with every surviving connected 
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component having size O(log m). The number of unspecified variables associated 
with each of these components is also O(log m), and in time polynomial in m we 
can find values for them that satisfy all the clauses. Since no variable is shared 
by two or more components, we can treat each component in isolation. Clearly 
the expected running time of this algorithm is polynomial in m. 

Theorem 5.14: The above algorithm finds a satisfying truth assignment for any 
instance of k-SAT containing m clauses in which each variable is contained in at 
most 2k/ SO clauses, in expected time polynomial in m. 

It is worth noting that the constant 50 above can be strengthened somewhat; 
Problem 5.9 explores this further. The degree to which it can be strengthened 
depends on our aim: if we only wish to show that a satisfying truth assignment 
exists, we can obtain a better constant than if we actually want to show that 
the algorithm above will succeed in finding one. This is a feature of all known 
algorithms that, in polynomial time, find objects whose existence is guaranteed 
by the Lovasz Local Lemma: the constants required for the algorithms are 
somewhat weaker than those for the corresponding existence proofs. 

5.6. The Method of Conditional Probabilities 

In Section 2.3 we saw that a randomized computation could sometimes be 
"derandomized." The derandomization in Section 2.3, however, led to a non
uniform deterministic algorithm. In this section, we will examine a technique that 
can derandomize certain randomized algorithms uniformly. We illustrate· this 
method, known as the method of conditional probabilities, using the set-balancing 
problem of Example 4.5. 

Recall the definition of the set-balancing problem: we are given an n x n 
matrix A all of whose entries are 0 or 1. We wish to find a column vector 
b E {-1, + 1}n, so as to minimize IIAblioo • In Example 4.5, we used the following 
randomized algorithm: each entry of b is independently and equiprobably chosen 
from {-1, +1}. We argued that with probability at least 1 - 21n, this algorithm 
finds a vector b for which IIAblioo < 4.Jn In n. We now describe the method 
of conditional probabilities, and use it to obtain a deterministic algorithm that 
finds a vector b for which IIAblloo < 4.Jn In n. 

Let us view the randomized algorithm as a computation tree. This tree is a 
complete binary tree of height n (there are n + 1 nodes on any root-leaf path, 
including the root and the leaf). The level of a node is its distance from the 
root. The computation begins at the root. Each node at the ith level is labeled 
by a distinct string from {-1, + 1 } i, and corresponds to a setting of bI. .. . , bi in 
the obvious fashion. From any node whose level is less than n, the computation 
proceeds equiprobably to one of its children. If a node is labeled t, its left child 
is labeled t[ -1) and its right child t[+ 1), where s[x) denotes the string that 
results when the bit x is appended to the string s. Each leaf of the tree is thus 
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labeled by a distinct vector in {-I, + l}n. An execution of the algorithm begins 
at the root and terminates on reaching a leaf. This process is a sequential view 
of the randomized algorithm of Example 4.5. 

Call a leaf good if the vector v labeling it satisfies IIAviloo ~ 4~n In n, and bad 
otherwise. From the argument of Example 4.5, we know that the randomized 
algorithm reaches a good leaf with probability at least 1 - 21n. For a node a 
in the tree, let P(a) denote the probability that, starting from a, the randomized 
algorithm reaches a bad leaf. Thus P(a) is the probability that the algorithm 
fails, conditional on its having reached the partial assignment that labels a. For 
the root r of the tree, we have P(r) ~ 21n < 1 for n > 2. 

Letting c and d denote the children of node a, we have 

P(a) = P(c) ; P(d). (5.8) 

From (5.8), it follows that 

min{ P(c), P(d)} S P(a). 

In other words, every node has a child whose conditional probability of failure 
is no more than its own. This suggests the following deterministic algorithm for 
walking down the tree from r to a good leaf. Start from r; in general, from a 
node a, proceed to the child of a whose conditional probability of failure is no 
more than P(a). Since P(a) < 1 when a = r, and never increases in the course 
of this walk, we arrive at a leaf t for which P(t) < 1. But a leaf t corresponds 
to a complete assignment to b, so that its probability of being bad is either 0 
or 1; since P(t) < 1, it must be the case that P(t) = O. Thus this algorithm is 
guaranteed to arrive at a good leaf. 

This scheme for derandomizing a randomized computation tree is quite 
general. Unfortunately, in most cases there is an obstacle to applying it: in order 
to choose which of the children (c or d) to proceed to from a node a, we must 
determine P(c) and P(d) (or at least determine which of them is smaller). We 
know of very few randomized algorithms for which this choice can be made 
efficiently. In the Notes section we will mention an approach to dealing with 
this problem. For the moment, we will tackle this problem for our set-balancing 
algorithm. 

For 1 :S; i ~ n, let us say that the ith bad event, denoted Cj, occurs if 
the absolute value of the inner product of the ith row of A with b exceeds 
4~nlnn. By the analysis of Example 4.5, we know that Pr[cj] :S; 21n2, and so 
Ej Pr[c;] :S; 21n. For a node a in the computation tree, let P(Cj I a) denote the 
probability that Cj occurs conditional on the algorithm being at the intermediate 
stage a; clearly, P(Cj I r) < 21n2• Let P(a) denote Ej P(Cj I a); thus P(a) :S; P(a) 
for all a. The deterministic algorithm now follows from the following three 
properties of P(a). The first property has already been established; the reader 
may prove the other two in Problem 5.11. 
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1. P(r) < 1. 

2. For any node a with children c and d, 

min{P(c), P(d)} $ P(a). 

3. For any node a, we can compute P(a) in time polynomial in n. 

The deterministic algorithm is clear: use the method of conditional probabilities 
as before, but with the value P(a) instead of P(a) at every step. 

Theorem S.lS: The algorithm based on the method of conditional probabilities 
determines a vector b such that IIAblioo < 4Jn In n, in time polynomial in n. 

Notes 

A comprehensive guide to the state of the art of the probabilistic method is the book by 
Alon and Spencer [24]. The books by Erdos and Spencer [139] and by Spencer [384] are 
quicker introductions to the field. The set-balancing problem has been widely studied, 
and the best known result is due to Spencer [383]: for every 0-1 matrix A, there is a 
vector b such that IIAbll oo $ 6Jii. It must be stressed that this result is existential, and 
there is no efficient (randomized or deterministic) algorithm known to find the vector 
whose existence is guaranteed by Spencer's result [383]. 

~ Research Problem S.l: Devise an efficient algorithm that for any 0-1 matrix A 

will find a vector b for which IIAblloo is o( Jnlnn). 

The large cut example of Theorem 5.1 is taken from Luby [283]. The MAX-SAT 
problem is a classic problem in the theory of approximation algorithms. Johnson [219] 
gives a deterministic 1/2-approximation algorithm for the MAX-SAT problem that 
can be viewed as the derandomization (via the method of conditional probabilities) of 
the randomized algorithm in Theorem 5.2. Yannakakis [418] improved this result by 
presenting a deterministic 3/4-approximation algorithm. Our presentation in Section 5.2 
is based on the work of Goemans and Williamson [169], who also describe how the 
algorithm may be made deterministic. In subsequent work [170], they have improved 
this using techniques from semidefinite programming to obtain a 0.878-approximation 
algorithm for instances of the MAX-SAT in which every clause has at most 2 literals 
(sometimes referred to as the MAX-2SAT problem). This implies an (X-approximation 
algorithm for MAX-SAT, for a value of (X that is slightly larger than 3/4. Improving on 
these bounds is an interesting challenge: 

~ Research Problem S.2: Determine the largest value (X for which there is a 
polynomial-time (X-approximation algorithm for MAX-SAT. 

Arora, Lund, Motwani, Sudan. and Szegedy [32] have shown that for a small constant 
E > 0 there is no polynomial time (1 - E)-approximation algorithm for MAX-3SAT, 
unless P = NP. Bellare and Sudan [50] have proved a similar result for E close to 0.015 
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under a slightly weaker assumption than P f NP. These results carry over to other 
approximation problems, 'including the other versions of maximum satisfiability and the 
max-cut problem. 

The history of expanding graphs can be traced to their origins in the construction of 
telephone networks. Cohen and Wigderson [108] provide a useful survey of the many 
different types of expanding graphs and their applications. Bien [59] also gives a good 
survey of the history of expanding graphs. The use of the probabilistic method for 
proving the existence of expanding graphs can be traced back to Pinsker [333]. The 
first explicit construction is due to Margulis [292]. Gabber and Galil [158] developed 
an explicit construction that we will use in Chapter 6. The probability amplification 
technique described in Section 5.3.1 is due to Sipser [378]. The use of expanding graphs 
for augmenting randomness is an idea that first appeared in work of Karp, Pippenger, 
and Sipser [248]. 

The number of bits used by an oblivious randomized permutation routing algorithm 
was studied by Peleg and Upfal [331]; they study a slightly more general question than 
that treated in Section 5.4. The following question remains open: 

~ Research Problem 5.3: Devise a uniform, randomized, oblivious scheme for 
permutation routing on the hypercube that uses Cln bits of randomness and 
whose expected number of steps is C2n on any instance of permutation routing 
on a hypercube with N = 2n nodes, for any constants CI and C2. 

The best known construction is due to Peleg and Upfal [331]: there is a uniform, 
randomized, oblivious scheme that uses 0 (n2) bits of randomness and runs in. expected 
time O(n). 

The Lovasz Local Lemma first appears in a paper by Erdos and Lovasz [137]. Broder, 
Frieze, and Upfal have applied the Lovasz Local Lemma to finding disjoint paths in 
expanders [84]. Leighton, Maggs, and Rao [272] have applied it to obtain an elegant 
result on packet routing, while Hastad, Leighton, and Newman have applied it to the 
probabilistic analysis of hypercubes with random faults [196]. The example of Section 5.5 
is due to Beck [48]. A version of the algorithm that can be implemented as a "parallel 
algorithm" (see Chapter 12) is described by Alon [18]. 

The method of conditional probabilities is implicit in a paper of Erdos and Self
ridge [138]. The connection to deterministic polynomial-time algorithms was developed 
by Spencer [384]. There are many applications for which we do not know how to 
compute the conditional probabilities that are compared at each step. One solution to 
this problem is the method of pessimistic estimators introduced by Raghavan [351]. The 
idea is to replace the conditional probability of failure at each stage by an efficiently 
computable estimate of the conditional probability. These papers [284,351] demonstrate 
a number of algorithmic applications of the method of conditional probabilities. Chazelle 
and Friedman [91] have applied these tools to a number of problems in computational 
geometry. Berger and Rompel [55] and Motwani, Naor, and Naor [313] have applied a 
variant of the method of conditional probabilities to the derandomization of a variety 
of parallel algorithms. 
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Problems 

5.1 (Due to J. Naor.) Let X be a random variable with expectation - y),.;h that 
moment generating function E[exp(tIXI)] is finite for some t > O. ~, ~ ',an use 
the following two kinds of tail inequalities for X. 

Chernoff Bound: 
E[e IIX1 ] 

Pr[IXI ~ 6] ::s; min 16' 
I~O e 

kth-Moment Bound: 

Pr[IXI ~ 6] ::s; E[~~lk]. 

(a) Show that for each 6, there exists a choice of k such th~ ttle kth
moment bound is stronger than the Chernoff bound. (Hint: Conside" ....... 1; Taylor 
expansion of the moment generating function and apply the V'l..I~bilistic 
method.) 

(b) Why would we still prefer the Chernoff bound to the (seemingl/; ~tronger 
kth-moment bound? 

5.2 In Example 5.2, we applied the probabilistic method to certificate~ for the 
value of a game tree in the setting of Section 2.1. We showed that for any 
instance of T2.k there is a set of nO.793 leaves whose values certify tt. ,: value 
ot-the root for that instance. Show that, in fact, for any instance of 70 , there 
is a set of 2k = In leaves whose values certify the value of the root for that 
instance. 

5.3 Let G be a graph on n vertices, with nd /2 edges. Consider the following 
probabilistic experiment for finding an independent set in G. Delhte each 
vertex of G (together with its incident edges) independently with protJability 
1 -1/d. 

(a) Compute the expected number of vertices and edges that remain lifter the 
deletion process. 

(b) From these, infer that there is an independent set with at lentit n/2d 
vertices in any graph on n vertices with nd /2 edges. 

(c) Let G be a 3-regular graph. Suppose that we wish to turn this probHbilistic 
"experiment into a randomized algorithm as follows. We delete each vertex 
independently with probability 2/3. For every edge that remains, delute one 
of its end-points. Derive an upper bound on the probability that this aluorithm 
finds an independent set smaller than n(1 - £)/6. 

5.4 A function f : R - R is said to be concave if for any x" X2 and O::s; A 0. 1, the 
following inequality is satisfied: 

The reader may wish to compare this with the notion of convex functions 
defined in Problem 4.7. 

(a) Suppose that f is a concave function and 9 is a linear function l'uch that 
g(O)::s; f(O) and g(1)::s; f(1). Show that for any x in the interval [0,1], g(.) ~ f(x). 
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(b) Show that the function f(x) = 1 - (1 - x/k)1r is concave for any k > O. What 
can you say when k :s;; O? 

(c) Let f(x) = 1 - (1-x/k)1r and g(x) = (1 - (1-1/k)lr)x. Show that f(x) ~ g(x) 
for positive k and 0 :s;; x :s;; 1. 

5.5 Use the probabilistic method to show that an expanding graph with the 
following properties exists for n sufficiently large: 

• ILl = IRI = n. 

• Every vertex in L has degree n3/ 4 , and every vertex in R has degree at 
most 3n3/ 4 • 

• Every subset of n3/
4 vertices in L has at least n - n3/ 4 neighbors in R. 

5.6 Suppose that you had access to the expanding graph described in Problem 5.5 
for a certain value of n. Show that it can be used to run the LazySelect 
algorithm of Section 3.3 on any instance of size n, using log n random bits 
to choose the entire sample R. Show that the expected running time of this 
implementation is O(n). 

5.7 Let G be a d-regular graph on n vertices. 

(a) Show that the number of connected subgraphs of G of size r is at most 
nd2r , 

(b) Suppose that each vertex of G is deleted independently with probability 
1-1/2d2 • Show that with probability 1- n-a, there is no surviving connected 
component of size exceeding log n, for a suitable constant a. 

5.8 Lemma 5.11 guarantees that with positive probability, none of the events £/ 
occurs. In this problem, we see how small this positive probability can be. 
Consider again the probabilistic experiment suggested in Problem 5.3 Let G 
be a In-regular graph. Suppose that we delete vertices of G independently 
with probability 1 _1/(3n1

/
4

). 

(a) Use Lemma 5.11 to make the (obvious) argument that with positive proba
bility, an independent set remains after the deletion. 

(b) Use the Chernoff bound to show that the probability that fewer than n3/ 4/6 
vertices survive is less than exp(-n3/

4/12). 

(c) Now consider what happens when the above experiment is run on a In
regular graph containing no independent set of size exceeding In. What does 
this say about the positive probability in part (a)? 

5.9 In Section 5.5, we assumed that a variable appears in at most ~/50 clauses. 
Replace the constant 50 by the smallest constant you can for the following 
results: 

(a) The existence proof using Corollary 5.12. 

(b) The algorithm of Section 5.5. 

5.10 (Due to J. Naor.) For a graph G(V,E), and any T s;;; V, define the cut function 
c(T) as the number of edges in E which have exactly one end-point in T. 
For a suitably small function f(n) and large enough even integer n, show that 
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there exists a graph G (V, E) with IVI = n such that for every subset T s; V of 
size n/2, 

IC(T) - ~ I :s; f(n). 

How small can you make the function f(n)? 

5.11 In this problem, we will complete establishing the properties of P(a) leading 
tCl~heorem 5.15. 

(a) Show that for a node a at the ith level of the computation tree, P(a) is of 
the form N(a)/2n- i , where N(a) is a sum of binomial coefficients. Prove that 
for any node a with children C and d, 

min{P(c), P(d)} :s; P(a), 

and that for any node a, we can compute P(a) in time polynomial in n. 

(b) Give an upper bound on the running time of the deterministic algorithm. 

5.12 Show how the method of conditional probabilities can be applied to deran
domize the RandAuto algorithm. 

5.13 Consider the randomized algorithm implicitly described in the proof of The
orem 5.1, which finds a cut of expected size m/2 in a graph with m edges. 
Use the method of conditional probabilities to derandomize this algorithm and 
obtain a deterministic polynomial time algorithm that computes a cut of size 
at least m /2. 

5.14 (Due to D.R. Karger and R. Motwani [233].) An (n, m)-safe set instance consists 
of a urfi'Oerse U of size n, a safe set S s; U, and m target sets T" ... , T m s; U 
such that 

• lSI = IT,I = ... = ITml, 
• and, for 1 :s; i :s; m, S n Ti = 0. 

An isolator for a safe set instance is a set I s; U that intersects all the target 
sets but not the safe set. An (n, m)-universal isolating family F is a collection 
of subsets of U such that F contains an isolator for any (n, m)-safe set instance. 

Show that there exists a (n, m)-universal isolating family F such that IFI is 
polynomially bounded in nand m. 
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CHAPT ER 6 

Markov Chains and Random Walks 

ThE study of random walks on graphs is fascinating in its own right. In addition, 
it has a number of applications to the design and analysis of randomized 
algorithms. This chapter will be devoted to studying random walks on graphs, 
and to some of their algorithmic applications. We start by describing a simple 
algorithm for the 2-SAT problem, and analyze it by studying the properties of 
random walks on the line. Following a brief treatment of the basics of Markov 
chains, we consider random walks on undirected graphs. It is shown that there is 
a strong connection between random walks and the theory of electric networks. 
Random walks are then applied to the problem of determining the connectivity 
of graphs. Next, we turn to the study of random walks on expander graphs. 
We define a class of expanders and use algebraic graph theory to characterize 
their properties. Finally, we illustrate the special properties of random walks on 
expanders via an application to probability amplification. 

Let G = (V, E) be a connected, undirected graph with n vertices and m edges. 
For a vertex v E V, r(v) denotes the set of neighbors of v in G. A random walk on 
G is the following process, which occurs in a sequence of discrete steps: starting 
at a vertex vo, we proceed at the first step to a randomly chosen neighbor of Vo. 
This may be thought of as choosing a random edge incident on Vo and walking 
along it to a vertex VI E r(vo). At the second step, we proceed to a randomly 
chosen neighbor of VI, and so on. Unless otherwise stated, "randomly chosen 
neighbor" will mean a neighbor chosen uniformly at random; the choice at each 
step is independent of all previous choices. 

Here are some typical questions about the simple random walk that we study: 
what is the expected number of steps to get from vertex u to another vertex v? 
Starting from a given vertex u, what is the expected number of steps to visit 
every vertex in the graph? 

Exercise 6.1: Let G be the complete graph Kn on n vertices. Let u and v be two 
vertices in G. Prove that: 
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1. The expected number of steps in a simple random walk that begins at u and ends 

upon first reaching v is n - 1. 

2. The expected number of steps to visit all the vertices in G starting from u is (n-1)Hn_ 1 • 

where Hn- 1 = E;~111/j is the Harmonic number. 

Is the random walk on Kn exactly the same process as coupon collection with n - 1 

coupons? 

6.1. A 2-SAT Example 

Recall that the k-SAT problem is the special case of the SAT problem in 
which each clause in the input formula contains exactly k literals. We seek 
an assignment of (Boolean) values to the variables such that all the clauses 
are satisfied, or an assurance that no such assignment exists. While the k-SAT 
problem is NP-hard for k ~ 3, it is solvable in polynomial time for k = 1 
or k = 2. In this section we present a simple polynomial-time (Monte Carlo) 
algorithm for solving the 2-SAT problem. 

Suppose we start with an arbitrary assignment of values to the literals. As 
long as there is a clause that is unsatisfied, we modify the current assignment 
as follows: we choose an arbitrary unsatisfied clause, and pick one of the 
(two) literals in it uniformly at random; the new assignment is obtained by 
complementing the value of the chosen literal. After each such step, we check 
to see if there exists an unsatisfied clause under the current assignment; if not, 
the algorithm terminates successfully with a satisfying assignment. If there is a 
satisfying assignment for this instance, how long does it take for this process to 
discover it? 

Given an instance with a satisfying assignment, let us fix our attention on 
a particular satisfying assignment A, and refer to the values assigned by A to 
the literals as the "correct values." Let n be the number of variables in an 
instance. The progress of this algorithm can be represented by a particle moving 
between the integers {O, 1, ... , n} on the real line. The position of the particle 
indicates how many variables in the current solution have the correct values. 
At each iteration, we complement the current value of one of the literals of 
some unsatisfied clause, so that the particle's position changes by 1 at each 
step. In particular, a particle currently at position i, for 0 < i < n, can only 
move to positions i-lor i + 1. A particle at location 0 can only move to 
1, and the process terminates when the particle reaches position n, although 
it may terminate at some other position with a satisfying assignment other 
than A. 

The crucial observation is the following: in an unsatisfied clause, at least 
one of the two literals has an incorrect value. With probability at least 1/2 
we increase (by one) the number of variables having their correct values. The 
motion of the particle thus resembles a random walk on the line. 
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The reader may relate this process to a familiar gambling experience (see also 
Section 4.4). A gambler goes to a casino with n dollars. At each step he bets $1, 
and loses it with probability at least 1/2. If he wins, his bet of $1 is returned to 
him, and in addition he is given $1. The gambler must quit when his capital is 
reduced to O. Note the similarity to the process in the previous paragraph, with 
the coordinates on the line reversed. 

The random walk on the line is one of the most extensively studied stochastic 
processes. Using the tools developed in this chapter, we will be able to prove: 

Theorem 6.1: The expected number of steps for the above 2-SAT algorithm to 
find a satisfying assignment is O(n2). 

Exercise 6.2: Using Theorem 6.1, devise a one-sided error Monte Carlo algorithm 
for the 2-SAT problem. This algorithm should run in polynomial time, always return 
UNSATISFIABLE for unsatisfiable formulas, and with high probability it should return 
a satisfying truth assignment for satisfiable formulas. 

6.2. Markov Chains 

Although we can deal with some of the questions concerning random walks 
using basic probability theory (as in Exercise 6.1), they are more cOIU'eniently 
studied using an abstraction known as a Markov chain. A Markov chain M is 
a discrete-time stochastic process defined over a set of states S in terms of a 
matrix P of transition probabilities. The set S is either finite or countably infinite. 
The transition probability matrix P has one row and one column for each state 
in S. The Markov chain is in one state at any time, making state-transitions at 
discrete time-steps t = 1,2, .... The entry Pij in the transition probability matrix 
is the probability that the next state will be j, given that the current state is i. 
Thus, for all i, j E S, we have 0 < Pij < 1, and E j Pij = 1. 

An important property of a Markov chain is the memorylessness property: the 
future behavior of a Markov chain depends only on its current state, and not on 
how it arrived at the present state. This follows from the observation that the 
transition probabilities Pij depend only on the current state i. We will denote 
by X t the state of the Markov chain at time t; thus, the sequence {Xt } specifies 
the history or the evolution of the Markov chain. The memorylessness property 
can be stated more formally as follows: 

Pr[Xt+1 = j I Xo = io,XI = il, ... ,Xt = i] = Pr[Xt+1 = j I Xt = i] = Pij . 

A Markov chain (indeed, a random walk) need not have a prespecified initial 
state; in general, its initial state Xo is permitted to be chosen according to some 
probability distribution over S. Of course, an initial probability distribution 
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includes as a special case the deterministic specification that the initial state 
Xo be i. Given a distribution for the initial state Xo, we have a probability 
distribution for the history {Xt }. 

For states i,j E S, define the t-step transition probability as p/P = Pr[Xt = 
j I Xo = i]. Given an initial state Xo = i, the probability that the first transition 
into state j occurs at time t is denoted by rW and is given by 

rW = Pr[Xt = j,and, for 1 <s::s; t -1, Xs =1= j I Xo = i]. 

Also, for Xo = i, the probability that there is a visit to (transition into) state j 
at some time t > 0 is denoted by fij, and is given by 

fij = 2: rW· 
t>O 

Finally, the expected number of time steps to reach state j starting from state i 
is denoted by hij and is given by 

hij = 2: t dY. 
t>O 

If fij < 1 then hij = 00, but the converse need not be true. 

~ Definition 6.1: A state i for which fii < 1 (and hence hii = (0) is said to be 
transient, and one for which fii = 1 is said to be persistent. Those persistent states 
i for which hii = 00 are said to be null persistent and those for which hii =1= 00 are 
said to be non-null persistent. 

We restrict our attention to finite Markov chains, i.e., Markov chains whose 
states are finite in number. We claim that every state in such a Markov chain is 
either transient or non-null persistent. We define the underlying directed graph 
of a Markov chain as follows: there is one vertex in the graph for each state of 
the Markov chain; and there is an edge directed from vertex i to vertex j if and 
only if Pij > O. 

~ Definition 6.2: A strong component of a directed graph G is a maximal subgraph 
C of G such that for any pair of vertices i and j in the vertex set of C, there is a 
directed path from i to j, as well as a directed path from j to i. 

~ Definition 6.3: A strong component C is said to be a final strong component if 
there is no edge going from a vertex in C to a vertex not in C. 

In a finite Markov chain, starting from any vertex in a strong component C, 
there is a non-zero probability of reaching any other vertex in the same strong 
component in a finite number of steps. If C is a final strong component, this 
probability is 1 since the Markov chain can never leave the component C once 
it enters it. It follows that a state is persistent if and only if it lies in a final 
strong component. 
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~ Definition 6.4: A Markov chain is said to be irreducible whenever its underlying 
graph consists of a single strong component. 

The unique strong component in an irreducible Markov chain must be final, 
and hence all states are persistent. 

~ Definition 6.5: Define q(t) = (q~t), q~t), . .. , q~t), the state probability vector (also 
called the distribution of the chain at time t), to be the row vector whose ith 
component is the probability that the chain is in state i at time t. 

Henceforth, whenever we mention a probability distribution on the states of a 
Markov chain, we mean such a vector. It is easy to check that q(t+l) -: q(t) P, 
so we have by induction that q(t) = q(O) pt. It follows that a Markov chain's 
behavior for all time is specified by its initial distribution q(O) and its transition 
matrix P. 

Some remarks about our notation are in order. Throughout this chapter, 
when multiplying a probability vector q with a transition probability matrix P, 
we will use qP instead of Pq since the correct interpretation is that the entry 
Pij represents the probability of going from state i to state j, and that the entry 
qi is the probability of being in state i. For notational convenience, we interpret 
a probability vector as a row vector whenever it premultiplies a matrix in this 
fashion. 

~ Definition 6.6: A stationary distribution for the Markov chain with transition 
matrix P is a probability distribution 'It such that 'It = 'ltP. 

Intuitively, if the Markov chain is in the stationary distribution at step t, 
it remains in the stationary distribution at step t + 1. Thus the stationary 
distribution is thought of as a description of the steady-state behavior of the 
Markov chain. 

~ Definition 6.7: The periodicity of a state i is the maximum integer T for which 
there exists an initial distribution q(O) and positive integer a such that, for all 
t, if at time t we have q~t) > 0, then t belongs to the arithmetic progression 
{a + Ti I i ~ O}. A state is said to be periodic if it has periodicity greater than 
1, and is said to be aperiodic otherwise. A Markov chain in which every state is 
aperiodic is known as an aperiodic Markov chain. 

Consider a Markov chain in which the underlying graph is bipartite. It follows 
that every state is periodic with periodicity at least 2. As we will see later, this 
is really the only possible source of periodicity in Markov chains obtained from 
random walks. Periodic Markov chains cause complications (for example, they 
do not converge to the stationary distribution), but we will show that there is a 
simple trick for dealing with this source of periodicity. 
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~ Definition 6.8: An ergodic state is one that is aperiodic and non-null persistent. 

~ Definition 6.9: An ergodic Markov chain is one in which all states are ergodic. 

The following basic theorem on Markov chains may be found in most texts 
on stochastic processes. 

Theorem 6.2 (Fundamental Theorem of Markov Chains): Any irreducible. finite. 
and aperiodic Markov chain has the following properties. 

1. All states are ergodic. 

2. There is a unique stationary distribution n such that. for 1 ::s; i ::s; n. 7ti > O. 

3. For 1 < i < n. fii = 1 and hii = 1/7ti. 

4. Let N(i, t) be the number of times the Markov chain visits state i in t steps. 
Then. 

1
. N(i, t) 
1m -- =7ti. 

t-+C() t 

6.3. Random Walks on Graphs 

Let G = (V, E) be a connected, non-bipartite, undirected graph where IVI = n 
and lEI = m. It induces a Markov chain MG as follows: the states of the MG are 
the vertices of G, and for any two vertices u, v E V, 

Puv = {iui if (u,v).e E 

o otherwIse, 

where d(w) is the degree of vertex w. Because G is connected, MG is irreducible. 
For a connected, undirected graph G, the periodicity of the states in MG is the 
greatest common divisor (gcd) of the length of all closed walks in G, where 
a closed walk is any walk that starts and ends at the same vertex. As G is 
undirected, there are closed walks of length 2 that traverse the same edge twice 
in succession. Further, since G is non-bipartite it has odd cycles that give closed 
walks of odd length. It follows that the gcd of the closed walks is 1, and hence 
MG is aperiodic. Noting that G is finite, Theorem 6.2 now implies that MG has 
a unique stationary distribution n. 

Lemma 6.3: For all v E V. 1tv = d(v)/2m. 

PROOF: Let [nP]v denote the component corresponding to vertex v In the 
probability vector nP. Then, 

[nP]v - L 1tuP uv 

u 
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2: d(u) X _1_ 

(u,v)EE 2m d(u) 

1 
2: 

(u,v)EE 2m 
d(v) 

2m 

o 
As a direct consequence of Theorem 6.2 and Lemma 6.3, we obtain the 

following lemma. 

Lemma 6.4: For all v E V, hvv = l/1tv = 2m/d(v). 

~ Definition 6.10: The hitting time huv (sometimes called the mean first passage 
time) is the expected number of steps in a random walk that starts at u and ends 
upon first reaching v. 

~ Definition 6.11: We define Cuv, the commute time between u and v, to be Cuv = 

huv + hvu = Cvu' This is the expected time for a random walk starting at u to 
return to u after at least one visit to v. 

~ Definition 6.12: Let Cu(G) denote the expected length of a walk that starts at 
u and ends upon visiting every vertex in G at least once. The cover time of G, 
denoted C(G), is defined by C(G) = maxuCu(G). 

~ Example 6.1: A graph that tells us a great deal about the behavior of random 
walks is the n-vertex lollipop graph Ln (Figure 6.1). This graph consists of a clique 
on n/2 vertices, and a path on the remaining vertices. There is a vertex u in the 
clique to which the path is attached; let v denote the other end of the path. 

Figure 6.1: The lollipop graph Ln. 

By elementary probability (or using methods for studying random walks that 
we will encounter shortly), it turns out that in Ln, huv is E>(n3), whereas hvu is 
E>(n2). Thus, in general, huv =1= hvu, and the asymptotic difference (as in this case) 
can be as much as a factor of n. 

Another misconception that Ln dispels is that "adding more edges should help 
reduce the cover time C(G)." This is false, because Ln has cover time E>(n3); on 
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the other hand, it can be built by adding edges to a chain on n vertices, which 
can be shown to have cover time 8(n2). In turn, the complete graph Kn can be 
built by adding edges to L n, and the cover time of Kn is 8(n log n). Thus the 
cover time of a graph is not monotone in the number of edges. 

The following lemma establishes an important property of the commute time 
across an edge and will prove useful in Section 6.5 below. 

Lemma 6.5: For any edge (u,v) E E, huv + hvu < 2m. 

PROOF: The proof considers a new Markov chain defined on the edges of G. 
The current state is defined to be the pair composed of the edge most recently 
traversed in the random walk, together with the direction of this traversal; 
equivalently, replacing each undirected edge by two oppositely directed edges, 
the directed edges form the state space. There are 2m states in this new Markov 
chain. The transition matrix Q for this Markov chain has non-zero entry 

Q(u,v),(v,w) = Pvw = Ild(v), 

corresponding to an edge (v, w). This matrix is doubly stochastic, meaning that 
not only do the rows sum to one (as in every Markov chain), but the columns 
sum to one as well. To see this, fix a (directed) edge (v, w) and observe that the 
column sum corresponding to this state is given by 

2: Q(x,y),(v,w) - 2: Q(u,v),(v,w) 

xEV, yEr(x) UEr(v) 

2: Pvw 
uEr(v) 

1 
- d(v) x d(v) 

- 1. 

Noting the result in Problem 6.6, it follows that the uniform distribution on the 
edges is stationary for this Markov chain, so the stationary probability of each 
directed edge is 112m. By part (3) of Theorem 6.2, we can conclude that the 
expected time between successive traversals of the directed edge (v, u) is 2m. 

Consider now huv + hvu, and interpret this as the expected time for a walk 
starting from vertex u to visit vertex v and return to u. Conditioned on the 
event that the initial entry into u was via the directed edge (v, u), we conclude 
that the expected time to go from there to v and then to u along (v, u) is 2m. 
The memorylessness property of a Markov chain now allows us to remove the 
conditioning: since the sequence of transitions from u onward is independent 
of the fact that we arrived at u along (v, u) at the start of the commute, the 
expected time back to u is at most 2m. 0 

We emphasize that the result in Lemma 6.5 is valid only for vertices u and v 
that are connected by an edge in G. 
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6.4. Electrical Networks 

Many random variables associated with the simple random walk on an undi
rected graph are studied conveniently using the tools and the language of 
electrical network theory. Our focus here will be on characterizing huv and Cuv 
in terms of properties of the graph G. We begin with a review of some basics of 
resistive electrical networks. 

A resistive electrical network is an undirected graph; each edge has associated 
with it a positive real branch resistance. The flow of current in such networks 
is governed by two rules: Kirchhoff's Law and Ohm's Law. Kirchhoff's Law 
stipulates that the sum of the currents entering a node in the network equals 
the sum of the currents leaving it. Ohm's Law states that the voltage across a 
resistance equals the product of the resistance and the current through it. 

Figure 6.2: A resistive electrical network. Each rectangle signifies a branch resistance. 

Consider the simple example in Figure 6.2. If a current of one ampere 
were injected into node b and removed from node c in this network, a simple 
calculation using Kirchhoff's Law and Ohm's Law yields the following: half an 
ampere of current flows along the branch bc, and the other half amperC? through 
branch ba and onto ac. The voltage difference between c and b is one volt, while 
the voltage difference between c and a (and between a and b) is half a volt. 

One final notion we need is that of the effective resistance between two nodes 
in a network. The effective resistance between two nodes u and v is the voltage 
difference between u and v when one ampere is injected into u and removed 
from v; equivalently, one ampere could be injected into v and removed from u. 
The effective resistance between u and v is always at most the branch resistance 
between u and v and can be much less, as we shall see. This distinction between 
branch and the effective resistances is important. In the example in Figure 6.2, 
for instance, the effective resistance between band c is 1, whereas the branch 
resistance is 2. 

Given an undirected graph G, let N(G) be the electrical network defined as 
follows: it has a node for each vertex in V; for every edge in E, it has a one ohm 
resistance between the corresponding nodes in N(G). For two vertices u,v E V, 
Ruv denotes the effective resistance between the corresponding nodes in N( G). 
The following theorem establishes a close relation between commute times for 
the simple random walk on G and effective resistances in the electrical network 
N(G). 

Theorem 6.6: For any two vertices u and v in G, the commute time Cuv = 2mRuv. 
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PROOF: For a vertex x in G, let r(x) denote the set of vertices in V that are 
adjacent to x, and let d(x) denote its degree Ir(x)l. Let CPuv denote the voltage 
at u in N(G) with respect to v, if d(x) amperes of current are injected into each 
node x E V, and 2m amperes are removed from v. We will first prove that for 
all u E V, 

Using Kirchhoff's Law and Ohm's Law, we obtain that for all u E V \ {v}), 

d(u) = 2: (CPuv - CPwv). 
wer(u) 

By the definition of expectation, for all u E V \ {v}), 

1 
huv = 2: d(u) (1 + hwv). 

wer(u) 

(6.1) 

(6.2) 

(6.3) 

Equations (6.2) and (6.3) are both linear systems with unique solutions; further
more, they are identical if we identify CPuv in (6.2) with huv in (6.3). This proves 
(6.1). To complete the proof of the theorem, we note that hvu is the voltage CPvu 
at v in N(G) measured with respect to u, when currents are injected into all 
nodes and removed from u. Changing signs, CPvu is now the voltage at u relative 
to v when current is injected at u, and removed from all other nodes. Since 
resistive networks are linear, we can determine Cuv by super-posing (taking care 
with the sign!) the networks on which CPuv and CPvu are measured. Currents at all 
nodes except u and v cancel, resulting in Cuv being the voltage between u and v 
when Ewev d(w) = 2m amperes are injected into u and removed from v, which 
yields the theorem by Ohm's Law. 0 

Exercise 6.3: Verify all the hitting times claimed in Example 6.1 using the ideas in 
the above proof. 

Exercise 6.4: Consider a random walk on the integer points 1, 2, ... , n, starting at 1. 
If the walk is at 1, it always proceeds to 2 at the next step; when the walk is at a point 
i > 1, it proceeds at the next step to i -1 or to i + 1 with equal probability. Show that 
the expected number of steps that elapse before the walk fi rst reaches n is (n - 1)2. 

Exercise 6.5: Prove Theorem 6.1. Why does the bound of 0 (n2) steps hold only for 
finding some satisfying assignment, rather than the specified assignment A? What 
happens if each clause has 3 literals rather than 2? 

The effective resistance between two nodes u and v is at most the length of 
the shortest path between them in G. This observation yields an alternative 
proof of Lemma 6.5. The length of the shortest path between any two vertices 
of G is at most the diameter of G. We thus have the following corollary, which 
by Example 6.1 is asymptotically tight. 
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Corollary 6.7: In any n-vertex graph. and for all vertices u and v. 

6.5. Cover Times 

We are now ready to prove a classic theorem on the cover time of the simple 
random walk on G. 

Theorem 6.8: C(G) < 2m(n - 1). 

PROOF: Let T be any spanning tree of G. There is a traversal of T, visiting 
vertices Vo, v}, ... ,V2n-2 = Vo that traverses each edge of T exactly once in each 
direction. Further, every vertex of G appears at least once in the sequence 
Vo, v}, ... , V2n-2. Consider a random walk that starts at Vo and terminates upon 
returning to Vo, having visited the vertices v}, V2,." in the order prescribed by 
the traversal. Since this walk has visited every vertex in G, an upper bound on 
the expected length of this walk is an upper bound on CIIQ(G). Now 

2n-3 

Cvo(G) < 2: hVj,Vj+l = 2: Cuw • 

j=O (u,w)eT 

Since the vertices vj. Vj+l are adjacent for all j, we have by Lemma 6.5" that 

Since there are n - 1 edges in T, CIIQ(G) < 2m(n - 1). But this upper bound 
holds no matter which vertex of G we designate to be the starting point Vo in 
the traversal; therefore C(G) ~ 2m(n - 1). 0 

Note that Theorem 6.8 gives (asymptotically) the right answer for the lollipop 
graph: C(Ln ) is 9(n3). On the other hand, it gives the same O{n3) upper bound 
for the complete graph K n, whereas we have already seen (Exercise 6.1) that 
C(Kn) is 9(nlogn). Theorem 6.8 can be slack for some graphs: in the proof, we 
measure the time for the vertices of G be visited in one specific order. In fact, 
we can often refine the upper bound on cover time as follows. 

Let R(G) = maxu,vev Ruv; we call R the resistance of G. The resistance of a 
graph characterizes its cover time fairly tightly: 

Theorem 6.9: mR(G) < C(G) < 2e3mR(G)lnn + n. 

PROOF: The proof of the lower bound follows from the fact that there exist 
vertices u, v such that R(G) = Ruv and max(huv , hvu) ~ Cuv /2; the bound then 
follows from Theorem 6.6. 
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For the upper bound, we will show that the probability that all the vertices 
are not visited within 2e3mR(G)lnn steps is at most I/n2 ; this, together with 
Corollary 6.7 will yield the result. 

Divide the random walk of length 2e3mR( G) In n into In n epochs each of 
length 2e3mR( G). For any vertex v, the hitting time huv is at most 2mR( G), 
regardless of the vertex u at which an epoch starts. By the Markov inequality, 
the probability that v is not visited during any single epoch is at most Ile3• 

Thus, the probability that v is not visited during any of the In n epochs is at 
most I/n3• Summing this probability over the n choices of the vertex v, the 
probability that any vertex is not visited within 2e3mR( G) In n steps is at most 
I/n2• When this happens (there is a vertex that has not been visited within 
2e3mR(G)lnn steps), we continue the walk until all vertices are visited, and 
n3 steps suffice for this (by Corollary 6.7). Thus the expected total time is at 
most 

o 

The bounds in Theorem 6.9 cannot in general be improved; the upper bound 
is tight (within constant factors) for the complete graph (Problem 6.10 below) 
and the lDwer bound is tight for the chain on n vertices. 

There are also graphs for which neither bound of Theorem 6.9 is tight. Note 
that Theorem 6.9 gives an estimate for the cover time that is tight to within a 
factor of log n. This is because effective resistances in a graph (and therefore 
the resistance of the graph, R( G» can be computed efficiently using matrix 
inversions. Note also that neither Theorem 6.8 nor 6.9 is universally superior; 
we have already seen that for the complete graph K n, Theorem 6.8 gives a loose 
upper bound. For the lollipop graph Ln. Theorem 6.9 gives an upper bound of 
O(n3 10g n), which is an overestimate by a factor of log n. 

Often, we are interested not so much in determining the cover time of a single 
graph, as in bounding the cover times of a family of graphs. A simple fact that is 
of great use in bounding effective resistances in electrical networks is following 
Rayleigh's Short-cut Principle,' 

Effective resistance is never raised by lowering the resistance on an edge (e.g., by 
"shorting" two nodes together), and is never lowered by raising the resistance on 
an edge (e.g., by "cutting" it). Similarly, resistance is never lowered by "cutting" a 
node, leaving each incident edge attached to only one of the two resulting halves of 
the node. 

A second useful fact about effective resistances in an electrical network is that 
they obey the triangle inequality. As one very simple application of these facts, 
observe that in a graph with minimum degree d, R ~ lid: short all vertices 
except the one of minimum degree. Another simple application is the following 
lemma. 
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Lemma 6.10: Suppose that g contains p edge-disjoint paths of length at most t 
from s to t. Then. Rst < t /p. 

6.6. Graph Connectivity 

We are now ready for our first algorithmic application of random walks. Two 
vertices in an undirected graph G are said to be connected if there exists a path 
between them. A connected component of G is a (maximal) subset of vertices in 
which every pair of vertices is connected. 

6.6.1. Undirected Graphs 

The undirected s-t connectivity (USTCON) problem is the following: given an 
undirected graph G and two vertices sand t in G, decide whether sand tare 
in the same connected component. The USTCON problem is important in the 
study of space-bounded complexity classes and is a natural abstraction of a 
number of graph search problems. It is easy to see that a standard graph search 
algorithm such as depth-first search solves the problem in O(m) steps. In doing 
so, the algorithm keeps track of all the vertices of G that the search has visited 
and, therefore, uses workspace at least linear in n. 

A probabilistic log-space Turing machine for a language L is a probabilistic 
Turing machine using space O(log n) on instances of size n, and running in time 
polynomial in n. We say that a language (equivalently, a decision probfem) A is 
in RLP if there exists a probabilistic log-space Turing machine M such that on 
any input x, 

{ 
~ 1/2 x E A 

Pr[M accepts xl 0 x ~ A. (6.4) 

Here space O(log n) refers to the workspace of the Turing machine; the input is 
given on a read-only tape, and the only storage available to it with write-access 
is a log-space tape. 

Theorem 6.11: USTeON E RLP. 

PROOF: The log-space probabilistic Turing machine simulates a (simple) random 
walk of length 2n3 through the input graph, starting from s. If it encounters 
the vertex t in the course of this walk, it outputs YES; otherwise it outputs NO. 

Clearly the machine will never output YES on an instance of USTCON in which 
sand t are not in the same connected component. What is the probability that 
it outputs NO when it should have said YES? 

By Theorem 6.6, hst < n3. By the Markov inequality, if t is in the same 
component of G as s, the probability that it is not visited in a random walk of 
2n3 steps starting from s is at most 1/2. The Turing machine uses its workspace 
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to count up to 2n3, and to keep track of its position in the graph during the 
walk; both of these require only space O(log n). 0 

We have thus seen a uniform, randomized algorithm for deciding USTCON 
in log-space and polynomial time. This randomized algorithm can also be 
made deterministic while still using logarithmic space, albeit non-uniformly. We 
consider a specific class of non-uniform, deterministic log-space algorithms for 
USTCON known as universal traversal sequences. We focus on n-vertex graphs 
that are regular of degree d - every vertex has degree d - throughout our 
discussion of universal traversal sequences. Such a graph is said to be labeled 
if, at each vertex in the graph, each of the d edges incident on that vertex 
has a unique (integer) label in {I, .. . ,d}. There is no requirement that an edge 
receive the same label at both end-points. Figure 6.3 gives an example of a 
labeled 3-vertex, 2-regular graph. Note that the edge joining vertices a and b 
has different labels at its end-points. 

Any sequence of symbols (1 = ((11, (12, ... ) from {I, ... , d} together with a 
starting vertex v in a labeled graph describes a walk through the graph in the 
following natural fashion. The walk begins at v, and at its first step walks along 
the edge incident on v whose label is (11. It now arrives at another vertex, say u, 
and leaves by the edge whose label is (12, and so on. For example, in Figure 6.3, 
if the starting vertex were a and (1 were (1,2,1,1,2), the walk would proceed to 
visit the vertices b, a, b, c, a. On the other hand, if the starting vertex were b, the 
same sequence (J visits the vertices c, a, b, c, a. 

Figure 6.3: A labeled 3-vertex, 2-regular graph. 

A sequence (J is said to traverse a labeled graph G if the walk it prescribes 
visits every vertex of G regardless of the starting vertex. The reader may verify 
that the sequence (1,2,2) traverses the labeled graph in Figure 6.3, and that no 
shorter sequence does so. A sequence (1 is said to be universal traversal sequence 
for a class of labeled graphs if it traverses every labeled graph in the class. By 
this we mean every labeling of every graph in the class, and for every starting 
vertex. 

A universal traversal sequence whose length is polynomial in n can be used 
by a deterministic log-space Turing machine to decide instances of USTCON of 
size n as follows. The sequence is stored in the finite-state control of the Turing 
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machine and is used to traverse G starting from s on an instance of USTCON. 
(However, in order for it to be a uniform log-space algorithm, the universal 
traversal sequence should be constructible by the log-space Turing machine, 
rather than be encoded in the machine's finite-state control.) 

Let 9 be a family of connected labeled d-regular graphs on n vertices. Each 
member of each graph counts as a distinct member of 9. Let U(9) denote the 
length of the shortest universal traversal sequence for all the labeled graphs in 
9. Let R(9) denote the maximum resistance between any pair of vertices in any 
graph in 9. 

Theorem 6.12: U(9) ~ SmR(9) log2(nI91). 

PROOF: Given a labeled graph G E 9, let v be a vertex of G. Consider a random 
walk of length SmR(9) log2(nI91), divided into log2(nl91) "epochs" each of length 
SmR(Q). The probability that the walk fails to visit v in any epoch is at most 
2/S by Theorem 6.6 and Markov's inequality, regardless of the vertex of G at 
which the epoch began. The probability that v is not visited during any of the 
log2(nl91) epochs is thus at most (nI91)-c for a value of c > 1. Summing this 
probability over all n choices of the vertex v and all 191 choices of the labeled 
graph G, the probability that the random walk (sequence) fails to be universal 
is less than one. Thus there is a sequence of this length that is universal for the 
class 9. 0 

The constant S in Theorem 6.12 can be improved slightly. Let U(d, n) denote 
the length of the shortest universal traversal sequence for connected, .labeled, 
n-vertex, d-regular graphs. 

Exercise 6.6: Show that the number of labeled n-vertex graphs that are d-regular is 
(nd)O(nd). 

Putting together Theorem 6.12 and the result of Exercise 6.6, we have: 

Corollary 6.13: U(d,n) = O(n3dlogn). 

PROOF: The diameter of every connected n-vertex, d-regular graph is O(n/d) 
and so, therefore, is its resistance. The number of edges m = nd/2. 

The result now follows from Exercise 6.6 and Theorem 6.12. 0 

This suggests that there is a deterministic log-space Turing machine that 
decides USTCON on n-vertex, d-regular graphs. Unfortunately, all we have 
given here is a proof (by the probabilistic method) that such a universal traversal 
sequence exists, and thus a non-uniform deterministic log-space machine. We 
do not know how to construct such a sequence by a deterministic log-space 
machine; in fact, we do not in general know how to do this even with a 
polynomial-time machine. 
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6.6.2. Directed Graphs 

Are the techniques of Section 6.6.1 applicable to s-t connectivity (STCON) in 
directed graphs? There is certainly no immediate way of using the results on 
random walks, since the cover time of the random walk may no longer be finite. 
For instance, a directed graph may contain vertices with no outgoing edges, so 
that a random walk may get trapped at such a vertex. What if we were to 
perform a random walk from the vertex s, and to jump back to s whenever we 
are stuck at such a vertex? We will use a variant of this idea to give a Monte 
Carlo algorithm that decides s-t connectivity in directed graphs using space 
O(log n). The running time of this algorithm may be large - its expectation may 
be of the order of nn. The algorithm has one-sided error: whenever it terminates 
and outputs YES, it is correct, but when it outputs NO, it is wrong with some 
probability. 

As before, let the edges leaving a vertex v be labeled 1,2, ... , d(v). Thus any 
path in the graph can be associated with a string whose symbols are drawn 
from {I, 2, ... , n - I}, as in our discussion of universal traversal sequences. If 
we could begin at s and enumerate the walks corresponding to all such strings 
of length n - 1, we would be assured of discovering a path from s to t if one 
existed. The number of such strings being of the order of nn, we would require 
Q(n log n) space to maintain a counter that could index these strings. Since we 
only wish to use O(log n) space, we use randomization to achieve this reduction 
in space. 

The algorithm consists of repeatedly executing the following two steps until 
either step results in termination. 

1. Starting at s, simulate a random walk of n -1 steps. Each step consists of choosing 
an edge leaving the current vertex uniformly at random. If t is reached, output 
YES and stop. If the walk reaches a vertex with no outgoing edge, or a vertex 
other than t after n - 1 steps, return to s. This step can be implemented using 
O(log n) bits of memory. 

2. Flip log nn unbiased coins. If they all come up HEADS, halt and output NO. This 
can be implemented by a counter that keeps track of the number of coins that 
have been flipped. The number of bits required in this counter is log(log nn), 
which is O(logn), as required. 

We wish to bound the probability of terminating and erroneously outputting NO 

when in fact there is a path from s to t. Since the number of distinct walks from 
s is at most nn, the probability of discovering an s-t path on a trial (in Step 1) is 
at least n-n. The probability of terminating in Step 2 on a trial is the probability 
that all the coins come up HEADS, and this is n-n. Thus on each trial, the 
algorithm terminates successfully with probability at least n-n, and erroneously 
with probability at most (l - n-n)n-n < n-n. Let pw denote the probability of 
outputting YES on termination; then we have 

Pw > n-n + (l - 2n-n)pw, 
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where the first term on the right-hand side denotes the probability of succeeding 
on the very first trial, while the second term denotes success thereafter. Solving, 
we have Pw > 1/2. 

Theorem 6.14: The above algorithm will, given an instance of STCON, 

1. Always output NO if there is no path from s to t. 

2. Output YES with probability at least 1/2 if there is a path from s to t. 

The algorithm uses space O(log n). 

Exercise 6.7: Derive a bound on the expected running time of the above algorithm. 

6.7. Expanders and Rapidly Mixing Random Walks 

In previous sections of this chapter, we have focused on the expected lengths of 
random walks. In this section, we study a different aspect of random walks. We 
know by Theorem 6.2 that the probability vector of the random walk eventually 
converges to the stationary distribution whenever one exists. We now study the 
rate at which the probability vector approaches this stationary distribution. This 
study will yield useful applications here and in Chapter 11. 

In particular, we will focus our attention on random walks on a special class 
of graphs called expanders. An expander (see also Section 5.3) is a graph in 
which the neighborhood of any set of vertices S is large relative to the size of 
S. Since the expansion property cannot be destroyed by the addition of edges 
to the graph, a complete graph is the best possible expander. However, in most 
applications we require sparse expander graphs; ideally, the graph should have 
a linear number of edges, and in fact be of bounded degree. Henceforth, we 
will use the term expander to refer to bounded-degree graphs with the desired 
expansion properties; a formal definition appears below in Section 6.7.1. 

In Section 5.3 we saw that a sparse random graph is quite likely to be 
an expanding graph. We also noted there that giving an explicit construc
tion of an expander is a much harder problem. That this is a non-trivial 
task is supported by the fact that the problem of deciding whether a graph 
is an expander is known to be co-NP-complete. The bottleneck appears to 
be that we need to verify the expansion of an exponentially large number of 
subsets of vertices. Happily for us, there exists a partial characterization of 
expanders using the machinery of algebraic graph theory. The power of these 
algebraic methods lies in their ability to simultaneously describe the proper
ties of all possible subsets of vertices, although some precision is lost in the 
process. This leads to a proof that certain explicitly specified graphs are ex
panders. 
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After studying this algebraic characterization, we turn to random walks on 
expanders. An important property of random walks on expanders is that they 
are rapidly mixing: the corresponding Markov chain will quickly converge to its 
stationary distribution regardless of the starting state. The major result of this 
section determines just how quickly this convergence occurs. 

6.7.1. Expanders and Eigenvalues 

This section assumes knowledge of elementary linear algebra, and the reader 
may wish to review the material in Appendix B before proceeding further. Recall 
that in a multigraph there can be more than one undirected edge between any 
pair of vertices. The discussion in this section is more easily stated in terms 
of multigraphs, and we allow all graphs under consideration to have multiple 
edges. A multigraph may also have self-loops at vertices. 

Consider an undirected (multi)graph G(V, E) with n vertices. The adjacency 
matrix A(G) of G is the n x n symmetric matrix where Aij = Aji is the number 
of edges between the vertices Vi and Vj. When G is bipartite, we assume that it 
has two independent sets of vertices X = {vt. ... ,Vn/2} and Y = {vn/2+t. ... ,vn }. 

Observe that in this case the adjacency matrix can be decomposed into four 
blocks of equal size as shown below, where 0 denotes the all-zeros matrix and 
B encoqes the edges between X and Y. 

A(G) = [:T ~]. 
Since A(G) is symmetric, even if the eigenvalues Al > A2 > ... > An are not 
necessarily all distinct, we can fix corresponding eigenvectors el, ... , en that form 
an orthonormal basis. 

We state without proof the following basic result from algebraic graph theory; 
pointers may be found in the Notes section; the reader is asked to verify some 
parts of this theorem in Problems 6.20-6.23. 

Theorem 6.15 (Fundamental Theorem of Algebraic Graph Theory): Let G(V,E) 
be an n-vertex, undirected (multi )graph with maximum degree d. Then, under the 
canonical labeling of eigenvalues Ai and orthonormal eigenvectors ei for the matrix 
A(G), 

1. If G is connected, then A2 < AI. 

2. For 1 ~ i ~ n, IAil ~ d. 

3. d is an eigenvalue if and only if G is regular. 

4. If G is d-regular, then the eigenvalue Al = d has the eigenvector el = 7n 
(1,1,1, ... ,1). 

5. The graph G is bipartite if and only if for every eigenvalue A there is an 
eigenvalue -A of the same mUltiplicity. 

6. Suppose that G is connected. Then, G is bipartite if and only if -AI is an 
eigenvalue. 
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7. If G is d-regular and bipartite. An = -d and en = 7n (1, ... , 1, -1, ... , -1) (the 
last nl2 entries in en are -1). 

If G consists of more than one connected component, Theorem 6.15 can be 
applied independently to each connected component. For convenience, in the 
sequel we will restrict our attention to studying the eigenvalue properties only 
for graphs that are connected, bipartite, and regular. For a d-regular graph G, 
A(G) is a symmetric matrix with all row and column sums equal to d. 

What does all this have to do with expanders? Consider the algebraic 
characterization of connectedness in terms of a separation between the first and 
the second eigenvalues. Note also that a graph is connected if and only if 
every set of vertices S has at least one neighbor outside of S. We can view the 
expansion property as a stronger version of this connectivity condition. Might it 
not be the case that the property of being an expander is equivalent to having a 
strong separation between these two eigenvalues? It turns out that this is close 
to the truth. But first we formally define an expander; while the usual definition 
of an expander requires a graph of maximum degree d, we prefer to work with 
d-regular graphs. 

~ Definition 6.13: An (n,d,c)-expander is a d-regular bipartite (multi)graph 
G(X, Y,E) with IXI = IYI = nl2 such that for any S eX, 

As we remarked above, it will be convenient to assume that any expander 
under consideration is connected. In most applications, it is desirable to have d 
as small as possible and c as large as possible. In particular, we would like d 
to be bounded and c to be a constant greater than O. Much as in Section 5.3, 
it is possible to give a probabilistic proof of existence of expanders for suitable 
values of n, d, and c by showing that a random graph chosen from an appropriate 
probability space is likely to be an expander. Several explicit constructions of 
such expanders are also known, but we describe only the so-called Gabber-Galil 
expanders. 

For a positive integer m, let n = 2m2• Each vertex in X is given a distinct label 
consisting of a pair (a, b) for a, b E Zm; the vertices in Yare labeled similarly. 
A vertex labeled (x, y) in X has edges going to the vertices in Y whose labels 
are: (x,y), (x,x + y), (x,x + y + 1), (x + y,y), and (x + y + l,y). The addition 
is done modulo m. Each of these linear functions is a permutation and defines 
a perfect matching between X and Y. The graph is 5-regular, and it can be 
shown that the expansion factor for this graph is (X = (2 - .j3)/4, giving us a 
family of (n, 5, (X)-expanders. We can obtain (n, 7, 2(X)-expanders using instead the 
following seven linear functions modulo m: (x,y), (x,2x + y), (x,2x + y + 1), 
(x,2x + y + 2), (x + 2y,y), (x + 2y + l,y), and (x + 2y + 2,y). The proof of the 
expansion property is beyond the scope of this book. Note that both graphs 
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have multiple edges but these could be removed without affecting the expansion 
properties. 

Usually, explicit construction of expanders such as these is required to specify 
an (n,d,c)-expander family. This means that the construction must provide an 
infinite sequence of graphs GI , G2, ... , such that the number of vertices in these 
graphs forms a strictly increasing sequence. Since the choice of the number m is 
arbitrary, the Gabber-Galil expander definition is easily seen to specify such a 
family of graphs. 

As we saw in Section 5.3.1, in some applications we have to use expanders 
with a super-polynomial number of vertices. This presents problems when 
we are trying to perform some polynomial-time computation based on the 
structure of such graphs. However, we do not need to explicitly represent 
the Gabber-Galil expanders. It is easy to see that there is a polynomial-time 
neighborhood algorithm that can compute the neighbors of any given vertex 
in R; we can implicitly represent the graph by means of this neighborhood 
algorithm. 

Finally, we note the following theorems, which make explicit the connection 
between the expansion properties of graphs and their eigenvalues. A pointer 
to their proofs is given in the Notes section. The proofs of these theorems are 
somewhat complicated and involve numerous calculations and estimates, but 
below we derive a closely related result (Theorem 6.19) that captures much of 
the intuition behind their proofs. 

Theorem 6.16: IfG is an (n,d,c)-expander, then A(G) has 

c2 
IA21 < d - 1024 + 2c2 • 

Theorem 6.17: If A(G) has IA21 < d - E, then G is an (n,d,c)-expander with 

2dE - E2 
C > d2 

Since the largest eigenvalue Al is exactly d, this gives a (partial) characterization 
of the expansion factor c in terms of the gap between the absolute values of the 
first and second eigenvalues. 

Exercise 6.8: Given an (n,d, c)-expander, Theorem 6.16 yields a bound on A2 ; if we 
were now to use this bound on A2 in Theorem 6.17, what bound on c do we obtain 
and how does it compare with the value c that we started with? 

Note that we are assuming that the expanders are connected; otherwise, 
A2 = Al and we will have to use the eigenvalue of the second-largest absolute 
value to play the role of A2. It should be easy to see that relaxing this 
assumption makes no essential difference to the following discussion, but does 
make the notation more cumbersome. 
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We now give a result related to Theorems 6.16 and 6.17 to motivate the 
intuition behind these theorems. For a d-regular graph G = (V, E), define 

r (G) . le(X, V\X)I 
sp It = ~~v IXIIV\XI ' 

where e(A, B) denotes the multiset of edges of G between subsets of vertices 
A, B. We now relate split( G) to A,2, the second eigenvalue of the adjacency matrix 
A(G) of G. First, we give a technical lemma concerning A,2' 

Lemma 6.18: 

A.2 = max{2 L XiXj}, 

(i,j)eE 

where the max is taken over vectors x such that Ilxll = 1 and ~7-I Xi = 0: 

The proof of Lemma 6.18 follows from the Courant-Fisher equalities established 
in Problem 6.19. 

Theorem 6.19: If G is d-regular. then 

d - A.2 
split(G) > --. 

n 

PROOF: Let We V and I WI = k. Define the vector x by 

{ 
N- ifiE W; 

Xi = -J n(n"-k) if i ~ W. 

Then e[ x = 0 and IIxll = 1. By Lemma 6.18, 

A.2 ~ 2 L XiXj = d - L (Xi - Xj)2 

(i.j)eE (i.j)eE 

- d -le(W, V\W)I (In ,,/ + J n(n k k»), 

_ d _ n le(W, V\W)I 
k(n - k) . 

The result now follows from the definition of split( G). 

Corollary 6.20: If G is d-regular then for any W c v. 
I W U r(W)1 ~ [1 + (1 - A.21d)/2] I WI. 

(6.5) 

(6.6) 

(6.7) 

o 

In the applications of expanders discussed here, we are primarily concerned 
with the eigenvalue separation for the adjacency matrix and we do not explicitly 
employ the expansion property itself. In fact, we could very well have defined 
expanders in terms of the eigenvalue separation, but the expansion property 
does serve to provide some intuition behind the algebraic machinery. 

147 



MARKOV CHAINS AND RANDOM WALKS 

6.7.2. Random Walks on Expanders 

Consider the simple random walk on an (n,d,c)-expander G. Since we permit 
multi graphs in the definition of expanders, it is necessary to generalize the 
definition of the random walk, as follows: at each step, the random walk 
proceeds along a randomly chosen edge among those incident on the current 
vertex v; thus, if there are k edges from v to w, then the probability that 
the random walk goes from v to w is k/d(v). For an (n,d,c)-expander G, 
this corresponds to a Markov chain with the probability transition matrix 
P = A(G)/d. 

Simple algebra shows that the eigenvalues of P are given by A;/ d, and 
the corresponding eigenvectors remain unchanged. Notice that now all the 
eigenvalues lie between 1 and -1, and the gap between the first and second 
eigenvalue is reduced by a factor of d. A technical problem is that the random 
walk on such a bipartite graph results in a periodic Markov chain. We use a 
standard trick to get around this problem: reduce all transition probabilities by 
a factor of 2, and add a self-loop of probability 1/2 at each vertex. Observe 
that the new Markov chain still has G as its underlying graph, but the transition 
probability matrix Q = (I + P)/2 now has a stationary distribution. 

Let the eigenvalues of Q be A~, ... , A~. Since the identity matrix has all its 
eigenvalues equal to 1, it can be verified (see Problem 6.26) that the eigenvalues 
of Q are given by 

,~ = (1 + A;/d) 
1\.. 2. 

Thus, 1 = A~ > A2 > ... > A~ = 0 and, assuming that A2 = d - E, we have that 
A2 = 1 - E /2d. The eigenvectors of Q can be chosen to form an orthonormal 
basis since it is a symmetric matrix. In fact, the first eigenvector e~ is the same 
as that of A, i.e., -}n(1, 1, 1, ... ,1). 

Exercise 6.9: Verify that Q is a doubly stochastic matrix. Using the result from 
Problem 6.6. conclude that for the transition matrix Q. the stationary distribution is 
necessarily the uniform distribution. 

We show that the Markov chain defined by Q is "rapidly mixing" in the 
following sense. Starting from any initial distribution, the Markov chain con
verges to its stationary distribution in a small number of steps. To make this 
notion more precise, we first define measure of convergence to the stationary 
distribution. 

~ Definition 6.14: Let q(t) denote the state probability vector of a Marko'· chain 
defined by Q at time t > 0, given any initial distribution q(O). Let 1t denote the 
stationary distribution of Q. The relative pointwise distance (r.p.d.) of the Markov 
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chain at time t is a measure of deviation from the limit and is defined as 

I (t) I 
L\(t) = max qi - 1ti 

i 1ti 

Intuitively, the change in L\ with t measures the rate of convergence to the 
stationary distribution, independent of the choice of the initial distribution 
q(O). There are several types of distance functions defined in the literature for 
measuring the difference between two probability distributions; in Problem 6.24, 
we explore the connections between the relative pairwise distance and these 
other measures. 

The next theorem shows that the relative pointwise distance for the random 
walk on an expander converges to zero at an exponential rate. 

Theorem 6.21: Let Q be the transition matrix of the aperiodic random walk on 
a (n,d,c)-expander G with 22 < d - E. Then, for any initial distribution q(O), the 
relative pointwise distance is bounded as follows: 

PROOF: We know that the distribution of the Markov chain at time t is given 
by the following equation: 

(6.8) 

Now the eigenvectors of Q are chosen to form an orthonormal basis for R.n. 
This implies that we can write q(O) as a linear combination of those vectors, as 
follows: 

n 

q(O) = LCiei. 
i",,1 

Combining (6.8) and (6.9), we obtain 

n n 

q(t) = L CieiQt = L Ci(2;Yei. 
i-I i=1 

(6.9) 

Let £ c R.n be the vector space spanned by the first eigenvector el. This 
space contains all scalar multiples of the all-ones vector; the orthogonal space 
£1. contains all linear combinations of the remaining n - 1 eigenvectors. Then 
q(O) = x+ y for some x E £ and y E £1.; in fact, x = CI el and y = E7=2 Ciei. Since 
x and yare orthogonal, the Pythagoras Inequality (Proposition B.8) implies that 
Ilxll < Ilq(O)11 and Ilyll < Ilq(O)II. 

Since 2; = 1, xQ = x and we can write 

n 

q(t) = q(O)Qt = (x + y)Qt = x + L ci(2;Yei. 
i=2 
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We now obtain the following bounds on the LI-norm of q(t) - x. 

Ilq(t) - xiiI < ynllq(t) - xii 
n 

- ynll L Ci(2deill 
i=2 

n 

- yn L cf(2i)2t 
i=2 

n 

< yn L cf(22)2t 
i=2 

< ~():2)' ~ t,ci 
< yn(22)tIIYII 

< yn(22)tllq(O)II. 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

( 6.15) 

(6.16) 

The inequality (6.13) relies on the fact that 22 has the second largest absolute 
value; the inequality (6.15) follows from the fact that y = E7=2 Ciei; the in
equality (6.16) is a consequence of the Pythagoras Inequality. Since q(O) is a 
probability distribution, its components are all non-negative and sum to 1; thus, 
by Proposition B.10, Ilq(O)11 ~ Ilq(O)lh = 1. We obtain that 

Ilq(t) - xlh < .In(2;Y, 

By Problem 6.6 we know that for any doubly stochastic matrix, the stationary 
distribution n must be uniform. Since 22 < 1, we know that as t increases, 
Ilq(t) - xii goes to 0 and q(t) converges to x. We conclude that x = n, and that 

Ilq(t) -nih < .In(22Y, 

The relative pointwise distance can now be bounded as follows. 

I (t) -1t°1 
L\(t) - max qi I 

1ti 

- n x m~x Iq~t) -1til 
I 

< n x Ilq(t) -nill 

~ n x yn(22)t 

- n1.5(22)t. 

0 

Exercise 6.10: For any 0 < 6 < 1, let T(6) denote the time at which the relative 
pointwise distance of the random walk defined by Q first falls below 6. Show that 

T(6) logn
10S

j6 
!5; I JI' - og.ll2 
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By this exercise, to get a relative pointwise distance that is bounded from 
above by an inverse polynomial in n, it suffices to run the random walk for only 
a logarithmic number of steps. Notice that this is the best possible bound since 
the length of the random walk must be at least the diameter of the expander. 
Since our expander has bounded degree, it has diameter O(log n). 

6.8. Probability Amplification by Random Walks on Expanders 

Recall the 2-point sampling scheme of Section 3.4. Given an RP algorithm, 
which uses n random bits to obtain a probability of error 1/2, this scheme 
reduced the probability of error to O{l/t) while using only 2n random bits 
and t trials of the algorithm. Even using k-point sampling for k > 2; there 
is no hope of achieving a probability of error that is exponentially small in 
the number of trials, without using a significantly larger number of random 
bits. Also, in Section 5.3 we saw that expander-type graphs could be used 
to achieve a stronger probability amplification, but several important issues 
remained unresolved in that discussion and in any case that scheme did not 
provide the desired exponentially small error probability with a small number. 
of random bits. Here we present a related technique that achieves the desired 
exponential behavior, even in the case of BPP algorithms, and without any of 
the drawbacks of the earlier scheme based on expanders. The version of this 
technique that establishes the same result for RP algorithms is slightly easier to 
analyze (see Problem 6.29). 

Without loss of generality, we modify the standard definition of BPP such 
that the probability of error is 1/100; clearly, this can be achieved via 0(1) 
independent iterations of an algorithm meeting only the standard definition. 

~ Definition 6.15: The class BPP consists of all languages L that have a random
ized polynomial-time algorithm A such that for any x E 1:-, given a suitably long 
random string r, 

• x E L => Pr[A(x,r) rejects] < r/x; . 
• x ~ L => Pr[A(x,r) accepts] s; r/x;. 

Fix an input x, and consider a BPP algorithm A that uses n random bits on 
inputs of length Ixl. Suppose we choose k independent n-bit random strings r}, 
... , rk, and compute A(x, rl), ... , A(x, rk). By the Chernoff bound, the probability 
that the majority of these outputs is incorrect is 1/20(k). Thus, we have made the 
error probability exponentially small in k using nk random bits. The probability 
amplification problem is that of achieving this error probability while using the 
minimum possible number of random bits. What is the minimum number of 
random bits required for the exponentially small error probability of 1/2k? 

Consider forming a crude estimate as follows. Imagine that a single execution 
of the algorithm consumes n random bits and delivers one bit as the result of 
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execution (i.e., a decision on the membership of x in L); it appears plausible 
that n - 1 random bits remain available for future executions of the algorithm. 
Intuitively then, we should not have to use more than n + k - 1 random bits for 
k repeated executions of the algorithm. The following scheme comes very close 
to realizing this intuition, using as it does n + O(k) bits. 

Consider the (N, 7, 2cx)-expander family described in Section 6.7.1. We assume 
that n is odd; otherwise we can increase by one the number of random bits 
used by A by throwing in a dummy random bit. Choose m = 2(n-I)/2 and 
N = 2m2 = 2n, and label each vertex with a distinct sequence of bits from {O, 1}n. 
Let A be the adjacency matrix of the resulting expander. Let Q = (I + A/7)/2 
be the probability transition matrix of the ergodic Markov chain obtained by 
performing a random walk on this graph, with a self-loop of probability 1/2 
at each vertex. We assume that the random walk starts at a uniformly chosen 
initial vertex. Denote by Xo, X}, ... the states of the resulting Markov chain. 
Note that each Xi corresponds to a particular setting of the random bits used 
byA 

Choose a positive integer p such that Ag < 1/10, where Ai is the ith largest 
eigenvalue of Q. Since the graph is an expander, A2 is bounded away from 1 
and we are guaranteed that a value of p that is 0(1) will suffice. 

Given the output from the random walk process described above, the prob
ability amplification scheme works as follows. For 0 < i < 7k, let ri = XiP. 
Run the- algorithm A(x,·) using these 7k different choices of random inputs. 
Declare the majority of these 7k YES/NO decisions to be the final decision; 
for convenience, we assume that k is odd. We will show that the resulting 
decision is wrong with probability at most 1/2k. Note that the total num
ber of random bits used is n + O(k): we need n bits to choose the starting 
vertex of the random walk, and 4 bits for each of the 7kP subsequent steps 
of the random walk. Also, the locally defined neighborhood structure of the 
Gabber-Galil expander has the crucial advantage that we do not need to ex
plicitly construct the entire graph, whose size is exponential in n (the number 
of random bits given to A). In particular, given the index for any vertex in the 
expander, it is possible to compute the indices of the neighboring vertices in 
time polynomial in the length of the index, i.e., n. This suffices for the purposes 
of obtaining a polynomial time implementation of each step of the random 
walk. 

The intuition behind this scheme is as follows. We know that the random 
walk on an expander is rapidly mixing. In other words, given any starting vertex, 
after a small number of steps we expect the random walk to be at a uniformly 
distributed vertex independent of the choice of the initial vertex. We can view 
the above process as using the composition of 7k different random walks, each 
generating a different random string rio The catch here is that each of these 
smaller random walks has length p = 0(1), whereas we would require E>(logN) 
steps to get close to the stationary distribution. On the other hand, we choose 
the initial vertex according to the stationary distribution, and this should work 
in our favor. 
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Let us denote the probability distribution vector for ri = X ill as p(i). Define 
B = QIl; this is the transition matrix for the Markov chain corresponding to the 
sequence of r;'s. We have that p(i) = p(O) B i

, where p(O) is the uniform distribution 
that we start with. 

Let W denote the set of witnesses for the input x. In other words, W = {r E 

{0,1}n I A(x,r) is correct}. We are guaranteed that IWI > 0.99N. The set of 
non-witnesses has cardinality IWI < 0.01N. We define the 0-1 N x N diagonal 
matrix W such that Wii = 1 if and only if the ith vertex corresponds to a string 
that is a witness for x; similatly, the 0-1 N x N diagonal matrix W = 1- W. 
The reader is invited to verify that I Iii) W III and I Iii) W III are the probabilities 
that ri is a witness or a non-witness, respectively. This is because the linear 
transformation W zeros out the entries corresponding to the non-witnesses, 
leaving the others untouched; the transformation W does the converse .. 

Consider the sequence of strings r}, ... , r7k- Let the event sequence of matrices 
S = (S}, ... ,S7k) E {W, Wpk be such that Si = W if and only if ri E W. Thus, 
S encodes the pattern of errors in the various executions of the algorithm. The 
following lemma is a direct consequence of these definitions_ 

Lemma 6.22: For any fixed event sequence S. 

The proof of the next lemma is deferred for the moment. 

Lemma 6.23: For all vectors p E RN. 

1. IlpBWl1 S; Ilpll. 

2. IlpBWl1 s; !llpll. 

We now prove that this probability amplification scheme gives the desired 
error probability, and then we complete the analysis by giving the proof of 
Lemma 6.23. 

Theorem 6.24: The probability that the majority of the outputs A(x, rl). . ... 
A(x,r7k) is incorrect is at most 1/2k. 

PROOF: Note that the majority of the outputs is incorrect only if the event 
sequence S has more than half of its elements equal to W. Fix any particular 
S whose elements contain a majority of W's, say K > 7k/2 of them. By 
Lemma 6.22, 

Pr[S occurs] - I Ip(O) (BSI )(BS2) ... (BS7k-1 )(BS7k)111 (6.17) 

< JNllp(O)(BSd(BS2)'" (BS7k-d(BS7k) I I (6.18) 
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< .jN (~) I( IIp(O)11 (6.19) 

< 
( ) 7k/2 .jN ~ IIp(O) II, (6.20) 

where the inequality (6.19) follows from a repeated application of Lemma 6.23. 
Since we chose iO) to be uniform on the N vertices, it is clear that its L2 norm 
is exactly 1/.JN. Finally, using the overestimate that the number of sequences 
S with a majority of W's is at most 27k , we obtain 

(
1 )7k/2 

Pr[Majority vote is incorrect] < 27k.jN"5 IIp(O) II 

o 

We complete the analysis by giving the proof of Lemma 6.23. 

Proof o( Lemma 6.23: Recall that the eigenvalues of Q are all in the interval 
[0,1] with Al = 1 and Ag < 1/10. Let e}, ... , eN be an orthonormal set of 
eigenvectors corresponding to these eigenvalues. The vector p can be expressed as 

a linear combination of the eigenvectors, say E~I Cjej; further, Ilpll = JE~I cr 

To prove the first part of the lemma, note that IlpBWl1 < IlpBII. This 
is because the diagonal matrix W only has 1 's on its diagonal, and this can 
zero out only some of the components of the vector pB, thereby decreasing its 
Lrnorm. Moreover, pB = E~I cjejB = E~I cjAf ej. We thus have 

N 

IlpBWl1 < IlpB11 = II L cjAf edl = 
j-I 

The last inequality makes use of the fact that each Aj lies in [0,1]. Since the last 
expression is Ilpll, we obtain the desired result. 

Consider now the second part of the lemma. Let us decompose p = x + y, 
where x = clel and y = E~2 Cjej. By the Pythagoras Inequality (Proposition B.8), 
Ilxll < Ilpll and Ilyll ~ Ilpll· We first derive independent inequalities for x and y. 

Observe that xB = cleIB = cIAleI = x, since Al = 1. We claim that 
IlxW11 < Ilxll/lO. Recall that W is a 0-1 diagonal matrix, where the fraction 
of non-zero entries on its diagonal is no more than 1/100. Therefore, it zeros 
out all but a 1/100 fraction of the entries in x. Moreover, x is a scalar multiple 
of the all-ones vector, and so all its components are equal. Reducing all but 
a 1/100 fraction of its components to 0 will reduce its Lrnorm by a factor of 
.J100. Thus, IlxBWl1 = IlxW11 < Ilxli/lO. 
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6.8 PROBABILITY AMPLIFICATION BY RANDOM WALKS ON EXPANDERS 

A similar inequality can be obtained for y as follows. Observe that yB = 

Ef':.2 cjejB = Ef':.2·CjAf ej. It is also clear that IlyBWl1 < IlyB11 since W is only 
zeroing out some entries in the vector yB. Since A~ ~ 1/10 corresponds to the 
second largest eigenvalue, 

IlyBWIl < tciAi",; Ag~ tci,; 1~11Y11. 
Using the triangle inequality, we obtain that 

IlpBWl1 < IlxBWl1 + IlyBWl1 ~ 1~ (1Ixii + Ilyll). 

Finally, applying inequalities Ilxll < Ilpll and Ilyll < Ilpll, we obtain the desired 
bound. 

Notes 

Aldous [13] is a comprehensive source for random walks on graphs, as well as some 
advanced algorithmic applications that are beyond the scope of this book. The 2-
SAT algorithm of Section 6.1 is due to Papadimitriou [325]. McDiarmid [303] has 
independently given a number of applications of this technique to coloring the vertices 
of a hypergraph. An excellent source for basic Markov chain theory is the book 
by Kemeny, Snell, and Knapp [253]. The relationship of random walks to electrical 
networks has been known for over a century. Doyle and Snell [130] demonstrate many 
interesting relations between random walks in graphs and electrical networks. Their 
work deals with finite as well as infinite graphs and highlights many tools from electrical 
network analysis that are useful in the study of random walks. Theorem 6.6 is due to 
Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Tetali [396] gives an interesting 
refinement and generalization of Theorem 6.6. The Short-cut Principle is due to Rayleigh 
and is described in [130, 301]. 

Theorem 6.8 is due to Aleliunas, Karp, Lipton, Lovasz, and Rackoff [15] and builds 
on work of Gobel and Jagers [168]. A version of Theorem 6.12 is derived in [15]; our 
presentation follows Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Our proof 
of Theorem 6.9 is also taken from [89], although in fact a stronger version of Theorem 6.9 
appears earlier in work of Matthews [296, 297]. Matthews gives an elegant approach 
to proving upper and lower bounds on cover times in terms of hitting times (this is the 
subject of Problem 6.9). Broder and Karlin [85] give a number of relations between 
the cover time of a graph and the second-largest eigenvalue of its adjacency matrix. 
Undirected s-t connectivity is a natural abstraction of many graph search procedures; 
in addition, it has applications to complexity theory [276]. Borodin, Cook, Dymond, 
Ruzzo, and Tompa [74] have given a Las Vegas algorithm for USTCON whose running 
time is polynomial in n. The idea of using a probabilistic counter for a space-efficient 
algorithm for directed s-t connectivity is due to Gill [166]. The reader may refer to the 
paper by Borodin, Ruzzo, and Tompa [78] for further material on universal traversal 
sequences. 

The books by Biggs [60] and Cvetkovic, Doob, and Sachs [117] provide comprehensive 
treatments of algebraic graph theory. The article by Bien [59] surveys the definitions, 
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properties, and explicit construction of expanders, as well as many other related classes 
types of graphs such as magnifiers. The co-NP-completeness of the problem of verifying 
the expansion property in graphs is due to Blum, Karp, Vornberger, Papadimitriou, and 
Yannakakis [67]. The explicit expanders introduced in Section 6.7.1 are due to Gabber 
and Galil [158]. Theorems 6.16 and 6.17 are due to Alon [17] and are extensions of the 
earlier work of Tanner [389] and Alon and Milman [23]. Theorem 6.19 is due to Donath 
and Hoffman [128], and Corollary 6.20 due to Alon and Milman [23]. The rapid mixing 
property of random walks was first exploited by Ajtai, Komlos, and Szemeredi [9] in 
a complexity-theoretic setting. The result on probability amplification is due to Cohen 
and Wigderson [108], and independently due to Impagliazzo and Zuckerman [205]. 
The former paper is also a good source for the known results on expanders and their 
applications. Gillman [167] bounds the probability that in a random walk on an 
expander, the frequency of visits to any subset of vertices deviates substantially from the 
sum of the stationary probabilities of those vertices. Dinwoodie [126] provides further 
results along these lines. 

Problems 

6.1 Consider a random walk on the infinite line. At each step, the position of the 
particle is one of the integer pOints. At the next step, it moves to one of the 
two neighboring points equiprobably. Show that the expected distance of the 
particle from the origin after n steps is 0(Jil). 

6.2 Consider the randomized algorithm for 2-SAT discussed in Section 6.1. Show 
that the analysis is tight, in that there exist satisfiable 2-SAT formulas with n 
variables such that the expected time for this algorithm to find a satisfying 
truth assignment is Q(n2). 

6.3 Consider a 1-dimensional random walk with a reflecting barrier, which is 
defined as follows. For each natural number i, there is a state i. At state 0, 
with probability 1 the walk will move to state 1. At every other state i > 0, 
the walk will move to state i + 1 with probability p and to state i - 1 with 
probability 1 - p. Prove the following for the resulting Markov chain: 

Ja) For p > ~, each state is transient. 

(b) For p = ~, each state is null persistent. 

(c) For p < ~, each state is non-null persistent. 

6.4 Consider a Markov chain with the states 0, 1, ... , N. This Markov chain 
induces a sequence of random variables Xo, Xl, ... , each of which takes an 
integer value between 0 and N, i.e. Xt is the state at time t. Suppose this 
sequence of random variables forms a martingale. 

(a) A state q is said to be an absorbing state if the transition probability 
Pqq = 1. Identify all the absorbing states and the transient states of this 
Markov chain. 

(b) Given that the initial state of this Markov chain is i, compute the probability 
of being absorbed into each of the absorbing states. 
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6.5 (Due to C.J.H. McDiarmid [303J.) Let G be a 3-colorable graph. Consider 
the following algorithm for coloring the vertices of G with 2 colors so that 
no triangle of G is monochromatic. The algorithm begins with an arbitrary 
2-coloring of G. While there is a monochromatic triangle in G, it chooses 
one such triangle, and changes the color of a randomly chosen vertex of that 
triangle. Derive an upper bound on the expected number of such recoloring 
steps before the algorithm finds a 2-coloring with the desired property. 

6.6 An n x n matrix P is said to be stochastic if all its entries are non-negative 
and for each row i, Lj P;j = 1. It is said to be doubly stochastic if, in addition, 

LiP;j = 1. 

(a) Show that for any stochastic matrix P, there exists an n-dimensional vector 
n with non-negative entries such that LI"I = 1 and nP = n. 

(b) Suppose that the transition probability matrix P for a Markov chain is 
doubly stochastic. Show that the stationary distribution for this Markov chain 
is necessarily the uniform distribution. 

6.7 Consider a random walk on a graph whose edges have positive real costs: 
the interpretation of these costs is that every time the random walk traverses 
an edge (ii), it incurs a given cost Clj > 0; C;j = Cjl, and Ci/ = O. Consider the 
random walk on a graph G with m edges that have such costs associated with 
them, with transition probabilities 

1/cll 
Pij =" 1/ .. 

L..Jk C,k 

Let Suv denote the expected total cost incurred by a walk that begins at vertex 
u and terminates upon returning to u after having visited v at Il!ast once. 
Show that 

where Ruv is the effective resistance between node u and node v in an elec
trical network whose underlying graph is G, and where the branch resistance 
between i and j is C;I' 

6.8 In a connected graph G, an edge is called a bridge if the removal of the edge 
disconnects the graph. Let G be a connected graph with n vertices and m 
edges. Let (u, v) be any edge in G. For the simple random walk on G, show 
that 

huv + hvu = 2m 

if and only if the edge (u, v) is a bridge. 

6.9 (Due to P.C. Matthews [296, 297].) The goal of this problem is to derive 
a cleaner version of Theorem 6.9. Consider a random permutation of the 
vertices of a connected graph G, and let J; denote the ith vertex in this 
permutation. For 1 !5; k !5; n, define Fk = max;Sk TJ, to be the time by which all 
of {J1,J2, ••• ,Jk } have been visited (in some order). Let Lk be the last of the 
vertices in {J1,J2, ••• ,Jk } to be visited. Let 6(ij) be the delta function, defined 
to be 1 if i = j and 0 otherwise. 
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(a) Show that conditioned on the sequence of vertices visited until time Fk - h 

and for a fixed set {J1, J2, ••• , Jk}. 

E[Fk - Fk- 1] = 6(LkJdhLHJk' 

(b) Hence infer that 

(c) Now use the fact that the J; are randomly ordered to show that 

(d) Repeat the above arguments to obtain an upper bound on cover time: 

maxCu(G):S; Hn- 1 maxh;J"' 
1,,4 

6.10 By showing that the resistance of the complete graph Kn is 0(1jn). show that 
the upper bound of Theorem 6.9 cannot be improved in general. 

6.11 Let G be a regular graph with every vertex having degree d. Show that CG is 
O(n2 10gn). 

Remark: This shows that regular graphs have lower cover times than graphs 
that have large disparities in their vertex-degrees (such as the lollipop graph. 
wh'ich had CLn(G) as large as 0(n3 )). In fact. using a more careful argument. 
Kahn. Linial. Nisan. and Saks [224] show that for every regular graph. CG is 
O(n2

). 

6.12 The result in Problem 6.11 can be improved for dense regular graphs. Let G 
be a regular graph with every vertex having degree ~ 2nj3. Show that CG is 
O(n log n). Complement this upper bound by showing that for d < nj2 such 
that d + 1 divides n. there exists a d-regular graph whose cover time is O(n2). 
Derive an upper bound on U(d,n) for d ~ 2nj3. 

6.13 Consider the two-dimensional mesh: a graph in which each vertex is a point 
with integer coordinates in the plane. all coordinates being in the interval 
[1,n 1/ 2]. An edge connects two vertices if they differ in one coordinate by 1. 
Show that the maximum commute time in this graph is 0(n log n). 

6.14 Consider next the three-dimensional mesh: a graph in which each vertex is 
thought of as a point with integer coordinates in three dimensions. all coor
dinates being in the interval [1, n1

/
3
]. Show that the cover time for this graph 

is O(n log n). Derive upper bounds for the lengths of the universal traversal 
sequences for labeled two-dimensional and three-dimensional meshes. 

6.15 (a) Show that for n = 3 and d = 2. there exists a universal traversal sequence 
U(d, n) of length 3. 

(b) What is the smallest UTS you can construct for the case n = 4 and d = 2? 

6.16 Show that the expected time for a random walk to visit every vertex of a 
strongly connected directed graph is not bounded above by any polynomial 
function of n. the number of vertices. In other words. construct a directed 
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graph that is strongly connected and where the expected cover time is super
polynomial. 

6.17 Show that any probabilistic, log-space, polynomial-time Turing machine can 
be simulated by a deterministic, non-uniform, log-space, polynomial-time 
Turing machine. (Hint: Use the ideas of Section 2.3.) 

6.18 (Due to D. Zuckerman [424].) Let G (V, E) be a graph with n vertices such that 
for some constant a > 0 and every set $ s; V with n /2 vertices, 

n 
I{w E V I 3v E $, (v, w) E E}I ~ '2 +an. 

For any positive integer k, let Wlo ... , Wk be subsets of V of size at least 
(1 - a)n each. Show that there exists a path (Vl,"" Vk) in G such that, for 
1 ~ i ~ k, v; E WI. 

6.19 (Courant-Fisher equalities.) Let A be an n x n symmetric matrix with real 
entries, and let el denote the eigenvector corresponding to the first eigenvalue 
A1• Show that 
(1) Al = max{xT Ax}, where the max is taken over x such that Ilxll = 1. 
(2) An = min{xT Ax}, where the min is taken over x such that Ilxll = 1. 
(3) A2 = max{xT Ax}, where the max is taken over x such that Ilxll = 1 and 
xTel = O. 

6.20 Let G(V, E) be a connected, d-regular, undirected (multi)graph with n vertices. 
Show that for the adjacency matrix A(G), Al = d and el = tn(l, 1, 1, ... , 1). 

6.21 Let G (V, E) be a connected, d-regular, undirected (multi)graph. Show that for 
the adjacency matrix A(G), each eigenvalue AI has absolute value bounded 
by d. 

6.22 Show that a connected graph G with maximum eigenvalue Al is bipartite if 
and only if -Al is also an eigenvalue. 

6.23 Show that a graph G is bipartite if and only if for every eigenvalue A, there is 
an eigenvalue -A of the same multiplicity. 

6.24 Consider the setting of Definition 6.14 and the following measures of deviation 
from the limit. Let $ denote the set of states of the Markov chain under 
consideration. The total variation distance is defined as 

A(t) = max I ~ qY) - ~ n;l· 
T<;;;S ~ ~ 

ieT leT 

(a) Define the Ll distance as 

Ilq(t) -nih = Llq;t)-n;l. 

Determine the relation between the Ll distance and the total variation distance. 

(b) Suppose that the relative pointwise distance is bounded by E at time t. 
Give the tightest bound you can on the total variation distance at time t. 
(c) Suppose that the total variation distance at time t is bounded by E. What 
can you say about the relative pOintwise distance at time t? 
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6.25 Does Theorem 6.21 hold true if the relative pointwise distance is replaced by 
the total variation distance defined in Problem 6.24? 

6.26 Let G be d-regular, and define the matrix Q = (/ +A(G)/d)/2. Show that if the 
ith eigenvalue of A(G) is A;, then the ith eigenvalue of Q equals (1 +A;/d)/2. 

6.27 (Due to N. Alon and F.R.K. Chung [20].) Let G (X, Y, E) be a d-regular, con
nected, bipartite (multi)graph. Show that for any sets 5 s; X and T s; Y, the 
number of edges connecting 5 and T is at least 

Al 1511TI _ A2JiS1iTi. 
n 

(Hint: Consider the adjacency matrix of G premultiplied by the characteristic 
vector of 5, and postmultiplied by the characteristic vector of T. (The char
acteristic vector of 5 is a vector of dimension equal to the cardinality of 5, 
with a 1 in every position corresponding to a member of 5, and 0 everywhere 
else.) 

Remark: Note that in a random d-regular graph, the expected number of 
edges from 5 to T is d1511TI/n, which is Al I51ITI/n. This result can be viewed 
as bounding the deviation from the behavior of a random graph in terms of 
the eigenvalue A2 , thereby adding to the intuition that an expander "looks" 
like a random graph. 

6.28 (Due to M. Ajtai, J. Komlos, and E. Szemeredi [9].) Let G be an (n, d, c)
expander. Show that there exist constants P, 6 > 0 such that for any "bad" 
set of vertices B of cardinality at most 6n, the following property holds: the 
probability that, starting from a vertex chosen uniformly at random, a random 
walk of length t does not visit any vertex outside of B is at most exp(-6t). 
Exactly what properties of G are essential for your proof of this fact? 

6.29 Using the result in Problem 6.28, obtain a probability amplification result for 
RP algorithms similar to that obtained in Section 6.8 for BPP algorithms. 

Remark: While it is an easy consequence of the result for BPP algorithms, 
this problem requires you to derive a direct proof based only on the property 
stated in Problem 6.28. 
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CHAPT ER 7 

Algebraic Techniques 

SOME of the most notable results in theoretical computer scien.:e, particularly 
in complexity theory, have involved a non-trivial use of algebraic techniques 
combined with randomization. In this chapter we describe some basic random
ization techniques with an underlying algebraic flavor. We begin by describing 
Freivalds' technique for the verification of identities involving matrices, polyno
mials, and integers. We describe how this generalizes to the Schwartz-Zippel 
technique for identities involving multivariate polynomials, and we illustrate this 
technique by applying it to the problem of detecting the existence of perfect 
matchings in graphs. Then we present a related technique that leads to an effi
cient randomized algorithm for pattern matching in strings. We conclude with 
some complexity-theoretic applications of the techniques introduced here. In 
particular, we define interactive proof systems and demonstrate such systems for 
the graph non-isomorphism problem and the problem of counting the number of 
satisfying truth assignments for a Boolean formula. We then refine this concept 
into that of an efficiently verifiable proof and demonstrate such proofs for the 
satisfiability problem. We indicate how these concepts have led to a completely 
different view of classical complexity classes, as well as the new results obtained 
via the resulting insight into the structure of these classes. 

Most of these techniques and their applications involve (sometimes indirectly) 
a fingerprinting mechanism, which can be described as follows. Consider the 
problem of deciding the equality of two elements x and y drawn from a large 
universe U. Under any "reasonable" model of computation, testing the equality 
of x and y then has a deterministic complexity of at least log I UI. An alternative 
approach is to pick a random mapping from U into a significantly smaller 
universe V in such a way that there is a good chance that x and yare identical 
if and only if their images are identical. The images of x and yare their 
fingerprints, and their equality can be verified in log I VI time by comparing the 
fingerprints. 

Throughout this chapter we will be working over some unspecified field IF. 
Part of the reason we do not explicitly specify the underlying field is that 

161 



ALGEBRAIC TECHNIQUES 

typically the randomization will involve uniform sampling from a finite subset 
of the field; in such cases, we do not have to worry about whether the field is 
finite or not. The reader may find it helpful to think of IF as the field <Q of the 
rational numbers; when we restrict ourselves to finite fields, it may be useful to 
assume that IF is 7lp, the field of integers modulo some prime number p. We will 
use the unit-cost RAM model from Section 1.5.1 to measure the running time 
of an algorithm over the field IF. In this model each field operation (addition, 
subtraction, multiplication, division, comparison, or choosing a random element) 
takes unit time, provided the operand magnitude is polynomially related to the 
input size. For example, over the field of rationals we will assume that operations 
involving O(log n)-bit numbers take unit time. This is not completely realistic 
as arithmetic operations are significantly more expensive in practice. However, 
in most applications described below this small additional factor in the running 
time is inconsequential, and we would get essentially the same result in the more 
expensive model. 

7.1. Fingerprinting and Freivalds' Technique 

We illustrate fingerprinting by describing a technique for verifying matrix mul
tiplication. The fastest known algorithm for matrix multiplication runs in time 
0(n2.376), which improves significantly on the obvious 0(n3) time algorithm but 
has the disadvantage of being extremely complicated. Suppose we are given an 
implementation of this algorithm and would like to verify its correctness. Since 
program verification is a difficult task, a reasonable goal might be to verify 
the correctness of the output produced on specific executions of the algorithm. 
(Such verification on specific inputs has been studied in the theory of program 
checking.) In other words, given n x n matrices A, B, and C over the field IF, 
we would like to verify that AB = C. We cannot afford to use a simpler but 
slower algorithm for matrix multiplication to verify the output C, as this would 
defeat the purpose of using the fast matrix multiplication algorithm. Moreover, 
we would like to use the fact that we do not have to compute C; rather, our 
task is to verify that this product is indeed C. The following technique, known 
as Freivalds' technique, provides an elegant solution. It gives an 0(n2) time 
randomized algorithm with a bounded error probability. 

The randomized algorithm first chooses a random vector r E {O, 1}"; each 
component of r is chosen independently and uniformly at random from ° and 1, 
the additive and multiplicative identities of the field IF. We can compute x = Br, 
y = Ax = ABr, and % = Cr in 0(n2 ) time; clearly, if AB = C then y = %. 

We now show that for AB =1= C, the probability that y =1= % is at least 1/2. The 
algorithm errs only if AB =1= C but y and % turn out to be equal. 

Theorem 7.1: Let A, B, and C be n x n matrices over IF such that AB =1= C. 
Then/or r chosen uniformly at random/rom {O, 1}", Pr[ABr = Cr] < 1/2. 
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PROOF: Let D = AB - C; we know that D is not the all-zeroes matrix. We 
wish to bound the probability that y = z, or, equivalently, the probability that 
Dr = O. Without loss of generality, we may assume that the first row in D has 
a non-zero entry, and that all the non-zero entries in that row precede the zero 
entries. Let d be the vector consisting of the entries from the first row in D, and 
assume that the first k > 0 entries in d are non-zero. We concentrate on the 
probability that the inner product of d and r is non-zero; since the first entry in 
Dr is exactly d T r, this yields a lower bound on the probability that y =1= z. 

Now, the inner product d T r = 0 if and only if 

(7.1) 

We invoke the Principle of Deferred Decisions (Section 3.5) and assume that all 
the other random entries in r are chosen before rl. Then the right-hand side 
of (7.1) is fixed at some value v E IF. Since rl is uniformly distributed over a set 
of size 2, the probability that it equals v cannot exceed 1/2. 0 

Exercise 7.1: Verify that there is nothing magical about choosing r to have only 
entries drawn from {a, 1}. In fact, any two elements of F may be used instead. 

Thus, in 0(n2) time we have reduced the matrix product verification problem 
to that of verifying the equality of two vectors, and the latter can be done in 
O(n) time. This gives an overall running time of 0(n2) for this Monte Carlo 
procedure. The probability of error can be reduced to 1/2k by performing k 
independent iterations. The following exercise gives an alternative approach to 
reducing the probability of error. 

Exercise 7.2: Suppose that each component of r is chosen uniformly and indepen
dently from some subset S s; F. Show that the probability of error in the verification 
procedure is no more than 1/ISI. Compare the usefulness of the two different methods 
for reducing the error probability. 

Freivalds' technique is applicable to verifying any matrix identity X = Y. Of 
course, if X and Yare explicitly provided, just comparing their entries takes 
only 0(n2) time. But as in the case of matrix multiplication, there are situations 
where computing X explicitly is expensive (or even infeasible, as we will see in 
Section 7.8), whereas computing X r is easy. 

7.2. Verifying Polynomial Identities 

Freivalds' technique is fairly general in that it can be applied to the verification 
of several different kinds of identities. In this section we show that it also applies 
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to the verification of identities involving polynomials. Two polynomials P(x) 
and Q(x) are said to be equal if they have the same coefficients for corresponding 
powers of x. Verifying identities of integers, or, in general, strings over any fixed 
alphabet, is a special case since we can represent any string of length n as a 
polynomial of degree n. This is achieved by treating the kth element in the string 
as the coefficient of the kth power of a symbolic variable. 

We first consider the polynomial product verification problem: given polyno
mials PI(x), P2(x), P3(x) E IF[x], verify that PI(x) x P2(x) = P3(X). Assume that 
the polynomials PI(x) and P2(x) are of degree at most n; then P3(x) cannot have 
degree exceeding 2n. Polynomials of degree n can be multiplied in O(n log n) 
time using Fast Fourier Transforms, whereas the evaluation of a polynomial at 
a fixed point requires O(n) time. 

The basic idea underlying the randomized algorithm for polynomial product 
verification is similar in spirit to the algorithm for matrices. Let S c IF be a set 
of size at least 2n+ 1. Pick rES uniformly at random and evaluate PI(r), P2(r), 
and P3(r) in O(n) time. The polynomial identity PI(X)P2(x) = P3(x) is declared 
correct unless PI (r )P2(r) =1= P3(r). This algorithm errs only when the polynomial 
identity is false but the evaluation of the polynomials at r fails to detect this. 

Define the polynomial Q(x) = PI(X)P2(x) - P3(x) of degree 2n. We say that 
a polynomial P is identically zero, or P = 0, if all of its coefficients are zero. 
Clearly, Q(x) is identically zero if and only if the polynomial product is correct. 
We complete the analysis of the randomized verification algorithm by showing 
that if Q(x) ¥= 0, then with high probability Q(r) = PI(r)P2(r) - P3(r) =1= o. 
Elementary algebra tells us that Q can have at most 2n distinct roots. Hence, 
unless Q= 0, not more that 2n different choices of rES will have Q(r) = o. 
Thus, the probability of error is at most 2n/ISI. This probability can be reduced 
by either using independent iterations of the entire algorithm or by choosing a 
sufficiently large set S. 

In the case where IF is an infinite field (such as the reals), the error probability 
can be reduced to 0 by choosing r uniformly from the entire field IF. Unfortu
nately, this requires an infinite number of random bits! We could also use a 
deterministic version of this algorithm where each choice of rES is tried once. 
But this requires 2n + 1 different evaluations of each polynomial, and the best 
algorithm for this requires 9(n log2n) time, which is more than the time required 
to actually multiply PI(x) and P2(x). 

This verification procedure is not restricted to polynomial product verification. 
It is a generic procedure for testing any polynomial identity of the form PI (x) = 
P2(x), by transforming it into the identity Q(x) = PI(x) - P2(x) == O. Obviously, 
if the polynomials PI and P2 are explicitly provided, we can perform this task 
deterministically in O(n) time by comparing corresponding coefficients. The 
randomized algorithm will take as long to just evaluate the polynomials at 
a random point. However, the verification procedure pays off in situations 
where the polynomials are provided implicitly, such as when we have only a 
"black box" for computing the polynomial, with no means of accessing its 
coefficients. There are also situations where the polynomials are provided in 
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a form where computing the actual coefficients is exceedingly expensive. One 
example is provided by the following problem concerning the determinant of a 
symbolic matrix; in fact, this problem will turn out to be the same as that of 
verifying a polynomial identity involving multivariate polynomials, necessitating 
a generalization of the idea used for univariate polynomials. 

Let M be an n x n matrix. The determinant of M is defined by 
n 

det(M) = L sgn(n) II M i,7t(i), (7.2) 
7tEs" i=l 

where s,. is the symmetric group of permutations of size n, and sgn(n) is the 
sign of the permutation n. Recall that sgn(n) = (-1)t, where t is the number of 
pairwise element exchanges required to transform the identity permutati9n into 
n. Although the determinant has n! terms, it can be evaluated in polynomial 
time given explicit values for the matrix entries Mij. 

~ Definition 7.1: The Vandermonde matrix M(Xh ... , xn) is defined in terms of the 
indeterminates Xl. ... , Xn such that Mij = x{-l, that is 

M= 

1 Xl xi 
1 X2 x~ 

1 Xn x~ 

Vandermonde's identity states that for this matrix M, det(M) = nj<i(Xi-Xj). 
Suppose that we did not have a proof of this identity and would like to verify it 
efficiently. Computing the determinant of this symbolic matrix is prohibitively 
expensive since it has n! terms. Instead, we will formulate this as the problem of 
verifying that the polynomial Q(Xh ... , xn) = det(M) - TIj<i(Xi - Xj) is identically 
zero. Drawing upon our experience with Freivalds' technique, it seems natural to 
substitute random values for each Xi and check whether Q = o. The polynomial 
Q is easy to evaluate at a specific point since the determinant can be computed 
in polynomial time for specified values of the variables Xl. ... , X n• 

We formalize this intuition by extending the analysis of Freivalds' technique 
for univariate polynomial identity verification to the multivariate case. In a 
multivariate polynomial Q(Xl, ... , xn), the degree of any term is the sum of the 
exponents of the variables, and the total degree of Q is the maximum of the 
degrees of its terms. 

Theorem 7.2 (Schwartz-Zippel Theorem): Let Q(Xl, ... , xn) E IF[XI, ... , xn] be 
a multivariate polynomial of total degree d. Fix any finite set S c IF, and let 
rl, ... , rn be chosen independently and uniformly at random from S. Then 

d 
Pr[Q(rl, ... ,rn) = 0 I Q(Xl, ... ,Xn ) ¥= 0] < lSI· 
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PROOF: The proof is by induction on the number of variables n. The base 
case n = 1 involves a univariate polynomial Q(x.) of degree d, and by the 
preceding discussion we already know that for Q(x.) ¥= 0, the probability that 
Q(r.) = 0 is at most diISI. Assume now that the induction hypothesis is true 
for a multivariate polynomial with up to n - 1 variables, for n > 1. 

Consider the polynomial Q(XI, ... , xn), and factor out the variable Xl to obtain 

k 

Q(X., . .. , xn) = L x~ Qi(X2,.· . , xn), 
i=O 

where k < d is the largest exponent of Xl in Q. (Assume that Xl affects Q, so that 
k > 0). The coefficient of xii, QdX2, ... , xn); is not identically zero by our choice 
of k. Since the total degree of Qk is at most d - k, the induction hypothesis 
implies that the probability that Qdr2, ... , rn) = 0 is at most (d - k)/ISI. 

Suppose that Qdr2, ... , rn) =1= o. Consider the following univariate polynomial: 
k 

q(x.) = Q(xI,r2,r3,.·.,rn) = Lx~Qi(r2, ... ,rn). 
i=O 

The polynomial q(x.) has degree k, and it is not identically zero since the 
coefficient of xii is Qk(r2, ... , rn). The base case now implies that the probability 
that q(r.) = Q(rl, r2, ... , rn) evaluates to 0 is at most k/ISI. 

Thus; we have shown the following two inequalities. 

d-k 
lSI 
k 

~ lSI· 

Invoking the result in Exercise 7.3, we find that the probability that 
Q(r., r2, ... , rn) = 0 is no more than the sum of these two probabilities, which is 
diISI. This completes the induction. 0 

Exercise 7.3: Show that for any two events £1 and £2. 

Pr[£l] ~ Pr[£l 1£2] + Pr[£2]. 

The randomized verification procedure for polynomials has one potential 
problem. In the case of infinite fields, the intermediate results in the evaluation 
of the polynomial could involve enormous values. This problem can be avoided 
in the case of integers by performing all the computations modulo a small 
random prime number, without adversely affecting the error probability. We 
will return to this issue in Example 7.l. 

As suggested in Problem 7.l, Theorem 7.2 can be viewed as a generalization 
of Freivalds' technique from Section 7.l. A generalized version of this theorem 
is described in Problem 7.6. 
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7.3. Perfect Matchings in Graphs 

We illustrate the power of the techniques of Section 7.2 by giving a fascinating 
application. Consider a bipartite graph G(U, V, E) with the independent sets of 
vertices U = {u., ... ,un } and V = {V., ... ,vn }. A matching is a collection of edges 
M c E such that each vertex occurs at most once in M. A perfect matching 
is a matching of size n. Each perfect matching M in G can be viewed as a 
permutation from U into V. More precisely, the perfect matchings in G can be 
put into a one-to-one correspondence with the permutations in s,., where the 
matching corresponding to a permutation 1C E Sn is given by the pairs (Uj, VX(i», 

for 1 =::; i =::; n. The following theorem draws a connection between determinants 
and matchings. 

Theorem 7.3 (Edmonds' Theorem): Let A be the n x n matrix obtained from 
G(U, V,E) asfollows: 

A .. _ {Xjj (Uj,Vj) E E 
IJ - • o (Uj,Vj) ~ E 

Define the multivariate polynomial Q(Xll,X12,'" ,xnn ) as being equal to det(A). 
Then, G has a perfect matching if and only if Q ¥= O. 

Remark: The matrix of indeterminates is sometimes referred to as the Edmonds 
matrix of a bipartite graph. We do not explicitly specify the underlying field 
because any field will do for the purposes of this theorem. 

PROOF: The determinant of A is given by 

det(A) = L sgn(1C)A1,lt(1)A2,lt(2)'" An,lt(n)' 

ltEs" 

Since each indeterminate xij occurs at most once in A, there can be no cancella
tion of the terms in the summation. Therefore the determinant is not identically 
zero if and only if there is a permutation 1C for which the corresponding term in 
the summation is non-zero. The latter happens if and only if each of the entries 
Ai,lt(i)' for 1 =::; i =::; n, is non-zero. This is equivalent to having a perfect matching 
(the one corresponding to 1t) in G. 0 

We can now construct a simple randomized test for the existence of perfect 
matchings. Using the algorithm from Section 7.2, we can determine whether 
the determinant is identically zero or not. The time required is dominated by 
the cost of computing a determinant, which is essentially that of multiplying 
two matrices. As it turns out, there are algorithms for constructing a maximum 
matching in a graph in time o (my'n) , where m = lEI. Since the time to compute 
the determinant exceeds my'n for small m, the payoff in using this randomized 
decision procedure is marginal at best. However, we will see later (in Section 12.4) 
that this decision procedure is essential for devising a fast parallel algorithm for 
computing a maximum matching in a graph. In Problem 7.8 we will see that 
this technique also applies to the case of non-bipartite graphs. 
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7.4. Verifying Equality of Strings 

We have seen that the idea of fingerprinting is useful in verifying identities of 
algebraic objects. In this section we introduce a different form of fingerprinting, 
motivated by the problem of testing the equality of two strings. As mentioned 
earlier, the string equality verification problem can be reduced to that of verifying 
polynomial identities. However, the new type of fingerprint introduced here has 
important benefits when extended to the pattern matching problem discussed 
later in Section 7.6. 

Suppose that Alice maintains a large database of information. Bob maintains 
a second copy of the database. Periodically, they must compare their databases 
for consistency. Because transmission between Alice and Bob is expensive, they 
would like to discover the presence of an inconsistency without transmitting 
the entire database between them. Denote Alice's data by the sequence of 
bits (ah ... , an), and Bob's by the sequence (bh ... , bn). It is clear that any 
deterministic consistency check that transmits fewer than n bits will fail if an 
adversary could decide which bits of either database to modify. We describe a 
randomized strategy that detects an inconsistency with high probability while 
transmitting far fewer than n bits of information. 

We use the following simple fingerprint mechanism. Interpret the data as 
ll-bit integers a and b, by defining a = 2:7=1 ai2i-1 and b = 2:7=1 bi2i

-
l
. Define 

the fingerprint function Fp(x) = x mod p for a prime p. Then Alice can transmit 
Fp(a) to Bob, who in turn can compare this with Fp(b). The hope is that if 
a =1= b, then it will also be the case that Fp(a) =1= Fp(b). The number of bits to 
be transmitted is O(logp), which will be much smaller than n for a small prime 
p. This strategy can be easily foiled by an adversary for any fixed choice of p 
since, for any p and b, there exist many choices of a for which a = b (mod pl. 
We get around this problem by choosing p at random. 

For any number k, let 1t(k) be the number of distinct primes less k. A well
known result in number theory is the Prime Number Theorem, which states that 
1t(k) is asymptotically k / In k. Consider now the non-negative integer c = la - bl. 
The fingerprint defined above fails only when c =1= 0 and p divides c. How many 
primes can divide c? Define N = 2n; we know that c < N. 

Lemma 7.4: The number of distinct prime divisors of any number less than 2n is 
at most n. 

PROOF: Each prime number is greater than 1. If N has more than t distinct 
prime divisors, then N > 2f. 0 

Choose a threshold r that is larger than n = log N. The number of primes 
smaller than r is 1t(r) ...... r/ In r. Of these, at most n can be divisors of c and cause 
our fingerprint function to fail. Therefore, we pick a random prime p smaller 
than r for defining Fp. The number of bits of communication is O(logr). Choose 
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r = tn log tn, for large t. The following theorem is immediate. The probability is 
taken over the random choice of p. 

Theorem 7.5: Pr[Fp(a) = Fp(b) 1 a =1= b] < 1t~r) = 0 (~). 

Thus, we get an error probability of at most O(I/t), and the number of 
bits to be transmitted is O(log t + log n). Choosing t = n gives us an excellent 
strategy for this problem. We remark that the task of picking a random prime 
is non-trivial, primarily because verifying the primality of a number is difficult. 
Some algorithms for this purpose will be presented in Chapter 14. 

~ Example 7.1: This integer equality verification technique can be used to solve 
the problem alluded to at the end of Section 7.2. In verifying that a multivariate 
polynomial Q(XI, ... , xn) is identically zero, we evaluate the polynomial at a ran
dom point. The problem is that the intermediate values arising in the evaluation 
of q = Q(rI, ... , rn) could be extremely large. Of course, we do not really wish to 
compute q; our goal is to merely verify that q = O. By the preceding discussion, 
it suffices to verify that.q mod p = 0 for some small random prime p. 

But how can we possibly hope to perform the verification without evaluating 
q explicitly? The trick is to use arithmetic modulo p while evaluating Q(rI, ... , rn) 
and thereby obtain the residue of q modulo p directly, rather than first computing 
q and then reducing it modulo p. The intermediate values are all smaller than p, 

and p itself is chosen to be a small random prime. By Theorem 7.5, the probability 
of error does not increase significantly for a suitable choice of t. 

7.5. A Comparison of Fingerprinting Techniques 

It is useful at this point to compare the two types of fingerprinting techniques 
that we have seen so far. Suppose that we wish to verify the equality of two 
strings or vectors a = (aI, ... , an) and b = (bI, ... , bn) with each component 
drawn from a finite alphabet 1:. We can encode the alphabet symbols using the 
set of numbers r = {O, 1, ... ,k - I}, where k = 11:1. It is then possible to view 
the two strings as the polynomials A(z) = 2:7.:-d aizi and B(z) = 2:7':<: bizi, each 
of which has integer coefficients and degree at most n. Clearly, the two vectors 
are identical if and only if the two polynomials are identical. 

The fingerprinting technique of Sections 7.1 and 7.2 can be summarized as 
follows. Fix a prime number p greater than both 2n and k. View the polynomials 
A(z) and B(z) as polynomials over the field Zp. By our choice of p, the set r is 
contained in this field and arithmetic modulo p will not render identical any two 
non-identical polynomials. The fingerprint of the two polynomials is obtained by 
choosing a random element r E Zp and substituting it for the symbolic variable 
z. If a = b, then the two polynomials are identical and the fingerprint will also 
be identical; on the other hand, when a =1= b, the two polynomials are distinct 
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and the probability that their fingerprints turn out to be the same is at most 
n/p, and this is bounded by 1/2 for our choice of p. For k = 2 and p = O(n), 
this can be viewed as reducing the problem of comparing n-bit numbers to that 
of comparing O(log n)-bit numbers. 

The fingerprinting technique from Section 7.4 is in some sense a dual of the 
first technique. In this approach, we fix z = 2 and choose a random prime q of 
a reasonably small magnitude. The fingerprints are obtained by evaluating A(2) 
and B(2) over the field Zq. Thus, instead of fixing the field and evaluating at a 
random point in the field, the second type of fingerprint is obtained by fixing 
the point of evaluation and choosing a random field over which the evaluation 
is to be performed. By our analysis in Section 7.4, this also reduces the problem 
of comparing n-bit numbers to that of comparing (logn)-bit numbers. However, 
as we will see in the next section, there are certain applications where the second 
type of fingerprinting proves to be more useful. 

A third version of the fingerprinting approach works as follows. Assume that 
k = 2, and interpret the bit vectors a and b as the n-bit integers a and b. Fix 
a prime number p > 2n. Choose a random polynomial P(z) over the field Zp, 
and obtain the fingerprints by evaluating this polynomial at the integers a and 
b, performing all arithmetic over the field Zp, and then reducing the resulting 
values modulo a number of magnitude close to log n. This is the main idea 
behind the construction of the so-called universal hash functions discussed in 
Section 8.4. 

7.6. Pattern Matching 

Consider now the problem of pattern matching in strings. A text is a string 
X = XIX2 .•. Xn and a pattern is a string Y = YIY2 ..• Ym, both over a fixed 
finite alphabet 1:, such that m < n. Without loss of generality, we restrict 
ourselves to the case 1: = {O, I}. The pattern occurs in the text if there is a 
j E {1,2, ... ,n-m+l} such that for 1 <i< m, Xj+i-l = Yi. The pattern matching 
problem is that of finding an occurrence (if any) of a given pattern in the text. 
This problem can be trivially solved in O(nm) time by trying for a match at all 
possible locations i; moreover, there are deterministic algorithms that achieve 
the best possible running time of O(n + m). 

We describe a Monte Carlo algorithm that also achieves a running time of 
O(n + m); later, we will convert this into a Las Vegas algorithm. This algorithm 
is interesting despite the existence of linear-time deterministic algorithms because 
it is significantly simpler, has a "real-time" implementation (this is explained 
below), and generalizes to the problem of pattern matching in two-dimensional 
strings (or matrices). 

Define the string XU) = XjXj+l •• ' Xj+m-l as the sub-string of length m in 
X that starts at position j. A match occurs if there is a choice of j, for 
1 < j < n - m + 1, for which Y = XU). We make the solution unique by 
requiring that the algorithm find the smallest value of j such that XU) = Y. 
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The brute-force O(nm) time algorithm compares Y with each of the strings XU). 
Our randomized algorithm will choose a fingerprint function F and compare 
F(Y) with each of the fingerprints F(XU». An error occurs if F(Y) = F(X(j» 
but Y =1= XU). We would like to choose a function F that has a small probability 
of error and can be efficiently computed. 

In fact, we use the same fingerprint function as in Section 7.4: for any 
string Z E {O, l}m, interpret Z as an m-bit integer and define Fp(Z) = Z mod p. 
Assume that p is chosen uniformly at random from the set of primes smaller 
than a threshold r. Suppose that we interpret the strings Y and XU) as m-bit 
integers, and compare their fingerprints Fp(Y) and Fp(X(j» instead of trying to 
match each symbol in the two strings. The only possible error is that we get 
identical fingerprints when Y =1= XU). By Theorem 7.5, we bound the probability 
of such a false match as follows: . 

Pr[Fp(Y) = Fp(X(j» I Y =1= X(j)] < 1t~) = o(ml~gr). 
Then, the probability that a false match occurs for any of the at most n values 
of j is O((nmlogr)/r). We choose r = n2mlogn2m, and this gives 

Pr[a false match occurs] = 0 (~). 
The Monte Carlo version of this algorithm simply compares the fingerprints 

of all X(j) to that of Y, and outputs the first j for which a match occurs; the 
Las Vegas version will be described below. We first show that the running time 
of this algorithm is as claimed. For 1 < j < n - m + 1, 

XU + 1) = 2 [XU) - 2m
-

1 Xj] + xj+m. 

From this we obtain the recurrence 

Fp(XU + 1» = 2 [Fp(XU» - 2m
-

1 Xj] + xj+m mod p. 

It is now clear that given the fingerprint of XU), the incremental cost of 
computing the fingerprint of XU + 1) is 0(1) field operations. In fact, there is 
no need to use the more expensive operations of multiplication and division, 
because each x j is 0 or 1. Thus, the total time required for this algorithm is 
O(n + m) even under the more stringent log-cost RAM model. This efficient 
incremental update property is the main motivation for using the second form 
of fingerprinting; the reader may verify that more complex computations would 
be required if the first form of fingerprinting was used instead (see Section 7.5). 

Theorem 7.6: The Monte Carlo algorithm/or pattern matching requires O(n + m) 
time and has a probability of error 0 (1/ n) . 

It is easy to convert this into a Las Vegas algorithm. Whenever a match 
occurs between the fingerprints of Y and some XU), we compare the strings 
Y and XU) in O(m) time. If this is a false match, we detect it and abandon 
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the whole process in favor of using the brute-force O(nm) time algorithm. 
The new algorithm does not make any errors and has expected running time 
O((n + m)(l - lin) + nm(l/n»), which works out to be O(n + m). An alternative 
Las Vegas version of this algorithm restarts the entire algorithm with a new 
random choice of p whenever a false match is detected. In the latter approach, 
the probability of having to restart more than t times is bounded by lint. This 
leads to a very small variance in the running time. In contrast, the first approach 
has a relatively high probability of being forced to use the O(nm) time algorithm, 
and hence has a high variance in the running time. 

An alternative fingerprint function with a similar behavior is described in 
Problem 7.12. In Problem 7.13 it is required to show that this algorithm extends 
to the case of two-dimensional pattern matching. 

The method for computing the fingerprints of the various X(j)'s will work 
well in on-line or real-time settings where the string X is provided incrementally, 
possibly a bit at a time. This feature is also useful when the text is extremely 
large and cannot be completely stored in the primary memory of a machine. 

Exercise 7.4: Consider the fingerprint function used for polynomial identities and 
adapt it to the problem of testing string equality. Why is this not a good choice of a 
fingerprint for the pattern matching problem? 

7.7. Interactive Proof Systems 

We have seen the power of combining randomization and algebra in devising 
fingerprinting techniques with applications to efficient verification of simple 
identities involving objects such as matrices, polynomials, and strings. We have 
also seen that the basic idea used in the verification of the equality of two strings 
x and y could be taken a step further and be used for the efficient detection of 
a pattern y in a string x. How far can we push this approach? 

Suppose, for example, the string x represents a graph G, and the "pattern" y 
represents some graph property P. Can we then use the ideas developed here 
for efficient "pattern matching" in terms of verifying the property P in G? More 
specifically, suppose that the pattern y corresponds to the property of not being 
an expanding graph. The problem of verifying this property belongs to NP and 
so there exist short proofs of non-expansion. Moreover, given such a proof, it is 
possible to efficiently verify its correctness. Thus, the pattern matching task can 
be efficiently performed provided the pattern y includes a "proof' of this fact, 
i.e., a description of a set of vertices in G that do not have too many neighbors. 
In this context, efficiency means time polynomial in the length of the inputs, 
and this requires that the proof itself be of polynomial length. 

Suppose instead the pattern matching task corresponds to the verification of 
the property of being an expander. As we mentioned earlier (Section 6.7), this 
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problem is co-NP-complete and it is quite unlikely that there is a polynomial 
length proof of this property. Intuitively, verifying the expander property 
requires checking almost all subsets of the vertices. But could it be that it 
is possible to verify such proofs efficiently, even though their length is not 
polynomially bounded? At an intuitive level this seems impossible, since we at 
least have to read a proof completely to verify its correctness. Quite surprisingly, 
however, we will show how the use of randomization combined with elementary 
algebra allows us to efficiently verify an exponential length proof of such co-NP 
properties, provided the proof itself is written in a specific format. In fact, 
there are more profound complexity-theoretic results that can be obtained using 
randomized algebraic techniques. In this section and the next, we will describe 
some aspects of these complexity-theoretic results. 

7.7.1. Verifying Graph Non-Isomorphism 

Let us start by considering the problem of graph isomorphism. Informally, two 
graphs are isomorphic if they have exactly the same structure. We make a 
formal definition for the case of labeled graphs. 

~ Definition 7.2: Let G1(V,Ed and G2(V,E2) be two graphs on the same set of 
labeled vertices V = {l, ... ,n}. The two graphs are said to be isomorphic if there 
exists a permutation 1t E Sn such that an edge (i,j) E El if and only if the edge 
(1t(i),1tU)) E E2; the permutation 1t is referred to as an isomorphism from Gl to 
G2. Two graphs are non-isomorphic if there does not exist any isomorphism from 
one graph to the other. . 

Consider the graph isomorphism (GJ) problem: given two graphs G1 and G2, 

decide whether they are isomorphic to each other. This problem lies in NP since 
it is possible to "guess" an isomorphism and verify that it maps edges correctly. 
That is, there is a short proof of isomorphism (the description of a permutation 
1t), and its validity can be verified efficiently. It is believed that GI does not 
belong to P, and yet there is no proof that this problem is NP-complete. In 
fact, there is strong evidence that this problem is not NP-complete, making it 
one of the few natural problems believed to have this property. This evidence is 
derived from results closely related to those discussed in this section. 

The complementary problem, graph non-isomorphism (GNI), is that of ver
ifying that G1 and G2 are non-isomorphic. By definition, this problem lies 
in co-NP. Unlike the case of isomorphism, there is no known short proof of 
non-isomorphism, and it appears that verifying non-isomorphism will essentially 
require checking that none of the n! permutations provides an isomorphism from 
G1 to G2. However, as we show next, using a more active "prover" instead of a 
passive "proof" together with randomization in the verification process leads to 
an efficient scheme for verifying non-isomorphism. 

The model that we adopt is the following. A verifier V that can perform 
any randomized polynomial-time computation is attempting to verify that two 
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graphs G1 and G2 are non-isomorphic. The verifier can enlist the help of a 
prover P, which is an all-powerful adversarial entity whose goal is to convince 
the verifier that G1 is not isomorphic to G2, even if the two graphs are indeed 
isomorphic. The prover's computational power is not constrained in any way; 
in particular, it is not restricted to polynomial-time computations, and it knows 
precisely the strategy employed by the verifier V. The only limitation on the 
prover is that it does not have access to the random bits used by V in the course 
of its computations, except as revealed in the information communicated to it 
by V. 

The interaction between the two entities can be viewed as being composed 
of a sequence of rounds of communication, where in each round V poses a 
question to P, and P responds with a possibly maliciously chosen incorrect 
answer. Upon termination, V decides to either accept that G1 is not isomorphic 
to G2, or else reject the prover's answers as being incorrect or unconvincing. A 
protocol is the specification of a randomized polynomial-time algorithm for V 
such that: when G1 and G2 are non-isomorphic, it is possible for a prover P to 
convince V to accept; and when G1 and G2 are isomorphic, even a malicious 
prover cannot respond so as to persuade V to accept with probability more than 
1/2 (say). 

It turns out that the following simple protocol suffices. In the description 
of the protocol, u( G) denotes the graph isomorphic to G that is obtained by 
applying the permutation u to the labels of the vertices in G. 

Verifier V: 

• picks index i E {1,2} and permutation U E Sn, both uniformly at random; 

• computes H = u( Gj ); 

• specifies H to the prover P and asks for an index j such that H is 
isomorphic to Gj ; 

Prover P: responds with an index j; 
Verifier V: if j = i then it accepts that G1 and G2 are non-isomorphic, else it 

rejects. 

Fi~ any two graphs G1(V,Ed and G2(V,E2). Consider the execution of this 
protocol with prover P following an adversarial strategy as discussed earlier. 
The following theorem shows that if the verifier V follows this protocol, then it 
achieves the desired result. 

Theorem 7.7: If G1 and G2 are non-isomorphic, an honest prover P can ensure 
that V will accept; otherwise, for any (possibly maliciously dishonest) prover P', 
the probability that V accepts is 1/2. 

PROOF: Consider first the case where the two graphs are non-isomorphic. Sup
pose that V used i = 1. Then, Hand G1 are isomorphic, while Hand G2 are 
non-isomorphic since G1 is not isomorphic to G2• An honest prover can use 
its unbounded power to determine that H is isomorphic to G1 but not to G2• 
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Therefore, the prover can ensure that it sends back j = 1, thereby persuading V 
to accept. A similar argument applies in the case when i = 2. 

Suppose now that G1 and G2 are isomorphic to each other. The graph H 
must then be isomorphic to both G1 and G2• Let 0"1 denote an isomorphism 
from G1 to H, and 0"2 an isomorphism from G2 to H. Given that the verifier 
follows the protocol, 

Pr[O" = 0"1 and i = 1 I V specifies H] = Pr[O" = 0"2 and i = 2 I V specifies H]. 

The prover does not know the value of i or the permutation 0" used to determine 
H from Gj • We claim that even knowing H and regardless of its strategy for 
choosing j, the probability that j = i is 'exactly 1/2. It follows that the probability 
that V accepts is 1/2. 

To verify the claim, we invoke the Principle of Deferred Decisions (Section 3.5) 
as follows: assume that the verifier first decides upon H, using it to obtain the 
value of j from the prover, and only then does it decide upon the choice of i 
and (J. This is equivalent to assuming that V chooses H at random from the 
uniform distribution on the space of all graphs isomorphic to G1 and G2• Then, 
after it has forced the prover to commit to the value of j, it makes a random 
choice of i and determines the isomorphism (Jj from Gj to H. Of course, this 
would require V to solve the G I problem efficiently, which is not believed to be 
possible for any randomized polynomial-time algorithm. But the point is that 
as far as the prover is concerned, it cannot distinguish between the two types 
of verifiers and we postulate the existence of a "deferring" verifier only for the 
purposes of our analysis. We assume that this verifier is still honest in that it 
chooses i at random even though it already knows the value of j; this is because 
the verifier just wants to ensure that it does not get cheated by the prover, and 
it does not gain anything by cheating itself. 0 

Exercise 7.5: Verify that independent iterations of this protocol can be used to reduce 
the probability that the verifier accepts erroneously. Argue that the prover does not 
gain additional power to cheat as the iterations proceed. 

7.7.2. The Class IP and #3SAT 

We now formalize the notion of an interactive proof system used in Section 7.7.1. 
Given any language L over an alphabet I:, an interactive proof system for L 
consists of a verifier V and prover P such that: the verifier V can perform 
any randomized polynomial-time computation and can communicate with the 
prover P in an attempt to verify that an input x belongs to L; the prover P 
can perform arbitrary computations but does not have access to the random 
bits used by V. Typically, we use the symbol P to denote an honest prover that 
always provides truthful responses to the queries posed by V. Let V(x, PI) be the 
outcome (acceptance or rejection) of the computation performed by the verifier 
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given an input string x and communicating with a prover pI, where P' denotes 
a prover that does not necessarily behave in the manner expected of the honest 
prover P. We define a complexity class consisting of all languages (or decision 
problems) that have interactive proof systems such as the one demonstrated for 
graph non-isomorphism. 

~ Definition 7.3: The class [P consists of all languages L that have an interactive 
proof system (P, V) with a randomized polynomial-time verifier V and an honest 
prover P such that for any x E r, 

• x E L => for the honest prover P, Pr[V(x,P) accepts] = 1. 

1 
• x ft L => for all provers pI, Pr[V(x,pl) accepts] :s "2. 

We have already shown that GNI E,[P, and it is not very hard to verify that 
G I E [P. As we will see shortly, this is not a coincidence since both NP and 
co-NP are contained in [P. Intuitively, [P can be viewed as a generalization of 
NP obtained by permitting randomization. It turns out that [P = PSPACE, the 
class of languages whose membership can be decided using only a polynomial 
amount. of space (see Problems 7.16-7.17). While it is relatively easy to argue 
that [P c PSPACE" the proof of PSPACE c [P turns out to be more difficult, 
and this is where randomized algebraic techniques prove to be useful. We 
illustrate some of the key ideas behind the latter proof by showing that the 
problem of verifying the number of satisfying truth assignments for a 3-CNF 
Boolean formula lies in [P. 

Let XI. ... , Xn be Boolean variables whose values can be either TRUE or FALSE. 

A 3-CNF formula F(Xh ... , Xn) is the conjunction of a collection of clauses Ch 

... , em, where each clause is a disjunction of three literals Lil , Li2' and L i3. Recall 
that a formula F is said to be satisfiable if there exists an assignment of values 
to its variables that results in F evaluating to TRUE, and then the assignment is 
called a satisfying truth assignment. 

In the 3-SAT problem, we are required to determine whether a given 3-CNF 
formula F is satisfiable. We are interested in a counting version of this problem 
called #3SAT: given a 3-CNF formula F and an integer s, verify that the number 
of distinct satisfying truth assignments for F is s. We will establish the following 
theorem. 

Theorem 7.8: #3SAT E [P. 

What are the implications of this result? Recall that the 3-SAT problem is 
NP-complete, which implies that if 3-SAT E P, then any L E NP is also in P 
(and therefore P = NP). The 3-SAT problem is a special case of #3SAT and 
this means that 3-SAT E [P. The following exercise then implies that NP c [P. 
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Exercise 7.6: Let L, and L2 be two languages such that L2 E IP and there is a 
polynomial reduction from L, to L2• Show that L, E IP. 

This is not very interesting since it is easy to argue directly that NP c lP 
(see Problem 7.14). However, consider now the special case of #3SAT where 
s = O. This is the problem of deciding that a 3-CNF formula is not satisfiable; 
since verifying unsatisfiability is a co-NP-complete problem, it follows that 
co-NP c lP. This is much more interesting since it is not immediately obvious 
from the definition of lP that it contains co-NP. Actually, #3SAT is complete 
for a class of problems called #P, which is defined formally in Chapter. 11. It 
follows that #P c lP. It is known that #P ~ PSPACE, and so we are proving 
a weaker result than lP = PSPACE. We choose to focus on this weaker result 
since it introduces some of the key ideas involving randomization that are used 
in the proof of lP = PSPACE. Problems 7.16-7.17. 

7.7.3. Arithmetization of Satisfiability 

A key step in the proof of #3SAT E lP is the conversion of the Boolean formula 
F into an algebraic formula. This process is called the arithmetization of a 
Boolean formula. Let us view any truth assignment A for the variables in F as 
an n-dimensional vector over the integers. More precisely, we represent it by a 
vector a = (al,a2, ... ,an ) such that 

if Ai = TRUE 

if Ai = FALSE 

At the same time, we convert F into a polynomial with the variables XI, ••. , X n , 

as follows. Any literal Lij is turned into a linear polynomial lij by replacing 
a Boolean variable Xj by 1 - Xj, and a negated variable Xj by Xj. A clause 
Ci = Lil V Li2 V Li3 is replaced by a degree 3 polynomial Ci = 1 -lil ldi3. Finally, 
the Boolean formula F(X I, ... , X n) is represented by the following polynomial 
of degree 3m: 

m m 

!(xt. ... ,xn ) = IT Ci = IT(l-lil ldi3). 
i=1 i=1 

~ Example 7.2: Consider the 3-CNF Boolean formula 

F(Xt.X2,X3,X4) = (XI V X 2 V X 3) 1\ (XI V X3 V X4). 

Then, the arithmetization of F yields the following polynomial of degree 6: 
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Exercise 7.7: Show that there is no essential difference between the Boolean formula 
F and its arithmetization f: let A be any truth assignment, and a the corresponding 
vector over {O, 1}. Show that F (A" ... , An) = TRUE if and only if f(a" ... , an) = 1. 

Let #F denote the number of satisfying truth assignments for F, and define 
1 1 1 

#1 = L L··· L/(xt. ... ,Xn). 
Xl =<> X2=<> X.=<> 

Since #F = #1, the problem of verifying that #F = s is the same as the 
problem of verifying that #1 = s. 

It will be convenient to work over a finite field and so we treat the polynomial 
1 as a polynomial over the field Zp, for some prime p. Since the value of #1 
cannot exceed the total number of truth assignments, this restriction to a finite 
field will not affect the value of #1 provided we choose p > 2n. By Bertrand's 
Postulate, there is a prime p such that 2n < p < 2n+l and we can use any such 
prime number. A technical issue is that there is no known polynomial time 
algorithm for finding such a prime. But this issue can be easily handled in the 
setting of an interactive proof system. The verifier asks the prover to specify 
such a p~me p, and to prevent cheating it also asks for a proof of the primality 
of p. As we will see in Section 14.6, there exist polynomial length "certificates of 
primality" that can be verified in polynomial time, and the all-powerful prover 
can easily provide such a certificate of primality along with the value of p. 

The following notation will be useful in describing the interactive proof 
system. For any polynomial f(xt. ... , xn), and for 0 < i < n, define the partial 
SURl polynomials 

1 1 

li(Xt. ... ,xJ = L ... L/(xt. ... ,Xn). 
Xi+l=O x.=<> 

The proof of the following set of properties for the partial sum polynomial is 
left as Problem 7.15. 

Lemma 7.9: The partial sum polynomials have the following properties: 

1. 10 = #f. 
2. In(Xt. ... , Xn) = I(xt. ... , Xn). 

3. for 1 <i< n, li-l(Xt. ... ,Xi-d = li(Xt. ... ,Xi-t.O) + li(Xt. ... ,Xi-t. 1). 

7.7.4. The Interactive Proof System for #3SAT 

We now provide an interactive proof system that takes as input a polynomial 
I(xt. ... ,xn) over Zp and an integer s E Zp, and verifies that #1 = s. Since 
a verifier can easily compute the arithmetization of a 3-CNF formula F, this 
suffices to show that #3SAT E IP. 
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The basic step in the interactive proof system is for the verifier to ask the 
prover for the description of the polynomial !I(Z), where Z is a symbolic variable. 
Suppose that the prover responds with a polynomial g(z), which mayor may 
not be the desired polynomial !I(Z). Assuming that the prover does not cheat, 
it must be the case that #! = g(O) + g(l). Therefore, the verifier compares s 
with g(O) + g( 1) and rejects if the two are unequal. It must now verify that g is 
indeed the same polynomial as !I. 

Of course, we have to concern ourselves only with the case where #! =1= s, 
since it will be clear that an honest prover can always make the verifier accept by 
providing correct responses. Now, since g(O)+ g(l) = s, and #! = !I(O)+ It(l) =1= 

s, it follows that g(z) =1= !I(Z). The verifier's goal is to make sure that the 
polynomial equality g(z) = !I(Z) is satisfied, so as to ensure that it catches a 
prover that is attempting to cheat by sending a polynomial g(z) =1= !ICZ) such 
that g(O) + g(1) = s. The only problem is that while the verifier knows g(z) 
explicitly, the polynomial It (z) is only implicitly defined by the equation 

I I 

!I(Z) = L··· L!(Z,X2, ... ,Xn)' 
:<2",,0 x.=O 

Computing !I (z) explicitly from this equation would require super-polynomial 
time. But this is precisely the kind of situation where we use the technique 
described in Section 7.2 for verifying polynomial identities. 

The verifier chooses an element r E Zp uniformly at random, evaluates 
S' = g(r), and asks the prover to show that s' = It (r). Again, we are only 
interested in analyzing the case where g(z) =1= !I(Z). Of course, it is still possible 
that S' = !I(r). In this case, the prover will succeed in cheating the verifier as 
it will be able to pass all subsequent tests (described next). But this "error" 
happens with a small probability since the polynomials in question are of low 
degree; in particular, the error probability is given by 

3m 
Pr[g(r) = !I(r) I g(z) =1= !I(Z)] < -, 

p 

as the degree of these polynomials is at most 3m. 
Assuming that this error does not occur, the verifier has a value S' =1= !I(r), 

and the subsequent interaction is geared toward detecting this fact. The verifier 
now asks the prover to show that s' = !I(r), or equivalently that 

I I 

S' = L··· Lf'(X2, ... ,Xn), 
:<2",,0 :<.=0 

where we define the polynomial f'(X2, ... , Xn) = !(r, X2, ... , Xn). This is exactly 
the original verification problem all over again, but the crucial point is that the 
number of variables has been reduced to n - 1 from n. 

The verifier can perform this new verification by recursively running the 
same protocol, and the recursion bottoms out with the problem of verifying the 
equality of two degree 0 polynomials, which is a trivial task. The probability of 
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error accumulates over the various stages of recursion, but since the number of 
stages is n, we can bound the overall error probability by 3mn/p. Recall that p 
was chosen to be larger than 2" and so the error probability is small. The net 
running time of the verifier is bounded by a polynomial in nand m. 

7.8. PCP and Efficient Proof Verification 

We continue with our excursion into complexity theory and describe the appli
cation of Freivalds' technique to a problem in proof verification. In Section 1.5.2, 
we defined NP in terms of the verification of proofs by deterministic polynomial
time verifiers. In Section 7.7, we replaced the notion of a proof with that of 
an active prover and, in addition, we permitted the verifier to use randomness 
in the verification process. A natural question to ask is: what is the additional 
power of a polynomial-time verifier working with proofs (as opposed to provers) 
when they use randomization? It turns out that the answer to this question 
again involves the use of algebraic methods together with randomization. 

Before addressing the question posed above, it is important to understand the 
difference between a proof and a prover. A prover is active in the sense that it 
can cheat in an adaptive and online manner by using its knowledge of the earlier 
queries from the verifier to decide upon its responses to subsequent queries. A 
proof, on the other hand, is passive and non-adaptive. We can view the proof 
as being written down by an adversarial prover that knows the particular input 
x being tested for membership in L, as well as a description of the protocol that 
will be followed by the verifier. The prover can attempt to use this knowledge to 
write down a fallacious proof of x's membership in L, even though it is the case 
that x ~ L. In effect, a proof is a predetermined set of responses to all possible 
questions that could be asked by a specific verifier when its random bits are 
as yet undetermined. The crucial difference is that unlike the responses of an 
online prover, a proof cannot change in response to the questions posed by the 
verifier, and thus it cannot adapt to even the partial information of the verifier's 
random bits that can be inferred from the questions themselves. Since a prover 
can simulate an offline proof, a prover has more power to cheat and, conversely, 
a veriner working with a proof has more power than a verifier working with a 
prover. 

We modify the definition of IP to that of PCP (for Probabilistically Checkable 
Proofs), the only difference being that the prover is replaced by a proof. By the 
preceding discussion, this is a possibly wider class of languages than IP. We 
define PCP as the class of all languages whose proofs of membership can be 
verified by a randomized polynomial time verifier V with random access to a 
proof, i.e., the verifier can query arbitrary bits in the proof by specifying their 
indices or positions. 

~ Definition 7.4: The class PCP consists of all languages L that have a randomized 
polynomial-time verifier V such that for any x E r, 

ISO 



7.8 PCP AND EFFICIENT PROOF VERIFICATION 

• X E L => there exists a proof n, such that Pr[V(x, n) accepts] = 1. 

• x ft L => for all purported proofs n, Pr[V(x,n) accepts] < 4. 

When x ~ L, all purported proofs n must be erroneous, and the verifier is 
required to spot an error with high probability. 

We would like to point out that an equivalent definition of PCP is in terms 
of a multi-prover interactive proof system where the verifier has access to two 
or more provers, and the provers are not allowed to communicate with each 
other once the verifier starts the interaction with the provers (see Problem 7.18). 
It has been shown that the class PCP is the same as NEXP (non-deterministic 
exponential time), clearly a superset of NP. Our interest is in a restricted version 
of PCP where we account for the use of randomness and the number of pits in 
the proof examined by the verifier. 

~ Definition 7.5: The class PCP[r(n),q(n)] consists of all languages L E PCP that 
have a randomized polynomial-time verifier V which, on inputs of length n, uses 
O(r(n» random bits and examines O(q(n») bits of a purported proof n. 

Let poly(n) denote a function of n that is polynomially bounded. It follows 
that P = PCP[O,O], NP = PCP[O,poly(n)] and co-RP = PCP[poly(n),O] (see 
Problem 7.19). Our goal is to establish the following result, which is far less 
obvious; the rest of this section is devoted to the proof of this theorem. 

Theorem 7.10: NP ~ PCP[poly(n), 1]. 

It is possible to improve Theorem 7.10 by reducing r(n) to a logarithmic 
function of n, but we omit the rather intricate proof of the stronger version. 
This result is quite amazing in the sense that it requires a proof that can be 
verified by examining only O( 1) of its bits, regardless of the length of the input. 
The power of Theorem 7.10 can be fully appreciated by noting that it may be 
applied to the verification of the (suitably encoded) proof of any mathematical 
statement. 

7.8.1. Arithmetization Revisited 

To prove Theorem 7.10, it suffices to show that the NP-complete problem 
3-SAT belongs to PCP[poly(n), 1]. A proof of the satisfiability of a 3-SAT 
formula F is easy to construct: write down the satisfying truth assignment 
A = (At,A2, ••• ,An ) E {TRUE,FALSE}n for the variables in F. A verifier can 
substitute these values into the definition of F and verify that it evaluates to 
TRUE. Unfortunately, this requires that the verifier access all n bits of the proof. 
If the verifier were to access only a small number of bits in the proof, that 
would not give sufficient information to decide whether the truth assignment 
would satisfy F. We will get around this problem by requiring that the proof 
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II be a very redundant encoding of A, much like an error-correcting code. To 
do this, we convert this Boolean formula F into an algebraic formula using an 
arithmetization similar to that in Section 7.7. 

This time we convert F into a polynomial over the field Z2, as follows. A 
clause Ci = Lil V Li2 V Li3 is replaced by a polynomial Ci of degree 3 obtained 
by replacing any Boolean variable Xj by (1 - Xj), any negated variable Xj by 
x j. and the Boolean operation V by the field operation of multiplication. For 
example, when Ci = Xii V X i2 V X i3, we obtain the term Ci = (I-xii )xd 1-Xi3); for 
notational convenience, we omit the dependence of Ci on the variables by writing 
Ci instead of Ci(XiI, Xi2, Xi3). The assignment A causes Ci to evaluate to TRUE if 
and only if the corresponding vector a causes Cj to evaluate to O. We replace the 
Boolean operator 1\ by the field operation of addition. The arithmetization of F 
is now given by the degree 3 multivariate polynomial f(Xh . .. , xn) = 2:::'1 Cj. It is 
important to keep in mind that all additions and multiplications are performed 
modulo 2. 

The reason we choose this different arithmetization is that it yields a polyno
mial of degree 3 instead of 3m, and this is important for reducing the number 
of random bits and queries used by the verifier. The problem with this arith
metization is that the polynomial f does not correspond exactly to the Boolean 
formula F, as indicated in the following exercise. 

Exercise 7.8: Let A be a truth assignment for F, and a the corresponding integer 
vector. Show that if F (A) = TRUE, then f(a) = O. Show also that the converse need 
not be true, i.e., f(a) could evaluate to 0 even though F (A) =1= TRUE. 

To get around this problem we use a variant of Freivalds' technique: choose 
a random vector r = (rh ... , rm) uniformly at random from zr;, and redefine f 
to be 

m 

f(Xh ... ,Xn ) = LriCi. 
i-I 

The proof of the following lemma is very similar to the argument used in the 
proof of Theorem 7.1. 

Lemma 7.11: If F(A) = FALSE, then Prlf(a) = 0] = 1/2. 

Thus, with sufficiently high probability (which can be further boosted by repeat
ing the entire verification protocol several times), the polynomial f has a root 
(in ~) if and only if the Boolean formula F is satisfiable. We concentrate on 
the verification of the existence of a root of a multivariate degree 3 polynomial 
over Z2. More precisely, we seek a verifier V such that: if f has a root, there 
exists a proof that will convince the verifier; if not, any proof will deceive the 
verifier with probability at most 1/2. 
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7.8.2. A Proof of Satisfiability 

In this section we describe a proof of satisfiability (actually of the existence of 
a root for f) that the verifier would expect to see in the case when the formula 
is satisfiable. Later we will see how the verifier can efficiently look for errors or 
fallacies in the proof. 

~ Definition 7.6: Given an n-dimensional vector x and an m-dimensional vector 
y, their outer product z = x 0 y is an n x m matrix z such that Zjj = XjYj. 

We will sometimes view the matrix z as an (nm)-dimensional vector by writing 
it in a row-major form; this should be clear from the context. (The row-major 
form of a matrix is obtained by concatenating its rows in the order of increasing 
row indices.) Consider the vector a of the assignment of values to the variables 
in f. Define b = a 0 a and c = a 0 b, where the second definition views b as a 
vector; then, bij = aiaj and Cijk = aibjk = ajajak. The vectors a, b, and c will be 
used to define three linear functions over Z2 as follows. 

n 

Ga(zt, .. . , zn) = L ajzj, 
i-I 

n n 

Gb(Zll, ... , znn) - L bijzij = L L ajajzjj. 
iJ j-I j-I 

n n n 

Gc(Zlll, ... , znnn) - L CijkZijk = L L L ajajakZjjk. 
j,j,k i-I j-I k-I 

Note that Ga : Z2 ~ Z2, Gb : xt ~ Z2, and Gc : Z23 
~ Z2. These functions 

allow us to compute the sum of a subset of the entries in a, b, or c, by encoding 
the subset into a characteristic vector, which is then used as an assignment to 
the variables. 

The coefficients of the terms in any polynomial over Z2 must be either 0 or 
1. Applying this fact to the degree 3 polynomial f, we can assume that it is of 
the form 

f(x) = IX + LXi + L XjXj + L XiXjXb 
jeSI (iJ)eS2 (iJ,k)eS3 

where IX is a fixed element of Z2, SI is a set of indices, S2 is a set of pairs 
of indices, and S3 is a set of triples of indices. For a fixed assignment a, this 
expression can be simplified into the following. 

f(a) - IX + L aj + L aiaj + L aiajak 
ieSI (iJ)eS2 (i,j,k)eS3 

- IX + Ga(XS1 ) + Gb(XS2 ) + GC(Xs3 ). 

Here Xs denotes the characteristic vector of a set S, i.e., the ith component of Xs 
is 1 if and only if the ith element of the universe belongs to S. Our definition of 
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the linear functions Ga, Gb, and Gc is such that the three sums can be determined 
by evaluating each of these functions at a single point. 

The desired proof n of the existence of a root of f consists of the values of 
Ga, Gb, and Gc at all points in their respective domains. Thus, the verifier V can 
determine the value of f(a) by examining three bits, one each to determine the 
values of Ga(XsJ, Gb(XS2 ), and GC(XS3 ). This would solve the proof verification 
problem with r(n) = 0(n3) random bits and and q(n) = 3 in the case of correct 
proofs. But the whole point is to be able to deal with erroneous proofs. What 
if the function f does not have a root but an adversary chooses some functions 
Ga, Gb, and Gc that result in the verifier being deceived with high probability? 
Of course, the adversary has to fix the proof by writing down Ga, Gb, and Gc 
before the verifier chooses the random bits r used to obtain f from F, but this 
may not prevent the adversary from cheating successfully. In fact, the adversary 
may not even choose Ga, Gb, and Gc to be linear functions. For example, if they 
are random functions, the probability of acceptance of an incorrect proof is 1/2. 

7.8.3. The Verification 

We now complete the argument by showing how the verifier can test a proof 
that is purported to be correct and in the form described above. There are 
two properties of the proof that the verifier would like to ensure. First, that 
the functions Ga, Gb, and Gc are linear functions. Second, they should all 
be determined by the same vector a. Given these two properties, the strategy 
described above will work. The constraint is that V is allowed to expend only 
polynomially many random bits and to examine only a constant number of bits 
in the proof to achieve this goal. In the verification procedure described below, 
there are several sub-verifications to be performed. Each of these will be shown 
to succeed with a constant probability, where failure means that the verifier 
fails to detect a particular type of error in the proof. We will not compute 
these probabilities explicitly; it suffices to observe that they can all be made 
smaller than any fixed constant by repeating the sub-verification 0(1) times. 
Since the whole process makes only 0(1) probes into the proof, the number of 
sub-verifications is also bounded and the total probability of error is no more 
than the sum of the error probabilities at each stage. We can thus guarantee 
that the overall probability of error is bounded away from 1/2. 

~ Definition 7.7: Let f, g : I -+ 0 be two functions with identical finite domain 
and finite range. Their distance 11(f, g) is defined as 

l1(f,g) = Prlf(x) =1= g(x)], 

where x is chosen uniformly at random from I. 

In other words, the distance between these functions is the fraction of the 
domain in which they take on different values. 
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~ Definition 7.8: For 0 ~ f> s 1, the functions f and g are said to be f>-close if 
~(f,g) sf>. 

A linear function f(x) : Z2 ~ Z2 is one that can be expressed as f(x) = ax+b, 
for some choice of the coefficients a, b E Z2. For historical reasons, in the rest 
of this section we will abuse terminology somewhat by defining linear functions 
to be those functions that can be expressed as f(x) = ax. It can be shown that 
a univariate function f(x) : Z2 ~ Z2 is linear if and only if for all a and b, 
f(a) + f(b) = f(a + b). In the case of multivariate functions f(x) : ~ ~ Z2, we 
say that f is linear if it is of the form l:?""i ajXj. Again, it can be shown that f 
is linear if and only if for all a and b, f(a) + f(b) = f(a + b) (see Problem 7.22). 
We define a nearly linear function as one that satisfies this property for random 
choices of a and b with probability bounded away from zero. 

The following lemma is intuitively obvious, but the proof is non-trivial. We 
outline the proof in Problem 7.24. 

Lemma 7.12: Fix any f> such that 0 < f> < 1/3. Suppose that G : Z2 ~ Z2 is 
a function such that for x and y chosen independently and uniformly at random 
from Z2. 

- - - ~ Pr[G(x) + G(y) = G(x + y)] > 1 - 2' 

Then. there exists a linear function G : Z2 ~ Z2 such that G and G are f>-close. 

Essentially, this lemma says that if G satisfies the linearity condition 'on most 
pairs of points, then modifying its value at a few points will make it a linear 
function. 

Suppose now that the proof n contains the values of three arbitrary (possibly 
non-linear) functions Ga, Gb, and Gc• The verifier uses the lemma to ensure that 
they are all nearly linear and can then assume that the f>-close linear functions 
Ga, Gb, and Gc are actually presented in the proof. We illustrate this for the 
case of Ga. Suppose the verifier V chooses x and y uniformly at random from 
Z2' Then it probes the proof and verifies that Ga(x) + Ga(y) = Ga(x + y). If this 
test fails, the entire proof can be rejected since it is clear that Ga is not a linear 
function. When the function passes this test, however, it is not guaranteed that 
it is indeed a linear function. But with high probability, the function Ga satisfies 
the above lemma and is nearly linear. Repeating this test boosts the probability 
of spotting a function that is not f>-close to a linear function. 

At this point, V knows that with high probability, each of the three functions 
in the proof is f>-close to some linear function. In fact, the verifier can now 
evaluate these linear functions at arbitrary points via the following self-correction 
mechanism. Suppose that the verifier needs to compute Ga(z) for an arbitrary 
Z E Z2' while using the values of the function Ga. It chooses x E Z2 uniformly 
at random, and evaluates Ga(z) = Ga(z - x) + Ga(x). Since Ga is f>-close to 
Ga, evaluating it at random points gives us the value of Ga at those points 
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with probability 1 - E>. Even though the random points z - x and x are highly 
correlated, the probability that they are both evaluated correctly is at least 1-2E>. 
This can be repeated for independent choices of x to reduce the probability of 
error below any desired constant. We may now assume that V can evaluate the 
linear functions Ga, Gb, and Gc at 0(1) points each, with the error probability 
being smaller than any desired constant. Thus, we may as well assume that the 
proof contains the correct values of Ga, Gb, and Gc at all points. 

Of course, the functions Ga, Gb, and Gc could be linear but not related in 
the desired fashion. Suppose V could verify that these functions are determined 
by some coefficients a, b, and c such that b = a 0 a and c = a 0 b, with a small 
probability of error. Then it is possible to verify the existence of a root for 
f as described earlier. Let us now concentrate on verifying the outer product 
property. 

The following lemma can be proved in a manner similar to Theorem 7.1. 

Lemma 7.13: Let r, S E Z; be chosen independently and uniformly at random. 
Suppose that b =1= a 0 a, then 

Note that a 0 a and b are now being interpreted as n x n matrices, and we are 
applying Freivalds' matrix identity verification technique to determine whether 
(a 0 a)s = bs. To verify the equality of these two vectors, we merely apply the 
technique once more by taking the inner product with the random vector r. 

This test of the outer product construction can be performed with access 
to the functions Ga and Gb by observing that aT s = Ga(S), rT a = Ga(r), and 
rT bs = Gb(r 0 s); thus, V merely confirms that Ga(r)Ga(s) = Gb(r 0 s). This 
requires only three probes into the proof. A similar test will verify that c = a 0 b. 

Finally, we invite the reader to check that the total number of probes into the 
proof is O( 1). In making any probe, the only use of randomness is in the choice 
of the point at which the function is being evaluated, and each of these uses 
0(n3) random bits. We conclude by pointing out that the length of the proof is 
enormous, being 28 (n

3
). As we remarked earlier, this proof verification process 

can be improved such that the length of the proof reduces to a polynomial in n 
and the number of random bits reduces to a logarithmic function of n, while still 
preserving the property that only O( 1) bits of the proof need to be examined. 

Notes 

The notion of program checking alluded to in Section 7.1 is due to Blum and Kannan [66]. 
The technique for verifying matrix and univariate polynomial multiplication is due to 
Freivalds [157]. More efficient versions of this test (in terms of the number of random 
bits used) have been devised by Naor and Naor [319], with further improvements by 
Kimbrel and Sinha [254]. Blum, Chandra, and Wegman [64] have applied Freivalds' 
technique to obtain an RP algorithm for deciding the equivalence of free Boolean graphs, 
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also known as ordered Boolean decision diagrams (see Problem 7.3). The generalization 
to multivariate polynomial identities has been rediscovered many times. Although it 
is usually attributed to the independent and simultaneous articles by Schwartz [367] 
and Zippel [422], essentially the same result appears in an article by DeMilio and 
Lipton [123] on the testing of algebraic programs. 

The fast matrix multiplication algorithm, running in 0(n2.376 ) time, is due to Copper
smith and Winograd [113]. The book by Aho, Hopcroft, and Ullman [5] is a good source 
for deterministic algorithms for problems involving polynomials and matrices, and most 
of the basic results assumed in this chapter can be found therein. Zippel's book [423] 
provides comprehensive coverage of randomized and deterministic algorithms for com
putations with polynomials. For general information on prime numbers, in particular 
Bertrand's Postulate and the Prime Number Theorem, the reader may refer to the books 
on number theory mentioned in the Notes section of Chapter 14. 

Tutte [398] first pointed out the close connection between matchings in graphs and 
matrix determinants, as described in Problem 7.8. The simpler relation between bipartite 
matchings and matrix determinants was given by Edmonds [134], who also showed that 
the size of the maximum matching equals the rank of the matrix (see Problem 7.7). The 
application of the randomized polynomial identity verifier to the problem of matchings 
in graphs was first pointed out by Lovasz [280], who also established a tight relation 
between the matrix rank and the size of the maximum matching (see Problem 7.9 for 
a simpler proof). These ideas were applied to the construction of simple algorithm for 
maximum matchings by Rabin and Vazirani [348, 349]. Although their randomized 
algorithms for matchings are simple and elegant, they are slower than the deterministic 
O(mJii) time algorithms for bipartite matchings due to Hopcroft and Karp [203], and 
for non-bipartite matchings due to Micali and Vazirani [308,406]; the bound for bipartite 
matchings has been marginally improved to 0(n2.5/logn) by Feder and Motwani [140]. 
As we shall see in Chapter 12, this algebraic view of matchings and the algorithmic ideas 
of Rabin and Vazirani have had considerable influence on the development of efficient 
parallel algorithms for matchings. 

The discussion on randomized pattern matching algorithms is based on the work of 
Karp and Rabin [249]. The deterministic linear time algorithms for pattern matching 
mentioned above are due to Knuth, Morris, and Pratt [262] and to Boyer and Moore [82]. 

The survey articles by Babai [39, 40], Goldreich [174, 175], and Johnson [217, 218] 
give excellent and comprehensive accounts of results in the area of interactive proof 
systems and proof verification. The protocol for graph non-isomorphism is due to 
Goldreich, Micali, and Wigderson [176]. The concept of an interactive proof system 
was introduced by Goldwasser, Micali, and Rackoff [179]. Their motivation was derived 
from cryptography, and with this application in mind they defined a special type of 
interactive proof system called a zero-knowledge interactive proof system in which the 
prover would like to prevent the verifier from gaining any useful information while 
participating in the protocol. Around the same time, Babai [38] introduced the notion 
of Arthur-Merlin games which are essentially the same as interactive proof systems, the 
key difference being that the prover (Merlin) has access to the random bits of the verifier 
(Arthur). Babai's definition was motivated by the desire to classify the complexity of 
certain group-theoretic problems. A related concept is that of "games against nature" 
introduced by Papadimitriou [324]. The evidence that graph isomorphism is unlikely 
to be NP-complete is obtained by combining the results of Boppana, Hastad, and 
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Zachos [72] with those of Goldreich, Micali, and Wigderson [176] and Schoning [365]; 
the details are beyond the scope of this book; we refer the reader to Johnson [217] for 
an overview of this argument. 

The result that #3SAT is in IP is originally due to Lund, Fortnow, Karloff, and 
Nisan [288]. The proof presented here also includes ideas from Babai and Fortnow [41] 
and Shamir [372]. In showing that IP = PSPACE, the easy direction that IP S; 

PSPACE follows from the work of Papadimitriou [324], while the more difficult proof 
of PSPACE s; IP was devised by Shamir [372] based on the techniques used by Lund, 
Fortnow, Karloff, and Nisan [288] (see Problems 7.16-7.17). The techniques used in 
these results were inspired by the ideas used in program checking by Blum, Luby, and 
Rubinfeld [68] and Lipton [277], as well as the idea of representing Boolean formulas 
as polynomials in the work of Beaver and Feigenbaum [47]. The generalization of IP 
to MIP, via the introduction of multiple provers, is due to Ben-Or, Goldwasser, Kilian, 
and Wigderson [53]. Fortnow, Rompel, and Sipser [153] showed that MIP s; NEXP, 
while the more difficult direction NEXP S; MIP was established by Babai, Fortnow, and 
Lund [43]. 

The complexity class PCP was defined by Arora, and Safra [33] based on a notion 
implicit in the work of Feige, Goldwasser, Lovasz, Safra, and Szegedy [141]. Efficiently 
and probabilistically checkable proofs are sometimes also referred to as transparent 
proofs - a terminology introduced earlier by Babai, Fortnow, Levin, and Szegedy [42]. 
These concepts are variants of the probabilistic oracle machines introduced by Fortnow, 
Rompel, ,and Sipser [153] as an alternate view of multiprover systems. Refer to the 
survey articles cited above for a more thorough discussion of proof systems and the 
evolution of the current definitions. 

Theorem 7.10 is due to Arora, Lund, Motwani, Sudan, and Szegedy [32]; they also 
established that NP S; PCP [log n, 1], combining ideas from various articles mentioned 
above. The theses by Sudan [388] and Arora [31] contains more complete expositions of 
the latter result. An important motivation for this work on the PCP model was to derive 
the hardness of approximation results for problems such as cliques in graphs [141] and 
MAX-SAT [32] (see the Notes section of Chapter 5). Lemma 7.12 is originally due to 
Blum, Luby, and Rubinfeld [68]. The version we state here can be inferred from the 
results of Rubinfeld [360] and Gemmell, Lipton, Rubinfeld, Sudan, and Wigderson [165]. 

Problems 

7.1 In this problem we will see that Theorem 7.1 is actually just a special case of 
Theorem 7.2. In the setting of Theorem 7.1. construct a multivariate polynomial 
Q such that Q == 0 if and only if AB = C. and then apply Theorem 7.2 to derive 
result in Theorem 7.1. 

7.2 Two rooted trees T1 and T2 are said to be isomorphic if there exists a one
to-one onto mapping f from the vertices of T1 to those of T2 satisfying the 
following condition: for each internal vertex v of T1 with the children V1 • ...• 
Vk. the vertex f(v) has as children exactly the vertices f(V1) • .... f(Vk)' Observe 
that no ordering is assumed on the children of any internal vertex. Devise an 
efficient randomized algorithm for testing the isomorphism of rooted trees and 
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analyze its performance. (Hint: Associate a polynomial P" with each vertex 
v in a tree T. The polynomials are defined recursively. the base case being 
that the leaf vertices all have P = Xo. An internal vertex v of height h with the 
children Vl • .•.• Vk has its polynomial defined to be 

(Xh - P",)(Xh - P"z)··· (Xh - P"k)' 

Note that there is exactly one indeterminate for each level in the tree.) 

Remark: There is a linear time deterministic algorithm for this problem based 
on a similar approach. R~fer to Aho. Hopcroft and Ullman [5]. 

7.3 (Due to M. Blum. A.K. Chandra. and M.N. Wegman [64].) A labeled directed 
acyclic graph G(V, E) may be used to represent a Boolean fUnction of n 
variables Xl,"" Xn • as follows. One vertex of V is the start vertex. and another 
the finish vertex. Every vertex has out-degree zero or two; if two edges 
leave a vertex. one must be labeled with a variable and the other by the 
complement of this variable. Such a graph is said to be free if there is at most 
one occurrence of every variable - complemented or not - on any (directed) 
path of G. The Boolean fUnction represented by such a graph is the sum of 
all product terms. where each product term is a product of all the variables 
on a path from the start vertex to the finish vertex. 

Devise a randomized algorithm that. given two free graphs. decides whether 
they represent the same Boolean function. If the functions are different. the 
algorithm should output NO; otherwise. it should output YES with probability 
at least 1/2. 

7.4 (Due to R.J. Lipton [277]; see also M. Blum and S. Kannan [66].) Consider the 
problem of deciding whether two integer multisets Sl and S2 are identical in 
the sense that each integer occurs the same number of times in both sets. 
This problem can be solved by sorting the two sets in O(n log n) time. where 
n is the cardinality of the multisets. Suggest a way of representing this as a 
problem involving a verification of a polynomial identity. and thereby obtain 
an efficient randomized algorithm. Discuss the relative merits of the two 
algorithms. keeping in mind issues such as the model of computation and the 
size of the integers being operated upon. (See also Problem 6.20.) 

7.5 (Due to J. Naor.) Two n x n matrices .A and B over a field Z2 are said to be 
similar if there exists a non-singular matrix T such that T.A T-1 = B. Devise a 
randomized algorithm for testing the similarity of the matrices .A and B. (Hint: 
View the entries in T as a collection of variables. and from the definition of 
similarity. obtain a homogeneous set of linear equations that these variables 
must satisfy. Any solution T must be a linear combination of the basic 
solutions to this family of equations. Apply the randomized techniques from 
this chapter to determining whether there exists a linear combination of the 
basic solutions that yields a non-singular matrix T.) 

7.6 Let Q(Xl' X2,' .. , xn) be a multivariate polynomial over a field Z2 with the degree 
sequence (d1, d2, .. • , dn ). A degree sequence is defined as follows: let d1 be 
the maximum exponent of Xl in Q. and Ql(X2," .,xn) be the coefficient of x1' 

in Q; then. let d2 be the maximum exponent of X2 in Ql. and Q2(X:v"" xn) be 
the coefficient of x:z in Ql; and. so on. 
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Let Slo ~ •...• Sn ~ Z2 be arbitrary subsets. For 'iESI chosen independently 
and uniformly at random. show that 

7.7 (Due to J. Edmonds [134].) Let G(U, V, E) be a bipartite graph. and let A be 
the corresponding matrix of indeterminates as defined in Section 7.3. Show 
that the size of a maximum matching in G is exactly equal to the rank of the 
matrix A. 

7.8 (Tutte's Theorem [398]) In this problem we generalize Theorem 7.3 to the case 
of an arbitrary (possibly non-bipartite) graph G(V,E) where V = {V1,""Vn}, A 
skew-symmetric matrix A is defined to be a matrix in which for all i and j. 

Alj = -Aii . Let A be the n x n skew-symmetric matrix obtai ned from G (V, E) 
as follows. A distinct indeterminate xii is associated with the edge (Vi, Vi)' 

where i < j. and the corresponding matrix entries are given by Ali = xii and 
Aii = -xii; more succinctly. 

(VI, Vi) E E and i < j 
(VI, Vj) E E and i > j 
otherwise 

This matrix is called the Tutte matrix of the graph G. Define the multivariate 
po!ynomial Q(Xll, X12,···, xnn) as being equal to det(A). Show that G has a 
perfect matching if and only if Q ¢ O. 

7.9 (Due to M.O. Rabin and V.V. Vazirani [348. 349].) Consider the Tutte matrix of 
a (non-bipartite) graph G(V,E) defined in Problem 7.6. Show that the rank of 
the Tutte matrix of G is twice the size of a maximum matching in G. 

Hint: Let A be an n x n skew-symmetric matrix of rank,. For any two sets S. 
T c {1, . .. ,n}. denote by AST the sub-matrix of A obtained by including only 
the rows with indices in S and columns with indices in T. Then. for any two 
sets S. T c {1, ... , n} of size r. 

det(Ass) x det(A Tr) = det(Asr) x det(A TS). 

7.10 Given a randomized algorithm for testing the existence of a perfect matching 
in a graph G. describe how you would actually construct such a matching. 
Assuming that you use the randomized testing algorithm from Problem 7.6. 
compare the running time of your approach with that of the best known 
deterministic algorithm perfect matching mentioned in the Notes section. 

7.11 Given a randomized algorithm for testing the existence of a perfect matching 
in a graph. describe how we can use this to construct a maximum matching 
in a graph G. 

7.12 (Due to R.M. Karp and M.O. Rabin [249].) In this problem we will use a 
different fingerprinting technique to solve the pattern matching problem. The 
idea is to map any bit string s into a 2 x 2 matrix M(s). as follows . 

• For the empty string f. M(f) = [~ ~]. 
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• M(O) = [~ ~ l 
[1 11]' • M(1) = 0 

• For non-empty strings x and y, M(xy) = M(x) x M(y). 

Show that this fingerprint fUnction has the following properties. 

1. M(x) is well-defined for all x E {O, 1}". 

2. M(x) = M(y) ~ x = y. 

3. For x E {O, 1}n, the entries in M(x) are bounded by Fibonacci number Fn 
(see Appendix B). 

By considering the matrices M(x) modulo a suitable prime P. show how you 
would perform efficient randomized pattern matching. Explain how you would 
implement this as a "real-time" algorithm. 

7.13 (Due to R.M. Karp and M.O. Rabin [249].) Consider the two-dimensional 
version of the pattern matching problem. The text is an n x n matrix X, and 
the pattern is an m x m matrix Y. A pattern match occurs if Y appears as a 
(contiguous) sub-matrix of X. To apply the randomized algorithm described 
above, we convert the matrix Y into an m2-bit vector using the row-major 
format. The possible occurrences of Y in X are the m2-bit vectors XU) 
obtained by taking all (n - m + 1)2 sub-matrices of X in a row-major form. It is 
clear that the earlier algorithm can now be applied to this scenario. Analyze 
the error probability in this case, and explain how the fingerprints of each 
XU) can be computed at a small incremental cost. 

7.14 Prove the following relations directly from the definition of IP, Le .. without 
invoking any results regarding IP stated in this chapter. 

(a) Show that NP ~ IP. 

(b) Show that if the definition of IP is modified to require that the probability 
of error be zero, then the resulting complexity class would be exactly the 
class NP. 

(c) Show that co-RP ~ IP. 

7.15 Prove Lemma 7.9. 

7.16 (Due to C.H. Papadimitriou [324].) Let PSPACE be the class of all languages 
whose membership can be decided using space polynomial in the input size, 
with no explicit constraint on the running time. Show that IP ~ PSPACE. 

7.17 (Due to A. Shamir [372].) A quantified Boolean formula (OBF) is a Boolean 
formula CI> of the form 

(Q1Xll(Q2X2)'" (Qn Xn)F(X1, X2··.·, xn), 

where each Xi is a Boolean variable, each Qi is either the uni''1ersal ('9') or the 
existential (3) quantifier, and F is quantifier-free Boolean formula. It is known 
that OBF is PSPACE-complete. By devising an interactive proof system for 
OBF, show that PSPACE ~ IP. 
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Hint: The following is a brief sketch of a reformulation of Shamir's proof 
as presented by A. Shen. The first step is to arithmetize the OBF formula 
CP. For any Boolean expression G, possibly a single Boolean variable or a 
quantified formula, construct an integer polynomial G using the following rules 
recursively: replace TRUE by 1 and FALSE by 0; replace Boolean variables Xi 

by arithmetic variables Xi; replace P /\ Q by P x a; replace the negation of 
an expression P by 1 - P; replace P v Q by P /\ Q and apply the previous two 
rules; replace ('v'Xi)P(X/) by P(O) x P(1); and, replace (3X/)P(Xi) by P(O) + P(1)
(P(O) x P(1)). Apply the ideas used in devising an interactive proof system 
for the arithmetized versio!! of #3SAT to the problem of verifying the value of 
the arithmetized version, cP, of the OBF formula cp. One serious problem in 
the case of OBF is that the intermediate polynomials need not be of a small 
degree, primarily to the arithmetization of the the quantifiers. To handle this 
problem, assume that the arithmetization of the sequence of quantifiers Q1, 

... , Qn is interleaved with the application of the following reduce operation: 
for each (integer) variable XI, replace any non-zero power xt by X;. Argue 
that in the case where we assign only the values 0 or 1 to each Xi, the reduce 
operation does not change the value of the resulting polynomial. 

Remark: Combining this result with that of Problem 7.17, we conclude that 
IP = PSPACE. It is known that PSPACE is closed under complementation, 
and so it follows that IP = co-IP. 

7.18 (Due to L. Fortnow, J. Rompel, and M. Sipser [153].) Define the complexity 
class MIP as the generalization of IP where the verifier has access to two 
provers and the provers are not allowed to communicate with each other once 
the verifier starts executing. Show that MIP = PCP. 

7.19 Prove the following relations directly from the definition of PCP, i.e., without 
invoking any results regarding PCP stated in this chapter. 

(a) Show that P = PCP[O, 0]. 

(b) Show that NP = PCP[O,po/y(n)]. 

(c) Show that co-RP == PCP[po/y(n), 0]. 

7.20 (Due to S. Arora and S. Safra [33].) Show that PCP[log n, 1] ~ NP. 

7.21 Prove Lemma 7.11. 

7.22 Consider a multivariate fUnction f(or) : Z~ -+ Z2' Show that f is linear if and 
only if for all II and b, f(lI) + f(b) = f(1I + b). 

7.23 This problem is concerned with some properties of the distance measure 
defined in Definition 7.7. 

(a) Show that the distance measure fi satisfies the triangle inequality: for all 
fUnctions f, g, h : I -+ 0, 

fi(f, h) ~ fi(f, g) + fi(g, h). 

(b) For a class of functions F = {f : I -+ O}, define fim1n(F) as the minimum 
distance between any two fUnctions in F. Show that for any function g (not 
necessarily in F), there is at most one function from F at distance fimin (F)/2 
or less. 
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(c) Suppose that F is the set of all linear functions from Z~ to Z2' What is 
I1min (F)? 

7.24 (Due to M. Blum, M. Luby, and R. Rubinfeld [68].) Prove Lemma 7.12 using 
the following sketch of a proof due to D. Coppersmith. Define the fUnction G 
such that for each x, 

G (x) = majOrity),[G (x + y) - G (Y)], 

where the "majority" denotes the value occurring most often over all choices 
of y, breaking ties arbitrarily. 

(a) Show that for all x, and for y chosen uniformly at random, 

Pr[G(x) = G(x + y) - G(y)] ~ 1 - 6. 

(b) Show that the functions G and G are 6-close. 

(c) Show that G is a linear function. 

(d) Show that G is uniquely defined. 

7.25 Prove Lemma 7.13. 

7.26 Appropriately generalizing Lemma 7.13, describe how the verifier can check 
that C = II 0 b. 
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CHAPT ER 8 

Data Structures 

The fundamental data-structuring problem is that of maintaining sets of items 
drawn from an ordered universe so as to efficiently support search queries, 
update operations, and operations involving entire sets. This chapter begins by 
identifying some drawbacks in traditional approaches to data structuring using 
either balanced search trees or self-adjusting search trees. We then describe 
simple and elegant solutions to these problems using randomization. 

8.1. The Fundamental Data-structuring Problem 

Consider the fundamental data-structuring problem: we are required to maintain 
a collection {SI, S2, ... } of sets of items so as to efficiently support certain types 
of queries and operations. Each item i is an arbitrary record indexed by a key 
k(i) drawn from a totally ordered universe U. We assume that each item belongs 
to a unique set and that the keys are all distinct. The operations to be supported 
are: 

MAKESET(S): create a new (empty) set S. 
INSERT(i, S): insert item i into the set S. 
OELETE(k,S): delete the item indexed by the key value k from the set S. 
FINO(k, S): return the item indexed by the key value k in the set S. 
JOIN(S., i, S2): replace the sets SI and S2 by the new set S = SI U {i} U S2, where 

• for all items j E SI, kU) < k(i), 

• for all items j E S2, kU) > k(i). 

PASTE(SI,S2): replace the sets SI and S2 by the new set S = SI US2, where for all 
items i E SI and j E S2, k(i) < k(j). 

SPLlT(k, S): replace the set S by the new sets SI and S2 where 

• SI = {j E S I k(j) < k}, 

• S2 = {j E S I kU) > k}. 
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Since it is clear that the structure of the record constituting an item i is irrelevant, 
we will not distinguish between an item and its key. For example, we will refer 
to the INSERT operation as INSERT(k, S) and omit all references to the actual item 
indexed by the key value k. It should be clear that a solution that works when 
the items consist only of their key values will generalize to more complex record 
structures. We will refer to the FIND operation as a search, and the INSERT and 
DELETE operations as an update. 

A standard solution to this problem is to represent the set S as a binary 
search tree. Recall that in a binary search tree the keys are stored at the nodes 
of a binary tree, and the assignment of keys to nodes must satisfy the following 
search tree property: at a node containing a key value k, the left sub-tree contains 
only key values smaller than k and the right sub-tree contains only key values 
larger than k. The keys associated with the nodes in a binary tree are said to be 
in a symmetric order if the search tree property is satisfied. It will be convenient 
to assume that any node v in a binary search tree contains three pointers in 
addition to the key value: L(v) points to the left child of v, R(v) points to the 
right child of v, and P(v) points to the parent of v. 

We will assume that the binary search trees we deal with are endogenous, in 
that all key values are stored at internal nodes, and all leaf nodes are empty. 
This will ensure that the trees are full, which means that every non-leaf (internal) 
node has ~xactly two children. The pointers L(v) and R(v) are NIL pointers if and 
only if v is a leaf node, and the pointer P (v) is a NIL pointer if and only if v is the 
root. In pictorial representations, we will use circles for internal nodes, rectangles 
for leaf nodes (although usually these are not explicitly specified), and triangles 
for sub-trees whose internal structure is not relevant (see Figure 8.1). While it is 
not essential to introduce the dummy leaf nodes or to ensure endogenousness, 
this does help to simplify the description of the implementation of the various 
operations. 

Figure 8.1: A full, endogenous binary search tree for the set of keys {7,9, 13, I5}. 
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Exercise 8.1: In the implementation of a binary search tree described above, we are 
using three pOinters per node. Show that it is possible to reduce this to two pOinters 
per node such that the children and the parent of any node can be accessed by 
following at most two pOinters. 

Let us now briefly review the standard implementation of the operations 
using the binary search tree representation. The operation MAKESET(S) is trivial 
- simply initialize an empty tree for the set S. To perform a FINO(k, S) is 
also easy and requires just the standard binary search process. To implement 
INSERT(k, S), perform FINO(k, S) and, if the value k is not found, insert k into 
the (empty) leaf node where the search terminates with failure. The operation 
JOIN(S}, k, S2) can be performed by creating a new node containing the key k, 
and making it the root of a new tree with the trees representing SI and S2 as its 
left and right sub-trees, respectively. It is easy to handle OELETE(k, S) if the node 
v containing k (which can be located by a FINO(k, S» has a leaf as one of its 
two children. For example, if the right child of v is a leaf, then replace v by L( v) 
as the child of P(v). If neither of the children is a leaf, then let k' be the key 
value that is the predecessor of k in the set S; clearly, k' must be at the node 
arrived at by starting at L( v) and doing FINO( 00, L( v». Now, we can delete the 
node containing k' since its right child is a leaf, and replace the key value k by 
k' in the node v, preserving the search tree property. The operation PASTE(S}, S2) 
can be implemented by first deleting the largest key value, say k, from SI and 
then applying JOIN(S},k,S2). Notice that k can be found by doing a FINO(oo,St}. 
Finally, doing a SPLIT(k, S) is easy if k is at the root of S; simply do the reverse 
of the steps employed in JOIN(S},k,S2). When k is not at the root, we can make 
use of rotations to move it to the root as described in Exercise 8.2. 

Each operation can be performed in time proportional to the height(s) of 
the tree(s), although some operations like JOIN can be performed in constant 
time. Ideally, the height of a tree would be logarithmic in the size n of the set 
it represents. Unfortunately, it is easy to devise a sequence of INSERT operations 
that creates a tree of height linear in n. Several strategies have been devised 
to handle this problem, usually involving balancing operations to ensure that 
the tree has height O(log n). The most commonly used strategy is to perform 
rotations during the update operations so as to ensure that all leaves remain 
within a distance O(log n) of the root. In Figure 8.2, we illustrate the two basic 
types of rotations that are needed. 

Each type of rotation moves a node together with one of its sub-trees closer 
to the root (and some others away from the root), while preserving the search 
tree property. We will not discuss the specific details of implementing balanced 
trees using rotations. 

Exercise 8.2: Devise a strategy for moving any specified node of a binary search 
tree to the root using rotations, while preserving the search tree property. 
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• 

• 

Figure 8.2: The basic rotations. 

A balanced search tree guarantees a worst-case time bound of O(log n) for 
each of the operations described above. There is an inherent logarithmic lower 
bound on the number of comparisons required for searching in an ordered 
list; this lower bound generalizes to randomized searching. Some of the other 
operations (for example, DELETE) are at least as hard as the FIND operations, 
and so the lower bound applies to them also. This means that a balanced binary 
search tree is optimal, at least with respect to the comparison-based model of 
computation (see Section 8.4 for a further discussion on this issue). 

A different strategy, called splaying, is used in "self-adjusting" search trees 
to guarantee an amortized time bound of O(log n); the splay operation moves 
a specified node to the root via a sequence of rotations. Amortization is the 
partitioning of the total cost of a sequence of operations among the individual 
operations in that sequence; thus, an amortized time bound can be viewed as 
the average cost of the operations in a sequence. 

The idea behind self-adjusting trees is to use a particular implementation of 
the splay operation to move to the root a node accessed by a FIND operation. 
If a node is accessed often enough, it will remain close to the root and will not 
contribute much to the total running time; an infrequently accessed node cannot 
contribute much to the total running time in any case. While these self-adjusting 
trees guarantee only amortized logarithmic time per operation, they have the 
advantage of being relatively simple to implement and do not require explicit 
balance information to be stored at nodes. Furthermore, splay trees can be 
shown to be optimal with respect to arbitrary access frequencies for the items 
being stored; in fact, they achieve this optimality without having any explicit 
information about the access frequencies. 

Although self-adjusting trees provide optimal (amortized) solutions to the 
fundamental data structuring problem, they suffer from some drawbacks. First 
of all, they restructure the entire tree not only during updates but also while 
performing simple search operations. This extensive restructuring can cause a 
significant slowdown in practice in caching and paging environments. Moreover,· 
during any given operation splay trees may perform a logarithmic number of 
rotations. This is particularly inefficient in implementing higher dimensional 
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search trees common in computational geometry. The reason is that there are 
secondary data structures associated with each node of these higher dimensional 
trees, and the secondary data structure at any node depends on the set of keys 
stored in the sub-tree rooted at that node. Since the entire secondary data 
structure has to be recomputed during each rotation, the cost of performing a 
single rotation could increase from a constant to some super-linear function of 
the sub-tree size. Finally, by its very nature, an amortized time bound leads 
to the unsatisfying situation where we do not have the guarantee that every 
operation will run quickly; instead, we obtain bounds only on the total cost of 
the operations. 

We describe an elegant and efficient randomized alternative to the balanced 
tree and self-adjusting tree, called treaps. Treaps achieve essentially the same time 
bounds in the expected sense, do not require any explicit balance information, 
and the expected number of rotations performed is small for each operation. 
They have the further advantage of being extremely simple to implement. We 
also describe an alternative (but closely related) rand<!>mized data structure called 
skip lists with similar benefits. Next, we consider the possibility of circumventing 
the logarithmic lower bound on searching in some interesting special cases. We 
show that using hash tables, we can guarantee that the expected time required for 
a search can be made 0(1). In the process, we introduce the notion of universal 
hash functions, which have found numerous applications outside the domain 
of data structures. Finally, we focus on the version of the data structuring 
problem without any update operations and provide a hashing scheme that has 
worst-case search time 0(1). 

8.2. Random Treaps 

A (full, endogenous) binary tree whose nodes have key values associated with 
them is a binary search tree if the key values are in the symmetric order. If 
the key values decrease monotonically along any root-leaf path, we call the 
structure a heap and say that the keys are stored in a heap order. 

Consider a binary tree where each node v contains a pair of values: a key 
k( v) as well as a priority p( v). We call this structure a treap if it is a binary search 
tree with respect to the key values and, simultaneously, a heap with respect to 
the priorities. More precisely, consider a set of items S = {(k1,pt}, ... ,(kn,Pn)} 
such that the key value of item i is ki, and its priority is Pi. Assume that the 
key values and the priorities are drawn from (possibly different) totally ordered 
universes and that all key values and priorities are distinct. A treap for S will 
ensure that the k;'s are stored in symmetric order, while the p;'s are stored in 
heap order. The reader may verify that for the set 

{(2, 13), (4, 26), (6,19), (7, 30), (9,14), (11, 27), (12, 22)} 

the tree shown in Figure 8.3 is a valid treap. 
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Figure 8.3: A treap. 

It is not immediately obvious that any such set has a valid treap but, as 
we show in the following theorem, there exists a unique treap for any set of 
key-priority pairs. 

Theorem 8.1: Let S = {(kI,pt}, ... ,(kn,Pn)} be any set of key-priority pairs such 
that the keys and the priorities are distinct. Then, there exists a unique treap T(S) 
for it. 

PROOF: Qur proof is constructive, and the construction is recursive. It is obvious 
that the theorem is true for n = 0 and for n = 1. Suppose now that n ~ 2, and 
assume that (kI,pt) has the highest priority in S. Then, a treap for S can be 
constructed by putting item 1 at the root of T(S). A treap for the items in S of 
key value smaller than kl can be constructed recursively, and this is stored as 
the left sub-tree of item 1. Similarly, a treap for the items of key value larger 
than kl is constructed recursively and becomes the right sub-tree of item 1. It is 
also fairly easy to see that any treap for S must have this decomposition at the 
~t 0 

The shape of the tree underlying the treap is detern:1lined by the relative 
priorities of the key values, and any particular shape can be obtained by 
choosing the priorities suitably. To solve the fundamental data structuring 
problem, we must somehow pick a good set of priorities for the items being 
stored and then implement the various operations as described below. 

We implement a MAKESET(S) or a FINO(k, S) operation exactly as before. The 
update operation INSERT(k, S) is implemented by starting as before and doing a 
FINO(k, S) and inserting k at the empty leaf node where the search terminates 
with failure. While this maintains the binary search tree property, it will violate 
the heap order property if the priority of the key k is higher than that of its 
parent However, a rotation of k will maintain the heap property at all nodes, 
except that the order of the node containing k and its parent is now reversed. 
Thus, we can restore the heap order by using rotations to move k towards the 
root until its priority value is smaller than that of its parent A OELETE(k, S) 
operation is exactly the reverse of an insertion: rotate the node containing k 
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downward until both its children are leaves, and then simply discard the node. 
The choice of the rotation (left or right) at each stage depends on the relative 
order of the priorities of the children of the node being deleted. It is easy to 
verify that the DELETE operation can be implemented such that it preserves the 
treap property. 

We implement a JOIN(St, k, S2) operation as before, and the resulting structure 
is a treap provided the priority of k is higher than that of any item in SI or S2. If 
the new root (containing k) violates the heap order, we simply rotate that node 
downward until each of the two children of the node has a smaller priority or 
is a leaf. A PASTE(St, S2) operation can be implemented exactly as in the case of 
binary search trees. Finally, a SPLlT(k, S) operation can be implemented easily 
by first deleting k from S, and then inserting it into S with a priority of 00. 

Clearly, the node containing k is the root of the new tree and its sub-trees SI 

and S2 constitute the desired partition of S. These trees can be easily extracted. 

Exercise 8.3: The JOIN, PASTE, and SPLIT operations are implemented in terms of the 
INSERT and DELETE operations. Show how the INSERT and DELETE operations can be 
implemented in terms of JOIN, PASTE, and SPLIT, and how the latter can be implemented 
directly. 

Clearly, we need only analyze the performance of the FIND, INSERT, and 
DELETE operations. It is easy to verify that these take time proportional to the 
depth of the tree representing the treap. However, a slightly stronger statement 
can be made about the number of rotations required during a DELETE, and by 
symmetry, during an INSERT operation. Define the left spine of a tree as the path 
obtained by starting at the root and repeatedly moving to the left child until a 
leaf is reached; the right spine is defined similarly. 

Exercise 8.4: Show that the number of rotations during a DELETE operation on a node 
v is equal to the sum of the lengths of the left spine of the right sub-tree and the 
right spine of the left sub-tree of v. 

Before we analyze the running times of the various operations, we must 
specify how the priorities are chosen for any given key. The idea is to create a 
random treap by choosing the priorities Pi independently from some probability 
distribution V. The only restriction on the choice of 'D is that it should ensure 
that with probability 1 the priorities are all distinct; in general, it suffices to use 
any continuous distribution such as the uniform distribution U[O, 1] on the real 
interval [0,1]. The priority of an item is chosen at random from V when the 
item is first inserted into a set, and the priority for this item remains fixed until 
it is deleted; moreover, if the item is re-inserted after a deletion, a completely 
new random priority is assigned to it. The following technicality arises: in our 
model of computation, we cannot sample a continuous distribution. However, 
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for simplicity of presentation, we temporarily assume in this section that such 
sampling from a continuous distribution is permissible. Later, in Problem 8.12, 
we show that treaps can in fact be implemented in our model of computation 
using only a finite number of random bits. 

The ordering of the priorities associated with the various items is completely 
uncorrelated with the ordering of their key values, ensuring that the tree un
derlying the treap will remain balanced and have expected depth O(log n). The 
choice of the priorities is an implementation detail that is kept hidden, so that 
an adversary cannot request a sequence of operations that is likely to cause the 
tree to be unbalanced. The formal verification of this intuition uses the analysis 
of a set of probabilistic games called Mulmuley games, which are described in 
the next section. 

8.2.1. Mulmuley Games 

Mulmuley games are useful abstractions of processes underlying the behavior of 
certain geometric algorithms. We use this abstraction here only for pedagogical 
purposes; a more direct analysis is possible. 

The cast of characters in these games is: 

• a set P = {Pt, ... ,Pp} of players; . 
• a set S = {St, .. . ,S5} of stoppers; 

• a set T = {Th ... , Tt } of triggers; 

• a set B = {Bt, ... ,Bb} of bystanders. 

The set PuS is drawn from a totally ordered universe and all players are 
smaller than all stoppers: for all i and j, Pi < Sj. We assume that the sets are 
pairwise disjoint. Depending upon the set of active characters, we formulate 
four different games, with each game being more general than the previous one. 
Before we describe and analyze the games, it will be useful to list an important 
property of the Harmonic numbers. 

ExerciSe 8.5: Let Hk = 2::_11/; denote the kth Harmonic number. Show that 
2::-1 Hk = (n + 1)Hn+1 - (n + 1). 

Recall that Hk = In k + O( 1) (Proposition B.4). 

Game A. This game starts with the initial set of characters X = PuB. The 
game proceeds by repeatedly sampling from X without replacement, until the 
set X becomes empty. Each sample is a character chosen uniformly at random 
from the remaining pool in X. Let the random variable V denote the number of 
samples in which a player Pi is chosen such that Pi is larger than all previously 
chosen players. We define the value of the game Ap to be E[V]. 
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Lemma 8.2: For all p ~ O. Ap = Hp. 

PROOF: Assume that the set of players is ordered as PI > P2 > ... > Pp• The 
key observation is that the bystanders are irrelevant to the game: the value of 
the game is not influenced by the number of bystanders. Thus, we can assume 
that the initial number of bystanders b = O. Conditional upon the first random 
sample being a particular player Pi, the expected value of the game is 1 + Ai-I. 

This is because the players Pi+h .. . , Pp cannot contribute to the game any more 
and are effectively reduced to being bystanders. Since i is uniformly distributed 
over the set {I, ... , p}, we obtain the following recurrence. 

p p 

A - ~ 1 + Ai-I -1 ~Ai_1 
p - ~ - + L." -. 

i=1 P i ... 1 P 
(8.1) 

Upon rearrangement, using the fact that Ao = 0, we obtain that 'Er:::11 Ai = 
pAp-po Now, by the property of the Harmonic numbers described in Exercise 8.5, 
it is easy to see that the Harmonic numbers are the solution to (8.1). 0 

Game C. In this game, the initial pool is given by X = PuB u S. The process 
is exactly the same as that in Game A, treating the stoppers as players as well. 
The only difference is that the game stops when a stopper is chosen for the first 
time. Note that since all players are smaller than all stoppers, we will always get 
a contribution of 1 to the game value from the first stopper. The value of the 
game is C; = E[V + 1] = 1 + E[V], where V is defined exactly as in Game A. 

Lemma 8.3: For all p, s ~ O. C; = 1 + Hs+p - Hs. 

PROOF: As before, we assume that the set of players is ordered as PI > P2 > 
... > Pp and that the number of bystanders is o. Now, if the first sample is a 
stopper then the game value is 1, and if the first sample is a player Pi then the 
game value is 1 + CI_ I . Noting that the probability of the first event is s/(s + p) 
and that of the second event is l/(s + p), we obtain the following recurrence: 

C; = (_s_ x 1) + (_1_ x t(1 + C;_I») . 
s + P s + P i=1 

Upon rearrangement, using the fact that Co = 1, we obtain that 

which is equivalent to 

1 ""p-I CS 
Cs = s + P + + L...i=1 i 

p s+p s+p 

p-I 

L C; = (s + p)C; - (s + P + 1). 
i=1 

Once again, using Exercise 8.5 it can be verified that the solution to the recurrence 
is given by C; = 1 + Hs+p - Hs. 0 
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Games D and E. Games D and E are similar to Games A and C, the only 
difference being that their initial pools consist of X = PuB u T and X = 
PuB u S u T, respectively. The role of the triggers is that the counting process 
begins only after the first trigger has been chosen. More precisely, a player or 
a stopper contributes to V only if it is sampled after a trigger and before any 
stopper, and if it is larger than all previously chosen players. Letting D~ and 
E;,t denote the expected values of the two games, the following lemmas can be 
proved as before. 

Lemma 8.4: For all p, t ~ 0, D~ = Hp + Ht - Hp+t. 

Lemma 8.5: For all p,s,t > 0, E;,t = _t_ + (Hs+p - Hs) - (Hs+p+t - Hs+t). 
s+t 

The proofs of these lemmas are left as problems. 

8.2.2. Analysis of Treaps 

In order to apply the games described above to the analysis of the performance 
of random treaps, it will be useful to identify an important property of random 
treaps - the memory less property. Consider a random treap obtained by inserting 
the elements of a set S into an initially empty treap. Since the random priorities 
for the elements of S are chosen independently, we can assume that the priorities 
are chosen before the insertion process is initiated. Once the priorities have been 
fixed, Theorem 8.1 implies that the treap T is uniquely determined. This implies 
that the. order in which the elements are inserted does not affect the structure 
of the tree. Thus, without loss of generality, we can assume that the elements 
of set S are inserted into T in the order of decreasing priority. An advantage 
of this view is that it implies that all insertions take place at the leaves and no 
rotations are required to ensure the heap order on the priorities. 

Exercise 8.6: Using the memoryless property, derive a connection between the 
structure of a treap and the behavior of the Quicksort algorithm (see Chapter 1). 

Define the depth of a node in a treap as its distance from the root. The 
following lemma establishes that the expected depth of the element of rank k in 
S is O(logk + log(n - k + 1», which is always O(log n). 

Lemma 8.6: Let T be a random treap for a set S of size n. For an element xES 
having rank k, 

E[depth(x)] = Hk + Hn- k+1 - 1. 

PROOF: Define the sets S- = {y E Sly :5: x} and S+ = {y E Sly ~ x}. Since 
x has rank k, it follows that IS-I = k and IS+I = n - k + 1. Denote by Qx S; S 
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the set of elements that are stored at nodes on the path from the root of T to 
the node containing x, i.e., the ancestors of x. Let Q; denote S- () Qx' We will 
establish that E[IQ:;11 = Hk. By symmetry, it follows that the expected size of 
Q~ = S+ () Qx is Hn-k+l' This will imply that the expected length of the path 
from the root to x is Hk + Hn- k+1 - 1, since Q:; () Q~ = {x}. 

Consider any ancestor y E Q:; of the node x. By the memoryless assumption, 
y must have been inserted prior to x, and the priorities must satisfy the inequality 
py > Px' Since y < x, it must be the case that x lies in the right sub-tree of y. In 
fact, we claim that all elements z such that y < z < x lie in the right sub-tree of 
y. Consider the searches for the elements x, y, and z in T. Clearly, the searches 
for x and y will follow the path from the root to the node containing y. But 
then there cannot be any node on this path whose value is between y and x. 
This implies that the search for every element whose value lies between y'and x 
must follow the path from the root to y, and in fact go into the right sub-tree 
of y. We conclude that y is an ancestor of every node containing an element 
of value between y and x. By our assumption about the order of insertion, this 
implies that every element whose value lies between y and x must have been 
inserted after y, and hence is of lower priority than y. 

The preceding argument establishes that an element y E S- is an ancestor 
of x, or a member of Q:;; if and only if it was the largest element of S- in 
the treap at the time of its insertion. Since the order of insertion is determined 
by the order of the priorities, and the latter is uniformly distributed, the order 
of insertion can be viewed as being determined by uniform sampling without 
replacement from the pool S. We can now claim that the distribution of IQ:;I is 
the same as that of the value of Game A when P = S- and B = S\S:.... Since 
IS-I = k, the expected size of IQ:;I = Hk • 0 

Exercise 8.7: Obtain an alternate proof of Lemma 8.6 by using the analysis of Game 
C when x is a stopper, P = S-\{x}, and B = S+\{x}. 

The next lemma helps us bound the expected number of rotations required 
during an update operation (see Exercise 8.4). For any element x in a treap, 
let Lx denote the length of the left spine of the right sub-tree of x, and Rx the 
length of the right spine of the left sub-tree of x. 

Lemma 8.7: Let T be a random treap for a set S of size n. For an element XES 
of rank k, 

and 
1 

E[Lxl = 1 - k l' 
n- + 
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PROOF: We prove only the first result. The second result follows by symmetry 
since the rank of x becomes n - k + 1 if we invert the total order underlying the 
key values. We will demonstrate that the distribution of Rx is the same as that 
of the value of Game D with the choice of characters P = S-\{x}, T = {x}, 
and B = S+\{x}, where S- = {y E Sly s: x} and S+ = {y E Sly ~ x} as 
before. Since we now have p = k - 1, t = 1, and b = n - k, Lemma 8.4 implies 
that 

To relate the length of the right spine of the left sub-tree of x to Game D, we 
make the following claim: an element z < x lies on the rigl}t spine of the left 
sub-tree of x if and only if z is inserted after x, and all elements whose values 
lie between z and x are inserted after z. The proof relies on the memoryless 
property of treaps. 

We first prove the backward implication in the claim. Consider the path 
followed by the insertion procedure in locating the leaf at which z is inserted. 
This path must go through the node containing x, since the only way to 
distinguish between z and x is via a comparison with some element that lies 
between them, and all such elements are inserted after z. Since z is smaller than 
x and inserted after x, it must lie in the left sub-tree of x. Moreover, since all 
the elements in the left sub-tree of x are smaller than x, and z is the largest of 
these at the time of its insertion, z must lie on the right spine of this sub-tree. 

The forward implication in the claim is proved similarly. Since z lies in the 
left sub-tree of x, it must have been inserted after x and be of value smaller 
than x. Moreover, all elements with value between those of z and x must be 
in the left sub-tree of x, and since z lies on the right spine these elements must 
have been inserted after z. 0 

The following theorem summarizes the performance bounds for random 
treaps. The proof is an easy consequence of the preceding lemmas and is left as 
an exercise. Note that the search time for a key x ~ S is essentially the search 
time for the elements of S that would have been its predecessor or successor 
had it belonged to S. 

Theorem 8.8: Let T be a random treap for a set S of size n. 

1. The expected time for a FIND, INSERT, or DELETE operation on T is O(log n). 

2. The expected number of rotations required during an INSERT or DELETE opera
tion is at most 2. 

3. The expected time for a JOIN, PASTE, or SPLIT operation involving sets SI and 
S2 of sizes n and m, respectively, is O(logn + logm). 
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8.3. Skip Lists 

We now turn to another elegant randomized data structure called skip lists. 
Consider a set S = {Xl < X2 < '" < Xn} drawn from a totally ordered universe. 

~ Definition 8.1: A leveling with r levels of an ordered set S is a sequence of nested 
subsets (called levels) 

such that Lr = 0 and LI = S. 

~ Definition 8.2: Given an ordered set S and a leveling for it, the level. of any 
element XES is defined as 

l(x) = max{i I x E L;}. 

Given any leveling of the set S, we can define an ordered list data structure 
as follows. For convenience, we will assume that tW() special elements -00 and 
+00 belong to each of the levels, where -00 is smaller than all elements in S 
and +00 is larger than all elements in S. Observe that both -00 and +00 are 
of level r. The level LI is stored in a sorted linked list, and each node x in this 
linked list has a pile of [(x) - 1 nodes sitting above it. There are horizontal and 
vertical pointers between nodes as illustrated in Figure 8.4. This data structure 
is the skip list corresponding to a specific leveling of S. 

-
~ -J- l ---1-------- -----1-- X I 

-----~-L---- -----------

I -
• 

~] -- .-I I ,-------, I 
---1------- -I-I ----I ----y----I~~' 
___ oo _____ ~l _ -r ___ ~ __ ~ ~_3 _---E±J----~5_-:-~ L 1 

Figure 8.4: A skip list. 

In Figure 8.4, the skip list represents the set S = {1, 2,3,4, 5}, and the leveling 
that determines this skip list consists of the following 6 levels: L6 = 0, Ls = {2}, 
L4 = {2,3}, L3 = {2, 3, 5}, L2 = {2, 3,4, 5}, and LI = {1, 2, 3,4, 5}. A pile of [(x) 
nodes sits above each element x of S. Further, starting at the ith node from the 
bottom in the left-most column of nodes and following the horizontal pointers 
will yield a set of nodes corresponding to the elements of the level L j • 
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~ Definition 8.3: An interval at level i is the set of elements of S spanned by a 
specific horizontal pointer at level i. 

The sequence of levels Li can be viewed as successively coarser partitions of 
S into a collection of intervals. In the example shown in Figure 8.4, we can view 
the levels as determining the following successive partitions: 

Ll - [-00,1] U [1,2] U [2,3] U [3,4] U [4,S] U [S,+oo] 

L2 - [-00,2] U [2,3] U [3,4] U [4, S] U [S, +00] 

L3 - [-00,2] U [2,3] U [3, S] U [S, +00] 

L. - [-00,2] U [2,3] U [3, +00] 

Ls - [-00,2] U [2, +00] 

4, - [-00, +00] 

The interval partition structure is more conveniently viewed as a tree (see 
Figure 8.S) where each node corresponds to an interval, and all intervals at the 
same level are represented by nodes at the same level in the tree. If an interval 
J at level i + 1 contains as a subset an interval I at the level i, then node J is 
the parent of node I in the tree. For an interval I at level i + 1, c(l) denotes 
the number of children it has at level i. Since c(l) can be arbitrarily large, the 
tree is npt binary in general. The skip list representation can be viewed as a 
threaded version of this tree, where each thread is a seri¢s of pointers forming 
an ordered linked list of the nodes in a level. In Figure 8.S, the horizontal 
pointers correspond to the threads. 

-------l [2.+00] ~ 

. I ~~. _. 
--------' [2.3) --'"iJ3.+~).~ . L4 

------~-- [3.5) ~---~ ['.+~), L, 
-r .~.~ I, --------f[t]"-- [3.4] t--., [4.5] L_~ [5.+00]: L2 

I -1= T-~ I 
->-j [2.3] --...f [3.4] +--ffiJ--"L!~~oo]J L] 

Figure 8.5: Tree representation of a skip list. 

Consider an element Y, which is not necessarily a member of S. Define Ij(Y) 
as the interval at level j that contains y. If y lies on the boundary between two 
intervals, we assign it to the left-most one. We can now view the nested sequence 
of intervals Ir(y) c Ir-1(y) c ... C I1(y) containing y as a root-leaf path in the 
tree representation of the skip list. To complete the description of a skip list, 
we have to specify the choice of the leveling that underlies it. The basic idea is 
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to choose a random leveling, thereby defining a random skip list. The analysis 
will show that there is a high probability that the search tree corresponding to 
a random skip list is balanced. 

8.3.1. Analyzing Random Skip Lists 

A random leveling of the set S is defined as follows: given the choice of the level 
Lj, the level Li+1 is defined by independently choosing to retain each element 
x e Li with probability 1/2. This process starts with Ll = S, and it terminates 
when, for the first time, a newly constructed level is empty. An alternate view 
of this construction is as follows: let the levels l(x) for xeS be independent 
random variables, each with the geometric distribution with parameter p = 1/2. 
Let r be one more than the maximum of these random variables. PlaCe x in 
each of the levels L .. ... , L,(x). As was the case with the random priorities in 
treaps, a random level is chosen for every element of S upon its insertion, and 
this remains fixed until the element is deleted. 

Exercise 8.8: Show that the expected space requirement of a random skip list for a 
set S of size n is O(n). 

Lemma 8.9: The number of levels r in a random leveling of a set S of size n has 
expected value E[r] = O(log n). Moreover, r = O(log n) with high probability . 

. 
PROOF: We prove only the high probability result; the bound on the expected 
value is left as an exercise. The number of levels r = 1 + maxxes l(x), and the 
levels l(x) are i.i.d. random variables distributed geometrically with parameter 
p = 1/2. We may thus view the levels of the members of S as independent 
geometrically distributed random variables X .. ... , Xn• It is easy to verify that 
Pr[Xi > t] < (1 - PY and, therefore, 

n 
Pr[maxXi > t] < n(1 - PY = -2 ' 

i t 

since p = 1/2 in this case. Using t = cdog nand r = maXi Xi, we obtain the 
desired result that 

for any IX > 1. 

Exercise 8.9: 

1 
Pr[r > IX log n] < -I' nlX-

1. Use the ideas in the proof of Lemma 8.9 to show that E[r] = O(log n). 

2. Use Theorem 1.3 to show that E[r] = O(log n). 
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This result implies that the tree representing the skip list has height O(log n) 
with high probability. Unfortunately, since the tree need not be binary, it does 
not immediately follow that the search time is similarly bounded. To understand 
this, we first specify an efficient implementation of the FIND operation. 

We will describe the implementations of all operations in terms of the tree 
representation of skip lists and then translate this description back into the skip 
list representation. The implementation of FIND(X, S) corresponds to walking 
down the path I r(Y) c I r-I (y) C ... c I I (Y), as follows: at level j, starting at the 
node I ly), use a vertical pointer to descend to the leftmost child of the current 
interval; then, using the horizontal pointers, move rightward till the node I j(Y) 

is reached. It is easy to determine whether Y belongs to a given interval, or to 
an interval to its right. Also, in the original skip list representation, the vertical 
pointers allow access to only the left-most child of an interval, and hence it is 
essential to use the horizontal pointers to traverse the list of its children. 

The cost of the FIND(y, S) operation is proportional to the number of levels 
as well as the number of intervals (or nodes) visited at each level. The number 
of nodes visited at level j does not exceed the number of children of the interval 
Ij+I(Y). It is now clear that the cost of a FIND operation depends not only on 
the number of levels, but is proportional to the total number of children of the 
nodes on the search path. This cost can be bounded by 

Fortunately, as shown in the following lemma, this quantity has expectation 
bounded by O(logn) as well. 

Lemma 8.10: Let Y be any element and consider the search path Ir(y), ... , II(Y) 
followed by FIND(Y, S) in a random skip list for the set S of size n. Then, 

r 

E[I)l + c(lj(Y)))] = O(log n). 
j=1 

PROOF: We will show that for any specific interval I in a random skip list, 
E[c(l)] = 0(1). Since Lemma 8.9 guarantees that r = O(logn) with high 
probability, this will yield the desired result. Note that we do need the high 
probability bound on r - it is not correct to multiply the expectation of r with 
that of 1 + c(l) since the two random variables are not independent. On the 
other hand, since we know that r > cdogn with probability at most 1/noc- l , and 
since Ell + c(lj(Y))) = O(n), we can argue that the case r > 210gn does not 
contribute significantly to the expectation of Ejc(lj(Y)) = O(n). 

Let J be any interval at level i of the skip list. We will prove that the expected 
number of siblings of J (children of its parent) is bounded by a constant, and 
this will imply that the expected number of children of an interval is bounded 
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by a constant. In fact, it will suffice to prove that the number of siblings of J to 
its right is bounded by a constant. 

Let the intervals to the right of J be J1 = [X., X2], J 2 = [X2' X3], ... , Jk = 
[Xk, +00]. These intervals exist at level i if and only if each of the elements X., 

••• , Xk belong to L j • If J has s siblings to its right, then it must be the case that 
X., ..• , Xs ~ L j+I. and Xs+l e L j+1• Since each element of L j is independently 
chosen to be in Lj+1 with probability 1/2, the number of right siblings of J is 
stochastically dominated by a random variable that is geometrically distributed 
with parameter 1/2. It follows that the expected number of right siblings of J 
is at most 2. 0 

In Problem 8.14 we suggest a different approach, which leads to a precise 
determination of the expected cost of the FIND operation. 

We now describe the implementation of the update operations on a skip 
list. Consider the operation INSERT(y, S), and assume that a random level l(y) 
is chosen for y as described earlier. If the value of l(y) exceeds r, then start 
by creating new levels from r + 1 to l(y) in the original skip list. This can be 
done in time O(r) since the new levels are all empty prior to the insertion of 
y. Then, perform the operation FIND(y,S) and determine the search path Ir(y), 
... , II (y), where r is updated to its new value if necessary. Given the search 
path, the actual insertion process can be accomplished in time O(l(y)) since all it 
requires is the splitting around y of the intervals II (y), ... , I /(y)(Y), and of course 
updating the pointers as appropriate. The DELETE operation is the converse 
of the INSERT operation, and it involves performing FIND(y, S) followed by the 
collapsing of the intervals that have y as an end-point In addition to th~ cost of 
a FIND operation, both operations require additional work proportional to l(y). 
Combining this with Lemmas 8.9 and 8.10, we obtain the following theorem. 

Theorem 8.11: In a random skip list for a set S of size n, the operations FIND, 

INSERT. and DELETE can be performed in expected time O(log n). 

These results extend to the other operations described in treaps. 

Exercise 8.10: Describe an implementation of operations JOIN, PASTE, and SPLIT for 
random skip lists. Analyze the running time of your implementation, and compare 
the result with the same operations in the case of treaps. 

8.4. Hash Tables 

In the rest of this chapter, we restrict ourselves to the following special cases of 
the data-structuring problem considered in the previous sections: 

1. In the static dictionary problem we are given a set of keys S and must organize it 
into a data structure that supports the efficient processing of FIND queries. 
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2. In the dynamic dictionary problem the set S is not provided in advance. Instead it 
is constructed by a series of INSERT and DELETE operations that are intermingled 
with the FIND queries. 

These problems can be solved using data structures discussed earlier, i.e., bal
anced search trees, random treaps, and random skip lists. For a set S of size 
s, these data structures require Q(log s) time (worst-case or expected) to process 
any search or update operation. The time bounds achieved are optimal in the 
sense that for data structures based on pointers and search trees, we are faced 
with a logarithmic lower bound on the cost of a search. These lower bounds 
are based on the assumption that the only computation we can perform over 
the keys is to compare them and thereby determine their relationship in the 
underlying total order. 

We now present an entirely different approach that allows us to circum
vent this lower bound and achieve O( 1) search time. We mention briefly the 
reasons why the logarithmic lower bounds will not apply to the dictionary 
problem we will consider. We will assume that the keys in S are chosen from 
a totally ordered universe M of size m; without loss of generality, we define 
M = {O, ... , m - I}. We will also assume that the keys are represented as inte
gers in a manner that permits us to perform arithmetic operations over them. 
Finally, we will choose to work in the RAM model of computation in its full 
generality. 

To better understand the difference in the models, we describe a scheme that 
enables us to obtain search and update times that are bounded independently of 
the size of S. In this scheme, we create a table T of size m; a table is simply an 
array supporting random access. For each k e M, we set T[k] = 1 if and only 
if k e S. We can perform search or update operations for a key in unit time by 
accessing the corresponding entry in the table. The problem with this approach 
is that the key space is typically many orders of magnitude larger than the set 
S. For example, in a 32-bit machine we have m = 232, so such a table of size 
m will consume the entire memory of the machine. In fact, the preprocessing 
cost of initializing the table is equally large in this solution. Even though this 
approach is impractical, it serves to illustrate the point that the new model 
permits us to get around the comparison-based lower bounds on searching in a 
totally ordered set. This is because we are now making use of the full power of 
the RAM model of computation including random access and indirect indexing 
(which permits an m-way branch in a single step), not to mention the dual use 
of key values as table indices. 

In this section we focus on the dynamic dictionary problem, and our goal is 
to obtain a more practical version of the table-based scheme. The main issue is 
that of reducing the size of the table to a value close to lSI, while maintaining 
the property that a search or update operation can be performed in 0(1) time. 
To this end, we introduce hashing, a data structuring technique in which we 
use a fingerprint function (see Chapter 7) to determine where a key should be 
located in the table. 
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A hash table is a data structure for the dictionary problem that consists of 
the following components: a table T consisting of n cells indexed by N = 
{O, 1, ... ,n - I}, and a hashfunc~ion h, which is a mapping from Minto N. We 
assume that n is smaller than m, since otherwise the dictionary problem is trivial. 
Each cell is a memory word that can hold exactly as many bits as required to 
encode an element of M, i.e., the word size is log m. The hash function is a 
fingerprint function for the keys in M, and it specifies a location in the table for 
each element of M. Ideally, we would want the hash function to map distinct 
keys in S to distinct locations in the table. A collision is said to occur between 
two distinct keys x and y if h(x) = h(y) and they are said to collide at the 
corresponding location in T. 

~ Definition 8.4: A hash function h : M -+ N is said to be perfect for a set S s;;; M 
if h does not cause any collisions among the keys of the set S. 

Exercise 8.11: Show that a perfect hash function can be constructed for any set S of 
size at most n. 

Given a perfect hash function for a set S, we can use the hash table to process 
a sequence of FIND operations in O( 1) time each: store each element k e S at 
the location T[h(k)]; to search for a key q, just check whether T[h(q)] = q. A 
problem arises when we try to use this hash function to process updates. The 
problem is that no hash function can be perfect for all possible sets S c· M; this 
follows from the observation that for n < m, any function h must map some 
two elements of M to the same location, and so it cannot be perfect for any set 
containing those two elements. Thus, perfect hash functions are useless for the 
dynamic dictionary problem. It is still possible that they can be used to obtain 
a good solution to the static dictionary problem, and we will return to this issue 
in Section 8.5. 

A natural approach to solving the dynamic dictionary problem is to relax 
the definition of perfect hash functions to that of "near-perfect" hash functions, 
which are allowed to cause a small number of collisions at each location in the 
table. There has been great deal of research into the design of such near-perfect 
hash functions, but typically this is under the assumption that the sequence 
of operations to be performed is drawn from some well-behaved probability 
distribution. Under this assumption, it is possible to come up with simple hash 
functions that cause only O( 1) collisions on the average at any table location, 
provided the number of items present in the hash table is bounded by some 
linear function in the table size n. The keys colliding at any given location are 
usually org.anized into a secondary data structure accessible from that location, 
or they can be rehashed into a secondary hash table using a new hash function. 
To process any operation, the hash function is used to determine the appropriate 
location in the table, and the operation is then performed on the secondary data 
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structure associated with that location. Since the expected size of the secondary 
data structure is 0(1), it follows that each operation has expected cost 0(1) in 
addition to the cost of evaluating the hash function. Hash functions are chosen 
so that they can be evaluated in 0(1) time. 

We will present a randomized hashing scheme for the dynamic dictionary 
problem that processes search and update operations in expected time 0(1), 
without making any probabilistic assumptions about the operation sequence. 
The expectation is with respect to the random choices internal to the hash table. 

8.4.1. Universal Hash Families 

Our solution requires the construction of a class of hash functions that have 
found a surprisingly large number of applications in areas far removed from 
the original problem, such as routing in networks and complexity theory. The 
idea is to choose a family of hash functions H = {h : M -+ N}, where each 
h E H is easily represented and evaluated. While anyone function h E H 
may not be perfect for very many choices of the set S, we can ensure that 
for every set S of small cardinality, a large fraction of the hash functions in 
H are near-perfect for S in the sense that the number of collisions is small. 
Thus, for any particular set S, a random choice of h E H will give the desired 
perfoI1l!ance. The hash functions described here can also be used to solve some 
of the problems discussed in earlier sections. 

~ Definition 8.5: Let M = {O, l,oo.,m -I} and N = {O, l, ... ,n -I}, with m ~ n. 
A family H of functions from Minto N is said to be 2-universal if, for all x, 
y E M such that x ::/= y, and for h chosen uniformly at random from H, 

1 
Pr[h(x) = h(y)] < -. 

n 

A totally random mapping from M to N has a collision probability of exactly 
lin; thus, a random choice from a 2-universal family, of hash functions gives 
a seemingly random function. The collection of all possible functions from M 
to N is a 2-universal family, but it has several disadvantages. Picking a random 
functi"on requires Q(m log n) random bits. This is also the number of bits of 
storage required to represent the chosen function. Our goal is to obtain smaller 
2-universal families of functions that require a small amount of space and are 
easy to evaluate; in particular, we would like to construct 2-universal families 
containing only a small subset of all possible functions. The reason this is 
possible is that a randomly chosen function h e H is required to behave like a 
random function only with respect to pairs of elements. In fact, as x ranges over 
M, the values h(x) behave somewhat like pairwise independent random variables, 
which is precisely the reason for the name "2-universal." On the other hand, for 
a purely random function f, the values f(x) have complete independence. In 
Section 8.4.4 we will discuss "strong" 2-universal hash families, which have an 
exact correspondence with pairwise independent random variables. 
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From here on fix the sets M, N, and H as in Definition 8.5. For any x, y e M 
and h e H, define the following indicator function for a collision between the 
keys x and y under the hash function h: 

t5(x h) = {I for h(x~ = h(y) and x :/= y 
, y, 0 otherwIse. 

For all X, Y c M, define the following extensions of the indicator function t5: 

t5(x,y, H) - L t5 (x,y,h), 
heH 

t5(x, Y,h) - L t5(x,y,h), 
yeY 

t5(X, Y, h) - L t5(x, Y, h), 
xeX 

t5(x, Y,H) - Lt5(x,y,H), 
yeY 

t5(X, Y,H) - L t5(X, Y, h). 
heH 

For a 2-universal family H and any x :/= y, we have J(x, y, H) :s; IHI/n. 
The following theorem shows that our definition of 2-universality is essentially 

the best possible, since a significantly smaller collision probability cannot be 
obtained for m ~ n. 

Theorem 8.12: For any family H of functions from M to N, there exist x, y e M 
such that 

t5(x,y,H) > IHI _ IHI. 
n m 

PROOF: Fix some function h e H, and for each zEN define the set of elements 
of M mapped to z as 

Az = {x e M I h(x) = z}. 

The sets A z, for zeN, form a partition of M. It is easy to verify that 

This is because any two elements that collide must belong to the same set Az , and 
the number of collisions within the elements of Az is exactly IAzl(IAzl - 1). The 
total number of collisions between all possible pairs of elements is minimized 
when these sets Az are all of the same size. We obtain 

t5(M,M,h) = LIAzl(IAzl-l) 
zeN 
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This calculation was for any fixed choice of h E H, and so ~(M,M,H) = 

EheH ~(M, M, h) > IHlm2(1/n - 11m). By the pigeonhole principle there must 
exist a pair of elements x, y E M such that 

c5(x,y, H) > 
c5(M,M, H) 

m2 

IHIc5(M, M, h) 
- m2 

~ 
IHlm2 (lin - 11m) 

m2 

= IHI (~- !). 
o 

8.4.2. Application to Dynamic Dictionaries 

Before we provide a construction for a 2-universal hash family, let us see why it 
gives a good solution to the dynamic dictionary problem. The following lemma 
will prove useful in the analysis of a dynamic dictionary scheme based on a 
2-universal family H. 

Lemma -8.13: For all x E M, S c M, and random h E H, 

lSI 
E[~(x, S, h)] < -. 

n 

PROOF: The following simple calculation constitutes the proof. 

E[c5(x,S, h)] = L c5(x,S,h) 
heH IHI 

1 
= WI L L c5(x, y, h) 

heH yeS 

1 - WI LLc5(x,y,h) 
yeS heH 

1 - WI L c5(x, y, H) 
yeS 

:S; _1 ~!!fl 
IHI L..Js n 

ye 

lSI 
n 

o 
Our dynamic dictionary scheme first chooses a hash function h E H uniformly 

at random, and then processes the entire sequence of updates and queries using 
h. Note that the hash function remains fixed during any given invocation of 
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the hash table. An inserted key x is stored at the location h(x), and due to 
collisions there could be other keys also stored at that location. The keys 
colliding at a given location are organized into a linked list and a pointer to 
the head of the list is maintained in that cell. The time to perform an INSERT, 

DELETE, or FIND operation involving a key x is essentially determined by the 
time required to perform that operation on the linked list stored at the location 
h(x), and the latter is at most the length of the list itself. Assuming that the 
set of keys currently stored in the table is S eM, the length of the linked list 
is t5(x, S, h), which has expectation ISI/n. Of course, we could use a balanced 
binary search tree instead of a linked list to reduce the cost of each operation 
to O(log t5(x, S, h)), but this does not seem worthwhile given that we expect that 
the number of collisions at each location will be fairly small. 

Consider a request sequence R = Rl R2 ... R, of update and search operations 
starting with an empty hash table. Suppose that this sequence contains S INSERT 

operations; then, the table will never contain more than S keys. Let p(h, R) 
denote the total cost of processing these requests using the hash function h e H 
and the linked list scheme for collision resolution. The following theorem is easy 
to prove. 

Theorem 8.14: For any sequence R of length r with S INSERTS, and h chosen 
uniformly at random from a 2-universal family H, 

E[p(h,R)] < r (1 +~). 

If we pick the table size n to be larger than the maximum number of elements 
ever present in the table, we conclude that the expected time per operation is 
at most 2. By the Markov inequality, the probability that the total cost of the 
request sequence will exceed 2rt is at most l/t. We emphasize that this analysis 
does not assume anything about the request sequence R except a bound on the 
table occupancy. 

8.4.3. Constructing Universal Hash Families 

We now turn to the task of devising explicit constructions of 2-universal hash 
families. Our construction of a 2-universal family is algebraic. Fix m and n, 
and choose a prime p ~ m. We will work over the field tlp = {O, 1, ... ,p - I}. 
Let g : tlp -+ N be the function given by g(x) = x mod n. For all a, b e 7lp 

define the linear function fa,b : tlp -+ tlp and the hash function ha,b : tlp -+ N as 
follows. 

fa,b(X) = ax + b mod p, 

ha,b(X) = g (ja,b(X») . 

We the family of hash functions H = {ha,b I a, be tlp with a ::/= O} and claim that 
it is 2-universal. Although H uses tlp as its domain, the claim applies to the 
restriction of H to any subset of 7lp,.jn particular to the domain M. 
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Lemma 8.15: For all x, y e tlp such that x =1= y, 

PROOF: We show that the number of hash functions in H that cause x and y to 
collide is determined by the size of the residue classes of tlp modulo n. Suppose 
that x and y collide under a specific function ha,b. Let !a,b(X) = rand !a,b(y) = s, 
and observe that r =1= s since a =1= 0 and x =1= y. A collision takes place if and 
only if g(r) = g(s), or equivalently, r = s (mod n). Now, having fixed x and y, 
for each such choice of r =1= s the values of a and b are uniquely determined as 
the solution to the following system of linear equations over the field 7lp• 

ax+b - r (modp) 

ay + b - s (mod p) 

Thus, the number of hash functions ha,b that cause x and y to collide is exactly 
the number of choices of r =1= s such that r = s (mod n). The latter is given by 
t5 (71p, 7lp, g). 0 

Given the similarity of the definition of 2-universality to pairwise indepen
dence, it is not surprising that the constructions and their proofs are also very 
similar (see Section 3.4). 

Theorem 8.16: The family H = {ha,b I a, b e tlp with ~ =1= O} is a 2-universal fam
ily. 

PROOF: For each zeN, let Az = {x e tlp I g(x) = z}; it is clear that 
IAz I < r pin 1. In other words, for every r e tlp there are at most r pin 1 different 
choices of s e tlp such that g(r) = g(s). Since there are p different choices of 
r e tlp to start with, 

(rPl ) p(p -1) t5(71p,71p,g) < p ;; - 1 < n . 

Lemma 8.15 now implies that for any distinct x and y in 7lp, t5(x,y, H) < 
p(p - l)/n. Since the size of IHI is exactly p(p - 1), this gives the desired result 
that t5(x, y, H) < IHl/n. 0 

A well-known result in number theory called Bertrand's Postulate states that 
for any number m, there exists a prime between m and 2m. Thus we can 
choose p = O(m), and the number of random bits needed to sample a hash 
function from H is no more than 2 log p = O(log m). Choosing, storing, and 
evaluating hash functions from H is remarkably simple and efficient. Pick a and 
b independently and uniformly at random from 7lp• These are stored using very 
little memory, and computing ha,b is a trivial task. Contrast this with the use of 
a totally random function as a hash function. 
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8.4.4. Strongly Universal Hash Families 

The definition of 2-universality merely constrains the probability that two dis
tinct keys get mapped to the same location. This does not fully capture the 
pairwise independence property (Section 3.4) inherent in the construction of 2-
universal hash functions presented in Section 8.4.3. In fact, essentially the same 
construction gives the stronger guarantee required by the following definition. 

~ Definition 8.6: Let M = {a, 1, ... ,m - 1} and N = {a, 1, . .. ,n - 1}, with m ~ n. 
A family H of functions from Minto N is said to be strongly 2-universal if for 
all Xl =F X2 EM, any Yh Y2 EN, and h chosen uniformly at random from H, 

1 
Pr[h(xd = YI and h(X2) = Y2] = 2· 

n 

Note the similarity to pairwise independence and use this to solve the following 
exercise. 

Exercise •. 12: Assume that n = m = p is a prime number. Show that the hash 
function family H = {ha,b I a, b E Zp} is strongly 2-universal. 

Most known constructions of 2-universal hash families actually yield a 
strongly 2-universal hash family. For this reason, the two definitions are gener
ally not distinguished from one another. This definition generalizes to strongly 
k-universal hash families in the obvious way: for any set S containing k distinct 
elements from M, and any set T containing k elements from N, the probability 
that a random hash function h E H maps the ith element of S to the ith element 
of T is lin". This is closely related to k-wise independent random variables (see 
Section 3.4). 

8.5. Hashing with 0(1) Search Time 

While the hashing scheme described in Section 8.4 achieves a bounded expected 
search time for lSI = O(n), it has the disadvantage of requiring unbounded time 
in the worst case. In this section, we describe a hashing scheme that processes 
the FIND operation using O( I) time in the worst case. The catch is that our 
solution applies only to the static dictionary problem, i.e., we assume that a 
set S of size s is fixed in advance and that we only need to support the FIND 

operation. 
Recall that if we do not restrict the table size, there is a trivial solution that 

takes unit time per query, although it does have the disadvantage of requiring 
Q(m) time for the preprocessing. Our goal is to devise a hashing strategy that 
uses linear space, while guaranteeing bounded search cost and a polynomially 
bounded preprocessing cost. Therefore, in the ensuing discussion we will focus 
exclusively on tables of size n = O(s). 
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8.5.1. Nearly Perfect Hash Families 

One way of achieving our goal is to use a hash function h that is perfect for S. 
Since a hash function cannot be perfect for every possible set S, we will actually 
need a family of perfect hash functions. 

~ Definition 8.7: A family of hash functions H = {h : M -+ N} is said to be a 
perfect hash family if for each set S c M of size s < n there exists a hash function 
h E H that is perfect for S. 

For notational convenience, we do not explicitly specify the parameters m, 
n, and s that go into the definition of perfect hash functions and some of the 
related definitions that follow. The reader should keep in mind that the notion 
of perfection is defined only with reference to these values. 

It is clear that perfect hash families exist: for example, the family of all 
possible functions from M to T is a perfect hash family. Given a perfect 
hash family H, we solve the static dictionary by finding h E H perfect for S, 
storing each key xES at the location T [h(x)], and then responding to a search 
query for a key q by examining the contents of T [h(q)]. The preprocessing cost 
depends on the cost of identifying a perfect hash function for a specific choice 
of S, while the search cost depends on the time required to evaluate the hash 
function.· Moreover, since the choice of the hash function will depend on the 
set S, its description must also be stored in the table. We assume that some 
auxiliary cells are added to T for just this purpose. Suppose that the size of the 
perfect hash family H is r. Then, storing the description of a hash function from 
H will require Q(logr) bits. Since we cannot afford to spend more than 0(1) 
time per search, it is essential that the description of the hash function should 
fit into 0(1) locations in the table T. A cell in the table is only large enough 
to accommodate a key from M, and so it can be used to encode at most log m 
bits of information; therefore, we will only be interested in constructing hash 
families whose size r is bounded by a polynomial in m. It is also essential that 
given an encoding of a hash function into O(log m) bits, we should be able to 
evaluate this hash function efficiently on arbitrary keys. 

Consider the universal hash function family H defined in Section 8.4.3: each 
hash function ha,b is determined by the elements a, b E 7lp• Given a choice of p 
reasonably close to m, the functions ha,b can be stored in 0(1) cells in the table; 
given a and b, the hash function ha,b can be evaluated in 0(1) time. The only 
problem is that the universal hash family is not a perfect hash family. Let us try 
to determine the conditions under which a perfect hash family can be shown to 
exist, ignoring for now the issue of efficient storage and evaluation. 

Exercise •. 13: Assume for simplicity that n = s. Show that for m = 2°(8', there exist 
perfect hash familiea of size polynomial in m. (Hint: Use the probabilistic method.) 
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The existence of a perfect hash family is guaranteed only for values of m that 
are extremely large relative to n. This stems from the requirement that the hash 
family should have size polynomial in m. The following exercise shows that this 
restriction is unavoidable and that the bound in the Exercise 8.13 is close to the 
best possible. 

Exercise •. 14: Assuming that n = s, show that any perfect hash family must have 
size 2°(8'. 

Thus, we need to have m = 20(3), or s == O(1og m), to guarantee even the 
existence of a perfect hash family of size polynomial in m. Unfortunately, in 
practice the case s = O(1og m) is not very interesting for typical values of m, e.g., 
for m = 232. 

To circumvent this inherent problem in the use of perfect hash functions, we 
will employ the strategy of double hashing. The idea is to relax the property of 
perfection and allow for a few collisions; the keys that are hashed to a particular 
location of the primary table are handled by using a new hash function to map 
them into a secondary hash table associated with that location. The set of keys 
colliding at a specific location of the primary hash table is called a bin. In fact, 
we can view the application of a hash function h : M -+ N to the data set S as 
a partition of S into n bins (some of which may be empty). 

~ Definition 8.8: Let S c: M and h : M -+ N. For each table location 0 < i < n-l, 
we define the bin 

Bj(h, S) = {x E S 1 h(x) = i}. 

The size of a bin is denoted by bj(h, S) = IBj(h, S)I. 

A perfect hash function ensures that all bins are of size at most 1. Consider 
the following generalization of perfect hash functions. 

~ Definition 8.9: A hash function h is b-perfect for S if bj(h, S) < b, for each i. A 
family of hash functions H = {h : M -+ N} is said to be a b-perfect hash family 
if for each S c: M of size s there exists a hash function h E H that is b-perfect 
for S. 

Exercise •• 15: Show that there exists a b-perfect hash family H such that b = O(log n) 
and IHI ~ m, for any m ~ n. (Hint: Use the probabilistic method.) 

Using the preceding exercise, we can now outline a scIleme for double hashing. 
At the first level we use a (log m)-perfect hash function h to map S into the 
primary table T. The description of h can be stored in one auxiliary cell. 
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Consider the bin Bi consisting of all keys from S mapped into a particular cell 
T[i]. In this cell we store the description of a secondary hash function hi, which 
is used to map the elements of the bin Bi into the secondary table Ti associated 
with that location. Since the size of Bi is bounded by b, we know from the earlier 
discussion that we can find a hash function hi that is perfect for Bi provided 2b 
is polynomially bounded in m. For b = O(log m) this condition holds, and so 
the double hashing scheme can be implemented with O( 1) query time, for any 
m~n. 

One problem with this approach is that it uses Q(s log m) space, since there 
must be a secondary table of size O(log m) for each of the n = O(s) locations 
in the primary table. While the space bound could possibly be reduced using 
clever memory allocation schemes, a more serious concern is the issue of efficient 
construction and evaluation of the hash functions being used. Both the primary 
and secondary hash families are shown to exist via the probabilistic method, and 
we do not know of any efficient construction. But we can infer the following 
crucial insight from this scheme: the goal of the primary hash functions should 
be to create bins small enough that some perfect hash functions can be used 
as the secondary hash functions. The following exercise describes how we may 
ensure the existence of suitable secondary hash functions. 

Exercise.8.16: Consider a table of size r indexed by R = {O, ... ,r -1}, Show that 
there exists a perfect hash family H = {h : M - R} with IHI ~ m provided that 
r = 0(S2), for all m ~ s. 

We are now ready to describe our final solution. We will use a primary table 
of size n = s, choosing a primary hash function that ensures that the bin sizes 
are small; the perfect hash functions from Exercise 8.16 are then used to resolve 
the collisions by using secondary hash tables of size quadratic in the bin sizes, 
thereby guaranteeing perfect hashing at the secondary level. It follows that total 
space required by the double hashing scheme is 

s+O(~bi). 
This is linear space provided the sum of the squares of the bin sizes is linearly 
bounded in s. Also, the time required for a search operation is clearly O( 1). 

8.5.2. Achieving Bounded Query Time 

Our goal now is to find primary hash functions which ensure that the sum of the 
squares of the bin sizes is linear, and perfect hash functions for the secondary 
tables, which use at most quadratic space. It turns out that the nearly-2-universal 
hash functions discussed in Problem 8.22 are the appropriate choice for both 
primary and secondary hashing. 
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The following notation will be used for these hash functions. For the sake of 
simplicity, we assume that p = m + 1 is a prime number. 

~ Definition 8.10: Consider any V ~ M with IVI = v, and let R = {O, ... , r - I} 
with r ~ v. For 1 :s; k :s; p - 1, define the function hk : M -+ R as follows, 

hk(x) = (kx mod p) mod r. 

For each i E R, the bins corresponding to the keys colliding at i are denoted as 

Bj(k,r, V) = {x E V I hk(X) = i} 
and their sizes are denoted by bj(k, r, V) = IBj(k, r, V)I. 

We include r as a parameter in the bin sizes since we do not assume that r 
is linearly related to v, unlike in Definition 8.8 where we had n = O(s). The 
hash functions hk have a rather simple description since they are completely 
determined by the value of k. Since k E {I, ... , m}, this description can be 
encoded into a key value in M = {O, ... , m - I} and stored in a single cell in the 
table. (The function fro is identically 0, and this is why we choose k from the 
set {I, ... ,m} instead of from M.) The following lemma summarizes the critical 
property of these hash functions that motivates their use in this application. For 
bj < 2, we define (~) to be 0. 

Lemma 8.17: For all V eM of size v, and all r > v, 

(8.2) 

PROOF: The left-hand side of (8.2) counts the number of tuples (k, {x,y}) such 
that hk causes x and y to collide. Equivalently, it is the number of tuples that 
satisfy the following two conditions: 

1. x, y E V with x =F y, and 

2. «kx mod p) mod r) = «ky mod p) mod r). 

Fix any (unordered) pair {x,y} c V with x =F y. The total contribution of 
this pair to the summation is the number of choices of k satisfying the second 
condition. In other words, this pair's contribution is the number of choices of k 
such that 

k(x - y) mod p E {+r,+2r,+3r, ... , +L(p - 1)/rJr}. 

Since p is a prime and 7Lp is a field, for any fixed value of x - y there is a unique 
solution for k satisfying the equation 

k(x - y) mod p = jr 

for any value of j. This immediately implies that the number of values of k that 
cause a collision between x and y is at most 2(p - 1)/r. 
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Finally, noting that the number of choices of the pair {x, y} is G), we obtain 

~t. (Mk,;, VI) < (~r(p; 1) < (p _/)V2 

D 

The pigeonhole principle immediately yields the following corollary. 

Corollary 8.18: For all V C M of size v, and all r ~ v, there exists k E {I, ... , m} 
such that 

The primary hash function hk maps a set S C M of size s into a hash table 
T of size n = s. The keys in Bj(k, r, V) (the elements of S that are mapped to 
T [i]) are then hashed into a secondary table of size bj(k, r, V)2 = IBj(k, r, vW 
using the secondary hash function hki' which is guaranteed to be perfect. The 
processing of a search query works in the obvious way. The performance of this 
scheme is summarized in the following theorem, which guarantees the existence 
of k, kh ... , ks E {I, ... , m} with the desired properties. 

Theorem 8.19: For any S C M with lSI = sand m ~ s, there exists a hash table 
representation of S that uses space O(s) and permits the processing of a FIND 

operation in O( 1) time. 

PROOF: The double hashing scheme is as described above, and all that remains 
to be shown is that there are choices of the primary hash function hk and the 
secondary hash functions hkl , ••• , hk• that ensure the promised performance 
bounds. 

Consider first the primary hash function hk • The only property desired of this 
function is that the sum of squares of the colliding sets (the bins) be linear in 
n to ensure that the space used by the secondary hash tables is O(s). Applying 
Corollary 8.18 to the case where V = Sand R = T, implying that v = r = s, we 
obtain that there exists a k E {I, ... , m} such that 

E (bj(k~S'S)) < s 
1=0 

or that 
s-1 

2: bj(k, s, S)[bj(k, s, S) - 1] < 2s. 
j=O 

Since U::&Bj(k,s,S) = S and E:~ bj(k,s,S) = s, 
s-1 s-1 

L bj(k, S, S)2 < 2s + 2: bj(k, s, S) = 3s. 
j=O j=O 
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Consider now the secondary hash function hki for the set Sj = Bj(k, s, S) of 
size Sj. Applying Corollary 8.18 to the case where V = Sj (or v = Sj) and using a 
secondary hash table of size r = sr, it follows that there exists a k j E {I, ... , m} 
such that 

~ eJ(k,,;i,S;l) < I, 

where b ikj, sr, Sj) is the number of collisions at the jth location of the secondary 
hash table for T [fl. This can be the case only when each term of the summation 
is zero, implying that b j(k j , sr, Sj) < 1 for all j. Thus, it follows that there exists 
a perfect secondary hash function hki • 

This scheme requires a total of 6s + 1 cells: s + 1 cells for the primary 
hash table and the description of the primary hash function, 3s cells for the 
secondary hash tables, and 2s cells to store the size of the secondary tables and 
the description of their hash functions. The processing of a query consists of 
examining 5 cells: the value of k and one cell in the primary hash table, the 
cells storing the size and hash function for the secondary hash table, as well as 
the actual location in that table. A bounded number of arithmetic operations 
suffices for computing the two hash functions. Finally, the entire data structure 
can be stored in an array of size 6s + 1, provided m > 6s + 1 to ensure that it 
is possible to encode pointers to secondary tables as keys in the primary table. 

D 

~ Example 8.1: We illustrate the hashing scheme for the following setting~ m = 30, 
p = 31, s = 6, and S = {2, 4, 5, 15, 18, 30}. The key for the primary hash function 
is k = 2, and the keys for the various secondary hash functions are shown in 
Figure 8.6. Notice that the entire data structure is stored in one array of size 25. 
The pointer entries are merely an index to the location in the array where the 
appropriate secondary table begins. 

Consider the query for the key q = 30. We compute the location in the primary 
hash table as follows: h2(30) = (2 x 30 mod 31) mod 6 = 5. Following the pointer 
at the location T[5], we reach the appropriate secondary table. Noting that ks = 3 
and that the square of the secondary table size is 4, we compute that location 
in the secondary hash table as follows: h3(30) = (3 x 30 mod 31) mod 4 = O. 
Examining cell 0 in this table shows that 30 E S. 

Consider now the query for the key q = 8. We compute the location in the 
primary hash table as follows: h2(8) = (2 x 8 mod 31) mod 6 = 4. Following the 
pointer at the location T [4], we reach the appropriate secondary table. Noting 
that k4 = 1 and that the square of the secondary table size is 4, we compute that 
location in the secondary hash table as follows: h1(8) = (1 x8 mod 31) mod 4 = O. 
Examining cell 0 in this table shows that 8 ~ S. 

All aspects of this scheme are realistic and efficient, barring one minor 
detail. The previous theorem guarantees only the existence of good primary and 
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k=2 

T[O] 

T[l] 

T[2] 

T[3] 

T[4] 

T[5] 

Figure 8.6: An example of double hashing. 

secondary hash functions, but gives no clue as to how these may be identified. 
Of course, since we know the set S a priori, we could exhaustively try all 
possible keys in {I, ... , m} as potential choices for k by computing the sizes of 
the collision bins, and repeating the procedure for the secondary keys. However, 
for the p'rimary key alone, this will require work at least linear in m. But the 
value of m could be super-polynomial in s, and having such a large preprocessing 
cost is impractical. Fortunately, a simple trick using randomization can reduce 
the total preprocessing cost to a polynomial in s at the expense of increasing 
the space requirement by a small constant factor. This trick is based on the 
following modification of Corollary 8.18. The proof is left as Problem 8.25. 

Corollary 8.20: For all V c M of size v, and all r ~ v, 

E (bi(k,r, V)) < 2v2 

i=O 2 r 

for at least one-half of the choices of k E {I, ... , m}. 

A value k satisfying the inequality in the corollary can be found in expected 
time O( v) by random sampling from {I, ... , m}, since the validity of the inequality 
for a specific value of k is easily verified in O(v) time by applying hk to all 
elements of V and keeping track of the bucket sizes. Problem 8.26 requires you 
to show that the weaker inequality in this corollary does not affect the validity 
of Theorem 8.19, except that it increases the space bound by a small constant 
factor. 

Notes 

Comprehensive descriptions of balanced search trees may be found in most textbooks 
on data structures. Self-adjusting binary search trees (or splay trees) are due to Sleator 

228 



PROBLEMS 

and Tarjan [380]. Tarjan [391] gives an excellent description of splay trees, balanced 
search trees, and other related data structures. The material on random treaps is drawn 
from the work of Aragon and Seidel [30], and the games used in the analysis are based 
on the techniques of Mulmuley [315]. Skip lists are due to Pugh [339]. 

Knuth's book [260] gives information on early work on hashing, especially under 
the assumption of a distribution on the input elements. The issue of using hashing to 
exploit the power of the RAM model, and thereby circumventing the logarithmic lower 
bound on searching, was first raised by Yao [420]. Perfect hash functions were defined 
by Sprugnoli [385]. Some efficient constructions of perfect hash families and bounds 
on were provided by Yao [420], Tarjan and Yao [392], Graham (cited in [420)), and 
Fredman and Komlos [155]. The paper of Tarjan and Yao also gives a solution to the 
hashing problems for small key space size, i.e., when the value of m is polynomially 
bounded in n. 

Universal hash functions were defined by Carter and Wegman [88], with the stronger 
definition given in the paper by Wegman and Carter [414]. Universal hashing has found 
application in a wide variety of areas; for example, see Nisan [320] for an application 
to pseudo-random generation and complexity theory. Section 8.5 is based on the work 
of Fredman, Komlos, and Szemeredi [156]. A version of the hash table for dynamic 
dictionaries has been provided by Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der 
Heide, Rohnert, and Tarjan [124]. Their data structure guarantees constant search time, 
and the update time is bounded by a constant only in the amortized and expected sense. 
They also prove lower bounds showing that the worst-case amortized time for an update 
must be at least logarithmic, unless one is willing to increase the search time. 

Problems 

8.1 Prove Lemma 8.4. 

8.2 Prove Lemma 8.5. 

8.3 (Due to K. Mulmuley [315].) Consider the following version of the Mulmuley 
games. The pool consists of the sets p, S, T, and S, where P is a set of p 
players, S a set of b bystanders, T a set of t triggers, and S a set of s stoppers. 
Assume that the players are totally ordered and that all sets are non-empty 
and pairwise disjoint. The game consists of picking random elements of the 
pool, without replacement, until the pool is empty. The value of the game, G~·, 
is defined as the expected value of the following quantity: after aI/ triggers 
have been chosen, and before any stopper has been chosen, the number 
of players who, when chosen, are larger than all previously chosen players. 
This is the same as Game E except for the requirement that we start counting 
only after all triggers have been picked. 

Determine the expected value of G~s. 

8.4 Given a set of keys S = {k1,k2, ••• ,kn }, consider constructing a random treap 
for S where we do not introduce the dummy leaves needed for the endogenous 
property. Is every element of S equally likely to be a leaf in this treap? Discuss 
the implications of your result for the performance of a treap. 
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8.5 We have shown that for any element in a set S of size n, the expected depth 
of a random treap for S is O(log n). Show that the depth is O(log n) with 
high probability. Conclude a similar high probability bound on the height 
of a random treap. (Hint: One of way achieving this bound is to derive a 
Chernoff-type bound on the tail of the distribution of the value of Game A.) 

8.6 Let T be a random treap for a set S of size n. Determine the expected size of 
the sub-tree rooted at an element XES whose rank is k. 

8.7 (Due to C.R. Aragon and R.G. Seidel [30].) Let T be a random treap for the 
set S, and let x, yES be two elements whose ranks differ by r. Prove that 
the expected length of the (unique) path from x to y in T is O(log r). 

8.8 While the Mulmuley games are useful for explaining the analysis of random 
treaps, they are easily dispensed with. To see this. attempt to provide a direct 
proof of Lemmas 8.6 and 8.7. 

8.9 A finger search tree is a binary search tree with a special pOinter (the finger) 
associated with it. The finger always pOints to the last item accessed in the 
tree. Describe how you would implement the ~D operation starting from 
the finger, rather than the root. Finger search trees perform especially well 
on a sequence of FINDS that has some locality of reference. Analyze the 
performance of a random treap in terms of the ranks of the keys accessed 
during a sequence of FIND operations. (The result in Problem 8.7 may be 
useful for this purpose.) 

8.10 (Due to C.R. Aragon and R.G. Seidel [30].) Another important property of 
random treaps is that they adapt well to scenarios where the elements have 
specific access frequencies. Suppose that each key in S will be accessed a 
prespecified number of times, but the exact order of the accesses is unknown. 
Equivalently, consider accesses that involve an element of S chosen at random 
according to a specific distribution that is not necessarily uniform. In either 
case, the following notion of a weighted treap provides an optimal solution to 
the resulting data-structuring problem. 

(a) Consider a random treap T for a set S. Associate a positive integer weight 
fx with each XES, and define F = Exes fx • Define a random weighted treap 
as a treap obtained by choosing priorities for each XES as follows: Px is 
the maximum of fx independent samples from a continuous distribution V. 
Describe how you will maintain a random weighted treap under the full set of 
operations supported by an unweighted treap. 

(b) Prove the following performance bounds for random weighted treaps with 
an arbitrary choice of the weights fx • 

1. The expected time for a FIND, INSERT, or DELETE operation involving a key 
x is 

where F includes the weight of x, and the keys y and z are the prede
cessor and successor of x in the set S. 
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2. The expected number of rotations needed for an INSERT or DELETE oper
ation involving a key x is 

0(1. + log fy + fx + log fz + fx), 
fy fz 

where the keys y and z are the predecessor and successor of x in the 
set s. 

3. The expected time to perform a JOIN, PASTE, or SPLIT operation involving 
sets S1 and S2 of total weight F1 and F2 , respectively, is 

0(1 + log ~1 + log ~: ), 

where x is the largest key in S1 and y is the smallest key in S2. 

8.11 In Problem 8.10. it was assumed that the access frequency or probability is 
known in advance, and this knowledge was important in the choice of an 
appropriate distribution for the elements' priorities. Explain how weighted 
treaps can be made to adapt to the observed frequency of access of the 
elements in the treaps. There is a solution that does not explicitly keep track 
of the observed frequency and will use no more random bits than in the case 
where the frequencies are known in advance. 

8.12 Let us now analyze the number of random bits needed to implement the 
operations of a treap. Suppose we pick each priority Pi uniformly at random 
from the unit interval [0,1]. Then, the binary representation of each Pi 
can be generated as a (potentially infinite) sequence of bits that are the 
outcome of unbiased coin flips. The idea is to generate only as many 
bits in this sequence as is necessary for resolving comparisons between 
different priorities. Suppose we have only generated some prefixes of the 
binary representations of the priorities of the elements in the treap T. Now, 
while inserting an item y, we compare its priority Py to others' priorities to 
determine how y should be rotated. While comparing Py to some PI. if their 
current partial binary representation can resolve the comparison, then we are 
done. Otherwise. they have the same partial binary representation and we 
keep generating more bits for each till they first differ. 

Compute a tight upper bound on the expected number of COin flips or random 
bits needed for each update operation. (See also Problem 1.5.) 

8.13 Compute a tight upper bound on the expected number of coin flips or random 
bits needed for each update operation for random skip lists. 

8.14 In Lemma 8.10 we gave an upper bound on the expected cost of a FIND 

operation in a random skip list. Determine the expectation of this random 
variable as precisely as you can. (Hint: We suggest the following approach. 
For each element Xi. determine the probability that it lies on the search path 
for a particular query y. and sum this over i to get the desired expectation. 
To determine the probability, find a characterization of the level numbers that 
will lead to Xi being on the search path.) 
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8.15 We have shown that the expected cost of a FIND operation in a random skip 
list is O(log n). Prove that the cost is bounded by O(log n) with high probability, 
using a Chernoff-type bound for the sum of geometrically distributed random 
variables. Can you prove a similar probability bound for the INSERT and DELETE 

operations? 

8.16 Give a high probability bound on the space requirement of a random skip list 
for a set S of size n. 

8.17 (Due to W. Pugh [339].) In defining a random leveling for a skip list, we 
sampled the elements from L/ with probability 1/2 to determine the next level 
Li+1 • Consider instead the skip list obtained by performing the sampling with 
probability p (at each level), where 0 < p < 1. 

(a) Determine the expectation of the number of levels r, and prove a high 
probability bound on the value of r. 

(b) Determine as precisely as you can the expected cost of each operation in 
this skip list. 

(c) Discuss the relation between the choice of the value p and the performance 
of the skip list in practice. 

8.18 Formulate and prove results similar to those in Problems 8.7 and 8.9 for 
random skip lists. 

8.19 Consider the scenario described in Problem 8.10 for random treaps. Adapt the 
random skip list structure to prove similar results, and compare the bounds 
obtained in the two cases. 

8.20 (Due to M.N. Wegman and J.L. Carter [414]; see also M. Blum and S. Kan
nan [66].) Consider the problem of deciding whether two integer multisets S1 
and S2 are identical in the sense that each integer occurs the same number 
of times in both sets. This problem can be solved by sorting the two sets in 
O(n log n) time, where n is the cardinality of the multisets. In Problem 7.4, we 
considered applying the randomized techniques for verifying polynomial iden
tities to the solution of the multiset identity problem. Suggest a randomized 
algorithm for solving this problem using universal hash functions. Compare 
your solution with the randomized algorithm suggested in Problem 7.4. 

8.21 (Due to J.L. Carter and M.N. Wegman [88].) Suppose that M = {0,1}m and 
N = {O, 1}n. Let M = {O, 1}(m+1)Xn denote the space of Boolean matrices with 
m + 1 rows and n columns. For any x E M, denote by X(1) the (m + 1)-bit 
vector obtained by appending a 1 to the end of x. For A E M, define 
hA(x) = x(1)A mod 2. Show that H = {hA I A E M} is a 2-universal hash family. 
Is it also strongly 2-universal? Why did we augment the vector x to X(1)? 

Compare the complexity and the use of randomness in this construction with 
that of the construction described in Section 8.4. 

8.22 (Due to J.L. Carter and M.N. Wegman [88].) In this problem we consider a 
weakening of the notion of 2-universal families of hash functions. Let g(x) = 
x mod n be as before. For each a E Zp, define the function f.(x) = ax mod p, 
and h.(x) = g (f.(x)), and let H = {h. I a E Zp, a :/= O}. Show that H is 
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nearly-2-universal in that, for all x :/= y, 

21HI 6(x, y, H) :s -. 
n 

Also, show that the bound on the collision probability is close to the best 
possible for this family of hash functions. 

8.23 (Due to M.N. Wegman and J.L. Carter [414].) Define a super-strong universal 
hash family to be a family of hash functions from M to N that is strongly 
k-universal for all values of k (simultaneously). Provide a complete charac
terization of function families that satisfy this definition. 

8.24 (Due to N. Nisan [320].) An interesting property of a strongly 2-universal hash 
function is the following. For any A S;; M define p(A) = IAI/IMI; similarly, for 
any S s;; N, define p(S) = ISI/INI. For any E > 0, A c::: M, and S c::: N,. a hash 
function h : M - N is said to be E-good for A and S if for x chosen uniformly 
at random from M 

IPr[x E A and h(x) E S] -p(A)p(S)1 :S E. 

Let h be chosen uniformly at random from a strongly 2-universal hash family 
H. Show that for any E > 0, A c::: M, and S c::: N, the probability that h is not 
E-good for A and S is at most 

8.25 Prove Corollary 8.20. 

p(A)p(S)(1 - p(S)) 

E21MI 

8.26 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Sho,!, that the 
hash table representation analyzed in Theorem 8.19 can be constructed with 
expected 0(S2) preprocessing time, using 13s + 1 cells and the same search 
time. 

8.27 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Show that the 
hash table representation described in Theorem 8.19 can be constructed with 
worst-case 0(s310gs) preprocessing time, using 13s + 1 cells and the same 
search time. 

8.28 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Show that the 
hashing scheme of Section 8.5 can be modified to use space s +o(s) while still 
requiring only polynomial preprocessing time and constant query time. (Hint: 
Increase the size of the primary hash table and observe that most of the bins 
will be empty. Find an efficient scheme for packing together the non-empty 
bins, while creating secondary hash tables only for the bins of size greater 
than 1.) 
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CHAPT ER 9 

Geometric Algorithms and Linear 
Programming 

IN this chapter we consider algorithms that manipulate geometric objects such 
as points, lines, and planes. In Chapter 1 we encountered one such algorithm: 
the RandAuto algorithm for line segments in the plane. We will use the RAM 
of Sectiotl 1.5.1, with the following additional observations. We will deal with 
points whose coordinates are real numbers; we assume that we can compare 
these coordinates and perform arithmetic operations (including the square-root 
operation) in constant time. Similarly, we can check in constant time whether 
or not two line segments intersect. Unless otherwise specified, we use the 
Euclidean metric, by which the distance between points (Xl,yt) and (X2,Y2) is 
V(XI - X2)2 + (Yl - Y2)2. Our use of randomness will as usual be "discrete" 
rather than "continuous": we will use random numbers to select objects at 
random from a finite population (say the points or lines that constitute an 
instance of a geometric problem), but not to choose, say, a random point from 
the interior of a triangle. 

9.1. Randomized Incremental Construction 

In many computational problems, the use of randomization yields algorithms 
that are substantially faster than their known deterministic counterparts. In 
computational geometry, however, randomized algorithms often only match the 
running times of known deterministic algorithms, but are usually much simpler 
to understand and implement. 

One strikingly simple approach to designing randomized geometric algorithms 
is that of randomized incremental construction. Here the n objects comprising the 
input to the problem are considered one at a time, in a random order, and the 
effect of each added object on the solution is computed. For many geometric 
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problems, this paradigm bears a strong resemblance to algorithms favored (and 
used) by programmers, except that programmers process the objects in the order 
present in the input rather than in a random order. 

Before proceeding to geometric problems, we give a simple non-geometric 
algorithm that motivates randomized incremental construction. Consider ran
domized incremental sorting,' given n numbers to be sorted, we use the following 
scheme to sort them. After the ith of n steps (1 ~ i ~ n), we will make sure that 
we have i of the input numbers in a sorted list. Clearly these i sorted numbers 
will partition the ranks of the remaining n - i (yet unsorted) numbers into i + 1 
intervals. The (i + 1 )th step consists of choosing one of the n - i yet unsorted 
numbers uniformly at random, and inserting it into the sorted list. After n 
such insertion steps, we are left with a list of all the input numbers, in sorted 
order. 

There are many ways of performing this insertion step, and we will study 
one that is simple to understand and analyze. Throughout the algorithm, we 
maintain a pointer for each number yet to be inserted into the sorted list. After 
the ith step, the pointer for each uninserted number specifies which of the i + 1 
intervals in the sorted list it would be inserted into, if it were the next to be 
inserted (assume for the moment that all the numbers in the input are distinct). 
The pointers are bidirectional, so that given an interval we can determine the 
numbers whose pointers point to it. What is the work required to maintain these 
pointers? Suppose we insert a number x whose pointer points to interval I. On 
inserting x, we have three tasks: (i) find all numbers whose pointers point to 
I; (ii) update the pointers of all numbers whose pointers point to I; (iii) delete 
the pointer from x to I. The important task is (ii). The update task cbnsists of 
changing each of the pointers to point to one of the two new sub-intervals of 
I created by the insertion of x. Clearly, the work done in this update step is 
proportional to the number of pointers pointing to I. 

Consider the work done in the ith step when the objects in the input are 
considered in a random order. While we could directly analyze this random 
variable, we use this occasion to introduce backwards analysis, a tool that will 
often prove useful. In this view of things, we imagine that the algorithm is run 
backwards starting from the sorted list we have at the end. Thus, in analyzing 
the ith step, we imagine that we are deleting one of the i numbers in the sorted 
list and updating the pointers. A moment's thought shows that the work done 
in updating the pointers in this case is the same as if we had run the algorithm 
forward as usual. There is a second crucial component to backwards analysis: 
since the numbers were added in random order in the original algorithm, in the 
backwards analysis we may assume that each of the i numbers in the sorted 
list is equally likely to be deleted at this step. What is the expected number of 
pointers to be updated at this step? Since there are i intervals and n - i + 1 
pointers remaining after the deletion, the expected number of pointers that were 
altered at the ith step is O(n - i}/i), which is O(n/i). Now, we use linearity 
of expectation to sum the work done over all the steps, to obtain a bound of 
O(Ei n/i) = O(n log n) on the expectation of the total work. 
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Viewed as yet another variant of quicksort, the above may not be especially 
interesting. However, it paves the way for our study of randomized incremental 
algorithms for a number of geometric problems. 

9.2. Convex Hulls in the Plane 

Given a set S of n points, their convex hull is the smallest convex set that 
contains all of the n points (see Figure 9.1). In the plane, intuitively, if we 
were to surround the points of S by a large, stretched rubber band, the convex 
hull is the (convex) polygonal shape that would be enclosed by the band when 
released. Similarly, for points in three dimensions the analogy would be one of 
"gift-wrapping" the points in S to form their convex hull. We will be interested 
in algorithms for computing the convex hull of S given S. We denote by conv(S) 
the convex hull of S. We begin with the case when the points in S are in the 
plane. 

Figure 9.1: The convex hull of 12 points in the plane. 

The boundary of conv(S) forms a convex polygon whose vertices are a subset 
of S; whenever there is no risk of confusion, we will refer to the polygon as 
conv(S). The problem of computing a convex hull in the plane is then the 
following: given S, we are to compute the polygon (bounding) conv(S). The 
output is to be given as a list containing the points of S that appear as vertices 
of conv(S), in counterclockwise order as they appear on the polygon; the starting 
point for the list may be arbitrary. For definiteness, we prescribe that the first 
point in this ordering is the point in S with the smallest x-coordinate. Assume 
that no three points in S lie on a straight line. This assumption can be dispensed 
with in an implementation by exercising due care. We now show that the 
randomized incremental paradigm described above in the context of sorting can 
be applied to this problem. 

Before we describe the algorithm, we note some basic facts about computing 
convex hulls in the plane. 
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Exercise 9.1: By making use of the fact that sorting n numbers requires Q(n log n) 
steps in our model of computation, prove that finding the convex hull of n pOints 
requires Q(n log n) steps. Indeed, the lower bound for sorting (and as a consequence 
of this exercise, finding the convex hull) holds even for randomized algorithms. 

Exercise 9.2: Let S be a set of n pOints in the plane each represented by a pair of 
coordinates. Given another point p = (x, y), how many steps suffice to determine 
whether p lies in the convex hull of S? 

The algorithm first randomly permutes the points in the input set S; let Pi 
be the ith point in this random ordering, for 1 < i < n. Let Si denote the set 
{Ph" . , pJ Next, the algorithm proceeds through n stages. After the ith step, 
the algorithm will have computed conv(Sj). During the ith step, it adds Pi to 
conv(Si-t>, forming conv(Si) in the process. We now specify the details of this 
update step. 

We maintain at all times a point in the interior of conv(S); in particular, 
we could utilize the centroid of conv(S3) (which can be computed in constant 
time) for this purpose. Call this point Po. We also maintain after the ith step a 
(circular) linked list containing the vertices of conv(Si). In addition, for simplicity 
of description, we imagine that this linked list also contains the edges joining 
successive vertices in this list (this can easily be avoided in an implementation, 
with minor additional work). Let S\Si denote the set of points yet to be added 
after the ith step, for 3 :::;; i:::;; n -1. For each such point P e S\Sj, we maintain a 
(bidirectional) pointer from P to the edge of conv(Si) cut by the ray emanating 
from Po, and passing through p. We say that P cuts this edge of conv(S;). Thus, 
given any edge of conv(Si), we can enumerate all points P that cut the edge in 
time linear in the number of such points. 

Having specified the data structures, we describe the actions required to 
update these structures at each step. The point Pi inserted at the ith step is either 
inside or outside conv(Sj_I). Using the line segment PiPO and the associated 
pointer, we can in constant time detect which of these two cases holds (our 
assumption that no three points are collinear precludes the possibility that Pi 
lies on the boundary of conv(Si-t». If Pi is inside conv(Si-l), we delete the pointer 
from Pi and proceed to step i + 1. On the other hand, if Pi is outside conv(Si-d, 
we must update the linked list representing the polygon bounding the hull. The 
vertices of conv(Si-l) are partitioned into three sets by the addition of Pi: 

1. Vertices of conv(Si-l) that have to be deleted because they are not vertices of 
conv(Si). 

2. Two vertices of conv(Si_d that become the neighbors of Pi on conv(Si). Let us 
denote these vertices VI and V2. 

3. Vertices of conv(Si_l) that remain in conv(Sj) with their incident edges unchanged. 

Clearly the end-points of the edge '1 intersected by the line-segment PiPO are of 
type (1) or (2). By marching away from '1 (on both sides) along the linked list 
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representing conv(Sj_d, we can detect the vertices of types (1) and (2). We do so 
in time linear in the number of such vertices. As we do so, we detect the points 
in S\Sj that cut the edges being deleted, and update their pointers to either the 
edge PjVl or PjV2. This takes constant time (since we have to check only two 
edges PiVl and PjV2) for each point of S\Sj whose pointer needs to be updated 
(see Figure 9.2). 

Figure 9.2: The addition of Pi results in the deletion of vertices sand t. and the pointer 
for q requires updating while that for r does not. 

What is the total work done at the ith step? The cost of deleting an edge 
of conv(Sj_d can be charged against the cost of creating it, since an edge can 
be deleted only once after being created. Since only two edges are created at 
each step, the total number of these edge creations/deletions (over all steps) is 
at most 2n. What about the cost of updating the pointers at the ith step? This 
is the number of points P in S\Sj such that PPo cuts an edge that is deleted 
during the step. To bound the expectation of this random variable, we resort 
to backwards analysis. Imagine running the algorithm backward, and deleting a 
point of conv(Sj\S3) to form conv(Sj_d. Then, the number of pointers updated 
in the ith step of the original algorithm is the same as the number deleted in 
the corresponding step of the backward algorithm. We show that the expected 
number of pointers updated is O(n/i), conditioned on any fixed set of points 
Sj \S3 from which we delete a random point in the backward step. Since this 
upper bound holds for any set of i points, the conditioning on a particular set 
Sj \S3 can be removed. 

For a point P e S\Sj, let ep be the edge of conv(Sj) cut by PPo. The probability 
that P's pointer is updated is precisely the probability that ep is deleted as a result 
of the deletion step. Now, ep is deleted if one of its two end-points is deleted 
in the backward step. Since the point being deleted from Sj is chosen uniformly 
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from the i - 3 points in Si\S3, this probability is O(l/i). The expected number 
of pointers updated is O(n - i}/i), so that the total work done at this step is 
O(n/i). A crucial point is that in the deletion step of the backward algorithm, 
we delete a random point in S;, not a random vertex of corw(S;). We now invoke 
linearity of expectation to bound the expected running time of the algorithm by 
O(n log n). 

Tbeorem 9.1: The expected running time of the above randomized incremental 
algorithm for computing the convex hull of n points in the plane is O(n logn). 

We should stress again that the chief advantage of the above algorithm is its 
extreme simplicity of implementation. An incremental approach such as .this is 
natural to program. The (expected) running time is asymptotically the same as 
that of many known deterministic convex hull algorithms and matches the lower 
bound. More importantly, the same simple approach lends itself to computing 
convex hulls of points in higher dimensions, where deterministic algorithms 
are rather complicated. Before we proceed to the three-dimensional case, we 
introduce the notion of geometric duality. 

9.3. Duality 

The notion of geometric duality is fundamental to computational geometry and 
plays a key role in designing algorithms. The dual of the point p = (a, 9) in the 
plane is the straight line whose equation is ax + by + 1 = 0; conversely, the dual 
of the straight line defined by ax + by + 1 = 0 is the point (a, b). Thus duality in 
the plane maps points to lines, and lines to points. The mapping is involutary: 
the dual of the dual of a point is the point itself, and a similar statement holds 
for a line. A simple calculation shows that if a point p is at distance d from 
the origin, its dual (a line t) is perpendicular to the line joining p to the origin. 
Further, the distance between the origin and the closest point on t is lid, and 
t does not pass through the quadrant containing p. Figure 9.3 illustrates this. 
In this definition, we disallow lines through the origin and points at infinity. We 
also disallow the point (0,0). 

Exercise 9.3: Let P1 and P2 be two points, and 11 and 12 be their respective dual lines. 
Show that the line t passing through P1 and P2 is the dual of the point of intersection 
of 11 and 12. 

We will apply the duality relationship to map the convex hull problem into 
another geometric problem in the plane. The half-plane intersection problem 
is the following: the input is a set H of half-planes {hI, h2, ••• , hn}; we are to 
determine the intersection of these half-planes. This will be a convex polygon 
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y 
t : ax + by + 1 = 0 

p=(a,b) 

________________ ~------~'-----------------------~x 

Figure 9.3: Duality between a point and a line. 

if the intersection is non-empty, and we ask for the algorithm to output it as a 
linked list of vertices much as we did in the convex hull problem. 

We will show that, in a sense, the half-plane intersection problem is the dual 
of the convex hull problem. Assume for the moment that the convex hull of the 
given set S contains the origin of the coordinate system (see Exercise 9.4 below) 
and that the origin is not one of the input points. Given a line I in the plane 
that does not pass through the origin, we let 1+ denote the half-plane bounded 
by I containing the origin. Throughout this chapter, all half-planes/half-spaces 
will be open half-planes/half-spaces. Let Ii be the dual of Pi e S, and hi = It. 
The proof of the following theorem is elementary, and is a consequence of the 
result in Exercise 9.3. 

Tbeorem 9.2: Let the convex hull of S contain the origin, and let the origin not 
be one of the points in S. Let Pi"Pi2' and Pi3' be three vertices of the convex hull of 
S, ocCurring in that order in the output. Then hi" hi2' and hi3 bound the intersection 
of the half-spaces hi. appearing on the boundary of the intersection in that order. 

Exercise 9.4: Give a linear-time transformation that shifts the points of S to ensure 
that the origin lies inside their convex hull. Once we perform this operation, it is 
easy to satisfy the condition that the origin not be in S: since the origin is inside the 
convex hull of S. it need no longer be considered for computing the convex hull and 
can therefore be deleted from S even if it occurs in S. 

Each hi can be determined from Pi in constant time. Given the intersection 
of the half-spaces, we can identify in linear time the line segments (and hence 
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the lines) that actually appear on the boundary of the intersection. Each line 
bounding the intersection now corresponds to a point on the convex hull of S, 
and we can read these off in order in linear time. In other words, an algorithm 
that computes the intersection of half-planes yields an algorithm that computes 
the convex hull of points in the plane. 

Given an algorithm, data structure, or analysis that works in the "primal" 
space (in this case, points whose convex hull we wish to compute), there is a 
corresponding algorithm, data structure, or analysis that works in the dual space 
(in this case, half-planes whose intersections we wish to compute). Indeed, in 
Problem 9.2 we derive a randomized incremental algorithm for computing the 
intersection of n given half-planes. 

In the next section we will exploit the notion of duality in higher dimensions. 
The following exercise will pave the way for computing convex hulls in three 
dimensions, by reducing the problem to computing half-space intersections in 
three dimensions. 

Exercise 9.5: Extend the notion of duality to three dimensions, working through the 
statements of Exercises 9.3 and 9.4, and of Theorem 9.2. In fact, the correspondence 
can be made in d > 3 dimensions as well. 

9.4. Half-space Intersections 

The goal of this section is to develop a randomized incremental algorithm for 
computing the intersection of n half-spaces in three dimensions. The algorithm 
will be shown to have an expected running time of O(nlogn); by applying the 
results of Exercise 9.5, we will then have an algorithm for computing the convex 
hull of n points in three dimensions with an expected running time of O(n log n). 

Given a set S of n half-spaces in three dimensions, their intersection inter(S) 
is a (possibly empty) convex polyhedral set in space. Note that the intersection 
need not be bounded. Every facet of this polyhedron is contained in a plane 
bounding one of the half-spaces. We assume that each half-space is given to 
us as a linear inequality whose variables are the coordinates; the corresponding 
equality gives the equation defining the plane bounding the half-space. Since 
inter(S) is a polyhedron (when non-empty), we can represent it as a graph each 
of whose vertices corresponds to a vertex of this polyhedron, with vertices of 
the graph being adjacent if the corresponding vertices on the polyhedron are 
joined by a line formed on its surface by the intersection of two half-spaces 
in S. When inter(S) is unbounded, we assume for convenience that there is a 
point at "infinity" that is the common end-point of all semi-infinite edges of the 
polyhedron. Given S, our goal is to compute the graph representing the facets 
of the polyhedron inter(S); we represent this graph by giving the positions (in 
space) of all its vertices, together wiin the adjacencies between vertices. 
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Since every facet of this polyhedron is contained in a plane bounding one of 
the half-spaces and no plane contains more than one facet, the number of facets 
is at most n. Further, the graph representation of inter(S) is a planar graph, 
in which the number of vertices and the number of edges are both O(n). We 
assume that no four such bounding planes pass through a common point, so 
that every vertex of the polyhedron/graph (except possibly the "infinity" vertex, 
when necessary) has degree three. Just as we speak of the edges adjacent to a 
vertex, we may also speak of the facets of the polyhedron (corresponding to the 
faces of the graph) adjacent to a vertex; thus there are three facets adjacent to 
each (finite) vertex of inter(S). Likewise, we may speak of the edges bounding a 
facet, and of the two facets on either side of an edge. 

The randomized algorithm for computing inter(S) is very similar to the one 
we have described for computing the convex hull of points in the plane, in 
Section 9.2. The algorithm first randomly permutes the half-spaces in the input 
set S; let hi be the ith half-space in this random ordering, for 1 < i < n. Let 
Si denote the set {hh"" h;}. Next, the algorithm proceeds through n stages. 
After the ith step, the algorithm will have computed inter(S;). During the ith 
step, it adds hi to inter(Si_d, forming inter(Si) in the process. Geometrically, 
this can be viewed as cutting away the portion of inter(Si_l) not contained 
in hi. In the process, some vertices of the polyhedron inter(Sj_d are deleted, 
and some new vertices are added. We describe the details of this addition 
process' now, and then give the analysis. We assume first for simplicity that 
the intersection of {hhh2,h3,h4 } is bounded; thus inter(Si) will be a bounded 
polyhedron throughout the execution of the algorithm. This assumption can 
easily be removed and is the subject of Exercise 9.8. 

Let S\Si denote the set of half-spaces yet to be added after the ith step. In the 
following description, we concern ourselves only with half-spaces in S\Si whose 
bounding plane intersects inter(Si_d; it will be clear that the remaining half
spaces are easily dealt with. For any half-space h, let h denote the complement 
of h. For a half-space h, we say that a vertex of inter(Si_l) conflicts with h if that 
vertex is in h. 

Assume for the moment that for each half-space h e S\Si, we have a (bidi
rectional) pointer to some vertex of inter(Si_l) that conflicts with h. (The 
precise choice of this vertex will become apparent from the discussion fol
lowing Exercise 9.7.) Under this assumption, the details of the algorithm are 
fairly straightforward. The process of adding hi to form inter(Si) begins at the 
vertex of inter(Sj_l) that conflicts with hj. Starting at this vertex, we search 
the graph representing inter(Si_l), ensuring throughout that we do not "enter" 
inter(Sj_l) n hj. In the course of this search, we determine the vertices and the 
edges of inter(Sj_d that are destroyed by the addition of hj, and the newly 
created vertices of inter(Sj) (all of which lie on the plane bounding h;). 

Exercise 9.6: Show that the vertices destroyed by the addition of hi form a connected 
component of the graph representing inter(S,_,). 
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Clearly, the cost of this search is proportional to the sum of the number of 
vertices destroyed and the number of vertices created. As in our analysis of the 
convex hull algorithm in two dimensions, we may ignore the cost of the deletions, 
since a vertex is deleted at most once and thus it suffices to count vertices when 
they are created. To analyze the expected number of vertices created by the 
addition of h;, we resort to backwards analysis again. Thus, we imagine that we 
have inter(Sj), from which we delete a randomly chosen half-space. Using the 
fact that the number of vertices and edges in a planar graph with k faces is O(k), 
the following exercise requires an analysis very similar to that in Section 9.2. 
The approach once more is to first derive the result conditioned on Sj being a 
fixed set of half-spaces one of which (chosen at random) is deleted, and then 
removing the conditioning by noting that the result is independent of the set Sj 
we start with. 

Exercise 9.7: The expected number of vertices created at any step of the randomized 
incremental half-space intersection algorithm is a constant. 

It remains to substantiate the assumption that for each half-space h e S\S;, 
we have a (bidirectional) pointer to a vertex of inter(Sj_l) that conflicts with 
h. We now describe how this information can be maintained, and then analyze 
the cost of doing so. In particular, we must specify how the pointers for the 
half-spaces in S\Sj are updated following the addition of hj. 

When we destroy a vertex v of inter(Sj_l) during the addition of h;, we check 
whether there are any pointers from v to half-spaces in S\Sj (recall· that our 
pointers are bidirectional). For each such pointer (pointing to a half-space 
h e S\Sj), we must shift it to a new vertex w e h n inter(S;). How do we find 
such a vertex w? The process is similar to that used in updating inter(Sj_.) to 
form inter(S;). Note that the vertex v is in Ii n hj. We perform a walk on the 
graph representing inter(Sj_.) starting at v, taking care never to enter h, until we 
first arrive at a vertex of inter(S;). On arriving at such a vertex of inter(Sj), we 
have found the new vertex w we seek, since it is in Ii and thus conflicts with h. 
We move the bidirectional conflict pointer for h to point to w. 

It remains to analyze the cost of this search. As in the analysis yielding 
the statement of Exercise 9.7, we use the fact that every vertex of the graph 
has degree 3. Therefore, the cost of this search is proportional to the number 
of vertices in Ii n hj n inter(Sj_.). Equivalently, this is the number of destroyed 
vertices of inter(Sj_.) in conflict with h, plus the number of newly created 
vertices of inter( Sj) in conflict with h. In considering the asymptotic total cost 
for maintaining the pointer for h, it suffices to count only the newly created 
vertices, since any vertex that is destroyed has been counted once when created. 

We now wish to bound the expected number of such newly created vertices 
in conflict with h, summed over all h e S\Sj. This is exactly 

L I{h e S\Sj : h conflicts with v}l, (9.1) 
v 

243 



GEO;\fETRIC ALGORITHMS AND LINEAR PROGRAMMING 

the summation being taken over the set of the vertices of inter(Sj) newly created 
by the addition of hj. We bound the expectation of (9.1). 

For a set of half-spaces H, let c(H, h) denote the number of vertices of 
inter(H) in conflict with h. Resorting again to backwards analysis, we consider 
first a fixed set Sj from which a random half-space is deleted to give inter(Sj_I). 
Noting that each vertex of inter(Sj) has degree 3, the expectation of (9.1) is thus 
bounded by 

3 i L c(Sj,h). 
heS\Sj 

Since hi+1 is chosen uniformly at random from S\Sj, 

1 
E[c(S;, hi+dl = -. ~ c(S;, h). n-l L-

heS\Sj 

Combining (9.2) and (9.3), the expectation of (9.1) is bounded above by 

3(n - i) 
--.---'-E[c(S;, hi+dl. 

I 

(9.2) 

(9.3) 

The random variable c(Sj, hi+l) also counts the expected number of vertices 
destroyed by the addition of hi+h the half-space added at step i + 1. Thus, the 
expectation of the sum over all i of (9.1) (which measures the total work in 
updating pointers over the course of the entire algorithm) is bounded above by 

~ 3(n - i) E[ N be f . d ed· 1 L- i um r 0 vertices estroy at time i + 1 . 
j-I 

(9.4) 

For a vertex v created in the course of the algorithm, let tc(v) denote the time 
(step number) at which it is created, and td(V) the time at which it is destroyed. 
Then, (9.4) can be rewritten as 

(9.5) 

where'v ranges over all vertices ever created during and execution of the 
algorithm. Since tc(v) < td(V) - 1, we can bound (9.5) from above by 

But we have already seen in Exercise 9.7 that E[I{v I tc(v) = i}l] is a constant. 
We thus have: 

Tbeorem 9.3: The expected running time of the randomized incremental algorithm 
for computing the intersection of n half-spaces in three dimensions is O(n log n). 



9..5 DELAUNA Y TRIANGULATIONS 

Exercise 9.8: In the above description, we assumed that the intersection inter(S,) 
was bounded for all i ~ 4. How can this assumption be removed? 

9.5. Delaunay Triangulations 

Let P = {Ph ... , Pn} be a set of n points in the plane. For a point Pi e P, let 
cell(Pi) denote the set of points in the plane that are closer to Pi than to any 
Pj e P, for j =1= i. 

Exercise 9.9: Show that cell (Pi) is a (possibly unbounded) convex polygonal region 
for each i, and that the regions cell(p,) form a decomposition of the plane into n 
open convex polygonal regions. 

The partition of the plane described in Exercise 9.9 is known as the Voronoi 
diagram of P, and we will denote it by vor(P). The convex polygonal region 
cell(Pi) corresponding to Pi is known as the Voronoi cell of Pi. The notion of 
Voronoi cells and diagrams can in fact be readily formulated for points in higher 
dimensional space, but we will focus on points in the plane here. 

The Voronoi diagram of a set of points is a fundamental structure in computa
tional geometry, and has many applications. We will be interested in algorithms 
for constructing vor(P) and related structures, given P. We assume henceforth 
that no four points of P lie on any circle, and that no three lie on any straight 
line. These assumptions greatly simplify the descriptions of the algorithms dis
cussed below and may be removed with some care. The Voronoi diagram of a 
set of points in the plane has a number of properties that are easy to verify: 

Exercise 9.10: 

1. Show that the boundary between any two cells (known as a Voronoi edge) is the locus 
of pOints equidistant from two pOints of P. 

2. Viewing vor(P) as a planar graph, show that every vertex of the graph has degree 3. 

3. Show that if cell (Pi). cell(pj), and cell(pk) share a vertex in the Voronoi diagram, 
then the circle passing through Pi. PI. and Pk contains no other points of P. 

4. Show that if PI is a point of P on the convex hull of P, then cell(p;) is unbounded. Is 
the converse also true? 

Let us view vor(P) as a planar graph, each of whose faces corresponds to a 
point Pi E P. Consider the planar dual of this graph, with a vertex at each point 
Pi E P (representing the face cell(Pi», and an edge between two vertices if the 
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corresponding cells share an edge in vor(P). This dual graph is known as the 
Delaunay triangulation of P, which we denote by del(P) (see Figure 9.4). From 
property 2 of Exercise 9.10, it follows that del(P) is indeed a triangulation (i.e., 
each of its facets except for the outermost one is a triangle). Clearly, given P 
and vor(P), we can construct del(P) in time O(n). 

-_ .. _._._< . , .......... ,., 
.....•.. 

, . 
........... 

Figure 9.4: A Voronoi diagram (dashed lines) and the corresponding Delaunay triangula
tion (solitl lines), for a set of seven points in the plane. 

Exercise 9.11: Show that vor(P) can be constructed from de/(P) in time O(n). 

In the remainder of this section, we concentrate on algorithms for constructing 
del(P); by Exercise 9.11 above, this will readily imply an algorithm for computing 
vor(P). We first describe a parabolic transformation that reduces the problem of 
computing del(P) to one of computing the intersection of n half-spaces in three 
dimensions. Given the points of P in the xy-plane, consider the paraboloid 
z = x2 + y2. Denote by qj the point (Xj,y;,Xf + Yf) on the surface of the 
paraboloid that is directly "above" Pi = (X;, Yi, 0). Let hi denote the half-space 
that is above the plane tangent to the paraboloid at qi (see Figure 9.5). Consider 
the polyhedron formed by the intersection of the hi. 

Exercise 9.12: Let P be a pOint in the xy-plane at distance di from Pi, and let q be 
the point on the paraboloid directly above p. Show that vertical distance between q 
and the tangent plane bounding hi is d!. 

Exercise 9.12 has the following consequence, which is easy to prove; a detailed 
proof may be found in any of the texts on computational geometry listed in the 
Notes section. 
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Figure 9.5: The parabolic transformation. 

Tbeorem 9.4: Given P = {PI, ... ,Pn}, let H = {hI, ... , hn} as described above. 
Let inter(H) denote the intersection of the half-spaces above the tangents at the 
points in H. The Delaunay triangulation of P results from projecting the edges of 
inter(H) vertically down to the xy-plane. 

Corollary 9.5: Given inter(H), we can compute del(P) in time O(n). 

By Corollary 9.5, we thus have a randomized incremental algorithm for 
computing del(P) that runs in expected time O(nlogn): we transform P to H 
using the parabolic transformation and invoke the algorithm of Section 9.4 to 
compute inter(H). 

We now focus on a special case of the problem of computing del(P), in 
which the points of P are the vertices of a convex polygon. We will show 
in Section 9.5.1 below that a simple randomized algorithm runs in expected 
time O(n) for this case. Before we do so, we will require the following easy 
consequence of Exercise 9.6. 

Exercise 9.13: Let de/(P) denote the Delaunay triangulation of a set P of pOints in 
the plane. Consider the addition of a new point q; the Delaunay triangulation of pu{q} 
can be formed by deleting some triangles of de/(P), and retriangulating the affected 
region. Show that the set of triangles destroyed forms a connected component of the 
graph de/(P). 
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9.5.1. Cbew's Algoritbm 

We now show that a simple randomized algorithm computes del(P) in expected 
time O(n) when the points of P are the vertices of a convex polygon. We will 
require the points of P to be given to us in the order in which they appear on 
this convex polygon. 

The algorithm is recursive, and is as follows. We pick a random point peP; 
let q and r denote its neighbors on the boundary of the given convex polygon. 
We recursively compute del(P\{p}), while IP\{p}1 > 3. Having computed 
del(P\{p}), we augment it to form del(P) by the following three steps: 

1. Add the triangle pqr to del(P\{p}). Let D denote the resulting graph. 

2. Identify all triangles of del(P\{p}) whose circumcircle contains p (such triangles 
can no longer be Delaunay triangles), by a depth-first search of the dual graph 
of del(P\{p}), much as in the search for conflicting vertices in the half-space 
intersection algorithm of Section 9.4. By Exercise 9.13, these triangles form a 
connected component of del(P\{p}). Let S denote the set consisting of these 
"bad" triangles together with the triangle pqr. 

3. Remove from D all edges that have triangles of S on both sides and retriangulate 
the resulting face by introducing all diagonals that have p as an end-point. 

The second step above can be performed in time linear in the number of 
triangles in S. This number, in turn, is one more than the number of edges 
introduced in the third (retriangulation) step above. Thus the expected cost 
of the update is proportional to the expected degree of the vertex p in del(P). 
Since del(P) is a planar graph, this expected degree is a constant (since p was 
chosen uniformly at random from the n points in P, and del(P) has O(n) edges). 
Summing this expected cost over the n - 3 recursive steps, we have: 

Tbeorem 9.6: The above algorithm computes del(P) in expected time O(n), pro
vided the points of P are vertices of a convex polygon given in the order in which 
they appear on the boundary of the polygon. 

Exercise 9.14: Why does the above running time guarantee fail if the vertices of P 
are not vertices of a convex polygon? 

9.6. Trapezoidal Decompositions 

Our next example of a randomized incremental algorithm (sometimes also 
known as the vertical decomposition) comes from the construction of a trape
zoidal decomposition for a set of line segments in the plane. The trapezoidal 
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decomposition is a basic structure for representing and manipulating an ar
rangement of line segments. Let S denote a set of n (possibly intersecting) line 
segments in the plane; we assume that the x-coordinates of the segments are 
all distinct. Let k denote the number of points at which two or more segments 
intersect. Imagine passing a vertical line through each end-point of each segment 
of S, as well as through each of the k intersection points. These vertical lines 
continue until they hit one of the other segments, where they stop. Some of these 
lines will continue to infinity, because they do not hit any other line segments. 

Figure 9.6: A trapezoidal decomposition of three segments. 

The resulting decomposition of the plane is known as a trapezoidal decompo
sition (see Figure 9.6); each of the regions into which the plane is partitioned 
is in general a trapezium with two parallel vertical sides. Some regions are 
infinite, of course. By imagining that the region containing the segments in S 
is enclosed in a large rectangular "bounding box," we can view the trapezoidal 
decomposition of S as a planar graph each of whose vertices is either (i) an 
end-point of a segment in S, or (ii) a point at which two or more segments of S 
intersect, or (iii) a point at which the vertical line through a vertex of type (i) or 
(ii) hits a line segment or the bounding box. It is important to note that a face 
of this planar graph may have an arbitrary number of vertices, even though it 
is geometrically a trapezium. 

Exercise 9.15: Consider computing the trapezoidal decomposition of S, and repre
senting the output as a planar graph. The size of this graph is Q(n + k), which is 
clearly a lower bound on the number of steps in the computation. Show that the 
computation also requires Q(n log n) comparisons. 
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Let trap(S) denote the trapezoidal decomposition of S, represented as a planar 
graph. We now give a simple randomized incremental algorithm for computing 
trap(S), with expected running time O(n log n + k). By the result of Exercise 9.15, 
this is the best possible. 

Assume without loss of generality that no line in the input is vertical. The 
algorithm first randomly permutes the line segments in S; let Sj be the ith 
segment in this random ordering. Let Sj denote {s}, ... , Sj}. The algorithm 
proceeds through n stages, after the ith of which it will have computed trap(S;). 
During the ith step, i> 1, it adds Sj to trap(Sj_d, forming trap(Sj) in the process. 
We first specify the details of this update step, and then proceed to analyze the 
running time. 

For i > 1, let S\Sj denote the set of points of S to be added in the incremental 
construction after the ith step (i.e., the set {Sj+},Sj+2, ... Sn}). For each segment in 
S\Sj, we maintain a bidirectional pointer to the face of trap(Sj) containing its 
left end-point. Thus, given a face of trap(Sj), we can read off the segments in 
S\Sj contained in that face in time linear in the number of such points. 

Next, we describe how trap(Sj-d is updated to trap(Sj) by the addition of Sj. 

We begin by identifying the face of trap(Sj_l) containing the left end-point of Sj. 

We then march along Sj to its other end-point, updating the data structures as 
we go along. Let us consider the different update actions that may be necessary. 
We first pass a vertical line through the left end-point of Sj, determining the 
upper and lower end-points of this vertical line (the points above and below 
where it first hits a segment in Sj_}, or a horizontal edge of the bounding box); 
let us refer to the resulting vertical line segment(s) as the vertical attachment(s) 
for the left end-point of Sj. 

As we proceed along Sj, we have to split each face of Sj-l that it cuts into 
two faces. In particular, whenever a segment in Sj-l is cut by Sj, vertical 
attachments are computed for the point of intersection (Figure 9.7). On arriving 
at the right end-point of Sj, vertical attachment(s) are again computed for this 
point. 

Having computed the new vertical attachments resulting from the addition 
of Sj, we make a second pass through the resulting planar graph (call it G;). 
Whenever Sj cuts a vertical edge of trap(Sj_l), one portion of that vertical edge 
is deleted, and consequently two faces of Gj are merged (Figure 9.8). 

The final update step involves updating the bidirectional pointers of the 
segments in S\Sj. We need only update the pointers of segments whose left 
end-points were contained in faces of trap(Sj_d intersected by Sj. 

For a face / of trap(Sj_d, let n(f) denote the number of vertices of trap(Sj_d 
bounding /, and let ((f) denote the number of segments of S\Sj whose left 
end-points lie in /. We use backwards analysis to analyze the expected cost of 
updating trap(Sj_d to obtain trap(S;). Imagine that at step i line segment in 
trap(Sj) chosen uniformly at random is deleted. As before, this is valid since 
any of the i segments in Sj is equally likely to have been labeled Sj in the initial 
random permutation. The following is an easy consequence of the preceding 
discussion, and we invite the reader to verify it: 
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Figure 9.7: The planar graph Gj resulting from the addition of St. 

Exercise 9.16: The expected update cost on adding Si is proportional to 

~ L L [n(f) + t(f)], 
SES; /EF(s) 

(9.6) 

where F(s) is the set of those faces of trap(Si) whose boundary contains at least one 
point of the segment s. 

It remains to bound the expression in (9.6) in terms of nand k. Clearly, 
the term L:sES; L:/EF(S) t(f) is proportional to the total number of pointers for 
segments in S\Sj, which is n - i (no two segments have end-points with the 
same x-coordinate, so that a face f occurs in F(s) for at most four segments 
s). We next observe that L:sES; L:/EF(S) n(f) is proportional to i + k j , where k j is 
the number of points at which two or more segments of Sj intersect. Thus the 
expected update cost when adding Sj is proportional to (n + E[kj])/i. It remains 
to compute the expectation of kj, given that Sj is a random subset of i segments 
from S. Let x be one of the k points at which two segments (say rand s) of S 
intersect. Now, x occurs in trap(Sj) if and only if both the segments rand S are 
in Sj. The probability of this is proportional to i2/n2

• By linearity of expectation 
over the k possible choices of x, it follows that E[kjl is o (ki2 /n2). Here we 
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Figure 9.8: Truncating vertical attachments to convert Gj to trap(Sj). 

explicitly make use of the fact that Sj is a random subset of S, a fact we did 
not explicitly use in our previous backwards analyses (where we used only the 
fact that given a set Sj, a random element is deleted from it for the backwards 
analysis). Summing the update costs over all the steps, we then have: 

Theorem 9.7: The expected cost of building the trapezoidal decomposition of n 
line segments in the plane is O(n log n + k), where k is the number of points at 
which two or more of the segments intersect. 

9.7. Binary Space Partitions 

In this section we study the binary space partition problem (Section 1.3) in three 
dimensions. We begin with a different analysis of the RandAuto algorithm of 
Section 1.3, making use of a notion known as free cuts. Although this will afford 
no asymptotic performance improvement in the planar case, it will be of crucial 
importance in the three-dimensional case that we will consider next. 

Recall that in the binary planar partition problem, we are given a set S = 
{S.,S2, ... ,SIl} of non-intersecting line segments in the plane. We wish to find a 
binary planar partition such that every region in the partition contains one line 
segment, or a portion of one line segment. The RandAuto algorithm considers 
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the lines one at a time, in a random order. When a line segment is chosen, it is 
extended until it partitions the region containing it into two regions. 

Suppose that at some stage of the RandAuto algorithm we have a region 
R and a segment s that passes right through R. Clearly it is advantageous to 
partition R along s immediately (Figure 9.9), since this prevents s n R from ever 
being cut at some later stage. Further, we can make this cut at no additional 
increase in the number of segments that are cut, since s partitions R. Such a cut 
is called a free cut. 

Figure 9.9: An example of a free cut. 

The observation that we make no extra cuts (and thus do not increase the 
size of our binary autopartition tree) by making use of free cuts implies (by 
Theorem 1.2) that RandAuto augmented by the use of free cuts produces an 
autopartition whose expected size is O(n log n). However, it is instructive to 
prove this directly in preparation for the three-dimensional case. 

Theorem 9.8: The expected size of the autopartition produced by RandAuto with 
free cuts is O(n log n). 

PROOF: As in Section 1.3, we denote by P1t the auto partition induced by the 
permutation 'It. For an input segment s, consider those segments u such that l(u) 
intersects s, and label them Uh U2, • .. ,Uk based on the left-to-right order of the 
intersections of the lines l(uj) with s. We study how many of these are likely to 
cut s in P1t. 

Consider Figure 9.10. Suppose that the ordering induced by the randomly 
chosen permutation 'It is Uh U3, U4, U2, v. Then v is cut by Uh U3, and U4 but 
not by U2. When v has been cut by Ul and U3, the part of v between these cuts 
partitions a region and therefore makes a free cut of that region. It is helpful to 
think of an input segment in the problem (such as v) as being rigidly moored 
at its end-points - when two cuts are made on v, the portion in between the 
cuts "falls off" and drops out for the remainder of the problem; it will never be 
cut again. Two pieces of v remain, each moored at one end-point; in the course 
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v 

Figure 9.10: The effect of free cuts. 

of further processing, each piece may lose more pieces because of cuts causing 
the unmoored end to "fall off." This continues until v occurs in 1t, at which 
point l(vr becomes a partitioning line for the region(s) containing the surviving 
piece(s) of v, and v is not cut again. 

Thus, l(uj) cuts v only if Uj precedes all of v, Uh U2,"., Uj-l or if Uj precedes all 
of V,Uj+h ... ,Uk in 1t. -The probability of the former event is 1/(i + 1), and that 
of the latter is 1/(k - i + 2). Both events include the event that Uj is the first 
OfV,Ul,U2, ... ,Uk in the order induced by 1t, which has probability 1/(k + 1). As 
in Section 1.3, we use the notation U -I v to mean that during the execution, an 
extension of segment U cuts the segment v. Therefore, 

1 1 1 
Pr[uj -I v] < i + 1 + k - i + 2 - k + l' 

Summing this over all v and all Uj yields O(nlogn) for the expected number of 
cuts, as' in Theorem 1.2. 0 

We now consider the three-dimensional version of the binary partition prob
lem. The input is a set S of n non-intersecting triangles {jh/2, ... ,In}. We 
assume that more complex polyhedral scenes are first decomposed into such 
triangles, just as we assumed that a planar scene had been broken up into line 
segments. For a triangle f, we define h(f) to be the (infinite) two-dimensional 
plane containing f. 

One interesting aspect of the three-dimensional problem is the following. 
In three dimensions, unlike the two-dimensional case, a total ordering of the 
triangles may not exist with respect to the occlusion relation; cyclic dependencies 
may exist. We will nevertheless be able to build a binary partition in three-
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dimensional space by methods very similar to those used in the two-dimensional 
case. 

In an analogous way to a binary partition of the plane, we can speak of a 
binary partition in three-dimensional space. The partition consists of a binary 
tree together with the following additional information. Associated with a node 
v of the tree is a convex polyhedral region r(v). Associated with each internal 
node v of the tree is a plane h(v) that intersects r(v). The region corresponding 
to the root is all of three-dimensional space. The region r( v) is partitioned by 
h(v) into two regions rl(v) and r2(v), which are associated with the two children 
of v. We use a random permutation 'It of {1, 2, ... , n} and free cuts to obtain 
a partition of expected size 0(n2) of the planes {h(fd,h(h), ... ,h(fn)}. Thus 
the algorithm for three dimensions is the obvious extension of the RandAuto 
algorithm with free cuts. 

Theorem 9.9: The expected size of the autopartition generated by a random 
permutation 'It with free cuts is 0(n2). 

PROOF: In three dimensions, when a plane h(u) intersects a triangle v, it can cut 
a number of sub-facets of v that lie in different regions of the partition created 
so far. Let Yk be the total number of additional cuts created by U1t(k), and let 
Yku be the number of these on input triangle u E {UI.U2, ... ,Un}\{U1t(k)}. Thus 
the total "fragmentation" - the number of cuts - is L:k Yk = L:k L:u Yku. The 
goal is to show that E[Yku ] is 0(1), and the result then follows from linearity of 
expectation. 

To calculate Yku , we consider the sub-facets of u that are cut by h(U1t(k). 
Consider the arrangement L1t,/< of line segments {11t(I), I1t(2), . .. , 11t(k)} on the triangle 
u, where the line segment 11t(;) is the intersection of h(u1t(i) with triangle u, for 
1 < i < k (see Figure 9.11). Without free cuts, the sub-facets would be exactly 
those regions of L 1t,/<-1 intersected by 11t(k). However, because of free cuts by u, 
any of the internal sub-facets of L 1t,/<-1 would have already "dropped out." Thus 
Yku is the number of external regions intersected by 11t(k). 

For an arrangement L of k lines II. 12, ••• , Ik on triangle u and for 1 < i < k, let 
x(L, i) denote the number of external regions in the arrangement L-{I;} that are 
cut by I;. Observe that L:~=1 x(L, i) equals the total number of edges bounding 
the external sub-facets of L. In Figure 9.11, for instance, 2:;=1 x(L, i) = 12. We 
now invoke a standard result in combinatorial geometry (see the Notes section 
for a reference): L:~=1 x(L, i) = O(k) for any arrangement L on a triangle u. 

Since 'It is a random permutation, 11t(k) is equiprobably any of the lines in the 
arrangement L. Thus 

1 k 

E[Yku] = k L x(L, i) = 0(1). 
;=1 

(9.7) 

o 
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Figure 9.11: An arrangement of four lines on a triangle; only region Q is internal. 

Exercise 9.17: Consider using a random permutation" to obtain an auto partition of 
a set of n triangles in three dimensions. but without using free cuts. Show that the 
expected size of the autopartition is O(n3 ). How does the proof depend on the fact 
that" is randomly chosen? 

9.S. The Diameter of a Point Set 

Given a set S of n points in three dimensions, the diameter of S, denoted D(S), 
is the distance between the points in S that are furthest apart. (The definition 
could be made for points in any number of dimensions, and with any distance 
metric defined between pairs of points.) In this section, we will study a fast 
randomized algorithm for computing the diameter of a set of points in three 
dimensions. Thus, unlike the algorithms of the previous sections, which built 
a geometric structure on the input points, here we seek to determine a single 
number. However, we will build a geometric structure in order to compute this 
quantity. In particular, we will show that constructing the intersection of a set of 
suitably defined spheres provides a key tool in the computation of the diameter. 

For a positive real number p, let J p(S) denote the convex body formed by the 
intersection of the n closed spheres centered at the n points of S, each of radius 
p. For a point pES, let F(p) denote the distance between p and the point in S 
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that is farthest from p. Consider the spherical intersection Jp(S) when p = F(p) 
for some peS. For any point q e S, if q is in Jp(S), we have F(q) < F(p) < D(S). 
On the other hand, if q lies outside Jp(S), we F(p) < F(q) < D(S). 

The following randomized algorithm now suggests itself: 

1. Pick a point peS at random. In time O(n) we compute F(p) and we set p = F(p). 

2. Compute Ip(S). 

3. Find the points of S outside Ip(S); denote this subset by So. 

4. If So is empty, we know that the diameter is p and can stop. If not, we recur on 
So. 

Clearly the running time of a single pass through Steps 1-4 is dominated by 
Steps 2 and 3. In addition, we must consider the effect of the randomized 
recursive call in Step 4. In particular, we must determine the expectation of ISol. 

Consider an ordering of the points of S in non-increasing order of the values 
F(p). Since Step 1 chooses the point p uniformly at random, the rank of 
F(p) is uniformly distributed on [1, n] (ties are broken arbitrarily); thus ISol is 
uniformly distributed on [0,n-1]. Let T(n) denote the expected running time of 
the algorithm when lSI = n, and T23(n) denote the corresponding cost of Steps 
2 and 3. Then, we have 

"n-I T(') 
T(n) S cn + T23(n) + L..i-I l. (9.8) 

n 

What can we say about T23(n)? In Problem 9.5 we will show that these steps 
can be performed in expected time O(n log n) for the Euclidean metric in three 
dimensions, by adapting the half-space intersection algorithm of Section 9.4. 
Here we will consider the simpler case of the LI metric in three dimensions. A 
sphere in the LI metric in three dimensions is a polyhedron with eight facets 
and six vertices; the polyhedron can be thought of as the intersection of eight 
half-spaces. 

Exercise 9.18: Show that the half-space intersection algorithm of Section 9.4 can be 
adapted to find the intersection Ip(S) of Ll spheres and also to determine the set So 
in expected time O(n log n), for lSI = n. 

Using this result in (9.8), it follows that the expected running time of the 
randomized LI diameter algorithm is O(n log n). In fact, for the LI metric, it is 
not necessary to resort to the half-space intersection algorithm of Section 9.4 in 
order to perform Steps 2 and 3 of our diameter algorithm. A simpler algorithm 
running in time O(n) will be considered in Problem 9.6. In this case, the 
recurrence (9.8) solves to T(n) = O(n). From these observations, we have: 

Theorem 9.10: The above scheme for computing the diameter of n points runs in 
expected time O(n log n) for the L2 metric, and in expected time O(n) for the LI 
metric. 
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9.9. Random Sampling 

There are situations for which randomized incremental construction might not 
be appropriate. For instance, randomized incremental construction is inherently 
sequential, and may thus be unsuitable for designing parallel randomized geo
metric algorithms. In addition, one often builds a geometric structure (such as 
the Voronoi diagram) not as an end in itself, but as a means for solving search 
problems. For instance, the Voronoi diagram serves as the basis for nearest
neighbor queries: each query is a point in the space containing the n input points, 
and we are required to report the input point that is closest to the query point. 
In such cases, we wish to build, not only the geometric structure itself, but 
some additional structures that will enable rapid query processing. Here, again, 
randomized incremental construction by itself often does not suffice. We now 
turn to a different paradigm for designing randomized geometric algorithms, 
known variously as random sampling or as randomized divide-and-conquer. We 
first give a high-level outline of the technique, and then illustrate it using a 
point-location problem. 

We begin with a familiar non-geometric problem. Suppose that we are given 
a set S of n numbers, and wish to answer membership queries: a query is a 
number, and we are to report whether or not the query number is a member 
of S. Consider the following approach, which is a simple generalization of the 
standard binary search tree. We pick a random sample R of r numbers from 
S, where r is a constant whose choice will become apparent from the following 
analysis. We sort the elements of R (in constant time), and then partition S\R 
(in time O(n» into r + 1 subsets; the ith subset contains those elements of S\R 
that are larger than exactly i elements of R. Let us call the sample R good if 
every one of the r + 1 resulting subsets of S\R has size at most (an log r)/r, for 
a fixed, suitable (as will be clear from the analysis below) constant a. 

Exercise 9.19: Show that R is good with probability at least 1/2. for a suitably large 
constant 8. 

The solution to Exercise 9.19 may also be obtained by adapting the proof of 
Lemma 9.11 below. Given a sample R, we can check whether it is good in time 
O(n). Thus, by Exercise 9.19, in expected time O(n) we can find a good sample 
(by repeating the sample process whenever the sample chosen is not good). 

For each subset containing more than b elements, for a suitable constant 
value of b > r, we recur by again choosing a random subset of r elements from 
it, and so on. This process induces a search-tree in a natural fashion, and the 
search process for a query is clear. Given a query q, we identify (in constant 
time) one of the r + 1 subsets of S in which to continue the search for q. We 
search recursively in the sub-tree associated with this subset. 
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Exercise 9.20: Show that the expected number of steps to construct the entire search 
structure is O(n log n). 

Given the above search structure, what is the cost of a search? Letting Q(n) 
be the cost of a search on a set containing n elements, we have the recurrence 

Q(n) S c + Q (anl;gr), (9.9) 

where a is small compared with r / log rand c is a constant representing the cost 
of descending one level of the tree. This is easily seen to solve to Q(n) = O(logn). 
Notice that this bound on the search cost is a fixed constant and not a random 
variable. This is because in the process of constructing the search tree, we 
ensured that the random sample at every level was good. 

Although the above example does not have a geometric flavor, it captures the 
essence of random sampling methods in the construction of geometric search 
structures. We now give a geometric example that uses random sampling and 
illustrates the major principles of the technique. 

9.9.1. Point Location in Arrangements 

Let L be a set of n lines in the plane. The lines in L partition the plane into 0(n2) 

convex polygonal regions (some of which may be unbounded). The resulting 
structure is known as an arrangement of lines. Our description will be simplified 
by assuming that we are only interested in the portion of this arrangement that 
lies within a fixed triangle t that contains in its interior all points of intersection 
between lines in L. This can be viewed as a planar graph as follows. There 
is a vertex of the graph for each point at which two lines meet (for simplicity, 
we assume for the remainder of the section that no three lines of L meet at a 
point). In addition, there is also a vertex for each point at which a line of L 
intersects the boundary of t. An edge between two vertices corresponds in the 
natural sense to the line segment between two vertices that are adjacent in the 
arrangement. Each face of this planar graph is one of the polygonal regions into 
which t is partitioned by the lines in L. We study the following query problem: 
given a query point q in the plane, what facet of this graph contains the query 
point? This is known as the point location problem in an arrangement of lines. 

For convenience, we will triangulate each facet of the planar graph. We 
will refer to this as a triangular arrangement of the lines in L, and denote it 
by T(L). We note that this notation is slightly ambiguous, since the precise 
geometric structure T(L) depends on the large triangle within which we enclose 
the intersection points of the lines in L. However, we tolerate this imprecision 
for the following reasons: (1) in the point location problem, the identity of 
the facet within which a point lies is unaffected by the choice of the bounding 
triangle, even though the exact shape of the facet may vary; (2) for the most 
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part (in the description of the algorithm below), the enclosing triangle will be 
implicit and unique. 

Exercise 9.21: Show that given L. a triangular arrangement of the lines in L can be 
computed in time O(n2). 

We now turn to the problem of point location in the triangular arrangement 
of lines T(L). The algorithm and data structure are as follows: 

1. Pick a random sample R of r lines from L, where r is a suitably large constant 
that can be determined from the analysis below. Construct the arrangement T(R). 
The number of facets in T(R) is 0 (r2), and is thus a constant. 

2. For each (triangular) facet fin T(R), determine the set of lines of L \R intersecting 
f; denote by Lf this set of lines. This can be done in time 0 (nr2). We say a facet 
f is good if it is intersected by no more than (anlogr)/r lines of L for a suitable 
constant a. We say the random sample R is good if every facet of T(R) is good. 
If the chosen sample R is not good, we repeatedly pick samples R until we get a 
good sample R. 

3. For each facet f of T(R) for which ILfl > b for a constant b, we recur on this 
process. Note that in the recursive steps, the enclosing triangle is just the triangle 
boundjng the facet f. We maintain a pointer from each facet f to the triangular 
arrangement of the recursive random sample of lines intersecting f. These pointers 
will facilitate the search process. 

exercise 9.22: Show that step 2. can in fact be implemented in time O(nr). 

Before we analyze the expected runing time of the above construction pro
cedure, we explain the search process. Given the query point q, we determine 
(in time 0(1» the facet f of T(R) that contains q. We then recursively con
tinue the search within T(Lf). Since we know that ILfl < (an log r)/r, we 
immediately know that the search time Q(n) satisfies the recursion (9.9), so that 
Q(n) = O(log n). We stress again that this upper bound on the query time is an 
absolute guarantee, and not an expectation. 

We turn now to the cost of constructing and storing the recursive search 
structure. We first establish the analog of Exercise 9.19 for the present problem. 

Lemma 9.11: The probability that any facet ofT(R) is intersected by more than 
(anlogr)/r lines of L is less than 1/2, for a suitably large constant a. 

PROOF: Let S denote the set of all points at which either two lines of L intersect, 
or a line of L intersects the perimeter of the bounding triangle. Let 11 denote 
the set of all triplets of points from S. What is the probability that the triangle 
defined by a triplet from 11 occurs in T(R), and is intersected by more than 
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(anlogr)/r lines of L? Given a triplet b E ~, let J(b) denote the set of lines 
of L that intersect the triangle induced by b. Let G(b) denote the lines of L 
that form the points in b (clearly IG(b)1 ~ 6). To bound the probability that the 
triplet b defines a facet of T(R), we write it as the product of two probabilities 
as follows. Let t'1(b) denote the event that all lines of G(b) are in R, and t'2(b) 
denote the event that none of the lines in J(b) are in R. Clearly both t'l(b) and 
t'2(b) must occur in order for b to define a facet of R (although these events are 
not sufficient - why?). Then, 

Pr[b appears as a facet of T(R)] ~ Pr[t'1(b)]Pr[t'2(b)It'1(b)]. 

We now bound Pr[t'2(b)It'I(b)]: having picked the lines in G(b), we consider 
what happens on the remaining r -I G( b)1 drawings of R. In particular, consider 
the probability that none of the r -IG(b)1 remaining drawings picks any line in 
J (b). This is bounded by 

r-IG(.s)I-l ( IJ(b)l) ( IJ(b)l) r-IG(.s)1 II 1 - < 1 - -- S e-r1(.s)/2n 
i=O n -IG(b)1 - i - n 

for any value of r > 12 (since IG(b)1 < 6). We are only interested in b such 
that J (b) > (an log r)/r; call these large triplets. Thus, for large triplets we have 
Pr[t'2(b)] < r-a/ 2. Then, 

Pr[A large triplet appears as a facet of T(R)] 

~ r-a
/
2 L Pr[t' 1 (b)]. 

large triplets 15 

(9.10) 

Now, the summation in (9.10) is exactly the expected number of large triplets 
in R. Since R is an arrangement of r lines, and each point of a triplet is formed 
by at most 2 lines, it follows that this summation is never more than r6. Then, 
for a > 12 the lemma follows. 0 

Corollary 9.12: The expected number of trials before we obtain a good sample R 
is at most 2. 

We now complete the analysis of the construction of the data structure. By 
the preceding discussion, the construction time satisfies the recurrence 

T(n) ~ n2 +cr2T (anl;gr), 

where c is a constant and T(k) denotes the upper bound on the expected cost 
of constructing the data structure for an arrangement of k lines. This solves to 
T(n) = O(n2+€(r»), where E(r) is a positive constant that becomes smaller as r 
gets larger. 

Theorem 9.13: The above algorithm constructs a data structure in expected time 
o (n2+€) for a set of n lines in the plane for any fixed E > 0, and this data structure 
can support point location queries in time O(log n). 
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Exercise 9.23: What are the effects of increasing r on the construction time for the 
search structure, and on the query time? 

9.10. Linear Programming 

We continue the study of random sampling by considering the linear pro
gramming problem. The linear programming problem is a particularly notable 
example of the two main benefits of randomization - simplicity and speed. In 
Section 9.10.1 we will study randomized incremental algorithms for this problem. 

The linear programming problem is to find the extremum of a linear objective 
function of several real variables, subject to constraints that are linear functions 
of these variables. Hereafter, we will let d denote the number of variables, 
and n the number of constraints. Each of the n constraints may be thought 
of as delineating a half-space in d-dimensional space, stipulating that our ex
tremization is restricted to points in this half-space. The intersection of these 
half-spaces is a polyhedron in d-dimensional space (which may be empty, or 
possibly unbounded), which we will refer to as the feasible region. Throughout, 
we will measure the amount of computation we perform by the number of arith
metic operations, treating the operands as real numbers on which an arithmetic 
operation can be performed in constant time. This is consistent with our view 
throughout this chapter, but the reader is cautioned that much of the work in the 
linear programming literature deals with operands of finite precision. For such 
finite precision operands, there has been considerable work on the number of 
bit operations performed by various algorithms. We will not concern ourselves 
with such bit operations, but will treat all numbers as atomic operands. 

Let Xh ••• , Xd denote the d variables in the linear program. Let Ch"" Cd 

denote the coefficients of these variables in the objective function, and let Aij, 
1 < i < nand 1 < j < d denote the coefficient of x j in the ith constraint. Letting 
A denote the matrix (Aij), c the vector (Ch ••• , Cd), and x the vector (Xh ••• , Xd), 

the linear programming problem may be expressed as 

minimize cT x (9.11) 

subject to 

Ax ~b, (9.12) 

where b is a column vector of constants. 
We denote by F(A,b) the feasible region defined by A and b. The vector 

c specifies a direction in d-space. Geometrically, we seek the furthest point in 
F(A, b) in the direction opposite to c (since we are minimizing), if such a finite 
point exists. The linear programming problem has a long history, a partial 
summary of which is given in the Notes section. The starting point in our 
treatment will be the following set of assumptions, which is known (see the Notes 
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section and the references therein) to capture the general linear programming 
problem; these assumptions do not specialize or simplify the problem from the 
standpoint of designing algorithms. All of these assumptions can be removed 
by standard techniques; this' will be explored further in Problem 9.8. 

1. The polyhedron F(A, b) is non-empty and bounded. Note that we are not assuming 
that we can test an arbitrary polyhedron for non-emptiness or boundedness; this 
is known to be equivalent to solving a linear program. We only make this 
assumption about F(A, b). 

2. The objective function we are minimizing is Xl; in other words, c = (1,0, ... ,0). 
Thus we seek a point of F(A,b) with the minimum value of Xl. 

3. The minimum we seek occurs at a unique point which is a vertex of F(A,b). 

4. Each vertex of F(A,b) is defined by exactly d constraints. 

Let H denote the set of constraints defined by A and b. Let S c H be a 
subset of constraints from H. We will frequently consider the linear program 
defined by such a subset S, together with c. When such a linear program attains 
a finite minimum, we will assume that versions of assumptions 3-4 above still 
hold: (i) the minimum occurs at a unique point; (ii) each vertex 0'£ the feasible 
region is defined by d constraints. We denote by O(S) the value of the objective 
function for the linear programming problem defined by c and S (it is possible 
that O(S) = -(0). A basis is a set of constraints, B, such that O(B) > -00 and 
O(B') < O(B) for any B' c B. The basis of H, denoted 8(H), is a minimal 
subset B ~ H with O(B) = O(H). Our goal is to find 8(H). Since 8(H) defines 
the optimal vertex of our linear program, we will sometimes refer to 8(H) or to 
O(8(H» as the optimum of the linear program. 

One approach to solving the linear programming problem would be to use a 
half-space intersection algorithm to compute F(A, b) and to then evaluate the 
objective function at each vertex of the polyhedron F(A, b). Such an exhaustive 
evaluation process could in general be very slow, since the number of vertices of 
F(A,b) may be n(nrd/21 ). We therefore seek algorithms that do not enumerate 
the vertices of F(A, b). 

Before proceeding to our study of randomized algorithms for linear program
ming, we will recall the elements of the classic simplex algorithm. This is a 
deterministic algorithm that starts from a vertex of F(A, b) and, at each subse
quent iteration, proceeds to a neighboring vertex at which the objective function 
has a lower value. If no such vertex exists, we have reached the minimum 
we seek. While this is the essential idea of the simplex algorithm, a number 
of complications arise when adjacent vertices have the same objective function 
value, and from problems with no finite minimum. We will avoid a detailed 
discussion of the simplex algorithm; in our discussion it will suffice to assume 
the existence of a function Simplex that will solve linear programs by visiting 
the vertices of F(A,b) in turn until the optimum is found, if one exists. 

We call a constraint hE H extreme if O(H\{h}) < O(H); thus these are the 
constraints in 8(H). Intuitively, the constraints of H that are not extreme are 
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redundant constraints whose absence would not alter the optimum. Our first 
algorithm SampLP uses random sampling to throwaway redundant constraints 
quickly. Starting from the empty set, SampLP builds up a set S of constraints 
over a series of phases. In each phase, a set V c H\S is added to S. The set V 
will have two important properties: (i) it will be small, and (ii) it will contain at 
least one extreme constraint from 8(H) that is not in S. Since 18(H)1 = d, we 
terminate after at most d phases. 

We will describe SampLP in pseudocode below, and then proceed to the more 
sophisticated algorithm IterSampLP. We will finish by analyzing IterSampLP. 

Algorithm SampLP: 

Input: A set of constraints H. 

Output: The optimum B(H). 

1. S-f/>; 

2. if n < 9d2 

return Simplex (H) 
else 

2.1. V - H; S - f/>; 

2.2. while IVI > 0 
Choose R c: H\S at random, with IRI = r = min{d.jiJ, IH\SI}; 
x - SampLP(R uS); 
V - {h E Hlvertex defined by x violates h}; 
If IVI 5;.2.jiJ 
then S - S U V; 

2.3. return x; 

Thus, for n > 9d2 SampLP chooses a random subset R of r constraints. The 
value of r is normally d.Jn, unless H\S contains fewer than d.Jn constraints. It 
recursively solves the linear program defined by R U S, and determines the set 
V c H of constraints that are violated by this optimum; note that these violated 
constraints will in fact be from H\S. If V has no more than 2.Jn elements (we 
will argue that this is likely), we add V to S. When V becomes empty (meaning 
that 8(H) is contained in S), we return x. 

Exercise 9.24: Construct a simple example to show that after one pass through the 
while loop of SampLP, V may not contain all of B(H). Hence, we may only infer that 
V contains at least one constraint of B(H) that is not already in S. 

The routine Simplex is invoked only with 9d2 or fewer constraints. For such 
"small" linear programming problems, we may bound the cost of invoking 
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Simplex as follows. The total number of vertices in the polyhedron for such a 
problem is no more than (r~~l)' which is at most (49d)rd/21. There is a constant 
a such that the simplex algorithm spends at most time da at each vertex, so that 
we have: 

Lemma 9.14: The total cost in an invocation of Simplex with 9d2 or fewer 
constraints is O(~/2+a). 

Next, we wish to argue that V, the set of constraints that violate x, is small. 

Lemma 9.15: Let S c H, and let R c H\S be a random subset of size r. Let m 

denote IH\SI. The expected number of constraints of H violated by O(R.U S) is 
no more than d(m - r + 1)/(r - d). 

PROOF; We define two sets of optima for linear programs formed by subsets of 
the constraints. Let CH denote the set of optima {O(T US) I T c H\S}. Thus, 
the call the SampLP(R U S) returns an element of this set. Similarly, we define 
CR to be the set of optima {O(T US) I T c R} for a particular subset R. Now, 
O(R U S) is the unique element in CR that satisfies every constraint in R. For 
each element x E CH , let Vx denote the number of constraints of H violated by 
x. Let the indicator ix be 1 whenever x is O(R US), and 0 otherwise. 

We may now write 

E[IVI] = E[ L vxix] = L vxE[ix]. (9.13) 
xeCH xeCH 

Now, E[ixl is simply the probability that x is the optimum O(R US). For 
this event to occur, d given constraints must be in R, and the remaining r - d 
constraints of R must be from among the m - Vx - d constraints of H\S that 
neither define nor are violated by x. Thus 

E[' ] = (m~~d-d) 
Ix (;)' 

Exercise 9.25: By combining (9.13) and (9.14) and simplifying, show that 

E[I VI] < m - r + 1 '"' V (~=~~d) 
- r-d ~ x (m) . 

xeCH r 

(9.14) 

(9.15) 

We will complete the proof by showing that the summation on the right-hand 
side of (9.15) is no more than d. The factor (~=~-:...-;d) / (;) is the probability that 
x is an element of C R that violates exactly one constraint of R. Weighting this 
by Vx and summing yields the expected number of elements of C R that violate 
exactly one constraint of R. However, the number of such elements is at most d, 
since each such element is the optimum of the set R U S\{h} for a constraint h 
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that defines the optimum O(RUS). There are d constraints defining the optimum 
O(RUS). 0 

With this bound on the expected number of violated constraints, the Markov 
inequality now implies that following any random sample in SampLP, Pr[lVI > 
2.jri] < 1/2. It follows that the expected number of iterations of Step 2.2 
between augmentations to S is at most 2. Let T(n) denote the maximum 
expected running time of SampLP. The set S is initially empty, and in each of 
d phases adds at most 2.Jn constraints. Thus, IR U SI never exceeds 3d.Jn. For 
each of d phases, we perform at most n constraint violation tests at a cost of 
O(d) for each test; thus the total work in constraint checking is O(d2n). When 
in a recursive call the number of constraints drops to 9d2 or less, we resort to 
the time bound on the call to Simplex (Lemma 9.14). Putting these observations 
together, we have 

T(n) ~ 2dT(3dJii) + o (d2n), for n > 9d2
• (9.16) 

Exercise 9.26: Derive the best possible upper bound on T(n) in (9.16), in conjunction 
with Lemma 9.14. 

We now describe the algorithm IterSampLP. Rather than try to discover 8(H) 
little by little, it uses a technique known as iterative reweighting to increase the 
probability of including a useful constraint in the sample. We choose a random 
subset of constraints R and determine the subset V c H of constraints violated 
by the optimum of the linear program defined by R. Instead of adding V to a 
set S as in SampLP, we put the constraints of V back in H after first increasing 
the probability that they are chosen in future rounds. Intuitively, the constraints 
of 8(H) will repeatedly find themselves in V, and hence their probabilities of 
being i1lcluded in R increase rapidly. After relatively few such iterations (as we 
will show), all the constraints of 8(H) are likely to be in R, and we terminate. A 
detailed description of lterSampLP follows. We will associate a positive integral 
weight Wh with each constraint h E H; the constraint h will be put in R with 
probability proportional to the current value of Who 

In Step 2.2, the probability that a constraint h is chosen is proportional to 
Who We turn to the analysis of lterSampLP. 

Call an execution of the while loop successful if 

L Wh ~ (2 L wh)/(9d - 1) 
hEY heH 

(thus, we double Wh for each h E V). 
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Algorithm IterSampLP: 

Input: A set of constraints H. 

Output: The optimum B(H). 

1. Vh E H, set Wh - 1; 

2. if n < 9d2 

return Simplex (H) 
else 

2.1. V -H; 

2.2. while IVI > 0 
Choose R c: H at random, with IRI = r == 9d 2 ; 

x - Simplex(R); 
V - {h E Hlx violates h}; 
if L:hEV Wh :::; (2 L:hEH wh)/(9d - 1) 
then Vh E V set Wh - 2Wh; 

2.3. return x; 

Lemma 9.16: The expected number of iterations of the while loop between suc
cessful iterations is at most 2. 

Note that we cannot directly invoke the result of Lemma 9.15 for the analysis 
of lterSampLP, since the constraints in the random subset R are not chosen 
equiprobably. The proof of Lemma 9.16 is an extension of the analysis leading 
to Lemma 9.15; the reader may follow the hint in Problem 9.9 to complete the 
proof. 

Theorem 9.17: There exist constants c., C2, and C3 such that the expected running 
time of lterSampLP is at most 

PROOF: We will argue that the expected number of executions of the while loop 
is O(dlogn). The idea is that L:hEB(H) Wh grows much faster than L:hEH Wh, so 
that after d log n iterations V = cp unless L:hEB(H) Wh > L:hEH Wh, which would 
be a contradiction. 

After each successful execution of the loop, the weight Wh is doubled for at 
least one constraint h E 8(H) (since V must contain at least one constraint 
h E 8(H». Following kd successful executions of the loop, we have L:hEB(H) Wh = 

L:hEB(H) 2nh, where nh is the number of times h entered V. Clearly L:hEB(H) nh ~ kd. 
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These facts together imply that 

L Wh ~d2k. 
hE8(H) 

(9.17) 

On the other hand, after each successful execution of the while loop, the net 
increase in L,hEH Wh is no more than (2 L,hEH wh)/(9d -1). Initially L,hEH Wh = n. 
Following kd successful iterations it is no more than 

n[l + 2/(9d - l)]kd ~ nexp[2kd/(9d - 1)]. (9.18) 

Comparing (9.17) and (9.18), it follows that after O(dlogn) iterations we drop 
out of the loop. 

How much time do we spend between successful iterations of the while loop? 
By Lemma 9.16, the expected number of iterations between successful iterations 
is 2. During each iteration, we incur the cost of a Simplex call (whose running 
time we have bounded in Lemma 9.14 above), and determine V in time O(nd). 
Putting these facts together yields the theorem. 0 

9.10.1. Incremental Linear Programming 

We have so far studied linear programming algorithms based on random sam
pling. We now explore randomized incremental algorithms for linear program
ming. The following algorithm suggests itself immediately: add the n constraints 
in random order, one at a time. After adding each constraint, determine the 
optimum of the constraints added so far. This algorithm may also be viewed in 
the following "backward" manner, which will prove useful in the sequel. 

Algorithm SeldelP: 

Input: A set of constraints H. 

Output: The optimum of the LP defined by H. 

o. H IHI = d, output B(H) = H. 

1. Pick a random constraint h E H; 
Recursively find B(H\{h}); 

2.1. H B(H\{h}) does not violate h, output B(H\{h}) to be the optimum B(H); 

2.2. el .. project all the constraints of H\{h} onto h and recursively solve this 
new linear programming problem; 

The idea of the algorithm is simple. Either h (the constraint chosen randomly 
in Step 1) is redundant (in which case we execute Step 2.1), or it is not. In the 
latter case, we know that the vertex formed by 8(H) must lie on the hyperplane 
bounding h. In this case, we project all the constraints of H\{h} onto hand 
solve this new linear programming problem (which has dimension d -1). When 
the number of constraints is down to d, SeideLP stops recurring. 
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Since there are at most d extreme constraints in H, the probability that the 
randomly chosen constraint h is one of the extreme constraints we seek is at 
most din. Let T(n,d) denote an upper bound on the expected running time of 
the algorithm for any problem with n constraints in d dimensions. Then, we 
may write 

d 
T(n, d) ~ T(n - 1, d) + O(d) + - [O(dn) + T(n - 1, d - 1 )]. (9.19) 

n 

In (9.19), the first term on the right denotes the cost of recursively solving the 
linear program defined by the constraints in H\{h}. The second accounts for 
the cost of checking whether h violates 8(H\{h}}. With probability din it does, 
and this is captured by the bracketed expression, whose first term couQts the 
cost of projecting all the constraints onto h. The second counts the cost of 
(recursively) solving the projected problem, which has one fewer constraint and 
dimension. The following theorem may be verified by substitution, and proved 
by induction. 

Theorem 9.18: There is a constant b such that the recurrence (9.19) satisfies the 
solution T(n, d) < bnd!. 

The above incremental algorithm is thus likely to be slow unless d is rather 
small. The reader may wonder why, when solving the problem of dimen
sion d - 1 in Step 2.2, we completely discard any information obtained from 
the solution of the linear program H\{h} (Step 1). We now proceed to a 
more sophisticated algorithm that retains such information carefully. Before 
doing so, the following exercise is provided to strengthen the reader's intu
ition. 

Exercise 9.27: Consider the algorithm SeldelP. Construct an example to show that 
the optimum of the linear program defined by the constraints in 8(H\h) U {h} may 
be different from the optimum of the linear program defined by H. Thus, if the test 
in Step 2.1 fails and we proceed to Step 2.2, it does not suffice to consider the 
constraints in 8(H\h) U {h} alone. 

By the above exercise, it follows that we must once again consider all the 
constraints in H in Step 2.2 of SeideLP. However, it is still reasonable to hope 
that 8(H\h) will in fact contain many of the constraints in 8(H). Could we 
somehow use 8(H\h) to "jump-start" the recursive call in Step 2.2 of SeideLP? 
The result of this idea is the algorithm BasisLP, which is invoked with two 
arguments, a set G C H of constraints, and a basis T C Q (not in general the 
basis of G). BasisLP returns the basis of G. 
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Algorithm BaslslP: 

Input: G, T. 

Output: A basis B for G. 

o. If G = T, output T; 

1. Pick a random constraint h E G\T; 
T' = BasisLP(G\{h}, T); 

2.1. If h does not violate T', output T'; 

2.2. else output BasisLP(G, Basis(T' U {h} )); 

The function Basis returns a basis for a set of d + 1 or fewer constraints, 
if such a basis exists. In our algorithm, we always invoke Basis on a given 
basis T' with d constraints, together with a new constraint h. By computing the 
intersection of h with each of the d subsets of T' that have cardinality d - 1, 
and evaluating 0 at each of these d points, we may determine Basis (T' U {h}). 

Exercise 9.28: Show that the above description of Basis will terminate in O(d4
) 

steps. (Note that a system of d linear equations can be solved in O( d 3 ) steps.) 

Exercise 9.29: The routine BaslslP requires a basis T as one of the inputs. Suggest 
a scheme for starting the algorithm initially with a suitable basis, so that when 
finished we have the optimum O(H). (Hint: Use a bounding box.) 

Each invocation of Basis is preceded by a violation test (in the if statement). 
In our analysis below we will bound the number of violation tests, and from 
this infer a bound on the number of invocations of Basis and thus the overall 
running time. What is the probability that we fail a violation test in a given 
execution of BasisLP? Suppose that IGI = i. We are reintroducing a constraint 
h E G\ T that was chosen at random, and wish to bound the probability that 
h violates the optimum of G\{h}. Clearly this is at most d/(i - IT!), since at 
most .d constraints of G determine B(G) and h is equally likely to be any of 
the i -ITI constraints in G\T. We now refine this estimate on the probability. 
The intuition is that this probability decreases further if T contains some of 
the constraints of B( G); indeed, this was our motivation for refining SeideLP to 
obtain BasisLP. To this end, we introduce some additional notions. 

Given T S; G S; H, we call a constraint h E G enforcing in (G, T) if 
O(G\{h}) < O(T). This concept is illustrated in Figure 9.12. In this figure, there 
are four constraints, numbered 1,2,3, and 4. Each constraint is a line that allows 
the half-plane above itself as the feasible region. Clearly constraints 1 and 4 are 
the extreme constraints for the set {1,2,3,4}. Consider for the moment a view of 
BasisLP played "backward," and a situation in which the constraints are added 
back in the order 1,2,3,4. Observe that constraint 1 is not enforcing in G, T for 
G = {1,2,3,4} and T = {1,2}. 
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1 

Figure 9.12: Extreme and enforcing constraints. 

Exercise 9.30: If the constraints are deleted in the order 4,3,2,1, trace the course 
of the call to BaslsLP(G, {1, 2}), determining the arguments of the various recursive 
calls. Repeat this if the order of deletion of constraints is 1,4,3,2. 

. 
Exercise 9.31: If h is enforcing in (H, T). show that (i) hE T, and (ii) h is extreme in 
all G such that T s;; G s;:; H. 

If all d constraints in T are enforcing in (G, T), we have T = 8(G). Given 
T £ G s;; H, let ~G.T denote d minus the number of constraints that are 
enforcing in (G, T). We call ~G.T the hidden dimension of (G, T). The number 
of constraints of 8(G) that are not already in T. From the above discussion, 
the probability that a violation occurs in the if statement can be bounded by 
~G.T/(i -IT!). We will first establish that the hidden dimension decreases by at 
least 1 at each recursive call in Step 2.2; later, we will improve this by arguing 
that it is likely to decrease much faster. 

Exercise 9.32: Let T s;; F s;; G s;; H, and let h E F \ T be an extreme constrai nt in F. 
Let S be a basis of B(F\{h}) U {h}. Show that 

1. any constraint g that is enforcing in (G, T) is also enforcing in (F, S); 

2. h is enforcing in (F,S); 

3. tJ.F •S ~tJ.G.T-1. 
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Thus, as we proceed down the recursion (in a sequence of executions of Step 
2.2), the numerator of the probability bound decreases by at least 1 at each 
execution. We will now show that the decrease in the hidden dimension (and 
thus the decrease in the probability) is likely to be faster. Given sets F and T 
such that T c:: F s; G, and a random h E F\ T, we bound the probability that 
the addition of h to F\ {h} causes a recursive call. When it does, we study the 
probability distribution of the hidden dimension of the arguments of such a call. 

Exercise 9.33: Let gl, g2, . .. gs be the extreme constraints of F that are not in T, 

numbered so that 

O(F\ {gt}) :::;; O(F\ {g2}) :::;; ... 

Show that for all t and for 1 ~ j ~ t, gj is enforci ng in (F, Basis(B(F \ {gt }) u {gt })). 

In other words, when h = gt, all of {gt. g2, ... ,gt} will be enforcing in 
(F,Basis(8(F\{h}) U {h}». Then, the arguments of the recursive call will have 
hidden dimension ~G,T - t. The crucial observation is that since any of the gi is 
equally likely to be h (by backwards analysis !), t is uniformly distributed on the 
integers in [1, s]. Thus the hidden dimension of the arguments of the recursive 
call is uniformly distributed on the integers in [0, s - 1]. 

For a call to BasisLP with arguments (G, T), where IGI = m and ~G.T = k, 
let us denote by T(m,k) the maximum expected number of violation tests 
(executions of the if statement). 

Exercise 9.34: Show that T (m, 0) = m - d. 

For m ~ d + 1 and k ~ 1, the above discussion on the probability distribution 
of the hidden dimension yields the following recurrence: 

T(m,k) :::;; T(m _ 1,k) + 1 + T(m,O) + T(m, ~ ~~ .. + T(m,k -1). (9.20) 

Exercise 9.35: Verify that T(m, k) ~ 2"(m - d). 

By combining the results of Exercises 9.29 and 9.35, we have: 

Theorem 9.19: The expected running time of BasisLP on a problem with n con
straints in d dimensions is O(tJ42dn). 

Note the improvement over Theorem 9.18. By a slightly more careful analysis, 
and a more complicated analysis of the recurrence that results, the time bound 
of Theorem 9.19 can be improved considerably. This will be discussed briefly in 
the Notes section. 
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Notes 

The first algorithms for all of the geometric problems we have considered were deter
ministic; rather than give sources for each of these deterministic algorithms, we refer 
the reader to textbooks on computational geometry [133, 336]. A comprehensive intro
duction to the design and analysis of randomized geometric algorithms is the book by 
Mulmuley [316). Rabin's [341) description of a randomized algorithm for the problem of 
finding nearest neighbors in a set of n points is perhaps the earliest use of randomization 
in a geometric algorithm. The systematic use of randomization in geometric algorithms 
was pioneered in a series of papers by Clarkson [101, 102, 103, 105), Clarkson and 
Shor [106, 107), and Mulmuley [315). Below, we give more detailed pointers to the 
various problems and algorithms we have studied. 

The RandAuto algorithm for binary space partitions is due to Paterson and Yao 
(see [329) and references therein). They also prove that there are inputs for tlie three
dimensional case for which every autopartition has size O(n2). The result used in the 
proof of Theorem 9.9 concerning the number of edges bounding external sub-facets is 
described in the book by Edelsbrunner [133). 

~ Research Problem 9.1: Paterson and Yao show that in the case where the line 
segments are all parallel to two (orthogonal) axes, a binary partition of size O(n) 
can be found. Is it always possible to find a partition of size O(n)? Is there a 
configuration of n segments that forces a lower bound of Q(n log n) on the size of 
any autopartition for that configuration? 

~ Research Problem 9.2: Since any partition must have size Q(n) and we can find 
one of size O(n log n) using the RandAuto, it is clear that we find a partition whose 
size is within O(1og n) of the optimal size. Can we prove something stronger, say, 
find a partition of size is within a constant (or any factor better than log n) of 
the optimum? It is plausible that this question can be answered independently of 
Research Problem 9.1. 

~ Research Problem 9.3: Can we give a high confidence estimate for the size of 
the autopartition produced by the random permutation algorithm (with free cuts) 
in three dimensions? In other words, we require a statement of the form "with 
probability 1 - !(n), the size of the autopartition does not exceed g(n)." 

~ Research Problem 9.4: As in the two-dimensional case, can we say whether our 
algorithm is provably good in that it always finds a partition whose size is within 
some provable factor of the optimum? Notice that there is more room for leeway 
here than in the planar case - the optimum could be anywhere from n - 1 to 
Q(n2). 

Randomized incremental constructions are simple to implement, and their power was 
demonstrated in a series of papers by Clarkson, Shor, Mulmuley, and others [107, 315, 
368, 369]; the algorithms we have described for convex hulls and for trapezoidal de
compositions appear in these papers. Prior to this work, Chazelle and Edelsbrunner [90) 

273 



GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING 

gave a deterministic but relatively complicated algorithm for trapezoidal decompositions 
with running time O(n log n + k). The key idea of backwards analysis appeared first in a 
paper by Chew [94); the algorithm of Section 9.5.1 for finding the Delaunay triangula
tion of the vertices of a convex polygon is from this paper. However, the generality and 
widespread applicability of this idea (to geometric as well as non-geometric problems) 
went unnoticed prior to the work of Seidel [371). Guibas, Knuth, and Sharir [187) 
showed that this paradigm can be applied directly to the construction of Voronoi dia
grams. The incremental construction paradigm has been applied to a diverse collection 
of geometric problems; the interested reader should consult Mulmuley's treatise [316) 
for further pointers. The use of nindom sampling was pioneered by Clarkson [102), who 
proved a general version of Lemma 9.11; this paper also describes the data structure of 
Section 9.9.1 for point location in an arrangement of lines. The application of sampling 
to geometric problems owes its origins to a paper by Haussler and Welzl [197). A 
variant of the random sampling technique has been used by Chazelle and Friedman [92), 
improving the expected running time from O(n2+E) to O(n2). Random sampling, too, 
has been applied to a large number of geometric problems, and the reader may again 
consult Mulmuley [316) for further pointers. One theoretical benefit of randomized 
geometric algorithms is that they can be derandomized to yield deterministic algorithms 
that are faster than known algorithms. Chazelle and Friedman [91) pioneered this study; 
see also the survey by Matousek [294). 

The linear programming problem has a long and rich history; the reader is referred to 
treatises by Chvatal [100) and by Schrijver [366) for the history of the problem and the 
classical Simplex algorithm invoked in Section 9.10. These books (as well as several of 
the papers we mention below) also discuss how to remove the assumptions we have made 
at the beginning of Section 9.10. Megiddo [307) gave a deterministic algorithm for linear 

programming running in time o( n22"). Much subsequent work focused on reducing 

the 22" term in the running time, and indeed all the algorithms we have described have 
variants whose running time can be bounded as O(nf(d» where f(d) is some (typically 
exponential) function of d. This also applies to the random sampling algorithms of 
Section 9.10; these algorithms are due to Clarkson [104). The iterative reweighting 
technique of Section 9.10 was first applied to geometric algorithms by Welzl [417). The 
SeideLP algorithm of Section 9.10.1 is due to Seidel [369). 

In the discussion leading to Lemma 9.14, we invoked a bound on the maximum 
number of vertices that a polyhedron with 9d2 constraints can have; this bound is a 
special case of general bounds on the number of vertices of a polyhedron. Such bounds 
are given, for instance, in Edelsbrunner's book [133). 

The BasisLP algorithm and its analysis are due to Sharir and Welzl [374). Kalai [226) 
achieved a breakthrough by giving a randomized algorithm whose expected running 
time is at most 

for an absolute constant a. Following this, MatouSek, Sharir, and Welzl [295) showed 
that the BasisLP algorithm in [374) in fact runs in time 

O( nd exp( \!dln(n + 1»). 
By augmenting the analysis of [295) with Clarkson's sampling technique, it is possible 
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to obtain the slightly improved time bound of 

O( d2n + bJdlogd log n) 

for an absolute constant b. Goldwasser [177) gives an eminently readable account of the 
algorithms and analyses of Kalai [226) and of MatouSek, Sharir, and Welzl [295). In 
fact, he points out that the algorithm of Matousek, Sharir, and Welzl is exactly dual (in 
the sense of linear programming duality [1(0)) to one variant of Kalai's. 

Sharir and Welzl [374) in fact describe their algorithm as being applicable to a general 
class of abstract optimization problems that includes linear programming as a special case. 
We explore this theme further in Problem 9.11. Gartner [163) extended this approach 
and applied it to obtain sub-exponential algorithms for such problems as finding the 
minimum distance between two polytopes in d dimensions. 

The Random Simplex algorithm is the following: starting from any vertex of :F(A, b), 
proceed to a random adjacent vertex of :F(A, b) that improves the objective function. 
Algorithms that only move between adjacent vertices of :F(A, b) are generally known as 
simplex algorithms, following Danzig [119, 120). 

~ Research Problem 9.5: Derive a sub-exponential upper bound on the expected 
running time of the Random Simplex algorithm. 

Gartner and Ziegler [164) have established a tight, polynomial upper bound for a 
restricted class of polytopes known as Klee-Minty cubes. Any simplex algorithm is 
condemned to incur a running time that is at least the diameter of the polytope :F(A, b). 
The best upper bound known on the diameter of polytopes defined by n constraints in 
d dimensions is n2+logd, due to Kalai and Kleitman [227). The major open problem left 
open by these papers is: 

~ Research Problem 9.6: Devise a randomized algorithm for linear programming 
that runs in expected time polynomial in nand d. 

Thus, in order to resolve Research Problem 9.6 one either has to improve the Kalai
Kleitman diameter bound, or devise a non-simplex algorithm. 

Problems 

9.1 Prove Theorem 8.8 using backwards analysis. 

9.2 By "dualizing" the randomized incremental algorithm for convex hulls in the 
plane (Section 9.2), derive a randomized incremental algorithm for computing 
the intersection of n given half-planes. Show that its expected running time is 
O(nlogn). 

9.3 Use the Mulmuley games of Section 8.2.1 to derive Theorem 9.8. 

9.4 The object of this problem is to show that the time bound in Theorem 9.1 

275 



GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING 

holds with high probability. For a point PES, define the indicator variable 
Xj(p) as follows: 

X.( ) = {1 if p's pointer is updated at the jth step; 
I p 0 otherwise 

Thus the total work done in updating p's pOinter is Ej Xj(p). By showing 
that Ej Xj (p) is O(log n) with probabi I ity 1 - n-2, show that the total work is 
O(n log n) with high probability. 

9.5 Show that the randomized incremental half-space intersection algorithm of 
Section 9.4 can be adapted to construct Ip(S), the intersection of n spheres in 
three dimensions, in expected time n log n. 

9.6 Show that the set So resulting from Steps 2 and 3 in the randomized diameter 
algorithm (Section 9.8) can be found in time linear in the size of S, for the Ll 

metric. 

9.7 Let S be a set of n pOints in the plane. For any positive integer k < n, show 
that there is a subset Sic consisting of k pOints in S with the property that 
no triangle in de/(SIc) contains more than (en logk)/k points, for a suitably 
chosen constant e. 

9.8 In this problem, we discuss the removal of the simplifying assumptions made 
at-the beginning of our discussion of linear programming algorithms. We focus 
on the non-degeneracy assumptions 3-4. Consider a set of d + 1 constraints 
whose defining hyperplanes intersect at a common pOint p; without loss of 
generality, let these be defined by the first d + 1 rows of A (together with the 
first d + 1 components of b). Consider adding Ei to the ith component of b, for 
1 ~ i ~ d + 1, where E is a small positive real. Show that for every choice 
of A and b, there is a choice E such that (i) the hyperplanes intersecting at 
p no longer intersect at a single pOint, and (ii) if p were the optimum of the 
linear program determined by A and b, the new optimum is defined by d of 
the constraints that originally intersected at p. 

9.9 Prove Lemma 9.16. (Hint: For every constraint h of weight Wh > 1, replace 
it by Wh "virtual copies" of h each of weight 1, and consider sampling this 
.multiset.) 

9.10 The Boolean n-cube is an undirected graph that has N = 2n nodes connected 
in the following manner. Let (io, . .. , in- 1) be the (ordered) binary representation 
of vertex i, i.e., i = E;::.d ij 2j

, h E {O, 1}. Then there is an edge between vertex 
i and vertex j if and only if (io, ... , in_,) and Uo, .. ., jn-,} differ in exactly one 
position. Thus every vertex in the n-cube has degree n = log2 N. An acyclic 
orientation of the cube is an assignment of a direction to each edge, such that 
the resulting directed graph is acyclic. A sink in the digraph is a node with no 
edges directed out of it. Consider a random walk on an n-cube with an acyclic 
orientation: at each step, the walk proceeds along an outgoing edge chosen 
uniformly at random. Show that for every n, there is an acyclic orientation of 
the n-cube and a starting vertex such that expected number of steps for the 
walk to reach a si nk is 2Cl(n). 

276 



PROBLEMS 

This has the following significance. The n-cube can be realized as a polyhe
dron defined by the intersection of 2n half-spaces in n-dimensions. Consider 
the Random Simplex algorithm on this polyhedron. The directions on the 
edges are meant to model directions of improving objective function. The 
above lower bound suggests that if we had to give a sub-exponential upper 
bound on the performance of the Random Simplex algorithm, we would have 
to take into account the geometry of the polytope, using it to preclude the kind 
of arbitrary acyclic orientation that led to the lower bound. 

9.11 In this problem, we consider the extension of the BaslsLP algorithm to op
timization problems more general than linear programming. Consider the 
following framework for an abstract optimization problem. There is a set H 
of n constraints, and a function 0 that maps every subset G of H to the real 
numbers; we think of 0 as the optimum value for G. Let F s;; G s::.H, and 
hE H. For any such F, G, and h, we further require that 

1. O(F) ~ O(G), and 

2. O(F) = O(G) implies that 

O(F U {h}) > O(F) - O(G U {h}) > O(G). 

Defining the concept of a basis as for linear programming, let us call the 
maximum cardinality of any basis as the combinatorial dimension of the 
instance. 

Modify the BaslsLP algorithm so that it works for such abstract optimization 
problems, and show that the analysis of BasisLP may be applied with d 

replaced by the combinatorial dimension. 

9.12 Consider the smallest enclosing ball problem: given n pOints in d-dimensional 
space, find the radius of the smallest ball that contains all n pOints. By showing 
that this fits the paradigm of an abstract optimization problem, show that a 
suitably modified version of the BaslsLP algorithm can be used to solve it. 
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Graph Algorithms 

IN this chapter we consider several fundamental optimization problems involving 
graphs: all-pairs shortest paths, minimum cuts, and minimum spanning trees. 
In each case, deterministic polynomial time algorithms are known, but the use 
of randomization allows us to obtain significantly faster solutions for these 
problems. We show that the problem of computing all-pairs shortest paths is 
reducible, via a randomized reduction, to the problem of multiplying two integer 
matrices: We present a fast randomized algorithm for the min-cut problem in 
undirected graphs, thereby providing evidence that this problem may be easier 
than the max-flow problem. Finally, we present a linear-time randomized 
algorithm for the problem of finding minimum spanning trees. 

Unless stated otherwise, all the graphs we consider are assumed to be undi
rected and without multiple edges or self-loops. For shortest paths and min-cuts 
we restrict our attention to unweighted graphs, although in some cases the 
results generalize to weighted graphs; we give references in the discussion at the 
end of the chapter. 

10.1. All-pairs Shortest Paths 

Let G(V,E) be an undirected, connected graph with V = {1, ... ,n} and lEI = m. 
The adjacency matrix A is an n x n 0-1 matrix with Aij = A j ; = 1 if and only if 
the edge (i,j) is present in E. Given A, we define the distance matrix D as an 
n x n matrix with non-negative integer entries such that Dij equals the length 
of a shortest path from vertex i to vertex j. The diagonal entries in both A 
and D are zeroes. Since G is connected, all entries in D are finite; this is not a 
restrictive assumption since a graph can be decomposed easily into connected 
components in linear time. 

The aU-pairs shortest paths (APSP) problem is to compute a representation 
of the shortest paths between all pairs of vertices, i.e., the paths that determine 
the entries in the distance matrix. To make this precise, we will compute an 
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implicit representation of the shortest paths such that for any specific pair of 
vertices, the shortest path between them can be determined in time proportional 
to its length. A restricted version of this problem requires us to compute only 
the distance matrix; we refer to this as the all-pairs distances (APD) problem. 

The APSP problem can be solved in O(nm) time, as follows: from each vertex 
i E V, compute the breadth-first search tree Tj rooted at i. Each such tree can 
be computed in O(m) time, and, in any tree T j , the (unique) path from i to any 
vertex j is the shortest path between them. Given the collection of breadth-first 
search trees, the distance matrix can be computed in O(n2) time by assigning 
level numbers to the vertices in each tree. 

We consider only un weighted graphs, although the above definitions have 
obvious generalizations to the case where the edges have real-valued weights 
(or lengths). The classical algorithms of Dijkstra, Floyd-Warshall, and Johnson 
solve APSP in O(n3 ) time; the first and the last of these can actually be 
implemented in O( nm + n2 log n) time. 

While it is clear that the APSP or APD problem would require O(n2) time in 
the worst case, there is no reason to believe that the O(nm) time bound (which 
can be as much as 9(n3» is even close to the best possible. We now show that 
a substantial improvement can be obtained for the unweighted case with the 
use of randomization and fast matrix multiplication. While these results do not 
generalize completely to the weighted case, there is some indication that this 
should be possible. 

What does matrix multiplication have to do with the shortest path problem? 
Consider first the problem of Boolean matrix multiplication: given n x n Boolean 
matrices A and B, their product C has entries 

PI 

Cij = 2: AikBkj 

k=l 

where the product of two Boolean values denotes the Boolean AND operation, 
and the sum denotes the Boolean OR operation. Suppose that A = B is the 
adjacency matrix of the graph G. Then the product C = A2 has its (i,j) entry 
equal to 1 if and only if there is a path of length 2 between the vertices i and j; 
the matrix At corresponds to paths of length t. A related concept is that of the 
closure of a Boolean matrix A, which is defined as the infinite sum A* = L~ A', 
where AO is the identity matrix. The closure matrix A* has its (i,j) entry equal 
to 1 if and only if there is some path between the vertices i and j. 

Computing all powers of A from 1 to n will thus enable us to solve the 
APD problem. Unfortunately, this takes time 0 (n4

) using the obvious Boolean 
matrix multiplication algorithm, which runs in time O(n3). On the other hand, 
computing the closure A* of the Boolean matrix A requires only as much time 
as a single Boolean matrix multiplication (see Problem 10.1). 

Actually, it is possible to embed Boolean matrix multiplication into integer 
matrix multiplication by treating the Boolean entries as the integers 0 and 
1. This corresponds to embedding the closed semiring of Boolean algebra 
into the ring of integers. Let MM(n) denote the time required to multiply two 
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n X n matrices with integer entries. All known integer matrix multiplication 
algorithms are applicable to an arbitrary ring, rather than the ring of integers 
alone. 

Exercise 10.1: Show that Boolean matrix multiplication for n x n matrices can be 
performed via integer matrix multiplication in time O(MM(n)). How large are the 
integer values that arise during this computation? 

Currently, the best integer matrix multiplication algorithm runs in time 
o (n2.376 ). By the preceding exercise this result carries over to Boolean matrix 
multiplication. Unfortunately, even the use of this observation gives a super
cubic algorithm for the APD problem in un weighted graphs. There is, however, 
another trick that permits the solution of the APD problem in time O(MM(n». 
The idea is to reduce the problem of computing the distance matrix for a graph 
to a matrix multiplication over the closed semiring of the reals augmented 
with 00, where scalar addition is replaced by the "min" operator, and scalar 
multiplication is replaced by scalar addition. Let A now be the matrix in which 
the (i, j) entry is the weight of the edge (i, j) if it exists, and 00 otherwise. The 
semiring product of matrices A and B has entries 

Cij = 1~i2n (Aile + Bkj). 

It can be verified that the closure matrix A· is exactly the solution to the APD 
problem. Some non-trivial ideas are needed to show that the semiring closure 
can be computed via integer matrix multiplication; we omit the details. This 
technique applies to weighted graphs too. 

There are two serious deficiencies in the solution described in the previous 
paragraph - the algorithm does not generalize from the APD problem to 
the APSP problem and, more importantly, the reduction to integer matrix 
multiplication creates integer matrices whose entries are integers whose length 
is super-linear in n. In any real machine, this implies that each arithmetic 
operation takes super-linear time, and the usual unit-cost assumption for basic 
arithm~tic operations is invalid. We present a different approach for reducing the 
APD problem to integer matrix multiplication using integers of only logarithmic 
length. Then, we show that this can be extended, via randomization, to actually 
solve the APSP problem using a black-box for matrix multiplication. The 
algorithm is practical to the extent that the fast matrix mUltiplication algorithm 
being invoked is practical. 

10.1.1. Computing Distances 

Our first goal is to present a (deterministic) algorithm to solve the APD problem 
using a black-box for integer matrix multiplication. In the ensuing discussion, 
all matrix multiplications are over the ring of integers and the adjacency matrix 
is treated as an integer matrix. 
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Let G'(V,E') be the graph obtained from G(V,E) by placing an edge between 
every pair of vertices i f j E V that are at distance 1 or 2 in G. The graph G 
is a subgraph of G', and we could view G' as the "square" of the graph G. For 
G', let A' denote the adjacency matrix and D' denote the distance matrix. The 
proof of the following lemma is left as an exercise. 

Lemma 10.1: Let Z = A2, where A is the adjacency matrix of the graph G. 
Then there is a path of length 2 in G between a pair of vertices i and j if and 
only if Zij > o. Further, the value of Zij is the number of distinct length 2 paths 
between i and j. 

The matrix Z = A2 can be computed in O(MM(n» time, and if we know A 
and Z it is easy to determine the matrix A' in O(n2) time. The diagonat"entries 
in Z = A2 will be non-zero in general (corresponding to cycles of length 2), and 
care must be taken in constructing A' to ensure that it has a zero diagonal. In 
particular, we compute A' by setting A~j = 1 if and only if if j and at least one 
of Aij and Zij is non-zero. 

Observe that G' is complete if (and only if) G has diameter at most 2, where 
the diameter of a graph is the maximum shortest path length over all pairs of· 
vertices. In this case, the APD matrix D = 2A' - A is easily obtained from A 
and A' in time O(n2). 

In general, of course, the graph G could have arbitrarily large diameter. The 
following sequence of observations will allow us to handle the general case. The 
proof of the next lemma is left as an exercise. 

Lemma 10.2: Consider any pair of vertices i, j E V. 

• If Dij is even then Dij = 2D~j. 

• If Dij is odd then Dij = 2D;j - 1. 

An immediate implication of this lemma is that given the APD matrix D' 
for G', the APD matrix D for G can be computed quickly provided we know 
the parity of each of the shortest path lengths in D. This suggests a recursive 
algorithm for APD that first computes A' and G', uses recursion to determine 
D', and then computes D from D' using the observation in Lemma 10.2. The 
only remaining detail is the method for computing the parities of the shortest 
path lengths. The proof of the next lemma is an easy exercise. 

Lemma 10.3: Consider any pair of distinct vertices i and j in G. 

• For any neighbor k of i, Dij - 1 < Dkj ~ Dij + 1. 

• There exists a neighbor k of i such that Dkj = Dij - 1. 

We now present a structural property of shortest paths that allows us to 
compute the parities of their lengths. 
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Lemma 10.4: Consider any pair of distinct vertices i and j in G . 

• If Dij is even, then D~j > D;j for every neighbor k of i in G . 

• If Dij is odd, then D~j < D;j for every neighbor k of i in G. Moreover, there 

exists a neighbor k of i in G such that D~j < D;j' 

PROOF: Consider first the case where Dij = 2t is even. By Lemma 10.3, for any 
neighbor k of i we have Dkj > 2t - 1. Lemma 10.2 implies that D;j = t. Also 
by Lemma 10.2 we have D~j > Dkj /2 > t -1/2, and since distances are integral 

we conclude that D~j > t = D;j' 

A similar argument applies in the case where Dij = 2t - 1 is odd. By 
Lemma 10.3 we have Dkj < 2t for any neighbor k of i, and therefore, by 
Lemma 10.2, D~j < (Dkj + 1)/2 < t + 1/2. By integrality it follows that D~j < t, 
and by Lemma 10.2 we have D;j = t, implying the desired result that D~j < D;j' 
Further, there exists a neighbor k of i such that Dkj = Dij - 1 = 2t - 2, and 
therefore Lemma 10.2 yields D~j = t - 1 < t = D;j' 0 

Let r(i) denote the set of neighbors of i in G, and let d(i) be the degree of 
i. Note that Zjj = d(i), for all i. Summing the inequalities in Lemma 10.4 over 
the neighbors of the vertex i, and noting that the two resulting inequalities are 
mutually exclusive, we obtain the following result. 

Lemma 10.5: Consider any pair of distinct vertices i and j in G. 

~ I I 

• Dij is even if and only if L."ker(i) Dkj ~ Dijd(i). 

This gives us an efficient method for determining the parities of the shortest 
path lengths in G. The resulting recursive algorithm is summarized in Algorithm 
APD. 

In Step 5 we are using matrix multiplication to compute 

PI 

2: D~j = 2: AikD~j = Sij. 
ker(i) k=l 

The correctness of the algorithm follows from the preceding discussion. We 
summarize the running time analysis in the following theorem. The length of 
the integers in the matrices will never exceed O(log n). 
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Algorithm APD: 

Input Graph G(V, E) in form 01an adjacency matrix A. 

Output: The APD matrix D for G. 

1. Z _A2. 

2. compute matrix A' such that A;j = 1 if and only if 

i f j and (A;j = 1 or Zij > 0). 

3. If A;j = 1 for all i f j then return D = U' - A. 

4. Recursively compute the APD matrix D' for the graph G' with adjacency 
matrix A'. 

5. S-AD'. 

6. return matrix D with 0,; - { 

Theorem 10.6: The APD algorithm computes the distance matrix for an n-vertex 
graph G in time O(MM(n) log n) using integer matrix multiplication on matrices 
with entries of value bounded by O(n2). 

PROOF: Suppose that the graph G has diameter~. Then the graph G' has 
diameter r ~ /2l Let T(n,~) denote the running time of the APD algonthm on 
input graphs with n vertices and diameter ~. In the case ~ = 1, G is a complete 
graph, and in the case ~ = 2 we have that T(n,~) = MM(n) + O(n2). 

Exercise 10.2: Verify that T(n, 6) satisfies the following recurrence for 6 > 2, 

T(n, 6) = 2MM(n) + T(n, r 6/21) + O(n2
). 

Noting that ~ < nand MM(n) = O(n2), and that the recursion depth is O(log n), 
the desired result follows immediately. Finally, since the integers in the distance 
matrices are bounded by n, it follows that the integers in the S matrices are 
bounded by n2• 0 

10.1.2. Witnessing Boolean Matrix Multiplication 

We now extend the above technique to solving the APSP problem; this is where 
randomization proves useful. The extension is based on solving the problem of 
finding "witnesses" for Boolean matrix multiplication. Suppose A and Bare 
n x n Boolean (or, 0-1) matrices and P = AB is their product under Boolean 
matrix multiplication. A witness for Pij is an index k E {1, ... , n} such that 
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Aile = Bkj = 1. Observe that Pij = 1 if and only if it has some witness k. A 
Boolean product witness matrix (BPWM) for P is an integer matrix W such that 
each entry Wij contains a witness k for Pjj if any, and is 0 if there is no such 
witness. The matrix W has entries drawn from the set {O,1, ... ,n}. The BPWM 
problem is to find a witness matrix W, given the matrices A and B (and, if 
necessary, also the matrix Pl. 

There could be as many as n witnesses for each entry in P. In fact, the 
integer matrix multiplication of A and B, treating their entries as the integers 0 
and 1, yields a matrix C whose entry Cij corresponds exactly to the number of 
witnesses for the Boolean matrix entry Pij. 

Recall that if A = B is the adjacency matrix of a graph G, then Pij = 1 if and 
only if there exists a path of length 2 from i to j, and Cij is the number of such 
paths. A witness k for Pjj is the intermediate vertex on a length-2 path from 
i to j. It thus appears that finding witnesses for Boolean matrix multiplication 
is closely related to the issue of extending the APD algorithm to finding the 
shortest paths. The problem is that the obvious brute-force approach of trying 
each k E {1, ... , n} as a potential witness for Pij requires O(n) time and gives 
only an O(n3) time algorithm for the BPWM problem. 

Consider first the issue of finding a witness matrix when there is a unique 
witness for each entry in P. There is a simple reduction of the BPWM problem to 
integer I'!latrix multiplication in this case, as suggested in the following exercise. 
In the rest of this section, except in the computation of P, all matrix products 
involve integer matrix multiplication. 

Exercise 10.3: Consider the matrix A obtained by setting Aik = kA ik • Show that the 
integer matrix multiplication of A and B yields a matrix that contains the witness for 
all entries in the matrix P that have ..... a unique witness. In particular, if each entry of 
P has a unique witness, then W = AB is a solution to the BPWM problem. 

Of course, there is no a priori guarantee that there is a unique witness for 
any particular entry in P. However, we can use randomization to achieve the 
effect of such a guarantee for a sufficiently large number of entries in P. This 
approach bears some resemblance to the use of the isolating lemma used in 
devising a parallel algorithm for maximum matching, described in Section 12.4. 

Let us focus our attention on a specific entry Pij. Assume that the number of 
witnesses for this entry has been determined to be w. We may find the number 
of witnesses w by using integer matrix multiplication to compute C = AB, and 
then looking at the entry Cij• We assume that w > 2, since it is easy to find 
the witness (if any), otherwise. Let r be an integer such that nl2 < wr < n. We 
claim that a random set of indices R c {1, ... , n} of cardinality r is very likely to 
contain a unique witness for Pij. To verify this claim, consider an urn containing 
n balls, one for each of the n indices; the balls corresponding to witnesses are 
colored white, and the rest are colored black. The following lemma then shows 
that the probability that R contains a unique witness is reasonably large. 
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Lemma 10.7: Suppose an urn contains n balls of which ware white, and n - w 

are black. Consider choosing r balls at random (without replacement), where 
n/2 ::S; wr < n. Then 

Pr[exactly one white ball is chosen] > ;e. 

PROOF: By elementary counting, the desired probability can be bounded as 
follows. 

r! (n-w)! (n-r)! 
- w------'-------:-~ 

(r-l)! n! (n-w-r+1)! 

(

W-l 1 ) (W-2 ) == wr rr ~ rr (n - r - j) 
i==O n I j==O 

_ wr (Wrr-2 n-r- ~) 
n n-l-J 

j-O 

~ wr (Wrr-2 n - r - j - (w - j - 1») 
n j==O n - 1 - j - (w - j - 1) 

_ wr (Wrr-2 n - W -(r-l») 
n n-w 

j==O 

_ wr (1 _ r -1 ) w-l 

n n-w 

1 ( 1) w-l 
~ - 1--

2 w 

The last inequality follows from the observations that wr/n > 1/2 and (r-
1)/(n - w) ::S; l/w, which in turn follow from the assumption that n/2 < wr < n. 
Finally, applying Proposition B.3, the last expression is bounded by 1/2e. 0 

Assuming that the set R contains a unique witness for Pij , it is easy to modify 
the technique described in Exercise 10.3 to identify this witness. Suppose that 
R is represented as an incidence vector that has Rt == 1 for k E Rand Rt == 0 
for k ~ R. Let AR be the matrix obtained from A by setting A~ == kRtAik; 
further, let BR be the matrix obtained from B by setting BfJ == RtBkj• The only 
difference between AR and BR and the two matrices used in Exercise 10.3 is that 
each column of AR and each row of BR corresponding to the indices not chosen 
in R is turned into an all-zero vector. The reason behind this construction is 
explicated in the next exercise. 

Exercise 10.4: Suppose that the entry Pij has a unique witness in the set R. Show 
that the corresponding entry in the integer matrix multiplication of AR and Jii is the 
index of this unique witness. 
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A key point is that the product of AR and BR yields witnesses for all entries 
in P that have a unique witness in R. By Lemma 10.7, there is a constant 
probability that a random set R of size r has a unique witness for an entry 
in P with w witnesses. where nl2r < w < nlr. Repeating this for O(log n) 
independent choices of R makes it extremely unlikely that witnesses are not 
identified for such entries in P, and these missing witnesses can be found by 
brute-force enumeration. Of course, we will need to use several different values 
of r to take care of the range of values possible for w, but it suffices to try only 
those values of r that are powers of 2 between 1 and n. The resulting algorithm 
is presented below. 

Algorithm BPWM: 

Input: Two n x n 0-1 matrices A and B. 

Output: Witness matrix W for the Boolean matrix P = AB. 

1. W --AB. 

2. for t = 0, ... , llog n J do 

2.1. r _ 21. 

2.2. repeat r3.77 log n 1 times 

2.2.1. choose random R!;; {1, ... ,n} with IRI = r. 

2.2.2. compute AR and Jii. 
2.2.3. Z _ AR~. 

2.2.4. for all (i, j) do 
If Wij < 0 and Zlj is witness then W lj - Zij. 

3. for all (i, j) do 
If W lj < 0 then find witness W lj by brute force. 

The initial setting of W ensures that the only negative entries are those where 
the valJ.le of Pij is non-zero and there is a need to find a witness. Thereafter, the 
negative entries mark the locations in P for which witnesses have not yet been 
found. The brute-force search in the last step for the witnesses not identified by 
the randomized strategy ensures that the algorithm is Las Vegas. We now turn 
to the task of analyzing the expected running time. 

Theorem 10.8: The BPWM algorithm is a Las Vegas algorithm/or the BPWM 
problem with expected running time 0 ( MM (n) log2 n) . 

PROOF: Step 1 takes time MM(n). There are o (log2 n) iterations of the innermost 
loop body in Step 2, and the most expensive operation performed there is an 
integer matrix multiplication of matrices of dimension at most n x n. This would 
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yield the desired time bound, provided that the brute-force computations in Step 
3 are not too expensive. We claim that for any non-zero Pij' a witness is found 
in Step 2 with probability at least I-lin. This implies that the expected number 
of witnesses remaining to be found at the start of Step 3 is n, and since each of 
these is then found by brute force in O(n) time, it follows that the expected cost 
of Step 3 is O(n2). 

To verify the claim, consider any specific non-zero Pij and assume that it 
has w witnesses. There will be at least one iteration of the outer loop with a 
value r such that nl2 < wr < n. During that iteration, the probability that a 
random choice of R does not have a unique witness for Pij is at most 1 - 1/2e, 
by Lemma 10.7. Since the inner loop is repeated 3.77 log n times, it follows that 
the probability that no witness is found for this entry before the end of Step 2 
is at most (1 - 1 12e)3.77 log II < lin. . 0 

10.1.3. Determining Shortest Paths 

Finally, we show how the Algorithms APD and BPWM can be used to solve 
the APSP problem. The first problem we face is that there exist graphs with 
many pairs of vertices for which the shortest path length is linear in n, and so 
any explicit representation of all-pairs shortest paths will require O(n3) time to 
compute. 

Exercise 10.5: Construct an n-vertex graph with Q(n2) pairs of vertices ~t distance 
Q(n). 

To circumvent this problem, we will compute an implicit representation of 
the shortest paths such that for any specific pair of vertices their shortest path 
can be extracted in time proportional to its length. 

~ Definition 10.1: A successor matrix S for an n-vertex graph G is an n x n matrix 
such that Sij is the index k of a neighbor of vertex i that lies on a shortest path 
from i to j. 

Exercise 10.6: Given a successor matrix S and a pair of vertices i, j, explain how 
you would obtain an explicit representation of the shortest path from i to j in time 
proportional to the length of the path. 

Suppose we are provided with the adjacency matrix A and the distance matrix 
D for a graph G. Consider a pair of vertices i and j that are at distance d from 
each other. The entry Sij can be k if and only if Dkj = d - 1 and Dik = 1 (or 
Aile = 1). Let g1 denote the n x n 0-1 matrix in which Btj = 1 if and only if 
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Dkj = d - 1. Observe that gl can be computed from D in O(n2) time. As the 
following exercise indicates, finding the successor entry for any pair i and j at 
distance d is easy given the matrix gl. 

Exercise 10.7: Applying the BPWM algorithm to compute the witness matrix for 
the Boolean matrices A and gJ, show that the successor matrix entries for all 
pairs of vertices at distance d can be simultaneously determined in expected time 
O(MM(n) log2 n). 

The only problem with this approach is that the entire process must be 
repeated for the n different values of d, leading to a super-cubic algorithm for 
APSP. However, a simple observation leads to a reduction of the number of 
witness matrix computations from n down to 3. 

Recall from Lemma 10.3 that for any pair of vertices i and j, and any 
neighbor k of i, it must be the case that Dij - 1 < Dkj < Dij + 1. Furthermore, 
any neighbor k with Dkj = Dij - 1 is a valid candidate for the successor matrix 
entry Sij. It follows that any k such that Aik = 1 and Dkj s: Dij - 1 (mod 3) is a 
valid candidate for Sij. 

For s E {O, 1,2}, define the n x n 0-1 matrix D(s) to be such that Dij = 1 if and 
only if D}cj + 1 = s (mod 3). The successor matrix can be computed by finding 
the witnesses of the Boolean matrix multiplication of A with each of D(O), DO), 

and D(2), as described in Algorithm APSP. 

Algorithm APSP: 

Input: An n x n adjacency matrix A for a graph G. 

Output: The successor matrix S for G. 

1. compute the distance matrix D = APD(A). 
2. for s = {O, 1, 2} do 

2.1. compute 0-1 matrix D(a) such that D!j) = 1 if and only if Dki + 1 E S 

. (mod 3). 

2.2. compute the witness matrix W(a) = BPWM(A, D(a)). 

3. compute successor matrix S such that Slj = wt;j mod 3) • 

Given the performance bounds on the algorithms APD and BPWM, the 
following theorem is easily verified. 

Theorem 10.9: Algorithm APSP computes the successor matrix for an n-vertex 
graph G in expected time 0 (MM(n) log2 n). 
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10.2. The MiD-Cut Problem 

We now return to the min-cut problem considered in Section 1.1. Let G(V, E) be 
an undirected multigraph with n vertices and m edges. A multigraph is permitted 
more than one edge between any given pair of vertices. A cut in G is a partition 
of the vertices V = (C, C) into two non-empty sets; we refer to this as the cut 
C with the understanding that C is V \ C. 

The value or size of a cut C is the number of edges crossing the cut, i.e., 
edges with one end-point in each of the two sets C and C. A multiple edge will 
contribute its multiplicity to the value of the cut. A min-cut is a cut of minimum 
value; the min-cut problem is that of finding a min-cut in an input graph G. 
The value of a min-cut is sometimes referred to as the edge connectivity of the 
graph, as it is the minimum number of edges that must be removed from the 
graph to render it disconnected. 

We assume that the input graph G is connected, since otherwise the problem 
is trivially solved by determining the connected components of G in time O(m). 
The above definitions generalize to weighted graphs, where the value of a cut is 
defined to be the sum of the weights of the edges crossing the cut. We restrict 
ourselves to non-negative edge weights. Permitting negative edge weights would 
make the problem NP-complete since it would then include as a special case the 
max-cut problem, a classical NP-complete problem. 

The min-cut problem should be contrasted with the s-t min-cut problem. In 
the latter, two distinguished vertices sand t are specified in the input, and the 
solutions are restricted to the cuts C with the property that sEC and t ~ C. 

Exercise 10.8: Show that the min-cut problem for a graph G can be solved via a 
polynomial number of invocations of an $-t min-cut algorithm applied to the same 
graph. 

The classical duality result in network flows states that the value of a maxi
mum s-t flow in a network equals the value of a s-t min-cut. In fact, computing 
a maximum s-t flow yields an s-t min-cut as a side·effect. It follows that the 
min-cut problem can be solved via a polynomial number of invocations of a 
maximum flow algorithm. Actually, it can be shown that n -1 flow computations 
suffice for this purpose. Since the best deterministic maximum flow algorithm 
runs in time O(mnlog(n2/m»), this approach to the min-cut problem would 
require O(mn2) time. Fortunately, the n -1 maximum flow computations needed 
for the min-cut problem can be implemented in time proportional to the cost of 
a single maximum flow computation, and so we can compute a min-cut in time 
O(mn log(n2/m». 

A very interesting question is whether the s-t min-cut problem can be solved 
faster than the s-t max-flow problem. Note that whereas a flow computation 
immediately yields the cut, the converse does not seem to be true. In this section 
we show that at least for the min-cut problem (without the s-t requirement), 
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there is an efficient randomized algorithm running in 0 ( n2 IogQ1)n) time. For 
dense graphs this is significantly better than the running time of the best-known 
max-flow algorithm. 

10.2.1. The Contraction Algorithm Revisited 

We start by reviewing the the contraction algorithm described in Section 1.1. 
Actually, we present only an abstract version of this algorithm and leave the 
implementation details as an exercise. 

Given an edge (x,y) in a multigraph G(V,E), a contraction of the edge (x,y) 
corresponds to replacing the vertices x and y by a new vertex z, and for each 
v ~ {x,y} replacing any edge (x,v) or (y,v) by the edge (z,v); the rest of the 
graph remains unchanged. Any multiple edges created are to be retained. The 
graph obtained by this contraction is denoted by G/(x,y). 

Given a collection of edges F c: E, the effect of contracting the edges in F 
is independent of the order of contraction, and the resulting graph is denoted 
by G I F. The vertex set and edge set of a graph G I F are denoted by V IF and 
ElF. The "meta-vertices" in V IF correspond to a (connected) set of vertices in 
V, and the edges in ElF are exactly those edges in E whose end-points do not 
get coll~psed into the same meta-vertex in V IF. In Problem 10.9, the reader is 
asked to show that it is possible to maintain the graph G I F under an online 
sequence of edge contractions at a cost of O(n) time per contraction, keeping 
track of the correspondence between the elements of V IF and V, and ElF and 
E. 

The basic idea behind the contraction algorithm is summarized below. We 
assume that the Algorithm Contract uses the data structure developed in Prob
lem 10.9 to implement the edge contractions. 

Algorithm Contract: 

Input: A multigraph G{V, E). 

OutPut: A cut C. 

1. H - G. 

2. while H has more than 2 vertices do 

2.1. choose an edge (x,y) uniformly at random from the edges in H. 

2.2. F _ F U {{x,y)}. 

2.3. H - H /(x,y). 

3. (C, C) - the sets of vertices corresponding to the two meta-vertices in 
H = G/F. 
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The only implementation issue remaining in this algorithm is the selection of 
the edge (x,y) uniformly at random from the set of aJJ edges in the graph H. In 
Problem 10.10, the reader is asked to show that this can be done in O(n) time 
per random selection. The results from Problems 10.9-10.11 yield the following 
theorem. 

Theorem 10.10: Algorithm Contract can be implemented to run in O(n2) time on 
any n-vertex multigraph G. 

The running time of this algorithm is independent of the number of (multi) 
edges in the graph G. This may seem surprising at first since the number of 
such edges is not bounded by (~). However, as suggested in Problem 1Q.9, the 
multiplicity of an edge can be represented by an integer weight on the edge and 
hence the number of edges can effectively be bounded by (~). 

Of course, this just shows that the Contract algorithm terminates in O(n2) 

time with a cut C. There is no guarantee that the cut will indeed be a min-cut. 
We now briefly review the argument from Section 1.1 that established that this 
algorithm finds a min-cut with a non-negligible probability. 

Lemma 10.11: A cut C is produced as output by Algorithm Contract if and only 
if none of the edges crossing this cut is contracted by the algorithm. 

Fix anyone min-cut K in the graph G. Let k denote the value of a min-cut 
in G; in particular, k is the value of the cut K. We would like to compute 
the probability that K is produced as the output of Algorithm Contract. By 
Lemma 10.11, this will happen if and only if none of the k edges crossing the 
cut is contracted during the course of the algorithm's execution. To determine 
the probability of this event, we make use of the following obvious facts. 

Lemma 10.12: In an n-vertex multigraph G with min-cut value k, no vertex has 
degree smaller than k. Further, the total number of edges in the graph satisfies 
m > nk/2. 

Lemma 10.13: Given an edge (x,y) in a graph G, the min-cut value in G/(x,y) 
is at least as large as the min-cut value in G. 

The number of vertices in the graph H decreases bj exactly one during each 
iteration of Algorithm Contract. After n - 2 iteration., the number of vertices 
is reduced from n to 2. At the ith iteration, there ars;! ni = n - i + 1 vertices 
in H. Suppose that none of the edges in K is contrac.::ed during the first i - 1 
iterations. Since K is also a cut in H, Lemma 10.13 irr;plies that H has min-cut 
value k, and then Lemma 10.12 implies that the nur.'1ber of edges in H is at 
least nik/2. Thus, the probability that any edge of K is contracted during this 
iteration is at most 2/ni. It follows that the probability that no edge of K is ever 
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contracted can be bounded as follows. 

Pr[K is output by Algorithm Contract] 
n-2 ( 2) 

~ II 1--
i=1 ni 

n-2 ( 2) - n 1- n _ i +1 
1=1 

_ IT (j .2) 
J=n } 

- 1 / (~) = Q(n-2
). 

We have established the following theorem. 

Theorem 10.14: Any specific min-cut K is output by Algorithm Contract with 
probability Q(n-2). 

Since the graph must have at least one min-cut, it follows that the probability 
of success of this algorithm is Q(n-2 ). Repeating the algorithm O(n2 log n) times 
gives a reasonable probability that some invocation of the algorithm produces 
a min-cut; then, the smallest cut produced by these invocations is very likely 
to be the min-cut. This gives a Monte Carlo algorithm running in 0 (n4 log n) 
time. Before trying to improve this result, we note the following variant of 
Theorem 10.14. 

Lemma 10.15: Suppose that the Algorithm Contract is terminated when the num
ber of vertices remaining in the contracted graph is exactly t. Then any specific 
min-cut K survives in the resulting contracted graph with probability at least 

10.2.2. A Faster Min-Cut Algorithm 

We now modify the implementation of the contraction algorithm to reduce its 
running time to 0 ( n2 logQ1)n ). The basic problem with Algorithm Contract is 

that it succeeds in finding a min-cut only with probability Q(n-2). This entails 
running the algorithm at least Q(n2) times to ensure a reasonable probability of 
success. Thus, the obvious approach to improving the running time is to increase 
the probability that a min-cut is produced by Algorithm Contract. 

Suppose we focus our attention on a specific min-cut K and wish to have the 
algorithm produce this as its output. The initial contractions are quite unlikely 
to involve the edges crossing the cut K; in particular, the very first iteration will 
contract an edge of K with probability at most 2/n. The key insight is that it is 
only toward the end of the contraction process that there is any non-negligible 
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probability that an edge of K gets contracted; in particular, this probability 
could be as large as 2/3 in the very last iteration. 

This suggests that we contract the edges until the number of vertices decreases, 
but not by too much, and then use some slower algorithm that guarantees 
a higher probability of success. The first stage guarantees that the slower 
algorithm will not require too much time to find a min-cut, but at the same 
time, since the contractions are performed on graphs with a large number of 
vertices, the probability that one of K's edges gets contracted is reasonably 
small. Unfortunately, the best deterministic algorithm known requires 0 (n3 ) 

time, and the following exercise shows that the above approach will fail to 
achieve a running time close to O(n2). 

Exercise 10.9: Consider running the contraction algorithm until the number of ver
tices is reduced to t and then using a cubic-time algorithm to find the min-cut in the 
contracted graph. Show that repeating this process as many times as necessary to 
ensure a probability of success at least 1/2 leads to an algorithm with running time 
O(n8/ 3). 

The crucial insight is that instead of using a slower deterministic algorithm, it 
is better to use two independent invocations of the Algorithm Contract itself on 
the contracted graph with t vertices. This is because the two repetitions boost 
the probability of success on the smaller instance, while the cost of the repetition 
on this instance is not as much as the cost of repeating the entire algorithm; in 
fact, this effect multiplies with each successive stage of the recursion .. We now 
specify the algorithm more precisely: first use contractions to reduce the number 
of vertices to roughly n/.J2, and then recursively compute the min-cut in the 
resulting graph; perform this twice and choose the smaller of the two min-cuts 
obtained as the final output. The resulting recursive algorithm is summarized 
below, and the reasons behind this precise choice of the parameters will become 
clear shortly. 

Algorithm FastCut: 

Input: A multigraph G(V, E). 

Output: A cut C. 

1. n - IVI. 
2. if n ~ 6 then compute min-cut of G by brute-force enumeration else 

2.1. t - r 1 + n / J21. 
2.2. Using Algorithm Contract. perform two independent contraction se

quences to obtain graphs H1 and H2 each with t vertices. 

2.3. Recursively compute min-cuts in each of H1 and H2. 

2.4. return the smaller of the two min-cuts. 
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The recursion is stopped when n < 6 since at that point t will not be smaller 
than n. An intuitive way of viewing this algorithm is in terms of a binary 
computation tree. The root corresponds to the graph G. For any node of this 
tree with an associated graph H, we associate with the two children the graphs 
HI and H2 obtained by performing independent sequences of contractions that 
reduce the number of vertices in H by a factor of .J2. The depth of the tree 
is roughly 2 log n, and the number of leaves is O(n2). In contrast, the O(n2) 
independent iterations of Algorithm Contract can be viewed as a tree of depth 
1 with one root and O(n2) leaves that are direct descendants of the root. Thus, 
the speed-up in this algorithm does not come from generating a smaller set of 
potential min-cuts, but instead it is due to the sharing of work between the 
various contraction sequences required to generate these potential min-cuts. 

Algorithm FastCut is guaranteed to return some cut in G. We first bound the 
time and space requirements of this algorithm. 

Theorem 10.16: Algorithm FastCut runs in O(n2 log n) time and uses O(n2) space. 

PROOF: The depth of recursion is O(log n) since the size of the graph is reduced 
by a constant factor at each level of recursion. Algorithm Contract uses O(n2) 

time to reduce an n-vertex graph to a 2-vertex graph, and so it can certainly 
perform 'a partial reduction to both HI and H2 in O(n2) time. We obtain the 
following recurrence for the running time T(n) of Algorithm FastCut when given 
an n-vertex graph as input: 

The solution to this recurrence is given by T(n) = O(n2 log n). 

Turning to the space requirement, observe that at any time only one graph 
needs to be stored at each level of recursion. Since the graphs at depth d 
of recursion have O(n/2d/2) vertices, it follows that the total space needed is 
bounded by 

o(~ ;) = 0(.'). 

We also have to keep track of the best min-cut found at each level of the 
recursion, but this can certainly be done with space O(n2). This completes the 
proof. 0 

It remains to show that this algorithm has reasonably high probability of 
returning a min-cut. 

Theorem 10.17: Algorithm FastCut succeeds in finding a min-cut with probability 
Q(l/ log n). 
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PROOF: Suppose that the input graph G has min-cut value k. Assume that a 
cut of value k has survived up to some point in the recursion where the size of 
the residual graph H is t. This can be viewed as a node labeled by the graph H 
in the recursion tree discussed earlier. Let HI and H2 be the graphs associated 
with the children of the node associated with H; these are the two contracted 
versions of H on which the algorithm will recur further. 

The invocation of the recursive algorithm on graph H will return a min-cut 
for G provided the following two conditions are met: a cut value of k survives 
one of the two contraction sequences leading to HI and H2 ; and, the FastCut 
algorithm succeeds in finding the min-cut in that same graph Hi. 

By Lemma 10.15, the probability that any specific min-cut in H (which must 
also be a min-cut in G) survives a contraction sequence that reduces the number 
of vertices from t to rt + t/..j21 is at least . 

rt + t/ ..j2l(rt + t/..j21 - 1) 1 
~--~~~--~~~~> -

t(t - 1) - 2· 

Let P(t) denote the probability that Algorithm FastCut succeeds in finding a 
min-cut in a graph with t vertices. It follows that 

P (t) > 1 - (1 - ~ P (r 1 + t / ..j21) ) 2 

To solve this recurrence, it will be convenient to perform a change of variables 
and tum it into an equality. Let k = 0(log t) denote the depth of recursion, and 
p(k) be a lower bound on the success probability. Then, we have p(O) = 1 and 
the recurrence: . 

p(k)2 
p(k + 1) = p(k) - -4-. 

A further change of variables with q(k) = 4/p(k) - 1, or p(k) = 4/(q(k) + 1), 
yields the following upon simplification: 

1 
q(k + 1) = q(k) + 1 + q(k)" 

A simple inductive argument now establishes that 

k < q(k) < k + Hk- I + 3, 

where Hi is the ith Harmonic number and is 0(log i). It follows that q(k) = 
k + 0(logk), implying that p(k) = 0(1/k), and this in tum implies that P(t) = 

0(1/log t). Using n instead of t in the last expression gives the desired result. 
o 

A reader familiar with the theory of branching processes may see that this 
proof is essentially bounding the probability of extinction of the graphs having 
min-cut value exactly that of the original graph G. Finally, we leave it as an 
exercise to verify that this algorithm can be implemented in the promised time 
bounds as was done for Algorithm Contract in Problems 10.9-10.11. 

295 



GRAPH ALGORITHMS 

10.3. Minimum Spanning Trees 

Let G(V, E) be a connected graph with real-valued edge weights w : E -+ R., 
having n vertices and m edges. A spanning tree in G is an acyclic subgraph of G 
that includes every vertex of G and is connected; every spanning tree has exactly 
n - 1 edges. The weight of a tree is defined to be the sum of the weights of its 
edges. A minimum spanning tree (MST) is a spanning tree of minimum weight. 
The minimum spanning tree problem (MSTP) is: given G, find an MST of G. 

The algorithm we present here will recurse on subgraphs that are not nec
essarily connected. When the input graph G is not connected, a spanning tree 
does not exist and we generalize the notion of a minimum spanning tree to that 
of a minimum spanning forest (MSF). A forest F is an acyclic subgraph of G 
that consists of a collection of disjoint trees in G; we treat isolated vertices in 
F as trees of size 1. A spanning forest is a forest whose trees are spanning trees 
for the connected components of the graph G. A spanning forest is a spanning 
tree if and only if the graph is connected. The weight of a forest is the sum of 
the weights of its edges, and a minimum spanning forest is a spanning forest of 
minimum weight. By considering each connected component of G separately, it 
is easy to modify any algorithm for the MSTP to compute the MSF. 

We will assume that all edge weights in G are distinct. This is not a restrictive 
assumption since we can use any canonical numbering of the edges to resolve 
ties whe~ edge weights are being compared. Given the distinctness of the edge 
weights, it follows that the minimum spanning tree must be unique. 

The exact weight of the edges will be irrelevant to the following discussion 
since the algorithms will work in the unit-cost RAM model and only perform 
comparisons between the edge weights; in particular, these algorithms only 
depend upon the total ordering of the edge weights and are otherwise insensitive 
to the values of the weights. 

The MSTP is one of the best-studied problems in combinatorial optimization. 
A variety of algorithms have been developed for this problem, most of which 
are based on a greedy strategy and run in near-linear O(m log n) time, e.g., 
BOrUvka's algorithm, Kruskal's algorithm, and Prim's algorithm. Currently, 
the best deterministic algorithm runs in time O(m log p(m, n», where p(m, n) = 
min{i i log(i) n ~ min} and log(i) n denotes the ith iterated logarithm of n. While 
this is a linear time algorithm for all practical purposes, the data structures are 
complicated enough that the simpler algorithms running in time O(m log n) are 
preferable to use. In any case, there is still the theoretical issue of devising a 
linear time algorithm for this problem. In this section, we present a randomized 
algorithm for the MSTP and show that its expected running time is O(m). In 
fact, the running time of this algorithm is O(m) with high probability, but we 
omit this high-probability analysis in our discussion (see the Notes section). 

The randomized algorithm we present requires a black-box access to an MST 
verification algorithm. A verification algorithm takes as input a graph G and a 
spanning tree T, and determines whether T is an MST for the graph G. Clearly, 
the verification problem for MST should be no harder than the MSTP. Indeed, 
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several deterministic linear-time verification algorithms are known. We omit the 
details of these algorithms and use them as black boxes (see the Notes section). 
An important property of some of these linear-time verification algorithms is 
that when T is not an MST, they produce a list of edges in G any of which can 
be used to improve T. We will make this more precise later. 

10.3.1. Boruvka's Algorithm 

We start by describing a particular greedy strategy for MST called BOrUvka's 
algorithm, which runs in time O(m log n). Later we will show that using ran
domization in conjunction with this algorithm leads to a linear-time algorithm. 
Boruvka's algorithm is based on the following simple observation. 

Exercise 10.10: Let v E V be any vertex in G. Show that the MST for G must contain 
the edge (v, w) that is the minimum-weight edge incident on v. 

The basic idea in Boruvka's algorithm is to contract simultaneously the 
minimum weight edges incident on each of the vertices in G. Recall from 
Section 10.2 that contracting an edge (v, w) involves collapsing the two end
points into a single vertex that has all the incident edges of both vertices, except 
that self-loops are eliminated. In fact, a contraction can create multiple edges 
between some pairs of vertices but only the minimum weight edge needs to 
be retained out of any set of multiple edges. This process of contracting the 
minimum-weight incident edge for each vertex in the graph is called a Bonlvka 
phase. A good implementation of a Boruvka phase is the following: mark 
the edges to be contracted; determine the connected components formed by 
the marked edges; replace each connected component by a single vertex; and, 
finally, eliminate the self-loops and multiple edges created by these contractions. 

Exercise 10.11: Given a graph G with n vertices and m edges, show that a Boruvka 
phase can be implemented in time O(n + m). 

Exercise 10.12: Show that the set of edges marked for contraction during a Boruvka 
phase induces a forest in G. 

We claim that the graph G' obtained from the Boruvka phase has at most 
nl2 vertices. This is because each contracted edge can be the minimum incident 
edge on at most two vertices. The number of marked edges is thus at least n12. 
Since each vertex chooses exactly one edge to mark, it is easy to verify that each 
marked edge must eliminate a distinct vertex. The number of edges in G' is no 
more than m since no new edges are created during this process. 

Let us now examine the benefit of performing a Boriivka phase. By Exer
cise 10.10, each of the contracted edges must belong to the MST of G. In fact, 
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the forest induced by the edges marked for contraction is a subgraph of the 
MST. 

Exercise 10.13: Let G' be the graph obtained from G after a Boruvka phase. Show 
that the MST of G is the union of the edges marked for contraction during this phase 
with the edges in the MST of G'. 

Boriivka's algorithm thus reduces the MST problem in an n-vertex graph 
with m edges to the MST problem in an (n/2)-vertex graph with at most m 
edges. The time required for the reduction is only O(m + n). It follows that the 
worst-case running time of this algorithm is O(m log n). 

10.3.2. Heavy Edges and MST Verification 

Before describing how randomization can be used to speed up Boriivka's algo
rithm, we develop a technical lemma on random sampling of edges from the 
graph G. 

Fix a forest F in G and consider any pair of vertices u, v E V. If they lie 
in the same connected component (i.e., tree) of F, there exists a unique path 
P(u,v) lietween them in the graph F. Let WF(U,V) denote the maximum weight 
of an edge on the path P(u, v) if it exists, and set WF(U, v) = 00 when U and v are 
disconnected in F. The value WF(U, v) should not be confused with the weight 
w(u, v) of the edge (u, v) in G, if indeed such an edge exists. 

~ Definition 10.2: An edge (u,v) E E is said to be F-heavy if w(u,v) > WF(U,V). 

The edge (u,v) is said to be F-light if w(u,v):5 WF(U,V). 

Note that all edges in F must be F-light. An edge (u,v) is F-heavy if the forest 
F contains a path from U to v using only edges of weight smaller than that of 
(u, v) itself. The following exercise illustrates the importance of this notion. The 
crucial point is that the choice of the forest F is irrelevant to the result in this 
exercise. 

Exercise 10.14: Let F be any forest in the graph G. Show that if an edge (u, v) is 
F-heavy, then it does not lie in the MST for G. Verify that the converse is not true. 

An edge "improves" a forest if adding it to the forest either reduces the 
number of trees in that forest, or removing the edge of largest weight in the 
unique cycle created by its addition leads to a forest of weight no larger than 
F. An F-light edge can be used to improve the forest F, while an F-heavy 
edge cannot. It is possible to design a greedy algorithm (essentially, Kruskal's 
algorithm) that starts with an empty forest F and, considering the edges of G 
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in order of increasing weight, checks whether each successive edge is F -light, in 
which case the edge is used to improve the current forest. 

A verification algorithm for the MST can be viewed as taking as input a 
tree T in a graph G, and checking that the only T -light edges are the edges 
in T itself. It should be clear that this is equivalent to verifying that T is 
an MST. Such verification algorithms are easily adapted to verifying minimum 
spanning forests. In fact, there exist linear-time verification algorithms that can 
be adapted to go a step further and identify all F -heavy and F -light edges with 
respect to any forest F. We omit the details of these algorithms and instead only 
summarize their performance in the following theorem. 

Theorem 10.18: Given a graph G and a forest F, all F -heavy edges in G can be 
identified in time O(n + m). . 

10.3.3. Random Sampling for MSTs 

The only use of randomization in the MST algorithm to be presented shortly 
is in the use of random sampling to identify and eliminate edges that are 
guaranteed not to belong to the MST. Consider a (random) graph G(p) obtained 
by independently including each edge of G in G(p) with probability p. The graph 
G(p) has n vertices and expected number of edges mp. There is no guarantee 
that G(p) will be connected. 

Let F be the minimum spanning forest for G(p). For reasonably large values 
of p, the forest F should be a good approximation to the MST for G. More 
precisely, we expect very few edges in G to be F -light. This intuition' is made 
concrete in the lemma presented below. 

We first review some elementary probability theory. Recall that a random 
variable X has the negative binomial distribution with parameters nand p if it 
corresponds to the number of independent trials required for n successes when 
each trial has a probability of success p (see Appendix C); further, the expectation 
of X is given by nip. A random variable X stochastically dominates another 
random variable Y if, for all Z E R, Pr[X > z] > Pr[Y > z]. Proposition C.7 
states that if X stochastically dominates Y, then E[X] > E[Y]. 

Exercise 10.15: Let X have the negative binomial distribution with parameters n1 
and p, and Y have the negative binomial distribution with parameters n2 and p. For 
n1 ~ n2, show that X stochastically dominates Y. 

Lemma 10.19: Let F be the minimum spanning forest in the random graph G(p) 
obtained by independently including each edge of G with probability p. Then the 
number of F -light edges in G is stochastically dominated by a random variable X 
that has the negative binomial distribution with parameters nand p. In particular, 
the expected number of F -light edges in G is at most nip. 
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PROOF: Let et, ... , em be the edges of G arranged in order of increasing weight. 
Suppose that we construct G(p) by traversing the list of edges in this order, 
flipping a coin with probability of HEADS equal to p for each edge in turn, and 
including an edge ej in G(p) if the ith coin flip turns up HEADS. (This is an 
application of the Principle of Deferred Decisions from Section 3.5.) 

The minimum spanning forest F for G(p) can be constructed online during 
this process. Initially F is empty. At step i, after we flip the coin for the edge 
ej = (u, v), if ej is chosen for G(p), we consider ej for inclusion in F. The edge 
is added to F if and only if the two end-points u and v belong to different 
connected components of F. Recall that ej = (u,v) is F-light if and only if F 
does not contain a path from u to v consisting entirely of edges of smaller weight 
than ej; given the order of examination of the edges, an edge is F -light when 
examined if and only if its end-points lie in different connected components. 

The crucial observations are: 

• the F -lightness of ej depends only on the outcome of the coin flips for the 
edges preceding it in the ordering; 

• edges are never removed from F during this process; 

• and the edge ej is F -light at the end if and only if it is F -light at the start of 
step i. 

Defi~e phase k as starting after the forest F has k - 1 edges and continuing 
until it has k edges. Every edge that is F -light during this phase has probability 
p of being included in G(p), and hence of being added to F. The phase ends 
exactly when an F -light edge is added to G(p) for the first time during the phase. 
It follows that the number of F -light edges considered during this phase has the 
geometric distribution with parameter p (see Appendix C). The F-heavy edges 
processed during this phase are entirely irrelevant. 

Suppose the forest F grows in size from 0 to s. It follows that the total number 
of F -light edges processed till the end of phase s is distributed as the sum of 
s independent geometrically distributed random variables, each with parameter 
p. To account for the F -light edges processed after that but not chosen for 
G(p), we continue flipping coins (for dummy edges) until a total of n HEADS 

have appeared. The total number of coin flips is a random variable which has 
the negative binomial distribution with parameters nand p (see Appendix C). 
Since s is at most n - 1, it follows that the total number of F -light edges 
is stochastically dominated by the random variable which represents the total 
number of coin flips. The expected number of F -light edges is bounded from 
above by the expectation of this random variable, which is nip. 0 

10.3.4. The Linear-TIme MST Algorithm 

The randomized linear time MST algorithm interleaves Bonivka phases that 
reduce the number of vertices with random sampling phases that reduce the 
number of edges. After a random sampling phase, the minimum spanning 
forest F of the sampled edges is computed using recursion, and the verification 
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algorithm is used to eliminate all but the F -light edges. Then, the MST with 
respect to the residual (F -light) edges is computed using another recursive 
invocation of the algorithm. This is summarized in Algorithm MST. 

Although we refer to this algorithm as MST, it actually computes a minimum 
spanning forest and does not require that the input graph be connected. 

Algorithm MST: 

Input: Weighted, undirected graph G with n vertices and m edges. 

Output: Minimum spanning forest F for G. 

1. Using three applications of Boruvka phases interleaved with simplification of 
the contracted graphs, compute a graph G1 with at most n/8 vertices and let 
C be the set of edges contracted during the three phases. If G is empty then 
exit and return F = C. 

2. Let G2 = G1(P) be a randomly sampled subgraph of Glo where p = 1/2. 

3. Recursively applying Algorithm MST, compute the minimum spanning forest 
F2 of the graph G2 • 

4. Using a linear-time verification algorithm, identify the F2-heavy edges in G1 

and delete them to obtain a graph G3 • 

5. Recursively applying Algorithm MST, compute the minimum spanning forest 
F3 for the graph G3 • 

6. return forest F = C U F3 • 

We now prove that this algorithm has linear expected running time. In 
Problem 10.21 the reader is asked to show that it has the same worst-case 
running time as Boruvka's algorithm. 

Theorem 10.20: The expected running time of Algorithm MST is O(n + m). 

PROOF: Let T(n,m) be the expected running time of Algorithm MST on graphs 
with n vertices and m edges. Consider the cost of the various steps in this 
algorithm for such input graphs. 

Step 1 uses three applications of Boruvka's algorithm, which runs in O(n + m) 
time, and produces a graph G1 with at most n/8 vertices and m edges. Step 
2 performs a random sampling to produce the graph G2 = G1(1/2) with n/8 
vertices and an expected number of edges equal to m/2, and this also runs in 
O(n + m) time. Finding the minimum spanning forest of G2 has expected cost 
T(n/8, m/2), by induction and linearity of expectation. The verification in Step 
4 runs in time O(n + m) and produces a graph G3 with at most n/8 vertices 
and an expected number of edges at most n/4, by Lemma 10.19. Finding the 
minimum spanning forest of G3 in Step 5 has expected cost T (n/8, n/ 4). Finally, 
O(n) time suffices for Step 6. 
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Putting all this together, we obtain that 

T(n, m) < T(n/8, m/2) + T(n/8, n/4) + c(n + m), 

for some constant c. A solution to this recurrence is given by 2c(n+m), implying 
that the expected running time of the MST algorithm is O(n + m). 0 

Notes 

The various algorithms for all-pairs shortest paths mentioned above (Dijkstra [125], 
Floyd-Warshall [150, 413], and Johnson [215]) are discussed in detail in the books by 
Aho, Hopcroft, and Ullman [5], Cormen, Leiserson, and Rivest [114], and Tarjan [391]. 
The issue of matrix multiplication over closed semi rings or rings, and the applications to 
shortest path problems, is discussed in the book by Aho, Hopcroft, and Ullman [5] (see 
also Pan [322]). The best known algorithm for (unweighted) all-pairs shortest paths that 
does not resort to matrix multiplication is due to Feder and Motwani [140] and this runs 
in time O(n3 jlogn); it runs in O(nm) time for sparse graphs. The matrix multiplication 
algorithm running in time O(n2.376 ) is due to Coppersmith and Winograd [113]. The 
idea of using integer matrix multiplication for solving the all-pairs distances problem, 
using integer entries of super-logarithmic length, has been explored by Romani [359] 
and Yuval [421]. 

The results on the all-pairs shortest paths problem described here originated in the 
work of-Alon, Galil, and Margalit [21]. They show how to solve the APD problem in 

O(MM(n) log n) time for undirected graphs, and in 0 ( VMM(n)n3 10g3 n) time for directed 

graphs. These results generalize to integer edge weights of absolute value bounded 
by L while increasing the number of vertices by a factor of L with a concomitant 
increase in the running time. The randomized algorithm described here is an adaptation 
of an algorithm due to Seidel [370]; similar algorithms have been designed by Alon, 
GaUl, Margalit, and Naor [22], and Karger (see [370]). Alon, Galil, Margalit, and 
Naor [22] have also derandomized the BPWM . algorithm at the cost of an increase by 
polylogarithmic factors in the running time. 

~ Research Problem 10.1: Devise an algorithm for the all-pairs shortest paths 
problem that does not use matrix multiplication and runs in time O(n3- E

) for a 
positive constant E. 

~ Research Problem 10.2: Devise an algorithm for computing the diameter of 
an un weighted graph that does not use matrix mUltiplication and runs in time 
O(n3- E

) for a positive constant E. 

The early algorithms for finding min-cuts (or s-t min-cuts) relied on the duality to 
maximum flows in networks. The flow-cut duality was first observed by Elias, Feinstein, 
and Shannon [136], and Ford and Fulkerson [152, 223]. The observation that min-cuts 
could be computed by performing n - 1 maximum flow computations is due to Gomory 
and Hu [180]. It was shown that in the unweighted case the cost of the flow computations 
could be reduced to just O(nm) by Podderyugin [334], Karzanov and Timofeev [252], 
and Matula [299]. Later, Hao and Orlin [192] obtained essentially the same bounds 
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for the weighted case by showing that a min-cut could be computed in roughly the 
same time as a max-flow. Currently, the faster maximum flow algorithms all derive 
from the push-relabel algorithm of Goldberg and Tarjan [171]; their time bound of 
0(nmlog(n2/m») has been improved slightly by King, Rao, and Tarjan [256], and by 
Phillips and Westbrook [332]. 

The contraction algorithm is based on a deterministic algorithm for min-cuts with 
running time 0 (mn + n210g n) due to N agamochi and Ibaraki [318]. Algorithm Contract 
is due to Karger [231], and Algorithm FastCut is due to Karger and Stein [234]. The last 
two papers also gave fast parallel implementations of the randomized contraction-based 
algorithm, and Karger and Motwani [233] derandomized a variant of these algorithms 
to obtain a fast deterministic parallel algorithm for min-cuts (see also the Notes section 
of Chapter 12). 

~ Research Problem 10.3: Devise a Las Vegas or a deterministic algorithm for 
min-cuts with running time close to 0 (n2). 

~ Research Problem 10.4: Is there a randomized algorithm for min-cuts with 
expected running time close to O(m)? 

An excellent treatment of network optimization problems, including minimum span
ning trees, can be found in the books by Ahuja, Magnanti and Orlin [7] and by 
Tarjan [391]. The reader may refer to the survey article by Graham and Hell [181] for 
a history of developments concerning the minimum spanning tree problem up to 1985. 
Boruvka's algorithm [80] is perhaps the earliest complete description of an MST algo
rithm. The other classical algorithms are due to Kruskal [270] and Prim [337] .(see also 
Dijkstra [125]). The current best deterministic algorithm, requiring O(mlog p(m, n» time, 
is due to Gabow, Galil, and Spencer [160, 159]. Deterministic linear-time algorithms are 
known for more powerful models of computation that pennit bit-manipulation of the 
representation of the edge weights (see Fredman and Willard [154]). 

Tarjan [390] gave an efficient algorithm for MST verification that has running time 
O(m('t(m, n», where cc(m, n) is the inverse Ackerman function. The first linear-time ver
ification algorithm is due to Komlos [268] - this perfonns only O(m) edge weight 
comparisons, but requires super-linear time to choose the comparisons. The first com
pletely linear-time verification algorithm is due to Dixon, Rauch, and Tarjan [127], but 
this algorithm is complex and combines ideas from the previous verification algorithm 
with a table look-up strategy. A substantially simpler linear-time algorithm, based on 
the work of Komlos [268], has been devised by King [255]. The latter two algorithms 
have the desired features of being able to identify all F -heavy edges, as discussed above. 

The randomized linear-time MST algorithm is based on an approach due to 
Karger [229]; Karger originally proved only a super-linear running time bound for 
this algorithm, and the linear-time analysis is based on the work of Klein and Tar
jan [257]. A complete description of this algorithm and its analysis can be found in the 
article by Karger, Klein, and Tarjan [232]. 

~ Research Problem 10.5: Devise a simple randomized MST verification algorithm 
with expected running time O(n + m). 

303 



GRAPH ALGORITHMS 

~ Research Problem 10.6: Is there a deterministic MST algorithm with running 
time O(n + m)? 

Problems 

10.1 Suppose that the time required for Boolean matrix multiplication is BM(n). 
Show that the closure of a Boolean matrix can be computed in time O(BM(n)). 

10.2 Prove Lemma 10.1. 

10.3 Prove Lemma 10.2. 

10.4 Prove Lemma 10.3 

10.5 Prove Lemma 10.5. 

10.6 Modify the BPWM algorithm so as to obtain a high probability bound on its 
running time. 

10.7 Show that the product of AR and ~ can be computed in time 0((nlr)2MM(r)) 
by omitting the columns of AR and the rows of ~ corresponding to the 
indices not present in R, and then multiplying these n x rand r x n matrices 
jn blocks of r x r matrices. 

10.8 Suppose that MM(n) = O(n2+€) for some E > O. Show that it is possible to 
implement Algorithm BPWM such that its expected running time becomes 
O(MM(n) logn). Why does this not work for MM(n) = 0(n2)? (Hint: Use the 
idea suggested in Problem 10.7.) 

10.9 Let G (V, E) be a multigraph. Devise a data structure that processes any 
arbitrary sequence of edge contractions in G, such that at any given point 
where the set of edges contracted is F, the graph G IF is available in 
the adjacency matrix format. Furthermore, it should possible to efficiently 
determine for any edge in E IF the corresponding edge in E. Your data 
structure should require O(n) time per contraction and use a polynomial 
amount of space. Can you modify this to provide the adjacency list format 
for G IF using only O(m) space? 

Remark: Note that the time bound is independent of the number of edges. 
For this, the multigraph needs to be represented as a graph with integer 
edge weights that represent the multiplicities of the edges. You may assume 
that the number of edges in the multigraph is polynomial in n, although this 
is not strictly necessary. 

10.10 Given a multigraph G (V, E), show that an edge can be selected uniformly at 
random from E in time O(n), given access to a source of random bits. (See 
the remark in Problem 10.9.) 

10.11 Combining the solutions to Problems 10.9 and 10.10, prove Theorem 10.10. 
What is the space requirement for this implementation? 

10.12 Prove Lemma 10.15. 
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10.13 (Due to D.R. Karger [231].) For any a ~ 1, define an a-approximate cut in a 
multigraph G as any cut whose cardinality is within a multiplicative factor a 
of the cardinality of a min-cut in G. Determine the probability that a single 
iteration of the randomized algorithm for min-cuts will produce as output 
some a-approximate cut in G. 

10.14 (Due to D.R. Karger [231].) 
(a) Using the analysis of the randomized min-cut algorithm, show that the 
number of distinct min-cuts in a multigraph G cannot exceed n(n - 1)/2, 
where n is the number of vertices in G. 

(b) Formulate and prove a similar result for the number of a-approximate 
cuts in a multigraph G (see Problem 10.16). 

10.15 Consider the min-cut problem in weighted graphs. Describe how yo~ would 
generalize Algorithm Contract to this case. What is the running time and 
space requirement for your implementation? 

10.16 Suppose that the edges of a graph are presented in an arbitrary order, and 
the number of edges m is not known in advance. Using the idea for a greedy 
algorithm described in Section 10.3.2, devise an online MST algorithm that 
runs in time O(m logn). 

10.17 Show that Boruvka's algorithm can be implemented to run in time 
O( min{m log n, n2}). 

10.18 Show that the Algorithm MST has the same worst-case running time as 
Boruvka 's algorithm, i.e., O(min{mlogn,n2

}). 
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CHAPT ER 11 

Approximate Counting 

IN this chapter we apply randomization to hard counting problems. After 
defining the class #P, we present several #P-complete problems. We present 
a (randomized) polynomial time approximation scheme for the problem of 
counting the number of satisfying truth assignments for a DNF formula. The 
problem of approximate counting of perfect matchings in a bipartite graph is 
shown to be reducible to that of the uniform generation of perfect matchings. 
We describe a solution to the latter problem using the rapid mixing property of 
a suitably defined random walk, provided the input graph is sufficiently dense. 
We conclude with an overview of the estimation of the volume of a convex 
body. 

We say that a decision problem n is in NP if for any YEs-instance I of n, 
there exists a proof that I is a YEs-instance that can be verified in polynomial 
time. Equivalently, we can cast the decision problem as a language recognition 
problem, where the language consists of suitable encodings of all YEs-instances 
of n. A proof now certifies the membership in the language of an encoded 
instance of the problem. Usually the proof of membership corresponds to a 
"solution" to the search version of the decision problem n: for instance, if n 
were the problem of deciding whether a given graph is Hamiltonian, a possible 
proof of this for a Hamiltonian graph (YEs-instance) would be a Hamiltonian 
cycle in the graph. In the counting version of this problem, we wish to compute 
the number of proofs that an instance I is a YEs-instance. Thus we would be 
interested in how many Hamiltonian cycles, if any, the input graph contains. In 
Section 7.7.2 we encountered a counting version of the 3-SAT problem. 

An algorithm for a counting problem takes as input an instance I of the 
decision problem n, and produces as output a non-negative integer that is the 
number of solutions (or proofs) for the instance I. If n is in NP, then the 
maximum possible number of solutions is O(exp(p(n»), where n is the size of 
the input and p(n) is a polynomial. Thus the output of the counting algorithm 
is of length polynomial in the input size. A closely related class of problems is 
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that of listing the solutions rather than merely counting them. Our focus will be 
on the counting problems associated with NP decision problems. 

While counting problems are of interest for various purely theoretical reasons, 
they also arise naturally in a range of applications. One application of such 
counting problems stems from the study of network reliability problems: we 
are given an undirected graph, together with a probability of failure Pe for 
each edge e. We are interested in questions such as the following: what is the 
probability that the graph remains connected if each edge e fails independently 
with probability Pe? This provides the motivation behind the first problem we 
will study - the problem of counting the number of satisfying truth assignments 
for a Boolean formula in the disjunctive normal form (DNF) formula. A second 
application comes from statistical physics, and this motivates the second problem 
we study - counting the number of perfect matchings in a bipartite graph. 

Clearly, a counting problem is at least as hard as the corresponding decision 
problem. Thus the counting problem associated with an NP-complete decision 
problem is NP-hard. What about the counting problem associated with. decision 
problems in P? Consider for example the decision problem of verifying the 
connectivity of an input graph. This problem can be solved in polynomial time. 
A proof of connectivity corresponds to a spanning tree in the input graph. 
The associated counting problem can also be solved in polynomial time: by a 
classical result, the number of spanning trees in a graph equals the determinant 
of a matrix derived from the adjacency matrix of the graph. On the other hand, 
while the problem of deciding whether a graph has a perfect matching is in P, 
the associated counting problem is not believed to be in P. Interestingly, the 
number of perfect matchings in a bipartite graph equals the permanent of the 
matrix of adjacencies between the vertices on the two sides of the graph. While 
the determinant is easy to compute, computing the closely related permanent 
function is extremely difficult. There are other decision problems in P whose 
associated counting problems are not known to have polynomial time algorithms. 

The class of counting problems associated with NP decision problems is 
denoted by #P. Intuitively, the class #P consists of all counting problems 
associated with the decision problems in NP. Formally, a problem n belongs to 
#P if there is a non-deterministic polynomial time Turing machine that, for any 
instance I, has a number of accepting computations that is exactly equal to the 
number of distinct solutions to instance I. We say that n is #P-complete if for 
any problem n' in #P, n' can be reduced to n by a polynomial time Turing 
machine. 

While there are "easy" problems in #P such as counting spanning trees 
(where polynomial time algorithms are known), a large number of such counting 
problems appear to be intractable. Quite clearly, a #P-complete problem can be 
solved in polynomial time only if P = NP, implying that it is quite unlikely that 
we can efficiently solve such problems. In the face of this apparent intractability, 
it is natural to ask whether instead we can compute approximate solutions to 
such counting problems. Unfortunately, we do not know of a good deterministic 
approximation algorithms for any #P-complete problem. However, the situation 

307 



APPROXIMATE COUNTING 

changes appreciably if we permit ourselves the use of randomization in the 
approximation algorithm. The rest of this chapter is devoted to presenting such 
algorithms. 

11.1. Randomized Approximation Schemes 

We start by introducing the notion of an approximation scheme. Consider a 
problem n, and let #(1) denote the number of distinct solutions for an instance 
1 of n. For example, when n is the problem of testing for Hamiltonian cycles, 
for an input graph 1 we denote by #(1) the number of such cycles in the graph. 
An approximation algorithm A takes as input 1 and outputs an integer A(I), 
which is purported to be close to #(1). 

~ Definition 11.1: A polynomial approximation scheme (PAS) for a counting prob
lem n is a deterministic algorithm A that takes an input instance I and a real 
number e > 0, and in time polynomial in n = III produces an output A(I) such 
that 

(1 - e)#(1) S A(I) S (1 + e)#(I). 

A fully polynomial approximation scheme (FPAS) is a polynomial approximation 
scheme whose running time is polynomially bounded in both n and lie. 

The output A(I) is called an e-approximation to #(1). Suppose that e < 1. 
The length of the description of e only adds a factor of 9(log lie) to the size of 
the input, yet we allow the approximation algorithm A to run in time polynomial 
in lie. 

Exercl.e 11.1: Show that if we were to modify the definition of an approximation 
scheme to read "polynomial in n and log 1/e," the existence of such an approximation 
scheme for a #P-complete problem would imply that P = #P. 

Since only a multiplicative error is permitted in an e-approximation, it can 
be used to distinguish between the case #(1) = 0 and the case #(1) > 0, thereby 
implying a polynomial time algorithm for the decision version of the problem. 
Thus, such schemes can only be devised for counting problems whose decision 
versions are in P. Unless P = NP, it would be necessary to relax this definition 
(possibly by permitting some additive error also) to enable its applicability to 
counting versions of NP-complete problems. 

No deterministic approximation schemes are known for #P-complete prob
lems. However, randomized versions of such approximation schemes are known, 
and so we make the following definition. 
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~ Definition 11.2: A polynomial randomized approximation scheme (PRAS) for a 
counting problem n is a randomized algorithm A that takes an input instance I 
and a real number e > 0, and in time polynomial in n = III produces an output 
A(I) such that 

3 
Pr [(1 - e)#(I) S A(I) S (1 + e)#(I)] ~ 4' 

A fully polynomial randomized approximation scheme (FPRAS) is a polynomial 
randomized approximation scheme whose running time is polynomially bounded 
in both n and lie. 

The probability is taken over the random choices of the algorithm. Notice that 
when #(1) is not in the range [A(I)(l-e),A(I)(l +e)], an event that occurs with 
probability at most 1/4, we assume nothing about how far A(I) is from #(1). 
By an argument similar to that required in Exercise 11.1, modifying the running 
time requirement to "polynomial in n and log lie" would preclude a randomized 
approximation scheme for a #P-complete problem unless BPP = #P. 

Exercise 11.2: The quantity 3/4 for the success probability in the definition of a 
randomized approximation scheme is somewhat arbitrary; in fact, we could replace 
it by practically any value that exceeds 1/2 by a constant. Devise a "bootstrapping 
scheme" which, given any 6 E (0,1], invokes a randomized approximation scheme 
N times and outputs an integer 8(1) such that #(1) E [8(/)(1-e),8(/)(1 +e)] with 
probability at least 1 - 6, where N is polynomial in log 1/6. (Hint: Consider the 
median of the results of independent repetitions.) 

A randomized approximation scheme can be used to distinguish between the 
case #(1) = ° and the case #(1) > 0, thereby implying a randomized polynomial 
time algorithm for the decision version of the problem. Thus, such schemes 
can only be devised for counting problems whose decision versions are in BPP. 
Since it is unlikely that NP is contained in BPP, we do not expect to find such 
schemes for counting versions of NP-complete problems. 

~ Definition 11.3: An (e, <5)-FPRASfor a counting problem n is a fully polynomial 
randomized approximation scheme that takes an input instance I and computes 
an e-approximation to #(1) with probability at least 1 - <5 in time polynomial in 
n, lie, and log 1/<5. 

Approximate counting is an area in which randomization makes a dramatic 
difference in our ability to (approximately) solve problems. Indeed, there are 
problems (such as the volume estimation problem in Section 11.4) for which 
randomization results in efficient algorithms where no efficient deterministic 
algorithm is possible. In the sequel, we describe such schemes for some counting 
problems that are #P-complete. Observe that such approximation schemes are 
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Monte Carlo. (Why is it difficult to convert this into a Las Vegas approximation 
scheme?) 

11.2. The DNF Counting Problem 

Let F(Xh . .. , Xn) be a Boolean formula in disjunctive normal form (DNF) over 
the n Boolean variables X h ... ,Xn. In other words, F is a disjunction C1 V" 'VCrn 

of clauses Cj , where each clause Cj is a conjunction LI /\ ... /\ Lri of rj literals. 
Each literal L j is either a variable Xk or its negation Xk. We may assume that 
each variable occurs at most once in any given clause. 

The variables are to be assigned values in {O, I}, where 0 corresponds to FALSE 

and 1 corresponds to TRUE. A truth assignment a = (al, ... , an) is an assignment 
of value aj to the variable X j for each i. A truth assignment a is said to satisfy F 
if F(ah ... , an) evaluates to 1 or TRUE. We denote by #F the number of distinct 
satisfying assignments of a given formula F. Clearly, 0 < #F < 2n. 

The DNF counting problem is to compute the value of #F. This problem is 
known to be #P-complete and hence it is unlikely to have an exact polynomial 
time algorithm. We describe an (E,<5)-FPRAS for this problem. The input size is 
at most nm. We desire that the approximation scheme have a running time that 
is polyn9mial in n, m, liE, and log 1/<5. 

11.2.1. An Unsuccessful Attempt 

To understand the difficulty of finding an (E, <5)-FPRAS for the DNF counting 
problem, we formulate a more abstract problem. 

Let U be a finite set of known size, and let f : U -+ {O, I} be a Boolean 
function over U. We define the set G = {u E U I f(u) = I} as the pre-image 
of L Assume that given a particular u E U, f(u) can be computed quickly. 
Assume also that it is possible to sample uniformly at random from U. In our 
abstraction, both of these operations can be assumed to take unit time. The 
problem is to estimate the size of G. 

Thi~ formulation includes the DNF counting problem as a special case. Let 
U = {o,l}n be the set of all 2n truth assignments, and define f(a) = F(a) for 
each a E U. Now, the set G consists of all satisfying truth assignments for F. It 
is easy to verify that we can compute f and sample from U in polynomial time. 

An obvious randomized approach to estimating IGI is to use the classical 
Monte Carlo method. This involves choosing N independent samples from 
U, say Uh •.• , UN, and using the value of f on these samples to estimate the 
probability that a random choice will lie in G. More formally, define the random 
variables YI, ... , YN as follows: 

Yj = {I if f(uj).= 1 
o otherwIse. 

By this definition, Yj = 1 if and only if Uj E G. Finally, define the estimator 
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11.2 THE DNF COUNTING PROBLEM 

N 

Z =IVI2:
Yi 

. 
. 1 N .= 

It is easy to verify that E[Z] = 101 and we might hope that with high probability 
the value of Z is an e-approximation to IGI. Of course, the probability that the 
approximation is good depends upon the choice of N. The following theorem 
relates the value of N to e and (j. 

Theorem 11.1 (Estimator Theorem): Let p = IGI/IVI. Then the Monte Carlo 
method yields an e-approximation to I GI with probability at least 1 - (j provided 

4 2 
N > -2-ln~. 

ep u 

PROOF: Fix some e E (0,1] and (j E (0,1]. Notice that the random variables 
Yi have the Bernoulli distribution with parameter p. Define Y = E!l Yj, 
and observe that this has the binomial distribution with parameters Nand p. 
Moreover, the estimator Z = I VI YIN. By a straightforward application of the 
Chernoff bound (see Theorems 4.2 and 4.3), we obtain that 

Pr [(1- e)IGI !5; Z !5; (1 + e)IGI] 
- Pr[(1-e)Np<Y!5;(I+e)Np] 

~ I-F+(Np,e)-F-(Np,e) > 1-2e-N~/4. 

It is easy to see that for the given lower bound on N, the latter expression is 
bounded by 1 - (j. • 0 

At this point it may appear that we have the desired approximation scheme. 
But there is a flaw in this approach - it has a running time of at least N, where 
N > II p. First of all, we do not know the value of p; in fact, the problem 
is exactly that of estimating p. However, this problem could be circumvented 
by using a successively refined lower bound on p to determine the number of 
samples to be chosen. A more disturbing problem is that the running time is 
inversely proportional to p, and at least for the DNF counting problem this 
could be exponentially large. (Consider for example the case where F only has 
a polynomial number of satisfying truth assignments.) The following exercise 
shows that if we were to relax the requirement of obtaining an e-approximation 
relative to the size of G, and instead required only that the approximation have 
a small error with respect to I VI, then the sampling technique is indeed efficient. 

Exercise 11.3: Devise a randomized approximation scheme for the DNF counting 
problem that computes an estimator Z such that 

Pr [I :~: - ,~,I ~ E] ~ 6. 

The running time should be polynomial in n. m. 1/E. and log 1/6. 
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This problem is fundamental to this approach and not an artifact of the 
analysis, since the Chernoff bound gives a fairly tight estimate of the tail 
probability of a binomial distribution. Fortunately, there is a standard statistical 
technique called importance sampling for dealing with the following problem: if 
we sample uniformly from a large population to estimate the size of a small 
subset of the population, it is necessary that the number of samples be extremely 
large to ensure that the estimator is a good relative approximation. The idea is 
to modify the process from a uniform sampling of the population to a skewed 
sampling that concentrates the probability on the sUb-population of interest (the 
area of "importance"). We now apply this idea to our problem. 

11.2.2. The Coverage Algorithm 

We want to reduce the size of the sample space so as to ensure that the ratio p 
is relatively large, while ensuring that the set G is still completely represented. 
We start by formulating a slightly different abstract problem - the union of sets 
problem. This formulation captures the essential structure of the DNF counting 
problem, and has applications to several other problems in reliability. 

Let V be a finite universe. We are given m subsets HI. ... , Hm c V such that 
the following assumptions are valid. 

1. For all i, IHil is computable in polynomial time. 

2. It is possible to sample uniformly at random from any Hi. 

3. For all v E V, it can be determined in polynomial time whether v E Hi. 

The goal is to estimate the size of the union H = HI U'" U Hm. The brute-force 
approach to computing IHI is inefficient when the universe V and the sets Hi are 
of large cardinality. The inclusion-exclusion formula (Proposition C.1) is also 
extremely inefficient for large m, since it requires computing roughly 2m terms. 
However, the assumptions 1-3 turn out to be sufficient to enable the design of 
a Monte Carlo sampling algorithm that does not suffer from the drawbacks of 
the algorithm in Section 11.2.1. 

The' DNF counting problem can be cast as a special case of this union of 
sets problem, as follows. Consider a DNF formula F(XI , ... , Xn) and let the 
ith clause C i be a conjunction of ri literals. The universe V corresponds to the 
space of all 2n truth assignments, and a set Hi contains all the truth assignments 
that satisfy the clause Ci. Since the truth assignments in Hi all assign the same 
values to variables appearing in Ci and are otherwise unconstrained, it is easy 
to see that IHd = 2n

-
rj

• The same observation implies that it is easy to sample 
from Hi by assigning the appropriate values to variables appearing in Ci, and 
choosing the rest at random. Further, verifying that some v E V is a member of 
Hi is equivalent to testing whether a truth assignment satisfies a specific clause, 
and linear time suffices for this operation. Finally, H = HI U ... U Hm is the set 
of all truth assignments that satisfy at least one clause of F, and hence F itself. 
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We now present a solution to the union of sets problem, and by the preceding 
argument this will solve the DNF counting problem as a special case. 

We define a multiset V = HI I±J ••• I±J Hm as the multiset union of the sets HI, 
... , Hm. Recall that the multiset union contains as many copies of v E V as the 
number of H/s that contain that v. We adopt the convention that the elements 
of V are ordered pairs of the form (v, i), corresponding to v E Hi; in other 
words, 

V = {(v, i) I v E Hd. 

Observe that I VI = Ej...1 IHd > IHI· 
For all v E H, the coverage set of v is defined by 

COV(v) = {(v, i) I (v, i) E V}. 

The size of the coverage set is exactly the number of H/s containing v, or the 
multiplicity of v in the multiset version of V. (In the DNF problem, for a truth 
assignment a, the set cov(a) is the set of clauses satisfied by a.) The following 
observations are immediate. 

1. The number of coverage sets is exactly IHI, and these coverage sets are easy to 
compute. 

2. The coverage sets partition U, i.e., U = UVEHCOV(V). 

3. lUI is easily computed as lUI = EVEH Icov(v)l· 

4. For all v E H, Icov(v)1 ~ m. 

The following definition isolates a canonical element in each coverage set. 

• Definition 11.4: The function f : U - {O, I} is defined as follows. 

f«v,i)) = { 1 if i = ~in{j I v E Hj } 
o otherwIse. 

Also, the set G is defined as the inverse image of 1 under f. 

G = {(v,j) E U I f«v,i» = I}. 

Define the canonical element for a coverage set of v as the element that cor
responds to the occurrence of v in the lowest-numbered H j containing v. The 
function / evaluates to 1 only on the canonical element of each coverage set. 
The set G is merely the set of the canonical elements. 

The crucial observation is that IGI = IHI. This is because the number of 
coverage sets is IHI, and each coverage set contributes exactly one canonical 
element to G. Our goal then is to estimate the size of G c V such that 
G = /-1(1). This is exactly the setting in which we applied Theorem 11.1 based 
on the naive Monte Carlo sampling technique. We claim that the naive Monte 
Carlo sampling algorithm gives an (e, <5)-FPRAS for estimating the size of G. 
The claim follows from the following lemma. 
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Lemma 11.2: In the union of sets problem. 

IGI 1 
P=IVI>m' 

PROOF: The proof relies on the observations made above. 

IVI - 2: ICQv(v) I 
veH 

< 2: m 
veH 

< mlHI =mlGI 

The lemma follows. 0 

The following theorem shows that the Monte Carlo sampling technique gives 
as (e,<5)-FPRAS for IGI, and hence also for IHI. 

Theorem 11.3: The Monte Carlo method yields an e-approximation to IGI with 
probability at least 1 - <5 provided 

4m 2 
N > ~ln~. 

The runrling time is polynomial in N. 

PROOF: The sampling procedure and the analysis are exactly as in the Theo
rem 11.1. We merely have to show that f can be computed in polynomial time 
and that it is possible to sample uniformly from V. 

To compute f «v, i)) we check whether the truth assignment v satisfies Ci but 
none of the clauses Cj for j < i. Sampling an element (v, i) uniformly from V is 
performed in two stages. First, choose i such that 1 < i < m and 

IHd IHd 
Pr[11 = Wi = 2::1 IHil' 

Then an element v E Hi is chosen uniformly at random. It is easy to verify that 
the resulting pair (v, i) is uniform over V. 0 

Notice that the lemma implies a polynomial bound on the running time. 
Why did this new sampling process give the desired result? Our original 

problem was to estimate IHI, the set of all satisfying truth assignments. Sampling 
uniformly from V, the space of all truth assignments, failed because V's size could 
be super-polynomially larger than the size of H. In the redesigned sampling 
process, we chose a random satisfying truth assignment for a randomly chosen 
clause. Each truth assignment could then be chosen in a number of ways 
proportional to the number of clauses it satisfies. In effect, this is a non
uniform sample from the set of all satisfying truth assignments. Since each truth 
assignment can be selected by at most m different clauses, and only one of these 
corresponds to a "success," we obtain the desired estimation. 
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Exercise 11.4: Specialize the new sampling procedure to the DNF counting problem 
and determine the running time of the (E,6)-FPRAS in terms of n. m. E. and 6. 

11.3. Approximating the Permanent 

We turn to the problem of counting the number of perfect matchings in a 
bipartite graph. The input to this problem is a bipartite graph G(U, V,E) with 
independent sets of vertices U = {ut, ... ,un } and V = {vt, .. . ,vn }. Recall that a 
matching is a collection of edges M c E such that each vertex occurs at most 
once in M. A perfect matching is a matching of size n. The associated decision 
problem (determining whether the graph has at least one perfect matching) is 
in P. The problem of counting the number of perfect matchings in a given 
bipartite graph is #P-complete. The problem is particularly interesting because 
it is equivalent to computing the permanent of a 0-1 matrix. This is a classical 
#P-complete problem with applications to statistical physics. 

In Chapter 7 we noted the connection between perfect matchings and the 
determinant of a matrix derived from the adjacency matrix of G. This was based 
on a correspondence between perfect matchings in G and the permutations in 
Sn: the perfect matching corresponding to a permutation 1r: E Sn is given by the 
edges (uj, Vlt(ij), for 1 < i < n. We now relate the number of perfect matchings in 
G to the permanent of such a matrix . 

• Definition 11.5: Let Q = (Qij) be an n x n matrix. The permanent of the matrix 
is defined as 

n 

per(Q) = L II Qi,lt(ij, (11.1) 
ltES. i-I 

where Sn is the symmetric group of permutations of size n. 

Notice the similarity of this definition to that of the determinant of the matrix 
- the only difference is that in the determinant, we include the sign of the 
permutation 'It with each term of the sum. 

Given a bipartite graph G, we define a 0-1 matrix A(G) with one row for 
each vertex of U, and one column for each vertex of V. Let Aij = 1 if there 
is an edge in the graph joining Ui to Vb and 0 otherwise. It is well-known that 
the determinant of A can be computed in polynomial time. In comparison, the 
best-known method for computing the permanent runs in time O(n2n). It is not 
hard to show that per(A) is equal to the number of perfect matchings in G. 

Exercise 11.5: Let #(G) denote the number of perfect matchings in the bipartite 
graph G. Show that #(G) = per (A(G)). 
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Thus, computing the permanent of a 0-1 matrix is #P-complete. Given 
the apparent intractability of computing the number of perfect matchings in 
a bipartite graph, there has been considerable interest in approximating this 
quantity. Currently, we know only of randomized approximation algorithms 
for this problem. The scheme we study gives an (e, <5)-FPRAS, but only if the 
input graph has a minimum degree at least n12. This is still an interesting 
problem; it can be shown that computing the number of perfect matchings 
remains #P-complete even in this special case. In the Notes section we mention 
alternative schemes that work for all possible inputs, but have the disadvantage 
of requiring exponential time. 

We will show that estimating the number of p&rfect matchings in a bipartite 
graph can be reduced to sampling uniformly at random from all the perfect 
matchings in the graph. It is not the case that the problem of random generation 
is substantially easier than the original counting problem. However, it suffices to 
generate a perfect matching almost uniformly from all the perfect matchings in 
the graph (we will make this notion precise in a moment), and almost uniform 
generation can in turn be achieved by simulating a certain random walk on a 
Markov chain derived from the input graph G (this is not the same as a random 
walk on G). 

11.3.1. Reduction to Uniform Generation 

We show that the approximation of a 0-1 permanent can be reduced to the 
problem of sampling uniformly at random from all the perfect matchings in a 
bipartite graph. Let Mk denote the set of distinct matchings of size k in G, and 
define mk = IMkl; thus we seek to estimate mn = IMnl. A uniform generator for 
Mk is a randomized polynomial time algorithm Uk that takes G as input and 
returns a matching m E Mk such that m is uniformly distributed over Mk. 

We claim that a uniform generator Uk can be used to get an (e,<5)-FPRAS 
for mk. The idea is to use randomized self-reducibility - this is a randomized 
reduction of a problem of size i to the same problem with size i-I. Given 
the graph G, for any edge e = (u, v) define the following quantities: me is the 
number of matchings in Mk that contain the edge e; and mne is the number of 
matchings in Mk that do not contain e. Clearly, mk = me + mne' 

Assume for the moment that the ratio r == mnelmk is not minuscule, say at 
least lin. We can then use the basic Monte Carlo sampling idea of Section 11.2.1 
to obtain an estimator r as follows: use Uk to choose a suitably large (but poly
nomially bounded) number of random matchings from M k , and let the estimator 
r be the fraction of these matchings that do not contain e. Theorem 11.1 can 
now be used to show that this is an (e,<5)-FPRAS. 

The next step is to obtain an e-approximation mne to mne. Consider the graph 
H obtained by removing the edge e from G. The number of edges in H is one 
smaller than in G, and the number of matchings of size k in H is exactly mne' 
Thus we can recursively estimate the number of k-matchings in H to obtain an 
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e-approximation mrw• Then the ratio mk = mrwrr is a good approximator for mk. 
The missing details of the analysis are left as an exercise. 

Exercise 11.6: A problem with the recursive estimation scheme is that both the error 
in the approximation and the probability of failure add up over the various stages of 
recursion. This problem can be handled by requiring an {e/N, 6/N)-FPRAS at each 
stage of the recursion, where N is an upper bound on the number of such stages. 
More importantly, we assumed that r ~ 1/n, and this is not true in general. However, 
it is not hard to show by the pigeonhole principle that there exists a choice of the 
edge 8 for which this assumption is valid. {This requires the assumption that the 
number of edges exceeds k, since otherwise a graph containing only the edges of a 
matching of size k is a counterexample. Therefore this problem can be handled by 
repeating the overall algorithm for all choices of 8 and using the various outputs to 
determine the correct choice of 8. 

Using these hints, obtain a complete description of the sampling algorithm and prove 
that it is an {e,6)-FPRAS. 

Theorem 11.4: Given a uniform generator Uk. there exists an (e,t5)-FPRAS for 

IMkl· 

As we remarked earlier, it does not appear that the problem of uniform 
generation is any easier than the original counting problem. However, it is 
intuitively clear that even a near-uniform generation of matchings would suffice, 
although it may contribute to the error in the approximation. We now give a 
formal definition of a near-uniform generator . 

• Definition 11.6: Given a sample space 0, a generator U is said to be a near
uniform generator for 0 with error p if, for all co E n, 

IPr [U = co] - 1/1011 
1/101 < p. 

A uniform generator has p = o. 

Unfortunately, even a near-uniform generator for Mk is hard to construct. 
However, as we will show in the next section, for some classes of graphs it is 
possible to obtain a near-uniform generator for Mk U Mk-l. We now modify 
the preceding reduction to show how approximate counting can be achieved 
using the new type of near-uniform generator. From here on, Uk will denote a 
near-uniform generator for Mk U Mk- 1• 

Our goal will be to estimate the ratios rk = mk/mk-l, for 1 < k < n. (We define 
rl = mh and this is just the number of edges in the input graph.) Clearly, the 
product of these ratios gives an estimator for mn• If we had a uniform generator 
for Mk U Mk-h then we could be use it to estimate the ratio rk by taking a large 
number of random samples from Mk U Mk-l and using as the estimator the ratio 
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of the number of elements of Mk to the number of elements of Mk-l observed 
in the samples. The following exercise gives us a sense of the number of samples 
needed to get a good approximation when we actually have a uniform generator 
for Mk U Mk- 1• 

Exercise 11.7: let a ~ 1 be a real number such that 1ja :s; rk :s; a. Take N = n7a 
samples uniformly at random from Mk U Mk- 1. let'k be the ratio observed in the 
sample of the number of elements of Mk to the number of elements of Mk- 1. Using 
an argument similar to that used in the Theorem 11.1 of Section 11.2.1, show that 
(1 -1jn3)rk :S;'k :s; (1 + 1jn3)rk with probability at least 1 - c-n for a constant c > 1. 

The number of samples needed grows polynomially with (x. We must show 
that (X is relatively small, but let us defer this issue for the moment. The next 
exercise shows the effect on the error when we multiply the estimators of rk to 
obtain an estimator for mn• 

Exercise 11.8: Use the results of Exercise 11.7 to show that if we could sample 
MkUMk- 1 uniformly at random for all k, we have a procedure that, with high probability, 
gives an estimate for mn that lies in the interval [mn(1 - 1 jn2), mn(1 + 1 jn2)]. 

Argue that the same idea leads to an (E",6)-FPRAS for mn provided a is bounded 
above by a polynomial in n. 

It is not very hard to show that we do not need to sample MkuMk-l uniformly 
at random; it suffices to sample almost uniformly at random. 

Exercise 11.9: Suppose a :s; n2 , and further assume that we have a near-uniform 
generator Uk for Mk U Mk- 1 with error p :s; 1jn4. Show that. by extending the ideas of 
Exercises 11.7 and 11.8. we have an (e,6)-FPRAS for Mn. 

We deal with the issue of devising an appropriate near-uniform generator in 
Section'I1.3.2. We conclude this section by showing how to obtain a guarantee 
that Cl < n2 ; this is exactly the reason we need to assume that the graph has 
minimum degree at least n12. 

Theorem 11.5: Let G be a bipartite graph with minimum degree at least n12. 
Then, for all k, I/n2 < rk < n2. 

PROOF: We first prove the upper bound. Let each matching of size k choose 
one of its subsets of size k - 1 as a canonical subset. At most (n - k + 1)2 < n2 

matchings in Mk can choose any matching in Mk- 1 as a canonical matching. 
This implies that mk < n2mk_l, or that rk < n2. 

Let m c E be any matching in the graph G of size at most n - 1. An 
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augmenting path p ~ E is a path in G between two unmatched vertices such 
that the edges along the path are alternately in m and E \ m. It is easy to see 
that the symmetric difference of p ·and m gives a matching of cardinality Iml + 1. 

We claim that in graphs with minimum degree at least n12, every matching 
in Mk-l has an augmenting path of length at most 3. Fix any matching 
m E M k- h and consider any pair of unmatched vertices u E U and v E V. The 
neighborhood sets of these vertices, r(u) c V and r(v) c U, are each of size at 
least n12. If any vertex in r(u) is unmatched in m, then we have an augmenting 
path of length 1 from u to that vertex. Thus, we can assume that each vertex 
in r(u), and" similarly in r(v), is matched under m. But then, since lr(u)1 and 
lr(v)1 > nl2 and Iml < n - 1, it must be the case that some vertex a E r(u) and 
some vertex bE r(v) are matched to each other. It follows that (u,a), (a, b), and 
(b, v) form an augmenting path of length 3. . 

Fix any matching m E M k• We claim that there are at most n2 matchings 
m' E Mk- I that can be augmented to m via augmenting paths of length at most 
3. The matchings m' that can be augmented into m by length 1 paths are subsets 
of m, and there are at most k such subsets for any m. Moreover, any length 3 
augmenting path for m' will determine a unique pair of edges in m, namely the 
edges that comprise m \ m'. The number of such pairs of edges is k(k - 1)/2 
and each pair can participate in at most 2 augmenting paths of length 3. Since 
each m' E Mk-l has at least one augmenting path of length no more than 3, we 
obtain that no m E Mk can be the result of more than k + k(k - 1) < n2 such 
augmentations. It follows that mk-l ::s; n2mk. or that rk ~ I/n2. 0 

11.3.2. Near-Uniform Generation of Matcbings 

From here on, we fix a bipartite graph G with minimum degree at least n12. We 
are now down to finding a near-uniform generator for Mk U Mk- 1 that has error 
p < I/n4

• For this, we will devise a Markov chain Ck, each of whose states is an 
element of Mk U Mk-h in such a way that the stationary probability of each state 
is equal to I/lMk UMk-ti. Consider now a simulation of this Markov chain for 't' 
steps, starting at an arbitrary state obtained by constructing a matching of size 
k in G using any polynomial time algorithm for matching. Our goal is to show 
that for a value of 't' that is not too large, the Markov chain will approach its 
stationary distribution, thereby yielding a near-uniform sample from Mk U Mk- 1• 

This simulation of Ck can be thought of as executing a "random walk" on a 
graph in which each vertex corresponds to an element of Mk uMk- 1 (we have yet 
to describe the edges of this graph). If we were to begin this random walk in the 
stationary distribution, we would remain in the stationary distribution, so that 
at the end of't' steps we would be at an element of Mk U Mk- 1 chosen uniformly 
at random. However, we start at a certain fixed element of Mk U Mk-h so that 
the probability distribution of our position at the end of this random walk of't' 
steps is not guaranteed to be uniform on the elements of Mk U Mk- 1• Instead, 
we will show that it is almost uniform on the elements of Mk U Mk-h regardless 
of which element of Mk U Mk- 1 we start at. To do this, we will demonstrate that 
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the underlying graph of the Markov chain Ck resembles an expander, and so by 
the rapid mixing property of random walks on expanders we obtain the desired 
rate of convergence to the stationary distribution. Since the number of states in 
Ck may be exponential in n, it is essential that 't' be logarithmic in the number 
of states. This is reminiscent of the random walk on an expander we have seen 
in Chapter 6. 

We first describe the structure of Ck, the edges in the underlying graph, and 
the corresponding transition probabilities. It is important to keep in mind the 
distinction between the input graph G and the graph underlying Ck on which 
we perform the random walk. In particular, Ck could have size exponential in 
n. However, in the course of executing the algorithm, we will not store the 
entire Markov chain Ck explicitly. We only generate representations of those 
states (matchings of size k or k - 1) that are visited during an execution of the 
algorithm, and this will remain polynomial in n. Below, we will describe Cm the 
Markov chain used for estimating IMnl/IMn-ll; the modifications for k < n are 
obvious. 

Let E denote the set of edges in G. Let A denote a subset of E, and e be an 
edge in E. Let A + e and A - e denote the sets Au {e} and A \ e, respectively. 
Armed with this notation, we are now ready to describe the transitions and 
transition probabilities in Cn. 

In any state m of Cn, the transitions and transition probabilities are defined as 
follows. With probability 1/2, we remain at the state and do nothing; recall from 
Chapter 6 that this ensures the aperiodicity of Cn. Otherwise (with probability 
1/2), we choose an edge e = (u, v) of E uniformly at random and then select the 
appropriate case from the following. 

Reduce: if mE Mn and e E m, move to state (matching) m' = m - e; 
Augment: if mE M n- h with u and v unmatched in m, move to m' = m + e; 
Rotate: if m E M n- h with u matched to wand v unmatched in m, move to 

m' = (m + e) - f, where f is the edge (u, w) (there is a symmetrical case 
in which v is matched to w, and we make the corresponding move); 

Idle: otherwise, stay at current state. 

Figure 11.1 gives an example of C2 when the input graph is the complete 
bipartite graph K2,2 with I VI = I VI = 2. Each state is represented by a large 
circle, with the corresponding matching (of size 2 or 1) drawn inside the circle. 
The possible transitions between the states are also drawn, with all edges shown 
having transition probability 1/8. In addition (not shown), there is a "self-loop" 
from each state to itself. It is instructive to go through Figure 11.1 identifying the 
edge of K2,2 (the input graph) corresponding to each transition of the Markov 
chain in the figure. 

In general, each transition of this Markov chain has an associated probability 
of 1/(2IEI), and the remaining probability mass is placed on the self-loops. 
Because of the Idle move, the self-loop at any state may have some additional 
probability over 1/2 (as in the example of Figure 11.1). Notice also that if a 
transition exists from a state m to m', then the reverse transition also exists and 
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Figure 11.1: An example of C2 for G == K2.2' 

has the same probability. Thus, the underlying graph can be viewed as being 
undirected, a property that we have already observed to be essential for the 
convergence of the random walk to the stationary distribution. 

We now introduce some terminology for showing that the simulation of en 
leads to a state that is almost random in 't' steps. Let 1t denote the stationary 
distribution for en. Let Xc denote the state of en after t steps of simulation, with 
Xo being the state we start in. Let P = (Pij] denote the transition probability 
matrix of en, with Pij being the probability of the transition i ~ j. Note that 
if the transition i ~ j exists, and i =1= j, then Pij = 1/(2IEI); further, each 
Pii > 1/2 since there are at most lEI transitions out of any state in en. Denote 
the probability that Xc = j given that Xo = i by pW, recalling (Chapter 6) that 
. . fi (p(C)] pc In matnx orm, ij = . 

Theorem 11.6: The Markov chain en is ergodic and its stationary distribution is 
uniform on Mn U M n- 1• 

PROOF: The irreducibility follows from the observation that we can go from 
any matching in a graph to any other matching via a suitable sequence of 
augmentations, reductions, and rotations. Since the self-loop probabilities are 
all positive, it also follows that the Markov chain is aperiodic. This implies the 
ergodicity of en. 

The matrix P is symmetric and therefore doubly stochastic. We have already 
seen in Chapter 6 that the stationary distribution for a Markov chain with 
a doubly stochastic transition matrix must be the uniform distribution on its 
states. 0 
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Exercise 11.10: Let S1, S2, S3, and S4 be any four states of Cn. Show that under the 
stationary distribution, the probability of making the transition S1 - S2 is equal to the 
probability of the transition S3 - S4. 

It remains to be shown that if we were to start from an arbitrary state, our 
position at the end of a 't'-step simulation of Cn would be distributed almost 
uniformly over all the states. If we can show this to be the case with 't' bounded 
above by a polynomial in n, then we are done. We will show that, regardless of 
the starting state Xo = i, the probability distribution of X t given by the vector 
(p~;» resembles the stationary distribution n. 

To make this precise, we use the notion of relative pointwise distance from 
Chapter 6: 

I (t) -1t·1 
A( ) Pij ] 

L.1 t = max --"---
i,j 1tj 

The idea is to show that ~(t) diminishes rapidly, so that in a sense we quickly lose 
any memory of the state in which the Markov chain was started. In particular, 
we would like ~('t') reduced below l/n4 , for't' polynomial in n. 

Let Al > A2 > ... AN be the eigenvalues of P, where N = IMn u Mn-II is the 
number of states in Cn; clearly, Al = 1 since the matrix P is doubly stochastic 
(see Sec\ion 6.7). The following is a consequence of a refinement of Theorem 6.21 
described in Problem 11.7. 

Theorem 11.7: ~(t) < .A~ = A~N. 
mmj 1tj 

Theorem 11.7 tells us that the rate at which the relative pointwise distance 
diminishes depends on how far A2 is separated from 1. By Proposition B.3, we 
have 

since A2 is bounded away from 1. Choosing 't' to be (4Inn)(lnN)/(I-A2), we 
will have ~('t') ~ l/n4 as desired; note that InN is O(n2). If we can now show 
that 1/(1 - A2) is bounded above by a polynomial in n, we will be done. 

Obtaining such a bound on 1/(1 - A2) is not an easy matter. To this end, 
we introduce the concept of the conductance of a Markov chain. Let wij = 1tiPij 
denote the stationary probability of the transition i ~ j. The reader may verify 
that since P is doubly stochastic, we have wij = Wji, i.e., the Markov chain is 
time reversible (see Problem 11.7) . 

• Definition 11.7: Let S be a subset of the set of states of Cn such that 0 eSc 
Mn U Mn-I. and S is its complement. 

• The capacity of S is defined as Cs = EiES 1ti. 

• The ergodic flow out of S is defined as Fs = EiES,jES wij . 

• The conductance of S is defined as <I>s = Fs /Cs. 
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The following facts are obvious: 0 < Fs < Cs < 1, Fs = Fs, and <l>s < 1. 
Intuitively, the capacity of S is the probability that the Markov chain is in a 

state of S, the ergodic flow out of S is the probability that it will leave S, and the 
conductance of S is the probability that it will leave S conditional upon being 
inside S. Thus, a high conductance would suggest that the Markov chain will 
not get stuck inside S. If all sets S have high conductances, then the Markov 
chain will be rapidly mixing . 

• Definition 11.8: The conductance of a Markov chain with state space Q is defined 
as 

<I> = min <I>s. 
0c:Sc:Q,CsSl/2 

By the preceding discussion, there should be a relation between the con
ductance and the second eigenvalue of a Markov chain, since both are closely 
related to the rapid mixing property. The following lemma provides this rela
tionship; Theorems 6.16, 6.17, and 6.19 provide some intuition on why such a 
result should hold. 

Going back through our chain of reasoning, it now suffices to prove that 
1/<1> (and therefore 2/<1>2) is bounded above by a polynomial in n. The proof is 
based on the so-called canonical path argument, which is described in detail in 
Section 11.3.3. 

11.3.3. The Canonical Path Argument 

This section is devoted to the proof of the following theorem. 

Theorem 11.9: For the Markov chain en. <I> > 1/12n6• 

The proof proceeds along the following lines. Let H be the graph underlying 
en. By Exercise 11.10, the transition probabilities along all the oriented edges 
of H are all exactly 1/(2IEI), where E is the set of edges in G. We bound the 
conductance of en from below by showing that for any subset S of the vertices 
of H with Cs < 1/2, the number of edges between Sand S is large. To this end, 
we first specify a canonical path between every pair of vertices of H, such that 
no oriented edge of H occurs in more than bN of these paths. For a subset S 
of the vertices of H, the number of such canonical paths crossing the cut from 
StoSis 

ISI(N -lSI) ~ ISIN /2, 

since we assume that lSI < N /2. Since at most bN paths pass through each of 
the edges between Sand S, the number of such edges must be at least ISI/2b, 
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SO that the conductance of en is at least 1/(4bIEI) > 1/(4bn2 ). In the rest of this 
section we define a collection of canonical paths for which the value of b is 3n4, 
implying the desired lower bound of 1/ 12n6 on the conductance. 

We start by specifying canonical paths for all possible pairs of nodes in the 
graph H. Recall that although H is a directed graph, we can view it as an 
undirected graph since for every oriented edge there is an edge in the reverse 
direction. Further, H is strongly connected. 

We associate a unique node (called the partner) S E Mn with every node 
s E Mn U Mn-l and choose a canonical path between sand s. If s is in Mn, then 
we set s = s (and the path between sand s is empty). Then, we specify canonical 
paths between all pairs of nodes in Mn. In general, the canonical path between 
nodes s, t E Mn U Mn- 1 consists of three consecutive segments: the path between 
sand s, the path between sand t, and the path between t and t. We now have to 
specify two different types of paths: type A paths between a node s E M n- 1 UMn 
and its partner s E Mn; and type B paths between pairs of nodes in Mn. 

Specifying type A paths is relatively easy, and is handled in three cases. 
Consider any node s E Mn U Mn- 1• The first case is when s is in Mn, and here 
we use the empty path since s = s. The second case is when s is in Mn- 1 and 
there exists an augmenting path of length 1 for s. In other words, the input 
graph G has an edge e such that s + {e} is a perfect matching. In this case we 
set s = s + {e}, and it is easy to verify that there is a path of length 1 between 
sand s "in H (using an Augment transition). Finally, the third case is when s 
is in Mn- 1 but it has no direct augmentation into a perfect matching. But we 
have already seen in the proof of Theorem 11.5 that in G every near-perfect 
matching has an augmenting path of length at most 3. Thus, we now have a 
path of length 2 from s to some (possibly more than one) perfect matching in 
H, where this path first uses a Rotate transition and then an Augment transition 
(see Figure 11.2). Pick any such perfect matching s; the path between sand sis 
then uniquely specified. 

The type A paths are now completely specified. We now state a useful 
property of these paths. Let m be any matching in Mn. and define the set K(m) 
to be the set of all nodes s E Mn U Mn- 1 such that s = m and s =1= m. 

Lemma 11.10: For any m E Mn. IK(m)1 < n2. 

PROOF: The only perfect matching that chooses m as its partner is m itself. We 
further claim that at most n + n(n -1) near-perfect matchings can use m as their 
partner. To see this, consider any s E Mn- 1 such that s = m. Clearly, s must be 
within distance 2 of m in the graph H. Any near-perfect matching adjacent to m 
must be connected to m by a Reduce transition, and there are n such transitions 
incident on m in H. The number of near-perfect matchings at distance exactly 
2 from m is at most n(n - 1), since these matchings must contain exactly n - 2 
edges of m and one other edge not in m. Thus, there are at most n + n(n - 1) 
different near-perfect matchings within distance two of m, and this yields the 
desired bound on K(m). 0 
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s 

• • 
• • 

augmenting 
.... ...... ~ path 

...... < ......--................. 

Figure 11.2: Type A path determined by augmenting paths of length 3. 

We now specify the type B paths. Fix any two perfect matchings s, t E Mn. 
Let d = s $ t denote the symmetric difference of the edges in these two perfect 
matchings. It is easy to verify that the edges in d decompose into a collection 
of disjoint, even-length, alternating cycles, each of length at least 4, such that the 
edges in any such cycle are alternately from sand t. 

Assume that the set of even cycles in the graph G is totally ordered, and 
that a specific vertex in each of these cycles is designated as the start vertex. 
One way to do this is to designate the lowest-numbered vertex in each cycle as 
its start vertex, and to order the cycles based on the lexicographic ordering on 
the sequence of vertices visited in the cycles starting with the designated start 
vertex and moving in the direction of its lowest-numbered neighbor. The reader 
should keep in mind that the entire notion of canonical path is an artifact 
of the analysis, and none of this has to be computed by the algorithm under 
consideration. 

Our goal now is to specify a canonical path from s to t. Let C}, ... , Cr be 
the ordered list of cycles in the symmetric difference d. We first show that it 
is possible to transform s into t by performing local changes referred to as the 
unwinding of the cycles in d, one by one in the specified order of the cycles. 
These local changes can then be seen to correspond to transitions along edges 
of H, thereby yielding a path in H from s to t. 

The unwinding of a cycle Ck corresponds to traversing the cycle, starting at 
the designated start vertex, successively removing the edges of Ck that belong 
to s and adding the edges that belong to t (see Figure 11.3). The unwinding 
of each cycle contains precisely onc Reduce transition (at the start) and one 
Augment transition (at the end). Clcarly, if we start with the perfect matching 
s and unwind all the cycles in d, the result is the perfect matching t (see 
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Figure 11.4). We leave it as an easy exercise to verify that each step of this 
sequential unwinding process corresponds precisely to a transition along an edge 
in the graph H, thereby giving us a unique specification of the type B paths. 

edgeofs 

edge oft 

Alternating Cycle <i 0 ..... -- stan venex 

Figure 11.3: Unwinding a single cycle. 

Putting all this together gives the desired set of unique canonical paths for 
all pairs of vertices in H. The following lemma provides the promised bound on 
the number of canonical paths that contain a specific transition. 

Lemma 11.11: Any transition T in H lies on at most 3n4 N distinct canonical 
paths. 

PROOF: Fix any transition T = (u, v) in the graph H. Now, T can lie on a 
canonical path from s to t either in the two type A segments, or in the type 
B segment in the middle. Consider first the case where T lies on the type A 
segment from s to s. This path consists of at most two transitions. Verify that 
if T lies on this path then v c s. But for any given v E Mn U Mn-" there is at 
most one perfect matching that contains v as a subset, and in fact this perfect 
matching is v. If T lies on the first type A segment of the canonical path from 
s to t, then s = v. It follows that s must be in the set K(V). Similarly, if T lies 
on the second type A segment of the canonical path from t to t, then t E K(U). 
Thus, the total number of pairs sand t such that the transition T lies on the 
type A segments of their canonical path is bounded by (lK(v)1 + IK(u)l)N ~ 2n2N 
(by Lemma 11.10). 
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......-..... ......-..... 

u 

after transition T 

/ '- / '-
......-..... 

I I cycleC I cycle C2 cycle c) 

'- / • • 
......-..... ......-..... 

v 

after several transitions 

/ '- / '- / '-cycle C 1 cycle C2 cycle c) t 

'- / '- / '- / 
Figure 11.4: Unwinding a collection of cycles. 

We now bound the number of canonical paths that contain T in their middle 
segment of type B. Define the set CP(T) as the set of all pairs of perfect 
matchings whose canonical path contains the transition T. If T lies on the 
type B segment of a canonical path from s to t, then it lies on the canonical 
path from s to t. Since K(S) and K(t) contain at most n2 elements each, we 
find that the number of canonical paths whose type B segments contain T 
is at most n2 x ICP(T)I x n2 = n4 ICP(T)I. We now show that ICP(T)I is at 
most N, implying the desired result that the transition T can lie on at most 
2n2 N + n4 N < 3n4 N canonical paths. 

It remains to be shown that ICP(T)I < N. We will make use of the following 
encoding mechanism. For each pair of perfect matchings sand t that lie in 
CP(T), we define an encoding of sand t with respect to T as a matching 
O"T(S,t) E Mn U Mn- 1• The idea is to ensure that the encoding is unique for each 
such pair in CP(T), thereby implying that ICP(T)I ~ IMn U Mn-11 = N. 

Let the symmetric difference d = s $ t consist of the ordered sequence of cycles 
C}, ... , Cr. Consider a transition T between matchings u, v E Mn U Mn- 1 that 
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occurs during the unwinding of a particular cycle Ck. The encoded matching 
O"T(S, t) is designed so that it agrees with S on the cycles Ch ... , Ck-h as well as 
the portion of Ck that has already been unwound, and it agrees with t elsewhere. 
Assume that T is not a Rotate transition; then we can set O"T(S, t) = s$t$(uuv). 
It is easy to verify that in this case the encoding is itself a matching from 
Mn U Mn- h that it is uniquely defined, and finally that sand t can be completely 
recovered from the given encoding and the knowledge of U and v. The last 
property follows from the observation that S $ t = O"T(S, t) $ (u U v), and the fact 
that the partially unwound cycle Ck (and hence the remaining cycles) can be 
deduced from T. 

The only problem is in the case where T is a Rotate transition, as in 
Figure 11.4. Then there exists a vertex such that S $ t $ (u U v) has two edges 
incident on it. However, one of these edges (denoted es,t) always has the start 
vertex of Ck as its other end-point. Thus, when T is a Rotate transition we 
define O"T(S, t) = S $ t $ (u U v) $ es,t. It is now easy to verify that all the desired 
properties of the encoding also hold for this case, with the minor change that 
S $ t = O"T(S, t) $ (u U v) $ es,t. In Figure 11.5, we illustrate the encoding for this 
case using matchings sand t, and also the transition T, described in Figure 11.4. 

o 

• • • • 
/ '-I cycle C, I 

• • start 

cycle C2 

• • '- / '- / 
Figure 11.5: The encoding O'T(S, t). 

11.3.4. Extension to Arbitrary Size Matching! 

Having outlined how to estimate Mn/ Mn- h we now describe the estimation 
of Mk·/ Mk-l for k < n. The idea is essentially the same, using the Markov 
chain Ck to sample the elements of Mk U Mk-l almost uniformly. One technical 
difficulty remains: can the conductance of each Ck be suitably bounded? There 
are techniques for showing that Ck does have high conductance, but we will 
circumvent this problem by reducing the problem of estimating the ratio rk to 
the problem of estimating r n' 

Consider a graph G(V, V,E) with minimum degree n/2, and obtain the graph 
Gk(V', V',E') from G as follows: add n - k new vertices to V to obtain V', and 
connect each of these new vertices to each vertex in V; similarly, V' is obtained 
by adding n - k new vertices to V and connecting each new vertex to each 
vertex in V. It is easy to see that n' = IV'I = IV'I = 2n - k and that the new 
vertices have degree n ~ n' /2 while the old vertices now have degree at least 
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3n/2 - k ~ n' /2. Thus, the new graph has the desired minimum degree property. 
It can now be shown that knowing the ratio rw for Gk will enable us to compute 
the ratio rk for G; the details are left as an exercise. The ratio r w for Gk can be 
estimated as discussed above. 

Exercise 11.11: Let R be the ratio of the number of perfect matchings and near
perfect matchings in Gk • Show that 

R = mk , 
2(n - k)mk + mk+1 + (n - k + 1)2mk_1 

where the m/ 's refer to the original graph G. Using this, show how we can suitably 
estimate the values of mk (for all k) with respect to G. 

We conclude the following theorem. 

Theorem 11.12: There exists an (E,b)-FPRAS for the problem of estimating the 
number of perfect matchings in a bipartite graph of minimum degree at least n/2, 
where n is the number of nodes on each side of the bipartition. 

PROOF: By Exercise 11.9, it suffices to show that we can construct a near
uniform generator that has error bounded by l/n4. In fact, we will now show 
(by going back through the entire chain of reasoning) that for 't' = O(nlS) the 
relative pointwise distance is ~('t') = l/n4. 

Applying Theorem 11.7, Lemma 11.8, and Theorem 11.9, in succession, we 
obtain 

~('t') $; A.2N 

$; (1_;)tN 

$; ( 1 - 28:n12 ) t N 

$; e-t/288n12 N 

1 
$; 

n4 

where the last inequality follows from the observation that N ~ 2n2 and 't' ~ nlS. 
o 

The exponent of 15 in the running time can be reduced somewhat by using a 
more sophisticated algorithm and analysis. 

11.4. Volume Estimation 

In this section we briefly consider the problem of computing the volume of a 
given convex body K in n dimensions; we denote this volume by Y(K). This 
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is a classic problem with numerous applications; for instance, computing the 
number of linear extensions of a partial order can be reduced to computing the 
volume of an appropriately derived convex body. We give only an outline of 
the principal methods here, without any proofs. Pointers to details are given in 
the Notes section. 

Before we examine the complexity of this question, we must pin down the 
notion of an input to this problem. If we are to allow arbitrary convex bodies 
as inputs, it is not even clear that there is a description of the body that has 
finite size. We assume that K is described by means of a membership oracle: 
the algorithm can specify a point p in space, and the oracle responds whether 
or not p is inside the body K. For technical reasons, we will assume further 
that K contains a sphere of radius at least rl centered at the origin, and in turn 
is contained in a sphere of radius r2 centered at the origin. We assume that a 
call to the oracle takes unit time; other than this, we assume the usual RAM 
model of computation. We seek an (E, b)-FPRAS with a running time that is 
polynomial in IjE, log Ijb, and n. 

One example of a membership oracle comes from a convex polyhedron that 
is defined by the intersection of a set of m given half-spaces. Given a point p 
in the space, we can check in time O(mn) whether p lies in this intersection. We 
begin with two negative results . 

. 
Theorem 11.13: It is #P-hard to compute the volume of a polyhedron defined by 
the intersection of m half-spaces, each defined by a hyperplane with coefficients in 
{O, I}. 

Theorem 11.14: Suppose that a deterministic polynomial-time algorithm uses the 
membership oracle for K and generates an upper bound I'll and a lower bound 1'1 
on the volume of K. Then, there is a body K and a constant c such that 

->c --III (n)n 
II - logn 

These negative results motivate a FPRAS for this problem; we outline the 
main ideas below. We begin by explaining the basic idea in the plane. Consider 
a convex region R in the plane of unit diameter. If we were to enclose R in a 
rectangle U whose longer side is 1, we could use the following scheme. We pick 
a sequence of points independently at random from U, and count the fraction 
/ of them that fall within R (using the membership oracle). Since we can easily 
compute the area 1'(U) of U, we can compute the random variable /1'(U), 
which is an estimate of 1'(R) that can be shown to be close to its expectation for 
a suitably large number of samples. Note (using the Estimator Theorem 11.1) 
that the number of samples required grows with the ratio 1'(U)j1'(R). 

Exercise 11.12: Show that Y(U)jY(R) S 2 in the plane. 
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The main difficulty with extending this approach to higher dimensions is that 
if we were to enclose the given body K in an n-dimensional cuboid C, the ratio 
Y( C)/Y(K) may be exponential in n. To address this, we make use of the fact 
that K lies within a sphere of known radius '2; we denote this sphere by B. 
Further, it suffices to have a value of'2 that is small enough that we can define 
a sequence of convex bodies B = Ko => K 1 => ..• => Kq = K such that: 

1. There is a constant c such that for i ~ 1, Y(K j ) ~ cY(K j_ 1 ). 

2. The length of the sequence q is polynomial in n. 

Then, it suffices to devise a FPRAS that will estimate the ratio Y(Kj)/Y(Kj-d 
for all i; note the similarity of this approach to that used in estimating the 
permanent. By appealing to property 1 above, we would like to again pick 
points at random from K j and measure the fraction of these that lie in K j- 1• 

Unlike the case of the rectangle U in the plane, picking such a random point in 
the body K j is a non-trivial task. The solution is roughly as follows. We impose 
a suitably fine grid on n-dimensional space. Starting at a fixed point of the grid, 
we perform a random walk on the nodes of this grid that intersect K j • The crux 
of the method is to argue that this random walk is rapidly mixing: in a number 
of steps that is polynomial in n, its probability distribution is almost uniform on 
all the grid nodes intersecting K j • In this manner, we sample points at random 
from within K j and measure the fraction that lie within K j":' l • We omit almost 
all the details here - the exact details of the walk, the definition of the sequence 
K j , the use of the membership oracle for K for determining membership in K j , 

and the proof of the rapid mixing. The reader may find pointers to all of these 
in the Notes section. -

Notes 

The class #P was first identified by Valiant [401, 402], who also established the #P
completeness of the DNF counting problem and the permanent problem. Welsh [416] 
gives a comprehensive and eminently readable survey of the state of the art in counting 
algorithms. 

The equivalence of counting the number of distinct spanning trees in a graph to 
a determinant evaluation is due to Kirchhoff [193] and is known as the matrix-tree 
theorem. The approximation of counting problems was initiated in the work of Karp 
and Luby [247] and Stockmeyer [386]. The randomized approximation scheme for the 
DNF counting problem, as well as the formal definition of a randomized approximation 
scheme, is due to Karp and Luby [246]; this work was later extended and improved 
by Karp, Luby, and Madras [240]. These articles also present applications of the basic 
approach to network reliability problems (see also [109,247]). 

~ Research Problem 11.1: Devise a deterministic FPAS for the DNF counting 
problem. 

The best-known deterministic algorithm for computing the permanent of a 0-1 matrix 
is due to Ryser [361]. The application of the permanent problem to statistical physics 
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is described in the paper by Jerrum and Sinclair [211]. The permanent approximation 
scheme described in this chapter owes its origins to a paper of Jerrum, Valiant, and 
Vazirani [212], in which they showed that estimating the number of matchings in a 
bipartite graph could be reduced to the problem of generating a perfect matching of the 
graph uniformly at random from all the perfect matchings in the graph. Broder [83] 
showed that near-uniform generation can be achieved by simulating a random walk on 
a Markov chain whose states correspond to matchings in the graph. The latter idea 
follows the lead of Aldous [11]. Broder proved that computing the number of perfect 
matchings in graphs of minimum degree at least nl2 is still #P-complete and showed 
that, even though the number of states could be exponentially large, the random walk 
could be efficiently implemented. 

The technical portion of Broder's proof contained a subtle error, as was pointed out 
by Mihail [309]. Jerrum and Sinclair [211] subsequently gave the proof described above 
establishing that his algorithm was indeed correct. The conductance-based technique 
for analyzing the rate of convergence of a Markov chain is explored in detail in the 
paper by Sinclair and Jerrum [376]. Sinclair [377] has shown that it is possible to go 
directly from the canonical paths argument to a bound on A,2 without going through the 
conductance argument. A comprehensive treatment of all these ideas, as well as some 
further applications, can be found in the monograph by Sinclair [375]. 

Dagum, Luby, Mihail and Vazirani [118] adopted a slightly different approach to 
characterizing graphs for which ex is bounded above by a polynomial in n, rather than 
assuming that the graph has minimum degree at least n12. Even with their improved 
character:i.zation, this approach to estimating Mn works only for a sub-class of bipartite 
graphs in which every vertex degree is at least a constant fraction of n. 

Currently, the most general condition under which it is possible to obtain an approx
imation to the number of perfect matchings in a bipartite graph is that IMn-li/IMnl be 
polynomially bounded. The following problem remains open. 

~ Research Problem 11.2: Devise a FPRAS for estimating the number of perfect 
matchings in any bipartite graph (with no restrictions on vertex degrees). 

The results of Jerrum and Sinclair [211] and Motwani [312] imply that the Markov 
chain is rapidly mixing for almost every graph. This involves showing that, with high 
probability, a random graph [69] (of arbitrary density) has the property that the ratio rk 

is polynomially bounded. 
Karinarkar, Karp, Lipton, Lovasz, and Luby [239] have made some progress in the 

direction of Research Problem 11.2: they give a randomized approximation algorithm 
which, with probability 1 - 0, gives a number guaranteed to be in the interval [Mn/{l + 
E),Mn{l + E)]. Their algorithm runs in time O(poly(0,E,n)2n/2), where poly(o,E,n) is 
a function that grows polynomially in n. This result was improved considerably by 
Jerrum and Vazirani [210], who obtained an (E,o)-approximation with running time 
O(poly(o, E, n)2yt110g2 n). 

Theorem 11.14 is due to Barany and Fiiredi [46]. Dyer, Frieze, and Kannan [132] first 
gave the method outlined in Section 11.4 for volume estimation. The scheme and running 
time bounds that result have subsequently been refined in a sequence of papers. The 
reader is referred to the survey in Welsh's book [416] for pointers to these refinements, 
and to the host of open research problems remaining in this area. 

332 



PROBLEMS 

Problems 

11.1 In this problem we will design a Monte Carlo algorithm to estimate the value 
of n. Consider a circle of diameter 1 enclosed within a square with sides of 
length 1. We will sample points (uniformly and independently) from the square 
and set the indicator variable Xt = 1 if the tth point is inside the circle, and 
set Xt = 0 otherwise. It is clear that E[X] = Nn /4, where X is the sum of N of 
these indicator variables. 

Give an upper bound on the value of N for which 4X/N gives an estimator of 
n that is accurate to d digits, with probability at least 1 - a. 

11.2 (Due to A.M. Karp, M. Luby, and N. Madras [240].) Consider the following vari
ant of the Coverage algorithm for approximating the DNF counting problem. 
The tth trial of this algorithm first picks a random clause Ct , where the proba
bility of choosing a clause Cj is proportional to the number of satisfying truth 
assignments for it. Next, it selects a random satisfying truth assignment a for 
the chosen clause. (So far, this is exactly the same as the sampling procedure 
described before.) Define the random variable Xt = 1/lcov(a)l, where cov(a) 
denotes the set of clauses that are satisfied by the truth assignment a. 

The estimator for #F is the random variable 

where" denotes the sum of the sizes of the coverage sets over all possible 
truth assignments. Prove that Y is an (E, a)-approximation for #F when 

cm 1 
N=-In-

E a 
for some small constant c. (Hint: Use the Chernoff-type bound derived in 
Problem 4.7.) 

11.3 Prove the converse of Theorem 11.4. In other words, show that given an 
algorithm for estimating the number of matchings in a bipartite graph, it is 
possible to get a near-uniform generator of matchings in the bipartite graph. 

11.4 In this problem we will see that the problem of counting the perfect matchings 
in graphs with large minimum degree is also #P-complete. Suppose there is 
a polynomial time algorithm A for counting the number of perfect matchings in 
a graph with minimum degree at least pn, for a constant 0 < p < 1. Show that 
there must then exist a polynomial time algorithm for counting the number of 
perfect matchings in an arbitrary bipartite graph. 

11.5 Consider the Markov chain induced by a random walk on a connected, undi
rected graph G on n vertices. How small can the conductance of this Markov 
chain be, the minimum being taken over connected, undirected graphs on n 
vertices? How large can it be? 

11.6 Let G be a connected, undirected graph on n vertices. 

(a) Consider the Markov chain induced by the following random process 
for moving from one spanning tree of G to another: pick edges e and f 
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independently and uniformly at random; if the current spanning tree is T and 
T' = T + e - f is a spanning tree, then move to the new spanning T'; otherwise 
stay put at T. Show that the conductance of this Markov chain is bounded 
from below by 1/nQ1 ). 

(b) Suggest and analyze an algorithm for approximate counting of the number 
of spanning trees in a graph G, as an alternative to the matrix-tree theorem. 

11.7 (Due to A. Sinclair and M.R. Jerrum [376].) An ergodic Markov chain with 
transition matrix P is said to be time reversible if for all i and j, Pij"i = Pji"j. 
This is equivalent to requiring that the matrix DPD-1 is symmetric, where D 
is a diagonal matrix with Dii = Jifi. Clearly, the largest eigenvalue of P is 
A1 = 1; define A = maxi>l IA;I. Show that for any fixed choice of an initial state 
Xo, the relative pointwise distance of this Markov chain at time t is bounded 
as follows: 

At 
~(t) :::;; --:-. -

mlni"i 

What does this imply for the random walk setting considered in Theorem 6.21? 
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In this chapter we discuss the solution of problems by a number of processors 
working in concert. In specifying an allgorithm for such a setting, we must specify 
not only the sequence of actions of individual processors, but also the actions 
they take in response to the actions of other processors. The organization and 
use of multiple processors has come to be divided into two categories: parallel 
processing and distributed processing. In the former, a number of processors are 
coupled together fairly tightly: they are similar processors running at roughly 
the same speeds and they frequently c~xchange information with relatively small 
delays in the propagation of such information. For such a system, we wish 
to assert that at the end of a certain time period, all the processors will 
have terminated and will collectively hold the solution to the problem. In 
distributed processing, on the other hand, less is assumed about the speeds of 
the processors or the delays in propagating information between them. Thus, 
the focus is on establishing that algorithms terminate at all, on guaranteeing 
the correctness of the results, and on counting the number of messages that 
are sent between processors in solving a problem. We begin by studying a 
model for parallel computation. We then describe several parallel algorithms 
in this model: sorting, finding maximal independent sets in graphs, and finding 
maximum matchings in graphs. We also describe the randomized solution of 
two problems in distributed computation: the choice coordination problem and 
the Byzantine agreement problem. 

12.1. The PRAM Model 

Our model for parallel computation will be the synchronous parallel random 
access machine, which we will abbreviate by PRAM. The parallel computer will 
consist of P processors, each of which can be viewed as supporting the RAM 
model of computation (see Section 1.5.1). There is a global memory consisting of 
M locations; each processor has a (small) constant number of local registers to 
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which it alone has access. Each of the P processors may read from and write into 
any of the M global memory locations; these global memory locations serve as 
the only mechanism for communication between the processors. Computation 
proceeds in a series of synchronous parallel steps. In a parallel step, each 
processor first chooses a global memory location whose contents it reads; next it 
executes an instruction on the operand fetched, together with any operands in its 
registers (the allowable instructions are any of those we allow for a conventional 
single-processor RAM). Finally, the step ends with the processor writing into a 
memory location of its choice. By our assumption of synchrony, every processor 
finishes executing step i before any processor begins executing step i + 1. An 
instruction for the PRAM is a specification, for each processor, of the actions 
it is to perform in each of the three phases of a step. A parallel program is a 
sequence of such instructions. 

We now address the important issue of conflict resolution in a PRAM: our 
definition of an instruction permits a number of processors to attempt to read 
from or write to the same global memory location in a step. Logically, there 
appears to be no problem in allowing several processors to read the contents of 
the same global memory location; however, physical limitations make this action 
difficult to implement in actual hardware. Of greater concern are the difficulties 
that arise when several processors attempt to write into the same global memory 
location; which of the (possibly differing) values is actually written into the 
memory location? A number of solutions have been proposed for this problem 
of concurrent writing. We will adopt the simplest of these: we insist that the 
parallel program ensure that no execution will ever result in a concurrent write. 
Thus we deal only with exclusive write PRAMs. 

As mentioned above, the issue of whether or not to allow concurrent reads 
is a matter of attention to hardware implementation. These various read/write 
models for PRAMs are abbreviated as EREW, CREW, and CRCW, where the 
first two letters denote whether reading is exclusive or concurrent and the last 
two denote what is permissible for writing. In this chapter, we will only consider 
EREW and CREW PRAMs. 

Of particular theoretical interest is the solution of problems by PRAM 
algorithms in which the number of processors P is a polynomial function of the 
input' size n, and the number of PRAM steps is bounded by a polylogarithmic 
function of n. We define the classes NC and RNC to capture these notions. 

~ Definition 12.1: The class NC consists of languages L that have a PRAM 
algorithm A such that for any x E 1:-

• x E L => A(x) accepts; 

• x ~ L => A(x) rejects; 

• the number of processors used by A on x is polynomial in Ixl; 
• the number of steps used by A on x is polylogarithmic in Ixl. 

For randomized PRAM algorithms, we similarly define the class RNC: 
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~ Definition 12.2: The class RNC consists of languages L that have a PRAM 
algorithm A such that for any x E 1:-

• x E L => Pr[A(x) accepts] ~ 1/2; 

• x ~ L => Pr[A(x) accepts] = 0; 

• the number of processors used by A on x is polynomial in Ixl; 

• the number of steps used by A on x is polylogarithmic in Ix!. 

As in the case of RP, although the definition is in terms of decision or 
language problems, there is an obvious generalization to function computations. 
Notice that an RNC algorithm is Monte Carlo with one-sided error. We can 
define the two-sided error version analogous to BPP. The Las Vegas version of 
this class (zero-error and polylogarithmic expected time) is called ZNC, and is 
defined similar to ZPP. 

Exercise 12.1: In the above definitions, we did not distinguish between the various 
models of concurrent reading and writing. Show that if a problem has a CRCW PRAM 
algorithm using a number of processors that is polynomial in the input size, and 
a number of steps that is polylogarithmic, then the problem has an EREW PRAM 
algorithm using a number of processors that is polynomial in the input size, and a 
number of steps that is polylogarithmic. 

12.2. Sorting on a PRAM 

In this section we study algorithms for sorting n numbers on a PRAM with n 
processors. For convenience, we will assume that the input numbers to be sorted 
all have distinct values. Our eventual goal will be a randomized (ZNC) algorithm 
that terminates in O(log n) steps with high probability. Such an algorithm would 
thus result in a total of O( n log n) operations among all processors, with high 
probability. 

Consider the implementation of the following variant of randomized quicksort 
on a CREW PRAM. Initially, each of the n processors contains a distinct input 
element. We first describe the structure of the algorithm. Following this high
level description, we will break down each stage of this description into a 
sequence of PRAM steps. Let Pi denote the ith processor. 

o. If n = 1 stop. 

1. We pick a splitter uniformly at random from the n input elements. 

2. Each processor determines whether its element is bigger or smaller than the 
splitter. 

3. Let j denote the rank of the splitter. If j ~ [n/4,3n/4], we declare the step a 
failure and repeat starting at (1) above. If j E [n/4,3n/4], the step is a success. 
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We then move the splitter to Pj. Each element that is smaller than the splitter is 
moved to a distinct processor Pi for i < j. Each element that is larger than the 
splitter is moved to a distinct processor Pk for k > j. 

4. We sort the elements recursively in processors PI through Pj-I, and the elements 
in processors Pj +I through Pn• These recursive sorts are independent of each 
other. 

Let us study the number of CREW PRAM steps taken by each of the above 
stages. Before we proceed with a detailed analysis, we make a prognosis of what 
we need in order for the above algorithm to terminate in O(log n) steps. The best 
we can hope for is success whenever we split. If we were fortunate enough that 
this were to happen, every sequence of recursive splits would terminate within 
O(log n) stages. Even so, in order for the algorithm to terminate in O(log n) 
steps, we would require each split to be implemented in a constant number of 
steps. Unfortunately we know of no way of doing this. 

The second stage in our scheme is trivial and can be implemented in a single 
step of a CREW PRAM. Let us turn to Stage 3 of the above description. Our 
goal is to ensure that processor Pi, for i < j, contains a distinct input element 
whose rank is smaller than j, and similarly processor Pk for k > j, contains a 
distinct input element whose rank is larger than j. How many PRAM steps are 
taken up by this process? 

Processor Pi sets a bit bi in one of its registers to 0 if its element is greater 
than the splitter, and to 1 otherwise. For all i, let Si = 2:r~i br• 

Exercise 12.2: Devise a PRAM algorithm by which, given the b;, the S; can be 
computed (with the result contained in PI) in O(log n) steps. Using this, show how 
Stage 3 of the algorithm can be implemented in O(log n) steps. 

Thus, we see that a single splitting stage can be implemented in O(log n) steps 
of a CREW PRAM. In Problem 12.1 we will see that from this, we can infer 

that the above algorithm terminates in o (log2 n) steps with high probability. 
The shortcoming of the above scheme is that the splitting work in Stage 3, 

consuming O(log n) steps, yielded a relatively small benefit - it cuts the problem 
size down from n to a constant fraction of n. To improve on this, we consider 
a more efficient algorithm in which we invest the same amount of work in 
splitting, but in the process break up the problem into pieces of size n1- e for 
a fixed constant E. If we could do this, we could hope for an overall parallel 
running time of O(logn) steps: at the next level of recursion, the splitting time 
would be logarithmic in nl-E, which is a constant fraction of the splitting time 
at the first level. Thus, the times for proceeding from one level of recursion 
to the next would form a geometric series summing to O(log n). The following 
two exercises pave the way for a concrete scheme for implementing this idea. 
Exercise 12.3 demonstrates that we can indeed sort in O(log n) steps if our 
PRAM were endowed with many more processors than elements to be sorted. 
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Exercise 12.3: Consider a CREW PRAM having n2 processors. Suppose that each of 
the processors P1 through Pn has an input element to be sorted. Give a deterministic 
algorithm by which this PRAM can sort these n elements in O(log n) steps. (Hint: We 
have enough processors to compare all pairs of elements.) 

Next, suppose that we have n processors and n elements. Suppose that 
processors PI through Pr contain r of the elements in sorted order, and that 
processors Pr+1 through Pn contain the remaining n - r elements. Call the sorted 
elements in the first r processors the splitters. For 1 < j :::;; r, let Sj denote the 
jth largest splitter. Our goal is to "insert" the n - r unsorted elements among 
the splitters, in the following sense. 

1. Each processor should end up with a distinct input element. 

2. Let i(sj) denote the index of the processor containing Sj following the insertion 
operation. Then, for all k < i(s,), processor Pk contains an element that is smaller 
than Sj; similarly, for all k > i(s,), processor Pk contains an element that is larger 
than Sj. 

In other words, the splitters are contained in processors in increasing order, and 
the remaining elements are in processors between their "adjacent" splitters. 

Exercise 12.4: For n processors, and n elements of which In are splitters, give a 
deterministic scheme that completes the above insertion process in O(log n) steps. 

Here are the stages of our parallel sorting algorithm, which we call BoxSort. 
Note that it is a Las Vegas algorithm: it always produces the correct output. 
Further, it always uses a fixed number of processors; only the number of parallel 
steps is a random variable. This will be typical of all the parallel algorithms we 
present. The function LogSort is described following Exercise 12.5. 

Algorithm BoxSort: 

Input: A set of numbers s. 
Output: The elements of S sorted in increasing order. 

1. Select In elements at random from the n input elements. Using all n 
processors, sort them in O(log n) steps (using the ideas in Exercise 12.3). If 
two splitters are adjacent in this sorted order, we call them adjacent splitters. 

2. USing the sorted elements from Stage 1 as splitters, insert the remaining 
elements among them in O(log n) steps (using the ideas in Exercise 12.4). 

3. Treating the elements that are inserted between adjacent splitters as sub
problems, recur on each sub-problem whose size exceeds log n. For sub
problems of size log n or less, invoke LogSort. 
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Note that in Step 3 we have available as many processors as elements for 
each sub-problem on which we recur. The sub-problems that result from the 
..fo splitters have size roughly ..fo, with good probability. This fits with our 
paradigm for progressing from a problem of size n to one of size n1-

e in O(log n) 
steps. As we will see below, with high probability every sub-problem resulting 
from a splitting operation is small, provided the set being split is itself not too 
small. We deal with this issue using the following idea. When we have log n 
elements to be sorted using log n processors, we abandon the recursive approach 
and use brute force: 

Exercise 12.5: Show that a CREW PRAM with m processors can sort m elements 
deterministically in O(m) steps. 

Thus, when a sub-problem size is down to log n, we can sort it with the log n 
available processors in O(log n) steps; we call this operation LogSort. 

We now analyze the use of random sampling for choosing the splitters. Let us 
call the set of elements that fall between adjacent splitters a box. The analysis is 
similar to the one we used in the analysis of randomized selection in Section 3.3. 
By invoking the Chernoff bound instead of the Chebyshev bound, the following 
IS an easy consequence: 

Exercise 12.6: Consider m splitters chosen uniformly at random from m2 given 
distinct elements. Show that the probability that a box has size exceeding bm is at 
most mab , for a constant a < 1. 

To complete the analysis of the algorithm, we represent an execution of the 
algorithm by a tree. Each node of the tree is a box that arises during the 
execution. For this purpose, we will also regard the n input elements as forming 
a box (of size n), and this is the root of our tree. The children of a node are the 
boxes that arise when it is partitioned by random splitters. Each leaf is a box of 
size at most log n. 

We are interested in root-leaf paths in this tree. In bounding the running 
time of algorithm, the quantity of interest is not the length of such root-leaf 
paths, but rather the number of PRAM steps that elapse as we go down such a 
path. This is because the time to proceed from a box to one of its children is 
logarithmic in the size of the box. We will argue that with high probability, the 
sum of the logarithms of box sizes on any root-leaf path is O(log n), and this 
will yield an overall running time of O(log n). 

The idea is to partition the interval [1, n] into sub-intervals 10,1 h ... , and 
bound the probability that a box whose size is in h has a child whose size is 
also in h. To this end, let}' and d be fixed constants such that 1/2 < }' < 1 and 
1 < d < Ify. For a positive integer k, define 'fk = dk, Pk = nr", and the interval 
h = [Pk+hPk]. 
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Exercise 12.7: Show that Pk < log n for a value of k S c log log n, for a constant c 
that depends only on y. 

Thus we confine our attention to O(log log n) intervals h. For a box B in 
the tree, we say that ~(B) = k if IBI E h. In terms of this notation, the time 
to split B is O(logPcx(B)). For a root-leaf path, = (B., ... ,Bt ), we will study 
E~=l log Pcx(Bj ), since the overall running time of the algorithm is 

o (IOgn + max t IOgPCX(BJ)). 
, . 1 

]-

For a path , - (B., ... , Bt ), we say that event £, holds if the sequence 
~(Bl)' ... ' ~(Bt) does not contain the value k more than 'fk times, for 1 ~ 
k ~ c log log n. If £, holds, the number of PRAM steps spent on path, is at 
most 

O(IOgn+ ftk'-/lOgn). 
k-l 

Since 'fk = dk , and yd < 1, this sums to O(log n). Thus it suffices to argue that 
£, holds with high probability for any'. This is an easy calculation following 
the bound from Exercise 12.6. 

Lemma 12.1: There is a constant f3 > 1 such that £, holds with probability at 
least 1 - exp( - logP n). 

The following sequence of three probability calculations establishes Lemma 
12.1. These calculations are straightforward, and the reader is asked to perform 
them in Problem 12.2. 

1. Bound the probability that ~(Bj+d = a.(Bj) using the result of Exercise 12.6. 

2. Bound the probability that for any particular k, the value k is contained more 
than tk times in the sequence ~(Bd, ... , ~(Br>. 

3. Bound the probability that for 1 ::; k ::; c log log n, the value k is contained more 
than tk times in the sequence a.(Bd, ... , a.(Bt ). 

Since the number of paths' in an execution is at most n, we have: 

Theorem 12.2: There is a constant b > 0 such that with probability at least 
1 - exp( -10gb n) the algorithm BoxSort terminates in O(log n) steps. 

12.3. Maximal Independent Sets 

Let G(V, E) be an undirected graph with n vertices and m edges. A subset 
of vertices I £;;; V is said to be independent in G if no edge in E has both its 
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end-points in I. Equivalently, I is independent if for all v E I, r(v) n I = 0. 
Recall that r(v) is the set of vertices in V that are adjacent to v and that the 
degree of v is d(v) = Ir(v)l. 

An independent set I is maximal if it is not properly contained in any other 
independent set in G. Recall that the problem of finding a maximum independent 
set is NP-hard. In contrast, finding a maximal independent set (MIS) is trivial 
in the sequential setting. The following greedy algorithm constructs an MIS in 
O(m) time. 

Algorithm Greedy MIS: 

Input: Graph G(V,E) with V = {t2. ... ,n}. 

Output: A maximal independent set I s;;; V. 

1. 1-0. 
2. for v = 1 to n do 

If/nr(v)=0then/-/u{v}. 

Exerclse.12.8: Prove that the Greedy MIS algorithm terminates in O(m) time with a 
maximal independent set, if the input is given in the form of an adjacency list. 

A greedy algorithm such as this is inherently sequential. The output of this 
algorithm is called the lexicographically first MIS (LFMIS). It is known that the 
existence of an NC (or RNC) algorithm for finding the LFMIS would imply 
that P = NC (respectively, P = RNC), a consequence that appears almost as 
unlikely as P = NP. Thus, we have the somewhat paradoxical situation that 
the most trivial algorithm finds the LFMIS sequentially, whereas it appears 
impossible to solve it fast in parallel. However, it turns out that there are simple 
parallel algorithms for finding an MIS (not necessarily the lexicographically first 
MIS). We start by describing an RNC algorithm and later indicate how it can 
be derandomized to obtain an NC algorithm. The problem of verifying an MIS 
is relatively easy to solve in parallel. 

Exercise 12.9: Devise a deterministic EREW PRAM algorithm for verifying that a set 
I is an MIS, using O(mj log m) processors and O(log m) time. 

Consider the variant of the Greedy MIS algorithm, which starts with I = 0 
and repeatedly performs the following step: pick any vertex v, add v to I, and 
delete v and r(v) from the graph. The algorithm terminates when all vertices 
have either been deleted or added to I. Choosing v to be the lowest numbered 
vertex present in the graph leads to exactly the same outcome as in Greedy MIS. 
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The key idea behind the parallel algorithm is to generalize the basic iterative 
step in the new algorithm: find an independent set S, add S to J, and delete 
S u r(S) from the graph. The trick is to ensure that each iteration can be 
implemented fast in parallel, while also guaranteeing that the total number of 
iterations is small. One way of ensuring that the number of iterations is small 
is to choose an independent set S such that S u r(S) is large. This is difficult, 
but we achieve the same effect by ensuring that the number of edges incident 
on S U r(S) is a large fraction of the total number of remaining edges; clearly, 
this will result in an empty graph in a small of number of iterations. 

To find such an independent set S, we pick a large random set of vertices 
R £; V. While it is quite unlikely that R will be independent, biasing the 
sampling in favor of low degree vertices will ensure that there are very few edges 
with both end-points in R. To obtain the independent set from R we consider 
each edge of this type and drop the end-point of lower degree. This results in 
an independent set, and the choice of the end-point retained for S ensures that 
r(S) is likely to be large. 

This idea is implemented in Algorithm Parallel MIS, where the marking of a 
vertex corresponds to selecting it for the set R. We assume that each vertex (and 
edge) of G is assigned a dedicated processor that performs the parallel tasks 
associated with that vertex (or edge). This uses a total of O(n + rn) processors. 

Algorithm Parallel MIS: 

Input Graph G(V, E). 

Output: A maximal independent set 1 s; V. 

1.1-0. 

2. repeat 

2.1. for all v E V do (in parallel) 
If d(v) = 0 then add v to 1 and delete v from V 
else mark v with probability 1/2d(v). 

2.2. for all (u, v) E E do (in parallel) 
If both u and v are marked 
then unmark the lower degree vertex. 

2.3. for all v E V do (in parallel) 
if v is marked then add v to S. 

2.4. 1 -I uS. 

2.5. delete S u r(S) from V, and all incident edges from E. 

until V = 0 

Ties are broken arbitrarily in Step 2.2. It is clear that the set S in Step 2.3 is 
an independent set. The reader should verify that this algorithm is guaranteed to 
terminate with a maximal independent set in a linear number of iterations. Our 
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goal is to prove that the random choices in Step 2.1 will ensure that the expected 
number of iterations is in fact O(log n). We leave the details of implementing 
each iteration in NC as an exercise. 

Exercise 12.10: Show that each iteration of the Parallel MIS algorithm can be imple
mented in O(log n) time using an EREW PRAM with O(n + m) processors. 

The analysis is based on showing that the expected fraction of edges removed 
from E during each iteration is bounded from below by a constant. In fact, we 
will focus only on a specific class of good edges, defined as follows . 

• Definition 12.3: A vertex v E V is good if it has at least d(v)/3 neighbors of 
degree no more than d(v); otherwise, the vertex is bad. An edge is good if at least 
one of its end-points is a good vertex, and it is bad if both end-points are bad 
vertices. 

In the following discussion, we will analyze only a single iteration of the 
Parallel MIS algorithm. The notion of goodness is with respect to the vertices 
and edges surviving at the start of that specific iteration. It should be clear that 
the argument can be applied repeatedly to the successive iterations; together 
with Theorem 1.3, this implies the result. 

We start with an intuitive sketch of the analysis, which is then fleshed out in 
a sequence of lemmas. A good vertex is quite likely to have one of its lower 
degree neighbors in S and, thereby be deleted from V. We will show that the 
number of good edges is large, and since good vertices are likely to be deleted, 
a large number of edges will be deleted during each iteration. 

Lemma 12.3: Let v E V be a good vertex with degree d(v) > O. Then, the 
probability that some vertex w E r( v) gets marked is at least 1 - exp( -1 /6). 

PROOF: Each vertex w E r(v) is marked independently with probability 1/2d(w). 
Since v' is good, there exist at least d(v)/3 vertices in r(v) with degree at most 
d(v). Each of these neighbors gets marked with probability at least 1/2d(v). 
Thus, the probability that none of these neighbors of v gets marked is at most 

1 < -1/6 
( 

1 )d(V)/3 

- 2d(v) - e . 

The remaining neighbors of v can only help in increasing the probability under 
consideration. 0 

Lemma 12.4: During any iteration, if a vertex w is marked then it is selected to 
be in S with probability at least 1/2. 
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PROOF: The only reason a marked vertex w becomes unmarked, and hence not 
selected for S, is that one of its neighbors of degree at least d(w) is also marked. 
Each such neighbor is marked with probability at most 1/2d(w), and the number 
of such neighbors certainly cannot exceed d( w). Thus, the probability that a 
marked vertex is selected to be in S is at least 

1 Pr[3x E r(w) such that d(x) > d(w) and x is marked] 
1 

> 1 -I{x E r(w) I d(x) > d(w)}1 x 2d(w) 

~ 1- L _1_ 
xer(w) 2d(w) 

1 
- 1 - d(w) x 2d(w) 

1 
- 2-

o 
Combining these two lemmas, we obtain the following. 

Lemma 12.5: The probability that a good vertex belongs to SunS) is at least 

(1- exp(-1/6»/2. 

The final step is to bound the number of good edges. 

Lemma 12.6: In a graph G(V,E), the number of good edges is at least ~EI/2. 

PROOF: Direct the edges in E from the lower degree end-point to the higher 
degree end-point, breaking ties arbitrarily. Define dj(v) and do(v) as the in-degree 
and out-degree, respectively, of the vertex v in the resulting digraph. It follows 
from the definition of goodness that for each bad vertex v, 

d ( ) _ d.( ) > d(v) = do(v) + dj(v) 
oV IV - 3 3' 

For all S, T c: V, define the subset of the (oriented) edges E(S, T) as those 
edges that are directed from vertices in S to vertices in T; further, define e(S, T) 
to be IE(S, T)I. Let VG and VB be the set of good and bad vertices, respectively. 
The total degree of the bad vertices is given by 

2e(VB' VB) + e(VB' VG) + e(VG, VB) 

- L(do(V) +dj(v» 
veVB 

veVB 

veVG 

- 3[(e(VB, VG) + e(VG, VG» - (e(VG, VB) + e(VG, VG))] 

345 



PARALLEL AND DISTRIBUTED ALGORITHMS 

- 3[e(VB, VG) - e(VG, VB)] 

~ 3[e(VB, VG) + e(VG, VB)] 

The first and last expressions in this sequence of inequalities imply that 
e(VB, VB) =::;; e(VB, VG) + e(VG, VB). Since every bad edge contributes to the 
left side and only good edges contribute to the right side, the desired result 
follows. 0 

Since a constant fraction of the edges are incident on good vertices, and good 
vertices get eliminated with a constant probability, it follows that the expected 
number of edges eliminated during an iteration is a constant fraction of the 
current set of edges. By Theorem 1.3, this implies that the expected number of 
iterations of the Parallel MIS algorithm is O(log n). 

Theorem 12.7: The Parallel MIS algoritJim has an EREW PRAM implementation 

running in expected time o (log2 n) using O(n + m) processors. 

It is straightforward to obtain a high-probability version of this result. 
We briefly describe the construction of an NC algorithm for MIS obtained by 

a derandomization of the RNC algorithm described above. The first step is to 
show that the preceding analysis works even when the marking of the vertices is 
not completely independent, but instead is only pairwise independent. Note that 
the only part of the analysis that uses complete independence is Lemma 12.3. 
In Problem 12.9 the reader is asked to prove that a marginally weaker version 
of Lemma 12.5 holds even with pairwise independent marking of vertices. The 
key advantage of pairwise independence is that only O(log n) random bits are 
required to generate the sample points in the corresponding probability space 
(see the discussion in Section 3.4). In the current application, it is necessary to 
generate pairwise independent Bernoulli random variables that are not uniform. 
In Problem 12.10, the reader is asked to modify the earlier construction of 
pairwise independent probability space to apply to Bernoulli variables that take 
on the 'value 1 with non-uniform probabilities, i.e., the marking probabilities of 
l/2d(v). 

The final and most crucial idea is to observe that the total number of choices 
of the O(log n) random bits needed for generating pairwise independent marking 
is polynomially bounded. All such choices can be tried in parallel to see if they 
yield a good marking, i.e., a marking of vertices that leads to an appropriately 
large reduction in the number of edges. Note that in each iteration, we are 
guaranteed that most choices of the random bits will give a good marking; in 
particular, there exists at least one setting of the O(log n) random bits that will 
provide a good marking. Trying all possibilities will (deterministically) identify 
a good marking. Thus, each iteration can be derandomized and the entire 
algorithm can be implemented in NC. 
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12.4. Perfect Matchings 

We now tum to the problem of finding an independent set of edges (or a 
matching) in a graph. Let G(V,E) be a graph with the vertex set V = {l, ... ,n}; 
without loss of generality, we may assume that n is even. Recall (Chapter 7) 
that a matching in G is a collection of edges M c: E no two of which are 
incident on the same vertex. A maximal matching is a matching that is not 
properly contained in any other matching. A maximum matching is a matching 
of maximum cardinality, and a perfect matching is one containing an edge 
incident on every vertex of G. 

The matchings in a graph G( V, E) correspond to independent sets in the 
line graph H obtained by creating a vertex for each edge in E, with two 
such vertices being adjacent if the corresponding edges in E are incident on 
the same vertex. This implies that the problem of finding matchings is a 
special case of the independent set problem. A maximal matching can be 
found sequentially via a greedy algorithm, and on a PRAM, as suggested in 
Problem 12.6, using the algorithms discussed in Section 12.3. Unlike the case 
of maximum independent sets, the problem of finding a maximum matching 
has a polynomial time solution. This raises the possibility of constructing an 
NC algorithm for maximum matchings. However, randomization appears to 
be an essential component of all known fast parallel algorithms for maximum 
matching, and we devote this section to describing one such RNC algorithm. 

For now we focus on the problem of finding a perfect matching in a graph that 
is guaranteed to have one, deferring the issue of finding a maximum matching 
till later. First we show that the decision problem of determining the' existence 
of a perfect matching is in RNC. This is based on the algebraic techniques 
developed in Chapter 7; the reader is advised to review Sections 7.2 and 7.3 
from that chapter. We make use of Tutte's Theorem described in Problem 7.8; 
this is a generalization of Theorem 7.3, which dealt with the case of bipartite 
matchings. 

Theorem 12.8 (Tutte's Theorem): Let A be the n x n (skew-symmetric) Tutte 
matrix of indeterminates obtained from G( V, E) as follows: a distinct indeterminate 
Xij is associated with the edge (Vi, Vj), where i < j, and the corresponding matrix 
entries are given by Aij = xij and Aji = -Xij, that is, 

{ 

Xij (Vi,Vj) E E and i < j 
Aij = -Xji (Vi, Vj) E E and i > j 

o (Ui,Vj) ¢ E 

Then G has a perfect matching if and only if det(A) is not identically zero. 

The RNC algorithm for deciding the existence of a perfect matching in G 
first constructs the matrix A with each indeterminate replaced by independently 
and uniformly chosen random values from a suitably large set of integers, as 
described in Section 7.2. Then, it evaluates the determinant of the resulting 
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integer matrix. If G has a perfect matching, then with suitably large probability, 
the determinant will be non-zero. On the other hand, if G does not have any 
perfect matchings, the determinant will always be zero. 

The first stage of this algorithm is easily implemented in NC. Finding the 
determinant of a matrix in NC is not trivial, but at least one NC algorithm is 
known (see the Notes section). Thus the problem of deciding the existence of a 
perfect matching is in RNC. 

We turn to the task of actually finding a perfect matching in a graph. Once 
again, the idea is to reduce the search problem to some matrix computations. We 
summarize known results for parallel matrix computations without attempting 
to describe the algorithms in any detail. 

The (i,j) minor of a matrix U, denoted Uij, is the matrix obtained by deleting 
the ith row and the jth column of U. The adjoint adj( U) of the matrix U is 
the matrix A whose (j, i) entry has absolute value equal to the determinant of 
the (i,j) minor of U, i.e., Ali = (_l)i+l det(Uil). It is easy to verify the following 
relation: Uadj(U) = det(U). 

Theorem 12.9: Let U be an n x n matrix whose entries are k-bit integers. Then the 
determinant, adjoint, and inverse of U can be computed in NC. In particular, let 
MM(n) = O(n2•376 ) denote the number of arithmetic operations required to multiply 

two n x n matrices. Then the determinant can be computed in 0 (log2 n) time 

using O(n2MM(n» processors .. further, there are RNC algorithms for computing 

the inverse and the adjoint running in time 0 (log2 n) using 0 (n3.5 k) processors. 

It is instructive to attempt to search for perfect matchings using the decision 
algorithm described above. It is not very hard to see that this can be done for 
the special case where the graph has a unique perfect matching. 

Exercise 12.11: Suppose that G has a unique perfect matching M. Analyze the effect 
of removing an edge on the determinant of the Tutte matrix, considering both the 
case where the edge belongs to M and where it does not belong to M. Using this 
analysi~, devise an RNC algorithm for finding the matching M. 

As outlined in Problem 12.15, an NC algorithm is possible for finding a 
unique perfect matching. In fact, it is known that there is an NC algorithm 
for finding perfect matchings in graphs with a polynomial number of perfect 
matchings. However, these algorithms break down when the number of perfect 
matchings in the graph is large. 

The problem with having a large number of perfect matchings is that it is 
necessary to coordinate the processors to search for the same perfect matching. 
This is the major stumbling block in the parallel solution of the matching 
problem and is perhaps the main reason why no NC algorithm is known. If 
the number of matchings is small, then the processors can easily focus on the 
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same perfect matching. The first ingredient in the RNC algorithm is to take an 
arbitrary graph and isolate a specific perfect matching. The isolation is achieved 
by assigning weights to the edges and looking for a minimum weight perfect 
matching. Of course, there is no reason why there should be a unique minimum 
weight perfect matching but, as we show in the next section, if the weights are 
chosen at random there is a good chance that isolation occurs. 

12.4.1. The Isolating Lemma 

Our goal now is to define a positive integer weight function over the edges of G, 
say w : E -+ 7l+, such that there is a unique minimum weight perfect matching. 
Observing that the set of all possible perfect matchings can be viewed as a 
family of subsets of E, we consider a more general setting involving an arbitrary 
set family . 

• Definition 12.4: A set system (X, F) consists of a finite universe X = {X., ... ,xm} 
and a family of subsets F = {S., ... , Sk}, where Si c: X for 1 =:;; i ~ k. The 
dimension of the set system is (the size of the universe) m. 

Given a positive integer weight function w : X -+ 7l+, we define the weight of 
a set S £ X as w(S) = EXEs w(Xj). The following lemma shows that a random 

J 

weight function is quite likely to lead to a unique set of F being of minimum 
weight. 

Lemma 12.10 (Isolating Lemma): Suppose (X, F) is a set system of dimension m. 
Let w : X -+ {1, ... , 2m} be a positive integer weight function defined by assigning 
to each element of X a random weight chosen uniformly and independently from 
{1, ... ,2m}. Then. 

Pr[there is a unique minimum weight set in J1 > ~. 

Remark: This lemma is truly counterintuitive. First of all, the size of F is 
completely irrelevant to the claim. This allows the family F to be of size as 
large as 2m. Since the weights of the sets must lie in the range {I, ... , 2m2}, one 
would expect that there could be as many as 2mj(2m2) sets of any given weight. 
However, the weights of the sets follow the lattice structure of the family of all 
subsets of X, thereby ensuring that the weights of the sets are not independent 
or uniformly distributed. 

PROOF: We assume, without loss of generality, that each element of X occurs in 
at least one of the sets in F. Suppose that we have chosen the (random) weights 
of all elements of X except one, say Xi. Let Wi be the weight of a minimum 
weight set containing Xi, computed by ignoring the (undetermined) weight of 
Xi. Further, let Wi be the weight of a minimum weight set not containing the 
element Xi. Define (li = Wi - Wi and note that (li could be negative. 
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Suppose that initially Xi is assigned the weight -00 (actually, -2m2 will 
suffice). It is clear that now every set of minimum weight must contain Xi. 

Consider the effect of increasing the weight of Xi until it reaches +00 (here, 2m2 

will suffice). At this point it is clear that no set of minimum weight contains Xi. 

We claim that for W(Xi) < ~i, every minimum weight set must contain Xi, 

because there exists a set containing Xi of weight Wi + W(Xi) < Wi, and all sets 
not containing Xi must have weight at least Wi' Similarly, we claim that for 
W(Xi) > ~i, no minimum weight set contains Xi, because any set containing Xi 

has weight at least Wi + W(Xi) > Wi, and there exists a set not containing Xi of 
weight Wi' 

Thus, so long as W(Xi) =1= ~i, either every minimum weight set contains Xi 

or none of them contains Xi' We say that Xi is ambiguous when W(Xi) = ~i, 

since then it cannot be said for certain whether Xi will belong to a minimum 
weight set chosen arbitrarily. The crucial observation is that since ~i depends 
only on the weights of the elements other than Xi, and the weights are chosen 
independently, the random variable ~i is independeIit of w(x;). It follows that the 
probability that Xi is ambiguous is no more than 112m. Note that it is possible 
that ~i ~ {1, ... ,2m}, in which case the probability is actually zero. 

While the ambiguities of the different elements are correlated, it is safe to say 
that the probability that there exists an ambiguous element in X is at most 

1 1 
m x 2m = 2' 

It follows that with probability at least a half, none of the elements is ambiguous. 
But if there exist two distinct minimum weight sets, say Si and Sj. there must be 
an element that belongs to one of these sets but not the other, i.e., there must be 
an ambiguous element. Thus, with probability at least a half there is a unique 
minimum weight set. 0 

Exercise 12.12: Determine the probability that there is a unique minimum weight set 
when the weights are chosen from the set {1. ... , t}. 

Exercl~e 12.13: Does a similar result hold for the maximum weight set? 

The application of this lemma to the perfect matching problem is obvious. 
Let X be the set of edges in the graph, and F the set of perfect matchings. It 
follows that assigning random weights between 1 and 2m to the edges leads to 
a unique minimum weight perfect matching with probability at least 1/2. We 
now turn to the task of identifying this perfect matching. 

12.4.2. The Parallel Matching Algorithm 

Suppose we have chosen the random weight function W for the edges of G as 
described above, and let Wij be the weight assigned to the edge (i,j). We will 
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assume that there is a unique minimum weight perfect matching, and that its 
weight is W. If there is more than one minimum weight perfect matching, 
the following algorithm will fail (the mode of failure will be evident from the 
description below). This happens with probability at most 1/2, and the algorithm 
can be repeated to reduce the error probability. 

Consider the Tutte matrix A corresponding to the graph G. Let B be the 
matrix obtained from A by setting each indeterminate Xij to the (random) integer 
value 2Wi

j. 

Lemma 12.11: Suppose that there is a unique minimum weight perfect matching 
and that its weight is W. Then, det(B) =1= 0 and, moreover, the highest power of 2 
that divides det(B) is 22W. 

PROOF: The proof is a generalization of the proof of Tutte's theorem. For each 
permutation u E Sn defined over V = {1, ... ,n}, define its value with respect 
to B as val(u) = ll7=1 Biu(i). Observe that val(u) is non-zero if and only if for 
each i E V, the edge (i, u(i» is present in G. Recall from Section 7.2 that the 
determinant of the matrix B is given by 

det(B) = L sgn(u) x val(u), 
ueS. 

where sgn(u) is the sign of a permutation u. Permutations with sign +1 are 
called even, and those with sign -1 are called odd. The reader should not 
confuse the sign of a permutation with the sign of its value. 

We focus only on the permutations with non-zero value, since the others 
do not contribute to the determinant. Let US first explicate the structure of 
the non-zero permutations. The trail of a permutation u of non-zero value is 
the subgraph of G containing exactly the edges (i, u(i», for 1 < i < n. It is 
convenient to view the edges (i, u(i» as being directed from i to u(i). The n 
edges corresponding to u form a multiset where each edge has multiplicity 1 or 
2, and the edges of multiplicity 2 occur with both orientations. Each vertex has 
two edges from the trail incident on it, one incoming and the other outgoing, 
and these may correspond to the two orientations of the same undirected edge 
from G. Thus, the trail consists of disjoint cycles and edges, where the isolated 
edges are those of multiplicity 2. The orientations on the edges are such that 
the cycles are oriented, and the isolated edges may be viewed as oriented cycles 
of length 2. Define an odd-cycle permutation as one whose trail contains at 
least one odd-length cycle, while even-cycle permutations have only even length 
cycles. 

In each odd-cycle permutation u, fix a canonical odd cycle C as follows; for 
each cycle, sort the list of vertex indices and use the sorted sequence of indices 
as label for that cycle; pick the odd cycle whose label is the lexicographically 
smallest. We can pair off the odd-cycle permutations by associating with such 
u the unique odd-cycle permutation -u obtained by reversing the orientation 
of the edges in the canonical odd cycle C. Given these definitions, both u and 
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-u have the same canonical odd cycle and -( -u) = u. The skew-symmetric 
nature of the matrix B implies that val(u) = -val(-u), while the identical 
cycle structure of the two permutations implies that sgn( u) = sgn( -u). It 
follows that their net contribution to det(B) is O. Thus, the set of odd-cycle 
permutations has a net contribution of zero toward the value of det(B). This 
value of the determinant is completely determined by the value of the even-cycle 
permutations. 

Notice that a permutation u that corresponds to a perfect matching M 
has a trail consisting exactly of the set of edges in M, and each of these 
edges has multiplicity 2. Also, for any perfect matching M, the value of the 
permutation corresponding to it is exactly (_1)"/222w(M), where w(M) is the 
weight of the matching M. If these were the only even-cycle permutations 
to consider, the result would follow immediately. However, there are even
cycle permutations that do not correspond to any particular perfect matching, 
although as discussed below they can all be viewed as representing a union of 
two perfect matchings. 

An even-cycle permutation u consists of a collection of even cycles, and 
its trail can be partitioned into two perfect matchings, say Ml and M 2, by 
considering alternating edges from each cycle. 

Exerclse.12.14: Verify that Ivai (cr)1 = 2w(M,)+w(M2). 

When the trail of u has a cycle of length greater than 2, the two per
fect matchings Ml and M2 are distinct and, since at most one of these two 
perfect matchings can be the unique perfect matching of minimum weight, it 
follows that Ival(u)1 > 22W. On the other hand, when the trail has only cy
cles of length 2, i.e., the permutation corresponds to a perfect matching, we 
have Ml = M2 and Ival(u)1 = 2 2w(Md > 22W. But note that equality with 
22W is achieved only when Ml = M2 is the unique minimum weight perfect 
matching. 

Thus, the absolute contribution to det(B) from each even-cycle permu
tation is a power of 2 no smaller than 22W. Moreover, exactly one of 
these contributions - the one from the even-cycle permutation correspond
ing to the unique minimum weight perfect matching - is equal to 22W. The 
determinant of B can now be viewed as a sum of powers of 2, possibly 
negated, such that the exponent of every term but one is strictly greater 
than 2W. Since the term of absolute value 22W cannot cancel out, it fol
lows that det(B) =1= 0 and in fact the largest power of 2 dividing it is 22W. 

o 

Exercise 12.15: Observe that, after choosing the random weights, both Band det(B) 
can be computed via NC algorithms. Show that the value of W can also be determined 
in NC. 
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Of course, this only shows how to compute the weight of the minimum weight 
perfect matching. The following lemma is the basis for actually determining the 
edges in that matching. Recall that Iii is the minor of B obtained by removing 
the ith row and the jth column from B. 

Lemma 12.12: Let M be the unique minimum weight perfect matching in G, and 
let its weight be W. An edge (i, j) belongs to M if and only if 

is odd. 

det( Iij )2Wij 

22W 

PROOF: Consider the matrix Q obtained from B by zeroing out each entry in 
the ith row and jth column of B, except for B ij . Notice that any permutation of 
non-zero value with respect to Q must map i to j. 

Exercise 12.16: Verify that 

det(Q) = (_I)i+j 2Wij det(Bij) = L sgn(O") x val(O"). (12.1) 
u:u(i)=j 

We can now apply the same argument as in Lemma 12.11 to claim that 
odd-cycle permutations (mapping i to j) will have a zero net contribution to the 
sum (12.1). One possible problem with doing so is that the canonical odd cycle 
in a specific permutation 0" may contain the oriented edge going from i to j, 
in which case its partner -0" will invert the orientation on that edge and hence 
not belong to the set of permutations mapping i to j. This will create problems 
in the canceling argument. However, note that since n is even, any odd-cycle 
permutation has at least two odd cycles and so we can choose the canonical 
cycle to be one not containing the edge from i to j. 

If the edge (i, j) belongs to M, then (as before) exactly one even-cycle per
mutation contributes 22W to the sum and all others contribute a strictly larger 
power of 2. This implies that 22W is the largest power of 2 dividing the sum, 
and the remainder must be an odd integer. On the other hand, if (i, j) does not 
belong to M, all even-cycle permutations must contribute powers of 2 strictly 
larger than 22W , implying that the sum is divisible by 22W+l and the remainder 
of its division by 22W is an even number. 0 

It is now easy to determine all the edges in the minimum weight perfect 
matching M, and the algorithm is summarized below. 
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Algorithm Parallel Matching: 

Input: Graph G(V, E) with at least one perfect matching. 

Output: A perfect matching M s; E. 

1. for all edges (i,j), in parallel do 
choose random weight wii. 

2. compute the Tutte matrix B from w. 

3. compute det(B). 

4. compute W such that 22W is the largest power of 2 dividing det(B). 

5. compute adj(B) = det(B) x B-1 whose U, i) entry has absolute value det(Bii). 

6. for all edges (i, j) do (in parallel) 
compute 'Ii = det(Bii)2W1i j22W. 

7. for all edges (i,j) do (in parallel) 
If'ii is odd then add (i,j) to M 

Exercise 12.17: Verify that each step of this algorithm can be implemented in RNC, 
implying that it is an RNC algorithm for finding perfect matchings. 

The most expensive computations in this algorithm are those of finding the 
determinant, inverse, and adjoint of an n x n matrix whose entries are O(m)-bit 
integers (since the matrix entries have magnitudes that are exponential in the 
edge weights). 

Theorem 12.13: Given a graph G with at least one perfect matching, the Parallel 
Matching algorithm finds a perfect matching with probability at least 1/2. For a 

graph G with n vertices it requires o (log2 n) time and O(n3.5m) processors. 

This is a Monte Carlo algorithm with (one-sided) error probability of 1/2, 
and this probability can be reduced by repetitions. The only possible error 
arises when, even though the graph does have a perfect matching, the algorithm 
determines a set of edges that do not form a perfect matching because the 
random choice of weights did not yield a unique perfect matching. It is a simple 
matter to check for this error and convert this into a Las Vegas algorithm. 
Although we assumed throughout that the number of vertices n is even, it is 
possible to apply this algorithm to the case of odd n. 

Exercise 12.18: In a graph G(V, E) with n vertices, when n is odd we define a perfect 
matching to be a matching of cardinality lnj2J. Explain how the Parallel Matching 
algorithm may be adapted to this case. 
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Finally, the Parallel Matching algorithm can be adapted to obtain a Las Vegas 
algorithm for finding a maximum matching, as outlined in Problems 12.16-12.18. 

12.5. The Choice Coordination Problem 

We now move on to distributed computation, in this section and in Section 12.6; 
we thus no longer use the PRAM model. A problem often arising in parallel 
and distributed computing is that of destroying the symmetry between a set of 
possibilities. This may be achieved by the use of randomization as in the case 
of the Choice Coordination Problem (CCP) discussed below. That this is a very 
"natural" problem is demonstrated by the following situation, which has been 
studied in biology. A particular class of mites (genus Myrmoyssus) reside as 
parasites on the ear membrane of the moths of family Phaenidae. The moths 
are prey to bats and the only defense they have is that they can hear the sonar. 
used by an approaching bat. Unfortunately, if both ears of the moth are infected 
by the mites, then their ability to detect the sonar is considerably diminished, 
thereby severely decreasing the survival chances of both the moth and its colony 
of mites. The mites would like to ensure the continued survival of their host, 
and they can do so by infecting only one ear at a time. The mites are therefore 
faced with a "choice coordination problem": how does any collection of mites 
infecting a particular ear ensure that every other mite chooses the same ear? 
The protocol used by these mites involves leaving chemical trails around the 
ears of the moth. 

Our interest in this abstract problem has a more computational motivation. 
Consider a collection of n identical processors that operate in total asynchrony. 
They have no global clock and no assumptions can be made about ther relative 
speeds. The processors have to reach a consensus on a unique choice out 
of a collection of m identical options. We use the following simple model of 
communication between the processors. There is a collection of m read-write 
registers accessible to all n processors. Several processors may simultaneously 
attempt to access or modify a register. To deal with such conflicts, we assume 
that the processors use a locking mechanism whereby a unique processor obtains 
sole access to a register when several processors attempt to access it; moreover, 
all the remaining processors then wait until the lock is released, and then 
contend once again for access to the register. The processors are required to run 
a protocol for picking a unique option out of the m choices. This is achieved by 
ensuring that at the end of the protocol exactly one of the m registers contains a 
special symbol .. ./. The complexity of a choice coordination protocol is measured 
in terms of the total number of read and write operations performed by the 
n processors. (Clearly, running time has little meaning in an asynchronous 
situation. ) 

It is known that any deterministic protocol for solving this problem will have a 
complexity of 0(n1/3) operations. We now illustrate the power of randomization 
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in this context by showing that there is a randomized protocol which, for any 
c > 0, will solve the problem using c operations with a probability of success at 
least 1 - 2-0 (c). For simplicity we will consider only the case where n = m = 2, 
although the protocol and the analysis generalize in a rather straightforward 
manner. 

We start by restricting ourselves to the rather simple case where the two 
processors are synchronous and operate in lock-step according to some global 
clock. The following protocol is executed by each of the two processors. We 
index the processors Pi and the possible choices by Ci for i E {O, I}. The 
processor Pi initially scans the register Ci. Thereafter, the processors exchange 
registers after every iteration of the protocol. This implies that at no time will 
the two processors scan the same register. Each processor also maintains a local 
variable whose value is denoted by Bi . 

Algorithm SYNCH-CCP: 

Input: Registers Co and C1 initialized to o. 
Output: Exactly one of the two registers has the value J. 

O. Pj is initially scanning the register Cj and has its local variable B j initialized 
to O. 

1. Read the current register and obtain a bit R I • 

2. Select one of three cases. 

case: 2.1 [R I = .J] 
halt; 

case: 2.2 [RI = 0, BI = 1] 
Write J into the current register and halt; 

case: 2.3 [otherwise] 
Assign an unbiased random bit to BI and write B j into the current 
register; 

3. PI exchanges its current register with P1- 1 and returns to Step 1. 

To verify the correctness of this protocol it suffices to see that at most one 
register can ever have J written into it. Suppose that both registers get the value 
J. We claim that both registers must have had J written into them during the 
same iteration; otherwise, Case 2.1 will ensure that the protocol halts before 
this error takes place. Let us assume that the error takes place during the tth 
iteration. Denote by Bi(t) and ~(t) the values used by processor Pi just after Step 
1 of the tth iteration of the protocol. By Case 2.3, we know that Ro(t) = Bl (t) 
and Rl(t) = Bo(t). The only case in which Pi writes J during the tth iteration is 
when ~ = ° and Bi = 1; then, R1- i = 1 and B1- i = 0, and P1- i cannot write J 
during that iteration. 

We have shown that the protocol terminates correctly by making a unique 
choice. But this assumes that the protocol terminates in a finite number 
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of iterations. Why should this happen? Notice that during each iteration. 
the probability that both the random bits Bo and Bl are the same is 1/2. 
Moreover, if at any stage these two bits take on distinct values, then the 
protocol terminates within the next two stages. Thus, the probability that 
the number of stages exceeds t is 0(1/2t). The computational cost of each 
iteration is bounded, so that this protocol does O(t) work with probability 
1 - 0(1/2'). 

We now generalize this protocol to the asynchronous case where the two 
processors may be operating at varying speeds and cannot "exchange" the 
registers after each iteration. In fact, we no longer assume that the two processors 
begin by scanning different registers - choosing a unique starting register Co 
or C1 is in itself an instance of the choice coordination problem. Instead, we 
assume that each processor chooses its starting register at random. Thus, the 
two processors could be in a conflict at the very first step and must use the 
lock mechanism to resolve this conflict. The basic idea is to put time-stamps 
tj on the register Cj , and Tj on the local variable Bj• We assume that a read 
operation on Cj will yield a pair (t j, ~), where tj is the time-stamp and ~ is 
the value of that register. If the processors were to operate synchronously, these 
time-stamps would be exactly the same as the iteration number t of the previous 
protocol. 

Algorithm ASYNCH-CCP: 

Input: Registers Co and C1 initialized to (0,0). 

Output: Exactly one of the two register~ has the value J. 

O. Pj is initially scanning a randomly chosen register. Thereafter, it changes its 
current register at the end of each iteration. The local variables T/ and B/ 
are initialized to O. 

1. Pj obtains a lock on the current register and reads (tj, Rj). 

2. p/ selects one of five cases. 

Case 2.1: [R; = .J] 
halt; 

Case 2.2: [T; < tj ] 

T; - t/ and B j - R;. 
Case 2.3: [T/ > t;] 

Write J into the current register and halt; 
Case 2.4: [T; = t;, R/ = 0, B; = 1] 

Write J into the current register and halt; 
Case 2.5: [otherwise] 

Tj - T; + 1, tj - tj + 1, assign a random (unbiased) bit to B; and write 
(t j , B j ) into the current register. 

3. P; releases the lock on its current register, moves to the other register, and 
returns to Step 1. 
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Theorem 12.14: For any c > 0, Algorithm ASYNCH-CCP has total cost exceed
ing c with probability at most 2-o(c). 

PROOF: The only real difference from the previous protocol is in Cases 2.2 and 
2.3. A processor in Case 2.2 is playing catch-up with the other processor, and 
the processor in Case 2.3 realizes that it is ahead of the other processor and 
is thus free to make the choice. To prove the correctness of this protocol, we 
consider the two cases where a processor can write J into its current cell- these 
are Cases 2.3 and 2.4. Whenever a processor finishes an iteration, its personal 
time-stamp Ti equals that of the current register ti. Further, J cannot be written 
during the very first iteration of either processor. 

Suppose Pi has just entered Case 2.3 with time-stamp Tt and its current cell 
is Ci with time-stamp t;, where t; < Tt. The only possible problem is that P1- i 

may write (or already have written) J into the register C1- i • Suppose this error 
does indeed occur, and let ti-i and T:_i be the time-stamps during the iteration 
of P1- i when it writes J into C1- i• 

Now Pi comes to Ci with a time-stamp of Tt, and so it must have left C1- i 
with a time-stamp of the same value before P1- i could write J into it. Since 
time-stamps cannot decrease, ti-i ~ Tt. Moreover, P1- i cannot have its time
stamp T:_i exceeding t;, since it must go to C1- i from Ci and the time-stamp of 
that register never exceeds ti. We have established that T:_1 < t; < Tt < ti-i. 
But P1- i must enter Case 2.2 for T:_i < ti-i' contradicting the assumption that 
it writes J into C1- i for these values of the time-stamps. 

Case 2.4 can be analyzed similarly, except that we finally obtain that T:_i < 
t; = Tt < ti-i. This may cause a problem since it allows T:_i = ti-i' and so 
Case 2.4 can cause P1- i to write J; however, we can now invoke the analysis of 
the synchronous case and rule out the possibility of error. 

The complexity of this protocol is easy to analyze. The cost is proportional 
to the largest time-stamp obtained during the execution of this protocol. The 
time-stamp of a register can go up only in Case 2.5, and this happens only when 
Case 2.4 fails to apply. Moreover, the processor Pi that raises the time-stamp 
must have its current Bi value chosen during a visit to the other register. Thus, 
the analysis of the synchronous case applies. 0 

12.6. Byzantine Agreement 

The subject of this section is the classic Byzantine agreement problem in dis
tributed computation. As in Section 12.5, we study a process by which n 
processors reach an agreement. However, in the scenario we consider here, t 
of the n processors are faulty processors. We further assume that the faulty 
processors may collude in order to try and subvert the agreement process. A 
protocol designed to withstand such strong adversaries should certainly work in 
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the face of weaker faulty behavior arising in practice. The goal is a protocol 
that achieves agreement while tolerating as large a value of t as possible. 

The Byzantine agreement problem is the following. Each of the n processors 
initially has a value that is 0 or 1; let bi denote the value initially held by the 
ith processor. There are t faulty processors, and we refer to the remaining n - t 
identical processors as good processors. Following communication according to 
the rules below, the ith processor ends the protocol with a decision di E {O, I}, 
which must satisfy the following properties. 

1. All the good processors should finish with the same decision. 

2. If all the good processors begin with the same value v, then they all finish with 
their (common) decision equaling v. 

The set of faulty processors is determined before the execution of the protocol 
begins (though of course the good processors do not know the identities of 
the faulty processors). The agreement protocol proceeds in a sequence of 
rounds. During each round, each processor may send one message to each 
other processor. Each processor receives a message from each of the remaining 
processors, before the following round begins. A processor need not send the 
same message to all the other processors. In the protocol described below, every 
message will be a single bit. All good processors follow the protocol exactly. 
A faulty processor may send messages that are totally inconsistent with the 
protocol, and may send different messages to different processors. In fact, we 
assume that the t faulty processors work in collusion: at the start of each round, 
they decide among themselves what messages each of them will send to each 
good processor, with the goal of inflicting the maximum damage. Agreement is 
achieved when every good processor has computed its decision consistent with 
the two properties above. We study the number of rounds it takes to achieve 
agreement. 

It is known (see the Notes section) that any deterministic protocol for agree
ment in this model requires t + 1 rounds. We now exhibit a simple randomized 
algorithm that terminates in a number of steps whose expectation is a constant. 
The number of rounds is a random variable, but the protocol is always correct 
in that it results in agreement as defined above; thus we have a Las Vegas pro
tocol. We assume that at each step there is a global coin toss that a trusted party 
performs. The coin toss equiprobably results in a HEADS or a TAILS, and this 
result (denoted coin) is correctly conveyed to all the processors. This assumption 
can be dispensed with in more complicated protocols, but we do not discuss 
these here (see the Notes section). 

For the remainder of the discussion, the reader may find it convenient to think 
of t < n/8; however, this is not a fundamental barrier, and the protocol in fact 
works for somewhat larger values of t. (This is the subject of Problem 12.27.) 
During each round of the protocol, each processor transmits a single bit, called 
its vote, to each other processor. A good processor sends the same vote to all 
other processors. Faulty processors may send arbitrary, inconsistent votes to 
good processors. Assume that n is a multiple of 8 for simplicity of exposition; 
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let L denote (5n/8) + 1, H denote (3nI4) + 1, and G denote 7n/8. (In fact, the 
protocol only requires that L ~ (nI2) + t + 1 and H > L + t in order to work.) 
The ith processor executes the following routine, for 1 < i < n. 

Algorithm ByzGen: 

Input: A value b;. 

Output: A decision d;. 

1. vote = b/; 

2. For each round, do 

3. Broadcast vote; 

4. Receive votes from all other processors; 

5. maj - majority value (0 or 1) among votes received including own vote; 

6. tally - number of occurrences of maj among votes received; 

7. If coin = HEADS then threshold - L; 
else threshold - H; 

8. If tally ~ threshold then vote - maj; 
else vote - 0; 

9: If tally ~ G then set d/ to maj permanently; 

We begin the analysis with an easy exercise: 

Exercise 12.19: Show that if all the good processors begin a round with the same 
initial value, they all set their decisions to this value in a constant number of rounds. 

The more interesting case for analysis is when the good processors do not all 
start with the same initial value. In the absence of faulty processors, a solution 
would' be for all processors to broadcast their values, and then set their decisions 
to the majority of these values. The algorithm ByzGen implements this idea in 
the face of malicious faults. 

If two good processors compute different values for maj in Step 5, tally does 
not exceed threshold regardless of whether L or H was chosen as threshold. Then, 
all good processors set vote = 0 in Step 8.2. As a result, all good processors set 
their decisions to 0 in the following round. It thus remains to consider the case 
when all good processors compute the same value for maj in Step 5. 

We say that the faulty processors foil a threshold x E {L, H} in a round if, by 
sending different messages to the good processors, they cause tally to exceed x 
for at least one good processor, and to be no more than x for at least one good 
processor. Since the difference between the two possible thresholds Land H is 
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at least t, the faulty processors can foil at most one threshold in a round. Since 
the threshold is chosen equiprobably from {L, H}, it is foiled with probability 
at most 1/2. Thus, the expected number of rounds before we have an unfoiled 
threshold is at most 2. If the threshold is not foiled, then all good processors 
compute the same value v for vote in Step 8. In the following round, every good 
processor receives at least G > H > L votes for v, and sets maj to v in Step 
5. Then, in Step 9, tally exceeds whichever threshold is chosen. When a good 
processor sets d; the other good processors must have tally > threshold, since 
G > H + t. Therefore they will all vote the same as d; henceforth. 

Theorem 12.15: The expected number of rounds for ByzGen to reach agreement 
is a constant. 

The protocol ByzGen above does not include a termination criterion. 

Exercise 12.20: Suggest a modification to the protocol ByzGen in which all good 
processors halt upon agreement. 

Exercise 12.21: In the protocol ByzGen, is it always true that all good processors 
determine their decisions in the same round? 

Notes 

Karp and Ramachandran [241] give a comprehensive survey of PRAM algorithms. Some 
good references for parallel algorithms are the books by JiUil [208] and Leighton [271] 
and the volume edited by Reif [354]. The BoxSort algorithm of Section 12.2 is due 
to Reischuk [356]. Following Reischuk's work, a number of deterministic sorting 
algorithms running in O(logn) steps using n processors have been devised, most notably 
by Ajtai, Komlos, and Szemeredi [8] with later simplifications and improvements by 
Paterson [328]; Cole [110] gave a different deterministic parallel algorithm using n 
processors and O(log n) steps. 

The intractability of the parallel solution of the LFMIS problem was established by 
Cook [111]. The first RNC algorithm for MIS is due to Karp and Wigderson [251]; they 
also provided a derandomized version of their algorithm. This was a complex algorithm 
requiring a large running time and a high processor count. The Parallel MIS algorithm 
and its derandomization is due to Luby [282]; this paper pioneered the idea of using 
random variables of limited independence to lead to a deterministic algorithm for a 
concrete problem (see also the Notes section of Chapter 3). Alon, Babai, and Itai [19] 
independently gave an RNC algorithm for the MIS problem and also derandomized 
it to obtain an NC algorithm. A more efficient NC algorithm was later provided by 
Goldberg and Spencer [173]. The paradigm of derandomizing parallel algorithms using 
limited independence has found a variety of applications. Luby [284] has combined it 
with the method of conditional probabilities (Section 5.6) to achieve processor efficiency 
for the maximal independent set problem. Berger and Rompel [55] and Motwani, Naor, 
and Naor [313] have used a combination of logn-wise independence and the method of 
conditional probabilities to derive NC algorithms for a variety of problems. Karger and 
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Motwani [233] have used the combination of pairwise independence with the random 
walk technique for recycling random bits described in Chapter 6 to construct an NC 
algorithm for the min-cut problem. The min-cut problem is closely related to the 
matching problem - an NC algorithm for min-cut in directed graphs would result in an 
NC algorithm for maximum matching in bipartite graphs. 

The reader may refer to the survey article by von zur Gathen [412] for a survey of 
parallel matrix algorithms. The first NC algorithm for matrix determinants is due to 
Csanky [115], but it applies only to fields of characteristic zero. Borodin, von zur Gathen, 
and Hopcroft [79] gave an NC algorithm for the general case (see Berkowitz [56] for a 
more elegant version). The algorithm due to Chistov [95] is currently the best known 
solution, and it requires only o (iog2 n) time. The computation of adjoints and inverses 
of a matrix can be reduced to the determinant computation at the cost of an increase 
in time and processor count. The randomized algorithm cited in Theorem 12.9 is due to 
Pan [323]. 

The book by Lovasz and Plummer [281] is an excellent source for combinatorial and 
algorithmic results related to matchings, and Vazirani [405] surveys parallel matching 
algorithms. Section 7.8.3 gives a history of results establishing the connection between 
matchings and matrix determinants. Israeli and Shiloach [207] give an NC algorithm for 
finding maximal matchings. The NC algorithm in the case of a unique perfect matching 
is due to Rabin and Vazirani [348, 349], and in the case of polynomially small number of 
perfect matchings is due to Grigoriev and Karpinski [184]. The first RNC algorithm for 
matchings was given by Karp, Upfal, and Wigderson [242], and this was subsequently 
improved by Galil and Pan [162]. This work raised several interesting questions with 
respect to the parallel complexity of search versus decision problems, and this theme is 
explored by Karp, Upfal, and Wigderson [250]. The Isolating Lemma and the Parallel 
Matching algorithm are due to Mulmuley, Vazirani, and Vazirani [317]. These Monte 
Carlo algorithms were converted into Las Vegas algorithms by Karloff [237]. The 
best known deterministic algorithm using a polynomial number of processors, due to 
Goldberg, Plotkin, and Vaidya [172], requires O(n2/3 ) time. An interesting special case 
for which NC algorithms are known is that of finding perfect matchings in regular 
bipartite graphs. Lev, Pippenger, and Valiant [274] derived this result by providing an 
algorithm for edge coloring (which is a partition into matchings) a bipartite graph of 
maximum degree Il with Il colors. In the non-bipartite case, Karloff and Shmoys gave 
an RNC algorithm for approximate edge coloring, and this was derandomized by Berger 
and Rompel [55] and Motwani, Naor, and Naor [313]. Some interesting open problems 
are: 

~ Research Problem 12.1: Devise an NC algorithm for finding a maximum match
ing in a given graph. 

~ Research Problem 12.2: Devise an NC or an RNC algorithm for edge coloring a 
graph of maximum degree A using at most A+l colors (see Vizing's Theorem [71]). 

~ Research Problem 12.3: Aggarwal and Anderson [4] have shown that the prob
lem of finding a depth-first search tree in a graph can be solved in RNC using 
RNC algorithms for finding maximum matchings; once again, the issue of an NC 
algorithm is unresolved. 
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The algorithm for the choice coordination problem in Section 12.5 is due to Ra
bin [344], and the biological analog is described in a paper by Treat [397]. The 
Byzantine agreement problem was introduced by Pease, Shostak and Lamport [330]. 
Fischer and Lynch [148] showed that in our model, any deterministic protocol requires 
t + 1 rounds to reach agreement, in the worst case. This lower bound matches an upper 
bound given in [330]. The ByzGen protocol of Section 12.6 is due to Rabin [347]. Our 
presentation follows Chor and Dwork [96], who give a comprehensive account of the 
history of the problem, the various models under which it has been studied, and the many 
variants and improvements of Rabin's scheme. They point out that if the processors 
do not operate in synchrony, it is impossible to achieve agreement using a deterministic 
protocol; this result is due to Fischer, Lynch, and Paterson [149]. On the other hand, 
ByzGen and other randomized protocols can be shown to achieve agreement even in an 
asynchronous setting. 

Problems 

12.1 Show that the parallel variant of randomized quicksort described in Sec
tion 12.2 sorts n elements with n processors on a CREW PRAM, with high 
probability in 0(log2 n) steps. 

12.2 Prove Lemma 12.1. The following outline is suggested (refer to Section 12.2 
for the notation). 

1. Bound the probability that a(Bi+1) = a(BJ) using the result of Exer
cise 12.6. 

2. Bound the probability that for any particular k, the value k is contained 
more than Tk times in the sequence a(Bl)'"'' a(~,). 

3. Bound the probability that for 1 ~ k ~ c log log n, the value k is contained 
more than Tk times in the sequence a(Bl), ... ,a(B,). 

12.3 Suppose that the random samples in Stage 1 of BoxSort are chosen using 
pairwise independent, rather than completely independent random variables 
(the choices made by the various boxes are independent of each other, 
though). Derive the best upper bound you can on the number of parallel 
steps taken by BoxSort. 

12.4 Using the ideas of Section 12.2, devise a CREW PRAM algorithm that selects 
the kth largest of n input numbers in O(log n) steps using nj log n processors. 
Assume that the n input numbers are initially located in global memory 
locations 1 through n. 

12.5 Devise a ZNC algorithm for generating a random (uniformly distributed) 
permutation of a set S containing n elements. (Hint: Consider assigning 
random weights to the elements of S. If the weights are drawn from a 
suffiCiently large set, each element will have a distinct weight.) 

12.6 A maximal matching in a graph is a matching that is not properly contained 
in any other matching. Use the parallel algorithm for the MIS problem to 
devise an RNC algorithm for finding a maximal matching in a graph. 
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12.7 Consider a graph G (V, E) with maximum degree ~. Show that a sequential 
greedy algorithm will color the vertices of the graph using at most ~+ 1 colors 
such that no two adjacent vertices are assigned the same color. Employing 
the parallel algorithm for MIS, devise an RNC algorithm for finding a ~ + 1 
coloring of a given graph. 

12.8 (Due to M. Luby [282].) The vertex partition problem is defined as follows: 
given a graph G(V,E) with edge weights, partition the vertices into sets V1 

and V2 such that the net weight of the edges crossing the cut (V1, V2 ) is at 
least a half of the total weight of the edges in the graph. Describe an RNC 
algorithm for this problem, and explain how you will convert this into an NC 
algorithm using the idea of pairwise independence. 

12.9 (Due to M. Luby [282].) In the Parallel MIS algorithm, suppose that the 
random marking of the vertices is only pairwise independent. Show that the 
probability that a good vertex belongs to S u r(S) is at least 1/24. 

12.10 (Due to M. Luby [282].) Suppose that you are provided with a collection 
of n pairwise independent random numbers uniformly distributed over the 
set {O, 1, .. . ,p -1}, where p ~ 2n. It is desired to construct a collection of 
n pairwise independent Bernoulli random variables where the ith random 
variable should take on the value 1 with probability 1/t;, for 1 ~ t; ~ n/8. Show 
how you can achieve this goal approximately by constructing a collection of 
pairwise independent Bernoulli random variables such that the ith variable 
"takes on the value 1 with probability 1/T, where for a constant c > 1, T; 
satisfies 

12.11 (Due to M. Luby [282].) Combining the results of Problems 12.9 and 12.10, 
show that the Parallel MIS algorithm can be derandomized to yield an NC 
algorithm for the MIS problem. Note that the approach in Problem 12.10 will 
not work for marking vertices with degree exceeding n/16, and these will 
have to be dealt with separately. 

12.12 (Due to M. Luby [282].) In this problem we consider a variant of the Parallel 
MIS algorithm. For each vertex v E V, independently and uniformly choose 
a random weight w(v) from the set {1, ... ,n4 }. Repeatedly strip off an 
independent set S and its neighbors r(S) from the graph G, where at each 
iteration the set S is the set of marked vertices generated by the following 
process: mark all vertices in V, and then in parallel for each edge in E unmark 
the end-point of larger weight. Show that this yields an RNC algorithm for 
MIS. Can this algorithm be derandomized using pairwise independence? 

12.13 (Due to D.R. Karger [231].) Recall the randomized algorithm for min-cuts 
discussed in Section 1.1 (see also Section 10.2). Describe an RNC imple
mentation of this algorithm. (Hint: While contracting the edges appears to 
be sequential process, it can be implemented in parallel using the following 
observation. Consider generating a random permutation on the edges, as 
described in Problem 12.5 and using this to determine the order in which 
the edges are contracted. The contraction algorithm will terminate at that 
point in the permutation where the preceding edges constitute a graph with 

364 



PROBLEMS 

exactly two connected components. Assume that there is an NC algorithm 
for determining connected components.) 

12.14 (Due to M. Luby, J. Naor, and M. Naor [285].) Using the idea of pairwise 
independence, construct an RNC algorithm for the min-cut problem that 
uses only a polylogarithmic number of random bits (see also Problem 12.13). 
What implications does this have for placing the min-cut problem in NC? 
(Hint: Select a set of edges by choosing each edge pairwise independently 
with probability 1/c, where c is the size of the min-cut; see Problem 12.10. 
In parallel, contract all edges in this set. Repeat this process until the graph 
is reduced to two vertices.) 

12.15 (Due to M.O. Rabin and V.V. Vazirani [349].) Let G(V,E) be a graph with 
a unique perfect matching. Devise an NC algorithm for finding the perfect 
matching in G. (Hint: Consider substituting 1 for each indeterminate in the 
Tutte matrix. What is the significance of the entries in the adjoint of the Tutte 
matrix?) 

12.16 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) Consider the 
problem of finding a minimum-weight perfect matching in a graph G(V, E), 
given edge-weights w(e) for each edge e E E in unary. Note that it is not 
possible to apply the Isolating Lemma directly to this case since the random 
weights chosen there would conflict with the input weights. Explain how you 
would devise an RNC algorithm for this problem. The parallel complexity of 
the case where the edge-weights are given in binary is as yet unresolved 
- do you see why the RNC algorithm does not apply to the case of binary 
weights? (Hint: Start by scaling up the input edge weights by a polynomially 
large factor. Apply random perturbations to the scaled edge weights and 
prove a variant of the Isolating Lemma for this situation.) 

12.17 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) Devise an 
RNC algorithm for the problem of finding a maximum matching in a graph. 
Observe that the Parallel Matching algorithm does not work (as stated) when 
the maximum matching is not a perfect matching. 

12.18 (Due to H.J. Karloff [237].) Suppose you are given a Monte Carlo RNC 
algorithm for finding a maximum matching in a bipartite graph. Explain how 
you would convert this into a Las Vegas algorithm. Can the solution be 
generalized to the case of non-bipartite graphs? (Hint: While this conversion 
is trivial for perfect matching algorithms, for maximum matching algorithms 
you will need to devise a parallel algorithm for determining an upper bound 
on the size of a maximum matching in a graph. This requires a non-trivial 
use of structure theorems for matchings in graphs.) 

12.19 This problem explores a different method for converting the Monte Carlo 
maximum matching into a Las Vegas one. Recall from Problem 7.7 that 
the rank of the matrix of indeterminates constructed for a bipartite graph is 
exactly equal to the size of the maximum matching (a similar result holds for 
the general case). Consider the following approach for determining the size 
of the maximum matching: replace the indeterminates by random values 
and compute the rank of the resulting matrix. The rank of an integer matrix 
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can be computed in NC, and one would hope that the random substitution 
method would preserve the rank with high probability. We would like to use 
this to verify that the matching algorithm is indeed producing the maximum 
matching, and thereby obtain a Las Vegas algorithm. Does this method 
work? 

12.20 (Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) In a bipartite graph 
G(U, V,E), for any set F s; E define the rank r(F) as the maximum size of 
intersection of F with a perfect matching, i.e., r(F) is the largest number of 
edges in F that appear together in some perfect matching. Devise an RNC 
algorithm for computing the rank for any given set F. Can this be generalized 
to non-bipartite graphs? 

12.21 (Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) Assume you are given 
the algorithm from Problem 12.20. Using this, we will outline the construction 
of an alternative RNC algorithm for perfect matchings . 

• Assuming that the input graph is sparse in that it has a total of n vertices 
and fewer than 3nj4 edges, devise an NC algorithm for finding a large 
set S of edges that are guaranteed to belong to every perfect matching 
in G . 

• Suppose now that the input graph has more than 3nj4 edges. Using 
the rank algorithm, devise an RNC algorithm for finding a large set T 
of edges such that there exists a perfect matching in G none of whose 
edges belong to T. 

Using the above tools, describe an alternative RNC algorithm for perfect 
matchings. 

12.22 (Due to V.V. Vazirani [405].) Prove that the Isolating Lemma holds even 
when the weight of a set is defined to be the product (instead of sum) of the 
weights of its elements. Can you identify any general family of mappings 
from the weights of elements to the weights of sets for which the Isolating 
Lemma is guaranteed to be valid? 

12.23 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) An intriguing 
application of the Isolating Lemma is to the class of "uniqueness" problems, 
i.e., determining whether some problem in NP has a unique solution. Con
sider the following two problems, which take as input a graph G(V,E) and a 
positive integer k: 

CLIQUE: Determine whether the graph has a clique of size k. 

UNIQUE CLIQUE: Determine whether there is exactly one clique of size k. 

The complexity of unique solutions has been studied with respect to ran
domized reductions, which are the natural generalization of polynomial time 
reductions to allowing randomized polynomial time reductions. Devise a ran
domized polynomial time reduction from the CLIQUE problem to the UNIQUE 
CLIQUE. 

12.24 (Due to J. Naor.) Let G(V, E) be an unweighted, undirected graph with n 
vertices and m edges. Under any weight function w : E - {O, ... , W}, the 
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length of a path in G is the sum of the weights of the edges in that path. 
A weight function is said to be good if the following two conditions hold for 
each vertex x E V. 

1. For all vertices y E V, the shortest path from x to y is unique. 

2. For any pair of vertices y, Z E V, the net weight of the shortest path 
from x to y is different from the net weight of the shortest path from x 
to z. 

What is the smallest value of W (as a function of nand m) for which you can 
guarantee the existence of a good weight assignment? 

12.25 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) An even 
more intriguing application of the Isolating Lemma is to the Exact Matching 
problem - given a graph G(V, E) with a subset of edges R s;;; E colored red, 
and a positive integer k, determine whether there is a perfect matching using 
exactly k red edges. This problem is not known to be in p, but can be shown 
to be in RNC via a (non-trivial) application of the Isolating Lemma. Devise 
RNC algorithms for the decision and search versions of this problem. 

12.26 (Due to M.O. Rabin [344].) Show that Algorithm ASYNCH·CCP works equally 
well in the case where the numbers of processors and choices are both 
greater than 2. How does the complexity depend on the number of processors 
and choices? 

12.27 How large a value of t can the ByzGen algorithm tolerate? (Modify the 
parameters L, H, and G if necessary.) 

12.28 Consider what happens if the outcome of the coin toss generated by the 
trusted party in the ByzGen algorithm is corrupted before it reaches some 
good processors. 

(a) Can disagreement occur if different good processors see different out
comes? What happens if, instead of a global coin toss, each processor 
chooses a random coin independently of other processors, at every round? 

(b) Suppose that we were guaranteed that at least H good processors receive 
the correct outcome of each coin toss. Give a modification for the protocol 
ByzGen that achieves agreement in an expected constant number of rounds, 
under this assumption. 
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Online Algorithms 

ALL the algorithms we have studied so far receive their entire inputs at one 
time. We turn our attention to online algorithms, which receive and process the 
input in partial amounts. In a typical setting, an online algorithm receives a 
sequence of requests for service. It must service each request before it receives 
the next one. In servicing each request, the algorithm has a choice of several 
alterna~ives, each with an associated cost. The alternative chosen at a step may 
influence the costs of alternatives on future requests. Examples of such situations 
arise in data-structuring, resource-allocation in operating systems, finance, and 
distributed computing. 

In an online setting, it is often meaningless to have an absolute performance 
measure for an algorithm. This is because in most such settings, any algorithm for 
processing requests can be forced to incur an unbounded cost by appropriately 
choosing the input sequence (we study examples of this below); thus, it becomes 
difficult, if not impossible, to perform a comparison of competing strategies. 
Consequently, we compare the total cost of the online algorithm on a sequence 
of requests, to the total cost of an offline algorithm that services the same 
sequence of requests. We refer to such an analysis of an online algorithm as 
a c01rJpetitive analysis; we will make these notions formal presently. Intuitively, 
this form of analysis assumes that there is an inherent cost associated with a 
request sequence (the cost of the best possible algorithm that knows the entire 
request sequence in advance and can tailor its responses accordingly), and the 
performance of an online algorithm on a given sequence is measured in terms of 
the ratio it achieves with respect to this inherent cost. The worst-case ratio over 
all possible request sequences is then a natural measure of the quality of the 
online algorithm. In some practical settings, this approach leads to a meaningful 
theoretical validation of the difference between competing strategies. 

A classical example where this approach has been particularly successful 
is that of paging in a two-level memory storage system, and we introduce 
online algorithms through this example. We define three possible scenarios for 
randomized online algorithms, and then study the relationships between them. 
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We give optimal algorithms for paging in each of these scenarios. Finally, we 
present some results for generalizations of the paging problem. 

13.1. The Online Paging Problem 

We first consider the paging problem. Consider a computer memory organized 
as a two-level store: there is a cache or fast memory that can store k memory 
items, and a slower main memory that can potentially hold an infinite number 
of items. Each item represents a page of virtual memory (the cache can contain 
k of these). A paging algorithm decides which k items to retain in the cache 
at each point in time. We have a sequence of requests, each of which specifies 
a memory item. If the item requested is currently in the cache, a hit is said to 
occur, and the algorithm incurs no cost on that request. If not, a miss occurs 
and the item must be fetched from the main memory at a unit cost; in addition, 
one of the k items currently in the cache must be evicted to make room for 
the incoming item. The cost measure for paging is the number of misses on a 
sequence of requests. Naturally, the cost incurred depends on the algorithm that 
decides which k items to retain in the cache at each point in time. 

We now examine the actions of an algorithm. When the requested item is 
fetched from the main memory to the cache and the cache is full, a paging 
algorithm must invoke an eviction rule for deciding which item currently in the 
cache is evicted to make room for the new item. Intuitively, a paging algorithm 
will try not to evict items that will be requested again in the near future. An 
online paging algorithm must make this decision without knowledge 'of future 
requests; in contrast, an offline algorithm makes each decision with complete· 
knowledge of the future. We first study the basic concepts involved using 
deterministic algorithms, and then proceed to randomized paging algorithms. 

Here are some typical (deterministic) online algorithms that have been used 
in computer systems. 

• Least Recently Used (LRU): evict the item in the cache whose most recent request 
occurred furthest in the past. 

• First-in, First-out (FIFO): evict the item that has been in the cache for the longest 
period. 

• Least Frequently Used (LFU): evict the item in the cache that has been requested 
least often. 

Notice that there is a non-trivial computational cost associated with some of 
these online algorithms; for instance, LRU must maintain a priority queue of 
time stamps for the k items in the cache. 

Let p = (PI. P2, . .. , P N) be a request sequence presented to an online paging 
algorithm A. Consider the case when A is deterministic. Upon each request, 
we know exactly how A will respond and, given the sequence PI. P2, ... , P N, 

we can deduce the number of times that A misses on this sequence. We can 

369 



ONLINE ALGORITHMS 

also compute the minimum possible number of misses on this sequence, i.e., 
the cost of an optmal offline algorithm for this sequence. Let !A(PhP2, ... ,PN) 
denote the number of times that A misses on the sequence Ph P2,···, PN, and 
let! O(Ph P2, . .. , p .''- I be the minimum number of misses (for an optimal offline 
algorithm) on the ~ame sequence. 

The following ,dearly offline) strategy is known to minimize !O(PhP2, ... ,PN) 
on every request sequence Ph P2, . .. , P N: on a miss, evict that item in the cache 
whose next request occurs furthest in the future. This offline strategy is known 
as the MIN algorithm. The proof of optimality is non-trivial and a pointer can 
be found in the Kotes section. 

Exercise 13.1: In this exercise, we will see that the traditional worst-case perfor
mance analysis is ~eaningless in an online setting such as the paging problem. 
Consider the rather- simple scenario where there are only k + 1 distinct memory 
items. Assume whatever is convenient for the initial contents of the cache in each 
case. 

1. Show that for any (deterministic) online paging algorithm A, there exist sequences 
of arbitrary length such that the algorithm A misses on every request, i.e., 
fA (P1,P2, ... ,PN) = N. 

2. Show that for the offline paging algorithm MIN, the worst-case number of misses on 
a request sequence of length N is N / k. 

Suppose that we wish to study the performance of online algorithms such 
as LRU, FIFO, and LFU. In Exercise 13.1 we saw that the seemingly natural 
measure of the worst-case value of !A(PhP2, ... ,PN) is not useful. This motivates 
the following measure of performance. 

~ Definition 13.1: A deterministic online paging algorithm A is said to be C
competitive if there exists a constant b such that on every sequence of requests 
PhP2,·· ·,PN, 

f .. (PhP2,···,PN) -C x !O(PhP2, ... ,PN):S;; b, 

where the constant b must be independent of N but may depend on k. The 
competitiveness coefficient of A, denoted CA, is the infimum of C such that A is 
C-competitive. 

Roughly speaking, competitiveness measures the performance of an online al
gorithm in terms of the worst-case ratio of its cost to that of the optimal offline 
algorithm running on the same request sequence. 

The LRU and FIFO algorithms mentioned above are known to be k
competitive (see Problems 13.1 and 13.2). In Problem 13.3 we will see that the 
LFU does not achie,oe a bounded competitiveness coefficient. From Exercise 13.1 
we conclude that no deterministic online paging algorithm has competitiveness 
coefficient smaller than k, thereby obtaining that LRU and FIFO are optimal 
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deterministic online algorithms. We give an alternate proof of this lower bound 
on the competitiveness coefficient of deterministic algorithms, so as to develop 
some tools for the subsequent analysis of randomized algorithms. But first, we 
define a paging algorithm formally. 

A paging algorithm consists of an automaton with a finite set S of states. The 
response of this automaton to a request is specified by a function F that depends 
on the current state of the automaton, the k items in the cache, and the newly 
requested item. It specifies, in general, a new state for the automaton, together 
with the new set of items in the cache. We impose the following condition on F: 
the set of items in the cache after the request is serviced must include the item 
just requested. 

Theorem 13.1: Let A be a deterministic online algorithm/or paging. Then CA ~ k. 

PROOF: Imagine that the offline algorithm and A are both managing (separate) 
caches for the same request sequence. Assume that to start with, both the offline 
algorithm and A have the same set of k items in their caches. 

Consider the following request sequence, which is completely determined by 
the behavior of A. The first request is to an item not in either cache, and both 
algorithms incur a miss on this request. Let S be the set of k + 1 items consisting 
of the k items initially in the offline algorithm's cache together with the new 
item. From then on, every request is for the unique item in S not in A's cache. 
Thus A misses on every request. 

We partition the request sequence into rounds in a manner described below. 
We will argue that during each round, A misses at least k times but an optimal 
offline algorithm has at most one miss. The first round begins with the first 
request. A round is a maximal sequence of requests in which at most k distinct 
items are requested; each of these items may be requested any number of times 
and in any order. A round ends when, after k distinct items have been requested 
during the round, a new item p is requested, and p then becomes the first request 
of the next round. Since the round contains at least k requests and A misses on 
every one of them, it misses at least k times during the round. 

We now argue that there is an offline algorithm that misses only once during 
a round, in fact on the first request of the round. Since only k distinct items are 
requested during the round, there is one item that will not be requested until 
the first request of the following round; denote this item by p. When the offline 
algorithm misses on the first request of the round, it evicts p and thereby ensures 
that there are no further misses in that round (as the MIN algorithm would). 
Because A is deterministic, the offline algorithm can predict the behavior of 
A during each round. Knowing the initial contents of A's cache (the same as 
the initial contents of its own cache), it knows the entire request sequence in 
advance, and in particular the identity of p for every round. 

At the end of each round, both the online algorithm and the offline algorithm 
have the same set of items in their caches. Thus this construction can be repeated 
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as many times as desired, proving that there are arbitrarily long sequences on 
which A has k times as many misses as the offline algorithm. D 

We pause to make some observations about the negative result we have just 
seen. First, the proof uses only the fact that the online algorithm does not know 
future requests and does not exploit any computational limitation of the online 
algorithm. Thus the lower bound applies to any deterministic online algorithm 
without any regard for its use of computational resources such as time or space. 
This is a typical feature of most negative results for online algorithms. 

Second, the proof of the lower bound uses only k + 1 distinct memory items 
in all. In this lower bound, one can view the offline algorithm as an adversary 
who is not only managing a cache, but is also generating the request sequence. 
This will be a recurrent theme in the notions of adversaries we will develop 
for randomized algorithms - that there is an adversary generating requests, 
in collusion with a reference algorithm that is the yardstick against which the 
competitiveness of the given online algorithm is being measured. The adversary's 
goal is to increase the cost to the given online algorithm, while keeping it down 
for the reference algorithm. 

13.2. Adversary Models 

Can we overcome the negative result of Theorem 13.1 using randomization? 
To make this question precise, we must first make precise the notion of the 
competitiveness of a randomized algorithm. Consider a randomized online 
paging algorithm R; on a miss, it makes a (possibly random) choice of which of 
the k items in the cache it will evict. Given a sequence of requests Ph P2,·.·, PN, 
the number of times that R misses on the sequence is now a random variable, 
which we will denote by f R(Ph P2,··., PN). Following the convention in our study 
of deterministic online paging algorithms, we study the behavior of R when the 
sequence of requests is generated by an adversary. However, there is no longer 
a unique notion of an "adversary" for a randomized online algorithm. This 
section introduces three different possibilities for the notion of an adversary for 
a randomized online algorithm. The relationships between them will be explored 
further in Section 13.4. 

The central issue is the following question: what does the adversary know in 
generating each request of the sequence? The weakest adversary we may envision 
knows the algorithm R in advance, but has no knowledge of the random choices 
made by R while processing a request sequence. Such an adversary may as well 
write down the entire request sequence in advance, since it is not influenced in 
any way by the actual execution of R. Having written down such a "worst case" 
request sequence for R, the adversary services this sequence optimally using 
MIN and incurs the concomitant cost. This cost of an optimal service strategy 
is not a random variable, since the sequence is fixed, and so we denote it by 
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/O(Ph P2,· .. , PN). We call such an adversary an oblivious adversary, reflecting the 
fact that the adversary is oblivious to the random choices made by R. 

We say that R is C-competitive against the oblivious adversary if for every 
sequence of requests PhP2, ... ,PN, 

for a constant b independent of N. The oblivious competitiveness coefficient of 
R, denoted Ctl, is the infimum of C such that R is C-competitive. 

What if the adversary were able to choose each request after having observed 
the previous choices (and thus the current state) of the online algorithm? 
Whether or not the adversary is allowed to adapt the request sequence to these 
"run-time" random choices could affect the value of the competitiveness'that is 
achievable. This is not an issue when A is a deterministic online algorithm, since 
the behavior of A on PI, P2, .. . , Pi is completely predictable and so we could as 
well assume that the adversary .knows of A's responses to these requests when 
choosing Pi+l. The response of a randomized algorithm, on the other hand, 
depends on random choices it makes during its execution. 

To study this, we introduce the adaptive adversary who chooses Pi+l after hav
ing observed the responses of the randomized online algorithm to PI,P2, ... ,Pi. 
Thus the adaptive adversary is denied information only about the future ran
dom choices of the randomized online algorithm R. The cost incurred by R 
is still a random variable. However, in order to facilitate the definition of the 
competitiveness of R against an adaptive adversary, we have to specify what 
we mean by the cost of an optimal algorithm. In the discussion below, it may 
help the reader to think of the adaptive adversary and the optimal algorithm as 
working in collusion. 

Here there are two possible scenarios. In the first, the adversary generates 
the sequence adaptively as described above; when the entire sequence has been 
generated in this fashion, the adversary exhibits its optimal strategy for servicing 
the sequence (using MIN). We refer to this as the adaptive offline adversary. 
Since the request sequence depends on the behavior of the algorithm R, it is a 
random sequence. Thus both /R(PI,P2" .. ,PN) and /O(PhP2, ... ,PN) are random 
variables. Before defining the competitiveness of R against an adaptive offline 
adversary, let us look at the second possible scenario involving an adaptive 
adversary. 

Suppose the adversary were to generate the sequence adaptively as before, 
but in addition was required to concurrently manage a cache online. In other 
words, the adversary generates Pi+l based on the responses of R to Ph P2,· .. , Pi, 
and immediately exhibits its own response to Pi+l (but does not reveal it to R, 
of course). Then, following R's response to Pi+l, it generat~s Pi+2, responds to 
Pi+2, and so on. Again both /R(PI,P2, ... ,PN) and /O(PI,P2, ... ,PN) are random 
variables. We refer to such an adversary as an adaptive online adversary. 

Let PI, P2,"" PN be a sequence of requests generated by an adaptive of
fline adversary. We say that R is C-competitive against the adaptive offline 
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adversary if 

E[fR(Pl,P2, ... ,PN)] -C x E[fO(Pl,P2, .. ·,PN)] :s;; b 

for a constant b independent of N. The adaptive offline competitiveness coefficient 
of R, denoted C';I, is the infimum of C such that R is C-competitive. Likewise, 
we define the adaptive online competitiveness coefficient of R, denoted co;n. 

Clearly, the adaptive offline adversary is at least as powerful as the adaptive 
online adversary, which in turn.is at least as powerful as the oblivious adversary. 
It follows that for any algorithm R, 

Cobl < Caon < Caol R - R - R . 

Let us denote by cobl the lowest oblivious competitive coefficient of any ran
domized paging algorithm; similarly we define caon and Caol. Finally, let Cdet 

denote the lowest competitive coefficient of any deterministic paging algorithm. 
Then we have 

How far apart in value can the different coefficients be? In Section 13.4 we will 
develop some general relationships between these quantities. 

13.3. Paging against an Oblivious Adversary 

The lower bound of Theorem 13.1 hinged on the adversary being able to predict, 
at each step, the response of the algorithm to any request. We now study the 
effect of denying the adversary this facility; we will study randomized online 
algorithms for paging against oblivious adversaries. The request sequence is 
specified at the beginning by the adversary and is not changed after that. The 
adversary also determines its (optimal offline) response to the sequence and the 
cost of this response. The sequence is then unveiled to the online algorithm, 
one request at a time as before. This prevents the offline player from knowing 
with certainty (as in the proof of Theorem 13.1) the contents of the cache of 
the online algorithm. Intuitively, it seems that this should help the randomized 
online algorithm fare better. 

We first prove a negative result on the performance of any randomized online 
paging algorithm. 

Theorem 13.2: Let R be a randomized algorithm for paging. Then ctl ~ Hk. 
where Hk = E~-l 1/ j is the kth Harmonic number. 

In order to prove this theorem, we apply Yao's Minimax Principle (Sec
tion 2.2.2) to the competitiveness of randomized online paging algorithms. Let 
P be a probability distribution for choosing a request sequence, i.e., a probability 
distribution by which Pi is chosen. The distribution for Pi is allowed to depend 
on Pl,P2, ... ,Pi-l. The algorithm's costs (as well as the optimal cost) are now 
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random variables. For a deterministic online paging algorithm A, define its 
competitiveness under P, C~, to be the infimum of C such that 

E[fA(P.,P2, ... ,PN)] -C x E[fO(PI,P2, ... ,PN)] :::;; b 

for a constant b independent of N. Yao's Minimax Principle (Section 2.2.2) 
implies that 

inf cob/ = sup inf Cp
. 

R R P A A 

The implication of this in our situation is as follows: the competitiveness of 
the best randomized online paging algorithm equals C~, the competitiveness of 
a "best possible" deterministic algorithm A on inputs generated according to 
P, a "worst-case" distribution on request-sequences p. Thus, we can establish a 
lower bound on Cc:/ by giving a probability distribution P and giving a lower 
bound on C~ for any deterministic algorithm A. 

Proof of Theorem 13.2: We will make use of a set of k + 1 memory items, 
I = {I., ... ,h+d, in the lower bound. Since k of these can be accommodated in 
the cache, only one item need be outside the cache at any given time. Thus any 
paging algorithm need only specify which one item it leaves out of the cache at 
any point in time. We assume that N ::> k. 

We will use Yao's Minimax Principle as follows: we give a probability 
distribution on request sequences p of length N, and first study the number 
of misses for any deterministic algorithm on p. The sequence p is chosen as 
follows: for i > 1, request Pi is chosen uniformly at random from the If items in 
the set I - {Pi-d; the first request, PI is chosen uniformly from all the items in 
I. We will show that the offline algorithm can divide p up into rounds such that 
it only misses on the final request in each round. 

The first round begins with the first request and ends when, for the first 
time, every item in I has been requested at least once; the second round begins 
with the next request. In general, each round ends just before the request to 
the (k + l)th distinct item since the start of that round. The offline algorithm 
uses the MIN algorithm during each round: it leaves out of its cache the item 
requested last in a round, until that item is requested (on the final request of 
the round). This item is requested exactly once during each round, and thus the 
offline algorithm incurs one miss during each round. 

How often does the offline algorithm miss? Equivalently, what is the expected 
length of each round? A moment's thought shows that this is the cover time of 
the random walk on a complete graph with k + 1 vertices and is equal to kHk. 

Let us now consider the online algorithm A. At any point in time, A must 
leave one of the k + 1 items out of the cache. Whenever a request falls on this 
item, A incurs a miss. Since every request goes to an item chosen uniformly 
at random from the k items other than the one just requested, the probability 
that any request falls on the item that A leaves out is 11k. It follows that the 
expected number of misses per round is Hk. 
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Thus the number of times A misses has expectation Hk times the number of 
misses of the offline algorithm on the same sequence, and this yields the result. 

We now study a randomized online paging algorithm that achieves a compet
itiveness coefficient close to the lower bound of Theorem 13.2. This algorithm 
is referred to as the Marker algorithm. The algorithm proceeds in a series of 
rounds. Each of the k cache locations has a marker bit associated with it. At 
the beginning of every round, all k marker bits are reset to zero. As memory 
requests come in, the algorithm processes them as follows. If the item requested 
is already in one of the k cache locations, the marker bit of that location is set 
to one. If the request is a miss (the item requested is not one of the k in the 
cache), the item is brought into the cache and the item that is evicted to make 
room for it is chosen as follows: choose an unmarked cache location uniformly 
at random, evict the item in it, and set its marker bit to 1. After all the locations 
have been thus marked, the round is deemed over on the next request to an item 
not in the cache. 

Theorem 13.3: The Marker algorithm is (2Hk )-competitive. 

PROOF: For convenience in the proof, we will sometimes refer to the items (rather 
than the cache locations that contain them) as being marked or unmarked; thus 
we will refer to an item as being marked if the cache location containing it is 
marked, and as unmarked otherwise. As before, we will compare the Marker 
algorithm's management of a cache with k locations on a sequence PI, P2, ... to 
an optimal offline algorithm's cache management on the same sequence. 

Assume that both algorithms start with the same k items in the cache, and 
that PI is not in the cache. The Marker algorithm implicitly divides the request 
sequence into a series of rounds, the first of which begins with PI. The round 
beginning with request Pi ends with Ph where j is the smallest integer such 
that there are k + 1 distinct items in Pi, Pi+ h ... , P j+ I. All k cache locations are 
marked at the end of each round. The first request of each round is to an item 
not currently in cache. 

Consider the requests in any round. Call an item stale if it is unmarked, but 
was marked in the previous round, and clean if it is neither stale nor marked. 
Let t be the number of requests to clean items in a round. We first argue 
that the amortized number of misses incurred during the round by the offline 
algorithm is at least t /2, and then show that the expected number of misses of 
the Marker algorithm during the round is at most t Hk; these facts together will 
yield the theorem. 

Let So denote the set of items in the offline algorithm's cache, and SM denote 
the set of items in the Marker algorithm's cache. Let dr be the value of ISo \ SMI 
at the beginning of the round, and dF this value at the end of the round. Let 
Mo be the number of misses incurred by the offline algorithm during the round. 

Clearly Mo ~ t - dJ, since at least t - dr of the t clean items requested in 
the round are not in the offline algorithm's cache at the beginning of the round. 
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At the end of the round, all the k (marked) items in SM at that point are items 
that were requested during the round. Since dF items in the offline algorithm's 
cache are not in SM, the offline algorithm has incurred at least dF misses during 
the round. Thus, 

t -dr +dF Mo ~ max{t - dr,dF } ~ 2 . 

On summing this lower bound on Mo over all rounds, the dr and dF terms 
for all rounds (except the first and the last) telescope, so that the "amortized" 
number of misses of this round is at least t /2. (By amortization, we mean here 
that we can think of "charging" each round a certain number of misses without 
affecting the total number of misses.) By this we mean that we may charge t /2 
misses to this round; by adopting this charging mechanism for all rounds, we 
estimate the total number of misses over all rounds to within an additive factor 
of 2k. 

Consider the expected number of misses incurred by the Marker algorithm 
during the round. Each of the t requests to clean items costs the Marker 
algorithm a miss. Of the k - t requests to stale items, the expected cost of each 
is the probability that the item requested is not in the cache. This is maximized 
when the t requests to clean items all precede the k - t requests to stale items. 
For 1 $; i $; k - t, a simple calculation shows that this probability is t / (k - i + 1) 
for the ith request to a stale item. Summing this over all i shows that the 
expected cost of the Marker algorithm is bounded by 

t + t(Hk - H() :s;; tHb 

and this proves the result. D 

Thus the Marker algorithm achieves a competitiveness coefficient that is at most 
twice the best possible. In fact, there is a more sophisticated algorithm that is 
Hk-competitive in general; a pointer is available in the Notes Section. 

13.4. Relating the Adversaries 

We have just seen that against an oblivious adversary, a randomized algo
rithm can attain a competitiveness coefficient substantially smaller than that 
of any deterministic algorithm. Can a similar performance be attained against 
adaptive adversaries? In this section we study relations between the competi
tiveness coefficients attainable against the three types of adversaries introduced 
in Section 13.2. We will see that randomized online algorithms cannot achieve 
such substantial improvements against adaptive adversaries, as such adversaries 
prove to be very powerful. Later, in Section 13.5 we will study some randomized 
algorithms and their performance against adaptive adversaries. 

The results we are about to derive can easily be obtained in the setting of . 
the paging problem; however, they apply to considerably more general online 
problems. We therefore study the more general setting of request-answer games 
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that we will introduce now, and the results derived here apply to the paging 
problem we have studied in previous sections. We proceed to define these games 
and make the notions of the various adversaries precise in this context. 

A request-answer game consists of a request set 'R and a finite answer set 
A, together with cost functions In : 'Rn 

X An -+ R U {<Xl} for each non-negative 
integer n. Let I denote the union, over non-negative integers n, of the functions 
In. Let us fix our attention on one such game. Let p denote a sequence of 
requests (whose length will be implicit from its usage), and likewise let a denote 
a sequence of answers. 

A deterministic online algorithm A is a sequence of functions gi : 'Ri -+ A for 
positive integers i. Fix a value n. For any sequence of requests p = (Pl, ... ,Pn), 
we define A(p) = (ah ... ,an) E An with ai = gi(Ph ... ,Pi) for i = 1, ... ,n. The 
cost of A on p is CA(P) = In(p,A(p». We will compare this cost incurred by the 
online algorithm A to the optimal cost for the same sequence of requests, which 
IS 

C(p) = min{fn(p,a) I a E An}. 

Let 0:, P : R -+ R denote linear functions. We say that the deterministic 
algorithm A is o:-competitive if for every request sequence p we have CA(P) :s; 
0: [c(p )]. 

A randomized online algorithm R is a probability distribution over deterministic 
online algorithms Ax (x may be thought of as representing the coin tosses of R). 
For a request sequence p the answer sequence R(p) is random, and so the cost 
CR(P) is a random variable. We say that a randomized algorithm is o:-competitive 
against oblivious adversaries if for any p we have Ex[CA)P)] :s; o:[c(p)]. 

In developing the notation for adaptive adversaries, we first do so for a 
deterministic algorithm A. We then note that for a randomized algorithm R that 
is a probability distribution on deterministic algorithms Ax, all the quantities 
defined become random variables. Once we have developed this notation, we 
will proceed to prove two results about the various adversaries for randomized 
algorithms. 

An adaptive ofHine adversary Q is a sequence of functions qn : An -+ 'R U 

{STOP},.where n = 0, 1, ... ,dQ and qdQ takes only the value STOP. For a particular 
deterministic algorithm A and an adaptive adversary Q, we define the request 
and answer sequences resulting from their interaction, p(A, Q) = (Ph.·., Pn) 
and a(A, Q) = (ah ... , an), together with n = n(A, Q). Further, we recursively 
have Pi+l = qi(ah ... ,ai) for i = O,I, ... ,n - 1, with qn(a(A,Q» = STOP, and 
a(A, Q) = A(p(A, Q». Because we are discussing a deterministic algorithm A for 
the moment, we have uniquely defined entities Ph ah ... , Pn-h an-I. STOP in that 
order. The value n = n(A, Q) is bounded by dQ for any A. The cost of A against 
adversary Q is defined to be CA(Q) = In(p(A, Q),a(A, Q». The adaptive offline 
adversary incurs the optimal cost for servicing the sequence, cQ(A) = c(p(A, Q)). 

An adaptive online adversary S = (Q, P) is an adaptive offline adversary Q, 
supplemented by a sequence P of functions that define its own online response 
to the request sequence. In particular, we have Pn : An -+ A for n = O,I, ... ,dQ. 
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Note that the request sequence is independent of P and depends only on the 
algorithm A (again, we are focusing for the moment on a deterministic algorithm 
A). Thus we can write p(A,S). p(A,Q), a(A,S) = a(A,Q), and CA(S) = CA(Q). 
In addition, the adversary's response P induces an answer sequence for the 
adversary, which we denote by b(A, S) = (bI, ... , bn) where n = n(A, Q) and 
bi+1 = Pi(aI, ... , ail for i = 0,1, ... , n - 1. The cost of S against A is denoted 
cs(A) = !n(p(A,S),b(A,S». 

For a randomized algorithm R that is a probability distribution on deter
ministic algorithms Ax (we think of x as the random string that selects the 
deterministic algorithm), the above definitions can be made again, with the 
costs becoming random variables. As in the case of the oblivious adversary, 
we say that a randomized algorithm is ~-competitive against adaptive offline 
(respectively online) adversaries if for any p we have Ex[CA)P)] ~ E[~[~Q(A)]] 
(respectively Ex[CAx(P)] ~ E[~[cs(A)]]). 

The reader is invited to verify that the request-answer games defined above 
generalize the paging problem of previous sections. While the following results 
could have been derived for the paging problem, we have chosen the more 
general setting in order to apply these results to more general online problems 
to be introduced in the next section. Our first result says that adaptive offline 
adversaries are so powerful that there is no benefit to using randomization 
against them. Note again that all the arguments below apply to any fixed 
request-answer game. 

Theorem 13.4: If there is a randomized algorithm that is ~-competitiv~ against 
every adaptive offline adversary, then there exists an ~-competitive deterministic 
algorithm. 

PROOF: View the request-answer game as a two-person game between two 
players C and D such that in every step C gives D a request, which D answers. 
A position in the game is a pair (p, a). Call a position an instant winner for C if 
!n(P,a) > ~[c(p)]. Call a position (p,a) winning for C if there exists an adaptive 
rule for selecting requests, and a positive integer t such that starting from (p, a), 
an instant winner for C will be reached in t steps regardless of how D plays. 

Let us suppose that there is an ~-competitive randomized algorithm R for any 
adaptive offline adversary. Further, suppose for a contradiction that there is no 
deterministic ~-competitive algorithm. Then C has a winning strategy against 
any deterministic player in the two-person game. The initial position, in which 
p and a are both the empty string, is winning for C if and only if there exists 
an adaptive offline adversary Q such that for any deterministic algorithm A, 

(13.1) 

Now, the randomized algorithm R is a probability distribution over deter
ministic algorithms Ax. Taking the expectation of (13.1) over all x, we have 
EX[cAx(Q)] > Ex[~[cQ(Ax)]], and thus E[CR(Q)] > E[~[cQ(R)]], where Ex[ ] de-
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notes the expectation over random strings x. This contradicts our assumption 
that R is ~-competitive, so that C does not have a winning strategy in the game. 

To complete the proof, we show that if C does not have a winning strategy, 
then there is a deterministic ~-competitive algorithm. Now, a position (p,a) is 
a winning position for C if and only if there exists a request Pn+l such that, 
for every answer an+h the position (pPn+l,aan+l) is again a winning position for 
C. Therefore, if (p,a) is not a winning position for C, it follows that for every 
request Pn+l there exists an answer an+l (due to the finiteness of the answer 
set) resulting in a position that is not winning for C. Thus if D counters with 
such an answer at each step, it has a winning strategy and thus a deterministic 
~-competitive algorithm. D 

By combining the results of Theorem 13.1 and Theorem 13.4, we conclude 
that no randomized online algorithm for the paging problem can achieve a 
competitiveness coefficient smaller than k, against adaptive offline adversaries. 
This is in marked contrast to the oblivious adversary, against which we have seen 
a randomized online algorithm achieving competitiveness coefficient O(log k). 
How well can a randomized algorithm perform against an adaptive online 
adversary? We can infer a limitation from the following theorem, which relates 
the three adversaries. 

Theorem 13.5: Suppose R is ~-competitive against any adaptive online adversary, 
and there is a p-competitive randomized algorithm against any oblivious adversary; 
then R is (~p)-competitive against any adaptive offline adversary. 

PROOF: Fix an adaptive offline adversary Q, and view R as a probability dis
tribution on deterministic algorithms Ax. We will prove that EX[cAx(Q)] ~ 
Ex [~[P[cQ(Ax)]]]. 

Let H be the randomized algorithm that is p-competitive against any oblivious 
adversary. Viewing H as a probability distribution on deterministic algorithms 
Hy, we have for every nand p E 'Rn

, Ey[CHy(P)] ~ P[c(p)]. 
For each fixed y, define an adaptive online advers~ry Sy = (Q, Py) in such a 

way that for any deterministic online algorithm A, it sets b(A, Sy) = Hy(p(A, Q)). 
Thus this adaptive online adversary uses Q to generate the request sequence. On 
the other hand, it uses Hy to answer the requests, independently of A. Now, R is 
~-competitive against this adaptive online adversary, and in turn this adaptive 
online adversary is p-competitive against any oblivious adversary. Thus for 
every fixed y, 

Ex[CAx(Sy)] ~ Ex[~[csy(Ax)]]. (13.2) 

Taking the expectation of (13.2) over y, we have 

Since the adaptive online adversary is "borrowing" the request sequence from 
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the adaptive offline adversary, we have for any y, p(Ax, Sy) = p(Ax, Q) = pz. 
Then, we have 

Ex [CAx(Q)] - Ey[Ex [CAx(Sy)]] 

:s;; Ey [~[Ex [cSy (pz )]]] 

- ~[Ex[Ey [CHy (pz)]]] 

:s;; ~[Ex[P[c(pz)]]] 

- Ex [~[P [cQ(Ax)]]]. 

D 

Let us again consider online algorithms for the paging problem. By Theo
rems 13.4 and 13.5, we have that Cdet ~ CaonCobl

• This tells us something about 
the performance of randomized online paging algorithms against adaptive online 
adversaries: we may infer that 

Cdet 

caon ~ c obl = O(k/Hk). 

In Section 13.5, we will further study randomized online algorithms against 
adaptive adversaries. 

Exercise 13.2: Suppose that we have an online algorithm that is a-competitive 
against any adaptive online adversary, for a request-answer game. Show that 
this implies the existence of a deterministic online algorithm for the game that is 
a 2-competitive. 

13.5. The Adaptive Online Adversary 

One of the goals of this section is to determine the value of Caon for the paging 
problem. We do so by studying a generalization of the paging problem studied 
above. The problem, known as weighted paging, is the following. As before, we 
have a two-level store whose cache can store k items at a time, while a slower 
memory can hold an infinite number of items. Again, we have a sequence of 
requests to items, and an item that is not in the cache when requested must be 
brought into the cache. And as before, an item in the cache must be evicted to 
make room for it. 

Each item x that can be requested has associated with it a positive real weight, 
which is denoted w(x). An algorithm that manages the cache incurs a cost of 
w(x) every time it brings x from the slow memory to the cache. The total cost 
incurred by an algorithm on a sequence of requests is the sum of these costs. 
Clearly, when w(x) = 1 for all x, we have the paging problem studied before. 
But when the weights of items differ substantially, a good algorithm will perhaps 
be more willing to evict a "light" item than a "heavy" one. Certainly, it is easy 
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to force algorithms such as LRU and F1[FO (which are known to be optimal 
online algorithms for the paging problem) to perform poorly because they do 
not account for the weights of the items. 

As in the paging problem, we may again define the competitiveness of an 
online algorithm, comparing its cost on a sequence to that of an optimal 
offline algorithm. Also, we may define as. before the three types of adversaries 
for randomized online algorithms for weighted paging. We begin by giving 
a simple randomized algorithm that achieves a competitiveness coefficient of 
k against adaptive online adversaries. A lower bound to be presented in 
Section 13.6 will allow us to conclude that no randomized online algorithm 
for the weighted paging problem (including all special cases such as the paging 
problem) can achieve a competitiveness coefficient lower than k against adaptive 
online adversaries. Thus the algorithm below is optimal in its performance. 

We now describe this simple randomi:~ed algorithm, called Reciprocal. The 
behavior of Reciprocal depends only on the weights of the items in the cache 
and is independent of the past. Let X., ••• , Xk be the items in the cache when an 
item not in the cache is requested. The Reciprocal algorithm uses the following 
simple, probabilistic eviction rule: evict Xi with probability Pi where 

l/w(xi) 
Pi = k • 

2:j =1 l/w(xj) 

Theorem 13.6: The Reciprocal algorithm is k-competitive against any adaptive 
online adversary. 

PR 0 0 F: The proof uses a device that is common in the competitive analysis of 
online algorithms - a potential function. The typical use of a potential function 
is as follows: it is a measure of the discre:pancy between a configuration of the 
online algorithm and a configuration of the offline algorithm. 

We will study the expected change in this potential function after each request 
and compare this to the costs incurred by the online and offline algorithms on 
that request. 

Let .siR be the set of items kept in the cache by Reciprocal after the ith 
reference, and SiADV be the set of items ke:pt by the adversary. Let 

<l»i = L w(x) - k L W(X), 
XES! XES!\S~DV 

and a<l»i = <l»i - <l»i-I. Letting ff denotle the cost incurred by Reciprocal in 
servicing the ith request and f~DV the corresponding cost of the adversary, we 
define 

Xi = ff - kftDV - L\<I»i. 

Consider the following two actions that c:ause the two parties (Reciprocal, and 
the adversary) to incur costs. 
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1. The adversary evicts an item. We can assume that the adversary brings an 
item into the cache only immediately before a reference to that item. Also, 
without affecting the analysis of the cost except by an additive term, we can 
charge the adversary for the item it evicts rather than for the item it brings 
into the cache; thus ItDV = W(Xi), if the adversary evicts Xi on reference i 
(and 0 otherwise). 

2. The Reciprocal algorithm evicts an item on a miss and is charged for the 
weight of the item it brings into the cache. 

We examine the effects of these two actions on 2:~"'1 Xj. By showing that in 
either case, E[Xi ] ~ 0 (and noting that <1»0 is bounded), we will argue that the 
theorem follows. Below, we drop the subscripts for SR, SADV, and a<l» because 
we consider the actions of each party in isolation; the reader may wish to think 
of the ith request, say to X, as being processed first by the (malicious) adversary, 
then by Reciprocal. 

1. The adversary brings X into the cache and evicts x'. Then ItDv = w(x'), 
and -L\<I» ::s;; kw(x'). (Equality is realized when x' E SR n SADV and x ¢ SR.) 
Thus, the contribution of the adversary's action to E[XiIXi-t. ... ,Xtl is never 
positive. 

2. Reciprocal misses on a reference to item x, so that If = w(x). Just before 
Reciprocal's action, ISR \ SADV I > 1. By substituting the probabilities used by 
Reciprocal, 

k ISR \ SADVI 
- w(x) -- + k=-----

2:YESR l/w(y) 2:YESR l/w(y) 

> w(x). 

Thus, the contribution of Reciprocal's action to E[XiIXi-t. ... ,Xtl is also less 
than O. 

After a sequence of requests, we have E[2: Xi] ~ 0; noting that <1»0 and <l»n 
are bounded, it follows that 

L(E[ffl - kE [ftD v]) 
i 

is bounded, yielding the theorem. (The reader is reminded that the additive term 
in the definition of competitiveness can depend on the weights of the items in 
the problem, as here. It cannot of course depend on the length of the request 
sequence.) D 

It is interesting to note that the special case of the Reciprocal algorithm for 
the (unweighted) paging problem evicts, on each miss, an item chosen uniformly 
at random from the k items in the cache. It follows from Theorem 13.6 
that this algorithm, known as Random in the paging literature, is k-competitive 
against any adaptive online adversary. Is k the lowest achievable competitiveness 
coefficient against the adaptive online adversary for the paging and weighted 
paging problems? We will answer this question in the affirmative in Section 13.6 
below. 
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Exercise 13.3: It is important to note that the potential function analysis above does 
not apply to adaptive offline adversaries. Explain why such an analysis fails against 
adaptive offline adversaries. 

The result of Problem 13.5 shows that the Random algorithm cannot achieve 
a competitiveness coefficient less than kHk against adaptive offline adversaries. 
Thus we have an instance where the inequality of Theorem 13.5 is tight: 
Random achieves a competitiveness coefficient of k against any adaptive online 
adversary and a competitiveness coefficient of kHk against any adaptive offline 
adversary, and there is a randomized algorithm for the paging problem that is 
Hk-competitive. 

13.6. The k-Server Problem 

We now study a generalization of the weighted paging problem above - the 
k-server problem. The setting of the k-server problem is a metric space. An online 
algorithm manages k mobile servers, each of which resides at one point of the 
metric space at any time. The algorithm is presented with a sequence of requests 
Ph P2,":' PN, where each request is a point in the space. In response to a request 
Pi, the algorithm must move a server to Pi unless it already has a server at Pi' 
Whenever the algorithm moves a server from point u to point v, it incurs a cost 
of cuv , the distance between u and v in the metric space. 

Given a sequence of requests PhP2",.,PN, let M A(PhP2, ... ,PN) denote the 
total cost incurred by an online algorithm A in servicing the requests in the 
sequence, and let MO(Ph P2, . .. , PN) denote the optimal offline cost of servicing 
the same sequence. We say that A is C-competitive if for every request sequence 

Ph P2,···, PN, 

MA(P),P2, ... ,PN) - ex MO(PhP2, ... ,PN)::S;; b 

for a constant b independent of N. The competitiveness coefficient of A, denoted 
CA , is the infimum ofC such that A is C-competitive. These definitions are similar 
to the ones we made for the paging problem (and used for the weighted paging 
problem as well). As before, we can define the three kinds of adversaries for 
randomized server algorithms and the corresponding notions of competitiveness. 

A moment's thought shows that the paging problem is a special case of the 
k-server problem, one in which there is a point in the metric space corresponding 
to each item that can be requested and the distance between any two points is 
one. Each of the k servers corresponds to one of the k cache locations. Moving 
a server in response to a request corresponds to making a miss on a requested 
item and bringing it into the corresponding cache location. The point from 
which the server is brought corresponds to the memory item that is evicted to 
make room for the new item. 
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Exercise 13.4: Show that the weighted paging problem can be formulated as a 
special case of the k-server problem. 

Other instances of the server problem arise in planning the motion of two
headed disks and in the maintenance of data-structures. Ultimately, though, it is 
the simplicity of the statement of the k-server problem that has lent it much of 
its appeal. In addition, the problem was originally posed along with a tantalizing 
conjecture that for every metric space, there is a deterministic online algorithm 
that is k-competitive. We will say more about this conjecture presently. 

Exercise 13.5: The greedy server algorithm is the following: given a request at a 
point v, choose the closest server (the server at the vertex u that minimizes cuv ) to 
service this request. Show that the greedy algorithm is not competitive for any k > 1, 
by giving an example of a cost matrix and a request sequence that forces the greedy 
algorithm to pay an unbounded cost whereas an offline algorithm pays a bounded 
cost on the same sequence. 

From the lower bound of Theorem 13.1, we know that there is a special case 
of the server problem (namely, the paging problem) in which no deterministic 
online algorithm achieves a competitiveness coefficient smaller than k. We 
generalize and extend this result now, showing that no randomized algorithm 
can achieve a competitiveness coefficient smaller than k for any server problem 
against adaptive online adversaries. Note that the following result does not 
use the minimax principle for the lower bound, but rather relies on' a simple 
counting argument. 

Theorem 13.7: Let R be a randomized online algorithm that manages k servers 
in any metric space. Then c,;n ~ k. 

PROOF: We will exhibit an adaptive request sequence P)' P2, ... , P N that forces 
R to pay a certain cost M R(PhP2, ... ,PN), and an online algorithm that on the 
same sequence pays an expected cost that is at most M R(PhP2, ... ,PN)/k. These 
together define the strategy of the adaptive online adversary that yields the 
theorem. 

Let H be any subset of k + 1 points in the space that includes the k points that 
R's servers initially occupy (we can assume that R never places two of its servers 
on the same point). At each step, there is one point in H that is not occupied 
by any of R's servers; we always make this the next request. Thus R's starting 
position and its subsequent actions determine a (random) sequence Ph P2,···, PN 
of requests. Since R moves a server from Pi+1 to Pi to service request Pi, the total 
cost that R incurs on this sequence is given by 

N N 

M R(PI,P2,···,PN) = LCPi+IPi = LCPiPi+l. 

i=1 i==1 
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We have defined the adaptive request sequence; it remains to describe the 
online adversary's own actions. We actually exhibit a family of k online algo
rithms that together pay a cost of at most MR(Ph P2, ... , PN) on the sequence 
P)'P2, ... ,PN. Then, a randomly chosen one of these k online algorithms pays 
an expected cost that is no more than MR(PhP2, ... ,PN)/k on the sequence 
PhP2, ... ,PN, and we are done. 

Let PI. Uh U2, ••• , Uk be the points in H (recall that H contains Ph a vertex that 
is initially uncovered by R and is therefore the site of the first request, and k 
other vertices that are the initial positions of R's servers). The online algorithm 
Bj in our family initially places its k servers at all the points in H except for Uj, 

for 1 < j < k. Algorithm Bj processes request Pi as follows: for i = 1, it uses the 
server at U j, and for i > 1 if it has no server at Pi, then it moves its server at PH 
to Pi. We will establish that 2:~=1 MBj(p),P2,···,PN) = MR(PhP2, ... ,PN), and 
that therefore there exists j such that MBj(Ph P2, . .. , PN) :s; MR(p), P2,· . . , PN )/k. 

The observation that will be crucial to establishing the above is the following: 
at any time in the sequence Ph P2, .. . , PN, the set of k points occupied by B/s 
servers is not the same as the set of k points occupied by Bm's servers, for 
j =1= m. If we can prove this it follows that on each request Pi, exactly one of 
the algorithms B j , for 1 :s; j < k, moves a server at a cost of Cpi_IPi. Summing 
over all i and j, we see that the total cost incurred by all the algorithms Bj , for 
1 <j<~, is 2:[:~1 CPiPi+1 + 2:~=1 CUjP1 = MR(p),P2, ... ,PN). 

It remains to prove the claim that algorithms Bj and Bm, for j =1= m, always 
occupy different sets of points. Let Sj and Sm be the sets of k points occupied 
by Bj and Bm, respectively, before request Pi is processed. We will show that if 
Sj =1= Sm, then the two sets are different after Pi is processed by Bj and by Bm. 
By our construction, the sets of points initially occupied by Bj and by Bm are 
different, so this will provide an inductive proof. 

Therefore, suppose that Sj =1= Sm. If Pi is in both Sj and Sm, neither set is 
changed in processing Pi, so the inductive invariant holds. If only one of them, 
say Sj> has no server at Ph it adds Pi and drops Pi-I; on the other hand, Sm 
maintains a server at Pi-I. and so the difference remains non-empty. 

Thus, exactly one of the algorithms Bj moves a server on request Pi, incurring 
a cost .CPI-1P1 • Therefore 

k 

LMBj(PI,P2, ... ,PN) = MR(PI,P2,···,PN). 
j=1 

D 

The reader may notice that the algorithm Bj for which M Bj (p)'P2, ... ,PN):S; 
MR(PhP2, .•. ,PN)/k may not begin with its servers at the same points as R. 
Could it be that Bj derived an unfair advantage from this? Recall that in our 
definition of competitiveness, we allowed an additive constant that may depend 
on the distances between points in the metric space. We thus imagine that all 
the algorithms Bi begin with their servers at the same points as R. Then, at 
the first request, each algorithm Bi first moves its servers to the points specified 
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in the proof of Theorem 13.7, paying a one-time cost that is absorbed in the 
additive term in the definition of competitiveness. Subsequently, Bi serves the 
requests as described above. 

The importance of Theorem 13.7 is that it applies to any metric space, and 
consequently to the weighted (as well as the unweighted) paging problem. Thus, 
Reciprocal is optimal for the weighted paging problem. 

Notes 

The model for the paging problem presented at the beginning of the chapter was 
introduced by Sleator and Tarjan [379]. The lower bound of Theorem 13.1 as well 
as the proof of the k-competitiveness of LRU and FIFO appear in the same paper. 
The optimality of the MIN algorithm was established by Belady [49] and by Mattison, 
Gecsei, Slutz, and Traiger [298]. The term "competitiveness" and related definitions 
first appeared in a paper of Karlin, Manasse, Rudolph, and Sleator [235]. Borodin, 
Linial, and Saks [76] were the first to demonstrate the power of randomization in online 
algorithms in the context of the so-called metrical task systems. 

The Marker algorithm for paging against oblivious adversaries (together with the 
lower bound of Hk) was discovered by Fiat, Karp, Luby, McGeoch, Sleator, and 
Young [145]. The improved algorithm achieving competitiveness coefficient Hk is due to 
McGeoch and Sleator [306]. 

The notion of mUltiple types of adversaries for randomized algorithms arose from 
the work of Raghavan and Snir [352]. The distinction between the two types of 
adaptive adversaries was first noticed by Karlin. The relations (Theorems 13.4 and 
13.5) between them are established in a paper by Ben-David, Borodin, Karp, Tardos, 
and Wigderson [51]. The Reciprocal algorithm appears in the article by Raghavan and 
Snir [352], for a slightly more general version of the weighted paging problem (see 
Problem 13.11 below). For the version of weighted paging we consider here, there is 
in fact a deterministic k-competitive algorithm for weighted paging due to Chrobak, 
Karloft', Payne, and Viswanathan [98]. 

The k-server problem was introduced by Manasse, McGeoch, and Sleator [290], who 
gave a lower bound of k on the competitiveness coefficient of any deterministic algorithm 
for any server problem (thus generalizing Theorem 13.1). They also gave a deterministic 
2-competitive algorithm for the case k = 2, for all metric spaces. While the results 
presented in this chapter give a fairly complete characterization of the paging problem 
(the special case of the server problem when all distances are 1), our understanding of 
the server problem for general k and for general metric spaces is far from complete. The 
first result giving a deterministic online algorithm achieving a competitiveness coefficient 
depending on k alone, in all metric spaces, is due to Fiat, Rabani, and Ravid [146]. The 
competitiveness coefficient of the algorithm is exponential in k log k. 

The lower bound of Theorem 13.2 tells us that there are metric spaces for which no 
randomized algorithm can achieve a competitiveness coefficient lower than Hk against 
oblivious adversaries. The same lower bound is conjectured to hold for general metric 
spaces: 

~ Research Problem 13.1: Show that no randomized online algorithm can achieve 
a competitiveness coefficient lower than Hk in any metric space, against oblivious 
adversaries. 
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Karloff, Rabani, and Ravid [238] initiated progress on this question by establishing 
two results: 

1. provided the metric space has at least k + 1 points, they give a lower bound of 
Q(log logk); 

2. for metric spaces with sufficiently many points, their bound is Q(logk). 

Subsequently, the lower bound for metric spaces of size at least k + 1 has been improved 
by Blum, Karloff, Rabani, and Saks [62] to O( Jlogk/ loglogk). 

We know of relatively few cases where randomization against an oblivious adversary 
beats the lower bound of k for deterministic algorithms that follows from Theorem 13.7. 
A discussion of these cases may be found in the paper by Karlin, Manasse, McGeoch, 
and Owicki [236]. 

The situation is slightly better in regard to adaptive adversaries. The Harmonic 
algorithm, due to Raghavan and Snir [352], is the following. Let di be the distance 
between the ith server managed by the algorithm to the requested point, for 1 :s; i :s; k. 
The algorithm chooses (independently of the past) the jth server with probability 

l/dj 
k • 

2:i-1 l/di 

Notice that this resembles the Reciprocal algorithm of Section 13.5, although the prob
abilities are not quite the same. Notice also that for the paging problem, in which all 
di equal 1, this becomes the Random algorithm. The reader should note that Reciprocal 
and Harmonic are two different generalizations of the Random algorithm for paging. 
Given that Random is k-competitive for the paging problem against adaptive online 
adversaries, one might hope that Harmonic is k-competitive for the server problem in 
all metric spaces. However, it is known that there are metric spaces for which Harmonic 
cannot achieve a competitiveness coefficient lower than k(k + 1)/2 (see Problem 13.13 
below). 

For Harmonic, Raghavan and Snir [352] proved an upper bound of 6 for k = 2, 
and this was later improved to the (tight) bound 3 by Chrobak and Larmore [99]. 
A breakthrough was achieved by Grove [186], who gave an upper bound of (5k2k)/4 
on the competitiveness coefficient of Harmonic in any metric space, and for all k. 
An important implication of this is the existence (by the result of Exercise 13.2) of a 
deterministic algorithm whose competitiveness coefficient is exponential in k, improving 
the result of Fiat, Rabani, and Ravid [146]. The most general class of metric spaces for 
which we know of a k-competitive algorithm against adaptive online adversaries follows 
from the work of Coppersmith, Doyle, Raghavan, and Snir [112]; their algorithm 
works in a class of metric spaces they call resistive metric spaces. There is, however, a 
deterministic (2k - I)-competitive algorithm for any metric space, due to Koutsoupias 
and Papadimitriou [269]. It remains to be seen whether the approach of Koutsoupias 
and Papadimitriou will result in a k-competitive deterministic algorithm. This would 
shift the focus to randomized algorithms against oblivious adversaries: 

~ Research Problem 13.2: Determine the best possible upper bound for the obliv
ious competitiveness coefficient for the k-server problem, in general metric spaces. 

The work of Karlin, Manasse, McGeoch, and Owicki [236] shows that the value of 
the oblivious competitiveness coefficient for the k-server problem will depend on the 
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actual distances in the metric space, even for k = 2. However, it is plausible that this 
variation is relatively small, so that an asymptotic bound such as 0(logk) is possible. 

The list update problem is the following. An online algorithm maintains a linear list 
containing n items. It is given a sequence of requests, where each item specifies one of the 
n items. If the item requested is at the ith position in the list, the algorithm incurs a cost 
of i for that request; thus, a request to the item at the head of the list costs 1. When an 
item is requested, the algorithm has the option of moving that item to the front of the list, 
or leaving it where it is. Given a request sequence, the notions of cost to the online and 
offline algorithms, and of competitiveness, can be made in the usual sense. Sleator and 
Tarjan [379] introduced this model. They showed that the deterministic algorithm that 
always moves the item that is accessed to the front of the list achieves a competitiveness 
coefficient of 2. A lower bound of 2 - 1/ L is known for the competitiveness coefficient 
of any deterministic algorithm, where L is the number of items in the list. Irani [206] 
gave a randomized online algorithm for this problem that achieved a competitiveness 
coefficient slightly less than 2 against oblivious adversaries. This was improved to ..[3 
by Reingold, Sleator, and Westbrook [355]; an interesting feature of their algorithm is 
that it can be implemented so that it makes some random choices once at the beginning 
of the request sequence, and is wholly deterministic thereafter. It remains deterministic 
irrespective of the length of the request sequence, making no further random choices. 
This implementation can be shown to be <..[3+e)-competitive. Clearly, this hinges on the 
adversary being oblivious. Recently, Albers [10] has given a cP-competitive randomized 
algorithm for list update, where cP is the golden ratio (1 + ..[5)/2. Teia [395] gives a lower 
bound of 1.5 on the competitiveness coefficient of any randomized algorithm, against an 
oblivious adversary. 

~ Research Problem 13.3: Determine a tight bound on the competitiveness coef
ficient of randomized online algorithms for list update, against oblivioos adver
sanes. 

There is considerable current interest in randomized online algorithms for problems 
arising in many diverse settings, including task systems [76], robot navigation [63, 144, 
327], finding short paths in graphs [144, 327], and finance [135]. The reader is referred 
to these and the other papers cited above for a host of research questions that remain 
open in this area. 

Problems 

13.1 (Due to D.O. Sleator and R.E. Tarjan [379].) Show that the LRU algorithm 
for paging is k-competitive. What can you say about its competitiveness 
coefficient? 

13.2 (Due to D.O. Sleator and R.E. Tarjan [379].) Show that the FIFO algorithm 
for paging is k-competitive. What can you say about its competitiveness 
coefficient? 

13.3 Show that the LFU algorithm does not achieve a bounded competitiveness 
coefficient. 

13.4 (Due to A. Bar-Noy, R. Motwani, and J. Naor [45].) Given an undirected 
graph G(V, E), an edge coloring is an assignment of indices 1, ... , C to the 
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edges of G such that no two edges incident on a vertex have the same label. 
The indices are referred to as colors, and the smallest value of C for which 
such a coloring can be achieved is called the of the graph. Vizing's Theorem 
states that a graph with maximum degree fl. has chromatic index either fl. 
or fl. + 1; moreover, while distinguishing these two cases is an NP-hard 
problem, there is a polynomial time algorithm for coloring any graph with 
fl. + 1 colors. Consider the problem of online edge coloring: suppose that the 
edges of a graph with maximum degree fl. are presented one by one, and 
as each edge is specified it must be irrevocably assigned a color. 

(a) Devise a deterministic online algorithm that uses at most 2fl. - 1 colors. 

(b) Show that there does not exist any deterministic algorithm that uses 
fewer than 2fl. - 1 colors in the worst case. For what range of values of 
fl. can you prove this result? (Hint: Consider an adversary that generates 
a sequence of edges that constitute a graph composed of disjoint stars, 
where each star consists of a center vertex v with fl. - 1 neighbors of 
degree 1. Once the algorithm has committed to a coloring of these stars, 
an adversary can introduce further edges from a distinguished vertex to the 
centers of appropriately chosen stars, forcing the online algorithm to use a 
large number of additional colors.) 

(c) Show that there does not exist any deterministic algorithm that uses 
fewer than 2fl. - 1 colors in the worst case. For what range of values of fl. 
can prove this result? (Hint: See the hint for part (b).) 

13.5 (Due to A.A. Karlin.) Show that the competitiveness coefficient of the Random 
algorithm for paging against adaptive offline adversaries is at least kHk • 

13.6 Show that the competitiveness coefficient of the Random algorithm for paging 
against Oblivious adversaries is at least k. 

13.7 Show that when the number of distinct items in memory is k + 1, the Marker 
algorithm is Hk-competitive. 

13.8 Consider a server problem in which the online algorithm has K servers, and 
the offline algorithm has k servers. For K ~ k, show that the competitiveness 
coefficient of any online algorithm against adaptive online adversaries is at 
least K/(K - k + 1). 

13.9 Consider the following algorithm for the 2-server problem in an arbitrary 
metric space. Label the servers 0 and 1. The algorithm services any request 
as follows. Let do be the distance from server 0 to the request, and d1 the 
distance from server 1 to the request. Let d be the distance between the 
servers. For i e {O, 1}, let 

d +d1-l-dl 
PI = 2d 

Server i is used to select the request with probability PI. Show that this 
algorithm is 2-competitive against adaptive online adversaries. 

13.10 (Due to A.M. Karp and P. Raghavan.) Show that the competitiveness coeffi
cient of any randomized online algorithm for maintaining a linear list against 
an oblivious adversary is at least 9/8. (Hint Consider a list with 2 items.) 
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13.11 Consider the Reciprocal algorithm for weighted paging, in the scenario of 
Problem 13.8: Reciprocal manages a cache with K pages, while the adversary 
has k pages. Show that Reciprocal achieves a competitiveness coefficient of 
K/(K - k + 1), matching the lower bound of Problem 13.8. 

13.12 (Due to S.S. Irani [207].) Consider the list update problem again, with the 
following modification in the cost function: the cost of accessing the item at 
the ith position in the list is i - 1, rather than i (thus the item at the head of 
the list is accessed at cost zero). For lists with two items, show that 3/2 is 
a tight bound on the competitiveness coefficient of randomized algorithms 
against oblivious adversaries, under this cost function. 

13.13 Give a metric space for which you can prove a lower bound of k(k + 1)/2 
on the competitiveness coefficient of the Harmonic algorithm ag~inst an 
adaptive online adversary. (Hint: Make use of the result of Problem 6.7.) 
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CHAPT ER 14 

N umber Theory and Algebra 

The theory of numbers plays a central role in several areas of great importance 
to computer science, such as cryptography, pseudo-random number generation, 
complexity theory, algebraic problems, coding theory, and combinatorics, to 
name just a few. We have already seen that relatively simple properties of 
prime numbers allow us to devise k-wise independent variables (Chapter 3), 
and number-theoretic ideas are at the heart of the algebraic techniques in 
randomization discussed in Chapter 7. 

In this chapter, we focus on solving number-theoretic problems using ran
domized techniques. Since the structure of finite fields depends on the properties 
of prime numbers, algebraic problems involving polynomials over such fields 
are also treated in this chapter. We start with a review of some basic concepts 
in number theory and algebra. Then we develop a variety of randomized al
gorithms, most notably for the problems of computing square roots, solving 
polynomial equations, and testing primality. Connections with other areas, such 
as cryptography and complexity theory, are also pointed out along the way. 

There are several unique features in the use of randomization in number 
theory. As will soon become clear, the use of randomization is fairly simple in 
that most of the algorithms will start by picking a random number from some 
domain and then work deterministically from there on. We will claim that with 
high probability the chosen random number has some desirable property. The 
hard part usually will be establishing this claim, which will require us to use 
non-trivial ideas from number theory and algebra. Further, all the resulting 
algorithms will turn out to be extremely practical. Finally, for most non-trivial 
problems, such as primality testing, the only known efficient (polynomial time) 
algorithms involve the use of randomization. 

14.1. Preliminaries 

We start by introducing some basic notation and ideas. Unless otherwise 
specified, all numbers should be assumed to be from the domain of non-
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negative integers. We will adopt the convention that the symbols a, b, ... , m, n, 
will refer to arbitrary numbers; we will reserve the symbol p for denoting prime 
numbers. Symbolic variables will be denoted by uppercase letters X and Y. The 
expression a J b will denote that a is a divisor of b, while a J b will denote that a 
does not divide b; note that for any number a =1= 0, alO. The greatest common 
divisor (gcd) and lowest common multiple (lcm) of a pair of numbers a and b 
are defined as follows: 

gcd(a, b) - max{f I fla,flb} 
ab 

lcm(a,b) -
gcd(a, b) 

By convention, gcd(O,O) = 0 and Icm(O,O) = o. We will say that a and bare 
coprime if gcd(a,b) = 1, i.e., if a and b have no common factors. A number is 
prime if and only if it is coprime to all smaller positive numbers. 

An important issue is the measure of complexity for a number-theoretic al
gorithm. An integer n can be represented by a bit-string of length 0(log n). 
Thus, when n is the input to an algorithm, the algorithm's running time 
should be measured in terms of the input length, which is log n, and not 
the input value, which is n. This is the standard measure for number
theoretic algorithms and is sometimes referred to as the bit complexity mea
sure. For example, computing gcd( a, b) in polynomial time requires an algo
rithm that runs in time polynomial in log a and log b. Our model of com
putation is similar to that described in Chapter 7. We will use the unit
cost RAM model to measure the running time of an algorithm. In partic
ular, the operations of addition, subtraction, multiplication, division, com
parison, or choosing a random element take unit time, provided the magni
tude of the operand numbers is polynomially related to that of the input. 
Thus, given input n, arithmetic operations on O(log n)-bit numbers take unit 
time. 

How may we compute the gcd in polynomial time? The naive approach 
of trying all possible numbers smaller than a and b takes exponential time, 
given that the length of the input is logarithmic in the values of a and b. An
other approach, which we all learned in high school, is to apply the following 
rule repeatedly: replace the larger of the two numbers by their difference. The 
process terminates when the smaller number is 0, and the larger number at 
that point is the desired gcd. It is not very hard to see that even this al
gorithm takes exponential time in the worst case. (Consider the case where 
a is large and b is a very small constant.) We describe the ancient algo
rithm of Euclid for computing the gcd and prove that it runs in polynomial 
time. 

We use a mod b and a div b to denote the remainder and the quotient, respec
tively, for the division of a by b. Euclid's algorithm takes two numbers a and 
b such that a > b > 0, and determines their gcd by computing the following 
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sequence starting with ro = a and rl = b. 

r2 = ro mod rl 
r3 = rl mod r2 

q2 = ro div rl 
q3 = rl div r2 

(0 < r2 < rd 
(0 < r3 < r2) 

The sequence rj is strictly decreasing, implying that the algorithm terminates in 
a finite number of stages. Termination occurs when rk-I mod rk = 0, i.e., rklrk-I. 
Observe that this is just a more efficient implementation of the high school 
algorithm described above. Instead of subtracting the smaller number from 
the larger, which may have to be done repeatedly, Euclid's algorithm subtracts 
the largest possible multiple of the smaller number from the larger; then, the 
remainder replaces the larger number. We will soon see that this algorithm gives 
us a number of interesting constructions besides the gcd itself. 

Theorem 14.1: In Euclid's algorithm, rk = gcd(a,b). 

PROOF: .Denoting gcd(a, b) by g, we will show that rklg and glrk to establish 
that g = rk. 

Observing that rk Irk-I and rk-2 = rk-I qk + rb we obtain that rk Irk-2. Similarly, 
since now rk Irk-I. rk Irk-2, and rk-3 = rk-2qk-I + rk-h it follows that rk Irk-3' This 
argument can be applied inductively to verify the hypothesis that if rklrj and 
rklri-h then rklrj-2, since rj-2 = ri-Iqi + rio In particular, we can show that rkirl 
and rklro; since ro = a and rl = b, this establishes that rklg. 

To establish the converse, we reverse the direction of the above argument. 
Note that giro and girl' Since for all i, rj = ri-2 - qirj-h it follows that if glri-2 
and glrj-h then glrj. Thus, we conclude inductively that glrk. 0 

I t remains to be shown that this is a polynomial time algorithm. Each 
of the, k stages involves essentially one division operation, and all operands 
(the intermediate numbers) are smaller than the larger input. Therefore, the 
total running of this algorithm is O(k). The following exercise shows that the 
worst-case value of k is polynomially bounded. 

Exercise 14.1: Let Fn denote the nth Fibonacci number. Show that the worst case for 
Euclid's algorithm is when a and b are consecutive Fibonacci numbers. If a = Fn+1 
and b = Fn, then the number of stages k equals n. Noting that Fn '" ¢n / J'S, where ¢ is 
the golden ratio 1.618 ... , prove that the running time of this algorithm is polynomial 
in the lengths of a and b. 

The following theorem highlights an interesting aspect of Euclid's algorithm. 
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Theorem 14.2: For all a > b > O. there exist integers x and y such that 

gcd(a, b) = ax + by. 

Moreover, x and y can be computed in polynomial time. 

We provide only a sketch of the proof, leaving the details for Problem 14.1. 
Recall that rj = rj-2 - qjrj_l. Since rk can be similarly expressed as a linear 
combination of rk-I and rk-2, we can easily express rk as a linear combination of 
ro and rl by repeatedly substituting any remainder rj with a linear combination 
of the previous two remainders. Since ro = a, rl = b, and gcd(a,b) = rk, we 
obtain the desired result. The coefficients x and y of the linear combination 
can be computed in polynomial time using the same strategy. The re,sulting 
extension of Euclid's algorithm, which computes x and y along with the gcd, is 
sometimes referred to as extended Euclidean algorithm. 

14.2. Groups and Fields 

Before we discuss sophisticated number-theoretic algorithms, we briefly review 
the group-theoretic concepts underlying these algorithms. We start by developing 
additional notation. 

We define the equivalence relation of congruence modulo n as follows. Two 
numbers a and b are congruent modulo n if a mod n = b mod n; equivalently 
nl(a - b). Usually, this is denoted a = b (mod n), but sometimes. we will 
abbreviate this to a =n b. The operations +n and Xn denote addition and 
multiplication modulo n, i.e., the result of the operation is reduced modulo n. 

There are two groups that can be defined with respect to any number n > 1. 
The set Zn = {O, 1, ... , n - 1} contains all numbers smaller than n, and it 
forms a group under addition modulo n. We also define Z: = {x I 1 ~ x ~ 
nand gcd(x, n) = 1} as the numbers in Zn that are coprime to n; this forms 
a group under multiplication modulo n. (Notice that 0 ft Z:.) The elements 
of Zn are the canonical elements of the congruence equivalence classes and are 
referred to as the residues modulo n. 

Exercise 14.2: Verify that Zn and Z; form groups under the operations +n and X n, 
respectively. 

Exercise 14.3: Verify that for a prime p, the set Zp forms a field under the operations 
of +p and xp. 

Since Z: is a multiplicative group, each of its elements has a multiplicative 
inverse in Z:. It is not obvious that we can compute these inverses efficiently, 
but it turns out that the extended Euclidean algorithm can be adapted for this 
purpose. To compute the multiplicative inverse of Z E Z:, we run the algorithm 
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with ro = nand rl = z. By Theorem 14.2, we can compute in polynomial time 
two numbers x and y such that gcd(n, z) = nx + zy. Noting that this gcd must 
be 1, we obtain zy = 1 (mod n). Thus, y is a multiplicative inverse of z and 
must lie in Z;. 

Theorem 14.3: For any n, the multiplicative inverse of a number z E Z; can be 
computed in polynomial time. 

We give a simple application of this result to the constructive version of the 
well-known Chinese Remainder Theorem. 

Theorem 14.4 (Chinese Remainder Theorem): Let nl, ... , nk be a sequence of 
pairwise coprime numbers (for i =1= j, gcd(nj,nj) = 1), and define n = rr~=1 ni. For 
any sequence of residues rl E Znl' ... , rk E ZtIk' there is a unique r E Zn such that 

r = ri (mod ni) (for 1 ~ i ~ k). 

Moreover, r can be computed in polynomial time. 

PROOF; We first show that there exists at least one such r. By the pairwise 
coprime property of the n/s, we have gcd(n/nj, ni) = 1 for each i. It follows that 
there exists a multiplicative inverse mi for n/ni in the group Z~, and therefore 

n 
mi- = 1 (mod ni). 

ni 

It is easy to verify the following two congruences for each i. 

n 
mi- = 1 (mod ni) 

ni 
n 

mi- == 0 (mod nj) (for all j =1= i). 
ni 

We conclude that the following value of r satisfies the desired congruences. 

k 

r = L rimj'!!. (mod n) 
i-I ni 

The uniqueness of the choice of r follows from the following simple counting 
argument. The number of distinct choices of each ri is nj, and so there are 
exactly n distinct sequences (ri). Each such sequence has at least one associated 
r E Zn. Since each choice of r determines a distinct sequence (ri), it follows that 
there is a one-to-one correspondence between these sequences and the choices 
of r. The value of r can be easily computed in polynomial time since it involves 
a polynomial number of multiplications, additions, and inverse computations. 

o 
In effect, this theorem states that Zn is identical to the cartesian product 
Znl X Zn2 X ••• X ZtIk. 

Consider now the problem of computing d< over some group (G, 0), given 
a E G and k. For the additive group (Zn, +n), exponentiation corresponds to 
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the arithmetic multiplication of a and k. The situation is more complex for 
the multiplicative group (Z:, xn). The naive strategy of repeatedly multiplying 
by a is not a polynomial time algorithm since it requires a total of k - 1 
multiplications. The problem is that the number of multiplications required 
by this method is proportional to k, rather than log k. A simple strategy for 
exponentiating in polynomial time is that of repeated squaring. The idea is to 
compute the powers Ai = a2i

, for 0 < i ~ t = LlogkJ. Since Ai+1 is the square 
of Ai, this sequence can be computed in increasing order of i using O(logk) 
multiplications. Consider the binary representation of k as a sequence of bits 
bo, ... , br, where bo is the least significant bit. Since k = E:-o bi2i, it follows that 
cf = rr:-oAri. The latter product can be computed in time O(logk), given the 
precomputed values of the A/s. 

Theorem 14.5: In the group (Z:, x n), exponentiation can be performed in poly
nomial time. 

It is clear that IZnl = n, but the size of Z: has a more complex behavior. 
The Euler totient function q,(n) is defined to be the number of elements of Zn 
that are coprime to n, which is precisely IZ: I. In the case where n is a prime, 
Z: = Zn \ {O} and q,(n) = n - 1. In general, we can compute q,(n) in polynomial 
time when the prime factorization of n is known. 

Theorem 14.6: Let n have the prime factorization p~1 p~2 ... P~', where the primes 
Pi are distinct and have exponents ki > O. Then, 

r 

q,(n) = rrp~i-l(Pi - 1). 
i=l 

It is easy to verify that the above expression can be computed in polynomial 
time provided that the prime factorization of n is known. The following exercise 
outlines the proof of this theorem. 

Exercise 14.4: Verify the following properties of the totient function. 

• ¢(1) = 1. 

• For prime p, ¢(p) = p - 1. 

• For prime p and k > 0, ¢(pk) = pk-1(p -1). 

• For nand m such that gcd(n, m) = 1, ¢ (nm) = ¢ (n)¢ (m). 

Using these properties, prove Theorem 14.6 and verify that ¢(n) can be computed in 
polynomial time from the prime factorization of n. 

It is widely believed that the prime factorization of a number n cannot 
be computed in polynomial time; in fact, it appears hard in general to find 
any non-trivial factors of a given number. Thus, it would be desirable to 
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have an alternative method for evaluating c/>(n) when the prime factorization 
is not known. Unfortunately, it can be shown (see Problems 14.3-14.4) that 
the knowledge of c/>(n) can be used to efficiently compute the factorization of 
n, implying that it is unlikely that an efficient algorithm exists for evaluating 
c/>(n). We present the idea behind this for the special case where n = pq 
for two distinct primes p and q. First note that Theorem 14.6 implies that 
c/>(n) = c/>(pq) = (p - 1)(q - 1). Therefore, p + q = pq + 1 - c/>(n) = n - c/>(n) + 1, 
and we know that pq = n. It is now a simple matter to see that given p + q and 
pq, we can compute p and q in polynomial time. 

Of course, c/>(p) is easy to compute when p is a prime. What about c/>([f) 
where [f is a prime power? In Exercise 14.5 it is shown that for any number 
x = yZ, there is a polynomial time algorithm for computing y and z from x. 
Thus, prime powers can be recognized and factored in polynomial time. Then 
computing c/>([f) is a trivial task. 

Exercise 14.5: Devise a polynomial time algorithm for finding positive integers y 
and z > 1, given the value of x = yZ. The algorithm may fail if the input x cannot be 
expressed in this form. (Hint: Consider the logarithms of x and yZ.) 

We now examine the structure of the groups (Zn, +n) and (Z:, xn). Consider 
a group'(G,o) under the operation 0, with the identity element I. (For the groups 
we are considering, the operation ° is commutative.) We define the order of the 
group as the number of elements in it, IGI. For any element x E G, we define 
the powers of x as follows. 

xO -

Jd< - x ° Jd<-l (for k > 0) 

~ Definition 14.1: For any group (G,o) and any x E G, the order of x is given by 

ord(x) = min{k > 0 I Jd< = I}. 

Th~ following propositions are easy to prove and left as exercises. 

Proposition 14.7: For any finite group (G,o), and any x E G, ord(x) divides IGI. 
Therefore, it is always the case that x lGI = I. 

Proposition 14.8: For any finite group (G, 0), and any sub-group (H, 0) with 
H ~ G, IHI divides IGI. 

Consider the additive group (Zn, +n) with 1 = O. Suppose for some x E Zn 
that ord(x) = k. This means that the k-fold addition of x to itself is congruent 
to 0 modulo n, that is to say kx =n O. We conclude that nlkx, and so it follows 
from the definition of order that kx = lcm(n,x). Notice that Proposition 14.7 
says that kin. 
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Proposition 14.9: For all n and x E Zn, the order of x in the additive group 
(Zn, +n) is given by 

n lcrn(n, x) 
ord(x) = d( )-gc n.,x x 

In the case where n = p is a prime and x =1= 0, 

ord(x) = p = IZpl. 

The order of the identity 0 is 1. 

The situation is more complicated with respect to Z:. Here the group order is 
c/>(n) and I = 1. Consider any element x E Z: and let its order be k. Then, ~ =n 1 
and Proposition 14.7 implies that klc/>(n). We may conclude that xq,(n) =n 1, and 
this gives us the famous theorem of Euler. 

* Theorem 14.10 (Euler's Theorem): For all n and x E Zn' 

x 4l(n) == 1 (mod n). 

Specializing this to the case where n is a prime yields the theorem of Fermat. 

Theorem 14.11 (Fermat's Theorem): For prime p and x E Z;, 

xp
-

I = 1 (mod p). 

As we remarked earlier, computing c/>(n) is as hard as factoring n. More 
generally, the same can be shown for determining the order of an arbitrary 
element of the multiplicative group Z:. In fact, the difficulty in computing the 
order underlies most of the issues we will deal with later. Contrast this with the 
case of the additive group where the order is almost trivial to compute. This 
property of the additive group will be useful in devising efficient algorithms 
later. 

Another distinction between the additive and multiplicative groups involves 
the existence of generators. A generator g in a group G is an element whose 
order equals the size of group, i.e., ord(g) = IGI. A group is said to be cyclic if it 
contains a generator. It is easy to verify that a cyclic group G can be viewed as the 
set of all distinct powers of any generator g E G, that is G = {gO, gl, ... , gIGI-l}. 

It is an immediate consequence of Proposition 14.7 that any finite group 
whose order is a prime number is a cyclic group. The additive grour (Zn, +n) is 
cyclic since the element 1 has order n. The multiplicative group (Zn' xn) is not 
cyclic in general. 

Exercise 14.6: Verify that the group (Z:, xs) is not cyclic. 

However, we show below that for primes p, the group (Z;, xp) is cyclic. Note 
* that the cyclicity of groups of prime order does not imply the cyclicity of Zp 
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since the order of this group is 4>(p) = p - 1, which is even and therefore not a 
prIme. 

The following lemma will be useful for showing the cyclicity of Z;. It states 
that the sum of the totient function values for all the divisors of n will always 
equal n. 

Lemma 14.12: For all n > 0, Edln 4>(d) = n. 

PROOF: For all g, define the set 

Ag = {x 11 < x <n and gcd(x,n) = g}. 

Clearly Ag is non-empty only if g divides n; these non-empty sets form a partition 
of {1,2, ... ,n}. Thus, 

Suppose we could show that IAgl = 4>(n/g). We could then conclude the desired 
result as follows: 

L 4>(d) = L 4>(n/g) = L IAgl = n. 
din gin gin 

It remains to be shown that IAgl = 4>(n/g). Let d = n/g and consider any 
x E Z;. The following equivalences are easy to verify: 

x E Z; <=> gcd(xg,dg) = g x gcd(x,d) = g 

<=> gcd(xg,n) = g 

<=> xg E Ag . 

Thus, there is a one-to-one correspondence between the elements of Z; and Ag, 
and this implies that IAgl = 4>(d) = 4>(n/g). 0 

Theorem 14.13: For any prime p, the group Z; is cyclic. 

PROO,F: Recall that if any x E Z; has order k, then kl(p - 1). For each k that 

divides p - 1, let Ok = {x E Z; I ord(x) = k}. We claim that lOki is either 0 or 
4>(k), deferring the proof for the moment. 

Since the sets Ok partition Z;, 

L IOkl=p-l. 
kl(p-l) 

We know that each Ok has size either 0 or 4>(k) and so, 

L lOki < L 4>(k). 
kl(P-l) kl(p-l) 

(14.1) 

Now by Lemma 14.12, the latter sum equals exactly p - 1. Thus, the only way 
(14.1) can hold is if each term in the summation is non-zero. In other words, 
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for all k such that kl(p - 1), lOki = q,(k). In particular, this would imply that for 
k = p - 1, lOp-II = q,(p -1) = q,(q,(p». But each element of Op-I is a generator, 
and since this set is non-empty, the group has generators and is cyclic. 

We now complete the proof by showing that if Ok is non-empty, then lOki = 

q,(k). Each element a E Ok has the property that ak =p 1 and is then;fore a root 
of the polynomial X k - 1 over the field (Zp, +p, x p). Since Ok is non-empty, 
this polynomial has at least one root r in Ok. In fact, each element in the set 
{rO, rl, r 2, ••• , ,k-I} is a root of this polynomial; moreover, these are all distinct 
roots since order) = k, and so this set contains all the k roots of the polynomial. 
Thus, the elements of Ok are exactly those powers of r that have order k. 
Observing that'; has order k/ gcd(k, I), we obtain 

Ok = {al I gcd(k, I) = 1} = {a l II E Z;}. 

This implies that lOki = IZ;I = q,(k). o 
The next theorem characterizes the set of all numbers n whose multiplicative . 

groups are cyclic. The interested reader is referred to a number theory text for 
the proof. 

Theorem 14.14: The multiplicative group (Z:, xn) is cyclic if and only if n is either 
1, 2, 4, I, or 21, for some non-negative integer k and an odd prime p. 

It is usually easier to deal with numbers (such as primes) for which the 
multiplicative group (Z:, xn) is cyclic, because this cyclic group's structure is 
isomorphic to that of the additive group modulo q,(n). Let g E Z: be any 
generator. Consider any two elements x, y E Z:. Since g generates the entire 
group, there exist a and b such that x =n ga and y:En gb. For z = xy, we can 
write z = gC where c = a+4I(n)b. (Recall that ord(g) = IZ:I = q,(n).) Thus, the 
multiplicative group (Z:, xn) can be seen to be isomorphic to the additive group 
(Z4I(n), +4I(n»; in effect, this is like working with the logarithms of the numbers 
in Z: using the generator g as the base of the logarithm. This is a particularly 
useful view in the case of a prime number p since we are always guaranteed that 
the mUltiplicative group modulo p is cyclic. 

Of course, we need to lay our hands on a generator to be able to make 
use of this structural correspondence. For the multiplicative group modulo a 
prime p, all known polynomial time algorithms for finding a generator require 
a factorization of q,(p) = p - 1; we describe one such algorithm, which is 
randomized. The basic idea is to observe that in the proof of Theorem 14.13 
we showed that the number of elements of order p - 1 in Z; is given by 
lOp-Ii = q,(p - 1). The next lemma shows that this quantity must be reasonably 
large, i.e., the generators are relatively dense in the multiplicative group. 

Lemma 14.15: For all n > 1, q,(n) = n (-1 1 ). 
n ogn 
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PROOF: Let n have the prime factorization p~lp~2 ... p~r. By Theorem 14.6, we 
know that 

t 

<J>(n) - II p~i-I(Pi - 1) 
i=1 

t _ nxII Pi- 1. 
i-I Pi 

Since all prime factors must be at least 2, the number of distinct prime factors 
cannot exceed log n. It is a simple exercise to verify that for any choice of 
t < logn numbers Pi, the product in the above expression is 0(1/logn). This 
gives the desired result. 0 

We now present our first randomized number-theoretic algorithm. The algo
rithm picks a random element x E Z; and checks whether its order is p - 1. 
Clearly, any element that passes this test is a generator. The probability of 
finding a generator in a single trial is simply 4>(p - 1)/(p - 1) = 0(1/ logp). To 
boost the probability of success we can repeat this process k times, for any k 
that is polynomial in log p. A simple Las Vegas algorithm can also be devised, 
using techniques described in Chapter 1. 

The only problem with this approach is that it is unclear how we can compute 
the order of any element in polynomial time. This is exactly the place where we 
need to know the factorization of p - 1. Suppose that Ph ... , Pt are the distinct 
prime factors of p - 1. If ord(x) < p - 1, then it must be the case that ord(x) 
is a proper divisor of p - 1. In other words, for some Pi. ord(x)l(p - 1)/Pi. This 
means that to verify that ord(x) = p - 1, it suffices to check for each Pi that 
X(P-I)/Pi :1= 1 (mod p). The number of distinct prime factors of p - 1 is at most 
O(log p), and exponentiation can be done in polynomial time, implying that the 
entire process can be implemented in polynomial time. 

Theorem 14.16: Let p be any prime number. Given the prime factorization of 
p - 1, a generator for the group (Z;, x p) can be found in polynomial time by a 
randomized (Las Vegas or Monte Carlo) algorithm. 

Observe the extreme simplicity of this randomized algorithm. As we remarked 
earlier, most randomized algorithms for number-theoretic problems have a 
similar flavor. A non-trivial mathematical analysis establishes that a simple 
random choice suffices to solve the problem at hand. 

14.3. Quadratic Residues 

We have seen that the exponentiation problem - to compute y = xD (mod n) 
given a, x and n - is relatively easy. There are two related problems that turn 
out to be unexpectedly difficult. The discrete log problem is: given x, y, and n, 
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find an exponent a such that y = JCl (mod n). The root finding problem is: given 
a, y, and n, find an x such that y = xQ (mod n). For prime n, the latter problem 
is a special case of finding roots of polynomials over finite fields, or factoring 
such polynomials; in this case the polynomial is p(x) = JCl - Y (mod n). 

The discrete log problem is believed to be extremely hard, and no efficient 
solution is known at this point. We have already seen that the problem of 
computing c/>(n) is equivalent to factoring n, in that an efficient algorithm 
for one problem implies ~n efficient algorithm for the other. It remains an. 
interesting open question to relate (in either direction) the hardness of the 
discrete log problem to that of the factoring problem. In fact, it is believed 
that the discrete log problem is hard even in the average case, i.e., it is hard to 
solve for random inputs. Formally establishing the average-case hardness-of the 
discrete log problem would have important consequences in cryptography and 
pseudo-random generation. This is because it would imply that exponentiation 
is a one-way function (a function that is easy to compute and hard to invert), 
which is a long-sought building block in these two areas. 

The situation is slightly better in the case of the root finding problem. We will 
see that efficient randomized algorithms are known for this problem provided n 
is a prime power, and these algorithms can be generalized to solve the related 
problems of finding roots of polynomials, factoring polynomials, or finding 
irreducible (prime) polynomials. Unfortunately, for general n, even the problem 
of finding square roots modulo n can be shown to be equivalent (via randomized 
reductions) to factoring n. We start by describing an algorithm for finding square 
roots when n is a prime. 

~ Definition 14.2: A residue a E Z: is said to be a quadratic residue if there exists 
* some x E Zn such that 

a = x? (mod n). 

If a is not a quadratic residue, then it is referred to as a quadratic non-residue. 

Notice that both x and -x (or n - x) are square roots of a. In the following 
exercise and in Problem 14.6, the number of distinct square roots of a quadratic 
residue is precisely determined. 

Exercise 14.7: For an odd prime p and any k ~ 1, show that any quadratic residue 
modulo pk has exactly two distinct square roots. 

For the moment, we consider only quadratic residues over the field Z; for a 
prime p. The multiplicative group is cyclic, and the following lemma characterizes 
those powers of generators in this group that are quadratic residues. As is usual, 
we will consider only the odd primes. (Is the following lemma meaningful if 
p = 2?) 
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Lemma 14.17: Let p be an odd prime, and g E Z; be any generator. Then, gk is 
a quadratic residue if and only if k is even. 

PROOF; Clearly, for even k, gk/2 is an element of Z; and is therefore a square 
root of gk. 

Consider now the case where k = 21 + 1 is odd, and assume for contradiction 
that there exists an x E 7l; such that x2 = g21+1 (mod p). But since g is a 
generator, x = gm for some non-negative integer m.- This implies that g2m = g21+1 

(mod p), and switching to the additive group modulo c!>(p), we can restate this 
as 

2m = 21 + 1 (mod c!>(p». 

Since c!>(p) = p - 1, we conclude that (p - 1)1(21- 2m + 1). But P - 1 is even and 
21 - 2m + 1 is odd, and an even number cannot divide an odd number. This 
gives the desired contradiction. D 

This results in the following theorem, which is popularly referred to as Euler's 
Criterion for quadratic residuacity. 

Theorem 14.18 (Euler's Criterion): For prime p, an element a E 7l; is a quadratic 
residue if and only if 

a9 = 1 (mod p). 

PROOF; Suppose a is a quadratic residue. Then let x = gk be a square root of a, 
where g is any generator for 7l;. Clearly, a = g2k (mod p), and therefore 

a9 = gk(P-l) = (gP-l)k = 1k = 1 -p -p -p -p' 

Suppose now that a is not a quadratic residue. Then by Lemma 14.17 we 
know that a is an odd power of the generator g. Assuming that a = g21+1, we 
obtain that 

a9 = gl(P-l)g9 = g9 -p -p' 

Since g has order p - 1, it cannot be the case that the last term is congruent to 
1. D 

For any generator g the power g9 is exactly -1. This is because this power 
of g must be a square root of 1 other than 1 itself, and each quadratic residue 
modulo a prime has exactly two square roots. This motivates the following 
definition. 

~ Definition 14.3 (Legendre Symbol): For any prime p and a E Z;, we define 
the Legendre symbol 

if a is a quadratic residue (mod p) 
if a is a quadratic non-residue (mod p) 
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Alternatively, it can be defined as 

[~] = a9 (mod p) 

where we treat p - 1 as -1. 

The Legendre symbol can be computed in polynomial time by suitably 
exponentiating a. Thus, we can decide in polynomial time whether an element 
of 7l; is a quadratic residue or a non-residue. The distribution of quadratic 
residues and non-residues among the elements of Z; is extremely irregular and 
can be fruitfully thought of as being "pseudo-random." This creates a problem 
when we wish to find an element of 7l; that is guaranteed to be a qqadratic 
non-residue. (A quadratic residue can be found by picking any number and 
squaring it.) However, the following exercise shows that this problem is trivial if 
we are willing to settle for a randomized solution. No deterministic polynomial 
time algorithm is known for this problem. 

Exercise 14.8: Prove that for any prime p, exactly half the elements of Z; are 
quadratic residues. Using this observation, devise efficient (polynomial time) ran
domized algorithms, both Monte Carlo and Las Vegas, for finding a quadratic non
residues in Z;. (See Problem 14.8 for a generalization to quadratic non-residues 
modulo non-primes.) 

It is known that if a mathematical hypothesis known as the Extended Rie
mann Hypothesis holds, then 7l; must contain a quadratic non-residue among 

its o (log2 p) smallest elements. Then a quadratic non-residue can be easily 
identified by trying all these numbers and computing their Legendre symbols. 
The statement of the ERH and its proof are outside the scope of this book and 
are omitted. We now describe the QuadRes algorithm for computing square 
roots modulo a prime p. The only need for randomness in this algorithm is 
that it requires a quadratic non-residue. Clearly, this algorithm can be made 
deterministic if the ERH holds. 

Fix an odd prime p and a quadratic residue a E 7l;, whose square root 
modulo p is to be found. The algorithm assumes the availability of a quadratic 
non-residue bEll;, which can be chosen as described above. It can easily verify 
all this by computing the Legendre symbols for a and b. The basic idea behind 
the algorithm is to find an odd power of a, say a21+1, which has residue 1 modulo 
p. This would imply that a21+2 

=p a, and then it is easy to see that ±a1+1 are the 
desired square roots. 

Since p is an odd prime, its residue modulo 4 must be either 1 or 3. The 
easy case is when p = 3 (mod 4). Let k be such that p = 4k + 3 and note 
that (p + 1)/2 = 2k + 2. Since a is a quadratic residue, we know that a9 =p 1. 
Multiplying by a on both sides, we have af!! =p a. But (p + 1) /2 = 2k + 2 is even, 
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and setting x = ±d'+l (mod p) it is easily seen that x2 
=p a. Thus, the square 

roots of a can be computed in polynomial time via a simple exponentiation. 
On the other hand, when p = 1 (mod 4), the residue of p modulo 8 is either 

1 or 5. Consider first the case where p = 8k + 5. Now (p + 1)/2 = 4k + 3 is 
odd and we cannot use the same idea as before. However, we still know that 
a4k+2 =p 1, implying that a2k+1 is a square root of 1. If a2k+1 

=p 1 then we are 
done by the same argument as in the earlier case. The problem is that it might 
happen that a2k+1 =p - 1. This is where the quadratic non-residue b comes in 
handy. Since (p - 1)/2 = 4k + 2, the Legendre symbol of b is b4k+2 

=p - 1. This 
implies that a2k+1b4k+2 = 1 (mod p), or equivalently 

a2k+2b4k+2 = a (mod p). 

Since both exponents on the left are even, we conclude that +d'+lb2k+1 (mod p) 

are the square roots of a. Once again we need only a small number of 
multiplications and exponentiations. 

The really hard case is when p = 8k + 1, implying that a4k 
=p 1. While the 

argument from the second case does not apply directly, it can be appropriately 
generalized with some effort. Let k = 2r R for some odd number R. The values 
of rand R can be computed in polynomial time by repeatedly dividing k by 2. 
The Legendre symbol for a can now be rewritten as A = a2·+

2R = 1 (mod p). 
The basic problem now is that the exponent is not odd (otherwise, multiplying 
A by a would give an even power of a that equals a, so that the square root 
is easily computed). However, computing the square root of A is easy since we 
can compute aPR by exponentiating a, for any j > O. What about the obvious 
strategy of repeatedly taking square roots of A until the term 2j in the exponent 
disappears? The only difficulty with this is that we also need the fact that A =p 1, 
and this need not remain true as we continue taking square roots. 

Assume that aR ¥p 1; otherwise we can easily check that the converse is true 
and hence identify the square roots of a as +a(R+l)/2. Now, there must be a 
value j such that 0 < j < r + 2 and Aj = a2iR is not congruent to 1 modulo 
p, but Aj+l = A; is congruent to 1. This j is easy to find by repeatedly taking 
square roots of A. It must be the case that Aj =p - 1. We can now use the trick 
of multiplying Aj by B = b4k = b2·+

2R to obtain a number that is congruent to 
1 modulo p. Once again we can start taking square roots of AjB with the aim 
of reducing the exponent of a to the odd number R. This is possible since the 
exponent of b has a larger power of 2 than that of a. Of course, we get stuck 
again if the square root at some point gives -1 instead of 1. But then we can 
supply another factor of b4k to restore the property of being congruent to 1 
modulo p. 

Basically this process continues until the exponent of a is exactly R. The 
power of 2 in the exponent of a drops by at least 1 before each multiplication 
by b4k ; thus the number of such stages cannot exceed r < logp. Also, at all 
times, the various powers of b have a strictly larger power of 2 in their exponent 
than does a. Thus, upon termination we obtain a number y = aRbz, where z is 
the sum of the exponents of b and is even. Since y =p 1, we can use the previous 
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trick of multiplying by a and halving the exponents to obtain the square root. 
It is also fairly easy to verify that each stage of this algorithm takes polynomial 
time. The algorithm is summarized below. 

Algorithm QuadRes: 

Input: Odd prime p and quadratic residue a E Z; . 

Output: An x E Z; such that x2 
=p a. 

1. choose a quadratic non-residue b E Z; using random sampling. 

2. choose the appropriate case. 

Case A. [p = 3 (mod 4) or p = 4k +3] 

A.1. return x = ±ak+l (mod p). 

Case B. [p = 5 (mod 8) or p = 8k +5] 

B.1. A +- a2k+1 (mod p). 

B.2. if A =p 1 then return x = ±ak+l (mod p) 

else return x = ±ak+1b2k+1 (mod p). 

Case C. [p = 1 (mod 8) or p = 8k + 1] 

C.1. compute r and odd R such that k = 2' R . 

C.2. if aR = 1 (mod p) then return x = ±a~ (mod p). 

C.3. compute largest j < r + 2 such that a~R=I=p 1. 

C.4. a +- 2i R; P +- 2,+2R. 

C.S. A +- all' (mod p); B +- bP (mod p). 

C.6. repeat forever 

C.6.1. while AB =p 1 and a =1= R do 
a +- a /2; P +- P /2; 
A +- all' (mod p); B +- bP (mod p). 

C.6.2. if a = R then return x = ±.JaAB (mod p) 

else P +- P + 2,+2R and B +- bP (mod p). 

We now indicate how this algorithm generalizes to the case of prime powers. 
Assume that q = If for an odd prime p. The problem now is to find an x 
such that x2 =q a. We can use the QuadRes algorithm to find the square root 
of a modulo p. Let rl be such that rr = a (mod p). We first show that this 
information can be used to find a square root '2 of a modulo p2; we refer to 
this as the "lifting" of the square root to integers modulo r. It will then be 
clear that the same method can be used to solve the general problem. 
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By definition, r~ - a = 0 (mod p2) and therefore it must be the case that 
r~ - a == 0 (mod p). The latter implies that r2 = rl (mod p). In other words, for 
some choice of d E lLp, r2 = rl + pd, and our goal is to identify d. Substituting 
this expression for r2 into the congruence r~ - a = 0 (mod p2), we obtain the 
following. 

(rl + pd)2 - a 

=> rr + 2rlpd + p2d2 - a 

=> (rr - a) + 2rlpd 

= 0 (mod p2) 

= 0 (mod p2) 

= 0 (mod p2) 

Now, observe that pl(a-rf) and we can define y = (a-rr)/p. Thus, 2rlpd-py = 0 
(mod p2) or, equivalently, 2r1d - y = 0 (mod p). Defining z = (2rd-1 (mod p) 
to be the unique multiplicative inverse of 2rl in lL;, we see that 2rlzd - yz = 0 
(mod p), or d = yz (mod p). Thus, we have shown that there is a unique choice 
of d such that r2 = rl + pd (mod p2), and this value of d can be easily computed. 
The following proves formally that choosing y = (a-rf)/p, z = (2rd-1 (mod p), 
and d = yz (mod p), we obtain a square root r2 = rl + pd of a in lL;. 

(rl + pyz)2 _ rr + (2rlz)py + p2lz2 (mod p2) 

_ rr + py (mod p2) 

_ rr + (a - rr) (mod p2) 

_ a (mod p2) 

It is an easy exercise to show that square roots can be lifted into the integers 
modulo If in a similar fashion. 

Exercise 14.9: For any odd prime p, q = pk, and quadratic residue a E Z;, show that 

the square root of a in Z; can be found in polynomial expected time by a randomized 
algorithm. 

In fact, we can find square roots in lL: for any odd number n, given the prime 
factorization of n. Assume that n has the prime factorization p~1 p~2 ... p~r. Define 
nj = p~i for 1 :::; i < t, and note that the terms nj are pairwise coprime. We can 
easily compute roots rj E lLni such that r; = a (mod nj), using the randomized 
algorithm described above. Let r be the unique element in lLn such that r = rj 
(mod nj), where r can be computed as in Theorem 14.4. It is now easy to see 
that r2 == a (mod nj) for each i. But then it is clear that r2 = a (mod n). 

Recall that a quadratic residue modulo an odd prime power has exactly two 
square roots. In the above computation, we could have chosen -rj instead of 
rj for any i. In fact, there are 2t distinct sequences that we could have used in 
the above computation, by trying all possible signs and combinations for the 
roots rjo Since each of these gives a distinct square root of a modulo n, we 
obtain the following theorem. (The case of the solitary even prime is slightly 
more complicated and is discussed in Problem 14.7, giving a generalization of 
this theorem to the case of even numbers.) 
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Theorem 14.19: For an odd number n with t distinct (odd) prime factors and 
any quadratic residue a modulo n, there are 2t distinct square roots of a modulo 
n. 

We have seen that computing square roots in 7l: is easy using randomization, 
provided that a prime factorization of n is known. The next result shows that 
computing square roots is as hard as factoring n. This is established by providing 
a randomized reduction from factoring to computing square roots. The following 
lemma will be useful for this purpose. 

Lemma 14.20: Suppose x2 = y2 (mod n) and x :1= ±y (mod n). Then neither 
gcd(x + y, n) nor gcd(x - y, n) equals 1 or n. 

PROOF: Since x2 = y2 (mod n), we have (x + y)(x - y) =n 0 or, equivalently, 
nl(x + y)(x - y). Suppose that gcd(x + y, n) = 1; then it must be the case that 
nl(x - y). But this implies that x =n y, contradicting the conditions of the lemma. 
A similar argument shows that gcd(x - y, n) f 1. Finally, notice that the neither 
of the two gcd's can be n for essentially the same reason. D 

We are now ready to provide the desired reduction. 

Theorem 14.21: Suppose that there is a polynomial time, possibly randomized, 
algorithm Al that can compute square roots modulo any n. Then there is a ran
domized polynomial time algorithm A2 for factoring any n. 

PROOF: If n is even, it is easy to find the highest power of 2 that divides nand 
reduce to the case of odd n; therefore, we assume throughout that n is odd. 
The algorithm A2 will decompose n into factors each of which is a prime power. 
These can then be determined using Exercise 14.5. Of course, if n is a prime 
or a prime power, A2 will fail to find any non-trivial factors but Exercise 14.5 
applies again. 

The factoring algorithm A2 will use Al as a blackbox. It starts by choosing 
bEll: uniformly at random. This is not entirely trivial; the algorithm will have 
to pick a random element b from tln and compute its gcd with n to test whether 
it also belongs to 7l:. If g = gcd(b, n) f 1, then g is a non-trivial factor of n, and 
n = gh for h = n/g. The algorithm can now recursively factor g and h. Thus, 
the hard case is when the chosen element b does indeed lie in 7l:. 

Algorithm A2 now computes a = b2 (mod n). It then uses algorithm Al to 
find a square root x for a modulo n. Since n is not a prime power, it must 
have t ~ 2 distinct prime factors. By Theorem 14.19, there must be 2t distinct 
square roots of a modulo n. Since b was chosen randomly, and Al has no 
knowledge of b other than that b2 = a, the probability that x = ±b is at most 
2/2t ~ 1/2. Of course, if A2 is unlucky and gets back ±b as the square root, the 
entire process can be repeated for an independent, new choice of b. Therefore, 
with high probability, A2 is guaranteed to find x and b such that x2 =n b2 but 
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x =/=n ±b. Lemma 14.20 now applies to x and b, and it is clear that neither 
gcd(x + b, n) nor gcd(x - b, n) can equal 1 or n. Let g = gcd(x + b, n); since g 
is not 1 or n it must be a non-trivial factor of n. Setting h = n/g, we obtain a 
partial factorization of n into gh. Repeating this process recursively for g and h, 
A2 obtains a factorization of n into prime powers. By Exercise 14.5, the prime 
powers can be factored individually. 0 

Exercise 14.10: Estimate the expected running time of algorithm A2 in Theorem 14.21 
when it is required to factor n with probability at least 1/2, assuming that A, runs in 
time T(n). 

Exercise 14.11: Suppose that the algorithm A, in Theorem 14.21 can only find square 
roots modulo a specific n, rather than for all n. Show that if n = pq, for primes p and 
q, then there is a Las Vegas algorithm A2 that can factor this specific n in polynomial 
expected time. 

Extend this result to arbitrary n (not necessarily of the form pq). Observe that a 
square root modulo n yields a square root modulo f, for any factor f of n. 

Even when the factorization of n is known, finding the smallest square root 
of a qua?ratic residue modulo n is an NP-hard problem. 

14.4. The RSA Cryptosystem 

We remarked earlier that cryptography relies heavily on number-theoretic tools. 
In particular, systems based on the (assumed) hardness of problems in number 
theory, such as factoring and discrete log, form an important part of modern 
cryptography .. We illustrate this by a famous cryptographic scheme, the RSA 
cryptosystem named after Rivest, Shamir, and Adleman. But first we need to 
review the basic idea behind a public-key encryption scheme. 

In a public-key cryptosystem, an individual (Alice) can set up a mechanism 
whereby she can receive and decode encoded messages from an arbitrary person. 
This message can be transmitted over a public channel because the system 
ensures that nobody else can decode the message. She advertises an encoding 
function E, which has the property that anyone may efficiently compute E(M) 
for a message M, but no one but Alice may efficiently compute M from E(M). 
In fact, Alice has a decoding function D such that, for all M, D(E(M)) = M. 

In the RSA scheme, Alice constructs functions E and D as follows. She 
first chooses two distinct odd primes p and q, and computes n = pq. Alice 
keeps the primes secret, while n is given to the pUblic. Alice also chooses an 
element k E Z~n)' with k > 1, and advertises k along with n. (Observe that 
cp(n) = (p - 1)(q - 1) is easy to compute given p and q.) The encoding function 
E is given by E(M) = Mk (mod n), assuming that messages correspond to the 
elements of Zn. Knowing cp(n), Alice can easily compute the multiplicative 
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inverse I = k-I for k in the group Z:(n). The decoding function D is given by 
D(C) = CI (mod n). It is easy to verify that if C = E(M), then D(C) = Mkl = M 
(mod n), since kl = 1 (mod q,(n)). 

Why is this system secure against an eavesdropper Eve? We show that if Eve 
can compute I from the (public) knowledge of nand k, then she can factor n. 
This will then imply that completely breaking the RSA scheme is at least as 
hard as factoring n. Suppose Eve successfully computes I; then she knows that 
q,(n)l(kl -1). We have shown earlier that for n = pq, knowing q,(n) lets us factor 
n efficiently. Eve knows a multiple of q,(n), and it is not very hard to see that 
even this is sufficient to allow the factorization of n (see Problems 14.3-14.4). 

A problem with this result is that it only proves the hardness of breaking 
the RSA scheme completely by computing the value of I itself. It is entirely 
possible that some clever scheme could infer the messages without determining 
the decryption key. In practice, we would like stronger guarantees, for example 
that it is impossible to be able to decode the encryptions of more than a 
vanishingly small fraction of messages. Let C(A) be the set of all x E Z: such 
that the algorithm A can compute xl (mod n), given that A knows only nand 
k. The next theorem shows that if there is an algorithm Al for which C(Ad 
is not too small in size, then there is another algorithm A2 that can compute xl 
(mod n) for all x E Z:. 
Theorem 14.22: Suppose there exists a (possibly randomized) polynomial time 
algorithm Al for which IC(Adl > EIZ: I. for some E > O. Then there exists a Las 
Vegas algorithm A2 for which C(A2) = Z:. and the expected running ti,!,e of A2 
is polynomial in logn and liE. 

PROOF: Fix any x E Z:, and we will show that the algorithm A2 can compute xl 
(mod n) using algorithm Al as a blackbox. The algorithm A2 chooses a random 
element y E Z: and computes z = xyk. Then it runs the algorithm Al on the 
input z. Notice that zl = xlykl = xly (mod n), and since A2 can compute the 
multiplicative inverse of y modulo n, the value of xl is easily inferred from that 
of zl. Thus, algorithm A2 succeeds if Al succeeds on z, or equivalently z E C(AI). 

We claim that z is uniformly distributed over Z: and therefore the probability 
that z E C(Ad is at least E. This claim follows from the observation that the 
operations of mUltiplication and raising to the power of k are functions that are 
one-to-one and onto in the group Z:, that is, they are permutations. Thus, for 
a random y, the number z = xyk is also uniformly distributed in Z:. 

Since A2 succeeds with probability E, it is easy to see that independent 
iterations will boost the probability of success to any desired level. Also, it is 
possible to convert this into a Las Vegas algorithm whose expected running time 
is polynomial in log nand 1 IE. 0 

The algorithm A2 described above has a polynomial expected running time 
provided E = Q(l/poly(logn)). Thus, it has polynomial running time unless AI'S 

411 



NUMBER THEORY AND ALGEBRA 

ability to break the RSA scheme is restricted to a set of messages of size smaller 
than any polynomial fraction of Z: . 

It is also important to realize that from our description of A2 (as also the 
assumption about AI), it is not clear that the value of I is actually determined 
by these algorithms. All they do is to compute xl and n via indirect methods. 
Thus, all that this result really says is that if the RSA scheme has even a slight 
weakness - in that it can be broken on some small fraction of the inputs - then 
it is totally insecure. This does not directly relate the hardness of breaking RSA 
to that of factoring. 

This theorem has an interesting application to a variant of the RSA scheme 
due to Rabin. Recall Theorem 14.21, which says that finding square roots 
modulo n is as hard as factoring n. Suppose now that in the RSA scheme we 
had used the exponent k = 2. Now the task of decoding an encoded message is 
exactly equivalent to taking square roots. The above theorem says that if there 
is even a small chink in RSA's armor for a specific n, then there is an algorithm 
for finding all square roots modulo this n. While Theorem 14.21 does not apply 
directly, as it requires an algorithm for finding square roots modulo all possible 
n, the result in Exercise 14.11 can be used to show that this n = pq can now 
be factored in randomized polynomial time. Thus, the problem of breaking the 
Rabin cryptosystem is as hard as factoring. 

Ther~ is one technical problem with this cryptosystem. Since q,(n) is even, the 
exponent 2 is not coprime with respect to q,(n). Therefore, there is no unique 
way of inverting the encoding function as in the case of RSA. In fact, we know 
that there are four distinct square roots of any quadratic residue modulo n = pq, 
and the decoding process (finding square roots) need not give the same result 
as the original encoded message. Fortunately, the following exercise shows that 
there exists a simple method for computing all four square roots in this instance, 
and so some simple convention can be used to disambiguate the choice of the 
decoded message (see Problem 14.9). 

Exercise 14.12: Show that for any quadratic residue a modulo n = pq. for odd primes 
p and q. the four square roots of a are given by ±x and ±Y. where y == X(PQ-l _ qP-l) 
(mod n). 

A drawback with the Rabin cryptosystem is that anyone with temporary 
access to a blackbox for decoding can compute square roots and hence factor 
n. The RSA cryptosystem does not appear to have this drawback, precisely 
because it is not known to be as hard as factoring. 

14.5. Polynomial Roots and Factors 

We turn to the problem of finding roots and factors of polynomials over finite 
fields. Recall that the order of any finite field is a prime power, and that fields 
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of a particular order are unique up to isomorphisms. When the order of a finite 
field is a prime p, it must be isomorphic to the field (Zp, +p, x pl. (No such 
simple number-theoretic characterization is available for fields of order P', for 
k > 1.) We focus on the case where the underlying field is (Zp, +P' x p), and the 
polynomial is of degree 2. In what follows, we will denote the symbolic variable 
in a polynomial by X. We also assume that the reader is familiar with standard 
algorithms for adding, subtracting, multiplying, and dividing polynomials; these 
can be implemented in polynomial time for polynomials over the finite fields 
that are under consideration. 

Consider a degree 2 polynomial f(X) over a field of prime order p. We can 
assume without loss of generality that the polynomial is monic, i.e., the leading 
coefficient is 1; otherwise, the remaining coefficients can be divided by it to 
achieve the same effect. We also assume that the polynomial is not irreducible, 
which means that it has roots over the field Zp and can be factored into linear 
terms as follows: 

f(X) = X2 + aX + p = (X - a)(X - b). 

Here ~, P E Zp are the coefficients, and a, b E Zp are the roots of the polynomial. 
If the polynomial is indeed irreducible, the algorithm described below will fail 
to find roots or factors, thereby indicating this fact. We make the simplifying 
assumption that the two roots are distinct; otherwise, if a is the only root, it 
must be the case that ~ = -2a (mod p) and p = a2 (mod pl. These equations 
can be easily checked and would yield the desired root. Furthermore, we can 
assume that neither root is 0, since otherwise the polynomial is easily factored. 
Finally, we note that the problem of finding square roots of a quadratic residue 
r is the special case where the polynomial is f(X) = X 2 - r. Thus, the algorithm 
to be presented below yields an elegant alternative to the QuadRes algorithm 
described earlier. 

Proposition 14.23: An element r E Z; is a quadratic residue modulo an odd 

prime p if and only if X - r is a factor of the polynomial X~ - 1. 

This proposition follows from Euler's Criterion, since X - r is a factor if 
and only if r is a root of the polynomial X~ - 1. We start by applying 
this proposition to the root-finding problem for a special class of degree 2 
polynomials. Suppose that the roots a and b of f(X) are such that [~] =1= [!]. 
In particular, assume that [~] = 1 and [!] = -1, that is to say a is a quadratic 
residue while b is a quadratic non-residue. By Proposition 14.23, we have 

It then follows that 

(X -a) I X~-1 
(X - b) 1 X~ - 1. 

gcd(f(X),X~ -1) = (X - a). 
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Thus, the polynomial f(X) can be factored via a single gcd computation. We 
leave it as an exercise to show that polynomial gcd can also be computed by 
Euclid's algorithm. 

Exercise 14.13: Adapt Euclid's algorithm for gcd of integers to the computation of 
the gcd of polynomials over the field Zp. Show that this algorithm also runs in time 
polynomial in the degrees of the .input polynomial. 

A problem with using the result from this exercise is that the above application 
requires the goo of a polynomial of degree Q(p) and a quadratic polynomial. A 
naive application of Euclid's algorithm will require time polynomial in prather 
than log p. Fortunately, in this case the polynomial of higher degree has a very 
simple structure and we can finesse the problem of computing the gcd. The key 
observation is that the very first step of Euclid's algorithm will compute the 
remainder from the division of X~ - 1 by f(X), and that remainder will be of 
degree at most 2. Moreover, the quotient and the polynomial X~ - 1 need not 
be referred to in the remaining steps of the goo computation. Thus, it suffices 
to compute the remainder efficiently. 

How may we compute this remainder efficiently? Recall the repeated squaring 
trick used to perform exponentiation (see Theorem 14.5). Suppose we were to 
express X~ in terms of the powers of the type gi(X) = X2i. Now, the remainder 
of each gi(X) upon division by f(X) can be computed efficiently from the 
corresponding remainder for gi-l(X). Thus, working modulo !(X), we can easily 
compute the remainder of X~ upon division by f(X). The details are left as 
an easy exercise. 

Exercise 14.14: Show that repeated squaring modulo f(X) can be used to compute 
gcd(f(X), xer -1) in polynomial time, provided that the degree of f(X) is polynomially 
bounded. 

Of course, there is no reason why an arbitrary polynomial of degree 2 should 
have roots with differing Legendre symbols. We show that this problem can 
be handled by suitably modifying the given polynomial f(X). Recall from 
Exercise 14.8 that exactly half the elements of Z; are quadratic residues. Thus, 
for r chosen uniformly at random from Z;, the probability that r is a quadratic 
residue is exactly 1/2. If f(X) had random roots, we would be able to claim that 

with probability 1/2 it is the case that [~] =1= [~]. Our idea is to deliberately 
"randomize" the roots of f(X). 

Consider r chosen uniformly at random from Zp. Define the polynomial 
fr(X) = f(X - r) = (X - a - r)(X - b - r) (mod pl. Clearly, the roots of fr(X) 
are a + rand b + r, which are both uniformly distributed over Z; (we may 
assume that neither of a + rand b + r is 0, since then we already have a root 
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for the polynomial). This polynomial can be written as 

fr(X) - X2 - (a + b + 2r)X + (ab + (a + b)r + r2) 

- X2 + (cx - 2r)X + (P - cxr + r2). 

The coefficients of the polynomial fr(X) = X 2 + cxrX + Pr can be easily computed 
given that' they depend only on the values of cx, p, and r. Also, given the roots 
of fr(X), it is easy to obtain the roots of i(X) by subtracting r. It does not seem 
unreasonable to hope that the roots of fr can be computed via the goo trick, 
since the roots are now effectively "randomized." 

The problem is that although the roots of fr(X) are randomly distributed, 
they are strongly correlated. The underlying assumption in the gcd trick is that· 
the two roots are random and independent. For example, suppose that 'all the 
odd elements of Zp are quadratic residues, while the even elements are quadratic 
non-residues. Then, consider the case where a = 2 and b := 4. For most choices 
of r, a + rand b + r would be smaller than p, so their residues modulo p would 
have the same parity and, therefore, the same Legendre symbol. However, we 
can circumvent this problem using the following lemma, which is reminiscent of 
two-point sampling (Section 3.4). 

Lemma 14.24: Let a, b E Zp and a =1= b. For s, t chosen independently and 
uniformly at random from Zp, the random variables U = as + t (mod p) and 
V = bs + t (mod p) are independent and uniformly distributed over Zp. 

. 
PROOF: It is clear that the random variables U and V are uniformly distributed 
over Zp. The hard part is to show that they are independent, but note that it 
suffices to verify that for each k, I E Zp the probability that U = k and V = I is 
exactly 11p2. 

Since we are working over the field Zp and a =1= b, it is easy to see that U = k 
and V = I if and only if 

k-l 
s = a _ b (mod p) 

k-l 
t - k - a--

b 
(mod pl. 

a-

Since 's and t are uniform and independent, the probability that they take on 
these values is exactly 1/r. 0 

It is now clear that we could randomize the roots of f(X) using both sand t as 
described in the above lemma. Instead, we now use this lemma to show that the 
original method of randomizing the roots, while yielding correlated roots, has 
the desired properties from the point of view of the Legendre symbols. These 
properties are captured by the event £(X, Y) which occurs if either at least 
one of X and Y is 0, or their Legendre symbols differ. Clearly, the algorithm 
succeeds when £(a + r, b + r) occurs. 
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Lemma 14.25: Let a, b, E Zp and a =F b. For r chosen uniformly at random from 
Zp, the random variables A = a + r (mod p) and B = b + r (mod p) satisfy 

Pr [£(A, B)] = ~ - O(~). 

PROOF: Suppose that we choose sand t, and define U and V exactly as in 
Lemma 14.24. It is then clear that the probability pf £(U, V) is at least 1/2. 
Suppose that instead of choosing r at random, we set its value to ts-1 (mod p), 
assuming for now that s =F O. Then, it is easy to verify that A = Us-1 and 
B = V S-I. Recall that, by the definition of the Legendre symbol, 

[x;] = [~] [~] . 
It is now easy to see that regardless of the value of S-1 , 

[;] = [!] ~ [~] = [:] . 

This implies that £(A, B) occurs with the same probability as £(U, V), and this 
probability is at least 1/2. 

Of course, all of this is based on choosing r = ts-1, instead of a random 
r. But s.ince t is uniformly distributed, it follows that ts-1 is also uniformly 
distributed. Thus, even when r is chosen uniformly at random, £(A, B) occurs 
with probability at least 1/2. Since the probability that s = 0 is l/p, removing 
the conditioning on s =F 0 gives the desired result. 0 

These ideas are summarized below as Algorithm PolyRoot. 

Algorithm PolyRoot: 

Input: Odd prime p and a non-irreducible, monic, square-free, degree 2 polyno-
mial f(X) = X2 +aX +P (mod p). 

Output The roots a and b of f(X) over Zp. 

1. choose r uniformly at random from Zp. 

2. compute the coefficients of the polynomial g(X) = X2 + a' X + P' such that 
g(X) = f(X - r), as follows. 
a' -a -2r; 
P' _ P - a r + r2. 

3. If P' = 0 then return a = -r and b = -r -a'. 

4. compute h(X) = gcd(g(X), xe; - 1) using Euclid's algorithm. 

5. If h(X) = g (X) or h(X) = 1 then go to Step 1. 

6. let h(X) = X - c and compute A - c, B - -(x' - A. 

7. return a = A - rand b = B - r. 

416 



14.6 PRIMALITY TESTING 

Since PolyRoot succeeds in each iteration with probability at least 1/2, it 
follows that it is a Las Vegas algorithm with polynomial expected running time. 

Theorem 14.26: Algorithm Poly Root is a Las Vegas algorithm that factors a de
gree 2 polynomial over Zp in polynomial expected time, provided p is an odd prime. 

14.6. Primality Testing 

One of the most interesting open problems in computational number theory 
is whether factoring is NP-hard. In the theory of NP-completeness, we deal 
with decision problems (equivalently, language recognition problems), .rather 
than optimization or function computation problems. The decision problem 
associated with factoring is that of deciding the compositeness or the primality 
of a given number n > 1; the corresponding languages are called COMPOS
ITENESS and PRIMALITY, and they are the complements of each other. It 
is easy to see that COMPOSITENESS E NP, since any non-trivial factor of a 
number is a polynomial-length proof of its compositeness, which can be verified. 
in polynomial time using a single division. This implies that the complemen
tary problem PRIMALITY E co-NP, by the definition of co-NP. (Recall that 
P s; NP n co-NP.) It is not known at this point whether COMPOSITENESS 
is NP-complete. We start by providing some evidence that this problem is not 
NP-complete. Thus, like graph isomorphism (see Section 7.7), this problem is ex
pected to have intermediate hardness, somewhere between P and NP-complete. 
We then focus on the solution of the compositeness and primality problems 
using randomized algorithms. 

The evidence that COMPOSITENESS is not NP-complete consists of demon
strating that this problem, or equivalently PRIMALITY, lies in NP n co-NP. If 
any problem in NP n co-NP is shown to be NP-complete, we would trivially 
obtain that NP = co-NP, a very unlikely outcome. The following theorem 
shows that PRIMALITY E NP, thereby also proving that COMPOSITENESS 
E NPnco-NP. 

Theorem 14.27: PRIMALITY E NP. 

PROOF: Our goal is to show that any prime number n has a polynomial length 
"certificate" of primality whose validity can be verified in polynomial time. For 
any n, the certificate can be non-deterministically guessed and then verified 
efficiently. 

We claim that n is a prime if and only if Z: has an element of order n - 1. 
Clearly, for prime n, the multiplicative group has a generator and its order is 
n - 1. For the converse, if Z: has an element of order n - 1, then IZ: I > n - 1. 
Since Z: contains only the coprimes smaller than n, it follows that every number 
smaller than n is coprime to it, implying that n is a prime. 
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The certificate of primality is an element g E Z: along with a proof that g 
has order n - 1. The proof just needs to show that for non-trivial divisors m 
of n - 1, gm =1= 1 (mod n). It suffices to verify this for the values of m that are 
(n - 1)/Pi, where the p/s are distinct prime factors of n - 1. The verification of 
the proof is easy once the factorization of n - 1 is known. The certificate of 
primality needs to include the factorization of n -1, which is q,(n) assuming that 
n is indeed a prime. It is essential that the factorization be complete, in that 
each of the factors is itself a prime; otherwise the verification of the order of g 
could be fallacious. Thus, the certificate must also include proofs of primality 
of the distinct prime factors of n - 1. 

The primality of the various prime factors can be proved recursively by 
including certificates of primality of these factors. Since the number of prime 
factors is O(log n) and each is of length O(log n), this recursive certificate is of 
polynomial length and can be checked in polynomial time. 0 

Exercise 14.15: Compute a bound on the length of the certificate of primality de
scribed in Theorem 14.27, and show that it can be validated in polynomial time. 

Of co.urse, this does not tell us how to check the primality (or compositeness) 
of a given number efficiently, even if we allow the use of randomization. In 
what follows, we will describe some randomized algorithms for this purpose. 
Intuitively, randomized algorithms for a decision problem can be devised only if 
there is a set that can be sampled efficiently and is dense in proofs of membership 
for the language. In concrete terms, a randomized algorithm for testing primality 
requires a set of potential certificates such that for any prime p, this set contains 
a large number of certificates of p's primality. For COMPOSITENESS, a naive 
belief might be that for composite n, Zn contains a large number of elements 

. that are not coprime with n, and such an element is a proof of compositeness 
that can be found by random sampling. However, when n = pq for two roughly 
equal primes p and q, it is easily seen that the size of the set Zn \ Z: is O(1/n). 
This implies that random sampling is unlikely to yield the desired proof. What 
about' PRIMALITY? Considering the complex structure of the best known 
certificates, it seems even less likely that a naive sampling will do the trick. 

There is some hope for primality testing in Fermat's Theorem, which says that 
if n is a prime, then for all a E Z: it must be the case that an- 1 = 1 (mod n). 
Call this equation the Fermat congruence for a. Suppose that the converse of 
this theorem is also true: if n is not a prime then there exists a E Z: for 
which an- 1 =1= 1 (mod n). Then, we can choose an element a E Zn at random 
and verify that gcd(a, n) = 1, since otherwise we know that n is composite. If 
indeed a E Z:, then we hope that with reasonably high probability a violates 
Fermat's congruence when n is composite. Failure to prove compositeness using 
this strategy could be taken as evidence of primality. Of course, it would also 
be necessary to show that the number of such compositeness certificates is 
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reasonably high. Unfortunately, there exist pseudo-primes, composite numbers 
satisfying the property in Fermat's Theorem, implying that its converse is not 
true. 

~ Definition 14.4: A Carmichael number is a composite number n such that, for all 
* aEZn , 

an
-

1 == 1 (mod n). 

The smallest example of a Carmichael number is 561, which can be factored 
into 3 x 11 x 17. A more interesting Carmichael number is 1729, the number 
observed by Ramanujan to be the smallest number expressible as the sum of 
two cubes in two distinct ways. In Problem 14.10, we describe a simple method 
for checking whether n is a Carmichael number, provided the factorization of n 
is known. 

The existence of Carmichael numbers need not kill the entire approach. If 
there are only finitely many Carmichael numbers, a randomized algorithm could 
afford to verify that the input n is not one of the Carmichael numbers, and 
otherwise perform the procedure described above. But we still need to show that 
for non-Carmichael composite numbers, the set Z: is not dense in the elements 
a that satisfy Fermat's congruence. 

~ Definition 14.5: For any number n, the set Fn of elements that do not violate 
Fermat's Theorem is defined as 

Fn = {a E Z: I an- 1 == 1 (mod n)}. 

Obviously, the set Fn is the same as Z: for prime n. The following lemma 
shows that for non-Carmichael composite numbers, the set Fn cannot be too 
large. 

Lemma 14.28: Let n be a composite non-Carmichael number. Then, 

1 * IFni < llZn I· 

PROOF: Since n is not a Carmichael number or a prime number, it is clear 
that Fn =1= Z:. It is easy to verify that (F", xn) forms a group, and therefore is 
a proper sub-group of (Z:, xn). By Proposition 14.8, it must be the case that 
IFni I IZ: I. But since the two cardinalities are not equal, it must be the case that 
IZ: I/lFnl > 1. This gives the desired result. 0 

We now know that IFn I is either the same as IZ: I, or no more than half of 
it. Since the former happens only in the case of primes or Carmichael numbers, 
this suggests that the simple randomized strategy described above will be able 
to test for primality. Unfortunately, it has recently been shown that there are, 
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in fact, infinitely many Carmichael numbers. The good news is that there are 
techniques for dealing with the problem posed by the existence of Carmichael 
numbers. 

We will first need to define the Jacobi symbols, a generalized form of the 
Legendre symbols. Recall that for a prime n and any a E 7l:, the Legendre 
symbol [~] denotes a~ (mod n). The Jacobi symbol is defined for all odd n, 
and it is the same as the Legendre symbol when n is a prime; we therefore use 
the same notation for both symbols. 

~ Definition 14.6 (Jacobi Symbol): Let n be an odd number with the prime 
factorization p~J,l22 ... p~r. Then, for all a such that gcd(a, n) = 1, the Jacobi 
symbol is given by 

U~] = IT [a.] k
i 

n . 1 P, 
1= 

Like that of the Legendre symbol, the value of the Jacobi symbol is also 
either 1 or -1. At first glance, it may appear that computing the Jacobi 
symbol requires knowledge of the prime factorization of n. Fortunately, there 
is a polynomial time algorithm for computing the Jacobi symbol without us
ing the· prime factorization of n. The reader is asked to provide a proof in 
Problem 14.11. 

Theorem 14.29: The Jacobi symbol satisfies the following properties whenever it 
is defined for the specified arguments. Using these. a polynomial time algorithm 
can be devised for computing the Jacobi symbol. given only a and n. 

2., For a = b (mod n). [*J = [~] . 

3. For odd coprimes a and n. [*J = (-1)~~ [~J . 

4. [~]=l. 

s. [~] = { 
-1 forn=30r5 (mod 8) 

1 for n = 1 or 7 (mod 8) 

~ Example 14.1: We show below a sequence of application of these properties for 
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computing the Jacobi symbol [;i]. 

U~~] - (-1>[i~~] 
- (-1) U:l] 
- (-1) [1~1]3 [1~\] 
_ ( -1 )2( + 1)3 [lil] 
- [141] 
- [.21]2 
_ (_1)2 

= 1 

(By Property 3) 
(By Property 2) 

(By Property 1) 

(By Properties 5 and 3) 

(By Property 2) 

(By Property 1) 

(By Property 5) 

The following primality testing algorithm is an RP algorithm for COMPOS
ITENESS. Such an algorithm outputs PRIME or COMPOSITE to indicate its "guess" 
about the input number n. It returns COMPOSITE only if n is indeed composite, 
but there is a possibility that it would label as PRIME a number that is not 
a prime. Thus, the output PRIME should be interpreted as "probably prime," 
while the output COMPOSITE should be interpreted as "definitely composite." 
This primality testing algorithm, called Primalityl is similar to the (fallacious) 
randomized algorithm described above, except that it uses the Jacobi symbol 
instead of Fermat's Theorem to find certificates. The underlying observation is 
that if n is a prime, then [~] = a~ (mod n) for all a; on the other hand, for 
composite n, there exist a large number of a E Z: such that [~] =1= a~ (mod n). 

Algorithm Prlmality1 : 

Input: Odd number n. 

Output PRIME or COMPOSITE. 

1. choose a uniformly at random from Zn\{O}. 

2. compute gcd(a, n). 

3. If gcd(a, n) =1= 1 then return COMPOSITE. 

4. compute [~] and a¥ (mod n). 

5. if [~] == a¥ (mod n) then return PRIME 

else return COMPOSITE. 

This algorithm is always correct when it returns COMPOSITE, because it then 
finds an a E Z" such that either gcd(a, n) =1= 1 or [;i] =1= a~ (mod n), both of 
which can only be possible for composite n. We now show that the probability 
the algorithm's returning PRIME when a is composite is at most 1/2. 

~ Definition 14.7: For any odd number n, the set J" is defined by 

J" = {a E Z: I [*J = a~ (mod n)}. 
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For prime n, J" = 7l:. The following lemma is similar in spirit to Lemma 
14.28, and it shows that for composite n the set J" is substantially smaller. 

Lemma 14.30: For all composite n, IJ"I < !17l:I. 

PROOF: It is easy to verify that J" c 7l: is a group, given the first property of 
Jacobi symbols. As in Lemma 14.28, all we need to show is that it is a proper 
subgroup of 7l:, thereby implying the desired result. 

Assume, for contradiction, that J" = 7l: for some composite n. Consider the 
prime factorization of n, say p~1 p~2 ... p~r, and for convenience define q = p~1 and 
m = p~2 ... p~r. Fix a generator g for 7l;, and consider the element a E 7l: that 
satisfies the following congruences: 

a - g (mod q) 

a == 1 (mod m). 

Theorem 14.4 implies that such an element a must always exist. Notice that a = 1 
(mod Pi) for all i > 2, since pdm and ml(a - 1). 

We now divide the proof into two cases depending on the factorization of n 
and derive a contradiction in each case. Consider first the case where kl = 1. 
We can write n = qm, where q = PI is a prime and gcd(q, m) = 1; notice that 
m =1= 1 sillce n is not a prime. We can compute the Jacobi symbol for a and n as 
follows. 

[;;] - t [a t ni=1 P; (By Definition) 

- [:] n~=2 [~t (Since q = PI. kl = 1) 

- [!] n~=2 [~t (By Property 2) 

- [!] (By Property 4) 

Since the Legendre and Jacobi symbols agree for a prime modulus, and a 

generator cannot be a quadratic residue in 7l;, we obtain [;;] = [!] = -1. By 

assumption, J" = 7l: and so 
.-1 

aT = -1 (mod n). 

Since min, it must also be the case that 

a~ = -1 (mod m), 

which contradicts our choice of a = 1 (mod m). 

The second (easier) case is where kl > 2. By assumption J" = 7l:, and 
therefore 

a~ = ±1 (mod n) 

=> a,,-I == 1 (mod n) 

=> g,,-I = 1 (mod q). 
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The last congruence follows from the observation that qln and a = g (mod q). 
Since g is generator for 7l;, its order is cp( q) and that must divide n - 1. Also, 
for kl > 2, pt!cp(q), implying that pt!(n - 1). But no prime number can divide 
both nand n - 1, giving us the desired contradiction. 0 

In Problem 14.10 we will see that a Carmichael number is always a product 
of distinct primes. Thus the first (harder) case in the above proof was exactly 
the one that had to deal with Carmichael numbers! 

By the preceding discussion, it is clear that the Primalityl algorithm makes 
an error only if n is composite, and then the random choice a E 7l: lies in J". 
Lemma 14.30 now shows that the probability of error is at most 1/2. 

Theorem 14.31: The Primalityl algorithm always returns PRIME for prime n, and 
returns COMPOSITE for composite n with probability at least 1/2. 

This theorem essentially says that COMPOSITENESS E RP and hence 
PRIMALITY E co-RP. As usual, it can be repeated independently to reduce 
the error probability, or to obtain a Las Vegas algorithm with polynomial 
expected time. 

There is a simpler version of this algorithin that has the disadvantage that 
it makes 2-sided errors (a BPP algorithm), unlike the above algorithm, which 
makes only 1-sided errors. The algorithm is based on the following observation. 

Lemma 14.32: Let n be an odd composite number that is not a prime power. 
* Suppose that for some a E 7l" , 

.-1 

aT = -1 (mod n). 

Then, the set 

SrI = {x E 7l: I x~ = ±1 (mod n)} 

has cardinality IS"I ~ ~ 17l: I. 

PROOF: Let n have the prime factorization p~lp~2 ... p~t. We are guaranteed 
that t > 2. Define q = p~1 and m = n/q; note that gcd(m,q) = 1 and m is a 
non-trivial factor of n. Using Theorem 14.4, choose b E 7l: such that it satisfies 
the following congruences: 

b - a (mod q) 

b - 1 (mod m). 

It is now easy to verify the following congruences: 
11-1 11-1 

bT =q aT =q -1 
.-1 

bT =m 1. 

If it were the case that b~ = 1 (mod n), then the residues modulo both q and 
m would also be 1; similarly, for b~ = -1 (mod n), the residues modulo the 
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two factors of n would be both -1. Since we have chosen b such that bY. has 
differing residues modulo the the two factors, it follows that 

0-1 

bT =1= +1 (mod n). 

But then b ¢ S,., and so S,. is a proper subset of 7l:. Clearly, S,. is a sub-group 
of 7l: and the result follows. 0 

In Lemma 14.30 we formulated a test based on the equality of the Jacobi 
symbol and (n - 1)/2th power; in contrast, here we have a test that requires 
only that this power be +1, and so the power might have a different sign than 
the Jacobi symbol. The algorithm suggested by this lemma is now clear. Of 
course, we must first rule out the case where n is composite but has only one 
prime factor. But this is easily done using the test for prime power outlined in 
Exercise 14.5. We describe below a version of this algorithm that achieves error 
probability 0(1/2') for any desired t. 

Algorithm Prlmallty2: 

Input: Odd number nand t. 

Output: PRIME or COMPOSITE . . 
1. If n is a perfect power then return COMPOSITE. 

2. choose bb b2, ••• , bt independently and uniformly at random from Zn \{O}. 

3. If for any b;, gcd(b;, n) =1= 1 then return COMPOSITE. 
n-1 

4. compute rl = b;-r (mod n), for 1 ~ i ;s; t. 

5. If for any i, r; =1= ± 1 (mod n) then return COMPOSITE. 

6. If for all i, r; == 1 (mod n) then return COMPOSITE 

else return PRIME. 

It is easy to verify that this algorithm runs in polynomial expected time, 
provided t is polynomially bounded. The following theorem shows that it is a 
BPP algorithm. 

Theorem 14.33: For all odd n, the probability that Algorithm Primality2 errs is 
at most 0(1/2'). 

PROOF: Suppose that n is a prime. Clearly, the only place where the algorithm 
can err is in Step 6. Now ri is exactly the Legendre symbol for bi, when n is a 
prime. The algorithm will return COMPOSITE in Step 6 if and only if all bi'S are 
quadratic residues. The probability that a random non-zero element modulo a 
prime is a quadratic residue is exactly 1/2. 

On the other hand, suppose that n is a composite number. Once again, the 
only possible error can be in Step 6, and only if n is not a prime power. But 
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now Lemma 14.32 applies to n. This algorithm returns PRIME only if at least one 
of the rj, say r., is -1 and the remaining rj values are either 1 or -1. In this 
case, the probability that a random element lies in S" is at most 1/2. Thus, the 
probability that the values rj, for i > 2, are all + 1 is at most 1/2t-

1
• 0 

Finally, we present a second RP algorithm for compositeness. This algorithm 
is almost the same as the earlier one based on Lemma 14.28, which we had 
discarded due to the existence of Carmichael numbers. Moreover, this algorithm 
has the advantage that it can be made deterministic under the ERH. Consider 
a,,-l, for a random a E Z" \{O}. If this is not 1 (mod n), then we have proved 
that n is composite. Otherwise, we keep replacing this (even) power of a by its 
precomputed square root until the result is something other than 1 o~ we are 
reduced to an odd power of a. If we reach a square root of 1 other than ± 1, 
then n is composite; otherwise, the algorithm claims that n is prime, and this is 
the only place where it may make an error. 

Algorithm Prlmallty3: 

Input Odd number n. 

Output: PRIME or COMPOSITE. 

1. compute rand R such that n - 1 = 2r R, and R is odd. 

2. choose a uniformly at random from Zn \{O}. 

3. for i = 0 to r compute b; = a~R. 

4. If an- 1 = br =1= 1 (mod n) then return COMPOSITE. 

5. If aR = bo == 1 (mod n) then return PRIME. 

6. let j = max{i I b; =1= 1 (mod n)}. 

7. If bj == -1 (mod n) then return PRIME 

else return COMPOSITE. 

For prime n, this algorithm always returns PRIME. We want to show that the 
probability that the algorithm returns PRIME on a composite input n is at most 
1/2. By Lemma 14.28, if n is not a Carmichael number, then Step 4 will detect 
the composite ness of n with probability at least 1/2. In Problem 14.14, you will 
be required to show that Steps 6 and 7 will detect a Carmichael number with 
probability at least 1/2. 

Theorem 14.34: Algorithm PrimaIity3 is an RP algorithm for COMPOSITE
NESS. 

This algorithm can be made deterministic under the ERH, in much the same 
way as the algorithm QuadRes. 
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Notes 

There are many excellent books on number theory and we mention only a few: Hardy 
and Wright [194], Hua [204], leVeque [275], Niven and Zuckerman [321]. and Vino
gradov [407]. The book by Davenport [121] is an excellent source for material on the 
Extended Riemann Hypothesis (ERH). The reader may refer to these for the history 
and sources of the various number-theoretic results described here. The algebraic back
ground that is assumed here can be reviewed in any text on algebra, such as those by 
Herstein [199] and van der Waerden [404]. Knuth [259] provides an excellent treatment 
of algorithmic number theory. The survey articles by Bach [44] and by Lenstra and 
Lenstra [273] are also excellent sources for more recent and advanced results. For 
overviews of randomized algorithms in number theory and algebra, the reader may refer 
to the articles by Johnson [216] and by Rabin and Shallit [345]. The book by Zip
pel [423] provides comprehensive coverage of randomized and deterministic algorithms 
for problems involving polynomial and number-theoretic problems. The lecture notes 
on algorithmic number theory by Angluin [27] is still among the best introductions to 
this area 

Euclid's ged algorithm was first formalized in his Elements, and we refer the reader 
to the above sources (most notably Knuth [259]) for a history of this algorithm and 
its variants. Algorithm QuadRes for quadratic residues is due to Adleman. Manders, 
and Miller [2]. The result connecting the ERH to the existence of small quadratic 
non-residues was obtained by Ankney [29]. Algorithm PolyRoot is a special case of 
the algori~hm due to Berlekamp [57], and is also attributed to Lehmer: see also the 
articles by Rabin [343] and Ben-Or [52]. The NP-completeness of finding the least 
square root was proved by Manders and Adleman [291]. The RSA scheme is due to 
Rivest, Shamir, and Adleman [358], and the modification using quadratic residues is due 
to Rabin [346]. 

The certificates of primality used to show that PRIMALITY is in NP were devised 
by Pratt [335]. Carmichael numbers were defined by Carmichael [87], and the proof that 
there are infinitely many such numbers is due to Alford, Granville, and Pomerance [16]. 
The Primalityl algorithm is due to Solovay and Strassen [382], while Algorithm Pri
mality3 was devised by Rabin [341, 342] and is related to a deterministic algorithm 
(assuming the ERH) due to Miller [310]. 

The primality testing algorithms described here all have the feature that if the in
put is a prime, then the output is always PRIME, while for composite inputs there 
is a sm.;ill probability of making errors. This is essentially the same as proving 
COMPOSITENESS E RP, or PRIMALITY E co-RP. There is no known easily 
described algorithm that errs in the reverse direction. Goldwasser and Kilian [178] 
gave such an algorithm, but this algorithm cannot be guaranteed to work correctly 
for a small set of exceptional primes. However, an extremely complex result of Adle
man and Huang [3] provides such an algorithm and shows that PRIMALITY E RP. 
Thus, we can now construct Las Vegas algorithms with polynomial expected run
ning time for both PRIMALITY and COMPOSITENESS. Finally, we remark that 
an important area that has not been covered here is that of devising algorithms 
for factoring composite numbers. While none of these algorithms is of polyno
mial running time, several SUb-exponential time algorithms are known. We refer the 
reader to the survey articles described above for a more detailed review of such algo
rithms. 
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PROBLEMS 

Problems -----------

14.1 Prove Theorem 14.2 by giving a detailed description of the extended Eu
clidean algorithm and its analysis. To prove a polynomial time bound for 
this algorithm, you will need to argue that the lengths of the operands in the 
intermediate computations are suitably bounded. 

14.2 Show how to compute multiplicative inverses modulo a prime P via a single 
exponentiation. Does this work modulo composite n? 

14.3 Show that given any number nand <I> (n), the prime factorization of n can be 
computed by a randomized polynomial time algorithm. 

14.4 Devise a randomized polynomial time algorithm for factoring a number n 
that is the product of two primes, given that some multiple of <I>(n) is also 
provided as a part of the input. Can you generalize this to arbitrary n? 

14.5 Show that for any odd prime p. the set {X2 11 ~ x ~ er} is exactly the set of 
all quadratic residues modulo p. 

14.6 Let a be a quadratic residue modulo n = 2!'. Show that 

• for k = 1, a has one square root modulo n; 

• for k = 2, a has two square roots modulo n; 

• for k > 2, a has four square roots modulo n. 

14.7 Generalize Theorem 14.19 to allow the possibility of even numbers. (Hint: 
Use Problem 14.6.) . 

14.8 (a) Show that for any odd n with t distinct prime factors, the number of 
quadratic residues in Z; is (/J (n )/2'. 

(b) Using Problem 14.7, generalize this to the case of even n. 

(c) Can these observations be used to devise a randomized algorithm for 
finding a quadratic non-residue modulo n? 

14.9 (Due to M.O. Rabin [346].) Consider the Rabin cryptosystem with n = pq 
such that p == 3 (mod 8) and q == 7 (mod 8). 

(a) Prove that for all x the Jacobi symbols satisfy [;] = [-~,x] = - [2,:]. 
(b) Using this observation and Exercise 14.12, show that we can choose 
the messages to lie in a subset of Zn such that there is a canonical way 
to determine the message from among the four square roots of its square 
modulo n. 

14.10 Let n have the prime factorization P~' p~2 ... p~t. where each Pi is an odd 
prime. 

(a) Show that n is a Carmichael number if and only if 

for 1 ~i ~t. 

(b) Conclude that the Carmichael numbers can be characterized as products 
of distinct primes n = n:-l Pi, such that for each i, (Pi - 1)I(n -1). 
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14.11 (a) Prove all the properties of the Jacobi symbol provided in Theorem 14.29. 

(b) Using these properties, devise a polynomial time algorithm for computing 
[~] without knowing the prime factorization of n or a. 

14.12 We have seen how to test if a number is prime. In several applications, 
it is necessary to pick large prime numbers at random. For example, in 
the RSA scheme Alice must have two large primes p and q, but she would 
like to choose them randomly since they are to be kept secret. Suggest 
a randomized algorithm for generating a random 9(log n) bit length prime. 
Analyze the expected time to generate such a prime. (Hint: Refer to the 
Prime Number Theorem described in Section 7.4.) 

14.13 Suppose you are given an algorithm S for computing square roots modulo 
a prime number. Using this algorithm as a blackbox, design an efficient 
randomized (RP) algorithm for compositeness. (Hint The idea is to choose 
a random element a E Z;, and run algorithm S on b = a2 • If S fails to find 
a square root, then n is not a prime. On the other hand, if S finds a square 
root other than ±a, then again n is not a prime.) 

14.14 (Due to M.O. Rabin [341,342].) Show that when the input n is a Carmichael 
number, Algorithm Prlmallty3 will return PRIME with probability at most 
1/2. (Hint: Use the characterization of Carmichael numbers described in 
Problem 14.10.) 
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APPENDIX A 

Notational Index 

The following is a list of the commonly used notation. The first entry is the 
symbol itself, followed by its meaning or name (if any), and the page number 
where the definition appears. Note that some standard symbols are not defined 
elsewhere in the text, e.g., R. for real numbers. The page number for these 
symbols is replaced by *. Some overloaded notation may have more than one 
definition or name associated with it. 

00 infinity • 
{a, ... ,z} set notation • 
[I, u] interval on the real line • 
[n] the set {1, ... ,n} • 
[13] bibliographic reference to item 13 • 
(/) empty set • 
n set intersection • 
U set union • 
S set complement • 
\ set difference • 
c proper subset • 
c subset • 
.1(t) relative pointwise distance • 
E set membership • 
1\ Boolean conjunction (and) • 
V Boolean disjunction (or) • 
/ Boolean negation (not) • 
=> implies • 
<=> Boolean equivalence • 
V for all • 
3 there exists • 
~ approximate equality • 

equivalence • -
'" asymptotic equality • 
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oc proportional to * 
=1= not equal to * 
<,>,<,> standard inequalities * 
~ mapping, approaches * 
rxl ceiling of x * 
lxJ floor of x * 
a+b a is a divisor of b 393 
af b a is not a divisor of b 393 
a div b quotient in the division of a by b 393 
a mod b remainder in the division of a by b 393 
a (mod p) residue of a modulo p * 
a = b (mod n) a is congruent to b modulo n 395 
a=n b a is congruent to b modulo n 395 
+n addition modulo n 395 
Xn multiplication modulo n 395 
cp(n) Euler totient function 397 

[~] Legendre symbol 404 

[~] Jacobi symbol 420 
IXI absolute value, length, cardinality * 
L:~ summation from i = 0 to n * 
I17-0 product from i = 0 to n * 
J~=o integral from x = 0 to 1 * 
JX square root * 
1X kth root * 
2s power set of S * 
n! factorial of n * 
(Z) binomial coefficient * 
r-I(y) the preimage {x I f(x) = y} * 
f'(x) first derivative of function f(x) * 
f"(x) second derivative of function f(x) * 
f(k)(X) kth derivative of function f(x) * 
f(k) (x)Jx==a kth derivative evaluated at x = a * 
aTb vector inner product L:j ajb j * 
aob outer product matrix M with Mij = ajbj 183 
x T transpose of the vector x * 
Ilxlll LI-norm of the vector x 435 
Ilxll Lrnorm of the vector x 435 
Ilxlloo Loo-norm of vector x 435 
AT transpose of the matrix A * 
A-I inverse of the matrix A * 
Ajj ij minor of the matrix A * 
adj(A) adjoint of the matrix A * 
b(k; n,p) binomial distribution's density function 445 
B(n,p) binomial distribution with parameters n, p 445 
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r(v) neighbors of the vertex v 8 
r(S) neighbors of the set of vertices S 8 
d(v) degree of vertex v 8 
e base of the natural logarithm * 
exp(x) exponential function of x * 
E[X] expectation of random variable X 442 
E [X I Y] conditional expectation of X given Y 84 
& event 439 
det(M) determinant of matrix M 165 
F+(/l, c5) Chernoff bound on the upper tail of binomial distribution 69 
F-(/l, c5) Chernoff bound on the lower tail of binomial distribution 71 
1F a field, event space 439 
1F[x] polynomials in x over the field 1F * 
Fx(x) probability distribution function of X 441 
Gx(z) probability generating function of X 444 
G(V,E) graph with vertices V and edges E * 
gcd(a, b) greatest common divisor of a and b 393 
Hn harmonic number: 1 + 1/2 + ... + lin * 
i.i.d. independent, identically distributed (random variables) * 
lcm(a, b) lowest common multiple of a and b 393 
limn-+OCl limit as n approaches 00 * 
Ai ith eigenvalue of a matrix 144 
lnx natural logarithm * 
10gb X logarithm to base b * 
logx logarithm to base 2 * 
n4 kth moment of random variable X 443 
/lx expectation of random variable X 443 
/l~ kth central moment of random variable X 443 
Mx(z) moment generating function of X 445 
N non-negative integers * 
O(f(x» the big-oh notation 433 
o(f(x» the little-oh notation 433 
!l(f(x» the big-omega notation 433 
0(f(x» the big-theta notation 433 
(j) elementary event 439 
!l sample space 439 
(!l,F,Pr) probability space 439 
(!l, Pr) probability space with F = 2{} 439 
ord order of a group or its element 398 
Px(x) probability density function of X 442 
Pr probability measure 439 
Pr[&1 1&2] conditional probability of &1 given &2 440 
1t the constant pi, a permutation * 
¢ golden ratio (1 + .j5)/2 * 

431 



NOTATIONAL INDEX 

n a problem * 
R real numbers * 
R+ non-negative real numbers * 
R- non-positive real numbers * 
(1x standard deviation of random variable X 443 
(12 x variance of random variable X 443 
Sn symmetric group of permutations of order n 165 
sgn(n) sign of permutation n 165 
7l integers * 
7lp integers modulo p * 
7l* multiplicative group of integers modulo p * p 
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APPENDIX B 

Mathematical Background 

This appendix is devoted to some elementary mathematical material that is used 
throughout this book. We start by reviewing the asymptotic notation such as 
the big-oh notation (see, for example, Knuth [261]). We also provide some 
important identities and approximations for binomial coefficients, as well as a 
few useful analytic inequalities. Good sources for this material are the books 
by Graham, Knuth, and Patashnik [182], Greene and Knuth [183], Hardy, 
Littlewood, and Polya [195], Knuth [258], and Mitrinovic [311]. Finally, we 
review some elementary material from linear algebra; the book by Strang [387] 
is a good source for this material. 

Notation for Asymptotics 

We start by defining the big-oh notation. The article by Knuth [261] gives more 
details on the following definitions . 

• Definition B.l: Let f(n), g(n) : R ~ R be two non-negative real-valued 
functions. 

1. We say that f(n) = O(g(n» if there exist positive numbers c and N such 
that, for all n > N, f(n) < cg(n). 

2. We say that f(n) = Q(g(n» if there exist positive numbers c and N such 
that, for all n > N, f(n) > cg(n). 

3. We say that f(n) = 8(g(n» if f(n) = O(g(n» and f(n) = Q(g(n» both 
hold. 

4. We say that f(n) = o(g(n» if limn .... oo f(n)Jg(n) = O. In this case, we also 
say that g(n) = w(f(n». 

5. We say that f(n) '" g(n) if limn .... oo f(n)J g(n) = 1. (If f and g are mul
tivariate functions, it will be necessary to specify the argument, which is 
assumed to approach 00. This is usually done by saying that: for large n, 
f(n, m) '" g(n, m). The interpretation is that m is held fixed, while n ~ 00.) 
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Note that the equality f(n) = O(g(n» does not use "=" in a symmetric 
fashion. 

Combinatorial Inequalities 

We now turn our attention to the binomial coefficients, defined as follows. Let 
n > k > O. 

( n) (n) n! 
k = n-k = k!(n-k)! 

If k > n > 0 we define (~) = O. The reason for the name "binomial coefficients" 
is their appearance in the binomial expansion: 

(p + q)n = t (n)pkqn-k. 
k-o k 

Proposition B.l (Stirling's Formula): 

n! = J2nn (;)" (1 + l~n +0(:2)) 
From this one obtains the following inequalities involving binomial coeffi

cients. 

Proposition B.2: Let n > k > O. 

1. (~) :S; ~. 

2. For large n. (~) '" ~. 

3. (~) :S; (~e t 
4. (~) > onk. 

The Jollowing power series expansions sometimes allow us to obtain useful 
inequalities. 

In(1 + x) 

We list below several inequalities involving the exponential function. The 
reader may refer to Mitrinovic [311] for the derivations and other variants. 

Proposition B.3: 

1. For all t E R. et ~ 1 + t with equality holding only at t = O. 
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2. For all t, n E R. such that n ~ 1 and It I :s;; n, 

et (1 _ :) < (1 + ~) n :s;; et
• 

Note that this holds even for negative values of t. 

3. For all t, n E R+. 

( t ) n (t ) n+t/2 l+n <et:s;; l+n 

For any n E N, we define the nth Harmonic number Hn as follows: 

1 1 
Hn = 1 + - + ... + -. 

2 n 

Proposition B.4: For any n EN, the nth Harmonic number is 

Hn = Inn + 0(1). 

The nth Fibonacci number is defined as follows: 

Fo = Fl = 1, 

and for n > 2, 

Proposition B.5: For all n E N. Fn = 0(cpn). where cp = (1 + vts)/2 is the golden 
ratio. 

Linear Algebra 

Consider the field R of real numbers under addition and multiplication, and 
the real vector space R n of n-dimensional vectors over R. This vector space is 
an inner product vector space, where we define the inner product of two vectors 
v, wE R n as 

n 

vTw = LViWi, 

i=1 

where Vi and Wi are the ith components of the vectors v and w. The vectors 
v and ware said to be orthogonal, denoted v ..1 w, if their inner product vT w 
equals O. A subspace W of a vector space V is a subset W c V, which forms a 
vector space; its orthogonal subspace is W.1. = {v E V I 'Vw E W,v ..1 w}. The 
vector space V is a direct sum of the orthogonal subspaces Wand W.1.. In other 
words, every vector v E V can be uniquely expressed as v = w + w', where w E W 
and w' E W.1.. 

We define three norms for vectors in an inner product vector space. 
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LI-norm: Ilvlll = L::'I IVil· 
L2-norm: Ilvll = JVTV = VL::'I vf. 
Loo-norm: Ilvlloo = max~1 IVil· 

A unit vector is a vector v with Ilvll = 1. We state some standard facts about 
these norms. While the familiar triangle inequality is valid for any norm, we 
state it only for the L2 norm. 

Proposition B.6 (Triangle Inequality): For any two vectors v and w, 

Ilv + wll < Ilvll + Ilwll· 

The classical theorem of Pythagoras can be generalized as follows. 

Proposition B.7 (Pythagoras Theorem): For any two orthogonal vectors x and y, 
let v = x + y. Then 

An immediate consequence of the Pythagoras Theorem is the following useful 
fact. 

Proposition B.8 (pythagoras Inequality): For any two orthogonal vectors x and 
y, let v = x + y. Then 

Ilxll < Ilvll 

and 

Ilyll ~ Ilvll· 

Note that orthogonality is important in this proposition. For example, the result 
is not true for x = -yo 

Proposition B.9 (Cauchy-Schwartz Inequality): Let a and " be two real vectors. 
Then 

with equality holding if and only if the vectors are linearly related. 

Finally, we establish some relations between the different norms. 

Proposition B.10: For any vector v, 

and 

Ilvll < Ilvlll < .Jnllvll 

Ilvlloo < Ilvlll < nllvlloo . 
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We briefly indicate the proof of the first series of inequalities in Proposition B.lO. 
Note that the LI and L2 norms are identical for any vector that points along the 
direction of one of the coordinate axes. Expressing the vector v as the sum of 
vectors aligned with the n coordinate axes and applying the triangle inequality 
leads to the inequality Ilvll < Ilvlll. To obtain the inequality Ilvlll :s ,Jnllvll, 
we employ the Cauchy-Schwartz inequality with aj = Vj and bj = Ivd/vj, for 
1 <i< n. 

A basis for a vector space V is a collection of linearly independent vectors 
bl , ... , bn that span V. Each vector in V can be uniquely expressed as a linear 
combination of the basis vectors. An orthonormal basis is a collection of pairwise 
orthogonal, unit vectors bh ... , bn that form a basis for V. 

Proposition B.11: Let pER n be any vector, and bl , .... bn be any orthonormal 
basis for Rn. Further, let p = L:::"I cjbj be the unique expression of p as a linear 

combination of the basis vectors. Then the Lrnorm of P is given by lip II = VL:j cf. 

Consider any n x n symmetric matrix A over R. The characteristic equation 
for A is 

Ax = AX, 

where X E R n and A E R. We say that A is an eigenvalue of A if there exists 
a non-zero vector X satisfying the characteristic equation. A solution x is said 
to be an eigenvector corresponding to the eigenvalue A. The following result 
characterizes the eigenvalues. 

Proposition B.12: The eigenvalues of A are the roots of the following polynomial 
in A: 

det(A - AI) = 0, 

where I denotes the n x n identity matrix. 

Since the coefficient of An is always (-I)n, this is a polynomial of degree n. For 
symmetric A, the polynomial has n real roots, and so the sum of the multiplicities 
of the eigenvalues of A is exactly n. It is easy to prove that any collection of 
eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal. If 
the eigenvalues all have multiplicity 1, the corresponding eigenvectors form a 
basis for Rn. The n eigenvalues of A are canonically numbered (accounting for 
multiplicities) such that Al > A2 > ... > An. 

Since A is symmetric, it is possible to choose a set of pairwise orthogonal, unit 
vectors eh ... , en such that, for 1 < i < n, ej is an eigenvector for Aj. Notice that 
even though the eigenvalues may have multiplicities, for each distinct eigenvalue 
we can choose as many orthogonal eigenvectors as its multiplicity. These vectors 
eh ... , en form an orthonormal basis for Rn. 
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Basic Probability Thleory 

In this appeDdL~ we review basic ideas from probability theory. Starting with 
an axiomatic \iew of probability theory, we develop the following concepts: 
events, probabilities, independence, random variables, and their distributions 
and moments. After presenting some fundamental theorems without proof, we 
describe the properties of some common probability distributions. This appendix 
is provided for the sake of completeness only and should be supplemented by 
standard probability texts such as those by Billingsley [61], Feller [142, 143], 
and Grimmen and Stirzaker [185]. 

Any probabilistic statement must refer to an underlying probability space. 
A probabili~' space is defined in terms of a sample space with an algebraic 
structure and a probability measure imposed on it. A sample space n is an 
arbitrary I pDt...'"Iltially infinite) set, and its elements are referred to as elementary 
events. A sub50et E c n is referred to as an event. 

Intuiti\·ely. the sample space represents the set of aU possible outcomes in 
a probabilistic experiment, and an event represents a collection of possible 
outcomes. For example, if the experiment consists of a sequence of four coin 
flips, then n =~HHHH,HHHT, ... , TTTT} and the event "the number of 
HEADS exceeds the number of TAILS by two" is the subset {HHHT,HHTH, 
HTHH, THHH}. Sometimes it is convenient to defin~ the underlying sam
ple space ,;\ith0ut considering each elementary event separately. For exam
ple, if we ~h to focus on the number of HEADS only, then we could define 
n = {O.1.:'3A;. An example of an infinite sample ~pace comes from the 
following experiment: flip an unbiased coin until HEAdS appears for the first 
time. Here the sample space n is {H, TH, TTH, TTTH, TTTTH, ... }. The 
event that -me number of TAILS seen is odd" is gi~en by the infinite set 
{TH, TTTH. TTTTTH, ... }. 

At times we may wish to concentrate on only a subqollection of the events 
over a panicu1ar sample space n rather than consider al~ the possible events in 
the power set~. However, not all subcollections of 20i lead to a well-defined 
probabili~' ~. It is for this reason that we make the following definition. 
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• Definition C.1: A u-field· (0, F) consists of a sample space n and a collection 
of subsets F satisfying the following conditions. 

1. 0 E F. 

2. & E F => "& E F. 

The last condition is that of closure under countable union, and together with 
the second condition it implies closure under count4ble intersection. Observe 
that the first two conditions imply that !l E F. For convenience, we will adopt 
the convention of referring to F itself as a u-field when the sample space !l is 
clear from the context. 

• Definition C.2: Given au-field (0, F), a probability measure Pr : F ~ R+ is a 
function that satisfies the following conditions. 

1. VA E F, O:s; Pr[A] :s; 1. 

2. Pr[!l] = 1. 

3. For mutually disjoint events &1, &2, ... , Pr[Ui~;] = 2:i Pr[&;]. 

• Definition C.3: A probability space (0, F, Pr) consists of au-field (0, F) with a 
probability measure Pr defined on it. 

When specifying a probability space, F may be omitted and it is understood 
then that the u-field referred to is (!l,2n). 

Consider the following example of a probability space with !l = (0,1], i.e., 
the half-open unit interval. An elementary event is the choice of a point in 
this interval. The collection F consists of all possible subsets of !l that can be 
expressed as a union of disjoint half-open subintervals. That is, any & E F can 
be written as & = Ui(li, Ui], where 0 < Ii < Ui < IHI < 1. The probability measure 
is defined to be such that for any & E F, Pr[&] is the total length of the intervals 
in it. 

An easy way to combine distinct probability spades (!It, Ft, Prd and (!l2' 
F2, Pr2) is to take their product space (!l, F, Pr). In the new space, !l = !ll x !l2, 
F = FI X F2, and for events & lEFt, &2 E F2, the probability of the joint event 
(&t,&2) is given by the product of the two events' Ptobabilities. The product 
corresponds to performing independent experiments with respect to each of the 
two probability spaces. 

In the rest of this appendix we will assume some fixed underlying probability 
space. We can apply the set operators of union, inteIisection, and complemen
tation to combine events in complex ways; sometimes the boolean operators of 
disjunction (V), conjunction (/\), and negation (-,) are also used to denote these 
operations. 
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Proposition C.l (Principle of Inclusion-Exclusion): Let CI. C2 • ..•• c n be arbi
trary events. Then 

Pr[U;!..I Ci] = L Pr[ci] - L Pr[ci n Cj] + L Pr[ci n Cj n Ck] 
i i<j i<j<k 

-'" + (_1)1+1 L Pr[n~=lc;J + ... 
it<i2<"'<i, 

Proposition C.2 (Boole-Bonferroni Inequalities): Let CI. C2 • ..•• c n be arbitrary 
events. Then. for even k 

k L '+1 Pr[U;!..lc;] > (-1)1 L Pr [rTt=l Cir ] 

j=1 it<i2<"'<ij 

andfor odd k 

k 

Pr[U;!..lci] < L(-I)i+1 L Pr [rTt=l c;J. 
j=1 it<i2<"'<ij 

• Defbiition C.4: The conditional probability of CI giiven C2 is denoted by 
Pr[c I I C2] and is given by 

assuming that Pr[c2] > O. 

This corresponds to the probability that an experiment has an outcome in 
the set CI when we already know that it is in the set C2. 

Proposition C.3: Let CI. C2 • ..•• Ck be a partition of the sample space n. Then 
for a'!y event C 

k 

Pr[c] = L Pr[c I C;]Pr[Ci]. 
i-I 

Since Pr[CI n C2] = Pr[CI I c2]Pr[c2] = Pr[c2 I ct1Pr[ct1, we obtain Bayes' 
rule from the previous proposition. 

Proposition C.4 (Bayes' Rule): Let CI. C2 • •..• Ck be a partition of the sample 
space n. Then for any event C 

Pr[Ci I c] = Pr[ci n c] = Pr[c I ci]Pr c;] 
Pr[c] L:~=I Pr[c I Cj] r[cj] 
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• Definition COS: A collection of events {t'i liE I} is independent if for all subsets 
S r;;; I, 

Pr[niest';] = IT Pr[t'il 
ieS 

These events are said to be k-wise independent if every subcollection consisting of 
k events is independent. The special case of 2-wise independence is often referred 
to as pairwise independence. 

Equivalently, using the definition of conditional expectations, we can say that 
a collection of events {t'i liE I} is independent if for any j E I and all subsets 
Sr;;;I\{t'j}, 

Pr[t'j I niest'i] = Pr[t'j]. 

In particular, if the events are pairwise independent then Pr[t'i I t'j] = Pr[t';], for 
all i =1= j. 

Usually the events we deal with c~m be expressed in terms of real-valued 
functions called random variables. The argument of stich a function is generally 
omitted as it always corresponds to a single experiment from the underlying 
probability space. 

• Definition C.6: A random variable X is a real-valued function over the sample 
space, X : n -+ R, such that for all x E R, 

{w En I X(w) ~ x} E F. 

This gives us a compact representation of complex events since Pr[X < x] is 
just another way of denoting Pr[{w E n I X(w) < x}]. 

• Definition C.7: The distribution junction F : R -+ [0,1] for a random variable 
X is defined as Fx(x) = Pr[X ~ x]. 

A discrete random variable is a function over the sample space whose range is 
either a finite or countably infinite subset of R. Typi~ally, we will be interested 
in discrete random variables that are integer-valued. An indicator variable is a 
discrete random variable that takes on only the values 0 or 1. An indicator 
variable X is used to denote the occurrence or non-C!>Ccurrence of an event t', 
where t' = {w E n I X(w) = I} and t' = {w E n I X(w) = O}. Observe that 
the notions of conditional probability and independence carry over to random 
variables, since they are just another way of denoting events. More precisely, 
two random variables X and Yare said to be independent if for each x, y E R, 
the events {X = x} and {Y = y} are independent. 

A random variable X is said to be continuous if it has a distribution function 
F whose derivative F' is a positive, integrable functi~n. (In other words, F is 
absolutely continuous.) The function F' is referred to as the density function of 
the random variable X. From here on all random variables are assumed to be 
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discrete, although with some carel the following definitions can be extended to 
continuous random variables. 

• Definition C.8: The density function p : R -+ [0,1] for a random variable X is 
defined as px(x) = Pr[X = xl 

It is sometimes useful to combine the density or distribution functions for 
dependent random variables. 

• Definition C.9: The joint distribution function F X,Y : R x R -+ [0,1] for random 
variables X and Y is defined as 

Fx,Y(x,y) = Pr[{X < x} n {Y < y}]. 

The joint density function PX,Y : R x R -+ [0,1] for random variables X and Y 
is defined as 

PX,y(x,y) = Pr[{X = x} n {Y = y}]. 

Thus, Pr[Y = y] = L:xp(x,y), and 

Pr[X = x I Y = y] = p( x, y) 
Pr[Y = y] 

We can now restate the independence of X and Y as requiring that the joint 
density function be the product of the individual density functions of the two 
random variables. 

• Definition C.IO: Random variables X and Yare said to be independent if for 
all x, y E R, 

p(x,y) = Pr[X = x]Pr[Y = y] 

or, equivalently, 

Pr[X = x I Y = y] = Pr[X = x]. 

These definitions extend to a set X.,X2, ••• of more than two random variables, 
and the notion of k-wise independence can be defined as in Definition C.S. 

The following discussion of expectations is in terms of sirngle random variables, 
but they have the obvious generalizations to function$ of multiple random 
variables using their joint density function. 

• Definition C.II: The expectation of a random variable X with density function 
p is defined as E[X] = L:x xp(x), where the summation is over the range of X. 

1 Basically all the definitions can be made in terms of the distribution fuijction for the discrete random 
variable, and then carried over to the continuous case. For example, we say that two continuous random 
variables X and Y are independent if for each x, y E R., the events {X ~ x} and {Y ~ y} are independent. 
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Note that the expectation may not be well-defined if the summation does not 
converge absolutely. For any real-valued function g(X), we extend the definition 
of expectation to E[g(X)] = L:x g(x)p(x). For any two random variables X 
and Y, E[X + Y] = E[X] + E[Y]. The remarkable thing about this property is 
that it does not assume anything about the independence of the two random 
variables. In fact, this can be generalized as follows. 

Proposition C.S (Linearity of Expectation): Let Xl, ... , X k be arbitrary random 
variables, and h(Xb ... , X k ) a linear function. Then 

This does not generalize to nonlinear functions, although with the assuIJlption 
of independence we can prove a similar result for any polynomial h using the 
following. 

Proposition C.6: For independent random variables X and Y, 

E[XY] = E[X]E[Y]. 

Here are some other useful properties of expectations. We say that ran
dom variable X stochastically dominates random variable Y if, for all Z E R, 
Pr[X > z] ~ Pr[Y > z]. 

Proposition C.7: Let X and Y be random variables with finite expectations. 

1. If X stochastically dominates y, then E[X] ~ E[Y]; equality holds if and only 
if X, Yare identically distributed. 

2. IE[X] I :$ E[IXI]. 

3. For a non-negative integer-valued random variable X, E[X] = L:~ Pr[X ~ 
x]. 

The density function of a random variable can be characterized in terms of 
the following expectations . 

• Definition C.12: For kEN, the kth moment n4 and the kth central moment J.l.~ 
of a random variable X are defined as follows: 

m~ = E[Xk] 

J.l.~ = E[(X - E[X])k]. 

The expected value of X is sometimes denoted by J.l.x = mk. The variance 
of X is denoted var[X] or oJ and this is J.l.k; the standard deviation (Jx is the 
positive square root of the variance. 

Proposition C.S: var[X] = mk - (J.l.x)2 = E[X2] - E[X]2. 
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Note that the next proposition does not generalize to arbitrary linear functions 
since var[cX] = c2var[X]. 

Proposition C.9: For independent random variables X and y, 

var[X + Y] = var[X] + var[Y]. 

The use of generating functions to describe a density function often leads to 
simplified analysis of the moments . 

• Definition C.13: Let X be a non-negative integer-valued random variable with 
the density function p. Then the probability generating junction (pgf) of X is 

XJ 

Gx(z) == E[zx] = LP(i)Zi. 
i=O 

The summation in the definition of Gx(z) always converges for Izl < 1, and so 
we assume that the symbolic variable z lies in the interval [-1, 1]. The following 
results can be obtained by suitable differentiation and algebraic manipulation of 
Gx(z). The reader should keep in mind that the pgf Gx may not be well-defined 
for all real values of z, but whenever Gx is well-defined, so are its derivatives 
with respect to z. In the sequel, for a function j, we denote by f' its derivative 
and by j<k) its kth derivative. 

Proposition C.IO: Let X be a non-negative integer-valued random variable with 
the pgf G(z). 

1. G(I) == 1. 

2. E[X] = G'(I). 

3. E[X2] = G"(I) + G'(I). 

4. var[X] = G"(I) + G'(I) - G'(1)2. 

PropOsition C.ll: Let Xl, ... , X k be independent random variables with the pgf's 
G1(z), ... , Gk(z). Then the pgf of the random variable Y == L:~=l Xi is given by 

k 

G(z) = II Gi(z). 
i=l 

Proposition C.12: Let Xl, X 2, ... be a sequence of independent and identically 
distributed (U.d.) random variables with the common pgf Gx(z). If Y is a random 
variable with the pgf Gy(z) and Y is independent of all the Xi, then S = Xl + 
X2 + ... +Xy has the pgf 

Gs(z) = Gy (Gx(z». 
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The following class of generating functions is even more useful, especially 
since it does not require that X be integer-valued. I 

• Definition C.14: Let X be a random variable with density function p. Then the 
moment generating function (mgf) of X is 

Mx(z) = E[ezx]. 

Proposition C.13: For random variable X with mgf M(z), 

E[Xk] = M(k)(z)lz=o' 

Proposition C.14: Let Xl, ... , Xk be independent random variables with the mgf's 
MI(Z), ... , Mk(Z). Then the mgfofthe random variable Y = L:~=IXi is given by 

k 

M(z) = II Mi(Z). 
i=l 

We now describe some commonly encountered di$tributions and enumerate 
their properties. Note that the mgf for these distributions can be easily obtained 
since Mx(z) = Gx(e) for non-negative integer X. We omit the subscript X 
in the moments, distribution, density, and generating functions when it is clear 
from the context that we are referring to the random variable X. 

Bernoulli distribution. Suppose we flip a coin whose probability of HEADS is 
p. Let X be the random variable that has value 1 if the result is HEADS, and 
o otherwise. Then X has the Bernoulli distribution with the parameter p. The 
density function for X is given by 

{

I - p. if x = 0 
p(x) = p if x = 1 

o otherwise. 

Let q = 1 - p. Then E[X] = p, var[X] = pq, and G(z) = q + pz. 

Binomial distribution. Let XI. X 2, .•. , Xn be i.i.d. random variables whose 
common distribution is the Bernoulli distribution with parameter p. The random 
variable X = Xl + X 2 + ... + Xn denotes the number of HEADS in a sequence of n 
coin flips. The random variable X has the binomial distribution with parameter 
nand p, sometimes abbreviated B(n,p). The density function is denoted by 
b(k; n,p), and for integer k with 0 < k < n we have 

b(k;n,p) = Pr[X = k] = (~)p'q'-k, 
For binomial X, E[X] = np, var[X] = npq, and G(z) =I: (q + pz)n. 

1 A related class of generating functions is the characteristic function ljJ(z) = E[eizx ]. where i = A. 
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Geometric distribution. Suppose we flip a coin repeatedly until HEADS appears 
for the first time. Assuming that each coin flip has the Bernoulli distribution 
with parameter p, the random variable X denoting the total number of coin 
flips has the geometric distribution with parameter p. Its density function is as 
follows. 

(x) = {pqX-I for x . 1,2,3, ... 
p 0 otherwIse. 

For geometric X, E[X] = l/p, var[X] = q/p2, and G(z) = pz/(l - qz). An 
important property of the geometric distribution is its memorylessness: let k and 
I be positive integers; then 

Pr[X = k + I I X > I] = Pr[X = k]. 

Thus, knowing that the first I trials were "failures" does not affect the distribution 
of subsequent trials. 

Negative binomial distribution. Let XI. X 2, ••• , Xn be Li.d. random variables 
whose common distribution is the geometric distribution with parameter p. The 
random variable X = Xl + X 2 + ... + Xn denotes the number of coin flips 
needed to obtain n HEADS. The random variable X has the negative binomial 
distribution with parameters nand p. The density function for this distribution 
is defined only for x = n,n + 1,n + 2, ... : 

(
X -1) Pr[X = x] = pnqx-n. 
n-1 

The characteristics are: E[Xl = nip, var[X] = nq/r, and G(z) = (pz/(l - qz»n. 

Poisson distribution. Let A be a positive real number. Then the Poisson 
distribution with parameter A has the following density function. 

(x) = {AXe-A/X! for x . 0, 1,2, ... 
p 0 otherwIse. 

For large n, the Poisson distribution is a good approximation to the binomial 
distrioution B(n,A/n). The characteristics of a Poisson random variable X are: 
E[X] = A, var[X] = A., and G(z) = el(z-l). 

446 



References 

[1] L. Adleman. Two theorems on random polynomial. time. In Proceedings of the 
19th Annual IEEE Symposium on Foundations of Coft,puter Science, pages 75-83, 
1978. 

[2] L. Adleman, K. Manders, and G.L. Miller. On ~aking roots in finite fields. 
In Proceedings of the 18th Annual IEEE Symposium Ion Foundations of Computer 
Science, pages 151-163, 1977. 

[3] L.M. Adleman and AM.-D. Huang. Recognizing pri.mes in random polynomial 
time. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 
pages 462-469, 1987. 

[4] A Aggarwal and R.J. Anderson. A random NC alg~rithm for depth first search. 
Combinatorica, 8:1-12, 1988. . 

[5] AV. Aho, lE. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer 
Algorithms. Addison-Wesley, Reading, MA, 1974. . 

[6] AV. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. 
Addison-Wesley, Reading, MA, 1983. 

[7] RK. Ahuja, T.L. Magnanti, and J.B. Orlin. Network! Flows: Theory, Algorithms, 
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993. 

[8] M. Ajtai, l Komlos, and E. Szemeredi. Sorting in c l~g n parallel steps. Combina
torica, 3(1):1-19,1983. 

[9] M. Ajtai, J. Komlos, and E. Szemeredi. DeterminsitiCi simulation in logspace. In 
Proceedings of the 19th Annual ACM Symposium on theory of Computing, pages 
132-140, 1987. 

[10] S. Albers. Improved randomized on-line algorithms fpr the list update problem. 
To appear in the 1995 ACM-SIAM Symposium on D~screte Algorithms. 

[11] OJ. Aldous. Random walks on finite groups and rap~dly mixing Markov chains. 
In Semina ire de Probabilites, volume 986 of Springer-Verlag Lecture Notes in Math
ematics XVII, pages 243-297. Springer-Verlag, New Y~rk, 1981-82. 

[12] D.J. Aldous. Probability Approximations via the Poisson Clumping Heuristic. 
Springer-Verlag, New York, 1989. 

[13] OJ. Aldous. Reversible Markov chains and random walks on graphs, 1994. 
Unpublished Monograph, Berkeley. . 

[14] R Aleliunas. Randomized parallel communication. In ACM-SIGOPS Symposium 
on Principles of Distributed Systems, pages 6(}-72, 1982; 

[15] R. Aleliunas, RM. Karp, RJ. Lipton, L. Lovasz, and C. Rackoff. Random walks, 

447 



[16] 

[17] 
[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

REFERENCES 

universal traversal sequences, and the complexity of maze J!>roblems. In Proceedings 
of the 20th Annual Symposium on Foundations of Compute~ Science, pages 218-223, 
San Juan, Puerto Rico, October 1979. . 
W.R Alford, A Granville, and C Pomerance. There are in~nitely many Carmichael 
numbers. University of Georgia Mathematics Preprint Serfs, 1992. 
N. Alon. Eigenvalues and expanders. Combinatorica, 6(2)1:83-96, 1986. 
N. Alon. A parallel algorithmic version of the locallemm~. In 32nd Annual IEEE 
Symposium on Foundations of Computer Science, pages 58~593, 1991. 
N. Alon, L. Babai, and A Itai. A fast and simple randQrnized algorithm for the 
maximal independent set problem. Journal of Algorithms,: 7 :567-583, 1986. 
N. Alon and F.RK. Chung. Explicit construction of linea~ sized tolerant networks. 
Discrete Mathematics, 72:15-19, 1988. 
N. Alon, Z. Galil, and O. Margalit. On the exponent of t~e all pairs shortest path 
problem. In Proceedings of the 32nd Annual IEEE Symplpsium on Foundations of 
Computer Science, pages 569-575, 1991. . 
N. Alon, Z. GaIil, O. Margalit, and M. Naor. Witne$ses for boolean matrix 
multiplication and for shortest paths. In Proceedings 01 the 33rd Annual IEEE 
Symposium on Foundations of Computer Science, pages 41 V-426, 1992. 
N. Alon and V.D. Milman. Eigenvalues, expanders and superconcentrators. In Pro
ceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, 
1984. 
N. Alon and J. Spencer. The Probabilistic Method. Wiley!Interscience, New York, 
199.2. 
H. Alt, L.J. Guibas, K. Mehlhorn, R.M. Karp, and A \\ligderson. A method for 
obtaining randomized algorithms with small tail proba~ilites. Technical Report 
TR-91-057, International Computer Science Institute, Be~keley, 1991. 
I. Althofer. On sparse approximations to randomized str~tegies and convex com-
binations. Linear Algebra and its Applications, 199:339-3$5, 1994. . 
D. Angluin. Lecture notes on the complexity of some prqblems in number theory. 
Technical Report 243, Department of Computer Science, [Yale University, 1982. 
D. Angluin and L.G. Valiant. Fast probabilistic algorithm~ for Hamiltonian circuits 
and matchings. Journal of Computer and System Sciencest 19:155-193, 1979. 
N.C Ankney. The least quadratic nonresidue. Annals oJ Mathematics, 55:65-72, 
1986. , 

CR. Aragon and RG. Seidel. Randomized search tree~. In Proceedings of the 
30th Annual IEEE Symposium on Foundations of Computer Science, pages 54(}-545, 
1989. 
S. Arora. Probabilistic Checking of Proofs and Hardness o}Approximation Problems. 
PhD thesis, University of California at Berkeley, 1994. I 

S. Arora, C Lund, R. Motwani, M. Sudan, and M. Szcfgedy. Proof verification 
and hardness of approximation problems. In Proceedings pf the 33rd Annual IEEE 
Symposium on Foundations of Computer Science, pages 14f-23, 1992. 
S. Arora and S. Safra. Probabilistic checking of proofs:i A new characterization 

I 

of NP. In Proceedings of the 33rd Annual IEEE Symppsium on Foundations of 
Computer Science, pages 2-13, 1992. 
J. Aspnes and O. Waarts. Randomized consensus in expec~ed O(n logl n) operations 
per processor. In Proceedings of the 33rd Annual IEEE Symposium on Foundations 
of Computer Science, pages 137-146, 1992. . 
Y. Azar, AZ. Broder, AR. Karlin, and E. Upfal. aalanced allocations. In 
Proceedings of the 26th Annual ACM Symposium on Thdory of Computing, pages 

448 



[36] 

[37] 

[38] 

[39] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 

REFERENCES 

593-602, 1994. 
K. Azuma. Weighted sums of certain dependent random variables. Tohoku 
Mathematical Journal, 19:357-367, 1967. 
L. Babai. Monte-Carlo algorithms in graph isomorpijism testing. Technical Re
port DMS 79-10, Departement de Mathematique et ~e Statistique, Universite de 
Montreal, 1979. 
L. Babai. Trading group theory for randomness. In Prqceedings of the 17th Annual 
ACM Symposium on Theory of Computing, pages 421-129, 1985. 
L. Babai. E-mail and the unexpected power of intera~tion. In Proceedings of the 
5th Annual Conference on Structure in Complexity The~ry, pages 30-44, 1990. 
L. Babai. Transparent (holographic) proofs. In Proceedfngs 10th Annual Symposium 
on Theoretical Aspects of Computer Science, pages 52*534, 1993. 
L. Babai and L. Fortnow. Arithmetization: a new metijod in structural complexity 
theory. Computational Complexity, 1 :41-66, 1991. ' . 
L. Babai, L. Fortnow, L. Levin, and M. Szegedy. !Checking computations in 
polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on 
Theory of Computing, pages 21-31, 1991. • 
L. Babai, L. Fortnow, and C. Lund. Non-determi,istic exponential time has 
two-prover interactive protocols. Computational Compfexity, 1 :3-40, 1991. 
E. Bach. Number-theoretic algorithms. Annual Review pf Computer Science, 4:119-
172,1990. . 
A Bar-Noy, R. Motwani, and J. Naor. The greedy algqrithm is optimal for on-line 
edge coloring. Information Processing Letters, 44:251-~53, 1992. 
I. Biminy and Z. FUredi. Computing the volume is difficult. Discrete and Compu-
tational Geometry, 2:319-326, 1987. ' 
D. Beaver and J. Feigenbaum. Hiding instances in QIultioracle queries. In Pro
ceedings of the 7th Annual Symposium on Theoretical 4spects of Computer Science, 
Lecture Notes in Computer Science, pages 37-48. ~pringer-Verlag, New York, 
1990. 
J. Beck. An algorithmic approach to the Lovasz local ~emma I. Random Structures 
and Algorithms, pages 343-365, 1991. , 
L.A Belady. A study of replacement algorithms fOI1 virtual storage computers. 
IBM Systems Journal, 5:78-101, 1966. 
M. Bellare and M. Sudan. Improved non-approximaijility results. In Proceedings 
of the 26th Annual ACM Symposium on Theory of Computing, pages 184-193, 1994. 
S. Ben-David, A Borodin, R.M. Karp, G. Tardos, ~Lnd A Wigderson. On the 
power of randomization in on-line algorithms. Algori~hmica, 11(1):2-14, 1994. 
M. Ben-Or. Probabilistic algorithms in finite fields. lIn Proceedings of the 22nd 
Annual IEEE Symposium on Foundations of Computer Science, pages 394-398,1981. 
M. Ben-Or, S. Goldwasser, J. Kilian, and A Wigderspn. Multi-prover interactive 
proofs: How to remove intractability assumptions. 'In Proceedings of the 20th 
Annual ACM Symposium on Theory of Computing, pats 113-131, 1988. 
S.W. Bent and J.W. John. Finding the median re uires 2n comparisons. In 
Proceedings of the 17th ACM Annual Symposium on eory of Computing, pages 
213-216, 1985. . 
B. Berger and J. Rompel. Simulating (loge n)-wise ind~pendence in NC. Journal of 
the ACM, 38:1026-1046, 1991. 

I 

S.J. Berkowitz. On computing the determinant in sma11 parallel time using a small 
number of processors. Information Processing Letters,: 18 :147-150, 1984. 
E.R. Berlekamp. Factoring polynomials over large ~nite fields. Mathematics of 

449 



REFERENCES 

Computation, 24:713-735, 1970. 
[58] D. Bertsimas and R Vohra. Linear programming r~laxations, approximation 

algorithms and randomization: a unified view of cov~ring problems. Technical 
Report OR 285-94, MIT, 1994. 

[59] F. Bien. Constructions of telephone networks by group tepresentations. Notices of 
the American Mathematical Society, 36:5-22, 1989. • 

[60] N. Biggs. Algebraic Graph Theory. Cambridge Universi~y Press, 1974. 
[61] P. Billingsley. Probability and Measure. John Wiley, Net York, 1979. 
[62] A. Blum, H.J. Karloff, Y. Rabani, and M. Saks. A defomposition theorem and 

bounds for randomized server problems. In Proceedingsl of the 33rd Annual IEEE 
Symposium on Foundations of Computer Science, pages 1~7-207, 1992. 

[63] A. Blum, P. Raghavan, and B. Schieber. Navigating in unramiliar geometric terrain. 
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 
494-504, 1991. . 

[64] M. Blum, A.K. Chandra, and M.N. Wegman. Equivaleqce of free Boolean graphs 
can be decided probabilistically in polynomial time. Info~mation Processing Letters, 
10:80-82, 1980. 

[65] M. Blum, R.W. Floyd, V. Pratt, RL. Rivest, and R.E. frarjan. Time bounds for 
selection. Journal of Computer and System Sciences, 7:44-8461, 1973. 

[66] M. Blum and S. Kannan. Designing programs that check Itheir work. In Proceedings 
of the 21st Annual ACM Symposium on Theory of Comp~ting, pages 86-97, 1989. 

[67] M. Blum, RM. Karp, O. Vornberger, C.H. Papadimit,ou, and M. Yannakakis. 
The complexity of testing whether a graph is a super~oncentrator. Information 
P,ocessing Letters, 13: 164-167, 1981. 

[68] M. Blum, M. Luby, and R Rubinfeld. Self-testing/cotrecting with applications 
to numerical problems. In Proceedings of the 22nd A~nual ACM Symposium on 
Theory of Computing, pages 73-83, 1990. 

[69] B. Bollobas. Random Graphs. Academic Press, New Yo~k, 1985. 
[70] B. Bollobas. The chromatic number of random graphs~ Combinatorica, 8 :49-55, 

1988. 
[71] J. A. Bondy and U.S.R Murty. Graph Theory With Appli~ations. American Elsevier, 

New York, 1977. I 

[72] RB. Boppana, J. Hastad, and S. Zachos. Does co-lfP have short interactive 
proofs? Information Processing Letters, 25:127-133, 198V. 

[73] RB. Boppana and R Hirschfeld. Pseudo-random g~nerators and complexity 
classes. In S. Micali, editor, Randomness and Computint (Advances in Computing 
Research), volume 5, pages 1-26. JAI Press. Greenwich,iCT, 1989. 

[74] ·A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, an~ M. Tompa. Two appli
cations of inductive counting for complementation prqblems. SIAM Journal on 
Computing, 18(3):559-578, June 1989. See also 18(6): 12~3, December 1989. 

[75] A. Borodin and J.E. Hopcroft. Routing, merging, and ~'orting on parallel models 
of computation. Journal of Computer and System Scienc s, 30:130-145, 1985. 

[76] A. Borodin, N. Linial, and M. Saks. An optimal online gorithm for metrical task 
systems. Journal of the ACM, 39:745-763, 1992., 

[77] A. Borodin, P. Raghavan, B. Schieber, and E. Upfal. How much can hardware 
help routing? In Proceedings of the 25th Annual ACMi Symposium on Theory of 
Computing, pages 573-582, 1993. . 

[78] A. Borodin, W.L. Ruzzo, and M. Tompa. Lower bound$ on the length of univer
sal traversal sequences. Journal of Computer and Systeth Sciences, 45(2):180-203, 
October 1992. 

450 



• -I 
I 
I 

:1, 

-

[79] 

[80] 

[81] 

[82] 

[83] 

[84] 

[85] 

[86] 
[87] 

[88] 

[89] 

[90] 

[91] 

[92] 

[93] 

[94] 

[95] 

[96] 

[97] 

[98] 

[99] 

REFERENCES 

A Borodin, J. von zur Gathen, and J.E. Hopcroft. ~t parallel matrix and gcd 
computations. Information and Computation, 32:251-2~, 1986. 
O. BorUvka. 0 jistem problemu minimillnim. Prada Moravske P,irodovedecke 
Spolecnosti, 3 :37-58, 1926. 
D.P. Bovet and P. Crescenzi. Introduction to the TheJry of Complexity. Prentice-
Hall, Englewood Cliffs, NJ, 1994. , 
RS. Boyer and 1.S. Moore. A fast string searching al$orithm. Communications of 
the ACM, 20(10), 1977. 
AZ. Broder. How hard is it to marry at random? ! In Proceedings of the 18th 
Annual ACM Symposium on Theory of Computing, pages 50-58, May 1986. 
AZ. Broder, AM. Frieze, and E. Upfal. Existence and ~onstruction of edge disjoint 
paths on expander graphs. In Proceedings of the 24th 14nnual ACM Symposium on 
Theory of Computing, pages 140-149, 1992. 
AZ. Broder and AR Karlin. Bounds on covering time$. In 29th Annual Symposium 
on Foundations of Computer Science, pages 479-487, White Plains, NY, October 
1988. 
G. Buffon. Essai d'arithmetique morale. Supplement a il'Histoire Naturelle, 4, 1777. 
RD. Carmichael. On composite numbers which sati~fy the Fermat congruence. 
Americal Mathematical Monthly, 19:22-27, 1912. 
J.L. Carter and M.N. Wegman. Universal classes or: hash functions. Journal of 
Computer and System Sciences, 18(2):143-154, 1979. 
AK. Chandra, P. Raghavan, W.L. Ruzzo, R Smolenskr, and P. Tiwari. The electri
cal resistance of a graph captures its commute and coyer times. In Proceedings of 
the 21st Annual ACM Symposium on Theory of Compufing, pages 574-586, Seattle, 
May 1989. 
B. Chazelle and H. Edelsbrunner. An optimal algqrithm for intersecting line 
segments in the plane. Journal of the ACM, 39:1-54, ~992. 
B. Chazelle and J. Friedman. A deterministic view or random sampling' and its 
use in geometry. Combinatorica, 10(3):229-249, 1990. 
B. Chazelle and J. Friedman. Point location among hYPerplanes and undirectional 
ray-shooting. Computational Geometry: Theory and A~plications, 4:53-62, 1994. 
H. Chernoff. A measure of asymptotic efficiency for ~ests of a hypothesis based 
on the sum of observations. Annals of Mathematical Sratistics, 23 :493-509, 1952. 
L.P. Chew. Building Voronoi diagrams for convex Rolygons in linear expected 
time. Report, Department of Mathematics and Computer Science, Dartmouth 
College, Hanover, NH, 1985. 
AL. Chistov. Fast parallel calculation of the ranI{: of matrices over a field 
of arbitrary characteristic. In Proceedings of the Intetnational Conference on the 
Foundations of Computation Theory, Springer-Verlag tecture Notes in Computer 
Science, 199, pages 63-69, 1985. . 
B. Chor and C. Dwork. Randomization in Byzantin~ agreement. In S. Micali, 
editor, Randomness and Computing (Advances in Comp~ting Research, vol. 5), pages 
443497. JAI Press, Greenwich, CT, 1989. 
B. Chor and O. Goldreich. On the power of two-Roint sampling. Journal of 
Complexity, 5:96-106, 1989. 
M. Chrobak, H.J. Karloff, T. Payne, and S. Vishwanat~an. New results on server 
problems. In Proceedings of the 1st Annual ACM-SI{tM Symposium on Discrete 
Algorithms, pages 291-300, 1990. • 
M. Chrobak and L.L. Larmore. HARMONIC is 3~competitive for 2 servers. 
Theoretical Computer Science, 98 :339-346, May 1992. 

451 



[100] 
[101] 

[102] 

[103] 

[104] 

[105] 

[106] 

[107] 

[108] 

[109] 

[110] 
[111] 

[112] 

REFERENCES 

V. Chvatal. Linear Programming. W. H. Freeman, New york, 1983. 
K.L. Clarkson. A probabilistic algorithm for the post offi<je problem. In Proceedings 
of the 17th Annual ACM Symposium on Theory ofCompuring, pages 175-184, 1985. 
K.L. Clarkson. New applications of random sampling in! computational geometry. 
Discrete and Computational Geometry, 2:195-222, 1987. ' 
K.L. Clarkson. Applications of random sampling in cOfPutational geometry, II. 
In Proceedings of the 4th Annual ACM Symposium on I Computational Geometry, 
pages 1-11, 1988. , 
K.L. Clarkson. A Las Vegas algorithm for linear progr,mming when the dimen
sion is small. In Proceedings of the 29th Annual IEEE $ymposium Foundations of 
Computer Science, pages 452456, 1988. 
K.L. Clarkson. A randomized algorithm for closest-poipt queries. SIAM Journal 
on Computing, 17 :830-847, 1988. , 
K.L. Clarkson and P.W. Shor. Algorithms for diametriC

r
' I pairs and convex hulls 

that are optimal, randomized, and incremental. In Proc edings of the 4th Annual 
ACM Symposium on Computational Geometry, pages 12-,7, 1988. 
K.L. Clarkson and P.W. Shor. Applications of random s,mpling in computational 
geometry, II. Discrete and Computational Geometry, 4:38~421, 1989. 
A. Cohen and A. Wigderson. Dispersers, deterministic a~plification, and weak ran
dom sources. In Proceedings of the 30th Annual IEEE Symposium on Foundations 
of Computer Science, pages 14-19, 1989. 
C.J. Colboum. The Combinatorics of Network Reliability.! Oxford University Press, 
New York, 1987. ' 
R, Cole. Parallel merge sort. SIAM Journal on Computi~g, 17(4):770-785, 1988. 
S.A. Cook. A taxonomy of problems with fast parallel algorithms. Information 
and Control, 64(1-3):2-22, 1985. • 
D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. R~ndom walks on weighted 
graphs, and applications to on-line algorithms. Journal 'of the ACM, 40:454476, 
1993. 

[113] D. Coppersmith and S. Winograd. Matrix multiplicatiqn via arithmetic progres
sions. Journal of Symbolic Computation, 9:251-280, 1990J 

[114] T. Cormen, CE. Leiserson, and R.L. Rivest. Introduction ito Algorithms. MIT Press 
and McGraw Hill, New York, 1990. 

[115] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing, 
5:618-623, 1976. ' 

[116] J.H. Curtiss. Monte Carlo method. National Bureau of $tandards Applied Mathe-
matics Series, 12, 1951. I 

[117] 'n.M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Granhs. Academic Press, New 
York, 1979. ' 

[118] P. Dagum, M. Mihail, M. Luby, and U.V. Vazirani. P~lytopes, permanents and 
graphs with large factors. In Proceedings of the 29th An~ual IEEE Symposium on 
Foundations of Computer Science, pages 412422, 1988. ' 

[119] G.B. Dantzig. Minimization of a linear function of vari*bles subject to linear in
equalities. In T.C Koopman, editor, Activity Analysis of eroduction and Allocation, 
pages 339-347. John Wiley, New York, 1951. i 

[120] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, 
Princeton, NJ, 1963. 

[121] H. Davenport. Multiplicative Number Theory. Springer-~erlag, New York, 1980. 
[122] K. de Leeuw, E.F. Moore, CE. Shannon, and N. Shapirio. Computability by 

probabilistic machines. In C.E. Shannon and J. Mcduthy, editors, Automata 

452 



[123] 

[124] 

[125] 

[126] 

[127] 

[128] 

[129] 
[130] 

[131] 

[132] 

[133] 

[134] 

[135] 

[136] 

[137] 

[138] 

[139] 

[140] 

[141] 

[142] 

[143] 

------ -----------------------------------

REFERENCES 

Studies, pages 183-212. Princeton University Press, Princeton, NJ, 1955. 
RA DeMillo and RJ. Lipton. A probabilistic remark on algebraic program 
testing. Information Processing Letters, 7:193-195, ~978. 
M. Dietzfelbinger, A Karlin, K. Mehlhorn, F. M~'er auf der Heide, H. Rohnert, 
and RE. Tarjan. Dynamic perfect hashing: Up r and lower bounds. In 29th 
Annual IEEE Symposium on Foundations of Comput Science, pages 524-531, 1988. 
E.W. Dijkstra. A note on two problems in conne4tion with graphs. Numerische 
Mathematik, 1 :83-89, 1976. I 

I.H. Dinwoodie. A probability inequality for the occ~pation measure of a reversible 
Markov chain. Unpublished manuscript, Depart¥ent of Mathematics, Tulane 
University, 1994. 
B. Dixon, M. Rauch, and R E. Tarjan. Verifica~on and sensitivity analysis of 
minimum spanning trees in linear time. SIAM Journql on Computing, 21 :1184-1192, 
1992. . 
W.E. Donath and AJ. Hoffman. Lower bounds Cpr the partitioning of graphs. 
IBM Journal of Research and Development, 17 :420-1425, 1973. 
J.L. Doob. Stochastic Processes. John Wiley, New York, 1953. 
P.G. Doyle and 1.L. Snell. Random Walks and Electric Networks. The Mathematical 
Association of America, 1984. . 
L.E. Dubins and L.J.Savage. How to Gamble If lfou Must. McGraw Hill, New 
York,1965. . 
M. Dyer, A Frieze, and R Kannan. A random pol~nomial algorithm for approx
imating the volume of convex bodies. Journal ofth~ ACM, pages 1-17, 1991. 
H. Edelsbrunner. Algorithms in Combinatorial Ge~metry, volume 10 of EATCS 
Monographs on Theoretical Computer Science. Sp~nger-Verlag, Heidelberg, West 
Germany, 1987. . 
J. Edmonds. Systems of distinct representatives ~nd linear algebra .. Journal of 
Research of the National Bureau of Standards. 71B,14:241-245, 1967. 
R EI-Yaniv, A Fiat, RM. Karp, and G. Turpin. C~mpetitive analysis of financial 
games. In Proceedings of the 33rd Annual IEEE i Symposium on Foundations of 
Computer Science, pages 327-333, October 1992. : 
P. Elias, A Feinstein, and C. E. Shannon. Note! on maximum flow through a 
network. IRE Transactions on Information Theory, ~T-2:117-199, 1956. 
P. Erdos and L. Lovasz. Problems and results on i 3-chromatic hypergraphs and 
some related questions. In A Hajnal et aI., editor,i Infinite and Finite Sets, pages 
609-628. North-Holland, Amsterdam, 1975. ! 

P. Erdos and J.L. Selfridge. On a combinatorial g~me. Journal of Combinatorial 
Theory. Series A, 14:298-301, 1973. , 
P. Erdos and 1. Spencer. The Probabilistic MethoU in Combinatorics. Academic 
Press, San Diego, 1974. . 
T. Feder and R Motwani. Clique partitions, gra~h compression and speeding
up algorithms. In Proceedings of the 25th Annual ~CM Symposium on Theory of 
Computing, pages 123-133, 1991. : 
U. Feige, S. Goldwasser, L. Lovasz, S. Safra, an4 M. Szegedy. Approximating 
clique is almost NP-complete. In Proceedings of t~e 32nd Annual Symposium on 
Foundations of Computer Science, pages 2-12, 1991.1 
W. Feller. An Introduction to Probability Theory 4nd Its Applications, volume I. 
John Wiley, New York, 1968. ' 
W. Feller. An Introduction to Probability Theory ard Its Applications, volume II. 
John Wiley, New York, 1968. 

453 



REFERENCES 

[144] A. Fiat, D.P. Foster, H.J. Karloff, Y. Rabani, Y. Ravid, land S. Vishwanathan. 
Competitive algorithms for layered graph traversal. In Proceedings of the 32nd 
Annual IEEE Symposium on Foundations of Computer Scienc~, pages 288-297,1991. 

[145] A. Fiat, RM. Karp, M. Luby, L. A. McGeoch, D.O. Sleator, and N. Young. 
Competitive paging algorithms. Journal of Algorithms, 12:~85-699, 1991. 

[146] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algqrithms. In Proceedings 
of the 31st Annual IEEE Symposium on Foundations of C~mputer Science, pages 
454-463, 1990. 

[147] EE. Fich, E Meyer auf der Heide, P.L. Ragde, and A. Wig4erson. One, two, three 
.. , infinity: Lower bounds for parallel computation. In Jfroceedings of the 17th 
Annual ACM Symposium on Theory of Computing, pages 41t-58, 1985. 

[148] MJ. Fischer and N.A. Lynch. A lower bound for the ti~e to assure interactive 
consistency. Information Processing Letters, 14:183-186, 19$2. 

[149] MJ. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility qf distributed consensus 
with one faulty process. Journal of the ACM, 32:374-382, ~985. 

[150] R W. Floyd. Algorithm 97: Shortest path. Communicatio~s of the ACM, 5:345, 
1962. 

[151] R. W. Floyd and R.L. Rivest. Expected time bounds for selqction. Communications 
of the ACM, 18:165-172, 1975. . 

[152] L.R. Ford and D.R. Fulkerson. Maximal flow through la network. Canadian 
Journal of Mathematics, 8 :399-404, 1956. 

[153] L. Fortnow, J. Rompel, and M. Sipser. On the power of ~ulti-prover interactive 
protocols. In Proceedings of the 3rd Annual Conference on Structure in Complexity 
Theury, pages 156-161, 1988. 

[154] M. Fredman and D. E. Willard. Trans-dichotomous algorithJns for minimum span
ning trees and shortest paths. In Proceedings of the 31st A~nual IEEE Symposium 
on Foundations of Computer Science, pages 719-725, 1990. I 

[155] M.L. Fredman and J. Komlos. On the size of separating systems and families of 
perfect hash functions. SIAM Journal on Computing, 5:61~8, 1984. 

[156] M.L. Fredman, J. Komlos, and E. Szemeredi. Storing a ~parse table with 0(1) 
worst case access time. Journal of the ACM, 31 :538-544, J~y 1984. 

[157] R Freivalds. Probabilistic machines can use less running Itime. In B. Gilchrist, 
editor, Information Processing 77. Proceedings of IFIP Cong~ess 77, pages 839-842. 
North-Holland, Amsterdam, 1977. : 

I 

[158] O. Gabber and Z. Galil. Explicit construction of linear-si~d superconcentrators. 
Journal of Computer and System Sciences, 22 :407-420, 1981. 

[159] H.N. Gabow, Z. Galil, T. Spencer, and RE. Tarjan. E~cient algorithms for 
finding minimum spanning trees in undirected and directed raphs. Combinatorica, 
6:109-122, 1986. • 

[160] H.N. Gabow, Z. Galil, and T.H. Spencer. Efficient implementation of graph 
algorithms using contraction. In Proceedings of the 25th An~ual IEEE Symposium 
on Foundations of Computer Science, pages 347-357, 1984. i 

[161] D. Gale and L. S. Shapley. College admissions and the Istability of marriage. 
American Mathematical Monthly, 69:6-15, 1962. . 

[162] Z. Galil and V. Pan. Improved processor bounds for com~inatorial problems in 
RNC. Combinatorica, 8:189-200, 1988. 

[163] B. Gartner. A subexponential algorithm for abstract optimization problems. 
In Proceedings of the 33rd Annual IEEE Symposium on Fo~ndations of Computer 
Science, pages 464-472, 1992. : 

[164] B. Gartner and G.M. Ziegler. Random simplex algorithms pn Klee-Minty cubes. 

454 



REFERENCES 

In Proceedings of the 35th Annual IEEE Symposiurtz on Foundations of Computer 
Science, pages 502-510, 1994. 

[165] P. Gemmell, R Lipton, R Rubinfeld, M. Sudap, and A. Wigderson. Self
testing/correcting for polynomial~ and for approxilate fu?ctions. In Proceedings 
of the 23nd Annual ACM Symposlum on Theory of omputrng, pages 3242, 1991. 

[166] J. Gill. Computational complexity of probabilistic T ring machines. SIAM Journal 
on Computing, 6(4):675-695, December 1977. I 

[167] D. Gillman. A Chernoff bound for random walksi on expander graphs. In 34th 
Annual IEEE Symposium on Foundations of Computer Science, pages 680-691,1994. 

[168] F. Gobel and A.A. Jagers. Random walks on gr~phs. Stochastic Processes and 
their Applications, 2 :311-336, 1974. : 

[169] M.x. Goemans and D.P. Williamson. New 3/~~pproximation algorithms for 
MAX SAT. To appear in the SIAM Journal on Di~rete Mathematics, 1993. 

[170] M.X. Goemans and D.P. Williamson. 0.878-appro 'mation algorithms for MAX
CUT and MAX-2SAT. In Proceedings of the 26t Annual ACM Symposium on 
Theory of Computing, pages 422431, 1994. . 

[171] A.V. Goldberg and R.E. Tarjan. A new approach tp the maximum flow problem. 
Journal of the ACM, 35:921-940, 1988. . 

[172] A.V. Goldberg, S.A. Plotkin, and P.M. Vaidya Su~linear-time parallel algorithms 
for matching and related problems. Journal of Alg~rithms' 14:180-213, 1993. 

[173] M. Goldberg and T. Spencer. A new parallel algo thm for the maximal indepen
dent set problem. In Proceedings of the 28th Annua Symposium on Foundations of 
Computer Science, pages 161-165, 1987. : 

[174] O. Goldreich. A taxonomy of proof systems. 1. SI

1
ACT News, 24 :2-13, 1993. 

[175] O. Goldreich. A taxonomy of proof systems. 2. SI ACT News, 25 :22-30, 1994. 
[176] O. Goldreich, S. Micali, and A. Wigderson. Proo s that yield nothing but their 

validity or all languages in NP have zero-know edge proof systems. JACM, 
38:691-729, 1991. " 

[177] M. Goldwasser. Linear programming in randomize~ subexponential time. Unpub
lished manuscript, Computer Science Department, ~tanford University, 1993. 

[178] S. Goldwasser and J. Kilian. Almost all primesi can be quickly certified. In 
Proceedings of the 18th Annual ACM Symposium ~n Theory of Computing, pages 
316-329, May 1986. , 

[179] S. Goldwasser, S. Micali, and C. Rackoff. The kno1edge complexity of interactive 
proof-systems. SIAM Journal on Computing, 18:18 208, 1989. 

[180] RE. Gomory and T.C. Hu. Multi-terminal networ flows. SIAM Journal, 9:551-
570, 1961. i 

[181] R L. Graham and P. Hell. On the history of the m~nimum spanning tree problem. 
Annals of the History of Computing, 7:43-57, 1985.! 

[182] RL. Graham, D.E. Knuth, and O. Patashnik. Cl~ncrete Mathematics. Addison-
Wesley, Reading, MA, 1989. . 

[183] D.H. Greene and D.E. Knuth. Mathematics fqr the Analysis of Algorithms. 
Birkhauser, Boston, 1990. 

[184] D. Grigoriev and M. Karpinski. The matching I problem for bipartite graphs 
with polynomially bounded permanents. In Procee~ings of the 28th Annual IEEE 
Symposium on Foundations of Computer Science, pa~es 166-172, 1987. 

[185] G.R Grimmett and D.R Stirzaker. Probability arrd Random Processes. Oxford 
University Press, Oxford, 1988. . 

[186] E. Grove. The harmonic online k-server algorithm I is competitive. In Proceedings 
of the 23rd Annual ACM Symposium on Theory ofdpmputing, pages 260-266,1991. 

455 



REFERENCES 

[187] L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incr,mental construction of 
Delaunay and Voronoi diagrams. Algorithmica, 7:381413,11992. 

[188] D. Gusfield and RW. Irving. The stable marriage problem: srructure and algorithms. 
MIT Press, Cambridge, 1989. : 

[189] T. Hagerup and CRlib. A guided tour of Chernoff bounds. I Information Processing 
Letters, 33 :305-308, 1990. ! 

[190] A Hall. On an experimental determination of 7t. Messeng. kath., 2:113-114, 1873. 
[191] P. Hall and CC Heyde. Martingale Limit Theory and its IApplication. Academic 

Press, New York, 1980. i 

[192] J. Hao and lB. Orlin. A faster algorithm for finding the m~nimum cut in a graph. 
In Proceedings of the 3rd Annual ACM-SIAM Symposium pn Discrete Algorithms, 
pages 165-174, 1993. ! 

[193] E Harary and E.M. Palmer. Graphical Enumeration. Aca~mic Press, New York, 
1973. ! 

[194] G.H. Hardy and E.M. Wright. An Introduction to the The~ry of Numbers. Oxford 
University Press, London, 1965. 4th Edition. . 

[195] G.H. Hardy, J.E. Littlewood, and G. P6lya. Inequalities. i Cambridge University 
Press, Cambridge, 1989. ! 

[196] J. Hastad, ET. Leighton, and M. Newman. Reconfiguri*g a hypercube in the 
presence of faults. In Proceedings of the 19th Annual ACAt Symposium on Theory 
of Computing, pages 274-284, 1987. 1 

[197] D. Haussler and E. Welzl. Epsilon-nets and simplex rang~ queries. Discrete and 
Computational Geometry, 2:127-151, 1987. ' 

[198] R Hayward and CJ.H. McDiarmid. Average case analyt·s of heap building by 
repeated insertion. Journal of Algorithms, 12:126-153, 1991. 

[199] I.N. Herstein. Topics in Algebra. John Wiley, New York, 1 64. 
[200] CAR Hoare. Algorithm 63 (Partition) and algorithm 65 ( ind). Communications 

of the ACM, 4:321-322, 1961. I 

[201] CAR. Hoare. Quicksort. Computer Journal, 5:10-15, 1962

t [202] W. Hoeffding. Probability inequalities for sums of boun ed random variables. 
Journal of the American Statistical Association, 58 :13-30, 1 63. 

[203] J.E. Hopcroft and RM. Karp. An n5/ 2 algorithm for aximum matching in 
bipartite graphs. SIAM Journal on Computing, 2:225-231, 973. 

[204] L.K. Hua Introduction to Number Theory. Springer-Verla Berlin, 1982. 
[205] R Impagliazzo and D. Zuckerman. How to recycle rando bits. In Proceedings 

of the 30th Annual IEEE Symposium on Foundations of C mputer Science, pages 
2~2-227, 1989. i 

[206] S.s. Irani. Two results on the list update problem. Informa~ion Processing Letters, 
38:301-306, 1991. :1" 

[207] A Israeli and Y. Shiloach. An improved parallel algorithm ~or maximal matching. 
Information Processing Letters, 22:57-60, 1986. L 

[208] J. Jui. An Introduction to Parallel Algorithms. Addison-~esley, Reading, MA, 
1992 I 

[209] S. Janson. Large deviation inequalities for sums of indicat!r variables. Technical 
Report 34, Department of Mathematics, Uppsala Universit , 1993. 

[210] M. Jerrum and U. Vazirani. A mildly exponential approxim tion algorithm for the 
permanent. In Proceedings of the 33rd Annual IEEE Sympo ium on Foundations of 
Computer Science, pages 320-326, 1992. I 

[211] M.R. Jerrum and A Sinclair. Approximating the permanfnt. SIAM Journal on 
Computing, 18(6):1149-1178, December 1989. I 

I 

456 



[212] 

[213] 
[214] 

[215] 

[216] 

[217] 

[218] 

[219] 

[220] 

[221] 

[222] 

[223] 

[224] 

[225] 

[226] 

[227] 

[228] 

[229] 

[230] 

[231] 

[232] 

[233] 

REFERENCES 

I 

M.R Jerrum, L.G. Valiant, and v.v. Vazirani. Randdm generation of combinatorial 
structures from a uniform distribution. Theoretical ~omputer Science, 43 :169-188, 
1986.! 
Wang Jianhua The Theory of Games. Clarendon ptess, London, 1988. 
A. Joffe. On a set of almost deterministic k-indepen~ent random variables. Annals 
of Probability, 2(1):161-162, 1974. I 

D.B. Johnson. Efficient algorithms for shortest pat~s in sparse networks. Journal 
of the ACM, 24:1-13, 1977. I 

D.s. Johnson. Computing in the Math Department: Part I (The NP-completeness 
column: An ongoing guide). Journal of Algorithms, 7:584-601, 1986. 
D.S. Johnson. Interactive proof systems for fun an profit (the NP-completeness 
column: An ongoing guide). Journal of Algorithms, 9:426-444, 1988. 
D.S. Johnson. The tale of the 2nd prover (the P-completeness column: An 
ongoing guide). Journal of Algorithms, 13 :502-524, 1992. 
D.S. Johnson. Approximation algorithms for com inatorial problems. Journal of 
Computer and System Sciences, 9:256-278, 1974. : 
D.S. Johnson. The NP-completeness colunm: A~ ongoing guide. Journal of 
Algorithms, 5:284-299, 1984. ' 
D.S. Johnson. The NP-completeness colunm: Ap ongoing guide. Journal of 
Algorithms, 5:433-447, 1984. I 

N.L. Johnson and S. Kotz. Urn Models and Their Jrtpplications. John Wiley, New 
York, 1977. l 
L.R Ford Jr. and D.R Fulkerson. Flows in networfs. Princeton University Press, 
Princeton, N J, 1962. I 

J.D. Kahn, N. Linial, N. Nisan, and M.E. Saks. ¢>n the cover time of random 
walks in graphs. Journal of Theoretical Probability, 12(1):121-128, 1989. 
C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivi<;>us routing 
in the hypercube. In Proceedings of the 3rd Annua, ACM Symposium on Parallel 
Algorithms and Architectures, pages 31-36, 1991. . 
G. Kalai. A subexponential randomized simplex al orithm. In Proceedings of the 
24th Annual ACM Symposium on Theory of Comput·ng, pages 475-482, 1992. 
G. Kalai and D.J. Kleitman. A quasi-polynomial bo nd for the diameter of graphs 
of polyhedra. Bulletin of the AMS, 26:315-316, Ap ·1 1992. 
A. Kamath, R Motwani, K. Pal em, and P. Spirak·s. Tail bounds for occupancy 
and the satisfiability threshold conjecture. In Procee ings of the 35th Annual IEEE 
Symposium on Foundations of Computer Science, pa es 592-603, 1994. 
D.R. Karger. Random sampling in matroids, wi h applications to graph con
nectivity and minimum spanning trees. In Procee ·ngs of the 34th Annual IEEE 
Symposium on Foundations of Computer Science, pa es 84-93, 1993. 
D. Karger, R Motwani, and M. Sudan. Approxim te graph coloring by semidef
inite programming. In Proceedings of the 35th Ann al IEEE Symposium on Foun-
dations of Computer Science, pages 2-13, 1994. i 

D.R Karger. Global min-cuts in RNC, and other ra~ifications of a simple min-cut 
algorithm. In Proceedings of the 4th Annual ACMtSIAM Symposium on Discrete 
Algorithms, pages 21-30, 1993. . 
D.R Karger, P.N. Klein, and RE. Tarjan. A ran omized linear-time algorithm 
for finding minimum spanning trees. To appear in he Journal of the ACM, 1995. 
D.R Karger and R Motwani. Derandomization th ough approximation: An NC 
algorithm for minimum cuts. In Proceedings of the 26th Annual ACM Symposium 
on Theory of Computing, pages 497-506, 1994. I 

I 

457 
, 



[234] 

[235] 

[236] 

[237] 

[238] 

[239] 

[240] 

[241] 

[242] 

[243] 

[244] 

[245] 

[246] 

[247] 

[248] 

[249] 

[250] 

[251] 

[252] 

[253] 

[254] 

[255] 

REFERENCES 

D.R. Karger and C. Stein. An O(n2) algorithm for minim~m cuts. In Proceedings 
of the 25th Annual ACM Symposium on Theory of Computi*g, pages 757-765,1993. 
AR. Karlin, M.S. Manasse, L. Rudolph, and D.O. Sleat~r. Competitive snoopy 
caching. Algorithmica, 3(1):70-119, 1988. 
AR. Karlin, M.S. Manasse, L.A McGeoch, and S. OwickJ. Competitive random
ized algorithms for non-uniform problems. In Proceeding~ of the 1st ACM-SIAM 
Symposium on Discrete Algorithms, pages 301-309, 1990. I! 
H.J. Karloff. A Las Vegas RNC algorithm for maximum ~atching. Combinatorica, 
6:387-391, 1986., 
H.J. Karloff, Y. Rabani, and Y. Ravid. Lower bounds i for randomized server 
algorithms. In Proceedings of the 23rd Annual ACM Symposium on Theory of 
Computing, pages 278-288, 1991. 
N. Karmarkar, R.M. Karp, R. Lipton, L. Lovasz, and M.: Luby. A Monte Carlo 
algorithm for estimating the permanent. In preparation. ! 

R.M. Karp, M. Luby, and N. Madras. Monte-Carlo appro~imation algorithms for 
enumeration problems. Journal of Algorithms, 10:429-448'!11989. 
R.M. Karp and V. Ramachandran. Parallel algorithms fpr shared memory ma
chines. In J. van Leeuwen, editor, Handbook of Theorerical Computer Science, 
pages 869-941. Elsevier/The MIT Press, Amsterdam, 1990. 
R.M. Karp, E. Upfal, and A Wigderson. Constructing a! perfect matching is in 
random NC. Combinatorica, 6:3548, 1986. . 
R.M. Karp. An introduction to randomized algorithms. {Jiscrete Applied Mathe
matics, 34:165-201, 1991. 
R.M. Karp. Probabilistic recurrence relations. In Proceedfngs of the 23rd Annual 
ACM Symposium on Theory of Computing, pages 190-197, i1991. 
R.M. Karp and R. Lipton. Turing machines that take! advice. L'enseignment 
Mathematique, 28:191-209, 1982. • 
R.M. Karp and M. Luby. Monte-Carlo algorithms for enufneration and reliability 
problems. In Proceedings of the 24th Annual IEEE Sympqsium on Foundations of 
Computer Science, pages 56-64, 1983. ' 
R.M. Karp and M. Luby. Monte Carlo algorithms for t~e planar multiterminal 
network reliability problem. Journal of Complexity, 1 :4~, 1985. 
R.M. Karp, N. Pippenger, and M. Sipser. A time randonlness tradeoff. In AMS 
Conference on Probabilistic Computational Complexity, 198$. 
R.M. Karp and M.O. Rabin. Efficient randomized patte~-matching algorithms. 
IBM Journal of Research and Development, 31 :249-260, M rch 1987. 
R.M. Karp, E. Upfal, and A Wigderson. The complexity of parallel search. Journal 

• I 

of Computer and System Sciences, 36:225-253, 1988. I 

R.M. Karp and A Wigderson. A fast parallel algorithm fot the maximal indepen
dent set problem. Journal of the ACM, 32 :762-773, 1985. : 
AV. Karzanov and E.A Timofeev. Efficient algorithm for finding all minimal 
edge cuts of a non-oriented graph. Kibernetika, 22:156-16~, 1986. Translation in 
Cybernetics 22. I 
J.G. Kemeny, J.L. Snell, and AW. Knapp. Denumerabl~ Markov Chains. The 
University Series in Higher Mathematics. Van Nostrand, Pfinceton, NJ, 1966. 
T. Kimbrel and R. Sinha. A probabilistic algorithm for veprying matrix products 
using O(n2) time and log2 n+O(1) random bits. Informa~ion Processing Letters, 
45:107-110, 1993. i 

V. King. A simpler minimum spanning tree verification a~gorithm. Unpublished 
manuscript, 1993. I 

! 

458 



[256] 

[257] 

[258] 

[259] 

[260] 

[261] 

[262] 

[263] 

[264] 

[265] 

[266] 

[267] 

[268] 
[269] 

[270] 

[271] 

[272] 

[273] 

[274] 

[275] 

[276] 

[277] 

REFERENCES 

V. King, S. Rao, and R.E.Tarjan. A faster determi~istic maximum flow algorithm. 
In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 
pages 157-164, 1993. 
P.N. Klein and R.E. Tarjan. A randomized lin~ar-time algorithm for finding 
minimum spanning trees. In 'Proceedings of the 26fh Annual ACM Symposium on 
Theory of Computing, pages 9-15, 1994. , 
D.E. Knuth. Fundamental Algorithms, volume 1 of ~e Art of Computer Program-
ming. Addison-Wesley, Reading, MA, 1969. , 
D.E. Knuth. Seminumerical Algorithms, volume 2 i of The Art of Computer Pro
gramming. Addison-Wesley, Reading, MA, 1971. ' 
D.E. Knuth. Sorting and Searching, volume 3 of TheiArt of Computer Programming. 
Addison-Wesley, Reading, MA, 1973. i, 

D.E. Knuth. Big omicron and big omega and big th~ta SIGACT News, 8(2) :18-24, 
1976. 
D.E. Knuth, lH. Morris, Jr., and V.R. Pratt. FaSt pattern matching in strings. 
SIAM Journal on Computing, 6(2) :240-267, 1977. ; 
D.E. Knuth. Mariages stables (in French). Les Pres~es de l'Universite de Montreal, 
Montreal, 1976. i 

D.E. Knuth and A C-C. Yao. The complexity o~ nonuniform random number 
generation. In J. F Traub, editor, Algorithms and ¢omplexity, Recent Results and 
New Directions, pages 375-428. Academic Press, N~w York, 1976. 
K-1. Ko. Some observations on probabilistic' algo~thms and NP-hard problems. 
Information Processing Letters, 14:3943, 1981. 
V.F Kolchin, V.P. Chistiakov, and B.A Sevastian<i>v. Random Allocations. Y.H. 
Winston, New York, 1978. 
A Kolmogorov. Grundbegriffe der Wahrscheinlichk~itsrechnung. Springer, Berlin, 
1933. , 
J. Komlos. Linear verification for spanning trees. dombinatorica, 5:57-65, 1985. 

I 

E. Koutsoupias and C.H. Papadimitriou. On the k-sctver conjecture. In Proceedings 
of the 26th Annual ACM Symposium on Theory of C~mputing, pages 507-511,1994. 
J.B. Kruskal. On the shortest spanning subtree pf a graph and the traveling 
salesman problem. Proceedings of the American !4tathematical Society, 7:48-50, 
1956. 
FT. Leighton. Introduction to Parallel Algorithms a~d Architectures: Arrays, Trees, 
Hypercubes. Morgan-Kauffman, San Mateo, CA, 1992. 
FT. Leighton, B. Maggs, and S. Rao. Universal pac*et routing algorithms. In Pro
ceedings of the 29th Annual IEEE Symposium on Fo~ndations of Computer Science, 
pages 256-269, 1988. ': 
AK. Lenstra and Jr. H.W. Lenstra. Algorithms tn number theory. In J. van 
Leeuwen, editor, Handbook of Theoretical Compute~ Science, pages 675-715. Else-
vier Science Publishers, Amsterdam, 1990. ' 
A Lev, N. Pippenger, and L.G. Valiant. A fast patallel algorithm for routing in 
permutation networks. IEEE Transactions on Comp~ters, C-30:93-100, 1981. 
W.J. LeVeque. Fundamentals of Number Theory. A~dison-Wesley, Reading, MA, 
197~ ! 

H.R. Lewis and C.H. Papadimitriou. Symmetric I space-bounded computation. 
Theoretical Computer Science, 19:161-187, 1982. 'I 

R.J. Lipton. New directions in testing. In Distributedl Computing and Cryptography, 
DIMACS Series in Discrete Mathematics and T~eoretical Computer Science, 
Volume 2, pages 191-202. American Mathematical $ociety, Providence, RI, 1991. 

! 

459 



[278] 

[279] 

[280] 

[281] 
[282] 

[283] 

[284] 

[285] 

[286] 

[287] 
[288] 

[289] 

[290] 

[291] 

[292] 

[293] 
[294] 

[295] 

[296] 

[297] 

[298] 

[299] 

REFERENCES 

R.I. Lipton and N. Young. Simple strategies for large zerd-sum games with appli
cations to complexity theory. In Proceedings of the 26th Annual ACM Symposium 
on Theory of Computing, pages 734-740, 1994. 
L.H. Loomis. On a theorem of von Neumann. Proceedings (jf the National Academy 

I 

of Sciences of the U.S.A., 32:213-215,1946. 
L. Lovasz. On determinants, matchings and random alg~rithms. In L. Budach, 
editor, Fundamentals of Computing Theory. Akademia-Verl~g, Berlin, 1979. 
L. Lovasz and M.D. Plummer. Matching Theory. Academic! Press, New York, 1986. 
M. Luby. A simple parallel algorithm for the maximal ~ndependent set. SIAM 
Journal on Computing, 15:1036-1053, 1986. 
M. Luby. Removing randomness in parallel computatiqn without a processor 
penalty. In Proceedings 29th Annual IEEE Symposium on Prundations of Computer 
Science, pages 162-173, October 1988. 
M. Luby. Removing randomness in parallel computatiqn without a processor 
penalty. Journal of Computer and System Sciences, 47:25O-t86, 1993. 
M. Luby, 1. Naor, and M. Naor. On removing randomne~s from a parallel algo
rithm for minimum cuts. Technical Report TR-093-007, International Computer 
Science Institute, Berkeley, CA, 1993. • 
M. Luby, A Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algo
rithms. Information Processing Letters, 47:173-180,1993 .. 
R. Luce and H. Raiffa. Games and Decisions. John Wiley, ~ew York, 1957. 
e. Lund, L. Fortnow, H.I. Karloff, and N. Nisan. Algebraicimethods for interactive 
proof systems. In Proceedings of the 31st Annual IEEE Symposium on Foundations 
of Computer Science, pages 2-10, 1990. 
F. Maffioli, M.G. Speranza, and e. Vercellis. Rando~ized algorithms. In 
M. O'hEigertaigh, 1.K. Lenstra, and AH.G. Rinooy K~n, editors, Combinato
rial Optimization: Annotated Bibliographies, pages 89-105 .• ohn Wiley, New York, 
1985. 
M.S. Manasse, L.A McGeoch, and D.O. Sleator. Competitive algorithms for 
server problems. Journal of Algorithms, 11 :208-230, 1990. ' 
K. Manders and L. Adleman. NP-complete decision Rroblems for quadratic 
polynomials. In Proceedings of the 8th ACM Symposium oh Theory of Computing, 
pages 23-29, 1976. , 
G.A Margulis. Explicit constructions of concentrators. Pr~blemy Peredachi Infor
mats ii, pages 71-80, 1973. English translation in Problem4 of Information Trans
mission, 9:325-332. 
AA Markov. Ischislenie veroiatnostel. 2 ed. 1912. 
J. 'Matousek. Derandomization in computational geometry. Submitted for publi
cation, 1994. 
1. MatouSek, M. Sharir, and E. Welzl. A subexponential'i bound for linear pro
gramming. In Proceedings of the 8th Annual ACM Sympqsium on Computational 
Geometry, pages 1-8, 1992. 
P.e. Matthews. Covering problems for Brownian motion i on spheres. Annals of 
Probability, 16:189-199, 1988. . 
P.e. Matthews. Covering problems for Markov chains. ; Annals of Probability, 
16:1215-1228, 1988. . 
R.L. Mattison, 1. Gecsei, D.R. Slutz, and I.L. Traiger. Ev~luation techniques for 
storage hierarchies. IBM Systems Journal, 9(2), 1971. I 

I 

D.W. Matula. Determining edge connectivity in O(nm). I, In Proceedings of the 
28th Annual IEEE Symposium on Foundations of Computer $cience, pages 249-251, 

i 

460 



REFERENCES 

1987. 
[300] B. Maurey. Construction de suites symetriques. Co',npt. Rend. A cad. Sci. Paris, 

288:679-681, 1979. 
[301] 1.e. Maxwell. A Treatise on Electricity and Magnetisf. Clarendon, London, 1918. 
[302] C.J.H. McDiarmid. On the method of bounded diferences. In J. Siemons, ed

itor, Surveys in Combinatorics: Invited Papers at t~ 12th British Combinatorial 
Conference, pages 148-188. Cambridge University Pr~ss, 1989. 

[303] e.1.H. McDiarmid. On a random recolouring meth~ for graphs and hypergraphs. 
Combinatorics, Probability and Computing, 2:363-365~ 1993. 

[304] C.J.H. McDiarmid and R. Hayward. Strong concen~ration for quicksort. In Pro
ceedings of the 3rd Annual ACM-SIAM Symposium qn Discrete Algorithms, pages 
414-421, 1992. ' 

[305] C.J.H. McDiarmid and B.A. Reed. Building heaps f~st (data structures). Journal 
of Algorithms, 10:352-365, 1989. 

[306] L.A. McGeoch and D.D. Sleator. A strongly co~petitive randomized paging 
algorithm. Algorithmica, 6:816-825, 1991. 

[307] N. Megiddo. Linear programming in linear time When the dimension is fixed. 
Journal of the ACM, 31 :114-127, 1984. 

[308] S. Micali and V.V. Vazirani. An O( JiViIEI) algori.thm for finding maximum 
matching in general graphs. In Proceedings of the *st Annual IEEE Symposium 
on Foundations of Computer Science, pages 17-27, 1930. 

[309] M. Mihail. The approximation of the permanent is stih open. Man~script, Harvard 
University, 1987. 

[310] G.L. Miller. Riemann's hypothesis and tests for p~ality. Journal of Computer 
and System Sciences, 13:300-317, 1976. 

[311] D.S. Mitrinovic. Analytic Inequalities. Springer-Verla~, New York, 1970. 
[312] R. Motwani. Expanding graphs and the average~case analysis of algorithms 

for matchings and related problems. In Proceedin~s of the 21st Ann~al ACM 
Symposium on Theory of Computing, pages 550-561, 1989. 

[313] R. Motwani, 1. Naor, and M. Naor. The probabili$tic method yields determin
istic parallel algorithms. In Proceedings of the 30th ,Annual IEEE Symposium on 
Foundations of Computer Science, pages 8-13, Octob~ 1989. 

[314] R. Motwani, 1. Naor, and P. Raghavan. Randomiz*ion in approximation algo
rithms. In D. Hochbaum, editor, Approximation Algo~ithms. To appear, 1995. 

[315] K. Mulmuley. A fast planar partition algorithm, L In Proceedings 29th IEEE 
Symposium on Foundations of Computer Science, page$ 580-589, October 1988. 

[316] K. Mulmuley. Computational Geometry: An Intr04uction Through Randomized 
Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 199~. 

[317] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. M~tching is as easy as matrix 
inversion. Combinatorica, 7 :105-113, 1987. 

[318] H. Nagamochi and T. Ibaraki. Computing edge conpectivity in multigraphs and 
capacitated graphs. SIAM Journal on Discrete Mathematics, 5 :54-66, 1992. 

[319] 1. Naor and M. Naor. Small-bias probability space~: efficient constructions and 
applications. SIAM Journal on Computing, 22 :838-56~ 1993. 

[320] N. Nisan. Pseudorandom generators for space-bounded computation. Combina
torica, 12 :449-461, 1992. 

[321] I. Niven and H.S. Zuckerman. An Introduction to tAe Theory of Numbers. John 
Wiley, New York, 1960. 

[322] v. Pan. How to mUltiply matrices faster. In Spri~ger-Verlag Lecture Notes in 
Computer Science 179. Springer Verlag, New York, 1984. 

461 



REFERENCES 

[323] V. Pan. Fast and efficient algorithms for the exact in~ersion of integer matri
ces. In Proceedings of the Fifth Annual Conference on th~ Foundations of Software 
Technology and Theoretical Computer Science. Springer-Verlag LNCS 206, 1985. 

[324] C.H. Papadimitriou. Games against nature. Journal pf Computer and System 
Sciences, 31 :288-301, 1985. 

[325] c.H. Papadimitriou. On selecting a satisfying truth asstgnment. In Proceedings 
of the 32nd Annual IEEE Symposium on Foundations of Computer Science, pages 
163-169, 1991. 

[326] C.H. Papadimitriou. Complexity Theory. Addison-Wesleyp Reading, MA, 1994. 
[327] c.H. Papadimitriou and M. Yanakakis. Shortest paths wiithout a map. Theoretical 

Computer Science, 84:127-150, 1991. 
[328] M.S. Paterson. Improved sorting networks with O(login) depth. Algorithmica. 

5:75-92, 1990. 
[329] M.S. Paterson and EE Yao. Efficient binary space parthions for hidden surface 

removal and solid modeling. Discrete and Computatio$l Geometry, 5 :485-503. 
1990. 

[330] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of 
faults. Journal of the ACM, 27:228-234, 1980. 

[331] D. Peleg and E. Upfal. A time-randomness tradeoff for oblivious routing. SIAM 
Journal on Computing, 19:256-266, 1990. 

[332] S. Phillips and J. Westbrook. Online load balancing. and network flow. In 
Proceedings of the 25th Annual ACM Symposium on The'ory of Computing, pages 
402-411, 1991. 

[333] M .• Pinsker. On the complexity of a concentrator. In 7t~ International Teletraffic 
Conference, pages 318/1-318/4, 1973. 

[334] V.D. Podderyugin. An algorithm for finding the edge conij,ectivity of graphs. Vopr. 
Kibernetika, 2 :136, 1973. 

[335] V. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing. 
4:214-220, 1975. 

[336] EP. Preparata and M.1. Shamos. Computational Gedmetry: an Introduction. 
Springer-Verlag, New York, 1985. 

[337] R.C. Prim. Shortest connection networks and some generalizations. Bell Systems 
Technical Journal, 36:1389-1401, 1957. 

[338] K. Pruhs and U. Manber. The complexity of controlled s¢lection. Information anti 
Computation, 91 :103-127, 1991. 

[339] W. Pugh. Skip lists: A probabilistic alternative to balanc~ trees. Communications 
of the ACM, 33(6):668-676, 1990. 

[340] rvt.O. Rabin. Probabilistic automata. Information and Co~trol, 6:230-245, 1963. 
[341] M.O. Rabin. Probabilistic algorithms. In 1.E Traub, editor, Algorithms and 

Complexity, Recent Results and New Directions, pages 21-39. Academic Press, New 
York, 1976. 

[342] M.O. Rabin. Probabilistic algorithm for testing primal~ty. Journal of Number 
Theory, 12:128-138, 1980. 

[343] M.O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing. 
9:273-280, 1980. 

[344] M.O. Rabin. The choice coordination problem. Acta informatica, 17:121-134. 

[345] 

[346] 

1982. 
i, 

M.O. Rabin and 1.0. Shallit. Randomized algorithms in number theory. Commu-
nications in Pure and Applied Mathematics, 39:239-256, 1986. 
M.O. Rabin. Digitalized signatures and public-key funftions as intractable as 

462 



[347] 

[348] 

[349] 

[350] 

[351] 

[352] 

[353] 

[354] 

[355] 

[356] 

[357] 
[358] 

[359] 

[360] 

[361] 

[362] 

[363] 

[364] 

[365] 

[366] 

[367] 

[368] 

REFERENCES 

factorization. Technical Report MIT jLCSjTR-212, MIT, January 1979. 
M.O. Rabin. Randomized Byzantine generals. In Proceedings of the 24th Annual 
Symposium on Foundations of Computer Science, pagc;s 403-409, 1983. 
M.O. Rabin and v.v. Vazirani. Maximum matchin,s in general graphs through 
randomization. Technical Report TR-15-84, Aik~n Computation Laboratory, 
Harvard University, 1984. 
M.O. Rabin and V.V. Vazirani. Maximum matchin$s in general graphs through 
randomization. Journal of Algorithms, 10:557-567, 1989. 
P. Raghavan. Randomized Rounding and Discrete H~m-Sandwich Theorems. PhD 
thesis, University of California, Berkeley, July 1986 .• 
P. Raghavan. Probabilistic construction of detennin~tic algorithms: Approximat
ing packing integer programs. Journal of Computer~nd System Sciences, 37 :130-
143, 1988. 
P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. 
IBM Journal of Research and Development, 38:683-7P7, 1994. 
P. Raghavan and C.D. Thompson. Randomized rounding. Combinatorica, 7 :365-
374, 1987. . 
1.H. Reif. Synthesis of Parallel Algorithms. Morg~n-Kauffman Publishers, San 
Francisco, 1993. 
N. Reingold, D.O. Sleator, and 1. Westbrook. Randofnized competitive algorithms 
for the list update problem. Algorithmica, 11(1):15-3~, 1994. 
R. Reischuk. Probabilistic parallel algorithms for $orting and selection. SIAM 
Journal on Computing, 14(2):396-409, 1985. . 
A. Renyi. Probability Theory. North-Holland, Amst~rdam, 1970. 
R.L. Rivest, A. Shamir, and L. Adleman. A method f~r obtaining digital signatures 
and public-key cryptosystems. Communications of th~ ACM, 21 :120-126, 1978. 
F. Romani. Shortest-path problem is not harder· than matrix multiplication. 
Information Processing Letters, 11 :134-136, 1980. 
R. Rubinfeld. A Mathematical Theory of Self-Ch~cking. Self-Testing and Self
Correcting Programs. PhD thesis, Computer Scienc~ Department, University of 
California, Berkeley, 1990. 
H. Ryser. Combinatorial Mathematics. The Mathematical Association of America, 
1963. 
M. Saks and A. Wigderson. Probabilistic Boolean deqsion trees and the complexity 
of evaluating game trees. In Proceedings of the 27thl Annual IEEE Symposium on 
Foundations of Computer Science, pages 29-38, Torortto, Ontario, 1986. 
J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff~Hoeffding bounds for appli
cations with limited independence. In Proceedings oJ the 4th Annual ACM-SIAM 
Symposium on Discrete Algorithms, pages 331-340, 1Q93. 
A. Schonhage, M. Paterson, and N. Pippenger. Fin~ing the median. Journal of 
Computer and System Sciences, 13:184-199, 1976. . 
U. Schoning. Oraph isomorphism is in the low hierarchy. Journal of Computer 
and System Sciences, 37:312-323, 1988. . 
A. Schrijver. Theory of Linear and Integer Programming. John Wiley, New York, 
1986. 
J.T. Schwartz. Fast probabilistic algorithms for verific4tion of polynomial identities. 
Journal of the ACM, 27(4):701-717, October 1980. : 
R.O. Seidel. A simple and fast incremental randod:tized algorithm for comput
ing trapezoidal decompositions and for triangulati,g polygons. Computational 
Geometry: Theory and Applications, 1 :51-64, 1991. ! 

463 



REFERENCES 

[369] R.O. Seidel. Small-dimensional linear programming and convex hulls made easy. 
Discrete and Computational Geometry, 6:423-434, 1991. 

[370] R.O. Seidel. On the all-pairs-shortest-path problem. In Proceedings of the 24th 
Annual ACM Symposium on Theory of Computing, pages ~45-749, 1992. 

[371] R.O. Seidel. Backwards analysis of randomized geometrik; algorithms. In 1. Pach, 
editor, New Trends in Discrete and Computational GeomJtry, volume 10 of Algo-

I 

rithms and Combinatorics, pages 37-68. Springer-Verlag, New York, 1993. 
[372] A Shamir. IP = PSPACE. Journal of the JACM, 39:869t-877, 1992. 
[373] E. Shamir and 1. Spencer. Sharp concentration of the chromatic number on 

random graphs Gn,p. Combinatorica, 7:121-129, 1987. : 
[374] M. Sharir and E. Welzl. A combinatorial bound for ~near programming and 

related problems. In Proceedings of the 9th Symposiunt,. on Theoretical Aspects 
of Computer Science, volume 577 of Lecture Notes in Computer Science, pages 
569-579. Springer-Verlag, New York, 1992. 

[375] A Sinclair. Algorithms for Random Generation and Coq,nting; A Markov Chain 
Approach. Progress in Theoretical Computer Science. Birlchauser, Boston, 1992. 

[376] A Sinclair and M.R. Jerrum. Approximate counting, uniform generation and 
rapidly mixing Markov chains. Information and Computation, 82:93-133, 1989. 

[377] A1. Sinclair. Improved bounds for mixing rates of Markbv chains and multicom
modity flow. Combinatorics, Probability and Computing, 1':351-370, 1992. 

[378] M. Sipser. Expanders, randomness Or time verSUS space. In Proceedings of the 1 st 
Structure in Complexity Theory Conference, page 325, 1986. 

[379] D.O. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. 
Communications of the ACM, 28:202-208, February 1985., 

[380] D.O. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the 
ACM, 32:652-686, July 1985. 

[381] M. Snir. Lower bounds on probabilistic linear decision tr~s. Theoretical Computer 
Science, 38:69-82, 1985. 

[382] R. Solovay and V. Strassen. A fast Monte-Carlo test for ~rimality. SIAM Journal 
on Computing, 6(1):84-85, March 1977. See also SIAM J;'urnalon Computing 7, 1 
February 1978, 118. 

[383] 1. Spencer. Six standard deviations suffice. Transactions' of the American Mathe
matical Society, 289(2):679-706, June 1985. 

[384] 1. Spencer. Ten Lectures on the Probabilistic Method. SI~M, Philadelphia, 1987. 
[385] R. Sprugnoli. Perfect hashing functions: A single pro~ retrieving method for 

static sets. Communications of the ACM, 21(11):606-611,1979. 
[386] L.J. Stockmeyer. On approximation algorithms for #P. S~AM Journal on Comput-

ing, 14:849-861, 1985. . 
[387] O. Strang. Linear Algebra and Its Applications. Harcou~t Brace Jovanovich, San 

Diego, CA, 1988. 
[388] M. Sudan. Efficient Checking of Polynomials and Proofs land the Hardness of Ap

proximation Problems. PhD thesis, University of Califom,a at Berkeley, 1992. 
[389] R.M. Tanner. Explicit construction of concentrators from generalized n-gons. 

SIAM Journal on Algebraic and Discrete Methods, 5 :287-~93, 1984. 
[390] R.E. Tarjan. Applications of path compression on balaqced trees. Journal of the 

ACM, 26:690-715, 1979. . 
[391] R.E. Tarjan. Data Structures and Network Algorithms .. CBMS-NSF Regional 

Conference Series in Applied Mathematics. SIAM, Phila~elphia, 1983. 
[392] R.E. Tarjan and A Yao. Storing a sparse table. Com~unications of the ACM, 

22 :606-611, 1979. 

464 



REFERENCES 

[393] M. Tarsi. Optimal search on some game trees. J014rnal of the ACM, 30:389-396, 
1983. 

[394] P.-L. Tchebyshef. Des valeurs moyennes. Journal de Mathematiques pures et ap
pliquees. ser. 2, 12:177-184, 1867. 

[395] B. Teia. A lower bound for randomized list update algorithms. Information 
Processing Letters, 47 :5-9, 1993. 

[396] P. Tetali. Random walks and the effective resist~nce of networks. Journal of 
Theoretical Probability, pages 101-109, 1991. 

[397] A. Treat. Experimental control of ear choice in t~e moth ear mite. X I. Interna
tionaler Kongress fUr Entomologie, pages 619-621, 1960. 

[398] W.T. Tutte. The factorization of linear graphs. Jour,*al of the London Mathematical 
Society, 22:107-111, 1947. 

[399] E. Upfal. Efficient schemes for parallel communJcation. Journal of the ACM, 
31 :507-517, 1984. 

[400] L. G. Valiant and G. J. Brebner. Universal schemes ror parallel communication. In 
Proceedings of the 13th Annual ACM Symposium an Theory of Computing, pages 
263-277, Milwaukee, WI, May 1981. 

[401] L.G. Valiant. The complexity of computing the peItmanent. Theoretical Computer 
Science, 8:189-201, 1979. 

[402] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM 
Journal on Computing, 8:410-421, 1979. 

[403] L.G. Valiant. A scheme for fast parallel communication. SIAM Journal on Com
puting, 11 :350-361, 1982. 

[404] B. L. van der Waerden. Algebra. Ungar, 1970. 
[405] V.V. Vazirani. Parallel graph matching. In 1.H. R~if, editor, Synthesis of Parallel 

Algorithms, pages 783-811. Morgan-Kauffman Publishers, San Francisco, 1993. 
[406] V.V. Vazirani. A theory of alternating paths and blossoms for proving correctness 

of O(JVE) graph maximum matching algorithms. Combinatorica, 14(1):71-109, 
1994. 

[407] I. M. Vinogradov. Elements of Number Theory. Dover, New York, 1954. 
[408] 1. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 

100:295-320, 1928. 
[409] 

[410] 
[411] 

[412] 

[413] 
[414] 

[415] 

[416] 

[417] 

1. von Neumann. Various techniques used in conneCtion with random digits (notes 
by G.E. Forsythe). National Bureau of Standards. Applied Mathematics Series, 
12:36-38, 1951. 
1. von Neumann. Collected Works, volume 5. Pergamon Press, New York, 1963. 
1. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. 
Princeton University Press, Princeton, NJ, 1953. 
1. von zur Gathen. Parallel linear algebra. In 1.H. ~if, editor, Synthesis of Parallel 
Algorithms, pages 573-617. Morgan-Kauffman Publishers, San Francisco, 1993. 
S. Warshall. A theorem on Boolean matrices. Jourt"al of the ACM, 9:11-12, 1962. 
M.N. Wegman and 1.L. Carter. New hash functions!and their use in authentication 
and set equality. Journal of Computer and System Sciences, 22(3):265-279, 1981. 
DJ.A. Welsh. Randomised algorithms. Discrete Applied Mathematics, 5:133-145, 
1983. 
DJ.A. Welsh. Complexity: Knots. Colourings and Cbunting. Cambridge University 
Press, 1994. 
E. Welzl. Partition trees for triangle counting and o~her range searching problems. 
In Proceedings of the 4th Annual ACM Symposium on Computational Geometry, 
pages 23-33, 1988. 

46S 



REFERENCES 

[418] M. Yannakakis. On the approximation of maximum satisilability. In Proceedings 
of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 1-9, 1992. 

[419] A. C-c. Yao. Probabilistic computations: Towards a unified Imeasure of complexity. 
In Proceedings of the 17th Annual Symposium on Foundations of Computer Science, 
pages 222-227, 1977. 

[420] A. c-c. Yao. Should tables be sorted? Journal of the ACi\f, 28(3):615-628, 1981. 
[421] G. Yuval. An algorithm for finding all shortest paths usin~ n2•81 infinite-precision 

mUltiplications. Information Processing Letters, 4:155-156, i1976. 
[422] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of 

EUROSAM 79, volume 72 of Lecture Notes in Computer Science, pages 216-226, 
Marseille, 1979. 

[423] R.E. Zippel. Efficient Polynomial Computations. Kluwer Academic Publishers, 
Boston, 1993. 

[424] D. Zuckerman. Simulating BPP using a general weak rardom source. In Pro
ceedings of the 32nd Annual Symposium on Foundations of domputer Science, pages 
79-89, 1991. 

466 



Index 

Boldface page numbers are used to denote the location in the text where the index term 

is formally stated or defined for the first time. 

abstract optimization problem, 275, 277 
adaptive adversary, 373 
Adleman's Theorem, 39 
Adleman, L., 41, 410, 426 
Aggarwal, A, 362 
Aho, AV., 25, 187, 189, 302 
Ahuja, R.K., 303 
Ajtai, M., 156, 160, 361 
Albers, S., 389 
Aldous, DJ., 64, 155, 332 
Aleliunas, R, 96, 155 
Alford, W.R, 426 
all-pairs shortest paths, 278-288, 302 
Alon, N., 97, 122, 123, 156, 160,302,361 
Alt, H., 24 
AlthOfer, 1.,41 
amortization, 200 
amplification of randomness, see probability 

amplification 
Anderson, RJ., 362 
Angluin, D., 66,426 
Ankney, N.C., 426 
APD, 279-288, 302 
APD algorithm, 282-284, 287, 288 
approximation 

hardness results, 188 
APSP algorithm, 288 
Aragon, C.R, 229, 230 
arithmetization, 177 
Arora, S., 122, 188, 192 
arrangement of line segments, 255 
arrangement of lines, 259, 274 
Arthur-Merlin games, 187 
Aspnes, J., 97 
ASYNCH-CCP algorithm, 358, 367 

autopartition, 13, 14, 102,253,255,273 
Azar, Y., 63 
Azuma's inequality, 92, 97 
Azuma, K., 97 

Babai, L., 24, 187, 188, 361 
Bach, E., 426 
backwards analysis, 235, 274 

convex hull algorithm, 238 
half-space intersection, 243 
trapezoidal decomposition, 250 

Bar-Noy, A, 389 
Barany, I., 332 
basis 

linear programming, 263 
BasisLP algorithm, 270, 272, 274,277 
Bayes' rule, 440 
Beaver, D., 188 
Beck, J., 123 
Belady, LA., 387 
Bellare, M., 122 
Ben-David, S., 387 
Ben-Or, M., 188, 426 
Bent, S.w., 63 
Berger, B., 123, 361, 362 
Berkowitz, SJ., 362 
Berlekamp, E.R., 23, 426 
Bernoulli distribution, 44S 
Bernoulli trial, 67 
Bernstein, S.N., 63, 96 
Bertrand's Postulate, 220 
Bertsimas, D., 96 
Bien, F., 123, 155 
Biggs, N., 155 
Billingsley, P., 97,438 
binary partition, 252, 273 

467 



INDEX 

3 dimensions, 254-256 
planar, 11-14, 102 

binary tree 
endogenous, 198 
full, 198 

binomial coefficients, 434 
binomial distribution, 59, 67, 44S 
birthday problem, 45 
Blum, A, 388 
Blum, M., 63, 156, 186, 188, 189, 193, 232 
Bollobas, B., 97 
Boole-Bonferroni inequalities, 44, 440 
Boolean circuit family, 38 
Boolean decision diagram, 187 
Boppana, R.B., 24, 41, 187 
Borodin, A, 96, 155, 362, 387 
Boruvka's algorithm, 297-298, 303 
Bovet, D.P., 25 
BoxSort algorithm, 339-341, 361, 363 
Boyer, R.S., 187 
BPP, 22, 151, 309, 337,423 
BPWM algorithm, 28Cr-288, 302, 304 
Brebner, G.J., 96 
Broder, AZ., 63, 123, 155, 332 
Buffon, G., 24 
Byzantine agreement problem, 358-361, 363 
ByzGen algorithm, 360, 361, 363, 367 

Carmichael number, 419, 420, 423, 426-428 
Carmichael, R.D., 426 
Carter, J.L., 229, 232, 233 
Cauchy-Schwartz inequality, 436 
Chandra, AK., 155, 186, 189 
characteristic equation, 437 
characteristic vector, 160 
Chazelle, B., 123, 273, 274 
Chebyshev bound, 47, 63 
Chebyshev, P.L., 63 
Chebyshev-Cantelli bound, 64 
Chernoff bound, 67-79 

global wiring, 79 
oblivious routing, 77 
occupancy problem, 73 
sum of geometric variables, 98 

Chernoff, H., 63, 96 
Chew, L.P., 274 
Chinese Remainder Theorem, 396, 408, 422, 

423 
Chistiakov, V.P., 63, 97 
Chistov, AL., 362 
choice coordination problem, 355-358, 363 
Chor, B., 63, 363 
Chrobak, M., 387, 388 

chromatic number, 93, 97 
Chung, F.R.K., 160 
Chvatal, V., 274 
Clarkson, K.L., 273, 274 
clique number, 91 
CNF,18 
co-BPP, 27 
Cohen, A, 123, 156 
co-lP, 192 
Cole, R., 361 
commute time, see random walk, commute 

time 
competitive analysis, 368 

Marker algorithm, 376 
Reciprocal algorithm, 382 

competitiveness, 370 
complexity classes, 18-23 
composite ness, 417 
concave function, 107, 124 
conditional probability, 121,440 
conductance, see Markov chain 
connected component, 139 
co-NP, 20, 143, 173, 177,417 
Contract algorithm, 290--292, 294, 303, 305 
contraction, 290, 297 
convex function, 98 
convex hull, 236, 239 

3 dimensions, 241 
planar, 23Cr-239 

Cook, S.A, 155, 361 
co-PP, 27 
Coppersmith, D., 187, 193, 302, 388 
co-PSPACE, 20 
Cormen, T., 302 
co-RP, 21, 191,423,426 
coupon collector's problem, 57-63 

sharp threshold, 61-63 
Courant-Fisher equalities, 147, 159 
cover time, see random walk, cover time 
Crescenzi, P., 25 
cryptography, 187 
Csanky, L., 362 
Cvetkovic, D.M., 155 

Dagum, P., 332 
Dantzig, G.B., 275 
data structures, 197-233 

DELETE operation, 197 
FIND operation, 197 

468 

INS operation, 197 
JOIN operation, 197 
MAKESET operation, 197 
PASTE operation, 197 



INDEX 

SPLIT operation, 197 
Davenport, H., 426 
Delaunay triangulation, 245-247 

of a convex polygon, 248 
de Leeuw, K., 23 
De Millo, R.A, 187 
de randomization, 39,63, 120, 121,274, 302, 

303, 346, 364 
determinant, see matrix 
diameter 

graph, 281 
point set, 25Cr-258 
polytope, 275 

dictionary problem 
dynamic, 214, 218 
static, 213 

Dietzfelbinger, M., 229 
Dijkstra, E.W., 302, 303 
Dinwoodie,I.H., 156 
discrete log problem, 402 
disjunctive normal form, see DNF 
distributed algorithms, 97 
distributional complexity, 34 
Dixon, B., 303 
DNF,307 
DNF counting problem, 310--315 
Donath, W., 156 
Doob, J .L, 97 
Doob, M., 155 
doubly stochastic matrix, see matrix 
Doyle, P.G., 155, 388 
duality, see geometric duality 
Dubins, L.E., 97 
Dwork, C., 363 
Dyer, M.E., 332 
Dymond, P.w., 155 

Edelsbrunner, H., 273, 274 
edge coloring, 389 
Edmonds matrix, 167 
Edmonds' Theorem, 167 
Edmonds, J., 167, 187, 190 
effective resistance, 135 

Short-cut Principle, 138 
triangle inequality, 138 

eigenvalue, 437 
eigenvector, 437 
electrical networks, 135-137 

Short-cut Principle, 138 
Elias, P., 302 
Erdos, P., 122, 123 
ERH, 405, 425, 426 
Euclid's algorithm, 393, 394,414 

extended version, 395, 427 
Euler totient function, 397 
Euler's Criterion, 404, 413 
Euler's Theorem, 399 
EXP, 20 
expanders, 108-112, 123, 143, 145, 152 

application to probability amplification, 
110--112, 151-155 

existence proof, 109-110 
explicit construction, 110 
Gabber-Galil, 145 
magnifiers, 156 
rapid mixing property, 144 
relation to e~genvalues, 144-151 
super-concentrators, 156 

extended Euclidean algorithm, 395, 427 
Extended Riemann Hypothesis, see ERH 

factoring, 399,401,403,409-412,417,426 
Fasteut algorithm, 294, 303 
Feder, T., 187,302 
Feige, U., 188 
Feigenbaum, J., 188 
Feinstein, A, 302 
Feller, w., 63, 97, 438 
Fermat congruence, 418 
Fermat's Theorem, 399,418 
Fermi, E., 24 
Fiat, A, 387, 388 
Fibonacci number, 191, 435 
Fich, F.E., 41 
FIFO, see paging problem, FIFO algorithm 
Find algorithm, 15, 24, 26 
fingerprint, 161, 168, 190, 214 
Fischer, M.J., 363 
Floyd, R.W., 63, 302 
Ford, L.R., 302 
Fortnow, L., 18,8, 192 
FPAS, see fully polynomial approximation 

scheme 
FPRAS, see fully polynomial randomized 

approximation scheme 
Fredman, M.L., 229, 233, 303 
free Boolean graphs, 186 
Freivalds' technique, 162 
Freivalds, R., 186 
Friedman, J., 123,274 
Frieze, AM., 123, 332 
Fulkerson, D.R., 302 
fully polynomial approximation scheme, 308 
fully polynomial randomized approximation 

scheme, 309 
function 

469 



INDEX 

linear, 185 
nearly linear, 185 

Fiiredi, Z., 332 

Gartner, B., 275 
Gabber, 0., 123, 156 
Gabow, H., 303 
Gale, D., 63 
Galil, Z., 123, 156,302,303,362 
game theory, 31-34 
game tree evaluation, 28-30, 102· 
Gartner, B., 275 
Gathen, J. von zur, see von zur Gathen, J. 
Gecsei, J., 387 
Gemmell, P., 188 
geometric algorithms, 234-277 
geometric distribution, 10, 57, 300,446 
geometric duality, 239-241 
Gill, J., 23, 41, 155 
Gillman, D., 156 
global wiring, 79-83 
Gobel, E, 155 
Goemans, M.x., 96, 122 
Goldberg. A, 303, 362 
Goldberg, M., 361 
golden ratio, 435 
Goldreich, 0., 63, 187, 188 
Goldwasser, M., 275 
Goldwasser, S., 187, 188,426 
Gomory, RE., 302 
Graham, RL., 229, 303, 433 
Granville, A, 426 
graph algorithms, 278-305 
graph isomorphism, 173, 187 
graph non-isomorphism, 173, 187 
Greedy MIS algorithm, 342 
Greene, D.H., 433 
Grigoriev, D., 362 
Grimmett, G.R., 97, 438 
Grove, E., 388 
Guibas, LJ., 24, 274 
Gusfield, D., 63 

Hagerup, T., 96 
half-plane intersection, 239 
half-space intersection, 241-245 
Hall, A, 24 
Hall, P., 97 
Hao, J., 302 
Hardy, G.H., 426, 433 
Harmonic algorithm, see k-server problem, 

Harmonic algorithm 
Harmonic numbers, 204, 435 

hash functions, 21 S 
nearly-2-universal, 233 
perfect, 215, 222, 223 
strongly k-univell'sal, 221 
strongly universal, 221 
universal, 213-221,232 

hash table, 215 
hashing, 213-221 
Hastad, J.T., 123, 187 
Haussler, D., 274 
Hayward, R, 97 
heaps, 97, 201 
Hell, P., 303 
Herstein, LN., 426 
Heyde, C.C, 97 
Hirschfeld, R., 24 
hitting time, see random walk, hitting time 
Hoare, CAR, 24 
Hoeffding's bound, 98 
Hoeffding, W., 96--98 
Hoffman, AJ., 156 
Hopcroft, J.E., 25, 96, 187, 189,302, 362 
Hu, T.C, 302 
Hua, L.K., 426 
Huang, AM-D., 426 
hypercube, 75, 112 

Ibaraki, T., 303 
Impagliazzo, R, 156 
Inclusion Exclusion Principle, 440 
indicator variable, 441 
interactive proof systems, 175, 172-180, 187 

zero-knowledge, 187 
IP, 176, 188, 191 
Irani, S.S., 389, 391 
Irving. R.W., 63 
isolating lemma, 284, 349-350, 362, 365-367 
isomorphism, 173 
Israeli, A, 362 
Itai, A., 361 
iterative reweighting, 266 
lterSampLP algorithm, 267 

Jacobi symbol, 420.428 
Jagers, AA, 155 
Jila, J., 361 
Janson, S., 96 
Jerrum, M.R., 332, ~34 
Joffe, A, 63 
John, J.W., 63 
Johnson, D.B., 302 
Johnson, D.S., 24, 122, 187, 188,426 
Johnson, N.L., 63, 97 

470 



INDEX 

k-CNF,117 
k-point sampling. 53 
k-SAT,117 
k-server conjecture, 385 
k-server problem, 384-387 

Harmonic algorithm, 388 
greedy algorithm, 385 
lower bound, 385, 387 

kth moment method, 53 
kth central moment, 53 
kth moment, 443 
k-wise independence, 221, 441 
Kahn, J.D., 158 
Kaklamanis, C, 96 
Kalai, G., 274, 275 
Kamath, A, 97, 100 
Kannan, R, 332 
Kannan, S., 186, 189,232 
Karger, D.R., 24, 65, 96, 126,302,303,305, 

361,364 
Karlin, AR, 63, 155,229,387,388,390 
Karloff, HJ., 188, 362, 365, 387, 388 
Karmarkar, N., 332 
Karp, RM., xi, 24, 41, 42, 66, 123, 155, 156, 

187, 190, 191, 331-333, 361, 362, 366, 
387,390 

Karpinski, M., 362 
Karzanov,AY., 302 
Kemeny, J.G., 155 
Kilian, J., 188, 426 
Kimbrel, T., 186 
King. V., 303 
Kirchhoff's Law, 135 
Kirchhoff, G., 331 
Klee-Minty cube, 275 
Klein, P., 303 
Kleitman, OJ., 275 
Knapp, AW., 155 
Knuth, D.E., 24, 25, 64, 187, 229, 274, 426, 

433 
Ko, K-I., 27 
Kolchin, V.E, 63, 97 
Kolmogorov, AN., 63 
Kolmogorov-Doob inequality, 92 
Komlos, J., 156, 160,229, 233, 303, 361 
Kotz, S., 63, 97 
Koutsoupias, E., 388 
Krizanc, D., 96 
Kruskal, J.B., 303 

Lamport, L., 363 
Larmore, L.L., 388 
Las Vegas algorithm, 9, 22, 24 

lower bounds, 34, 35 
lattice approxinlation problem, 99 
LazySelect algprithm, 48, 50, 63, 125 
Leeuw, K. de, .see de Leeuw, K. 
Legendre symbol, 404, 420 
Lehmer, E., 426 
Leighton, ET., 123, 361 
Leiserson, CE., 302 
Lenstra, AK., 426 
Lenstra, H.W, 426 
Lev, A, 362 
LeVeque, MJ., 426 
Levin, L., 188 
LFU, see paging problem, LFU algorithm 
linear functioq, 185 
linear programming. 262-272 
linearity of expectation, 4, 10, 443 
Linial, N., 158, 387 
Lipschitz condition, 93 
Lipton, RJ., 4[, 155, 187-189, 332 
list update problem, 389 
Littlewood, J.E., 433 
log<ost RAM, see RAM 
Loomis' TheOItem, 33 
Loomis, L.H., 33, 41 
Lovasz, L., 123, ISS, 187, 188,332,362 
Lovasz Local Lemma, lIS, 120 
LRU, see paging problem, LRU algorithm 
Luby, M., 24, ~3, 122, 188, 193, 331--333, 

361, 364, j65, 387 
Luce, R,4O 
Lund,C, 122, 188 
Lynch, N.A, 363 

Madras, N., 331, 333 
Maffioli, E, 24 
Maggs, B., 123 
Magnanti, T.L" 303 
magnifiers, see expanders 
Manasse, M.S., 387, 388 
Manber, U., 24 
Manders, K., 426 
Margalit, 0., 302 
Margulis, G.A" 123 
marker algorithm, see paging problem, 

Marker al~orithm 
Markov chain, 129-134,319 

absorbing state, 156 
aperiodic, 131 

471 

aperiodic state, 131 
conductance, 323 
irreducible, 131 
memorylessness property, 129 



INDEX 

non-null persistent state, 130 
null persistent state, 130 
periodic state, 131 
periodicity of a state, 131 
persistent state, 130 
rapid mixing. 320, 323, 332 
relative pointwise distance, 148, 159 
stationary distribution, 131 
time reversible, 322, 334 
total variation distance, 159 
transient state, 130 
transition probability matrix, 129 

Markov inequality, 46 
Markov,A.A.,63 
martingale sequence, 156 
martingales, 83-96 

difference sequence, 85 
Doob,90, 91, 92 
Lipschitz condition, 93 
sub-martingale, 85 
super-martingale, 85 

matching, 167 
maximal, 347, 363 
maximum, 167, 190, 347, 355, 362, 365 
perfect,. 167, 190, 307, 315, 347-355, 365, 

366 
Matousek, J., 274,275 
matrix 

adjoint, 348, 354 
determinant, 165,315,347,348,351,354 
determinant and spanning trees, 307 
doubly stochastic, 134, 148, 150, 157 
Edmonds, see Edmonds matrix 
inverse, 348, 354 
minor, 348 
multiplication, 187 
permanent, 315, 316 
permanent approximation, 316 
rankI 187, 190, 365 
row-major form, 183 
similar, 189 
skew-symmetric, 190 
stochastic, 157 
Tutte, see Tutte matrix 

matrix multiplication, 187, 280, 282, 302 
Boolean, 279, 280, 283 
integer, 279, 280, 283, 284 
witness, 283-287 

matrix product verification, 162-163 
matrix-tree theorem, 331 
Matthews, P.C, 155, 157 
Mattison, R.L., 387 
Matula, D.W., 302 

Maurey, B., 97 
max-flow, 289, 290, 303 
MAX-SAT, 104, 12~, 188 

approximation algorithm, 105 
integer programIll1ing formulation, 106 

max-cut, 103, 123 
maximal independent set, 341-346,364 

lexicographically first, 342 
maximal matching, 347, 363 
maximum matching, 167, 190, 347, 355, 362, 

365 
McDiarmid, C.J.H., 97, 155, 157 
McGeoch, L.A., 381, 388 
Megiddo, N., 274 
Mehlhorn, K., 24, 229 
method of bounded differences, 92, 97 
method of conditional probabilities, 

120-123,361 
method of pessimistic estimators, 123 
Meyer auf der Heide, E, 41, 229 
Micali, S., 187, 188 
Mihail, M., 332 
Miller, G.L., 426 
Milman, V.D., 156 
min-cut, 7, 9, 289-295, 302, 303, 305, 362 
Minimax Principle, 31-34 

lower bounds, 34-37 
minimum spanning forest, 296 
minimum spanning tree algorithm, 296--303 
MIP, 188, 192 
Mitrinovic, D.S., 433, 434 
mixed strategy, 33 
model of computation, 16 
moment generating function, 68, 445 
Monte Carlo algorithm, 9 

STCON,142 
Moore, E.E, 23 
Moore, J .S., 187 
Morgenstern, 0., 40 
Morris, J.H., 187 
Motwani, R., 65, 96, 97, 100, 122, 123, 126, 

187, 188, 302, j03, 332, 361, 362, 389 
MST,296--302 
MST algorithm, 3011, 303 
MST verification, 296, 297, 299, 303 
Mulmuley games, 2104-206 
Mulmuley, K., 229, 273, 274, 362, 365-367 
multigraph, 7 
multiset identity, 232 

Nagamochi, H., 303 
Naor, J., 97, 123-125, 186, 189,361,362, 

365,366,389 

472 



INDEX 

Naor, M., 123, 186,302,361,362,365 
lV<7, 336, 342,346, 348, 362, 364-366 
nearly-linear function, 185 
negative binomial distribution, 299, 300, 446 
network flow, 9 
Neumann, J. von, see von Neumann, J. 
Newman, M., 123 
lVEXP, 20, 181, 188 
Nisan, N., 158, 188,229,233 
Niven, I., 426 
non-uniform algorithm, 40, 140, 141, 159 
norms, see vector norms 
lVP,20, 191,306,307,417 
lVPSPA<7E,20 

oblivious adversary, 373 
oblivious routing, 74-79 

randomized, 75-79, 112-115 
occupancy problem, 73, 97 

tail bounds, 97 
offline algorithm, 368 
Ohm's Law, 135 
one-sided error, 21 
one-way function, 403 
online algorithm, 368-391 

adaptive adversary, 373 
adaptive offline adversary, 373 
adaptive online adversary, 373 
adversary, 372 
oblivious adversary, 373 
potential function analysis, 382 
relation between adversaries, 377-381 

Orlin, J.B., 302, 303 
Owicki, S., 388 

P, 19, 307 
#P, 177, 307, 309, 315, 316, 331 
P6lya, G., 433 
packet routing, 74-79 
paging problem, 369 

FIFO algorithm, 369, 370, 387, 389 
LFU algorithm, 369, 370, 389 
LRU algorithm, 369, 370, 387, 389 
MIN algorithm, 370, 387 
Marker algorithm, 376, 387 
Random algorithm, 383, 384, 388 
lower bound, 374-376 
weighted, 381 

pairwise independence, 51, 52,220,221,362, 
364.441,442 

Palem. K., 97, 100 
Pan, Y .. 302, 362 

Papadimitriou, C.H., 25, 155, 156, 187, 188, 
191,388 

parabolic transformation, 246 
parallel algorithms, 335-355 
ParaDel Matc:bing algorithm, 354, 355, 362, 

365 
ParaDeI MIS 3ilgorithm, 343, 346, 361,364 
parallel random access machine, see PRAM 
PAS, see polynomial approximation scheme 
Patashnik., 0., 433 
Paterson, M.S.,. 24, 63, 273, 361, 363 
pattern matching, 170, 190 

two-<iimensi<lmal, 191 
Payne, T., 387 
payoff matrix, 31 
P<7P, ISO, 188 
Pease, M., 363 
Peleg, D., 123 
perfect hash function, 215 
perfect matching, 66, 145, 167, 190,347-355, 

365,366 
permanent, see matrix 
permutation 

sign, 165, 351 
value, 351 

permutation routing, 74, 112 
lower bound. 75 

Phillips, SJ., 303 
Pinsker, M., 123 
Pippenger, N.J., 63, 123,362 
Plotkin, S., 362 
Plummer, M.D., 362 
Podderyugin, V.D., 302 
point location, 259-262 
Poisson distribution, 59, 446 
Poisson heuristic, 59 
Poisson trials, 68 
polynomial approximation scheme, 308 
polynomial product verification, 164 
polynomial randomized approximation 

scheme, 309 
polynomial reduction, 20 
polynomial time, 19 
Poly Root algorithm. 416. 41 7, 426 
Pomerance, c., 426 
PP,22 
PRAM, 7~ 335,337 
PRAS, see polyno",j~1 rUI"lomized 

approximation q';/lI:IllC 

Pratt, Y.R., 63, 187. ,..16 
Prim, R.C., 303 
primality 

certificate of, 411 

473 



INDEX 

testing. 417-425 
Primalityl algorithm, 421, 423, 426 
Primality2 algorithm, 424 
Primality3 algorithm, 425, 426, 428 
Prime Number Theorem, 168,428 
Principle of Deferred Decisions, 55, 56, 163, 

175,300 
probabilistic method, 14, 101-126 

kth moment inequality, 124 
expanders, 108 
oblivious routing. 112 
universal traversal sequences, 141 

probabilistic recurrence, IS, 24 
probabilistically checkable proofs, 180 
probability amplification, 53, 110-112, 

151-155 
probability measure, 439 
probability space, 439 
probability vector, 131, 143 
program checking, 162, 186, 188 
proof verification, 180-187 
Pruhs,K.,24 
PSPACE, 20, 176, 177, 188, 191 
public-key encryption, 410 
Pugh, W.; 229, 232 
pure strategy, 33 

QBF,191 
quadratic residue, 403, 405, 408 
QuadRes algorithm, 405,407,413,425,426 
quantified Boolean formula, 191 
quicksort, 337, 363 

sharp concentration, 97 

Rabani, Y., 387, 388 
Rabin cryptosystem, 412, 427 
Rabin, M.O., 23, 187, 190, 191, 273, 362, 

363,365,367,412,426-428 
Rackoff, C, ISS, 187 
Ragde, P.L., 41 
Raghavan,~,96,97, 123, 155,387,388,390 
Raiffa, H., 40 
RJ\M, 16,229,234,335 

log-cost, 18, 171 
uniform, 18 
unit-cost, 18, 162,393 

Ramachandran, y.L., 361 
RandAuto algorithm, 13, 102, 126, 252, 253, 

255,273 
random graph, 66, 90, 97, 109, 111, 112, lIS, 

143,299,332 
random sampling 

geometric algorithms, 258-262 

linear programming, 262 
point location, 259-262 

Random Simplex algorithm, 275 
random treap, 203 
random variable, 441 
random walk, 127-160, 362 

2-SAT algorithm, 129, 136 
application to probability amplification, 

151-155 
commute time, 133 
cover time, 133, 137-139 
expanders, 143-155,320 
graph connectivity, 139-143, 148 
hitting time, 133 
stationary distribution, 132 
transition matrix, 129 

randomized incremental algorithm, 234 
Delaunay triangulation, 247 
half-space intersection, 241 
linear programming. 268 
trapezoidal decomposition, 248 

randomized rounding. 81, 96, 105, 106 
RandQS algorithm, 3-5, 24, 99 
rank,365 

in ordered set, 4 
matrix, 187, 190 

Rao, S., 123,303 
rapid mixing. 144, 148, 320, 323, 331, 332 
Rauch, M., 303 
Ravid, Y., 387, 388 
Reciprocal algorithm, 382, 383, 387, 388, 391 
Reed, B.A., 97 
Reif, J.R., 361 
Reingold, N., 389 
Reischuk, R., 361 
relative pointwise distance, 148, 159, 322 
request-answer game, 378 
Rivest, R.L., 63, 302, 410, 426 
RLP, 139 
RIVC, 337, 342,346,347,349,362-367 
Rohnert, R., 229 
Romani, E, 302 
Rompel, J., 123, 188, 192, 361, 362 
row-major form, see matrix 
RP, 21, 23, 52, 110, 112, 151, 337,423 
RSA scheme, 410-412, 426, 428 
Rub, C, 96 
Rubinfeld, R., 188, 193 
Rudolph, L., 387 
Ruzzo, W.L., 155 
Ryser, R., 331 

Sachs, R., 155 

474 



INDEX 

Safra, S., 188, 192 
Saks, M.E., 41, 158,387,388 
SampLP algorithm, 264 
SAT, 19, 115,117,128, 155, 176 

arithmetization, 177 
counting, 188 
counting version, 176 

Savage, LJ., 97 
Schonhage, A, 63 
Schieber, B., 96 
Schmidt, J.P., 96 
Schoning, U., 188 
Schrijver, A, 274 
Schwartz, J.T., 165, 187 
Schwartz-Zippel Theorem, 165 
search tree, 258 

balanced, 200 
binary,S, 198 
finger, 230 
rotation, 199 
splay operation, 200 

second moment method, 53 
Seidel, R.G., 229, 230, 274, 302 
SeideLP algorithm, 268, 269, 274 
selection algorithm, 47-51, 363 
self-reducibility, 316 
Selfrdige, J.L., 123 
semidefinite programming, 122 
set-balancing problem, 73, 99, 102, 120, 122 
set-cover problem, 99 
Sevastianov, B.A., 63, 97 
Shallit, J.O., 426 
Shamir, A, 188, 191, 192,410,426 
Shamir, E., 97 
Shannon, CE., 23, 302 
Shapiro, N., 23 
Shapley, L.S., 63 
Sharir, M., 274, 275 
sharp threshold, 63 
Shen, A, 192 
Shiloach, Y., 362 
Shmoys, O.B., 362 
Shor, P.W., 273 
shortest path algorithm, 278-288 
Shostak, R., 363 
Siegel, A, 96 
a-field, 439 
similar matrices, see matrix 
simplex algorithm, 263 
Sinclair, A, 24, 332, 334 
Sinha, R., 186 
Sipser, M., 123, 188, 192 
skew-symmetric matrix, 190 

ski p lists, 209-213 
Sleator, D.O., 228, 387, 389 
Slutz, O.R, 387 
smallest enclosing ball, 277 
Smolensky, R, 155 
Snell, J.L., 155 
Snir, M., 40, 387, 388 
Solovay, R., 23, 426 
sorting algorithm, 3, 9, 235, 337 
spanning trees 

counting problem, 307 
Spencer, J.R., 97, 122, 123 
Spencer, T., 303, 361 
Speranza, M.G., 24 
Spirakis, P., 97, 100 
Sprugnoli, R, 229 
Srinivasan, A, 96 
stable marriage problem, 53-57 

Amnesiac Algorithm, 56 
Proposal Algorithm, 54, 63, 66 

stationary distribution, see Markov chain, 
stationary distribution 

STCON,142 
Stein, C, 303 
Stirling's formula, 434 
Stirzaker, O.R., 97, 438 
s-t min-cut, 26, 289 
stochastic domination, 56, 213, 299, 300, 443 
stochastic matrix, see matrix • 
Stockmeyer, LJ., 331 
Strang. G., 433 
Strassen, v., 23,426 
strong component, 130 
strongly k-universal hash functions, 221 
strongly universal hash functions, 221 
Sudan, M., 96, 122, 188 
super-concentrators, see expanders 
symmetric order, 198 
SYNCH-CCP algorithm, 356 
Szegedy, M., 122, 188 
Szemeredi, E., 156, 160,229,233,361 

tail probability, 43 
Tanner, R.M., 156 
Tardos, G., 387 
Tarjan, R.E., 63, 229, 302, 303, 387, 389 
Tarsi, M., 41 
Teia, B., 389 
Tetali, P., 155 
Thompson, CD., 96 
Timofeev, E.A, 302 
Tiwari, P., 155 
Tompa, M., 155 

475 



total variation distance, 159 
Traiger, I.L., 387 
transition probability matrix, 129, 148 

doubly stochastic, 134, 148 
transparent proofs, 188 
trapezoidal decomposition, 248-252 
treap, 201-208 

random, 203 
weigh ted, 230 

Treat, A., 363 
tree isomorphism, 188 
triangle inequality, 436 
truth assignment, 19 
Tsantilas, T., 96 
Turing machine, 16, 140 

log-space, 139, 159 
probabilistic, 17, 23, 139 

Tutte matrix, 190, 347, 348, 351, 365 
Tutte's Theorem, 190,347,351 
Tufte. W.T., 187, 190 
two-point s~rling. 51, 53 
two-sided error, 22 

Ulam, S., 24 
Ullman, J.D., 25, 187, 189,302 
uniform algorithm, 38 
universal hash functions, 170, 213-221 
universal traversal sequence, 140 
Upfal, E., 24, 63,96, 123,362,366 
USTCON,139 

Vaidya, P., 362 
Valiant's scheme, see oblivious routing. 

randomized 
Valiant, L.G., 66, 96, 331, 332, 362 
van der Waerden, B.L., 426 
Vandermonde matrix, 165 
Vazirani, U.V., 187, 332, 362, 365-367 
Vazirani, V.V., 187, 190,332,362,365-367 
vector norms, 435 
vector space, 435 

basis, 437 
orthogonal subspace, 435 
orthonormal basis, 437 
subspace, 435 

INDEX 

Vercellis, C, 24 
Vinogradov, I.M., 426 
Viswanathan, S., 387 
Vizing, Y.G., 362 
Vohra, R., 96 
volume estimation, 329-331 
von Neumann's Minimax Theorem, 33 
von Neumann, J., 24, 25, 33, 40 
von zur Gathen, J., 362 
Vomberger, 0., 156 
Voronoi diagram, 145, 258 

Waarts, 0., 97 
Wang, J., 40 
Warshall, S., 302 
Wegman, M.N., 186, 189, 229, 232, 233 
weighted paging problem, 381 

Reciprocal algorithm, 382, 383, 387, 388 
Welsh, DJ.A., 24, 331 
Welzl, E., 274, 275 
Westbrook, J., 303, 389 
Wigderson, A., 24, 41, 123, 156, 187, 188, 

361,362,366,387 
Willard, D., 303 
Williamson, D.P., 96, 122 
Winograd, S., 187,302 
Wright, E.M., 426 

Yannakakis, M., 122, 156 
Yao's Minimax Principle, 35 

randomized paging. 374-376 
Yao, A. C-C, 24, 25, 35, 41, 229 
Yao, EE, 24, 273 
Young. N., 41,387 
Yuval, G., 302 

Zachos, S., 188 
zero-knowledge interactive proof, 187 
zero-sided error, 22 
Ziegler, G.M., 275 
Zippel, R.E., 165, 187,426 
ZNC, 337 
ZPP, 22, 337 
Zuckerman, D., 24, 156, 159 
Zuckerman, H.S., 426 

476 



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base



