

Randomized Algorithms

Rajeev Motwani
Stanford University

Prabhakar Raghavan
IBM Thomas J. Watson

Research Center

. :i CAMBRIDGE
UNIVERSITY PRESS

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1995

First published 1995

Printed in United States of America

Library of Congress Cataloguing-in-Publication Data

Motwani, Rajeev.
Randomized 'algorithms / Rajeev Motwani, Prabhakar Raghavan.

p. cm.
Includes bibliographical references and index.
~.SBN 0-521-47465-5
1. Stochastic processes-Data processing. 2. Algorithms.

I. Raghavan, Prabhakar. II. Title.
QA274.M68 1995
004'.01'5192-dc20 94-44271

A catalog record for this book is available from the British Library.

ISBN 0-521-47465-5 hardback

TAG

Randomized Algorithms

The Stanford-Cambridge Program is an innovative publishing venture result
ing from the collaboration between Cambridge University Press and Stanford
University and its Press.

The Program provides a new international imprint for the teaching and
communication of pure and applied sciences. Drawing on Stanford's eminent
faculty and associated institutions, books within the Program reflect the high
quality of teaching and research at Stanford University.

The Program includes textbooks at undergraduate level, and research mono
graphs, across a broad range of the sciences.

Cambridge University Press publishes and distributes books in the Stanford
Cambridge Program throughout the world.

Contents

Preface IX

I Tools and Techniques 1

1 Introduction 3

1.1 A Min-Cut Algorithm 7
1.2 Las Vegas and Monte Carlo 9
1.3 Binary Planar Partitions 10
1.4 A Probabilistic Recurrence 15
1.5 Computation Model and Complexity Classes 16
Notes 23
Problems 25

2 Game-Theoretic Techniques 28

2.1 Game Tree Evaluation 28
2.2 The Minimax Principle 31
2.3 Randomness and Non-uniformity 38
Notes 40
Problems 41

3 Moments and Deviations 43

3.1 Occupancy Problems 43
3.2 The Markov and Chebyshev Inequalities 45
3.3 Randomized Selection 47
3.4 Two-Point Sampling 51
3.5 The Stable Marriage Problem 53
3.6 The Coupon Collector's Problem 57
Notes 63
Problems 64

4 Tail Inequalities 67

4.1 The Chernoff Bound 67

v

CONTENTS

4.2 Routing in a Parallel Computer 74
4.3 A Wiring Problem 79
4.4 Martingales 83
Notes 96
Problems 97

5 The Probabilistic Method 101

5.1 Overview of the Method 101
5.2 Maximum Satisfiability 104
5.3 Expanding Graphs 108
5.4 Oblivious Routing Revisited 112
5.5 The Lovasz Local Lemma 115
5.6 The Method of Conditional Probabilities 120
Notes 122
Problems 124

6 Markov Chains and Random Walks 127

6.1 A 2-SAT Example 128
6.2 Markov Chains 129
6.3 Random Walks on Graphs 132
6.4 Electrical Networks 135
6.5 Cover Times 137
6.6 Graph Connectivity 139
6.7 Expanders and Rapidly Mixing Random Walks 143
6.8 Probability Amplification by Random Walks on Expanders 151
Notes 155
Problems 156

7 Algebraic Techniques 161

7.1 Fingerprinting and Freivalds' Technique 162
7.2 Verifying Polynomial Identities 163
7.3 Perfect Matchings in Graphs 167
7.4 Verifying Equality of Strings 168
7.5 A Comparison of Fingerprinting Techniques 169
7.6 Pattern Matching 170
7.7 Interactive Proof Systems 172
7.8 PCP and Efficient Proof Verification 180
Notes 186
Problems 188

II Applications 195

8 I>ata Structures 197

8.1 The Fundamental Data-structuring Problem 197

vi

CONTENTS

8.2 Random Treaps
8.3 Skip Lists
8.4 Hash Tables
8.5 Hashing with O(1) Search Time
Notes
Problems

9 Geometric Algorithms and Linear Programming

9.1 Randomized Incremental Construction
9.2 Convex Hulls in the Plane
9.3 Duality
9.4 Half-space Intersections
9.5 Delaunay Triangulations
9.6 Trapezoidal Decompositions
9.7 Binary Space Partitions
9.8 The Diameter of a Point Set
9.9 Random Sampling
9.10 Linear Programming
Notes
Problems

10 Graph Algorithms

10.1 All-pairs Shortest Paths
10.2 The Min-Cut Problem
10.3 Minimum Spanning Trees
Notes
Problems

11 Approximate Counting

11.1 Randomized Approximation Schemes
11.2 The DNF Counting Problem
11.3 Approximating the Permanent
11.4 Volume Estimation
Notes
Problems

12 Parallel and Distributed Algorithms

12.1 The PRAM Model
12.2 Sorting on a PRAM
12.3 Maximal Independent Sets
12.4 Perfect Matchings
12.5 The Choice Coordination Problem
12.6 Byzantine Agreement
Notes
Problems

vii

201
209
213
221
228
229

234

234
236
239
241
245
248
252
256
258
262
273
275

278

278
289
296
302
304

306

308
310
315
329
331
333

335

335
337
341
347
355
358
361
363

CONTENTS

13 Online Algorithms

13.1 The Online Paging Problem
13.2 Adversary Models
13.3 Paging against an Oblivious Adversary
13.4 Relating the Adversaries
13.5 The Adaptive Online Adversary
13.6 The k-Server Problem
Notes
Problems

14 Number Theory and Algebra

14.1 Preliminaries
14.2 Groups and Fields
14.3 Quadratic Residues
14.4 The RSA Cryptosystem
14.5 Polynomial Roots and Factors
14.6 Primality Testing
Notes
Problems

Appendix A Notational Index
Appendix B Mathematical Background
Appendix C Basic Probability Theory

References
Index

viii

368

369
372
374
377
381
384
387
389

392

392
395
402
410
412
417
426
427

429
433
438

447
467

Preface

THE last decade has witnessed a tremendous growth in the area of randomized
algorithms. During this period, randomized algorithms went from being a tool in
computational number theory to finding widespread application in many types
of algorithms. Two benefits of randomization have spearheaded this growth:
simplicity and speed. For many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both.

This book presents the basic concepts in the design and analysis of randomized
algorithms at a level accessible to advanced undergraduates and to graduate
students. We expect it will also prove to be a reference to professionals wishing
to implement such algorithms and to researchers seeking to establish new results
in the area.

Organization and Course Information

We assume that the reader has had undergraduate courses in Algorithms and
Complexity, and in Probability Theory. The book is organized into two parts.
The first part, consisting of seven chapters, presents basic tools from probability
theory and probabilistic analysis that are recurrent in algorithmic applications.
Applications are given along with each tool to illustrate the tool in concrete
settings. The second part of the book also contains seven chapters, each
focusing on one area of application of randomized algorithms. The seven
areas of application we have selected are: data structures, graph algorithms,
geometric algorithms, number theoretic algorithms, counting algorithms, parallel
and distributed algorithms, and online algorithms. Naturally, some of the
algorithms used for illustration in Part I do fall into one of these seven categories.
The book is not meant to be a compendium of every randomized algorithm
that has been devised, but rather a comprehensive and representative selection.
The Appendices review basic material on probability theory and the analysis
of algorithms.

ix

PREFACE

We have taught several regular as well as short-term courses based on the
material in this book, as have some of our colleagues. It is virtually impossible
to cover all the material in the book in a single academic term or in a week's
intensive course. We regard Chapters 1-4 as the core around which a course may
be built. Following the treatment of this material, the instructor may continue
with that portion of the remainder of Part I that supports the material of Part II
(s)he wishes to cover. Chapters 5-13 depend only on material in Chapters 1-4,
with the following exceptions:

1. Chapter 5 on Probabilistic Methods is a prerequisite for Chapters 6 (Random
Walks) and 11 (Approximate Counting).

2. Chapter 6 on Random Walks is a prerequisite for Chapter 11 (Approximate
Counting).

3. Chapter 7 on Algebraic Techniques is a prerequisite for Chapters 14 (Number
Theory and Algebra) and 12 (Parallel and Distributed Algorithms).

We have included three types of problems in the book. Exercises occur
throughout the text, and are designed to deepen the reader's understanding of
the material being covered in the text. Usually, an exercise will be a variant,
extension, or detail of an algorithm or proof being studied. Problems appear
at the end of each chapter and are meant to be more difficult and involved
than the- Exercises in the text. In addition, Research Problems are listed in the
Discussion section at the end of each chapter. These are problems that were
open at the time we wrote the book; we offer them as suggestions for students
(and of course professional researchers) to work on.

Based on our experience with teaching this material, we recommend that the
instructor use one of the following course organizations:

• A comprehensive basic course: In addition to Chapters 1-4, this course would
cover the material in Chapters 5, 6, and 7 (thUS spanning all of Part 1).

• A course oriented toward algebra and number theory; Following Chapters 1-4,
this course would cover Chapters 7, 14, and 12.

• A course oriented toward graphs, data struc:!tures, and geometry: Following
Chapters 1-4, this course would cover Chapters 8, 9, and 10.

• A course oriented toward random walks and counting algorithms: Following
Chapters 1-4, this course would cover Chapters 5, 6, and 11.

Each of these courses may be pruned and given in abridged form as an intensive
course spanning 3-5 days.

Paradigms for Randomized Algorithms

A handful of general principles lies at the heart of almost all randomized
algorithms, despite the multitude of areas in which they find application. We
briefly survey these here, with pointers to chapters in which examples of these

x

PREFACE

principles may be found. The following summary draws heavily from ideas in
the survey paper by Karp [243].

Foiling an adversary. The classical adversary argument for a deterministic
algorithm establishes a lower bound on the running time of the algorithm by
constructing an input on which the algorithm fares poorly. The input thus
constructed may be different for each deterministic algorithm. A randomized
algorithm can be viewed as a probability distribution on a set of deterministic
algorithms. While the adversary may be able to construct an input that foils
one (or a small fraction) of the deterministic algorithms in the set, it is difficult
to devise a single input that is likely to defeat a randomly chosen algorithm.
While this paradigm underlies the success of any randomized algorithm, the
most direct examples appear in Chapter 2 (in game tree evaluation), Chapter 7
(in efficient proof verification), and Chapter 13 (in online algorithms).

Random sampling. The idea that a random sample from a population is
representative of the population as a whole is a pervasive theme in randomized
algorithms. Examples of this paradigm arise in almost all the chapters, most
notably in Chapters 3 (selection algorithms), 8 (data structures), 9 (geometric
algorithms), 10 (graph algorithms), and 11 (approximate counting).

Abundance of witnesses. Often, an algorithm is required to determine whether
an input (say, a number x) has a certain property (for example, "is x prime?").
It does so by finding a witness that x has the property. For many problems,
the difficulty with doing this deterministically is that the witness lies in a search
space that is too large to be searched exhaustively. However, by establishing
that the space contains a large number of witnesses, it often suffices to choose
an element at random from the space. The randomly chosen item is likely to be
a witness; further, independent repetitions of the process reduce the probability
that a witness is not found on any of the repetitions. The most striking examples
of this phenomenon occur in number theory (Chapter 14).

Fingerprinting and hashing. A long string may be represented by a short
fingerprint using a random mapping. In some pattern-matching applications, it
can be shown that two strings are likely to be identical if their fingerprints are
identical; comparing the short fingerprints is considerably faster than comparing
the strings themselves (Chapter 7). This is also the idea behind hashing, whereby
a small set S of elements drawn from a large universe is mapped into a
smaller universe with a guarantee that distinct elements in S are likely to have
distinct images. This leads to efficient schemes for deciding membership in
S (Chapters 7 and 8) and has a variety of further applications in generating
pseudo-random numbers (for example, two-point sampling in Chapter 3 and
pairwise independence in Chapter 12) and complexity theory (for instance,
algebraic identities and efficient proof verification in Chapter 7).

Random re-ordering. A striking use of randomization in a number of problems
in data structuring and computational geometry involves randomly re-ordering
the input data, followed by the application of a relatively naive algorithm. After
the re-ordering step, the input is unlikely to be in one of the orderings that is
pathological for the naive algorithm. (Chapters 8 and 9).

xi

PREFACE

Load balancing. For problems involving choice between a number of re
sources, such as communication links in a network of processors, randomization
can be used to "spread" the load evenly among the resources, as demonstrated
in Chapter 4. This is particularly useful in a parallel or distributed environment
where resource utilization decisions have to be made locally at a large number
of sites without reference to the global impact of these decisions.

Rapidly mixing Markov chains. For a variety of problems involving count
ing the number of combinatorial objects with a given property, we have ap
proximation algorithms based on randomly sampling an appropriately defined
population. Such sampling is often difficult because it may require computing
the size of the sample space, which is precisely the problem we would like to
solve via sampling. In some cases, the sampling can be achieved by defining a
Markov chain on the elements of the population and showing that a short ran
dom walk using this Markov chain is likely to sample the population uniformly
(Chapter 11).

Isolation and symmetry breaking. In parallel computation, when solving a
problem with many feasible solutions it is important to ensure that the different
processors are working toward finding the same solution. This requires isolating
a specific solution out of the space of all feasible solutions without actually
knowing any single element of the solution space. A clever randomized strategy
achieves isolation, by implicitly choosing a random ordering on the feasible
solutions' and then requiring the processors to focus on finding the solution of
lowest rank. In distributed computation, it is often necessary for a collection of
processors to break a deadlock and arrive at a consensus. Randomization is a
powerful tool in such deadlock-avoidance, as shown in Chapter 12.

Probabilistic methods and existence proofs. It is possible to establish that an
object with certain properties exists by arguing that a randomly chosen object
has the properties with positive probability. Such an argument gives no clue
as to how to find such an object. Sometimes, the method is used to guarantee
the existence of an algorithm for solving a problem; we thus know that the

. algorithm exists, but have no idea what it looks like or how to construct it. This
raises the issue of non-uniformity in algorithms (Chapters 2 and 5).

Conventions

Most of the conventions we use are described where they first arise. One worth
mentioning here is the issue of integer breakage: as long as it does not materially
affect the algorithm or analysis being considered (and the intent is unambiguous
from the context), we omit ceilings and floors from numbers that strictly should
be integers. Thus, we might say "choose In elements from the set of size n"
even when n is not a perfect square. Our intent is to present the crux of the
algorithm/analysis without undue notational clutter from ceilings and floors.
The expression log x denotes log2 x, and the expression In x denotes the natural
logarithm of x.

xii

PREFACE

Acknowledgements

This book would not have been possible without the guidance and tutelage of
Dick Karp. It was he who taught us this field and gave us invaluable guidance
at every stage of the book - from the initial planning to the feedback he gave
us from using a preliminary version of the manuscript in a graduate course at
Berkeley.

We thank the following colleagues, who carefully read portions of the
manuscript and pointed out many errors in early versions: Pankaj Agarwal,
Donald Aingworth, Susanne Albers, David Aldous, Noga Alon, Sanjeev Arora,
Julien Basch, Allan Borodin, Joan Boyar, Andrei Broder, Bernard Chazelle,
Ken Clarkson; Don Coppersmith, Cynthia Dwork, Michael Goldwasser, David
Gries, Kazuyoshi Hayase, Mary Inaba, Sandy Irani, David Karger, Anna Kar
lin, Don Knuth, Tom Leighton, Mike Luby, Keju Ma, Karthik Mahadevan,
Colin McDiarmid, Ketan Mulmuley, Seffi Naor, Daniel Panario, Bill Pulley
blank, Vijaya Ramachandran, Raimund Seid~l, Tom Shiple, Alistair Sinclair,
Joel Spencer, Madhu Sudan, Hisao Tamaki, Martin Tompa, Gert Vegter, Jeff
Vitter, Peter Winkler, and David Zuckerman. We apologize in advance to any
colleagues whose names we have inadvertently omitted.

Special thanks go to Allan Borodin and the students of his CSC 2421 class
at the University of Toronto (Fall 1994), as well as to Gudmund Skovbjerg
Frandsen, Prabhakar Ragde, and Eli Upfal for giving us detailed feedback from
courses they taught using early versions of the manuscript. Their suggestions
and advice have been invaluable in making this book more suitable for the
classroom.

We thank Rao Kosaraju, Ron Rivest, Joel Spencer, Jeff Ullman, and Paul
Vitanyi for providing us with much help and advice on the process of writing
and improving the manuscript.

The first author is grateful to Stanford University for the environment and
resources which made this effort possible. Several colleagues in the Computer
Science Department provided invaluable advice and encouragement. Don Knuth
played the role of mentor and his faith in this project was a tremendous source
of encouragement. John Mitchell and Jeff Ullman were especially helpful with
the mechanics of the publication process. This book owes a great deal to the
students, teaching assistants, and other participants in the various offerings of
the course CS 365 (Randomized Algorithms) at Stanford. The feedback from
these people was invaluable in refining the lecture notes that formed a partial
basis for this book. Steven Phillips made a significant contribution as a teaching
assistant in CS 365 on two different occasions. Special thanks are due to Yossi
Azar, Amotz Bar-Noy, Bob Floyd, Seffi Naor, and Boris Pittel for their guest
lectures and help in preparing class notes. The following students transcribed
some lecture notes, and their class participation was vital to the development
of this material: Julien Basch, Trevor Bourget, Tom Chavez, Edith Cohen, Anil
Gangolli, Michael Goldwasser, Bert Hackney, Alan Hu, Jim Hwang, Vasilis
Kallistros, Anil Kamath, David Karger, Robert Kennedy, Sanjeev Khanna,

xiii

PREFACE

Daphne Koller, Andrew Kosoresow, Sherry Listgarten, Alan Morgan, Steve
Newman, Jeffrey Oldham, Steven Phillips, Tomasz Radzik, Ram Ramkumar,
Will Sawyer, Sunny Siu, Eric Torng, Theodora Varvarigou, Eric Veach, Alex
Wang, and Paul Zhang.

The research and book-writing efforts of the first author have been supported
by the following grants and awards: the Bergmann Award from the US-Israel
Binational Science Foundation; an IBM Faculty Development Award; gifts
from the Mitsubishi Corporation; NSF Grant CCR-9010517; the NSF Young
Investigator Award CCR-9357849, with matching funds from IBM Corpora
tion, Schlumberger Foundation, Shell Foundation, and Xerox Corporation; and
various grants from the Office of Technology Licensing at Stanford University.

The second author is indebted to his colleagues at the Mathematical Sciences
Department of the IBM Thomas J. Watson Research Center, and to the IBM
Corporation for providing the facilities and environment that made it possible
to write this book. He also thanks Sandeep Bhatt for his encouragement and
support of a course on Randomized Algorithms taught by the author at Yale
University; the class notes from that course formed a partial basis for this book.

We are indebted to Lauren Cowles of Cambridge University Press for her
editorial help and advice in the preparation of the manuscript; this book has
emerged much improved as a result of her untiring efforts.

Rajeev Motwani thanks his wife Asha for her love, encouragement, and
cheerfulness; without her distractions this book would have been completed
several months earlier. This task would not have been possible without the
constant support and faith of his family over the years. Finally, the two mutts
Tipu and Noori deserve special mention for giving company during the many
late night editing sessions.

Prabhakar Raghavan thanks his wife Srilatha for her love and support, his
parents for their inspiration, and his children Megha and Manish for ensuring
that there was never a dull moment when writing this book.

World-Wide Web
Current information on this book may be found at the following address
on the World-Wide Web:

http://www.cup.org/Reviews&blurbs/RanAlg/RanAlg.html
This address may be used for ordering information, reporting errors and
viewing an edited list of errors found by other readers.

xiv

PART ONE

Tools and Techniques

CHAPT ER 1

Introduction

CONSIDER sorting a set S of n numbers into ascending order. If we could .find
a member y of S such that half the members of S are smaller than y, then we
could use the following scheme. We partition S \ {y} into two sets SI and S2,
where SI consists of those elements of S that are smaller than y, and S2 has the
remaining elements. We recursively sort SI and S2, then output the elements of
SI in ascending order, followed by y, and then the elements of S2 in ascending
order. In particular, if we could find y in en steps for some constant c, we could
partition S \ {y} into SI and S2 in n - 1 additional steps by comparing each
element of S with y; thus, the total number of steps in our sorting procedure
would be given by the recurrence

T(n) S; 2T(nj2) + (c + 1)n, (1.1)

where T(k) represents the time taken by this method to sort k numbers on the
worst-case input. This recurrence has the solution T(n) < c'n log n for a constant
c', as can be verified by direct substitution.

The difficulty with the above scheme in practice is in finding the element y
that splits S \ {y} into two sets SI and S2 of the same size. Examining (1.1), we
notice that the running time of O(n log n) can be obtained even if SI and S2 are
approximately the same size - say, if y were to split S \ {y} such that neither SI
nor S2 contained more than 3n/4 elements. This gives us hope, because we know
that every input S contains at least n/2 candidate splitters y with this property.
How do we quickly find one?

One simple answer is to choose an element of S at random. This does not
always ensure a splitter giving a roughly even split. However, it is reasonable to
hope that in the recursive algorithm we will be lucky fairly often. The result is
an algorithm we call RandQS, for Randomized Quicksort.

Algorithm RandQS is an example of a randomized algorithm - an algorithm
that makes random choices during execution (in this case, in Step 1). Let us
assume for the moment that this random choice can be made in unit time; we

3

INTRODUCTION

will say more about this in the Notes section. What can we prove about the
running time of RandQS?

Algorithm RalidQS:

Input: A set of numbers S.

Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from S: every element in S has
equal probability of being chosen.

2. By comparing each element of S with y, determine the set Sl of elements
smaller than y and the set S2 of elements larger than y.

3. Recursively sort Sl and S2. Output the sorted version of Sl, followed by y,
and then the sorted version of S2.

As is usual for sorting algorithms, we measure the running time of RandQS
in terms of the number of comparisons it performs since this is the dominant
cost in any reasonable implementation. In particular, our goal is to analyze the
expected number of comparisons in an execution of RandQS. Note that all the
comparisons are performed in Step 2, in which we compare a randomly chosen
partitioning element to the remaining elements. For 1 < i < n, let S(i) denote the
element of rank i (the ith smallest element) in the set S. Thus, S(l) denotes the
smallest element of S, and S(n) the largest. Define the random variable Xij to
assume the value 1 if S(i) and S(j) are compared in an execution, and the value 0
otherwise. Thus, Xij is a count of comparisons between S(i) and S(j), and so the
total number of comparisons is E7-1 Ej>i Xij' We are interested in the expected
number of comparisons, which is clearly

n n

E[L L Xij] = L L E[Xij]. (1.2)
i-I j>i i=1 j>i

This equation uses an important property of expectations called linearity of
expectation; we will return to this in Section 1.3.

Let pij denote the probability that S(i) and S(j) are compared in an execution.
Since Xij only assumes the values 0 and 1,

E[Xij] = Pij x 1 + (1 - Pij) x 0 = Pij. (1.3)

To facilitate the determination of Pij, we view the execution of RandQS as a
binary tree T, each node of which is labeled with a distinct element of S. The
root of the tree is labeled with the element y chosen in Step 1, the left sub-tree
of y contains the elements in SI and the right sub-tree of y contains the elements
in S2. The structures of the two sub-trees are determined recursively by the
executions of RandQS on SI and S2. The root y is compared to the elements in
the two sub-trees, but no comparison is performed between an element of the
left sub-tree and an element of the right sub-tree. Thus, there is a comparison

4

INTRODUCTION

between S(i) and S(j) if and only if one of these elements is an ancestor of the
other.

The in-order traversal of T will visit the elements of S in a sorted order,
and this is precisely what the algorithm outputs; in fact, T is a (random)
binary search tree (we will encounter this again in Section 8.2). However, for
the analysis we are interested in the level-order traversal of the nodes. This
is the permutation 1t obtained by visiting the nodes of T in increasing order
of the level numbers, and in a left-to-right order within each level; recall that
the ith level of the tree is the set of all nodes at distance exactly i from the
root.

To compute Pij, we make two observations. Both observations are deceptively
simple, and yet powerful enough to facilitate the analysis of a number of more
complicated algorithms in later chapters (for example, in Chapters 8 and 9).

1. There is a comparison between S(i) and S(j) if and only if S(i) or S(j) occurs earlier
in the permutation 1t than any element S(t) such that i < t < j. To see this, let
S(k) be the earliest in 1t from among all elements of rank between i and j. If
k f¢ {i, j}, then S(i) will belong to the left sub-tree of S(k) while S(j) will belong
to the right sub-tree of S(k), implying that there is no comparison between S(i)

and S(j). Conversely, when k E {i,j}, there is an ancestor-descendant relationship
between S(i) and S(j), implying that the two elements are compared by RandQS.

2. Any of the elements S(i), S(i+l),' •• , S(j) is equally likely to be the first of these
elements to be chosen as a partitioning element, and hence to appear first in
1t. Thus, the probability that this first element is either S(i) or S(j) is exactly
2/(j-i+1). .

We have thus established that Pij = 2/(j - i + 1). By (1.2) and (1.3), the
expected number of comparisons is given by

n

LLPij
i=1 j>i

n 2

- ~~j-i+1
1=1 J>I

n n-i+1 2
< LLk

i=1 k=1

n n 1

< 2LLk'
i=1 k=1

It follows that the expected number of comparisons is bounded above by 2nHn,
where Hn is the nth Harmonic number, defined by Hn = E~=1 11k.

Theorem 1.1: The expected number of comparisons in an execution of RandQS is
at most 2nHn.

From Proposition B.4 (Appendix B), we have that Hn - Inn + 9(1), so that
the expected running time of RandQS is O(nlog n).

5

INTRODUCTION

Exercise 1.1: Consider the (random) permutation" of S induced by the level-order
traversal of the tree T corresponding to an execution of RandQS. Is " uniformly
distributed over the space of all permutations of the elements S(1)' ... , S(n)?

It is worth examining carefully what we have just established about RandQS.
The expected running time holds for every input. It is an expectation that
depends only on the random choices made by the algorithm, and not on any
assumptions about the distribution of the input. The behavior of a randomized
algorithm can vary even on a single input, from one execution to another. The
running time becomes a random variable, and the running-time analysis involves
understanding the distribution of this random variable.

We will prove bounds on the performances of randomized algorithms that rely
solely on their random choices and not on any assumptions about the inputs.
It is important to distinguish this from th~ probabilistic analysis of an algorithm,
in which one assumes a distribution on the inputs and analyzes an algorithm
that may itself be deterministic. In this book we will generally not deal with
such probabilistic analysis, except occasionally when illustrating a technique for
analyzing randomized algorithms.

Note also that we have proved a bound on the expected running time of the
algorithm. In many cases (including RandQS, see Problem 4.15), we can prove
an even stronger statement: that with very high probability the running time of
the algorithm is not much more than its expectation. Thus, on almost every
execution, independent of the input, the algorithm is shown to be fast.

The randomization involved in our RandQS algorithm occurs only in Step
1, where a random element is chosen from a set. We define a randomized
algorithm as an algorithm that is allowed access to a source of independent,
unbiased, random bits; it is then permitted to use these random bits to influence
its computation. It is easy to sample a random element from a set S by choosing
O(log lSI) random bits and then using these bits to index an element in the
set. However, some distributions cannot be sampled using only random bits.
For example, consider an algorithm that picks a random real number from
some interval. This requires infinitely many random bits. While we will usually
not worry about the conversion of random bits to the desired distribution, the
reader should keep in mind that random bits are a resource whose use involves
a non-trivial cost. Moreover, there is sometimes a non-trivial computational
overhead associated with sampling from a seemingly well-behaved distribution.
For example, consider the problem of using a source of unbiased random bits
to sample uniformly from a set S whose cardinality is not a power of 2 (see
Problem 1.2).

There are two principal advantages to randomized algorithms. The first is
performance - for many problems, randomized algorithms run faster than the
best known deterministic algorithms. Second, many randomized algorithms are
simpler to describe and implement than deterministic algorithms of comparable

6

1.1 A MIN-CUT ALGORITHM

performance. The randomized sorting algorithm described above is an exam
ple. This book presents many other randomized algorithms that enjoy these
advantages.

In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algorithms. The reader wishing
to review some of the background material on the analysis of algorithms or on
elementary probability theory is referred to the Appendices.

1.1. A Min-Cut Algorithm

Two events C 1 and C2 are said to be independent if the probability t~at they
both occur is given by

(1.4)

(see Appendix C). In the more general case where Cl and C2 are not necessarily
independent,

where Pr[cl I C2] denotes the conditional probability of Cl given C2' Sometimes,
when a collection of events is not independent, a convenient method for com
puting the probability of their intersection is to use the following generalization
of (1.5).

Pr[n~=It'il = Pr[t'd x Pr[t'21 t'd x Pr[t'31 t'1 nt'2l' "Pr[t'k I n~==-lt'i]' (1.6)

Consider a graph-theoretic example. Let G be a connected, undirected multi
graph with n vertices. A multigraph may contain multiple edges between any pair
of vertices. A cut in G is a set of edges whose removal results in G being broken
into two or more components. A min-cut is a cut of minimum cardinality. We
now study a simple algorithm for finding a min-cut of a graph.

We repeat the following step: pick an edge uniformly at random and merge
the two vertices at its end-points (Figure 1.1). If as a result there are several
edges between some pairs of (newly formed) vertices, retain them all. Edges
between vertices that are merged are removed, so that there are never any
self-loops. We refer to this process of merging the two end-points of an edge
into a single vertex as the contraction of that edge. With each contraction, the
number of vertices of G decreases by one. The crucial observation is that an
edge contraction does not reduce the min-cut size in G. This is because every
cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at
this point, the set of edges between these two vertices is a cut in G and is output
as a candidate min-cut.

Does this algorithm always find a min-cut? Let us analyze its behavior after
first reviewing some elementary definitions from graph theory.

7

INTRODUCTION

5

4

4 •

3

2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge e = (1,2) is
shown.

~ Definition 1.1: For any vertex v in a multigraph G, the neighborhood of G,
denoted r(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of S, denoted r(S), is the union of the neighborhoods of the
constituent vertices.

Note that d(v) is the same as the cardinality of r(v) when there are no self-loops
or mUltiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let Ej denote the event of not picking an edge of C at the ith step, for
1 < is n-2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[EI] > 1- 2/n. Assuming that EI occurs,
during the second step there are at least k(n - 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n - 1), so that Pr[E2 lEI] > 1 - 2/(n - 1).
At the ith step, the number of remaining vertices is n - i + 1. The size of the
min-cut is still at least k, so the graph has at least k(n - i + 1)/2 edges remaining
at this step. Thus, Pr[E j I n~:.\Ej] > 1 - 2/(n - i + 1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

n-2 (2) 2
Pr[ni.:lEd > p 1- n _ i + 1 = n(n -I}"

1",,1

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n2. Thus our algorithm may err
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat
the above algorithm n2/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n2/2

8

l.l LAS VEGAS AND MONTE CARLO

attempts is at most

(
2),,2/2

1- n2 < lie.

By this process of repetition, we have managed to reduce the probability of fail
ure from 1-2/n2 to a more respectable lie. Further executions of the algorithm
will make the failure probability arbitrarily small - the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi
cantly smaller than that of the best known algorithms based on network flow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inputs on which the probability that this
modified algorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
instance is YES or NO), there are two kinds of Monte Carlo algorithms: those
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
outputs either YES or NO. It is said to have one-sided error if the probability that
it errs is zero for at least one of the possible outputs (YES/NO) that it produces.

9

INTRODUCTION

We will see examples of all three types of algorithms - Las Vegas, Monte Carlo
with one-sided error, and Monte Carlo with two-sided error - in this book.

Which is better, Monte Carlo or Las Vegas? The answer depends on the
application - in some applications .an incorrect solution may be catastrophic.
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error
probability o. The following exercise gives us a way of deriving a Las Vegas
algorithm from a Monte Carlo algorithm. Note that the efficiency of the
derivation procedure depends on the time taken to verify the correctness of a
solution to the problem.

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem n whose expected
running time is at most T(n) on any instance of size n and that produces a correct
solution with probability y(n). Suppose further that given a solution to n, we can verify
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always
gives a correct answer to n and runs in expected time at most (T(n) + t(n))/y(n).

In attempting Exercise 1.3 the reader will have to use a simple property of the
geometric random variable (Appendix C). Consider a biased coin that, on a toss,
has probability p of coming up HEADS and I - p of coming up TAILS. What is
the expe~ted number of (independent) tosses up to and including the first head?
The number of such tosses is a random variable that is said to be geometrically
distributed. The expectation of this random variable is lip. This fact will prove
useful in numerous applications.

Exercise 1.4: Let 0 < £2 < £1 < 1. Consider a Monte Carlo algorithm that gives the
correct solution to a problem with probability at least 1 - £1. regardless of the input.
How many independent executions of this algorithm suffice to raise the probability
of obtaining a correct solution to at least 1 - £2. regardless of the input?

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on
any input its expected running time is bounded by a polynomial function of the
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte
Carlo algorithm if on any input its worst-case running time is bounded by a
polynomial function of the input size.

1.3. Binary Planar Partitions

We now illustrate another very useful and basic tool from probability theory:
linearity of expectation. For random variables X.,X2, ••• ,

E[2: Xd = 2: E[Xd. (1.7)

10

1.3 BINARY PLANAR PARTITIONS

(See Proposition C.S.) We have implicitly used this tool in our analysis of
RandQS. A point that cannot be overemphasized is that (1.7) holds regardless
of any dependencies between the Xi.

~ Example 1.1: A ship arrives at a port, and the 40 sailors on board go ashore
for revelry. Later at night, the 40 sailors return to the ship and, in their state
of inebriation, each chooses a random cabin to sleep in. What is the expected
number of sailors sleeping in their own cabins?

The inefficient approach to this problem would be to consider all 4()40 ar
rangements of sailors in cabins. The solution to this example will involve the
use of a simple and often useful device called an indicator variable, together with
linearity of expectation. Let Xi be 1 if the ith sailor chooses her own cabin, and 0
otherwise. Thus Xi indicates whether or not a certain event occurs, and is hence
called an indicator variable. We wish to determine the expected number of sailors
who get their own cabins, which is E[L:l Xi]. By linearity of expectation, this
is L~l E[Xa· Since the cabins are chosen at random, the probability that the ith
sailor gets her own cabin is 1/40, so E[Xj] = 1/40. Thus the expected number of
sailors who get their own cabins is L:l 1/40 = 1.

Our next illustration is the construction of a binary planar partiti~" of a set
of n disjoint line segments in the plane, a problem with applications to computer
graphics. A binary planar partition consists of a binary tree together with some
additional information, as described below. Every internal node of the tree
has two children. Associated with each node v of the tree is a regio.n r(v) of
the plane. Associated with each internal node v of the tree is a line t(v) that
intersects r(v). The region corresponding to the root is the entire plane. The
region r(v) is partitioned by t(v) into two regions rl(v) and r2(v), which are
the regions associated with the two children of v. Thus, any region r of the
partition is bounded by the partition lines on the path from the root to the node
corresponding to r in the tree.

Given a set S = {S}'S2, ••• ,Sn} of non-intersecting line segments in the plane,
we wish to find a binary planar partition such that every region in the partition
contains at most one line segment (or a portion of one line segment). Notice
that the definition allows us to divide an input line segment Si into several
segments Sil, Si2, ••• , each of which lies in a different region. The example of
Figure 1.2 gives such a partition for a set of three line segments (dark lines).

Exercise 1.5: Show that there exists a set of line segments for which no binary
planar partition can avoid breaking up some of the segments into pieces, if each
segment is to lie in a different region of the partition.

Binary planar partitions have two applications in computer graphics. Here,
we describe one of them, the problem of hidden line elimination in computer

11

INTRODUCTION

Figure 1.2: An example of a binary planar partition for a set of segments (dark lines).
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity.

graphics. The second application has to do with the constructive solid geometry
(or CSG) representation of a polyhedral object.

In rendering a scene on a graphics terminal, we are often faced with a
situation in which the scene remains fixed, but it is to be viewed from several
direc~ions (for instance, in a flight simulator, where the simulated motion of the
plane causes the viewpoint to change). The hidden line elimination problem is
the following: having adopted a viewpoint and a direction of viewing, we want
to draw only the portion of the scene that is visible, eliminating those objects
that are 'obscured by other objects "in front" of them relative to the viewpoint.
In such a situation, we might be prepared to spend some computational effort
preprocessing the scene so that given a direction <lL viewing, the scene can be
rendered quickly with hidden lines eliminated.

One approach to this problem uses a binary partition tree. In this chapter we
consider the simple case where the scene lies entirely in the plane, and we view it
from a point in the same plane. Thus, the output is a one-dimensional projected
"picture." We can assume that the input scene consists of non-intersecting line
segments, since any line that is intersected by another can be broken up into
segments, each of which touches other lines only at its endpoints (if at all).
Once the scene has been thus decomposed into line segments, we construct a
binary planar partition tree for it. Now, given the direction of viewing, we use
an idea known as the painter's algorithm to render the scene: first draw the
objects that are furthest "behind," and then progressively draw the objects that
are in front. Given the binary planar partition tree, the painter's algorithm
can be implemented by recursively traversing the tree as follows. At the root
of the tree, determine which side of the partitioning line Ll is "behind" from
the viewpoint and render all the objects in that sub-tree (recursively). Having
completely rendered the portion of the tree corresponding to that sub-tree,
do the same for the portion in "front" of Ll, "painting over" objects already
drawn.

The time it takes to render the scene depends on the size of the binary planar
partition tree. We therefore wish to construct a binary planar partition that is
as small as possible. Notice that since the tree must be traversed completely to

12

1.3 BINARY PLANAR PARTITIONS

render the scene, the depth of the tree is immaterial in this application. Because
the construction of the partition can break some of the input segments Sj into
smaller pieces, the size of the partition need not be n; in fact, it is not clear that
a partition of size O(n) always exists.

In this chapter we consider only the planar case just described; in Chapter 9
we generalize the idea of a binary planar partition to handle the rendition of
a three-dimensional scene on a two-dimensional screen (a far more interesting
case for computer graphics).

For a line segment s, let I(s) denote the line obtained by extending (if necessary)
S on both sides to infinity. For the set S = {Sh S2, . .. Sn} of line segments, a simple
and natural class of partitions is the set of autopartitions, which are formed by
only using lines from the set {1(SI), I(S2), ... I(sn)} in constructing the partition.
We only consider autopartitions from here on. .

Algorithm RandAuto:

Input A set S = {S1, S2, ... , Sn} of non-intersecting line segments.

Output: A binary autopartition p" of S.

1. Pick a permutation" of {1, 2. ... , n} uniformly at random from the n! possible
permutations.

2. while a region contains more than one segment, cut it with I(s/) where i is
first in the ordering" such that Sj cuts that region.

In the partition resulting from an execution of RandAuto, a segment may
lie on the boundary between two regions of the partition. We declare such a
segment to lie in one region or the other in any convenient way.

Tbeorem 1.2: The expected size of the autopartition produced by RandAuto is
O(n log n).

PROOF: For line segments u and v, define index(u, v) to be i if I(u) intersects
i - 1 other segments before hitting v, and index(u, v) = 00 if I(u) does not
hit v. Since a segment u can be extended in two directions, it is possible
that index(u, r;) = index(u, w) for two different lines v and w (in Figure 1.3,
index(u, vd = index(u, V2) = 2).

Let us denote by u -l v the event that I(u) cuts v in the constructed partition.
Let index(u, r;) = i, and let Uh U2, ••• Uj-l be the segments that I(u) intersects before
hitting v. The event u -l v happens only if u occurs before any of {Ul' U2, •• ' U/-h v}
in the randomly chosen permutation n. The probability that this happens is
1/(i + 1).

Let Cu,v be an indicator variable that is 1 if u -l v and 0 otherwise; clearly,
E[Cu,v] = Pr[u -l v] < 1/(index(u, v) + 1). The size of P1t equals n plus the number
of intersections due to cuts. Thus, its expectation is n + E[Lu Lv Cu,v] and by

13

INTRODUCTION

Figure 1.3: An illustration of index(u, v).

linearity of expectation this equals

1
n + :L:L Pr[u -l v] ~ n + :L:L . d () 1·

oJ. oJ. In ex u,v +
U VrU U vru

(1.8)

For any line segment u and any finite positive integer i, there are at most two
vertices v and w such that index (u, v) and index(u, w) equals i. This is because
the extension of the segment u along either of the two possible directions will
meet any other line segment at most once. Thus, in each of the two directions,
there is a total ordering on the points of intersection with other segments and
the index values increase monotonically. This implies that

1 n-l 2

:L index(u,v) + 1 ~ ~ i + r
V-FU ~l

Combining this with (1.8) implies that the expected size of P1t is bounded above
by

which is O(n log n). D

Note that in computing the expected number of intersections, we only made
use of linearity of expectation. We do not require any independence between
the events u .; v and u .; w, for segments u, v, and w. Indeed, these events need
not be independent in general.

One way of interpreting Theorem 1.2 is as follows: since the expected size
of the binary planar partition constructed by the algorithm is O(n log n) on
any input, there must exist a binary autopartition of size O(n log n) for every
input. This follows from the simple fact that any random variable assumes at
least one value that is no greater than its expectation (and, indeed, one that is
no less than its expectation). Thus we have used a probabilistic argument to
assert that a combinatorial object - in this case a binary autopartition of size
O(n log n) - exists with absolute certainty rather than with some probability. This
is an example of the probabilistic method in combinatorics. We will study the
probabilistic method in greater detail in Chapter 5.

14

lA A PROBABILISTIC RECURRENCE

1.4. A Probabilistic Recurrence

Frequently, we express a random variable of interest as a recurrence in terms of
other random variables. In this section, we study one such situation using the
Find algorithm analyzed in detail in Problem 1.9. The material in this section,
although useful, is not an essential prerequisite for subsequent topics and may
be omitted in the first reading.

The Find algorithm for selecting the kth smallest of a set S of n elements
works as follows. We pick a random element y and partition S \ {y} into two
sets SI and S2 (elements smaller and larger than y respectively) as in RandQS.
Suppose lSI I = k - 1; then y is the desired element and we are done. Otherwise,
if lSI I > k, we recursively find the kth smallest element of Sl; else we recursively
find the (k -1St! - l)th smallest element in S2.

The expected number of comparisons made by the Find algorithm is the
subject of Problem 1.9. Suppose instead that we were to ask the following
question: what is the expected number of times we make the recursive call in
the algorithm? Equivalently, what is the expected number of times we pick a
random element in the algorithm? While this question may not be especially
important for the Find algorithm, it is the kind of question that arises in the
analysis of a number of parallel and geometric algorithms. Intuitively, we
expect that the size of the residual problem in the F"md algorithm is divided
by a constant factor at each recursive level, so that we expect that the number
of recursive invocations is O(1og n). Below, we show that this intuition can be
formalized in a general setting.

Let g(x) be a monotone non-decreasing function from the positive rears to the
positive reals. Consider a particle whose position changes at discrete time steps
and is always at a positive integer. If the particle is currently at position m > 1,
it proceeds at the next step to the position m - X, where X is a random variable
ranging over the integers 1, ... ,m-1. All we know about X is that E[X] ~ g(m),
and that X is chosen independently of the past. It is clear that the particle will
always reach position 1 and the process terminates in that state. The interesting
question is, assuming that the particle starts at position n, what is the expected
number of steps before it reaches position I? The reader may associate the
position of the particle with the size of the problem in a recursive call of the
Find algorithm. Although we have more information about the distribution of
X in the case of Find's analysis, it turns out that the bound on the expected size
of the residual problem suffices for proving the following result.

Tbeorem 1.3: Let T be the random variable denoting the number of steps in
which the particle reaches the position 1. Then, E[T] < It dx/g(x).

PROOF: The proof is by induction on n; let us suppose the theorem holds for
values of m smaller than n. Let f(m) = It dx/g(x) for m > 1. We wish to show
that E[T] < f(n).

15

INTRODUCTION

Consider the first step, during which the particle proceeds from position n to
position n - X, where X is chosen from a distribution for which E[X] > g(n).

We have

E[T] ~ 1 + E[f(n - X)] (1.9)

- I+E[l
n

dy -in d
y

] (1.10)
1 g(y) n-X g(y)

in d - 1 + f(n) -E[t)] (1.11)
n-X g Y

in d ~ l+f(n)-E[t)] (1.12)
n-X g n

- 1 + f(n) _ E[X] (1.13)
g(n)

~ f(n). (1.14)

The inequality (1.12) follows from the assumption that g(y) is non-decreasing,
while (1.14) follows from the lower bound on E[X]. D

Exercise 1.6: If X were to range over all integers having value at most m-1 (possibly
including negative integers), how would the statement and proof of Theorem 1.3
change?

For the Find algorithm, we can show (following the analysis of Problem 1.9)
that g(m) ~ m/4. We may then apply the above theorem to bound the expected
number of recursive calls to Find by 41n n.

Exercise 1.7: What prevents us from using Theorem 1.3 to bound the expected
number of levels of recursion in the RandQS algorithm?

1.5. Computation Model and Complexity Classes

In this section we discuss models of computation used in this book, and follow
this with a review of complexity classes.

1.5.1. RAMs and Turing Machines

Following common practice, throughout this book we use the Turing machine
model to discuss complexity-theory issues. As is common, however, we switch to
the RAM (random access machine) as the model of computation when describ
ing and analyzing algorithms (except in the study of parallel and distributed
algorithms in Chapter 12, where we define a version of the RAM model for

16

1.5 COMPUTATION MODEL AND COMPLEXITY CLASSES

machines working in parallel). We begin by defining the Turing machine, which
is an abstract model of an algorithm.

~ Definition 1.2: A deterministic Turing machine is a quadruple M = (S, 1:, c5, s).
Here S is a finite set of states, of which s E S is the machine's initial state. The
machine uses a finite set of symbols, denoted 1:; this set includes special symbols
BLANK and FIRST. The function c5 is the transition function of the Turing machine,
mapping S x 1: to (S U {HALT,YES,NO}) x1: x {-,-,STAY}. The machine has
three halting states HALT (the halting state), YES (the accepting state), and NO (the
rejecting state) (these are states, but formally not in S).

The input to the Turing machine is generally thought of as being written on
a tape; unless otherwise specified, the machine may read from and write on this
tape. We assume that HALT, YES, and NO, as well as the symbols -, , and STAY,

are not in S U 1:. The machine begins in the initial state s with its cursor at the
first symbol of the input x (i.e., the left end of the tape); this symbol is always
FIRST. The rest of the input is a string of finite length from (l:\{BLANK, FIRST})*;

the left-most BLANK on the tape identifies the end of the input string.
The transition function dictates the actions of the machine, and may be

thought of as its program. In each step, the machine reads the symbol (X of the
input currently pointed to by the cursor; based on this symbol and the current
state of the machine, it chooses a next state, a symbol P to be overwritten on
(X and a cursor motion direction from {-, ,STAY} (here - and specify a
motion by one step to the left and right, respectively, while STAY specifies that
the cursor remain in its present position). The transition function is "designed
to ensure that the cursor never falls off the left end of the input, identified by
FIRST. The machine may of course overwrite the BLANK symbol.

If the machine halts in the YES state, we say that it has accepted the input x.
If the machine halts in the NO state, we say that it has rejected the input x. The
third halting state, HALT, is for the computation of functions whose range is not
Boolean; in such cases, the output of the function computation is written onto
the tape. An algorithm corresponds to a Turing machine that always halts.

A probabilistic Turing machine is a Turing machine augmented with the ability
to generate an unbiased coin flip in one step. It corresponds to a randomized
algorithm. On any input x, a probabilistic Turing machine accepts x with some
probability, and we study this probability.

In the light of these definitions, we may speak of an algorithm accepting or
rejecting an input (we visualize the Turing machine underlying the algorithm as
accepting or rejecting), and similarly speak of a randomized algorithm accepting
or rejecting an input with some probability.

In the RAM model, we have a machine that can perform the following types
of operations involving registers and main memory: input-output operations,
memory-register transfers, indirect addressing, branching, and arithmetic opera
tions. Each register or memory location may hold an integer that can be accessed
as a unit, but an algorithm has no access to the representation of the number.

17

INTRODUCTION

The arithmetic instructions permitted are +, -, x, j. In addition, an algorithm
can compare two numbers, lind evaluate the square root of a positive number.

Two types of RAM models are defined based on the cost used for measuring
the running time of a program. In the unit-cost RAM (sometimes also called the
uniform RAM), each instruction can be performed in one time step. This model
is believed to be much too powerful since there is no known polynomial-time
simulation of this model by Turing machines. This situation arises because
the unit-cost RAM, unlike the more restricted Turing machine, is able to use
multiplication to quickly compute extremely large integers. However, if we
disallow all arithmetic operations besides addition and subtraction, then it is
possible to show that the resulting model is equivalent to Turing machines under
polynomial-time simulations.

A more realistic version of the RAM is the so-called log-cost RAM where each
instruction requires time proportional to the logarithm of the size of its operands.
It turns out that the log-cost RAM with the complete arithmetic instruction set
is equivalent to Turing machines under polynomial-time simulations.

For simplicity, we will work with the general unit-cost RAM model. At the
same time, we will avoid misuse of its power by ensuring that in all algorithms
under consideration the size of the operands is polynomially bounded in the
input size. Thus, our algorithm can be transformed to the log-cost RAM model
with only a small (logarithmic in the input size) multiplicative slow-down in the
running time. We also assume that the RAM can in a single step choose an
element uniformly at random from a set of cardinality polynomial in the size of
the problem input. Standard texts on automata and complexity (see the Notes
section) give proofs of the following basic fact.

Proposition 1.4: Any Turing machine computation of length polynomial in the size
of the input can be simulated by a RAM computation of length polynomial in the
size of the input. Any RAM computation of length polynomial in the size of the
input can be simulated by a Turing machine computation of length polynomial in
the size of the input.

1.5.2. Complexity Classes

We now define some basic complexity classes focusing on those involving ran
domized algorithms. For these definitions, the underlying model of computation
is assumed to be the Turing machine, but by the preceding discussion it could
be substituted by a log-cost RAM or the restricted form of the unit-cost RAM.

In complexity theory, it is common to concentrate on the decision problem
derived from some hard optimization problem. This enables the development
of an elegant theoretical framework, and the decision problem is usually not
significantly different in structure from its optimization counterpart. For in
stance, consider the satisfiability problem, in which an instance consists of a set
of clauses in conjunctive normal form (CNF). Because the satisfiability problem
appears at various points in this book, we define some terminology relating

18

1.5 COMPUTATION MODEL AND COMPLEXITY CLASSES

to it. The Boolean inputs are called variables, which may appear in either
uncomplemented or complemented form in a clause. The uncomplemented or
complemented variables in a clause are known as literals (respectively, unnegated
and negated literals). A clause is said to be satisfied if at least one of the literals
in it is TRUE. A solution consists either of an assignment of Boolean values to the
variables that ensures that every clause is satisfied (such an assignment is known
as a truth assignment), or a negative answer that it is not possible to assign
inputs so as to satisfy all the clauses simultaneously. The decision version of this
problem, commonly abbreviated SAT, seeks only a YES or NO answer depend
ing on whether or not all the clauses can simultaneously be satisfied, without
demanding an assignment of values to the inputs (in case the answer is YEs).

~ Example 1.2: Consider the following instance of satisfiability:

(Xl V X2 V X4) 1\ (X3 V X4 V xs) 1\ (Xl V x2 V X4 V xs).

In this example, there are three clauses. The first stipulates that either Xl should
be TRUE, or X2 should be FALSE, or X4 should be TRUE. The literal X2 denotes
that one way of satisfying the first clause is to set X2 FALSE. The first two clauses
have three literals each, while the third has four. The assignments Xl = TRUE,

X3 = FALSE, and Xs = FALSE suffice to satisfy all the clauses (regardless of the
values assigned to X2 and X4). Thus the solution to this instance for the decision
question (SAT) is YES.

Any decision problem can be treated as a language recognition problem. Fix
a finite alphabet 1:, usually 1: = {a, I}, and let 1:* be the set of all possible strings
over this alphabet. Denote by lsi the length of a string s. A language L £; 1:*
is any collection of strings over 1:. The corresponding language recognition
problem is to decide whether a given string X in 1:* belongs to L. An algorithm
solves a language recognition problem for a specific language L by accepting
(output YEs) any input string contained in L, and rejecting (output ,NO) any input
string not contained in L. The SAT problem can easily be cast in the form of
a language recognition problem by devising a suitable encoding of formulas as
bit-strings.

A complexity class is a collection of languages all of whose recognition
problems can be solved under prescribed bounds on the computational resources.
We are primarily interested in various forms of efficient algorithms, where
efficient is defined as being polynomial time. Recall that an algorithm has
polynomial running time if it halts within na: l) time on any input of length n.
The following definitions list some interesting complexity classes.

~ Definition 1.3: The class P consists of all languages L that have a polynomial
time algorithm A such that for any input X E 1:*,

• X E L => A(x) accepts .

• X tI. L => A(x) rejects.

19

INTRODUCTION

~ Definition 1.4: The class NP consists of all languages L that have a polynomial
time algorithm A such that for any input x E 1:*,

• x E L => 3y E 1:*, A(x,y) accepts, where Iyl is bounded by a polynomial
in Ixl .

• x tI. L => Tty E 1:*, A(x, y) rejects.

A useful view of P and NP is the following. The class P consists of all
languages L such that for any x in L a proof of the membership x in L
(represented by the string y) can be found and verified efficiently. On the other
hand, NP consists of all languages L such that for any x in L, a proof of the
membership of x in L can be verified efficiently. Obviously, P £; NP, but it is
not known whether P = NP. If P = NP, the existence of an efficiently verifiable
proof implies that it is possible to actually find such a proof efficiently.

For any complexity class C, we define the complementary class co-C as the
set of languages whose complement is in the class C. That is,

co-C = {L I L E C}.

It is obvious that P = co-P and P £; NP n co-NP. We do not know whether
P = NP n co-NP or whether NP = co-NP, although both statements are widely
believed to be false.

Likewjse, we can define deterministic and non-deterministic complexity classes
for different bounds on the running time. Let exponential time denote a running
time which is 2P(n) for some polynomial p(n) in the input size. Allowing expo
nential time instead of polynomial time in Definitions 1.3 and 1.4 gives us the
complexity classes EXP and NEXP. Clearly, EXP £; NEXP, but once again we
do not know whether this inclusion is strict. On the other hand, we do know
that if P = NP, then EXP = NEXP.

We can also define space complexity classes by leaving the running time
unconstrained and instead placing a bound on the space used by an algorithm.
In the case of Turing machines, the space used is determined by the number
of distinct positions on the tape that are scanned during an execution; for
RAMs, the space requirement is simply the number of words of memory
require4 by an algorithm. In Definitions 1.3 and 1.4, requiring polynomial
space instead of polynomial time yields the definition of the class PSPACE and
NPSPACE. A PSPACE algorithm may run for super-polynomial time. These
classes behave differently from the time complexity classes; for example, we
know that PSPACE = NPSPACE and PSPACE = co-PSPACE.

We next review the notions of polynomial reductions and completeness for a
complexity class.

~ Definition 1.5: A polynomial reduction from a language Ll S;;; 1:* to a language
L2 S;;; 1:* is a function f : 1:* -+ 1:* such that:

1. There is a polynomial-time algorithm that computes f.
2. For all x E 1:*, x E Ll if and only if f(x) E L2.

20

1.5 COMPUTATION MODEL AND COMPLEXITY CLASSES

Exercise 1.8: Show that if there is a polynomial reduction from Ll to L2• then L2 E P
implies that Ll E P.

~ Definition 1.6: A language L is NP-hard if, for all L' E NP, there is a polynomial
reduction from L' to L.

Thus, if any NP-hard decision problem can be solved in polynomial time,
then so can all problems in NP.

~ Definition 1.7: A language L is NP-complete if it is in NP and is NP-hard.

Intuitively the decision problems corresponding to NP-complete languages
are the "hardest" problems in NP. Note that the notion of NP-completeness
applies only to decision problems; the optimization problem corresponding to an
NP-complete decision problem is NP-hard, but is not NP-complete because it is
not in NP by definition. As with NP, the notions of hardness and completeness
can be generalized to any class C, for an appropriate notion of reduction. Unless
otherwise specified, the default notion of a reduction is a polynomial reduction,
and this is typically used for defining hardness and completeness in complexity
classes that are a superset of P, such as PSPACE.

We generalize these classes to allow for randomized algorithms. The basic
idea is to replace the existential and universal quantifiers in the definition of NP
by probabilistic requirements.

~ Definition 1.8: The class RP (for Randomized Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in r,

1
• x E L => Pr[A(x) accepts] ~ :2 .

• x tI. L => Pr[A(x) accepts] = o.

The choice of the bound on the error probability 1/2 is arbitrary. In fact, as
was observed in the case of the min-cut algorithm, independent repetitions of
the algorithm can be used to go from the case where the probability of success
is polynomially small to the case where the probability of error is exponentially
small while changing only the degree of the polynomial that bounds the running
time. Thus, the success probability can be changed to an inverse polynomial
function of the input size without significantly affecting the definition of RP.

Observe that an RP algorithm is a Monte Carlo algorithm that can err only
when x E L. This is referred to as one-sided error. The class co-RP consists of
languages that have polynomial-time randomized algorithms erring only in the

21

INTRODUCTION

case when x ¢ L. A problem belonging to both RP and co-RP can be solved by
a randomized algorithm with zero-sided error, i.e., a Las Vegas algorithm.

~ Definition 1.9: The class ZPP (for Zero-error Probabilistic Polynomial time)
is the class of languages that have Las Vegas algorithms running in expected
polynomial time.

Exercise 1.9: Show that ZPP = RP () co-RP.

Consider now the class of problems that have randomized Monte Carlo
algorithms making two-sided errors.

~ Definition 1.10: The class PP (for Probabilistic Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in 1:*,

1
• x E L => Pr[A(x) accepts] > 2.

1
• x ¢ L => Pr[A(x) accepts] < 2.

To reduce the error probability of a two-sided error algorithm, we can perform
several independent iterations on the same input and produce the output (accept
or reject) that occurs in the majority of these iterations. Unfortunately, the
definition of the class PP is rather weak: because we have no bound on how
far from 1/2 the probabilities are, it may not be possible to use a small number
of repetitions of an algorithm A with such two-sided error probability to obtain
an algorithm with significantly smaller error probability.

Exercise 1.10: Consider a randomized algorithm with two-sided error probabilities
as in the definition of PP. Show that a polynomial number of independent repetitions
of this algorithm need not suffice to reduce the error probability to 1/4. (Consider
the case where the error probability is 1/2 + 1/2n.)

A more useful class of two-sided error randomized algorithms corresponds
to the following complexity class.

~ Definition 1.11: The class BPP (for Bounded-error Probabilistic Polynomial
time) consists of all languages L that have a randomized algorithm A running in
worst-case polynomial time such that for any input x in r,

3
• x E L => Pr[A(x) accepts] ~ 4.

1
• x ¢ L => Pr[A(x) accepts] ~ 4.

22

1.5 COMPUTATION MODEL AND COMPLEXITY CLASSES

In a later chapter (see Problem 4.8) we will show that for this class of
algorithms the error probability can be reduced to 1/2n with only a polynomial
number of iterations. In fact, the probability bounds 3/4 and 1/4 can be changed
to 1/2 + l/p(n) and 1/2·- l/p(n), respectively, for any polynomially bounded
function p(n) without affecting this error reduction property or the definition of
the class BPP to a significant extent.

The reader is referred to Problems 1.11-1.14 for several basic relationships
between these complexity classes. There are several interesting open questions
regarding the relationships between these randomized complexity classes, for
example:

1. Is RP = co-RP?

2. Is RP S; NPnco-NP? (Note that since co-RP S; co-NP, showing that RP == 'co-RP
would imply RP S; NP n co-NP.)

3. Is BPP ~ NP?

Although these classes are defined in terms of decision problems, they can be
used to classify the complexity of a broader class of problems such as search
or optimization problems. We will overload our notation a bit by using the
complexity class labels for referring to algorithms. For example, RanclQS will
be called a ZPP algorithm.

Consider the following decision version of the min-cut problem: given a graph
G and integer K, verify that the min-cut size in G equals K. Assume that we
have modified (by incorporating sufficiently many repetitions) the Monte Carlo
min-cut algorithm to reduce its probability of error below 1/4. This algorithm
can solve the decision problem by computing a cut value k and comparing it
with K. This gives a BPP algorithm. In the case where K is indeed the min-cut
value, the algorithm may not come up with the right value and, hence, may
reject the input. Conversely, if the min-cut value is smaller than K, the algorithm
may only find cuts of size K and, hence, may accept the input.

We may modify this decision problem: given G and K, verify that the min-cut
size in G is at most K. Now, the algorithm described above translates into an
RP algorithm for this problem. In the case where the actual min-cut size C is
larger than K, the algorithm will never accept the input. This is because it can
only find cuts of size k no smaller than C and hence greater than K.

Notes

The ideas underlying randomized algorithms can be traced back to Monte Carlo
methods used in numerical analysis, statistical physics, and simulation. In the con
text of computability theory, the notion of a probabilistic Turing machine was proposed
by de Leeuw, Moore, Shannon, and Shapiro [122] and further explored in the pioneering
work of Rabin [340] and Gill [166]. Berlekamp [57], Rabin [341], and Solovay and
Strassen [382] gave early examples of concrete randomized algorithms. Rabin [341] pro
posed randomized algorithms for problems in computational geometry and in number
theory. Around the same time, Solovay and Strassen [382] gave a randomized Monte

23

INTRODUCTION

Carlo algorithm for testing for primality; this problem is explored further in Chapter 14,
as is the randomized algorithm for factoring polynomials due to Berlekamp [57].

In the last twenty years, the array of techniques for devising and analyzing randomized
algorithms has grown. We develop these techniques in the chapters to follow. Karp [243],
Maffioli, Speranza, and Vercellis [289], and Welsh [415] give excellent surveys of ran
domized algorithms. Johnson [220] surveys the probabilistic (or "average-case") analysis
of algorithms (sometimes also referred to as "distributional complexity"), contrasting it
with randomized algorithms surveyed in his following bulletin [221].

Our RandQS algorithm is based on Hoare's algorithm [201]. The min-cut algorithm
of Section 1.1, together with many variations and extensions, is due to Karger [231].

Monte Carlo methods have been popular in the sciences for over a hundred years now.
The classic experiment on approximating the value of 1t by dropping needles on a sheet
of paper with parallel lines is described in an eighteenth-century paper by Buffon [86]
(see also Hall [190]). The origin of the modem theory of Monte Carlo methods in the
physical sciences is widely attributed to Ulam, von Neumann, and Fermi [116]. The
term Las Vegas algorithm was introduced by Babai [37], although he uses the term in a
slightly different sense. Our usage conforms to the currently accepted notion of a Las
Vegas algorithm.

An important issue, alluded to in the discussion following the analysis of RandQS but
otherwise not covered in detail in this book, is the generation of random samples from
various types of distributions. First, there is the question of generating randomness within
the inherently deterministic computers that will implement our randomized algorithms.
This leads into the area of pseudo-random number generation, which is surveyed in the
article by Boppana and Hirschfeld [73] and in Knuth's book [259]. Even if we assume
that a source of truly random bits is available, there is the issue of converting this into
the various types of distributions that may be required in randomized algorithms (for
example, see Problems 1.2 and 1.3). This problem is studied in the context of Monte
Carlo simulations, for example in the work of von Neumann [409,410], and Knuth [259]
covers this in great detail. A comprehensive study of this important family of problems
in terms of its computational complexity was undertaken by Knuth and Yao [264].
The complexity of random sampling of combinatorial structures, such as graphs with
specified properties, has been studied by Pruhs and Manber [338]; as discussed in
Chapter 11, the problem of counting the number of combinatorial structures with
specified properties, often a difficult computational problem, can sometimes be reduced
to random sampling.

The idea of using independent iterations to reduce the error probability of Monte
Carlo algorithms has an analog for Las Vegas algorithms. Alt, Guibas, Mehlhorn, Karp,
and Wigderson [25] study the possibility of reducing the probability that the running
time of a Las Vegas algorithm substantially exceeds its expected value by employing
the following strategy: choose a sequence (Tj) and use independent iterations of the
Las Vegas algorithm, aborting the ith iteration in Tj steps, until one of the iterations
terminates successfully within the allotted time. These results were strengthened by Luby,
Sinclair, and Zuckerman [286], who also considered the minimization of the expected
total running time of such strategies.

The material of Section 1.3 is drawn from Paterson and Yao [329]. The Find algo
rithm described in Section 1.4 is due to Hoare [200]. Theorem 1.3 is given in a paper by
Karp, Upfal and Wigderson [250]. Karp [244] gives a number of additional results on
probabilistic recurrence relations.

24

PROBLEMS

The reader is referred to introductory texts on algorithms and complexity such
as those by Aho, Hopcroft, and Ullman [5, 6] and Papadimitriou [326] for more
details on the Turing machine model and the RAM model. It is known, for in
stance, that sorting n numbers requires O(n log n) operations in the RAM model of
computation. The books by Bovet and Crescenzi [81] and by Papadimitriou [326]
contain a more detailed treatment of the complexity classes described in this chapter.

Problems -----------

1.1 (Due to J. von Neumann [409].) ,
(a) Suppose you are given a coin for which the probability of HEADS, say p, is
unknown. How can you use this coin to generate unbiased (i.e., Pr[HEADS] =
Pr[TAILS] = 1/2) coin-flips? Give a scheme for which the expected number of
flips of the biased coin for extracting one unbiased coin-flip is no more than
1/[P(1 - p)]. (Hint: Consider two consecutive flips of the biased coin.)

(b) Devise an extension of the scheme that extracts the largest possible
number of independent, unbiased coin-flips from a given number of flips of
the biased coin.

1.2 (Due to D.E. Knuth and A. C-C. Yao [264].)
(a) Suppose you are provided with a source of unbiased random bits. Explain
how you will use this to generate uniform samples from the set S = {O, ... , n-
1}. Determine the expected number of random bits required by your sampling
algorithm.

(b) What is the worst-case number of random bits required by your sampling
algorithm? Consider the case when n is a power of 2, as well as the case
when it is not.

(c) Solve (a) and (b) when, instead of unbiased random bits, you are required
to use as the source of randomness uniform random samples from the set
{O, ... ,p -1}; consider the case when n is a power of p, as well as the case
when it is not.

1.3 (Due to D.E. Knuth and A. C-C. Yao [264].) Suppose you are provided with a
source of unbiased random bits. Provide efficient (in terms of expected running
time and expected number of random bits used) schemes for generating
samples from the distribution over the set {2, 3, ... , 12} induced by rolling two
unbiased dice and taking the sum of their outcomes.

1.4 (a) Suppose you are required to generate a random permutation of size n.
Assuming that you have access to a source of independent and unbiased
random bits, suggest a method for generating random permutations of size
n. Efficiency is measured in terms of both time and number of random bits.
What lower bounds can you prove for this task?

(b) Consider the following method for generating a random permutation of
size n. Pick n random values Xl, ... , Xn independently from the uniform
distribution over the interval [0,1]. Now, the permutation that orders the

25

INTRODUCTION

random variables in ascending order is claimed to be a random permutation,
and it can be determined by sorting the random values. Is the claim correct?
How efficient is this scheme?

(c) Consider the following "lazy" implementation of the scheme suggested
in (b). The binary representation of the fraction Xj is a sequence of unbiased
and independent random bits. At any given stage of the sorting algorithm, we
would have chosen only as many bits of each Xj as necessary to resolve all
the comparisons performed up to that point. When comparing Xi to Xj, if the
current prefixes of their binary expansions do not determine the outcome of
the comparisons, then we extend their prefixes by choosing further random
bits until this happens. Compute tight bounds on the expected number of
random bits used by this implementation.

1.5 Consider the problem of using a source of unbiased random bits to generate
samples from the set S = {O, ... , n - 1} such that the element i is chosen with
probability PI. Show how to perform this sampling using O(log n) random bits
per sample, regardless of the values of Pi. Use the result from part (c) of
Problem 1.4.

1.6 Consider a sequence of n flips of an unbiased coin. Let Hi denote the absolute
value of the excess of the number of HEADS over the number of TAILS seen
in the first i flips. Define H = maXi HI. Show that E[H;] = 9(.jJ), and that
E[H] = 9(Jn).

1.7 Suppose we choose a permutation rr of the ordered set N = {1, 2, ... n}
uniformly at random from the space of all permutations of N. Let L(rr) denote
the length of the longest increasing subsequence in permutation rr.

(a) For large n and some positive constant c, prove that E[L(rr)] ~ cJn.

(b) Is the bound in (a) tight?

1.8 Consider adapting the min-cut algorithm of Section 1.1 to the problem of
findi·ng an s-t min-cut in an undirected graph. In this problem, we are given
an undirected graph G together with two distinguished vertices sand t. An s-t
cut is a set of edges whose removal from G disconnects s from t; we seek an
s-t cut of minimum cardinality. As the algorithm proceeds, the vertex s may
get amalgamated into a new vertex as a result of an edge being contracted;

. we call this vertex the s-vertex (initially the s-vertex is s itself). Similarly,
we have a t-vertex. As we run the contraction algorithm, we ensure that we
never contract an edge between the s-vertex and the t-vertex.

(a) Show that there are graphs in which the probability that this algorithm
finds an s-t min-cut is exponentially small.

(b) How large can the number of s-t min-cuts in an instance be?

1.9 Consider the Find algorithm described in Section 1.4 for selecting the kth
smallest of a set S of n elements. Show that the algorithm finds the kth
smallest element in S in expected time O(n).

1.10 Consider the setting of Example 1.1. Show that the probability that no sailor
returns to her own cabin approaches 1/8 as the number of sailors grows
large.

26

PROBLEMS

1.11 Verify the following inclusions:

P ~ RP ~ NP ~ PSPACE ~ EXP ~ NEXP.

It is not known whether these inclusions are strict.

1.12 Verify the following inclusions:

RP~ BPP~ PP.

It is not known whether these inclusions are strict.

1.13 Show that PP = co-PP and BPP = co-BPP.

1.14 Show that NP ~ PP ~ PSPACE.

1.15 (Due to K-I. Ko [265].) Show that NP ~ BPP implies NP = RP.

27

CHAPT ER 2

Game-Theoretic Techniques

IN this chapter we study several ideas that are basic to the design and analysis
of randomized algorithms. All the topics in this chapter share a game-theoretic
viewpoint, which enables us to think of a randomized algorithm as a proba
bility distribution on deterministic algorithms. This leads to the Yao's Minimax
Principle, which can be used to establish a lower bound on the performance of
a randomized algorithm.

2.1. Game Tree Evaluation

We begin with another simple illustration of linearity of expectation, in the
setting of game tree evaluation. This example will demonstrate a randomized
algorithm whose expected running time is smaller than that of any deterministic
algorithm. It will also serve as a vehicle for demonstrating a standard technique
for deriving a lower bound on the running time of any randomized algorithm for
a problem.

A game tree is a rooted tree in which internal nodes at even distance from
the root are labeled MIN and internal nodes at odd distance are labeled MAX.

Associated with each leaf is a real number, which we call its value. The evaluation
of the game tree is the following process. Each leaf returns the value associated
with it. Each MAX node returns the largest value returned by its children, and
each MIN node returns the smallest value returned by its children. Given a
tree with values at the leaves, the evaluation problem is to determine the value
returned by the root.

The evaluation of game trees plays a central role in artificial intelligence,
particularly in game-playing programs. The reader may readily associate the
children of a node with the options available to one of the two players in
a game. The leaves represent the value of the game for either player. One
player seeks to maximize this value, while the other tries to minimize it.
At each step, an evaluation algorithm chooses a leaf and reads its value.

28

1.1 GAME TREE EVALUATION

We study the number of such steps taken by an algorithm for evaluat
ing a game tree. We do not charge the algorithm for any other computa
tion.

We will limit our discussion to the special case in which the values at the
leaves are bits, 0 or 1. Thus, each MIN node can be thought of as a Boolean
AND operation and each MAX node as a Boolean OR operation. This special
case is of interest in its own right, having applications in mechanical theorem
proving. Let TdJ< denote a uniform tree in which the root and every internal
node has d children and every leaf is at distance 2k from the root. Thus, any
root-to-Ieaf path passes through k AND nodes (including the root itself) and k OR

nodes, and there are d2k leaves. An instance of the evaluation problem consists
of the tree TdJ< together with a Boolean value for each of the d2k leaves. Given
an algorithm, we study the maximum number of steps it takes to evaluate any
instance of TdJ<.

An algorithm begins by specifying a leaf whose value is to be read at the first
step. Thereafter, it specifies such a leaf at each step, based on the values it has
read on previous steps. In a deterministic algorithm, the choice of the next leaf
to be read is a deterministic function of the values at the leaves read so far. For
a randomized algorithm, this choice may be randomized.

In Problem 2.1, the reader is asked to show that for any deterministic evalua
tion algorithm, there is an instance of TdJ< that forces the algorithm to read the
values on all d2k leaves.

We now give a simple randomized algorithm and study the expected number
of leaves it reads on any instance of TdJ<. To simplify our presentation, we
restrict ourselves to the case d = 2. Any deterministic algorithm for this case can
be made to read all 22k = 4k leaves on some instance of T2J<. Our randomized
algorithm is based on the following simple observation. Consider a single AND

node with two leaves. If the node were to return 0, at least one of the leaves
must contain O. A deterministic algorithm inspects the leaves in a fixed order,
and an adversary can therefore always "hide" the 0 at the second of the two
leaves inspected by the algorithm. Reading the leaves in a random order foils
this strategy. With probability 1/2, the algorithm chooses the hidden 0 on the
first step, so its expected number of steps is 3/2, which is better than the worst
case for any deterministic algorithm. Similarly, in the case of an OR node, if it
were to return a 1, then a randomized order of examining the leaves will reduce
the expected number of steps to 3/2.

The reader may wonder how the randomized algorithm can benefit if the AND

node were to return 1, or if the OR node were to return a O. If the two children
of these nodes are leaves, then clearly both leaves must be examined. The point
is that at an internal AND node in a tree returning a 1, examining the two OR

children (and evaluating their sub-trees) in a random order is still beneficial.
The two OR children of an AND node must also return 1, and this is the easy
case for the OR nodes. Similarly, at an internal OR node returning 0, the two AND

children must return 0, and this is the easy case for the AND nodes. To explain
this better, we specify the complete algorithm.

29

GAME-THEORETIC TECHNIQUES

To evaluate an AND node v, the algorithm chooses one of its children (a sub
tree rooted at an OR node) at random and evaluates it by recursively invoking
the algorithm. If 1 is returned by the sub-tree, the algorithm proceeds to evaluate
the other child (again by recursive application). If 0 is returned, the algorithm
returns 0 for v. To evaluate an OR node, the procedure is the same with the roles
of 0 and 1 interchanged. We now argue by induction on k that the expected
cost of evaluating any instance of T2J< is at most 3k

•

The basis (k = 1) is an easy extension of our illustration above. Assume now
that the expected cost of evaluating any instance of T 2J<-1 is at most 3k- 1• We
establish the inductive step. Consider first a tree T whose root is an OR node,
each of whose children is the root of a copy of T 2J<-1. If the root of T were to
evaluate to 1, at least one of its children returns 1. With probability 1/2 this
child is chosen first, incurring (by the inductive hypothesis) an expected cost of
at most 3k- 1 in evaluating T. With probability 1/2 both sub-trees are evaluated,
incurring a net cost of at most 2 x 3k- 1• Putting these observations together, the
expected cost of determining the value of T is at most

(2.1)

If on the other hand the OR were to evaluate to 0, both children must be
evaluated, incurring a cost of at most 2 x 3k- 1•

Consider next the root of the tree T2J<, an AND node. If it evaluates to 1, then
both its sub-trees rooted at OR nodes return 1. By the discussion in the previous
paragraph and by linearity of expectation, the expected cost of evaluating T2J<

to 1 is at most 2 x (3/2) X 3k- 1 = 3k
• On the other hand, if the instance of T2J<

evaluates to 0, at least one of its sub-trees rooted at OR nodes returns O. With
probability 1/2 it is chosen first, and so the expected cost of evaluating T 2.)< is
at most

Here the first term bounds the cost of evaluating both sub-trees of the OR node
that returns 0; the second term accounts for the fact that with probability 1/2,
an additional cost of (3/2)3k

- 1 may be incurred in evaluating its sibling that
returns 1.

Theorem 2.1: Given any instance of T2.)<, the expected number of steps for the
above randomized algorithm is at most 3k •

Since n = 4k the expected running time of our randomized algorithm is n1os.. 3,

which we bound by nO.793 . Thus, the expected number of steps is smaller than
the worst case for any deterministic algorithm. We will see other instances in
later chapters. Note that the algorithm above is a Las Vegas algorithm and
always produces the correct answer.

30

l.l THE MINIMAX PRINCIPLE

Scissors Paper Stone

Scissors o 1 -1

-Paper -1 o 1

Stone 1 -1 o

Figure 2.1: Matrix for scissors-paper-stone.

2.2. The Minimax Principle

The randomized algorithm of the preceding section has an expected .running
time of nO.793 on any uniform binary AND-OR tree with n leaves. Can we establish
that no randomized algorithm can have a lower expected running time? We are
thus seeking a lower bound on the running time of any randomized algorithm
for this problem. As a first step toward this end, we introduce a standard
technique for proving such lower bounds: the minimax principle. Indeed, it is the
only known general technique for proving lower bounds on the running times of
randomized algorithms. This technique only applies to algorithms that terminate
in finite time on all inputs and sequences of random choices. In Section 2.2.3,
we will apply this technique to the game tree evaluation problem. We begin with
a review of some elementary concepts in game theory. Note that the notion of
game theory is not directly related to the game tree evaluation problem studied
above. Rather, the game theory studied below yields the minimax principle, a
general tool, which we will then apply to randomized algorithms for the game
tree evaluation problem.

2.2.1. Game Theory

Consider the following game. Roberta and Charles put their hands behind
their backs and make a sign for one of the following: stone (closed fist), paper
(open palm), and scissors (two fingers). They then simultaneously display their
chosen sign. The winner is determined by the following rules: paper beats stone
by wrapping it, scissors beats paper by cutting it, and stone beats scissors by
dulling it. The loser pays $1 to the winner, and the outcome is a draw when
the two players choose the same sign. We can represent this game by the matrix
in Figure 2.1. The rows of the matrix represent Roberta's choices; the columns,
Charles' choices. The entries in the matrix are the amounts to be paid by Charles
to Roberta.

This is an instance of a two-person zero-sum game, and the matrix is called
the payoff matrix. It is called a zero-sum game because the net amount won
by Roberta and Charles is always exactly zero. In general, any two-person
zero-sum game can be represented by an n x m payoff matrix M with real
entries. (Throughout this book, we use boldface to denote vectors and matrices;

31

GAME-THEORETIC TECHNIQUES

Scissors Paper Stone

Scissors o 1 2

Paper -1 o 1

Stone -2 -1 o

Figure 2.2: Matrix for modified scissors-paper-stone.

generally, vectors will be lower-case symbols, and matrices upper-case symbols.
For a vector x, we denote by Xi its ith component. All vectors are column vectors
unless otherwise specified.) The set of possible strategies of the row player R
is in correspondence with the rows of M, and likewise for the strategies of the
column player C. The entry Mij is the amount paid by C to R when R chooses
strategy i and C chooses strategy j.

Naturally, the goal of the row (column) player is to maximize (minimize) the
payoff. Assume that this is a zero-information game, in that neither player has
any information about the opponent's strategy. If R chooses strategy i, then
she is guaranteed a payoff of minj M ij, regardless of C's strategy. An optimal
strategy for R is an i that maximizes minj M ij• Let VR = maxi minj Mij denote
the lower bound on the value of the payoff to R when she uses an optimal
strategy. An optimal strategy for C is a j that gives the best possible upper
bound on the payoff from C to R. A similar argument establishes that C's
optimal strategy ensures that his payoff to R is at most Ve = minj maXi Mij.

Exercise 2.1: Show that the following inequality is valid for all payoff matrices.

max min Mij ~ min max M'j.
'j j i

In general, the inequality in Exercise 2.1 is strict; for example, in scissors
paper-stone, VR = -1 and Ve = 1. When these two quantities are equal, the
game is said to have a solution and the value of the game is V = VR = Ve.
The solution (or the saddle-point) is the specific choice of (optimal) strategies
that lead to this payoff. For games with a solution, let p and'}' denote optimal
strategies for Rand C, respectively; clearly, V = Mpy. In general, a player could
have more than one optimal strategy.

Figure 2.2 shows a modified version of the scissors-paper-stone game, where
the amount to be paid in certain cases is changed. It is easy to verify that this
game has value V = 0 and the solution is p = 1 and'}' = 1. (Do you see why
the other diagonal entries do not correspond to saddle-points?)

What happens when a game has no solution? Then there is no clear
cut optimal strategy for any player. In fact, any knowledge of the opponent's
strategy can be used to improve the payoff, unlike the case of games with saddle
points. An interesting way to get around this is to introduce randomization in

32

l.l THE MINIMAX PRINCIPLE

the choice of strategies. So far we have been talking about deterministic or
pure strategies, but now we focus on randomized or mixed strategies. A mixed
strategy is a probability distribution on the set of possible strategies. The row
player picks a vector p = (PI, . .. ,Pn), which is a probability distribution on the
rows of M, i.e., Pi is the probability that R will choose strategy i; similarly, the
column player has a vector q = (q., ... , qm), which is a probability distribution
on the columns of M. The payoff is now a random variable, and its expectation
is given by

n m

E[payoff] = pTMq = LLPiMijqj.
i-I j-I

As before, using VR to denote the best possible lower bound on the expected
payoff to R that can be ensured by choosing a strategy p, and using- Ve to
denote the best possible upper bound on the expected payoff by C by choosing
a strategy q, we obtain

VR - maxminpTMq
P II

Ve - minmaxpT Mq.
II P

Here, the min and max range over all possible distributions. The well-known
Minimax Theorem of von Neumann implies that this game always has a solution
and that VR = Ve.

Theorem 22 (von Neumann's Minimax Theorem): For any two-person zero-sum
game specified by a matrix M,

maxminpTMq = minmaxpTMq.
P II II P

In other words, the largest expected payoff that R can guarantee by choosing
a mixed strategy is equal to the smallest expected payoff that C can guarantee
using a mixed strategy. This common expected payoff value, called the value of
the game, is denoted by V. A pair of mixed strategies (jj, q) which respectively
maximize the left-hand side and minimize the right-hand side of the equation
in Theorem 2.2 is called a saddle-point, and the two distributions are called
optimal mixed strategies.

Observe that once p is fixed, p T M q is a linear function of q and is minimized
by setting to 1 the qj with the smallest coefficient in this linear function.
The implications of this observation are rather interesting. If C knows the
distribution p being used by R, then his optimal strategy is a pure strategy. A
similar comment applies in the other direction. Also, this observation leads to a
simplified version of the minimax theorem. Let ek denote a unit vector with a 1
in the kth position and Os elsewhere.

Theorem 2.3 (Loomis' Theorem): For any two-person zero-sum game specified
by a matrix M,

maxm~npTMej = minm~xeTMq.
P } II I

33

GAME-THEORETIC TECHNIQUES

2.2.2. Yao's Technique

We now describe the application of the above game-theoretic results to proving
lower bounds on the performanc~ of randomized algorithms. The idea is to view
the algorithm designer as the column player C and the adversary choosing the
input as the row player R. The columns correspond to the set of all possible
algorithms; the rows correspond to the set of all possible inputs (of a fixed size).
It is important to keep in mind that each column corresponds to a deterministic
algorithm that always produces a correct solution. The payoff from C to R
is some real-valued measure of the performance of an algorithm, such as the
running time, the quality of the solution obtained, communication cost, or space.
(In all the examples we will encounter in this book, the entries in the payoff
matrix will be positive integers.) For the sake of concreteness, we assume in this
chapter that the payoff refers to the running time, but it should be obvious that
the following observations apply to any other measure. The algorithm designer
would like to choose an algorithm that minimizes the payoff, while the adversary
would like to maximize the payoff.

Consider a problem where the number of distinct inputs of a fixed size is
finite, as is the number of distinct (deterministic, terminating, and always correct)
algorithms for solving that problem. A pure strategy for C corresponds to the
choice of a deterministic algorithm, while a pure strategy for R corresponds
to a specific input. Notice that an optimal pure strategy for C corresponds
to an optimal deterministic algorithm, and Vc is the worst-case running time
of any deterministic algorithm for the problem, which we call the deterministic
complexity of the problem. (The meaning of VR is related to the non-deterministic
complexity of the problem. If the game has a solution, then the non-deterministic
and deterministic complexities coincide.)

Our interest is in the interpretation of the mixed strategies for the algorithm
designer and the adversary. A mixed strategy for C is a probability distribution
over the space of (always correct) deterministic algorithms, so it is a Las Vegas
randomized algorithm. An optimal mixed strategy for C is an optimal Las Vegas
algorithm. A mixed strategy for R is a distribution over the space of all inputs.

Let us define the distributional complexity of the problem at hand as the
expected running time of the best deterministic algorithm for the worst distribu
tion on the inputs. This complexity is smaller than the deterministic complexity,
since the algorithm knows the input distribution.

Theorem 2.3 implies that the distributional complexity equals the least possible
expected running time achievable by any randomized algorithm. (We reiterate
that these observations apply only to scenarios where the number of algorithms
is finite.) We restate von Neumann's and Loomis's theorems in the language of
algorithms as follows.

Corollary 2.4: Let n be a problem with a finite set I of input instances (of a
fixed size), and a finite set of deterministic algorithms A. For input I E I and
algorithm A E A, let C(l, A) denote the running time of algorithm A on input I.

34

l.l THE MINIMAX PRINCIPLE

For probability distributions p over I and q over A. let I p denote a random input
chosen according to p and Af denote a random algorithm chosen according to q.
Then.

and

maxminE[C(Ip,A)] = min max E[C(I,Af)].
p AEA f leI

From this corollary, we obtain the following proposition, which provides the
desired lower bound technique.

Proposition 2.5 (Yao's Minimax Principle): For all distributions p over I and q
over A.

minE[C(Ip,A)] < maxE[C(I,Af)]·
AEA lEI

In other words, the expected running time of the optimal deterministic al
gorithm for an arbitrarily chosen input distribution p is a lower bound on the
expected running time of the optimal (Las Vegas) randomized algorithm for
TI. Thus, to prove a lower bound on the randomized complexity, it suffices
to choose any distribution p on the input and prove a lower bound on the
expected running time of deterministic algorithms for that distribution. The
power of this technique lies in the flexibility in the choice of p and, more
importantly, the reduction to a lower bound on deterministic algorithms. It is
important to remember that the deterministic algorithm "knows" the chosen
distribution p.

The above discussion dealt only with lower bounds on the performance of
Las Vegas algorithms. We conclude this section with a brief discussion of
Monte Carlo algorithms with error probability € E [0,1/2]. Let us define the
distributional complexity with error €, denoted minAEA E[Ce(/p, A)], to be the
minimum expected running time of any deterministic algorithm that errs with
probability at most € under the input distribution p. Similarly, we denote
by maXlEI E[Ce(/,Af)] the expected running time (under the worst input) of
any randomized algorithm that errs with probability at most € (again, the
randomized algorithm is viewed as a probability distribution q on deterministic
algorithms). Analogous to Proposition 2.5, we then have:

Proposition 2.6: For all distributions p over I and q over A and any € E [0,1/2].

A pointer to the source of Proposition 2.6 is given in the Notes section.

35

GAME-THEORETIC TECHNIQUES

2.2.3. Lower Bound for Game Tree Evaluation

We now apply Yao's Minimax Principle to the problem of game tree evaluation.
The lower bound that results only applies to algorithms that terminate in a
finite number of steps on any input and sequence of random choices. Note that
a randomized algorithm for game tree evaluation can in fact be viewed as a
probability distribution over deterministic algorithms, because the length of the
computation as well as the number of choices at each step are both finite. We may
imagine that all of these coins are tossed before the beginning of the execution.

Once again, we limit our attention to instances of the AND-OR tree T 2)<.

While we could continue our discussion in the language of alternating levels of
AND and OR nodes, the following exercise will lead to a.slightly more compact
representation.

Exercise 2.2: Show that the tree T2.k is equivalent to a balanced binary tree all of
whose leaves are at distance 2k from the root, and all of whose internal nodes
compute the NOR function: a node returns the value 1 if both inputs are 0, and 0
otherwise.

We proceed with the analysis of this tree of NORS of depth 2k. In order to prove
a lower bound on the expected number of leaves evaluated by any randomized
algorithm, we have to specify a distribution on instances (values for the leaves),
and then prove a lower bound on the expected running time of any deterministic
algorithm on such inputs. It is important to distinguish between the expected
running time of the randomized algorithm (which is over the random choices
made by the algorithm), and the expected running time of the deterministic
algorithm when proving the lower bound (this being over the random instances).
We also remind the reader that our lower bound will only apply to Las Vegas
randomized algorithms that always evaluate the tree correctly.

Let p = (3 - J"S)/2. Each leaf of the tree is independently set to 1 with
probability p. Note that if each input to a NOR node is independently 1 with
probability p, then the probability that its output is 1 is the probability that
both its inputs are 0, which is

(J"S_1)2 = 3-J"S =
2 2 p.

Thus the value of every node of the NOR tree is 1 with probability p, and the
value of a node is independent of the values of all the other nodes on the same
level. Consider a deterministic algorithm that is evaluating a tree furnished with
such random inputs; let v be a node of the tree whose value the algorithm is
trying to determine. Intuitively, the algorithm should determine the value of one
child of v before inspecting any leaf of the other sub-tree. By doing so, it can
try to maximize the benefit of information obtained by inspecting leaves. An
alternative view of this process is that the deterministic algorithm inspects leaves

36

l.l THE MINIMAX PRINCIPLE

visited in a depth-first search of the tree, except of course that it ceases to visit
sub-trees of a node v once the value of v has been determined. Let us call such
algorithms depth-first pruning algorithms, referring to the order of traversal and
the fact that sub-trees that supply no additional information are "pruned" away
without being inspected.

Proposition 2.7: Let T be a NOR tree each of whose leaves is independently set
to 1 with probability q for afixed value q E [0,1]. Let W(T) denote the minimum,
over all deterministic algorithms, of the expected number of steps to evaluate T.
Then, there is a depth-first pruning algorithm whose expected number of steps to
evaluate T is W(T).

A formal proof of Proposition 2.7 by induction is omitted here and can be found
in the reference given at the end of this chapter.

Proposition 2.7 tells us that for the purposes of our lower bound, we may
restrict our attention to depth-first pruning algorithms. We return to a NOR

tree with n leaves, each of which is set to 1 independently with probability
p = (3 - .j5)/2. For a depth-first pruning algorithm evaluating this tree, let
W(h) be the expected number of leaves it inspects in determining the value of
a node at distance h from the leaves. Clearly

W (h) = W (h - 1) + (1 - p) x W (h - 1),

where the first term represents the work done in evaluating one of the sub-trees
of the node, and the second term represents the work done in evaluating the
other sub-tree (which will be necessary if the first sub-tree returns the value 0,
an event occurring with probability 1 - p). Letting h be log2 n and solving, we
get W(h) ~ nO.694 •

Theorem 2.8: The expected running time of any randomized algorithm that always
evaluates an instance of T2J< correctly is at least nO.694 , where n = 22k is the number
of leaves.

We note that our lower bound of nO.694 is less than the upper bound of nO.793

that follows from Theorem 2.1. Could it be that our lower bound technique is
weak? Corollary 2.4 precludes this possibility, since the identity it gives is an
equality; thus for any lower bound on the expected running time there must be
a distribution on the inputs such that the running time of the best deterministic
algorithm matches this lower bound. One possibility is that we have not chosen
the best possible probability distribution for the values of the leaves. Indeed, in
the NOR tree if both inputs to a node are 1, no reasonable algorithm will read
leaves of both sub-trees of that node. Thus, to prove the best lower bound,
we have to choose a distribution on the inputs that precludes the possibility
that both inputs to a node will be 1; in other words, the values of the inputs
are chosen at random but not independently. This stronger (and considerably
harder) analysis shows that our algorithm of Section 2.1 is optimal.

37

GAME-THEORETIC TECHNIQUES

2.3. Randomness and Non-uniformity

A basic issue in the study of randomized algorithms is the extent to which
randomization is necessary for solving a problem. When is it possible to remove
the randomization in a randomized algorithm? The answer depends on a
number of aspects of the problem being solved. The goal of this section is to
show that this question is more subtle than appears at first, and touches on the
issue of uniformity in algorithms. We now study the notion of a randomized
circuit, and a general technique by which randomization can be removed in
polynomial-sized randomized circuits.

A Boolean circuit with n inputs is a directed acyclic graph with the following
properties:

1. There are n vertices of in-degree 0; these are called the inputs to the circuit and
are labeled XI. X2, . .. ,Xn. There is one vertex with out-degree 0; this is called the
output of the circuit.

2. Every vertex v that is not an input or the output is labeled with one Boolean
function b(v) from the set {AND, OR, NOT}. A vertex labeled NOT has in-degree l.

3. Every input to the circuit is assigned a Boolean value. Under such an assignment
of input values, each vertex v computes the Boolean function b(v) of the values on
the incoming edges, and assigns this value to its outgoing edges. The value of the
output is thus a Boolean function of Xl, X2, ... ,Xn; the circuit is said to compute
this function.

4. The size of a circuit is the number of vertices in it.

A randomized circuit is very similar, except that there may be more than n
vertices of in-degree 0, and these are partitioned into two classes: (1) random
inputs, each of which is assigned an independent random value from {a, I}, and
(2) the n circuit inputs, which are labeled x}, X2,' .. , Xn. A randomized circuit is
said to compute a function f of the inputs x}, X2,' .. , Xn if the following properties
hold:

1. For ipputs x}, X2, . .. , Xn for which I(x}, . .. , xn) = 0, the output of the circuit is °
regardless of the values of random inputs.

2. If, on the other hand, I(x}, ... ,xn) = 1, the output of the circuit is 1 with
probability at least 1/2.

Consider a Boolean function I : {a, 1 r --+ {a, I}. We denote by In the function
I restricted to inputs from {O, l}n. A sequence C = C}, C2, ..• of circuits is a
circuit family for I if Cn has n inputs and computes In (X}, X2, ... , xn) at its output
for all n-bit inputs (x}, ... , xn). The family C is said to be polynomial-sized if the
size of Cn is bounded above by p(n) for every n, where p(.) is a polynomial. A
randomized circuit family for I is a circuit family for I that, in addition to the n
inputs x}, . .. , X n, takes m random bits r}, . .. ,r m, each of which is equiprobably °
or 1. In addition, for every n, circuit Cn must satisfy two properties:

38

2.3 RANDOMNESS AND NON-UNIFORMITY

1. If !n(XI, ... ,xn) = 0, then the output of the circuit is 0 regardless of the values of
random inputs r}, • •• ,r m.

2. If !n(x}, ... , xn) = 1, then the output of the circuit is 1 with probability at least
1/2. In other words, at least one half of the 2m choices of the bits rl, ... , r m will
result in the circuit evaluating to 1. We will refer to such m-tuples rl, ... ,rm as
witnesses for (x}, ... , xn), in that they testify to the correct value of !n(X}, ... , xn)
when it is 1.

Theorem 2.9 below asserts that randomization can be eliminated in poly
nomial-sized circuits.

Theorem 2.9 (Adleman's Theorem): If a Boolean function has a randomized,
polynomial-sized circuit family, then it has a polynomial-sized circuit family.

PROOF: The proof is by a simple counting argument.
We show how to turn a given randomized polynomial-sized circuit Cn for

!n(XI, ... ,xn) using random inputs rI, ... , rm, into a deterministic polynomial
sized circuit Dn that computes !n(XI, . .. , xn).

Form a matrix M with 2n rows, one for each possible input from {O, l}n. The
matrix has 2m columns, one for each of the possible m-tuples from {O, l}m that the
rj can assume. The entry Mjk is 1 if the setting of the rl, ... , rm corresponding to
column k is a witness for the input X}, .•• ,Xn corresponding to row j; otherwise,
the entry is o. Eliminate all rows of M corresponding to inputs for which !n
evaluates to o.

By definition, at least half the entries of every surviving row of M equal 1.
Therefore, there must be a column with at least half its entries 1; in other words,
there is an assignment of Os and Is to the rj that serves as a witness to at least
half of the possible inputs. Let this witness be rl (1), ... ,r m(1). Build a circuit T1,

which is a copy of Cn with the random inputs "hard-wired" to rl (l), ... ,r m(l).
Delete the column in M corresponding to rl (l), ... ,r m(l), and all rows that had
Is in this column. Thus TI computes the correct value of !n(X}, ... , xn) whenever
the input corresponds to one of the rows we have just eliminated.

The matrix that remains still has the property that every row has at least half
its entries equal to 1, since the string rl (l), ... ,r m(l) was not a witness for any of
these rows whereas half the entries in these rows are guaranteed to be Is. Repeat
the construction above, picking a second string rl (2), ... , rm(2) that is a witness
for at least half the remaining inputs and building a circuit T2• Continuing in
this manner, we will have deleted all the rows of M while building at most n
circuits T}, ... , Tn.

Now we take the OR of the outputs of the circuits T}, ... , Tn> and this is a
(deterministic) circuit whose size is O(n) times that of the randomized circuit we
started with. 0

The technique in Theorem 2.9 is the first example we have seen of derandom
ization - where we take a randomized algorithm or computation, and diminish
or entirely remove the randomness in it. This is often a useful technique for the

39

GAME-THEORETIC TECHNIQUES

design of deterministic algorithms. Does Theorem 2.9 mean that randomization
is dispensable in all polynomial-time computations? The answer is no, and has
to do with the issue of non-uniformity in computation. The deterministic circuit
generated by the above process is one that works for a particular value of n. In
deed, the circuit it produces for n inputs may have very little resemblance to the
circuit it produces for n + 1 inputs, even if the original randomized circuits were
similar. Any "practical" algorithm or circuit will in fact exhibit this property of
similarity, which is formalized in the literature under the name uniformity.

Complexity theory formalizes this intuition by classifying algorithms as being
uniform or non-uniform as follows. Let a(n) be a function from the positive
integers to strings in 1: •. An algorithm A is said to use advice a if on an input
of length n it is given the string a(n) on a read-only tape. We say that A decides
a language L with advice a if on an input x it uses the the read-only string
a(lxl) to decide the membership of x in L. In other words, a single advice string
a(n) enables the algorithm A to decide the membership of x in L for all inputs
x having length n. Uniform algorithms are those that use no advice strings at
all, whereas non-uniform algorithms are those that use such advice. For the
complexity class P, we define the class P/poly to consist of all languages L that
have a non-uniform polynomial-time algorithm A such that the length of the
advice string a(n) is bounded by a polynomial in n. Likewise, we may define the
class RPjpoly.

Exercise 2.3: Consider any language L s; {O,1}o. We define a Boolean function f
corresponding to the language L as follows. For any positive integer n, let fn be the
Boolean function such that for any x E {O, 1}n, fn{x) assumes the value 1 if x ELand
o otherwise. If there is a circuit family for f, we refer to it as a circuit family for L.

Show that L E Pjpoly if and only if it has a polynomial-sized circuit family.

In an analogous fashion, we may speak of a language L as having a ran
domized circuit family. Clearly, L E RP / poly if and only if it has a randomized
polynomial-sized circuit family. In the light of this discussion, we may interpret
Theorem 2.9 as proving that RP/poly c: P/poly. We thus have:

Corollary 2.10: RP c: P/poiy.

In summary, the removal of randomness in Theorem 2.9 only shows that this
can be done in principle; it is not known how to do this in any uniform or
practical way.

Notes

The material of Section 2.1 is based on a paper of Snir [381].
Most of the material in Section 2.2 is covered in textbooks on game theory. Some

good sources are the books by Wang [213], Luce and Raift'a [287], and von Neumann
and Morgenstern [411]. Theorem 2.2 is due to von Neumann [408], and Theorem 2.3

40

PROBLEMS

is due to Loomis [279]. The application of the minimax theorems to proving lower
bounds on randomized algorithms was pointed out by Yao [419]. Proposition 2.6 is
also from [419]. In fact, for proving lower bounds, \\"\! do not require the equality
established in Corollary 2.4; all we require is the ineqw.1ity of Proposition 2.5. It is
possible to give a direct proof of the inequality (not the equality) without resorting to
game theory; the reader can find this in the paper of Fica Meyer auf der Heide, Ragde,
and Wigderson [147].

In our lower bound for game tree evaluation, the principle that any deterministic
algorithm may as well determine the value of one sub-tree before inspecting any leaves
of its sibling (used in Section 2.2.3) is due to Tarsi [393]. Saks and Wigderson [362]
refined the lower bound of Section 2.2.3 to show that Snir's algorithm is optimal among
all randomized algorithms.

Theorem 2.9 is due to Adleman [1]; a version of this theorem applicable tq circuit
families with two-sided error is due to Gill [166]. The notion of non-uniformity is studied
in depth in the paper by Karp and Lipton [245]. The re'.1der interested in the material
of Sections 2.2.2 and 2.3 may wish to explore recent related work of Althofer [26] and
of Lipton and Young [278].

Problems -----------

2.1 Show that for any deterministic evaluation algorithm, there is an instance of
Td•k that forces the algorithm to read the values on all d 2k leaves.

2.2 Generalize the randomized algorithm and analysis of Section 2.1 to .trees Td•k

for d > 2.

2.3 (Due to A. Boppana [362].) Consider a uniform rooted tree of height h - every
leaf is at distance h from the root. The root, as well as any internal node,
has three children. Each leaf has a Boolean value associated with it. Each
internal node returns the value returned by the majority of its children. The
evaluation problem consists of determining the value of the root; at each step,
an algorithm can choose one leaf whose value it wishes to read.

(a) Show that for any deterministic algorithm, there is an instance (a set of
Boolean values for the leaves) that forces it to read all n = 3h leaves.

(b) Consider the recursive randomized algorithm that evaluates two sub-trees
of the root chosen at random. If the values returned disagree, it proceeds to
evaluate the third sub-tree. Show that the expected number of leaves read by
this algorithm (on any instance) is at most no.g

•

2.4 Determine the value VR of the following 2 x 2 matrix game and give optimal
mixed strategies for the two players.

2.5 (Due to A.M. Karp.) Let (aij) be am xn matrix, let the vector (P"P2,. .. ,Pm) con
sist of reals in [0,1] such that 2:::, Pi = 1, and let (q" q2, . .. , qn) consist of reals

41

GAME-THEORETIC TECHNIQUES

2.6 Use Yao's Minimax Principle to prove a lower bound on the expected running
time of any Las Vegas algorithm for sorting n numbers.

2.7 (Due to A.M. Karp.) You are given an array A containing n numbers in sorted
order. In one step, an algorithm may specify an integer i E [1, n), and is given
the value of A[i) in return. Determine lower and upper bounds on the expected
number of steps taken by a Las Vegas randomized algorithm to determine
whether or not a given key k is present in the array.

2.8 (Due to A.M. Karp.) In a graph with n vertices, where n is even, a perfect
matching is a set of n/2 edges, no two of which meet at a common vertex.
Consider a randomized algorithm that takes an n-vertex graph as input and
correctly determines whether the graph has a perfect matching. At each step
the algorithm asks a question of the form "Is there an edge between vertex i
and vertex j?" The complexity of the algorithm is defined as the maximum,
over all n-vertex graphs G, of the expected number of questions C (n) asked
when the input graph is G. Prove: C(n) = O(n2).

2.9 (Due to A.M. Karp.) Give lower bounds on the expected number of steps for
Las Vegas algorithms for the following problems:

(a) Given a string of n bits, the algorithm must determine whether the string
contains three consecutive 1s. In one step, it is allowed to inspect one bit of
the string. All other computation is free.

(b) Given a graph on n vertices, the algorithm must determine whether the
graph contains a vertex of degree O. In one step, it specifies two vertices and
is told whether there is an edge between the specified vertices (just as in
Problem 2.8). All other computation is free.

2.10 (Due to A.M. Karp.) Given a list of n values Vl,V2, .•. ,Vn , the majority element
problem is to determine the index i, if one exists, such that the value Vi occurs
more than n/2 times in the list. Determine lower and upper bounds on the
expected running time of any Las Vegas algorithm that solves the majority
element problem under the assumption that the algorithm can at each step
specify two indices, and is told whether or not the corresponding list entries
are equal.

2.11 What happens to the proof of Theorem 2.9 if in the second condition in the
definition of a randomized circuit we were to replace "at least half" by "at
least 1/k for k > 2"?

2.12 Show that BPP ~ P/poly.

42

CHAPT ER 3

Moments and Deviations

IN Chapters 1 and 2, we bounded the expected running times of several ran
domized algorithms. While the expectation of a random variable (such as a
running time) may be small, it may frequently assume values that are far higher.
In analyzing the performance of a randomized algorithm, we often like to show
that the behavior of the algorithm is good almost all the time. For example, it is
more desirable to show that the running time is small with high probability, not
just that it has a small expectation. In this chapter we will begin the study of
general methods for proving statements of this type. We will begin by examining
a family of stochastic processes that is fundamental to the analysis of many
randomized algorithms: these are called occupancy problems. This motivates
the study (in this chapter and the next) of general bounds on the probability
that a random variable deviates far from its expectation, enabling US to avoid
such custom-made analyses. The probability that a random variable deviates
by a given amount from its expectation is referred to as a tail probability for
that deviation. Readers wishing to review basic material on probability and
distributions may consult Appendix C.

3.1. Occupancy Problems

We begin with an example of an occupancy problem. In such problems we
envision each of m indistinguishable objects ("balls") being randomly assigned
to one of n distinct classes ("bins"). In other words, each ball is placed in
a bin chosen independently and uniformly at random. We are interested in
questions such as: what is the maximum number of balls in any bin? what is the
expected number of bins with k balls in them? Such problems are at the core
of the analyses of many randomized algorithms ranging from data structures
to routing in parallel computers. Later, in Section 3.6, we will encounter a
variant of the occupancy problem, known as the coupon collector's problem; in

43

MOMENTS AND DEVIATIONS

Chapter 4, we will apply sophisticated techniques to various random variables
arising in occupancy problems.

Our discussion of the occupancy problem will illustrate a recurrent tool in the
analysis of randomized algorithms: that the probability of the union of events is
no more than the sum of their probabilities. This is a special case of the Boole
Bonferroni Inequalities (Proposition C.2) and can be formally stated as follows:
for arbitrary events £}, £2, ... , en, not necessarily independent,

n

Pr[U?=I£d < L Pr[£i].
i=1

This principle is extremely useful because it assumes nothing about the de
pendencies between the events. Thus, it enables US to analyze phenomena
involving events with very complicated interactions, without having to unravel
the interactions.

Consider first the case m = n. For 1 < i < n, let Xi be the number of balls
in the ith bin. Following Example 1.1, we have E[Xi] = 1 for all i. Yet we do
not expect that during a typical experiment every bin receives exactly one ball.
Rather, we expect some bins to have no balls at all, and others to have many
more than one.

Let us try now to make a statement of the form "with very high probability,
no bin receives more than k balls," for a suitably chosen k. Let £Ak) denote the
event that bin j has k or more balls in it. We concentrate on analyzing £1(k).
The probability that bin 1 receives exactly i balls is

The second inequality results from an upper bound for binomial coefficients
(Proposition B.2). Thus,

Pr[e,(k)] "~mi,, m' (1+~+m2 +--}
Let k··= r(e In n)/ In In n 1. Then,

• (e)kO 1 -2
Pr[t'I(k)] ~ k. 1 _ elk. ~ n .

(3.1)

The same computation tells us that this upper bound applies to Pr[£j(k·)] for
all i, but can we say that no bin is likely to have more than k· balls in it? For
this we invoke the principle mentioned at the beginning of this section: the
probability of the union of the events £j(k·) is no more than their sum. We
obtain that

Pr[u?=It'j(k·)] ~ t Pr[t'j(k·)] ~ !.
j=1 n

44

3.1 THE MARKOV AND CHEBYSHEV INEQUALITIES

Thus we have established:

Theorem 3.1: With probability at least 1 - l/n, no bin has more than k· -
(e In n)/ In In n balls in it.

Interestingly, when m is of the order of n log n, the bin with the most balls
has about the same number of balls as the expected number of balls in any bin.
This phenomenon is exploited in a number of randomized algorithms (see, for
instance, Section 4.2).

Exercise 3.1: For m = n log n, show that with probability 1 - 0(1) every bin contains
O(log n) balls.

We turn to a classic combinatorial problem. Suppose that m balls are
randomly assigned to n bins. We study the probability of the event that they
all land in distinct bins. The special case n = 365 is popular in mathematical
lore as the birthday problem. The interpretation is that the 365 days of the
year correspond to 365 bins, and the birthday of each of m people is chosen
independently and uniformly from all 365 days (ignoring leap years). How large
must m be before two people in the group are likely to share their birthdays?

Consider the assignment of the balls to the bins as a sequential process: we
throw the first ball into a random bin, then the second ball, and so on. For
2 :s; i :s; m, let £i denote the event that the ith ball lands in a bin not containing
any of the first i-I balls. We will bound Pr[n~2£a from above. From (1.6), we
can write

Pr[n~2t'il = Pr[t'2]Pr[t'3 I t'2]Pr[t'4 I t'2 n t'3]··· Pr[t'm I n~21t'd.

Now, it is easy to compute Pr[£ i I n~-:~£ j]: this is simply the probability that
the ith ball lands in an empty bin given that the first i-I all fell into distinct
bins, and is thus 1 - (i - l)/n. Making use of the fact that 1 - x :s; e-X, we have

m (• 1) m Pr[n~2t'il :s; IT 1 - I ~ :s; IT e-(i-l)/n = e-m(m-l)/2n.

i=2 i=2

Thus, we see that for m equal to r J2n + 11, the probability that all m balls land
in distinct bins is at most l/e; as m increases beyond this value, the probability
drops rapidly.

3.2. The Markov and Chebyshev Inequalities

We have seen above that making statements about the probability that a random
variable deviates far from its expectation may involve a detailed, problem-specific
analysis. Often, one can avoid such detailed analyses by resorting to general
inequalities on such tail probabilities.

45

MOMENTS AND DEVIATIONS

We begin with the Markov inequality, a fundamental tool we will invoke
repeatedly when we develop more sophisticated bounding techniques. Let X
be a discrete random variable and f(x) be any real-valued function. Then the
expectation of f(X) is given by (see Appendix C)

Elf(X)] = L f(x)Pr[X = x].
x

Theorem 3.2 (Markov Inequality): Let Y be a random variable assuming only
non-negative values. Then for all t E R + ,

Equivalently,

Pr[Y ~ t] ::;; E[Y].
t

1
Pr[Y ~ kE[Y]] ::;; k'

PROOF: Define a function f(y) by f(y) = 1 if y ~ t, and 0 otherwise. Then
Pr[Y ~ t] = Elf(Y)]. Since f(y) ::;; y/t for all y,

Elf(Y)] ::;; E [~] = E[t
Y

] ,

and the theorem follows. 0

This is the tightest possible bound when we know only that Y is non-negative
and has a given expectation. Unfortunately, the Markov inequality by itself
is often too weak to yield useful results. The following exercise may help the
reader appreciate this; it shows that the Markov inequality is tight only for
rather uninteresting distributions.

Exercise 3.2: Given a positive integer k, describe a random variable X assuming
only non-negative values, such that

1
Pr[X ~ kE[X)) = "j{'

The following generalization of Markov's inequality underlies its usefulness
in deriving stronger bounds.

Exercise 3.3: Let Y be any random variable and h any non-negative real function.
Show that for all t E R + ,

Pr[h(Y) ~ t] ::; E[h(Y)).
t

46

3.3 RANDOMIZED SELECTION

We now show that the Markov inequality can be used to derive better bounds
on the tail probability by using more information about the distribution of the
random variable. The first of these is the Chebyshev bound, which is based
on the knowledge of the variance of the distribution; we will apply this to the
analysis of a simple randomized selection algorithm.

For a random variable X with expectation Jlx, its variance uk is defined to
be E[(X - Jlx)2]. The standard deviation of X, denoted ux, is the positive square
root of uk. (See Appendix C.)

Theorem 3.3 (Chebyshev's Inequality): Let X be a random variable with expec
tation Jlx and standard deviation Ux. Then for any t E R+,

PROOF: First, note that

1
Pr[lX - Jlxl ;::: tux] ~ t2 •

The random variable Y = (X - JlX)2 has expectation uk, and applying the
Markov inequality to Y bounds this probability from above by 1/t2• 0

3.3. Randomized Selection

We now consider the use of random sampling for the problem of selecting the
kth smallest element in a set S of n elements drawn from a totally ordered
universe. We assume that the elements of S are all distinct, although it is not
very hard to modify the following analysis to allow for multisets. Let rs(t)
denote the rank of an element t (the kth smallest element has rank k) and let
S(i) denote the ith smallest element of S. We extend the use of this notation to
subsets of S as well. Thus we seek to identify S(k).

In Step 1 (see following page), we sample with replacement: for instance, if
an element s of S is chosen to be in R on the first of our n3/ 4 drawings, the
remaining n3/ 4 - 1 drawings are all as likely to pick s again as any other element
in S. This style of sampling appears to be wasteful, but we employ it here
because it keeps our analysis clean. Sampling without replacement would result
in a marginally sharper analysis, but in practice this may be slightly harder to
implement: throughout the sampling process, we would have to keep track of
the elements chosen so far.

Figure 3.1 illustrates Step 3, where small elements are at the left end of the
picture and large ones at the right. Determining (in Step 4) whether S(k) E P is
easy since we know the ranks rs(a) and rs(b) and we compare either or both of
these to k, depending on which of the three if statements in Step 4 we execute.
The sorting in Step 5 can be performed in 0 (n3/410g n) steps.

47

MOMENTS AND DEVIATIONS

Algorithm LazySelect:

Input: A set S of n elements from a totally ordered universe, and an integer k

in [1, n].

Output: The kth smallest element of S, S(k)'

1. Pick n3/ 4 elements from S, chosen independently and uniformly at random
with replacement; call this multiset of elements R.

2. Sort R in O(n3/410gn) steps using any optimal sorting algorithm.

3. Let x = kn-1/ 4 • For t = max{lx - .JilJ, 1} and h = min{fx + .Jill, n3
/
4
}, let

a = R(() and b = R(h)' By comparing a and b to every element of S, determine
fs(a) and rs(b).

4. if k < n1/4, then P = {y E Sly ~ b};
else if k > n - n1/4, let P = {y E Sly ~ a};
else if k E [n1/4, n - n1/4], let P = {y E S I a ~ y :s; b};

Check whether S(k) E P and IP I ~ 4n3/ 4 + 2. If not, repeat Steps 1-3 until such
a set P is found.

5. By sorting P in O(IPllog IPI) steps, identify P(k-rs(a)+1). which is S(k)'

• p •

I I I I I I I I I I
\/ L S(k) H

Elements of R

Figure 3.1: The LazySelect algorithm.

Thus the idea of the algorithm is to identify two elements a and b in S such
that both of the following statements hold with high probability:

1. The. element S{k) that we seek is in P.

2. The set P of elements between a and b is not very large, so that we can sort P
inexpensively in Step 5.

We examine how either of these requirements could fail. We focus on the most
interesting case when k E [nl/4, n - nl/4], so that P = {y E S I a ::; y < b};
the analysis for the other two cases of Step 4 is similar and in fact somewhat
simpler.

If the element a is greater than S{k) (or if b is smaller than or equal to S(k)'

we fail because P does not contain S{k)' For this to happen, fewer than (of the
samples in R should be smaller than S{k) (respectively, at least h of the random
samples should be smaller than S{k). We will bound the probability that this
happens using the Chebyshev bound.

48

3.3 RANDOMIZED SELECTION

The second type of failure occurs when P is too big. To study this, we define
kt = max{1,k-2n3/

4
} and kh = min{k+2n3/4,n}. To obtain an upper bound on

the probability of this kind of failure, we will be pessimistic and say that failure
occurs if either a < S{k() or b > S{k~)' We prove that this is also unlikely, again
using the Chebyshev bound. Before we perform this analysis, we establish an
important property of independent random variables. Recall the definition of a
joint density function p(x,y) for random variables X and Y (Definition C.9) .

• Definition 3.1: Let X and Y be random variables and f(x,y) be a function of
two real variables. Then,

E[f(X, Y)] = Lf(x,y)p(x,y).
X,Y

For independent random variables X and Y we have from Proposition C.6

E[XY] = E[X]E[Y]. (3.2)

Lemma 3.4: Let Xt,X2,,,,,Xm be independent random variables. Let X =

L:::'1 Xi. Then uk = L:::'1 ut
PROOF: Let J1.i denote E[Xi]' and J1. = L:::'1 J1.i. The variance of X is given by

m

E[(X - J1.)2] = E[(L(Xi - J1.i»2].
i=1

Expanding the latter and using linearity of expectations, we obtain
m

E[(X - J1.)2] = L E[(Xi - J1.i)2] + 2 L E[(Xi - J1.i)(Xj - J1.j)].
i=1 i<j

Since all pairs Xi,Xj are independent, so are the pairs (Xi - J1.i), (Xj - J1.j).
By (3.2), each term in the latter summation can be replaced by E[(Xi - J1.i)]
E[(Xj - J1.j)]. Since E[(Xi - J1.i)] = E[Xi] - J1.i = 0, the latter summation vanishes.
It follows that

m m

E[(X - J1.)2] = L E[(Xi - J1.i)2] = L uk
i

•

i=1 i=1

o
As in the analysis of RandQS in Chapter 1, we measure the running time of

LazySelect in terms of the number of comparisons performed by it.

Theorem 3.5: With probability 1 - O(n-l/4), LazySelect finds S{k) on the first
pass through Steps 1-5, and thus performs only 2n + o(n) comparisons.

PROOF: The time bound is easily established by examining the algorithm; Step 3
requires 2n comparisons, and all other steps perform o(n) comparisons, provided
the algorithm finds S{k) on the first pass through Steps 1-5. We now consider

49

MOMENTS AND DEVIATIONS

the first mode of failure listed above: a > S{k) because fewer than (of the
samples in R are less than or equal to S{k) (so that S{k) ~ P). Let Xi = 1 if the
ith random sample is at most S{k), and 0 otherwise; thus Pr[Xi = 1] = kin, and

3/4

Pr[Xi = 0] = 1 - kin. Let X = L:~=l Xi be the number of samples of R that
are at most S{k)' Note that we really do mean the number of samples, and not
the number of distinct elements. The random variables Xi are Bernoulli trials
(Appendix C): each may be thought of as the outcome of a coin toss. Then,
using Lemma 3.4 and the variance of a Bernoulli trial with success probability p

and

kn3/ 4

Jl.x = -- = kn-l/4,
n

(k) (k) n
3
/
4

ui = n3/4;; 1 -;; =:; 4'

This implies that Ux =:; n 3/ 8/2. Applying the Chebyshev bound to X,

Pr[lX - Jl.xl ~ .In] = Pr[lX - Jl.xl ~ 2n1
/
8ux] = o(n-l/4).

An essentially identical argument shows that

Pr[b < S{k)l = o(n-l/4).

Since the probability of the union of events is at most the sum of their probabil
ities, the probability that either of these events occurs (causing S{k) to lie outside
P) is O(n-l/4).

Now for the second mode of failure - that P contains more than 4n3/ 4 + 2
elements. For this, the analysis is very similar to that above in studying the first
mode of failure, with kt and kh playing the role of k. The analysis shows that
Pr[a < S{k()] and Pr[b > S{k~)] are both O(n-l/4) (the reader should verify these
details). Adding up the probabilities of all of these failure modes, we find that
the probability that Steps 1-3 fail to find a suitable set P is O(n-l/4). 0

Exercl~ 3.4: The failure probability can be driven down further at the expense of
increased running time. For a suitable definition of the o(n) term, give an upper
bound on the probability that the algorithm does not find S(k) in en + o(n) steps for
e > 2.

Exercise 3.5: Theorem 3.5 tells us that the probability that LazySelect terminates in
2n + o(n) steps goes to 1 as n - 00. Suggest a modification in the algorithm that
brings the constant in the linear term down to 1.5 from 2. We will refine this further
in Problem 4.16.

This adds to the significance of LazySelect: the best known deterministic
selection algorithms use 3n comparisons in the worst case and are quite com
plicated to implement. Further, it is known that any deterministic algorithm for

so

3.4 TWO-POINT SAMPLING

finding the median requires at least 2n comparisons, so we have a randomized
algorithm that is both fast and has an expected number of comparisons that is
provably smaller than that of any deterministic algorithm. The high probability
bound of the previous exercise can be easily converted into a bound on the
expected running time:

Exercise 3.6: Show that as a direct corollary of Theorem 3.5, the expected running
time of the LazySelect algorithm is 2n + o(n).

Consider what happens when we modify LazySelect to be recursive as follows:
in Step 5, instead of sorting P we recursively use LazySelect to find P{k-rs{a)+l).

In this recursive version, the size of the candidate set P in which we are seeking
S{k) is shrinking as the recursion proceeds. Using our analysis we can prove
that at a typical stage of recursion the probability of failure at that stage is
O(IPI-1/ 4). But IPI is diminishing, so that this probability of failure is rising
as the algorithm proceeds! Thus, when the candidate set is down to a constant
size, for instance, the failure probability is up to a constant and there is very
little we can do about it. This is a fundamental barrier, not a weakness of our
analysis. This is a typical problem with recursive randomized algorithms, and
rears its head again in parallel randomized algorithms (where we always try to
break a problem into smaller sub-problems) as well. A standard solution is to
stop the recursion when the problem size is down to a certain size, and switch
to a different, more expensive but deterministic technique - as we did by sorting
in Step 5 of LazySelect.

3.4. Two-Point Sampling

We have so far been making use of the fact that the variance of the sum of
independent random variables equals the sum of their variances. In fact, we can
make a stronger statement. Let X and Y be discrete random variables defined
on the same probability space. The joint density function of X and Y is the
function

p(x,y) = Pr[{X = x} n {Y = y}].

Thus Pr[Y = y] = L:xp(x,y), and

Pr[X = x I Y = y] = p(x,y)
Pr[Y = y]

These definitions extend to a set Xt,X2, .•. of more than two random variables.
Such a set of random variables is said to be pairwise independent if for all i =1= j,
and x, y E JR.,

Pr[Xj = x I Xj = y] = Pr[Xj = x].

We will use the result from the following exercise.

51

MOMENTS AND DEVIATIONS

Exercise 3.7: Let n be a prime number and 'lLn denote the field of integers modulo
n. For a and b chosen independently and uniformly at random from 'lLn, let Yi =
ai + b mod n. Show that for i =1= j (mod n), Yi and Yj are uniformly distributed on
'lLn and pairwise independent. (Make use of the fact that in the field 'lLn, given fixed
values for Yi and Yj, we can solve Yi == ai +b (mod n) and Yj == aj +b (mod n) uniquely
for a and b.)

The following exercise is similar to Lemma 3.4.

Exercise 3.8: Let Xl, X2, ••• , Xm be pairwise independent random variables, and X =

L:::l Xi. Show that u~ = L:::l u~; .

We now consider an application of these concepts to the reduction of the
number of random bits used by RP algorithms (see Definition 1.8). Consider
an RP algorithm A for deciding whether input strings x belong to a language
L. Given x, A picks a random number r from the range Zn = {O, ... ,n - I},
for a suitable choice of a prime n, and computes a binary value A(x, r) with the
following properties:

• If x E L, then A(x,r) = 1 for at least half the possible values of r .

• If x ~ L, then A(x, r) = 0 for all possible choices of r.

For a randomly chosen r, A(x, r) = 1 is conclusive proof that x E L, while
A(x, r) = 0 is evidence that x ~ L.

For any x E L, we refer to the values of r for which A(x,r) = 1 as witnesses
for x; clearly, at least nl2 of the n possible values of r are witnesses. Of course,
for x ~ L, there are no witnesses at all. The definition allows different x E L
to have different sets of witnesses. Generally, n will be too large for us to test
efficiently all the n potential witnesses for a given input x. However, for any
x E L, a random choice of r is a witness with probability at least 1/2.

The fear is that x E L but the randomly chosen value of r yields A(x, r) = O.
However, we can drive down this probability of incorrectly classifying x by
picking t > 1 values rh .. " r t independently from the range Zn, and computing
A(x, rj) for all of them - in other words, by performing t independent iterations
of the algorithm A on the same input x. If for any i we obtain A(x, rj) = 1, we
declare that x is in L, else we declare that x is not in L. By the independence
of the trials, we are guaranteed that the probability of incorrectly classifying an
input x E L (by declaring that it is not in L) is at most 2-t •

Choosing t independent random numbers is expensive in that it requires
n(t log n) random bits. Suppose instead that we are only willing to use O(log n)
random bits. In particular suppose that we wish to use only two independent
samples from Z". For a, b chosen independently from Zn, the naive usage of a
and b as potential witnesses, Le., computing A(x,a) and A(x,b), yields an upper

52

3.5 THE STABLE MARRIAGE PROBLEM

bound of only 1/4 on the probability of incorrect classification. Here is a better
scheme: let rj = ai + b mod n, and compute A(x, rj) for 1 ~ i ~ t. As before, if
for any i we obtain A(x, rj) = 1, we declare that x is in L, else we declare that x
is not in L. What is the probability of incorrectly classifying any input x? We
show that this probability is much smaller than 1/4.

We need to worry about the possibility of making error only in the case
where the input x is in L. Our analysis will be insensitive to the actual values
of r in Zn which are witnesses for x; we will only rely on the fact that at least
half the values of r are witnesses. Clearly A(x, rj) is a random variable over the
probability space of pairs a and b chosen independently from Zn. By the result
of Exercise 3.7, the random r;'s are pairwise independent and, therefore, so are
the random variables A(x, rj), for 1 ~ i ~ t. Let Y = L:~""l A(x, rj). Assuming
that x E L, E[Y] ~ tl2 and u? ~ t14, or Uy ~ .ji12. The probability tHat the
pairwise independent iterations produce an incorrect classification corresponds
to the event {Y = O}, and

Pr[Y = 0] S Pr[lY - E[Y]I ~ tI2].

By the Chebyshev inequality, the latter is at most lit. Thus, the error probability
is at most lit, which is a considerable improvement over the error bound of 1/4
achieved by the naive use of a and b. This improvement is sometimes referred
to as probability amplification.

For a random variable X with expectation J1.x, we define the kth central
moment to be J1.~ = E[(X - J1.x)k], if it exists (Appendix C). For example, the
variance is the second central moment.

Exercise 3.9: The use of the variance of a random variable in bounding its deviation
from its expectation is called the second moment method. In an analogous fashion,
we can speak of the kth moment method: let k be even, and suppose we have a
random variable X for which J,/~ = E[(X - J,/x)k] exists. Show that

Pr[lX-J,/xl > tV'PI] s t:·
Why is the kth moment method difficult to invoke for odd values of k?

The second moment method is generally useful for a random variable X if
Ux is o(J1.x). In a manner similar to "two-point" sampling (the name comes from
the independent choice of two points a and b from which the rj are derived), one
can speak of k-point sampling for k > 2. The reader is referred to Appendix C
for a further discussion of k-wise independence.

3.5. The Stable Marriage Problem

Consider a society in which there are n men (denoted by capital letters
A,B,C, ...) and n women (denoted by a,b,c ...). A marriage M is a 1-1 correspon-

53

MOMENTS AND DEVIATIONS

dence between the men and the women. Assume a monogamous, heterosexual
society. Each person has a preference list of the members of the opposite sex
organized in a decreasing order of desirability. A marriage is said to be unstable
if there exist two married couples X-x and Y-y such that X desires y more than
x, and y desires X more than Y, implying that X-y will have a tendency to leave
their current mates to marry each other. The pair X-y is said to be dissatisfied
under this marriage. A marriage M in which there are no dissatisfied couples is
called a stable marriage .

• Example 3.1:
For n = 4, consider the following preference lists.

A : abed B : baed C : adeb D: deab
a : ABCD b: DCBA e: ABCD d: CDAB

Consider the marriage M given by A-a, B-b, C-c, and D-d. Here C-d is a
dissatisfied couple, implying that M is unstable. However, if C and d marry each
other, and c and D marry each other, we obtain the stable marriage given by
A-a, B-b, C-d, D-c.

The problem of finding stable marriages has several interesting applications,
for example in matching medical graduates to residency positions in hospitals.
It can oe shown that for every choice of preference lists there exist at least
one stable marriage. (Curiously enough, this is not the case in a homosexual,
monogamous society with an even number of inhabitants.) We will prove this
by presenting an algorithm to find a stable marriage. The naive approach of
starting with an arbitrary marriage and trying to stabilize it by pairing up
dissatisfied couples does not work.

Fortunately, an equally simple algorithm - the Proposal Algorithm - does
the trick. The basic idea behind this algorithm can be summarized as "man
proposes, woman disposes": each currently unattached man proposes to the
most desirable woman on his list who has not already rejected him, and this
woman then decides whether to accept or reject a proposal. The Proposal
Algorithm is used by hospitals in North America in the match program that
assigns medical graduates to residency positions.

More precisely, at any step, this algorithm will have a partial marriage.
Assume that the men are numbered in some arbitrary manner. The lowest
numbered unmarried man X proposes to the most desirable woman on his list
who has not already rejected him, call her x. The woman x will accept the
proposal if she is currently unmarried, or if her current mate Y is less desirable
to her than X (poor Y is jilted and reverts to the unmarried state). The algorithm
repeats this process, terminating when every person has been married.

We show that this algorithm always terminates with a stable marriage. A
woman once married will stay married during the course of the algorithm,
although her mates may change with time. Furthermore, the desirability of her
mates (in her view) can only improve with time. Thus at each step either a

54

3.5 THE STABLE MARRIAGE PROBLEM

woman gets married for the first time, or an already married woman obtains a
more desirable mate.

An unattached man always has at least one woman available that he can
proposition. This is because every woman he has already proposed to is currently
married, and if he runs out of women then all women are married - this cannot
happen unless all men are married too. Since at each step the proposer will
eliminate one woman on his list, and the total size of the lists is n2, we conclude
that the algorithm uses at most n2 proposals.

We claim that the final marriage M is stable. Otherwise, let X-y be a
dissatisfied pair, where in M they are paired as X-x and V-yo Since X prefers
y to x, he must have proposed to y before getting married to x. Since y either
rejected X, or accepted him only to jilt him later, her mates thereafter (including
Y) must be more desirable to her than X. Therefore, y must prefer Y' to X,
contradicting the assumption that y is dissatisfied.

Our interest here is in performing an average-case analysis of this algorithm.
Thus we are considering a probabilistic analysis of a deterministic algorithm.
We introduce this analysis here because it touches upon several tools that are
important in the analysis of randomized algorithms.

For this average-case analysis, we assume that the men's lists are chosen
independently and uniformly at random; the women's lists can be arbitrary but
must be fixed in advance. Let the random variable T p denote the number of
proposals made during the execution of the Proposal Algorithm. It is clear that
the running time of the algorithm is proportional to Tp. At first glance, it may
appear that the distribution Tp is extremely difficult to analyze, owing to the
various dependencies between the proposals. For instance, the choice of the
proposer at any step is severely conditioned by the history of the process. The
choice of the woman at each step also depends on the past proposals of the
current proposer.

We present a very simple technique - the Principle of Deferred Decisions -
for getting around such problems using the example of the card game called
Clock Solitaire. In this game we start with a standard deck of 52 cards, which
is assumed to be randomly shuffled. The pack is then divided into 13 piles
of 4 cards each. Each pile is arbitrarily labeled with a distinct member of
{A,2,3, ... ,J,Q,K}. On the first move we draw a card from the pile labeled K.
At each subsequent move. a card is drawn from the pile whose label is the face
value of the card drawn at the previous move (the suits of the cards are ignored
in this game). The game ends when an attempt is made to draw a card from an
empty pile. We win the game if, on termination, all 52 cards have been drawn;
in all other cases we lose the game.

Let us estimate the probability of winning the game. Observe that the game
always terminates in an attempt to draw a card from the K pile: the last card
drawn has to be a K. This is because there are 4 cards of each denomination,
and except for the K pile. each pile initially has 4 cards.

A naive view of the probability space for this game considers all possible
ways of dealing out the cards. Each point in this space corresponds to some

55

MOMENTS AND DEVIATIONS

partition of the 52 cards into 13 distinct piles, with an ordering defined on the
4 cards in each pile. Using this approach, computing the probability of a win
would be a formidable task, since at each move of the game we introduce a new
source of dependency.

We now examine a second probability space that better captures the dynamics
of the game. The idea is to let the random choices unfold with the progress of
the game, rather than fix the entire set of choices in advance. At each draw any
unseen card is equally likely to appear. Thus, the process of playing this game
is exactly equivalent to repeatedly drawing a card uniformly at random from a
deck of 52 cards. A winning game corresponds to the situation where the first
51 cards drawn in this fashion contain exactly 3 Kings. The probability of the
52nd card drawn being a King is exactly 1/13; this is also the probability of
winning the game.

The idea of the Principle of Deferred Decisions is to not assume that the
entire set of random choices is made in advance. Rather, at each step of the
process we fix only the random choices that must be revealed to the algorithm.

The Principle of Deferred Decisions can be used to simplify the average-case
analysis of the Proposal Algorithm as follows. We do not assume that the men
have chosen their (random) preference list in advance. In fact, let us suppose
that men do not know their lists to start with. Each time a man has to make
a proposal, he picks a random woman from the set of women not already
propositioned by him, and proceeds to propose to her. Clearly, this is equivalent
to choosing the random preference lists prior to the execution of the algorithm.

The only dependency that remains is that the random choice of a woman at
any step depends on the set of proposals made so far by the current proposer.
We can eliminate even this dependency, albeit at the cost of modifying the
behavior of the algorithm. Suppose that each time a man makes a proposal, he
chooses a woman uniformly at random from the set of all n women, including
those to whom he has already proposed. In other words, he forgets the fact that
these women have already rejected him. Call this new algorithm the Amnesiac
Algorithm.

How does the performance of the new algorithm relate to that of the original
one? Every proposal a man makes to a woman who has already rejected him
will be rejected again. Thus, the output produced by the Amnesiac Algorithm is
exactly the same as that of the original Proposal Algorithm. The only difference
is that there are some wasted proposals in the Amnesiac Algorithm. Let TA
denote the number of proposals made by the Amnesiac Algorithm. Clearly, TA
stochastically dominates Tp (Appendix C): for all m, Pr[TA > m] ~ Pr[Tp > m].
Therefore, it suffices for an upper bound to analyze the distribution of TA•

A benefit of analyzing TA is that we need only count the total number of
proposals made, without regard to the name of the proposer at each stage. This
is because each proposal is independently made to one of the n women chosen
uniformly at random. Moreover, the algorithm terminates with a stable marriage
once all women have received at least one proposal each. As will become clear
shortly, bounding the value of TA is a special case of the Coupon Collector's

56

3.6 THE COUPON COLLECTOR'S PROBLEM

Problem described in the next section. The following theorem is implied by
Theorem 3.8, a result about deviations in the Coupon Collector's Problem that
we will prove below in Section 3.6.

Theorem 3.6: For any constant CElt, and m = n In n + cn,

lim Pr[TA > m] = 1 _ e-e-c.
n CXl

3.6. The Coupon Collector's Problem

In the coupon collector's problem, there are n types of coupons and at each
trial a coupon is chosen at random. Each random coupon is equally likely to
be of any of the n types, and the random choice of the coupons are mutually
independent. Let m be the number of trials. The goal is to study the relationship
between m and the probability of having collected at least one copy of each
of the n types. The reader may wish to make the correspondence between this
process and an occupancy problem (Section 3.1) in which m balls are randomly
distributed in n bins. This process will arise again in the study of random walks
(Chapter 6). In this section we provide an amazingly precise answer to this
question, while illustrating some fundamental ideas in the analysis of stochastic
processes of the type that arise in randomized algorithms.

3.6.1. An Elementary Analysis

Let X be a random variable defined to be the number of trials required to collect
at least one of each type of coupon. We first determine the expected value of X.
Let Ch C2, ... , Cx denote the sequence of trials, where Ci E {l, ... ,n} denotes
the type of the coupon drawn in the ith trial. Call the ith trial Ci a success if
the type Ci was not drawn in any of the first i-I selections. Clearly Cl and Cx
are always successes.

We divide the sequence into epochs, where epoch i begins with the trial
following the ith success and ends with the trial on which we obtain the (i + l)st
success. Define the random variable X;, for 0 ~ i ~ n - 1, to be the number of
trials in the ith epoch, so that

i-o

Further, let Pi denote the probability of success on any trial of the ith epoch.
This is the probability of drawing one of the n - i remaining coupon types and
so,

n-i
Pi= --.

n

The random variable Xi IS geometrically distributed with parameter Pi (see

57

MOMENTS AND DEVIATIONS

Appendix C). Thus, the expected value of Xi is l/Pi and its variance is
(1 - Pi)/Pr.

By linearity of expectation,

n-l n-l n-l n 1
E[X] = E[L Xi] = L E[Xd = L n n i = n L i = nHn•

i=O i=O i=O i= 1

By Proposition B.4 the nth Harmonic number Hn is asymptotically equal to
In n + 9(1), implying that

E[X] = n In n + O(n).

Since the X;'s are independent, we can determine the variance of X using
Proposition C.9.

n-l .
_ ~ nz
~ (n-i)2
1=0

_ ~ n(n-i)
L- i2
i=l

The sum L:~=l 1/i2 converges to the constant 1[2/6 for n approaching 00; hence

Our next goal is to derive sharper estimates of the typical value of X. More
precisely, we will show that the value of X is unlikely to deviate far from its
expectation, or is sharply concentrated around its expected value. This entails
bounding the tail probabilities of the distribution of X. The second moment
method does not go far toward establishing such a result.

Exercise 3.10: Use the Chebyshev inequality to find an upper bound on the proba
bility that X > pn In n, for a constant p > 1.

Let £~ denote the event that coupon type i is not collected in the first r trials.
Using Proposition B.3 (Appendix B), we obtain that

Pr[£~] = (1- ~)r < e-r/n.

This bound is n-P for r = pn In n.

58

3.6 THE COUPON COLLECTOR'S PROBLElC

Using the fact that the probability of a union of events is .always less than
the sum of the probabilities of these events, we obtain for r = fJn In n,

n n

Pr[X > r] = Pr[U7=1£~] < LPr[£~] < Ln-P = YJ-\p-l).

i=1 i-I

We now study the probability that X deviates from its expe."""7ation nHn by the
amount cn, for any real-valued constant c. We will see t:-.n this probability
drops very quickly as we increase the absolute value of c.

3.6.2. The Poisson Heuristic

Before we show the sharp concentration result for X, the ~nowing heuristic
argument will help to establish some intuition. The heuristic zrgument is based
on the approximation of the binomial distribution by the P.::tlsson distribution
(see Appendix C for definitions of these distributions). T~ material in this
section, although useful, is not an essential prerequisite for 5Ilbsequent topics
and may be omitted in the first reading.

Let N[denote the number of times the coupon of type -; is chosen during
the first r trials; the event £~ is the same as the event {NT = O}. The random
variable N[has the binomial distribution with parameters T .and p = lin (see
Appendix C). This means that the probability that N[= x. :.:"T 0 < x < r, is as
follows:

Pr[N; =x] = (:)p"(l-prX
,

Let A be a positive real number. A (non-negative integer) ~dom variable Y
has the Poisson distribution with parameter A if for any nOIl-:legative integer y,

AYe-A.
Pr[Y = y] = -,-.

y.

For suitably small A and as r approaches 00, the Poissoc distribution with
parameter A = rp is a good approximation to the binon:ria::. distribution with
parameters rand p. In the current setting, we can approxim :-.:. the distribution
of N[by the Poisson distribution with parameter A = r In" V-"e will ignore the
fact that A may not be "suitably small" and that there c-..:>::ld be significant
error in this approximation; after all, this is only intende-":' :'0 be a heuristic
calculation. Using this approximation, we calculate the proc:~ :lliity of the event
£~ as follows:

lO -A.
Pr[£~] = Pr[N[= 0] ~ ;! = e-r

/
n

• (3.3)

The main benefit in using the Poisson approximation 15 ~at now we can
claim that the events £~, for I < i < n, are "almost independ~:.. - even though it
is quite easy to see that there is indeed some dependence be:-.--een these events.
In particular, we make the following informal claim to cor:::,1ete the heuristic
calculation.

59

MOMENTS AND DEVIATIONS

Claim: For 1 < i < n, and for any set of indices Uh ... , A} not containing i,

Pr[£~ I n~=l£jJ ~ Pr[£~].

PROOF: The proof follows from the following approximate calculations,

Pr[£~ n (~=l£jJ]
Pr[~=l£jl]

(1-~r
(1- ~r

e-r(k+l)/n

e-rk/ n

-r/n - e .

The first line follows from the definition of conditional expectation (Defini
tion C.4), the second from an elementary probability calculation, and the third
from Proposition B.3 (Appendix B). Since the last expression is the approximate
value of Pr[£~], we obtain the desired result. 0

If the approximation in (3.3) were exact, we would obtain that the events £~
are truly independent (Appendix C). In the following computation, we make
the heuristic assumption of independence based on the approximation of (3.3).
We then obtain that for 1 < i < n, the probability that all coupon types are
collected in the first m trials is given by:

Pr[""(U7=1£~)] = Pr[n7=1(""£~)] ~ (1- e-m/nt ~ e-ne-
rn
/".

Let m = n(ln n + c) for any constant c E R Then, by the preceding argument,
we obtain that

Pr[X > m = n(ln n + c)] - Pr[u7=1 £r]

~ Pr[ni=l(-,£r)]
_ l_e-e-C.

Observe that this probability e-e-c is close to 1 for large positive c, and is
negligibly small for large negative c. Thus, the probability of having collected
all n coupon types abruptly changes from nearly zero to almost one in a small
interval centered around n In n. Of course, all this is contingent on our heuristic
estimates being close to the true values. The power of this Poisson heuristic
is that it gives a quick back-of-the-envelope type estimation of probabilistic
quantities, which hopefully provides some insight into the true behavior of those
quantities. As we will see in Section 3.6.3, a more rigorous but cumbersome
argument can often be used to justify the conclusions obtained from such
heuristic arguments.

60

3.6 THE COUPON COLLECTOR'S PROBLEM

3.6.3. A Sharp Threshold

We now convert the heuristic argument from the previous section into a rigorous
(but significantly more complex) proof using the Boole-Bonferroni Inequalities
(Proposition C.2). But first we prove the following technical lemma

,

Lemma 3.7: Let c be a real constant. and m = n In n + cn for positive integer n.
Then. for any fixed positive integer k.

I
. n e
un 1-- =-. () (k) m -d

n oo k n k!

PROOF: Using Proposition B.3.2, we have that

-km (k
2

) ~ (k) m =5!!1 e-' 1 - -; < 1 - ;; ::5; e'.

Observe that e-km/n = n-ke-ck • Further,

k2 ~
lim (1- -) = 1
n oo n

and (by Proposition B.2),

~(~) = ~.
Putting all this together yields the desired result. o

Theorem 3.8: Let the random variable X denote the number of trials for collecting
each of the n types of coupons. Then. for any constant c E R, and m = n In n + cn,

lim Pr[X > m] = 1 - e-e~.
n oo

PROOF: We have that the event {X > m} = ur=I£~' By the Principle of
Inclusion-Exclusion,

where

n

Pr[ui£~] = ~)_I)k+1 Pk'

Pn~ k -

k=1

Let Sr = Pi' - Pf + P3 - ... + (-1)k+1 Pk' denote the partial sum formed by the
first k terms of this series. By the Boole-Bonferroni inequalities (Proposition C.2),
we have the bracketing property of the partial sums:

S; < Pr [Ui£~] < S;+ I'

61

MOMENTS AND DEVIATIONS

By symmetry, all the k-wise intersections of the events £r are equally likely.
This implies that

P, = (~)Pr[n'""e~l.
Moreover, the probability of the intersection of the k events £~, ... , £~ is the
probability of not collecting any of the first k coupons in m trials, namely
(1 - k/n)m. Therefore

For all positive integers k, define Pk = e-ck /k!. By Lemma 3.7 we have that
for each k

Define the partial sums of the terms Pk as
k k_~

Sk = L)-ly+lPj = L)-l)j+l~.
j=l j=l J.

Notice that the right-hand side consists precisely of the first k terms of the power
series expansion of f(c) = 1 - e-e-

c
• We conclude that

lim Sk = f(c).
k oo

That is, for all £ > 0, there exists k· > 0 such that for any k > k·,

ISk - f(c)1 < £.

Since limn oo Pk = Ph it follows that limn oo Sk = Sk. Equivalently, for all
£ > 0 and k, when n is sufficiently large, ISk - Ski < £. Thus, for all £ > 0, any
fixed k > k·, and n sufficiently large,

ISk - Ski < £ and ISk - f(c)1 < £,

which implies that

ISk - f(c)1 < 2£

and that

ISik - Sik+ll < 4£.

Using the bracketing property of partial sums, we obtain that for any £ > 0 and
n sufficiently large,

IPr[uj£rl - f(c)1 < 4£.

This implies the desired result that

lim Pr[uj£rl = f(c) = 1 - e-e-c
•

n oo

o
62

3.6 THE COUPON COLLECTOR'S PROBLEM

By this theorem, for any real constant c, we have

lim Pr[X < n(ln n - c)] = e-tf
n oo

and

lim Pr[X > n(ln n + c)] = 1 - e-e-c.
n oo

Thus, we obtain that

lim Pr[n(ln n - c) < X < n(ln n + c)] = e-tf _ e-e-c.
n oo

As the value of c is increased, it can be verified that this probability rapidly
approaches 1. In other words, with extremely high probability, the number of
trials for collecting all n coupon types lies in a small interval centered about its
expected value. This result is almost like a deterministic result since it so sharply
identifies the threshold value for collecting all coupons. We refer to such results
as sharp threshold results.

Notes

Comprehensive treatises on occupancy problems are the books by Johnson and
Kotz [222], and by Kolchin, Chistiakov, and Sevastianov [266]. However, most of
the results in these books concern the behavior of the distributions of various random
variables in the limit as n becomes large. (See also the various discussions of occupancy
problems in the books by Feller [142, 143].) Generally, we will be concerned with
statements resembling the ones in Section 3.1, involving asymptotic estimates on random
variables and probabilities. We will return to such estimates for occupancy problems in
Chapter 4. Recent work by Azar, Broder, Karlin, and Upfal [35] builds on the basic
occupancy problem and points out many applications to computer science.

The history of tail inequalities such as the Chebyshev bound dates back to the early
days of probability theory. Following Chebyshev's bound [394], Markov [293] observed
that the same idea could be used with higher moments. Kolmogorov [267] went further
and remarked that Pr[X ~ r] ~ E[f(X)]/s for any function f(X), provided that E[f(X)]
exists and f(x) ~ s > 0 for all x ~ r. The latter idea was exploited by Bernstein and by
Chernoff in a manner we will describe in Chapter 4.

Classic sources for deterministic selection algorithms are the papers of Blum, Floyd,
Pratt, Rivest, and Tarjan [65], and of Schonhage, Paterson, and Pippenger [364].
The LazySelect algorithm presented here is a variant on one reported by Floyd and
Rivest [151]. The algorithm described therein is a recursive algorithm, and does not sort
after the first level of random sampling as we do. The lower bound of 2n for median
selection is due to Bent and John [54].

The construction of pairwise independent random variables in Exercise 3.7 is given in
Joffe [214]. Its application to the reduction of random bits used by abstract randomized
algorithms is due to Chor and Goldreich [97]; Luby [282] presented this idea in the
context of a concrete problem we will study in Chapter 12. The two-point sampling tech
nique has been developed into a powerful technique for reducing the use of randomness,
especially for the derandomization of algorithms (see the Notes section of Chapter 12).

The Proposal Algorithm for stable marriages is due to Gale and Shapley [161]. The
book by Gusfield and Irving [188] provides a comprehensive treatment of results related

63

MOMENTS AND DEVIATIONS

to stable marriages. Our presentation of the average-case analysis of the Proposal
Algorithm is drawn from Knuth's monograph [263]. The power and applicability of the
Poisson heuristic is explored in great detail in the monograph by Aldous [12].

Problems -----------

3.1 Consider an occupancy problem in which n balls are independently and
uniformly distributed in n bins. Show that, for large n, the expected number
of empty bins approaches n/e, where e is the base of the natural logarithm.
What is the expected number of empty bins when m balls are thrown into n
bins? (See Theorem 4.18.)

3.2 Suppose m balls are thrown into n bins. Give the best bound you can on m to
ensure that the probability of there being a bin containing at least two balls
is at least 1/2.

3.3 A parallel computer consists of n processors and n memory modules. During a
step, each processor sends a memory request to one of the memory modules.
A memory module that receives either one or two requests can satisfy its
request(s): modules that receive more than two requests will satisfy two
requests and discard the rest.

(aT Assuming that each processor chooses a memory module independently
and uniformly at random, what is the expected number of processors whose
requests are satisfied? Use the approximation (1 - 1/n)n ~ 1/e if necessary.

(b) Repeat the computation for the case where each memory module can
satisfy only one request during a step.

3.4 Consider the following experiment, which proceeds in a sequence of rounds.
For the first round, we have n balls, which are thrown independently and
uniformly at random into n bins. After round;, for ; ~ 1, we discard every ball
that fell into a bin by itself in round;. The remaining balls are retained for
round; + 1, in which they are thrown independently and uniformly at random
into the n bins. Show that there is a constant c such that with probability
1- 0(1), the number of rounds is at most clog logn.

3.5 Let X be a random variable with expectation Jlx and standard deviation Ux.

(a) Show that for any t E R.+,

1
Pr[X - Jlx ~ tux] s 1 + t2·

This version of the Chebyshev inequality is sometimes referred to as the
Chebyshev-Cantelll bound.

(b) Prove that

2
Pr[IX -Jlxl ~ tux] s 1 +t2·

Under what circumstances does this give a better bound than the Chebyshev
inequality?

64

PROBLEMS

3.6 Let Y be a non-negative integer-valued random variable with positive expec
tation. Prove the following inequalities.

(a)

(b)

E[y]2
E[y2] S Pr[Y :f= 0] s E[Y]

(c) Explain why the second inequality always gives a stronger bound than the
first inequality.

3.7 Let a and b be chosen independently and uniformly at random from Zn =
{O, 1, 2. ... , n - 1}, where n is a prime. Suppose we generate t pseudo-random
numbers from Zn by choosing,/ = ai+b mod n, for 1 SiS t. For any £ E [0,1],
show that there is a choice of the witness set We Zn such that IWI ~ £n and
the probability that none of the ,/'s lie in the set W is at least (1 - £)2/4t.

3.8 Suggest a scheme for "four-point" sampling from the range Zn where n is a
prime. For t < n samples '1, . .. ,'t using this scheme, give an upper bound on
the probability that all t attempts fail to discover a witness given x ELand
compare this with the bound of 1/16 that the naive use of four samples would
yield. En route, derive an upper bound on the fourth central moment of the
sum of four-way independent random variables.

3.9 (Due to D.R. Karger and R. Motwani [233].)
(a) Let S, T be two disjoint subsets of a universe U such that lSI = ITI = n.
Suppose we select a random set R s; U by independently sampling each
element of U with probability p. We say that the random sample R is good
if the following two conditions hold: R n S = 0 and R n T :f= 0. Show that for
p = 1/n, the probability that R is good is larger than some positive constant.

(b) Suppose now that the random set R is chosen by sampling the elements
of U with only pai,wise independence. Show that for a suitable choice of the
value of p, the probability that R is good is larger than some positive constant.

3.10 The sharp threshold result in the coupon collector's problem does not imply
that the probability of needing more than en log n trials goes to zero at a
doubly exponential rate if e were not a constant, but were allowed to grow
with n. Let the probability of requiring more than en log n trials be p(e).
For constant e, show that 1/p(e) can be bounded from above and below by
polynomials in n.

3.11 Consider the extension of the coupon collector's problem to that of collecting
at least k copies of each coupon type. Show that the sharp threshold for the
number of selections required (denoted X(k)) is centered at n(ln n+(k-1) In In n).

In other words, for any positive integer k and constant e E R., prove that

lim Pr[X(k) > n(ln n + (k - 1) In In n + e)] = e-e-c
•

n-oo

65

MOMENTS AND DEVIATIONS

3.12 Consider the following process related to the coupon collector problem. There
are n bins and n players, and each player has an infinite supply of balls. The
bins are all initially empty. We have a sequence of rounds: in each round,
each player throws a ball into an empty bin chosen independently at random
from all currently empty bins. Let the random variable Z be the number of
rounds before every bin is non-empty. Determine the expected value of Z.
What can you say about the tail of Z's distribution?

3.13 Let B be a random bipartite graph on two independent sets of vertices U

and V, each with n vertices. For each pair of vertices u e U and v e V, the
probability that the edge between them is present is p(n), and the presence
of any edge is independent of all other edges. Let p(n) = (In n + c)/n for some
c eR.
(a) Show that the probability that B contains an isolated vertex is asymptoti
cally equal to e-2e-

c
•

(b) Suggest and prove a generalization of this to random non-bipartite graphs.

3.14 (Due to R.M. Karp.) Consider a bin containing d balls chosen at random
(without replacement) from a collection of n distinct balls. Without being able
to see or count the balls in the bin, we would like to simulate random sampling
with replacement from the original set of n balls. Our only access to the balls
is that we can sample without replacement from the bin.

Consider the following strategy. Suppose that k < d balls have been drawn
from the bin so far. Flip a coin with the probability of HEADS being kin. If
HEADS appears, then pick one of the k previously drawn balls uniformly at
random; otherwise, draw a random ball from the bin. Show that each choice
is independently and uniformly distributed over the space of the n original
balls. How many times can we repeat the sampling?

3.15 (Due to D. Angluin and L.G. Valiant [28].) Let B denote a random bipartite
graph with n vertices in each of the vertex sets U and V. Each possible
edge, independently, is present with probability p(n). Consider the following
algorithm for constructing a perfect matching (see Section 7.3) in such a
random graph. Modify the Proposal Algorithm of Section 3.5 as follows. Each
u e U can propose only to adjacent v e V. A vertex v e V always accepts a
proposal, and if a proposal causes a "divorce," then the newly divorced u e U
is the next to propose. The sampling procedure outlined in Problem 3.14 helps
implement the Principle of Deferred Decisions. How small can you make the
value of p(n) and still have the algorithm succeed with high probability? The
following fact concerning the degree d(v) of a vertex v in B proves useful:

Pr[d(v):s; (1-fJ)np] = O(e-P2nP/2).

66

CHAPT ER 4

Tail Inequalities

IN this chapter we present some general bounds on the tail of the distribution of
the sum of independent random variables, with some extensions to the case of
dependent or correlated random variables. These bounds are derived via the use
of moment generating functions and result in "Chernoff-type" or "exponential"
tail bounds. These Chernoff bounds are applied to the analysis of algorithms
for global wiring in chips and routing in parallel communications networks. For
applications in which the random variables of interest cannot be modeled as
sums of independent random variables, martingales are a powerful probabilistic
tool for bounding the divergence of a random variable from its expected value.
We introduce the concept of conditional expectation as a random -variable,
and use this to develop a simplified definition of martingales. Using measure
theoretic ideas, we provide a more general description of martingales. Finally,
we present an exponential tail bound for martingales and apply it to the analysis
of an occupancy problem.

4.1. The Chernoff Bound

In Chapter 3 we initiated the study of techniques for bounding the probability
that a random variable deviates far from its expectation. In this chapter we
focus on techniques for obtaining considerably sharper bounds on such tail
probabilities.

The random variables we will be most concerned with are sums of independent
Bernoulli trials; for example, the outcomes of tosses of a coin. In designing
and analyzing randomized algorithms in various settings, it is extremely useful
to have an understanding of the behavior of this sum. Let XI. ... , Xn be
independent Bernoulli trials such that, for 1 ~ i ~ n, Pr[Xi = 1] = P and
Pr[Xi = 0] = 1 - p. Let X = L:7=1 Xi; then X is said to have the binomial
distribution. More generally, let XI. ... , Xn be independent coin tosses such that,
for 1 ~ i ~ n, Pr[Xi = 1] = Pi and Pr[Xi = 0] = 1 - Pi. Such coin tosses are

67

TAIL INEQUALITIES

referred to as Poisson trials. Our discussion below will focus on the random
variable X = E~=I Xi, where the Xi are Poisson trials. Of course, all our
bounds apply to the special case when the Xi are Bernoulli trials with identical
probabilities, so that X has the binomial distribution.

We consider two questions regarding the deviation of X from its expectation
J.l = E~=I Pi· For a real number b > 0, we might ask "what is the probability
that X exceeds (1 + b)J.l?" We thus seek a bound on the tail probability of the
sum of Poisson trials. An answer to this type of question is useful in analyzing
an algorithm, showing that the chance it fails to achieve a certain performance
is small. We face a different type of question in designing an algorithm: how
large must b be in order that the tail probability is less than a prescribed value
e?

Tight answers to such questions come from a technique known as the Chernoff
bound. This technique proves to be extremely useful in designing and analyzing
randomized algorithms. We focus on the Chernoff bound on the sum of
independent Poisson trials.

For a random variable X, the quantity E[eX] is called the moment generating
function of X. This is because E[etX] can be written as a power-series with terms
of the form fE[Xk]jk!, and E[Xk] is the kth moment of X for any positive
integer k. The basic idea behind the Chernoff bound technique is to take the
moment generating function of X and apply the Markov inequality to it. The
sum of independent random variables appears in the exponent, and this turns
into the product of random variables whose expectation we then bound.

Theorem 4.1: Let XI, X2, ••• , Xn be independent Poisson trials such that, for
1 < i < n, Pr[Xi = 1] = Pi, where 0 < Pi < 1. Then, for X = E~=I Xi, J.l =
E[X] = E~=I Pi, and any b > 0,

[
elJ] II

Pr[X > (1 + b)J.l] < (1 + b)(l+lJ) .

PROOF; For any positive real t,

Pr[X > (1 + b)J.l] = Pr[exp(tX) > exp(t(1 + b)J.l)].

Applying the Markov inequality to the right-hand side, we have

Pr[X > (1 + b)] < E[exp(tX)] .
J.l exp(t(1 + b)J.l)

(4.1)

(4.2)

Notice that the inequality is strict: this stems from our assumption that the
Pi are not all identically 0 or 1, so that X assumes more than one value. The
reader may wish to recall the proof of the Markov inequality to see this.

We bound the right-hand side by observing that

n n

E[exp(tX)] = E[exp(t LXi)] = E[II exp(tXi)].
i=1 i=1

68

4.1 THE CHERNOFF BOUND

Since the Xi are independent, the random variables exp(tXi) are also inde
pendent. It follows that E[n~=l exp(tXi)] = n~=l E[exp(tXi)]. Using these facts
in (4.2) gives

P [X (1 ~)] n~=l E[exp(tXi)]
r > + u J.l < exp(t(1 + b)J.l) . (4.3)

The random variable etXi assumes the value e with probability Pi, and the
value 1 with probability 1 - Pi. Computing E[etXi] from these observations, we
have that

Pr[X > (1 + b)J.l]
n~=l [Piet + 1 - p;]

<
exp(t(1 + b)J.l)

n~=l [1 + Pi(e - 1)]
exp(t(1 + b)J.l)

Now we use the inequality 1 + x < if' with x = Pi(et - 1), to obtain

Pr[X > (1 + b)J.l] < n~=l exp(Pi(e - 1»
exp(t(1 + b)J.l)

exp(E~=l Pi(et
- 1»

exp(t(1 + b)J.l)

exp«et
- 1)J.l)

-
exp(t(1 + b)J.l)'

. (4.4)

(4.5)

Observe that all of the above has been proved for any positive real t; we are
now free to choose a particular value for t that yields the best possible bound.
For this, we differentiate the last expression with respect to t and set. to zero;
solving for t now yields t = In(1 + b), which is positive for b > O. Substituting
this value for t, we obtain our theorem. 0

There were three main ingredients in the above proof:

1. We studied the random variable elx rather than X.

2. The expectation of the product of the etXi turns into the product of their expec
tations owing to independence.

3. We pick a value of t to obtain the best possible upper bound - indeed, we choose
a value of t that depends on the deviation b.

These ingredients are generic and do not hinge on the particular case of the
sum of Poisson trials. For example, Problem 4.4 is concerned with applying this
technique to the sum of geometrically distributed random variables.

For succinctness in what follows, we define an upper tail bound function for
the sum of Poisson trials.

~ Definition 4.1: F+(J.l,b) 1.\ rtf /(1 + b)(l+b)Y .

~ Example 4.1: The Arkansas Aardvarks win each game they play with probability
1/3. Assuming that the outcomes of the games are independent, derive an upper

69

TAIL INEQUALITIES

bound on the probability that they have a winning season in a season lasting n
games.

Let Xi be 1 if the Aardvarks win the ith game and 0 otherwise; let Yn = E~=l Xi.
Applying Theorem 4.1 to Yn, we find that Pr[Yn > n/2] < F+(n/3, 1/2) < (0.965)n.
Thus, the probability that the Aardvarks have a winning season in n games is
exponentially small in n, suggesting that the longer they play the more likely it is
that their true colors show through.

The reader should verify that the term within the brackets in F+(J.l.,b) is always
strictly less than 1. Since the power J.l is always positive, we will always get an
upper bound that is less than 1.

The right-hand side of (4.1) is difficult to interpret, especially since we will
require answers to questions such as "how large need b be in order that
Pr[X> (1 + b)J.ll is at most 0.01?" We will presently work on simplifying it. But
first, we consider deviations of X below its expectation J.l.

Theorem 4.2: Let Xl, X2, ••• , Xn be independent Poisson trials such that, for
1 < i < n, Pr[Xi = 1] = Pi, where 0 < Pi < 1. Then, for X = E~=l Xi, J.l =
E[X] = E~=l Pi, and 0 < b < 1,

Pr[X < (1 - b)J.l] < exp(-J.lb2/2). (4.6)

PROOF: The proof is very similar to the proof for the upper tail we saw in
Theorem 4.1. As before,

Pr[X < (1- b)J.l] = Pr[-X > -(1- b)J.l]

= Pr[exp(-tX) > exp(-t(1- b)J.l)],

for any positive real t. Applying the Markov inequality and proceeding as in
equations (4.2-4.3), we obtain that

Pr[X < (1- b)J.l] < n~=l E[exp(-tXi)].

exp(-t(1 - b)J.l)

Computing E[exp(-tXi)] and proceeding as in equations (4.4-4.5),

exp(J.l(e-t - 1»
Pr[X < (1 - b)J.l] < p((1 b r ex -t -)J.l

This time, we let t = In(l/(l - b» to obtain that

Pr[X < (1 - b)J.l] < [(1_e~;(l_li)] II •
We simplify this by noting that for b E (0,1],

(1 - b)l-li > exp(-b + b2/2),

using the McLaurin expansion for In(1- b). This yields the desired result. 0

We define the lower tail bound function for the sum of Poisson trials as
follows.

70

4.1 THE CHERNOFF BOUND

~ Definition 4.2: F-(14 b) 1.\ exp (-It) .

It is immediate that P-(J.l, b) is always less than 1 for positive J.l and b. Note
two differences between the proofs of Theorems 4.1 and 4.2. First, we directly
apply the basic Chernoff technique to the random variable -X rather than
apply Theorem 4.1 to Y = n - X (a plausible option, which leads, however,
to a slightly weaker bound than the one derived below). Second, the form of
the McLaurin expansion for In(1 - b) allows us to obtain a "cleaner" closed
form here, whereas the McLaurin expansion for In(1 + b) did not permit this in
Theorem 4.1.

~ Example 4.2: The Arkansas Aardvarks hire a new coach, and critics revise their
estimates of the probability of their winning each game to 0.75. What is the
probability that the Aardvarks suffer a losing season assuming the critics are
right and the outcomes of their games are independent of one another?

Setting up the random variable Yn as before, we find that Pr[Yn < n12]
< F-(0.75n,1/3), which evaluates to < (0.9592)n. Thus, this probability is also
exponentially small in n.

The bounds in Theorems 4.1 and 4.2 do not depend on n, but only on J.l and
b. These bounds do not distinguish, for instance, between 1000 trials each with
Pi = 0.02 and 100 each with Pi = 0.2, even though the distributions of X are
different in the two cases. Thus, even if the actual tail probabilities are different
in these cases, our estimates are the same in both cases.

We make the following definitions to facilitate our second kind of question,
i.e.,"how large need b be for Pr[X > (1 + b)J.l] to be less than €?"

~ Definition 4.3: For any positive J.l and €, .:\ +(J.l, €) is that value of b that satisfies
...

(4.7)

Similarly, .:\ -(J.l. E) is that value of b that satisfies

(4.8)

In other words, a deviation of b = ':\+(J.l,€) suffices to keep Pr[X > (1 + b)J.l]
below €, irrespective of the values of n and the p/s.

A nice feature of the bound in Theorem 4.2 is the convenient form of the
right-hand side: it is easy to derive .:\-(J.l,€) explicitly. Equating the right-hand
side of (4.6) to € yields

A-() _ V21nl/e
L..1 J.l,€ - .

J.l
(4.9)

~ Example 4.3: Suppose that Pi = 0.75. How large must b be so that Pr[X < (1-
b)J.l] is less than n-5? Using (4.9), we find that the value of b that suffices for €

71

to be less than n-5 is

TAIL INEQUALITIES

10lnn
0.75n·

Thus, to obtain a tail probability that is inversely polynomial in n, we need only
go slightly away from the expectation - in this case out to b = V(13.333Inn)/n.

What if we wanted that Pr[X < (1- b)jl] be less than e-1.5n ? Using (4.9), we
find that for € = e-1.5n,

£\-(0.75n,e-1.5n) = J o.~~n = 2,

which tells us nothing (for deviations below the expectation, values of b bigger
than 1 cannot occur).

We return to the simplification of (4.1) to obtain tractable estimates for
£\ +(jl, €).

Exercise 4.1: Prove that

(4.10)

Hence infer that if 6 > 29 - 1,

Exercise 4.1 gives us a simple form for P+(jl, b) when b is "large." For such
deviations, we have the bound

(4.11)

We now present the following simplification of P+(Jl, b) for b in a restricted
range (0, U]. A pointer to the proof is given in the Notes section.

Theorem 4.3: Por 0 < b < U,

F+(Jl,b) < exp(-c(U)jlb2),

where c(U) = [(1 + U)ln(1 + U) - U]/U2•

For U = 2e - 1, this simplifies to P+(jl,b) < exp(-jlb2/4). Consequently,
provided b < 2e - 1, we can use the estimate

A+() V41Rl/e
L..1 jl,€ < .

jl
(4.12)

Thus, between Theorem 4.3 and Exercise 4.1, we have bounds on a+(Jl,€);
however, we require some idea of the correct value of a+(jl,€) before deciding

72

4.1 THE CHERNOFF BOUND

which of these forms to use. MOn!Over, the result of Exercise 4.1 may be slack
for some values of J.l and €, as in the following example. This example uses
Chernoff bounds to approach the occupancy problem considered in Section 3.1.

~ Example 4.4: Consider thro\'\ing n balls uniformly and independently into n
bins. Let the random variable Y1 denote the number of balls that fall into the
first bin. We wish to determine a quantity m such that Pr[YI > m] ~ 1/n2•

Consider the Bernoulli trials indicating whether or not the ith ball falls into
the first bin. Each of the p;'s is thus l/n. It follows that J.l = 1; the number m
we seek is 1 + £\+(1, 1/ n2

). Gue~-mg that £\+(1, 1/ n2) is larger than 2e, we use the
result in (4.11) to obtain £\+(1, 1 n2) < 210g2 n-1.

Unfortunately, this is not the tightest possible answer in this case. Returning
to (4.1), we can apply it with b =:: (1.5Inn)/lnlnn and simplify to obtain F+(j.l,b)
less than n-2, so that our origina.] estimate of 210g2 n - 1 was asymptotically an
overestimate.

A good rule of thumb from ex.amples like this is: for € of the order of n-C

(a value arising often in algorithmic applications), estimates such as (4.11) and
(4.12) are satisfactory provided J.l is Q(log n); when J.l is smaller, we must return
to (4.1) in order to obtain the tightest possible estimate.

~ Example 4.5 (Set Balancing): This problem is known variously as set-bjllancing,
or two-coloring a family of vectors. Given an n x n matrix A all of whose entries
are 0 or 1, find a column vector h E {-I, + l}n minimizing IIAblla).

Consider the following algori6m for choosing b: each entry of b is indepen
dently and equiprobably chosen from {-1,+1}. Note that this choice ignores the
given matrix A. Clearly the inner product of any row of A with our randomly
chosen b has expectation O. We now study the deviation of this inner product
from o.

Consider the ith row of A. Applying (4.9), the probability that the inner
product of this row with b is bounded by -4Jn In n is less than n-2• An identical
argument shows that the probability that the inner product of this row with b
exceeds 4Jn In n is less than n-2• Thus, the probability that the absolute value of
the inner product exceeds 4Jn In., is less than 2n-2•

Let us say that the ith bad e-:-'ent occurs if the absolute value of the inner
product of the ith row of A witt b exceeds 4Jn In n. There are n possible bad
events, one for each row, and the .ugument of the previous paragraph shows that
the probability that any of them occurs is at most 2n-2• The probability of the
union of the bad events is no mure than the sum of their probabilities, which
is 2/n. In other words, with probability at least 1 - 2/n, we find a vector b for
which IIAblla) ~ 4Jn In n.

73

TAIL INEQUALITIES

4.2. Routing in a Parallel Computer

Our first application of the Chernoff bound is another case where a randomized
algorithm yields a performance that is provably superior to any deterministic
algorithm. This application concerns a communication problem in a network of
parallel processors.

We model a network of parallel processors by a directed graph on N nodes,
each of which is a processing element. Edges in the graph represent communica
tion links between processing elements. All communication between processors
proceeds in a sequence of synchronous steps. Each link can carry a unit message,
or packet, in a step. During a step, a processor can send at most one packet to
each of its neighbors. Each processor has a unique identifying number, between
1 and N.

We consider the permutation routing problem on such a network. Each pro
cessor initially contains one packet destined for some processor in the network.
Let Vi denote the packet originating at processor i; we denote its destination by
d(i). We consider the case when the d(i)'s, for 1 < i < N, form a permutation
of {I, ... , N}, i.e., every processor is the destination of exactly one packet. How
many steps are necessary and sufficient to route an arbitrary permutation request
d(1), ''', d(N)? This special case is important in realizing abstract models of
parallel computation (such as the PRAM model described in Chapter 12) by
means of more feasible models.

A route for a packet is a sequence of edges it can follow from its source to
its destination. An algorithm for the permutation routing problem must specify
a route for each packet. In following a route, a packet may occasionally have
to wait at an intermediate node because the next edge on its route is "busy"
transmitting another packet. We assume that each node contains one queue for
each edge leaving the node; the queue holds packets waiting to leave via that
edge. A routing algorithm must also specify a queueing discipline for resolving
conflicts between packets that simultaneously wish to follow the same edge out
of a node.

We focus on a class of algorithms that are especially simple to implement in
parallel computer hardware. An oblivious algorithm for the permutation routing
problem satisfies the following property: the route followed by Vi depends on
d(i) alone, and not on dU) for any j =1= i. An oblivious algorithm specifies,
for each pair (i, d(i», a route between node i and node d(i). Oblivious routing
algorithms are attractive for their simplicity of implementation: the communi
cation hardware at each node in the network can determine the next link on its
route, simply by looking at the source and destination information carried by
a packet. Often, the topology of the network makes this operation very simple.
The communication hardware at a node does not have to compare the sources
and destinations of different packets in its queues.

The following theorem gives a limit on the performance of deterministic
oblivious algorithms; its proof is beyond the scope of this book (see the Notes
section).

74

4.l ROUTING IN A PARALLEL COMPUTER

Theorem 4.4: For any deterministic oblivious permutation routing algorithm on
a network of N nodes each of out-degree d, there is an instance of permutation
routing requiring Q(V N I d) steps.

Consider the implications of this theorem for the case when the network
is the Boolean hypercube, a popular network for parallel processing. The
Boolean hypercube has N = 2n nodes connected in the following manner. Let
(io, ... , in-d E {O, l}n be the (ordered) binary representation of i, i.e., i = Ej:l, ij2j.
There is a link (a directed edge) from node i to node j if and only if (io, ... , in-d
and (jo, ... , jn-d differ in exactly one position. Every node in the hypercube
has n = log2 N directed edges leaving it. Each edge incident on a node is
associated with a distinct bit position in the node label, and traversing an edge
corresponding to the position j will lead to a node whose label differs in exactly
that bit position. Theorem 4.4 then tells us that for any deterministic oblivious
routing algorithm on the hypercube, there is a permutation requiring Q(VN In)
steps.

We now establish a special case of the lower bound of Theorem 4.4 for the
hypercube, showing that for a natural algorithm there is a natural permutation
that results in poor performance. Given that the source and destination addresses
are n-bit vectors, consider the following simple choice of route to send Vi from i
to the node O'(i): scan the bits of O'(i) from left to right, and compare them with
the address of the current location of Vi' Send Vi out of the current node along
the edge corresponding to the left-most bit in which the current position and
O'(i) differ. Thus, in going from (1011) to (0000) in a 4-dimensional hypercube,
the packet would pass through (0011) and then (0001) en route. This is referred
to as the bit-fixing routing strategy for obvious reasons.

Exercise 4.2: Suppose that n is even. Consider the transpose permutation: writing i
as the concatenation of two binary strings B; and b; each of length n12, the destination
of VI is the concatenation of b; and B;. Show that the transpose permutation causes
the bit-fixing strategy to take Q(VN In) steps. Why is this permutation called a
transpose?

We now study a randomized oblivious routing algorithm and show that its
expected number of steps is considerably smaller than VN In. This algorithm
uses a simple two-phase scheme for permutation routing. Under this scheme,
packet Vi executes the following two phases independently of all the other
packets.

Phase 1: Pick a random intermediate destination O'(i) from {I, ... , n}. Packet Vi

travels to node O'(i).

Phase 2: Packet Vi travels from O'(i) on to its destination d(i).

In each phase, each packet uses the bit-fixing strategy to determine its route.

75

TAIL INEQUALITIES

Since each packet chooses its intermediate destination (in Phase 1) indepen
dently of the remaining packets, the scheme is oblivious. Because the O'(i) are
chosen independently at random, it may be that O'(i) = O'(j) for i =1= j; thus 0'

is not a permutation. The choice of routes is now clear; it remains to specify
the queueing discipline. For the above choice of routes, any of several queueing
disciplines will in fact yield a result similar to Theorem 4.7 below. All that is
required is that if at least one packet is ready to follow an edge e on a step, some
packet follows e on that step. For concreteness, we adopt the following queueing
discipline: each node maintains a queue for each outgoing edge, with packets
leaving in FIFO (first in, first out) order. Ties occur only when two packets
simultaneously arrive at a node and wish to leave by the same edge; these ties
are broken arbitrarily. The reader should verify that any pair of packets may
engage in such a tie at most once.

How many steps elapse before packet Vi reaches its destination? Let us first
consider this question for Phase 1. Let Pi denote the route for Vi in Phase 1. The
number of steps taken by Vi is equal to the length of Pi, which is at most n, plus
the number of steps for which it is queued (delayed) at intermediate nodes in Pi'
What is the delay encountered by packet Vi? To tackle this problem we require
two additional facts; the first is a simple exercise.

Exercise. 4.3: View each route in Phase 1 as a directed path in the hypercube from
the source to the intermediate destination. Prove that once two routes separate, they
do not rejoin.

We now establish an important step in the analysis. Like the statement in
Exercise 4.3 above, it is a deterministic assertion that is independent of the
randomization in our routing algorithm. In preparation for this step, the reader
should first attempt the following exercise.

Exercise 4.4: Does the statement in Exercise 4.3 imply that for any two packets Vi

and Vj, there is at most one queue q such that Vi and Vj are in the queue q at the
same step?

Lemma 4.5: Let the route of Vi follow the sequence of edges Pi = (e., e2, .. . , ed.
Let S be the set of packets (other than Vi) whose routes pass through at least one
of {e.,e2, ... ,ed. Then, the delay incurred by Vi is at most lSI.

PROOF: A packet in S is said to leave Pi at that time step at which it traverses
an edge of Pi for the last time. If a packet is ready to follow edge ej at time
t, we define its lag at time t to be t - j. The lag of Vi is initially zero, and the
delay incurred by Vi is its lag when it traverses ek. We will show that each step
at which the lag of Vi increases by one can be charged to a distinct member of
S.

76

4.l ROUTING IN A PARALLEL COMPUTER

We argue that if the lag of Vi reaches t + 1, some packet in S leaves Pi with
lag t. When the lag of Vi increases from t to t + 1, there must be at least one
packet (from S) that wishes to traverse the same edge as Vi at that time step,
since otherwise Vi would be permitted to traverse this edge and its lag would not
increase. Thus, S contains at least one packet whose lag reaches the value t.

Let t' be the last time step at which any packet in S has lag t. Thus there is
a packet V ready to follow edge ej' at t', such that t' - j' = t. We argue that
some packet of S leaves Pi at t'; this establishes the lemma since by the result
of Exercise 4.3, a packet that has left Pi will never again delay Vi.

Since V is ready to follow ej' at t', some packet co (which may be V itself) in
S follows ej' at t'. Now co leaves Pi at t'; if not, some packet will follow ej'+1
at step t' + 1 with lag still at t, violating the maximality of t'. We charge to co
the increase in the lag of Vi from t to t + 1; since co leaves Pi, it will never be
charged again. Thus, each member of S whose route intersects Pi is charged for
at most one delay, establishing the lemma. 0

Let the random variable Hij = 1 if Pi and P j share at least one edge, and 0
otherwise. It follows that the total delay incurred by Vi is at most 2:7=1 Hij. Since
the routes of the various packets are chosen independently at random, the Hij's
are independent Poisson trials for j =1= i. Thus, to bound the delay of packet Vi

from above using the Chernoff bound, it suffices to obtain an upper bound on
2:7=1 Hij. To do this, we first bound E[2:7=1 Hij].

For an edge e in the hypercube, let the random variable T(e) denote the
number of routes that pass through e. Fix any route Pi = (e.,e2, ... ,ek), with
k < n. Then,

N k

L Bij ~ L T(el),
j=1 1=1

and therefore
N k

E[L Bij] ~ L E[T(ed]. (4.13)
j=1 1=1

The following is an easy consequence of symmetry.

Exercise 4.5: Let 9, and 9m be any two edges in the hypercube. Prove that E[T(9,)]
= E[T(9m)]. In other words, the expected number of routes passing through an edge
is the same for all edges in the hypercube.

The expected length of Pj (number of edges traversed by Vj) is n/2 for all j,
so that the expectation of the total route length summed over all the packets is
N n/2. The number of edges in the hypercube is N n; by the result of Exercise 4.5,
it follows that E[T(e)] = 1/2 for all edges e. Using this in (4.13) gives

N k n
E[""' B··] < - < -~ I] - 2 - 2·

j=1

77

TAIL INEQUALITIES

By the Chernoff bound (the form in Exercise 4.1 is most convenient), the
probability that 2:7=1 Hij exceeds 6n is less than 2-6n . An important point: we
apply the Chernoff bound to 2:7=1 Hij and not to 2:~=1 T(e/). We cannot apply
the Chernoff bound to 2:~=1 T(ed because the random variables T(ed are not
independent (and in fact are not Poisson trials). We use the quantity 2:~=1 T(e/)
only to obtain an upper bound on E[2:7=1 H ij], and then apply the Chernoff
bound to 2:7=1 Hij. which is the sum of independent random variables.

Now 2:7=1 Hij is an upper bound on the delay incurred by Vi, so this delay
exceeds 6n with probability less than 2-6n . Since the total number of packets is
N = 2n, the probability that any of the N packets experiences a delay exceeding
6n is less than 2n x 2-6n = 2-5n. Adding the length of the route to the delay
gives 7n as the number of steps taken by Vi in Phase 1.

Theorem 4.6: With probability at least 1 - 2-5n, every packet reaches its interme
diate destination in Phase 1 in 7n or fewer steps.

What happens to the packets in Phase 2? Observe that the routing scheme
for Phase 2 can be viewed as the scheme for Phase 1 "run backwards." The
same analysis then shows that with probability at least 1 - (1/32)n, every packet
reaches its destination in 7n or fewer steps. The probability that any packet fails
to reach its target in either phase is less than 2(1/32)n, which is less than 1/ N
for n ~ 1. Combining these facts, we have:

Theorem 4.7: With probability at least 1 - (1/ N), every packet reaches its des
tination in 14n or fewer steps.

Note that we have bounded the delay of a packet in each phase by assuming
it is delayed only by packets executing that phase. To avoid packets in Phase
1 delaying packets in Phase 2 and vice versa, rather than allow Phases 1 and
2 to proceed unchecked for the various packets, we make packets wait at their
intermediate destinations until 7n steps have elapsed before beginning their
Phase 2 travel.

An interesting feature of this scheme is that the distribution of the number
of steps to completion is insensitive to the instance to be routed. Indeed, it is
likely to take as long to route the identity permutation as any other "hard"
permutation!

Exercise 4.6: Show that the expected number of steps within which all packets are
delivered is less than 15n.

Comparing the performance of the randomized algorithm with the negative
result of Theorem 4.4, we find that our randomized oblivious algorithm is prov
ably better in that it achieves an expected running time that no deterministic

78

4.3 A WIRING PROBLEM

oblivious algorithm can achieve. In fact, any deterministic oblivious algorithm
must have performance exponentially worse than that of our randomized obliv
ious algorithm.

4.3. A Wiring Problem

We now consider another application of the Chernoff bound. The problem is
that of global wiring in gate-arrays. A gate-array is a two-dimensional Jiz x Jiz
array of gates abutting each other, arranged at regularly spaced points in the
plane. The gates are numbered from 1 through n. A logic circuit is implemented
on such an array by connecting together some of the gates using wires. A
net is a set of gates to be connected by a wire. Wires run over the °array
in "Manhattan" form, i.e., they run parallel to the axes of orientation of the
gate-array. In Figure 4.1, n is 9, and we have 4 wires each of which connects
a pair of gates. Each gate is represented as a square with thin lines defining
the boundaries. Each net connects a pair of gates, and has the same number
marking its end-points (i.e., the thick lines 1-1, 2-2, 3-3, and 4-4). Note that in
some cases a gate contains the end-point of more than one net.

The wiring problem is the following: we are given a set of nets, each of which
is a set of gates to be connected together (to form one electrical connection).
Here we consider only the simplest case, where each net consists of two gates
to be joined by a wire. We wish to specify for each net a physical path between
the two gates in the net, subject to space constraints.

In practice, the wiring problem is usually accomplished in two sequential
phases: global wiring and detailed wiring. In the global wiring phase, we only
specify which gates a wire will pass over in connecting its end-points. Thus, in
Figure 4.1, the global route for net 4-4 passes through the three gates in the
right-most column of the array. This is followed by the detailed wiring phase,
in which the exact positions of the wires along their routes are specified - in
our example, we would specify that the wire for net 4-4 lies to the right of the
wire for net 3-3 as it leaves the top-right gate, and so on. Here we only concern
ourselves with the global wiring phase.

The boundary between adjacent gates in an array has a fixed physical dimen
sion and can therefore accommodate only a prescribed maximum number of
wires, say w. We wish to find an assignment of global routes to all the nets in
the wiring problem, such that no more than w nets pass through any boundary.
In Figure 4.1, the set of routes we have indicated is a feasible solution provided
w is at least 2. It is not hard to see that in this instance, we cannot find a feasible
global wiring of the wires if w were only 1 - four wires must leave the top row
of gates, and we have only three boundaries through which they must all pass.

We will solve a somewhat harder optimization problem instead of the fea
sibility problem - for a boundary b between two gates in the array, let ws(b)
denote the number of wires that pass through b in a solution S to the global
wiring problem. Let Ws = maXb ws(b) be the maximum number of wires through

79

TAIL INEQUALITIES

1 2 3 4

3

1
10.-f-42

4

Figure 4.1: A gate-array with 9 gates.

any boundary in the solution S. If we can minimize ws, we can surely decide
the feasibility problem.

As a further simplification in our presentation, we assume that the global
route for each net contains at most one 900 turn; we refer to such a route as
a "one-bend" route. Thus, in joining the two end-points of a net, the wire will
either first traverse the horizontal dimension and then the vertical dimension,
or the other way around. In Figure 4.1, every net has been routed under this
restrictitm. For net 4-4, which connects two gates in the same column of the
array, we have only one choice under our restricted class of routes - to go right
down the column; the reader should verify that the existence of such nets does
not affect the following analysis. Our problem now becomes one of deciding,
for each net, which of the two options to use.

This can be cast as a zero-one linear program as follows. For net i, we use
two variables XiO and XiI to indicate which one of the two routes will be used
for it. Thus, XiO would be 1 if we chose .the route that goes horizontally first,
starting from the left end-point of net i, and 0 otherwise. For XiI we adopt the
opposite convention. In Figure 4.1, XIO = 0 and Xll = 1, whereas X30 = 1 and
X3I = O. For each boundary b in the array, let

TbO = {i I net i passes through b if XiO = I}

and

Tbi = {i I net i passes through b if XiI = I}.

With these definitions, our integer program can be expressed as:

minimize W

where XiO, XiI E {O, I} (V nets i) (4.14)

subject to

XiO + X/l = 1 (V nets i) (4.15)

80

4.3 A WIRING PROBLEM

L XiO + L Xii ~ w (V boundaries b). (4.16)
iETbO iETM

The constraint (4.15) ensures that a unique route is specified for every net.
The constraint (4.16) specifies that at most w wires pass through any boundary
b. The objective function seeks a solution of minimum w, with the zero-one
constraint imposed. The optimum solution to this zero-one integer program
gives the minimum Ws among the class of solutions allowing only one-bend
routes. In general, allowing a less restrictive set of routes could result in a
solution with a lower Ws.

Denote by Wo the value of the objective w in the optimum solution to (4.14-
4.16). The general problem of zero-one linear programming is NP-hard, and
in fact even the particular class of zero-one linear programs (4.14-4.16) -arising
from our global wiring problem is known to be NP-hard (i.e., our global wiring
problem is NP-hard). Thus we do not hope to compute Wo efficiently.

We solve instead the linear program relaxation of (4.14-4.16). This is a linear
program in which the integrality constraint in (4.14) is replaced by the constraints
XiO, Xii E [0,1] for each i. In other words, we allow the XiO and Xii to assume
real values between 0 and 1. This is a linear programming problem, and we
know of several efficient methods for solving it (see Chapter 9.10). Let XiO and
Xii, for 1 < i < n, be the solutions provided by the linear program, and let w
be the value of the objective function for this solution. Since the linear program
is a relaxation of (4.14-4.16), it is clear that Wo > w. The XiO'S and Xii'S may
be fractional values, and therefore may not constitute a feasible solution to our
integer program. We must therefore "round" these fractional values to O's and
l's to obtain a feasible global wiring; in doing so, we hope not to allow the
objective w to drift too far from woo

We now describe a technique known as randomized rounding that rounds these
fractional values to O's and l's. It finds a global wiring S with Ws provably not
much larger than W, and thus woo Note that the fractional solutions XiO and Xii
still satisfy the other constraints of the original integer program; in particular,
XiO + Xii = 1 for each i. We will denote by XiQ the rounded value of XiO, and
define Xii similarly.

Randomized rounding is the following process: independently for each i, set
XiO to 1 and Xii to 0 with probability XiO; otherwise set XiO to 0 and Xii to 1.
Thus, for each i, Pr[XiO = 1] = XiQ and Pr[xil = 1] = Xii' The idea of randomized
rounding is to interpret the fractional solutions provided by the linear program
as probabilities for the rounding process. Another interpretation is to imagine
that the linear program, given the choice of two routes for wiring each net,
routes the wire using two "fractional wires." Randomized rounding then picks
one of these fractional wires, in proportion to its fraction. A nice property of
randomized rounding is that if the fractional value of a variable is close to 0 (or
1), it is likely to be set to 0 (or 1).

Theorem 4.8: Let E be a real number such that 0 < E < 1. Then with probability

81

TAIL INEQUALITIES

1 - E, the global wiring S produced by randomized rounding satisfies

Ws < w(l + A+(~',E/2n)) ~ wo(1 + A+(wo,E/2n)).

PROOF: We establish that following the rounding process, with probability at
least 1 - E, no boundary in the array has more than w(l + A+(w,E/2n)) wires
passing through it. We will do so by showing that for any particular boundary
b, the probability that ws(b) > w(1 + A+(w,E/2n)) is at most E/2n; then, since a
.In x .In array contains fewer than 2n boundaries, we can sum this probability
of failure over all the boundaries b to get an upper bound of E on the failure
probability.

Consider a boundary b; since the solutions of the linear program satisfy its
constraints, we have

L XiO + L XiI ~ w.
iETbO iETbl

The number of wires passing through b in the solution S is

ws(b) = L XiO + LXiI.
iETbO iETbl

(4.17)

(4.18)

But XiO and XiI are Poisson trials with probabilities XiO and XiI, respectively.
Further, XiO and XiI are each independent of XjO and XjI for i =1= j. Therefore,
ws(b) is the sum of independent Poisson trials and, by (4.17) and (4.18),

E[ws(b)) = L E[XiO) + L E[XiI] = L XiO + LXiI :::;;; W.
iETbO

Now, by the definition of A+(JL,E) in (4.7),

Pr[ws(b) > w(l + A+(w,E/2n)] < E/2n,

and the theorem follows. o
Neither the theorem nor its proof makes any assumption on the value of E

- it can in fact be o(1), even n-C for some constant c. Let us return to the
guarantee provided by Theorem 4.8; how good is it? The answer depends on
the value of woo Suppose we seek E = l/n, so that E/2n = 1/2n2• Then Ws <
wo(1 + A+(wo,E/2n)).

Consider first the case where Wo = n"l, for some positive constant y. We can
use Theorem 4.3 to show that with probability 1 - E,

Ws < n' (1+ 41nn~/E).

Thus, we find a solution with an additive term that is vanishingly small as n
grows. Suppose, on the other hand, that Wo = 20. In this case, a calculation sim
ilar to that in Example 4.4 shows that Ws is O((log n) / log log n) with probability
1- l/n. Randomized rounding is likely to perform well provided Wo is "not too
small," and this appears to be the case in practice. When Wo is small (as in the

82

« MARTINGALES

latter case), we can in fact do substantially better than the O((log n)j log log n)
guarantee provided by randomized rounding, as Exercise 4.7 below illustrates.

Exercise 4.7: Give a simple rounding procedure that obtains rounded solutions x
from x so that Ws ~ 2wo. where Wo is the optimum solution for our restricted class
of one-bend routes.

We have focused on the quality of the solution produced in the probabilistic
statement of Theorem 4.8. Our algorithm can be shown to run in time polynomial
in the number of gates and nets in the instance. This is an example w~ere we
are interested in random variables other than running time of a randomized
algorithm.

4.4. Martingales

Our discussion so far has centered on the sums of independent random variables.
Frequently, it is necessary to consider the sum of random variables that are not
totally independent. When relatively little knowledge of the random variables is
available, we may resort to the Markov inequality or the Chebyshev inequality;
in such cases, we cannot hope to show that a random variable is sharply
concentrated about its expectation. There are, however, cases in which we can
exploit additional structure in the random variables. An important case of
such additional structure is that of martingales. (The material in this section,
although useful, is not an essential prerequisite for subsequent chapters and may
be omitted.)

Martingales originally referred to systems of betting in which a player in
creased his stake (usually by doubling) each time he lost a bet. Assuming
unlimited capital, this system is guaranteed to eventually result in a net profit
in any fair betting game; in the case of limited capital, it will eventually lead
to net profit or total bankruptcy. It is no wonder that such systems have been
outlawed in most casinos! Here we are interested in a far more general def
inition of martingales, which has proved to be very useful in showing that a
random variable is sharply concentrated about its expectation. The following
exposition concentrates on discrete martingales, as the continuous case seldom
arises in computer science applications. The definition of martingales requires
some exposure to the measure-theoretic underpinnings of probability theory,
and we recommend a review of the material in Appendix C.

We begin by defining conditional distributions and expectations. Let X be a
random variable and & any event that occurs with a non-zero probability. The
conditional density function of X given & is given by Pr[X = x I &]. In particular,
& can be the event that some other random variable Y takes on a specific value

83

TAIL INEQUALITIES

y. Denoting the joint density function of X and Y by p(x, y), we have

and

Pr[X = x I Y =] = p(x,y) _ p(x,y)
y Pr[Y=y] LxP(x,y)

E[X I Y =y] = LxxP(x,y),
LxP(x,y)

where E[X I Y = y] is the conditional expectation of X given that Y equals y.
These definitions apply only for the values y for which Pr[Y = y] > o.

We can express the conditional expectation as a function of y, say f(y). If
the value of Y is not known, then the conditional expectation is itself a random
variable. This is the random variable f(Y).

~ Definition 4.4: The random variable E [X I Y) is defined to be the random
variable f(Y) such that f(y) = E[X I Y = y).

Suppose that the random variables X and Yare defined over the probability
space (O,F',Pr). Consider the partition of 0 into the events {Y = y} as y ranges
over the subset of reals in which Pr[Y = y] > O. The function f(y) is the average
value of X over the various elementary events in the set {Y = y}. The random
variable E [X I Y] takes on the value f(y) when evaluated at some elementary
outcome ()) E {Y = y}. We can generalize this to define the random variable
E [X I Yl, ... , Yr].

~ Example 4.6: Consider independent throws of an unbiased 6-sided die. For
1 :::;;;. i ~ 6, let Xi denote the number of times the value i appears in n throws of
the die. Consider the following conditional expectations:

These equations define the expected value of the random variable Xl given the
number of times 2 and 3 appear. Of course, the number of occurrences of 2 and
3 are themselves random variables, and so the expectation of Xl is a random
variable defined as a function of X2 and X 3.

If we knew that there are ex occurrences of 2, we can compute the expected
value of Xl as (n-ex)/5; given the further information that there are p occurrences
of 3, we can compute the expected value of Xl as (n - ex - P)/4. More succinctly,

n-ex
- -5-'

n-ex-p
4

We leave both the proofs of the following lemmas and their generalization to
random variables such as E [X I YI , ... , Yr] as an exercise.

84

« MARTINGALES

Lemma 4.9: E[E [X I Y]] = E[X].

Lemma 4.10: E[Y x E [X I Y]] = E[XY].

4.4.1. A Simple Definition

We start with a simplified definition of a martingale. No assumptions are made
about the independence or the precise distributions of the random variables in
this definition. In fact, this is just the reason why martingales are so powerful!

~ Definition 4.5: A sequence of random variables Xo, XI. .. , is said to be a
martingale sequence if for all i > 0,

E [Xi I Xo, ... ,Xi-tl = Xi-I.

Consider the example of a gambler who makes a sequence of bets. Her initial
capital is Xo, and Xi represents the capital after the ith bet. Assume that the
game is fair, so that the expected gain/loss from each bet is zero. We can
then claim that the sequence Xo, XI, '" forms a martingale. This is without
the knowledge of the gambler's strategy; the gambler bets an arbitrary amount
of money each time, and the amount bet may depend in any way upon the
history (i.e., the previous results Xo, X I, ... , Xi-I). The following lemma is an
immediate consequence of Definition 4.5 and Lemma 4.9; it implies that the
expected capital at any stage is exactly the initial amount Xo.

Lemma 4.11: Let Xo, Xl, ... be a martingale sequence. Then, for all i > 0,
E[X;] = E[Xo].

An alternate view of the gambling example is provided by letting the random
variable Yj denote the net gain or loss from the ith bet. We can relate the
sequences Xo, XI. ... and Yt. Y2, ••• as follows: Yj = Xi - Xj- l and Xj =
Xo + E~""l Yj • By fairness, regardless of the past history, the expected gain from
each bet is zero, i.e., E [Yj I Yt. ... , Yj-tl = 0. Since the two views of the process
are exactly equivalent, we make an alternate definition of a martingale.

~ Definition 4.6: A sequence of random variables Yt. Y:, ... is said to be a
martingale difference sequence if for all i > 1,

E [Yi I YI. ... , Yj-tl = o.

Of course, in a casino the games are known to be unfair to the gamblers. In
that case, the sequence of capitals forms what is known as a super-martingale;
from the point of view the casino, the situation is represented by what is called
a sub-martingale.

85

TAIL INEQUALITIES

~ Definition 4.7: A sequence of random variables Xo, XI. .,. is said to be a
super-martingale if for all i,

E [Xi I Xo,.·· ,Xi-tl < Xi-I.

It is called a sub-martingale if for all i,

E [Xi I Xo, ... ,Xi-tl > Xi-I.

This definition can be adapted to a martingale difference sequence. Moreover,
a super-martingale can be converted into a martingale by accounting for the
expectation at each stage. In the case of a gambler playing an unfair game,
suppose that the expected return on a bet of value 1 is the amount 1-J1. Assume
that the gambler bets one dollar each time and gets a return of Yi ; let Xi be her
net capital after the ith bet. Then the sequence Zo, Z 1. ••• forms a martingale,
where

i

Zi II X i +iJ1=Xo+ L(Yj +J1-1).
j-l

A similar conversion can be performed for the sub-martingale corresponding to
the casino's viewpoint.

Exercise 4.8 (Polya'. Urn Scheme): Consider an urn that initially contains b black
balls and w white balls. We perform a sequence of random selections from this urn,
where at each step the chosen ball is replaced by c balls of the same color. Let Xi
denote the fraction of black balls in the urn after the ith trial. Show that the sequence
Xo, X1 , '" is a martingale.

Exercise 4.9 (Occupancy Problem): Suppose that m balls are thrown independently
and uniformly at random into n bins. Let Z denote the number of bins that remain
empty. Define time t to be the time at which exactly t balls have been thrown into
the bins. For 0 s: t s: m, define the random variable Z, to be the expectation at time
t of the number of bins that are empty at time m. The random variable Z, depends
on the placement of the first t balls, and is defined under the assumption that the
remaining balls are placed at random. Show that the sequence of random variables
Zo, ...• Zm is a martingale, and that Zo = E[Z] and Zm = Z.

Given our current description of a martingale, the latter exercise is non-trivial.
In Section 4.4.2, we will develop a more general view of martingales that will
reduce this exercise to a triviality.

4.4.2. A General Definition

Let us return to the example of the gambler discussed at the beginning of
Section 4.4.1. Recall that Xl represents the gambler'S capital at time t, i.e., after
t bets have been placed. We observed that this sequence forms a martingale,
and that E [Xi I Xo, ... , Xi- tl = Xi-I. We would like to claim that this captures

86

4.A MARTINGALES

the fairness of the game in that. irrespective of the history and the gambler's
strategy, the expected gain from each bet is exactly O. However, this definition
only says that the knowledge of the amounts won or lost in past bets does not
help to predict the future. But what about other past information such as the
exact set of cards dealt to various people, or the number of times a particular
color or number shows up on the roulette table?

Specifically, suppose the gambler is playing roulette, and denote by Zi the
outcome on the roulette table during the ith bet; this random variable includes
all information about the happenings on the roulette table, and not just the
amount won or lost by this specific gambler. The gambler knows the value of Zi
and makes use of this knowledge in placing future bets. For example, if ZI, ... ,
Zi indicate that the outcome on the table was always a red number, the gambler
might then choose to bet on one of the red numbers the next time around. It is
intuitively obvious that even this more refined knowledge of the past cannot help
the gambler in the future, but the current definition of a martingale does not
cater to the full generality of this intuition. The problem is that the conditioning
is based on the amount of money lost or gained by the gambler from each bet,
rather than the actual outcomes on the table. We would like a definition which
gIves

E [Xi ZO, ... ,Zi-tl = Xi-I.

In fact, some authors define the notion of a martingale sequence Xo, XI. ... with
respect to a second sequence of random variables Zo, Z I, ... using precisely this
equation.

Recall the definition of au-field (0, F) from Appendix C. In particular, we
will consider only the probability spaces where the sample space n is a finite set
and F = 2° contains all possible events in this sample space. Typically, we will
assume that n is clear from the context and refer to F itself as au-field.

~ Definition 4.8: Given the u-field (o,F) with F = 2°, a filter (sometimes also
called afiltration) is a nested sequence Fo ~ FI ~ ... ~ Fn of subsets of 2° such
that

1. Fo = {0,n}

2. Fn = 2°

3. for 0 ~ i ~ n, (0, F i) is au-field

Let & I, &2, ... be any collection of events over the sample space n. The u-field
generated by these events is the minimal collection of subsets F that contains (/)
and each of &1. &2, ... , and is closed under complement and union. If &1. &2,'"
are disjoint events that partition 0, then an event is in the generated u-field F if
and only if it can be expressed as the union of some subset of the events &1, &2,
... ; we refer to the events &1. &: •... as the elementary events in the u-field F.

An intuitive view of Definition 4.8 can now be obtained by associating with
each F t a partition of n into blocks B~, B~, ... such that the events B; generate

87

TAIL INEQUALITIES

the O'-field 1Fj • Furthermore, the partition associated with 1Fj+1 is a refinement
of the partition associated with 1Fj, and 1Fo is generated by the trivial partition
while 1Fn is generated by the partition of Q into the singleton sets containing the
sample points.

~ Example 4.7: Consider a randomized algorithm A that uses a total ofn random
bits. The elementary events in the underlying sample space Q are all possible 2n

choices of the n bits. For ° < i < nand w E {a, 1 }i, let Bw denote the event that
the first i random bits equal the bit string w. Let 1Fi be the O'-field generated by
the partition of Q into the blocks Bw, for w E {a, 1 Y Then the sequence 1Fo, FJ,
... , 1Fn forms a filter. In the O'-field 1Fi, the only valid events are the ones that
depend on the values of the first i bits, and all such events are valid therein.

Recall that a random variable X over a probability space (Q, 1F, Pr) can be
viewed as a function X: Q -+ R. In other words, given a sample OJ E Q, the
random variable takes on the value X(OJ). Given a filter 1Fo, ... , 1Fn with respect
to this probability space, it is not clear that we can define the distribution of
X relative to an arbitrary 1Fj • This is because events of the type {X = x} or
{X ~ x} may not exist in 1Fj , although they will always be contained in the set
1Fn = 1F. We formalize this as follows.

~ Definition 4.9: A random variable X is said to be Fj-measurable if for each
x E R, the event {X < x} is contained in 1Fi•

Since we are dealing only with the discrete case, the above definition could
be made using the events {X = x} rather than {X < x}.

~ Example 4.8: Continuing with Example 4.7, consider the random variable X
which is the parity of the n random bits used by algorithm A Clearly, X is
1Fj-measurable only for i == n. On the other hand, let Yj denote the number of
·ones in the first j random bits; then Yj is 1Fi-measurable for all i > j.

In general, a random variable X is 1Fi-measurable if its value is constant
over each block in the partition generating 1Fj • Since the partitions generating
the O'-fields in a filter are successively more refined, it follows that if X is
1Fi-measurable, it is also 1Fr measurable for all j > i.

Suppose now that X is 1Fj -measurable. What can we say about X with respect
to the O'-field 1Fi- 1 ? An elementary event B in 1Fi- 1 is a block from its partition
of Q, and this is the union of some blocks B1, ... , Br from the refined partition
generating 1Fj • Viewing X as a function over Q, we know that X is constant
over each of the blocks Bj , but is not necessarily so over B. However, the
expected value of X is well-defined (and constant) over B. Thus, we can define
E [X l1Fi- 1] as the expected value of X conditioned on the events in 1Fi- 1. This
conditional expectation is a random variable that can be viewed as a function
into the reals from the blocks in the partition of 1Fj - 1• Moreover, this random

88

4.4 MARTINGALES

variable is a constant if X is also 1Fi_ I-measurable. The converse is not always
true; for example, when X is independent of the elementary events in 1Fi- 1, then
E [X l1Fi-d may be constant even though X is not 1Fi_I-measurable.

There is nothing special about working with 1Fi- 1 in this discussion, and we
can similarly define E [X l1Fj] for any j. The following is a general definition of
conditional expectations.

~ Definition 4.10: Let (Q, F) be any O'-field, and Y any random variable that takes
on distinct values on the elementary events in F. Then E [X IF'] = E [X I Y].

Notice that the conditional expectation E [X i Y] does not really depend on
the precise value of Y on a specific elementary event. In fact, Y is merely an
indicator of the elementary events in 1F. Conversely, we can write E [X 1 Y] =

E [X I 0'(Y)], where 0'(Y) is the O'-field generated by the events of the type
{Y = y}, i.e., the smallest O'-field over which Y is measurable.

~ Example 4.9: Consider the sample space Q of all Americans, and let X be
the random variable denoting the weight of a randomly chosen sample point.
Consider the following filter with respect to Q: Fo is the trivial O'-field; FI is the.
O'-field generated by the partition of Q into males and females; F2 is the O'-field
generated by the refinement of the previous partition into sets corresponding to
different heights; F3 is the further refinement of the partition based on age; and,
F4 is the partition into singleton sets, each of which corresponds to an individual
American.

Define Xi = E [X I F i], for 0 < i < 4. Then Xo = E[X] denotes the average
weight of an American, Xl is the average weight of Americans as a function of
their sex, X2 is the average weight of Americans as a function of their sex and
height, and X3 is the average weight of Americans as a function of their sex,
height and age. Of course, X4 = X is the original random variable.

The "randomness" in these random variables results from the fact that a
random American does not have a predetermined sex, weight, or age. For
example, the sex of a random American is a random variable, and Xl is a
function of this random variable. Once the sex is known, the value of Xl is
completely determined.

~ Example 4.10: Going back to Example 4.7, let T be the running time of the
algorithm A on a specific input I. Clearly, T is a random variable whose value
depends upon the specific values of the random bits used by A. Observe that T
is Fn-measurable, but in general is not Fi-measurable for any i < n.

Define the conditional expectation Ti = E [T I FJ Verify that To = E[T]
and that Tn = T. Also, Ti is a function of the values of the first i random bits
denoting the expected running time for a random choice of the remaining n - i
bits. Given the value of the first i random bits, we may evaluate this random
variable and obtain a constant. In fact, as will become clear shortly, the sequence
To, ... , Tn is a martingale.

89

TAIL INEQUALITIES

We are now ready to give the more general definition of martingales.

~ Definition 4.11: Let (0, F, Pr) be a probability space with a filter Fo, Fl
Suppose that Xo, XI. ... are random variables such that for all i > 0, Xi is
Fi-measurable. The sequence Xo, ... , Xn is a martingale provided, for all i > 0,

As before, we can define martingale difference sequences using Yi = Xi - Xi-I.
and requiring that E [Yi+1 IFi] = O. We leave it as an exercise to verify that the
definitions of Section 4.4.1 are special cases of Definition 4.11.

Suppose that Xo, XI. ... is a martingale. Then it is intuitively clear that the
sequence Xo, X 2, X4, ••• is also a martingale. This can be proved rigorously
using the definition given above. The following theorem gives a general form of
this result and the proof is left as Problem 4.18.

Theorem 4.12: Any subsequence of a martingale is also a martingale (relative to
the corresponding subsequence of the underlying filter).

The following theorem gives us a way to construct a martingale sequence
from any random variable. Martingales obtained in this manner are sometimes
referred to as Doob martingales.

Theorem 4.13: Let (0, F, Pr) be a probability space, and let F o, ... , Fn be a
filter with respect to it. Let X be any random variable over this probability space
and define Xi = E [X I Fi]. Then, the sequence Xo, ... , Xn is a martingale.

The proof of this theorem is based on the following lemma, and these proofs
are posed as Problems 4.19 and 4.20.

Lemma 4.14: Let (0, F) and (0, eG) be two (1-.fields such that F c eG. Then, for
any random variable X, E [E [X I eG] I Fl = E [X I Fl·

~ Example 4.11: Consider again the occupancy problem discussed in Exercise 4.9.
There is an underlying filter Fo, ... , Fn where F t is the (1-field generated by the
events corresponding to the placement of the first t balls. It then follows that
the random variable Zt equals E [Z IF,], and that the sequence Zo, ... , Zm is a
martingale.

~ Example 4.12 (Edge Exposure Martingale): Let G be a random graph on
the vertex set V = {I, ... , n} obtained by independently choosing to include each
possible edge with probability p. The underlying probability space is called Qn.p.
Arbitrarily label the m = n(n - 1)/2 possible edges with the sequence 1, ... , m.
For 1 < j < m, define the indicator random variable I j , which takes value 1 if

90

4.4 MARTINGALES

edge j is present in G, and has value 0 otherwise. These indicator variables are
independent and each takes value 1 with probability p.

Consider any real-valued function F defined over the space of all graphs, e.g.,
the clique number, which is defined as being the size of the largest complete
subgraph. The edge exposure martingale is defined to be the sequence of random
variables Xo, ... , Xm such that

while Xo == E[F(G)] and Xm == F(G). The fact that this sequence of random
variables is a (Doob) martingale is easy to verify - simply define the filter where
Fk is the O'-field generated by the events corresponding to I}, ... , Ik.

Exercise 4.10 (Vertex Exposure Martingale): In the same setting as in Example 4.12,
we define a vertex exposure martingale as follows. For 1 S; f S; n, let E; be the set
of all possible edges with both end-points in {1, ... , f}. Define Y; as the (conditional)
expectation of F(G), conditioned by the knowledge of the indicator variables 1/ for all
j E E;. Show that the sequence Yo == E[F(G)), Yb ... , Yn forms a martingale.

At this point it is useful to review the intuition behind the above series of
definitions. Recall the sequence To, T}, ... , Tn of conditional expectations of
the running times defined in Example 4.10. This is a Doob martingale. We view
the O'-field sequence 1Fo, ... , 1Fn as representing the evolution of the algorithm,
with each successive O'-field providing more information about the behavior of
the algorithm (this information is determined by the values of the random bits
given a fixed input). The random variables To, ... , Tn represent the changing
expectation of the running time as more information is revealed about the choice
of the random bits. As we will see in the next section, if it can be shown that the
absolute difference I Ti - Ti-11 is suitably bounded, then the random variable Tn
behaves like To in the limit. In other words, the running time of the algorithm
is sharply concentrated around its expected value provided that the choice of
each individual random bit does not influence the behavior of the algorithm
too dramatically. Similar arguments applied to the edge or vertex exposure
martingales allow us to conclude that the value of a graph-theoretic function
applied to a random graph is sharply concentrated around its expected value.

4.4.3. Martingale Tail Inequalities

In this section we present some inequalities for martingales that are reminiscent
of the inequalities seen earlier for independent random variables. The reader
may find it instructive to adapt these inequalities to the case of martingale
difference sequences. The first inequality bears a resemblance to the Markov
inequality.

91

TAIL INEQUALITIES

Theorem 4.15 (Kolmogorov-Doob Inequality): Let Xo. Xl be a martingale.
Then. for any A > O.

The next bound is similar to the Chernoff bound for the sum of Poisson
trials. Notice that Xo equals E[X] in the case of a Doob martingale obtained
from a random variable X, and so the following gives an exponentially small
tail bound for X. It should also be noted that the tail bound does not require
any knowledge of the expectation of X.

Theorem 4.16 (Azuma's Inequality): Let Xo. XJ, ... be a martingale sequence
such that for each k.

where Ck may depend on k. Then. for all t > 0 and any A > O.

Pr[IXt - Xol > A] < 2exp (- L:~2 2)'
2 k=l ck

I t is easy to see the connection between this bound and the Chernoff bound
for the sum of Poisson trials. Let Zh ... , Zn be independent variables that take
values 0 or 1 each with probability 1/2. The random variable S = L:~l Zi has
the binomial distribution with parameters nand p = 1/2. Define a martingale
sequence Xo, XI. ... , Xn by setting Xo = E[S], and, for 1 < i < n, Xi =
E [S I Zh ... ,ZtJ. It is clear that for 1 < i < n, IXi - Xi-II < 1, since fixing the
value of anyone variable Zi can only affect the expected value of the sum S by
at most 1..1t follows that the probability that S deviates from its expected value
Xo = E[S] = n /2 by more than A is bounded by 2 exp(- A 2 /2n), a slightly weaker
result than can be inferred from the Chernoff bound for binomial distributions.

The following is a useful corollary.

Corollary 4.17: Let Xo. Xl be a martingale sequence such that for each k.

where c is independent of k. Then. for all t > 0 and any A > O.

Pr[lXt - Xol > ACy't] < 2e-).2/2.

The application of Azuma's inequality is sometimes called "the method of
bounded differences." In applying this method to a martingale sequence, it is
essential to set up the martingale in such a way as to guarantee the "bounded
difference" property. We identify a general situation where this property is easily
obtained.

92

4.4 MARTINGALES

~ Definition 4.12: Let f : VI x ... x V,. - R be a real-valued function with n
arguments from possibly distinct domains. The function f is said to satisfy the
Lipschitz condition if for any Xl E VI, ... , Xn E V,., any i E {I, ... , n}, and any
YiEVi,

Basically, a function satisfies the Lipschitz condition if an arbitrary change
in the value of anyone argument does not change the value of the function
by more than 1. Suppose we have a sequence of random variables X}, ... , X n,

and a function f(X}, ... ,Xn) defined over them such that f satisfies the Lipschitz
condition. Define the Doob martingale sequence Yo, Y}, ... , Yn by setting
Yo = E[f(XJ, ... ,Xn)] and, for 1 < i < n, Yi = E [f(X}, ... ,Xn) I X}, ... ,Xa,
It is easy to verify that the Lipschitz condition implies that for 1 < i < n,
I Yi - Yi-II < 1. We can now employ the method of bounded differences. Of
course, there is no particular reason to restrict the Lipschitz condition to absolute
differences of 1, and we can appropriately generalize the definition to permit the
exploitation of Azuma's inequality in its full generality.

The following exercise illustrates the power of the method of bounded differ
ences.

Exercise 4.11: A legal coloring of a graph G with vertex set V = {1, ... ,n} is an
assignment of colors (say, positive integers) to the vertices of the graph such that
no two adjacent vertices receive the same color; the chromatic number of the
graph G, denoted X(G), is the minimum number of distinct colors needed for this
purpose.

Consider a random graph G as defined in Example 4.12. Using the vertex exposure
martingale from Exercise 4.10, employ the method of bounded differences to show
that

Pr[lX(G) - E[X(G)11 > A.ji71 ;5; 2 exp(-A 2 /2).

Note that you will have to model the chromatic number as a function of n argu
ments, where the ith argument specifies the neighbors of vertex i from among
the vertices {1, ... ,i - 1}, and then show that this satisfies the Lipschitz condition.

It may seem a bit surprising at first that such a sharp concentration result can
be proved without even determining the expected value, but such is the power
of martingale arguments.

4.4.4. Occupancy Revisited

We return to the occupancy problem and apply the martingale tail inequalities
to it. We have m balls thrown independently and uniformly into n bins. Let Z
denote the number of bins that remain empty. Our goal is to prove a sharp
concentration result for Z.

93

TAIL INEQUALITIES

Consider first the following easy application of the Lipschitz condition and
the method of bounded differences. For 1 < i < m, let the random variable Xi
denote the bin chosen for the ith ball. We can view Z as a function F(XI , ... , Xm)·
It is easy to verify that this function satisfies the Lipschitz condition since moving
any ball from one bin to another can change the number of empty bins by at
most 1.

Exercise 4.12: Based on the Lipschitz condition deduced in the preceding paragraph.
apply Corollary 4.17 to obtain that the probability that Z deviates from its expected
value by more than A is bounded by 2exp(-A2/2m).

However, exploiting the full generality of Azuma's inequality allows us to
derive a significantly stronger result for the case where m> n.

Theorem 4.18: Let r = mIn. and Z be the number of empty bins when m balls
are thrown randomly into n bins. Then.

p = E[Z] = n (1 _ ~) m '" ne-r

and for A > O.

(
A2(n - 1/2»)

Pr[lZ - pi ~ A] < 2 exp n2 _ p2 .

PROOF: The expected number of empty bins is studied in Problem 3.1. We
concentrate here on proving the tail bound. Let time t refer to the point at
which the first t balls have been thrown. Let 1F, be the O"-field generated by the
random choice of bins for the first t balls, i.e., the events corresponding to the
state of the bins at time t. Let Z be the random variable denoting the number of
empty bins at time m, and let Z, = E[Z 11F,] denote the conditional expectation
of Z at time t. The random variables Zo, Zh ... , Zn form a martingale, with
Zo = E[Z] and Zm = Z.

Define z(Y, t) as the expectation of Z given that Y bins are empty at time
t. The probability that any of these bins does not receive a ball during the last
m - t time units is given by (1 - l/n)m-,. By linearity of expectations, we obtain
that the number of these bins that remain empty at the end is given by

z(Y, t) - E[Z I Y bins are empty at time t]

(
l)m-,

= Y 1-;;

Let the random variable Y, denote the number of empty bins at time t. Then,

(l)m-t+1
Z,_I = Z(Y,-h t - 1) = Y,_I 1 - ;;

Suppose we are at time t - 1 (i.e., in the O"-field 1F,_I.), so that the values of Y,_I
and Z,_I are determined. At time t, there are two possibilities:

,
94

4. .. MARTINGALES

1. With probability 1- Yt- I In, the tth ball goes into a currently non-empty bin.
Then, Yt = Yt- h and

(
l)m-t

Zt = z(Y"t) = z(Yt-ht) = Yr-l 1- 11

2. With probability Yt-I!n, the tth ball goes into a currently empty bin. Then,
Yt = Yt- 1 - 1, and

(
l)m-t

Zt = z(Y" t) = z(Yt- 1 - 1, t) = (YX-l - 1) 1 - 11

Let us now focus on the difference random variable L\t = Zt - Zt-l. Cor
responding to Zt, the distribution of L\t (given the state at time t - 1) can be
characterized as follows.

1. With probability 1 - Yt-I!n, the value of A, is

<50 =

_ Y;1 (1 _ ~) m-t

2. With probability Yt-I!n, the value of At is

(
l)m-t (l)m-t+l

(Yt - 1 - 1) 1 - 11 - l"r-l 1 - 11

(
1) m-t ((1)) (1) m-t - Yt- 1 1 - 11 1 - 1 - 11 - 1 - 11

_ _ (1- Y;I) (1 _~) m-I

Observing that 0 < Yt- 1 < n, it follows that the value of the difference is
bounded as follows:

(1) m-t (1) m-t
- 1 - 11 < L\t < 1 - 11

For 1 < i < m, we set Ct = (1 - ~t-t, and we have that IZt - Zt-ll < Ct. By a
straightforward calculation,

m 1 - (1 - I/n)2m 112 - p2

L C~ = 1 - (1 - 1 I n)2 = 2n - 1 .
t=1

Invoking Azuma's inequality now gives the desired result.

For large r, this tail bound is asymptotically equal to

2exp (-A,2/[n(1- e-2r
)]).

95

o

TAIL INEQUALITIES

Compare this with a heuristic tail bound that can be obtained by using the fact
that the distribution of Z approaches the normal distribution in the limit.

Pr[IZ - III ~ A,] ::; 2 exp (_A,2er j[2n(1 - e-r)1) .

Notes

The general ideas behind the use of probability tail bounds derived from the moment
generating function were presented by Chernoff [93]. The idea of using the moment
generating function to derive tail bounds is generally attributed to S. N. Bernstein [357].
The proof of Theorem 4.3 may be found in Raghavan's thesis [350]. Hoeffding [202] gives
a similar bound that is insignificant unless J.L~ ::> n - J.L(1 + ~). An alternative approach to
proving these bounds in the setting of k-wise independent random variables is developed
by Schmidt, Siegel, and Srinivasan [363]; they also provide general techniques for
inferring Chernoff tail bounds for the sums of certain other types of correlated random
variables. Janson [209] gives strong Chernoff-type bounds for the tail probabilites of the
sum of Bernoulli variables that are either independent or negatively correlated. Hagerup
and RUb [189] give a detailed survey of Chernoff bounds on the tail of the binomial
distribution.

Lower bounds on deterministic oblivious permutation routing such as Theorem 4.4
stemmed from work of Borodin and Hopcroft [75]; the form given here is an improvement
due to Ka1damanis, Krizanc, and Tsantilas [225]. The power of randomization in solving
the permutation routing problem was first demonstrated by Valiant [403]; his analysis
was subsequently simplified by Valiant and Brebner [400]. Our presentation here is an
adaptation of the latter analysis.

Notice that Valiant's scheme is an oblivious randomized algorithm: the route followed
by a packet depends on its source, destination, and choice of random intermediate
destination, but not on the sources, destinations, or choices of other packets. In
Problem 4.11 below, we derive a result showing a limit on the performance of Valiant's
scheme on an N-node, degree d network. In fact, such a lower bound has been shown
for any randomized oblivious scheme by Borodin, Raghavan, Schieber, and Upfal [77],
using the minimax principle of Section 2.2. In our model for parallel communication, we
assumed that a node could transmit packets along all its links at each step. When the
degree of a node is large, this assumption is unrealistic. Aleliunas [14] and Upfal [399]
have addressed this problem by showing that there are bounded-degree networks for
which Valiant's scheme routes any permutation in O(1og N) steps with high probability.

The technique of solving a linear programming problem and then randomly rounding
is due to Raghavan and Thompson [353]. Generalizations of the global wiring problem
to more realistic settings and other details are also given in the paper by Raghavan
and Thompson [353]. This technique has also been applied to the MAX-SAT problem
in recent work of Goemans and Williamson [169]; we will explore this application in
Section 5.2. Bertsimas and Vohra [58] explore randomized rounding in detail, applying
the approach to unify approximation algorithms for a number of covering problems.
Recent work of Goemans and Williamson [170], and Karger, Motwani, and Sudan [230],
has extended the randomized rounding technique from linear programming relaxations
to semi-definite programming relaxations, with applications to approximations for MAX
SAT and graph coloring. The idea here is to relax the requirement that the solutions

96

PROBLEMS

be scalars, and instead allow them to be vectors in some high-dimensional space,
thereby obtaining a polynomial-time solvable version of an NP-hard problem; as before,
randomization is then used to obtain approximate scalar solutions from the vector
solutions. The article by Motwani, Naor, and Raghavan [314] surveys approximation
algorithms for NP-hard problems based on the randomized rounding of both linear
programming and semi-definite programming relaxations of NP-hard problems.

Several books on advanced probability theory cover martingales. Grimmett and
Stirzaker [185] give an eminently readable description of martingale theory, as do
Dubins and Savage [131]. The more measure-theoretic approach to martingales can
be found in the books of Billingsley [61] and Feller [142, 143]. The reader seeking an
in-depth understanding of martingales may refer to more advanced books such as those
by Doob [129] and Hall and Heyde [191].

The tail inequality referred to as Azuma's inequality is due to Hoeffding [202] and
Azuma [36]. The "method of bounded differences" has its origins in a paper by
Maurey [300], and its various forms and applications are surveyed by McDiarmid [302].
The occupancy tail bound is due to Kamath, Motwani, Palem, and Spirakis [228],
who provide a sequence of tail bounds for this problem. The classical results. for
occupancy problems can be found in the books by Johnson and Kotz [222] and Kolchin,
Chistiakov, and Sevastianov [266]. While martingale arguments have been extremely
useful for proving sharp concentration about expected values, it is only recently that
they have attracted widespread attention in the computer science community, mainly due
to the work of Shamir and Spencer [373] and Bollobas [70] on the chromatic number
of random graphs; the book by Alon and Spencer [24] gives an excellent account
of this work. Some notable successes in the application of martingales to computer
science problems include: the work of McDiarmid and Reed [305] and Hayward and
McDiarmid [198] on algorithms for building heaps; the results of McDiarmid and
Hayward [304] on sharp concentration for quicksort; and the work of Aspnes and
Waarts [34] on distributed algorithms for consensus.

Problems

4.1 Suppose you are given a biased coin that has Pr[HEADS) = p ~ a, for
some fixed a, without being given any other information about p. Devise a
procedure for estimating p by a value p such that you can guarantee that
Pr[lp - pi > £p) < 6, for any choice of the constants 0 < a, £, 6 < 1. Let N be
the number of times you need to flip the biased coin to obtain the estimate.
What is the smallest value of N for which you can still give this guarantee?

4.2 Let X be a random variable. Define the kth factorial moment of X, E[X!k), as
the expected value of X!k = X(X - 1)'" (X - k + 1). Let G1 denote a random
graph on n vertices where each edge independently is present with probability
p, and G2 denote a graph on n vertices that has m edges chosen uniformly
at random. Let Xn denote the number of isolated vertices in G1t and let Yn
be the number of isolated vertices in G2 • Consider the case p = (log n + c)jn
and m = n(log n + c)j2, for a real value c. Prove that E[X~k) and E[y~k) are
asymptotically equal to A k, where A = e-c •

97

TAIL INEQUALITIES

4.3 For JJ in the range [1, In n], use (4.1) to obtain a closed-form upper bound for
fj.+(P,1in 2) (as a function of JJ and n) that is within a constant factor of the
best possible.

4.4 Let X,. X2 • •••• Xn be independent geometrically distributed random variables
each having expectation 2 (each of the Xi is an independent experiment
counting the number of tosses of an unbiased coin up to and including the
first HEADS). Let X = L:~=, Xi and 6 be a positive real constant. Use moment
generating functions and the Chernoff technique to derive the best upper
bound you can on Pr[X > (1 + 6)(2n)].

4.5 The result of Theorem 4.2 bounds the probability of the sum of Poisson trials
deviating far be/ow its expectation. Use this to give a bound on the probability
of the sum of independent geometric random variables deviating above its
expectation, thus providing an alternative approach to that in Problem 4.4.

4.6 (Hoeffdlng's Bound [202]). Suppose Y" ... , Yn are independent Poisson trials
such that Pr[Yi = 1] = Pi. Let Y = L:~=, Vi, JJ = E[Y] = L:~=,Pi and P = JJin.
Our goal is to show that from the standpoint of deviations from the mean. the
worst case is when the p/s are all equal. Let X be the sum of n independent
Bernoulli trials each having probability P of assuming the value 1. Then, for
any a ~ JJ + 1 and any b ;:5; JJ - 1. show that

Pr[Y ~ a] ;:5; Pr[X ~ a],

and

Pr[Y ;:5; b] ;:5; Pr[X ;:5; b].

4.7 (Due to W. Hoeffding [202].) This problem deals with a useful generalization
of the Hoeffding bound in Problem 4.6.

(a) A function f : R. _ R. is said to be convex if for any x" X2 and 0 ;:5; A ;:5; 1,
the following inequality is satisfied:

f(A x, + (1 - A)X2) ;:5; Af(x,) + (1 - A)f(X2).

Show that the function f(x) = e/x is convex for any t > O. What can you say
when t ~ 01

(b) Let Z be a random variable that assumes values in the interval [0,1], and
. let P = E[Z]. Define the Bernoulli random variable X such that Pr[X = 1] = P
and Pr[X = 0] = 1 - p. Show that for any convex function f, E[f(Z)] ;:5; E[f(X)].

(c) Let Y" ... , Yn be independent and identically distributed random variables
over [0,1]. and define Y = L:~-, YI. Using parts (a) and (b), derive upper
and lower tail bounds for the random variable Y using the Chernoff bound
technique. In particular, show that

Pr[Y - E[Y] > 6] ;:5; exp(-262 / n).

Remark: While the results in this problem hold for continuous random vari
ables, they may be a bit easier to prove in the case where Z, Y" ... , Yn take
on a discrete set of values in the interval [0,1]. Also, it should be easy to
generalize this to distributions defined over arbitrary intervals [I, h]. See also
Problem 4.21.

98

PROBLEMS

4.8 Consider a BPP algorithm that has an error probability of 1/2 - 1/p(n), for
some polynomially bounded function p(n) of the input size n. Using the
Chernoff bound on the tail of the binomial distribution, show that a polynomial
number of independent repetitions of this algorithm suffice to reduce the error
probability to 1/2n.

4.9 Consider now the following variant of the bit-fixing algorithm. Each packet
randomly orders the bit positions in the label of its source, and then corrects
the mismatched bits in that order. Show that there is a permutation for which
with high probability this algorithm requires 20 (nl steps to complete the routing.

4.10 Suppose we run Valiant's scheme on an N-node network in which every
node is of degree d; each packet first goes to a random destination chosen
uniformly from all the nodes and then on to its final destination. Show that
the expected number of steps for the completion of the first phase is

Q (109N 109N)
d log log N + log d .

4.11 The lattice approximation problem is an extension of the set-balancing prob
lem (Example 4.5). As before, we are given an n x n matrix A all of whose
entries are 0 or 1. In addition, we are given a column vector p with n entries,
all of which are in the interval [0,1]. We wish to find a column vector q with n
entries, all of which are from the set {O, 1}, so as to minimize IIA(P -q)lloo. We
think of the vector q as an "integer approximation" to the given real vector
p, in the sense that Aq is close to Ap in every component. This has applica
tions to approximating certain integer programs given solutions to their linear
programming relaxations, along the lines of Section 4.3. Derive a bound on
IIA(P-q)lloo assuming that q were derived from p using randomized rounding.

4.12 Consider the global wiring problem of Section 4.3. We wish to approximate
the best possible solution without the restriction that only one-bend routes
are used. Adapt the approach in Section 4.3 to devise an algorithm running in
time polynomial in the number of gates and nets, achieving an approximation
similar to that in Theorem 4.8.

4.13 The set-cover problem is the following: given sets S17 •.. , Sn over a universe
U, fi nd the smallest set T s;;; U such that for 1 ::5; i ::5; n, Tn SI ::/= 0. An alternative
formulation of this problem is the following: given a 0-1 matrix M, find a 0-1
column vector c such that the dot product of each row of M with c is positive
while minimizing Ilclll. The matrix M has n rows, and the ith row is the
incidence vector of the set S/.

Given a matrix M, let C(M) denote the size of the smallest set-cover for M.
Let n be the number of rows in M. Show that we can adapt the technique of
linear programming followed by randomized rounding to find a set-cover of
size O(log n) times C(M).

4.14 Show that the RandQS algorithm of Chapter 1 runs in time O(n logn) with high
probability.

99

TAIL INEQUALITIES

4.15 Redesign the parameters of the LazySelect algorithm of Chapter 3 and invoke
the Chernoff bound to show that with high probability it finds the kth smallest
of n elements in n + k + .ji7log0(11 n steps, with probability 1 - 0(1).

4.16 Prove Lemmas 4.9 and 4.10. Also, formu late and prove thei r generalizations
to the case where the conditioning is done on more than one random variable.
Finally, using these, prove Lemma 4.11.

4.17 Prove Theorem 4.12.

4.18 Prove Lemma 4.14.

4.19 Using Lemma 4.14, prove Theorem 4.13.

4.20 Derive the tail bounds described in Problem 4.4.7 (c) by applying Azuma's
inequality (Corollary 4.17) to the Doob martingale sequence obtained from Y
by setting Xo = E[Y] and, for 1 ~ i ~ n, XI = E [Y I Y1, ... , Yd. How does this
bound compare with the one obtained in Problem 4.7?

4.21 Prove Azuma's inequality (Theorem 4.16) for the case where Ck = 1 for all k.
Note that this is the same as Corollary 4.17 with C = 1. Do you see how to
generalize this to the case of arbitrary ck's1 (Hint: Concentrate on the upper
tail bound, since the lower tail bound can be obtained by negating the random
variables. Consider the martingale difference sequence Y1> Y2 , ••• obtained
by setting Y I = Xi - XI -1> and note that X, = 2::-1 YI' You can essentially
mjmic the proof of Theorem 4.1, but be careful to use conditional expectations
and the martingale property in going from the analog of equation (4.2) to
that of equation (4.3). Since the random variables YI could have arbitrary
distributions over the interval [-1, 1], you will also have to make use of an
argument similar to that in Problem 4.7.)

4.22 (Due to A. Kamath, R. Motwani, K. Palem, and P. Spirakis [228].) Consider
again the issue of tail bounds on the number of empty bins studied in Theo
rem 4.18. In this setting, let II be the indicator variable whose value is 1 if and
only if bin j Is empty, and define Z = 2:7-1/1 as the number of empty bins.
Define p = E[/d = (1 - 1jn)m, and let I: be mutually independent Bernoulli
random variables that take value 1 with probability p and value 0 with prob
ability 1 - p; note that the sum Y = 2:7-1': has the binomial distribution with
parameters nand p.

'(a) Show that for all t ~ 0, E[e 'Z] ~ E[e 'Y]. Conclude that any Chernoff
bound on the upper tail of V's distribution also applies to the upper tail
of Z's distribution, even though the Bernoulli variables II are not mutually
independent. (The point is that their correlation is negative and only helps to
reduce the tail probability.) How does the resulting bound on the upper tail of
Z's distribution compare with the bound given in Theorem 4.181

(b) Can you show that for all t < 0, E[e 'Z] ~ E[e 'Y]1 Repeat the exercise in
part (a) for the lower tail.

100

CHAPT ER 5

The Probabilistic Method

IN this chapter we will study some basic principles of the probabilistic method,
a combinatorial tool with many applications in computer science. This method
is a powerful tool for demonstrating the existence of combinatorial objects. We
introduce the basic idea through several examples drawn from earlier chapters,
and follow that by a detailed study of the maximum satisfiability (MAX-SAT)
problem. We then introduce the notion of expanding graphs and apply the
probabilistic method to demonstrate their existence. These graphs have powerful
properties that prove useful in later chapters, and we illustrate these properties
via an application to probability amplification.

In certain cases, the probabilistic method can actually be used to demonstrate
the existence of algorithms, rather than merely combinatorial objects. We
illustrate this by showing the existence of efficient non-uniform algorithms for
the problem of oblivious routing. We then present a particular result, the Lovasz
Local Lemma, which underlies the successful application of the probabilistic
method in a number of settings. We apply this lemma to the problem of finding
a satisfying truth assignment in an instance of the SAT problem where each
variable occurs in a bounded number of clauses. While the probabilistic method
usually yields only randomized or non-uniform deterministic algorithms, there
are cases where a technique called the method of conditional probabilities can
be used to devise a uniform, deterministic algorithm; we conclude the chapter
with an exposition of this method for derandomization.

5.1. Overview of the Method

There are two recurrent ideas in the probabilistic method.

1. Any random variable assumes at least one value that is no smaller than its
expectation, and at least one value that is no greater than its expectation. We
know of many intuitive versions of this principle in real life - for instance, if
we are told that the average annual income of theoretical computer scientists is

101

THE PROBABILISTIC METHOD

$20,000, we know that there is at least one theoretical computer scientist whose
income is $20,000 or greater.

2. If an object chosen randomly from a universe satisfies a property with positive
probability, then there must be an object in the universe that satisfies that property.
For instance, if we were told that a ball chosen randomly from a bin is red with
probability 1/3, then we know that the bin contains at least one red ball.

While these ideas may seem too obvious to be of much use, they turn out
to give us a surprising amount of power. The power comes from our ability
to recast counting arguments in the language of probability, and then bring to
bear the tools of probability theory. In fact, we have already seen instances
of the probabilistic method implicitly at work earlier in this book. Below we
review some examples from earlier chapters, and then proceed to study some
new techniques. This chapter is not meant to be a comprehensive guide to the
probabilistic method in combinatorics, but rather a study of some ideas that
have proved useful in randomized algorithms.

~ Example 5.1: Theorem 1.2 asserts that for any set of n disjoint line segments
in the plane, the expected size of the autopartition found by the RandAuto
algorithm is O(n log n). From this we may conclude that for any set of n disjoint
line se~ents in the plane, there is always an auto partition of size O(n log n). This
follows directly from the fact that if we were to run the RandAuto algorithm, the
random variable defined to be the size of the autopartition can assume a value
that is no more than its expectation; thus, there is an autopartition of this size
on any instance.

Our second example comes from the game tree evaluation problem of Sec
tion 2.1.

~ Example 5.2: Any algorithm for game tree evaluation that produces the correct
answer on every instance develops a certificate of correctness: for each instance,
it can exhibit a set of leaves whose values together guarantee the value it declares
is the correct answer. By Theorem 2.1, the expected number of leaves inspected
by the algorithm of Section 2.1 on any instance of T2,k is at most nO.793, where
n = 22k. It follows that on any instance of T2,k, there is a set of nO.793 leaves
whose values certify the value of the root for that instance. Note that we assert
the existence of such a certificate with certainty, even though the technique used
for establishing it was probabilistic. (Problem 5.2 describes a stronger version of
this result.)

Our final example from an earlier chapter is the set-balancing problem de
scribed in Example 4.5.

~ Example 5.3: We saw that for every n x n 0-1 matrix A, for a randomly chosen
vector bE {-1, +1 }", we have IIAblioo ~ 4.Jnln n, with probability atleast 1-2/n.

102

5.1 OVERVIEW OF THE METHOD

From this we may conclude that for every such matrix A, there always exists a
vector b E {-l,+l}" such that IIAbll oo ~ 4v'nlnn.

The examples above show that the probabilistic method consists of two
stages. First, we design a "thought experiment" in which a random process
plays a role. In the case of set-balancing, for example, the thought experiment
consists of independently and equiprobably assigning to each component of b
either the value + 1 or the value -1. The second part consists of analyzing the
random experiment and then drawing a conclusion independent of the particular
experiment.

Let us consider another example concerning the problem of finding a large
cut in a graph. Given an undirected graph G(V, E) with n vertices and m edges,
we wish to partition the vertices of G into two sets A and B so as to maximize
the number of edges (u, v) such that u e A and v e B. This problem is sometimes
referred to as the max-cut problem. The problem of finding an optimal max
cut is NP-hard; in contrast, the min-cut problem studied in Section 1.1 has a
polynomial time algorithm.

Theorem 5.1: For any undirected graph G(V,E) with n vertices and m edges,
there is a partition of the vertex set V into two sets A and B such that

I{(u,v) EEl u E A and v E B}I ~ m/2.

PROOF: Consider the following experiment. Each vertex of G is independently
and equiprobably assigned to either A or B.

For an edge (u, v), the probability that its end-points are in different sets is
1/2. By linearity of expectation, the expected number of edges with end-points
in different sets is thus m/2. It follows that there must be a partition satisfying
the theorem. 0

We have viewed the process of partitioning the vertices of G as a thought
experiment that yields the results mentioned. However, we could as well view
it as a randomized algorithm. This would then require a further analysis
bounding the probability that the algorithm fails to find a good partition on
a given execution. The main difference between a thought experiment in the
probabilistic method and a randomized algorithm is the end that each yields.
When we use the probabilistic method, we are only concerned with showing
that a combinatorial object exists; thus, we are content with showing that a
favorable event occurs with non-zero probability. With a randomized algorithm,
on the other hand, efficiency is an important consideration - we cannot tolerate
a miniscule success probability. For instance, if we were only able to show that
the experiment used in the proof of Theorem 5.1 succeeded with probability 2-"
in finding a cut of size m/2, we would be unable to derive from it an efficient
randomized algorithm for finding a large cut. In this case however, the expected
size of the cut is m/2 and so random partitioning can be viewed as an efficient
randomized algorithm.

103

THE PROBABILISTIC METHOD

One of the questions we will deal with in this chapter and others is the
following: having shown the existence of a combinatorial object using the
probabilistic method, can we find the object efficiently? The answer to this
general question varies widely. In some cases it is affirmative, and we have
a deterministic polynomial-time algorithm that finds the combinatorial object
whose existence is guaranteed by the probabilistic method. In others, we instead
have a randomized polynomial-time algorithm that works with high probability.
In yet others, we have a deterministic or randomized algorithm, but one that
is non-uniform. And finally, we have instances where we know of no efficient
algorithm for finding the object in question.

S.2. Maximum Satisfiability

We turn to the satisfiability problem defined in Section 1.5.2: given a set of
m clauses in conjunctive normal form over n variables, decide whether there
is a truth assignment for the n variables that satisfies all the clauses. We may
assume without loss of generality that no clause contains both a literal and its
complement, since such clauses are satisfied by any truth assignment. Consider
the following optimization version of the satisfiability problem: rather than
decide w.hether there is an assignment that satisfies all the clauses, we instead
seek an assignment that maximizes the number of satisfied clauses. This problem,
called the MAX-SAT problem, is known to be NP-hard, but the following simple
probabilistic argument shows that for any set of m clauses, there is an assignment
to the input variables that satisfies at least m/2 clauses. Note that this is the best
possible universal guarantee, since the instance may consist of the two clauses x
and X, in which case no better guarantee is possible.

Theorem 5.2: For any set of m clauses, there is a truth assignment for the vari
ables that satisfies at least m/2 clauses.

PROOF: Suppose that each variable is set to TRUE or FALSE independently and
equiprobably. For 1 < i < m, let Zj = 1 if the ith clause is satisfied and 0
otherwise. For any clause containing k literals, the probability that it is not
satisfied by this random assignment is 2-k, since this event takes place if and
only if each literal gets a specific value, and the (distinct) literals in a clause
are assigned independent values. This implies that the probability that a clause
with k literals is satisfied is 1 - 2-k > 1/2, implying that E[Za > 1/2 for
all i. The expected number of clauses satisfied by this random assignment is
2:;:1 E[Zil > m/2. Thus, there exists at least one assignment of values to the
variables for which 2:;:1 Zj ~ m/2. 0

Exercise 5.1: Consider the following weighted version of the MAX-SAT problem.
Each clause has a positive real weight, and the goal is to maximize the sum of the

104

5.l MAXIMUM SATISFIABILITY

weights of the satisfied clauses. Generalizing Theorem 5.2. show that there is a truth
assignment that satisfies clauses the sum of whose of weights is at least half of the
total clause weight.

This result holds regardless of whether the instance has a satisfying assign
ment. Let us continue with the MAX-SAT problem, in which our goal is to
maximize the number of clauses that are satisfied. This problem being NP-hard,
we seek approximation algorithms. It turns out that variants of the probabilis
tic existence proof of Theorem 5.2 can actually be turned into approximation
algorithms; we explore this theme for the remainder of this section.

Given an instance I, let m.(1) be the maximum number of clauses that can
be satisfied, and let mA(I) be the number of clauses satisfied by an algorithm
A. The performance ratio of an algorithm A is defined to be the infimum (over
all instances 1) of mA(1)/m.(1). If A achieves a performance ratio of ~, we call
it an ~-approximation algorithm. For a randomized algorithm A, the quantity
mA(I) may be a random variable, in which case we replace mA(I) by E[mA(1)]
in the definition of the performance ratio. Note that unlike the satisfiability
problem (in which we seek to satisfy all clauses), we may choose to leave some
clauses unsatisfied in the MAX-SAT problem. Indeed this may be inevitable, for
instance, as in the case of a set of contradictory clauses. Thus, our definition
requires us to satisfy a number of clauses close to the best possible for the
instance at hand, rather than satisfying all m clauses.

We now give a simple randomized algorithm that achieves a performance
ratio of 3/4. Before we begin, we observe that the proof of Theorem 5.2 actually
yields a randomized 1/2-approximation algorithm. In fact, we can say more: the
procedure in the proof of Theorem 5.2 yields an algorithm whose performance
guarantee is 1 - 2-k , provided every clause contains at least k literals.

It follows that we have a randomized 3/ 4-approximation algorithm for in
stances of MAX-SAT in which every clause has at least two literals. It appears
that the bottleneck for achieving a performance ratio of 3/4 stems from clauses
consisting of a single literal. We now give a second algorithm that performs
especially well when there are many clauses consisting of single literals. We then
argue that on any instance, one of the two algorithms will yield a randomized
3/4-approximation. Thus, given an instance, we run both algorithms and take
the better of the two solutions.

The algorithm we describe will not be entirely new to us: we have already
encountered a variant in our study of the wiring problem in Section 4.3. The idea
again is to formulate the problem as an integer linear program, solve the linear
programming relaxation, and then to round using the randomized rounding
technique of Section 4.3. With each clause Cj in the instance, we associate an
indicator variable Zj E {O, I} in the integer linear program to indicate whether
or not that clause is satisfied. For each variable Xi, we use an indicator variable
Yi in the integer linear program to indicate the value assumed by that variable;
thus Yi = 1 if the variable Xi is set TRUE, and Yi = 0 otherwise. Let ct be the set

105

THE PROBABILISTIC METHOD

of indices of variables that appear in the uncomplemented form in clause Cj,
and C; be the set of indices of variables that appear in the complemented form
in clause Cj. We may then formulate the MAX-SAT problem as follows:
maXImIZe

where

Yj, Zj E {O, I} (Vi and j) (5.1)

subject to

LYi + L(1- Yi) ~ Zj (Vj). (5.2)

iECt iEC;

The inequalities (5.1) ensure that a clause is deemed to be true (by assigning
value 1 to its variable) only if at least one of the literals in that clause is assigned
the value 1. Since Zj = 1 when clause Cj is satisfied, the objective function L,jZj
counts the number of satisfied clauses. As in Section 4.3, we solve the relaxation
linear program in which we relax the integrality constraints (5.2), i.e., we allow
Yi and Zj to assume real values in the interval [0,1]. Let Yi be the value obtained
for variable Yi by solving this linear program, and let Zj be the value obtained
for Zj. Clearly L,j Zj is an upper bound on the number of clauses that can be
satisfied in this instance. We first show that using randomized rounding, we
obtain a truth assignment with which the expected number of clauses satisfied
is at least (1 - II e) L,j Zj. This is already an improvement over the guarantee we
get from Theorem 5.2; we will then show that for any instance, the number of
clauses satisfied by the better of these two solutions is at least (3/4) L,jZj.

For randomized rounding, each variable Yi is independently set to 1 (corre
sponding to Xi being set to TRUE) with probability Yi. For any positive integer k,
let Pk denote 1-(l-l/k)k. We will first show that for a clause Cj with k literals,
the probability that it is satisfied by randomized rounding is at least PkZj. Noting
that Pk ~ 1 - lie for all positive integers k, and using linearity of expectation,
we infer that the expected number of clauses satisfied by randomized rounding
is at least (1 - lie) L,j Zj.

Lemma 5.3: Let Cj be a clause with k literals. The probability that it is satisfied
by randomized rounding is at least PkZj.

PROOF: Since we are focusing on a single clause Cj. we may assume without loss
of generality that all the variables contained in it appear in uncomplemented
form. Moreover, we may assume that it is of the form Xl V' .. V Xk. By constraint
(5.1) in the linear program,

YI + ... + Yk ~ Zj.

106

5.l MAXIMUM SATISFIABILITY

Clause Cj remains unsatisfied by randomized rounding only if every one of the
variables Yi is rounded to O. Since each variable is rounded independently, this
occurs with probability n~1 (1 - yJ It remains to show that

k

1-II(1- Yi) > PkZj.
i=1

The expression on the left is minimized when Yi = zj/k for all i. Therefore,
it suffices to show that 1 - (1 - z/k)k > PkZ for all positive integers k and
o < z ::;; 1. Since f(x) = 1 - (1 - x/kt is a concave function, to show that it is
never less than a linear function g(x) over the interval [0,1], it suffices to verify
the inequality at the end-points x = 0 and x = 1 (see Problem 5.4). Applying
this principle to the linear function g(z) = PkZ, the lemma follows. 0

By Lemma 5.3 and from linearity of expectation we have:

Theorem 5.4: Given an instance of MAX-SAT, the expected number of clauses
satisfied by linear programming and randomized rounding is at least (1-1/ e) times
the maximum number of clauses that can be satisfied on that instance.

While Theorem 5.4 represents an improvement over Theorem 5.2, we will in
fact be able to do even better. We have studied two randomized algorithms
MAX-SAT: one that rounded each variable to 1 with probability 1/2, and a
second that used the solutions to the linear program as a basis for randomized
rounding. Figure 5.1 may help the reader appreciate the dependencies of these
two algorithms on the clause length k.

k 1- 2-k
fJk

1 0.5 1.0

2 0.75 0.75

3 0.875 0.704

4 0.938 0.684

5 0.969 0.672

Figure 5.1: Performance of the two algorithms as a function of k.

We now argue that on any instance, one of the algorithms is a 3/4-
approximation algorithm. Given any instance, we run both algorithms and
choose the better solution. Let nl denote the expected number of clauses that
are satisfied when each variable is independently set to 1 with probability 1/2 .
(corresponding to the procedure that yields Theorem 5.2). Let n2 denote the ex
pected number of clauses that are satisfied when we use the linear programming
followed by randomized rounding (corresponding to Theorem 5.4).

107

Theorem 5.5:

THE PROBABILISTIC METHOD

max{nl,n2} > ~ LZj.
j

PROOF: It suffices to show that (nl + n2)/2 > (3/4) Lj Zj. Letting Sk denote the
set of clauses that contain k literals, we know that

nl = L L (1 - 2-k
) ~ L L (1 - 2-k)zj. (5.3)

k CjESk k CjESk

By Lemma 5.3, we have

n2 ~ L L PkZj. (5.4)
k CjESk

Thus

An easy calculation shows that (1 - 2-k) + {lk > 3/2 for all k, so that we have

nl + n2 ~ ~ ~ ~. _ ~ ~~.
2 ~ 4 L- L- z) - 4 L-z),

k CjESk j

o

5.3. Expanding Graphs

We now turn to a classic application of the probabilistic method, one that shows
the existence of a class of graphs known as expanding graphs. Expanding graphs
have found many uses in computer science and in telephone switching networks,
and we will encounter them again in Chapters 6 and 11.

Intuitively, an expanding graph is a graph in which the number of neighbors
of any set of vertices S is larger than some positive constant multiple of lSI.
The following is a definition of a particular type of expanding graph called
an OR-concentrator. It is important to keep in mind that several alternate
definitions have been used in the literature; while they are similar in spirit, the
precise definition varies (see for instance the slightly different definition used
in Chapter 6). Recall that in a graph G(V, E) for any set S c: V, the set of
neighbors of Sis r(S) = {w E V 13v E S,(v, w) E E}.

~ Definition 5.1: An (n, d, ex, c) OR-concentrator is a bipartite mUltigraph
G(L, R, E), with the independent sets of vertices Land R each of cardinality
n, such that

1. Every vertex in L has degree at most d.

2. For any subset S of vertices from L such that IS I ~ exn, there are at least
clSI neighbors in R.

108

~ EXPANDING GRAPHS

In most applications, it is desirable to have d as small as possible and c as
large as possible. Of particular interest is the study of OR-concentrators in
which (x, c, and d are constants fixed independently of n, with c > 1. These
are rather stringent requirements and it may seem quite surprising at first that
such graphs can be constructed. Indeed, finding explicit constructions of such
OR-concentrators is a non-trivial task, so we focus on the easier problem of
demonstrating their existence. We will use the probabilistic method to show
that a random graph chosen from a suitable probability space has a positive
probability of being an (n, 18, 1/3,2) OR-concentrator. The particular constants
in the proof are somewhat arbitrary, and the reader may easily adapt the proof
to study other combinations of d, (x, and c.

Theorem 5.6: There is an integer no such that for all n > no, there is an
(n, 18, 1/3,2) OR-concentrator.

PROOF: We give most of the proof in terms of general d, c, and (x, pinning these
constants down toward the end of the proof. Consider a random bipartite graph
on the vertices in Land R, in which each vertex of L chooses its neighbors
by sampling (with replacement) d vertices independently and uniformly from R.
Since the sampling is with replacement, a vertex of L may choose a vertex in
R more than once; we discard all but one copy of such multiple edges. Let £s
denote the event that a subset of s vertices of L has fewer than cs neighbors
in R. We will first bound Pr[£s], and then sum Pr[£s] over the values of s no
larger than exn to obtain an upper bound on the probability that the random
graph fails to be an OR-concentrator with the parameters we seek.

Fix any subset S £; L of size s, and any subset T c: R of size cs. There are
(;) ways of choosing S, and (:s) ways of choosing T. The probability that T
contains all of the at most ds neighbors of the vertices in S is (cs/n)ds. Thus, the
probability of the event that all the ds edges emanating from some s vertices of
L fall within any cs vertices of R is bounded as follows,

Pr[£s] ~ (:) (~) (~) ds •

Invoking the identity (~) < (ne/k)k from Proposition B.2 (Appendix B), we
obtain

Simplifying for ex = 1/3 and using s < exn, we have

[(
1) d-c-l 1 s

Pr[£s] ~ 3 el+ccd- c

~ [(~r (3e)C+lf

109

THE PROBABILISTIC METHOD

Using c = 2 and d = 18, we have

Pr[&,] < (0)" (3e)'],

Let r = (2/3)18(3e)3, and note that r < 1/2. We obtain that

~Pr[t's] < ~rs = _r_ < 1,
L- L- l-r
s~l s~l

and the desired result follows. o
The reader may easily see that by bounding the probabilities Pr[t's] carefully,

we can in fact show that our random graph has a fairly good (rather than merely
non-zero) probability of being an (n, 18, 1/3,2) OR-concentrator. However, even
if we were to generate a random graph and argue that it has a very high
probability of being an OR-concentrator, we still do not know of an efficient
way of verifying that the graph generated is indeed an OR-concentrator with
the given parameters.

This is true of the verification of the expanding property of graphs for a variety
of definitions of expansion, some of which we will encounter in Chapter 6. For
instance, in Chapter 6 we will define and use a class of expanding graphs known
as expanders. This indicates that the Monte Carlo algorithm implicit in the
preceding discussion cannot be turned into a Las Vegas algorithm.

For many applications of expanding graphs, such a Monte Carlo guarantee
is unacceptable - for instance, a telephone company may be uncomfortable that
the network it plans to build may by chance be inadequate. Unfortunately, it is
considerably harder to give a succinct "formula" or a deterministic algorithm
that, given n, always generates such an expanding graph. We do have "explicit
constructions" that will, given n, generate OR-concentrators with guaranteed
bounds for d, (x, and c; but these bounds are somewhat weaker than the bounds
attainable using the probabilistic method (the Notes section contains more
information on these).

This is another recurrent theme in the probabilistic method: whereas the exis
tence proof can give strong (often the best possible) bounds for a combinatorial
objeci, the version that can be constructed efficiently may be much weaker. We
will see another instance of this in Section 5.5.

5.3.1. Probability Amplification

We now make use of an expanding bipartite graph to build on the idea of two
point sampling used in Section 3.4. Consider an RP algorithm A for deciding
whether input strings x belong to a language L. Given x, A picks a random
number r from the range Zn = {O, ... , n - I}, for a suitable choice of a prime n,
and computes a binary value A(x, r) with the following properties:

• If x E L, then A(x, r) = 1 for at least half the possible values of r (we call these
values of r the witnesses for x).

110

~ EXPANDING GRAPHS

• If x ~ L, then A(x,r) = 0 for all possible choices of r.

By the two-point sampling approach of Section 3.4, we know that using 2 log n
random bits to sample two numbers randomly from the range {O, ... ,n -I}, we
can achieve an error probability of less than l/t in t (non-independent) trials of
the algorithm A on a given input x. In this section, we will describe a way of
achieving an error probability close to 1/n1ogn using only log2 n random bits. The
naive use of log2 n bits to pick log n random numbers in the range {O, ... , n - I}
only yields a failure probability of l/n, so the scheme we will describe can be
thought of as achieving "probability amplification."

We first establish the existence of an expanding graph that will serve our
purpose, and then proceed to describe its application to amplifying randomness.

Theorem 5.7: For n sufficiently large, there is a bipartite graph G(L, R, E) with
ILl = n, IRI = 210r n such that:

1. Every subset of n/2 vertices of L has at least 210r n - n neighbors in R.

2. No vertex of R has more than 1210g2 n neighbors.

PROOF: Consider a random graph in which each vertex of L independently and
uniformly chooses d = 210g2 n(410i n)/n neighbors in R. As before, the choices
are made with replacement, i.e., a vertex of L may choose a vertex of R as
neighbor more than once. We will show that this random graph violates each
of the two properties with probability at most 1/2. It follows that with positive
probability this random graph satisfies both properties, and we are done.

Following the reasoning in our proof of Theorem 5.6, the probability that
there is a set of n/2 vertices in L having fewer than 210r n - n neighbors in R is
at most

(
n) (2

10g2 n) (1 _ _ n) dn/2

n/2 n 210r n

Using as before the upper bound for binomial coefficients from Proposition B.2
(Appendix B) together with the fact that 1 - n/2lor n ~ exp(-n/2Ior n), it follows
that the probability that property 1 is violated is (considerably) less than 1/2.

For property 2, we note that the expected number of neighbors for a vertex
in R is 410g2 n; the Chernoff bound (4.10) now shows that the probability of
exceeding 1210g2 n neighbors is less than (e /3) 12 10r n. Since R contains 210g2 n

vertices, this probability is small enough to guarantee that the probability that
property 2 is violated at any vertex in R is also (considerably) less than 1/2. 0

We return to probability amplification. Theorem 5.7 only guarantees the
existence of a graph with the desired properties; in the sequel we will assume
that we have an explicit graph with these properties. Of course, this graph has a
super-polynomial number of vertices and it may not seem possible to perform
polynomial-time computations based on its structure. However, we do not
need an explicit representation of the graph; all we need is a polynomial-time
neighborhood algorithm that can compute the neighbors of any given vertex in

111

THE PROBABILISTIC METHOD

R; we assume that the graph is represented by means of such a neighborhood
algorithm. As we will see later, in Section 6.7, there do exist expanding graphs
for which such neighborhood algorithms are known.

Given log2 n bits of randomness, we use them to index a vertex in R, say v.
Next, we use the neighborhood algorithm to identify the neighbors of v in L,
which we denote rl,"" rk. We then compute A(x, ri) for 1 ~ i < k; note that
k ~ 1210g2 n. If all k invocations of A return 0, we declare that x does not
belong to L; else we declare that x does belong to L.

If x ~ L, our answer will be correct. But if x E L, what is the probability
that we fail to detect it using our procedure? The set of witnesses for x is a set
of at least nl2 vertices of L. We err only if the vertex of R we choose is not a
neighbor of any of the witnesses. By Theorem 5.7, the fraction of such vertices
in R is at most nl21og2 n, no matter how the witnesses are distributed in R. Thus
using log2 n random bits, we achieve a failure probability of at most nlnlogn.

The reader may argue that the extra randomness we obtain is from the
randomness "built into" the graph. However, we note that once we have built
such a graph, it may be used over and over again for executions on arbitrarily
many inputs x. More interestingly, it can be used on any RP algorithm, since
the procedure works for any choice of nl2 witnesses in L. Thus the "one-time"
randomness built into the graph serves as a reservoir that we can tap over and
over again, for probability amplification. We know of no explicit construction
for such graphs, nor do we know of an efficient procedure for verifying that a
random graph has the properties we desire.

In Section 6.8 we will describe an alternative strategy for performing probabil
ity amplification without any of the drawbacks discussed above. Not surprisingly,
this new scheme is also based on the use of expanders. But there we will use
explicitly constructed expanders that have explicit polynomial time algorithms
for determining the neighbors of a vertex.

5.4. Oblivious Routing Revisited

We turn now to another aspect of the probabilistic method. In the examples
we have seen, the probabilistic method is used to prove the existence of a
combinatorial object: an autopartition that is small, a vector b with certain
properties in the case of set-balancing, or an expanding graph. The probabilistic
method can also be used to design algorithms. We study one example here and
will encounter other examples later in the book.

Let us return to the problem of oblivious permutation routing on the hyper
cube, studied in Section 4.2. In this section we focus on the number of random
bits used by the randomized oblivious algorithm in Section 4.2. We first give
a lower bound that suggests that the algorithm of Section 4.2 uses many more
random bits than necessary. We then use the probabilistic method to show the
existence of a randomized algorithm using (within a constant factor) the optimal
number of random bits.

112

5.4 OBLIVIOUS ROUTING REVISITED

Comparing the performance of the randomized algorithm (the result of Ex
ercise 4.6) with the negative result of Theorem 4.4, we find that our randomized
oblivious algorithm achieves an expected running time that no deterministic
oblivious algorithm can achieve. Given that randomness is absolutely necessary
to beat the lower bound of ..j N Insteps for deterministic oblivious algorithms
(Theorem 4.4), we can ask the following question: how much randomness is
actually needed to achieve an algorithm with an expected running time of O(n)?

We formulate the question more precisely. A randomized oblivious algorithm
for permutation routing is a probability distribution on a set of deterministic
oblivious routing algorithms. Each deterministic oblivious algorithm for an
N-node network is a set of N 2 routes, one for each source-sink pair. Every
randomized oblivious algorithm can be expressed as a pair of sets, {AI, ... , AR }

and {PI, ... ,PR}, where each Aj is a deterministic oblivious algorithm and Pi is
the probability that we use Aj on a run of the randomized algorithm. Naturally,
2:7",,1 Pj = 1. For instance, in the randomized oblivious scheme of Section 4.2,
each algorithm Aj is a set of possible routes of the form i -+ O'(i) -+ d(i). There
are N choices of O'(i) for each i and d(i).

Theorem 4.4 can be interpreted as follows: with zero bits, the expected
running time of the algorithm is Q(..jN In). At the other extreme, the randomized
algorithm of Section 4.2 has expected running time O(n) = O(logN) with Nn
random bits; but are so many bits necessary?

Theorem 5.8: Consider any randomized oblivious algorithm for permutation rout
ing on the hypercube with N = 2n nodes. If this algorithm uses k random bits,
then its expected running time is Q(2-k ..jN In). .

PROOF: We have observed that any randomized oblivious algorithm is a prob
ability distribution on deterministic oblivious algorithms. Since only k random
bits are used, at least one of these deterministic algorithms is chosen with prob
ability at least 2-k , on any execution. Denote this deterministic algorithm by
AI. By the lower bound of Theorem 4.4, there is an input that requires time
Q(..jN In) on the deterministic algorithm AI' Feed this input to the randomized
algorithm; with probability 2-k , the randomized algorithm chooses Al and takes
time Q(..jN In). Thus, the expected running time of the randomized algorithm
isQ(2-k ..jNln). 0

Corollary 5.9: Any randomized oblivious algorithm for permutation routing on
the hypercube with N = 2n nodes must use Q(n) random bits in order to achieve
expected running time O(n).

The randomized oblivious algorithm of Section 4.2 uses about N times the
number of bits of randomness deemed necessary by Corollary 5.9. Can we match
this lower bound? The answer comes from an application of the probabilistic
method.

113

THE PROBABILISTIC METHOD

Theorem 5.10: For every n, there exists a randomized oblivious scheme for per
mutation routing on a hypercube with N = 2n nodes that uses 3n random bits and
runs in expected time at most 15n~

PROOF: We will say that a set B = {B I ,B2, ... ,Bt } of deterministic oblivious
permutation routing algorithms on the N -node hypercube is an efficient N
scheme if, for any instance, the expected number of steps using a randomly
chosen algorithm from B is at most 15n. To prove the theorem, we will show
that for every N = 2n, there is an efficient N-scheme for t = N 3•

The algorithm of Section 4.2 randomly chooses one of NN possible determin
istic algorithms on an execution: there are N sources, and we may choose from
N possible intermediate destinations for each. Let us denote these NN deter
ministic algorithms by A j, for 1 < j < NN. On an N -node network, there are
N! distinct possible instances of permutation routing, one for each permutation
on {I, ... , N}. For an instance Xi, 1 < i < N!, call the deterministic algorithm A j
good if Aj routes Xi in 14n or fewer steps, and bad otherwise. By Theorem 4.7,
for any particular instance Xi of the permutation routing problem, a fraction of
at most liN of the algorithms Aj are bad. Which algorithms are bad may differ
from instance to instance - we only know that for any particular instance Xi, at
most liN of the A/s are bad.

Consider now the following experiment: sample N 3 indices ii, i2, .. " iN3 in
dependently and uniformly at random (for simplicity, with replacement) from
the range {I, 2, ... , NN}. We show that the set of deterministic algorithms
A = {Ail' ... ,AiNJ is an efficient N-scheme with positive probability. From this,
we will conclude that an efficient N -scheme exists for every N = 2n.

For any instance Xi, a fraction of at most liN of the algorithms AI,.'" ANN is
bad; thus the expected number of algorithms in A that are bad for Xi is at most
N 3(11 N) ~ N 2. Let the indicator variable Xj be 1 if Aj is bad, for 1 < j ~ N 3,

and 0 otherwise. Thus E£LjXj] ~ N 2. Since the Xj are independent Poisson
trials, we may apply the Chernoff bound (the form in Exercise 4.1) to obtain
that the probability that more than 2N2 of the algorithms in A are bad for
Xi is less than exp(- N 2 14). Let Bi denote the bad event that more than 2N2

algorithms in A are bad for Xi. Then, for n > 2 (or N ~ 4),

N!

Pr[uf!,!1 Bi] < L Pr[Bi]

:::; N! x exp(-N2/4)

< 1,

where the last inequality follows from an application of Stirling's Formula
(Proposition B.1, Appendix B).

Therefore, with positive probability, no more than 2N2 of the algorithms in
A are bad for any instance Xi of permutation routing on the N-node hypercube.
This means that there exists a subset of N 3 algorithms from {AI, ... ,ANN} with

114

55 THE. LOV Asz LOCAL LEMMA

the property that at most 2N2 algorithms in this subset are bad for any instance
Xi; let us denote this subset by B = {Bl' B2, ..• , BN3}.

It is easy to see now that B is an efficient N -scheme: on any instance Xi,

a randomly chosen algorithm from B fails to route Xi within 14n steps with
probability at most 2N2 / N 3 = 2/ N. By reasoning similar to that in Exercise 4.6,
the expected number of steps using an algorithm randomly chosen from B is
less than 15n. 0

We have used the probabilistic method to show the existence of a randomized
algorithm meeting the lower bound of Corollary 5.9. It is important that the
reader keep the two levels of randomization in the proof distinct - the first was
to show probabilistically that a certain combinatorial object (the set B) existed,
and the second was to study the effect of choosing an algorithm at random from
B.

Does Theorem 5.10 settle the problem of designing a randomized algorithm
for permutation routing using few random bits? It does not, for the following
reason. The construction in the proof of Theorem 5.10 is not uniform: given N,
we do not know how to obtain B efficiently. The reader is invited to draw a
parallel between this result and that presented in Section 2.3.

5.5. The Lovasz Local Lemma

The Lovasz Local Lemma is a tool in the probabilistic method that has found
many applications in extremal graph theory, in Ramsey theory, and in the theory
of random graphs. Applications to algorithms and computer science have been
fewer, so far, but it appears that this powerful technique will surely prove useful.

Suppose that we have n events, each of which occurs with probability at
most 1/2. In an instance of the probabilistic method, each of the n events may
correspond to one of n ways in which the probabilistic experiment could fail.
If the events were independent- we could then assert that with probability at
least 2-n, none of these events occurs. The Lovasz Local Lemma generalizes this
notion to the case where each of these events is independent of all but a small
number of other events. In this section we give the lemma and apply it to show
that any instance of SAT meeting certain conditions always has a satisfying
assignment. We then give an algorithm that finds a satisfying assignment. Let £i,
1 s: is: n be events in a probability space. Recall that £i is mutually independent
of a set S of events if Pr[£d njET £j] = Pr[£i], where T is any subset of events
(or their complements) from S. The main device in establishing Lemma 5.11
below is a digraph we call the dependency graph G, in which there is a vertex
representing each event £i. An event £i is mutually independent of all other
events £j such that (£i, £j) is not an edge of the graph. Before proceeding with
the lemma, the reader may attempt the following exercise to better understand
the notion of a dependency graph.

115

THE PROBABILISTIC METHOD

Exercise 5.2: Suppose that the events E; are pairwise independent. What can you
say about the structure of a dependency graph? Is the dependency graph always
unique?

Lemma 5.11 (Lovasz Local Lemma): Let G(V, E) be a dependency graph for
events EI, ... ,En in a probability space. Suppose that there exist Xi E [0,1] for
1 :::; i ~ n such that

Then

Pr[Ei] < Xi IT (1 - Xj).

(i,j)EE

n

Pr[n7=IEi] ~ IT(1 - Xi).

i-I

PROOF: Let S denote a subset of the indices from {1, ... , n}. We first establish
by induction on k = lSI that for any S and for any i such that i ~ S,

Pr[Ei I njEsEj] < Xi·

The base case, S = (/), follows from our assumption on the probabilities Pr[Eil.
For the inductive step, we let SI = U E S : (i,j) E E}, and let S2 = S\SI. By the
definition of conditional probability,

Pr[Ei I njES£j] = Pr[Ei n (njES'£j) I n mES2£m] .
Pr[njES.t'j I n mES2t'm]

We can bound the numerator of(5.5) from above as follows:

Pr[Ei n (njES.£j) I n mES2£m] :::; Pr[Ei I n mES2£m]

- Pr[Ei]

:::; Xi IT (1- Xj),

(i,j)EE

(5.5)

since Ei is mutually independent of {Em: m E S2}. Also, we can bound the
denominator from below as follows. Suppose that SI = UI' ... , jr}. If r = 0, then
the dellominator is 1; for r > 0, we invoke the induction hypothesis:

Pr[£i1 n··· n £jr I n mES2£m] = (1- Pr[Eill n mES2 Em])

... (1 - Pr[E jr 1£i1 n ... n £jr-. n mES2 Em])

~ (1 - X j.) ... (1 - X jr) ~ IT (1 - X j)'

(i,j)EE

It follows that Pr[Ei I njES£j] < Xi. To complete the proof, we note that

Pr[n7_1Ed - (1-Pr[Ed)(1-Pr[E21 £1])"'(1-Pr[En I n7,:-l£i])
n

~ IT(1- Xi).

i-I

116

o

55 THE LOV Asz LOCAL LEMMA

Corollary 5.12: Let £l"",£n be events in a probability space, with Pr[£j] ~ p
for all i. If each event is mutually independent of all other events except for at
most d, and if ep(d + 1) < 1, then Pr[ni_l£d > O.

We now apply Corollary 5.12 to show that an instance of SAT meeting certain
conditions must have a satisfying truth assignment. Consider an instance of the
k-CNF problem: we are given a CNF formula in which each clause contains k
literals. This is also known as the k-SAT problem. Suppose further that each
of the n variables appears (complemented or uncomplemented) in at most 2k/ SO

clauses. Let m denote the number of clauses.
Consider a random truth assignment of values to the variables, in which

each variable is independently fixed to be 0 or 1 with probability 1/2. For
1 < i :::; m, let £j denote the event that the ith clause is not satisfied 6y this
random assignment. Since each clause contains k literals, we have Pr[£d = 2-k

,

for 1 :::; i :::; m. The event £j that the ith clause is not satisfied is independent
of all other events £ j, except those j such that clause i and clause j share
at least one variable. The number of clauses j that share a variable with
a specific clause i cannot exceed the total number of clauses containing the
variables that appear in clause i, and this is at most k2k/ 50 • We now apply
Corollary 5.12 with d = k2k / SO , and conclude that with positive probability the
random truth assignment satisfies all m clauses. Thus, there must be a satisfying
truth assignment for any instance of SAT meeting these conditions.

Corollary 5.12 merely tells us that a random assignment is good with positive
probability, but this probability may be miniscule. We may have to try the
random assignment many times before we succeed in finding one that" satisfies
all m clauses. We now describe a Las Vegas randomized algorithm that runs in
time polynomial in m (but not in k), yielding a satisfying truth assignment. From
here on, the reader should think of k (and therefore d = k2k/SO) as a constant
fixed independent of m, when we use the big-oh, 00, notation below.

Let G denote the dependency graph - each clause corresponds to a vertex of
G, and two vertices are adjacent in G if the corresponding clauses share one or
more variables. Note that if clause CI contains literal Xl, and clause C2 contains
literal Xl, then the vertices CI and C2 are adjacent. We know that every vertex
of G has at most d neighbors.

At any point in the algorithm, some variables will have been fixed to 0
or 1, while others will remain unspecified as yet; initially, all variables are
unspecified. The algorithm consists of two stages; the first stage will fix values
for some of the variables and defer the rest to the second stage. In the first
stage of the algorithm, we proceed sequentially through the variables, fixing
each equiprobably to 0 or 1. We call a clause dangerous if both the following
conditions hold:

1. k/2 literals of the clause Cj have been fixed.

2. Cj is not satisfied yet.

After fixing each variable, we identify any clause Cj that has turned dangerous.

117

THE PROBABILISTIC METHOD

For any dangerous clause, we defer its remaining unspecified variables to the
second stage, skipping over them in the sequential random assignment. At the
end of the first stage, we say that a clause has survived if it is not satisfied by
the variables fixed in the first stage.

For the second stage we need only consider the variables that were unspecified
at the end of the first stage, and the clauses that survived. A clause Cj can survive
the first stage for one of two reasons:

1. It became dangerous, or

2. All variables corresponding to its unspecified literals were deferred because other
clauses containing these variables (and, hence, adjacent to Cj) became dangerous.

Therefore, a clause Cj may survive as a result of anyone of up to d + 1 clauses
becoming dangerous - Cj itself, and its d neighbors. Every clause that survived
has at least k/2 unspecified variables.

Exercise 5.3: Apply Corollary 5.12 to show that there is a truth assignment of the
deferred variables that satisfies all the surviving clauses. (Again, consider a random
aSSignment.)

The second stage will find a truth assignment guaranteed by Exercise 5.3. The
probability that any particular clause becomes dangerous during the first stage
is at most 2-k/ 2, since exactly k/2 of its literals have their values fixed, and none
of these random values satisfy the clause. This implies that the probability that
a clause survives is at most (d + 1)2-k/ 2•

Consider the subgraph of G induced by the vertices corresponding to the
surviving clauses. In Lemma 5.13 below, we will show that with high probability,
all connected components of this induced subgraph of G have size O(logm).
Notice that two surviving clauses from different connected components of this
subgraph cannot share a deferred variable. Therefore, the deferred variables
can be uniquely assigned to distinct connected components of the subgraph of
G induced by the surviving clauses. For any particular connected component,
the total number of deferred variables in its clauses must be O(log m); in time
polynomial in m, we can enumerate the 20 (Iogm) truth assignments for these
variables until we that one that satisfies all clauses in this component. The
second stage consists of repeating this process independently for each connected
component, giving a polynomial time algorithm for assigning values to the
deferred variables so as to satisfy all surviving clauses.

Lemma 5.13: With probability 1 - 0(1), all connected components of G induced
by the clauses that survive the first stage have size at most z log m, for a fixed
constant z.

PRO OF: Consider a collection of clauses C., ... , Cr such that every pair of these
has distance at least 4 in G. Each clause Cj survives only if at least one of the

118

5.5 THE LOV ASZ LOCAL LEMMA

d + 1 clauses at distance at most 1 from it turns dangerous during the first stage.
For each Cj, let Dj be anyone dangerous clause at distance at most 1 from it.
Since the Cj's are at distance 4 from each other, the Dj's must be distinct.

There are at most (d + It possible ways of choosing the clauses D., ... , Dr.
Since each of the clauses D1, ••• , Dr is at distance at most 1 from some clause
in the set C1, ••• , Cr , they must be at distance at least 2 from each other and
hence have disjoint sets of variables. The probability that D., ... , Dr all become
dangerous is at most 2-rk/ 2• Thus, for a set of r clauses every pair of which is
distance at least 4 apart in G, the probability that they all survive is at most

(5.6)

We must bound the probability that some connected subgraph of G of size
exceeding z log m survives. To this end we introduce a graph-theoretic 'device
known as a 4-tree. Call a subset T of clauses a 4-tree if the following two
properties hold:

1. The distance in G between every pair of these clauses is at least 4.

2. If we form a new graph in which two clauses are adjacent if their distance
in G is exactly 4, T is connected.

We first bound the number of 4-trees of size r and use this to bound the
probability that a large 4-tree survives. By arguing that a large connected
subgraph of G must contain a large 4-tree, we will finally conclude it is unlikely
that a large connected subgraph survives.

Let us define a new graph G4 as follows: there is a vertex for each clause,
and two vertices are adjacent in G4 if their distance in G is 4. Each vertex of G4

has O(d4
) neighbors. The number of 4-trees of size r in G is no more than the

number of connected subgraphs in G4 of size r. Problem 5.7 considers a general
graph-theoretic bound on the number of connected subgraphs of a given size
in a graph. The particular result from there that we now use is: the number of
sub graphs of G4 of size r is at most

(5.7)

for some constant a, and this is an upper bound on the number of 4-trees of
size r in G. Multiplying (5.6) and (5.7), we conclude that the probability that any
4-tree of size larger than b log m survives the first round is o(1), for a suitably
large constant b.

What does this tell us about the probability that some connected subgraph of
G of size exceeding z log m survives? For any connected subgraph in G there is a
maximal4-tree T, together with at most 3d3 -1 other vertices within distance 3
of a vertex of T. Thus the size of this subgraph is at most 31 Tld3• We conclude
that the probability of survival of any connected subgraph of size exceeding
3bd3 10g m is 0(1). 0

If the first stage results in a connected component larger than this bound, we
repeat it; the expected number of repetitions is less than 2. Thus, we assume
that we enter the second stage of the algorithm with every surviving connected

119

THE PROBABILISTIC METHOD

component having size O(log m). The number of unspecified variables associated
with each of these components is also O(log m), and in time polynomial in m we
can find values for them that satisfy all the clauses. Since no variable is shared
by two or more components, we can treat each component in isolation. Clearly
the expected running time of this algorithm is polynomial in m.

Theorem 5.14: The above algorithm finds a satisfying truth assignment for any
instance of k-SAT containing m clauses in which each variable is contained in at
most 2k/ SO clauses, in expected time polynomial in m.

It is worth noting that the constant 50 above can be strengthened somewhat;
Problem 5.9 explores this further. The degree to which it can be strengthened
depends on our aim: if we only wish to show that a satisfying truth assignment
exists, we can obtain a better constant than if we actually want to show that
the algorithm above will succeed in finding one. This is a feature of all known
algorithms that, in polynomial time, find objects whose existence is guaranteed
by the Lovasz Local Lemma: the constants required for the algorithms are
somewhat weaker than those for the corresponding existence proofs.

5.6. The Method of Conditional Probabilities

In Section 2.3 we saw that a randomized computation could sometimes be
"derandomized." The derandomization in Section 2.3, however, led to a non
uniform deterministic algorithm. In this section, we will examine a technique that
can derandomize certain randomized algorithms uniformly. We illustrate· this
method, known as the method of conditional probabilities, using the set-balancing
problem of Example 4.5.

Recall the definition of the set-balancing problem: we are given an n x n
matrix A all of whose entries are 0 or 1. We wish to find a column vector
b E {-1, + 1}n, so as to minimize IIAblioo • In Example 4.5, we used the following
randomized algorithm: each entry of b is independently and equiprobably chosen
from {-1, +1}. We argued that with probability at least 1 - 21n, this algorithm
finds a vector b for which IIAblioo < 4.Jn In n. We now describe the method
of conditional probabilities, and use it to obtain a deterministic algorithm that
finds a vector b for which IIAblloo < 4.Jn In n.

Let us view the randomized algorithm as a computation tree. This tree is a
complete binary tree of height n (there are n + 1 nodes on any root-leaf path,
including the root and the leaf). The level of a node is its distance from the
root. The computation begins at the root. Each node at the ith level is labeled
by a distinct string from {-1, + 1 } i, and corresponds to a setting of bI. .. . , bi in
the obvious fashion. From any node whose level is less than n, the computation
proceeds equiprobably to one of its children. If a node is labeled t, its left child
is labeled t[-1) and its right child t[+ 1), where s[x) denotes the string that
results when the bit x is appended to the string s. Each leaf of the tree is thus

120

5.6 THE METHOD OF CONDITIONAL PROBABILITIES

labeled by a distinct vector in {-I, + l}n. An execution of the algorithm begins
at the root and terminates on reaching a leaf. This process is a sequential view
of the randomized algorithm of Example 4.5.

Call a leaf good if the vector v labeling it satisfies IIAviloo ~ 4~n In n, and bad
otherwise. From the argument of Example 4.5, we know that the randomized
algorithm reaches a good leaf with probability at least 1 - 21n. For a node a
in the tree, let P(a) denote the probability that, starting from a, the randomized
algorithm reaches a bad leaf. Thus P(a) is the probability that the algorithm
fails, conditional on its having reached the partial assignment that labels a. For
the root r of the tree, we have P(r) ~ 21n < 1 for n > 2.

Letting c and d denote the children of node a, we have

P(a) = P(c) ; P(d). (5.8)

From (5.8), it follows that

min{ P(c), P(d)} S P(a).

In other words, every node has a child whose conditional probability of failure
is no more than its own. This suggests the following deterministic algorithm for
walking down the tree from r to a good leaf. Start from r; in general, from a
node a, proceed to the child of a whose conditional probability of failure is no
more than P(a). Since P(a) < 1 when a = r, and never increases in the course
of this walk, we arrive at a leaf t for which P(t) < 1. But a leaf t corresponds
to a complete assignment to b, so that its probability of being bad is either 0
or 1; since P(t) < 1, it must be the case that P(t) = O. Thus this algorithm is
guaranteed to arrive at a good leaf.

This scheme for derandomizing a randomized computation tree is quite
general. Unfortunately, in most cases there is an obstacle to applying it: in order
to choose which of the children (c or d) to proceed to from a node a, we must
determine P(c) and P(d) (or at least determine which of them is smaller). We
know of very few randomized algorithms for which this choice can be made
efficiently. In the Notes section we will mention an approach to dealing with
this problem. For the moment, we will tackle this problem for our set-balancing
algorithm.

For 1 :S; i ~ n, let us say that the ith bad event, denoted Cj, occurs if
the absolute value of the inner product of the ith row of A with b exceeds
4~nlnn. By the analysis of Example 4.5, we know that Pr[cj] :S; 21n2, and so
Ej Pr[c;] :S; 21n. For a node a in the computation tree, let P(Cj I a) denote the
probability that Cj occurs conditional on the algorithm being at the intermediate
stage a; clearly, P(Cj I r) < 21n2• Let P(a) denote Ej P(Cj I a); thus P(a) :S; P(a)
for all a. The deterministic algorithm now follows from the following three
properties of P(a). The first property has already been established; the reader
may prove the other two in Problem 5.11.

121

THE PROBABILISTIC METHOD

1. P(r) < 1.

2. For any node a with children c and d,

min{P(c), P(d)} $ P(a).

3. For any node a, we can compute P(a) in time polynomial in n.

The deterministic algorithm is clear: use the method of conditional probabilities
as before, but with the value P(a) instead of P(a) at every step.

Theorem S.lS: The algorithm based on the method of conditional probabilities
determines a vector b such that IIAblioo < 4Jn In n, in time polynomial in n.

Notes

A comprehensive guide to the state of the art of the probabilistic method is the book by
Alon and Spencer [24]. The books by Erdos and Spencer [139] and by Spencer [384] are
quicker introductions to the field. The set-balancing problem has been widely studied,
and the best known result is due to Spencer [383]: for every 0-1 matrix A, there is a
vector b such that IIAbll oo $ 6Jii. It must be stressed that this result is existential, and
there is no efficient (randomized or deterministic) algorithm known to find the vector
whose existence is guaranteed by Spencer's result [383].

~ Research Problem S.l: Devise an efficient algorithm that for any 0-1 matrix A

will find a vector b for which IIAblloo is o(Jnlnn).

The large cut example of Theorem 5.1 is taken from Luby [283]. The MAX-SAT
problem is a classic problem in the theory of approximation algorithms. Johnson [219]
gives a deterministic 1/2-approximation algorithm for the MAX-SAT problem that
can be viewed as the derandomization (via the method of conditional probabilities) of
the randomized algorithm in Theorem 5.2. Yannakakis [418] improved this result by
presenting a deterministic 3/4-approximation algorithm. Our presentation in Section 5.2
is based on the work of Goemans and Williamson [169], who also describe how the
algorithm may be made deterministic. In subsequent work [170], they have improved
this using techniques from semidefinite programming to obtain a 0.878-approximation
algorithm for instances of the MAX-SAT in which every clause has at most 2 literals
(sometimes referred to as the MAX-2SAT problem). This implies an (X-approximation
algorithm for MAX-SAT, for a value of (X that is slightly larger than 3/4. Improving on
these bounds is an interesting challenge:

~ Research Problem S.2: Determine the largest value (X for which there is a
polynomial-time (X-approximation algorithm for MAX-SAT.

Arora, Lund, Motwani, Sudan. and Szegedy [32] have shown that for a small constant
E > 0 there is no polynomial time (1 - E)-approximation algorithm for MAX-3SAT,
unless P = NP. Bellare and Sudan [50] have proved a similar result for E close to 0.015

122

5.6 THE METHOD OF CONDITIONAL PROBABILITIES

under a slightly weaker assumption than P f NP. These results carry over to other
approximation problems, 'including the other versions of maximum satisfiability and the
max-cut problem.

The history of expanding graphs can be traced to their origins in the construction of
telephone networks. Cohen and Wigderson [108] provide a useful survey of the many
different types of expanding graphs and their applications. Bien [59] also gives a good
survey of the history of expanding graphs. The use of the probabilistic method for
proving the existence of expanding graphs can be traced back to Pinsker [333]. The
first explicit construction is due to Margulis [292]. Gabber and Galil [158] developed
an explicit construction that we will use in Chapter 6. The probability amplification
technique described in Section 5.3.1 is due to Sipser [378]. The use of expanding graphs
for augmenting randomness is an idea that first appeared in work of Karp, Pippenger,
and Sipser [248].

The number of bits used by an oblivious randomized permutation routing algorithm
was studied by Peleg and Upfal [331]; they study a slightly more general question than
that treated in Section 5.4. The following question remains open:

~ Research Problem 5.3: Devise a uniform, randomized, oblivious scheme for
permutation routing on the hypercube that uses Cln bits of randomness and
whose expected number of steps is C2n on any instance of permutation routing
on a hypercube with N = 2n nodes, for any constants CI and C2.

The best known construction is due to Peleg and Upfal [331]: there is a uniform,
randomized, oblivious scheme that uses 0 (n2) bits of randomness and runs in. expected
time O(n).

The Lovasz Local Lemma first appears in a paper by Erdos and Lovasz [137]. Broder,
Frieze, and Upfal have applied the Lovasz Local Lemma to finding disjoint paths in
expanders [84]. Leighton, Maggs, and Rao [272] have applied it to obtain an elegant
result on packet routing, while Hastad, Leighton, and Newman have applied it to the
probabilistic analysis of hypercubes with random faults [196]. The example of Section 5.5
is due to Beck [48]. A version of the algorithm that can be implemented as a "parallel
algorithm" (see Chapter 12) is described by Alon [18].

The method of conditional probabilities is implicit in a paper of Erdos and Self
ridge [138]. The connection to deterministic polynomial-time algorithms was developed
by Spencer [384]. There are many applications for which we do not know how to
compute the conditional probabilities that are compared at each step. One solution to
this problem is the method of pessimistic estimators introduced by Raghavan [351]. The
idea is to replace the conditional probability of failure at each stage by an efficiently
computable estimate of the conditional probability. These papers [284,351] demonstrate
a number of algorithmic applications of the method of conditional probabilities. Chazelle
and Friedman [91] have applied these tools to a number of problems in computational
geometry. Berger and Rompel [55] and Motwani, Naor, and Naor [313] have applied a
variant of the method of conditional probabilities to the derandomization of a variety
of parallel algorithms.

123

THE PROBABILISTIC METHOD

Problems

5.1 (Due to J. Naor.) Let X be a random variable with expectation - y),.;h that
moment generating function E[exp(tIXI)] is finite for some t > O. ~, ~ ',an use
the following two kinds of tail inequalities for X.

Chernoff Bound:
E[e IIX1]

Pr[IXI ~ 6] ::s; min 16'
I~O e

kth-Moment Bound:

Pr[IXI ~ 6] ::s; E[~~lk].

(a) Show that for each 6, there exists a choice of k such th~ ttle kth
moment bound is stronger than the Chernoff bound. (Hint: Conside" 1; Taylor
expansion of the moment generating function and apply the V'l..I~bilistic
method.)

(b) Why would we still prefer the Chernoff bound to the (seemingl/; ~tronger
kth-moment bound?

5.2 In Example 5.2, we applied the probabilistic method to certificate~ for the
value of a game tree in the setting of Section 2.1. We showed that for any
instance of T2.k there is a set of nO.793 leaves whose values certify tt. ,: value
ot-the root for that instance. Show that, in fact, for any instance of 70 , there
is a set of 2k = In leaves whose values certify the value of the root for that
instance.

5.3 Let G be a graph on n vertices, with nd /2 edges. Consider the following
probabilistic experiment for finding an independent set in G. Delhte each
vertex of G (together with its incident edges) independently with protJability
1 -1/d.

(a) Compute the expected number of vertices and edges that remain lifter the
deletion process.

(b) From these, infer that there is an independent set with at lentit n/2d
vertices in any graph on n vertices with nd /2 edges.

(c) Let G be a 3-regular graph. Suppose that we wish to turn this probHbilistic
"experiment into a randomized algorithm as follows. We delete each vertex
independently with probability 2/3. For every edge that remains, delute one
of its end-points. Derive an upper bound on the probability that this aluorithm
finds an independent set smaller than n(1 - £)/6.

5.4 A function f : R - R is said to be concave if for any x" X2 and O::s; A 0. 1, the
following inequality is satisfied:

The reader may wish to compare this with the notion of convex functions
defined in Problem 4.7.

(a) Suppose that f is a concave function and 9 is a linear function l'uch that
g(O)::s; f(O) and g(1)::s; f(1). Show that for any x in the interval [0,1], g(.) ~ f(x).

124

PROBLEMS

(b) Show that the function f(x) = 1 - (1 - x/k)1r is concave for any k > O. What
can you say when k :s;; O?

(c) Let f(x) = 1 - (1-x/k)1r and g(x) = (1 - (1-1/k)lr)x. Show that f(x) ~ g(x)
for positive k and 0 :s;; x :s;; 1.

5.5 Use the probabilistic method to show that an expanding graph with the
following properties exists for n sufficiently large:

• ILl = IRI = n.

• Every vertex in L has degree n3/ 4 , and every vertex in R has degree at
most 3n3/ 4 •

• Every subset of n3/
4 vertices in L has at least n - n3/ 4 neighbors in R.

5.6 Suppose that you had access to the expanding graph described in Problem 5.5
for a certain value of n. Show that it can be used to run the LazySelect
algorithm of Section 3.3 on any instance of size n, using log n random bits
to choose the entire sample R. Show that the expected running time of this
implementation is O(n).

5.7 Let G be a d-regular graph on n vertices.

(a) Show that the number of connected subgraphs of G of size r is at most
nd2r ,

(b) Suppose that each vertex of G is deleted independently with probability
1-1/2d2 • Show that with probability 1- n-a, there is no surviving connected
component of size exceeding log n, for a suitable constant a.

5.8 Lemma 5.11 guarantees that with positive probability, none of the events £/
occurs. In this problem, we see how small this positive probability can be.
Consider again the probabilistic experiment suggested in Problem 5.3 Let G
be a In-regular graph. Suppose that we delete vertices of G independently
with probability 1 _1/(3n1

/
4

).

(a) Use Lemma 5.11 to make the (obvious) argument that with positive proba
bility, an independent set remains after the deletion.

(b) Use the Chernoff bound to show that the probability that fewer than n3/ 4/6
vertices survive is less than exp(-n3/

4/12).

(c) Now consider what happens when the above experiment is run on a In
regular graph containing no independent set of size exceeding In. What does
this say about the positive probability in part (a)?

5.9 In Section 5.5, we assumed that a variable appears in at most ~/50 clauses.
Replace the constant 50 by the smallest constant you can for the following
results:

(a) The existence proof using Corollary 5.12.

(b) The algorithm of Section 5.5.

5.10 (Due to J. Naor.) For a graph G(V,E), and any T s;;; V, define the cut function
c(T) as the number of edges in E which have exactly one end-point in T.
For a suitably small function f(n) and large enough even integer n, show that

125

THE PROBABILISTIC METHOD

there exists a graph G (V, E) with IVI = n such that for every subset T s; V of
size n/2,

IC(T) - ~ I :s; f(n).

How small can you make the function f(n)?

5.11 In this problem, we will complete establishing the properties of P(a) leading
tCl~heorem 5.15.

(a) Show that for a node a at the ith level of the computation tree, P(a) is of
the form N(a)/2n- i , where N(a) is a sum of binomial coefficients. Prove that
for any node a with children C and d,

min{P(c), P(d)} :s; P(a),

and that for any node a, we can compute P(a) in time polynomial in n.

(b) Give an upper bound on the running time of the deterministic algorithm.

5.12 Show how the method of conditional probabilities can be applied to deran
domize the RandAuto algorithm.

5.13 Consider the randomized algorithm implicitly described in the proof of The
orem 5.1, which finds a cut of expected size m/2 in a graph with m edges.
Use the method of conditional probabilities to derandomize this algorithm and
obtain a deterministic polynomial time algorithm that computes a cut of size
at least m /2.

5.14 (Due to D.R. Karger and R. Motwani [233].) An (n, m)-safe set instance consists
of a urfi'Oerse U of size n, a safe set S s; U, and m target sets T" ... , T m s; U
such that

• lSI = IT,I = ... = ITml,
• and, for 1 :s; i :s; m, S n Ti = 0.

An isolator for a safe set instance is a set I s; U that intersects all the target
sets but not the safe set. An (n, m)-universal isolating family F is a collection
of subsets of U such that F contains an isolator for any (n, m)-safe set instance.

Show that there exists a (n, m)-universal isolating family F such that IFI is
polynomially bounded in nand m.

126

CHAPT ER 6

Markov Chains and Random Walks

ThE study of random walks on graphs is fascinating in its own right. In addition,
it has a number of applications to the design and analysis of randomized
algorithms. This chapter will be devoted to studying random walks on graphs,
and to some of their algorithmic applications. We start by describing a simple
algorithm for the 2-SAT problem, and analyze it by studying the properties of
random walks on the line. Following a brief treatment of the basics of Markov
chains, we consider random walks on undirected graphs. It is shown that there is
a strong connection between random walks and the theory of electric networks.
Random walks are then applied to the problem of determining the connectivity
of graphs. Next, we turn to the study of random walks on expander graphs.
We define a class of expanders and use algebraic graph theory to characterize
their properties. Finally, we illustrate the special properties of random walks on
expanders via an application to probability amplification.

Let G = (V, E) be a connected, undirected graph with n vertices and m edges.
For a vertex v E V, r(v) denotes the set of neighbors of v in G. A random walk on
G is the following process, which occurs in a sequence of discrete steps: starting
at a vertex vo, we proceed at the first step to a randomly chosen neighbor of Vo.
This may be thought of as choosing a random edge incident on Vo and walking
along it to a vertex VI E r(vo). At the second step, we proceed to a randomly
chosen neighbor of VI, and so on. Unless otherwise stated, "randomly chosen
neighbor" will mean a neighbor chosen uniformly at random; the choice at each
step is independent of all previous choices.

Here are some typical questions about the simple random walk that we study:
what is the expected number of steps to get from vertex u to another vertex v?
Starting from a given vertex u, what is the expected number of steps to visit
every vertex in the graph?

Exercise 6.1: Let G be the complete graph Kn on n vertices. Let u and v be two
vertices in G. Prove that:

127

MARKOV CHAINS AND RANDOM WALKS

1. The expected number of steps in a simple random walk that begins at u and ends

upon first reaching v is n - 1.

2. The expected number of steps to visit all the vertices in G starting from u is (n-1)Hn_ 1 •

where Hn- 1 = E;~111/j is the Harmonic number.

Is the random walk on Kn exactly the same process as coupon collection with n - 1

coupons?

6.1. A 2-SAT Example

Recall that the k-SAT problem is the special case of the SAT problem in
which each clause in the input formula contains exactly k literals. We seek
an assignment of (Boolean) values to the variables such that all the clauses
are satisfied, or an assurance that no such assignment exists. While the k-SAT
problem is NP-hard for k ~ 3, it is solvable in polynomial time for k = 1
or k = 2. In this section we present a simple polynomial-time (Monte Carlo)
algorithm for solving the 2-SAT problem.

Suppose we start with an arbitrary assignment of values to the literals. As
long as there is a clause that is unsatisfied, we modify the current assignment
as follows: we choose an arbitrary unsatisfied clause, and pick one of the
(two) literals in it uniformly at random; the new assignment is obtained by
complementing the value of the chosen literal. After each such step, we check
to see if there exists an unsatisfied clause under the current assignment; if not,
the algorithm terminates successfully with a satisfying assignment. If there is a
satisfying assignment for this instance, how long does it take for this process to
discover it?

Given an instance with a satisfying assignment, let us fix our attention on
a particular satisfying assignment A, and refer to the values assigned by A to
the literals as the "correct values." Let n be the number of variables in an
instance. The progress of this algorithm can be represented by a particle moving
between the integers {O, 1, ... , n} on the real line. The position of the particle
indicates how many variables in the current solution have the correct values.
At each iteration, we complement the current value of one of the literals of
some unsatisfied clause, so that the particle's position changes by 1 at each
step. In particular, a particle currently at position i, for 0 < i < n, can only
move to positions i-lor i + 1. A particle at location 0 can only move to
1, and the process terminates when the particle reaches position n, although
it may terminate at some other position with a satisfying assignment other
than A.

The crucial observation is the following: in an unsatisfied clause, at least
one of the two literals has an incorrect value. With probability at least 1/2
we increase (by one) the number of variables having their correct values. The
motion of the particle thus resembles a random walk on the line.

12(;

6.1 MARKOV CHAINS

The reader may relate this process to a familiar gambling experience (see also
Section 4.4). A gambler goes to a casino with n dollars. At each step he bets $1,
and loses it with probability at least 1/2. If he wins, his bet of $1 is returned to
him, and in addition he is given $1. The gambler must quit when his capital is
reduced to O. Note the similarity to the process in the previous paragraph, with
the coordinates on the line reversed.

The random walk on the line is one of the most extensively studied stochastic
processes. Using the tools developed in this chapter, we will be able to prove:

Theorem 6.1: The expected number of steps for the above 2-SAT algorithm to
find a satisfying assignment is O(n2).

Exercise 6.2: Using Theorem 6.1, devise a one-sided error Monte Carlo algorithm
for the 2-SAT problem. This algorithm should run in polynomial time, always return
UNSATISFIABLE for unsatisfiable formulas, and with high probability it should return
a satisfying truth assignment for satisfiable formulas.

6.2. Markov Chains

Although we can deal with some of the questions concerning random walks
using basic probability theory (as in Exercise 6.1), they are more cOIU'eniently
studied using an abstraction known as a Markov chain. A Markov chain M is
a discrete-time stochastic process defined over a set of states S in terms of a
matrix P of transition probabilities. The set S is either finite or countably infinite.
The transition probability matrix P has one row and one column for each state
in S. The Markov chain is in one state at any time, making state-transitions at
discrete time-steps t = 1,2, The entry Pij in the transition probability matrix
is the probability that the next state will be j, given that the current state is i.
Thus, for all i, j E S, we have 0 < Pij < 1, and E j Pij = 1.

An important property of a Markov chain is the memorylessness property: the
future behavior of a Markov chain depends only on its current state, and not on
how it arrived at the present state. This follows from the observation that the
transition probabilities Pij depend only on the current state i. We will denote
by X t the state of the Markov chain at time t; thus, the sequence {Xt } specifies
the history or the evolution of the Markov chain. The memorylessness property
can be stated more formally as follows:

Pr[Xt+1 = j I Xo = io,XI = il, ... ,Xt = i] = Pr[Xt+1 = j I Xt = i] = Pij .

A Markov chain (indeed, a random walk) need not have a prespecified initial
state; in general, its initial state Xo is permitted to be chosen according to some
probability distribution over S. Of course, an initial probability distribution

129

MARKOV CHAINS AND RANDOM WALKS

includes as a special case the deterministic specification that the initial state
Xo be i. Given a distribution for the initial state Xo, we have a probability
distribution for the history {Xt }.

For states i,j E S, define the t-step transition probability as p/P = Pr[Xt =
j I Xo = i]. Given an initial state Xo = i, the probability that the first transition
into state j occurs at time t is denoted by rW and is given by

rW = Pr[Xt = j,and, for 1 <s::s; t -1, Xs =1= j I Xo = i].

Also, for Xo = i, the probability that there is a visit to (transition into) state j
at some time t > 0 is denoted by fij, and is given by

fij = 2: rW·
t>O

Finally, the expected number of time steps to reach state j starting from state i
is denoted by hij and is given by

hij = 2: t dY.
t>O

If fij < 1 then hij = 00, but the converse need not be true.

~ Definition 6.1: A state i for which fii < 1 (and hence hii = (0) is said to be
transient, and one for which fii = 1 is said to be persistent. Those persistent states
i for which hii = 00 are said to be null persistent and those for which hii =1= 00 are
said to be non-null persistent.

We restrict our attention to finite Markov chains, i.e., Markov chains whose
states are finite in number. We claim that every state in such a Markov chain is
either transient or non-null persistent. We define the underlying directed graph
of a Markov chain as follows: there is one vertex in the graph for each state of
the Markov chain; and there is an edge directed from vertex i to vertex j if and
only if Pij > O.

~ Definition 6.2: A strong component of a directed graph G is a maximal subgraph
C of G such that for any pair of vertices i and j in the vertex set of C, there is a
directed path from i to j, as well as a directed path from j to i.

~ Definition 6.3: A strong component C is said to be a final strong component if
there is no edge going from a vertex in C to a vertex not in C.

In a finite Markov chain, starting from any vertex in a strong component C,
there is a non-zero probability of reaching any other vertex in the same strong
component in a finite number of steps. If C is a final strong component, this
probability is 1 since the Markov chain can never leave the component C once
it enters it. It follows that a state is persistent if and only if it lies in a final
strong component.

130

6.1 MARKOV CHAINS

~ Definition 6.4: A Markov chain is said to be irreducible whenever its underlying
graph consists of a single strong component.

The unique strong component in an irreducible Markov chain must be final,
and hence all states are persistent.

~ Definition 6.5: Define q(t) = (q~t), q~t), . .. , q~t), the state probability vector (also
called the distribution of the chain at time t), to be the row vector whose ith
component is the probability that the chain is in state i at time t.

Henceforth, whenever we mention a probability distribution on the states of a
Markov chain, we mean such a vector. It is easy to check that q(t+l) -: q(t) P,
so we have by induction that q(t) = q(O) pt. It follows that a Markov chain's
behavior for all time is specified by its initial distribution q(O) and its transition
matrix P.

Some remarks about our notation are in order. Throughout this chapter,
when multiplying a probability vector q with a transition probability matrix P,
we will use qP instead of Pq since the correct interpretation is that the entry
Pij represents the probability of going from state i to state j, and that the entry
qi is the probability of being in state i. For notational convenience, we interpret
a probability vector as a row vector whenever it premultiplies a matrix in this
fashion.

~ Definition 6.6: A stationary distribution for the Markov chain with transition
matrix P is a probability distribution 'It such that 'It = 'ltP.

Intuitively, if the Markov chain is in the stationary distribution at step t,
it remains in the stationary distribution at step t + 1. Thus the stationary
distribution is thought of as a description of the steady-state behavior of the
Markov chain.

~ Definition 6.7: The periodicity of a state i is the maximum integer T for which
there exists an initial distribution q(O) and positive integer a such that, for all
t, if at time t we have q~t) > 0, then t belongs to the arithmetic progression
{a + Ti I i ~ O}. A state is said to be periodic if it has periodicity greater than
1, and is said to be aperiodic otherwise. A Markov chain in which every state is
aperiodic is known as an aperiodic Markov chain.

Consider a Markov chain in which the underlying graph is bipartite. It follows
that every state is periodic with periodicity at least 2. As we will see later, this
is really the only possible source of periodicity in Markov chains obtained from
random walks. Periodic Markov chains cause complications (for example, they
do not converge to the stationary distribution), but we will show that there is a
simple trick for dealing with this source of periodicity.

131

MARKOV CHAINS AND RANDOM WALKS

~ Definition 6.8: An ergodic state is one that is aperiodic and non-null persistent.

~ Definition 6.9: An ergodic Markov chain is one in which all states are ergodic.

The following basic theorem on Markov chains may be found in most texts
on stochastic processes.

Theorem 6.2 (Fundamental Theorem of Markov Chains): Any irreducible. finite.
and aperiodic Markov chain has the following properties.

1. All states are ergodic.

2. There is a unique stationary distribution n such that. for 1 ::s; i ::s; n. 7ti > O.

3. For 1 < i < n. fii = 1 and hii = 1/7ti.

4. Let N(i, t) be the number of times the Markov chain visits state i in t steps.
Then.

1
. N(i, t)
1m -- =7ti.

t-+C() t

6.3. Random Walks on Graphs

Let G = (V, E) be a connected, non-bipartite, undirected graph where IVI = n
and lEI = m. It induces a Markov chain MG as follows: the states of the MG are
the vertices of G, and for any two vertices u, v E V,

Puv = {iui if (u,v).e E

o otherwIse,

where d(w) is the degree of vertex w. Because G is connected, MG is irreducible.
For a connected, undirected graph G, the periodicity of the states in MG is the
greatest common divisor (gcd) of the length of all closed walks in G, where
a closed walk is any walk that starts and ends at the same vertex. As G is
undirected, there are closed walks of length 2 that traverse the same edge twice
in succession. Further, since G is non-bipartite it has odd cycles that give closed
walks of odd length. It follows that the gcd of the closed walks is 1, and hence
MG is aperiodic. Noting that G is finite, Theorem 6.2 now implies that MG has
a unique stationary distribution n.

Lemma 6.3: For all v E V. 1tv = d(v)/2m.

PROOF: Let [nP]v denote the component corresponding to vertex v In the
probability vector nP. Then,

[nP]v - L 1tuP uv

u

132

6.J RANDOM WALKS ON GRAPHS

2: d(u) X _1_

(u,v)EE 2m d(u)

1
2:

(u,v)EE 2m
d(v)

2m

o
As a direct consequence of Theorem 6.2 and Lemma 6.3, we obtain the

following lemma.

Lemma 6.4: For all v E V, hvv = l/1tv = 2m/d(v).

~ Definition 6.10: The hitting time huv (sometimes called the mean first passage
time) is the expected number of steps in a random walk that starts at u and ends
upon first reaching v.

~ Definition 6.11: We define Cuv, the commute time between u and v, to be Cuv =

huv + hvu = Cvu' This is the expected time for a random walk starting at u to
return to u after at least one visit to v.

~ Definition 6.12: Let Cu(G) denote the expected length of a walk that starts at
u and ends upon visiting every vertex in G at least once. The cover time of G,
denoted C(G), is defined by C(G) = maxuCu(G).

~ Example 6.1: A graph that tells us a great deal about the behavior of random
walks is the n-vertex lollipop graph Ln (Figure 6.1). This graph consists of a clique
on n/2 vertices, and a path on the remaining vertices. There is a vertex u in the
clique to which the path is attached; let v denote the other end of the path.

Figure 6.1: The lollipop graph Ln.

By elementary probability (or using methods for studying random walks that
we will encounter shortly), it turns out that in Ln, huv is E>(n3), whereas hvu is
E>(n2). Thus, in general, huv =1= hvu, and the asymptotic difference (as in this case)
can be as much as a factor of n.

Another misconception that Ln dispels is that "adding more edges should help
reduce the cover time C(G)." This is false, because Ln has cover time E>(n3); on

133

MARKOV CHAINS AND RANDOM WALKS

the other hand, it can be built by adding edges to a chain on n vertices, which
can be shown to have cover time 8(n2). In turn, the complete graph Kn can be
built by adding edges to L n, and the cover time of Kn is 8(n log n). Thus the
cover time of a graph is not monotone in the number of edges.

The following lemma establishes an important property of the commute time
across an edge and will prove useful in Section 6.5 below.

Lemma 6.5: For any edge (u,v) E E, huv + hvu < 2m.

PROOF: The proof considers a new Markov chain defined on the edges of G.
The current state is defined to be the pair composed of the edge most recently
traversed in the random walk, together with the direction of this traversal;
equivalently, replacing each undirected edge by two oppositely directed edges,
the directed edges form the state space. There are 2m states in this new Markov
chain. The transition matrix Q for this Markov chain has non-zero entry

Q(u,v),(v,w) = Pvw = Ild(v),

corresponding to an edge (v, w). This matrix is doubly stochastic, meaning that
not only do the rows sum to one (as in every Markov chain), but the columns
sum to one as well. To see this, fix a (directed) edge (v, w) and observe that the
column sum corresponding to this state is given by

2: Q(x,y),(v,w) - 2: Q(u,v),(v,w)

xEV, yEr(x) UEr(v)

2: Pvw
uEr(v)

1
- d(v) x d(v)

- 1.

Noting the result in Problem 6.6, it follows that the uniform distribution on the
edges is stationary for this Markov chain, so the stationary probability of each
directed edge is 112m. By part (3) of Theorem 6.2, we can conclude that the
expected time between successive traversals of the directed edge (v, u) is 2m.

Consider now huv + hvu, and interpret this as the expected time for a walk
starting from vertex u to visit vertex v and return to u. Conditioned on the
event that the initial entry into u was via the directed edge (v, u), we conclude
that the expected time to go from there to v and then to u along (v, u) is 2m.
The memorylessness property of a Markov chain now allows us to remove the
conditioning: since the sequence of transitions from u onward is independent
of the fact that we arrived at u along (v, u) at the start of the commute, the
expected time back to u is at most 2m. 0

We emphasize that the result in Lemma 6.5 is valid only for vertices u and v
that are connected by an edge in G.

134

6.4 ELECTRICAL NETWORKS

6.4. Electrical Networks

Many random variables associated with the simple random walk on an undi
rected graph are studied conveniently using the tools and the language of
electrical network theory. Our focus here will be on characterizing huv and Cuv
in terms of properties of the graph G. We begin with a review of some basics of
resistive electrical networks.

A resistive electrical network is an undirected graph; each edge has associated
with it a positive real branch resistance. The flow of current in such networks
is governed by two rules: Kirchhoff's Law and Ohm's Law. Kirchhoff's Law
stipulates that the sum of the currents entering a node in the network equals
the sum of the currents leaving it. Ohm's Law states that the voltage across a
resistance equals the product of the resistance and the current through it.

Figure 6.2: A resistive electrical network. Each rectangle signifies a branch resistance.

Consider the simple example in Figure 6.2. If a current of one ampere
were injected into node b and removed from node c in this network, a simple
calculation using Kirchhoff's Law and Ohm's Law yields the following: half an
ampere of current flows along the branch bc, and the other half amperC? through
branch ba and onto ac. The voltage difference between c and b is one volt, while
the voltage difference between c and a (and between a and b) is half a volt.

One final notion we need is that of the effective resistance between two nodes
in a network. The effective resistance between two nodes u and v is the voltage
difference between u and v when one ampere is injected into u and removed
from v; equivalently, one ampere could be injected into v and removed from u.
The effective resistance between u and v is always at most the branch resistance
between u and v and can be much less, as we shall see. This distinction between
branch and the effective resistances is important. In the example in Figure 6.2,
for instance, the effective resistance between band c is 1, whereas the branch
resistance is 2.

Given an undirected graph G, let N(G) be the electrical network defined as
follows: it has a node for each vertex in V; for every edge in E, it has a one ohm
resistance between the corresponding nodes in N(G). For two vertices u,v E V,
Ruv denotes the effective resistance between the corresponding nodes in N(G).
The following theorem establishes a close relation between commute times for
the simple random walk on G and effective resistances in the electrical network
N(G).

Theorem 6.6: For any two vertices u and v in G, the commute time Cuv = 2mRuv.

135

MARKOV CHAINS AND RANDOM WALKS

PROOF: For a vertex x in G, let r(x) denote the set of vertices in V that are
adjacent to x, and let d(x) denote its degree Ir(x)l. Let CPuv denote the voltage
at u in N(G) with respect to v, if d(x) amperes of current are injected into each
node x E V, and 2m amperes are removed from v. We will first prove that for
all u E V,

Using Kirchhoff's Law and Ohm's Law, we obtain that for all u E V \ {v}),

d(u) = 2: (CPuv - CPwv).
wer(u)

By the definition of expectation, for all u E V \ {v}),

1
huv = 2: d(u) (1 + hwv).

wer(u)

(6.1)

(6.2)

(6.3)

Equations (6.2) and (6.3) are both linear systems with unique solutions; further
more, they are identical if we identify CPuv in (6.2) with huv in (6.3). This proves
(6.1). To complete the proof of the theorem, we note that hvu is the voltage CPvu
at v in N(G) measured with respect to u, when currents are injected into all
nodes and removed from u. Changing signs, CPvu is now the voltage at u relative
to v when current is injected at u, and removed from all other nodes. Since
resistive networks are linear, we can determine Cuv by super-posing (taking care
with the sign!) the networks on which CPuv and CPvu are measured. Currents at all
nodes except u and v cancel, resulting in Cuv being the voltage between u and v
when Ewev d(w) = 2m amperes are injected into u and removed from v, which
yields the theorem by Ohm's Law. 0

Exercise 6.3: Verify all the hitting times claimed in Example 6.1 using the ideas in
the above proof.

Exercise 6.4: Consider a random walk on the integer points 1, 2, ... , n, starting at 1.
If the walk is at 1, it always proceeds to 2 at the next step; when the walk is at a point
i > 1, it proceeds at the next step to i -1 or to i + 1 with equal probability. Show that
the expected number of steps that elapse before the walk fi rst reaches n is (n - 1)2.

Exercise 6.5: Prove Theorem 6.1. Why does the bound of 0 (n2) steps hold only for
finding some satisfying assignment, rather than the specified assignment A? What
happens if each clause has 3 literals rather than 2?

The effective resistance between two nodes u and v is at most the length of
the shortest path between them in G. This observation yields an alternative
proof of Lemma 6.5. The length of the shortest path between any two vertices
of G is at most the diameter of G. We thus have the following corollary, which
by Example 6.1 is asymptotically tight.

136

6.5 COVER TIMES

Corollary 6.7: In any n-vertex graph. and for all vertices u and v.

6.5. Cover Times

We are now ready to prove a classic theorem on the cover time of the simple
random walk on G.

Theorem 6.8: C(G) < 2m(n - 1).

PROOF: Let T be any spanning tree of G. There is a traversal of T, visiting
vertices Vo, v}, ... ,V2n-2 = Vo that traverses each edge of T exactly once in each
direction. Further, every vertex of G appears at least once in the sequence
Vo, v}, ... , V2n-2. Consider a random walk that starts at Vo and terminates upon
returning to Vo, having visited the vertices v}, V2,." in the order prescribed by
the traversal. Since this walk has visited every vertex in G, an upper bound on
the expected length of this walk is an upper bound on CIIQ(G). Now

2n-3

Cvo(G) < 2: hVj,Vj+l = 2: Cuw •

j=O (u,w)eT

Since the vertices vj. Vj+l are adjacent for all j, we have by Lemma 6.5" that

Since there are n - 1 edges in T, CIIQ(G) < 2m(n - 1). But this upper bound
holds no matter which vertex of G we designate to be the starting point Vo in
the traversal; therefore C(G) ~ 2m(n - 1). 0

Note that Theorem 6.8 gives (asymptotically) the right answer for the lollipop
graph: C(Ln) is 9(n3). On the other hand, it gives the same O{n3) upper bound
for the complete graph K n, whereas we have already seen (Exercise 6.1) that
C(Kn) is 9(nlogn). Theorem 6.8 can be slack for some graphs: in the proof, we
measure the time for the vertices of G be visited in one specific order. In fact,
we can often refine the upper bound on cover time as follows.

Let R(G) = maxu,vev Ruv; we call R the resistance of G. The resistance of a
graph characterizes its cover time fairly tightly:

Theorem 6.9: mR(G) < C(G) < 2e3mR(G)lnn + n.

PROOF: The proof of the lower bound follows from the fact that there exist
vertices u, v such that R(G) = Ruv and max(huv , hvu) ~ Cuv /2; the bound then
follows from Theorem 6.6.

137

MARKOV CHAINS AND RANDOM WALKS

For the upper bound, we will show that the probability that all the vertices
are not visited within 2e3mR(G)lnn steps is at most I/n2 ; this, together with
Corollary 6.7 will yield the result.

Divide the random walk of length 2e3mR(G) In n into In n epochs each of
length 2e3mR(G). For any vertex v, the hitting time huv is at most 2mR(G),
regardless of the vertex u at which an epoch starts. By the Markov inequality,
the probability that v is not visited during any single epoch is at most Ile3•

Thus, the probability that v is not visited during any of the In n epochs is at
most I/n3• Summing this probability over the n choices of the vertex v, the
probability that any vertex is not visited within 2e3mR(G) In n steps is at most
I/n2• When this happens (there is a vertex that has not been visited within
2e3mR(G)lnn steps), we continue the walk until all vertices are visited, and
n3 steps suffice for this (by Corollary 6.7). Thus the expected total time is at
most

o

The bounds in Theorem 6.9 cannot in general be improved; the upper bound
is tight (within constant factors) for the complete graph (Problem 6.10 below)
and the lDwer bound is tight for the chain on n vertices.

There are also graphs for which neither bound of Theorem 6.9 is tight. Note
that Theorem 6.9 gives an estimate for the cover time that is tight to within a
factor of log n. This is because effective resistances in a graph (and therefore
the resistance of the graph, R(G» can be computed efficiently using matrix
inversions. Note also that neither Theorem 6.8 nor 6.9 is universally superior;
we have already seen that for the complete graph K n, Theorem 6.8 gives a loose
upper bound. For the lollipop graph Ln. Theorem 6.9 gives an upper bound of
O(n3 10g n), which is an overestimate by a factor of log n.

Often, we are interested not so much in determining the cover time of a single
graph, as in bounding the cover times of a family of graphs. A simple fact that is
of great use in bounding effective resistances in electrical networks is following
Rayleigh's Short-cut Principle,'

Effective resistance is never raised by lowering the resistance on an edge (e.g., by
"shorting" two nodes together), and is never lowered by raising the resistance on
an edge (e.g., by "cutting" it). Similarly, resistance is never lowered by "cutting" a
node, leaving each incident edge attached to only one of the two resulting halves of
the node.

A second useful fact about effective resistances in an electrical network is that
they obey the triangle inequality. As one very simple application of these facts,
observe that in a graph with minimum degree d, R ~ lid: short all vertices
except the one of minimum degree. Another simple application is the following
lemma.

138

6.6 GRAPH CONNECTIVITY

Lemma 6.10: Suppose that g contains p edge-disjoint paths of length at most t
from s to t. Then. Rst < t /p.

6.6. Graph Connectivity

We are now ready for our first algorithmic application of random walks. Two
vertices in an undirected graph G are said to be connected if there exists a path
between them. A connected component of G is a (maximal) subset of vertices in
which every pair of vertices is connected.

6.6.1. Undirected Graphs

The undirected s-t connectivity (USTCON) problem is the following: given an
undirected graph G and two vertices sand t in G, decide whether sand tare
in the same connected component. The USTCON problem is important in the
study of space-bounded complexity classes and is a natural abstraction of a
number of graph search problems. It is easy to see that a standard graph search
algorithm such as depth-first search solves the problem in O(m) steps. In doing
so, the algorithm keeps track of all the vertices of G that the search has visited
and, therefore, uses workspace at least linear in n.

A probabilistic log-space Turing machine for a language L is a probabilistic
Turing machine using space O(log n) on instances of size n, and running in time
polynomial in n. We say that a language (equivalently, a decision probfem) A is
in RLP if there exists a probabilistic log-space Turing machine M such that on
any input x,

{
~ 1/2 x E A

Pr[M accepts xl 0 x ~ A. (6.4)

Here space O(log n) refers to the workspace of the Turing machine; the input is
given on a read-only tape, and the only storage available to it with write-access
is a log-space tape.

Theorem 6.11: USTeON E RLP.

PROOF: The log-space probabilistic Turing machine simulates a (simple) random
walk of length 2n3 through the input graph, starting from s. If it encounters
the vertex t in the course of this walk, it outputs YES; otherwise it outputs NO.

Clearly the machine will never output YES on an instance of USTCON in which
sand t are not in the same connected component. What is the probability that
it outputs NO when it should have said YES?

By Theorem 6.6, hst < n3. By the Markov inequality, if t is in the same
component of G as s, the probability that it is not visited in a random walk of
2n3 steps starting from s is at most 1/2. The Turing machine uses its workspace

139

MARKOV CHAINS AND RANDOM WALKS

to count up to 2n3, and to keep track of its position in the graph during the
walk; both of these require only space O(log n). 0

We have thus seen a uniform, randomized algorithm for deciding USTCON
in log-space and polynomial time. This randomized algorithm can also be
made deterministic while still using logarithmic space, albeit non-uniformly. We
consider a specific class of non-uniform, deterministic log-space algorithms for
USTCON known as universal traversal sequences. We focus on n-vertex graphs
that are regular of degree d - every vertex has degree d - throughout our
discussion of universal traversal sequences. Such a graph is said to be labeled
if, at each vertex in the graph, each of the d edges incident on that vertex
has a unique (integer) label in {I, .. . ,d}. There is no requirement that an edge
receive the same label at both end-points. Figure 6.3 gives an example of a
labeled 3-vertex, 2-regular graph. Note that the edge joining vertices a and b
has different labels at its end-points.

Any sequence of symbols (1 = ((11, (12, ...) from {I, ... , d} together with a
starting vertex v in a labeled graph describes a walk through the graph in the
following natural fashion. The walk begins at v, and at its first step walks along
the edge incident on v whose label is (11. It now arrives at another vertex, say u,
and leaves by the edge whose label is (12, and so on. For example, in Figure 6.3,
if the starting vertex were a and (1 were (1,2,1,1,2), the walk would proceed to
visit the vertices b, a, b, c, a. On the other hand, if the starting vertex were b, the
same sequence (J visits the vertices c, a, b, c, a.

Figure 6.3: A labeled 3-vertex, 2-regular graph.

A sequence (J is said to traverse a labeled graph G if the walk it prescribes
visits every vertex of G regardless of the starting vertex. The reader may verify
that the sequence (1,2,2) traverses the labeled graph in Figure 6.3, and that no
shorter sequence does so. A sequence (1 is said to be universal traversal sequence
for a class of labeled graphs if it traverses every labeled graph in the class. By
this we mean every labeling of every graph in the class, and for every starting
vertex.

A universal traversal sequence whose length is polynomial in n can be used
by a deterministic log-space Turing machine to decide instances of USTCON of
size n as follows. The sequence is stored in the finite-state control of the Turing

140

6.6 GRAPH CONNECTIVITY

machine and is used to traverse G starting from s on an instance of USTCON.
(However, in order for it to be a uniform log-space algorithm, the universal
traversal sequence should be constructible by the log-space Turing machine,
rather than be encoded in the machine's finite-state control.)

Let 9 be a family of connected labeled d-regular graphs on n vertices. Each
member of each graph counts as a distinct member of 9. Let U(9) denote the
length of the shortest universal traversal sequence for all the labeled graphs in
9. Let R(9) denote the maximum resistance between any pair of vertices in any
graph in 9.

Theorem 6.12: U(9) ~ SmR(9) log2(nI91).

PROOF: Given a labeled graph G E 9, let v be a vertex of G. Consider a random
walk of length SmR(9) log2(nI91), divided into log2(nl91) "epochs" each of length
SmR(Q). The probability that the walk fails to visit v in any epoch is at most
2/S by Theorem 6.6 and Markov's inequality, regardless of the vertex of G at
which the epoch began. The probability that v is not visited during any of the
log2(nl91) epochs is thus at most (nI91)-c for a value of c > 1. Summing this
probability over all n choices of the vertex v and all 191 choices of the labeled
graph G, the probability that the random walk (sequence) fails to be universal
is less than one. Thus there is a sequence of this length that is universal for the
class 9. 0

The constant S in Theorem 6.12 can be improved slightly. Let U(d, n) denote
the length of the shortest universal traversal sequence for connected, .labeled,
n-vertex, d-regular graphs.

Exercise 6.6: Show that the number of labeled n-vertex graphs that are d-regular is
(nd)O(nd).

Putting together Theorem 6.12 and the result of Exercise 6.6, we have:

Corollary 6.13: U(d,n) = O(n3dlogn).

PROOF: The diameter of every connected n-vertex, d-regular graph is O(n/d)
and so, therefore, is its resistance. The number of edges m = nd/2.

The result now follows from Exercise 6.6 and Theorem 6.12. 0

This suggests that there is a deterministic log-space Turing machine that
decides USTCON on n-vertex, d-regular graphs. Unfortunately, all we have
given here is a proof (by the probabilistic method) that such a universal traversal
sequence exists, and thus a non-uniform deterministic log-space machine. We
do not know how to construct such a sequence by a deterministic log-space
machine; in fact, we do not in general know how to do this even with a
polynomial-time machine.

141

MARKOV CHAINS AND RANDOM WALKS

6.6.2. Directed Graphs

Are the techniques of Section 6.6.1 applicable to s-t connectivity (STCON) in
directed graphs? There is certainly no immediate way of using the results on
random walks, since the cover time of the random walk may no longer be finite.
For instance, a directed graph may contain vertices with no outgoing edges, so
that a random walk may get trapped at such a vertex. What if we were to
perform a random walk from the vertex s, and to jump back to s whenever we
are stuck at such a vertex? We will use a variant of this idea to give a Monte
Carlo algorithm that decides s-t connectivity in directed graphs using space
O(log n). The running time of this algorithm may be large - its expectation may
be of the order of nn. The algorithm has one-sided error: whenever it terminates
and outputs YES, it is correct, but when it outputs NO, it is wrong with some
probability.

As before, let the edges leaving a vertex v be labeled 1,2, ... , d(v). Thus any
path in the graph can be associated with a string whose symbols are drawn
from {I, 2, ... , n - I}, as in our discussion of universal traversal sequences. If
we could begin at s and enumerate the walks corresponding to all such strings
of length n - 1, we would be assured of discovering a path from s to t if one
existed. The number of such strings being of the order of nn, we would require
Q(n log n) space to maintain a counter that could index these strings. Since we
only wish to use O(log n) space, we use randomization to achieve this reduction
in space.

The algorithm consists of repeatedly executing the following two steps until
either step results in termination.

1. Starting at s, simulate a random walk of n -1 steps. Each step consists of choosing
an edge leaving the current vertex uniformly at random. If t is reached, output
YES and stop. If the walk reaches a vertex with no outgoing edge, or a vertex
other than t after n - 1 steps, return to s. This step can be implemented using
O(log n) bits of memory.

2. Flip log nn unbiased coins. If they all come up HEADS, halt and output NO. This
can be implemented by a counter that keeps track of the number of coins that
have been flipped. The number of bits required in this counter is log(log nn),
which is O(logn), as required.

We wish to bound the probability of terminating and erroneously outputting NO

when in fact there is a path from s to t. Since the number of distinct walks from
s is at most nn, the probability of discovering an s-t path on a trial (in Step 1) is
at least n-n. The probability of terminating in Step 2 on a trial is the probability
that all the coins come up HEADS, and this is n-n. Thus on each trial, the
algorithm terminates successfully with probability at least n-n, and erroneously
with probability at most (l - n-n)n-n < n-n. Let pw denote the probability of
outputting YES on termination; then we have

Pw > n-n + (l - 2n-n)pw,

142

6.7 EXPANDERS AND RAPIDLY MIXING RANDOM WALKS

where the first term on the right-hand side denotes the probability of succeeding
on the very first trial, while the second term denotes success thereafter. Solving,
we have Pw > 1/2.

Theorem 6.14: The above algorithm will, given an instance of STCON,

1. Always output NO if there is no path from s to t.

2. Output YES with probability at least 1/2 if there is a path from s to t.

The algorithm uses space O(log n).

Exercise 6.7: Derive a bound on the expected running time of the above algorithm.

6.7. Expanders and Rapidly Mixing Random Walks

In previous sections of this chapter, we have focused on the expected lengths of
random walks. In this section, we study a different aspect of random walks. We
know by Theorem 6.2 that the probability vector of the random walk eventually
converges to the stationary distribution whenever one exists. We now study the
rate at which the probability vector approaches this stationary distribution. This
study will yield useful applications here and in Chapter 11.

In particular, we will focus our attention on random walks on a special class
of graphs called expanders. An expander (see also Section 5.3) is a graph in
which the neighborhood of any set of vertices S is large relative to the size of
S. Since the expansion property cannot be destroyed by the addition of edges
to the graph, a complete graph is the best possible expander. However, in most
applications we require sparse expander graphs; ideally, the graph should have
a linear number of edges, and in fact be of bounded degree. Henceforth, we
will use the term expander to refer to bounded-degree graphs with the desired
expansion properties; a formal definition appears below in Section 6.7.1.

In Section 5.3 we saw that a sparse random graph is quite likely to be
an expanding graph. We also noted there that giving an explicit construc
tion of an expander is a much harder problem. That this is a non-trivial
task is supported by the fact that the problem of deciding whether a graph
is an expander is known to be co-NP-complete. The bottleneck appears to
be that we need to verify the expansion of an exponentially large number of
subsets of vertices. Happily for us, there exists a partial characterization of
expanders using the machinery of algebraic graph theory. The power of these
algebraic methods lies in their ability to simultaneously describe the proper
ties of all possible subsets of vertices, although some precision is lost in the
process. This leads to a proof that certain explicitly specified graphs are ex
panders.

143

MARKOV CHAINS AND RANDOM WALKS

After studying this algebraic characterization, we turn to random walks on
expanders. An important property of random walks on expanders is that they
are rapidly mixing: the corresponding Markov chain will quickly converge to its
stationary distribution regardless of the starting state. The major result of this
section determines just how quickly this convergence occurs.

6.7.1. Expanders and Eigenvalues

This section assumes knowledge of elementary linear algebra, and the reader
may wish to review the material in Appendix B before proceeding further. Recall
that in a multigraph there can be more than one undirected edge between any
pair of vertices. The discussion in this section is more easily stated in terms
of multigraphs, and we allow all graphs under consideration to have multiple
edges. A multigraph may also have self-loops at vertices.

Consider an undirected (multi)graph G(V, E) with n vertices. The adjacency
matrix A(G) of G is the n x n symmetric matrix where Aij = Aji is the number
of edges between the vertices Vi and Vj. When G is bipartite, we assume that it
has two independent sets of vertices X = {vt. ... ,Vn/2} and Y = {vn/2+t. ... ,vn }.

Observe that in this case the adjacency matrix can be decomposed into four
blocks of equal size as shown below, where 0 denotes the all-zeros matrix and
B encoqes the edges between X and Y.

A(G) = [:T ~].
Since A(G) is symmetric, even if the eigenvalues Al > A2 > ... > An are not
necessarily all distinct, we can fix corresponding eigenvectors el, ... , en that form
an orthonormal basis.

We state without proof the following basic result from algebraic graph theory;
pointers may be found in the Notes section; the reader is asked to verify some
parts of this theorem in Problems 6.20-6.23.

Theorem 6.15 (Fundamental Theorem of Algebraic Graph Theory): Let G(V,E)
be an n-vertex, undirected (multi)graph with maximum degree d. Then, under the
canonical labeling of eigenvalues Ai and orthonormal eigenvectors ei for the matrix
A(G),

1. If G is connected, then A2 < AI.

2. For 1 ~ i ~ n, IAil ~ d.

3. d is an eigenvalue if and only if G is regular.

4. If G is d-regular, then the eigenvalue Al = d has the eigenvector el = 7n
(1,1,1, ... ,1).

5. The graph G is bipartite if and only if for every eigenvalue A there is an
eigenvalue -A of the same mUltiplicity.

6. Suppose that G is connected. Then, G is bipartite if and only if -AI is an
eigenvalue.

144

6.7 EXPANDERS AND RAPIDLY MIXING RANDOM WALKS

7. If G is d-regular and bipartite. An = -d and en = 7n (1, ... , 1, -1, ... , -1) (the
last nl2 entries in en are -1).

If G consists of more than one connected component, Theorem 6.15 can be
applied independently to each connected component. For convenience, in the
sequel we will restrict our attention to studying the eigenvalue properties only
for graphs that are connected, bipartite, and regular. For a d-regular graph G,
A(G) is a symmetric matrix with all row and column sums equal to d.

What does all this have to do with expanders? Consider the algebraic
characterization of connectedness in terms of a separation between the first and
the second eigenvalues. Note also that a graph is connected if and only if
every set of vertices S has at least one neighbor outside of S. We can view the
expansion property as a stronger version of this connectivity condition. Might it
not be the case that the property of being an expander is equivalent to having a
strong separation between these two eigenvalues? It turns out that this is close
to the truth. But first we formally define an expander; while the usual definition
of an expander requires a graph of maximum degree d, we prefer to work with
d-regular graphs.

~ Definition 6.13: An (n,d,c)-expander is a d-regular bipartite (multi)graph
G(X, Y,E) with IXI = IYI = nl2 such that for any S eX,

As we remarked above, it will be convenient to assume that any expander
under consideration is connected. In most applications, it is desirable to have d
as small as possible and c as large as possible. In particular, we would like d
to be bounded and c to be a constant greater than O. Much as in Section 5.3,
it is possible to give a probabilistic proof of existence of expanders for suitable
values of n, d, and c by showing that a random graph chosen from an appropriate
probability space is likely to be an expander. Several explicit constructions of
such expanders are also known, but we describe only the so-called Gabber-Galil
expanders.

For a positive integer m, let n = 2m2• Each vertex in X is given a distinct label
consisting of a pair (a, b) for a, b E Zm; the vertices in Yare labeled similarly.
A vertex labeled (x, y) in X has edges going to the vertices in Y whose labels
are: (x,y), (x,x + y), (x,x + y + 1), (x + y,y), and (x + y + l,y). The addition
is done modulo m. Each of these linear functions is a permutation and defines
a perfect matching between X and Y. The graph is 5-regular, and it can be
shown that the expansion factor for this graph is (X = (2 - .j3)/4, giving us a
family of (n, 5, (X)-expanders. We can obtain (n, 7, 2(X)-expanders using instead the
following seven linear functions modulo m: (x,y), (x,2x + y), (x,2x + y + 1),
(x,2x + y + 2), (x + 2y,y), (x + 2y + l,y), and (x + 2y + 2,y). The proof of the
expansion property is beyond the scope of this book. Note that both graphs

145

MARKOV CHAINS AND RANDOM WALKS

have multiple edges but these could be removed without affecting the expansion
properties.

Usually, explicit construction of expanders such as these is required to specify
an (n,d,c)-expander family. This means that the construction must provide an
infinite sequence of graphs GI , G2, ... , such that the number of vertices in these
graphs forms a strictly increasing sequence. Since the choice of the number m is
arbitrary, the Gabber-Galil expander definition is easily seen to specify such a
family of graphs.

As we saw in Section 5.3.1, in some applications we have to use expanders
with a super-polynomial number of vertices. This presents problems when
we are trying to perform some polynomial-time computation based on the
structure of such graphs. However, we do not need to explicitly represent
the Gabber-Galil expanders. It is easy to see that there is a polynomial-time
neighborhood algorithm that can compute the neighbors of any given vertex
in R; we can implicitly represent the graph by means of this neighborhood
algorithm.

Finally, we note the following theorems, which make explicit the connection
between the expansion properties of graphs and their eigenvalues. A pointer
to their proofs is given in the Notes section. The proofs of these theorems are
somewhat complicated and involve numerous calculations and estimates, but
below we derive a closely related result (Theorem 6.19) that captures much of
the intuition behind their proofs.

Theorem 6.16: IfG is an (n,d,c)-expander, then A(G) has

c2
IA21 < d - 1024 + 2c2 •

Theorem 6.17: If A(G) has IA21 < d - E, then G is an (n,d,c)-expander with

2dE - E2
C > d2

Since the largest eigenvalue Al is exactly d, this gives a (partial) characterization
of the expansion factor c in terms of the gap between the absolute values of the
first and second eigenvalues.

Exercise 6.8: Given an (n,d, c)-expander, Theorem 6.16 yields a bound on A2 ; if we
were now to use this bound on A2 in Theorem 6.17, what bound on c do we obtain
and how does it compare with the value c that we started with?

Note that we are assuming that the expanders are connected; otherwise,
A2 = Al and we will have to use the eigenvalue of the second-largest absolute
value to play the role of A2. It should be easy to see that relaxing this
assumption makes no essential difference to the following discussion, but does
make the notation more cumbersome.

146

6.7 EXPANDERS AND RAPIDLY MIXING RANDOM WALKS

We now give a result related to Theorems 6.16 and 6.17 to motivate the
intuition behind these theorems. For a d-regular graph G = (V, E), define

r (G) . le(X, V\X)I
sp It = ~~v IXIIV\XI '

where e(A, B) denotes the multiset of edges of G between subsets of vertices
A, B. We now relate split(G) to A,2, the second eigenvalue of the adjacency matrix
A(G) of G. First, we give a technical lemma concerning A,2'

Lemma 6.18:

A.2 = max{2 L XiXj},

(i,j)eE

where the max is taken over vectors x such that Ilxll = 1 and ~7-I Xi = 0:

The proof of Lemma 6.18 follows from the Courant-Fisher equalities established
in Problem 6.19.

Theorem 6.19: If G is d-regular. then

d - A.2
split(G) > --.

n

PROOF: Let We V and I WI = k. Define the vector x by

{
N- ifiE W;

Xi = -J n(n"-k) if i ~ W.

Then e[x = 0 and IIxll = 1. By Lemma 6.18,

A.2 ~ 2 L XiXj = d - L (Xi - Xj)2

(i.j)eE (i.j)eE

- d -le(W, V\W)I (In ,,/ + J n(n k k»),

_ d _ n le(W, V\W)I
k(n - k) .

The result now follows from the definition of split(G).

Corollary 6.20: If G is d-regular then for any W c v.
I W U r(W)1 ~ [1 + (1 - A.21d)/2] I WI.

(6.5)

(6.6)

(6.7)

o

In the applications of expanders discussed here, we are primarily concerned
with the eigenvalue separation for the adjacency matrix and we do not explicitly
employ the expansion property itself. In fact, we could very well have defined
expanders in terms of the eigenvalue separation, but the expansion property
does serve to provide some intuition behind the algebraic machinery.

147

MARKOV CHAINS AND RANDOM WALKS

6.7.2. Random Walks on Expanders

Consider the simple random walk on an (n,d,c)-expander G. Since we permit
multi graphs in the definition of expanders, it is necessary to generalize the
definition of the random walk, as follows: at each step, the random walk
proceeds along a randomly chosen edge among those incident on the current
vertex v; thus, if there are k edges from v to w, then the probability that
the random walk goes from v to w is k/d(v). For an (n,d,c)-expander G,
this corresponds to a Markov chain with the probability transition matrix
P = A(G)/d.

Simple algebra shows that the eigenvalues of P are given by A;/ d, and
the corresponding eigenvectors remain unchanged. Notice that now all the
eigenvalues lie between 1 and -1, and the gap between the first and second
eigenvalue is reduced by a factor of d. A technical problem is that the random
walk on such a bipartite graph results in a periodic Markov chain. We use a
standard trick to get around this problem: reduce all transition probabilities by
a factor of 2, and add a self-loop of probability 1/2 at each vertex. Observe
that the new Markov chain still has G as its underlying graph, but the transition
probability matrix Q = (I + P)/2 now has a stationary distribution.

Let the eigenvalues of Q be A~, ... , A~. Since the identity matrix has all its
eigenvalues equal to 1, it can be verified (see Problem 6.26) that the eigenvalues
of Q are given by

,~ = (1 + A;/d)
1\.. 2.

Thus, 1 = A~ > A2 > ... > A~ = 0 and, assuming that A2 = d - E, we have that
A2 = 1 - E /2d. The eigenvectors of Q can be chosen to form an orthonormal
basis since it is a symmetric matrix. In fact, the first eigenvector e~ is the same
as that of A, i.e., -}n(1, 1, 1, ... ,1).

Exercise 6.9: Verify that Q is a doubly stochastic matrix. Using the result from
Problem 6.6. conclude that for the transition matrix Q. the stationary distribution is
necessarily the uniform distribution.

We show that the Markov chain defined by Q is "rapidly mixing" in the
following sense. Starting from any initial distribution, the Markov chain con
verges to its stationary distribution in a small number of steps. To make this
notion more precise, we first define measure of convergence to the stationary
distribution.

~ Definition 6.14: Let q(t) denote the state probability vector of a Marko'· chain
defined by Q at time t > 0, given any initial distribution q(O). Let 1t denote the
stationary distribution of Q. The relative pointwise distance (r.p.d.) of the Markov

148

6.7 EXPANDERS AND RAPIDLY MIXING RANDOM WALKS

chain at time t is a measure of deviation from the limit and is defined as

I (t) I
L\(t) = max qi - 1ti

i 1ti

Intuitively, the change in L\ with t measures the rate of convergence to the
stationary distribution, independent of the choice of the initial distribution
q(O). There are several types of distance functions defined in the literature for
measuring the difference between two probability distributions; in Problem 6.24,
we explore the connections between the relative pairwise distance and these
other measures.

The next theorem shows that the relative pointwise distance for the random
walk on an expander converges to zero at an exponential rate.

Theorem 6.21: Let Q be the transition matrix of the aperiodic random walk on
a (n,d,c)-expander G with 22 < d - E. Then, for any initial distribution q(O), the
relative pointwise distance is bounded as follows:

PROOF: We know that the distribution of the Markov chain at time t is given
by the following equation:

(6.8)

Now the eigenvectors of Q are chosen to form an orthonormal basis for R.n.
This implies that we can write q(O) as a linear combination of those vectors, as
follows:

n

q(O) = LCiei.
i",,1

Combining (6.8) and (6.9), we obtain

n n

q(t) = L CieiQt = L Ci(2;Yei.
i-I i=1

(6.9)

Let £ c R.n be the vector space spanned by the first eigenvector el. This
space contains all scalar multiples of the all-ones vector; the orthogonal space
£1. contains all linear combinations of the remaining n - 1 eigenvectors. Then
q(O) = x+ y for some x E £ and y E £1.; in fact, x = CI el and y = E7=2 Ciei. Since
x and yare orthogonal, the Pythagoras Inequality (Proposition B.8) implies that
Ilxll < Ilq(O)11 and Ilyll < Ilq(O)II.

Since 2; = 1, xQ = x and we can write

n

q(t) = q(O)Qt = (x + y)Qt = x + L ci(2;Yei.
i=2

149

MARKOV CHAINS AND RANDOM WALKS

We now obtain the following bounds on the LI-norm of q(t) - x.

Ilq(t) - xiiI < ynllq(t) - xii
n

- ynll L Ci(2deill
i=2

n

- yn L cf(2i)2t
i=2

n

< yn L cf(22)2t
i=2

< ~():2)' ~ t,ci
< yn(22)tIIYII

< yn(22)tllq(O)II.

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

The inequality (6.13) relies on the fact that 22 has the second largest absolute
value; the inequality (6.15) follows from the fact that y = E7=2 Ciei; the in
equality (6.16) is a consequence of the Pythagoras Inequality. Since q(O) is a
probability distribution, its components are all non-negative and sum to 1; thus,
by Proposition B.10, Ilq(O)11 ~ Ilq(O)lh = 1. We obtain that

Ilq(t) - xlh < .In(2;Y,

By Problem 6.6 we know that for any doubly stochastic matrix, the stationary
distribution n must be uniform. Since 22 < 1, we know that as t increases,
Ilq(t) - xii goes to 0 and q(t) converges to x. We conclude that x = n, and that

Ilq(t) -nih < .In(22Y,

The relative pointwise distance can now be bounded as follows.

I (t) -1t°1
L\(t) - max qi I

1ti

- n x m~x Iq~t) -1til
I

< n x Ilq(t) -nill

~ n x yn(22)t

- n1.5(22)t.

0

Exercise 6.10: For any 0 < 6 < 1, let T(6) denote the time at which the relative
pointwise distance of the random walk defined by Q first falls below 6. Show that

T(6) logn
10S

j6
!5; I JI' - og.ll2

ISO

6.8 PROBABILITY AMPLIFICATION BY RANDOM WALKS ON EXPANDERS

By this exercise, to get a relative pointwise distance that is bounded from
above by an inverse polynomial in n, it suffices to run the random walk for only
a logarithmic number of steps. Notice that this is the best possible bound since
the length of the random walk must be at least the diameter of the expander.
Since our expander has bounded degree, it has diameter O(log n).

6.8. Probability Amplification by Random Walks on Expanders

Recall the 2-point sampling scheme of Section 3.4. Given an RP algorithm,
which uses n random bits to obtain a probability of error 1/2, this scheme
reduced the probability of error to O{l/t) while using only 2n random bits
and t trials of the algorithm. Even using k-point sampling for k > 2; there
is no hope of achieving a probability of error that is exponentially small in
the number of trials, without using a significantly larger number of random
bits. Also, in Section 5.3 we saw that expander-type graphs could be used
to achieve a stronger probability amplification, but several important issues
remained unresolved in that discussion and in any case that scheme did not
provide the desired exponentially small error probability with a small number.
of random bits. Here we present a related technique that achieves the desired
exponential behavior, even in the case of BPP algorithms, and without any of
the drawbacks of the earlier scheme based on expanders. The version of this
technique that establishes the same result for RP algorithms is slightly easier to
analyze (see Problem 6.29).

Without loss of generality, we modify the standard definition of BPP such
that the probability of error is 1/100; clearly, this can be achieved via 0(1)
independent iterations of an algorithm meeting only the standard definition.

~ Definition 6.15: The class BPP consists of all languages L that have a random
ized polynomial-time algorithm A such that for any x E 1:-, given a suitably long
random string r,

• x E L => Pr[A(x,r) rejects] < r/x; .
• x ~ L => Pr[A(x,r) accepts] s; r/x;.

Fix an input x, and consider a BPP algorithm A that uses n random bits on
inputs of length Ixl. Suppose we choose k independent n-bit random strings r},
... , rk, and compute A(x, rl), ... , A(x, rk). By the Chernoff bound, the probability
that the majority of these outputs is incorrect is 1/20(k). Thus, we have made the
error probability exponentially small in k using nk random bits. The probability
amplification problem is that of achieving this error probability while using the
minimum possible number of random bits. What is the minimum number of
random bits required for the exponentially small error probability of 1/2k?

Consider forming a crude estimate as follows. Imagine that a single execution
of the algorithm consumes n random bits and delivers one bit as the result of

151

MARKOV CHAINS AND RANDOM WALKS

execution (i.e., a decision on the membership of x in L); it appears plausible
that n - 1 random bits remain available for future executions of the algorithm.
Intuitively then, we should not have to use more than n + k - 1 random bits for
k repeated executions of the algorithm. The following scheme comes very close
to realizing this intuition, using as it does n + O(k) bits.

Consider the (N, 7, 2cx)-expander family described in Section 6.7.1. We assume
that n is odd; otherwise we can increase by one the number of random bits
used by A by throwing in a dummy random bit. Choose m = 2(n-I)/2 and
N = 2m2 = 2n, and label each vertex with a distinct sequence of bits from {O, 1}n.
Let A be the adjacency matrix of the resulting expander. Let Q = (I + A/7)/2
be the probability transition matrix of the ergodic Markov chain obtained by
performing a random walk on this graph, with a self-loop of probability 1/2
at each vertex. We assume that the random walk starts at a uniformly chosen
initial vertex. Denote by Xo, X}, ... the states of the resulting Markov chain.
Note that each Xi corresponds to a particular setting of the random bits used
byA

Choose a positive integer p such that Ag < 1/10, where Ai is the ith largest
eigenvalue of Q. Since the graph is an expander, A2 is bounded away from 1
and we are guaranteed that a value of p that is 0(1) will suffice.

Given the output from the random walk process described above, the prob
ability amplification scheme works as follows. For 0 < i < 7k, let ri = XiP.
Run the- algorithm A(x,·) using these 7k different choices of random inputs.
Declare the majority of these 7k YES/NO decisions to be the final decision;
for convenience, we assume that k is odd. We will show that the resulting
decision is wrong with probability at most 1/2k. Note that the total num
ber of random bits used is n + O(k): we need n bits to choose the starting
vertex of the random walk, and 4 bits for each of the 7kP subsequent steps
of the random walk. Also, the locally defined neighborhood structure of the
Gabber-Galil expander has the crucial advantage that we do not need to ex
plicitly construct the entire graph, whose size is exponential in n (the number
of random bits given to A). In particular, given the index for any vertex in the
expander, it is possible to compute the indices of the neighboring vertices in
time polynomial in the length of the index, i.e., n. This suffices for the purposes
of obtaining a polynomial time implementation of each step of the random
walk.

The intuition behind this scheme is as follows. We know that the random
walk on an expander is rapidly mixing. In other words, given any starting vertex,
after a small number of steps we expect the random walk to be at a uniformly
distributed vertex independent of the choice of the initial vertex. We can view
the above process as using the composition of 7k different random walks, each
generating a different random string rio The catch here is that each of these
smaller random walks has length p = 0(1), whereas we would require E>(logN)
steps to get close to the stationary distribution. On the other hand, we choose
the initial vertex according to the stationary distribution, and this should work
in our favor.

152

6.8 PROBABILITY AMPLIFICATION BY RANDOM WALKS ON EXPANDERS

Let us denote the probability distribution vector for ri = X ill as p(i). Define
B = QIl; this is the transition matrix for the Markov chain corresponding to the
sequence of r;'s. We have that p(i) = p(O) B i

, where p(O) is the uniform distribution
that we start with.

Let W denote the set of witnesses for the input x. In other words, W = {r E

{0,1}n I A(x,r) is correct}. We are guaranteed that IWI > 0.99N. The set of
non-witnesses has cardinality IWI < 0.01N. We define the 0-1 N x N diagonal
matrix W such that Wii = 1 if and only if the ith vertex corresponds to a string
that is a witness for x; similatly, the 0-1 N x N diagonal matrix W = 1- W.
The reader is invited to verify that I Iii) W III and I Iii) W III are the probabilities
that ri is a witness or a non-witness, respectively. This is because the linear
transformation W zeros out the entries corresponding to the non-witnesses,
leaving the others untouched; the transformation W does the converse ..

Consider the sequence of strings r}, ... , r7k- Let the event sequence of matrices
S = (S}, ... ,S7k) E {W, Wpk be such that Si = W if and only if ri E W. Thus,
S encodes the pattern of errors in the various executions of the algorithm. The
following lemma is a direct consequence of these definitions_

Lemma 6.22: For any fixed event sequence S.

The proof of the next lemma is deferred for the moment.

Lemma 6.23: For all vectors p E RN.

1. IlpBWl1 S; Ilpll.

2. IlpBWl1 s; !llpll.

We now prove that this probability amplification scheme gives the desired
error probability, and then we complete the analysis by giving the proof of
Lemma 6.23.

Theorem 6.24: The probability that the majority of the outputs A(x, rl).
A(x,r7k) is incorrect is at most 1/2k.

PROOF: Note that the majority of the outputs is incorrect only if the event
sequence S has more than half of its elements equal to W. Fix any particular
S whose elements contain a majority of W's, say K > 7k/2 of them. By
Lemma 6.22,

Pr[S occurs] - I Ip(O) (BSI)(BS2) ... (BS7k-1)(BS7k)111 (6.17)

< JNllp(O)(BSd(BS2)'" (BS7k-d(BS7k) I I (6.18)

153

MARKOV CHAINS AND RANDOM WALKS

< .jN (~) I(IIp(O)11 (6.19)

<
() 7k/2 .jN ~ IIp(O) II, (6.20)

where the inequality (6.19) follows from a repeated application of Lemma 6.23.
Since we chose iO) to be uniform on the N vertices, it is clear that its L2 norm
is exactly 1/.JN. Finally, using the overestimate that the number of sequences
S with a majority of W's is at most 27k , we obtain

(
1)7k/2

Pr[Majority vote is incorrect] < 27k.jN"5 IIp(O) II

o

We complete the analysis by giving the proof of Lemma 6.23.

Proof o(Lemma 6.23: Recall that the eigenvalues of Q are all in the interval
[0,1] with Al = 1 and Ag < 1/10. Let e}, ... , eN be an orthonormal set of
eigenvectors corresponding to these eigenvalues. The vector p can be expressed as

a linear combination of the eigenvectors, say E~I Cjej; further, Ilpll = JE~I cr

To prove the first part of the lemma, note that IlpBWl1 < IlpBII. This
is because the diagonal matrix W only has 1 's on its diagonal, and this can
zero out only some of the components of the vector pB, thereby decreasing its
Lrnorm. Moreover, pB = E~I cjejB = E~I cjAf ej. We thus have

N

IlpBWl1 < IlpB11 = II L cjAf edl =
j-I

The last inequality makes use of the fact that each Aj lies in [0,1]. Since the last
expression is Ilpll, we obtain the desired result.

Consider now the second part of the lemma. Let us decompose p = x + y,
where x = clel and y = E~2 Cjej. By the Pythagoras Inequality (Proposition B.8),
Ilxll < Ilpll and Ilyll ~ Ilpll· We first derive independent inequalities for x and y.

Observe that xB = cleIB = cIAleI = x, since Al = 1. We claim that
IlxW11 < Ilxll/lO. Recall that W is a 0-1 diagonal matrix, where the fraction
of non-zero entries on its diagonal is no more than 1/100. Therefore, it zeros
out all but a 1/100 fraction of the entries in x. Moreover, x is a scalar multiple
of the all-ones vector, and so all its components are equal. Reducing all but
a 1/100 fraction of its components to 0 will reduce its Lrnorm by a factor of
.J100. Thus, IlxBWl1 = IlxW11 < Ilxli/lO.

154

----------------------- --- ---

6.8 PROBABILITY AMPLIFICATION BY RANDOM WALKS ON EXPANDERS

A similar inequality can be obtained for y as follows. Observe that yB =

Ef':.2 cjejB = Ef':.2·CjAf ej. It is also clear that IlyBWl1 < IlyB11 since W is only
zeroing out some entries in the vector yB. Since A~ ~ 1/10 corresponds to the
second largest eigenvalue,

IlyBWIl < tciAi",; Ag~ tci,; 1~11Y11.
Using the triangle inequality, we obtain that

IlpBWl1 < IlxBWl1 + IlyBWl1 ~ 1~ (1Ixii + Ilyll).

Finally, applying inequalities Ilxll < Ilpll and Ilyll < Ilpll, we obtain the desired
bound.

Notes

Aldous [13] is a comprehensive source for random walks on graphs, as well as some
advanced algorithmic applications that are beyond the scope of this book. The 2-
SAT algorithm of Section 6.1 is due to Papadimitriou [325]. McDiarmid [303] has
independently given a number of applications of this technique to coloring the vertices
of a hypergraph. An excellent source for basic Markov chain theory is the book
by Kemeny, Snell, and Knapp [253]. The relationship of random walks to electrical
networks has been known for over a century. Doyle and Snell [130] demonstrate many
interesting relations between random walks in graphs and electrical networks. Their
work deals with finite as well as infinite graphs and highlights many tools from electrical
network analysis that are useful in the study of random walks. Theorem 6.6 is due to
Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Tetali [396] gives an interesting
refinement and generalization of Theorem 6.6. The Short-cut Principle is due to Rayleigh
and is described in [130, 301].

Theorem 6.8 is due to Aleliunas, Karp, Lipton, Lovasz, and Rackoff [15] and builds
on work of Gobel and Jagers [168]. A version of Theorem 6.12 is derived in [15]; our
presentation follows Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari [89]. Our proof
of Theorem 6.9 is also taken from [89], although in fact a stronger version of Theorem 6.9
appears earlier in work of Matthews [296, 297]. Matthews gives an elegant approach
to proving upper and lower bounds on cover times in terms of hitting times (this is the
subject of Problem 6.9). Broder and Karlin [85] give a number of relations between
the cover time of a graph and the second-largest eigenvalue of its adjacency matrix.
Undirected s-t connectivity is a natural abstraction of many graph search procedures;
in addition, it has applications to complexity theory [276]. Borodin, Cook, Dymond,
Ruzzo, and Tompa [74] have given a Las Vegas algorithm for USTCON whose running
time is polynomial in n. The idea of using a probabilistic counter for a space-efficient
algorithm for directed s-t connectivity is due to Gill [166]. The reader may refer to the
paper by Borodin, Ruzzo, and Tompa [78] for further material on universal traversal
sequences.

The books by Biggs [60] and Cvetkovic, Doob, and Sachs [117] provide comprehensive
treatments of algebraic graph theory. The article by Bien [59] surveys the definitions,

155

MARKOV CHAINS AND RANDOM WALKS

properties, and explicit construction of expanders, as well as many other related classes
types of graphs such as magnifiers. The co-NP-completeness of the problem of verifying
the expansion property in graphs is due to Blum, Karp, Vornberger, Papadimitriou, and
Yannakakis [67]. The explicit expanders introduced in Section 6.7.1 are due to Gabber
and Galil [158]. Theorems 6.16 and 6.17 are due to Alon [17] and are extensions of the
earlier work of Tanner [389] and Alon and Milman [23]. Theorem 6.19 is due to Donath
and Hoffman [128], and Corollary 6.20 due to Alon and Milman [23]. The rapid mixing
property of random walks was first exploited by Ajtai, Komlos, and Szemeredi [9] in
a complexity-theoretic setting. The result on probability amplification is due to Cohen
and Wigderson [108], and independently due to Impagliazzo and Zuckerman [205].
The former paper is also a good source for the known results on expanders and their
applications. Gillman [167] bounds the probability that in a random walk on an
expander, the frequency of visits to any subset of vertices deviates substantially from the
sum of the stationary probabilities of those vertices. Dinwoodie [126] provides further
results along these lines.

Problems

6.1 Consider a random walk on the infinite line. At each step, the position of the
particle is one of the integer pOints. At the next step, it moves to one of the
two neighboring points equiprobably. Show that the expected distance of the
particle from the origin after n steps is 0(Jil).

6.2 Consider the randomized algorithm for 2-SAT discussed in Section 6.1. Show
that the analysis is tight, in that there exist satisfiable 2-SAT formulas with n
variables such that the expected time for this algorithm to find a satisfying
truth assignment is Q(n2).

6.3 Consider a 1-dimensional random walk with a reflecting barrier, which is
defined as follows. For each natural number i, there is a state i. At state 0,
with probability 1 the walk will move to state 1. At every other state i > 0,
the walk will move to state i + 1 with probability p and to state i - 1 with
probability 1 - p. Prove the following for the resulting Markov chain:

Ja) For p > ~, each state is transient.

(b) For p = ~, each state is null persistent.

(c) For p < ~, each state is non-null persistent.

6.4 Consider a Markov chain with the states 0, 1, ... , N. This Markov chain
induces a sequence of random variables Xo, Xl, ... , each of which takes an
integer value between 0 and N, i.e. Xt is the state at time t. Suppose this
sequence of random variables forms a martingale.

(a) A state q is said to be an absorbing state if the transition probability
Pqq = 1. Identify all the absorbing states and the transient states of this
Markov chain.

(b) Given that the initial state of this Markov chain is i, compute the probability
of being absorbed into each of the absorbing states.

156

PROBLEMS

6.5 (Due to C.J.H. McDiarmid [303J.) Let G be a 3-colorable graph. Consider
the following algorithm for coloring the vertices of G with 2 colors so that
no triangle of G is monochromatic. The algorithm begins with an arbitrary
2-coloring of G. While there is a monochromatic triangle in G, it chooses
one such triangle, and changes the color of a randomly chosen vertex of that
triangle. Derive an upper bound on the expected number of such recoloring
steps before the algorithm finds a 2-coloring with the desired property.

6.6 An n x n matrix P is said to be stochastic if all its entries are non-negative
and for each row i, Lj P;j = 1. It is said to be doubly stochastic if, in addition,

LiP;j = 1.

(a) Show that for any stochastic matrix P, there exists an n-dimensional vector
n with non-negative entries such that LI"I = 1 and nP = n.

(b) Suppose that the transition probability matrix P for a Markov chain is
doubly stochastic. Show that the stationary distribution for this Markov chain
is necessarily the uniform distribution.

6.7 Consider a random walk on a graph whose edges have positive real costs:
the interpretation of these costs is that every time the random walk traverses
an edge (ii), it incurs a given cost Clj > 0; C;j = Cjl, and Ci/ = O. Consider the
random walk on a graph G with m edges that have such costs associated with
them, with transition probabilities

1/cll
Pij =" 1/ ..

L..Jk C,k

Let Suv denote the expected total cost incurred by a walk that begins at vertex
u and terminates upon returning to u after having visited v at Il!ast once.
Show that

where Ruv is the effective resistance between node u and node v in an elec
trical network whose underlying graph is G, and where the branch resistance
between i and j is C;I'

6.8 In a connected graph G, an edge is called a bridge if the removal of the edge
disconnects the graph. Let G be a connected graph with n vertices and m
edges. Let (u, v) be any edge in G. For the simple random walk on G, show
that

huv + hvu = 2m

if and only if the edge (u, v) is a bridge.

6.9 (Due to P.C. Matthews [296, 297].) The goal of this problem is to derive
a cleaner version of Theorem 6.9. Consider a random permutation of the
vertices of a connected graph G, and let J; denote the ith vertex in this
permutation. For 1 !5; k !5; n, define Fk = max;Sk TJ, to be the time by which all
of {J1,J2, ••• ,Jk } have been visited (in some order). Let Lk be the last of the
vertices in {J1,J2, ••• ,Jk } to be visited. Let 6(ij) be the delta function, defined
to be 1 if i = j and 0 otherwise.

157

MARKOV CHAINS AND RANDOM WALKS

(a) Show that conditioned on the sequence of vertices visited until time Fk - h

and for a fixed set {J1, J2, ••• , Jk}.

E[Fk - Fk- 1] = 6(LkJdhLHJk'

(b) Hence infer that

(c) Now use the fact that the J; are randomly ordered to show that

(d) Repeat the above arguments to obtain an upper bound on cover time:

maxCu(G):S; Hn- 1 maxh;J"'
1,,4

6.10 By showing that the resistance of the complete graph Kn is 0(1jn). show that
the upper bound of Theorem 6.9 cannot be improved in general.

6.11 Let G be a regular graph with every vertex having degree d. Show that CG is
O(n2 10gn).

Remark: This shows that regular graphs have lower cover times than graphs
that have large disparities in their vertex-degrees (such as the lollipop graph.
wh'ich had CLn(G) as large as 0(n3)). In fact. using a more careful argument.
Kahn. Linial. Nisan. and Saks [224] show that for every regular graph. CG is
O(n2

).

6.12 The result in Problem 6.11 can be improved for dense regular graphs. Let G
be a regular graph with every vertex having degree ~ 2nj3. Show that CG is
O(n log n). Complement this upper bound by showing that for d < nj2 such
that d + 1 divides n. there exists a d-regular graph whose cover time is O(n2).
Derive an upper bound on U(d,n) for d ~ 2nj3.

6.13 Consider the two-dimensional mesh: a graph in which each vertex is a point
with integer coordinates in the plane. all coordinates being in the interval
[1,n 1/ 2]. An edge connects two vertices if they differ in one coordinate by 1.
Show that the maximum commute time in this graph is 0(n log n).

6.14 Consider next the three-dimensional mesh: a graph in which each vertex is
thought of as a point with integer coordinates in three dimensions. all coor
dinates being in the interval [1, n1

/
3
]. Show that the cover time for this graph

is O(n log n). Derive upper bounds for the lengths of the universal traversal
sequences for labeled two-dimensional and three-dimensional meshes.

6.15 (a) Show that for n = 3 and d = 2. there exists a universal traversal sequence
U(d, n) of length 3.

(b) What is the smallest UTS you can construct for the case n = 4 and d = 2?

6.16 Show that the expected time for a random walk to visit every vertex of a
strongly connected directed graph is not bounded above by any polynomial
function of n. the number of vertices. In other words. construct a directed

158

PROBLEMS

graph that is strongly connected and where the expected cover time is super
polynomial.

6.17 Show that any probabilistic, log-space, polynomial-time Turing machine can
be simulated by a deterministic, non-uniform, log-space, polynomial-time
Turing machine. (Hint: Use the ideas of Section 2.3.)

6.18 (Due to D. Zuckerman [424].) Let G (V, E) be a graph with n vertices such that
for some constant a > 0 and every set $ s; V with n /2 vertices,

n
I{w E V I 3v E $, (v, w) E E}I ~ '2 +an.

For any positive integer k, let Wlo ... , Wk be subsets of V of size at least
(1 - a)n each. Show that there exists a path (Vl,"" Vk) in G such that, for
1 ~ i ~ k, v; E WI.

6.19 (Courant-Fisher equalities.) Let A be an n x n symmetric matrix with real
entries, and let el denote the eigenvector corresponding to the first eigenvalue
A1• Show that
(1) Al = max{xT Ax}, where the max is taken over x such that Ilxll = 1.
(2) An = min{xT Ax}, where the min is taken over x such that Ilxll = 1.
(3) A2 = max{xT Ax}, where the max is taken over x such that Ilxll = 1 and
xTel = O.

6.20 Let G(V, E) be a connected, d-regular, undirected (multi)graph with n vertices.
Show that for the adjacency matrix A(G), Al = d and el = tn(l, 1, 1, ... , 1).

6.21 Let G (V, E) be a connected, d-regular, undirected (multi)graph. Show that for
the adjacency matrix A(G), each eigenvalue AI has absolute value bounded
by d.

6.22 Show that a connected graph G with maximum eigenvalue Al is bipartite if
and only if -Al is also an eigenvalue.

6.23 Show that a graph G is bipartite if and only if for every eigenvalue A, there is
an eigenvalue -A of the same multiplicity.

6.24 Consider the setting of Definition 6.14 and the following measures of deviation
from the limit. Let $ denote the set of states of the Markov chain under
consideration. The total variation distance is defined as

A(t) = max I ~ qY) - ~ n;l·
T<;;;S ~ ~

ieT leT

(a) Define the Ll distance as

Ilq(t) -nih = Llq;t)-n;l.

Determine the relation between the Ll distance and the total variation distance.

(b) Suppose that the relative pointwise distance is bounded by E at time t.
Give the tightest bound you can on the total variation distance at time t.
(c) Suppose that the total variation distance at time t is bounded by E. What
can you say about the relative pOintwise distance at time t?

159

MARKOV CHAINS AND RANDOM WALKS

6.25 Does Theorem 6.21 hold true if the relative pointwise distance is replaced by
the total variation distance defined in Problem 6.24?

6.26 Let G be d-regular, and define the matrix Q = (/ +A(G)/d)/2. Show that if the
ith eigenvalue of A(G) is A;, then the ith eigenvalue of Q equals (1 +A;/d)/2.

6.27 (Due to N. Alon and F.R.K. Chung [20].) Let G (X, Y, E) be a d-regular, con
nected, bipartite (multi)graph. Show that for any sets 5 s; X and T s; Y, the
number of edges connecting 5 and T is at least

Al 1511TI _ A2JiS1iTi.
n

(Hint: Consider the adjacency matrix of G premultiplied by the characteristic
vector of 5, and postmultiplied by the characteristic vector of T. (The char
acteristic vector of 5 is a vector of dimension equal to the cardinality of 5,
with a 1 in every position corresponding to a member of 5, and 0 everywhere
else.)

Remark: Note that in a random d-regular graph, the expected number of
edges from 5 to T is d1511TI/n, which is Al I51ITI/n. This result can be viewed
as bounding the deviation from the behavior of a random graph in terms of
the eigenvalue A2 , thereby adding to the intuition that an expander "looks"
like a random graph.

6.28 (Due to M. Ajtai, J. Komlos, and E. Szemeredi [9].) Let G be an (n, d, c)
expander. Show that there exist constants P, 6 > 0 such that for any "bad"
set of vertices B of cardinality at most 6n, the following property holds: the
probability that, starting from a vertex chosen uniformly at random, a random
walk of length t does not visit any vertex outside of B is at most exp(-6t).
Exactly what properties of G are essential for your proof of this fact?

6.29 Using the result in Problem 6.28, obtain a probability amplification result for
RP algorithms similar to that obtained in Section 6.8 for BPP algorithms.

Remark: While it is an easy consequence of the result for BPP algorithms,
this problem requires you to derive a direct proof based only on the property
stated in Problem 6.28.

160

CHAPT ER 7

Algebraic Techniques

SOME of the most notable results in theoretical computer scien.:e, particularly
in complexity theory, have involved a non-trivial use of algebraic techniques
combined with randomization. In this chapter we describe some basic random
ization techniques with an underlying algebraic flavor. We begin by describing
Freivalds' technique for the verification of identities involving matrices, polyno
mials, and integers. We describe how this generalizes to the Schwartz-Zippel
technique for identities involving multivariate polynomials, and we illustrate this
technique by applying it to the problem of detecting the existence of perfect
matchings in graphs. Then we present a related technique that leads to an effi
cient randomized algorithm for pattern matching in strings. We conclude with
some complexity-theoretic applications of the techniques introduced here. In
particular, we define interactive proof systems and demonstrate such systems for
the graph non-isomorphism problem and the problem of counting the number of
satisfying truth assignments for a Boolean formula. We then refine this concept
into that of an efficiently verifiable proof and demonstrate such proofs for the
satisfiability problem. We indicate how these concepts have led to a completely
different view of classical complexity classes, as well as the new results obtained
via the resulting insight into the structure of these classes.

Most of these techniques and their applications involve (sometimes indirectly)
a fingerprinting mechanism, which can be described as follows. Consider the
problem of deciding the equality of two elements x and y drawn from a large
universe U. Under any "reasonable" model of computation, testing the equality
of x and y then has a deterministic complexity of at least log I UI. An alternative
approach is to pick a random mapping from U into a significantly smaller
universe V in such a way that there is a good chance that x and yare identical
if and only if their images are identical. The images of x and yare their
fingerprints, and their equality can be verified in log I VI time by comparing the
fingerprints.

Throughout this chapter we will be working over some unspecified field IF.
Part of the reason we do not explicitly specify the underlying field is that

161

ALGEBRAIC TECHNIQUES

typically the randomization will involve uniform sampling from a finite subset
of the field; in such cases, we do not have to worry about whether the field is
finite or not. The reader may find it helpful to think of IF as the field <Q of the
rational numbers; when we restrict ourselves to finite fields, it may be useful to
assume that IF is 7lp, the field of integers modulo some prime number p. We will
use the unit-cost RAM model from Section 1.5.1 to measure the running time
of an algorithm over the field IF. In this model each field operation (addition,
subtraction, multiplication, division, comparison, or choosing a random element)
takes unit time, provided the operand magnitude is polynomially related to the
input size. For example, over the field of rationals we will assume that operations
involving O(log n)-bit numbers take unit time. This is not completely realistic
as arithmetic operations are significantly more expensive in practice. However,
in most applications described below this small additional factor in the running
time is inconsequential, and we would get essentially the same result in the more
expensive model.

7.1. Fingerprinting and Freivalds' Technique

We illustrate fingerprinting by describing a technique for verifying matrix mul
tiplication. The fastest known algorithm for matrix multiplication runs in time
0(n2.376), which improves significantly on the obvious 0(n3) time algorithm but
has the disadvantage of being extremely complicated. Suppose we are given an
implementation of this algorithm and would like to verify its correctness. Since
program verification is a difficult task, a reasonable goal might be to verify
the correctness of the output produced on specific executions of the algorithm.
(Such verification on specific inputs has been studied in the theory of program
checking.) In other words, given n x n matrices A, B, and C over the field IF,
we would like to verify that AB = C. We cannot afford to use a simpler but
slower algorithm for matrix multiplication to verify the output C, as this would
defeat the purpose of using the fast matrix multiplication algorithm. Moreover,
we would like to use the fact that we do not have to compute C; rather, our
task is to verify that this product is indeed C. The following technique, known
as Freivalds' technique, provides an elegant solution. It gives an 0(n2) time
randomized algorithm with a bounded error probability.

The randomized algorithm first chooses a random vector r E {O, 1}"; each
component of r is chosen independently and uniformly at random from ° and 1,
the additive and multiplicative identities of the field IF. We can compute x = Br,
y = Ax = ABr, and % = Cr in 0(n2) time; clearly, if AB = C then y = %.

We now show that for AB =1= C, the probability that y =1= % is at least 1/2. The
algorithm errs only if AB =1= C but y and % turn out to be equal.

Theorem 7.1: Let A, B, and C be n x n matrices over IF such that AB =1= C.
Then/or r chosen uniformly at random/rom {O, 1}", Pr[ABr = Cr] < 1/2.

162

7.2 VERIFYING POLYNOMIAL IDENTITIES

PROOF: Let D = AB - C; we know that D is not the all-zeroes matrix. We
wish to bound the probability that y = z, or, equivalently, the probability that
Dr = O. Without loss of generality, we may assume that the first row in D has
a non-zero entry, and that all the non-zero entries in that row precede the zero
entries. Let d be the vector consisting of the entries from the first row in D, and
assume that the first k > 0 entries in d are non-zero. We concentrate on the
probability that the inner product of d and r is non-zero; since the first entry in
Dr is exactly d T r, this yields a lower bound on the probability that y =1= z.

Now, the inner product d T r = 0 if and only if

(7.1)

We invoke the Principle of Deferred Decisions (Section 3.5) and assume that all
the other random entries in r are chosen before rl. Then the right-hand side
of (7.1) is fixed at some value v E IF. Since rl is uniformly distributed over a set
of size 2, the probability that it equals v cannot exceed 1/2. 0

Exercise 7.1: Verify that there is nothing magical about choosing r to have only
entries drawn from {a, 1}. In fact, any two elements of F may be used instead.

Thus, in 0(n2) time we have reduced the matrix product verification problem
to that of verifying the equality of two vectors, and the latter can be done in
O(n) time. This gives an overall running time of 0(n2) for this Monte Carlo
procedure. The probability of error can be reduced to 1/2k by performing k
independent iterations. The following exercise gives an alternative approach to
reducing the probability of error.

Exercise 7.2: Suppose that each component of r is chosen uniformly and indepen
dently from some subset S s; F. Show that the probability of error in the verification
procedure is no more than 1/ISI. Compare the usefulness of the two different methods
for reducing the error probability.

Freivalds' technique is applicable to verifying any matrix identity X = Y. Of
course, if X and Yare explicitly provided, just comparing their entries takes
only 0(n2) time. But as in the case of matrix multiplication, there are situations
where computing X explicitly is expensive (or even infeasible, as we will see in
Section 7.8), whereas computing X r is easy.

7.2. Verifying Polynomial Identities

Freivalds' technique is fairly general in that it can be applied to the verification
of several different kinds of identities. In this section we show that it also applies

163

ALGEBRAIC TECHNIQUES

to the verification of identities involving polynomials. Two polynomials P(x)
and Q(x) are said to be equal if they have the same coefficients for corresponding
powers of x. Verifying identities of integers, or, in general, strings over any fixed
alphabet, is a special case since we can represent any string of length n as a
polynomial of degree n. This is achieved by treating the kth element in the string
as the coefficient of the kth power of a symbolic variable.

We first consider the polynomial product verification problem: given polyno
mials PI(x), P2(x), P3(x) E IF[x], verify that PI(x) x P2(x) = P3(X). Assume that
the polynomials PI(x) and P2(x) are of degree at most n; then P3(x) cannot have
degree exceeding 2n. Polynomials of degree n can be multiplied in O(n log n)
time using Fast Fourier Transforms, whereas the evaluation of a polynomial at
a fixed point requires O(n) time.

The basic idea underlying the randomized algorithm for polynomial product
verification is similar in spirit to the algorithm for matrices. Let S c IF be a set
of size at least 2n+ 1. Pick rES uniformly at random and evaluate PI(r), P2(r),
and P3(r) in O(n) time. The polynomial identity PI(X)P2(x) = P3(x) is declared
correct unless PI (r)P2(r) =1= P3(r). This algorithm errs only when the polynomial
identity is false but the evaluation of the polynomials at r fails to detect this.

Define the polynomial Q(x) = PI(X)P2(x) - P3(x) of degree 2n. We say that
a polynomial P is identically zero, or P = 0, if all of its coefficients are zero.
Clearly, Q(x) is identically zero if and only if the polynomial product is correct.
We complete the analysis of the randomized verification algorithm by showing
that if Q(x) ¥= 0, then with high probability Q(r) = PI(r)P2(r) - P3(r) =1= o.
Elementary algebra tells us that Q can have at most 2n distinct roots. Hence,
unless Q= 0, not more that 2n different choices of rES will have Q(r) = o.
Thus, the probability of error is at most 2n/ISI. This probability can be reduced
by either using independent iterations of the entire algorithm or by choosing a
sufficiently large set S.

In the case where IF is an infinite field (such as the reals), the error probability
can be reduced to 0 by choosing r uniformly from the entire field IF. Unfortu
nately, this requires an infinite number of random bits! We could also use a
deterministic version of this algorithm where each choice of rES is tried once.
But this requires 2n + 1 different evaluations of each polynomial, and the best
algorithm for this requires 9(n log2n) time, which is more than the time required
to actually multiply PI(x) and P2(x).

This verification procedure is not restricted to polynomial product verification.
It is a generic procedure for testing any polynomial identity of the form PI (x) =
P2(x), by transforming it into the identity Q(x) = PI(x) - P2(x) == O. Obviously,
if the polynomials PI and P2 are explicitly provided, we can perform this task
deterministically in O(n) time by comparing corresponding coefficients. The
randomized algorithm will take as long to just evaluate the polynomials at
a random point. However, the verification procedure pays off in situations
where the polynomials are provided implicitly, such as when we have only a
"black box" for computing the polynomial, with no means of accessing its
coefficients. There are also situations where the polynomials are provided in

164

7.2 VERIFYING POLYNOMIAL IDENTITIES

a form where computing the actual coefficients is exceedingly expensive. One
example is provided by the following problem concerning the determinant of a
symbolic matrix; in fact, this problem will turn out to be the same as that of
verifying a polynomial identity involving multivariate polynomials, necessitating
a generalization of the idea used for univariate polynomials.

Let M be an n x n matrix. The determinant of M is defined by
n

det(M) = L sgn(n) II M i,7t(i), (7.2)
7tEs" i=l

where s,. is the symmetric group of permutations of size n, and sgn(n) is the
sign of the permutation n. Recall that sgn(n) = (-1)t, where t is the number of
pairwise element exchanges required to transform the identity permutati9n into
n. Although the determinant has n! terms, it can be evaluated in polynomial
time given explicit values for the matrix entries Mij.

~ Definition 7.1: The Vandermonde matrix M(Xh ... , xn) is defined in terms of the
indeterminates Xl. ... , Xn such that Mij = x{-l, that is

M=

1 Xl xi
1 X2 x~

1 Xn x~

Vandermonde's identity states that for this matrix M, det(M) = nj<i(Xi-Xj).
Suppose that we did not have a proof of this identity and would like to verify it
efficiently. Computing the determinant of this symbolic matrix is prohibitively
expensive since it has n! terms. Instead, we will formulate this as the problem of
verifying that the polynomial Q(Xh ... , xn) = det(M) - TIj<i(Xi - Xj) is identically
zero. Drawing upon our experience with Freivalds' technique, it seems natural to
substitute random values for each Xi and check whether Q = o. The polynomial
Q is easy to evaluate at a specific point since the determinant can be computed
in polynomial time for specified values of the variables Xl. ... , X n•

We formalize this intuition by extending the analysis of Freivalds' technique
for univariate polynomial identity verification to the multivariate case. In a
multivariate polynomial Q(Xl, ... , xn), the degree of any term is the sum of the
exponents of the variables, and the total degree of Q is the maximum of the
degrees of its terms.

Theorem 7.2 (Schwartz-Zippel Theorem): Let Q(Xl, ... , xn) E IF[XI, ... , xn] be
a multivariate polynomial of total degree d. Fix any finite set S c IF, and let
rl, ... , rn be chosen independently and uniformly at random from S. Then

d
Pr[Q(rl, ... ,rn) = 0 I Q(Xl, ... ,Xn) ¥= 0] < lSI·

165

ALGEBRAIC TECHNIQUES

PROOF: The proof is by induction on the number of variables n. The base
case n = 1 involves a univariate polynomial Q(x.) of degree d, and by the
preceding discussion we already know that for Q(x.) ¥= 0, the probability that
Q(r.) = 0 is at most diISI. Assume now that the induction hypothesis is true
for a multivariate polynomial with up to n - 1 variables, for n > 1.

Consider the polynomial Q(XI, ... , xn), and factor out the variable Xl to obtain

k

Q(X., . .. , xn) = L x~ Qi(X2,.· . , xn),
i=O

where k < d is the largest exponent of Xl in Q. (Assume that Xl affects Q, so that
k > 0). The coefficient of xii, QdX2, ... , xn); is not identically zero by our choice
of k. Since the total degree of Qk is at most d - k, the induction hypothesis
implies that the probability that Qdr2, ... , rn) = 0 is at most (d - k)/ISI.

Suppose that Qdr2, ... , rn) =1= o. Consider the following univariate polynomial:
k

q(x.) = Q(xI,r2,r3,.·.,rn) = Lx~Qi(r2, ... ,rn).
i=O

The polynomial q(x.) has degree k, and it is not identically zero since the
coefficient of xii is Qk(r2, ... , rn). The base case now implies that the probability
that q(r.) = Q(rl, r2, ... , rn) evaluates to 0 is at most k/ISI.

Thus; we have shown the following two inequalities.

d-k
lSI
k

~ lSI·

Invoking the result in Exercise 7.3, we find that the probability that
Q(r., r2, ... , rn) = 0 is no more than the sum of these two probabilities, which is
diISI. This completes the induction. 0

Exercise 7.3: Show that for any two events £1 and £2.

Pr[£l] ~ Pr[£l 1£2] + Pr[£2].

The randomized verification procedure for polynomials has one potential
problem. In the case of infinite fields, the intermediate results in the evaluation
of the polynomial could involve enormous values. This problem can be avoided
in the case of integers by performing all the computations modulo a small
random prime number, without adversely affecting the error probability. We
will return to this issue in Example 7.l.

As suggested in Problem 7.l, Theorem 7.2 can be viewed as a generalization
of Freivalds' technique from Section 7.l. A generalized version of this theorem
is described in Problem 7.6.

166

7.3 PERFECT MATCHINGS IN GRAPHS

7.3. Perfect Matchings in Graphs

We illustrate the power of the techniques of Section 7.2 by giving a fascinating
application. Consider a bipartite graph G(U, V, E) with the independent sets of
vertices U = {u., ... ,un } and V = {V., ... ,vn }. A matching is a collection of edges
M c E such that each vertex occurs at most once in M. A perfect matching
is a matching of size n. Each perfect matching M in G can be viewed as a
permutation from U into V. More precisely, the perfect matchings in G can be
put into a one-to-one correspondence with the permutations in s,., where the
matching corresponding to a permutation 1C E Sn is given by the pairs (Uj, VX(i»,

for 1 =::; i =::; n. The following theorem draws a connection between determinants
and matchings.

Theorem 7.3 (Edmonds' Theorem): Let A be the n x n matrix obtained from
G(U, V,E) asfollows:

A .. _ {Xjj (Uj,Vj) E E
IJ - • o (Uj,Vj) ~ E

Define the multivariate polynomial Q(Xll,X12,'" ,xnn) as being equal to det(A).
Then, G has a perfect matching if and only if Q ¥= O.

Remark: The matrix of indeterminates is sometimes referred to as the Edmonds
matrix of a bipartite graph. We do not explicitly specify the underlying field
because any field will do for the purposes of this theorem.

PROOF: The determinant of A is given by

det(A) = L sgn(1C)A1,lt(1)A2,lt(2)'" An,lt(n)'

ltEs"

Since each indeterminate xij occurs at most once in A, there can be no cancella
tion of the terms in the summation. Therefore the determinant is not identically
zero if and only if there is a permutation 1C for which the corresponding term in
the summation is non-zero. The latter happens if and only if each of the entries
Ai,lt(i)' for 1 =::; i =::; n, is non-zero. This is equivalent to having a perfect matching
(the one corresponding to 1t) in G. 0

We can now construct a simple randomized test for the existence of perfect
matchings. Using the algorithm from Section 7.2, we can determine whether
the determinant is identically zero or not. The time required is dominated by
the cost of computing a determinant, which is essentially that of multiplying
two matrices. As it turns out, there are algorithms for constructing a maximum
matching in a graph in time o (my'n) , where m = lEI. Since the time to compute
the determinant exceeds my'n for small m, the payoff in using this randomized
decision procedure is marginal at best. However, we will see later (in Section 12.4)
that this decision procedure is essential for devising a fast parallel algorithm for
computing a maximum matching in a graph. In Problem 7.8 we will see that
this technique also applies to the case of non-bipartite graphs.

167

ALGEBRAIC TECHNIQUES

7.4. Verifying Equality of Strings

We have seen that the idea of fingerprinting is useful in verifying identities of
algebraic objects. In this section we introduce a different form of fingerprinting,
motivated by the problem of testing the equality of two strings. As mentioned
earlier, the string equality verification problem can be reduced to that of verifying
polynomial identities. However, the new type of fingerprint introduced here has
important benefits when extended to the pattern matching problem discussed
later in Section 7.6.

Suppose that Alice maintains a large database of information. Bob maintains
a second copy of the database. Periodically, they must compare their databases
for consistency. Because transmission between Alice and Bob is expensive, they
would like to discover the presence of an inconsistency without transmitting
the entire database between them. Denote Alice's data by the sequence of
bits (ah ... , an), and Bob's by the sequence (bh ... , bn). It is clear that any
deterministic consistency check that transmits fewer than n bits will fail if an
adversary could decide which bits of either database to modify. We describe a
randomized strategy that detects an inconsistency with high probability while
transmitting far fewer than n bits of information.

We use the following simple fingerprint mechanism. Interpret the data as
ll-bit integers a and b, by defining a = 2:7=1 ai2i-1 and b = 2:7=1 bi2i

-
l
. Define

the fingerprint function Fp(x) = x mod p for a prime p. Then Alice can transmit
Fp(a) to Bob, who in turn can compare this with Fp(b). The hope is that if
a =1= b, then it will also be the case that Fp(a) =1= Fp(b). The number of bits to
be transmitted is O(logp), which will be much smaller than n for a small prime
p. This strategy can be easily foiled by an adversary for any fixed choice of p
since, for any p and b, there exist many choices of a for which a = b (mod pl.
We get around this problem by choosing p at random.

For any number k, let 1t(k) be the number of distinct primes less k. A well
known result in number theory is the Prime Number Theorem, which states that
1t(k) is asymptotically k / In k. Consider now the non-negative integer c = la - bl.
The fingerprint defined above fails only when c =1= 0 and p divides c. How many
primes can divide c? Define N = 2n; we know that c < N.

Lemma 7.4: The number of distinct prime divisors of any number less than 2n is
at most n.

PROOF: Each prime number is greater than 1. If N has more than t distinct
prime divisors, then N > 2f. 0

Choose a threshold r that is larger than n = log N. The number of primes
smaller than r is 1t(r) r/ In r. Of these, at most n can be divisors of c and cause
our fingerprint function to fail. Therefore, we pick a random prime p smaller
than r for defining Fp. The number of bits of communication is O(logr). Choose

168

7.5 A COMPARISON OF FINGERPRINTING TECHNIQUES

r = tn log tn, for large t. The following theorem is immediate. The probability is
taken over the random choice of p.

Theorem 7.5: Pr[Fp(a) = Fp(b) 1 a =1= b] < 1t~r) = 0 (~).

Thus, we get an error probability of at most O(I/t), and the number of
bits to be transmitted is O(log t + log n). Choosing t = n gives us an excellent
strategy for this problem. We remark that the task of picking a random prime
is non-trivial, primarily because verifying the primality of a number is difficult.
Some algorithms for this purpose will be presented in Chapter 14.

~ Example 7.1: This integer equality verification technique can be used to solve
the problem alluded to at the end of Section 7.2. In verifying that a multivariate
polynomial Q(XI, ... , xn) is identically zero, we evaluate the polynomial at a ran
dom point. The problem is that the intermediate values arising in the evaluation
of q = Q(rI, ... , rn) could be extremely large. Of course, we do not really wish to
compute q; our goal is to merely verify that q = O. By the preceding discussion,
it suffices to verify that.q mod p = 0 for some small random prime p.

But how can we possibly hope to perform the verification without evaluating
q explicitly? The trick is to use arithmetic modulo p while evaluating Q(rI, ... , rn)
and thereby obtain the residue of q modulo p directly, rather than first computing
q and then reducing it modulo p. The intermediate values are all smaller than p,

and p itself is chosen to be a small random prime. By Theorem 7.5, the probability
of error does not increase significantly for a suitable choice of t.

7.5. A Comparison of Fingerprinting Techniques

It is useful at this point to compare the two types of fingerprinting techniques
that we have seen so far. Suppose that we wish to verify the equality of two
strings or vectors a = (aI, ... , an) and b = (bI, ... , bn) with each component
drawn from a finite alphabet 1:. We can encode the alphabet symbols using the
set of numbers r = {O, 1, ... ,k - I}, where k = 11:1. It is then possible to view
the two strings as the polynomials A(z) = 2:7.:-d aizi and B(z) = 2:7':<: bizi, each
of which has integer coefficients and degree at most n. Clearly, the two vectors
are identical if and only if the two polynomials are identical.

The fingerprinting technique of Sections 7.1 and 7.2 can be summarized as
follows. Fix a prime number p greater than both 2n and k. View the polynomials
A(z) and B(z) as polynomials over the field Zp. By our choice of p, the set r is
contained in this field and arithmetic modulo p will not render identical any two
non-identical polynomials. The fingerprint of the two polynomials is obtained by
choosing a random element r E Zp and substituting it for the symbolic variable
z. If a = b, then the two polynomials are identical and the fingerprint will also
be identical; on the other hand, when a =1= b, the two polynomials are distinct

169

ALGEBRAIC TECHNIQUES

and the probability that their fingerprints turn out to be the same is at most
n/p, and this is bounded by 1/2 for our choice of p. For k = 2 and p = O(n),
this can be viewed as reducing the problem of comparing n-bit numbers to that
of comparing O(log n)-bit numbers.

The fingerprinting technique from Section 7.4 is in some sense a dual of the
first technique. In this approach, we fix z = 2 and choose a random prime q of
a reasonably small magnitude. The fingerprints are obtained by evaluating A(2)
and B(2) over the field Zq. Thus, instead of fixing the field and evaluating at a
random point in the field, the second type of fingerprint is obtained by fixing
the point of evaluation and choosing a random field over which the evaluation
is to be performed. By our analysis in Section 7.4, this also reduces the problem
of comparing n-bit numbers to that of comparing (logn)-bit numbers. However,
as we will see in the next section, there are certain applications where the second
type of fingerprinting proves to be more useful.

A third version of the fingerprinting approach works as follows. Assume that
k = 2, and interpret the bit vectors a and b as the n-bit integers a and b. Fix
a prime number p > 2n. Choose a random polynomial P(z) over the field Zp,
and obtain the fingerprints by evaluating this polynomial at the integers a and
b, performing all arithmetic over the field Zp, and then reducing the resulting
values modulo a number of magnitude close to log n. This is the main idea
behind the construction of the so-called universal hash functions discussed in
Section 8.4.

7.6. Pattern Matching

Consider now the problem of pattern matching in strings. A text is a string
X = XIX2 .•. Xn and a pattern is a string Y = YIY2 ..• Ym, both over a fixed
finite alphabet 1:, such that m < n. Without loss of generality, we restrict
ourselves to the case 1: = {O, I}. The pattern occurs in the text if there is a
j E {1,2, ... ,n-m+l} such that for 1 <i< m, Xj+i-l = Yi. The pattern matching
problem is that of finding an occurrence (if any) of a given pattern in the text.
This problem can be trivially solved in O(nm) time by trying for a match at all
possible locations i; moreover, there are deterministic algorithms that achieve
the best possible running time of O(n + m).

We describe a Monte Carlo algorithm that also achieves a running time of
O(n + m); later, we will convert this into a Las Vegas algorithm. This algorithm
is interesting despite the existence of linear-time deterministic algorithms because
it is significantly simpler, has a "real-time" implementation (this is explained
below), and generalizes to the problem of pattern matching in two-dimensional
strings (or matrices).

Define the string XU) = XjXj+l •• ' Xj+m-l as the sub-string of length m in
X that starts at position j. A match occurs if there is a choice of j, for
1 < j < n - m + 1, for which Y = XU). We make the solution unique by
requiring that the algorithm find the smallest value of j such that XU) = Y.

170

U PATTERN MATCHING

The brute-force O(nm) time algorithm compares Y with each of the strings XU).
Our randomized algorithm will choose a fingerprint function F and compare
F(Y) with each of the fingerprints F(XU». An error occurs if F(Y) = F(X(j»
but Y =1= XU). We would like to choose a function F that has a small probability
of error and can be efficiently computed.

In fact, we use the same fingerprint function as in Section 7.4: for any
string Z E {O, l}m, interpret Z as an m-bit integer and define Fp(Z) = Z mod p.
Assume that p is chosen uniformly at random from the set of primes smaller
than a threshold r. Suppose that we interpret the strings Y and XU) as m-bit
integers, and compare their fingerprints Fp(Y) and Fp(X(j» instead of trying to
match each symbol in the two strings. The only possible error is that we get
identical fingerprints when Y =1= XU). By Theorem 7.5, we bound the probability
of such a false match as follows: .

Pr[Fp(Y) = Fp(X(j» I Y =1= X(j)] < 1t~) = o(ml~gr).
Then, the probability that a false match occurs for any of the at most n values
of j is O((nmlogr)/r). We choose r = n2mlogn2m, and this gives

Pr[a false match occurs] = 0 (~).
The Monte Carlo version of this algorithm simply compares the fingerprints

of all X(j) to that of Y, and outputs the first j for which a match occurs; the
Las Vegas version will be described below. We first show that the running time
of this algorithm is as claimed. For 1 < j < n - m + 1,

XU + 1) = 2 [XU) - 2m
-

1 Xj] + xj+m.

From this we obtain the recurrence

Fp(XU + 1» = 2 [Fp(XU» - 2m
-

1 Xj] + xj+m mod p.

It is now clear that given the fingerprint of XU), the incremental cost of
computing the fingerprint of XU + 1) is 0(1) field operations. In fact, there is
no need to use the more expensive operations of multiplication and division,
because each x j is 0 or 1. Thus, the total time required for this algorithm is
O(n + m) even under the more stringent log-cost RAM model. This efficient
incremental update property is the main motivation for using the second form
of fingerprinting; the reader may verify that more complex computations would
be required if the first form of fingerprinting was used instead (see Section 7.5).

Theorem 7.6: The Monte Carlo algorithm/or pattern matching requires O(n + m)
time and has a probability of error 0 (1/ n) .

It is easy to convert this into a Las Vegas algorithm. Whenever a match
occurs between the fingerprints of Y and some XU), we compare the strings
Y and XU) in O(m) time. If this is a false match, we detect it and abandon

171

ALGEBRAIC TECHNIQUES

the whole process in favor of using the brute-force O(nm) time algorithm.
The new algorithm does not make any errors and has expected running time
O((n + m)(l - lin) + nm(l/n»), which works out to be O(n + m). An alternative
Las Vegas version of this algorithm restarts the entire algorithm with a new
random choice of p whenever a false match is detected. In the latter approach,
the probability of having to restart more than t times is bounded by lint. This
leads to a very small variance in the running time. In contrast, the first approach
has a relatively high probability of being forced to use the O(nm) time algorithm,
and hence has a high variance in the running time.

An alternative fingerprint function with a similar behavior is described in
Problem 7.12. In Problem 7.13 it is required to show that this algorithm extends
to the case of two-dimensional pattern matching.

The method for computing the fingerprints of the various X(j)'s will work
well in on-line or real-time settings where the string X is provided incrementally,
possibly a bit at a time. This feature is also useful when the text is extremely
large and cannot be completely stored in the primary memory of a machine.

Exercise 7.4: Consider the fingerprint function used for polynomial identities and
adapt it to the problem of testing string equality. Why is this not a good choice of a
fingerprint for the pattern matching problem?

7.7. Interactive Proof Systems

We have seen the power of combining randomization and algebra in devising
fingerprinting techniques with applications to efficient verification of simple
identities involving objects such as matrices, polynomials, and strings. We have
also seen that the basic idea used in the verification of the equality of two strings
x and y could be taken a step further and be used for the efficient detection of
a pattern y in a string x. How far can we push this approach?

Suppose, for example, the string x represents a graph G, and the "pattern" y
represents some graph property P. Can we then use the ideas developed here
for efficient "pattern matching" in terms of verifying the property P in G? More
specifically, suppose that the pattern y corresponds to the property of not being
an expanding graph. The problem of verifying this property belongs to NP and
so there exist short proofs of non-expansion. Moreover, given such a proof, it is
possible to efficiently verify its correctness. Thus, the pattern matching task can
be efficiently performed provided the pattern y includes a "proof' of this fact,
i.e., a description of a set of vertices in G that do not have too many neighbors.
In this context, efficiency means time polynomial in the length of the inputs,
and this requires that the proof itself be of polynomial length.

Suppose instead the pattern matching task corresponds to the verification of
the property of being an expander. As we mentioned earlier (Section 6.7), this

172

7.7 INTERACTIVE PROOF SYSTEMS

problem is co-NP-complete and it is quite unlikely that there is a polynomial
length proof of this property. Intuitively, verifying the expander property
requires checking almost all subsets of the vertices. But could it be that it
is possible to verify such proofs efficiently, even though their length is not
polynomially bounded? At an intuitive level this seems impossible, since we at
least have to read a proof completely to verify its correctness. Quite surprisingly,
however, we will show how the use of randomization combined with elementary
algebra allows us to efficiently verify an exponential length proof of such co-NP
properties, provided the proof itself is written in a specific format. In fact,
there are more profound complexity-theoretic results that can be obtained using
randomized algebraic techniques. In this section and the next, we will describe
some aspects of these complexity-theoretic results.

7.7.1. Verifying Graph Non-Isomorphism

Let us start by considering the problem of graph isomorphism. Informally, two
graphs are isomorphic if they have exactly the same structure. We make a
formal definition for the case of labeled graphs.

~ Definition 7.2: Let G1(V,Ed and G2(V,E2) be two graphs on the same set of
labeled vertices V = {l, ... ,n}. The two graphs are said to be isomorphic if there
exists a permutation 1t E Sn such that an edge (i,j) E El if and only if the edge
(1t(i),1tU)) E E2; the permutation 1t is referred to as an isomorphism from Gl to
G2. Two graphs are non-isomorphic if there does not exist any isomorphism from
one graph to the other. .

Consider the graph isomorphism (GJ) problem: given two graphs G1 and G2,

decide whether they are isomorphic to each other. This problem lies in NP since
it is possible to "guess" an isomorphism and verify that it maps edges correctly.
That is, there is a short proof of isomorphism (the description of a permutation
1t), and its validity can be verified efficiently. It is believed that GI does not
belong to P, and yet there is no proof that this problem is NP-complete. In
fact, there is strong evidence that this problem is not NP-complete, making it
one of the few natural problems believed to have this property. This evidence is
derived from results closely related to those discussed in this section.

The complementary problem, graph non-isomorphism (GNI), is that of ver
ifying that G1 and G2 are non-isomorphic. By definition, this problem lies
in co-NP. Unlike the case of isomorphism, there is no known short proof of
non-isomorphism, and it appears that verifying non-isomorphism will essentially
require checking that none of the n! permutations provides an isomorphism from
G1 to G2. However, as we show next, using a more active "prover" instead of a
passive "proof" together with randomization in the verification process leads to
an efficient scheme for verifying non-isomorphism.

The model that we adopt is the following. A verifier V that can perform
any randomized polynomial-time computation is attempting to verify that two

173

ALGEBRAIC TECHNIQUES

graphs G1 and G2 are non-isomorphic. The verifier can enlist the help of a
prover P, which is an all-powerful adversarial entity whose goal is to convince
the verifier that G1 is not isomorphic to G2, even if the two graphs are indeed
isomorphic. The prover's computational power is not constrained in any way;
in particular, it is not restricted to polynomial-time computations, and it knows
precisely the strategy employed by the verifier V. The only limitation on the
prover is that it does not have access to the random bits used by V in the course
of its computations, except as revealed in the information communicated to it
by V.

The interaction between the two entities can be viewed as being composed
of a sequence of rounds of communication, where in each round V poses a
question to P, and P responds with a possibly maliciously chosen incorrect
answer. Upon termination, V decides to either accept that G1 is not isomorphic
to G2, or else reject the prover's answers as being incorrect or unconvincing. A
protocol is the specification of a randomized polynomial-time algorithm for V
such that: when G1 and G2 are non-isomorphic, it is possible for a prover P to
convince V to accept; and when G1 and G2 are isomorphic, even a malicious
prover cannot respond so as to persuade V to accept with probability more than
1/2 (say).

It turns out that the following simple protocol suffices. In the description
of the protocol, u(G) denotes the graph isomorphic to G that is obtained by
applying the permutation u to the labels of the vertices in G.

Verifier V:

• picks index i E {1,2} and permutation U E Sn, both uniformly at random;

• computes H = u(Gj);

• specifies H to the prover P and asks for an index j such that H is
isomorphic to Gj ;

Prover P: responds with an index j;
Verifier V: if j = i then it accepts that G1 and G2 are non-isomorphic, else it

rejects.

Fi~ any two graphs G1(V,Ed and G2(V,E2). Consider the execution of this
protocol with prover P following an adversarial strategy as discussed earlier.
The following theorem shows that if the verifier V follows this protocol, then it
achieves the desired result.

Theorem 7.7: If G1 and G2 are non-isomorphic, an honest prover P can ensure
that V will accept; otherwise, for any (possibly maliciously dishonest) prover P',
the probability that V accepts is 1/2.

PROOF: Consider first the case where the two graphs are non-isomorphic. Sup
pose that V used i = 1. Then, Hand G1 are isomorphic, while Hand G2 are
non-isomorphic since G1 is not isomorphic to G2• An honest prover can use
its unbounded power to determine that H is isomorphic to G1 but not to G2•

174

7.7 INTERACTIVE PROOF SYSTEMS

Therefore, the prover can ensure that it sends back j = 1, thereby persuading V
to accept. A similar argument applies in the case when i = 2.

Suppose now that G1 and G2 are isomorphic to each other. The graph H
must then be isomorphic to both G1 and G2• Let 0"1 denote an isomorphism
from G1 to H, and 0"2 an isomorphism from G2 to H. Given that the verifier
follows the protocol,

Pr[O" = 0"1 and i = 1 I V specifies H] = Pr[O" = 0"2 and i = 2 I V specifies H].

The prover does not know the value of i or the permutation 0" used to determine
H from Gj • We claim that even knowing H and regardless of its strategy for
choosing j, the probability that j = i is 'exactly 1/2. It follows that the probability
that V accepts is 1/2.

To verify the claim, we invoke the Principle of Deferred Decisions (Section 3.5)
as follows: assume that the verifier first decides upon H, using it to obtain the
value of j from the prover, and only then does it decide upon the choice of i
and (J. This is equivalent to assuming that V chooses H at random from the
uniform distribution on the space of all graphs isomorphic to G1 and G2• Then,
after it has forced the prover to commit to the value of j, it makes a random
choice of i and determines the isomorphism (Jj from Gj to H. Of course, this
would require V to solve the G I problem efficiently, which is not believed to be
possible for any randomized polynomial-time algorithm. But the point is that
as far as the prover is concerned, it cannot distinguish between the two types
of verifiers and we postulate the existence of a "deferring" verifier only for the
purposes of our analysis. We assume that this verifier is still honest in that it
chooses i at random even though it already knows the value of j; this is because
the verifier just wants to ensure that it does not get cheated by the prover, and
it does not gain anything by cheating itself. 0

Exercise 7.5: Verify that independent iterations of this protocol can be used to reduce
the probability that the verifier accepts erroneously. Argue that the prover does not
gain additional power to cheat as the iterations proceed.

7.7.2. The Class IP and #3SAT

We now formalize the notion of an interactive proof system used in Section 7.7.1.
Given any language L over an alphabet I:, an interactive proof system for L
consists of a verifier V and prover P such that: the verifier V can perform
any randomized polynomial-time computation and can communicate with the
prover P in an attempt to verify that an input x belongs to L; the prover P
can perform arbitrary computations but does not have access to the random
bits used by V. Typically, we use the symbol P to denote an honest prover that
always provides truthful responses to the queries posed by V. Let V(x, PI) be the
outcome (acceptance or rejection) of the computation performed by the verifier

175

ALGEBRAIC TECHNIQUES

given an input string x and communicating with a prover pI, where P' denotes
a prover that does not necessarily behave in the manner expected of the honest
prover P. We define a complexity class consisting of all languages (or decision
problems) that have interactive proof systems such as the one demonstrated for
graph non-isomorphism.

~ Definition 7.3: The class [P consists of all languages L that have an interactive
proof system (P, V) with a randomized polynomial-time verifier V and an honest
prover P such that for any x E r,

• x E L => for the honest prover P, Pr[V(x,P) accepts] = 1.

1
• x ft L => for all provers pI, Pr[V(x,pl) accepts] :s "2.

We have already shown that GNI E,[P, and it is not very hard to verify that
G I E [P. As we will see shortly, this is not a coincidence since both NP and
co-NP are contained in [P. Intuitively, [P can be viewed as a generalization of
NP obtained by permitting randomization. It turns out that [P = PSPACE, the
class of languages whose membership can be decided using only a polynomial
amount. of space (see Problems 7.16-7.17). While it is relatively easy to argue
that [P c PSPACE" the proof of PSPACE c [P turns out to be more difficult,
and this is where randomized algebraic techniques prove to be useful. We
illustrate some of the key ideas behind the latter proof by showing that the
problem of verifying the number of satisfying truth assignments for a 3-CNF
Boolean formula lies in [P.

Let XI. ... , Xn be Boolean variables whose values can be either TRUE or FALSE.

A 3-CNF formula F(Xh ... , Xn) is the conjunction of a collection of clauses Ch

... , em, where each clause is a disjunction of three literals Lil , Li2' and L i3. Recall
that a formula F is said to be satisfiable if there exists an assignment of values
to its variables that results in F evaluating to TRUE, and then the assignment is
called a satisfying truth assignment.

In the 3-SAT problem, we are required to determine whether a given 3-CNF
formula F is satisfiable. We are interested in a counting version of this problem
called #3SAT: given a 3-CNF formula F and an integer s, verify that the number
of distinct satisfying truth assignments for F is s. We will establish the following
theorem.

Theorem 7.8: #3SAT E [P.

What are the implications of this result? Recall that the 3-SAT problem is
NP-complete, which implies that if 3-SAT E P, then any L E NP is also in P
(and therefore P = NP). The 3-SAT problem is a special case of #3SAT and
this means that 3-SAT E [P. The following exercise then implies that NP c [P.

176

7.7 INTERACTIVE PROOF SYSTEMS

Exercise 7.6: Let L, and L2 be two languages such that L2 E IP and there is a
polynomial reduction from L, to L2• Show that L, E IP.

This is not very interesting since it is easy to argue directly that NP c lP
(see Problem 7.14). However, consider now the special case of #3SAT where
s = O. This is the problem of deciding that a 3-CNF formula is not satisfiable;
since verifying unsatisfiability is a co-NP-complete problem, it follows that
co-NP c lP. This is much more interesting since it is not immediately obvious
from the definition of lP that it contains co-NP. Actually, #3SAT is complete
for a class of problems called #P, which is defined formally in Chapter. 11. It
follows that #P c lP. It is known that #P ~ PSPACE, and so we are proving
a weaker result than lP = PSPACE. We choose to focus on this weaker result
since it introduces some of the key ideas involving randomization that are used
in the proof of lP = PSPACE. Problems 7.16-7.17.

7.7.3. Arithmetization of Satisfiability

A key step in the proof of #3SAT E lP is the conversion of the Boolean formula
F into an algebraic formula. This process is called the arithmetization of a
Boolean formula. Let us view any truth assignment A for the variables in F as
an n-dimensional vector over the integers. More precisely, we represent it by a
vector a = (al,a2, ... ,an) such that

if Ai = TRUE

if Ai = FALSE

At the same time, we convert F into a polynomial with the variables XI, ••. , X n ,

as follows. Any literal Lij is turned into a linear polynomial lij by replacing
a Boolean variable Xj by 1 - Xj, and a negated variable Xj by Xj. A clause
Ci = Lil V Li2 V Li3 is replaced by a degree 3 polynomial Ci = 1 -lil ldi3. Finally,
the Boolean formula F(X I, ... , X n) is represented by the following polynomial
of degree 3m:

m m

!(xt. ... ,xn) = IT Ci = IT(l-lil ldi3).
i=1 i=1

~ Example 7.2: Consider the 3-CNF Boolean formula

F(Xt.X2,X3,X4) = (XI V X 2 V X 3) 1\ (XI V X3 V X4).

Then, the arithmetization of F yields the following polynomial of degree 6:

177

ALGEBRAIC TECHNIQUES

Exercise 7.7: Show that there is no essential difference between the Boolean formula
F and its arithmetization f: let A be any truth assignment, and a the corresponding
vector over {O, 1}. Show that F (A" ... , An) = TRUE if and only if f(a" ... , an) = 1.

Let #F denote the number of satisfying truth assignments for F, and define
1 1 1

#1 = L L··· L/(xt. ... ,Xn).
Xl =<> X2=<> X.=<>

Since #F = #1, the problem of verifying that #F = s is the same as the
problem of verifying that #1 = s.

It will be convenient to work over a finite field and so we treat the polynomial
1 as a polynomial over the field Zp, for some prime p. Since the value of #1
cannot exceed the total number of truth assignments, this restriction to a finite
field will not affect the value of #1 provided we choose p > 2n. By Bertrand's
Postulate, there is a prime p such that 2n < p < 2n+l and we can use any such
prime number. A technical issue is that there is no known polynomial time
algorithm for finding such a prime. But this issue can be easily handled in the
setting of an interactive proof system. The verifier asks the prover to specify
such a p~me p, and to prevent cheating it also asks for a proof of the primality
of p. As we will see in Section 14.6, there exist polynomial length "certificates of
primality" that can be verified in polynomial time, and the all-powerful prover
can easily provide such a certificate of primality along with the value of p.

The following notation will be useful in describing the interactive proof
system. For any polynomial f(xt. ... , xn), and for 0 < i < n, define the partial
SURl polynomials

1 1

li(Xt. ... ,xJ = L ... L/(xt. ... ,Xn).
Xi+l=O x.=<>

The proof of the following set of properties for the partial sum polynomial is
left as Problem 7.15.

Lemma 7.9: The partial sum polynomials have the following properties:

1. 10 = #f.
2. In(Xt. ... , Xn) = I(xt. ... , Xn).

3. for 1 <i< n, li-l(Xt. ... ,Xi-d = li(Xt. ... ,Xi-t.O) + li(Xt. ... ,Xi-t. 1).

7.7.4. The Interactive Proof System for #3SAT

We now provide an interactive proof system that takes as input a polynomial
I(xt. ... ,xn) over Zp and an integer s E Zp, and verifies that #1 = s. Since
a verifier can easily compute the arithmetization of a 3-CNF formula F, this
suffices to show that #3SAT E IP.

178

7.7 INTERACTIVE PROOF SYSTEMS

The basic step in the interactive proof system is for the verifier to ask the
prover for the description of the polynomial !I(Z), where Z is a symbolic variable.
Suppose that the prover responds with a polynomial g(z), which mayor may
not be the desired polynomial !I(Z). Assuming that the prover does not cheat,
it must be the case that #! = g(O) + g(l). Therefore, the verifier compares s
with g(O) + g(1) and rejects if the two are unequal. It must now verify that g is
indeed the same polynomial as !I.

Of course, we have to concern ourselves only with the case where #! =1= s,
since it will be clear that an honest prover can always make the verifier accept by
providing correct responses. Now, since g(O)+ g(l) = s, and #! = !I(O)+ It(l) =1=

s, it follows that g(z) =1= !I(Z). The verifier's goal is to make sure that the
polynomial equality g(z) = !I(Z) is satisfied, so as to ensure that it catches a
prover that is attempting to cheat by sending a polynomial g(z) =1= !ICZ) such
that g(O) + g(1) = s. The only problem is that while the verifier knows g(z)
explicitly, the polynomial It (z) is only implicitly defined by the equation

I I

!I(Z) = L··· L!(Z,X2, ... ,Xn)'
:<2",,0 x.=O

Computing !I (z) explicitly from this equation would require super-polynomial
time. But this is precisely the kind of situation where we use the technique
described in Section 7.2 for verifying polynomial identities.

The verifier chooses an element r E Zp uniformly at random, evaluates
S' = g(r), and asks the prover to show that s' = It (r). Again, we are only
interested in analyzing the case where g(z) =1= !I(Z). Of course, it is still possible
that S' = !I(r). In this case, the prover will succeed in cheating the verifier as
it will be able to pass all subsequent tests (described next). But this "error"
happens with a small probability since the polynomials in question are of low
degree; in particular, the error probability is given by

3m
Pr[g(r) = !I(r) I g(z) =1= !I(Z)] < -,

p

as the degree of these polynomials is at most 3m.
Assuming that this error does not occur, the verifier has a value S' =1= !I(r),

and the subsequent interaction is geared toward detecting this fact. The verifier
now asks the prover to show that s' = !I(r), or equivalently that

I I

S' = L··· Lf'(X2, ... ,Xn),
:<2",,0 :<.=0

where we define the polynomial f'(X2, ... , Xn) = !(r, X2, ... , Xn). This is exactly
the original verification problem all over again, but the crucial point is that the
number of variables has been reduced to n - 1 from n.

The verifier can perform this new verification by recursively running the
same protocol, and the recursion bottoms out with the problem of verifying the
equality of two degree 0 polynomials, which is a trivial task. The probability of

179

ALGEBRAIC TECHNIQUES

error accumulates over the various stages of recursion, but since the number of
stages is n, we can bound the overall error probability by 3mn/p. Recall that p
was chosen to be larger than 2" and so the error probability is small. The net
running time of the verifier is bounded by a polynomial in nand m.

7.8. PCP and Efficient Proof Verification

We continue with our excursion into complexity theory and describe the appli
cation of Freivalds' technique to a problem in proof verification. In Section 1.5.2,
we defined NP in terms of the verification of proofs by deterministic polynomial
time verifiers. In Section 7.7, we replaced the notion of a proof with that of
an active prover and, in addition, we permitted the verifier to use randomness
in the verification process. A natural question to ask is: what is the additional
power of a polynomial-time verifier working with proofs (as opposed to provers)
when they use randomization? It turns out that the answer to this question
again involves the use of algebraic methods together with randomization.

Before addressing the question posed above, it is important to understand the
difference between a proof and a prover. A prover is active in the sense that it
can cheat in an adaptive and online manner by using its knowledge of the earlier
queries from the verifier to decide upon its responses to subsequent queries. A
proof, on the other hand, is passive and non-adaptive. We can view the proof
as being written down by an adversarial prover that knows the particular input
x being tested for membership in L, as well as a description of the protocol that
will be followed by the verifier. The prover can attempt to use this knowledge to
write down a fallacious proof of x's membership in L, even though it is the case
that x ~ L. In effect, a proof is a predetermined set of responses to all possible
questions that could be asked by a specific verifier when its random bits are
as yet undetermined. The crucial difference is that unlike the responses of an
online prover, a proof cannot change in response to the questions posed by the
verifier, and thus it cannot adapt to even the partial information of the verifier's
random bits that can be inferred from the questions themselves. Since a prover
can simulate an offline proof, a prover has more power to cheat and, conversely,
a veriner working with a proof has more power than a verifier working with a
prover.

We modify the definition of IP to that of PCP (for Probabilistically Checkable
Proofs), the only difference being that the prover is replaced by a proof. By the
preceding discussion, this is a possibly wider class of languages than IP. We
define PCP as the class of all languages whose proofs of membership can be
verified by a randomized polynomial time verifier V with random access to a
proof, i.e., the verifier can query arbitrary bits in the proof by specifying their
indices or positions.

~ Definition 7.4: The class PCP consists of all languages L that have a randomized
polynomial-time verifier V such that for any x E r,

ISO

7.8 PCP AND EFFICIENT PROOF VERIFICATION

• X E L => there exists a proof n, such that Pr[V(x, n) accepts] = 1.

• x ft L => for all purported proofs n, Pr[V(x,n) accepts] < 4.

When x ~ L, all purported proofs n must be erroneous, and the verifier is
required to spot an error with high probability.

We would like to point out that an equivalent definition of PCP is in terms
of a multi-prover interactive proof system where the verifier has access to two
or more provers, and the provers are not allowed to communicate with each
other once the verifier starts the interaction with the provers (see Problem 7.18).
It has been shown that the class PCP is the same as NEXP (non-deterministic
exponential time), clearly a superset of NP. Our interest is in a restricted version
of PCP where we account for the use of randomness and the number of pits in
the proof examined by the verifier.

~ Definition 7.5: The class PCP[r(n),q(n)] consists of all languages L E PCP that
have a randomized polynomial-time verifier V which, on inputs of length n, uses
O(r(n» random bits and examines O(q(n») bits of a purported proof n.

Let poly(n) denote a function of n that is polynomially bounded. It follows
that P = PCP[O,O], NP = PCP[O,poly(n)] and co-RP = PCP[poly(n),O] (see
Problem 7.19). Our goal is to establish the following result, which is far less
obvious; the rest of this section is devoted to the proof of this theorem.

Theorem 7.10: NP ~ PCP[poly(n), 1].

It is possible to improve Theorem 7.10 by reducing r(n) to a logarithmic
function of n, but we omit the rather intricate proof of the stronger version.
This result is quite amazing in the sense that it requires a proof that can be
verified by examining only O(1) of its bits, regardless of the length of the input.
The power of Theorem 7.10 can be fully appreciated by noting that it may be
applied to the verification of the (suitably encoded) proof of any mathematical
statement.

7.8.1. Arithmetization Revisited

To prove Theorem 7.10, it suffices to show that the NP-complete problem
3-SAT belongs to PCP[poly(n), 1]. A proof of the satisfiability of a 3-SAT
formula F is easy to construct: write down the satisfying truth assignment
A = (At,A2, ••• ,An) E {TRUE,FALSE}n for the variables in F. A verifier can
substitute these values into the definition of F and verify that it evaluates to
TRUE. Unfortunately, this requires that the verifier access all n bits of the proof.
If the verifier were to access only a small number of bits in the proof, that
would not give sufficient information to decide whether the truth assignment
would satisfy F. We will get around this problem by requiring that the proof

181

ALGEBRAIC TECHNIQUES

II be a very redundant encoding of A, much like an error-correcting code. To
do this, we convert this Boolean formula F into an algebraic formula using an
arithmetization similar to that in Section 7.7.

This time we convert F into a polynomial over the field Z2, as follows. A
clause Ci = Lil V Li2 V Li3 is replaced by a polynomial Ci of degree 3 obtained
by replacing any Boolean variable Xj by (1 - Xj), any negated variable Xj by
x j. and the Boolean operation V by the field operation of multiplication. For
example, when Ci = Xii V X i2 V X i3, we obtain the term Ci = (I-xii)xd 1-Xi3); for
notational convenience, we omit the dependence of Ci on the variables by writing
Ci instead of Ci(XiI, Xi2, Xi3). The assignment A causes Ci to evaluate to TRUE if
and only if the corresponding vector a causes Cj to evaluate to O. We replace the
Boolean operator 1\ by the field operation of addition. The arithmetization of F
is now given by the degree 3 multivariate polynomial f(Xh . .. , xn) = 2:::'1 Cj. It is
important to keep in mind that all additions and multiplications are performed
modulo 2.

The reason we choose this different arithmetization is that it yields a polyno
mial of degree 3 instead of 3m, and this is important for reducing the number
of random bits and queries used by the verifier. The problem with this arith
metization is that the polynomial f does not correspond exactly to the Boolean
formula F, as indicated in the following exercise.

Exercise 7.8: Let A be a truth assignment for F, and a the corresponding integer
vector. Show that if F (A) = TRUE, then f(a) = O. Show also that the converse need
not be true, i.e., f(a) could evaluate to 0 even though F (A) =1= TRUE.

To get around this problem we use a variant of Freivalds' technique: choose
a random vector r = (rh ... , rm) uniformly at random from zr;, and redefine f
to be

m

f(Xh ... ,Xn) = LriCi.
i-I

The proof of the following lemma is very similar to the argument used in the
proof of Theorem 7.1.

Lemma 7.11: If F(A) = FALSE, then Prlf(a) = 0] = 1/2.

Thus, with sufficiently high probability (which can be further boosted by repeat
ing the entire verification protocol several times), the polynomial f has a root
(in ~) if and only if the Boolean formula F is satisfiable. We concentrate on
the verification of the existence of a root of a multivariate degree 3 polynomial
over Z2. More precisely, we seek a verifier V such that: if f has a root, there
exists a proof that will convince the verifier; if not, any proof will deceive the
verifier with probability at most 1/2.

182

7.8 PCP AND EFFICIENT PROOF VERIFICATION

7.8.2. A Proof of Satisfiability

In this section we describe a proof of satisfiability (actually of the existence of
a root for f) that the verifier would expect to see in the case when the formula
is satisfiable. Later we will see how the verifier can efficiently look for errors or
fallacies in the proof.

~ Definition 7.6: Given an n-dimensional vector x and an m-dimensional vector
y, their outer product z = x 0 y is an n x m matrix z such that Zjj = XjYj.

We will sometimes view the matrix z as an (nm)-dimensional vector by writing
it in a row-major form; this should be clear from the context. (The row-major
form of a matrix is obtained by concatenating its rows in the order of increasing
row indices.) Consider the vector a of the assignment of values to the variables
in f. Define b = a 0 a and c = a 0 b, where the second definition views b as a
vector; then, bij = aiaj and Cijk = aibjk = ajajak. The vectors a, b, and c will be
used to define three linear functions over Z2 as follows.

n

Ga(zt, .. . , zn) = L ajzj,
i-I

n n

Gb(Zll, ... , znn) - L bijzij = L L ajajzjj.
iJ j-I j-I

n n n

Gc(Zlll, ... , znnn) - L CijkZijk = L L L ajajakZjjk.
j,j,k i-I j-I k-I

Note that Ga : Z2 ~ Z2, Gb : xt ~ Z2, and Gc : Z23
~ Z2. These functions

allow us to compute the sum of a subset of the entries in a, b, or c, by encoding
the subset into a characteristic vector, which is then used as an assignment to
the variables.

The coefficients of the terms in any polynomial over Z2 must be either 0 or
1. Applying this fact to the degree 3 polynomial f, we can assume that it is of
the form

f(x) = IX + LXi + L XjXj + L XiXjXb
jeSI (iJ)eS2 (iJ,k)eS3

where IX is a fixed element of Z2, SI is a set of indices, S2 is a set of pairs
of indices, and S3 is a set of triples of indices. For a fixed assignment a, this
expression can be simplified into the following.

f(a) - IX + L aj + L aiaj + L aiajak
ieSI (iJ)eS2 (i,j,k)eS3

- IX + Ga(XS1) + Gb(XS2) + GC(Xs3).

Here Xs denotes the characteristic vector of a set S, i.e., the ith component of Xs
is 1 if and only if the ith element of the universe belongs to S. Our definition of

183

ALGEBRAIC TECHNIQUES

the linear functions Ga, Gb, and Gc is such that the three sums can be determined
by evaluating each of these functions at a single point.

The desired proof n of the existence of a root of f consists of the values of
Ga, Gb, and Gc at all points in their respective domains. Thus, the verifier V can
determine the value of f(a) by examining three bits, one each to determine the
values of Ga(XsJ, Gb(XS2), and GC(XS3). This would solve the proof verification
problem with r(n) = 0(n3) random bits and and q(n) = 3 in the case of correct
proofs. But the whole point is to be able to deal with erroneous proofs. What
if the function f does not have a root but an adversary chooses some functions
Ga, Gb, and Gc that result in the verifier being deceived with high probability?
Of course, the adversary has to fix the proof by writing down Ga, Gb, and Gc
before the verifier chooses the random bits r used to obtain f from F, but this
may not prevent the adversary from cheating successfully. In fact, the adversary
may not even choose Ga, Gb, and Gc to be linear functions. For example, if they
are random functions, the probability of acceptance of an incorrect proof is 1/2.

7.8.3. The Verification

We now complete the argument by showing how the verifier can test a proof
that is purported to be correct and in the form described above. There are
two properties of the proof that the verifier would like to ensure. First, that
the functions Ga, Gb, and Gc are linear functions. Second, they should all
be determined by the same vector a. Given these two properties, the strategy
described above will work. The constraint is that V is allowed to expend only
polynomially many random bits and to examine only a constant number of bits
in the proof to achieve this goal. In the verification procedure described below,
there are several sub-verifications to be performed. Each of these will be shown
to succeed with a constant probability, where failure means that the verifier
fails to detect a particular type of error in the proof. We will not compute
these probabilities explicitly; it suffices to observe that they can all be made
smaller than any fixed constant by repeating the sub-verification 0(1) times.
Since the whole process makes only 0(1) probes into the proof, the number of
sub-verifications is also bounded and the total probability of error is no more
than the sum of the error probabilities at each stage. We can thus guarantee
that the overall probability of error is bounded away from 1/2.

~ Definition 7.7: Let f, g : I -+ 0 be two functions with identical finite domain
and finite range. Their distance 11(f, g) is defined as

l1(f,g) = Prlf(x) =1= g(x)],

where x is chosen uniformly at random from I.

In other words, the distance between these functions is the fraction of the
domain in which they take on different values.

184

7.8 PCP AND EFFICIENT PROOF VERIFICATION

~ Definition 7.8: For 0 ~ f> s 1, the functions f and g are said to be f>-close if
~(f,g) sf>.

A linear function f(x) : Z2 ~ Z2 is one that can be expressed as f(x) = ax+b,
for some choice of the coefficients a, b E Z2. For historical reasons, in the rest
of this section we will abuse terminology somewhat by defining linear functions
to be those functions that can be expressed as f(x) = ax. It can be shown that
a univariate function f(x) : Z2 ~ Z2 is linear if and only if for all a and b,
f(a) + f(b) = f(a + b). In the case of multivariate functions f(x) : ~ ~ Z2, we
say that f is linear if it is of the form l:?""i ajXj. Again, it can be shown that f
is linear if and only if for all a and b, f(a) + f(b) = f(a + b) (see Problem 7.22).
We define a nearly linear function as one that satisfies this property for random
choices of a and b with probability bounded away from zero.

The following lemma is intuitively obvious, but the proof is non-trivial. We
outline the proof in Problem 7.24.

Lemma 7.12: Fix any f> such that 0 < f> < 1/3. Suppose that G : Z2 ~ Z2 is
a function such that for x and y chosen independently and uniformly at random
from Z2.

- - - ~ Pr[G(x) + G(y) = G(x + y)] > 1 - 2'

Then. there exists a linear function G : Z2 ~ Z2 such that G and G are f>-close.

Essentially, this lemma says that if G satisfies the linearity condition 'on most
pairs of points, then modifying its value at a few points will make it a linear
function.

Suppose now that the proof n contains the values of three arbitrary (possibly
non-linear) functions Ga, Gb, and Gc• The verifier uses the lemma to ensure that
they are all nearly linear and can then assume that the f>-close linear functions
Ga, Gb, and Gc are actually presented in the proof. We illustrate this for the
case of Ga. Suppose the verifier V chooses x and y uniformly at random from
Z2' Then it probes the proof and verifies that Ga(x) + Ga(y) = Ga(x + y). If this
test fails, the entire proof can be rejected since it is clear that Ga is not a linear
function. When the function passes this test, however, it is not guaranteed that
it is indeed a linear function. But with high probability, the function Ga satisfies
the above lemma and is nearly linear. Repeating this test boosts the probability
of spotting a function that is not f>-close to a linear function.

At this point, V knows that with high probability, each of the three functions
in the proof is f>-close to some linear function. In fact, the verifier can now
evaluate these linear functions at arbitrary points via the following self-correction
mechanism. Suppose that the verifier needs to compute Ga(z) for an arbitrary
Z E Z2' while using the values of the function Ga. It chooses x E Z2 uniformly
at random, and evaluates Ga(z) = Ga(z - x) + Ga(x). Since Ga is f>-close to
Ga, evaluating it at random points gives us the value of Ga at those points

185

ALGEBRAIC TECHNIQUES

with probability 1 - E>. Even though the random points z - x and x are highly
correlated, the probability that they are both evaluated correctly is at least 1-2E>.
This can be repeated for independent choices of x to reduce the probability of
error below any desired constant. We may now assume that V can evaluate the
linear functions Ga, Gb, and Gc at 0(1) points each, with the error probability
being smaller than any desired constant. Thus, we may as well assume that the
proof contains the correct values of Ga, Gb, and Gc at all points.

Of course, the functions Ga, Gb, and Gc could be linear but not related in
the desired fashion. Suppose V could verify that these functions are determined
by some coefficients a, b, and c such that b = a 0 a and c = a 0 b, with a small
probability of error. Then it is possible to verify the existence of a root for
f as described earlier. Let us now concentrate on verifying the outer product
property.

The following lemma can be proved in a manner similar to Theorem 7.1.

Lemma 7.13: Let r, S E Z; be chosen independently and uniformly at random.
Suppose that b =1= a 0 a, then

Note that a 0 a and b are now being interpreted as n x n matrices, and we are
applying Freivalds' matrix identity verification technique to determine whether
(a 0 a)s = bs. To verify the equality of these two vectors, we merely apply the
technique once more by taking the inner product with the random vector r.

This test of the outer product construction can be performed with access
to the functions Ga and Gb by observing that aT s = Ga(S), rT a = Ga(r), and
rT bs = Gb(r 0 s); thus, V merely confirms that Ga(r)Ga(s) = Gb(r 0 s). This
requires only three probes into the proof. A similar test will verify that c = a 0 b.

Finally, we invite the reader to check that the total number of probes into the
proof is O(1). In making any probe, the only use of randomness is in the choice
of the point at which the function is being evaluated, and each of these uses
0(n3) random bits. We conclude by pointing out that the length of the proof is
enormous, being 28 (n

3
). As we remarked earlier, this proof verification process

can be improved such that the length of the proof reduces to a polynomial in n
and the number of random bits reduces to a logarithmic function of n, while still
preserving the property that only O(1) bits of the proof need to be examined.

Notes

The notion of program checking alluded to in Section 7.1 is due to Blum and Kannan [66].
The technique for verifying matrix and univariate polynomial multiplication is due to
Freivalds [157]. More efficient versions of this test (in terms of the number of random
bits used) have been devised by Naor and Naor [319], with further improvements by
Kimbrel and Sinha [254]. Blum, Chandra, and Wegman [64] have applied Freivalds'
technique to obtain an RP algorithm for deciding the equivalence of free Boolean graphs,

186

7.8 PCP AND EFFICIENT PROOF VERIFICATION

also known as ordered Boolean decision diagrams (see Problem 7.3). The generalization
to multivariate polynomial identities has been rediscovered many times. Although it
is usually attributed to the independent and simultaneous articles by Schwartz [367]
and Zippel [422], essentially the same result appears in an article by DeMilio and
Lipton [123] on the testing of algebraic programs.

The fast matrix multiplication algorithm, running in 0(n2.376) time, is due to Copper
smith and Winograd [113]. The book by Aho, Hopcroft, and Ullman [5] is a good source
for deterministic algorithms for problems involving polynomials and matrices, and most
of the basic results assumed in this chapter can be found therein. Zippel's book [423]
provides comprehensive coverage of randomized and deterministic algorithms for com
putations with polynomials. For general information on prime numbers, in particular
Bertrand's Postulate and the Prime Number Theorem, the reader may refer to the books
on number theory mentioned in the Notes section of Chapter 14.

Tutte [398] first pointed out the close connection between matchings in graphs and
matrix determinants, as described in Problem 7.8. The simpler relation between bipartite
matchings and matrix determinants was given by Edmonds [134], who also showed that
the size of the maximum matching equals the rank of the matrix (see Problem 7.7). The
application of the randomized polynomial identity verifier to the problem of matchings
in graphs was first pointed out by Lovasz [280], who also established a tight relation
between the matrix rank and the size of the maximum matching (see Problem 7.9 for
a simpler proof). These ideas were applied to the construction of simple algorithm for
maximum matchings by Rabin and Vazirani [348, 349]. Although their randomized
algorithms for matchings are simple and elegant, they are slower than the deterministic
O(mJii) time algorithms for bipartite matchings due to Hopcroft and Karp [203], and
for non-bipartite matchings due to Micali and Vazirani [308,406]; the bound for bipartite
matchings has been marginally improved to 0(n2.5/logn) by Feder and Motwani [140].
As we shall see in Chapter 12, this algebraic view of matchings and the algorithmic ideas
of Rabin and Vazirani have had considerable influence on the development of efficient
parallel algorithms for matchings.

The discussion on randomized pattern matching algorithms is based on the work of
Karp and Rabin [249]. The deterministic linear time algorithms for pattern matching
mentioned above are due to Knuth, Morris, and Pratt [262] and to Boyer and Moore [82].

The survey articles by Babai [39, 40], Goldreich [174, 175], and Johnson [217, 218]
give excellent and comprehensive accounts of results in the area of interactive proof
systems and proof verification. The protocol for graph non-isomorphism is due to
Goldreich, Micali, and Wigderson [176]. The concept of an interactive proof system
was introduced by Goldwasser, Micali, and Rackoff [179]. Their motivation was derived
from cryptography, and with this application in mind they defined a special type of
interactive proof system called a zero-knowledge interactive proof system in which the
prover would like to prevent the verifier from gaining any useful information while
participating in the protocol. Around the same time, Babai [38] introduced the notion
of Arthur-Merlin games which are essentially the same as interactive proof systems, the
key difference being that the prover (Merlin) has access to the random bits of the verifier
(Arthur). Babai's definition was motivated by the desire to classify the complexity of
certain group-theoretic problems. A related concept is that of "games against nature"
introduced by Papadimitriou [324]. The evidence that graph isomorphism is unlikely
to be NP-complete is obtained by combining the results of Boppana, Hastad, and

187

ALGEBRAIC TECHNIQUES

Zachos [72] with those of Goldreich, Micali, and Wigderson [176] and Schoning [365];
the details are beyond the scope of this book; we refer the reader to Johnson [217] for
an overview of this argument.

The result that #3SAT is in IP is originally due to Lund, Fortnow, Karloff, and
Nisan [288]. The proof presented here also includes ideas from Babai and Fortnow [41]
and Shamir [372]. In showing that IP = PSPACE, the easy direction that IP S;

PSPACE follows from the work of Papadimitriou [324], while the more difficult proof
of PSPACE s; IP was devised by Shamir [372] based on the techniques used by Lund,
Fortnow, Karloff, and Nisan [288] (see Problems 7.16-7.17). The techniques used in
these results were inspired by the ideas used in program checking by Blum, Luby, and
Rubinfeld [68] and Lipton [277], as well as the idea of representing Boolean formulas
as polynomials in the work of Beaver and Feigenbaum [47]. The generalization of IP
to MIP, via the introduction of multiple provers, is due to Ben-Or, Goldwasser, Kilian,
and Wigderson [53]. Fortnow, Rompel, and Sipser [153] showed that MIP s; NEXP,
while the more difficult direction NEXP S; MIP was established by Babai, Fortnow, and
Lund [43].

The complexity class PCP was defined by Arora, and Safra [33] based on a notion
implicit in the work of Feige, Goldwasser, Lovasz, Safra, and Szegedy [141]. Efficiently
and probabilistically checkable proofs are sometimes also referred to as transparent
proofs - a terminology introduced earlier by Babai, Fortnow, Levin, and Szegedy [42].
These concepts are variants of the probabilistic oracle machines introduced by Fortnow,
Rompel, ,and Sipser [153] as an alternate view of multiprover systems. Refer to the
survey articles cited above for a more thorough discussion of proof systems and the
evolution of the current definitions.

Theorem 7.10 is due to Arora, Lund, Motwani, Sudan, and Szegedy [32]; they also
established that NP S; PCP [log n, 1], combining ideas from various articles mentioned
above. The theses by Sudan [388] and Arora [31] contains more complete expositions of
the latter result. An important motivation for this work on the PCP model was to derive
the hardness of approximation results for problems such as cliques in graphs [141] and
MAX-SAT [32] (see the Notes section of Chapter 5). Lemma 7.12 is originally due to
Blum, Luby, and Rubinfeld [68]. The version we state here can be inferred from the
results of Rubinfeld [360] and Gemmell, Lipton, Rubinfeld, Sudan, and Wigderson [165].

Problems

7.1 In this problem we will see that Theorem 7.1 is actually just a special case of
Theorem 7.2. In the setting of Theorem 7.1. construct a multivariate polynomial
Q such that Q == 0 if and only if AB = C. and then apply Theorem 7.2 to derive
result in Theorem 7.1.

7.2 Two rooted trees T1 and T2 are said to be isomorphic if there exists a one
to-one onto mapping f from the vertices of T1 to those of T2 satisfying the
following condition: for each internal vertex v of T1 with the children V1 • ...•
Vk. the vertex f(v) has as children exactly the vertices f(V1) • f(Vk)' Observe
that no ordering is assumed on the children of any internal vertex. Devise an
efficient randomized algorithm for testing the isomorphism of rooted trees and

188

PROBLEMS

analyze its performance. (Hint: Associate a polynomial P" with each vertex
v in a tree T. The polynomials are defined recursively. the base case being
that the leaf vertices all have P = Xo. An internal vertex v of height h with the
children Vl • .•.• Vk has its polynomial defined to be

(Xh - P",)(Xh - P"z)··· (Xh - P"k)'

Note that there is exactly one indeterminate for each level in the tree.)

Remark: There is a linear time deterministic algorithm for this problem based
on a similar approach. R~fer to Aho. Hopcroft and Ullman [5].

7.3 (Due to M. Blum. A.K. Chandra. and M.N. Wegman [64].) A labeled directed
acyclic graph G(V, E) may be used to represent a Boolean fUnction of n
variables Xl,"" Xn • as follows. One vertex of V is the start vertex. and another
the finish vertex. Every vertex has out-degree zero or two; if two edges
leave a vertex. one must be labeled with a variable and the other by the
complement of this variable. Such a graph is said to be free if there is at most
one occurrence of every variable - complemented or not - on any (directed)
path of G. The Boolean fUnction represented by such a graph is the sum of
all product terms. where each product term is a product of all the variables
on a path from the start vertex to the finish vertex.

Devise a randomized algorithm that. given two free graphs. decides whether
they represent the same Boolean function. If the functions are different. the
algorithm should output NO; otherwise. it should output YES with probability
at least 1/2.

7.4 (Due to R.J. Lipton [277]; see also M. Blum and S. Kannan [66].) Consider the
problem of deciding whether two integer multisets Sl and S2 are identical in
the sense that each integer occurs the same number of times in both sets.
This problem can be solved by sorting the two sets in O(n log n) time. where
n is the cardinality of the multisets. Suggest a way of representing this as a
problem involving a verification of a polynomial identity. and thereby obtain
an efficient randomized algorithm. Discuss the relative merits of the two
algorithms. keeping in mind issues such as the model of computation and the
size of the integers being operated upon. (See also Problem 6.20.)

7.5 (Due to J. Naor.) Two n x n matrices .A and B over a field Z2 are said to be
similar if there exists a non-singular matrix T such that T.A T-1 = B. Devise a
randomized algorithm for testing the similarity of the matrices .A and B. (Hint:
View the entries in T as a collection of variables. and from the definition of
similarity. obtain a homogeneous set of linear equations that these variables
must satisfy. Any solution T must be a linear combination of the basic
solutions to this family of equations. Apply the randomized techniques from
this chapter to determining whether there exists a linear combination of the
basic solutions that yields a non-singular matrix T.)

7.6 Let Q(Xl' X2,' .. , xn) be a multivariate polynomial over a field Z2 with the degree
sequence (d1, d2, .. • , dn). A degree sequence is defined as follows: let d1 be
the maximum exponent of Xl in Q. and Ql(X2," .,xn) be the coefficient of x1'

in Q; then. let d2 be the maximum exponent of X2 in Ql. and Q2(X:v"" xn) be
the coefficient of x:z in Ql; and. so on.

189

ALGEBRAIC TECHNIQUES

Let Slo ~ •...• Sn ~ Z2 be arbitrary subsets. For 'iESI chosen independently
and uniformly at random. show that

7.7 (Due to J. Edmonds [134].) Let G(U, V, E) be a bipartite graph. and let A be
the corresponding matrix of indeterminates as defined in Section 7.3. Show
that the size of a maximum matching in G is exactly equal to the rank of the
matrix A.

7.8 (Tutte's Theorem [398]) In this problem we generalize Theorem 7.3 to the case
of an arbitrary (possibly non-bipartite) graph G(V,E) where V = {V1,""Vn}, A
skew-symmetric matrix A is defined to be a matrix in which for all i and j.

Alj = -Aii . Let A be the n x n skew-symmetric matrix obtai ned from G (V, E)
as follows. A distinct indeterminate xii is associated with the edge (Vi, Vi)'

where i < j. and the corresponding matrix entries are given by Ali = xii and
Aii = -xii; more succinctly.

(VI, Vi) E E and i < j
(VI, Vj) E E and i > j
otherwise

This matrix is called the Tutte matrix of the graph G. Define the multivariate
po!ynomial Q(Xll, X12,···, xnn) as being equal to det(A). Show that G has a
perfect matching if and only if Q ¢ O.

7.9 (Due to M.O. Rabin and V.V. Vazirani [348. 349].) Consider the Tutte matrix of
a (non-bipartite) graph G(V,E) defined in Problem 7.6. Show that the rank of
the Tutte matrix of G is twice the size of a maximum matching in G.

Hint: Let A be an n x n skew-symmetric matrix of rank,. For any two sets S.
T c {1, . .. ,n}. denote by AST the sub-matrix of A obtained by including only
the rows with indices in S and columns with indices in T. Then. for any two
sets S. T c {1, ... , n} of size r.

det(Ass) x det(A Tr) = det(Asr) x det(A TS).

7.10 Given a randomized algorithm for testing the existence of a perfect matching
in a graph G. describe how you would actually construct such a matching.
Assuming that you use the randomized testing algorithm from Problem 7.6.
compare the running time of your approach with that of the best known
deterministic algorithm perfect matching mentioned in the Notes section.

7.11 Given a randomized algorithm for testing the existence of a perfect matching
in a graph. describe how we can use this to construct a maximum matching
in a graph G.

7.12 (Due to R.M. Karp and M.O. Rabin [249].) In this problem we will use a
different fingerprinting technique to solve the pattern matching problem. The
idea is to map any bit string s into a 2 x 2 matrix M(s). as follows .

• For the empty string f. M(f) = [~ ~].

190

PROBLEMS

• M(O) = [~ ~ l
[1 11]' • M(1) = 0

• For non-empty strings x and y, M(xy) = M(x) x M(y).

Show that this fingerprint fUnction has the following properties.

1. M(x) is well-defined for all x E {O, 1}".

2. M(x) = M(y) ~ x = y.

3. For x E {O, 1}n, the entries in M(x) are bounded by Fibonacci number Fn
(see Appendix B).

By considering the matrices M(x) modulo a suitable prime P. show how you
would perform efficient randomized pattern matching. Explain how you would
implement this as a "real-time" algorithm.

7.13 (Due to R.M. Karp and M.O. Rabin [249].) Consider the two-dimensional
version of the pattern matching problem. The text is an n x n matrix X, and
the pattern is an m x m matrix Y. A pattern match occurs if Y appears as a
(contiguous) sub-matrix of X. To apply the randomized algorithm described
above, we convert the matrix Y into an m2-bit vector using the row-major
format. The possible occurrences of Y in X are the m2-bit vectors XU)
obtained by taking all (n - m + 1)2 sub-matrices of X in a row-major form. It is
clear that the earlier algorithm can now be applied to this scenario. Analyze
the error probability in this case, and explain how the fingerprints of each
XU) can be computed at a small incremental cost.

7.14 Prove the following relations directly from the definition of IP, Le .. without
invoking any results regarding IP stated in this chapter.

(a) Show that NP ~ IP.

(b) Show that if the definition of IP is modified to require that the probability
of error be zero, then the resulting complexity class would be exactly the
class NP.

(c) Show that co-RP ~ IP.

7.15 Prove Lemma 7.9.

7.16 (Due to C.H. Papadimitriou [324].) Let PSPACE be the class of all languages
whose membership can be decided using space polynomial in the input size,
with no explicit constraint on the running time. Show that IP ~ PSPACE.

7.17 (Due to A. Shamir [372].) A quantified Boolean formula (OBF) is a Boolean
formula CI> of the form

(Q1Xll(Q2X2)'" (Qn Xn)F(X1, X2··.·, xn),

where each Xi is a Boolean variable, each Qi is either the uni''1ersal ('9') or the
existential (3) quantifier, and F is quantifier-free Boolean formula. It is known
that OBF is PSPACE-complete. By devising an interactive proof system for
OBF, show that PSPACE ~ IP.

191

ALGEBRAIC TECHNIQUES

Hint: The following is a brief sketch of a reformulation of Shamir's proof
as presented by A. Shen. The first step is to arithmetize the OBF formula
CP. For any Boolean expression G, possibly a single Boolean variable or a
quantified formula, construct an integer polynomial G using the following rules
recursively: replace TRUE by 1 and FALSE by 0; replace Boolean variables Xi

by arithmetic variables Xi; replace P /\ Q by P x a; replace the negation of
an expression P by 1 - P; replace P v Q by P /\ Q and apply the previous two
rules; replace ('v'Xi)P(X/) by P(O) x P(1); and, replace (3X/)P(Xi) by P(O) + P(1)
(P(O) x P(1)). Apply the ideas used in devising an interactive proof system
for the arithmetized versio!! of #3SAT to the problem of verifying the value of
the arithmetized version, cP, of the OBF formula cp. One serious problem in
the case of OBF is that the intermediate polynomials need not be of a small
degree, primarily to the arithmetization of the the quantifiers. To handle this
problem, assume that the arithmetization of the sequence of quantifiers Q1,

... , Qn is interleaved with the application of the following reduce operation:
for each (integer) variable XI, replace any non-zero power xt by X;. Argue
that in the case where we assign only the values 0 or 1 to each Xi, the reduce
operation does not change the value of the resulting polynomial.

Remark: Combining this result with that of Problem 7.17, we conclude that
IP = PSPACE. It is known that PSPACE is closed under complementation,
and so it follows that IP = co-IP.

7.18 (Due to L. Fortnow, J. Rompel, and M. Sipser [153].) Define the complexity
class MIP as the generalization of IP where the verifier has access to two
provers and the provers are not allowed to communicate with each other once
the verifier starts executing. Show that MIP = PCP.

7.19 Prove the following relations directly from the definition of PCP, i.e., without
invoking any results regarding PCP stated in this chapter.

(a) Show that P = PCP[O, 0].

(b) Show that NP = PCP[O,po/y(n)].

(c) Show that co-RP == PCP[po/y(n), 0].

7.20 (Due to S. Arora and S. Safra [33].) Show that PCP[log n, 1] ~ NP.

7.21 Prove Lemma 7.11.

7.22 Consider a multivariate fUnction f(or) : Z~ -+ Z2' Show that f is linear if and
only if for all II and b, f(lI) + f(b) = f(1I + b).

7.23 This problem is concerned with some properties of the distance measure
defined in Definition 7.7.

(a) Show that the distance measure fi satisfies the triangle inequality: for all
fUnctions f, g, h : I -+ 0,

fi(f, h) ~ fi(f, g) + fi(g, h).

(b) For a class of functions F = {f : I -+ O}, define fim1n(F) as the minimum
distance between any two fUnctions in F. Show that for any function g (not
necessarily in F), there is at most one function from F at distance fimin (F)/2
or less.

192

PROBLEMS

(c) Suppose that F is the set of all linear functions from Z~ to Z2' What is
I1min (F)?

7.24 (Due to M. Blum, M. Luby, and R. Rubinfeld [68].) Prove Lemma 7.12 using
the following sketch of a proof due to D. Coppersmith. Define the fUnction G
such that for each x,

G (x) = majOrity),[G (x + y) - G (Y)],

where the "majority" denotes the value occurring most often over all choices
of y, breaking ties arbitrarily.

(a) Show that for all x, and for y chosen uniformly at random,

Pr[G(x) = G(x + y) - G(y)] ~ 1 - 6.

(b) Show that the functions G and G are 6-close.

(c) Show that G is a linear function.

(d) Show that G is uniquely defined.

7.25 Prove Lemma 7.13.

7.26 Appropriately generalizing Lemma 7.13, describe how the verifier can check
that C = II 0 b.

193

PART TWO

Applications

CHAPT ER 8

Data Structures

The fundamental data-structuring problem is that of maintaining sets of items
drawn from an ordered universe so as to efficiently support search queries,
update operations, and operations involving entire sets. This chapter begins by
identifying some drawbacks in traditional approaches to data structuring using
either balanced search trees or self-adjusting search trees. We then describe
simple and elegant solutions to these problems using randomization.

8.1. The Fundamental Data-structuring Problem

Consider the fundamental data-structuring problem: we are required to maintain
a collection {SI, S2, ... } of sets of items so as to efficiently support certain types
of queries and operations. Each item i is an arbitrary record indexed by a key
k(i) drawn from a totally ordered universe U. We assume that each item belongs
to a unique set and that the keys are all distinct. The operations to be supported
are:

MAKESET(S): create a new (empty) set S.
INSERT(i, S): insert item i into the set S.
OELETE(k,S): delete the item indexed by the key value k from the set S.
FINO(k, S): return the item indexed by the key value k in the set S.
JOIN(S., i, S2): replace the sets SI and S2 by the new set S = SI U {i} U S2, where

• for all items j E SI, kU) < k(i),

• for all items j E S2, kU) > k(i).

PASTE(SI,S2): replace the sets SI and S2 by the new set S = SI US2, where for all
items i E SI and j E S2, k(i) < k(j).

SPLlT(k, S): replace the set S by the new sets SI and S2 where

• SI = {j E S I k(j) < k},

• S2 = {j E S I kU) > k}.

197

DATA STRUCTURES

Since it is clear that the structure of the record constituting an item i is irrelevant,
we will not distinguish between an item and its key. For example, we will refer
to the INSERT operation as INSERT(k, S) and omit all references to the actual item
indexed by the key value k. It should be clear that a solution that works when
the items consist only of their key values will generalize to more complex record
structures. We will refer to the FIND operation as a search, and the INSERT and
DELETE operations as an update.

A standard solution to this problem is to represent the set S as a binary
search tree. Recall that in a binary search tree the keys are stored at the nodes
of a binary tree, and the assignment of keys to nodes must satisfy the following
search tree property: at a node containing a key value k, the left sub-tree contains
only key values smaller than k and the right sub-tree contains only key values
larger than k. The keys associated with the nodes in a binary tree are said to be
in a symmetric order if the search tree property is satisfied. It will be convenient
to assume that any node v in a binary search tree contains three pointers in
addition to the key value: L(v) points to the left child of v, R(v) points to the
right child of v, and P(v) points to the parent of v.

We will assume that the binary search trees we deal with are endogenous, in
that all key values are stored at internal nodes, and all leaf nodes are empty.
This will ensure that the trees are full, which means that every non-leaf (internal)
node has ~xactly two children. The pointers L(v) and R(v) are NIL pointers if and
only if v is a leaf node, and the pointer P (v) is a NIL pointer if and only if v is the
root. In pictorial representations, we will use circles for internal nodes, rectangles
for leaf nodes (although usually these are not explicitly specified), and triangles
for sub-trees whose internal structure is not relevant (see Figure 8.1). While it is
not essential to introduce the dummy leaf nodes or to ensure endogenousness,
this does help to simplify the description of the implementation of the various
operations.

Figure 8.1: A full, endogenous binary search tree for the set of keys {7,9, 13, I5}.

198

8.1 THE FUNDAMENTAL DATA-STRUCTURING PROBLEM

Exercise 8.1: In the implementation of a binary search tree described above, we are
using three pOinters per node. Show that it is possible to reduce this to two pOinters
per node such that the children and the parent of any node can be accessed by
following at most two pOinters.

Let us now briefly review the standard implementation of the operations
using the binary search tree representation. The operation MAKESET(S) is trivial
- simply initialize an empty tree for the set S. To perform a FINO(k, S) is
also easy and requires just the standard binary search process. To implement
INSERT(k, S), perform FINO(k, S) and, if the value k is not found, insert k into
the (empty) leaf node where the search terminates with failure. The operation
JOIN(S}, k, S2) can be performed by creating a new node containing the key k,
and making it the root of a new tree with the trees representing SI and S2 as its
left and right sub-trees, respectively. It is easy to handle OELETE(k, S) if the node
v containing k (which can be located by a FINO(k, S» has a leaf as one of its
two children. For example, if the right child of v is a leaf, then replace v by L(v)
as the child of P(v). If neither of the children is a leaf, then let k' be the key
value that is the predecessor of k in the set S; clearly, k' must be at the node
arrived at by starting at L(v) and doing FINO(00, L(v». Now, we can delete the
node containing k' since its right child is a leaf, and replace the key value k by
k' in the node v, preserving the search tree property. The operation PASTE(S}, S2)
can be implemented by first deleting the largest key value, say k, from SI and
then applying JOIN(S},k,S2). Notice that k can be found by doing a FINO(oo,St}.
Finally, doing a SPLIT(k, S) is easy if k is at the root of S; simply do the reverse
of the steps employed in JOIN(S},k,S2). When k is not at the root, we can make
use of rotations to move it to the root as described in Exercise 8.2.

Each operation can be performed in time proportional to the height(s) of
the tree(s), although some operations like JOIN can be performed in constant
time. Ideally, the height of a tree would be logarithmic in the size n of the set
it represents. Unfortunately, it is easy to devise a sequence of INSERT operations
that creates a tree of height linear in n. Several strategies have been devised
to handle this problem, usually involving balancing operations to ensure that
the tree has height O(log n). The most commonly used strategy is to perform
rotations during the update operations so as to ensure that all leaves remain
within a distance O(log n) of the root. In Figure 8.2, we illustrate the two basic
types of rotations that are needed.

Each type of rotation moves a node together with one of its sub-trees closer
to the root (and some others away from the root), while preserving the search
tree property. We will not discuss the specific details of implementing balanced
trees using rotations.

Exercise 8.2: Devise a strategy for moving any specified node of a binary search
tree to the root using rotations, while preserving the search tree property.

199

DATA STRUCTURES

•

•

Figure 8.2: The basic rotations.

A balanced search tree guarantees a worst-case time bound of O(log n) for
each of the operations described above. There is an inherent logarithmic lower
bound on the number of comparisons required for searching in an ordered
list; this lower bound generalizes to randomized searching. Some of the other
operations (for example, DELETE) are at least as hard as the FIND operations,
and so the lower bound applies to them also. This means that a balanced binary
search tree is optimal, at least with respect to the comparison-based model of
computation (see Section 8.4 for a further discussion on this issue).

A different strategy, called splaying, is used in "self-adjusting" search trees
to guarantee an amortized time bound of O(log n); the splay operation moves
a specified node to the root via a sequence of rotations. Amortization is the
partitioning of the total cost of a sequence of operations among the individual
operations in that sequence; thus, an amortized time bound can be viewed as
the average cost of the operations in a sequence.

The idea behind self-adjusting trees is to use a particular implementation of
the splay operation to move to the root a node accessed by a FIND operation.
If a node is accessed often enough, it will remain close to the root and will not
contribute much to the total running time; an infrequently accessed node cannot
contribute much to the total running time in any case. While these self-adjusting
trees guarantee only amortized logarithmic time per operation, they have the
advantage of being relatively simple to implement and do not require explicit
balance information to be stored at nodes. Furthermore, splay trees can be
shown to be optimal with respect to arbitrary access frequencies for the items
being stored; in fact, they achieve this optimality without having any explicit
information about the access frequencies.

Although self-adjusting trees provide optimal (amortized) solutions to the
fundamental data structuring problem, they suffer from some drawbacks. First
of all, they restructure the entire tree not only during updates but also while
performing simple search operations. This extensive restructuring can cause a
significant slowdown in practice in caching and paging environments. Moreover,·
during any given operation splay trees may perform a logarithmic number of
rotations. This is particularly inefficient in implementing higher dimensional

200

8.1 RANDOM TREAPS

search trees common in computational geometry. The reason is that there are
secondary data structures associated with each node of these higher dimensional
trees, and the secondary data structure at any node depends on the set of keys
stored in the sub-tree rooted at that node. Since the entire secondary data
structure has to be recomputed during each rotation, the cost of performing a
single rotation could increase from a constant to some super-linear function of
the sub-tree size. Finally, by its very nature, an amortized time bound leads
to the unsatisfying situation where we do not have the guarantee that every
operation will run quickly; instead, we obtain bounds only on the total cost of
the operations.

We describe an elegant and efficient randomized alternative to the balanced
tree and self-adjusting tree, called treaps. Treaps achieve essentially the same time
bounds in the expected sense, do not require any explicit balance information,
and the expected number of rotations performed is small for each operation.
They have the further advantage of being extremely simple to implement. We
also describe an alternative (but closely related) rand<!>mized data structure called
skip lists with similar benefits. Next, we consider the possibility of circumventing
the logarithmic lower bound on searching in some interesting special cases. We
show that using hash tables, we can guarantee that the expected time required for
a search can be made 0(1). In the process, we introduce the notion of universal
hash functions, which have found numerous applications outside the domain
of data structures. Finally, we focus on the version of the data structuring
problem without any update operations and provide a hashing scheme that has
worst-case search time 0(1).

8.2. Random Treaps

A (full, endogenous) binary tree whose nodes have key values associated with
them is a binary search tree if the key values are in the symmetric order. If
the key values decrease monotonically along any root-leaf path, we call the
structure a heap and say that the keys are stored in a heap order.

Consider a binary tree where each node v contains a pair of values: a key
k(v) as well as a priority p(v). We call this structure a treap if it is a binary search
tree with respect to the key values and, simultaneously, a heap with respect to
the priorities. More precisely, consider a set of items S = {(k1,pt}, ... ,(kn,Pn)}
such that the key value of item i is ki, and its priority is Pi. Assume that the
key values and the priorities are drawn from (possibly different) totally ordered
universes and that all key values and priorities are distinct. A treap for S will
ensure that the k;'s are stored in symmetric order, while the p;'s are stored in
heap order. The reader may verify that for the set

{(2, 13), (4, 26), (6,19), (7, 30), (9,14), (11, 27), (12, 22)}

the tree shown in Figure 8.3 is a valid treap.

201

DATA STRUCTURES

Figure 8.3: A treap.

It is not immediately obvious that any such set has a valid treap but, as
we show in the following theorem, there exists a unique treap for any set of
key-priority pairs.

Theorem 8.1: Let S = {(kI,pt}, ... ,(kn,Pn)} be any set of key-priority pairs such
that the keys and the priorities are distinct. Then, there exists a unique treap T(S)
for it.

PROOF: Qur proof is constructive, and the construction is recursive. It is obvious
that the theorem is true for n = 0 and for n = 1. Suppose now that n ~ 2, and
assume that (kI,pt) has the highest priority in S. Then, a treap for S can be
constructed by putting item 1 at the root of T(S). A treap for the items in S of
key value smaller than kl can be constructed recursively, and this is stored as
the left sub-tree of item 1. Similarly, a treap for the items of key value larger
than kl is constructed recursively and becomes the right sub-tree of item 1. It is
also fairly easy to see that any treap for S must have this decomposition at the
~t 0

The shape of the tree underlying the treap is detern:1lined by the relative
priorities of the key values, and any particular shape can be obtained by
choosing the priorities suitably. To solve the fundamental data structuring
problem, we must somehow pick a good set of priorities for the items being
stored and then implement the various operations as described below.

We implement a MAKESET(S) or a FINO(k, S) operation exactly as before. The
update operation INSERT(k, S) is implemented by starting as before and doing a
FINO(k, S) and inserting k at the empty leaf node where the search terminates
with failure. While this maintains the binary search tree property, it will violate
the heap order property if the priority of the key k is higher than that of its
parent However, a rotation of k will maintain the heap property at all nodes,
except that the order of the node containing k and its parent is now reversed.
Thus, we can restore the heap order by using rotations to move k towards the
root until its priority value is smaller than that of its parent A OELETE(k, S)
operation is exactly the reverse of an insertion: rotate the node containing k

202

8.1 RANDOM TREAPS

downward until both its children are leaves, and then simply discard the node.
The choice of the rotation (left or right) at each stage depends on the relative
order of the priorities of the children of the node being deleted. It is easy to
verify that the DELETE operation can be implemented such that it preserves the
treap property.

We implement a JOIN(St, k, S2) operation as before, and the resulting structure
is a treap provided the priority of k is higher than that of any item in SI or S2. If
the new root (containing k) violates the heap order, we simply rotate that node
downward until each of the two children of the node has a smaller priority or
is a leaf. A PASTE(St, S2) operation can be implemented exactly as in the case of
binary search trees. Finally, a SPLlT(k, S) operation can be implemented easily
by first deleting k from S, and then inserting it into S with a priority of 00.

Clearly, the node containing k is the root of the new tree and its sub-trees SI

and S2 constitute the desired partition of S. These trees can be easily extracted.

Exercise 8.3: The JOIN, PASTE, and SPLIT operations are implemented in terms of the
INSERT and DELETE operations. Show how the INSERT and DELETE operations can be
implemented in terms of JOIN, PASTE, and SPLIT, and how the latter can be implemented
directly.

Clearly, we need only analyze the performance of the FIND, INSERT, and
DELETE operations. It is easy to verify that these take time proportional to the
depth of the tree representing the treap. However, a slightly stronger statement
can be made about the number of rotations required during a DELETE, and by
symmetry, during an INSERT operation. Define the left spine of a tree as the path
obtained by starting at the root and repeatedly moving to the left child until a
leaf is reached; the right spine is defined similarly.

Exercise 8.4: Show that the number of rotations during a DELETE operation on a node
v is equal to the sum of the lengths of the left spine of the right sub-tree and the
right spine of the left sub-tree of v.

Before we analyze the running times of the various operations, we must
specify how the priorities are chosen for any given key. The idea is to create a
random treap by choosing the priorities Pi independently from some probability
distribution V. The only restriction on the choice of 'D is that it should ensure
that with probability 1 the priorities are all distinct; in general, it suffices to use
any continuous distribution such as the uniform distribution U[O, 1] on the real
interval [0,1]. The priority of an item is chosen at random from V when the
item is first inserted into a set, and the priority for this item remains fixed until
it is deleted; moreover, if the item is re-inserted after a deletion, a completely
new random priority is assigned to it. The following technicality arises: in our
model of computation, we cannot sample a continuous distribution. However,

203

DATA STRUCTURES

for simplicity of presentation, we temporarily assume in this section that such
sampling from a continuous distribution is permissible. Later, in Problem 8.12,
we show that treaps can in fact be implemented in our model of computation
using only a finite number of random bits.

The ordering of the priorities associated with the various items is completely
uncorrelated with the ordering of their key values, ensuring that the tree un
derlying the treap will remain balanced and have expected depth O(log n). The
choice of the priorities is an implementation detail that is kept hidden, so that
an adversary cannot request a sequence of operations that is likely to cause the
tree to be unbalanced. The formal verification of this intuition uses the analysis
of a set of probabilistic games called Mulmuley games, which are described in
the next section.

8.2.1. Mulmuley Games

Mulmuley games are useful abstractions of processes underlying the behavior of
certain geometric algorithms. We use this abstraction here only for pedagogical
purposes; a more direct analysis is possible.

The cast of characters in these games is:

• a set P = {Pt, ... ,Pp} of players; .
• a set S = {St, .. . ,S5} of stoppers;

• a set T = {Th ... , Tt } of triggers;

• a set B = {Bt, ... ,Bb} of bystanders.

The set PuS is drawn from a totally ordered universe and all players are
smaller than all stoppers: for all i and j, Pi < Sj. We assume that the sets are
pairwise disjoint. Depending upon the set of active characters, we formulate
four different games, with each game being more general than the previous one.
Before we describe and analyze the games, it will be useful to list an important
property of the Harmonic numbers.

ExerciSe 8.5: Let Hk = 2::_11/; denote the kth Harmonic number. Show that
2::-1 Hk = (n + 1)Hn+1 - (n + 1).

Recall that Hk = In k + O(1) (Proposition B.4).

Game A. This game starts with the initial set of characters X = PuB. The
game proceeds by repeatedly sampling from X without replacement, until the
set X becomes empty. Each sample is a character chosen uniformly at random
from the remaining pool in X. Let the random variable V denote the number of
samples in which a player Pi is chosen such that Pi is larger than all previously
chosen players. We define the value of the game Ap to be E[V].

204

8.1 RANDOM TREAPS

Lemma 8.2: For all p ~ O. Ap = Hp.

PROOF: Assume that the set of players is ordered as PI > P2 > ... > Pp• The
key observation is that the bystanders are irrelevant to the game: the value of
the game is not influenced by the number of bystanders. Thus, we can assume
that the initial number of bystanders b = O. Conditional upon the first random
sample being a particular player Pi, the expected value of the game is 1 + Ai-I.

This is because the players Pi+h .. . , Pp cannot contribute to the game any more
and are effectively reduced to being bystanders. Since i is uniformly distributed
over the set {I, ... , p}, we obtain the following recurrence.

p p

A - ~ 1 + Ai-I -1 ~Ai_1
p - ~ - + L." -.

i=1 P i ... 1 P
(8.1)

Upon rearrangement, using the fact that Ao = 0, we obtain that 'Er:::11 Ai =
pAp-po Now, by the property of the Harmonic numbers described in Exercise 8.5,
it is easy to see that the Harmonic numbers are the solution to (8.1). 0

Game C. In this game, the initial pool is given by X = PuB u S. The process
is exactly the same as that in Game A, treating the stoppers as players as well.
The only difference is that the game stops when a stopper is chosen for the first
time. Note that since all players are smaller than all stoppers, we will always get
a contribution of 1 to the game value from the first stopper. The value of the
game is C; = E[V + 1] = 1 + E[V], where V is defined exactly as in Game A.

Lemma 8.3: For all p, s ~ O. C; = 1 + Hs+p - Hs.

PROOF: As before, we assume that the set of players is ordered as PI > P2 >
... > Pp and that the number of bystanders is o. Now, if the first sample is a
stopper then the game value is 1, and if the first sample is a player Pi then the
game value is 1 + CI_ I . Noting that the probability of the first event is s/(s + p)
and that of the second event is l/(s + p), we obtain the following recurrence:

C; = (_s_ x 1) + (_1_ x t(1 + C;_I») .
s + P s + P i=1

Upon rearrangement, using the fact that Co = 1, we obtain that

which is equivalent to

1 ""p-I CS
Cs = s + P + + L...i=1 i

p s+p s+p

p-I

L C; = (s + p)C; - (s + P + 1).
i=1

Once again, using Exercise 8.5 it can be verified that the solution to the recurrence
is given by C; = 1 + Hs+p - Hs. 0

205

DATA STRUCTURES

Games D and E. Games D and E are similar to Games A and C, the only
difference being that their initial pools consist of X = PuB u T and X =
PuB u S u T, respectively. The role of the triggers is that the counting process
begins only after the first trigger has been chosen. More precisely, a player or
a stopper contributes to V only if it is sampled after a trigger and before any
stopper, and if it is larger than all previously chosen players. Letting D~ and
E;,t denote the expected values of the two games, the following lemmas can be
proved as before.

Lemma 8.4: For all p, t ~ 0, D~ = Hp + Ht - Hp+t.

Lemma 8.5: For all p,s,t > 0, E;,t = _t_ + (Hs+p - Hs) - (Hs+p+t - Hs+t).
s+t

The proofs of these lemmas are left as problems.

8.2.2. Analysis of Treaps

In order to apply the games described above to the analysis of the performance
of random treaps, it will be useful to identify an important property of random
treaps - the memory less property. Consider a random treap obtained by inserting
the elements of a set S into an initially empty treap. Since the random priorities
for the elements of S are chosen independently, we can assume that the priorities
are chosen before the insertion process is initiated. Once the priorities have been
fixed, Theorem 8.1 implies that the treap T is uniquely determined. This implies
that the. order in which the elements are inserted does not affect the structure
of the tree. Thus, without loss of generality, we can assume that the elements
of set S are inserted into T in the order of decreasing priority. An advantage
of this view is that it implies that all insertions take place at the leaves and no
rotations are required to ensure the heap order on the priorities.

Exercise 8.6: Using the memoryless property, derive a connection between the
structure of a treap and the behavior of the Quicksort algorithm (see Chapter 1).

Define the depth of a node in a treap as its distance from the root. The
following lemma establishes that the expected depth of the element of rank k in
S is O(logk + log(n - k + 1», which is always O(log n).

Lemma 8.6: Let T be a random treap for a set S of size n. For an element xES
having rank k,

E[depth(x)] = Hk + Hn- k+1 - 1.

PROOF: Define the sets S- = {y E Sly :5: x} and S+ = {y E Sly ~ x}. Since
x has rank k, it follows that IS-I = k and IS+I = n - k + 1. Denote by Qx S; S

206

8.1 RANDOM TREAPS

the set of elements that are stored at nodes on the path from the root of T to
the node containing x, i.e., the ancestors of x. Let Q; denote S- () Qx' We will
establish that E[IQ:;11 = Hk. By symmetry, it follows that the expected size of
Q~ = S+ () Qx is Hn-k+l' This will imply that the expected length of the path
from the root to x is Hk + Hn- k+1 - 1, since Q:; () Q~ = {x}.

Consider any ancestor y E Q:; of the node x. By the memoryless assumption,
y must have been inserted prior to x, and the priorities must satisfy the inequality
py > Px' Since y < x, it must be the case that x lies in the right sub-tree of y. In
fact, we claim that all elements z such that y < z < x lie in the right sub-tree of
y. Consider the searches for the elements x, y, and z in T. Clearly, the searches
for x and y will follow the path from the root to the node containing y. But
then there cannot be any node on this path whose value is between y and x.
This implies that the search for every element whose value lies between y'and x
must follow the path from the root to y, and in fact go into the right sub-tree
of y. We conclude that y is an ancestor of every node containing an element
of value between y and x. By our assumption about the order of insertion, this
implies that every element whose value lies between y and x must have been
inserted after y, and hence is of lower priority than y.

The preceding argument establishes that an element y E S- is an ancestor
of x, or a member of Q:;; if and only if it was the largest element of S- in
the treap at the time of its insertion. Since the order of insertion is determined
by the order of the priorities, and the latter is uniformly distributed, the order
of insertion can be viewed as being determined by uniform sampling without
replacement from the pool S. We can now claim that the distribution of IQ:;I is
the same as that of the value of Game A when P = S- and B = S\S:.... Since
IS-I = k, the expected size of IQ:;I = Hk • 0

Exercise 8.7: Obtain an alternate proof of Lemma 8.6 by using the analysis of Game
C when x is a stopper, P = S-\{x}, and B = S+\{x}.

The next lemma helps us bound the expected number of rotations required
during an update operation (see Exercise 8.4). For any element x in a treap,
let Lx denote the length of the left spine of the right sub-tree of x, and Rx the
length of the right spine of the left sub-tree of x.

Lemma 8.7: Let T be a random treap for a set S of size n. For an element XES
of rank k,

and
1

E[Lxl = 1 - k l'
n- +

207

DATA STRUCTURES

PROOF: We prove only the first result. The second result follows by symmetry
since the rank of x becomes n - k + 1 if we invert the total order underlying the
key values. We will demonstrate that the distribution of Rx is the same as that
of the value of Game D with the choice of characters P = S-\{x}, T = {x},
and B = S+\{x}, where S- = {y E Sly s: x} and S+ = {y E Sly ~ x} as
before. Since we now have p = k - 1, t = 1, and b = n - k, Lemma 8.4 implies
that

To relate the length of the right spine of the left sub-tree of x to Game D, we
make the following claim: an element z < x lies on the rigl}t spine of the left
sub-tree of x if and only if z is inserted after x, and all elements whose values
lie between z and x are inserted after z. The proof relies on the memoryless
property of treaps.

We first prove the backward implication in the claim. Consider the path
followed by the insertion procedure in locating the leaf at which z is inserted.
This path must go through the node containing x, since the only way to
distinguish between z and x is via a comparison with some element that lies
between them, and all such elements are inserted after z. Since z is smaller than
x and inserted after x, it must lie in the left sub-tree of x. Moreover, since all
the elements in the left sub-tree of x are smaller than x, and z is the largest of
these at the time of its insertion, z must lie on the right spine of this sub-tree.

The forward implication in the claim is proved similarly. Since z lies in the
left sub-tree of x, it must have been inserted after x and be of value smaller
than x. Moreover, all elements with value between those of z and x must be
in the left sub-tree of x, and since z lies on the right spine these elements must
have been inserted after z. 0

The following theorem summarizes the performance bounds for random
treaps. The proof is an easy consequence of the preceding lemmas and is left as
an exercise. Note that the search time for a key x ~ S is essentially the search
time for the elements of S that would have been its predecessor or successor
had it belonged to S.

Theorem 8.8: Let T be a random treap for a set S of size n.

1. The expected time for a FIND, INSERT, or DELETE operation on T is O(log n).

2. The expected number of rotations required during an INSERT or DELETE opera
tion is at most 2.

3. The expected time for a JOIN, PASTE, or SPLIT operation involving sets SI and
S2 of sizes n and m, respectively, is O(logn + logm).

208

&.3 SKIP LISTS

8.3. Skip Lists

We now turn to another elegant randomized data structure called skip lists.
Consider a set S = {Xl < X2 < '" < Xn} drawn from a totally ordered universe.

~ Definition 8.1: A leveling with r levels of an ordered set S is a sequence of nested
subsets (called levels)

such that Lr = 0 and LI = S.

~ Definition 8.2: Given an ordered set S and a leveling for it, the level. of any
element XES is defined as

l(x) = max{i I x E L;}.

Given any leveling of the set S, we can define an ordered list data structure
as follows. For convenience, we will assume that tW() special elements -00 and
+00 belong to each of the levels, where -00 is smaller than all elements in S
and +00 is larger than all elements in S. Observe that both -00 and +00 are
of level r. The level LI is stored in a sorted linked list, and each node x in this
linked list has a pile of [(x) - 1 nodes sitting above it. There are horizontal and
vertical pointers between nodes as illustrated in Figure 8.4. This data structure
is the skip list corresponding to a specific leveling of S.

-
~ -J- l ---1-------- -----1-- X I

-----~-L---- -----------

I -
•

~] -- .-I I ,-------, I
---1------- -I-I ----I ----y----I~~'
___ oo _____ ~l _ -r ___ ~ __ ~ ~_3 _---E±J----~5_-:-~ L 1

Figure 8.4: A skip list.

In Figure 8.4, the skip list represents the set S = {1, 2,3,4, 5}, and the leveling
that determines this skip list consists of the following 6 levels: L6 = 0, Ls = {2},
L4 = {2,3}, L3 = {2, 3, 5}, L2 = {2, 3,4, 5}, and LI = {1, 2, 3,4, 5}. A pile of [(x)
nodes sits above each element x of S. Further, starting at the ith node from the
bottom in the left-most column of nodes and following the horizontal pointers
will yield a set of nodes corresponding to the elements of the level L j •

209

DATA STRUCTURES

~ Definition 8.3: An interval at level i is the set of elements of S spanned by a
specific horizontal pointer at level i.

The sequence of levels Li can be viewed as successively coarser partitions of
S into a collection of intervals. In the example shown in Figure 8.4, we can view
the levels as determining the following successive partitions:

Ll - [-00,1] U [1,2] U [2,3] U [3,4] U [4,S] U [S,+oo]

L2 - [-00,2] U [2,3] U [3,4] U [4, S] U [S, +00]

L3 - [-00,2] U [2,3] U [3, S] U [S, +00]

L. - [-00,2] U [2,3] U [3, +00]

Ls - [-00,2] U [2, +00]

4, - [-00, +00]

The interval partition structure is more conveniently viewed as a tree (see
Figure 8.S) where each node corresponds to an interval, and all intervals at the
same level are represented by nodes at the same level in the tree. If an interval
J at level i + 1 contains as a subset an interval I at the level i, then node J is
the parent of node I in the tree. For an interval I at level i + 1, c(l) denotes
the number of children it has at level i. Since c(l) can be arbitrarily large, the
tree is npt binary in general. The skip list representation can be viewed as a
threaded version of this tree, where each thread is a seri¢s of pointers forming
an ordered linked list of the nodes in a level. In Figure 8.S, the horizontal
pointers correspond to the threads.

-------l [2.+00] ~

. I ~~. _.
--------' [2.3) --'"iJ3.+~).~ . L4

------~-- [3.5) ~---~ ['.+~), L,
-r .~.~ I, --------f[t]"-- [3.4] t--., [4.5] L_~ [5.+00]: L2

I -1= T-~ I
->-j [2.3] --...f [3.4] +--ffiJ--"L!~~oo]J L]

Figure 8.5: Tree representation of a skip list.

Consider an element Y, which is not necessarily a member of S. Define Ij(Y)
as the interval at level j that contains y. If y lies on the boundary between two
intervals, we assign it to the left-most one. We can now view the nested sequence
of intervals Ir(y) c Ir-1(y) c ... C I1(y) containing y as a root-leaf path in the
tree representation of the skip list. To complete the description of a skip list,
we have to specify the choice of the leveling that underlies it. The basic idea is

210

8.3 SKIP LISTS

to choose a random leveling, thereby defining a random skip list. The analysis
will show that there is a high probability that the search tree corresponding to
a random skip list is balanced.

8.3.1. Analyzing Random Skip Lists

A random leveling of the set S is defined as follows: given the choice of the level
Lj, the level Li+1 is defined by independently choosing to retain each element
x e Li with probability 1/2. This process starts with Ll = S, and it terminates
when, for the first time, a newly constructed level is empty. An alternate view
of this construction is as follows: let the levels l(x) for xeS be independent
random variables, each with the geometric distribution with parameter p = 1/2.
Let r be one more than the maximum of these random variables. PlaCe x in
each of the levels L , L,(x). As was the case with the random priorities in
treaps, a random level is chosen for every element of S upon its insertion, and
this remains fixed until the element is deleted.

Exercise 8.8: Show that the expected space requirement of a random skip list for a
set S of size n is O(n).

Lemma 8.9: The number of levels r in a random leveling of a set S of size n has
expected value E[r] = O(log n). Moreover, r = O(log n) with high probability .

.
PROOF: We prove only the high probability result; the bound on the expected
value is left as an exercise. The number of levels r = 1 + maxxes l(x), and the
levels l(x) are i.i.d. random variables distributed geometrically with parameter
p = 1/2. We may thus view the levels of the members of S as independent
geometrically distributed random variables X , Xn• It is easy to verify that
Pr[Xi > t] < (1 - PY and, therefore,

n
Pr[maxXi > t] < n(1 - PY = -2 '

i t

since p = 1/2 in this case. Using t = cdog nand r = maXi Xi, we obtain the
desired result that

for any IX > 1.

Exercise 8.9:

1
Pr[r > IX log n] < -I' nlX-

1. Use the ideas in the proof of Lemma 8.9 to show that E[r] = O(log n).

2. Use Theorem 1.3 to show that E[r] = O(log n).

211

o

DATA STRUCTURES

This result implies that the tree representing the skip list has height O(log n)
with high probability. Unfortunately, since the tree need not be binary, it does
not immediately follow that the search time is similarly bounded. To understand
this, we first specify an efficient implementation of the FIND operation.

We will describe the implementations of all operations in terms of the tree
representation of skip lists and then translate this description back into the skip
list representation. The implementation of FIND(X, S) corresponds to walking
down the path I r(Y) c I r-I (y) C ... c I I (Y), as follows: at level j, starting at the
node I ly), use a vertical pointer to descend to the leftmost child of the current
interval; then, using the horizontal pointers, move rightward till the node I j(Y)

is reached. It is easy to determine whether Y belongs to a given interval, or to
an interval to its right. Also, in the original skip list representation, the vertical
pointers allow access to only the left-most child of an interval, and hence it is
essential to use the horizontal pointers to traverse the list of its children.

The cost of the FIND(y, S) operation is proportional to the number of levels
as well as the number of intervals (or nodes) visited at each level. The number
of nodes visited at level j does not exceed the number of children of the interval
Ij+I(Y). It is now clear that the cost of a FIND operation depends not only on
the number of levels, but is proportional to the total number of children of the
nodes on the search path. This cost can be bounded by

Fortunately, as shown in the following lemma, this quantity has expectation
bounded by O(logn) as well.

Lemma 8.10: Let Y be any element and consider the search path Ir(y), ... , II(Y)
followed by FIND(Y, S) in a random skip list for the set S of size n. Then,

r

E[I)l + c(lj(Y)))] = O(log n).
j=1

PROOF: We will show that for any specific interval I in a random skip list,
E[c(l)] = 0(1). Since Lemma 8.9 guarantees that r = O(logn) with high
probability, this will yield the desired result. Note that we do need the high
probability bound on r - it is not correct to multiply the expectation of r with
that of 1 + c(l) since the two random variables are not independent. On the
other hand, since we know that r > cdogn with probability at most 1/noc- l , and
since Ell + c(lj(Y))) = O(n), we can argue that the case r > 210gn does not
contribute significantly to the expectation of Ejc(lj(Y)) = O(n).

Let J be any interval at level i of the skip list. We will prove that the expected
number of siblings of J (children of its parent) is bounded by a constant, and
this will imply that the expected number of children of an interval is bounded

212

8.4 HASH TABLES

by a constant. In fact, it will suffice to prove that the number of siblings of J to
its right is bounded by a constant.

Let the intervals to the right of J be J1 = [X., X2], J 2 = [X2' X3], ... , Jk =
[Xk, +00]. These intervals exist at level i if and only if each of the elements X.,

••• , Xk belong to L j • If J has s siblings to its right, then it must be the case that
X., ..• , Xs ~ L j+I. and Xs+l e L j+1• Since each element of L j is independently
chosen to be in Lj+1 with probability 1/2, the number of right siblings of J is
stochastically dominated by a random variable that is geometrically distributed
with parameter 1/2. It follows that the expected number of right siblings of J
is at most 2. 0

In Problem 8.14 we suggest a different approach, which leads to a precise
determination of the expected cost of the FIND operation.

We now describe the implementation of the update operations on a skip
list. Consider the operation INSERT(y, S), and assume that a random level l(y)
is chosen for y as described earlier. If the value of l(y) exceeds r, then start
by creating new levels from r + 1 to l(y) in the original skip list. This can be
done in time O(r) since the new levels are all empty prior to the insertion of
y. Then, perform the operation FIND(y,S) and determine the search path Ir(y),
... , II (y), where r is updated to its new value if necessary. Given the search
path, the actual insertion process can be accomplished in time O(l(y)) since all it
requires is the splitting around y of the intervals II (y), ... , I /(y)(Y), and of course
updating the pointers as appropriate. The DELETE operation is the converse
of the INSERT operation, and it involves performing FIND(y, S) followed by the
collapsing of the intervals that have y as an end-point In addition to th~ cost of
a FIND operation, both operations require additional work proportional to l(y).
Combining this with Lemmas 8.9 and 8.10, we obtain the following theorem.

Theorem 8.11: In a random skip list for a set S of size n, the operations FIND,

INSERT. and DELETE can be performed in expected time O(log n).

These results extend to the other operations described in treaps.

Exercise 8.10: Describe an implementation of operations JOIN, PASTE, and SPLIT for
random skip lists. Analyze the running time of your implementation, and compare
the result with the same operations in the case of treaps.

8.4. Hash Tables

In the rest of this chapter, we restrict ourselves to the following special cases of
the data-structuring problem considered in the previous sections:

1. In the static dictionary problem we are given a set of keys S and must organize it
into a data structure that supports the efficient processing of FIND queries.

213

DATA STRUCTURES

2. In the dynamic dictionary problem the set S is not provided in advance. Instead it
is constructed by a series of INSERT and DELETE operations that are intermingled
with the FIND queries.

These problems can be solved using data structures discussed earlier, i.e., bal
anced search trees, random treaps, and random skip lists. For a set S of size
s, these data structures require Q(log s) time (worst-case or expected) to process
any search or update operation. The time bounds achieved are optimal in the
sense that for data structures based on pointers and search trees, we are faced
with a logarithmic lower bound on the cost of a search. These lower bounds
are based on the assumption that the only computation we can perform over
the keys is to compare them and thereby determine their relationship in the
underlying total order.

We now present an entirely different approach that allows us to circum
vent this lower bound and achieve O(1) search time. We mention briefly the
reasons why the logarithmic lower bounds will not apply to the dictionary
problem we will consider. We will assume that the keys in S are chosen from
a totally ordered universe M of size m; without loss of generality, we define
M = {O, ... , m - I}. We will also assume that the keys are represented as inte
gers in a manner that permits us to perform arithmetic operations over them.
Finally, we will choose to work in the RAM model of computation in its full
generality.

To better understand the difference in the models, we describe a scheme that
enables us to obtain search and update times that are bounded independently of
the size of S. In this scheme, we create a table T of size m; a table is simply an
array supporting random access. For each k e M, we set T[k] = 1 if and only
if k e S. We can perform search or update operations for a key in unit time by
accessing the corresponding entry in the table. The problem with this approach
is that the key space is typically many orders of magnitude larger than the set
S. For example, in a 32-bit machine we have m = 232, so such a table of size
m will consume the entire memory of the machine. In fact, the preprocessing
cost of initializing the table is equally large in this solution. Even though this
approach is impractical, it serves to illustrate the point that the new model
permits us to get around the comparison-based lower bounds on searching in a
totally ordered set. This is because we are now making use of the full power of
the RAM model of computation including random access and indirect indexing
(which permits an m-way branch in a single step), not to mention the dual use
of key values as table indices.

In this section we focus on the dynamic dictionary problem, and our goal is
to obtain a more practical version of the table-based scheme. The main issue is
that of reducing the size of the table to a value close to lSI, while maintaining
the property that a search or update operation can be performed in 0(1) time.
To this end, we introduce hashing, a data structuring technique in which we
use a fingerprint function (see Chapter 7) to determine where a key should be
located in the table.

214

8.4 HASH TABLES

A hash table is a data structure for the dictionary problem that consists of
the following components: a table T consisting of n cells indexed by N =
{O, 1, ... ,n - I}, and a hashfunc~ion h, which is a mapping from Minto N. We
assume that n is smaller than m, since otherwise the dictionary problem is trivial.
Each cell is a memory word that can hold exactly as many bits as required to
encode an element of M, i.e., the word size is log m. The hash function is a
fingerprint function for the keys in M, and it specifies a location in the table for
each element of M. Ideally, we would want the hash function to map distinct
keys in S to distinct locations in the table. A collision is said to occur between
two distinct keys x and y if h(x) = h(y) and they are said to collide at the
corresponding location in T.

~ Definition 8.4: A hash function h : M -+ N is said to be perfect for a set S s;;; M
if h does not cause any collisions among the keys of the set S.

Exercise 8.11: Show that a perfect hash function can be constructed for any set S of
size at most n.

Given a perfect hash function for a set S, we can use the hash table to process
a sequence of FIND operations in O(1) time each: store each element k e S at
the location T[h(k)]; to search for a key q, just check whether T[h(q)] = q. A
problem arises when we try to use this hash function to process updates. The
problem is that no hash function can be perfect for all possible sets S c· M; this
follows from the observation that for n < m, any function h must map some
two elements of M to the same location, and so it cannot be perfect for any set
containing those two elements. Thus, perfect hash functions are useless for the
dynamic dictionary problem. It is still possible that they can be used to obtain
a good solution to the static dictionary problem, and we will return to this issue
in Section 8.5.

A natural approach to solving the dynamic dictionary problem is to relax
the definition of perfect hash functions to that of "near-perfect" hash functions,
which are allowed to cause a small number of collisions at each location in the
table. There has been great deal of research into the design of such near-perfect
hash functions, but typically this is under the assumption that the sequence
of operations to be performed is drawn from some well-behaved probability
distribution. Under this assumption, it is possible to come up with simple hash
functions that cause only O(1) collisions on the average at any table location,
provided the number of items present in the hash table is bounded by some
linear function in the table size n. The keys colliding at any given location are
usually org.anized into a secondary data structure accessible from that location,
or they can be rehashed into a secondary hash table using a new hash function.
To process any operation, the hash function is used to determine the appropriate
location in the table, and the operation is then performed on the secondary data

215

DATA STRUCTURES

structure associated with that location. Since the expected size of the secondary
data structure is 0(1), it follows that each operation has expected cost 0(1) in
addition to the cost of evaluating the hash function. Hash functions are chosen
so that they can be evaluated in 0(1) time.

We will present a randomized hashing scheme for the dynamic dictionary
problem that processes search and update operations in expected time 0(1),
without making any probabilistic assumptions about the operation sequence.
The expectation is with respect to the random choices internal to the hash table.

8.4.1. Universal Hash Families

Our solution requires the construction of a class of hash functions that have
found a surprisingly large number of applications in areas far removed from
the original problem, such as routing in networks and complexity theory. The
idea is to choose a family of hash functions H = {h : M -+ N}, where each
h E H is easily represented and evaluated. While anyone function h E H
may not be perfect for very many choices of the set S, we can ensure that
for every set S of small cardinality, a large fraction of the hash functions in
H are near-perfect for S in the sense that the number of collisions is small.
Thus, for any particular set S, a random choice of h E H will give the desired
perfoI1l!ance. The hash functions described here can also be used to solve some
of the problems discussed in earlier sections.

~ Definition 8.5: Let M = {O, l,oo.,m -I} and N = {O, l, ... ,n -I}, with m ~ n.
A family H of functions from Minto N is said to be 2-universal if, for all x,
y E M such that x ::/= y, and for h chosen uniformly at random from H,

1
Pr[h(x) = h(y)] < -.

n

A totally random mapping from M to N has a collision probability of exactly
lin; thus, a random choice from a 2-universal family, of hash functions gives
a seemingly random function. The collection of all possible functions from M
to N is a 2-universal family, but it has several disadvantages. Picking a random
functi"on requires Q(m log n) random bits. This is also the number of bits of
storage required to represent the chosen function. Our goal is to obtain smaller
2-universal families of functions that require a small amount of space and are
easy to evaluate; in particular, we would like to construct 2-universal families
containing only a small subset of all possible functions. The reason this is
possible is that a randomly chosen function h e H is required to behave like a
random function only with respect to pairs of elements. In fact, as x ranges over
M, the values h(x) behave somewhat like pairwise independent random variables,
which is precisely the reason for the name "2-universal." On the other hand, for
a purely random function f, the values f(x) have complete independence. In
Section 8.4.4 we will discuss "strong" 2-universal hash families, which have an
exact correspondence with pairwise independent random variables.

216

8.4 HASH TABLES

From here on fix the sets M, N, and H as in Definition 8.5. For any x, y e M
and h e H, define the following indicator function for a collision between the
keys x and y under the hash function h:

t5(x h) = {I for h(x~ = h(y) and x :/= y
, y, 0 otherwIse.

For all X, Y c M, define the following extensions of the indicator function t5:

t5(x,y, H) - L t5 (x,y,h),
heH

t5(x, Y,h) - L t5(x,y,h),
yeY

t5(X, Y, h) - L t5(x, Y, h),
xeX

t5(x, Y,H) - Lt5(x,y,H),
yeY

t5(X, Y,H) - L t5(X, Y, h).
heH

For a 2-universal family H and any x :/= y, we have J(x, y, H) :s; IHI/n.
The following theorem shows that our definition of 2-universality is essentially

the best possible, since a significantly smaller collision probability cannot be
obtained for m ~ n.

Theorem 8.12: For any family H of functions from M to N, there exist x, y e M
such that

t5(x,y,H) > IHI _ IHI.
n m

PROOF: Fix some function h e H, and for each zEN define the set of elements
of M mapped to z as

Az = {x e M I h(x) = z}.

The sets A z, for zeN, form a partition of M. It is easy to verify that

This is because any two elements that collide must belong to the same set Az , and
the number of collisions within the elements of Az is exactly IAzl(IAzl - 1). The
total number of collisions between all possible pairs of elements is minimized
when these sets Az are all of the same size. We obtain

t5(M,M,h) = LIAzl(IAzl-l)
zeN

217

DATA STRUCTURES

This calculation was for any fixed choice of h E H, and so ~(M,M,H) =

EheH ~(M, M, h) > IHlm2(1/n - 11m). By the pigeonhole principle there must
exist a pair of elements x, y E M such that

c5(x,y, H) >
c5(M,M, H)

m2

IHIc5(M, M, h)
- m2

~
IHlm2 (lin - 11m)

m2

= IHI (~- !).
o

8.4.2. Application to Dynamic Dictionaries

Before we provide a construction for a 2-universal hash family, let us see why it
gives a good solution to the dynamic dictionary problem. The following lemma
will prove useful in the analysis of a dynamic dictionary scheme based on a
2-universal family H.

Lemma -8.13: For all x E M, S c M, and random h E H,

lSI
E[~(x, S, h)] < -.

n

PROOF: The following simple calculation constitutes the proof.

E[c5(x,S, h)] = L c5(x,S,h)
heH IHI

1
= WI L L c5(x, y, h)

heH yeS

1 - WI LLc5(x,y,h)
yeS heH

1 - WI L c5(x, y, H)
yeS

:S; _1 ~!!fl
IHI L..Js n

ye

lSI
n

o
Our dynamic dictionary scheme first chooses a hash function h E H uniformly

at random, and then processes the entire sequence of updates and queries using
h. Note that the hash function remains fixed during any given invocation of

218

8.4 HASH TABLES

the hash table. An inserted key x is stored at the location h(x), and due to
collisions there could be other keys also stored at that location. The keys
colliding at a given location are organized into a linked list and a pointer to
the head of the list is maintained in that cell. The time to perform an INSERT,

DELETE, or FIND operation involving a key x is essentially determined by the
time required to perform that operation on the linked list stored at the location
h(x), and the latter is at most the length of the list itself. Assuming that the
set of keys currently stored in the table is S eM, the length of the linked list
is t5(x, S, h), which has expectation ISI/n. Of course, we could use a balanced
binary search tree instead of a linked list to reduce the cost of each operation
to O(log t5(x, S, h)), but this does not seem worthwhile given that we expect that
the number of collisions at each location will be fairly small.

Consider a request sequence R = Rl R2 ... R, of update and search operations
starting with an empty hash table. Suppose that this sequence contains S INSERT

operations; then, the table will never contain more than S keys. Let p(h, R)
denote the total cost of processing these requests using the hash function h e H
and the linked list scheme for collision resolution. The following theorem is easy
to prove.

Theorem 8.14: For any sequence R of length r with S INSERTS, and h chosen
uniformly at random from a 2-universal family H,

E[p(h,R)] < r (1 +~).

If we pick the table size n to be larger than the maximum number of elements
ever present in the table, we conclude that the expected time per operation is
at most 2. By the Markov inequality, the probability that the total cost of the
request sequence will exceed 2rt is at most l/t. We emphasize that this analysis
does not assume anything about the request sequence R except a bound on the
table occupancy.

8.4.3. Constructing Universal Hash Families

We now turn to the task of devising explicit constructions of 2-universal hash
families. Our construction of a 2-universal family is algebraic. Fix m and n,
and choose a prime p ~ m. We will work over the field tlp = {O, 1, ... ,p - I}.
Let g : tlp -+ N be the function given by g(x) = x mod n. For all a, b e 7lp

define the linear function fa,b : tlp -+ tlp and the hash function ha,b : tlp -+ N as
follows.

fa,b(X) = ax + b mod p,

ha,b(X) = g (ja,b(X») .

We the family of hash functions H = {ha,b I a, be tlp with a ::/= O} and claim that
it is 2-universal. Although H uses tlp as its domain, the claim applies to the
restriction of H to any subset of 7lp,.jn particular to the domain M.

219

DATA STRUCTURES

Lemma 8.15: For all x, y e tlp such that x =1= y,

PROOF: We show that the number of hash functions in H that cause x and y to
collide is determined by the size of the residue classes of tlp modulo n. Suppose
that x and y collide under a specific function ha,b. Let !a,b(X) = rand !a,b(y) = s,
and observe that r =1= s since a =1= 0 and x =1= y. A collision takes place if and
only if g(r) = g(s), or equivalently, r = s (mod n). Now, having fixed x and y,
for each such choice of r =1= s the values of a and b are uniquely determined as
the solution to the following system of linear equations over the field 7lp•

ax+b - r (modp)

ay + b - s (mod p)

Thus, the number of hash functions ha,b that cause x and y to collide is exactly
the number of choices of r =1= s such that r = s (mod n). The latter is given by
t5 (71p, 7lp, g). 0

Given the similarity of the definition of 2-universality to pairwise indepen
dence, it is not surprising that the constructions and their proofs are also very
similar (see Section 3.4).

Theorem 8.16: The family H = {ha,b I a, b e tlp with ~ =1= O} is a 2-universal fam
ily.

PROOF: For each zeN, let Az = {x e tlp I g(x) = z}; it is clear that
IAz I < r pin 1. In other words, for every r e tlp there are at most r pin 1 different
choices of s e tlp such that g(r) = g(s). Since there are p different choices of
r e tlp to start with,

(rPl) p(p -1) t5(71p,71p,g) < p ;; - 1 < n .

Lemma 8.15 now implies that for any distinct x and y in 7lp, t5(x,y, H) <
p(p - l)/n. Since the size of IHI is exactly p(p - 1), this gives the desired result
that t5(x, y, H) < IHl/n. 0

A well-known result in number theory called Bertrand's Postulate states that
for any number m, there exists a prime between m and 2m. Thus we can
choose p = O(m), and the number of random bits needed to sample a hash
function from H is no more than 2 log p = O(log m). Choosing, storing, and
evaluating hash functions from H is remarkably simple and efficient. Pick a and
b independently and uniformly at random from 7lp• These are stored using very
little memory, and computing ha,b is a trivial task. Contrast this with the use of
a totally random function as a hash function.

220

8.S HASHING WITH 0(1) SEARCH TIME

8.4.4. Strongly Universal Hash Families

The definition of 2-universality merely constrains the probability that two dis
tinct keys get mapped to the same location. This does not fully capture the
pairwise independence property (Section 3.4) inherent in the construction of 2-
universal hash functions presented in Section 8.4.3. In fact, essentially the same
construction gives the stronger guarantee required by the following definition.

~ Definition 8.6: Let M = {a, 1, ... ,m - 1} and N = {a, 1, . .. ,n - 1}, with m ~ n.
A family H of functions from Minto N is said to be strongly 2-universal if for
all Xl =F X2 EM, any Yh Y2 EN, and h chosen uniformly at random from H,

1
Pr[h(xd = YI and h(X2) = Y2] = 2·

n

Note the similarity to pairwise independence and use this to solve the following
exercise.

Exercise •. 12: Assume that n = m = p is a prime number. Show that the hash
function family H = {ha,b I a, b E Zp} is strongly 2-universal.

Most known constructions of 2-universal hash families actually yield a
strongly 2-universal hash family. For this reason, the two definitions are gener
ally not distinguished from one another. This definition generalizes to strongly
k-universal hash families in the obvious way: for any set S containing k distinct
elements from M, and any set T containing k elements from N, the probability
that a random hash function h E H maps the ith element of S to the ith element
of T is lin". This is closely related to k-wise independent random variables (see
Section 3.4).

8.5. Hashing with 0(1) Search Time

While the hashing scheme described in Section 8.4 achieves a bounded expected
search time for lSI = O(n), it has the disadvantage of requiring unbounded time
in the worst case. In this section, we describe a hashing scheme that processes
the FIND operation using O(I) time in the worst case. The catch is that our
solution applies only to the static dictionary problem, i.e., we assume that a
set S of size s is fixed in advance and that we only need to support the FIND

operation.
Recall that if we do not restrict the table size, there is a trivial solution that

takes unit time per query, although it does have the disadvantage of requiring
Q(m) time for the preprocessing. Our goal is to devise a hashing strategy that
uses linear space, while guaranteeing bounded search cost and a polynomially
bounded preprocessing cost. Therefore, in the ensuing discussion we will focus
exclusively on tables of size n = O(s).

221

DATA STRUCTURES

8.5.1. Nearly Perfect Hash Families

One way of achieving our goal is to use a hash function h that is perfect for S.
Since a hash function cannot be perfect for every possible set S, we will actually
need a family of perfect hash functions.

~ Definition 8.7: A family of hash functions H = {h : M -+ N} is said to be a
perfect hash family if for each set S c M of size s < n there exists a hash function
h E H that is perfect for S.

For notational convenience, we do not explicitly specify the parameters m,
n, and s that go into the definition of perfect hash functions and some of the
related definitions that follow. The reader should keep in mind that the notion
of perfection is defined only with reference to these values.

It is clear that perfect hash families exist: for example, the family of all
possible functions from M to T is a perfect hash family. Given a perfect
hash family H, we solve the static dictionary by finding h E H perfect for S,
storing each key xES at the location T [h(x)], and then responding to a search
query for a key q by examining the contents of T [h(q)]. The preprocessing cost
depends on the cost of identifying a perfect hash function for a specific choice
of S, while the search cost depends on the time required to evaluate the hash
function.· Moreover, since the choice of the hash function will depend on the
set S, its description must also be stored in the table. We assume that some
auxiliary cells are added to T for just this purpose. Suppose that the size of the
perfect hash family H is r. Then, storing the description of a hash function from
H will require Q(logr) bits. Since we cannot afford to spend more than 0(1)
time per search, it is essential that the description of the hash function should
fit into 0(1) locations in the table T. A cell in the table is only large enough
to accommodate a key from M, and so it can be used to encode at most log m
bits of information; therefore, we will only be interested in constructing hash
families whose size r is bounded by a polynomial in m. It is also essential that
given an encoding of a hash function into O(log m) bits, we should be able to
evaluate this hash function efficiently on arbitrary keys.

Consider the universal hash function family H defined in Section 8.4.3: each
hash function ha,b is determined by the elements a, b E 7lp• Given a choice of p
reasonably close to m, the functions ha,b can be stored in 0(1) cells in the table;
given a and b, the hash function ha,b can be evaluated in 0(1) time. The only
problem is that the universal hash family is not a perfect hash family. Let us try
to determine the conditions under which a perfect hash family can be shown to
exist, ignoring for now the issue of efficient storage and evaluation.

Exercise •. 13: Assume for simplicity that n = s. Show that for m = 2°(8', there exist
perfect hash familiea of size polynomial in m. (Hint: Use the probabilistic method.)

222

8.S HASHING WITH 0(1) SEARCH TIME

The existence of a perfect hash family is guaranteed only for values of m that
are extremely large relative to n. This stems from the requirement that the hash
family should have size polynomial in m. The following exercise shows that this
restriction is unavoidable and that the bound in the Exercise 8.13 is close to the
best possible.

Exercise •. 14: Assuming that n = s, show that any perfect hash family must have
size 2°(8'.

Thus, we need to have m = 20(3), or s == O(1og m), to guarantee even the
existence of a perfect hash family of size polynomial in m. Unfortunately, in
practice the case s = O(1og m) is not very interesting for typical values of m, e.g.,
for m = 232.

To circumvent this inherent problem in the use of perfect hash functions, we
will employ the strategy of double hashing. The idea is to relax the property of
perfection and allow for a few collisions; the keys that are hashed to a particular
location of the primary table are handled by using a new hash function to map
them into a secondary hash table associated with that location. The set of keys
colliding at a specific location of the primary hash table is called a bin. In fact,
we can view the application of a hash function h : M -+ N to the data set S as
a partition of S into n bins (some of which may be empty).

~ Definition 8.8: Let S c: M and h : M -+ N. For each table location 0 < i < n-l,
we define the bin

Bj(h, S) = {x E S 1 h(x) = i}.

The size of a bin is denoted by bj(h, S) = IBj(h, S)I.

A perfect hash function ensures that all bins are of size at most 1. Consider
the following generalization of perfect hash functions.

~ Definition 8.9: A hash function h is b-perfect for S if bj(h, S) < b, for each i. A
family of hash functions H = {h : M -+ N} is said to be a b-perfect hash family
if for each S c: M of size s there exists a hash function h E H that is b-perfect
for S.

Exercise •• 15: Show that there exists a b-perfect hash family H such that b = O(log n)
and IHI ~ m, for any m ~ n. (Hint: Use the probabilistic method.)

Using the preceding exercise, we can now outline a scIleme for double hashing.
At the first level we use a (log m)-perfect hash function h to map S into the
primary table T. The description of h can be stored in one auxiliary cell.

223

DATA STRUCTURES

Consider the bin Bi consisting of all keys from S mapped into a particular cell
T[i]. In this cell we store the description of a secondary hash function hi, which
is used to map the elements of the bin Bi into the secondary table Ti associated
with that location. Since the size of Bi is bounded by b, we know from the earlier
discussion that we can find a hash function hi that is perfect for Bi provided 2b
is polynomially bounded in m. For b = O(log m) this condition holds, and so
the double hashing scheme can be implemented with O(1) query time, for any
m~n.

One problem with this approach is that it uses Q(s log m) space, since there
must be a secondary table of size O(log m) for each of the n = O(s) locations
in the primary table. While the space bound could possibly be reduced using
clever memory allocation schemes, a more serious concern is the issue of efficient
construction and evaluation of the hash functions being used. Both the primary
and secondary hash families are shown to exist via the probabilistic method, and
we do not know of any efficient construction. But we can infer the following
crucial insight from this scheme: the goal of the primary hash functions should
be to create bins small enough that some perfect hash functions can be used
as the secondary hash functions. The following exercise describes how we may
ensure the existence of suitable secondary hash functions.

Exercise.8.16: Consider a table of size r indexed by R = {O, ... ,r -1}, Show that
there exists a perfect hash family H = {h : M - R} with IHI ~ m provided that
r = 0(S2), for all m ~ s.

We are now ready to describe our final solution. We will use a primary table
of size n = s, choosing a primary hash function that ensures that the bin sizes
are small; the perfect hash functions from Exercise 8.16 are then used to resolve
the collisions by using secondary hash tables of size quadratic in the bin sizes,
thereby guaranteeing perfect hashing at the secondary level. It follows that total
space required by the double hashing scheme is

s+O(~bi).
This is linear space provided the sum of the squares of the bin sizes is linearly
bounded in s. Also, the time required for a search operation is clearly O(1).

8.5.2. Achieving Bounded Query Time

Our goal now is to find primary hash functions which ensure that the sum of the
squares of the bin sizes is linear, and perfect hash functions for the secondary
tables, which use at most quadratic space. It turns out that the nearly-2-universal
hash functions discussed in Problem 8.22 are the appropriate choice for both
primary and secondary hashing.

224

8.S HASHING WITH 0(1) SEARCH TIME

The following notation will be used for these hash functions. For the sake of
simplicity, we assume that p = m + 1 is a prime number.

~ Definition 8.10: Consider any V ~ M with IVI = v, and let R = {O, ... , r - I}
with r ~ v. For 1 :s; k :s; p - 1, define the function hk : M -+ R as follows,

hk(x) = (kx mod p) mod r.

For each i E R, the bins corresponding to the keys colliding at i are denoted as

Bj(k,r, V) = {x E V I hk(X) = i}
and their sizes are denoted by bj(k, r, V) = IBj(k, r, V)I.

We include r as a parameter in the bin sizes since we do not assume that r
is linearly related to v, unlike in Definition 8.8 where we had n = O(s). The
hash functions hk have a rather simple description since they are completely
determined by the value of k. Since k E {I, ... , m}, this description can be
encoded into a key value in M = {O, ... , m - I} and stored in a single cell in the
table. (The function fro is identically 0, and this is why we choose k from the
set {I, ... ,m} instead of from M.) The following lemma summarizes the critical
property of these hash functions that motivates their use in this application. For
bj < 2, we define (~) to be 0.

Lemma 8.17: For all V eM of size v, and all r > v,

(8.2)

PROOF: The left-hand side of (8.2) counts the number of tuples (k, {x,y}) such
that hk causes x and y to collide. Equivalently, it is the number of tuples that
satisfy the following two conditions:

1. x, y E V with x =F y, and

2. «kx mod p) mod r) = «ky mod p) mod r).

Fix any (unordered) pair {x,y} c V with x =F y. The total contribution of
this pair to the summation is the number of choices of k satisfying the second
condition. In other words, this pair's contribution is the number of choices of k
such that

k(x - y) mod p E {+r,+2r,+3r, ... , +L(p - 1)/rJr}.

Since p is a prime and 7Lp is a field, for any fixed value of x - y there is a unique
solution for k satisfying the equation

k(x - y) mod p = jr

for any value of j. This immediately implies that the number of values of k that
cause a collision between x and y is at most 2(p - 1)/r.

225

-- -------

DATA STRUCTURES

Finally, noting that the number of choices of the pair {x, y} is G), we obtain

~t. (Mk,;, VI) < (~r(p; 1) < (p _/)V2

D

The pigeonhole principle immediately yields the following corollary.

Corollary 8.18: For all V C M of size v, and all r ~ v, there exists k E {I, ... , m}
such that

The primary hash function hk maps a set S C M of size s into a hash table
T of size n = s. The keys in Bj(k, r, V) (the elements of S that are mapped to
T [i]) are then hashed into a secondary table of size bj(k, r, V)2 = IBj(k, r, vW
using the secondary hash function hki' which is guaranteed to be perfect. The
processing of a search query works in the obvious way. The performance of this
scheme is summarized in the following theorem, which guarantees the existence
of k, kh ... , ks E {I, ... , m} with the desired properties.

Theorem 8.19: For any S C M with lSI = sand m ~ s, there exists a hash table
representation of S that uses space O(s) and permits the processing of a FIND

operation in O(1) time.

PROOF: The double hashing scheme is as described above, and all that remains
to be shown is that there are choices of the primary hash function hk and the
secondary hash functions hkl , ••• , hk• that ensure the promised performance
bounds.

Consider first the primary hash function hk • The only property desired of this
function is that the sum of squares of the colliding sets (the bins) be linear in
n to ensure that the space used by the secondary hash tables is O(s). Applying
Corollary 8.18 to the case where V = Sand R = T, implying that v = r = s, we
obtain that there exists a k E {I, ... , m} such that

E (bj(k~S'S)) < s
1=0

or that
s-1

2: bj(k, s, S)[bj(k, s, S) - 1] < 2s.
j=O

Since U::&Bj(k,s,S) = S and E:~ bj(k,s,S) = s,
s-1 s-1

L bj(k, S, S)2 < 2s + 2: bj(k, s, S) = 3s.
j=O j=O

226

8.S HASHING WITH 0(1) SEARCH TIME

Consider now the secondary hash function hki for the set Sj = Bj(k, s, S) of
size Sj. Applying Corollary 8.18 to the case where V = Sj (or v = Sj) and using a
secondary hash table of size r = sr, it follows that there exists a k j E {I, ... , m}
such that

~ eJ(k,,;i,S;l) < I,

where b ikj, sr, Sj) is the number of collisions at the jth location of the secondary
hash table for T [fl. This can be the case only when each term of the summation
is zero, implying that b j(k j , sr, Sj) < 1 for all j. Thus, it follows that there exists
a perfect secondary hash function hki •

This scheme requires a total of 6s + 1 cells: s + 1 cells for the primary
hash table and the description of the primary hash function, 3s cells for the
secondary hash tables, and 2s cells to store the size of the secondary tables and
the description of their hash functions. The processing of a query consists of
examining 5 cells: the value of k and one cell in the primary hash table, the
cells storing the size and hash function for the secondary hash table, as well as
the actual location in that table. A bounded number of arithmetic operations
suffices for computing the two hash functions. Finally, the entire data structure
can be stored in an array of size 6s + 1, provided m > 6s + 1 to ensure that it
is possible to encode pointers to secondary tables as keys in the primary table.

D

~ Example 8.1: We illustrate the hashing scheme for the following setting~ m = 30,
p = 31, s = 6, and S = {2, 4, 5, 15, 18, 30}. The key for the primary hash function
is k = 2, and the keys for the various secondary hash functions are shown in
Figure 8.6. Notice that the entire data structure is stored in one array of size 25.
The pointer entries are merely an index to the location in the array where the
appropriate secondary table begins.

Consider the query for the key q = 30. We compute the location in the primary
hash table as follows: h2(30) = (2 x 30 mod 31) mod 6 = 5. Following the pointer
at the location T[5], we reach the appropriate secondary table. Noting that ks = 3
and that the square of the secondary table size is 4, we compute that location
in the secondary hash table as follows: h3(30) = (3 x 30 mod 31) mod 4 = O.
Examining cell 0 in this table shows that 30 E S.

Consider now the query for the key q = 8. We compute the location in the
primary hash table as follows: h2(8) = (2 x 8 mod 31) mod 6 = 4. Following the
pointer at the location T [4], we reach the appropriate secondary table. Noting
that k4 = 1 and that the square of the secondary table size is 4, we compute that
location in the secondary hash table as follows: h1(8) = (1 x8 mod 31) mod 4 = O.
Examining cell 0 in this table shows that 8 ~ S.

All aspects of this scheme are realistic and efficient, barring one minor
detail. The previous theorem guarantees only the existence of good primary and

227

DATA STRUCTURES

k=2

T[O]

T[l]

T[2]

T[3]

T[4]

T[5]

Figure 8.6: An example of double hashing.

secondary hash functions, but gives no clue as to how these may be identified.
Of course, since we know the set S a priori, we could exhaustively try all
possible keys in {I, ... , m} as potential choices for k by computing the sizes of
the collision bins, and repeating the procedure for the secondary keys. However,
for the p'rimary key alone, this will require work at least linear in m. But the
value of m could be super-polynomial in s, and having such a large preprocessing
cost is impractical. Fortunately, a simple trick using randomization can reduce
the total preprocessing cost to a polynomial in s at the expense of increasing
the space requirement by a small constant factor. This trick is based on the
following modification of Corollary 8.18. The proof is left as Problem 8.25.

Corollary 8.20: For all V c M of size v, and all r ~ v,

E (bi(k,r, V)) < 2v2

i=O 2 r

for at least one-half of the choices of k E {I, ... , m}.

A value k satisfying the inequality in the corollary can be found in expected
time O(v) by random sampling from {I, ... , m}, since the validity of the inequality
for a specific value of k is easily verified in O(v) time by applying hk to all
elements of V and keeping track of the bucket sizes. Problem 8.26 requires you
to show that the weaker inequality in this corollary does not affect the validity
of Theorem 8.19, except that it increases the space bound by a small constant
factor.

Notes

Comprehensive descriptions of balanced search trees may be found in most textbooks
on data structures. Self-adjusting binary search trees (or splay trees) are due to Sleator

228

PROBLEMS

and Tarjan [380]. Tarjan [391] gives an excellent description of splay trees, balanced
search trees, and other related data structures. The material on random treaps is drawn
from the work of Aragon and Seidel [30], and the games used in the analysis are based
on the techniques of Mulmuley [315]. Skip lists are due to Pugh [339].

Knuth's book [260] gives information on early work on hashing, especially under
the assumption of a distribution on the input elements. The issue of using hashing to
exploit the power of the RAM model, and thereby circumventing the logarithmic lower
bound on searching, was first raised by Yao [420]. Perfect hash functions were defined
by Sprugnoli [385]. Some efficient constructions of perfect hash families and bounds
on were provided by Yao [420], Tarjan and Yao [392], Graham (cited in [420)), and
Fredman and Komlos [155]. The paper of Tarjan and Yao also gives a solution to the
hashing problems for small key space size, i.e., when the value of m is polynomially
bounded in n.

Universal hash functions were defined by Carter and Wegman [88], with the stronger
definition given in the paper by Wegman and Carter [414]. Universal hashing has found
application in a wide variety of areas; for example, see Nisan [320] for an application
to pseudo-random generation and complexity theory. Section 8.5 is based on the work
of Fredman, Komlos, and Szemeredi [156]. A version of the hash table for dynamic
dictionaries has been provided by Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der
Heide, Rohnert, and Tarjan [124]. Their data structure guarantees constant search time,
and the update time is bounded by a constant only in the amortized and expected sense.
They also prove lower bounds showing that the worst-case amortized time for an update
must be at least logarithmic, unless one is willing to increase the search time.

Problems

8.1 Prove Lemma 8.4.

8.2 Prove Lemma 8.5.

8.3 (Due to K. Mulmuley [315].) Consider the following version of the Mulmuley
games. The pool consists of the sets p, S, T, and S, where P is a set of p
players, S a set of b bystanders, T a set of t triggers, and S a set of s stoppers.
Assume that the players are totally ordered and that all sets are non-empty
and pairwise disjoint. The game consists of picking random elements of the
pool, without replacement, until the pool is empty. The value of the game, G~·,
is defined as the expected value of the following quantity: after aI/ triggers
have been chosen, and before any stopper has been chosen, the number
of players who, when chosen, are larger than all previously chosen players.
This is the same as Game E except for the requirement that we start counting
only after all triggers have been picked.

Determine the expected value of G~s.

8.4 Given a set of keys S = {k1,k2, ••• ,kn }, consider constructing a random treap
for S where we do not introduce the dummy leaves needed for the endogenous
property. Is every element of S equally likely to be a leaf in this treap? Discuss
the implications of your result for the performance of a treap.

229

DATA STRUCTURES

8.5 We have shown that for any element in a set S of size n, the expected depth
of a random treap for S is O(log n). Show that the depth is O(log n) with
high probability. Conclude a similar high probability bound on the height
of a random treap. (Hint: One of way achieving this bound is to derive a
Chernoff-type bound on the tail of the distribution of the value of Game A.)

8.6 Let T be a random treap for a set S of size n. Determine the expected size of
the sub-tree rooted at an element XES whose rank is k.

8.7 (Due to C.R. Aragon and R.G. Seidel [30].) Let T be a random treap for the
set S, and let x, yES be two elements whose ranks differ by r. Prove that
the expected length of the (unique) path from x to y in T is O(log r).

8.8 While the Mulmuley games are useful for explaining the analysis of random
treaps, they are easily dispensed with. To see this. attempt to provide a direct
proof of Lemmas 8.6 and 8.7.

8.9 A finger search tree is a binary search tree with a special pOinter (the finger)
associated with it. The finger always pOints to the last item accessed in the
tree. Describe how you would implement the ~D operation starting from
the finger, rather than the root. Finger search trees perform especially well
on a sequence of FINDS that has some locality of reference. Analyze the
performance of a random treap in terms of the ranks of the keys accessed
during a sequence of FIND operations. (The result in Problem 8.7 may be
useful for this purpose.)

8.10 (Due to C.R. Aragon and R.G. Seidel [30].) Another important property of
random treaps is that they adapt well to scenarios where the elements have
specific access frequencies. Suppose that each key in S will be accessed a
prespecified number of times, but the exact order of the accesses is unknown.
Equivalently, consider accesses that involve an element of S chosen at random
according to a specific distribution that is not necessarily uniform. In either
case, the following notion of a weighted treap provides an optimal solution to
the resulting data-structuring problem.

(a) Consider a random treap T for a set S. Associate a positive integer weight
fx with each XES, and define F = Exes fx • Define a random weighted treap
as a treap obtained by choosing priorities for each XES as follows: Px is
the maximum of fx independent samples from a continuous distribution V.
Describe how you will maintain a random weighted treap under the full set of
operations supported by an unweighted treap.

(b) Prove the following performance bounds for random weighted treaps with
an arbitrary choice of the weights fx •

1. The expected time for a FIND, INSERT, or DELETE operation involving a key
x is

where F includes the weight of x, and the keys y and z are the prede
cessor and successor of x in the set S.

230

PROBLEMS

2. The expected number of rotations needed for an INSERT or DELETE oper
ation involving a key x is

0(1. + log fy + fx + log fz + fx),
fy fz

where the keys y and z are the predecessor and successor of x in the
set s.

3. The expected time to perform a JOIN, PASTE, or SPLIT operation involving
sets S1 and S2 of total weight F1 and F2 , respectively, is

0(1 + log ~1 + log ~:),

where x is the largest key in S1 and y is the smallest key in S2.

8.11 In Problem 8.10. it was assumed that the access frequency or probability is
known in advance, and this knowledge was important in the choice of an
appropriate distribution for the elements' priorities. Explain how weighted
treaps can be made to adapt to the observed frequency of access of the
elements in the treaps. There is a solution that does not explicitly keep track
of the observed frequency and will use no more random bits than in the case
where the frequencies are known in advance.

8.12 Let us now analyze the number of random bits needed to implement the
operations of a treap. Suppose we pick each priority Pi uniformly at random
from the unit interval [0,1]. Then, the binary representation of each Pi
can be generated as a (potentially infinite) sequence of bits that are the
outcome of unbiased coin flips. The idea is to generate only as many
bits in this sequence as is necessary for resolving comparisons between
different priorities. Suppose we have only generated some prefixes of the
binary representations of the priorities of the elements in the treap T. Now,
while inserting an item y, we compare its priority Py to others' priorities to
determine how y should be rotated. While comparing Py to some PI. if their
current partial binary representation can resolve the comparison, then we are
done. Otherwise. they have the same partial binary representation and we
keep generating more bits for each till they first differ.

Compute a tight upper bound on the expected number of COin flips or random
bits needed for each update operation. (See also Problem 1.5.)

8.13 Compute a tight upper bound on the expected number of coin flips or random
bits needed for each update operation for random skip lists.

8.14 In Lemma 8.10 we gave an upper bound on the expected cost of a FIND

operation in a random skip list. Determine the expectation of this random
variable as precisely as you can. (Hint: We suggest the following approach.
For each element Xi. determine the probability that it lies on the search path
for a particular query y. and sum this over i to get the desired expectation.
To determine the probability, find a characterization of the level numbers that
will lead to Xi being on the search path.)

231

DATA STRUCTURES

8.15 We have shown that the expected cost of a FIND operation in a random skip
list is O(log n). Prove that the cost is bounded by O(log n) with high probability,
using a Chernoff-type bound for the sum of geometrically distributed random
variables. Can you prove a similar probability bound for the INSERT and DELETE

operations?

8.16 Give a high probability bound on the space requirement of a random skip list
for a set S of size n.

8.17 (Due to W. Pugh [339].) In defining a random leveling for a skip list, we
sampled the elements from L/ with probability 1/2 to determine the next level
Li+1 • Consider instead the skip list obtained by performing the sampling with
probability p (at each level), where 0 < p < 1.

(a) Determine the expectation of the number of levels r, and prove a high
probability bound on the value of r.

(b) Determine as precisely as you can the expected cost of each operation in
this skip list.

(c) Discuss the relation between the choice of the value p and the performance
of the skip list in practice.

8.18 Formulate and prove results similar to those in Problems 8.7 and 8.9 for
random skip lists.

8.19 Consider the scenario described in Problem 8.10 for random treaps. Adapt the
random skip list structure to prove similar results, and compare the bounds
obtained in the two cases.

8.20 (Due to M.N. Wegman and J.L. Carter [414]; see also M. Blum and S. Kan
nan [66].) Consider the problem of deciding whether two integer multisets S1
and S2 are identical in the sense that each integer occurs the same number
of times in both sets. This problem can be solved by sorting the two sets in
O(n log n) time, where n is the cardinality of the multisets. In Problem 7.4, we
considered applying the randomized techniques for verifying polynomial iden
tities to the solution of the multiset identity problem. Suggest a randomized
algorithm for solving this problem using universal hash functions. Compare
your solution with the randomized algorithm suggested in Problem 7.4.

8.21 (Due to J.L. Carter and M.N. Wegman [88].) Suppose that M = {0,1}m and
N = {O, 1}n. Let M = {O, 1}(m+1)Xn denote the space of Boolean matrices with
m + 1 rows and n columns. For any x E M, denote by X(1) the (m + 1)-bit
vector obtained by appending a 1 to the end of x. For A E M, define
hA(x) = x(1)A mod 2. Show that H = {hA I A E M} is a 2-universal hash family.
Is it also strongly 2-universal? Why did we augment the vector x to X(1)?

Compare the complexity and the use of randomness in this construction with
that of the construction described in Section 8.4.

8.22 (Due to J.L. Carter and M.N. Wegman [88].) In this problem we consider a
weakening of the notion of 2-universal families of hash functions. Let g(x) =
x mod n be as before. For each a E Zp, define the function f.(x) = ax mod p,
and h.(x) = g (f.(x)), and let H = {h. I a E Zp, a :/= O}. Show that H is

232

PROBLEMS

nearly-2-universal in that, for all x :/= y,

21HI 6(x, y, H) :s -.
n

Also, show that the bound on the collision probability is close to the best
possible for this family of hash functions.

8.23 (Due to M.N. Wegman and J.L. Carter [414].) Define a super-strong universal
hash family to be a family of hash functions from M to N that is strongly
k-universal for all values of k (simultaneously). Provide a complete charac
terization of function families that satisfy this definition.

8.24 (Due to N. Nisan [320].) An interesting property of a strongly 2-universal hash
function is the following. For any A S;; M define p(A) = IAI/IMI; similarly, for
any S s;; N, define p(S) = ISI/INI. For any E > 0, A c::: M, and S c::: N,. a hash
function h : M - N is said to be E-good for A and S if for x chosen uniformly
at random from M

IPr[x E A and h(x) E S] -p(A)p(S)1 :S E.

Let h be chosen uniformly at random from a strongly 2-universal hash family
H. Show that for any E > 0, A c::: M, and S c::: N, the probability that h is not
E-good for A and S is at most

8.25 Prove Corollary 8.20.

p(A)p(S)(1 - p(S))

E21MI

8.26 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Sho,!, that the
hash table representation analyzed in Theorem 8.19 can be constructed with
expected 0(S2) preprocessing time, using 13s + 1 cells and the same search
time.

8.27 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Show that the
hash table representation described in Theorem 8.19 can be constructed with
worst-case 0(s310gs) preprocessing time, using 13s + 1 cells and the same
search time.

8.28 (Due to M.L. Fredman, J. Komlos, and E. Szemeredi [156].) Show that the
hashing scheme of Section 8.5 can be modified to use space s +o(s) while still
requiring only polynomial preprocessing time and constant query time. (Hint:
Increase the size of the primary hash table and observe that most of the bins
will be empty. Find an efficient scheme for packing together the non-empty
bins, while creating secondary hash tables only for the bins of size greater
than 1.)

233

CHAPT ER 9

Geometric Algorithms and Linear
Programming

IN this chapter we consider algorithms that manipulate geometric objects such
as points, lines, and planes. In Chapter 1 we encountered one such algorithm:
the RandAuto algorithm for line segments in the plane. We will use the RAM
of Sectiotl 1.5.1, with the following additional observations. We will deal with
points whose coordinates are real numbers; we assume that we can compare
these coordinates and perform arithmetic operations (including the square-root
operation) in constant time. Similarly, we can check in constant time whether
or not two line segments intersect. Unless otherwise specified, we use the
Euclidean metric, by which the distance between points (Xl,yt) and (X2,Y2) is
V(XI - X2)2 + (Yl - Y2)2. Our use of randomness will as usual be "discrete"
rather than "continuous": we will use random numbers to select objects at
random from a finite population (say the points or lines that constitute an
instance of a geometric problem), but not to choose, say, a random point from
the interior of a triangle.

9.1. Randomized Incremental Construction

In many computational problems, the use of randomization yields algorithms
that are substantially faster than their known deterministic counterparts. In
computational geometry, however, randomized algorithms often only match the
running times of known deterministic algorithms, but are usually much simpler
to understand and implement.

One strikingly simple approach to designing randomized geometric algorithms
is that of randomized incremental construction. Here the n objects comprising the
input to the problem are considered one at a time, in a random order, and the
effect of each added object on the solution is computed. For many geometric

234

9.1 RANDOMIZED INCREMENTAL CONSTRUCTION

problems, this paradigm bears a strong resemblance to algorithms favored (and
used) by programmers, except that programmers process the objects in the order
present in the input rather than in a random order.

Before proceeding to geometric problems, we give a simple non-geometric
algorithm that motivates randomized incremental construction. Consider ran
domized incremental sorting,' given n numbers to be sorted, we use the following
scheme to sort them. After the ith of n steps (1 ~ i ~ n), we will make sure that
we have i of the input numbers in a sorted list. Clearly these i sorted numbers
will partition the ranks of the remaining n - i (yet unsorted) numbers into i + 1
intervals. The (i + 1)th step consists of choosing one of the n - i yet unsorted
numbers uniformly at random, and inserting it into the sorted list. After n
such insertion steps, we are left with a list of all the input numbers, in sorted
order.

There are many ways of performing this insertion step, and we will study
one that is simple to understand and analyze. Throughout the algorithm, we
maintain a pointer for each number yet to be inserted into the sorted list. After
the ith step, the pointer for each uninserted number specifies which of the i + 1
intervals in the sorted list it would be inserted into, if it were the next to be
inserted (assume for the moment that all the numbers in the input are distinct).
The pointers are bidirectional, so that given an interval we can determine the
numbers whose pointers point to it. What is the work required to maintain these
pointers? Suppose we insert a number x whose pointer points to interval I. On
inserting x, we have three tasks: (i) find all numbers whose pointers point to
I; (ii) update the pointers of all numbers whose pointers point to I; (iii) delete
the pointer from x to I. The important task is (ii). The update task cbnsists of
changing each of the pointers to point to one of the two new sub-intervals of
I created by the insertion of x. Clearly, the work done in this update step is
proportional to the number of pointers pointing to I.

Consider the work done in the ith step when the objects in the input are
considered in a random order. While we could directly analyze this random
variable, we use this occasion to introduce backwards analysis, a tool that will
often prove useful. In this view of things, we imagine that the algorithm is run
backwards starting from the sorted list we have at the end. Thus, in analyzing
the ith step, we imagine that we are deleting one of the i numbers in the sorted
list and updating the pointers. A moment's thought shows that the work done
in updating the pointers in this case is the same as if we had run the algorithm
forward as usual. There is a second crucial component to backwards analysis:
since the numbers were added in random order in the original algorithm, in the
backwards analysis we may assume that each of the i numbers in the sorted
list is equally likely to be deleted at this step. What is the expected number of
pointers to be updated at this step? Since there are i intervals and n - i + 1
pointers remaining after the deletion, the expected number of pointers that were
altered at the ith step is O(n - i}/i), which is O(n/i). Now, we use linearity
of expectation to sum the work done over all the steps, to obtain a bound of
O(Ei n/i) = O(n log n) on the expectation of the total work.

235

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Viewed as yet another variant of quicksort, the above may not be especially
interesting. However, it paves the way for our study of randomized incremental
algorithms for a number of geometric problems.

9.2. Convex Hulls in the Plane

Given a set S of n points, their convex hull is the smallest convex set that
contains all of the n points (see Figure 9.1). In the plane, intuitively, if we
were to surround the points of S by a large, stretched rubber band, the convex
hull is the (convex) polygonal shape that would be enclosed by the band when
released. Similarly, for points in three dimensions the analogy would be one of
"gift-wrapping" the points in S to form their convex hull. We will be interested
in algorithms for computing the convex hull of S given S. We denote by conv(S)
the convex hull of S. We begin with the case when the points in S are in the
plane.

Figure 9.1: The convex hull of 12 points in the plane.

The boundary of conv(S) forms a convex polygon whose vertices are a subset
of S; whenever there is no risk of confusion, we will refer to the polygon as
conv(S). The problem of computing a convex hull in the plane is then the
following: given S, we are to compute the polygon (bounding) conv(S). The
output is to be given as a list containing the points of S that appear as vertices
of conv(S), in counterclockwise order as they appear on the polygon; the starting
point for the list may be arbitrary. For definiteness, we prescribe that the first
point in this ordering is the point in S with the smallest x-coordinate. Assume
that no three points in S lie on a straight line. This assumption can be dispensed
with in an implementation by exercising due care. We now show that the
randomized incremental paradigm described above in the context of sorting can
be applied to this problem.

Before we describe the algorithm, we note some basic facts about computing
convex hulls in the plane.

236

9.1 CONVEX HULLS IN THE PLANE

Exercise 9.1: By making use of the fact that sorting n numbers requires Q(n log n)
steps in our model of computation, prove that finding the convex hull of n pOints
requires Q(n log n) steps. Indeed, the lower bound for sorting (and as a consequence
of this exercise, finding the convex hull) holds even for randomized algorithms.

Exercise 9.2: Let S be a set of n pOints in the plane each represented by a pair of
coordinates. Given another point p = (x, y), how many steps suffice to determine
whether p lies in the convex hull of S?

The algorithm first randomly permutes the points in the input set S; let Pi
be the ith point in this random ordering, for 1 < i < n. Let Si denote the set
{Ph" . , pJ Next, the algorithm proceeds through n stages. After the ith step,
the algorithm will have computed conv(Sj). During the ith step, it adds Pi to
conv(Si-t>, forming conv(Si) in the process. We now specify the details of this
update step.

We maintain at all times a point in the interior of conv(S); in particular,
we could utilize the centroid of conv(S3) (which can be computed in constant
time) for this purpose. Call this point Po. We also maintain after the ith step a
(circular) linked list containing the vertices of conv(Si). In addition, for simplicity
of description, we imagine that this linked list also contains the edges joining
successive vertices in this list (this can easily be avoided in an implementation,
with minor additional work). Let S\Si denote the set of points yet to be added
after the ith step, for 3 :::;; i:::;; n -1. For each such point P e S\Sj, we maintain a
(bidirectional) pointer from P to the edge of conv(Si) cut by the ray emanating
from Po, and passing through p. We say that P cuts this edge of conv(S;). Thus,
given any edge of conv(Si), we can enumerate all points P that cut the edge in
time linear in the number of such points.

Having specified the data structures, we describe the actions required to
update these structures at each step. The point Pi inserted at the ith step is either
inside or outside conv(Sj_I). Using the line segment PiPO and the associated
pointer, we can in constant time detect which of these two cases holds (our
assumption that no three points are collinear precludes the possibility that Pi
lies on the boundary of conv(Si-t». If Pi is inside conv(Si-l), we delete the pointer
from Pi and proceed to step i + 1. On the other hand, if Pi is outside conv(Si-d,
we must update the linked list representing the polygon bounding the hull. The
vertices of conv(Si-l) are partitioned into three sets by the addition of Pi:

1. Vertices of conv(Si-l) that have to be deleted because they are not vertices of
conv(Si).

2. Two vertices of conv(Si_d that become the neighbors of Pi on conv(Si). Let us
denote these vertices VI and V2.

3. Vertices of conv(Si_l) that remain in conv(Sj) with their incident edges unchanged.

Clearly the end-points of the edge '1 intersected by the line-segment PiPO are of
type (1) or (2). By marching away from '1 (on both sides) along the linked list

237

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

representing conv(Sj_d, we can detect the vertices of types (1) and (2). We do so
in time linear in the number of such vertices. As we do so, we detect the points
in S\Sj that cut the edges being deleted, and update their pointers to either the
edge PjVl or PjV2. This takes constant time (since we have to check only two
edges PiVl and PjV2) for each point of S\Sj whose pointer needs to be updated
(see Figure 9.2).

Figure 9.2: The addition of Pi results in the deletion of vertices sand t. and the pointer
for q requires updating while that for r does not.

What is the total work done at the ith step? The cost of deleting an edge
of conv(Sj_d can be charged against the cost of creating it, since an edge can
be deleted only once after being created. Since only two edges are created at
each step, the total number of these edge creations/deletions (over all steps) is
at most 2n. What about the cost of updating the pointers at the ith step? This
is the number of points P in S\Sj such that PPo cuts an edge that is deleted
during the step. To bound the expectation of this random variable, we resort
to backwards analysis. Imagine running the algorithm backward, and deleting a
point of conv(Sj\S3) to form conv(Sj_d. Then, the number of pointers updated
in the ith step of the original algorithm is the same as the number deleted in
the corresponding step of the backward algorithm. We show that the expected
number of pointers updated is O(n/i), conditioned on any fixed set of points
Sj \S3 from which we delete a random point in the backward step. Since this
upper bound holds for any set of i points, the conditioning on a particular set
Sj \S3 can be removed.

For a point P e S\Sj, let ep be the edge of conv(Sj) cut by PPo. The probability
that P's pointer is updated is precisely the probability that ep is deleted as a result
of the deletion step. Now, ep is deleted if one of its two end-points is deleted
in the backward step. Since the point being deleted from Sj is chosen uniformly

238

9.3 DUALITY

from the i - 3 points in Si\S3, this probability is O(l/i). The expected number
of pointers updated is O(n - i}/i), so that the total work done at this step is
O(n/i). A crucial point is that in the deletion step of the backward algorithm,
we delete a random point in S;, not a random vertex of corw(S;). We now invoke
linearity of expectation to bound the expected running time of the algorithm by
O(n log n).

Tbeorem 9.1: The expected running time of the above randomized incremental
algorithm for computing the convex hull of n points in the plane is O(n logn).

We should stress again that the chief advantage of the above algorithm is its
extreme simplicity of implementation. An incremental approach such as .this is
natural to program. The (expected) running time is asymptotically the same as
that of many known deterministic convex hull algorithms and matches the lower
bound. More importantly, the same simple approach lends itself to computing
convex hulls of points in higher dimensions, where deterministic algorithms
are rather complicated. Before we proceed to the three-dimensional case, we
introduce the notion of geometric duality.

9.3. Duality

The notion of geometric duality is fundamental to computational geometry and
plays a key role in designing algorithms. The dual of the point p = (a, 9) in the
plane is the straight line whose equation is ax + by + 1 = 0; conversely, the dual
of the straight line defined by ax + by + 1 = 0 is the point (a, b). Thus duality in
the plane maps points to lines, and lines to points. The mapping is involutary:
the dual of the dual of a point is the point itself, and a similar statement holds
for a line. A simple calculation shows that if a point p is at distance d from
the origin, its dual (a line t) is perpendicular to the line joining p to the origin.
Further, the distance between the origin and the closest point on t is lid, and
t does not pass through the quadrant containing p. Figure 9.3 illustrates this.
In this definition, we disallow lines through the origin and points at infinity. We
also disallow the point (0,0).

Exercise 9.3: Let P1 and P2 be two points, and 11 and 12 be their respective dual lines.
Show that the line t passing through P1 and P2 is the dual of the point of intersection
of 11 and 12.

We will apply the duality relationship to map the convex hull problem into
another geometric problem in the plane. The half-plane intersection problem
is the following: the input is a set H of half-planes {hI, h2, ••• , hn}; we are to
determine the intersection of these half-planes. This will be a convex polygon

239

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

y
t : ax + by + 1 = 0

p=(a,b)

________________ ~------~'-----------------------~x

Figure 9.3: Duality between a point and a line.

if the intersection is non-empty, and we ask for the algorithm to output it as a
linked list of vertices much as we did in the convex hull problem.

We will show that, in a sense, the half-plane intersection problem is the dual
of the convex hull problem. Assume for the moment that the convex hull of the
given set S contains the origin of the coordinate system (see Exercise 9.4 below)
and that the origin is not one of the input points. Given a line I in the plane
that does not pass through the origin, we let 1+ denote the half-plane bounded
by I containing the origin. Throughout this chapter, all half-planes/half-spaces
will be open half-planes/half-spaces. Let Ii be the dual of Pi e S, and hi = It.
The proof of the following theorem is elementary, and is a consequence of the
result in Exercise 9.3.

Tbeorem 9.2: Let the convex hull of S contain the origin, and let the origin not
be one of the points in S. Let Pi"Pi2' and Pi3' be three vertices of the convex hull of
S, ocCurring in that order in the output. Then hi" hi2' and hi3 bound the intersection
of the half-spaces hi. appearing on the boundary of the intersection in that order.

Exercise 9.4: Give a linear-time transformation that shifts the points of S to ensure
that the origin lies inside their convex hull. Once we perform this operation, it is
easy to satisfy the condition that the origin not be in S: since the origin is inside the
convex hull of S. it need no longer be considered for computing the convex hull and
can therefore be deleted from S even if it occurs in S.

Each hi can be determined from Pi in constant time. Given the intersection
of the half-spaces, we can identify in linear time the line segments (and hence

240

9.4 HALF·SPACE INTERSECTIONS

the lines) that actually appear on the boundary of the intersection. Each line
bounding the intersection now corresponds to a point on the convex hull of S,
and we can read these off in order in linear time. In other words, an algorithm
that computes the intersection of half-planes yields an algorithm that computes
the convex hull of points in the plane.

Given an algorithm, data structure, or analysis that works in the "primal"
space (in this case, points whose convex hull we wish to compute), there is a
corresponding algorithm, data structure, or analysis that works in the dual space
(in this case, half-planes whose intersections we wish to compute). Indeed, in
Problem 9.2 we derive a randomized incremental algorithm for computing the
intersection of n given half-planes.

In the next section we will exploit the notion of duality in higher dimensions.
The following exercise will pave the way for computing convex hulls in three
dimensions, by reducing the problem to computing half-space intersections in
three dimensions.

Exercise 9.5: Extend the notion of duality to three dimensions, working through the
statements of Exercises 9.3 and 9.4, and of Theorem 9.2. In fact, the correspondence
can be made in d > 3 dimensions as well.

9.4. Half-space Intersections

The goal of this section is to develop a randomized incremental algorithm for
computing the intersection of n half-spaces in three dimensions. The algorithm
will be shown to have an expected running time of O(nlogn); by applying the
results of Exercise 9.5, we will then have an algorithm for computing the convex
hull of n points in three dimensions with an expected running time of O(n log n).

Given a set S of n half-spaces in three dimensions, their intersection inter(S)
is a (possibly empty) convex polyhedral set in space. Note that the intersection
need not be bounded. Every facet of this polyhedron is contained in a plane
bounding one of the half-spaces. We assume that each half-space is given to
us as a linear inequality whose variables are the coordinates; the corresponding
equality gives the equation defining the plane bounding the half-space. Since
inter(S) is a polyhedron (when non-empty), we can represent it as a graph each
of whose vertices corresponds to a vertex of this polyhedron, with vertices of
the graph being adjacent if the corresponding vertices on the polyhedron are
joined by a line formed on its surface by the intersection of two half-spaces
in S. When inter(S) is unbounded, we assume for convenience that there is a
point at "infinity" that is the common end-point of all semi-infinite edges of the
polyhedron. Given S, our goal is to compute the graph representing the facets
of the polyhedron inter(S); we represent this graph by giving the positions (in
space) of all its vertices, together wiin the adjacencies between vertices.

241

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Since every facet of this polyhedron is contained in a plane bounding one of
the half-spaces and no plane contains more than one facet, the number of facets
is at most n. Further, the graph representation of inter(S) is a planar graph,
in which the number of vertices and the number of edges are both O(n). We
assume that no four such bounding planes pass through a common point, so
that every vertex of the polyhedron/graph (except possibly the "infinity" vertex,
when necessary) has degree three. Just as we speak of the edges adjacent to a
vertex, we may also speak of the facets of the polyhedron (corresponding to the
faces of the graph) adjacent to a vertex; thus there are three facets adjacent to
each (finite) vertex of inter(S). Likewise, we may speak of the edges bounding a
facet, and of the two facets on either side of an edge.

The randomized algorithm for computing inter(S) is very similar to the one
we have described for computing the convex hull of points in the plane, in
Section 9.2. The algorithm first randomly permutes the half-spaces in the input
set S; let hi be the ith half-space in this random ordering, for 1 < i < n. Let
Si denote the set {hh"" h;}. Next, the algorithm proceeds through n stages.
After the ith step, the algorithm will have computed inter(S;). During the ith
step, it adds hi to inter(Si_d, forming inter(Si) in the process. Geometrically,
this can be viewed as cutting away the portion of inter(Si_l) not contained
in hi. In the process, some vertices of the polyhedron inter(Sj_d are deleted,
and some new vertices are added. We describe the details of this addition
process' now, and then give the analysis. We assume first for simplicity that
the intersection of {hhh2,h3,h4 } is bounded; thus inter(Si) will be a bounded
polyhedron throughout the execution of the algorithm. This assumption can
easily be removed and is the subject of Exercise 9.8.

Let S\Si denote the set of half-spaces yet to be added after the ith step. In the
following description, we concern ourselves only with half-spaces in S\Si whose
bounding plane intersects inter(Si_d; it will be clear that the remaining half
spaces are easily dealt with. For any half-space h, let h denote the complement
of h. For a half-space h, we say that a vertex of inter(Si_l) conflicts with h if that
vertex is in h.

Assume for the moment that for each half-space h e S\Si, we have a (bidi
rectional) pointer to some vertex of inter(Si_l) that conflicts with h. (The
precise choice of this vertex will become apparent from the discussion fol
lowing Exercise 9.7.) Under this assumption, the details of the algorithm are
fairly straightforward. The process of adding hi to form inter(Si) begins at the
vertex of inter(Sj_l) that conflicts with hj. Starting at this vertex, we search
the graph representing inter(Si_l), ensuring throughout that we do not "enter"
inter(Sj_l) n hj. In the course of this search, we determine the vertices and the
edges of inter(Sj_d that are destroyed by the addition of hj, and the newly
created vertices of inter(Sj) (all of which lie on the plane bounding h;).

Exercise 9.6: Show that the vertices destroyed by the addition of hi form a connected
component of the graph representing inter(S,_,).

242

9.4 HALF-SPACE INTERSECTIONS

Clearly, the cost of this search is proportional to the sum of the number of
vertices destroyed and the number of vertices created. As in our analysis of the
convex hull algorithm in two dimensions, we may ignore the cost of the deletions,
since a vertex is deleted at most once and thus it suffices to count vertices when
they are created. To analyze the expected number of vertices created by the
addition of h;, we resort to backwards analysis again. Thus, we imagine that we
have inter(Sj), from which we delete a randomly chosen half-space. Using the
fact that the number of vertices and edges in a planar graph with k faces is O(k),
the following exercise requires an analysis very similar to that in Section 9.2.
The approach once more is to first derive the result conditioned on Sj being a
fixed set of half-spaces one of which (chosen at random) is deleted, and then
removing the conditioning by noting that the result is independent of the set Sj
we start with.

Exercise 9.7: The expected number of vertices created at any step of the randomized
incremental half-space intersection algorithm is a constant.

It remains to substantiate the assumption that for each half-space h e S\S;,
we have a (bidirectional) pointer to a vertex of inter(Sj_l) that conflicts with
h. We now describe how this information can be maintained, and then analyze
the cost of doing so. In particular, we must specify how the pointers for the
half-spaces in S\Sj are updated following the addition of hj.

When we destroy a vertex v of inter(Sj_l) during the addition of h;, we check
whether there are any pointers from v to half-spaces in S\Sj (recall· that our
pointers are bidirectional). For each such pointer (pointing to a half-space
h e S\Sj), we must shift it to a new vertex w e h n inter(S;). How do we find
such a vertex w? The process is similar to that used in updating inter(Sj_.) to
form inter(S;). Note that the vertex v is in Ii n hj. We perform a walk on the
graph representing inter(Sj_.) starting at v, taking care never to enter h, until we
first arrive at a vertex of inter(S;). On arriving at such a vertex of inter(Sj), we
have found the new vertex w we seek, since it is in Ii and thus conflicts with h.
We move the bidirectional conflict pointer for h to point to w.

It remains to analyze the cost of this search. As in the analysis yielding
the statement of Exercise 9.7, we use the fact that every vertex of the graph
has degree 3. Therefore, the cost of this search is proportional to the number
of vertices in Ii n hj n inter(Sj_.). Equivalently, this is the number of destroyed
vertices of inter(Sj_.) in conflict with h, plus the number of newly created
vertices of inter(Sj) in conflict with h. In considering the asymptotic total cost
for maintaining the pointer for h, it suffices to count only the newly created
vertices, since any vertex that is destroyed has been counted once when created.

We now wish to bound the expected number of such newly created vertices
in conflict with h, summed over all h e S\Sj. This is exactly

L I{h e S\Sj : h conflicts with v}l, (9.1)
v

243

GEO;\fETRIC ALGORITHMS AND LINEAR PROGRAMMING

the summation being taken over the set of the vertices of inter(Sj) newly created
by the addition of hj. We bound the expectation of (9.1).

For a set of half-spaces H, let c(H, h) denote the number of vertices of
inter(H) in conflict with h. Resorting again to backwards analysis, we consider
first a fixed set Sj from which a random half-space is deleted to give inter(Sj_I).
Noting that each vertex of inter(Sj) has degree 3, the expectation of (9.1) is thus
bounded by

3 i L c(Sj,h).
heS\Sj

Since hi+1 is chosen uniformly at random from S\Sj,

1
E[c(S;, hi+dl = -. ~ c(S;, h). n-l L-

heS\Sj

Combining (9.2) and (9.3), the expectation of (9.1) is bounded above by

3(n - i)
--.---'-E[c(S;, hi+dl.

I

(9.2)

(9.3)

The random variable c(Sj, hi+l) also counts the expected number of vertices
destroyed by the addition of hi+h the half-space added at step i + 1. Thus, the
expectation of the sum over all i of (9.1) (which measures the total work in
updating pointers over the course of the entire algorithm) is bounded above by

~ 3(n - i) E[N be f . d ed· 1 L- i um r 0 vertices estroy at time i + 1 .
j-I

(9.4)

For a vertex v created in the course of the algorithm, let tc(v) denote the time
(step number) at which it is created, and td(V) the time at which it is destroyed.
Then, (9.4) can be rewritten as

(9.5)

where'v ranges over all vertices ever created during and execution of the
algorithm. Since tc(v) < td(V) - 1, we can bound (9.5) from above by

But we have already seen in Exercise 9.7 that E[I{v I tc(v) = i}l] is a constant.
We thus have:

Tbeorem 9.3: The expected running time of the randomized incremental algorithm
for computing the intersection of n half-spaces in three dimensions is O(n log n).

9..5 DELAUNA Y TRIANGULATIONS

Exercise 9.8: In the above description, we assumed that the intersection inter(S,)
was bounded for all i ~ 4. How can this assumption be removed?

9.5. Delaunay Triangulations

Let P = {Ph ... , Pn} be a set of n points in the plane. For a point Pi e P, let
cell(Pi) denote the set of points in the plane that are closer to Pi than to any
Pj e P, for j =1= i.

Exercise 9.9: Show that cell (Pi) is a (possibly unbounded) convex polygonal region
for each i, and that the regions cell(p,) form a decomposition of the plane into n
open convex polygonal regions.

The partition of the plane described in Exercise 9.9 is known as the Voronoi
diagram of P, and we will denote it by vor(P). The convex polygonal region
cell(Pi) corresponding to Pi is known as the Voronoi cell of Pi. The notion of
Voronoi cells and diagrams can in fact be readily formulated for points in higher
dimensional space, but we will focus on points in the plane here.

The Voronoi diagram of a set of points is a fundamental structure in computa
tional geometry, and has many applications. We will be interested in algorithms
for constructing vor(P) and related structures, given P. We assume henceforth
that no four points of P lie on any circle, and that no three lie on any straight
line. These assumptions greatly simplify the descriptions of the algorithms dis
cussed below and may be removed with some care. The Voronoi diagram of a
set of points in the plane has a number of properties that are easy to verify:

Exercise 9.10:

1. Show that the boundary between any two cells (known as a Voronoi edge) is the locus
of pOints equidistant from two pOints of P.

2. Viewing vor(P) as a planar graph, show that every vertex of the graph has degree 3.

3. Show that if cell (Pi). cell(pj), and cell(pk) share a vertex in the Voronoi diagram,
then the circle passing through Pi. PI. and Pk contains no other points of P.

4. Show that if PI is a point of P on the convex hull of P, then cell(p;) is unbounded. Is
the converse also true?

Let us view vor(P) as a planar graph, each of whose faces corresponds to a
point Pi E P. Consider the planar dual of this graph, with a vertex at each point
Pi E P (representing the face cell(Pi», and an edge between two vertices if the

245

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

corresponding cells share an edge in vor(P). This dual graph is known as the
Delaunay triangulation of P, which we denote by del(P) (see Figure 9.4). From
property 2 of Exercise 9.10, it follows that del(P) is indeed a triangulation (i.e.,
each of its facets except for the outermost one is a triangle). Clearly, given P
and vor(P), we can construct del(P) in time O(n).

-_ .. _._._< . , ,.,
.....•..

, .
...........

Figure 9.4: A Voronoi diagram (dashed lines) and the corresponding Delaunay triangula
tion (solitl lines), for a set of seven points in the plane.

Exercise 9.11: Show that vor(P) can be constructed from de/(P) in time O(n).

In the remainder of this section, we concentrate on algorithms for constructing
del(P); by Exercise 9.11 above, this will readily imply an algorithm for computing
vor(P). We first describe a parabolic transformation that reduces the problem of
computing del(P) to one of computing the intersection of n half-spaces in three
dimensions. Given the points of P in the xy-plane, consider the paraboloid
z = x2 + y2. Denote by qj the point (Xj,y;,Xf + Yf) on the surface of the
paraboloid that is directly "above" Pi = (X;, Yi, 0). Let hi denote the half-space
that is above the plane tangent to the paraboloid at qi (see Figure 9.5). Consider
the polyhedron formed by the intersection of the hi.

Exercise 9.12: Let P be a pOint in the xy-plane at distance di from Pi, and let q be
the point on the paraboloid directly above p. Show that vertical distance between q
and the tangent plane bounding hi is d!.

Exercise 9.12 has the following consequence, which is easy to prove; a detailed
proof may be found in any of the texts on computational geometry listed in the
Notes section.

246

9..5 DELAUNAY TRIANGULATIONS

Figure 9.5: The parabolic transformation.

Tbeorem 9.4: Given P = {PI, ... ,Pn}, let H = {hI, ... , hn} as described above.
Let inter(H) denote the intersection of the half-spaces above the tangents at the
points in H. The Delaunay triangulation of P results from projecting the edges of
inter(H) vertically down to the xy-plane.

Corollary 9.5: Given inter(H), we can compute del(P) in time O(n).

By Corollary 9.5, we thus have a randomized incremental algorithm for
computing del(P) that runs in expected time O(nlogn): we transform P to H
using the parabolic transformation and invoke the algorithm of Section 9.4 to
compute inter(H).

We now focus on a special case of the problem of computing del(P), in
which the points of P are the vertices of a convex polygon. We will show
in Section 9.5.1 below that a simple randomized algorithm runs in expected
time O(n) for this case. Before we do so, we will require the following easy
consequence of Exercise 9.6.

Exercise 9.13: Let de/(P) denote the Delaunay triangulation of a set P of pOints in
the plane. Consider the addition of a new point q; the Delaunay triangulation of pu{q}
can be formed by deleting some triangles of de/(P), and retriangulating the affected
region. Show that the set of triangles destroyed forms a connected component of the
graph de/(P).

247

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

9.5.1. Cbew's Algoritbm

We now show that a simple randomized algorithm computes del(P) in expected
time O(n) when the points of P are the vertices of a convex polygon. We will
require the points of P to be given to us in the order in which they appear on
this convex polygon.

The algorithm is recursive, and is as follows. We pick a random point peP;
let q and r denote its neighbors on the boundary of the given convex polygon.
We recursively compute del(P\{p}), while IP\{p}1 > 3. Having computed
del(P\{p}), we augment it to form del(P) by the following three steps:

1. Add the triangle pqr to del(P\{p}). Let D denote the resulting graph.

2. Identify all triangles of del(P\{p}) whose circumcircle contains p (such triangles
can no longer be Delaunay triangles), by a depth-first search of the dual graph
of del(P\{p}), much as in the search for conflicting vertices in the half-space
intersection algorithm of Section 9.4. By Exercise 9.13, these triangles form a
connected component of del(P\{p}). Let S denote the set consisting of these
"bad" triangles together with the triangle pqr.

3. Remove from D all edges that have triangles of S on both sides and retriangulate
the resulting face by introducing all diagonals that have p as an end-point.

The second step above can be performed in time linear in the number of
triangles in S. This number, in turn, is one more than the number of edges
introduced in the third (retriangulation) step above. Thus the expected cost
of the update is proportional to the expected degree of the vertex p in del(P).
Since del(P) is a planar graph, this expected degree is a constant (since p was
chosen uniformly at random from the n points in P, and del(P) has O(n) edges).
Summing this expected cost over the n - 3 recursive steps, we have:

Tbeorem 9.6: The above algorithm computes del(P) in expected time O(n), pro
vided the points of P are vertices of a convex polygon given in the order in which
they appear on the boundary of the polygon.

Exercise 9.14: Why does the above running time guarantee fail if the vertices of P
are not vertices of a convex polygon?

9.6. Trapezoidal Decompositions

Our next example of a randomized incremental algorithm (sometimes also
known as the vertical decomposition) comes from the construction of a trape
zoidal decomposition for a set of line segments in the plane. The trapezoidal

248

9.6 TRAPEZOIDAL DECOMPOSITIONS

decomposition is a basic structure for representing and manipulating an ar
rangement of line segments. Let S denote a set of n (possibly intersecting) line
segments in the plane; we assume that the x-coordinates of the segments are
all distinct. Let k denote the number of points at which two or more segments
intersect. Imagine passing a vertical line through each end-point of each segment
of S, as well as through each of the k intersection points. These vertical lines
continue until they hit one of the other segments, where they stop. Some of these
lines will continue to infinity, because they do not hit any other line segments.

Figure 9.6: A trapezoidal decomposition of three segments.

The resulting decomposition of the plane is known as a trapezoidal decompo
sition (see Figure 9.6); each of the regions into which the plane is partitioned
is in general a trapezium with two parallel vertical sides. Some regions are
infinite, of course. By imagining that the region containing the segments in S
is enclosed in a large rectangular "bounding box," we can view the trapezoidal
decomposition of S as a planar graph each of whose vertices is either (i) an
end-point of a segment in S, or (ii) a point at which two or more segments of S
intersect, or (iii) a point at which the vertical line through a vertex of type (i) or
(ii) hits a line segment or the bounding box. It is important to note that a face
of this planar graph may have an arbitrary number of vertices, even though it
is geometrically a trapezium.

Exercise 9.15: Consider computing the trapezoidal decomposition of S, and repre
senting the output as a planar graph. The size of this graph is Q(n + k), which is
clearly a lower bound on the number of steps in the computation. Show that the
computation also requires Q(n log n) comparisons.

249

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Let trap(S) denote the trapezoidal decomposition of S, represented as a planar
graph. We now give a simple randomized incremental algorithm for computing
trap(S), with expected running time O(n log n + k). By the result of Exercise 9.15,
this is the best possible.

Assume without loss of generality that no line in the input is vertical. The
algorithm first randomly permutes the line segments in S; let Sj be the ith
segment in this random ordering. Let Sj denote {s}, ... , Sj}. The algorithm
proceeds through n stages, after the ith of which it will have computed trap(S;).
During the ith step, i> 1, it adds Sj to trap(Sj_d, forming trap(Sj) in the process.
We first specify the details of this update step, and then proceed to analyze the
running time.

For i > 1, let S\Sj denote the set of points of S to be added in the incremental
construction after the ith step (i.e., the set {Sj+},Sj+2, ... Sn}). For each segment in
S\Sj, we maintain a bidirectional pointer to the face of trap(Sj) containing its
left end-point. Thus, given a face of trap(Sj), we can read off the segments in
S\Sj contained in that face in time linear in the number of such points.

Next, we describe how trap(Sj-d is updated to trap(Sj) by the addition of Sj.

We begin by identifying the face of trap(Sj_l) containing the left end-point of Sj.

We then march along Sj to its other end-point, updating the data structures as
we go along. Let us consider the different update actions that may be necessary.
We first pass a vertical line through the left end-point of Sj, determining the
upper and lower end-points of this vertical line (the points above and below
where it first hits a segment in Sj_}, or a horizontal edge of the bounding box);
let us refer to the resulting vertical line segment(s) as the vertical attachment(s)
for the left end-point of Sj.

As we proceed along Sj, we have to split each face of Sj-l that it cuts into
two faces. In particular, whenever a segment in Sj-l is cut by Sj, vertical
attachments are computed for the point of intersection (Figure 9.7). On arriving
at the right end-point of Sj, vertical attachment(s) are again computed for this
point.

Having computed the new vertical attachments resulting from the addition
of Sj, we make a second pass through the resulting planar graph (call it G;).
Whenever Sj cuts a vertical edge of trap(Sj_l), one portion of that vertical edge
is deleted, and consequently two faces of Gj are merged (Figure 9.8).

The final update step involves updating the bidirectional pointers of the
segments in S\Sj. We need only update the pointers of segments whose left
end-points were contained in faces of trap(Sj_d intersected by Sj.

For a face / of trap(Sj_d, let n(f) denote the number of vertices of trap(Sj_d
bounding /, and let ((f) denote the number of segments of S\Sj whose left
end-points lie in /. We use backwards analysis to analyze the expected cost of
updating trap(Sj_d to obtain trap(S;). Imagine that at step i line segment in
trap(Sj) chosen uniformly at random is deleted. As before, this is valid since
any of the i segments in Sj is equally likely to have been labeled Sj in the initial
random permutation. The following is an easy consequence of the preceding
discussion, and we invite the reader to verify it:

250

9.6 TRAPEZOIDAL DECOMPOSITIONS

Figure 9.7: The planar graph Gj resulting from the addition of St.

Exercise 9.16: The expected update cost on adding Si is proportional to

~ L L [n(f) + t(f)],
SES; /EF(s)

(9.6)

where F(s) is the set of those faces of trap(Si) whose boundary contains at least one
point of the segment s.

It remains to bound the expression in (9.6) in terms of nand k. Clearly,
the term L:sES; L:/EF(S) t(f) is proportional to the total number of pointers for
segments in S\Sj, which is n - i (no two segments have end-points with the
same x-coordinate, so that a face f occurs in F(s) for at most four segments
s). We next observe that L:sES; L:/EF(S) n(f) is proportional to i + k j , where k j is
the number of points at which two or more segments of Sj intersect. Thus the
expected update cost when adding Sj is proportional to (n + E[kj])/i. It remains
to compute the expectation of kj, given that Sj is a random subset of i segments
from S. Let x be one of the k points at which two segments (say rand s) of S
intersect. Now, x occurs in trap(Sj) if and only if both the segments rand S are
in Sj. The probability of this is proportional to i2/n2

• By linearity of expectation
over the k possible choices of x, it follows that E[kjl is o (ki2 /n2). Here we

251

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Figure 9.8: Truncating vertical attachments to convert Gj to trap(Sj).

explicitly make use of the fact that Sj is a random subset of S, a fact we did
not explicitly use in our previous backwards analyses (where we used only the
fact that given a set Sj, a random element is deleted from it for the backwards
analysis). Summing the update costs over all the steps, we then have:

Theorem 9.7: The expected cost of building the trapezoidal decomposition of n
line segments in the plane is O(n log n + k), where k is the number of points at
which two or more of the segments intersect.

9.7. Binary Space Partitions

In this section we study the binary space partition problem (Section 1.3) in three
dimensions. We begin with a different analysis of the RandAuto algorithm of
Section 1.3, making use of a notion known as free cuts. Although this will afford
no asymptotic performance improvement in the planar case, it will be of crucial
importance in the three-dimensional case that we will consider next.

Recall that in the binary planar partition problem, we are given a set S =
{S.,S2, ... ,SIl} of non-intersecting line segments in the plane. We wish to find a
binary planar partition such that every region in the partition contains one line
segment, or a portion of one line segment. The RandAuto algorithm considers

252

9.1 BINARY SPACE PARTITIONS

the lines one at a time, in a random order. When a line segment is chosen, it is
extended until it partitions the region containing it into two regions.

Suppose that at some stage of the RandAuto algorithm we have a region
R and a segment s that passes right through R. Clearly it is advantageous to
partition R along s immediately (Figure 9.9), since this prevents s n R from ever
being cut at some later stage. Further, we can make this cut at no additional
increase in the number of segments that are cut, since s partitions R. Such a cut
is called a free cut.

Figure 9.9: An example of a free cut.

The observation that we make no extra cuts (and thus do not increase the
size of our binary autopartition tree) by making use of free cuts implies (by
Theorem 1.2) that RandAuto augmented by the use of free cuts produces an
autopartition whose expected size is O(n log n). However, it is instructive to
prove this directly in preparation for the three-dimensional case.

Theorem 9.8: The expected size of the autopartition produced by RandAuto with
free cuts is O(n log n).

PROOF: As in Section 1.3, we denote by P1t the auto partition induced by the
permutation 'It. For an input segment s, consider those segments u such that l(u)
intersects s, and label them Uh U2, • .. ,Uk based on the left-to-right order of the
intersections of the lines l(uj) with s. We study how many of these are likely to
cut s in P1t.

Consider Figure 9.10. Suppose that the ordering induced by the randomly
chosen permutation 'It is Uh U3, U4, U2, v. Then v is cut by Uh U3, and U4 but
not by U2. When v has been cut by Ul and U3, the part of v between these cuts
partitions a region and therefore makes a free cut of that region. It is helpful to
think of an input segment in the problem (such as v) as being rigidly moored
at its end-points - when two cuts are made on v, the portion in between the
cuts "falls off" and drops out for the remainder of the problem; it will never be
cut again. Two pieces of v remain, each moored at one end-point; in the course

253

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

v

Figure 9.10: The effect of free cuts.

of further processing, each piece may lose more pieces because of cuts causing
the unmoored end to "fall off." This continues until v occurs in 1t, at which
point l(vr becomes a partitioning line for the region(s) containing the surviving
piece(s) of v, and v is not cut again.

Thus, l(uj) cuts v only if Uj precedes all of v, Uh U2,"., Uj-l or if Uj precedes all
of V,Uj+h ... ,Uk in 1t. -The probability of the former event is 1/(i + 1), and that
of the latter is 1/(k - i + 2). Both events include the event that Uj is the first
OfV,Ul,U2, ... ,Uk in the order induced by 1t, which has probability 1/(k + 1). As
in Section 1.3, we use the notation U -I v to mean that during the execution, an
extension of segment U cuts the segment v. Therefore,

1 1 1
Pr[uj -I v] < i + 1 + k - i + 2 - k + l'

Summing this over all v and all Uj yields O(nlogn) for the expected number of
cuts, as' in Theorem 1.2. 0

We now consider the three-dimensional version of the binary partition prob
lem. The input is a set S of n non-intersecting triangles {jh/2, ... ,In}. We
assume that more complex polyhedral scenes are first decomposed into such
triangles, just as we assumed that a planar scene had been broken up into line
segments. For a triangle f, we define h(f) to be the (infinite) two-dimensional
plane containing f.

One interesting aspect of the three-dimensional problem is the following.
In three dimensions, unlike the two-dimensional case, a total ordering of the
triangles may not exist with respect to the occlusion relation; cyclic dependencies
may exist. We will nevertheless be able to build a binary partition in three-

254

9.7 BINARY SPACE PARTITIONS

dimensional space by methods very similar to those used in the two-dimensional
case.

In an analogous way to a binary partition of the plane, we can speak of a
binary partition in three-dimensional space. The partition consists of a binary
tree together with the following additional information. Associated with a node
v of the tree is a convex polyhedral region r(v). Associated with each internal
node v of the tree is a plane h(v) that intersects r(v). The region corresponding
to the root is all of three-dimensional space. The region r(v) is partitioned by
h(v) into two regions rl(v) and r2(v), which are associated with the two children
of v. We use a random permutation 'It of {1, 2, ... , n} and free cuts to obtain
a partition of expected size 0(n2) of the planes {h(fd,h(h), ... ,h(fn)}. Thus
the algorithm for three dimensions is the obvious extension of the RandAuto
algorithm with free cuts.

Theorem 9.9: The expected size of the autopartition generated by a random
permutation 'It with free cuts is 0(n2).

PROOF: In three dimensions, when a plane h(u) intersects a triangle v, it can cut
a number of sub-facets of v that lie in different regions of the partition created
so far. Let Yk be the total number of additional cuts created by U1t(k), and let
Yku be the number of these on input triangle u E {UI.U2, ... ,Un}\{U1t(k)}. Thus
the total "fragmentation" - the number of cuts - is L:k Yk = L:k L:u Yku. The
goal is to show that E[Yku] is 0(1), and the result then follows from linearity of
expectation.

To calculate Yku , we consider the sub-facets of u that are cut by h(U1t(k).
Consider the arrangement L1t,/< of line segments {11t(I), I1t(2), . .. , 11t(k)} on the triangle
u, where the line segment 11t(;) is the intersection of h(u1t(i) with triangle u, for
1 < i < k (see Figure 9.11). Without free cuts, the sub-facets would be exactly
those regions of L 1t,/<-1 intersected by 11t(k). However, because of free cuts by u,
any of the internal sub-facets of L 1t,/<-1 would have already "dropped out." Thus
Yku is the number of external regions intersected by 11t(k).

For an arrangement L of k lines II. 12, ••• , Ik on triangle u and for 1 < i < k, let
x(L, i) denote the number of external regions in the arrangement L-{I;} that are
cut by I;. Observe that L:~=1 x(L, i) equals the total number of edges bounding
the external sub-facets of L. In Figure 9.11, for instance, 2:;=1 x(L, i) = 12. We
now invoke a standard result in combinatorial geometry (see the Notes section
for a reference): L:~=1 x(L, i) = O(k) for any arrangement L on a triangle u.

Since 'It is a random permutation, 11t(k) is equiprobably any of the lines in the
arrangement L. Thus

1 k

E[Yku] = k L x(L, i) = 0(1).
;=1

(9.7)

o

255

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Figure 9.11: An arrangement of four lines on a triangle; only region Q is internal.

Exercise 9.17: Consider using a random permutation" to obtain an auto partition of
a set of n triangles in three dimensions. but without using free cuts. Show that the
expected size of the autopartition is O(n3). How does the proof depend on the fact
that" is randomly chosen?

9.S. The Diameter of a Point Set

Given a set S of n points in three dimensions, the diameter of S, denoted D(S),
is the distance between the points in S that are furthest apart. (The definition
could be made for points in any number of dimensions, and with any distance
metric defined between pairs of points.) In this section, we will study a fast
randomized algorithm for computing the diameter of a set of points in three
dimensions. Thus, unlike the algorithms of the previous sections, which built
a geometric structure on the input points, here we seek to determine a single
number. However, we will build a geometric structure in order to compute this
quantity. In particular, we will show that constructing the intersection of a set of
suitably defined spheres provides a key tool in the computation of the diameter.

For a positive real number p, let J p(S) denote the convex body formed by the
intersection of the n closed spheres centered at the n points of S, each of radius
p. For a point pES, let F(p) denote the distance between p and the point in S

256

9.1 THE DIAMETER OF A POINT SET

that is farthest from p. Consider the spherical intersection Jp(S) when p = F(p)
for some peS. For any point q e S, if q is in Jp(S), we have F(q) < F(p) < D(S).
On the other hand, if q lies outside Jp(S), we F(p) < F(q) < D(S).

The following randomized algorithm now suggests itself:

1. Pick a point peS at random. In time O(n) we compute F(p) and we set p = F(p).

2. Compute Ip(S).

3. Find the points of S outside Ip(S); denote this subset by So.

4. If So is empty, we know that the diameter is p and can stop. If not, we recur on
So.

Clearly the running time of a single pass through Steps 1-4 is dominated by
Steps 2 and 3. In addition, we must consider the effect of the randomized
recursive call in Step 4. In particular, we must determine the expectation of ISol.

Consider an ordering of the points of S in non-increasing order of the values
F(p). Since Step 1 chooses the point p uniformly at random, the rank of
F(p) is uniformly distributed on [1, n] (ties are broken arbitrarily); thus ISol is
uniformly distributed on [0,n-1]. Let T(n) denote the expected running time of
the algorithm when lSI = n, and T23(n) denote the corresponding cost of Steps
2 and 3. Then, we have

"n-I T(')
T(n) S cn + T23(n) + L..i-I l. (9.8)

n

What can we say about T23(n)? In Problem 9.5 we will show that these steps
can be performed in expected time O(n log n) for the Euclidean metric in three
dimensions, by adapting the half-space intersection algorithm of Section 9.4.
Here we will consider the simpler case of the LI metric in three dimensions. A
sphere in the LI metric in three dimensions is a polyhedron with eight facets
and six vertices; the polyhedron can be thought of as the intersection of eight
half-spaces.

Exercise 9.18: Show that the half-space intersection algorithm of Section 9.4 can be
adapted to find the intersection Ip(S) of Ll spheres and also to determine the set So
in expected time O(n log n), for lSI = n.

Using this result in (9.8), it follows that the expected running time of the
randomized LI diameter algorithm is O(n log n). In fact, for the LI metric, it is
not necessary to resort to the half-space intersection algorithm of Section 9.4 in
order to perform Steps 2 and 3 of our diameter algorithm. A simpler algorithm
running in time O(n) will be considered in Problem 9.6. In this case, the
recurrence (9.8) solves to T(n) = O(n). From these observations, we have:

Theorem 9.10: The above scheme for computing the diameter of n points runs in
expected time O(n log n) for the L2 metric, and in expected time O(n) for the LI
metric.

257

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

9.9. Random Sampling

There are situations for which randomized incremental construction might not
be appropriate. For instance, randomized incremental construction is inherently
sequential, and may thus be unsuitable for designing parallel randomized geo
metric algorithms. In addition, one often builds a geometric structure (such as
the Voronoi diagram) not as an end in itself, but as a means for solving search
problems. For instance, the Voronoi diagram serves as the basis for nearest
neighbor queries: each query is a point in the space containing the n input points,
and we are required to report the input point that is closest to the query point.
In such cases, we wish to build, not only the geometric structure itself, but
some additional structures that will enable rapid query processing. Here, again,
randomized incremental construction by itself often does not suffice. We now
turn to a different paradigm for designing randomized geometric algorithms,
known variously as random sampling or as randomized divide-and-conquer. We
first give a high-level outline of the technique, and then illustrate it using a
point-location problem.

We begin with a familiar non-geometric problem. Suppose that we are given
a set S of n numbers, and wish to answer membership queries: a query is a
number, and we are to report whether or not the query number is a member
of S. Consider the following approach, which is a simple generalization of the
standard binary search tree. We pick a random sample R of r numbers from
S, where r is a constant whose choice will become apparent from the following
analysis. We sort the elements of R (in constant time), and then partition S\R
(in time O(n» into r + 1 subsets; the ith subset contains those elements of S\R
that are larger than exactly i elements of R. Let us call the sample R good if
every one of the r + 1 resulting subsets of S\R has size at most (an log r)/r, for
a fixed, suitable (as will be clear from the analysis below) constant a.

Exercise 9.19: Show that R is good with probability at least 1/2. for a suitably large
constant 8.

The solution to Exercise 9.19 may also be obtained by adapting the proof of
Lemma 9.11 below. Given a sample R, we can check whether it is good in time
O(n). Thus, by Exercise 9.19, in expected time O(n) we can find a good sample
(by repeating the sample process whenever the sample chosen is not good).

For each subset containing more than b elements, for a suitable constant
value of b > r, we recur by again choosing a random subset of r elements from
it, and so on. This process induces a search-tree in a natural fashion, and the
search process for a query is clear. Given a query q, we identify (in constant
time) one of the r + 1 subsets of S in which to continue the search for q. We
search recursively in the sub-tree associated with this subset.

258

9.9 RANDOM SAMPLING

Exercise 9.20: Show that the expected number of steps to construct the entire search
structure is O(n log n).

Given the above search structure, what is the cost of a search? Letting Q(n)
be the cost of a search on a set containing n elements, we have the recurrence

Q(n) S c + Q (anl;gr), (9.9)

where a is small compared with r / log rand c is a constant representing the cost
of descending one level of the tree. This is easily seen to solve to Q(n) = O(logn).
Notice that this bound on the search cost is a fixed constant and not a random
variable. This is because in the process of constructing the search tree, we
ensured that the random sample at every level was good.

Although the above example does not have a geometric flavor, it captures the
essence of random sampling methods in the construction of geometric search
structures. We now give a geometric example that uses random sampling and
illustrates the major principles of the technique.

9.9.1. Point Location in Arrangements

Let L be a set of n lines in the plane. The lines in L partition the plane into 0(n2)

convex polygonal regions (some of which may be unbounded). The resulting
structure is known as an arrangement of lines. Our description will be simplified
by assuming that we are only interested in the portion of this arrangement that
lies within a fixed triangle t that contains in its interior all points of intersection
between lines in L. This can be viewed as a planar graph as follows. There
is a vertex of the graph for each point at which two lines meet (for simplicity,
we assume for the remainder of the section that no three lines of L meet at a
point). In addition, there is also a vertex for each point at which a line of L
intersects the boundary of t. An edge between two vertices corresponds in the
natural sense to the line segment between two vertices that are adjacent in the
arrangement. Each face of this planar graph is one of the polygonal regions into
which t is partitioned by the lines in L. We study the following query problem:
given a query point q in the plane, what facet of this graph contains the query
point? This is known as the point location problem in an arrangement of lines.

For convenience, we will triangulate each facet of the planar graph. We
will refer to this as a triangular arrangement of the lines in L, and denote it
by T(L). We note that this notation is slightly ambiguous, since the precise
geometric structure T(L) depends on the large triangle within which we enclose
the intersection points of the lines in L. However, we tolerate this imprecision
for the following reasons: (1) in the point location problem, the identity of
the facet within which a point lies is unaffected by the choice of the bounding
triangle, even though the exact shape of the facet may vary; (2) for the most

259

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

part (in the description of the algorithm below), the enclosing triangle will be
implicit and unique.

Exercise 9.21: Show that given L. a triangular arrangement of the lines in L can be
computed in time O(n2).

We now turn to the problem of point location in the triangular arrangement
of lines T(L). The algorithm and data structure are as follows:

1. Pick a random sample R of r lines from L, where r is a suitably large constant
that can be determined from the analysis below. Construct the arrangement T(R).
The number of facets in T(R) is 0 (r2), and is thus a constant.

2. For each (triangular) facet fin T(R), determine the set of lines of L \R intersecting
f; denote by Lf this set of lines. This can be done in time 0 (nr2). We say a facet
f is good if it is intersected by no more than (anlogr)/r lines of L for a suitable
constant a. We say the random sample R is good if every facet of T(R) is good.
If the chosen sample R is not good, we repeatedly pick samples R until we get a
good sample R.

3. For each facet f of T(R) for which ILfl > b for a constant b, we recur on this
process. Note that in the recursive steps, the enclosing triangle is just the triangle
boundjng the facet f. We maintain a pointer from each facet f to the triangular
arrangement of the recursive random sample of lines intersecting f. These pointers
will facilitate the search process.

exercise 9.22: Show that step 2. can in fact be implemented in time O(nr).

Before we analyze the expected runing time of the above construction pro
cedure, we explain the search process. Given the query point q, we determine
(in time 0(1» the facet f of T(R) that contains q. We then recursively con
tinue the search within T(Lf). Since we know that ILfl < (an log r)/r, we
immediately know that the search time Q(n) satisfies the recursion (9.9), so that
Q(n) = O(log n). We stress again that this upper bound on the query time is an
absolute guarantee, and not an expectation.

We turn now to the cost of constructing and storing the recursive search
structure. We first establish the analog of Exercise 9.19 for the present problem.

Lemma 9.11: The probability that any facet ofT(R) is intersected by more than
(anlogr)/r lines of L is less than 1/2, for a suitably large constant a.

PROOF: Let S denote the set of all points at which either two lines of L intersect,
or a line of L intersects the perimeter of the bounding triangle. Let 11 denote
the set of all triplets of points from S. What is the probability that the triangle
defined by a triplet from 11 occurs in T(R), and is intersected by more than

260

9.9 RANDOM SAMPLING

(anlogr)/r lines of L? Given a triplet b E ~, let J(b) denote the set of lines
of L that intersect the triangle induced by b. Let G(b) denote the lines of L
that form the points in b (clearly IG(b)1 ~ 6). To bound the probability that the
triplet b defines a facet of T(R), we write it as the product of two probabilities
as follows. Let t'1(b) denote the event that all lines of G(b) are in R, and t'2(b)
denote the event that none of the lines in J(b) are in R. Clearly both t'l(b) and
t'2(b) must occur in order for b to define a facet of R (although these events are
not sufficient - why?). Then,

Pr[b appears as a facet of T(R)] ~ Pr[t'1(b)]Pr[t'2(b)It'1(b)].

We now bound Pr[t'2(b)It'I(b)]: having picked the lines in G(b), we consider
what happens on the remaining r -I G(b)1 drawings of R. In particular, consider
the probability that none of the r -IG(b)1 remaining drawings picks any line in
J (b). This is bounded by

r-IG(.s)I-l (IJ(b)l) (IJ(b)l) r-IG(.s)1 II 1 - < 1 - -- S e-r1(.s)/2n
i=O n -IG(b)1 - i - n

for any value of r > 12 (since IG(b)1 < 6). We are only interested in b such
that J (b) > (an log r)/r; call these large triplets. Thus, for large triplets we have
Pr[t'2(b)] < r-a/ 2. Then,

Pr[A large triplet appears as a facet of T(R)]

~ r-a
/
2 L Pr[t' 1 (b)].

large triplets 15

(9.10)

Now, the summation in (9.10) is exactly the expected number of large triplets
in R. Since R is an arrangement of r lines, and each point of a triplet is formed
by at most 2 lines, it follows that this summation is never more than r6. Then,
for a > 12 the lemma follows. 0

Corollary 9.12: The expected number of trials before we obtain a good sample R
is at most 2.

We now complete the analysis of the construction of the data structure. By
the preceding discussion, the construction time satisfies the recurrence

T(n) ~ n2 +cr2T (anl;gr),

where c is a constant and T(k) denotes the upper bound on the expected cost
of constructing the data structure for an arrangement of k lines. This solves to
T(n) = O(n2+€(r»), where E(r) is a positive constant that becomes smaller as r
gets larger.

Theorem 9.13: The above algorithm constructs a data structure in expected time
o (n2+€) for a set of n lines in the plane for any fixed E > 0, and this data structure
can support point location queries in time O(log n).

261

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Exercise 9.23: What are the effects of increasing r on the construction time for the
search structure, and on the query time?

9.10. Linear Programming

We continue the study of random sampling by considering the linear pro
gramming problem. The linear programming problem is a particularly notable
example of the two main benefits of randomization - simplicity and speed. In
Section 9.10.1 we will study randomized incremental algorithms for this problem.

The linear programming problem is to find the extremum of a linear objective
function of several real variables, subject to constraints that are linear functions
of these variables. Hereafter, we will let d denote the number of variables,
and n the number of constraints. Each of the n constraints may be thought
of as delineating a half-space in d-dimensional space, stipulating that our ex
tremization is restricted to points in this half-space. The intersection of these
half-spaces is a polyhedron in d-dimensional space (which may be empty, or
possibly unbounded), which we will refer to as the feasible region. Throughout,
we will measure the amount of computation we perform by the number of arith
metic operations, treating the operands as real numbers on which an arithmetic
operation can be performed in constant time. This is consistent with our view
throughout this chapter, but the reader is cautioned that much of the work in the
linear programming literature deals with operands of finite precision. For such
finite precision operands, there has been considerable work on the number of
bit operations performed by various algorithms. We will not concern ourselves
with such bit operations, but will treat all numbers as atomic operands.

Let Xh ••• , Xd denote the d variables in the linear program. Let Ch"" Cd

denote the coefficients of these variables in the objective function, and let Aij,
1 < i < nand 1 < j < d denote the coefficient of x j in the ith constraint. Letting
A denote the matrix (Aij), c the vector (Ch ••• , Cd), and x the vector (Xh ••• , Xd),

the linear programming problem may be expressed as

minimize cT x (9.11)

subject to

Ax ~b, (9.12)

where b is a column vector of constants.
We denote by F(A,b) the feasible region defined by A and b. The vector

c specifies a direction in d-space. Geometrically, we seek the furthest point in
F(A, b) in the direction opposite to c (since we are minimizing), if such a finite
point exists. The linear programming problem has a long history, a partial
summary of which is given in the Notes section. The starting point in our
treatment will be the following set of assumptions, which is known (see the Notes

262

9.10 LINEAR PROGRAMMING

section and the references therein) to capture the general linear programming
problem; these assumptions do not specialize or simplify the problem from the
standpoint of designing algorithms. All of these assumptions can be removed
by standard techniques; this' will be explored further in Problem 9.8.

1. The polyhedron F(A, b) is non-empty and bounded. Note that we are not assuming
that we can test an arbitrary polyhedron for non-emptiness or boundedness; this
is known to be equivalent to solving a linear program. We only make this
assumption about F(A, b).

2. The objective function we are minimizing is Xl; in other words, c = (1,0, ... ,0).
Thus we seek a point of F(A,b) with the minimum value of Xl.

3. The minimum we seek occurs at a unique point which is a vertex of F(A,b).

4. Each vertex of F(A,b) is defined by exactly d constraints.

Let H denote the set of constraints defined by A and b. Let S c H be a
subset of constraints from H. We will frequently consider the linear program
defined by such a subset S, together with c. When such a linear program attains
a finite minimum, we will assume that versions of assumptions 3-4 above still
hold: (i) the minimum occurs at a unique point; (ii) each vertex 0'£ the feasible
region is defined by d constraints. We denote by O(S) the value of the objective
function for the linear programming problem defined by c and S (it is possible
that O(S) = -(0). A basis is a set of constraints, B, such that O(B) > -00 and
O(B') < O(B) for any B' c B. The basis of H, denoted 8(H), is a minimal
subset B ~ H with O(B) = O(H). Our goal is to find 8(H). Since 8(H) defines
the optimal vertex of our linear program, we will sometimes refer to 8(H) or to
O(8(H» as the optimum of the linear program.

One approach to solving the linear programming problem would be to use a
half-space intersection algorithm to compute F(A, b) and to then evaluate the
objective function at each vertex of the polyhedron F(A, b). Such an exhaustive
evaluation process could in general be very slow, since the number of vertices of
F(A,b) may be n(nrd/21). We therefore seek algorithms that do not enumerate
the vertices of F(A, b).

Before proceeding to our study of randomized algorithms for linear program
ming, we will recall the elements of the classic simplex algorithm. This is a
deterministic algorithm that starts from a vertex of F(A, b) and, at each subse
quent iteration, proceeds to a neighboring vertex at which the objective function
has a lower value. If no such vertex exists, we have reached the minimum
we seek. While this is the essential idea of the simplex algorithm, a number
of complications arise when adjacent vertices have the same objective function
value, and from problems with no finite minimum. We will avoid a detailed
discussion of the simplex algorithm; in our discussion it will suffice to assume
the existence of a function Simplex that will solve linear programs by visiting
the vertices of F(A,b) in turn until the optimum is found, if one exists.

We call a constraint hE H extreme if O(H\{h}) < O(H); thus these are the
constraints in 8(H). Intuitively, the constraints of H that are not extreme are

263

Gt:OMETRIC ALGORITHMS AND LINEAR PROGRAMMING

redundant constraints whose absence would not alter the optimum. Our first
algorithm SampLP uses random sampling to throwaway redundant constraints
quickly. Starting from the empty set, SampLP builds up a set S of constraints
over a series of phases. In each phase, a set V c H\S is added to S. The set V
will have two important properties: (i) it will be small, and (ii) it will contain at
least one extreme constraint from 8(H) that is not in S. Since 18(H)1 = d, we
terminate after at most d phases.

We will describe SampLP in pseudocode below, and then proceed to the more
sophisticated algorithm IterSampLP. We will finish by analyzing IterSampLP.

Algorithm SampLP:

Input: A set of constraints H.

Output: The optimum B(H).

1. S-f/>;

2. if n < 9d2

return Simplex (H)
else

2.1. V - H; S - f/>;

2.2. while IVI > 0
Choose R c: H\S at random, with IRI = r = min{d.jiJ, IH\SI};
x - SampLP(R uS);
V - {h E Hlvertex defined by x violates h};
If IVI 5;.2.jiJ
then S - S U V;

2.3. return x;

Thus, for n > 9d2 SampLP chooses a random subset R of r constraints. The
value of r is normally d.Jn, unless H\S contains fewer than d.Jn constraints. It
recursively solves the linear program defined by R U S, and determines the set
V c H of constraints that are violated by this optimum; note that these violated
constraints will in fact be from H\S. If V has no more than 2.Jn elements (we
will argue that this is likely), we add V to S. When V becomes empty (meaning
that 8(H) is contained in S), we return x.

Exercise 9.24: Construct a simple example to show that after one pass through the
while loop of SampLP, V may not contain all of B(H). Hence, we may only infer that
V contains at least one constraint of B(H) that is not already in S.

The routine Simplex is invoked only with 9d2 or fewer constraints. For such
"small" linear programming problems, we may bound the cost of invoking

264

9.10 LINEAR PROGRAMMING

Simplex as follows. The total number of vertices in the polyhedron for such a
problem is no more than (r~~l)' which is at most (49d)rd/21. There is a constant
a such that the simplex algorithm spends at most time da at each vertex, so that
we have:

Lemma 9.14: The total cost in an invocation of Simplex with 9d2 or fewer
constraints is O(~/2+a).

Next, we wish to argue that V, the set of constraints that violate x, is small.

Lemma 9.15: Let S c H, and let R c H\S be a random subset of size r. Let m

denote IH\SI. The expected number of constraints of H violated by O(R.U S) is
no more than d(m - r + 1)/(r - d).

PROOF; We define two sets of optima for linear programs formed by subsets of
the constraints. Let CH denote the set of optima {O(T US) I T c H\S}. Thus,
the call the SampLP(R U S) returns an element of this set. Similarly, we define
CR to be the set of optima {O(T US) I T c R} for a particular subset R. Now,
O(R U S) is the unique element in CR that satisfies every constraint in R. For
each element x E CH , let Vx denote the number of constraints of H violated by
x. Let the indicator ix be 1 whenever x is O(R US), and 0 otherwise.

We may now write

E[IVI] = E[L vxix] = L vxE[ix]. (9.13)
xeCH xeCH

Now, E[ixl is simply the probability that x is the optimum O(R US). For
this event to occur, d given constraints must be in R, and the remaining r - d
constraints of R must be from among the m - Vx - d constraints of H\S that
neither define nor are violated by x. Thus

E['] = (m~~d-d)
Ix (;)'

Exercise 9.25: By combining (9.13) and (9.14) and simplifying, show that

E[I VI] < m - r + 1 '"' V (~=~~d)
- r-d ~ x (m) .

xeCH r

(9.14)

(9.15)

We will complete the proof by showing that the summation on the right-hand
side of (9.15) is no more than d. The factor (~=~-:...-;d) / (;) is the probability that
x is an element of C R that violates exactly one constraint of R. Weighting this
by Vx and summing yields the expected number of elements of C R that violate
exactly one constraint of R. However, the number of such elements is at most d,
since each such element is the optimum of the set R U S\{h} for a constraint h

265

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

that defines the optimum O(RUS). There are d constraints defining the optimum
O(RUS). 0

With this bound on the expected number of violated constraints, the Markov
inequality now implies that following any random sample in SampLP, Pr[lVI >
2.jri] < 1/2. It follows that the expected number of iterations of Step 2.2
between augmentations to S is at most 2. Let T(n) denote the maximum
expected running time of SampLP. The set S is initially empty, and in each of
d phases adds at most 2.Jn constraints. Thus, IR U SI never exceeds 3d.Jn. For
each of d phases, we perform at most n constraint violation tests at a cost of
O(d) for each test; thus the total work in constraint checking is O(d2n). When
in a recursive call the number of constraints drops to 9d2 or less, we resort to
the time bound on the call to Simplex (Lemma 9.14). Putting these observations
together, we have

T(n) ~ 2dT(3dJii) + o (d2n), for n > 9d2
• (9.16)

Exercise 9.26: Derive the best possible upper bound on T(n) in (9.16), in conjunction
with Lemma 9.14.

We now describe the algorithm IterSampLP. Rather than try to discover 8(H)
little by little, it uses a technique known as iterative reweighting to increase the
probability of including a useful constraint in the sample. We choose a random
subset of constraints R and determine the subset V c H of constraints violated
by the optimum of the linear program defined by R. Instead of adding V to a
set S as in SampLP, we put the constraints of V back in H after first increasing
the probability that they are chosen in future rounds. Intuitively, the constraints
of 8(H) will repeatedly find themselves in V, and hence their probabilities of
being i1lcluded in R increase rapidly. After relatively few such iterations (as we
will show), all the constraints of 8(H) are likely to be in R, and we terminate. A
detailed description of lterSampLP follows. We will associate a positive integral
weight Wh with each constraint h E H; the constraint h will be put in R with
probability proportional to the current value of Who

In Step 2.2, the probability that a constraint h is chosen is proportional to
Who We turn to the analysis of lterSampLP.

Call an execution of the while loop successful if

L Wh ~ (2 L wh)/(9d - 1)
hEY heH

(thus, we double Wh for each h E V).

266

9.10 LINEAR PROGRAMMING

Algorithm IterSampLP:

Input: A set of constraints H.

Output: The optimum B(H).

1. Vh E H, set Wh - 1;

2. if n < 9d2

return Simplex (H)
else

2.1. V -H;

2.2. while IVI > 0
Choose R c: H at random, with IRI = r == 9d 2 ;

x - Simplex(R);
V - {h E Hlx violates h};
if L:hEV Wh :::; (2 L:hEH wh)/(9d - 1)
then Vh E V set Wh - 2Wh;

2.3. return x;

Lemma 9.16: The expected number of iterations of the while loop between suc
cessful iterations is at most 2.

Note that we cannot directly invoke the result of Lemma 9.15 for the analysis
of lterSampLP, since the constraints in the random subset R are not chosen
equiprobably. The proof of Lemma 9.16 is an extension of the analysis leading
to Lemma 9.15; the reader may follow the hint in Problem 9.9 to complete the
proof.

Theorem 9.17: There exist constants c., C2, and C3 such that the expected running
time of lterSampLP is at most

PROOF: We will argue that the expected number of executions of the while loop
is O(dlogn). The idea is that L:hEB(H) Wh grows much faster than L:hEH Wh, so
that after d log n iterations V = cp unless L:hEB(H) Wh > L:hEH Wh, which would
be a contradiction.

After each successful execution of the loop, the weight Wh is doubled for at
least one constraint h E 8(H) (since V must contain at least one constraint
h E 8(H». Following kd successful executions of the loop, we have L:hEB(H) Wh =

L:hEB(H) 2nh, where nh is the number of times h entered V. Clearly L:hEB(H) nh ~ kd.

267

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

These facts together imply that

L Wh ~d2k.
hE8(H)

(9.17)

On the other hand, after each successful execution of the while loop, the net
increase in L,hEH Wh is no more than (2 L,hEH wh)/(9d -1). Initially L,hEH Wh = n.
Following kd successful iterations it is no more than

n[l + 2/(9d - l)]kd ~ nexp[2kd/(9d - 1)]. (9.18)

Comparing (9.17) and (9.18), it follows that after O(dlogn) iterations we drop
out of the loop.

How much time do we spend between successful iterations of the while loop?
By Lemma 9.16, the expected number of iterations between successful iterations
is 2. During each iteration, we incur the cost of a Simplex call (whose running
time we have bounded in Lemma 9.14 above), and determine V in time O(nd).
Putting these facts together yields the theorem. 0

9.10.1. Incremental Linear Programming

We have so far studied linear programming algorithms based on random sam
pling. We now explore randomized incremental algorithms for linear program
ming. The following algorithm suggests itself immediately: add the n constraints
in random order, one at a time. After adding each constraint, determine the
optimum of the constraints added so far. This algorithm may also be viewed in
the following "backward" manner, which will prove useful in the sequel.

Algorithm SeldelP:

Input: A set of constraints H.

Output: The optimum of the LP defined by H.

o. H IHI = d, output B(H) = H.

1. Pick a random constraint h E H;
Recursively find B(H\{h});

2.1. H B(H\{h}) does not violate h, output B(H\{h}) to be the optimum B(H);

2.2. el .. project all the constraints of H\{h} onto h and recursively solve this
new linear programming problem;

The idea of the algorithm is simple. Either h (the constraint chosen randomly
in Step 1) is redundant (in which case we execute Step 2.1), or it is not. In the
latter case, we know that the vertex formed by 8(H) must lie on the hyperplane
bounding h. In this case, we project all the constraints of H\{h} onto hand
solve this new linear programming problem (which has dimension d -1). When
the number of constraints is down to d, SeideLP stops recurring.

9.10 LINEAR PROGRAMMING

Since there are at most d extreme constraints in H, the probability that the
randomly chosen constraint h is one of the extreme constraints we seek is at
most din. Let T(n,d) denote an upper bound on the expected running time of
the algorithm for any problem with n constraints in d dimensions. Then, we
may write

d
T(n, d) ~ T(n - 1, d) + O(d) + - [O(dn) + T(n - 1, d - 1)]. (9.19)

n

In (9.19), the first term on the right denotes the cost of recursively solving the
linear program defined by the constraints in H\{h}. The second accounts for
the cost of checking whether h violates 8(H\{h}}. With probability din it does,
and this is captured by the bracketed expression, whose first term couQts the
cost of projecting all the constraints onto h. The second counts the cost of
(recursively) solving the projected problem, which has one fewer constraint and
dimension. The following theorem may be verified by substitution, and proved
by induction.

Theorem 9.18: There is a constant b such that the recurrence (9.19) satisfies the
solution T(n, d) < bnd!.

The above incremental algorithm is thus likely to be slow unless d is rather
small. The reader may wonder why, when solving the problem of dimen
sion d - 1 in Step 2.2, we completely discard any information obtained from
the solution of the linear program H\{h} (Step 1). We now proceed to a
more sophisticated algorithm that retains such information carefully. Before
doing so, the following exercise is provided to strengthen the reader's intu
ition.

Exercise 9.27: Consider the algorithm SeldelP. Construct an example to show that
the optimum of the linear program defined by the constraints in 8(H\h) U {h} may
be different from the optimum of the linear program defined by H. Thus, if the test
in Step 2.1 fails and we proceed to Step 2.2, it does not suffice to consider the
constraints in 8(H\h) U {h} alone.

By the above exercise, it follows that we must once again consider all the
constraints in H in Step 2.2 of SeideLP. However, it is still reasonable to hope
that 8(H\h) will in fact contain many of the constraints in 8(H). Could we
somehow use 8(H\h) to "jump-start" the recursive call in Step 2.2 of SeideLP?
The result of this idea is the algorithm BasisLP, which is invoked with two
arguments, a set G C H of constraints, and a basis T C Q (not in general the
basis of G). BasisLP returns the basis of G.

269

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Algorithm BaslslP:

Input: G, T.

Output: A basis B for G.

o. If G = T, output T;

1. Pick a random constraint h E G\T;
T' = BasisLP(G\{h}, T);

2.1. If h does not violate T', output T';

2.2. else output BasisLP(G, Basis(T' U {h}));

The function Basis returns a basis for a set of d + 1 or fewer constraints,
if such a basis exists. In our algorithm, we always invoke Basis on a given
basis T' with d constraints, together with a new constraint h. By computing the
intersection of h with each of the d subsets of T' that have cardinality d - 1,
and evaluating 0 at each of these d points, we may determine Basis (T' U {h}).

Exercise 9.28: Show that the above description of Basis will terminate in O(d4
)

steps. (Note that a system of d linear equations can be solved in O(d 3) steps.)

Exercise 9.29: The routine BaslslP requires a basis T as one of the inputs. Suggest
a scheme for starting the algorithm initially with a suitable basis, so that when
finished we have the optimum O(H). (Hint: Use a bounding box.)

Each invocation of Basis is preceded by a violation test (in the if statement).
In our analysis below we will bound the number of violation tests, and from
this infer a bound on the number of invocations of Basis and thus the overall
running time. What is the probability that we fail a violation test in a given
execution of BasisLP? Suppose that IGI = i. We are reintroducing a constraint
h E G\ T that was chosen at random, and wish to bound the probability that
h violates the optimum of G\{h}. Clearly this is at most d/(i - IT!), since at
most .d constraints of G determine B(G) and h is equally likely to be any of
the i -ITI constraints in G\T. We now refine this estimate on the probability.
The intuition is that this probability decreases further if T contains some of
the constraints of B(G); indeed, this was our motivation for refining SeideLP to
obtain BasisLP. To this end, we introduce some additional notions.

Given T S; G S; H, we call a constraint h E G enforcing in (G, T) if
O(G\{h}) < O(T). This concept is illustrated in Figure 9.12. In this figure, there
are four constraints, numbered 1,2,3, and 4. Each constraint is a line that allows
the half-plane above itself as the feasible region. Clearly constraints 1 and 4 are
the extreme constraints for the set {1,2,3,4}. Consider for the moment a view of
BasisLP played "backward," and a situation in which the constraints are added
back in the order 1,2,3,4. Observe that constraint 1 is not enforcing in G, T for
G = {1,2,3,4} and T = {1,2}.

270

9.10 LINEAR PROGRAMMING

1

Figure 9.12: Extreme and enforcing constraints.

Exercise 9.30: If the constraints are deleted in the order 4,3,2,1, trace the course
of the call to BaslsLP(G, {1, 2}), determining the arguments of the various recursive
calls. Repeat this if the order of deletion of constraints is 1,4,3,2.

.
Exercise 9.31: If h is enforcing in (H, T). show that (i) hE T, and (ii) h is extreme in
all G such that T s;; G s;:; H.

If all d constraints in T are enforcing in (G, T), we have T = 8(G). Given
T £ G s;; H, let ~G.T denote d minus the number of constraints that are
enforcing in (G, T). We call ~G.T the hidden dimension of (G, T). The number
of constraints of 8(G) that are not already in T. From the above discussion,
the probability that a violation occurs in the if statement can be bounded by
~G.T/(i -IT!). We will first establish that the hidden dimension decreases by at
least 1 at each recursive call in Step 2.2; later, we will improve this by arguing
that it is likely to decrease much faster.

Exercise 9.32: Let T s;; F s;; G s;; H, and let h E F \ T be an extreme constrai nt in F.
Let S be a basis of B(F\{h}) U {h}. Show that

1. any constraint g that is enforcing in (G, T) is also enforcing in (F, S);

2. h is enforcing in (F,S);

3. tJ.F •S ~tJ.G.T-1.

271

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

Thus, as we proceed down the recursion (in a sequence of executions of Step
2.2), the numerator of the probability bound decreases by at least 1 at each
execution. We will now show that the decrease in the hidden dimension (and
thus the decrease in the probability) is likely to be faster. Given sets F and T
such that T c:: F s; G, and a random h E F\ T, we bound the probability that
the addition of h to F\ {h} causes a recursive call. When it does, we study the
probability distribution of the hidden dimension of the arguments of such a call.

Exercise 9.33: Let gl, g2, . .. gs be the extreme constraints of F that are not in T,

numbered so that

O(F\ {gt}) :::;; O(F\ {g2}) :::;; ...

Show that for all t and for 1 ~ j ~ t, gj is enforci ng in (F, Basis(B(F \ {gt }) u {gt })).

In other words, when h = gt, all of {gt. g2, ... ,gt} will be enforcing in
(F,Basis(8(F\{h}) U {h}». Then, the arguments of the recursive call will have
hidden dimension ~G,T - t. The crucial observation is that since any of the gi is
equally likely to be h (by backwards analysis !), t is uniformly distributed on the
integers in [1, s]. Thus the hidden dimension of the arguments of the recursive
call is uniformly distributed on the integers in [0, s - 1].

For a call to BasisLP with arguments (G, T), where IGI = m and ~G.T = k,
let us denote by T(m,k) the maximum expected number of violation tests
(executions of the if statement).

Exercise 9.34: Show that T (m, 0) = m - d.

For m ~ d + 1 and k ~ 1, the above discussion on the probability distribution
of the hidden dimension yields the following recurrence:

T(m,k) :::;; T(m _ 1,k) + 1 + T(m,O) + T(m, ~ ~~ .. + T(m,k -1). (9.20)

Exercise 9.35: Verify that T(m, k) ~ 2"(m - d).

By combining the results of Exercises 9.29 and 9.35, we have:

Theorem 9.19: The expected running time of BasisLP on a problem with n con
straints in d dimensions is O(tJ42dn).

Note the improvement over Theorem 9.18. By a slightly more careful analysis,
and a more complicated analysis of the recurrence that results, the time bound
of Theorem 9.19 can be improved considerably. This will be discussed briefly in
the Notes section.

272

9.10 LINEAR PROGRAMMING

Notes

The first algorithms for all of the geometric problems we have considered were deter
ministic; rather than give sources for each of these deterministic algorithms, we refer
the reader to textbooks on computational geometry [133, 336]. A comprehensive intro
duction to the design and analysis of randomized geometric algorithms is the book by
Mulmuley [316). Rabin's [341) description of a randomized algorithm for the problem of
finding nearest neighbors in a set of n points is perhaps the earliest use of randomization
in a geometric algorithm. The systematic use of randomization in geometric algorithms
was pioneered in a series of papers by Clarkson [101, 102, 103, 105), Clarkson and
Shor [106, 107), and Mulmuley [315). Below, we give more detailed pointers to the
various problems and algorithms we have studied.

The RandAuto algorithm for binary space partitions is due to Paterson and Yao
(see [329) and references therein). They also prove that there are inputs for tlie three
dimensional case for which every autopartition has size O(n2). The result used in the
proof of Theorem 9.9 concerning the number of edges bounding external sub-facets is
described in the book by Edelsbrunner [133).

~ Research Problem 9.1: Paterson and Yao show that in the case where the line
segments are all parallel to two (orthogonal) axes, a binary partition of size O(n)
can be found. Is it always possible to find a partition of size O(n)? Is there a
configuration of n segments that forces a lower bound of Q(n log n) on the size of
any autopartition for that configuration?

~ Research Problem 9.2: Since any partition must have size Q(n) and we can find
one of size O(n log n) using the RandAuto, it is clear that we find a partition whose
size is within O(1og n) of the optimal size. Can we prove something stronger, say,
find a partition of size is within a constant (or any factor better than log n) of
the optimum? It is plausible that this question can be answered independently of
Research Problem 9.1.

~ Research Problem 9.3: Can we give a high confidence estimate for the size of
the autopartition produced by the random permutation algorithm (with free cuts)
in three dimensions? In other words, we require a statement of the form "with
probability 1 - !(n), the size of the autopartition does not exceed g(n)."

~ Research Problem 9.4: As in the two-dimensional case, can we say whether our
algorithm is provably good in that it always finds a partition whose size is within
some provable factor of the optimum? Notice that there is more room for leeway
here than in the planar case - the optimum could be anywhere from n - 1 to
Q(n2).

Randomized incremental constructions are simple to implement, and their power was
demonstrated in a series of papers by Clarkson, Shor, Mulmuley, and others [107, 315,
368, 369]; the algorithms we have described for convex hulls and for trapezoidal de
compositions appear in these papers. Prior to this work, Chazelle and Edelsbrunner [90)

273

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

gave a deterministic but relatively complicated algorithm for trapezoidal decompositions
with running time O(n log n + k). The key idea of backwards analysis appeared first in a
paper by Chew [94); the algorithm of Section 9.5.1 for finding the Delaunay triangula
tion of the vertices of a convex polygon is from this paper. However, the generality and
widespread applicability of this idea (to geometric as well as non-geometric problems)
went unnoticed prior to the work of Seidel [371). Guibas, Knuth, and Sharir [187)
showed that this paradigm can be applied directly to the construction of Voronoi dia
grams. The incremental construction paradigm has been applied to a diverse collection
of geometric problems; the interested reader should consult Mulmuley's treatise [316)
for further pointers. The use of nindom sampling was pioneered by Clarkson [102), who
proved a general version of Lemma 9.11; this paper also describes the data structure of
Section 9.9.1 for point location in an arrangement of lines. The application of sampling
to geometric problems owes its origins to a paper by Haussler and Welzl [197). A
variant of the random sampling technique has been used by Chazelle and Friedman [92),
improving the expected running time from O(n2+E) to O(n2). Random sampling, too,
has been applied to a large number of geometric problems, and the reader may again
consult Mulmuley [316) for further pointers. One theoretical benefit of randomized
geometric algorithms is that they can be derandomized to yield deterministic algorithms
that are faster than known algorithms. Chazelle and Friedman [91) pioneered this study;
see also the survey by Matousek [294).

The linear programming problem has a long and rich history; the reader is referred to
treatises by Chvatal [100) and by Schrijver [366) for the history of the problem and the
classical Simplex algorithm invoked in Section 9.10. These books (as well as several of
the papers we mention below) also discuss how to remove the assumptions we have made
at the beginning of Section 9.10. Megiddo [307) gave a deterministic algorithm for linear

programming running in time o(n22"). Much subsequent work focused on reducing

the 22" term in the running time, and indeed all the algorithms we have described have
variants whose running time can be bounded as O(nf(d» where f(d) is some (typically
exponential) function of d. This also applies to the random sampling algorithms of
Section 9.10; these algorithms are due to Clarkson [104). The iterative reweighting
technique of Section 9.10 was first applied to geometric algorithms by Welzl [417). The
SeideLP algorithm of Section 9.10.1 is due to Seidel [369).

In the discussion leading to Lemma 9.14, we invoked a bound on the maximum
number of vertices that a polyhedron with 9d2 constraints can have; this bound is a
special case of general bounds on the number of vertices of a polyhedron. Such bounds
are given, for instance, in Edelsbrunner's book [133).

The BasisLP algorithm and its analysis are due to Sharir and Welzl [374). Kalai [226)
achieved a breakthrough by giving a randomized algorithm whose expected running
time is at most

for an absolute constant a. Following this, MatouSek, Sharir, and Welzl [295) showed
that the BasisLP algorithm in [374) in fact runs in time

O(nd exp(\!dln(n + 1»).
By augmenting the analysis of [295) with Clarkson's sampling technique, it is possible

274

PROBLEMS

to obtain the slightly improved time bound of

O(d2n + bJdlogd log n)

for an absolute constant b. Goldwasser [177) gives an eminently readable account of the
algorithms and analyses of Kalai [226) and of MatouSek, Sharir, and Welzl [295). In
fact, he points out that the algorithm of Matousek, Sharir, and Welzl is exactly dual (in
the sense of linear programming duality [1(0)) to one variant of Kalai's.

Sharir and Welzl [374) in fact describe their algorithm as being applicable to a general
class of abstract optimization problems that includes linear programming as a special case.
We explore this theme further in Problem 9.11. Gartner [163) extended this approach
and applied it to obtain sub-exponential algorithms for such problems as finding the
minimum distance between two polytopes in d dimensions.

The Random Simplex algorithm is the following: starting from any vertex of :F(A, b),
proceed to a random adjacent vertex of :F(A, b) that improves the objective function.
Algorithms that only move between adjacent vertices of :F(A, b) are generally known as
simplex algorithms, following Danzig [119, 120).

~ Research Problem 9.5: Derive a sub-exponential upper bound on the expected
running time of the Random Simplex algorithm.

Gartner and Ziegler [164) have established a tight, polynomial upper bound for a
restricted class of polytopes known as Klee-Minty cubes. Any simplex algorithm is
condemned to incur a running time that is at least the diameter of the polytope :F(A, b).
The best upper bound known on the diameter of polytopes defined by n constraints in
d dimensions is n2+logd, due to Kalai and Kleitman [227). The major open problem left
open by these papers is:

~ Research Problem 9.6: Devise a randomized algorithm for linear programming
that runs in expected time polynomial in nand d.

Thus, in order to resolve Research Problem 9.6 one either has to improve the Kalai
Kleitman diameter bound, or devise a non-simplex algorithm.

Problems

9.1 Prove Theorem 8.8 using backwards analysis.

9.2 By "dualizing" the randomized incremental algorithm for convex hulls in the
plane (Section 9.2), derive a randomized incremental algorithm for computing
the intersection of n given half-planes. Show that its expected running time is
O(nlogn).

9.3 Use the Mulmuley games of Section 8.2.1 to derive Theorem 9.8.

9.4 The object of this problem is to show that the time bound in Theorem 9.1

275

GEOMETRIC ALGORITHMS AND LINEAR PROGRAMMING

holds with high probability. For a point PES, define the indicator variable
Xj(p) as follows:

X.() = {1 if p's pointer is updated at the jth step;
I p 0 otherwise

Thus the total work done in updating p's pOinter is Ej Xj(p). By showing
that Ej Xj (p) is O(log n) with probabi I ity 1 - n-2, show that the total work is
O(n log n) with high probability.

9.5 Show that the randomized incremental half-space intersection algorithm of
Section 9.4 can be adapted to construct Ip(S), the intersection of n spheres in
three dimensions, in expected time n log n.

9.6 Show that the set So resulting from Steps 2 and 3 in the randomized diameter
algorithm (Section 9.8) can be found in time linear in the size of S, for the Ll

metric.

9.7 Let S be a set of n pOints in the plane. For any positive integer k < n, show
that there is a subset Sic consisting of k pOints in S with the property that
no triangle in de/(SIc) contains more than (en logk)/k points, for a suitably
chosen constant e.

9.8 In this problem, we discuss the removal of the simplifying assumptions made
at-the beginning of our discussion of linear programming algorithms. We focus
on the non-degeneracy assumptions 3-4. Consider a set of d + 1 constraints
whose defining hyperplanes intersect at a common pOint p; without loss of
generality, let these be defined by the first d + 1 rows of A (together with the
first d + 1 components of b). Consider adding Ei to the ith component of b, for
1 ~ i ~ d + 1, where E is a small positive real. Show that for every choice
of A and b, there is a choice E such that (i) the hyperplanes intersecting at
p no longer intersect at a single pOint, and (ii) if p were the optimum of the
linear program determined by A and b, the new optimum is defined by d of
the constraints that originally intersected at p.

9.9 Prove Lemma 9.16. (Hint: For every constraint h of weight Wh > 1, replace
it by Wh "virtual copies" of h each of weight 1, and consider sampling this
.multiset.)

9.10 The Boolean n-cube is an undirected graph that has N = 2n nodes connected
in the following manner. Let (io, . .. , in- 1) be the (ordered) binary representation
of vertex i, i.e., i = E;::.d ij 2j

, h E {O, 1}. Then there is an edge between vertex
i and vertex j if and only if (io, ... , in_,) and Uo, .. ., jn-,} differ in exactly one
position. Thus every vertex in the n-cube has degree n = log2 N. An acyclic
orientation of the cube is an assignment of a direction to each edge, such that
the resulting directed graph is acyclic. A sink in the digraph is a node with no
edges directed out of it. Consider a random walk on an n-cube with an acyclic
orientation: at each step, the walk proceeds along an outgoing edge chosen
uniformly at random. Show that for every n, there is an acyclic orientation of
the n-cube and a starting vertex such that expected number of steps for the
walk to reach a si nk is 2Cl(n).

276

PROBLEMS

This has the following significance. The n-cube can be realized as a polyhe
dron defined by the intersection of 2n half-spaces in n-dimensions. Consider
the Random Simplex algorithm on this polyhedron. The directions on the
edges are meant to model directions of improving objective function. The
above lower bound suggests that if we had to give a sub-exponential upper
bound on the performance of the Random Simplex algorithm, we would have
to take into account the geometry of the polytope, using it to preclude the kind
of arbitrary acyclic orientation that led to the lower bound.

9.11 In this problem, we consider the extension of the BaslsLP algorithm to op
timization problems more general than linear programming. Consider the
following framework for an abstract optimization problem. There is a set H
of n constraints, and a function 0 that maps every subset G of H to the real
numbers; we think of 0 as the optimum value for G. Let F s;; G s::.H, and
hE H. For any such F, G, and h, we further require that

1. O(F) ~ O(G), and

2. O(F) = O(G) implies that

O(F U {h}) > O(F) - O(G U {h}) > O(G).

Defining the concept of a basis as for linear programming, let us call the
maximum cardinality of any basis as the combinatorial dimension of the
instance.

Modify the BaslsLP algorithm so that it works for such abstract optimization
problems, and show that the analysis of BasisLP may be applied with d

replaced by the combinatorial dimension.

9.12 Consider the smallest enclosing ball problem: given n pOints in d-dimensional
space, find the radius of the smallest ball that contains all n pOints. By showing
that this fits the paradigm of an abstract optimization problem, show that a
suitably modified version of the BaslsLP algorithm can be used to solve it.

277

CHAPT ER 10

Graph Algorithms

IN this chapter we consider several fundamental optimization problems involving
graphs: all-pairs shortest paths, minimum cuts, and minimum spanning trees.
In each case, deterministic polynomial time algorithms are known, but the use
of randomization allows us to obtain significantly faster solutions for these
problems. We show that the problem of computing all-pairs shortest paths is
reducible, via a randomized reduction, to the problem of multiplying two integer
matrices: We present a fast randomized algorithm for the min-cut problem in
undirected graphs, thereby providing evidence that this problem may be easier
than the max-flow problem. Finally, we present a linear-time randomized
algorithm for the problem of finding minimum spanning trees.

Unless stated otherwise, all the graphs we consider are assumed to be undi
rected and without multiple edges or self-loops. For shortest paths and min-cuts
we restrict our attention to unweighted graphs, although in some cases the
results generalize to weighted graphs; we give references in the discussion at the
end of the chapter.

10.1. All-pairs Shortest Paths

Let G(V,E) be an undirected, connected graph with V = {1, ... ,n} and lEI = m.
The adjacency matrix A is an n x n 0-1 matrix with Aij = A j ; = 1 if and only if
the edge (i,j) is present in E. Given A, we define the distance matrix D as an
n x n matrix with non-negative integer entries such that Dij equals the length
of a shortest path from vertex i to vertex j. The diagonal entries in both A
and D are zeroes. Since G is connected, all entries in D are finite; this is not a
restrictive assumption since a graph can be decomposed easily into connected
components in linear time.

The aU-pairs shortest paths (APSP) problem is to compute a representation
of the shortest paths between all pairs of vertices, i.e., the paths that determine
the entries in the distance matrix. To make this precise, we will compute an

278

18.1 ALL-PAIRS SHORTEST PATHS

implicit representation of the shortest paths such that for any specific pair of
vertices, the shortest path between them can be determined in time proportional
to its length. A restricted version of this problem requires us to compute only
the distance matrix; we refer to this as the all-pairs distances (APD) problem.

The APSP problem can be solved in O(nm) time, as follows: from each vertex
i E V, compute the breadth-first search tree Tj rooted at i. Each such tree can
be computed in O(m) time, and, in any tree T j , the (unique) path from i to any
vertex j is the shortest path between them. Given the collection of breadth-first
search trees, the distance matrix can be computed in O(n2) time by assigning
level numbers to the vertices in each tree.

We consider only un weighted graphs, although the above definitions have
obvious generalizations to the case where the edges have real-valued weights
(or lengths). The classical algorithms of Dijkstra, Floyd-Warshall, and Johnson
solve APSP in O(n3) time; the first and the last of these can actually be
implemented in O(nm + n2 log n) time.

While it is clear that the APSP or APD problem would require O(n2) time in
the worst case, there is no reason to believe that the O(nm) time bound (which
can be as much as 9(n3» is even close to the best possible. We now show that
a substantial improvement can be obtained for the unweighted case with the
use of randomization and fast matrix multiplication. While these results do not
generalize completely to the weighted case, there is some indication that this
should be possible.

What does matrix multiplication have to do with the shortest path problem?
Consider first the problem of Boolean matrix multiplication: given n x n Boolean
matrices A and B, their product C has entries

PI

Cij = 2: AikBkj

k=l

where the product of two Boolean values denotes the Boolean AND operation,
and the sum denotes the Boolean OR operation. Suppose that A = B is the
adjacency matrix of the graph G. Then the product C = A2 has its (i,j) entry
equal to 1 if and only if there is a path of length 2 between the vertices i and j;
the matrix At corresponds to paths of length t. A related concept is that of the
closure of a Boolean matrix A, which is defined as the infinite sum A* = L~ A',
where AO is the identity matrix. The closure matrix A* has its (i,j) entry equal
to 1 if and only if there is some path between the vertices i and j.

Computing all powers of A from 1 to n will thus enable us to solve the
APD problem. Unfortunately, this takes time 0 (n4

) using the obvious Boolean
matrix multiplication algorithm, which runs in time O(n3). On the other hand,
computing the closure A* of the Boolean matrix A requires only as much time
as a single Boolean matrix multiplication (see Problem 10.1).

Actually, it is possible to embed Boolean matrix multiplication into integer
matrix multiplication by treating the Boolean entries as the integers 0 and
1. This corresponds to embedding the closed semiring of Boolean algebra
into the ring of integers. Let MM(n) denote the time required to multiply two

279

GRAPH ALGORITHMS

n X n matrices with integer entries. All known integer matrix multiplication
algorithms are applicable to an arbitrary ring, rather than the ring of integers
alone.

Exercise 10.1: Show that Boolean matrix multiplication for n x n matrices can be
performed via integer matrix multiplication in time O(MM(n)). How large are the
integer values that arise during this computation?

Currently, the best integer matrix multiplication algorithm runs in time
o (n2.376). By the preceding exercise this result carries over to Boolean matrix
multiplication. Unfortunately, even the use of this observation gives a super
cubic algorithm for the APD problem in un weighted graphs. There is, however,
another trick that permits the solution of the APD problem in time O(MM(n».
The idea is to reduce the problem of computing the distance matrix for a graph
to a matrix multiplication over the closed semiring of the reals augmented
with 00, where scalar addition is replaced by the "min" operator, and scalar
multiplication is replaced by scalar addition. Let A now be the matrix in which
the (i, j) entry is the weight of the edge (i, j) if it exists, and 00 otherwise. The
semiring product of matrices A and B has entries

Cij = 1~i2n (Aile + Bkj).

It can be verified that the closure matrix A· is exactly the solution to the APD
problem. Some non-trivial ideas are needed to show that the semiring closure
can be computed via integer matrix multiplication; we omit the details. This
technique applies to weighted graphs too.

There are two serious deficiencies in the solution described in the previous
paragraph - the algorithm does not generalize from the APD problem to
the APSP problem and, more importantly, the reduction to integer matrix
multiplication creates integer matrices whose entries are integers whose length
is super-linear in n. In any real machine, this implies that each arithmetic
operation takes super-linear time, and the usual unit-cost assumption for basic
arithm~tic operations is invalid. We present a different approach for reducing the
APD problem to integer matrix multiplication using integers of only logarithmic
length. Then, we show that this can be extended, via randomization, to actually
solve the APSP problem using a black-box for matrix multiplication. The
algorithm is practical to the extent that the fast matrix mUltiplication algorithm
being invoked is practical.

10.1.1. Computing Distances

Our first goal is to present a (deterministic) algorithm to solve the APD problem
using a black-box for integer matrix multiplication. In the ensuing discussion,
all matrix multiplications are over the ring of integers and the adjacency matrix
is treated as an integer matrix.

280

10.1 ALL-PAIRS SHORTEST PATHS

Let G'(V,E') be the graph obtained from G(V,E) by placing an edge between
every pair of vertices i f j E V that are at distance 1 or 2 in G. The graph G
is a subgraph of G', and we could view G' as the "square" of the graph G. For
G', let A' denote the adjacency matrix and D' denote the distance matrix. The
proof of the following lemma is left as an exercise.

Lemma 10.1: Let Z = A2, where A is the adjacency matrix of the graph G.
Then there is a path of length 2 in G between a pair of vertices i and j if and
only if Zij > o. Further, the value of Zij is the number of distinct length 2 paths
between i and j.

The matrix Z = A2 can be computed in O(MM(n» time, and if we know A
and Z it is easy to determine the matrix A' in O(n2) time. The diagonat"entries
in Z = A2 will be non-zero in general (corresponding to cycles of length 2), and
care must be taken in constructing A' to ensure that it has a zero diagonal. In
particular, we compute A' by setting A~j = 1 if and only if if j and at least one
of Aij and Zij is non-zero.

Observe that G' is complete if (and only if) G has diameter at most 2, where
the diameter of a graph is the maximum shortest path length over all pairs of·
vertices. In this case, the APD matrix D = 2A' - A is easily obtained from A
and A' in time O(n2).

In general, of course, the graph G could have arbitrarily large diameter. The
following sequence of observations will allow us to handle the general case. The
proof of the next lemma is left as an exercise.

Lemma 10.2: Consider any pair of vertices i, j E V.

• If Dij is even then Dij = 2D~j.

• If Dij is odd then Dij = 2D;j - 1.

An immediate implication of this lemma is that given the APD matrix D'
for G', the APD matrix D for G can be computed quickly provided we know
the parity of each of the shortest path lengths in D. This suggests a recursive
algorithm for APD that first computes A' and G', uses recursion to determine
D', and then computes D from D' using the observation in Lemma 10.2. The
only remaining detail is the method for computing the parities of the shortest
path lengths. The proof of the next lemma is an easy exercise.

Lemma 10.3: Consider any pair of distinct vertices i and j in G.

• For any neighbor k of i, Dij - 1 < Dkj ~ Dij + 1.

• There exists a neighbor k of i such that Dkj = Dij - 1.

We now present a structural property of shortest paths that allows us to
compute the parities of their lengths.

281

GRAPH ALGORITHMS

Lemma 10.4: Consider any pair of distinct vertices i and j in G .

• If Dij is even, then D~j > D;j for every neighbor k of i in G .

• If Dij is odd, then D~j < D;j for every neighbor k of i in G. Moreover, there

exists a neighbor k of i in G such that D~j < D;j'

PROOF: Consider first the case where Dij = 2t is even. By Lemma 10.3, for any
neighbor k of i we have Dkj > 2t - 1. Lemma 10.2 implies that D;j = t. Also
by Lemma 10.2 we have D~j > Dkj /2 > t -1/2, and since distances are integral

we conclude that D~j > t = D;j'

A similar argument applies in the case where Dij = 2t - 1 is odd. By
Lemma 10.3 we have Dkj < 2t for any neighbor k of i, and therefore, by
Lemma 10.2, D~j < (Dkj + 1)/2 < t + 1/2. By integrality it follows that D~j < t,
and by Lemma 10.2 we have D;j = t, implying the desired result that D~j < D;j'
Further, there exists a neighbor k of i such that Dkj = Dij - 1 = 2t - 2, and
therefore Lemma 10.2 yields D~j = t - 1 < t = D;j' 0

Let r(i) denote the set of neighbors of i in G, and let d(i) be the degree of
i. Note that Zjj = d(i), for all i. Summing the inequalities in Lemma 10.4 over
the neighbors of the vertex i, and noting that the two resulting inequalities are
mutually exclusive, we obtain the following result.

Lemma 10.5: Consider any pair of distinct vertices i and j in G.

~ I I

• Dij is even if and only if L."ker(i) Dkj ~ Dijd(i).

This gives us an efficient method for determining the parities of the shortest
path lengths in G. The resulting recursive algorithm is summarized in Algorithm
APD.

In Step 5 we are using matrix multiplication to compute

PI

2: D~j = 2: AikD~j = Sij.
ker(i) k=l

The correctness of the algorithm follows from the preceding discussion. We
summarize the running time analysis in the following theorem. The length of
the integers in the matrices will never exceed O(log n).

282

to.t ALL-PAIRS SHORTEST PATHS

Algorithm APD:

Input Graph G(V, E) in form 01an adjacency matrix A.

Output: The APD matrix D for G.

1. Z _A2.

2. compute matrix A' such that A;j = 1 if and only if

i f j and (A;j = 1 or Zij > 0).

3. If A;j = 1 for all i f j then return D = U' - A.

4. Recursively compute the APD matrix D' for the graph G' with adjacency
matrix A'.

5. S-AD'.

6. return matrix D with 0,; - {

Theorem 10.6: The APD algorithm computes the distance matrix for an n-vertex
graph G in time O(MM(n) log n) using integer matrix multiplication on matrices
with entries of value bounded by O(n2).

PROOF: Suppose that the graph G has diameter~. Then the graph G' has
diameter r ~ /2l Let T(n,~) denote the running time of the APD algonthm on
input graphs with n vertices and diameter ~. In the case ~ = 1, G is a complete
graph, and in the case ~ = 2 we have that T(n,~) = MM(n) + O(n2).

Exercise 10.2: Verify that T(n, 6) satisfies the following recurrence for 6 > 2,

T(n, 6) = 2MM(n) + T(n, r 6/21) + O(n2
).

Noting that ~ < nand MM(n) = O(n2), and that the recursion depth is O(log n),
the desired result follows immediately. Finally, since the integers in the distance
matrices are bounded by n, it follows that the integers in the S matrices are
bounded by n2• 0

10.1.2. Witnessing Boolean Matrix Multiplication

We now extend the above technique to solving the APSP problem; this is where
randomization proves useful. The extension is based on solving the problem of
finding "witnesses" for Boolean matrix multiplication. Suppose A and Bare
n x n Boolean (or, 0-1) matrices and P = AB is their product under Boolean
matrix multiplication. A witness for Pij is an index k E {1, ... , n} such that

283

GRAPH ALGORITHMS

Aile = Bkj = 1. Observe that Pij = 1 if and only if it has some witness k. A
Boolean product witness matrix (BPWM) for P is an integer matrix W such that
each entry Wij contains a witness k for Pjj if any, and is 0 if there is no such
witness. The matrix W has entries drawn from the set {O,1, ... ,n}. The BPWM
problem is to find a witness matrix W, given the matrices A and B (and, if
necessary, also the matrix Pl.

There could be as many as n witnesses for each entry in P. In fact, the
integer matrix multiplication of A and B, treating their entries as the integers 0
and 1, yields a matrix C whose entry Cij corresponds exactly to the number of
witnesses for the Boolean matrix entry Pij.

Recall that if A = B is the adjacency matrix of a graph G, then Pij = 1 if and
only if there exists a path of length 2 from i to j, and Cij is the number of such
paths. A witness k for Pjj is the intermediate vertex on a length-2 path from
i to j. It thus appears that finding witnesses for Boolean matrix multiplication
is closely related to the issue of extending the APD algorithm to finding the
shortest paths. The problem is that the obvious brute-force approach of trying
each k E {1, ... , n} as a potential witness for Pij requires O(n) time and gives
only an O(n3) time algorithm for the BPWM problem.

Consider first the issue of finding a witness matrix when there is a unique
witness for each entry in P. There is a simple reduction of the BPWM problem to
integer I'!latrix multiplication in this case, as suggested in the following exercise.
In the rest of this section, except in the computation of P, all matrix products
involve integer matrix multiplication.

Exercise 10.3: Consider the matrix A obtained by setting Aik = kA ik • Show that the
integer matrix multiplication of A and B yields a matrix that contains the witness for
all entries in the matrix P that have a unique witness. In particular, if each entry of
P has a unique witness, then W = AB is a solution to the BPWM problem.

Of course, there is no a priori guarantee that there is a unique witness for
any particular entry in P. However, we can use randomization to achieve the
effect of such a guarantee for a sufficiently large number of entries in P. This
approach bears some resemblance to the use of the isolating lemma used in
devising a parallel algorithm for maximum matching, described in Section 12.4.

Let us focus our attention on a specific entry Pij. Assume that the number of
witnesses for this entry has been determined to be w. We may find the number
of witnesses w by using integer matrix multiplication to compute C = AB, and
then looking at the entry Cij• We assume that w > 2, since it is easy to find
the witness (if any), otherwise. Let r be an integer such that nl2 < wr < n. We
claim that a random set of indices R c {1, ... , n} of cardinality r is very likely to
contain a unique witness for Pij. To verify this claim, consider an urn containing
n balls, one for each of the n indices; the balls corresponding to witnesses are
colored white, and the rest are colored black. The following lemma then shows
that the probability that R contains a unique witness is reasonably large.

284

to.t ALL-PAIRS SHORTEST PATHS

Lemma 10.7: Suppose an urn contains n balls of which ware white, and n - w

are black. Consider choosing r balls at random (without replacement), where
n/2 ::S; wr < n. Then

Pr[exactly one white ball is chosen] > ;e.

PROOF: By elementary counting, the desired probability can be bounded as
follows.

r! (n-w)! (n-r)!
- w------'-------:-~

(r-l)! n! (n-w-r+1)!

(

W-l 1) (W-2) == wr rr ~ rr (n - r - j)
i==O n I j==O

_ wr (Wrr-2 n-r- ~)
n n-l-J

j-O

~ wr (Wrr-2 n - r - j - (w - j - 1»)
n j==O n - 1 - j - (w - j - 1)

_ wr (Wrr-2 n - W -(r-l»)
n n-w

j==O

_ wr (1 _ r -1) w-l

n n-w

1 (1) w-l
~ - 1--

2 w

The last inequality follows from the observations that wr/n > 1/2 and (r-
1)/(n - w) ::S; l/w, which in turn follow from the assumption that n/2 < wr < n.
Finally, applying Proposition B.3, the last expression is bounded by 1/2e. 0

Assuming that the set R contains a unique witness for Pij , it is easy to modify
the technique described in Exercise 10.3 to identify this witness. Suppose that
R is represented as an incidence vector that has Rt == 1 for k E Rand Rt == 0
for k ~ R. Let AR be the matrix obtained from A by setting A~ == kRtAik;
further, let BR be the matrix obtained from B by setting BfJ == RtBkj• The only
difference between AR and BR and the two matrices used in Exercise 10.3 is that
each column of AR and each row of BR corresponding to the indices not chosen
in R is turned into an all-zero vector. The reason behind this construction is
explicated in the next exercise.

Exercise 10.4: Suppose that the entry Pij has a unique witness in the set R. Show
that the corresponding entry in the integer matrix multiplication of AR and Jii is the
index of this unique witness.

285

GRAPH ALGORITHMS

A key point is that the product of AR and BR yields witnesses for all entries
in P that have a unique witness in R. By Lemma 10.7, there is a constant
probability that a random set R of size r has a unique witness for an entry
in P with w witnesses. where nl2r < w < nlr. Repeating this for O(log n)
independent choices of R makes it extremely unlikely that witnesses are not
identified for such entries in P, and these missing witnesses can be found by
brute-force enumeration. Of course, we will need to use several different values
of r to take care of the range of values possible for w, but it suffices to try only
those values of r that are powers of 2 between 1 and n. The resulting algorithm
is presented below.

Algorithm BPWM:

Input: Two n x n 0-1 matrices A and B.

Output: Witness matrix W for the Boolean matrix P = AB.

1. W --AB.

2. for t = 0, ... , llog n J do

2.1. r _ 21.

2.2. repeat r3.77 log n 1 times

2.2.1. choose random R!;; {1, ... ,n} with IRI = r.

2.2.2. compute AR and Jii.
2.2.3. Z _ AR~.

2.2.4. for all (i, j) do
If Wij < 0 and Zlj is witness then W lj - Zij.

3. for all (i, j) do
If W lj < 0 then find witness W lj by brute force.

The initial setting of W ensures that the only negative entries are those where
the valJ.le of Pij is non-zero and there is a need to find a witness. Thereafter, the
negative entries mark the locations in P for which witnesses have not yet been
found. The brute-force search in the last step for the witnesses not identified by
the randomized strategy ensures that the algorithm is Las Vegas. We now turn
to the task of analyzing the expected running time.

Theorem 10.8: The BPWM algorithm is a Las Vegas algorithm/or the BPWM
problem with expected running time 0 (MM (n) log2 n) .

PROOF: Step 1 takes time MM(n). There are o (log2 n) iterations of the innermost
loop body in Step 2, and the most expensive operation performed there is an
integer matrix multiplication of matrices of dimension at most n x n. This would

286

10.1 ALL-PAIRS SHORTEST PATHS

yield the desired time bound, provided that the brute-force computations in Step
3 are not too expensive. We claim that for any non-zero Pij' a witness is found
in Step 2 with probability at least I-lin. This implies that the expected number
of witnesses remaining to be found at the start of Step 3 is n, and since each of
these is then found by brute force in O(n) time, it follows that the expected cost
of Step 3 is O(n2).

To verify the claim, consider any specific non-zero Pij and assume that it
has w witnesses. There will be at least one iteration of the outer loop with a
value r such that nl2 < wr < n. During that iteration, the probability that a
random choice of R does not have a unique witness for Pij is at most 1 - 1/2e,
by Lemma 10.7. Since the inner loop is repeated 3.77 log n times, it follows that
the probability that no witness is found for this entry before the end of Step 2
is at most (1 - 1 12e)3.77 log II < lin. . 0

10.1.3. Determining Shortest Paths

Finally, we show how the Algorithms APD and BPWM can be used to solve
the APSP problem. The first problem we face is that there exist graphs with
many pairs of vertices for which the shortest path length is linear in n, and so
any explicit representation of all-pairs shortest paths will require O(n3) time to
compute.

Exercise 10.5: Construct an n-vertex graph with Q(n2) pairs of vertices ~t distance
Q(n).

To circumvent this problem, we will compute an implicit representation of
the shortest paths such that for any specific pair of vertices their shortest path
can be extracted in time proportional to its length.

~ Definition 10.1: A successor matrix S for an n-vertex graph G is an n x n matrix
such that Sij is the index k of a neighbor of vertex i that lies on a shortest path
from i to j.

Exercise 10.6: Given a successor matrix S and a pair of vertices i, j, explain how
you would obtain an explicit representation of the shortest path from i to j in time
proportional to the length of the path.

Suppose we are provided with the adjacency matrix A and the distance matrix
D for a graph G. Consider a pair of vertices i and j that are at distance d from
each other. The entry Sij can be k if and only if Dkj = d - 1 and Dik = 1 (or
Aile = 1). Let g1 denote the n x n 0-1 matrix in which Btj = 1 if and only if

287

GRAPH ALGORITHMS

Dkj = d - 1. Observe that gl can be computed from D in O(n2) time. As the
following exercise indicates, finding the successor entry for any pair i and j at
distance d is easy given the matrix gl.

Exercise 10.7: Applying the BPWM algorithm to compute the witness matrix for
the Boolean matrices A and gJ, show that the successor matrix entries for all
pairs of vertices at distance d can be simultaneously determined in expected time
O(MM(n) log2 n).

The only problem with this approach is that the entire process must be
repeated for the n different values of d, leading to a super-cubic algorithm for
APSP. However, a simple observation leads to a reduction of the number of
witness matrix computations from n down to 3.

Recall from Lemma 10.3 that for any pair of vertices i and j, and any
neighbor k of i, it must be the case that Dij - 1 < Dkj < Dij + 1. Furthermore,
any neighbor k with Dkj = Dij - 1 is a valid candidate for the successor matrix
entry Sij. It follows that any k such that Aik = 1 and Dkj s: Dij - 1 (mod 3) is a
valid candidate for Sij.

For s E {O, 1,2}, define the n x n 0-1 matrix D(s) to be such that Dij = 1 if and
only if D}cj + 1 = s (mod 3). The successor matrix can be computed by finding
the witnesses of the Boolean matrix multiplication of A with each of D(O), DO),

and D(2), as described in Algorithm APSP.

Algorithm APSP:

Input: An n x n adjacency matrix A for a graph G.

Output: The successor matrix S for G.

1. compute the distance matrix D = APD(A).
2. for s = {O, 1, 2} do

2.1. compute 0-1 matrix D(a) such that D!j) = 1 if and only if Dki + 1 E S

. (mod 3).

2.2. compute the witness matrix W(a) = BPWM(A, D(a)).

3. compute successor matrix S such that Slj = wt;j mod 3) •

Given the performance bounds on the algorithms APD and BPWM, the
following theorem is easily verified.

Theorem 10.9: Algorithm APSP computes the successor matrix for an n-vertex
graph G in expected time 0 (MM(n) log2 n).

288

lU THE MIN-CUT PROBLEM

10.2. The MiD-Cut Problem

We now return to the min-cut problem considered in Section 1.1. Let G(V, E) be
an undirected multigraph with n vertices and m edges. A multigraph is permitted
more than one edge between any given pair of vertices. A cut in G is a partition
of the vertices V = (C, C) into two non-empty sets; we refer to this as the cut
C with the understanding that C is V \ C.

The value or size of a cut C is the number of edges crossing the cut, i.e.,
edges with one end-point in each of the two sets C and C. A multiple edge will
contribute its multiplicity to the value of the cut. A min-cut is a cut of minimum
value; the min-cut problem is that of finding a min-cut in an input graph G.
The value of a min-cut is sometimes referred to as the edge connectivity of the
graph, as it is the minimum number of edges that must be removed from the
graph to render it disconnected.

We assume that the input graph G is connected, since otherwise the problem
is trivially solved by determining the connected components of G in time O(m).
The above definitions generalize to weighted graphs, where the value of a cut is
defined to be the sum of the weights of the edges crossing the cut. We restrict
ourselves to non-negative edge weights. Permitting negative edge weights would
make the problem NP-complete since it would then include as a special case the
max-cut problem, a classical NP-complete problem.

The min-cut problem should be contrasted with the s-t min-cut problem. In
the latter, two distinguished vertices sand t are specified in the input, and the
solutions are restricted to the cuts C with the property that sEC and t ~ C.

Exercise 10.8: Show that the min-cut problem for a graph G can be solved via a
polynomial number of invocations of an $-t min-cut algorithm applied to the same
graph.

The classical duality result in network flows states that the value of a maxi
mum s-t flow in a network equals the value of a s-t min-cut. In fact, computing
a maximum s-t flow yields an s-t min-cut as a side·effect. It follows that the
min-cut problem can be solved via a polynomial number of invocations of a
maximum flow algorithm. Actually, it can be shown that n -1 flow computations
suffice for this purpose. Since the best deterministic maximum flow algorithm
runs in time O(mnlog(n2/m»), this approach to the min-cut problem would
require O(mn2) time. Fortunately, the n -1 maximum flow computations needed
for the min-cut problem can be implemented in time proportional to the cost of
a single maximum flow computation, and so we can compute a min-cut in time
O(mn log(n2/m».

A very interesting question is whether the s-t min-cut problem can be solved
faster than the s-t max-flow problem. Note that whereas a flow computation
immediately yields the cut, the converse does not seem to be true. In this section
we show that at least for the min-cut problem (without the s-t requirement),

289

GRAPH ALGORITHMS

there is an efficient randomized algorithm running in 0 (n2 IogQ1)n) time. For
dense graphs this is significantly better than the running time of the best-known
max-flow algorithm.

10.2.1. The Contraction Algorithm Revisited

We start by reviewing the the contraction algorithm described in Section 1.1.
Actually, we present only an abstract version of this algorithm and leave the
implementation details as an exercise.

Given an edge (x,y) in a multigraph G(V,E), a contraction of the edge (x,y)
corresponds to replacing the vertices x and y by a new vertex z, and for each
v ~ {x,y} replacing any edge (x,v) or (y,v) by the edge (z,v); the rest of the
graph remains unchanged. Any multiple edges created are to be retained. The
graph obtained by this contraction is denoted by G/(x,y).

Given a collection of edges F c: E, the effect of contracting the edges in F
is independent of the order of contraction, and the resulting graph is denoted
by G I F. The vertex set and edge set of a graph G I F are denoted by V IF and
ElF. The "meta-vertices" in V IF correspond to a (connected) set of vertices in
V, and the edges in ElF are exactly those edges in E whose end-points do not
get coll~psed into the same meta-vertex in V IF. In Problem 10.9, the reader is
asked to show that it is possible to maintain the graph G I F under an online
sequence of edge contractions at a cost of O(n) time per contraction, keeping
track of the correspondence between the elements of V IF and V, and ElF and
E.

The basic idea behind the contraction algorithm is summarized below. We
assume that the Algorithm Contract uses the data structure developed in Prob
lem 10.9 to implement the edge contractions.

Algorithm Contract:

Input: A multigraph G{V, E).

OutPut: A cut C.

1. H - G.

2. while H has more than 2 vertices do

2.1. choose an edge (x,y) uniformly at random from the edges in H.

2.2. F _ F U {{x,y)}.

2.3. H - H /(x,y).

3. (C, C) - the sets of vertices corresponding to the two meta-vertices in
H = G/F.

290

18.2 THE MIN-CUT PROBLEM

The only implementation issue remaining in this algorithm is the selection of
the edge (x,y) uniformly at random from the set of aJJ edges in the graph H. In
Problem 10.10, the reader is asked to show that this can be done in O(n) time
per random selection. The results from Problems 10.9-10.11 yield the following
theorem.

Theorem 10.10: Algorithm Contract can be implemented to run in O(n2) time on
any n-vertex multigraph G.

The running time of this algorithm is independent of the number of (multi)
edges in the graph G. This may seem surprising at first since the number of
such edges is not bounded by (~). However, as suggested in Problem 1Q.9, the
multiplicity of an edge can be represented by an integer weight on the edge and
hence the number of edges can effectively be bounded by (~).

Of course, this just shows that the Contract algorithm terminates in O(n2)

time with a cut C. There is no guarantee that the cut will indeed be a min-cut.
We now briefly review the argument from Section 1.1 that established that this
algorithm finds a min-cut with a non-negligible probability.

Lemma 10.11: A cut C is produced as output by Algorithm Contract if and only
if none of the edges crossing this cut is contracted by the algorithm.

Fix anyone min-cut K in the graph G. Let k denote the value of a min-cut
in G; in particular, k is the value of the cut K. We would like to compute
the probability that K is produced as the output of Algorithm Contract. By
Lemma 10.11, this will happen if and only if none of the k edges crossing the
cut is contracted during the course of the algorithm's execution. To determine
the probability of this event, we make use of the following obvious facts.

Lemma 10.12: In an n-vertex multigraph G with min-cut value k, no vertex has
degree smaller than k. Further, the total number of edges in the graph satisfies
m > nk/2.

Lemma 10.13: Given an edge (x,y) in a graph G, the min-cut value in G/(x,y)
is at least as large as the min-cut value in G.

The number of vertices in the graph H decreases bj exactly one during each
iteration of Algorithm Contract. After n - 2 iteration., the number of vertices
is reduced from n to 2. At the ith iteration, there ars;! ni = n - i + 1 vertices
in H. Suppose that none of the edges in K is contrac.::ed during the first i - 1
iterations. Since K is also a cut in H, Lemma 10.13 irr;plies that H has min-cut
value k, and then Lemma 10.12 implies that the nur.'1ber of edges in H is at
least nik/2. Thus, the probability that any edge of K is contracted during this
iteration is at most 2/ni. It follows that the probability that no edge of K is ever

291

GRAPH ALGORITHMS

contracted can be bounded as follows.

Pr[K is output by Algorithm Contract]
n-2 (2)

~ II 1--
i=1 ni

n-2 (2) - n 1- n _ i +1
1=1

_ IT (j .2)
J=n }

- 1 / (~) = Q(n-2
).

We have established the following theorem.

Theorem 10.14: Any specific min-cut K is output by Algorithm Contract with
probability Q(n-2).

Since the graph must have at least one min-cut, it follows that the probability
of success of this algorithm is Q(n-2). Repeating the algorithm O(n2 log n) times
gives a reasonable probability that some invocation of the algorithm produces
a min-cut; then, the smallest cut produced by these invocations is very likely
to be the min-cut. This gives a Monte Carlo algorithm running in 0 (n4 log n)
time. Before trying to improve this result, we note the following variant of
Theorem 10.14.

Lemma 10.15: Suppose that the Algorithm Contract is terminated when the num
ber of vertices remaining in the contracted graph is exactly t. Then any specific
min-cut K survives in the resulting contracted graph with probability at least

10.2.2. A Faster Min-Cut Algorithm

We now modify the implementation of the contraction algorithm to reduce its
running time to 0 (n2 logQ1)n). The basic problem with Algorithm Contract is

that it succeeds in finding a min-cut only with probability Q(n-2). This entails
running the algorithm at least Q(n2) times to ensure a reasonable probability of
success. Thus, the obvious approach to improving the running time is to increase
the probability that a min-cut is produced by Algorithm Contract.

Suppose we focus our attention on a specific min-cut K and wish to have the
algorithm produce this as its output. The initial contractions are quite unlikely
to involve the edges crossing the cut K; in particular, the very first iteration will
contract an edge of K with probability at most 2/n. The key insight is that it is
only toward the end of the contraction process that there is any non-negligible

292

lU THE MIN-CUT PROBLEM

probability that an edge of K gets contracted; in particular, this probability
could be as large as 2/3 in the very last iteration.

This suggests that we contract the edges until the number of vertices decreases,
but not by too much, and then use some slower algorithm that guarantees
a higher probability of success. The first stage guarantees that the slower
algorithm will not require too much time to find a min-cut, but at the same
time, since the contractions are performed on graphs with a large number of
vertices, the probability that one of K's edges gets contracted is reasonably
small. Unfortunately, the best deterministic algorithm known requires 0 (n3)

time, and the following exercise shows that the above approach will fail to
achieve a running time close to O(n2).

Exercise 10.9: Consider running the contraction algorithm until the number of ver
tices is reduced to t and then using a cubic-time algorithm to find the min-cut in the
contracted graph. Show that repeating this process as many times as necessary to
ensure a probability of success at least 1/2 leads to an algorithm with running time
O(n8/ 3).

The crucial insight is that instead of using a slower deterministic algorithm, it
is better to use two independent invocations of the Algorithm Contract itself on
the contracted graph with t vertices. This is because the two repetitions boost
the probability of success on the smaller instance, while the cost of the repetition
on this instance is not as much as the cost of repeating the entire algorithm; in
fact, this effect multiplies with each successive stage of the recursion .. We now
specify the algorithm more precisely: first use contractions to reduce the number
of vertices to roughly n/.J2, and then recursively compute the min-cut in the
resulting graph; perform this twice and choose the smaller of the two min-cuts
obtained as the final output. The resulting recursive algorithm is summarized
below, and the reasons behind this precise choice of the parameters will become
clear shortly.

Algorithm FastCut:

Input: A multigraph G(V, E).

Output: A cut C.

1. n - IVI.
2. if n ~ 6 then compute min-cut of G by brute-force enumeration else

2.1. t - r 1 + n / J21.
2.2. Using Algorithm Contract. perform two independent contraction se

quences to obtain graphs H1 and H2 each with t vertices.

2.3. Recursively compute min-cuts in each of H1 and H2.

2.4. return the smaller of the two min-cuts.

293

GRAPH ALGORITHMS

The recursion is stopped when n < 6 since at that point t will not be smaller
than n. An intuitive way of viewing this algorithm is in terms of a binary
computation tree. The root corresponds to the graph G. For any node of this
tree with an associated graph H, we associate with the two children the graphs
HI and H2 obtained by performing independent sequences of contractions that
reduce the number of vertices in H by a factor of .J2. The depth of the tree
is roughly 2 log n, and the number of leaves is O(n2). In contrast, the O(n2)
independent iterations of Algorithm Contract can be viewed as a tree of depth
1 with one root and O(n2) leaves that are direct descendants of the root. Thus,
the speed-up in this algorithm does not come from generating a smaller set of
potential min-cuts, but instead it is due to the sharing of work between the
various contraction sequences required to generate these potential min-cuts.

Algorithm FastCut is guaranteed to return some cut in G. We first bound the
time and space requirements of this algorithm.

Theorem 10.16: Algorithm FastCut runs in O(n2 log n) time and uses O(n2) space.

PROOF: The depth of recursion is O(log n) since the size of the graph is reduced
by a constant factor at each level of recursion. Algorithm Contract uses O(n2)

time to reduce an n-vertex graph to a 2-vertex graph, and so it can certainly
perform 'a partial reduction to both HI and H2 in O(n2) time. We obtain the
following recurrence for the running time T(n) of Algorithm FastCut when given
an n-vertex graph as input:

The solution to this recurrence is given by T(n) = O(n2 log n).

Turning to the space requirement, observe that at any time only one graph
needs to be stored at each level of recursion. Since the graphs at depth d
of recursion have O(n/2d/2) vertices, it follows that the total space needed is
bounded by

o(~ ;) = 0(.').

We also have to keep track of the best min-cut found at each level of the
recursion, but this can certainly be done with space O(n2). This completes the
proof. 0

It remains to show that this algorithm has reasonably high probability of
returning a min-cut.

Theorem 10.17: Algorithm FastCut succeeds in finding a min-cut with probability
Q(l/ log n).

294

18.2 THE MIN-CUT PROBLEM

PROOF: Suppose that the input graph G has min-cut value k. Assume that a
cut of value k has survived up to some point in the recursion where the size of
the residual graph H is t. This can be viewed as a node labeled by the graph H
in the recursion tree discussed earlier. Let HI and H2 be the graphs associated
with the children of the node associated with H; these are the two contracted
versions of H on which the algorithm will recur further.

The invocation of the recursive algorithm on graph H will return a min-cut
for G provided the following two conditions are met: a cut value of k survives
one of the two contraction sequences leading to HI and H2 ; and, the FastCut
algorithm succeeds in finding the min-cut in that same graph Hi.

By Lemma 10.15, the probability that any specific min-cut in H (which must
also be a min-cut in G) survives a contraction sequence that reduces the number
of vertices from t to rt + t/..j21 is at least .

rt + t/ ..j2l(rt + t/..j21 - 1) 1
~--~~~--~~~~> -

t(t - 1) - 2·

Let P(t) denote the probability that Algorithm FastCut succeeds in finding a
min-cut in a graph with t vertices. It follows that

P (t) > 1 - (1 - ~ P (r 1 + t / ..j21)) 2

To solve this recurrence, it will be convenient to perform a change of variables
and tum it into an equality. Let k = 0(log t) denote the depth of recursion, and
p(k) be a lower bound on the success probability. Then, we have p(O) = 1 and
the recurrence: .

p(k)2
p(k + 1) = p(k) - -4-.

A further change of variables with q(k) = 4/p(k) - 1, or p(k) = 4/(q(k) + 1),
yields the following upon simplification:

1
q(k + 1) = q(k) + 1 + q(k)"

A simple inductive argument now establishes that

k < q(k) < k + Hk- I + 3,

where Hi is the ith Harmonic number and is 0(log i). It follows that q(k) =
k + 0(logk), implying that p(k) = 0(1/k), and this in tum implies that P(t) =

0(1/log t). Using n instead of t in the last expression gives the desired result.
o

A reader familiar with the theory of branching processes may see that this
proof is essentially bounding the probability of extinction of the graphs having
min-cut value exactly that of the original graph G. Finally, we leave it as an
exercise to verify that this algorithm can be implemented in the promised time
bounds as was done for Algorithm Contract in Problems 10.9-10.11.

295

GRAPH ALGORITHMS

10.3. Minimum Spanning Trees

Let G(V, E) be a connected graph with real-valued edge weights w : E -+ R.,
having n vertices and m edges. A spanning tree in G is an acyclic subgraph of G
that includes every vertex of G and is connected; every spanning tree has exactly
n - 1 edges. The weight of a tree is defined to be the sum of the weights of its
edges. A minimum spanning tree (MST) is a spanning tree of minimum weight.
The minimum spanning tree problem (MSTP) is: given G, find an MST of G.

The algorithm we present here will recurse on subgraphs that are not nec
essarily connected. When the input graph G is not connected, a spanning tree
does not exist and we generalize the notion of a minimum spanning tree to that
of a minimum spanning forest (MSF). A forest F is an acyclic subgraph of G
that consists of a collection of disjoint trees in G; we treat isolated vertices in
F as trees of size 1. A spanning forest is a forest whose trees are spanning trees
for the connected components of the graph G. A spanning forest is a spanning
tree if and only if the graph is connected. The weight of a forest is the sum of
the weights of its edges, and a minimum spanning forest is a spanning forest of
minimum weight. By considering each connected component of G separately, it
is easy to modify any algorithm for the MSTP to compute the MSF.

We will assume that all edge weights in G are distinct. This is not a restrictive
assumption since we can use any canonical numbering of the edges to resolve
ties whe~ edge weights are being compared. Given the distinctness of the edge
weights, it follows that the minimum spanning tree must be unique.

The exact weight of the edges will be irrelevant to the following discussion
since the algorithms will work in the unit-cost RAM model and only perform
comparisons between the edge weights; in particular, these algorithms only
depend upon the total ordering of the edge weights and are otherwise insensitive
to the values of the weights.

The MSTP is one of the best-studied problems in combinatorial optimization.
A variety of algorithms have been developed for this problem, most of which
are based on a greedy strategy and run in near-linear O(m log n) time, e.g.,
BOrUvka's algorithm, Kruskal's algorithm, and Prim's algorithm. Currently,
the best deterministic algorithm runs in time O(m log p(m, n», where p(m, n) =
min{i i log(i) n ~ min} and log(i) n denotes the ith iterated logarithm of n. While
this is a linear time algorithm for all practical purposes, the data structures are
complicated enough that the simpler algorithms running in time O(m log n) are
preferable to use. In any case, there is still the theoretical issue of devising a
linear time algorithm for this problem. In this section, we present a randomized
algorithm for the MSTP and show that its expected running time is O(m). In
fact, the running time of this algorithm is O(m) with high probability, but we
omit this high-probability analysis in our discussion (see the Notes section).

The randomized algorithm we present requires a black-box access to an MST
verification algorithm. A verification algorithm takes as input a graph G and a
spanning tree T, and determines whether T is an MST for the graph G. Clearly,
the verification problem for MST should be no harder than the MSTP. Indeed,

296

10.3 MINIMUM SPANNING TREES

several deterministic linear-time verification algorithms are known. We omit the
details of these algorithms and use them as black boxes (see the Notes section).
An important property of some of these linear-time verification algorithms is
that when T is not an MST, they produce a list of edges in G any of which can
be used to improve T. We will make this more precise later.

10.3.1. Boruvka's Algorithm

We start by describing a particular greedy strategy for MST called BOrUvka's
algorithm, which runs in time O(m log n). Later we will show that using ran
domization in conjunction with this algorithm leads to a linear-time algorithm.
Boruvka's algorithm is based on the following simple observation.

Exercise 10.10: Let v E V be any vertex in G. Show that the MST for G must contain
the edge (v, w) that is the minimum-weight edge incident on v.

The basic idea in Boruvka's algorithm is to contract simultaneously the
minimum weight edges incident on each of the vertices in G. Recall from
Section 10.2 that contracting an edge (v, w) involves collapsing the two end
points into a single vertex that has all the incident edges of both vertices, except
that self-loops are eliminated. In fact, a contraction can create multiple edges
between some pairs of vertices but only the minimum weight edge needs to
be retained out of any set of multiple edges. This process of contracting the
minimum-weight incident edge for each vertex in the graph is called a Bonlvka
phase. A good implementation of a Boruvka phase is the following: mark
the edges to be contracted; determine the connected components formed by
the marked edges; replace each connected component by a single vertex; and,
finally, eliminate the self-loops and multiple edges created by these contractions.

Exercise 10.11: Given a graph G with n vertices and m edges, show that a Boruvka
phase can be implemented in time O(n + m).

Exercise 10.12: Show that the set of edges marked for contraction during a Boruvka
phase induces a forest in G.

We claim that the graph G' obtained from the Boruvka phase has at most
nl2 vertices. This is because each contracted edge can be the minimum incident
edge on at most two vertices. The number of marked edges is thus at least n12.
Since each vertex chooses exactly one edge to mark, it is easy to verify that each
marked edge must eliminate a distinct vertex. The number of edges in G' is no
more than m since no new edges are created during this process.

Let us now examine the benefit of performing a Boriivka phase. By Exer
cise 10.10, each of the contracted edges must belong to the MST of G. In fact,

297

GRAPH ALGORITHMS

the forest induced by the edges marked for contraction is a subgraph of the
MST.

Exercise 10.13: Let G' be the graph obtained from G after a Boruvka phase. Show
that the MST of G is the union of the edges marked for contraction during this phase
with the edges in the MST of G'.

Boriivka's algorithm thus reduces the MST problem in an n-vertex graph
with m edges to the MST problem in an (n/2)-vertex graph with at most m
edges. The time required for the reduction is only O(m + n). It follows that the
worst-case running time of this algorithm is O(m log n).

10.3.2. Heavy Edges and MST Verification

Before describing how randomization can be used to speed up Boriivka's algo
rithm, we develop a technical lemma on random sampling of edges from the
graph G.

Fix a forest F in G and consider any pair of vertices u, v E V. If they lie
in the same connected component (i.e., tree) of F, there exists a unique path
P(u,v) lietween them in the graph F. Let WF(U,V) denote the maximum weight
of an edge on the path P(u, v) if it exists, and set WF(U, v) = 00 when U and v are
disconnected in F. The value WF(U, v) should not be confused with the weight
w(u, v) of the edge (u, v) in G, if indeed such an edge exists.

~ Definition 10.2: An edge (u,v) E E is said to be F-heavy if w(u,v) > WF(U,V).

The edge (u,v) is said to be F-light if w(u,v):5 WF(U,V).

Note that all edges in F must be F-light. An edge (u,v) is F-heavy if the forest
F contains a path from U to v using only edges of weight smaller than that of
(u, v) itself. The following exercise illustrates the importance of this notion. The
crucial point is that the choice of the forest F is irrelevant to the result in this
exercise.

Exercise 10.14: Let F be any forest in the graph G. Show that if an edge (u, v) is
F-heavy, then it does not lie in the MST for G. Verify that the converse is not true.

An edge "improves" a forest if adding it to the forest either reduces the
number of trees in that forest, or removing the edge of largest weight in the
unique cycle created by its addition leads to a forest of weight no larger than
F. An F-light edge can be used to improve the forest F, while an F-heavy
edge cannot. It is possible to design a greedy algorithm (essentially, Kruskal's
algorithm) that starts with an empty forest F and, considering the edges of G

298

18.3 MINIMUM SPANNING TREES

in order of increasing weight, checks whether each successive edge is F -light, in
which case the edge is used to improve the current forest.

A verification algorithm for the MST can be viewed as taking as input a
tree T in a graph G, and checking that the only T -light edges are the edges
in T itself. It should be clear that this is equivalent to verifying that T is
an MST. Such verification algorithms are easily adapted to verifying minimum
spanning forests. In fact, there exist linear-time verification algorithms that can
be adapted to go a step further and identify all F -heavy and F -light edges with
respect to any forest F. We omit the details of these algorithms and instead only
summarize their performance in the following theorem.

Theorem 10.18: Given a graph G and a forest F, all F -heavy edges in G can be
identified in time O(n + m). .

10.3.3. Random Sampling for MSTs

The only use of randomization in the MST algorithm to be presented shortly
is in the use of random sampling to identify and eliminate edges that are
guaranteed not to belong to the MST. Consider a (random) graph G(p) obtained
by independently including each edge of G in G(p) with probability p. The graph
G(p) has n vertices and expected number of edges mp. There is no guarantee
that G(p) will be connected.

Let F be the minimum spanning forest for G(p). For reasonably large values
of p, the forest F should be a good approximation to the MST for G. More
precisely, we expect very few edges in G to be F -light. This intuition' is made
concrete in the lemma presented below.

We first review some elementary probability theory. Recall that a random
variable X has the negative binomial distribution with parameters nand p if it
corresponds to the number of independent trials required for n successes when
each trial has a probability of success p (see Appendix C); further, the expectation
of X is given by nip. A random variable X stochastically dominates another
random variable Y if, for all Z E R, Pr[X > z] > Pr[Y > z]. Proposition C.7
states that if X stochastically dominates Y, then E[X] > E[Y].

Exercise 10.15: Let X have the negative binomial distribution with parameters n1
and p, and Y have the negative binomial distribution with parameters n2 and p. For
n1 ~ n2, show that X stochastically dominates Y.

Lemma 10.19: Let F be the minimum spanning forest in the random graph G(p)
obtained by independently including each edge of G with probability p. Then the
number of F -light edges in G is stochastically dominated by a random variable X
that has the negative binomial distribution with parameters nand p. In particular,
the expected number of F -light edges in G is at most nip.

299

GRAPH ALGORITHMS

PROOF: Let et, ... , em be the edges of G arranged in order of increasing weight.
Suppose that we construct G(p) by traversing the list of edges in this order,
flipping a coin with probability of HEADS equal to p for each edge in turn, and
including an edge ej in G(p) if the ith coin flip turns up HEADS. (This is an
application of the Principle of Deferred Decisions from Section 3.5.)

The minimum spanning forest F for G(p) can be constructed online during
this process. Initially F is empty. At step i, after we flip the coin for the edge
ej = (u, v), if ej is chosen for G(p), we consider ej for inclusion in F. The edge
is added to F if and only if the two end-points u and v belong to different
connected components of F. Recall that ej = (u,v) is F-light if and only if F
does not contain a path from u to v consisting entirely of edges of smaller weight
than ej; given the order of examination of the edges, an edge is F -light when
examined if and only if its end-points lie in different connected components.

The crucial observations are:

• the F -lightness of ej depends only on the outcome of the coin flips for the
edges preceding it in the ordering;

• edges are never removed from F during this process;

• and the edge ej is F -light at the end if and only if it is F -light at the start of
step i.

Defi~e phase k as starting after the forest F has k - 1 edges and continuing
until it has k edges. Every edge that is F -light during this phase has probability
p of being included in G(p), and hence of being added to F. The phase ends
exactly when an F -light edge is added to G(p) for the first time during the phase.
It follows that the number of F -light edges considered during this phase has the
geometric distribution with parameter p (see Appendix C). The F-heavy edges
processed during this phase are entirely irrelevant.

Suppose the forest F grows in size from 0 to s. It follows that the total number
of F -light edges processed till the end of phase s is distributed as the sum of
s independent geometrically distributed random variables, each with parameter
p. To account for the F -light edges processed after that but not chosen for
G(p), we continue flipping coins (for dummy edges) until a total of n HEADS

have appeared. The total number of coin flips is a random variable which has
the negative binomial distribution with parameters nand p (see Appendix C).
Since s is at most n - 1, it follows that the total number of F -light edges
is stochastically dominated by the random variable which represents the total
number of coin flips. The expected number of F -light edges is bounded from
above by the expectation of this random variable, which is nip. 0

10.3.4. The Linear-TIme MST Algorithm

The randomized linear time MST algorithm interleaves Bonivka phases that
reduce the number of vertices with random sampling phases that reduce the
number of edges. After a random sampling phase, the minimum spanning
forest F of the sampled edges is computed using recursion, and the verification

300

10.3 MINIMUM SPANNING TREES

algorithm is used to eliminate all but the F -light edges. Then, the MST with
respect to the residual (F -light) edges is computed using another recursive
invocation of the algorithm. This is summarized in Algorithm MST.

Although we refer to this algorithm as MST, it actually computes a minimum
spanning forest and does not require that the input graph be connected.

Algorithm MST:

Input: Weighted, undirected graph G with n vertices and m edges.

Output: Minimum spanning forest F for G.

1. Using three applications of Boruvka phases interleaved with simplification of
the contracted graphs, compute a graph G1 with at most n/8 vertices and let
C be the set of edges contracted during the three phases. If G is empty then
exit and return F = C.

2. Let G2 = G1(P) be a randomly sampled subgraph of Glo where p = 1/2.

3. Recursively applying Algorithm MST, compute the minimum spanning forest
F2 of the graph G2 •

4. Using a linear-time verification algorithm, identify the F2-heavy edges in G1

and delete them to obtain a graph G3 •

5. Recursively applying Algorithm MST, compute the minimum spanning forest
F3 for the graph G3 •

6. return forest F = C U F3 •

We now prove that this algorithm has linear expected running time. In
Problem 10.21 the reader is asked to show that it has the same worst-case
running time as Boruvka's algorithm.

Theorem 10.20: The expected running time of Algorithm MST is O(n + m).

PROOF: Let T(n,m) be the expected running time of Algorithm MST on graphs
with n vertices and m edges. Consider the cost of the various steps in this
algorithm for such input graphs.

Step 1 uses three applications of Boruvka's algorithm, which runs in O(n + m)
time, and produces a graph G1 with at most n/8 vertices and m edges. Step
2 performs a random sampling to produce the graph G2 = G1(1/2) with n/8
vertices and an expected number of edges equal to m/2, and this also runs in
O(n + m) time. Finding the minimum spanning forest of G2 has expected cost
T(n/8, m/2), by induction and linearity of expectation. The verification in Step
4 runs in time O(n + m) and produces a graph G3 with at most n/8 vertices
and an expected number of edges at most n/4, by Lemma 10.19. Finding the
minimum spanning forest of G3 in Step 5 has expected cost T (n/8, n/ 4). Finally,
O(n) time suffices for Step 6.

301

GRAPH ALGORITHMS

Putting all this together, we obtain that

T(n, m) < T(n/8, m/2) + T(n/8, n/4) + c(n + m),

for some constant c. A solution to this recurrence is given by 2c(n+m), implying
that the expected running time of the MST algorithm is O(n + m). 0

Notes

The various algorithms for all-pairs shortest paths mentioned above (Dijkstra [125],
Floyd-Warshall [150, 413], and Johnson [215]) are discussed in detail in the books by
Aho, Hopcroft, and Ullman [5], Cormen, Leiserson, and Rivest [114], and Tarjan [391].
The issue of matrix multiplication over closed semi rings or rings, and the applications to
shortest path problems, is discussed in the book by Aho, Hopcroft, and Ullman [5] (see
also Pan [322]). The best known algorithm for (unweighted) all-pairs shortest paths that
does not resort to matrix multiplication is due to Feder and Motwani [140] and this runs
in time O(n3 jlogn); it runs in O(nm) time for sparse graphs. The matrix multiplication
algorithm running in time O(n2.376) is due to Coppersmith and Winograd [113]. The
idea of using integer matrix multiplication for solving the all-pairs distances problem,
using integer entries of super-logarithmic length, has been explored by Romani [359]
and Yuval [421].

The results on the all-pairs shortest paths problem described here originated in the
work of-Alon, Galil, and Margalit [21]. They show how to solve the APD problem in

O(MM(n) log n) time for undirected graphs, and in 0 (VMM(n)n3 10g3 n) time for directed

graphs. These results generalize to integer edge weights of absolute value bounded
by L while increasing the number of vertices by a factor of L with a concomitant
increase in the running time. The randomized algorithm described here is an adaptation
of an algorithm due to Seidel [370]; similar algorithms have been designed by Alon,
GaUl, Margalit, and Naor [22], and Karger (see [370]). Alon, Galil, Margalit, and
Naor [22] have also derandomized the BPWM . algorithm at the cost of an increase by
polylogarithmic factors in the running time.

~ Research Problem 10.1: Devise an algorithm for the all-pairs shortest paths
problem that does not use matrix multiplication and runs in time O(n3- E

) for a
positive constant E.

~ Research Problem 10.2: Devise an algorithm for computing the diameter of
an un weighted graph that does not use matrix mUltiplication and runs in time
O(n3- E

) for a positive constant E.

The early algorithms for finding min-cuts (or s-t min-cuts) relied on the duality to
maximum flows in networks. The flow-cut duality was first observed by Elias, Feinstein,
and Shannon [136], and Ford and Fulkerson [152, 223]. The observation that min-cuts
could be computed by performing n - 1 maximum flow computations is due to Gomory
and Hu [180]. It was shown that in the unweighted case the cost of the flow computations
could be reduced to just O(nm) by Podderyugin [334], Karzanov and Timofeev [252],
and Matula [299]. Later, Hao and Orlin [192] obtained essentially the same bounds

302

10.3 MINIMUM SPANNING TREES

for the weighted case by showing that a min-cut could be computed in roughly the
same time as a max-flow. Currently, the faster maximum flow algorithms all derive
from the push-relabel algorithm of Goldberg and Tarjan [171]; their time bound of
0(nmlog(n2/m») has been improved slightly by King, Rao, and Tarjan [256], and by
Phillips and Westbrook [332].

The contraction algorithm is based on a deterministic algorithm for min-cuts with
running time 0 (mn + n210g n) due to N agamochi and Ibaraki [318]. Algorithm Contract
is due to Karger [231], and Algorithm FastCut is due to Karger and Stein [234]. The last
two papers also gave fast parallel implementations of the randomized contraction-based
algorithm, and Karger and Motwani [233] derandomized a variant of these algorithms
to obtain a fast deterministic parallel algorithm for min-cuts (see also the Notes section
of Chapter 12).

~ Research Problem 10.3: Devise a Las Vegas or a deterministic algorithm for
min-cuts with running time close to 0 (n2).

~ Research Problem 10.4: Is there a randomized algorithm for min-cuts with
expected running time close to O(m)?

An excellent treatment of network optimization problems, including minimum span
ning trees, can be found in the books by Ahuja, Magnanti and Orlin [7] and by
Tarjan [391]. The reader may refer to the survey article by Graham and Hell [181] for
a history of developments concerning the minimum spanning tree problem up to 1985.
Boruvka's algorithm [80] is perhaps the earliest complete description of an MST algo
rithm. The other classical algorithms are due to Kruskal [270] and Prim [337] .(see also
Dijkstra [125]). The current best deterministic algorithm, requiring O(mlog p(m, n» time,
is due to Gabow, Galil, and Spencer [160, 159]. Deterministic linear-time algorithms are
known for more powerful models of computation that pennit bit-manipulation of the
representation of the edge weights (see Fredman and Willard [154]).

Tarjan [390] gave an efficient algorithm for MST verification that has running time
O(m('t(m, n», where cc(m, n) is the inverse Ackerman function. The first linear-time ver
ification algorithm is due to Komlos [268] - this perfonns only O(m) edge weight
comparisons, but requires super-linear time to choose the comparisons. The first com
pletely linear-time verification algorithm is due to Dixon, Rauch, and Tarjan [127], but
this algorithm is complex and combines ideas from the previous verification algorithm
with a table look-up strategy. A substantially simpler linear-time algorithm, based on
the work of Komlos [268], has been devised by King [255]. The latter two algorithms
have the desired features of being able to identify all F -heavy edges, as discussed above.

The randomized linear-time MST algorithm is based on an approach due to
Karger [229]; Karger originally proved only a super-linear running time bound for
this algorithm, and the linear-time analysis is based on the work of Klein and Tar
jan [257]. A complete description of this algorithm and its analysis can be found in the
article by Karger, Klein, and Tarjan [232].

~ Research Problem 10.5: Devise a simple randomized MST verification algorithm
with expected running time O(n + m).

303

GRAPH ALGORITHMS

~ Research Problem 10.6: Is there a deterministic MST algorithm with running
time O(n + m)?

Problems

10.1 Suppose that the time required for Boolean matrix multiplication is BM(n).
Show that the closure of a Boolean matrix can be computed in time O(BM(n)).

10.2 Prove Lemma 10.1.

10.3 Prove Lemma 10.2.

10.4 Prove Lemma 10.3

10.5 Prove Lemma 10.5.

10.6 Modify the BPWM algorithm so as to obtain a high probability bound on its
running time.

10.7 Show that the product of AR and ~ can be computed in time 0((nlr)2MM(r))
by omitting the columns of AR and the rows of ~ corresponding to the
indices not present in R, and then multiplying these n x rand r x n matrices
jn blocks of r x r matrices.

10.8 Suppose that MM(n) = O(n2+€) for some E > O. Show that it is possible to
implement Algorithm BPWM such that its expected running time becomes
O(MM(n) logn). Why does this not work for MM(n) = 0(n2)? (Hint: Use the
idea suggested in Problem 10.7.)

10.9 Let G (V, E) be a multigraph. Devise a data structure that processes any
arbitrary sequence of edge contractions in G, such that at any given point
where the set of edges contracted is F, the graph G IF is available in
the adjacency matrix format. Furthermore, it should possible to efficiently
determine for any edge in E IF the corresponding edge in E. Your data
structure should require O(n) time per contraction and use a polynomial
amount of space. Can you modify this to provide the adjacency list format
for G IF using only O(m) space?

Remark: Note that the time bound is independent of the number of edges.
For this, the multigraph needs to be represented as a graph with integer
edge weights that represent the multiplicities of the edges. You may assume
that the number of edges in the multigraph is polynomial in n, although this
is not strictly necessary.

10.10 Given a multigraph G (V, E), show that an edge can be selected uniformly at
random from E in time O(n), given access to a source of random bits. (See
the remark in Problem 10.9.)

10.11 Combining the solutions to Problems 10.9 and 10.10, prove Theorem 10.10.
What is the space requirement for this implementation?

10.12 Prove Lemma 10.15.

304

PROBLEMS

10.13 (Due to D.R. Karger [231].) For any a ~ 1, define an a-approximate cut in a
multigraph G as any cut whose cardinality is within a multiplicative factor a
of the cardinality of a min-cut in G. Determine the probability that a single
iteration of the randomized algorithm for min-cuts will produce as output
some a-approximate cut in G.

10.14 (Due to D.R. Karger [231].)
(a) Using the analysis of the randomized min-cut algorithm, show that the
number of distinct min-cuts in a multigraph G cannot exceed n(n - 1)/2,
where n is the number of vertices in G.

(b) Formulate and prove a similar result for the number of a-approximate
cuts in a multigraph G (see Problem 10.16).

10.15 Consider the min-cut problem in weighted graphs. Describe how yo~ would
generalize Algorithm Contract to this case. What is the running time and
space requirement for your implementation?

10.16 Suppose that the edges of a graph are presented in an arbitrary order, and
the number of edges m is not known in advance. Using the idea for a greedy
algorithm described in Section 10.3.2, devise an online MST algorithm that
runs in time O(m logn).

10.17 Show that Boruvka's algorithm can be implemented to run in time
O(min{m log n, n2}).

10.18 Show that the Algorithm MST has the same worst-case running time as
Boruvka 's algorithm, i.e., O(min{mlogn,n2

}).

305

CHAPT ER 11

Approximate Counting

IN this chapter we apply randomization to hard counting problems. After
defining the class #P, we present several #P-complete problems. We present
a (randomized) polynomial time approximation scheme for the problem of
counting the number of satisfying truth assignments for a DNF formula. The
problem of approximate counting of perfect matchings in a bipartite graph is
shown to be reducible to that of the uniform generation of perfect matchings.
We describe a solution to the latter problem using the rapid mixing property of
a suitably defined random walk, provided the input graph is sufficiently dense.
We conclude with an overview of the estimation of the volume of a convex
body.

We say that a decision problem n is in NP if for any YEs-instance I of n,
there exists a proof that I is a YEs-instance that can be verified in polynomial
time. Equivalently, we can cast the decision problem as a language recognition
problem, where the language consists of suitable encodings of all YEs-instances
of n. A proof now certifies the membership in the language of an encoded
instance of the problem. Usually the proof of membership corresponds to a
"solution" to the search version of the decision problem n: for instance, if n
were the problem of deciding whether a given graph is Hamiltonian, a possible
proof of this for a Hamiltonian graph (YEs-instance) would be a Hamiltonian
cycle in the graph. In the counting version of this problem, we wish to compute
the number of proofs that an instance I is a YEs-instance. Thus we would be
interested in how many Hamiltonian cycles, if any, the input graph contains. In
Section 7.7.2 we encountered a counting version of the 3-SAT problem.

An algorithm for a counting problem takes as input an instance I of the
decision problem n, and produces as output a non-negative integer that is the
number of solutions (or proofs) for the instance I. If n is in NP, then the
maximum possible number of solutions is O(exp(p(n»), where n is the size of
the input and p(n) is a polynomial. Thus the output of the counting algorithm
is of length polynomial in the input size. A closely related class of problems is

306

APPROXIMATE COUNTING

that of listing the solutions rather than merely counting them. Our focus will be
on the counting problems associated with NP decision problems.

While counting problems are of interest for various purely theoretical reasons,
they also arise naturally in a range of applications. One application of such
counting problems stems from the study of network reliability problems: we
are given an undirected graph, together with a probability of failure Pe for
each edge e. We are interested in questions such as the following: what is the
probability that the graph remains connected if each edge e fails independently
with probability Pe? This provides the motivation behind the first problem we
will study - the problem of counting the number of satisfying truth assignments
for a Boolean formula in the disjunctive normal form (DNF) formula. A second
application comes from statistical physics, and this motivates the second problem
we study - counting the number of perfect matchings in a bipartite graph.

Clearly, a counting problem is at least as hard as the corresponding decision
problem. Thus the counting problem associated with an NP-complete decision
problem is NP-hard. What about the counting problem associated with. decision
problems in P? Consider for example the decision problem of verifying the
connectivity of an input graph. This problem can be solved in polynomial time.
A proof of connectivity corresponds to a spanning tree in the input graph.
The associated counting problem can also be solved in polynomial time: by a
classical result, the number of spanning trees in a graph equals the determinant
of a matrix derived from the adjacency matrix of the graph. On the other hand,
while the problem of deciding whether a graph has a perfect matching is in P,
the associated counting problem is not believed to be in P. Interestingly, the
number of perfect matchings in a bipartite graph equals the permanent of the
matrix of adjacencies between the vertices on the two sides of the graph. While
the determinant is easy to compute, computing the closely related permanent
function is extremely difficult. There are other decision problems in P whose
associated counting problems are not known to have polynomial time algorithms.

The class of counting problems associated with NP decision problems is
denoted by #P. Intuitively, the class #P consists of all counting problems
associated with the decision problems in NP. Formally, a problem n belongs to
#P if there is a non-deterministic polynomial time Turing machine that, for any
instance I, has a number of accepting computations that is exactly equal to the
number of distinct solutions to instance I. We say that n is #P-complete if for
any problem n' in #P, n' can be reduced to n by a polynomial time Turing
machine.

While there are "easy" problems in #P such as counting spanning trees
(where polynomial time algorithms are known), a large number of such counting
problems appear to be intractable. Quite clearly, a #P-complete problem can be
solved in polynomial time only if P = NP, implying that it is quite unlikely that
we can efficiently solve such problems. In the face of this apparent intractability,
it is natural to ask whether instead we can compute approximate solutions to
such counting problems. Unfortunately, we do not know of a good deterministic
approximation algorithms for any #P-complete problem. However, the situation

307

APPROXIMATE COUNTING

changes appreciably if we permit ourselves the use of randomization in the
approximation algorithm. The rest of this chapter is devoted to presenting such
algorithms.

11.1. Randomized Approximation Schemes

We start by introducing the notion of an approximation scheme. Consider a
problem n, and let #(1) denote the number of distinct solutions for an instance
1 of n. For example, when n is the problem of testing for Hamiltonian cycles,
for an input graph 1 we denote by #(1) the number of such cycles in the graph.
An approximation algorithm A takes as input 1 and outputs an integer A(I),
which is purported to be close to #(1).

~ Definition 11.1: A polynomial approximation scheme (PAS) for a counting prob
lem n is a deterministic algorithm A that takes an input instance I and a real
number e > 0, and in time polynomial in n = III produces an output A(I) such
that

(1 - e)#(1) S A(I) S (1 + e)#(I).

A fully polynomial approximation scheme (FPAS) is a polynomial approximation
scheme whose running time is polynomially bounded in both n and lie.

The output A(I) is called an e-approximation to #(1). Suppose that e < 1.
The length of the description of e only adds a factor of 9(log lie) to the size of
the input, yet we allow the approximation algorithm A to run in time polynomial
in lie.

Exercl.e 11.1: Show that if we were to modify the definition of an approximation
scheme to read "polynomial in n and log 1/e," the existence of such an approximation
scheme for a #P-complete problem would imply that P = #P.

Since only a multiplicative error is permitted in an e-approximation, it can
be used to distinguish between the case #(1) = 0 and the case #(1) > 0, thereby
implying a polynomial time algorithm for the decision version of the problem.
Thus, such schemes can only be devised for counting problems whose decision
versions are in P. Unless P = NP, it would be necessary to relax this definition
(possibly by permitting some additive error also) to enable its applicability to
counting versions of NP-complete problems.

No deterministic approximation schemes are known for #P-complete prob
lems. However, randomized versions of such approximation schemes are known,
and so we make the following definition.

308

11.1 RANDOMIZED APPROXIMATION SCHEMES

~ Definition 11.2: A polynomial randomized approximation scheme (PRAS) for a
counting problem n is a randomized algorithm A that takes an input instance I
and a real number e > 0, and in time polynomial in n = III produces an output
A(I) such that

3
Pr [(1 - e)#(I) S A(I) S (1 + e)#(I)] ~ 4'

A fully polynomial randomized approximation scheme (FPRAS) is a polynomial
randomized approximation scheme whose running time is polynomially bounded
in both n and lie.

The probability is taken over the random choices of the algorithm. Notice that
when #(1) is not in the range [A(I)(l-e),A(I)(l +e)], an event that occurs with
probability at most 1/4, we assume nothing about how far A(I) is from #(1).
By an argument similar to that required in Exercise 11.1, modifying the running
time requirement to "polynomial in n and log lie" would preclude a randomized
approximation scheme for a #P-complete problem unless BPP = #P.

Exercise 11.2: The quantity 3/4 for the success probability in the definition of a
randomized approximation scheme is somewhat arbitrary; in fact, we could replace
it by practically any value that exceeds 1/2 by a constant. Devise a "bootstrapping
scheme" which, given any 6 E (0,1], invokes a randomized approximation scheme
N times and outputs an integer 8(1) such that #(1) E [8(/)(1-e),8(/)(1 +e)] with
probability at least 1 - 6, where N is polynomial in log 1/6. (Hint: Consider the
median of the results of independent repetitions.)

A randomized approximation scheme can be used to distinguish between the
case #(1) = ° and the case #(1) > 0, thereby implying a randomized polynomial
time algorithm for the decision version of the problem. Thus, such schemes
can only be devised for counting problems whose decision versions are in BPP.
Since it is unlikely that NP is contained in BPP, we do not expect to find such
schemes for counting versions of NP-complete problems.

~ Definition 11.3: An (e, <5)-FPRASfor a counting problem n is a fully polynomial
randomized approximation scheme that takes an input instance I and computes
an e-approximation to #(1) with probability at least 1 - <5 in time polynomial in
n, lie, and log 1/<5.

Approximate counting is an area in which randomization makes a dramatic
difference in our ability to (approximately) solve problems. Indeed, there are
problems (such as the volume estimation problem in Section 11.4) for which
randomization results in efficient algorithms where no efficient deterministic
algorithm is possible. In the sequel, we describe such schemes for some counting
problems that are #P-complete. Observe that such approximation schemes are

309

APPROXIMATE COUNTING

Monte Carlo. (Why is it difficult to convert this into a Las Vegas approximation
scheme?)

11.2. The DNF Counting Problem

Let F(Xh . .. , Xn) be a Boolean formula in disjunctive normal form (DNF) over
the n Boolean variables X h ... ,Xn. In other words, F is a disjunction C1 V" 'VCrn

of clauses Cj , where each clause Cj is a conjunction LI /\ ... /\ Lri of rj literals.
Each literal L j is either a variable Xk or its negation Xk. We may assume that
each variable occurs at most once in any given clause.

The variables are to be assigned values in {O, I}, where 0 corresponds to FALSE

and 1 corresponds to TRUE. A truth assignment a = (al, ... , an) is an assignment
of value aj to the variable X j for each i. A truth assignment a is said to satisfy F
if F(ah ... , an) evaluates to 1 or TRUE. We denote by #F the number of distinct
satisfying assignments of a given formula F. Clearly, 0 < #F < 2n.

The DNF counting problem is to compute the value of #F. This problem is
known to be #P-complete and hence it is unlikely to have an exact polynomial
time algorithm. We describe an (E,<5)-FPRAS for this problem. The input size is
at most nm. We desire that the approximation scheme have a running time that
is polyn9mial in n, m, liE, and log 1/<5.

11.2.1. An Unsuccessful Attempt

To understand the difficulty of finding an (E, <5)-FPRAS for the DNF counting
problem, we formulate a more abstract problem.

Let U be a finite set of known size, and let f : U -+ {O, I} be a Boolean
function over U. We define the set G = {u E U I f(u) = I} as the pre-image
of L Assume that given a particular u E U, f(u) can be computed quickly.
Assume also that it is possible to sample uniformly at random from U. In our
abstraction, both of these operations can be assumed to take unit time. The
problem is to estimate the size of G.

Thi~ formulation includes the DNF counting problem as a special case. Let
U = {o,l}n be the set of all 2n truth assignments, and define f(a) = F(a) for
each a E U. Now, the set G consists of all satisfying truth assignments for F. It
is easy to verify that we can compute f and sample from U in polynomial time.

An obvious randomized approach to estimating IGI is to use the classical
Monte Carlo method. This involves choosing N independent samples from
U, say Uh •.• , UN, and using the value of f on these samples to estimate the
probability that a random choice will lie in G. More formally, define the random
variables YI, ... , YN as follows:

Yj = {I if f(uj).= 1
o otherwIse.

By this definition, Yj = 1 if and only if Uj E G. Finally, define the estimator

310

random variable

11.2 THE DNF COUNTING PROBLEM

N

Z =IVI2:
Yi

.
. 1 N .=

It is easy to verify that E[Z] = 101 and we might hope that with high probability
the value of Z is an e-approximation to IGI. Of course, the probability that the
approximation is good depends upon the choice of N. The following theorem
relates the value of N to e and (j.

Theorem 11.1 (Estimator Theorem): Let p = IGI/IVI. Then the Monte Carlo
method yields an e-approximation to I GI with probability at least 1 - (j provided

4 2
N > -2-ln~.

ep u

PROOF: Fix some e E (0,1] and (j E (0,1]. Notice that the random variables
Yi have the Bernoulli distribution with parameter p. Define Y = E!l Yj,
and observe that this has the binomial distribution with parameters Nand p.
Moreover, the estimator Z = I VI YIN. By a straightforward application of the
Chernoff bound (see Theorems 4.2 and 4.3), we obtain that

Pr [(1- e)IGI !5; Z !5; (1 + e)IGI]
- Pr[(1-e)Np<Y!5;(I+e)Np]

~ I-F+(Np,e)-F-(Np,e) > 1-2e-N~/4.

It is easy to see that for the given lower bound on N, the latter expression is
bounded by 1 - (j. • 0

At this point it may appear that we have the desired approximation scheme.
But there is a flaw in this approach - it has a running time of at least N, where
N > II p. First of all, we do not know the value of p; in fact, the problem
is exactly that of estimating p. However, this problem could be circumvented
by using a successively refined lower bound on p to determine the number of
samples to be chosen. A more disturbing problem is that the running time is
inversely proportional to p, and at least for the DNF counting problem this
could be exponentially large. (Consider for example the case where F only has
a polynomial number of satisfying truth assignments.) The following exercise
shows that if we were to relax the requirement of obtaining an e-approximation
relative to the size of G, and instead required only that the approximation have
a small error with respect to I VI, then the sampling technique is indeed efficient.

Exercise 11.3: Devise a randomized approximation scheme for the DNF counting
problem that computes an estimator Z such that

Pr [I :~: - ,~,I ~ E] ~ 6.

The running time should be polynomial in n. m. 1/E. and log 1/6.

311

APPROXIMATE COUNTING

This problem is fundamental to this approach and not an artifact of the
analysis, since the Chernoff bound gives a fairly tight estimate of the tail
probability of a binomial distribution. Fortunately, there is a standard statistical
technique called importance sampling for dealing with the following problem: if
we sample uniformly from a large population to estimate the size of a small
subset of the population, it is necessary that the number of samples be extremely
large to ensure that the estimator is a good relative approximation. The idea is
to modify the process from a uniform sampling of the population to a skewed
sampling that concentrates the probability on the sUb-population of interest (the
area of "importance"). We now apply this idea to our problem.

11.2.2. The Coverage Algorithm

We want to reduce the size of the sample space so as to ensure that the ratio p
is relatively large, while ensuring that the set G is still completely represented.
We start by formulating a slightly different abstract problem - the union of sets
problem. This formulation captures the essential structure of the DNF counting
problem, and has applications to several other problems in reliability.

Let V be a finite universe. We are given m subsets HI. ... , Hm c V such that
the following assumptions are valid.

1. For all i, IHil is computable in polynomial time.

2. It is possible to sample uniformly at random from any Hi.

3. For all v E V, it can be determined in polynomial time whether v E Hi.

The goal is to estimate the size of the union H = HI U'" U Hm. The brute-force
approach to computing IHI is inefficient when the universe V and the sets Hi are
of large cardinality. The inclusion-exclusion formula (Proposition C.1) is also
extremely inefficient for large m, since it requires computing roughly 2m terms.
However, the assumptions 1-3 turn out to be sufficient to enable the design of
a Monte Carlo sampling algorithm that does not suffer from the drawbacks of
the algorithm in Section 11.2.1.

The' DNF counting problem can be cast as a special case of this union of
sets problem, as follows. Consider a DNF formula F(XI , ... , Xn) and let the
ith clause C i be a conjunction of ri literals. The universe V corresponds to the
space of all 2n truth assignments, and a set Hi contains all the truth assignments
that satisfy the clause Ci. Since the truth assignments in Hi all assign the same
values to variables appearing in Ci and are otherwise unconstrained, it is easy
to see that IHd = 2n

-
rj

• The same observation implies that it is easy to sample
from Hi by assigning the appropriate values to variables appearing in Ci, and
choosing the rest at random. Further, verifying that some v E V is a member of
Hi is equivalent to testing whether a truth assignment satisfies a specific clause,
and linear time suffices for this operation. Finally, H = HI U ... U Hm is the set
of all truth assignments that satisfy at least one clause of F, and hence F itself.

312

11.2 THE DNF COUNTING PROBLEM

We now present a solution to the union of sets problem, and by the preceding
argument this will solve the DNF counting problem as a special case.

We define a multiset V = HI I±J ••• I±J Hm as the multiset union of the sets HI,
... , Hm. Recall that the multiset union contains as many copies of v E V as the
number of H/s that contain that v. We adopt the convention that the elements
of V are ordered pairs of the form (v, i), corresponding to v E Hi; in other
words,

V = {(v, i) I v E Hd.

Observe that I VI = Ej...1 IHd > IHI·
For all v E H, the coverage set of v is defined by

COV(v) = {(v, i) I (v, i) E V}.

The size of the coverage set is exactly the number of H/s containing v, or the
multiplicity of v in the multiset version of V. (In the DNF problem, for a truth
assignment a, the set cov(a) is the set of clauses satisfied by a.) The following
observations are immediate.

1. The number of coverage sets is exactly IHI, and these coverage sets are easy to
compute.

2. The coverage sets partition U, i.e., U = UVEHCOV(V).

3. lUI is easily computed as lUI = EVEH Icov(v)l·

4. For all v E H, Icov(v)1 ~ m.

The following definition isolates a canonical element in each coverage set.

• Definition 11.4: The function f : U - {O, I} is defined as follows.

f«v,i)) = { 1 if i = ~in{j I v E Hj }
o otherwIse.

Also, the set G is defined as the inverse image of 1 under f.

G = {(v,j) E U I f«v,i» = I}.

Define the canonical element for a coverage set of v as the element that cor
responds to the occurrence of v in the lowest-numbered H j containing v. The
function / evaluates to 1 only on the canonical element of each coverage set.
The set G is merely the set of the canonical elements.

The crucial observation is that IGI = IHI. This is because the number of
coverage sets is IHI, and each coverage set contributes exactly one canonical
element to G. Our goal then is to estimate the size of G c V such that
G = /-1(1). This is exactly the setting in which we applied Theorem 11.1 based
on the naive Monte Carlo sampling technique. We claim that the naive Monte
Carlo sampling algorithm gives an (e, <5)-FPRAS for estimating the size of G.
The claim follows from the following lemma.

313

APPROXIMATE COUNTING

Lemma 11.2: In the union of sets problem.

IGI 1
P=IVI>m'

PROOF: The proof relies on the observations made above.

IVI - 2: ICQv(v) I
veH

< 2: m
veH

< mlHI =mlGI

The lemma follows. 0

The following theorem shows that the Monte Carlo sampling technique gives
as (e,<5)-FPRAS for IGI, and hence also for IHI.

Theorem 11.3: The Monte Carlo method yields an e-approximation to IGI with
probability at least 1 - <5 provided

4m 2
N > ~ln~.

The runrling time is polynomial in N.

PROOF: The sampling procedure and the analysis are exactly as in the Theo
rem 11.1. We merely have to show that f can be computed in polynomial time
and that it is possible to sample uniformly from V.

To compute f «v, i)) we check whether the truth assignment v satisfies Ci but
none of the clauses Cj for j < i. Sampling an element (v, i) uniformly from V is
performed in two stages. First, choose i such that 1 < i < m and

IHd IHd
Pr[11 = Wi = 2::1 IHil'

Then an element v E Hi is chosen uniformly at random. It is easy to verify that
the resulting pair (v, i) is uniform over V. 0

Notice that the lemma implies a polynomial bound on the running time.
Why did this new sampling process give the desired result? Our original

problem was to estimate IHI, the set of all satisfying truth assignments. Sampling
uniformly from V, the space of all truth assignments, failed because V's size could
be super-polynomially larger than the size of H. In the redesigned sampling
process, we chose a random satisfying truth assignment for a randomly chosen
clause. Each truth assignment could then be chosen in a number of ways
proportional to the number of clauses it satisfies. In effect, this is a non
uniform sample from the set of all satisfying truth assignments. Since each truth
assignment can be selected by at most m different clauses, and only one of these
corresponds to a "success," we obtain the desired estimation.

314

11.3 APPROXIMATING THE PERMANENT

Exercise 11.4: Specialize the new sampling procedure to the DNF counting problem
and determine the running time of the (E,6)-FPRAS in terms of n. m. E. and 6.

11.3. Approximating the Permanent

We turn to the problem of counting the number of perfect matchings in a
bipartite graph. The input to this problem is a bipartite graph G(U, V,E) with
independent sets of vertices U = {ut, ... ,un } and V = {vt, .. . ,vn }. Recall that a
matching is a collection of edges M c E such that each vertex occurs at most
once in M. A perfect matching is a matching of size n. The associated decision
problem (determining whether the graph has at least one perfect matching) is
in P. The problem of counting the number of perfect matchings in a given
bipartite graph is #P-complete. The problem is particularly interesting because
it is equivalent to computing the permanent of a 0-1 matrix. This is a classical
#P-complete problem with applications to statistical physics.

In Chapter 7 we noted the connection between perfect matchings and the
determinant of a matrix derived from the adjacency matrix of G. This was based
on a correspondence between perfect matchings in G and the permutations in
Sn: the perfect matching corresponding to a permutation 1r: E Sn is given by the
edges (uj, Vlt(ij), for 1 < i < n. We now relate the number of perfect matchings in
G to the permanent of such a matrix .

• Definition 11.5: Let Q = (Qij) be an n x n matrix. The permanent of the matrix
is defined as

n

per(Q) = L II Qi,lt(ij, (11.1)
ltES. i-I

where Sn is the symmetric group of permutations of size n.

Notice the similarity of this definition to that of the determinant of the matrix
- the only difference is that in the determinant, we include the sign of the
permutation 'It with each term of the sum.

Given a bipartite graph G, we define a 0-1 matrix A(G) with one row for
each vertex of U, and one column for each vertex of V. Let Aij = 1 if there
is an edge in the graph joining Ui to Vb and 0 otherwise. It is well-known that
the determinant of A can be computed in polynomial time. In comparison, the
best-known method for computing the permanent runs in time O(n2n). It is not
hard to show that per(A) is equal to the number of perfect matchings in G.

Exercise 11.5: Let #(G) denote the number of perfect matchings in the bipartite
graph G. Show that #(G) = per (A(G)).

315

APPROXIMATE COUNTING

Thus, computing the permanent of a 0-1 matrix is #P-complete. Given
the apparent intractability of computing the number of perfect matchings in
a bipartite graph, there has been considerable interest in approximating this
quantity. Currently, we know only of randomized approximation algorithms
for this problem. The scheme we study gives an (e, <5)-FPRAS, but only if the
input graph has a minimum degree at least n12. This is still an interesting
problem; it can be shown that computing the number of perfect matchings
remains #P-complete even in this special case. In the Notes section we mention
alternative schemes that work for all possible inputs, but have the disadvantage
of requiring exponential time.

We will show that estimating the number of p&rfect matchings in a bipartite
graph can be reduced to sampling uniformly at random from all the perfect
matchings in the graph. It is not the case that the problem of random generation
is substantially easier than the original counting problem. However, it suffices to
generate a perfect matching almost uniformly from all the perfect matchings in
the graph (we will make this notion precise in a moment), and almost uniform
generation can in turn be achieved by simulating a certain random walk on a
Markov chain derived from the input graph G (this is not the same as a random
walk on G).

11.3.1. Reduction to Uniform Generation

We show that the approximation of a 0-1 permanent can be reduced to the
problem of sampling uniformly at random from all the perfect matchings in a
bipartite graph. Let Mk denote the set of distinct matchings of size k in G, and
define mk = IMkl; thus we seek to estimate mn = IMnl. A uniform generator for
Mk is a randomized polynomial time algorithm Uk that takes G as input and
returns a matching m E Mk such that m is uniformly distributed over Mk.

We claim that a uniform generator Uk can be used to get an (e,<5)-FPRAS
for mk. The idea is to use randomized self-reducibility - this is a randomized
reduction of a problem of size i to the same problem with size i-I. Given
the graph G, for any edge e = (u, v) define the following quantities: me is the
number of matchings in Mk that contain the edge e; and mne is the number of
matchings in Mk that do not contain e. Clearly, mk = me + mne'

Assume for the moment that the ratio r == mnelmk is not minuscule, say at
least lin. We can then use the basic Monte Carlo sampling idea of Section 11.2.1
to obtain an estimator r as follows: use Uk to choose a suitably large (but poly
nomially bounded) number of random matchings from M k , and let the estimator
r be the fraction of these matchings that do not contain e. Theorem 11.1 can
now be used to show that this is an (e,<5)-FPRAS.

The next step is to obtain an e-approximation mne to mne. Consider the graph
H obtained by removing the edge e from G. The number of edges in H is one
smaller than in G, and the number of matchings of size k in H is exactly mne'
Thus we can recursively estimate the number of k-matchings in H to obtain an

316

11.3 APPROXIMATING THE PERMANENT

e-approximation mrw• Then the ratio mk = mrwrr is a good approximator for mk.
The missing details of the analysis are left as an exercise.

Exercise 11.6: A problem with the recursive estimation scheme is that both the error
in the approximation and the probability of failure add up over the various stages of
recursion. This problem can be handled by requiring an {e/N, 6/N)-FPRAS at each
stage of the recursion, where N is an upper bound on the number of such stages.
More importantly, we assumed that r ~ 1/n, and this is not true in general. However,
it is not hard to show by the pigeonhole principle that there exists a choice of the
edge 8 for which this assumption is valid. {This requires the assumption that the
number of edges exceeds k, since otherwise a graph containing only the edges of a
matching of size k is a counterexample. Therefore this problem can be handled by
repeating the overall algorithm for all choices of 8 and using the various outputs to
determine the correct choice of 8.

Using these hints, obtain a complete description of the sampling algorithm and prove
that it is an {e,6)-FPRAS.

Theorem 11.4: Given a uniform generator Uk. there exists an (e,t5)-FPRAS for

IMkl·

As we remarked earlier, it does not appear that the problem of uniform
generation is any easier than the original counting problem. However, it is
intuitively clear that even a near-uniform generation of matchings would suffice,
although it may contribute to the error in the approximation. We now give a
formal definition of a near-uniform generator .

• Definition 11.6: Given a sample space 0, a generator U is said to be a near
uniform generator for 0 with error p if, for all co E n,

IPr [U = co] - 1/1011
1/101 < p.

A uniform generator has p = o.

Unfortunately, even a near-uniform generator for Mk is hard to construct.
However, as we will show in the next section, for some classes of graphs it is
possible to obtain a near-uniform generator for Mk U Mk-l. We now modify
the preceding reduction to show how approximate counting can be achieved
using the new type of near-uniform generator. From here on, Uk will denote a
near-uniform generator for Mk U Mk- 1•

Our goal will be to estimate the ratios rk = mk/mk-l, for 1 < k < n. (We define
rl = mh and this is just the number of edges in the input graph.) Clearly, the
product of these ratios gives an estimator for mn• If we had a uniform generator
for Mk U Mk-h then we could be use it to estimate the ratio rk by taking a large
number of random samples from Mk U Mk-l and using as the estimator the ratio

317

APPROXIMATE COUNTING

of the number of elements of Mk to the number of elements of Mk-l observed
in the samples. The following exercise gives us a sense of the number of samples
needed to get a good approximation when we actually have a uniform generator
for Mk U Mk- 1•

Exercise 11.7: let a ~ 1 be a real number such that 1ja :s; rk :s; a. Take N = n7a
samples uniformly at random from Mk U Mk- 1. let'k be the ratio observed in the
sample of the number of elements of Mk to the number of elements of Mk- 1. Using
an argument similar to that used in the Theorem 11.1 of Section 11.2.1, show that
(1 -1jn3)rk :S;'k :s; (1 + 1jn3)rk with probability at least 1 - c-n for a constant c > 1.

The number of samples needed grows polynomially with (x. We must show
that (X is relatively small, but let us defer this issue for the moment. The next
exercise shows the effect on the error when we multiply the estimators of rk to
obtain an estimator for mn•

Exercise 11.8: Use the results of Exercise 11.7 to show that if we could sample
MkUMk- 1 uniformly at random for all k, we have a procedure that, with high probability,
gives an estimate for mn that lies in the interval [mn(1 - 1 jn2), mn(1 + 1 jn2)].

Argue that the same idea leads to an (E",6)-FPRAS for mn provided a is bounded
above by a polynomial in n.

It is not very hard to show that we do not need to sample MkuMk-l uniformly
at random; it suffices to sample almost uniformly at random.

Exercise 11.9: Suppose a :s; n2 , and further assume that we have a near-uniform
generator Uk for Mk U Mk- 1 with error p :s; 1jn4. Show that. by extending the ideas of
Exercises 11.7 and 11.8. we have an (e,6)-FPRAS for Mn.

We deal with the issue of devising an appropriate near-uniform generator in
Section'I1.3.2. We conclude this section by showing how to obtain a guarantee
that Cl < n2 ; this is exactly the reason we need to assume that the graph has
minimum degree at least n12.

Theorem 11.5: Let G be a bipartite graph with minimum degree at least n12.
Then, for all k, I/n2 < rk < n2.

PROOF: We first prove the upper bound. Let each matching of size k choose
one of its subsets of size k - 1 as a canonical subset. At most (n - k + 1)2 < n2

matchings in Mk can choose any matching in Mk- 1 as a canonical matching.
This implies that mk < n2mk_l, or that rk < n2.

Let m c E be any matching in the graph G of size at most n - 1. An

318

11.3 APPROXIMATING THE PERMANENT

augmenting path p ~ E is a path in G between two unmatched vertices such
that the edges along the path are alternately in m and E \ m. It is easy to see
that the symmetric difference of p ·and m gives a matching of cardinality Iml + 1.

We claim that in graphs with minimum degree at least n12, every matching
in Mk-l has an augmenting path of length at most 3. Fix any matching
m E M k- h and consider any pair of unmatched vertices u E U and v E V. The
neighborhood sets of these vertices, r(u) c V and r(v) c U, are each of size at
least n12. If any vertex in r(u) is unmatched in m, then we have an augmenting
path of length 1 from u to that vertex. Thus, we can assume that each vertex
in r(u), and" similarly in r(v), is matched under m. But then, since lr(u)1 and
lr(v)1 > nl2 and Iml < n - 1, it must be the case that some vertex a E r(u) and
some vertex bE r(v) are matched to each other. It follows that (u,a), (a, b), and
(b, v) form an augmenting path of length 3. .

Fix any matching m E M k• We claim that there are at most n2 matchings
m' E Mk- I that can be augmented to m via augmenting paths of length at most
3. The matchings m' that can be augmented into m by length 1 paths are subsets
of m, and there are at most k such subsets for any m. Moreover, any length 3
augmenting path for m' will determine a unique pair of edges in m, namely the
edges that comprise m \ m'. The number of such pairs of edges is k(k - 1)/2
and each pair can participate in at most 2 augmenting paths of length 3. Since
each m' E Mk-l has at least one augmenting path of length no more than 3, we
obtain that no m E Mk can be the result of more than k + k(k - 1) < n2 such
augmentations. It follows that mk-l ::s; n2mk. or that rk ~ I/n2. 0

11.3.2. Near-Uniform Generation of Matcbings

From here on, we fix a bipartite graph G with minimum degree at least n12. We
are now down to finding a near-uniform generator for Mk U Mk- 1 that has error
p < I/n4

• For this, we will devise a Markov chain Ck, each of whose states is an
element of Mk U Mk-h in such a way that the stationary probability of each state
is equal to I/lMk UMk-ti. Consider now a simulation of this Markov chain for 't'
steps, starting at an arbitrary state obtained by constructing a matching of size
k in G using any polynomial time algorithm for matching. Our goal is to show
that for a value of 't' that is not too large, the Markov chain will approach its
stationary distribution, thereby yielding a near-uniform sample from Mk U Mk- 1•

This simulation of Ck can be thought of as executing a "random walk" on a
graph in which each vertex corresponds to an element of Mk uMk- 1 (we have yet
to describe the edges of this graph). If we were to begin this random walk in the
stationary distribution, we would remain in the stationary distribution, so that
at the end of't' steps we would be at an element of Mk U Mk- 1 chosen uniformly
at random. However, we start at a certain fixed element of Mk U Mk-h so that
the probability distribution of our position at the end of this random walk of't'
steps is not guaranteed to be uniform on the elements of Mk U Mk- 1• Instead,
we will show that it is almost uniform on the elements of Mk U Mk-h regardless
of which element of Mk U Mk- 1 we start at. To do this, we will demonstrate that

319

APPROXIMATE COUNTING

the underlying graph of the Markov chain Ck resembles an expander, and so by
the rapid mixing property of random walks on expanders we obtain the desired
rate of convergence to the stationary distribution. Since the number of states in
Ck may be exponential in n, it is essential that 't' be logarithmic in the number
of states. This is reminiscent of the random walk on an expander we have seen
in Chapter 6.

We first describe the structure of Ck, the edges in the underlying graph, and
the corresponding transition probabilities. It is important to keep in mind the
distinction between the input graph G and the graph underlying Ck on which
we perform the random walk. In particular, Ck could have size exponential in
n. However, in the course of executing the algorithm, we will not store the
entire Markov chain Ck explicitly. We only generate representations of those
states (matchings of size k or k - 1) that are visited during an execution of the
algorithm, and this will remain polynomial in n. Below, we will describe Cm the
Markov chain used for estimating IMnl/IMn-ll; the modifications for k < n are
obvious.

Let E denote the set of edges in G. Let A denote a subset of E, and e be an
edge in E. Let A + e and A - e denote the sets Au {e} and A \ e, respectively.
Armed with this notation, we are now ready to describe the transitions and
transition probabilities in Cn.

In any state m of Cn, the transitions and transition probabilities are defined as
follows. With probability 1/2, we remain at the state and do nothing; recall from
Chapter 6 that this ensures the aperiodicity of Cn. Otherwise (with probability
1/2), we choose an edge e = (u, v) of E uniformly at random and then select the
appropriate case from the following.

Reduce: if mE Mn and e E m, move to state (matching) m' = m - e;
Augment: if mE M n- h with u and v unmatched in m, move to m' = m + e;
Rotate: if m E M n- h with u matched to wand v unmatched in m, move to

m' = (m + e) - f, where f is the edge (u, w) (there is a symmetrical case
in which v is matched to w, and we make the corresponding move);

Idle: otherwise, stay at current state.

Figure 11.1 gives an example of C2 when the input graph is the complete
bipartite graph K2,2 with I VI = I VI = 2. Each state is represented by a large
circle, with the corresponding matching (of size 2 or 1) drawn inside the circle.
The possible transitions between the states are also drawn, with all edges shown
having transition probability 1/8. In addition (not shown), there is a "self-loop"
from each state to itself. It is instructive to go through Figure 11.1 identifying the
edge of K2,2 (the input graph) corresponding to each transition of the Markov
chain in the figure.

In general, each transition of this Markov chain has an associated probability
of 1/(2IEI), and the remaining probability mass is placed on the self-loops.
Because of the Idle move, the self-loop at any state may have some additional
probability over 1/2 (as in the example of Figure 11.1). Notice also that if a
transition exists from a state m to m', then the reverse transition also exists and

320

11.3 APPROXIMATING THE PERMANENT

Figure 11.1: An example of C2 for G == K2.2'

has the same probability. Thus, the underlying graph can be viewed as being
undirected, a property that we have already observed to be essential for the
convergence of the random walk to the stationary distribution.

We now introduce some terminology for showing that the simulation of en
leads to a state that is almost random in 't' steps. Let 1t denote the stationary
distribution for en. Let Xc denote the state of en after t steps of simulation, with
Xo being the state we start in. Let P = (Pij] denote the transition probability
matrix of en, with Pij being the probability of the transition i ~ j. Note that
if the transition i ~ j exists, and i =1= j, then Pij = 1/(2IEI); further, each
Pii > 1/2 since there are at most lEI transitions out of any state in en. Denote
the probability that Xc = j given that Xo = i by pW, recalling (Chapter 6) that
. . fi (p(C)] pc In matnx orm, ij = .

Theorem 11.6: The Markov chain en is ergodic and its stationary distribution is
uniform on Mn U M n- 1•

PROOF: The irreducibility follows from the observation that we can go from
any matching in a graph to any other matching via a suitable sequence of
augmentations, reductions, and rotations. Since the self-loop probabilities are
all positive, it also follows that the Markov chain is aperiodic. This implies the
ergodicity of en.

The matrix P is symmetric and therefore doubly stochastic. We have already
seen in Chapter 6 that the stationary distribution for a Markov chain with
a doubly stochastic transition matrix must be the uniform distribution on its
states. 0

321

APPROXIMATE COUNTING

Exercise 11.10: Let S1, S2, S3, and S4 be any four states of Cn. Show that under the
stationary distribution, the probability of making the transition S1 - S2 is equal to the
probability of the transition S3 - S4.

It remains to be shown that if we were to start from an arbitrary state, our
position at the end of a 't'-step simulation of Cn would be distributed almost
uniformly over all the states. If we can show this to be the case with 't' bounded
above by a polynomial in n, then we are done. We will show that, regardless of
the starting state Xo = i, the probability distribution of X t given by the vector
(p~;» resembles the stationary distribution n.

To make this precise, we use the notion of relative pointwise distance from
Chapter 6:

I (t) -1t·1
A() Pij]

L.1 t = max --"---
i,j 1tj

The idea is to show that ~(t) diminishes rapidly, so that in a sense we quickly lose
any memory of the state in which the Markov chain was started. In particular,
we would like ~('t') reduced below l/n4 , for't' polynomial in n.

Let Al > A2 > ... AN be the eigenvalues of P, where N = IMn u Mn-II is the
number of states in Cn; clearly, Al = 1 since the matrix P is doubly stochastic
(see Sec\ion 6.7). The following is a consequence of a refinement of Theorem 6.21
described in Problem 11.7.

Theorem 11.7: ~(t) < .A~ = A~N.
mmj 1tj

Theorem 11.7 tells us that the rate at which the relative pointwise distance
diminishes depends on how far A2 is separated from 1. By Proposition B.3, we
have

since A2 is bounded away from 1. Choosing 't' to be (4Inn)(lnN)/(I-A2), we
will have ~('t') ~ l/n4 as desired; note that InN is O(n2). If we can now show
that 1/(1 - A2) is bounded above by a polynomial in n, we will be done.

Obtaining such a bound on 1/(1 - A2) is not an easy matter. To this end,
we introduce the concept of the conductance of a Markov chain. Let wij = 1tiPij
denote the stationary probability of the transition i ~ j. The reader may verify
that since P is doubly stochastic, we have wij = Wji, i.e., the Markov chain is
time reversible (see Problem 11.7) .

• Definition 11.7: Let S be a subset of the set of states of Cn such that 0 eSc
Mn U Mn-I. and S is its complement.

• The capacity of S is defined as Cs = EiES 1ti.

• The ergodic flow out of S is defined as Fs = EiES,jES wij .

• The conductance of S is defined as <I>s = Fs /Cs.

322

11.3 APPROXIMATING THE PERMANENT

The following facts are obvious: 0 < Fs < Cs < 1, Fs = Fs, and <l>s < 1.
Intuitively, the capacity of S is the probability that the Markov chain is in a

state of S, the ergodic flow out of S is the probability that it will leave S, and the
conductance of S is the probability that it will leave S conditional upon being
inside S. Thus, a high conductance would suggest that the Markov chain will
not get stuck inside S. If all sets S have high conductances, then the Markov
chain will be rapidly mixing .

• Definition 11.8: The conductance of a Markov chain with state space Q is defined
as

<I> = min <I>s.
0c:Sc:Q,CsSl/2

By the preceding discussion, there should be a relation between the con
ductance and the second eigenvalue of a Markov chain, since both are closely
related to the rapid mixing property. The following lemma provides this rela
tionship; Theorems 6.16, 6.17, and 6.19 provide some intuition on why such a
result should hold.

Going back through our chain of reasoning, it now suffices to prove that
1/<1> (and therefore 2/<1>2) is bounded above by a polynomial in n. The proof is
based on the so-called canonical path argument, which is described in detail in
Section 11.3.3.

11.3.3. The Canonical Path Argument

This section is devoted to the proof of the following theorem.

Theorem 11.9: For the Markov chain en. <I> > 1/12n6•

The proof proceeds along the following lines. Let H be the graph underlying
en. By Exercise 11.10, the transition probabilities along all the oriented edges
of H are all exactly 1/(2IEI), where E is the set of edges in G. We bound the
conductance of en from below by showing that for any subset S of the vertices
of H with Cs < 1/2, the number of edges between Sand S is large. To this end,
we first specify a canonical path between every pair of vertices of H, such that
no oriented edge of H occurs in more than bN of these paths. For a subset S
of the vertices of H, the number of such canonical paths crossing the cut from
StoSis

ISI(N -lSI) ~ ISIN /2,

since we assume that lSI < N /2. Since at most bN paths pass through each of
the edges between Sand S, the number of such edges must be at least ISI/2b,

323

APPROXIMATE COUNTING

SO that the conductance of en is at least 1/(4bIEI) > 1/(4bn2). In the rest of this
section we define a collection of canonical paths for which the value of b is 3n4,
implying the desired lower bound of 1/ 12n6 on the conductance.

We start by specifying canonical paths for all possible pairs of nodes in the
graph H. Recall that although H is a directed graph, we can view it as an
undirected graph since for every oriented edge there is an edge in the reverse
direction. Further, H is strongly connected.

We associate a unique node (called the partner) S E Mn with every node
s E Mn U Mn-l and choose a canonical path between sand s. If s is in Mn, then
we set s = s (and the path between sand s is empty). Then, we specify canonical
paths between all pairs of nodes in Mn. In general, the canonical path between
nodes s, t E Mn U Mn- 1 consists of three consecutive segments: the path between
sand s, the path between sand t, and the path between t and t. We now have to
specify two different types of paths: type A paths between a node s E M n- 1 UMn
and its partner s E Mn; and type B paths between pairs of nodes in Mn.

Specifying type A paths is relatively easy, and is handled in three cases.
Consider any node s E Mn U Mn- 1• The first case is when s is in Mn, and here
we use the empty path since s = s. The second case is when s is in Mn- 1 and
there exists an augmenting path of length 1 for s. In other words, the input
graph G has an edge e such that s + {e} is a perfect matching. In this case we
set s = s + {e}, and it is easy to verify that there is a path of length 1 between
sand s "in H (using an Augment transition). Finally, the third case is when s
is in Mn- 1 but it has no direct augmentation into a perfect matching. But we
have already seen in the proof of Theorem 11.5 that in G every near-perfect
matching has an augmenting path of length at most 3. Thus, we now have a
path of length 2 from s to some (possibly more than one) perfect matching in
H, where this path first uses a Rotate transition and then an Augment transition
(see Figure 11.2). Pick any such perfect matching s; the path between sand sis
then uniquely specified.

The type A paths are now completely specified. We now state a useful
property of these paths. Let m be any matching in Mn. and define the set K(m)
to be the set of all nodes s E Mn U Mn- 1 such that s = m and s =1= m.

Lemma 11.10: For any m E Mn. IK(m)1 < n2.

PROOF: The only perfect matching that chooses m as its partner is m itself. We
further claim that at most n + n(n -1) near-perfect matchings can use m as their
partner. To see this, consider any s E Mn- 1 such that s = m. Clearly, s must be
within distance 2 of m in the graph H. Any near-perfect matching adjacent to m
must be connected to m by a Reduce transition, and there are n such transitions
incident on m in H. The number of near-perfect matchings at distance exactly
2 from m is at most n(n - 1), since these matchings must contain exactly n - 2
edges of m and one other edge not in m. Thus, there are at most n + n(n - 1)
different near-perfect matchings within distance two of m, and this yields the
desired bound on K(m). 0

324

11.3 APPROXIMATING THE PERMANENT

s

• •
• •

augmenting
.... ~ path

...... <--.................

Figure 11.2: Type A path determined by augmenting paths of length 3.

We now specify the type B paths. Fix any two perfect matchings s, t E Mn.
Let d = s $ t denote the symmetric difference of the edges in these two perfect
matchings. It is easy to verify that the edges in d decompose into a collection
of disjoint, even-length, alternating cycles, each of length at least 4, such that the
edges in any such cycle are alternately from sand t.

Assume that the set of even cycles in the graph G is totally ordered, and
that a specific vertex in each of these cycles is designated as the start vertex.
One way to do this is to designate the lowest-numbered vertex in each cycle as
its start vertex, and to order the cycles based on the lexicographic ordering on
the sequence of vertices visited in the cycles starting with the designated start
vertex and moving in the direction of its lowest-numbered neighbor. The reader
should keep in mind that the entire notion of canonical path is an artifact
of the analysis, and none of this has to be computed by the algorithm under
consideration.

Our goal now is to specify a canonical path from s to t. Let C}, ... , Cr be
the ordered list of cycles in the symmetric difference d. We first show that it
is possible to transform s into t by performing local changes referred to as the
unwinding of the cycles in d, one by one in the specified order of the cycles.
These local changes can then be seen to correspond to transitions along edges
of H, thereby yielding a path in H from s to t.

The unwinding of a cycle Ck corresponds to traversing the cycle, starting at
the designated start vertex, successively removing the edges of Ck that belong
to s and adding the edges that belong to t (see Figure 11.3). The unwinding
of each cycle contains precisely onc Reduce transition (at the start) and one
Augment transition (at the end). Clcarly, if we start with the perfect matching
s and unwind all the cycles in d, the result is the perfect matching t (see

325

APPROXIMATE COUNTING

Figure 11.4). We leave it as an easy exercise to verify that each step of this
sequential unwinding process corresponds precisely to a transition along an edge
in the graph H, thereby giving us a unique specification of the type B paths.

edgeofs

edge oft

Alternating Cycle <i 0 -- stan venex

Figure 11.3: Unwinding a single cycle.

Putting all this together gives the desired set of unique canonical paths for
all pairs of vertices in H. The following lemma provides the promised bound on
the number of canonical paths that contain a specific transition.

Lemma 11.11: Any transition T in H lies on at most 3n4 N distinct canonical
paths.

PROOF: Fix any transition T = (u, v) in the graph H. Now, T can lie on a
canonical path from s to t either in the two type A segments, or in the type
B segment in the middle. Consider first the case where T lies on the type A
segment from s to s. This path consists of at most two transitions. Verify that
if T lies on this path then v c s. But for any given v E Mn U Mn-" there is at
most one perfect matching that contains v as a subset, and in fact this perfect
matching is v. If T lies on the first type A segment of the canonical path from
s to t, then s = v. It follows that s must be in the set K(V). Similarly, if T lies
on the second type A segment of the canonical path from t to t, then t E K(U).
Thus, the total number of pairs sand t such that the transition T lies on the
type A segments of their canonical path is bounded by (lK(v)1 + IK(u)l)N ~ 2n2N
(by Lemma 11.10).

326

11.3 APPROXIMATING THE PERMANENT

......-.....-.....-.....

I cycle Co I I cycle C2
IS~ I cycle c) I 5

......-.....-.....-.....
after several transitions

/ '- • '-
......-.....

I I I cycle C 1 cycle C2 cycle c)

'- / •
......-.....-.....

u

after transition T

/ '- / '-
......-.....

I I cycleC I cycle C2 cycle c)

'- / • •
......-.....-.....

v

after several transitions

/ '- / '- / '-cycle C 1 cycle C2 cycle c) t

'- / '- / '- /
Figure 11.4: Unwinding a collection of cycles.

We now bound the number of canonical paths that contain T in their middle
segment of type B. Define the set CP(T) as the set of all pairs of perfect
matchings whose canonical path contains the transition T. If T lies on the
type B segment of a canonical path from s to t, then it lies on the canonical
path from s to t. Since K(S) and K(t) contain at most n2 elements each, we
find that the number of canonical paths whose type B segments contain T
is at most n2 x ICP(T)I x n2 = n4 ICP(T)I. We now show that ICP(T)I is at
most N, implying the desired result that the transition T can lie on at most
2n2 N + n4 N < 3n4 N canonical paths.

It remains to be shown that ICP(T)I < N. We will make use of the following
encoding mechanism. For each pair of perfect matchings sand t that lie in
CP(T), we define an encoding of sand t with respect to T as a matching
O"T(S,t) E Mn U Mn- 1• The idea is to ensure that the encoding is unique for each
such pair in CP(T), thereby implying that ICP(T)I ~ IMn U Mn-11 = N.

Let the symmetric difference d = s $ t consist of the ordered sequence of cycles
C}, ... , Cr. Consider a transition T between matchings u, v E Mn U Mn- 1 that

327

APPROXIMATE COUNTING

occurs during the unwinding of a particular cycle Ck. The encoded matching
O"T(S, t) is designed so that it agrees with S on the cycles Ch ... , Ck-h as well as
the portion of Ck that has already been unwound, and it agrees with t elsewhere.
Assume that T is not a Rotate transition; then we can set O"T(S, t) = st(uuv).
It is easy to verify that in this case the encoding is itself a matching from
Mn U Mn- h that it is uniquely defined, and finally that sand t can be completely
recovered from the given encoding and the knowledge of U and v. The last
property follows from the observation that S $ t = O"T(S, t) $ (u U v), and the fact
that the partially unwound cycle Ck (and hence the remaining cycles) can be
deduced from T.

The only problem is in the case where T is a Rotate transition, as in
Figure 11.4. Then there exists a vertex such that S $ t $ (u U v) has two edges
incident on it. However, one of these edges (denoted es,t) always has the start
vertex of Ck as its other end-point. Thus, when T is a Rotate transition we
define O"T(S, t) = S $ t $ (u U v) $ es,t. It is now easy to verify that all the desired
properties of the encoding also hold for this case, with the minor change that
S $ t = O"T(S, t) $ (u U v) $ es,t. In Figure 11.5, we illustrate the encoding for this
case using matchings sand t, and also the transition T, described in Figure 11.4.

o

• • • •
/ '-I cycle C, I

• • start

cycle C2

• • '- / '- /
Figure 11.5: The encoding O'T(S, t).

11.3.4. Extension to Arbitrary Size Matching!

Having outlined how to estimate Mn/ Mn- h we now describe the estimation
of Mk·/ Mk-l for k < n. The idea is essentially the same, using the Markov
chain Ck to sample the elements of Mk U Mk-l almost uniformly. One technical
difficulty remains: can the conductance of each Ck be suitably bounded? There
are techniques for showing that Ck does have high conductance, but we will
circumvent this problem by reducing the problem of estimating the ratio rk to
the problem of estimating r n'

Consider a graph G(V, V,E) with minimum degree n/2, and obtain the graph
Gk(V', V',E') from G as follows: add n - k new vertices to V to obtain V', and
connect each of these new vertices to each vertex in V; similarly, V' is obtained
by adding n - k new vertices to V and connecting each new vertex to each
vertex in V. It is easy to see that n' = IV'I = IV'I = 2n - k and that the new
vertices have degree n ~ n' /2 while the old vertices now have degree at least

328

11.4 VOLUME ESTIMATION

3n/2 - k ~ n' /2. Thus, the new graph has the desired minimum degree property.
It can now be shown that knowing the ratio rw for Gk will enable us to compute
the ratio rk for G; the details are left as an exercise. The ratio r w for Gk can be
estimated as discussed above.

Exercise 11.11: Let R be the ratio of the number of perfect matchings and near
perfect matchings in Gk • Show that

R = mk ,
2(n - k)mk + mk+1 + (n - k + 1)2mk_1

where the m/ 's refer to the original graph G. Using this, show how we can suitably
estimate the values of mk (for all k) with respect to G.

We conclude the following theorem.

Theorem 11.12: There exists an (E,b)-FPRAS for the problem of estimating the
number of perfect matchings in a bipartite graph of minimum degree at least n/2,
where n is the number of nodes on each side of the bipartition.

PROOF: By Exercise 11.9, it suffices to show that we can construct a near
uniform generator that has error bounded by l/n4. In fact, we will now show
(by going back through the entire chain of reasoning) that for 't' = O(nlS) the
relative pointwise distance is ~('t') = l/n4.

Applying Theorem 11.7, Lemma 11.8, and Theorem 11.9, in succession, we
obtain

~('t') $; A.2N

$; (1_;)tN

$; (1 - 28:n12) t N

$; e-t/288n12 N

1
$;

n4

where the last inequality follows from the observation that N ~ 2n2 and 't' ~ nlS.
o

The exponent of 15 in the running time can be reduced somewhat by using a
more sophisticated algorithm and analysis.

11.4. Volume Estimation

In this section we briefly consider the problem of computing the volume of a
given convex body K in n dimensions; we denote this volume by Y(K). This

329

APPROXIMATE COUNTING

is a classic problem with numerous applications; for instance, computing the
number of linear extensions of a partial order can be reduced to computing the
volume of an appropriately derived convex body. We give only an outline of
the principal methods here, without any proofs. Pointers to details are given in
the Notes section.

Before we examine the complexity of this question, we must pin down the
notion of an input to this problem. If we are to allow arbitrary convex bodies
as inputs, it is not even clear that there is a description of the body that has
finite size. We assume that K is described by means of a membership oracle:
the algorithm can specify a point p in space, and the oracle responds whether
or not p is inside the body K. For technical reasons, we will assume further
that K contains a sphere of radius at least rl centered at the origin, and in turn
is contained in a sphere of radius r2 centered at the origin. We assume that a
call to the oracle takes unit time; other than this, we assume the usual RAM
model of computation. We seek an (E, b)-FPRAS with a running time that is
polynomial in IjE, log Ijb, and n.

One example of a membership oracle comes from a convex polyhedron that
is defined by the intersection of a set of m given half-spaces. Given a point p
in the space, we can check in time O(mn) whether p lies in this intersection. We
begin with two negative results .

.
Theorem 11.13: It is #P-hard to compute the volume of a polyhedron defined by
the intersection of m half-spaces, each defined by a hyperplane with coefficients in
{O, I}.

Theorem 11.14: Suppose that a deterministic polynomial-time algorithm uses the
membership oracle for K and generates an upper bound I'll and a lower bound 1'1
on the volume of K. Then, there is a body K and a constant c such that

->c --III (n)n
II - logn

These negative results motivate a FPRAS for this problem; we outline the
main ideas below. We begin by explaining the basic idea in the plane. Consider
a convex region R in the plane of unit diameter. If we were to enclose R in a
rectangle U whose longer side is 1, we could use the following scheme. We pick
a sequence of points independently at random from U, and count the fraction
/ of them that fall within R (using the membership oracle). Since we can easily
compute the area 1'(U) of U, we can compute the random variable /1'(U),
which is an estimate of 1'(R) that can be shown to be close to its expectation for
a suitably large number of samples. Note (using the Estimator Theorem 11.1)
that the number of samples required grows with the ratio 1'(U)j1'(R).

Exercise 11.12: Show that Y(U)jY(R) S 2 in the plane.

330

11.4 VOLUME ESTIMATION

The main difficulty with extending this approach to higher dimensions is that
if we were to enclose the given body K in an n-dimensional cuboid C, the ratio
Y(C)/Y(K) may be exponential in n. To address this, we make use of the fact
that K lies within a sphere of known radius '2; we denote this sphere by B.
Further, it suffices to have a value of'2 that is small enough that we can define
a sequence of convex bodies B = Ko => K 1 => ..• => Kq = K such that:

1. There is a constant c such that for i ~ 1, Y(K j) ~ cY(K j_ 1).

2. The length of the sequence q is polynomial in n.

Then, it suffices to devise a FPRAS that will estimate the ratio Y(Kj)/Y(Kj-d
for all i; note the similarity of this approach to that used in estimating the
permanent. By appealing to property 1 above, we would like to again pick
points at random from K j and measure the fraction of these that lie in K j- 1•

Unlike the case of the rectangle U in the plane, picking such a random point in
the body K j is a non-trivial task. The solution is roughly as follows. We impose
a suitably fine grid on n-dimensional space. Starting at a fixed point of the grid,
we perform a random walk on the nodes of this grid that intersect K j • The crux
of the method is to argue that this random walk is rapidly mixing: in a number
of steps that is polynomial in n, its probability distribution is almost uniform on
all the grid nodes intersecting K j • In this manner, we sample points at random
from within K j and measure the fraction that lie within K j":' l • We omit almost
all the details here - the exact details of the walk, the definition of the sequence
K j , the use of the membership oracle for K for determining membership in K j ,

and the proof of the rapid mixing. The reader may find pointers to all of these
in the Notes section. -

Notes

The class #P was first identified by Valiant [401, 402], who also established the #P
completeness of the DNF counting problem and the permanent problem. Welsh [416]
gives a comprehensive and eminently readable survey of the state of the art in counting
algorithms.

The equivalence of counting the number of distinct spanning trees in a graph to
a determinant evaluation is due to Kirchhoff [193] and is known as the matrix-tree
theorem. The approximation of counting problems was initiated in the work of Karp
and Luby [247] and Stockmeyer [386]. The randomized approximation scheme for the
DNF counting problem, as well as the formal definition of a randomized approximation
scheme, is due to Karp and Luby [246]; this work was later extended and improved
by Karp, Luby, and Madras [240]. These articles also present applications of the basic
approach to network reliability problems (see also [109,247]).

~ Research Problem 11.1: Devise a deterministic FPAS for the DNF counting
problem.

The best-known deterministic algorithm for computing the permanent of a 0-1 matrix
is due to Ryser [361]. The application of the permanent problem to statistical physics

331

APPROXIMATE COUNTING

is described in the paper by Jerrum and Sinclair [211]. The permanent approximation
scheme described in this chapter owes its origins to a paper of Jerrum, Valiant, and
Vazirani [212], in which they showed that estimating the number of matchings in a
bipartite graph could be reduced to the problem of generating a perfect matching of the
graph uniformly at random from all the perfect matchings in the graph. Broder [83]
showed that near-uniform generation can be achieved by simulating a random walk on
a Markov chain whose states correspond to matchings in the graph. The latter idea
follows the lead of Aldous [11]. Broder proved that computing the number of perfect
matchings in graphs of minimum degree at least nl2 is still #P-complete and showed
that, even though the number of states could be exponentially large, the random walk
could be efficiently implemented.

The technical portion of Broder's proof contained a subtle error, as was pointed out
by Mihail [309]. Jerrum and Sinclair [211] subsequently gave the proof described above
establishing that his algorithm was indeed correct. The conductance-based technique
for analyzing the rate of convergence of a Markov chain is explored in detail in the
paper by Sinclair and Jerrum [376]. Sinclair [377] has shown that it is possible to go
directly from the canonical paths argument to a bound on A,2 without going through the
conductance argument. A comprehensive treatment of all these ideas, as well as some
further applications, can be found in the monograph by Sinclair [375].

Dagum, Luby, Mihail and Vazirani [118] adopted a slightly different approach to
characterizing graphs for which ex is bounded above by a polynomial in n, rather than
assuming that the graph has minimum degree at least n12. Even with their improved
character:i.zation, this approach to estimating Mn works only for a sub-class of bipartite
graphs in which every vertex degree is at least a constant fraction of n.

Currently, the most general condition under which it is possible to obtain an approx
imation to the number of perfect matchings in a bipartite graph is that IMn-li/IMnl be
polynomially bounded. The following problem remains open.

~ Research Problem 11.2: Devise a FPRAS for estimating the number of perfect
matchings in any bipartite graph (with no restrictions on vertex degrees).

The results of Jerrum and Sinclair [211] and Motwani [312] imply that the Markov
chain is rapidly mixing for almost every graph. This involves showing that, with high
probability, a random graph [69] (of arbitrary density) has the property that the ratio rk

is polynomially bounded.
Karinarkar, Karp, Lipton, Lovasz, and Luby [239] have made some progress in the

direction of Research Problem 11.2: they give a randomized approximation algorithm
which, with probability 1 - 0, gives a number guaranteed to be in the interval [Mn/{l +
E),Mn{l + E)]. Their algorithm runs in time O(poly(0,E,n)2n/2), where poly(o,E,n) is
a function that grows polynomially in n. This result was improved considerably by
Jerrum and Vazirani [210], who obtained an (E,o)-approximation with running time
O(poly(o, E, n)2yt110g2 n).

Theorem 11.14 is due to Barany and Fiiredi [46]. Dyer, Frieze, and Kannan [132] first
gave the method outlined in Section 11.4 for volume estimation. The scheme and running
time bounds that result have subsequently been refined in a sequence of papers. The
reader is referred to the survey in Welsh's book [416] for pointers to these refinements,
and to the host of open research problems remaining in this area.

332

PROBLEMS

Problems

11.1 In this problem we will design a Monte Carlo algorithm to estimate the value
of n. Consider a circle of diameter 1 enclosed within a square with sides of
length 1. We will sample points (uniformly and independently) from the square
and set the indicator variable Xt = 1 if the tth point is inside the circle, and
set Xt = 0 otherwise. It is clear that E[X] = Nn /4, where X is the sum of N of
these indicator variables.

Give an upper bound on the value of N for which 4X/N gives an estimator of
n that is accurate to d digits, with probability at least 1 - a.

11.2 (Due to A.M. Karp, M. Luby, and N. Madras [240].) Consider the following vari
ant of the Coverage algorithm for approximating the DNF counting problem.
The tth trial of this algorithm first picks a random clause Ct , where the proba
bility of choosing a clause Cj is proportional to the number of satisfying truth
assignments for it. Next, it selects a random satisfying truth assignment a for
the chosen clause. (So far, this is exactly the same as the sampling procedure
described before.) Define the random variable Xt = 1/lcov(a)l, where cov(a)
denotes the set of clauses that are satisfied by the truth assignment a.

The estimator for #F is the random variable

where" denotes the sum of the sizes of the coverage sets over all possible
truth assignments. Prove that Y is an (E, a)-approximation for #F when

cm 1
N=-In-

E a
for some small constant c. (Hint: Use the Chernoff-type bound derived in
Problem 4.7.)

11.3 Prove the converse of Theorem 11.4. In other words, show that given an
algorithm for estimating the number of matchings in a bipartite graph, it is
possible to get a near-uniform generator of matchings in the bipartite graph.

11.4 In this problem we will see that the problem of counting the perfect matchings
in graphs with large minimum degree is also #P-complete. Suppose there is
a polynomial time algorithm A for counting the number of perfect matchings in
a graph with minimum degree at least pn, for a constant 0 < p < 1. Show that
there must then exist a polynomial time algorithm for counting the number of
perfect matchings in an arbitrary bipartite graph.

11.5 Consider the Markov chain induced by a random walk on a connected, undi
rected graph G on n vertices. How small can the conductance of this Markov
chain be, the minimum being taken over connected, undirected graphs on n
vertices? How large can it be?

11.6 Let G be a connected, undirected graph on n vertices.

(a) Consider the Markov chain induced by the following random process
for moving from one spanning tree of G to another: pick edges e and f

333

APPROXIMATE COUNTING

independently and uniformly at random; if the current spanning tree is T and
T' = T + e - f is a spanning tree, then move to the new spanning T'; otherwise
stay put at T. Show that the conductance of this Markov chain is bounded
from below by 1/nQ1).

(b) Suggest and analyze an algorithm for approximate counting of the number
of spanning trees in a graph G, as an alternative to the matrix-tree theorem.

11.7 (Due to A. Sinclair and M.R. Jerrum [376].) An ergodic Markov chain with
transition matrix P is said to be time reversible if for all i and j, Pij"i = Pji"j.
This is equivalent to requiring that the matrix DPD-1 is symmetric, where D
is a diagonal matrix with Dii = Jifi. Clearly, the largest eigenvalue of P is
A1 = 1; define A = maxi>l IA;I. Show that for any fixed choice of an initial state
Xo, the relative pointwise distance of this Markov chain at time t is bounded
as follows:

At
~(t) :::;; --:-. -

mlni"i

What does this imply for the random walk setting considered in Theorem 6.21?

334

Parallel and Distributed Algorithms

In this chapter we discuss the solution of problems by a number of processors
working in concert. In specifying an allgorithm for such a setting, we must specify
not only the sequence of actions of individual processors, but also the actions
they take in response to the actions of other processors. The organization and
use of multiple processors has come to be divided into two categories: parallel
processing and distributed processing. In the former, a number of processors are
coupled together fairly tightly: they are similar processors running at roughly
the same speeds and they frequently c~xchange information with relatively small
delays in the propagation of such information. For such a system, we wish
to assert that at the end of a certain time period, all the processors will
have terminated and will collectively hold the solution to the problem. In
distributed processing, on the other hand, less is assumed about the speeds of
the processors or the delays in propagating information between them. Thus,
the focus is on establishing that algorithms terminate at all, on guaranteeing
the correctness of the results, and on counting the number of messages that
are sent between processors in solving a problem. We begin by studying a
model for parallel computation. We then describe several parallel algorithms
in this model: sorting, finding maximal independent sets in graphs, and finding
maximum matchings in graphs. We also describe the randomized solution of
two problems in distributed computation: the choice coordination problem and
the Byzantine agreement problem.

12.1. The PRAM Model

Our model for parallel computation will be the synchronous parallel random
access machine, which we will abbreviate by PRAM. The parallel computer will
consist of P processors, each of which can be viewed as supporting the RAM
model of computation (see Section 1.5.1). There is a global memory consisting of
M locations; each processor has a (small) constant number of local registers to

335

PARALLEL AND DISTRIBUTED ALGORITHMS

which it alone has access. Each of the P processors may read from and write into
any of the M global memory locations; these global memory locations serve as
the only mechanism for communication between the processors. Computation
proceeds in a series of synchronous parallel steps. In a parallel step, each
processor first chooses a global memory location whose contents it reads; next it
executes an instruction on the operand fetched, together with any operands in its
registers (the allowable instructions are any of those we allow for a conventional
single-processor RAM). Finally, the step ends with the processor writing into a
memory location of its choice. By our assumption of synchrony, every processor
finishes executing step i before any processor begins executing step i + 1. An
instruction for the PRAM is a specification, for each processor, of the actions
it is to perform in each of the three phases of a step. A parallel program is a
sequence of such instructions.

We now address the important issue of conflict resolution in a PRAM: our
definition of an instruction permits a number of processors to attempt to read
from or write to the same global memory location in a step. Logically, there
appears to be no problem in allowing several processors to read the contents of
the same global memory location; however, physical limitations make this action
difficult to implement in actual hardware. Of greater concern are the difficulties
that arise when several processors attempt to write into the same global memory
location; which of the (possibly differing) values is actually written into the
memory location? A number of solutions have been proposed for this problem
of concurrent writing. We will adopt the simplest of these: we insist that the
parallel program ensure that no execution will ever result in a concurrent write.
Thus we deal only with exclusive write PRAMs.

As mentioned above, the issue of whether or not to allow concurrent reads
is a matter of attention to hardware implementation. These various read/write
models for PRAMs are abbreviated as EREW, CREW, and CRCW, where the
first two letters denote whether reading is exclusive or concurrent and the last
two denote what is permissible for writing. In this chapter, we will only consider
EREW and CREW PRAMs.

Of particular theoretical interest is the solution of problems by PRAM
algorithms in which the number of processors P is a polynomial function of the
input' size n, and the number of PRAM steps is bounded by a polylogarithmic
function of n. We define the classes NC and RNC to capture these notions.

~ Definition 12.1: The class NC consists of languages L that have a PRAM
algorithm A such that for any x E 1:-

• x E L => A(x) accepts;

• x ~ L => A(x) rejects;

• the number of processors used by A on x is polynomial in Ixl;
• the number of steps used by A on x is polylogarithmic in Ixl.

For randomized PRAM algorithms, we similarly define the class RNC:

336

12.2 SORTING ON A PRAM

~ Definition 12.2: The class RNC consists of languages L that have a PRAM
algorithm A such that for any x E 1:-

• x E L => Pr[A(x) accepts] ~ 1/2;

• x ~ L => Pr[A(x) accepts] = 0;

• the number of processors used by A on x is polynomial in Ixl;

• the number of steps used by A on x is polylogarithmic in Ix!.

As in the case of RP, although the definition is in terms of decision or
language problems, there is an obvious generalization to function computations.
Notice that an RNC algorithm is Monte Carlo with one-sided error. We can
define the two-sided error version analogous to BPP. The Las Vegas version of
this class (zero-error and polylogarithmic expected time) is called ZNC, and is
defined similar to ZPP.

Exercise 12.1: In the above definitions, we did not distinguish between the various
models of concurrent reading and writing. Show that if a problem has a CRCW PRAM
algorithm using a number of processors that is polynomial in the input size, and
a number of steps that is polylogarithmic, then the problem has an EREW PRAM
algorithm using a number of processors that is polynomial in the input size, and a
number of steps that is polylogarithmic.

12.2. Sorting on a PRAM

In this section we study algorithms for sorting n numbers on a PRAM with n
processors. For convenience, we will assume that the input numbers to be sorted
all have distinct values. Our eventual goal will be a randomized (ZNC) algorithm
that terminates in O(log n) steps with high probability. Such an algorithm would
thus result in a total of O(n log n) operations among all processors, with high
probability.

Consider the implementation of the following variant of randomized quicksort
on a CREW PRAM. Initially, each of the n processors contains a distinct input
element. We first describe the structure of the algorithm. Following this high
level description, we will break down each stage of this description into a
sequence of PRAM steps. Let Pi denote the ith processor.

o. If n = 1 stop.

1. We pick a splitter uniformly at random from the n input elements.

2. Each processor determines whether its element is bigger or smaller than the
splitter.

3. Let j denote the rank of the splitter. If j ~ [n/4,3n/4], we declare the step a
failure and repeat starting at (1) above. If j E [n/4,3n/4], the step is a success.

337

PARALLEL AND DISTRIBUTED ALGORITHMS

We then move the splitter to Pj. Each element that is smaller than the splitter is
moved to a distinct processor Pi for i < j. Each element that is larger than the
splitter is moved to a distinct processor Pk for k > j.

4. We sort the elements recursively in processors PI through Pj-I, and the elements
in processors Pj +I through Pn• These recursive sorts are independent of each
other.

Let us study the number of CREW PRAM steps taken by each of the above
stages. Before we proceed with a detailed analysis, we make a prognosis of what
we need in order for the above algorithm to terminate in O(log n) steps. The best
we can hope for is success whenever we split. If we were fortunate enough that
this were to happen, every sequence of recursive splits would terminate within
O(log n) stages. Even so, in order for the algorithm to terminate in O(log n)
steps, we would require each split to be implemented in a constant number of
steps. Unfortunately we know of no way of doing this.

The second stage in our scheme is trivial and can be implemented in a single
step of a CREW PRAM. Let us turn to Stage 3 of the above description. Our
goal is to ensure that processor Pi, for i < j, contains a distinct input element
whose rank is smaller than j, and similarly processor Pk for k > j, contains a
distinct input element whose rank is larger than j. How many PRAM steps are
taken up by this process?

Processor Pi sets a bit bi in one of its registers to 0 if its element is greater
than the splitter, and to 1 otherwise. For all i, let Si = 2:r~i br•

Exercise 12.2: Devise a PRAM algorithm by which, given the b;, the S; can be
computed (with the result contained in PI) in O(log n) steps. Using this, show how
Stage 3 of the algorithm can be implemented in O(log n) steps.

Thus, we see that a single splitting stage can be implemented in O(log n) steps
of a CREW PRAM. In Problem 12.1 we will see that from this, we can infer

that the above algorithm terminates in o (log2 n) steps with high probability.
The shortcoming of the above scheme is that the splitting work in Stage 3,

consuming O(log n) steps, yielded a relatively small benefit - it cuts the problem
size down from n to a constant fraction of n. To improve on this, we consider
a more efficient algorithm in which we invest the same amount of work in
splitting, but in the process break up the problem into pieces of size n1- e for
a fixed constant E. If we could do this, we could hope for an overall parallel
running time of O(logn) steps: at the next level of recursion, the splitting time
would be logarithmic in nl-E, which is a constant fraction of the splitting time
at the first level. Thus, the times for proceeding from one level of recursion
to the next would form a geometric series summing to O(log n). The following
two exercises pave the way for a concrete scheme for implementing this idea.
Exercise 12.3 demonstrates that we can indeed sort in O(log n) steps if our
PRAM were endowed with many more processors than elements to be sorted.

338

12.2 SORTING ON A PRAM

Exercise 12.3: Consider a CREW PRAM having n2 processors. Suppose that each of
the processors P1 through Pn has an input element to be sorted. Give a deterministic
algorithm by which this PRAM can sort these n elements in O(log n) steps. (Hint: We
have enough processors to compare all pairs of elements.)

Next, suppose that we have n processors and n elements. Suppose that
processors PI through Pr contain r of the elements in sorted order, and that
processors Pr+1 through Pn contain the remaining n - r elements. Call the sorted
elements in the first r processors the splitters. For 1 < j :::;; r, let Sj denote the
jth largest splitter. Our goal is to "insert" the n - r unsorted elements among
the splitters, in the following sense.

1. Each processor should end up with a distinct input element.

2. Let i(sj) denote the index of the processor containing Sj following the insertion
operation. Then, for all k < i(s,), processor Pk contains an element that is smaller
than Sj; similarly, for all k > i(s,), processor Pk contains an element that is larger
than Sj.

In other words, the splitters are contained in processors in increasing order, and
the remaining elements are in processors between their "adjacent" splitters.

Exercise 12.4: For n processors, and n elements of which In are splitters, give a
deterministic scheme that completes the above insertion process in O(log n) steps.

Here are the stages of our parallel sorting algorithm, which we call BoxSort.
Note that it is a Las Vegas algorithm: it always produces the correct output.
Further, it always uses a fixed number of processors; only the number of parallel
steps is a random variable. This will be typical of all the parallel algorithms we
present. The function LogSort is described following Exercise 12.5.

Algorithm BoxSort:

Input: A set of numbers s.
Output: The elements of S sorted in increasing order.

1. Select In elements at random from the n input elements. Using all n
processors, sort them in O(log n) steps (using the ideas in Exercise 12.3). If
two splitters are adjacent in this sorted order, we call them adjacent splitters.

2. USing the sorted elements from Stage 1 as splitters, insert the remaining
elements among them in O(log n) steps (using the ideas in Exercise 12.4).

3. Treating the elements that are inserted between adjacent splitters as sub
problems, recur on each sub-problem whose size exceeds log n. For sub
problems of size log n or less, invoke LogSort.

339

PARALLEL AND DISTRIBUTED ALGORITHMS

Note that in Step 3 we have available as many processors as elements for
each sub-problem on which we recur. The sub-problems that result from the
..fo splitters have size roughly ..fo, with good probability. This fits with our
paradigm for progressing from a problem of size n to one of size n1-

e in O(log n)
steps. As we will see below, with high probability every sub-problem resulting
from a splitting operation is small, provided the set being split is itself not too
small. We deal with this issue using the following idea. When we have log n
elements to be sorted using log n processors, we abandon the recursive approach
and use brute force:

Exercise 12.5: Show that a CREW PRAM with m processors can sort m elements
deterministically in O(m) steps.

Thus, when a sub-problem size is down to log n, we can sort it with the log n
available processors in O(log n) steps; we call this operation LogSort.

We now analyze the use of random sampling for choosing the splitters. Let us
call the set of elements that fall between adjacent splitters a box. The analysis is
similar to the one we used in the analysis of randomized selection in Section 3.3.
By invoking the Chernoff bound instead of the Chebyshev bound, the following
IS an easy consequence:

Exercise 12.6: Consider m splitters chosen uniformly at random from m2 given
distinct elements. Show that the probability that a box has size exceeding bm is at
most mab , for a constant a < 1.

To complete the analysis of the algorithm, we represent an execution of the
algorithm by a tree. Each node of the tree is a box that arises during the
execution. For this purpose, we will also regard the n input elements as forming
a box (of size n), and this is the root of our tree. The children of a node are the
boxes that arise when it is partitioned by random splitters. Each leaf is a box of
size at most log n.

We are interested in root-leaf paths in this tree. In bounding the running
time of algorithm, the quantity of interest is not the length of such root-leaf
paths, but rather the number of PRAM steps that elapse as we go down such a
path. This is because the time to proceed from a box to one of its children is
logarithmic in the size of the box. We will argue that with high probability, the
sum of the logarithms of box sizes on any root-leaf path is O(log n), and this
will yield an overall running time of O(log n).

The idea is to partition the interval [1, n] into sub-intervals 10,1 h ... , and
bound the probability that a box whose size is in h has a child whose size is
also in h. To this end, let}' and d be fixed constants such that 1/2 < }' < 1 and
1 < d < Ify. For a positive integer k, define 'fk = dk, Pk = nr", and the interval
h = [Pk+hPk].

340

12.3 MAXIMAL INDEPENDENT SETS

Exercise 12.7: Show that Pk < log n for a value of k S c log log n, for a constant c
that depends only on y.

Thus we confine our attention to O(log log n) intervals h. For a box B in
the tree, we say that ~(B) = k if IBI E h. In terms of this notation, the time
to split B is O(logPcx(B)). For a root-leaf path, = (B., ... ,Bt), we will study
E~=l log Pcx(Bj), since the overall running time of the algorithm is

o (IOgn + max t IOgPCX(BJ)).
, . 1

]-

For a path , - (B., ... , Bt), we say that event £, holds if the sequence
~(Bl)' ... ' ~(Bt) does not contain the value k more than 'fk times, for 1 ~
k ~ c log log n. If £, holds, the number of PRAM steps spent on path, is at
most

O(IOgn+ ftk'-/lOgn).
k-l

Since 'fk = dk , and yd < 1, this sums to O(log n). Thus it suffices to argue that
£, holds with high probability for any'. This is an easy calculation following
the bound from Exercise 12.6.

Lemma 12.1: There is a constant f3 > 1 such that £, holds with probability at
least 1 - exp(- logP n).

The following sequence of three probability calculations establishes Lemma
12.1. These calculations are straightforward, and the reader is asked to perform
them in Problem 12.2.

1. Bound the probability that ~(Bj+d = a.(Bj) using the result of Exercise 12.6.

2. Bound the probability that for any particular k, the value k is contained more
than tk times in the sequence ~(Bd, ... , ~(Br>.

3. Bound the probability that for 1 ::; k ::; c log log n, the value k is contained more
than tk times in the sequence a.(Bd, ... , a.(Bt).

Since the number of paths' in an execution is at most n, we have:

Theorem 12.2: There is a constant b > 0 such that with probability at least
1 - exp(-10gb n) the algorithm BoxSort terminates in O(log n) steps.

12.3. Maximal Independent Sets

Let G(V, E) be an undirected graph with n vertices and m edges. A subset
of vertices I £;;; V is said to be independent in G if no edge in E has both its

341

PARALLEL AND DISTRIBUTED ALGORITHMS

end-points in I. Equivalently, I is independent if for all v E I, r(v) n I = 0.
Recall that r(v) is the set of vertices in V that are adjacent to v and that the
degree of v is d(v) = Ir(v)l.

An independent set I is maximal if it is not properly contained in any other
independent set in G. Recall that the problem of finding a maximum independent
set is NP-hard. In contrast, finding a maximal independent set (MIS) is trivial
in the sequential setting. The following greedy algorithm constructs an MIS in
O(m) time.

Algorithm Greedy MIS:

Input: Graph G(V,E) with V = {t2. ... ,n}.

Output: A maximal independent set I s;;; V.

1. 1-0.
2. for v = 1 to n do

If/nr(v)=0then/-/u{v}.

Exerclse.12.8: Prove that the Greedy MIS algorithm terminates in O(m) time with a
maximal independent set, if the input is given in the form of an adjacency list.

A greedy algorithm such as this is inherently sequential. The output of this
algorithm is called the lexicographically first MIS (LFMIS). It is known that the
existence of an NC (or RNC) algorithm for finding the LFMIS would imply
that P = NC (respectively, P = RNC), a consequence that appears almost as
unlikely as P = NP. Thus, we have the somewhat paradoxical situation that
the most trivial algorithm finds the LFMIS sequentially, whereas it appears
impossible to solve it fast in parallel. However, it turns out that there are simple
parallel algorithms for finding an MIS (not necessarily the lexicographically first
MIS). We start by describing an RNC algorithm and later indicate how it can
be derandomized to obtain an NC algorithm. The problem of verifying an MIS
is relatively easy to solve in parallel.

Exercise 12.9: Devise a deterministic EREW PRAM algorithm for verifying that a set
I is an MIS, using O(mj log m) processors and O(log m) time.

Consider the variant of the Greedy MIS algorithm, which starts with I = 0
and repeatedly performs the following step: pick any vertex v, add v to I, and
delete v and r(v) from the graph. The algorithm terminates when all vertices
have either been deleted or added to I. Choosing v to be the lowest numbered
vertex present in the graph leads to exactly the same outcome as in Greedy MIS.

342

12.3 MAXIMAL INDEPENDENT SETS

The key idea behind the parallel algorithm is to generalize the basic iterative
step in the new algorithm: find an independent set S, add S to J, and delete
S u r(S) from the graph. The trick is to ensure that each iteration can be
implemented fast in parallel, while also guaranteeing that the total number of
iterations is small. One way of ensuring that the number of iterations is small
is to choose an independent set S such that S u r(S) is large. This is difficult,
but we achieve the same effect by ensuring that the number of edges incident
on S U r(S) is a large fraction of the total number of remaining edges; clearly,
this will result in an empty graph in a small of number of iterations.

To find such an independent set S, we pick a large random set of vertices
R £; V. While it is quite unlikely that R will be independent, biasing the
sampling in favor of low degree vertices will ensure that there are very few edges
with both end-points in R. To obtain the independent set from R we consider
each edge of this type and drop the end-point of lower degree. This results in
an independent set, and the choice of the end-point retained for S ensures that
r(S) is likely to be large.

This idea is implemented in Algorithm Parallel MIS, where the marking of a
vertex corresponds to selecting it for the set R. We assume that each vertex (and
edge) of G is assigned a dedicated processor that performs the parallel tasks
associated with that vertex (or edge). This uses a total of O(n + rn) processors.

Algorithm Parallel MIS:

Input Graph G(V, E).

Output: A maximal independent set 1 s; V.

1.1-0.

2. repeat

2.1. for all v E V do (in parallel)
If d(v) = 0 then add v to 1 and delete v from V
else mark v with probability 1/2d(v).

2.2. for all (u, v) E E do (in parallel)
If both u and v are marked
then unmark the lower degree vertex.

2.3. for all v E V do (in parallel)
if v is marked then add v to S.

2.4. 1 -I uS.

2.5. delete S u r(S) from V, and all incident edges from E.

until V = 0

Ties are broken arbitrarily in Step 2.2. It is clear that the set S in Step 2.3 is
an independent set. The reader should verify that this algorithm is guaranteed to
terminate with a maximal independent set in a linear number of iterations. Our

343

PARALLEL AND DISTRIBUTED ALGORITHMS

goal is to prove that the random choices in Step 2.1 will ensure that the expected
number of iterations is in fact O(log n). We leave the details of implementing
each iteration in NC as an exercise.

Exercise 12.10: Show that each iteration of the Parallel MIS algorithm can be imple
mented in O(log n) time using an EREW PRAM with O(n + m) processors.

The analysis is based on showing that the expected fraction of edges removed
from E during each iteration is bounded from below by a constant. In fact, we
will focus only on a specific class of good edges, defined as follows .

• Definition 12.3: A vertex v E V is good if it has at least d(v)/3 neighbors of
degree no more than d(v); otherwise, the vertex is bad. An edge is good if at least
one of its end-points is a good vertex, and it is bad if both end-points are bad
vertices.

In the following discussion, we will analyze only a single iteration of the
Parallel MIS algorithm. The notion of goodness is with respect to the vertices
and edges surviving at the start of that specific iteration. It should be clear that
the argument can be applied repeatedly to the successive iterations; together
with Theorem 1.3, this implies the result.

We start with an intuitive sketch of the analysis, which is then fleshed out in
a sequence of lemmas. A good vertex is quite likely to have one of its lower
degree neighbors in S and, thereby be deleted from V. We will show that the
number of good edges is large, and since good vertices are likely to be deleted,
a large number of edges will be deleted during each iteration.

Lemma 12.3: Let v E V be a good vertex with degree d(v) > O. Then, the
probability that some vertex w E r(v) gets marked is at least 1 - exp(-1 /6).

PROOF: Each vertex w E r(v) is marked independently with probability 1/2d(w).
Since v' is good, there exist at least d(v)/3 vertices in r(v) with degree at most
d(v). Each of these neighbors gets marked with probability at least 1/2d(v).
Thus, the probability that none of these neighbors of v gets marked is at most

1 < -1/6
(

1)d(V)/3

- 2d(v) - e .

The remaining neighbors of v can only help in increasing the probability under
consideration. 0

Lemma 12.4: During any iteration, if a vertex w is marked then it is selected to
be in S with probability at least 1/2.

344

12.3 MAXIMAL INDEPENDENT SETS

PROOF: The only reason a marked vertex w becomes unmarked, and hence not
selected for S, is that one of its neighbors of degree at least d(w) is also marked.
Each such neighbor is marked with probability at most 1/2d(w), and the number
of such neighbors certainly cannot exceed d(w). Thus, the probability that a
marked vertex is selected to be in S is at least

1 Pr[3x E r(w) such that d(x) > d(w) and x is marked]
1

> 1 -I{x E r(w) I d(x) > d(w)}1 x 2d(w)

~ 1- L _1_
xer(w) 2d(w)

1
- 1 - d(w) x 2d(w)

1
- 2-

o
Combining these two lemmas, we obtain the following.

Lemma 12.5: The probability that a good vertex belongs to SunS) is at least

(1- exp(-1/6»/2.

The final step is to bound the number of good edges.

Lemma 12.6: In a graph G(V,E), the number of good edges is at least ~EI/2.

PROOF: Direct the edges in E from the lower degree end-point to the higher
degree end-point, breaking ties arbitrarily. Define dj(v) and do(v) as the in-degree
and out-degree, respectively, of the vertex v in the resulting digraph. It follows
from the definition of goodness that for each bad vertex v,

d () _ d.() > d(v) = do(v) + dj(v)
oV IV - 3 3'

For all S, T c: V, define the subset of the (oriented) edges E(S, T) as those
edges that are directed from vertices in S to vertices in T; further, define e(S, T)
to be IE(S, T)I. Let VG and VB be the set of good and bad vertices, respectively.
The total degree of the bad vertices is given by

2e(VB' VB) + e(VB' VG) + e(VG, VB)

- L(do(V) +dj(v»
veVB

veVB

veVG

- 3[(e(VB, VG) + e(VG, VG» - (e(VG, VB) + e(VG, VG))]

345

PARALLEL AND DISTRIBUTED ALGORITHMS

- 3[e(VB, VG) - e(VG, VB)]

~ 3[e(VB, VG) + e(VG, VB)]

The first and last expressions in this sequence of inequalities imply that
e(VB, VB) =::;; e(VB, VG) + e(VG, VB). Since every bad edge contributes to the
left side and only good edges contribute to the right side, the desired result
follows. 0

Since a constant fraction of the edges are incident on good vertices, and good
vertices get eliminated with a constant probability, it follows that the expected
number of edges eliminated during an iteration is a constant fraction of the
current set of edges. By Theorem 1.3, this implies that the expected number of
iterations of the Parallel MIS algorithm is O(log n).

Theorem 12.7: The Parallel MIS algoritJim has an EREW PRAM implementation

running in expected time o (log2 n) using O(n + m) processors.

It is straightforward to obtain a high-probability version of this result.
We briefly describe the construction of an NC algorithm for MIS obtained by

a derandomization of the RNC algorithm described above. The first step is to
show that the preceding analysis works even when the marking of the vertices is
not completely independent, but instead is only pairwise independent. Note that
the only part of the analysis that uses complete independence is Lemma 12.3.
In Problem 12.9 the reader is asked to prove that a marginally weaker version
of Lemma 12.5 holds even with pairwise independent marking of vertices. The
key advantage of pairwise independence is that only O(log n) random bits are
required to generate the sample points in the corresponding probability space
(see the discussion in Section 3.4). In the current application, it is necessary to
generate pairwise independent Bernoulli random variables that are not uniform.
In Problem 12.10, the reader is asked to modify the earlier construction of
pairwise independent probability space to apply to Bernoulli variables that take
on the 'value 1 with non-uniform probabilities, i.e., the marking probabilities of
l/2d(v).

The final and most crucial idea is to observe that the total number of choices
of the O(log n) random bits needed for generating pairwise independent marking
is polynomially bounded. All such choices can be tried in parallel to see if they
yield a good marking, i.e., a marking of vertices that leads to an appropriately
large reduction in the number of edges. Note that in each iteration, we are
guaranteed that most choices of the random bits will give a good marking; in
particular, there exists at least one setting of the O(log n) random bits that will
provide a good marking. Trying all possibilities will (deterministically) identify
a good marking. Thus, each iteration can be derandomized and the entire
algorithm can be implemented in NC.

346

1M PERFECT MATCHINGS

12.4. Perfect Matchings

We now tum to the problem of finding an independent set of edges (or a
matching) in a graph. Let G(V,E) be a graph with the vertex set V = {l, ... ,n};
without loss of generality, we may assume that n is even. Recall (Chapter 7)
that a matching in G is a collection of edges M c: E no two of which are
incident on the same vertex. A maximal matching is a matching that is not
properly contained in any other matching. A maximum matching is a matching
of maximum cardinality, and a perfect matching is one containing an edge
incident on every vertex of G.

The matchings in a graph G(V, E) correspond to independent sets in the
line graph H obtained by creating a vertex for each edge in E, with two
such vertices being adjacent if the corresponding edges in E are incident on
the same vertex. This implies that the problem of finding matchings is a
special case of the independent set problem. A maximal matching can be
found sequentially via a greedy algorithm, and on a PRAM, as suggested in
Problem 12.6, using the algorithms discussed in Section 12.3. Unlike the case
of maximum independent sets, the problem of finding a maximum matching
has a polynomial time solution. This raises the possibility of constructing an
NC algorithm for maximum matchings. However, randomization appears to
be an essential component of all known fast parallel algorithms for maximum
matching, and we devote this section to describing one such RNC algorithm.

For now we focus on the problem of finding a perfect matching in a graph that
is guaranteed to have one, deferring the issue of finding a maximum matching
till later. First we show that the decision problem of determining the' existence
of a perfect matching is in RNC. This is based on the algebraic techniques
developed in Chapter 7; the reader is advised to review Sections 7.2 and 7.3
from that chapter. We make use of Tutte's Theorem described in Problem 7.8;
this is a generalization of Theorem 7.3, which dealt with the case of bipartite
matchings.

Theorem 12.8 (Tutte's Theorem): Let A be the n x n (skew-symmetric) Tutte
matrix of indeterminates obtained from G(V, E) as follows: a distinct indeterminate
Xij is associated with the edge (Vi, Vj), where i < j, and the corresponding matrix
entries are given by Aij = xij and Aji = -Xij, that is,

{

Xij (Vi,Vj) E E and i < j
Aij = -Xji (Vi, Vj) E E and i > j

o (Ui,Vj) ¢ E

Then G has a perfect matching if and only if det(A) is not identically zero.

The RNC algorithm for deciding the existence of a perfect matching in G
first constructs the matrix A with each indeterminate replaced by independently
and uniformly chosen random values from a suitably large set of integers, as
described in Section 7.2. Then, it evaluates the determinant of the resulting

347

PARALLEL AND DISTRIBUTED ALGORITHMS

integer matrix. If G has a perfect matching, then with suitably large probability,
the determinant will be non-zero. On the other hand, if G does not have any
perfect matchings, the determinant will always be zero.

The first stage of this algorithm is easily implemented in NC. Finding the
determinant of a matrix in NC is not trivial, but at least one NC algorithm is
known (see the Notes section). Thus the problem of deciding the existence of a
perfect matching is in RNC.

We turn to the task of actually finding a perfect matching in a graph. Once
again, the idea is to reduce the search problem to some matrix computations. We
summarize known results for parallel matrix computations without attempting
to describe the algorithms in any detail.

The (i,j) minor of a matrix U, denoted Uij, is the matrix obtained by deleting
the ith row and the jth column of U. The adjoint adj(U) of the matrix U is
the matrix A whose (j, i) entry has absolute value equal to the determinant of
the (i,j) minor of U, i.e., Ali = (_l)i+l det(Uil). It is easy to verify the following
relation: Uadj(U) = det(U).

Theorem 12.9: Let U be an n x n matrix whose entries are k-bit integers. Then the
determinant, adjoint, and inverse of U can be computed in NC. In particular, let
MM(n) = O(n2•376) denote the number of arithmetic operations required to multiply

two n x n matrices. Then the determinant can be computed in 0 (log2 n) time

using O(n2MM(n» processors .. further, there are RNC algorithms for computing

the inverse and the adjoint running in time 0 (log2 n) using 0 (n3.5 k) processors.

It is instructive to attempt to search for perfect matchings using the decision
algorithm described above. It is not very hard to see that this can be done for
the special case where the graph has a unique perfect matching.

Exercise 12.11: Suppose that G has a unique perfect matching M. Analyze the effect
of removing an edge on the determinant of the Tutte matrix, considering both the
case where the edge belongs to M and where it does not belong to M. Using this
analysi~, devise an RNC algorithm for finding the matching M.

As outlined in Problem 12.15, an NC algorithm is possible for finding a
unique perfect matching. In fact, it is known that there is an NC algorithm
for finding perfect matchings in graphs with a polynomial number of perfect
matchings. However, these algorithms break down when the number of perfect
matchings in the graph is large.

The problem with having a large number of perfect matchings is that it is
necessary to coordinate the processors to search for the same perfect matching.
This is the major stumbling block in the parallel solution of the matching
problem and is perhaps the main reason why no NC algorithm is known. If
the number of matchings is small, then the processors can easily focus on the

348

11.4 PERFECT MATCHINGS

same perfect matching. The first ingredient in the RNC algorithm is to take an
arbitrary graph and isolate a specific perfect matching. The isolation is achieved
by assigning weights to the edges and looking for a minimum weight perfect
matching. Of course, there is no reason why there should be a unique minimum
weight perfect matching but, as we show in the next section, if the weights are
chosen at random there is a good chance that isolation occurs.

12.4.1. The Isolating Lemma

Our goal now is to define a positive integer weight function over the edges of G,
say w : E -+ 7l+, such that there is a unique minimum weight perfect matching.
Observing that the set of all possible perfect matchings can be viewed as a
family of subsets of E, we consider a more general setting involving an arbitrary
set family .

• Definition 12.4: A set system (X, F) consists of a finite universe X = {X., ... ,xm}
and a family of subsets F = {S., ... , Sk}, where Si c: X for 1 =:;; i ~ k. The
dimension of the set system is (the size of the universe) m.

Given a positive integer weight function w : X -+ 7l+, we define the weight of
a set S £ X as w(S) = EXEs w(Xj). The following lemma shows that a random

J

weight function is quite likely to lead to a unique set of F being of minimum
weight.

Lemma 12.10 (Isolating Lemma): Suppose (X, F) is a set system of dimension m.
Let w : X -+ {1, ... , 2m} be a positive integer weight function defined by assigning
to each element of X a random weight chosen uniformly and independently from
{1, ... ,2m}. Then.

Pr[there is a unique minimum weight set in J1 > ~.

Remark: This lemma is truly counterintuitive. First of all, the size of F is
completely irrelevant to the claim. This allows the family F to be of size as
large as 2m. Since the weights of the sets must lie in the range {I, ... , 2m2}, one
would expect that there could be as many as 2mj(2m2) sets of any given weight.
However, the weights of the sets follow the lattice structure of the family of all
subsets of X, thereby ensuring that the weights of the sets are not independent
or uniformly distributed.

PROOF: We assume, without loss of generality, that each element of X occurs in
at least one of the sets in F. Suppose that we have chosen the (random) weights
of all elements of X except one, say Xi. Let Wi be the weight of a minimum
weight set containing Xi, computed by ignoring the (undetermined) weight of
Xi. Further, let Wi be the weight of a minimum weight set not containing the
element Xi. Define (li = Wi - Wi and note that (li could be negative.

349

PARALLEL AND DISTRIBUTED ALGORITHMS

Suppose that initially Xi is assigned the weight -00 (actually, -2m2 will
suffice). It is clear that now every set of minimum weight must contain Xi.

Consider the effect of increasing the weight of Xi until it reaches +00 (here, 2m2

will suffice). At this point it is clear that no set of minimum weight contains Xi.

We claim that for W(Xi) < ~i, every minimum weight set must contain Xi,

because there exists a set containing Xi of weight Wi + W(Xi) < Wi, and all sets
not containing Xi must have weight at least Wi' Similarly, we claim that for
W(Xi) > ~i, no minimum weight set contains Xi, because any set containing Xi

has weight at least Wi + W(Xi) > Wi, and there exists a set not containing Xi of
weight Wi'

Thus, so long as W(Xi) =1= ~i, either every minimum weight set contains Xi

or none of them contains Xi' We say that Xi is ambiguous when W(Xi) = ~i,

since then it cannot be said for certain whether Xi will belong to a minimum
weight set chosen arbitrarily. The crucial observation is that since ~i depends
only on the weights of the elements other than Xi, and the weights are chosen
independently, the random variable ~i is independeIit of w(x;). It follows that the
probability that Xi is ambiguous is no more than 112m. Note that it is possible
that ~i ~ {1, ... ,2m}, in which case the probability is actually zero.

While the ambiguities of the different elements are correlated, it is safe to say
that the probability that there exists an ambiguous element in X is at most

1 1
m x 2m = 2'

It follows that with probability at least a half, none of the elements is ambiguous.
But if there exist two distinct minimum weight sets, say Si and Sj. there must be
an element that belongs to one of these sets but not the other, i.e., there must be
an ambiguous element. Thus, with probability at least a half there is a unique
minimum weight set. 0

Exercise 12.12: Determine the probability that there is a unique minimum weight set
when the weights are chosen from the set {1. ... , t}.

Exercl~e 12.13: Does a similar result hold for the maximum weight set?

The application of this lemma to the perfect matching problem is obvious.
Let X be the set of edges in the graph, and F the set of perfect matchings. It
follows that assigning random weights between 1 and 2m to the edges leads to
a unique minimum weight perfect matching with probability at least 1/2. We
now turn to the task of identifying this perfect matching.

12.4.2. The Parallel Matching Algorithm

Suppose we have chosen the random weight function W for the edges of G as
described above, and let Wij be the weight assigned to the edge (i,j). We will

350

1M PERFECT MATCHINGS

assume that there is a unique minimum weight perfect matching, and that its
weight is W. If there is more than one minimum weight perfect matching,
the following algorithm will fail (the mode of failure will be evident from the
description below). This happens with probability at most 1/2, and the algorithm
can be repeated to reduce the error probability.

Consider the Tutte matrix A corresponding to the graph G. Let B be the
matrix obtained from A by setting each indeterminate Xij to the (random) integer
value 2Wi

j.

Lemma 12.11: Suppose that there is a unique minimum weight perfect matching
and that its weight is W. Then, det(B) =1= 0 and, moreover, the highest power of 2
that divides det(B) is 22W.

PROOF: The proof is a generalization of the proof of Tutte's theorem. For each
permutation u E Sn defined over V = {1, ... ,n}, define its value with respect
to B as val(u) = ll7=1 Biu(i). Observe that val(u) is non-zero if and only if for
each i E V, the edge (i, u(i» is present in G. Recall from Section 7.2 that the
determinant of the matrix B is given by

det(B) = L sgn(u) x val(u),
ueS.

where sgn(u) is the sign of a permutation u. Permutations with sign +1 are
called even, and those with sign -1 are called odd. The reader should not
confuse the sign of a permutation with the sign of its value.

We focus only on the permutations with non-zero value, since the others
do not contribute to the determinant. Let US first explicate the structure of
the non-zero permutations. The trail of a permutation u of non-zero value is
the subgraph of G containing exactly the edges (i, u(i», for 1 < i < n. It is
convenient to view the edges (i, u(i» as being directed from i to u(i). The n
edges corresponding to u form a multiset where each edge has multiplicity 1 or
2, and the edges of multiplicity 2 occur with both orientations. Each vertex has
two edges from the trail incident on it, one incoming and the other outgoing,
and these may correspond to the two orientations of the same undirected edge
from G. Thus, the trail consists of disjoint cycles and edges, where the isolated
edges are those of multiplicity 2. The orientations on the edges are such that
the cycles are oriented, and the isolated edges may be viewed as oriented cycles
of length 2. Define an odd-cycle permutation as one whose trail contains at
least one odd-length cycle, while even-cycle permutations have only even length
cycles.

In each odd-cycle permutation u, fix a canonical odd cycle C as follows; for
each cycle, sort the list of vertex indices and use the sorted sequence of indices
as label for that cycle; pick the odd cycle whose label is the lexicographically
smallest. We can pair off the odd-cycle permutations by associating with such
u the unique odd-cycle permutation -u obtained by reversing the orientation
of the edges in the canonical odd cycle C. Given these definitions, both u and

351

PARALLEL AND DISTRIBUTED ALGORITHMS

-u have the same canonical odd cycle and -(-u) = u. The skew-symmetric
nature of the matrix B implies that val(u) = -val(-u), while the identical
cycle structure of the two permutations implies that sgn(u) = sgn(-u). It
follows that their net contribution to det(B) is O. Thus, the set of odd-cycle
permutations has a net contribution of zero toward the value of det(B). This
value of the determinant is completely determined by the value of the even-cycle
permutations.

Notice that a permutation u that corresponds to a perfect matching M
has a trail consisting exactly of the set of edges in M, and each of these
edges has multiplicity 2. Also, for any perfect matching M, the value of the
permutation corresponding to it is exactly (_1)"/222w(M), where w(M) is the
weight of the matching M. If these were the only even-cycle permutations
to consider, the result would follow immediately. However, there are even
cycle permutations that do not correspond to any particular perfect matching,
although as discussed below they can all be viewed as representing a union of
two perfect matchings.

An even-cycle permutation u consists of a collection of even cycles, and
its trail can be partitioned into two perfect matchings, say Ml and M 2, by
considering alternating edges from each cycle.

Exerclse.12.14: Verify that Ivai (cr)1 = 2w(M,)+w(M2).

When the trail of u has a cycle of length greater than 2, the two per
fect matchings Ml and M2 are distinct and, since at most one of these two
perfect matchings can be the unique perfect matching of minimum weight, it
follows that Ival(u)1 > 22W. On the other hand, when the trail has only cy
cles of length 2, i.e., the permutation corresponds to a perfect matching, we
have Ml = M2 and Ival(u)1 = 2 2w(Md > 22W. But note that equality with
22W is achieved only when Ml = M2 is the unique minimum weight perfect
matching.

Thus, the absolute contribution to det(B) from each even-cycle permu
tation is a power of 2 no smaller than 22W. Moreover, exactly one of
these contributions - the one from the even-cycle permutation correspond
ing to the unique minimum weight perfect matching - is equal to 22W. The
determinant of B can now be viewed as a sum of powers of 2, possibly
negated, such that the exponent of every term but one is strictly greater
than 2W. Since the term of absolute value 22W cannot cancel out, it fol
lows that det(B) =1= 0 and in fact the largest power of 2 dividing it is 22W.

o

Exercise 12.15: Observe that, after choosing the random weights, both Band det(B)
can be computed via NC algorithms. Show that the value of W can also be determined
in NC.

352

1M PERFECT MATCHINGS

Of course, this only shows how to compute the weight of the minimum weight
perfect matching. The following lemma is the basis for actually determining the
edges in that matching. Recall that Iii is the minor of B obtained by removing
the ith row and the jth column from B.

Lemma 12.12: Let M be the unique minimum weight perfect matching in G, and
let its weight be W. An edge (i, j) belongs to M if and only if

is odd.

det(Iij)2Wij

22W

PROOF: Consider the matrix Q obtained from B by zeroing out each entry in
the ith row and jth column of B, except for B ij . Notice that any permutation of
non-zero value with respect to Q must map i to j.

Exercise 12.16: Verify that

det(Q) = (_I)i+j 2Wij det(Bij) = L sgn(O") x val(O"). (12.1)
u:u(i)=j

We can now apply the same argument as in Lemma 12.11 to claim that
odd-cycle permutations (mapping i to j) will have a zero net contribution to the
sum (12.1). One possible problem with doing so is that the canonical odd cycle
in a specific permutation 0" may contain the oriented edge going from i to j,
in which case its partner -0" will invert the orientation on that edge and hence
not belong to the set of permutations mapping i to j. This will create problems
in the canceling argument. However, note that since n is even, any odd-cycle
permutation has at least two odd cycles and so we can choose the canonical
cycle to be one not containing the edge from i to j.

If the edge (i, j) belongs to M, then (as before) exactly one even-cycle per
mutation contributes 22W to the sum and all others contribute a strictly larger
power of 2. This implies that 22W is the largest power of 2 dividing the sum,
and the remainder must be an odd integer. On the other hand, if (i, j) does not
belong to M, all even-cycle permutations must contribute powers of 2 strictly
larger than 22W , implying that the sum is divisible by 22W+l and the remainder
of its division by 22W is an even number. 0

It is now easy to determine all the edges in the minimum weight perfect
matching M, and the algorithm is summarized below.

353

PARALLEL AND DISTRIBUTED ALGORITHMS

Algorithm Parallel Matching:

Input: Graph G(V, E) with at least one perfect matching.

Output: A perfect matching M s; E.

1. for all edges (i,j), in parallel do
choose random weight wii.

2. compute the Tutte matrix B from w.

3. compute det(B).

4. compute W such that 22W is the largest power of 2 dividing det(B).

5. compute adj(B) = det(B) x B-1 whose U, i) entry has absolute value det(Bii).

6. for all edges (i, j) do (in parallel)
compute 'Ii = det(Bii)2W1i j22W.

7. for all edges (i,j) do (in parallel)
If'ii is odd then add (i,j) to M

Exercise 12.17: Verify that each step of this algorithm can be implemented in RNC,
implying that it is an RNC algorithm for finding perfect matchings.

The most expensive computations in this algorithm are those of finding the
determinant, inverse, and adjoint of an n x n matrix whose entries are O(m)-bit
integers (since the matrix entries have magnitudes that are exponential in the
edge weights).

Theorem 12.13: Given a graph G with at least one perfect matching, the Parallel
Matching algorithm finds a perfect matching with probability at least 1/2. For a

graph G with n vertices it requires o (log2 n) time and O(n3.5m) processors.

This is a Monte Carlo algorithm with (one-sided) error probability of 1/2,
and this probability can be reduced by repetitions. The only possible error
arises when, even though the graph does have a perfect matching, the algorithm
determines a set of edges that do not form a perfect matching because the
random choice of weights did not yield a unique perfect matching. It is a simple
matter to check for this error and convert this into a Las Vegas algorithm.
Although we assumed throughout that the number of vertices n is even, it is
possible to apply this algorithm to the case of odd n.

Exercise 12.18: In a graph G(V, E) with n vertices, when n is odd we define a perfect
matching to be a matching of cardinality lnj2J. Explain how the Parallel Matching
algorithm may be adapted to this case.

354

12.S THE CHOICE COORDINATION PROBLEM

Finally, the Parallel Matching algorithm can be adapted to obtain a Las Vegas
algorithm for finding a maximum matching, as outlined in Problems 12.16-12.18.

12.5. The Choice Coordination Problem

We now move on to distributed computation, in this section and in Section 12.6;
we thus no longer use the PRAM model. A problem often arising in parallel
and distributed computing is that of destroying the symmetry between a set of
possibilities. This may be achieved by the use of randomization as in the case
of the Choice Coordination Problem (CCP) discussed below. That this is a very
"natural" problem is demonstrated by the following situation, which has been
studied in biology. A particular class of mites (genus Myrmoyssus) reside as
parasites on the ear membrane of the moths of family Phaenidae. The moths
are prey to bats and the only defense they have is that they can hear the sonar.
used by an approaching bat. Unfortunately, if both ears of the moth are infected
by the mites, then their ability to detect the sonar is considerably diminished,
thereby severely decreasing the survival chances of both the moth and its colony
of mites. The mites would like to ensure the continued survival of their host,
and they can do so by infecting only one ear at a time. The mites are therefore
faced with a "choice coordination problem": how does any collection of mites
infecting a particular ear ensure that every other mite chooses the same ear?
The protocol used by these mites involves leaving chemical trails around the
ears of the moth.

Our interest in this abstract problem has a more computational motivation.
Consider a collection of n identical processors that operate in total asynchrony.
They have no global clock and no assumptions can be made about ther relative
speeds. The processors have to reach a consensus on a unique choice out
of a collection of m identical options. We use the following simple model of
communication between the processors. There is a collection of m read-write
registers accessible to all n processors. Several processors may simultaneously
attempt to access or modify a register. To deal with such conflicts, we assume
that the processors use a locking mechanism whereby a unique processor obtains
sole access to a register when several processors attempt to access it; moreover,
all the remaining processors then wait until the lock is released, and then
contend once again for access to the register. The processors are required to run
a protocol for picking a unique option out of the m choices. This is achieved by
ensuring that at the end of the protocol exactly one of the m registers contains a
special symbol .. ./. The complexity of a choice coordination protocol is measured
in terms of the total number of read and write operations performed by the
n processors. (Clearly, running time has little meaning in an asynchronous
situation.)

It is known that any deterministic protocol for solving this problem will have a
complexity of 0(n1/3) operations. We now illustrate the power of randomization

355

PARALLEL AND DISTRIBUTED ALGORITHMS

in this context by showing that there is a randomized protocol which, for any
c > 0, will solve the problem using c operations with a probability of success at
least 1 - 2-0 (c). For simplicity we will consider only the case where n = m = 2,
although the protocol and the analysis generalize in a rather straightforward
manner.

We start by restricting ourselves to the rather simple case where the two
processors are synchronous and operate in lock-step according to some global
clock. The following protocol is executed by each of the two processors. We
index the processors Pi and the possible choices by Ci for i E {O, I}. The
processor Pi initially scans the register Ci. Thereafter, the processors exchange
registers after every iteration of the protocol. This implies that at no time will
the two processors scan the same register. Each processor also maintains a local
variable whose value is denoted by Bi .

Algorithm SYNCH-CCP:

Input: Registers Co and C1 initialized to o.
Output: Exactly one of the two registers has the value J.

O. Pj is initially scanning the register Cj and has its local variable B j initialized
to O.

1. Read the current register and obtain a bit R I •

2. Select one of three cases.

case: 2.1 [R I = .J]
halt;

case: 2.2 [RI = 0, BI = 1]
Write J into the current register and halt;

case: 2.3 [otherwise]
Assign an unbiased random bit to BI and write B j into the current
register;

3. PI exchanges its current register with P1- 1 and returns to Step 1.

To verify the correctness of this protocol it suffices to see that at most one
register can ever have J written into it. Suppose that both registers get the value
J. We claim that both registers must have had J written into them during the
same iteration; otherwise, Case 2.1 will ensure that the protocol halts before
this error takes place. Let us assume that the error takes place during the tth
iteration. Denote by Bi(t) and ~(t) the values used by processor Pi just after Step
1 of the tth iteration of the protocol. By Case 2.3, we know that Ro(t) = Bl (t)
and Rl(t) = Bo(t). The only case in which Pi writes J during the tth iteration is
when ~ = ° and Bi = 1; then, R1- i = 1 and B1- i = 0, and P1- i cannot write J
during that iteration.

We have shown that the protocol terminates correctly by making a unique
choice. But this assumes that the protocol terminates in a finite number

356

12.S THE CHOICE COORDINATION PROBLEM

of iterations. Why should this happen? Notice that during each iteration.
the probability that both the random bits Bo and Bl are the same is 1/2.
Moreover, if at any stage these two bits take on distinct values, then the
protocol terminates within the next two stages. Thus, the probability that
the number of stages exceeds t is 0(1/2t). The computational cost of each
iteration is bounded, so that this protocol does O(t) work with probability
1 - 0(1/2').

We now generalize this protocol to the asynchronous case where the two
processors may be operating at varying speeds and cannot "exchange" the
registers after each iteration. In fact, we no longer assume that the two processors
begin by scanning different registers - choosing a unique starting register Co
or C1 is in itself an instance of the choice coordination problem. Instead, we
assume that each processor chooses its starting register at random. Thus, the
two processors could be in a conflict at the very first step and must use the
lock mechanism to resolve this conflict. The basic idea is to put time-stamps
tj on the register Cj , and Tj on the local variable Bj• We assume that a read
operation on Cj will yield a pair (t j, ~), where tj is the time-stamp and ~ is
the value of that register. If the processors were to operate synchronously, these
time-stamps would be exactly the same as the iteration number t of the previous
protocol.

Algorithm ASYNCH-CCP:

Input: Registers Co and C1 initialized to (0,0).

Output: Exactly one of the two register~ has the value J.

O. Pj is initially scanning a randomly chosen register. Thereafter, it changes its
current register at the end of each iteration. The local variables T/ and B/
are initialized to O.

1. Pj obtains a lock on the current register and reads (tj, Rj).

2. p/ selects one of five cases.

Case 2.1: [R; = .J]
halt;

Case 2.2: [T; < tj]

T; - t/ and B j - R;.
Case 2.3: [T/ > t;]

Write J into the current register and halt;
Case 2.4: [T; = t;, R/ = 0, B; = 1]

Write J into the current register and halt;
Case 2.5: [otherwise]

Tj - T; + 1, tj - tj + 1, assign a random (unbiased) bit to B; and write
(t j , B j) into the current register.

3. P; releases the lock on its current register, moves to the other register, and
returns to Step 1.

357

PARALLEL AND DISTRIBUTED ALGORITHMS

Theorem 12.14: For any c > 0, Algorithm ASYNCH-CCP has total cost exceed
ing c with probability at most 2-o(c).

PROOF: The only real difference from the previous protocol is in Cases 2.2 and
2.3. A processor in Case 2.2 is playing catch-up with the other processor, and
the processor in Case 2.3 realizes that it is ahead of the other processor and
is thus free to make the choice. To prove the correctness of this protocol, we
consider the two cases where a processor can write J into its current cell- these
are Cases 2.3 and 2.4. Whenever a processor finishes an iteration, its personal
time-stamp Ti equals that of the current register ti. Further, J cannot be written
during the very first iteration of either processor.

Suppose Pi has just entered Case 2.3 with time-stamp Tt and its current cell
is Ci with time-stamp t;, where t; < Tt. The only possible problem is that P1- i

may write (or already have written) J into the register C1- i • Suppose this error
does indeed occur, and let ti-i and T:_i be the time-stamps during the iteration
of P1- i when it writes J into C1- i•

Now Pi comes to Ci with a time-stamp of Tt, and so it must have left C1- i
with a time-stamp of the same value before P1- i could write J into it. Since
time-stamps cannot decrease, ti-i ~ Tt. Moreover, P1- i cannot have its time
stamp T:_i exceeding t;, since it must go to C1- i from Ci and the time-stamp of
that register never exceeds ti. We have established that T:_1 < t; < Tt < ti-i.
But P1- i must enter Case 2.2 for T:_i < ti-i' contradicting the assumption that
it writes J into C1- i for these values of the time-stamps.

Case 2.4 can be analyzed similarly, except that we finally obtain that T:_i <
t; = Tt < ti-i. This may cause a problem since it allows T:_i = ti-i' and so
Case 2.4 can cause P1- i to write J; however, we can now invoke the analysis of
the synchronous case and rule out the possibility of error.

The complexity of this protocol is easy to analyze. The cost is proportional
to the largest time-stamp obtained during the execution of this protocol. The
time-stamp of a register can go up only in Case 2.5, and this happens only when
Case 2.4 fails to apply. Moreover, the processor Pi that raises the time-stamp
must have its current Bi value chosen during a visit to the other register. Thus,
the analysis of the synchronous case applies. 0

12.6. Byzantine Agreement

The subject of this section is the classic Byzantine agreement problem in dis
tributed computation. As in Section 12.5, we study a process by which n
processors reach an agreement. However, in the scenario we consider here, t
of the n processors are faulty processors. We further assume that the faulty
processors may collude in order to try and subvert the agreement process. A
protocol designed to withstand such strong adversaries should certainly work in

358

lU BYZANTINE AGREEMENT

the face of weaker faulty behavior arising in practice. The goal is a protocol
that achieves agreement while tolerating as large a value of t as possible.

The Byzantine agreement problem is the following. Each of the n processors
initially has a value that is 0 or 1; let bi denote the value initially held by the
ith processor. There are t faulty processors, and we refer to the remaining n - t
identical processors as good processors. Following communication according to
the rules below, the ith processor ends the protocol with a decision di E {O, I},
which must satisfy the following properties.

1. All the good processors should finish with the same decision.

2. If all the good processors begin with the same value v, then they all finish with
their (common) decision equaling v.

The set of faulty processors is determined before the execution of the protocol
begins (though of course the good processors do not know the identities of
the faulty processors). The agreement protocol proceeds in a sequence of
rounds. During each round, each processor may send one message to each
other processor. Each processor receives a message from each of the remaining
processors, before the following round begins. A processor need not send the
same message to all the other processors. In the protocol described below, every
message will be a single bit. All good processors follow the protocol exactly.
A faulty processor may send messages that are totally inconsistent with the
protocol, and may send different messages to different processors. In fact, we
assume that the t faulty processors work in collusion: at the start of each round,
they decide among themselves what messages each of them will send to each
good processor, with the goal of inflicting the maximum damage. Agreement is
achieved when every good processor has computed its decision consistent with
the two properties above. We study the number of rounds it takes to achieve
agreement.

It is known (see the Notes section) that any deterministic protocol for agree
ment in this model requires t + 1 rounds. We now exhibit a simple randomized
algorithm that terminates in a number of steps whose expectation is a constant.
The number of rounds is a random variable, but the protocol is always correct
in that it results in agreement as defined above; thus we have a Las Vegas pro
tocol. We assume that at each step there is a global coin toss that a trusted party
performs. The coin toss equiprobably results in a HEADS or a TAILS, and this
result (denoted coin) is correctly conveyed to all the processors. This assumption
can be dispensed with in more complicated protocols, but we do not discuss
these here (see the Notes section).

For the remainder of the discussion, the reader may find it convenient to think
of t < n/8; however, this is not a fundamental barrier, and the protocol in fact
works for somewhat larger values of t. (This is the subject of Problem 12.27.)
During each round of the protocol, each processor transmits a single bit, called
its vote, to each other processor. A good processor sends the same vote to all
other processors. Faulty processors may send arbitrary, inconsistent votes to
good processors. Assume that n is a multiple of 8 for simplicity of exposition;

359

PARALLEL AND DISTRIBUTED ALGORITHMS

let L denote (5n/8) + 1, H denote (3nI4) + 1, and G denote 7n/8. (In fact, the
protocol only requires that L ~ (nI2) + t + 1 and H > L + t in order to work.)
The ith processor executes the following routine, for 1 < i < n.

Algorithm ByzGen:

Input: A value b;.

Output: A decision d;.

1. vote = b/;

2. For each round, do

3. Broadcast vote;

4. Receive votes from all other processors;

5. maj - majority value (0 or 1) among votes received including own vote;

6. tally - number of occurrences of maj among votes received;

7. If coin = HEADS then threshold - L;
else threshold - H;

8. If tally ~ threshold then vote - maj;
else vote - 0;

9: If tally ~ G then set d/ to maj permanently;

We begin the analysis with an easy exercise:

Exercise 12.19: Show that if all the good processors begin a round with the same
initial value, they all set their decisions to this value in a constant number of rounds.

The more interesting case for analysis is when the good processors do not all
start with the same initial value. In the absence of faulty processors, a solution
would' be for all processors to broadcast their values, and then set their decisions
to the majority of these values. The algorithm ByzGen implements this idea in
the face of malicious faults.

If two good processors compute different values for maj in Step 5, tally does
not exceed threshold regardless of whether L or H was chosen as threshold. Then,
all good processors set vote = 0 in Step 8.2. As a result, all good processors set
their decisions to 0 in the following round. It thus remains to consider the case
when all good processors compute the same value for maj in Step 5.

We say that the faulty processors foil a threshold x E {L, H} in a round if, by
sending different messages to the good processors, they cause tally to exceed x
for at least one good processor, and to be no more than x for at least one good
processor. Since the difference between the two possible thresholds Land H is

360

lU BYZANTINE AGREEMENT

at least t, the faulty processors can foil at most one threshold in a round. Since
the threshold is chosen equiprobably from {L, H}, it is foiled with probability
at most 1/2. Thus, the expected number of rounds before we have an unfoiled
threshold is at most 2. If the threshold is not foiled, then all good processors
compute the same value v for vote in Step 8. In the following round, every good
processor receives at least G > H > L votes for v, and sets maj to v in Step
5. Then, in Step 9, tally exceeds whichever threshold is chosen. When a good
processor sets d; the other good processors must have tally > threshold, since
G > H + t. Therefore they will all vote the same as d; henceforth.

Theorem 12.15: The expected number of rounds for ByzGen to reach agreement
is a constant.

The protocol ByzGen above does not include a termination criterion.

Exercise 12.20: Suggest a modification to the protocol ByzGen in which all good
processors halt upon agreement.

Exercise 12.21: In the protocol ByzGen, is it always true that all good processors
determine their decisions in the same round?

Notes

Karp and Ramachandran [241] give a comprehensive survey of PRAM algorithms. Some
good references for parallel algorithms are the books by JiUil [208] and Leighton [271]
and the volume edited by Reif [354]. The BoxSort algorithm of Section 12.2 is due
to Reischuk [356]. Following Reischuk's work, a number of deterministic sorting
algorithms running in O(logn) steps using n processors have been devised, most notably
by Ajtai, Komlos, and Szemeredi [8] with later simplifications and improvements by
Paterson [328]; Cole [110] gave a different deterministic parallel algorithm using n
processors and O(log n) steps.

The intractability of the parallel solution of the LFMIS problem was established by
Cook [111]. The first RNC algorithm for MIS is due to Karp and Wigderson [251]; they
also provided a derandomized version of their algorithm. This was a complex algorithm
requiring a large running time and a high processor count. The Parallel MIS algorithm
and its derandomization is due to Luby [282]; this paper pioneered the idea of using
random variables of limited independence to lead to a deterministic algorithm for a
concrete problem (see also the Notes section of Chapter 3). Alon, Babai, and Itai [19]
independently gave an RNC algorithm for the MIS problem and also derandomized
it to obtain an NC algorithm. A more efficient NC algorithm was later provided by
Goldberg and Spencer [173]. The paradigm of derandomizing parallel algorithms using
limited independence has found a variety of applications. Luby [284] has combined it
with the method of conditional probabilities (Section 5.6) to achieve processor efficiency
for the maximal independent set problem. Berger and Rompel [55] and Motwani, Naor,
and Naor [313] have used a combination of logn-wise independence and the method of
conditional probabilities to derive NC algorithms for a variety of problems. Karger and

361

PARALLEL AND DISTRIBUTED ALGORITHMS

Motwani [233] have used the combination of pairwise independence with the random
walk technique for recycling random bits described in Chapter 6 to construct an NC
algorithm for the min-cut problem. The min-cut problem is closely related to the
matching problem - an NC algorithm for min-cut in directed graphs would result in an
NC algorithm for maximum matching in bipartite graphs.

The reader may refer to the survey article by von zur Gathen [412] for a survey of
parallel matrix algorithms. The first NC algorithm for matrix determinants is due to
Csanky [115], but it applies only to fields of characteristic zero. Borodin, von zur Gathen,
and Hopcroft [79] gave an NC algorithm for the general case (see Berkowitz [56] for a
more elegant version). The algorithm due to Chistov [95] is currently the best known
solution, and it requires only o (iog2 n) time. The computation of adjoints and inverses
of a matrix can be reduced to the determinant computation at the cost of an increase
in time and processor count. The randomized algorithm cited in Theorem 12.9 is due to
Pan [323].

The book by Lovasz and Plummer [281] is an excellent source for combinatorial and
algorithmic results related to matchings, and Vazirani [405] surveys parallel matching
algorithms. Section 7.8.3 gives a history of results establishing the connection between
matchings and matrix determinants. Israeli and Shiloach [207] give an NC algorithm for
finding maximal matchings. The NC algorithm in the case of a unique perfect matching
is due to Rabin and Vazirani [348, 349], and in the case of polynomially small number of
perfect matchings is due to Grigoriev and Karpinski [184]. The first RNC algorithm for
matchings was given by Karp, Upfal, and Wigderson [242], and this was subsequently
improved by Galil and Pan [162]. This work raised several interesting questions with
respect to the parallel complexity of search versus decision problems, and this theme is
explored by Karp, Upfal, and Wigderson [250]. The Isolating Lemma and the Parallel
Matching algorithm are due to Mulmuley, Vazirani, and Vazirani [317]. These Monte
Carlo algorithms were converted into Las Vegas algorithms by Karloff [237]. The
best known deterministic algorithm using a polynomial number of processors, due to
Goldberg, Plotkin, and Vaidya [172], requires O(n2/3) time. An interesting special case
for which NC algorithms are known is that of finding perfect matchings in regular
bipartite graphs. Lev, Pippenger, and Valiant [274] derived this result by providing an
algorithm for edge coloring (which is a partition into matchings) a bipartite graph of
maximum degree Il with Il colors. In the non-bipartite case, Karloff and Shmoys gave
an RNC algorithm for approximate edge coloring, and this was derandomized by Berger
and Rompel [55] and Motwani, Naor, and Naor [313]. Some interesting open problems
are:

~ Research Problem 12.1: Devise an NC algorithm for finding a maximum match
ing in a given graph.

~ Research Problem 12.2: Devise an NC or an RNC algorithm for edge coloring a
graph of maximum degree A using at most A+l colors (see Vizing's Theorem [71]).

~ Research Problem 12.3: Aggarwal and Anderson [4] have shown that the prob
lem of finding a depth-first search tree in a graph can be solved in RNC using
RNC algorithms for finding maximum matchings; once again, the issue of an NC
algorithm is unresolved.

362

PROBLEMS

The algorithm for the choice coordination problem in Section 12.5 is due to Ra
bin [344], and the biological analog is described in a paper by Treat [397]. The
Byzantine agreement problem was introduced by Pease, Shostak and Lamport [330].
Fischer and Lynch [148] showed that in our model, any deterministic protocol requires
t + 1 rounds to reach agreement, in the worst case. This lower bound matches an upper
bound given in [330]. The ByzGen protocol of Section 12.6 is due to Rabin [347]. Our
presentation follows Chor and Dwork [96], who give a comprehensive account of the
history of the problem, the various models under which it has been studied, and the many
variants and improvements of Rabin's scheme. They point out that if the processors
do not operate in synchrony, it is impossible to achieve agreement using a deterministic
protocol; this result is due to Fischer, Lynch, and Paterson [149]. On the other hand,
ByzGen and other randomized protocols can be shown to achieve agreement even in an
asynchronous setting.

Problems

12.1 Show that the parallel variant of randomized quicksort described in Sec
tion 12.2 sorts n elements with n processors on a CREW PRAM, with high
probability in 0(log2 n) steps.

12.2 Prove Lemma 12.1. The following outline is suggested (refer to Section 12.2
for the notation).

1. Bound the probability that a(Bi+1) = a(BJ) using the result of Exer
cise 12.6.

2. Bound the probability that for any particular k, the value k is contained
more than Tk times in the sequence a(Bl)'"'' a(~,).

3. Bound the probability that for 1 ~ k ~ c log log n, the value k is contained
more than Tk times in the sequence a(Bl), ... ,a(B,).

12.3 Suppose that the random samples in Stage 1 of BoxSort are chosen using
pairwise independent, rather than completely independent random variables
(the choices made by the various boxes are independent of each other,
though). Derive the best upper bound you can on the number of parallel
steps taken by BoxSort.

12.4 Using the ideas of Section 12.2, devise a CREW PRAM algorithm that selects
the kth largest of n input numbers in O(log n) steps using nj log n processors.
Assume that the n input numbers are initially located in global memory
locations 1 through n.

12.5 Devise a ZNC algorithm for generating a random (uniformly distributed)
permutation of a set S containing n elements. (Hint: Consider assigning
random weights to the elements of S. If the weights are drawn from a
suffiCiently large set, each element will have a distinct weight.)

12.6 A maximal matching in a graph is a matching that is not properly contained
in any other matching. Use the parallel algorithm for the MIS problem to
devise an RNC algorithm for finding a maximal matching in a graph.

363

PARALLEL AND DISTRIBUTED ALGORITHMS

12.7 Consider a graph G (V, E) with maximum degree ~. Show that a sequential
greedy algorithm will color the vertices of the graph using at most ~+ 1 colors
such that no two adjacent vertices are assigned the same color. Employing
the parallel algorithm for MIS, devise an RNC algorithm for finding a ~ + 1
coloring of a given graph.

12.8 (Due to M. Luby [282].) The vertex partition problem is defined as follows:
given a graph G(V,E) with edge weights, partition the vertices into sets V1

and V2 such that the net weight of the edges crossing the cut (V1, V2) is at
least a half of the total weight of the edges in the graph. Describe an RNC
algorithm for this problem, and explain how you will convert this into an NC
algorithm using the idea of pairwise independence.

12.9 (Due to M. Luby [282].) In the Parallel MIS algorithm, suppose that the
random marking of the vertices is only pairwise independent. Show that the
probability that a good vertex belongs to S u r(S) is at least 1/24.

12.10 (Due to M. Luby [282].) Suppose that you are provided with a collection
of n pairwise independent random numbers uniformly distributed over the
set {O, 1, .. . ,p -1}, where p ~ 2n. It is desired to construct a collection of
n pairwise independent Bernoulli random variables where the ith random
variable should take on the value 1 with probability 1/t;, for 1 ~ t; ~ n/8. Show
how you can achieve this goal approximately by constructing a collection of
pairwise independent Bernoulli random variables such that the ith variable
"takes on the value 1 with probability 1/T, where for a constant c > 1, T;
satisfies

12.11 (Due to M. Luby [282].) Combining the results of Problems 12.9 and 12.10,
show that the Parallel MIS algorithm can be derandomized to yield an NC
algorithm for the MIS problem. Note that the approach in Problem 12.10 will
not work for marking vertices with degree exceeding n/16, and these will
have to be dealt with separately.

12.12 (Due to M. Luby [282].) In this problem we consider a variant of the Parallel
MIS algorithm. For each vertex v E V, independently and uniformly choose
a random weight w(v) from the set {1, ... ,n4 }. Repeatedly strip off an
independent set S and its neighbors r(S) from the graph G, where at each
iteration the set S is the set of marked vertices generated by the following
process: mark all vertices in V, and then in parallel for each edge in E unmark
the end-point of larger weight. Show that this yields an RNC algorithm for
MIS. Can this algorithm be derandomized using pairwise independence?

12.13 (Due to D.R. Karger [231].) Recall the randomized algorithm for min-cuts
discussed in Section 1.1 (see also Section 10.2). Describe an RNC imple
mentation of this algorithm. (Hint: While contracting the edges appears to
be sequential process, it can be implemented in parallel using the following
observation. Consider generating a random permutation on the edges, as
described in Problem 12.5 and using this to determine the order in which
the edges are contracted. The contraction algorithm will terminate at that
point in the permutation where the preceding edges constitute a graph with

364

PROBLEMS

exactly two connected components. Assume that there is an NC algorithm
for determining connected components.)

12.14 (Due to M. Luby, J. Naor, and M. Naor [285].) Using the idea of pairwise
independence, construct an RNC algorithm for the min-cut problem that
uses only a polylogarithmic number of random bits (see also Problem 12.13).
What implications does this have for placing the min-cut problem in NC?
(Hint: Select a set of edges by choosing each edge pairwise independently
with probability 1/c, where c is the size of the min-cut; see Problem 12.10.
In parallel, contract all edges in this set. Repeat this process until the graph
is reduced to two vertices.)

12.15 (Due to M.O. Rabin and V.V. Vazirani [349].) Let G(V,E) be a graph with
a unique perfect matching. Devise an NC algorithm for finding the perfect
matching in G. (Hint: Consider substituting 1 for each indeterminate in the
Tutte matrix. What is the significance of the entries in the adjoint of the Tutte
matrix?)

12.16 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) Consider the
problem of finding a minimum-weight perfect matching in a graph G(V, E),
given edge-weights w(e) for each edge e E E in unary. Note that it is not
possible to apply the Isolating Lemma directly to this case since the random
weights chosen there would conflict with the input weights. Explain how you
would devise an RNC algorithm for this problem. The parallel complexity of
the case where the edge-weights are given in binary is as yet unresolved
- do you see why the RNC algorithm does not apply to the case of binary
weights? (Hint: Start by scaling up the input edge weights by a polynomially
large factor. Apply random perturbations to the scaled edge weights and
prove a variant of the Isolating Lemma for this situation.)

12.17 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) Devise an
RNC algorithm for the problem of finding a maximum matching in a graph.
Observe that the Parallel Matching algorithm does not work (as stated) when
the maximum matching is not a perfect matching.

12.18 (Due to H.J. Karloff [237].) Suppose you are given a Monte Carlo RNC
algorithm for finding a maximum matching in a bipartite graph. Explain how
you would convert this into a Las Vegas algorithm. Can the solution be
generalized to the case of non-bipartite graphs? (Hint: While this conversion
is trivial for perfect matching algorithms, for maximum matching algorithms
you will need to devise a parallel algorithm for determining an upper bound
on the size of a maximum matching in a graph. This requires a non-trivial
use of structure theorems for matchings in graphs.)

12.19 This problem explores a different method for converting the Monte Carlo
maximum matching into a Las Vegas one. Recall from Problem 7.7 that
the rank of the matrix of indeterminates constructed for a bipartite graph is
exactly equal to the size of the maximum matching (a similar result holds for
the general case). Consider the following approach for determining the size
of the maximum matching: replace the indeterminates by random values
and compute the rank of the resulting matrix. The rank of an integer matrix

365

PARALLEL AND DISTRIBUTED ALGORITHMS

can be computed in NC, and one would hope that the random substitution
method would preserve the rank with high probability. We would like to use
this to verify that the matching algorithm is indeed producing the maximum
matching, and thereby obtain a Las Vegas algorithm. Does this method
work?

12.20 (Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) In a bipartite graph
G(U, V,E), for any set F s; E define the rank r(F) as the maximum size of
intersection of F with a perfect matching, i.e., r(F) is the largest number of
edges in F that appear together in some perfect matching. Devise an RNC
algorithm for computing the rank for any given set F. Can this be generalized
to non-bipartite graphs?

12.21 (Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) Assume you are given
the algorithm from Problem 12.20. Using this, we will outline the construction
of an alternative RNC algorithm for perfect matchings .

• Assuming that the input graph is sparse in that it has a total of n vertices
and fewer than 3nj4 edges, devise an NC algorithm for finding a large
set S of edges that are guaranteed to belong to every perfect matching
in G .

• Suppose now that the input graph has more than 3nj4 edges. Using
the rank algorithm, devise an RNC algorithm for finding a large set T
of edges such that there exists a perfect matching in G none of whose
edges belong to T.

Using the above tools, describe an alternative RNC algorithm for perfect
matchings.

12.22 (Due to V.V. Vazirani [405].) Prove that the Isolating Lemma holds even
when the weight of a set is defined to be the product (instead of sum) of the
weights of its elements. Can you identify any general family of mappings
from the weights of elements to the weights of sets for which the Isolating
Lemma is guaranteed to be valid?

12.23 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) An intriguing
application of the Isolating Lemma is to the class of "uniqueness" problems,
i.e., determining whether some problem in NP has a unique solution. Con
sider the following two problems, which take as input a graph G(V,E) and a
positive integer k:

CLIQUE: Determine whether the graph has a clique of size k.

UNIQUE CLIQUE: Determine whether there is exactly one clique of size k.

The complexity of unique solutions has been studied with respect to ran
domized reductions, which are the natural generalization of polynomial time
reductions to allowing randomized polynomial time reductions. Devise a ran
domized polynomial time reduction from the CLIQUE problem to the UNIQUE
CLIQUE.

12.24 (Due to J. Naor.) Let G(V, E) be an unweighted, undirected graph with n
vertices and m edges. Under any weight function w : E - {O, ... , W}, the

366

PROBLEMS

length of a path in G is the sum of the weights of the edges in that path.
A weight function is said to be good if the following two conditions hold for
each vertex x E V.

1. For all vertices y E V, the shortest path from x to y is unique.

2. For any pair of vertices y, Z E V, the net weight of the shortest path
from x to y is different from the net weight of the shortest path from x
to z.

What is the smallest value of W (as a function of nand m) for which you can
guarantee the existence of a good weight assignment?

12.25 (Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) An even
more intriguing application of the Isolating Lemma is to the Exact Matching
problem - given a graph G(V, E) with a subset of edges R s;;; E colored red,
and a positive integer k, determine whether there is a perfect matching using
exactly k red edges. This problem is not known to be in p, but can be shown
to be in RNC via a (non-trivial) application of the Isolating Lemma. Devise
RNC algorithms for the decision and search versions of this problem.

12.26 (Due to M.O. Rabin [344].) Show that Algorithm ASYNCH·CCP works equally
well in the case where the numbers of processors and choices are both
greater than 2. How does the complexity depend on the number of processors
and choices?

12.27 How large a value of t can the ByzGen algorithm tolerate? (Modify the
parameters L, H, and G if necessary.)

12.28 Consider what happens if the outcome of the coin toss generated by the
trusted party in the ByzGen algorithm is corrupted before it reaches some
good processors.

(a) Can disagreement occur if different good processors see different out
comes? What happens if, instead of a global coin toss, each processor
chooses a random coin independently of other processors, at every round?

(b) Suppose that we were guaranteed that at least H good processors receive
the correct outcome of each coin toss. Give a modification for the protocol
ByzGen that achieves agreement in an expected constant number of rounds,
under this assumption.

367

CHAPT ER 13

Online Algorithms

ALL the algorithms we have studied so far receive their entire inputs at one
time. We turn our attention to online algorithms, which receive and process the
input in partial amounts. In a typical setting, an online algorithm receives a
sequence of requests for service. It must service each request before it receives
the next one. In servicing each request, the algorithm has a choice of several
alterna~ives, each with an associated cost. The alternative chosen at a step may
influence the costs of alternatives on future requests. Examples of such situations
arise in data-structuring, resource-allocation in operating systems, finance, and
distributed computing.

In an online setting, it is often meaningless to have an absolute performance
measure for an algorithm. This is because in most such settings, any algorithm for
processing requests can be forced to incur an unbounded cost by appropriately
choosing the input sequence (we study examples of this below); thus, it becomes
difficult, if not impossible, to perform a comparison of competing strategies.
Consequently, we compare the total cost of the online algorithm on a sequence
of requests, to the total cost of an offline algorithm that services the same
sequence of requests. We refer to such an analysis of an online algorithm as
a c01rJpetitive analysis; we will make these notions formal presently. Intuitively,
this form of analysis assumes that there is an inherent cost associated with a
request sequence (the cost of the best possible algorithm that knows the entire
request sequence in advance and can tailor its responses accordingly), and the
performance of an online algorithm on a given sequence is measured in terms of
the ratio it achieves with respect to this inherent cost. The worst-case ratio over
all possible request sequences is then a natural measure of the quality of the
online algorithm. In some practical settings, this approach leads to a meaningful
theoretical validation of the difference between competing strategies.

A classical example where this approach has been particularly successful
is that of paging in a two-level memory storage system, and we introduce
online algorithms through this example. We define three possible scenarios for
randomized online algorithms, and then study the relationships between them.

368

13.1 THE ONLINE PAGING PROBLEM

We give optimal algorithms for paging in each of these scenarios. Finally, we
present some results for generalizations of the paging problem.

13.1. The Online Paging Problem

We first consider the paging problem. Consider a computer memory organized
as a two-level store: there is a cache or fast memory that can store k memory
items, and a slower main memory that can potentially hold an infinite number
of items. Each item represents a page of virtual memory (the cache can contain
k of these). A paging algorithm decides which k items to retain in the cache
at each point in time. We have a sequence of requests, each of which specifies
a memory item. If the item requested is currently in the cache, a hit is said to
occur, and the algorithm incurs no cost on that request. If not, a miss occurs
and the item must be fetched from the main memory at a unit cost; in addition,
one of the k items currently in the cache must be evicted to make room for
the incoming item. The cost measure for paging is the number of misses on a
sequence of requests. Naturally, the cost incurred depends on the algorithm that
decides which k items to retain in the cache at each point in time.

We now examine the actions of an algorithm. When the requested item is
fetched from the main memory to the cache and the cache is full, a paging
algorithm must invoke an eviction rule for deciding which item currently in the
cache is evicted to make room for the new item. Intuitively, a paging algorithm
will try not to evict items that will be requested again in the near future. An
online paging algorithm must make this decision without knowledge 'of future
requests; in contrast, an offline algorithm makes each decision with complete·
knowledge of the future. We first study the basic concepts involved using
deterministic algorithms, and then proceed to randomized paging algorithms.

Here are some typical (deterministic) online algorithms that have been used
in computer systems.

• Least Recently Used (LRU): evict the item in the cache whose most recent request
occurred furthest in the past.

• First-in, First-out (FIFO): evict the item that has been in the cache for the longest
period.

• Least Frequently Used (LFU): evict the item in the cache that has been requested
least often.

Notice that there is a non-trivial computational cost associated with some of
these online algorithms; for instance, LRU must maintain a priority queue of
time stamps for the k items in the cache.

Let p = (PI. P2, . .. , P N) be a request sequence presented to an online paging
algorithm A. Consider the case when A is deterministic. Upon each request,
we know exactly how A will respond and, given the sequence PI. P2, ... , P N,

we can deduce the number of times that A misses on this sequence. We can

369

ONLINE ALGORITHMS

also compute the minimum possible number of misses on this sequence, i.e.,
the cost of an optmal offline algorithm for this sequence. Let !A(PhP2, ... ,PN)
denote the number of times that A misses on the sequence Ph P2,···, PN, and
let! O(Ph P2, . .. , p .''- I be the minimum number of misses (for an optimal offline
algorithm) on the ~ame sequence.

The following ,dearly offline) strategy is known to minimize !O(PhP2, ... ,PN)
on every request sequence Ph P2, . .. , P N: on a miss, evict that item in the cache
whose next request occurs furthest in the future. This offline strategy is known
as the MIN algorithm. The proof of optimality is non-trivial and a pointer can
be found in the Kotes section.

Exercise 13.1: In this exercise, we will see that the traditional worst-case perfor
mance analysis is ~eaningless in an online setting such as the paging problem.
Consider the rather- simple scenario where there are only k + 1 distinct memory
items. Assume whatever is convenient for the initial contents of the cache in each
case.

1. Show that for any (deterministic) online paging algorithm A, there exist sequences
of arbitrary length such that the algorithm A misses on every request, i.e.,
fA (P1,P2, ... ,PN) = N.

2. Show that for the offline paging algorithm MIN, the worst-case number of misses on
a request sequence of length N is N / k.

Suppose that we wish to study the performance of online algorithms such
as LRU, FIFO, and LFU. In Exercise 13.1 we saw that the seemingly natural
measure of the worst-case value of !A(PhP2, ... ,PN) is not useful. This motivates
the following measure of performance.

~ Definition 13.1: A deterministic online paging algorithm A is said to be C
competitive if there exists a constant b such that on every sequence of requests
PhP2,·· ·,PN,

f .. (PhP2,···,PN) -C x !O(PhP2, ... ,PN):S;; b,

where the constant b must be independent of N but may depend on k. The
competitiveness coefficient of A, denoted CA, is the infimum of C such that A is
C-competitive.

Roughly speaking, competitiveness measures the performance of an online al
gorithm in terms of the worst-case ratio of its cost to that of the optimal offline
algorithm running on the same request sequence.

The LRU and FIFO algorithms mentioned above are known to be k
competitive (see Problems 13.1 and 13.2). In Problem 13.3 we will see that the
LFU does not achie,oe a bounded competitiveness coefficient. From Exercise 13.1
we conclude that no deterministic online paging algorithm has competitiveness
coefficient smaller than k, thereby obtaining that LRU and FIFO are optimal

370

13.1 THE ONLINE PAGING PROBLEM

deterministic online algorithms. We give an alternate proof of this lower bound
on the competitiveness coefficient of deterministic algorithms, so as to develop
some tools for the subsequent analysis of randomized algorithms. But first, we
define a paging algorithm formally.

A paging algorithm consists of an automaton with a finite set S of states. The
response of this automaton to a request is specified by a function F that depends
on the current state of the automaton, the k items in the cache, and the newly
requested item. It specifies, in general, a new state for the automaton, together
with the new set of items in the cache. We impose the following condition on F:
the set of items in the cache after the request is serviced must include the item
just requested.

Theorem 13.1: Let A be a deterministic online algorithm/or paging. Then CA ~ k.

PROOF: Imagine that the offline algorithm and A are both managing (separate)
caches for the same request sequence. Assume that to start with, both the offline
algorithm and A have the same set of k items in their caches.

Consider the following request sequence, which is completely determined by
the behavior of A. The first request is to an item not in either cache, and both
algorithms incur a miss on this request. Let S be the set of k + 1 items consisting
of the k items initially in the offline algorithm's cache together with the new
item. From then on, every request is for the unique item in S not in A's cache.
Thus A misses on every request.

We partition the request sequence into rounds in a manner described below.
We will argue that during each round, A misses at least k times but an optimal
offline algorithm has at most one miss. The first round begins with the first
request. A round is a maximal sequence of requests in which at most k distinct
items are requested; each of these items may be requested any number of times
and in any order. A round ends when, after k distinct items have been requested
during the round, a new item p is requested, and p then becomes the first request
of the next round. Since the round contains at least k requests and A misses on
every one of them, it misses at least k times during the round.

We now argue that there is an offline algorithm that misses only once during
a round, in fact on the first request of the round. Since only k distinct items are
requested during the round, there is one item that will not be requested until
the first request of the following round; denote this item by p. When the offline
algorithm misses on the first request of the round, it evicts p and thereby ensures
that there are no further misses in that round (as the MIN algorithm would).
Because A is deterministic, the offline algorithm can predict the behavior of
A during each round. Knowing the initial contents of A's cache (the same as
the initial contents of its own cache), it knows the entire request sequence in
advance, and in particular the identity of p for every round.

At the end of each round, both the online algorithm and the offline algorithm
have the same set of items in their caches. Thus this construction can be repeated

371

ONLINE ALGORITHMS

as many times as desired, proving that there are arbitrarily long sequences on
which A has k times as many misses as the offline algorithm. D

We pause to make some observations about the negative result we have just
seen. First, the proof uses only the fact that the online algorithm does not know
future requests and does not exploit any computational limitation of the online
algorithm. Thus the lower bound applies to any deterministic online algorithm
without any regard for its use of computational resources such as time or space.
This is a typical feature of most negative results for online algorithms.

Second, the proof of the lower bound uses only k + 1 distinct memory items
in all. In this lower bound, one can view the offline algorithm as an adversary
who is not only managing a cache, but is also generating the request sequence.
This will be a recurrent theme in the notions of adversaries we will develop
for randomized algorithms - that there is an adversary generating requests,
in collusion with a reference algorithm that is the yardstick against which the
competitiveness of the given online algorithm is being measured. The adversary's
goal is to increase the cost to the given online algorithm, while keeping it down
for the reference algorithm.

13.2. Adversary Models

Can we overcome the negative result of Theorem 13.1 using randomization?
To make this question precise, we must first make precise the notion of the
competitiveness of a randomized algorithm. Consider a randomized online
paging algorithm R; on a miss, it makes a (possibly random) choice of which of
the k items in the cache it will evict. Given a sequence of requests Ph P2,·.·, PN,
the number of times that R misses on the sequence is now a random variable,
which we will denote by f R(Ph P2,··., PN). Following the convention in our study
of deterministic online paging algorithms, we study the behavior of R when the
sequence of requests is generated by an adversary. However, there is no longer
a unique notion of an "adversary" for a randomized online algorithm. This
section introduces three different possibilities for the notion of an adversary for
a randomized online algorithm. The relationships between them will be explored
further in Section 13.4.

The central issue is the following question: what does the adversary know in
generating each request of the sequence? The weakest adversary we may envision
knows the algorithm R in advance, but has no knowledge of the random choices
made by R while processing a request sequence. Such an adversary may as well
write down the entire request sequence in advance, since it is not influenced in
any way by the actual execution of R. Having written down such a "worst case"
request sequence for R, the adversary services this sequence optimally using
MIN and incurs the concomitant cost. This cost of an optimal service strategy
is not a random variable, since the sequence is fixed, and so we denote it by

372

lU ADVERSARY MODELS

/O(Ph P2,· .. , PN). We call such an adversary an oblivious adversary, reflecting the
fact that the adversary is oblivious to the random choices made by R.

We say that R is C-competitive against the oblivious adversary if for every
sequence of requests PhP2, ... ,PN,

for a constant b independent of N. The oblivious competitiveness coefficient of
R, denoted Ctl, is the infimum of C such that R is C-competitive.

What if the adversary were able to choose each request after having observed
the previous choices (and thus the current state) of the online algorithm?
Whether or not the adversary is allowed to adapt the request sequence to these
"run-time" random choices could affect the value of the competitiveness'that is
achievable. This is not an issue when A is a deterministic online algorithm, since
the behavior of A on PI, P2, .. . , Pi is completely predictable and so we could as
well assume that the adversary .knows of A's responses to these requests when
choosing Pi+l. The response of a randomized algorithm, on the other hand,
depends on random choices it makes during its execution.

To study this, we introduce the adaptive adversary who chooses Pi+l after hav
ing observed the responses of the randomized online algorithm to PI,P2, ... ,Pi.
Thus the adaptive adversary is denied information only about the future ran
dom choices of the randomized online algorithm R. The cost incurred by R
is still a random variable. However, in order to facilitate the definition of the
competitiveness of R against an adaptive adversary, we have to specify what
we mean by the cost of an optimal algorithm. In the discussion below, it may
help the reader to think of the adaptive adversary and the optimal algorithm as
working in collusion.

Here there are two possible scenarios. In the first, the adversary generates
the sequence adaptively as described above; when the entire sequence has been
generated in this fashion, the adversary exhibits its optimal strategy for servicing
the sequence (using MIN). We refer to this as the adaptive offline adversary.
Since the request sequence depends on the behavior of the algorithm R, it is a
random sequence. Thus both /R(PI,P2" .. ,PN) and /O(PhP2, ... ,PN) are random
variables. Before defining the competitiveness of R against an adaptive offline
adversary, let us look at the second possible scenario involving an adaptive
adversary.

Suppose the adversary were to generate the sequence adaptively as before,
but in addition was required to concurrently manage a cache online. In other
words, the adversary generates Pi+l based on the responses of R to Ph P2,· .. , Pi,
and immediately exhibits its own response to Pi+l (but does not reveal it to R,
of course). Then, following R's response to Pi+l, it generat~s Pi+2, responds to
Pi+2, and so on. Again both /R(PI,P2, ... ,PN) and /O(PI,P2, ... ,PN) are random
variables. We refer to such an adversary as an adaptive online adversary.

Let PI, P2,"" PN be a sequence of requests generated by an adaptive of
fline adversary. We say that R is C-competitive against the adaptive offline

373

ONLINE ALGORITHMS

adversary if

E[fR(Pl,P2, ... ,PN)] -C x E[fO(Pl,P2, .. ·,PN)] :s;; b

for a constant b independent of N. The adaptive offline competitiveness coefficient
of R, denoted C';I, is the infimum of C such that R is C-competitive. Likewise,
we define the adaptive online competitiveness coefficient of R, denoted co;n.

Clearly, the adaptive offline adversary is at least as powerful as the adaptive
online adversary, which in turn.is at least as powerful as the oblivious adversary.
It follows that for any algorithm R,

Cobl < Caon < Caol R - R - R .

Let us denote by cobl the lowest oblivious competitive coefficient of any ran
domized paging algorithm; similarly we define caon and Caol. Finally, let Cdet

denote the lowest competitive coefficient of any deterministic paging algorithm.
Then we have

How far apart in value can the different coefficients be? In Section 13.4 we will
develop some general relationships between these quantities.

13.3. Paging against an Oblivious Adversary

The lower bound of Theorem 13.1 hinged on the adversary being able to predict,
at each step, the response of the algorithm to any request. We now study the
effect of denying the adversary this facility; we will study randomized online
algorithms for paging against oblivious adversaries. The request sequence is
specified at the beginning by the adversary and is not changed after that. The
adversary also determines its (optimal offline) response to the sequence and the
cost of this response. The sequence is then unveiled to the online algorithm,
one request at a time as before. This prevents the offline player from knowing
with certainty (as in the proof of Theorem 13.1) the contents of the cache of
the online algorithm. Intuitively, it seems that this should help the randomized
online algorithm fare better.

We first prove a negative result on the performance of any randomized online
paging algorithm.

Theorem 13.2: Let R be a randomized algorithm for paging. Then ctl ~ Hk.
where Hk = E~-l 1/ j is the kth Harmonic number.

In order to prove this theorem, we apply Yao's Minimax Principle (Sec
tion 2.2.2) to the competitiveness of randomized online paging algorithms. Let
P be a probability distribution for choosing a request sequence, i.e., a probability
distribution by which Pi is chosen. The distribution for Pi is allowed to depend
on Pl,P2, ... ,Pi-l. The algorithm's costs (as well as the optimal cost) are now

374

13.3 PAGING AGAINST AN OBLIVIOUS ADVERSARY

random variables. For a deterministic online paging algorithm A, define its
competitiveness under P, C~, to be the infimum of C such that

E[fA(P.,P2, ... ,PN)] -C x E[fO(PI,P2, ... ,PN)] :::;; b

for a constant b independent of N. Yao's Minimax Principle (Section 2.2.2)
implies that

inf cob/ = sup inf Cp
.

R R P A A

The implication of this in our situation is as follows: the competitiveness of
the best randomized online paging algorithm equals C~, the competitiveness of
a "best possible" deterministic algorithm A on inputs generated according to
P, a "worst-case" distribution on request-sequences p. Thus, we can establish a
lower bound on Cc:/ by giving a probability distribution P and giving a lower
bound on C~ for any deterministic algorithm A.

Proof of Theorem 13.2: We will make use of a set of k + 1 memory items,
I = {I., ... ,h+d, in the lower bound. Since k of these can be accommodated in
the cache, only one item need be outside the cache at any given time. Thus any
paging algorithm need only specify which one item it leaves out of the cache at
any point in time. We assume that N ::> k.

We will use Yao's Minimax Principle as follows: we give a probability
distribution on request sequences p of length N, and first study the number
of misses for any deterministic algorithm on p. The sequence p is chosen as
follows: for i > 1, request Pi is chosen uniformly at random from the If items in
the set I - {Pi-d; the first request, PI is chosen uniformly from all the items in
I. We will show that the offline algorithm can divide p up into rounds such that
it only misses on the final request in each round.

The first round begins with the first request and ends when, for the first
time, every item in I has been requested at least once; the second round begins
with the next request. In general, each round ends just before the request to
the (k + l)th distinct item since the start of that round. The offline algorithm
uses the MIN algorithm during each round: it leaves out of its cache the item
requested last in a round, until that item is requested (on the final request of
the round). This item is requested exactly once during each round, and thus the
offline algorithm incurs one miss during each round.

How often does the offline algorithm miss? Equivalently, what is the expected
length of each round? A moment's thought shows that this is the cover time of
the random walk on a complete graph with k + 1 vertices and is equal to kHk.

Let us now consider the online algorithm A. At any point in time, A must
leave one of the k + 1 items out of the cache. Whenever a request falls on this
item, A incurs a miss. Since every request goes to an item chosen uniformly
at random from the k items other than the one just requested, the probability
that any request falls on the item that A leaves out is 11k. It follows that the
expected number of misses per round is Hk.

375

ONLINE ALGORITHMS

Thus the number of times A misses has expectation Hk times the number of
misses of the offline algorithm on the same sequence, and this yields the result.

We now study a randomized online paging algorithm that achieves a compet
itiveness coefficient close to the lower bound of Theorem 13.2. This algorithm
is referred to as the Marker algorithm. The algorithm proceeds in a series of
rounds. Each of the k cache locations has a marker bit associated with it. At
the beginning of every round, all k marker bits are reset to zero. As memory
requests come in, the algorithm processes them as follows. If the item requested
is already in one of the k cache locations, the marker bit of that location is set
to one. If the request is a miss (the item requested is not one of the k in the
cache), the item is brought into the cache and the item that is evicted to make
room for it is chosen as follows: choose an unmarked cache location uniformly
at random, evict the item in it, and set its marker bit to 1. After all the locations
have been thus marked, the round is deemed over on the next request to an item
not in the cache.

Theorem 13.3: The Marker algorithm is (2Hk)-competitive.

PROOF: For convenience in the proof, we will sometimes refer to the items (rather
than the cache locations that contain them) as being marked or unmarked; thus
we will refer to an item as being marked if the cache location containing it is
marked, and as unmarked otherwise. As before, we will compare the Marker
algorithm's management of a cache with k locations on a sequence PI, P2, ... to
an optimal offline algorithm's cache management on the same sequence.

Assume that both algorithms start with the same k items in the cache, and
that PI is not in the cache. The Marker algorithm implicitly divides the request
sequence into a series of rounds, the first of which begins with PI. The round
beginning with request Pi ends with Ph where j is the smallest integer such
that there are k + 1 distinct items in Pi, Pi+ h ... , P j+ I. All k cache locations are
marked at the end of each round. The first request of each round is to an item
not currently in cache.

Consider the requests in any round. Call an item stale if it is unmarked, but
was marked in the previous round, and clean if it is neither stale nor marked.
Let t be the number of requests to clean items in a round. We first argue
that the amortized number of misses incurred during the round by the offline
algorithm is at least t /2, and then show that the expected number of misses of
the Marker algorithm during the round is at most t Hk; these facts together will
yield the theorem.

Let So denote the set of items in the offline algorithm's cache, and SM denote
the set of items in the Marker algorithm's cache. Let dr be the value of ISo \ SMI
at the beginning of the round, and dF this value at the end of the round. Let
Mo be the number of misses incurred by the offline algorithm during the round.

Clearly Mo ~ t - dJ, since at least t - dr of the t clean items requested in
the round are not in the offline algorithm's cache at the beginning of the round.

376

13.4 RELATING THE ADVERSARIES

At the end of the round, all the k (marked) items in SM at that point are items
that were requested during the round. Since dF items in the offline algorithm's
cache are not in SM, the offline algorithm has incurred at least dF misses during
the round. Thus,

t -dr +dF Mo ~ max{t - dr,dF } ~ 2 .

On summing this lower bound on Mo over all rounds, the dr and dF terms
for all rounds (except the first and the last) telescope, so that the "amortized"
number of misses of this round is at least t /2. (By amortization, we mean here
that we can think of "charging" each round a certain number of misses without
affecting the total number of misses.) By this we mean that we may charge t /2
misses to this round; by adopting this charging mechanism for all rounds, we
estimate the total number of misses over all rounds to within an additive factor
of 2k.

Consider the expected number of misses incurred by the Marker algorithm
during the round. Each of the t requests to clean items costs the Marker
algorithm a miss. Of the k - t requests to stale items, the expected cost of each
is the probability that the item requested is not in the cache. This is maximized
when the t requests to clean items all precede the k - t requests to stale items.
For 1 $; i $; k - t, a simple calculation shows that this probability is t / (k - i + 1)
for the ith request to a stale item. Summing this over all i shows that the
expected cost of the Marker algorithm is bounded by

t + t(Hk - H() :s;; tHb

and this proves the result. D

Thus the Marker algorithm achieves a competitiveness coefficient that is at most
twice the best possible. In fact, there is a more sophisticated algorithm that is
Hk-competitive in general; a pointer is available in the Notes Section.

13.4. Relating the Adversaries

We have just seen that against an oblivious adversary, a randomized algo
rithm can attain a competitiveness coefficient substantially smaller than that
of any deterministic algorithm. Can a similar performance be attained against
adaptive adversaries? In this section we study relations between the competi
tiveness coefficients attainable against the three types of adversaries introduced
in Section 13.2. We will see that randomized online algorithms cannot achieve
such substantial improvements against adaptive adversaries, as such adversaries
prove to be very powerful. Later, in Section 13.5 we will study some randomized
algorithms and their performance against adaptive adversaries.

The results we are about to derive can easily be obtained in the setting of .
the paging problem; however, they apply to considerably more general online
problems. We therefore study the more general setting of request-answer games

377

ONLINE ALGORITHMS

that we will introduce now, and the results derived here apply to the paging
problem we have studied in previous sections. We proceed to define these games
and make the notions of the various adversaries precise in this context.

A request-answer game consists of a request set 'R and a finite answer set
A, together with cost functions In : 'Rn

X An -+ R U {<Xl} for each non-negative
integer n. Let I denote the union, over non-negative integers n, of the functions
In. Let us fix our attention on one such game. Let p denote a sequence of
requests (whose length will be implicit from its usage), and likewise let a denote
a sequence of answers.

A deterministic online algorithm A is a sequence of functions gi : 'Ri -+ A for
positive integers i. Fix a value n. For any sequence of requests p = (Pl, ... ,Pn),
we define A(p) = (ah ... ,an) E An with ai = gi(Ph ... ,Pi) for i = 1, ... ,n. The
cost of A on p is CA(P) = In(p,A(p». We will compare this cost incurred by the
online algorithm A to the optimal cost for the same sequence of requests, which
IS

C(p) = min{fn(p,a) I a E An}.

Let 0:, P : R -+ R denote linear functions. We say that the deterministic
algorithm A is o:-competitive if for every request sequence p we have CA(P) :s;
0: [c(p)].

A randomized online algorithm R is a probability distribution over deterministic
online algorithms Ax (x may be thought of as representing the coin tosses of R).
For a request sequence p the answer sequence R(p) is random, and so the cost
CR(P) is a random variable. We say that a randomized algorithm is o:-competitive
against oblivious adversaries if for any p we have Ex[CA)P)] :s; o:[c(p)].

In developing the notation for adaptive adversaries, we first do so for a
deterministic algorithm A. We then note that for a randomized algorithm R that
is a probability distribution on deterministic algorithms Ax, all the quantities
defined become random variables. Once we have developed this notation, we
will proceed to prove two results about the various adversaries for randomized
algorithms.

An adaptive ofHine adversary Q is a sequence of functions qn : An -+ 'R U

{STOP},.where n = 0, 1, ... ,dQ and qdQ takes only the value STOP. For a particular
deterministic algorithm A and an adaptive adversary Q, we define the request
and answer sequences resulting from their interaction, p(A, Q) = (Ph.·., Pn)
and a(A, Q) = (ah ... , an), together with n = n(A, Q). Further, we recursively
have Pi+l = qi(ah ... ,ai) for i = O,I, ... ,n - 1, with qn(a(A,Q» = STOP, and
a(A, Q) = A(p(A, Q». Because we are discussing a deterministic algorithm A for
the moment, we have uniquely defined entities Ph ah ... , Pn-h an-I. STOP in that
order. The value n = n(A, Q) is bounded by dQ for any A. The cost of A against
adversary Q is defined to be CA(Q) = In(p(A, Q),a(A, Q». The adaptive offline
adversary incurs the optimal cost for servicing the sequence, cQ(A) = c(p(A, Q)).

An adaptive online adversary S = (Q, P) is an adaptive offline adversary Q,
supplemented by a sequence P of functions that define its own online response
to the request sequence. In particular, we have Pn : An -+ A for n = O,I, ... ,dQ.

378

13.4 RELATING THE ADVERSARIES

Note that the request sequence is independent of P and depends only on the
algorithm A (again, we are focusing for the moment on a deterministic algorithm
A). Thus we can write p(A,S). p(A,Q), a(A,S) = a(A,Q), and CA(S) = CA(Q).
In addition, the adversary's response P induces an answer sequence for the
adversary, which we denote by b(A, S) = (bI, ... , bn) where n = n(A, Q) and
bi+1 = Pi(aI, ... , ail for i = 0,1, ... , n - 1. The cost of S against A is denoted
cs(A) = !n(p(A,S),b(A,S».

For a randomized algorithm R that is a probability distribution on deter
ministic algorithms Ax (we think of x as the random string that selects the
deterministic algorithm), the above definitions can be made again, with the
costs becoming random variables. As in the case of the oblivious adversary,
we say that a randomized algorithm is ~-competitive against adaptive offline
(respectively online) adversaries if for any p we have Ex[CA)P)] ~ E[~[~Q(A)]]
(respectively Ex[CAx(P)] ~ E[~[cs(A)]]).

The reader is invited to verify that the request-answer games defined above
generalize the paging problem of previous sections. While the following results
could have been derived for the paging problem, we have chosen the more
general setting in order to apply these results to more general online problems
to be introduced in the next section. Our first result says that adaptive offline
adversaries are so powerful that there is no benefit to using randomization
against them. Note again that all the arguments below apply to any fixed
request-answer game.

Theorem 13.4: If there is a randomized algorithm that is ~-competitiv~ against
every adaptive offline adversary, then there exists an ~-competitive deterministic
algorithm.

PROOF: View the request-answer game as a two-person game between two
players C and D such that in every step C gives D a request, which D answers.
A position in the game is a pair (p, a). Call a position an instant winner for C if
!n(P,a) > ~[c(p)]. Call a position (p,a) winning for C if there exists an adaptive
rule for selecting requests, and a positive integer t such that starting from (p, a),
an instant winner for C will be reached in t steps regardless of how D plays.

Let us suppose that there is an ~-competitive randomized algorithm R for any
adaptive offline adversary. Further, suppose for a contradiction that there is no
deterministic ~-competitive algorithm. Then C has a winning strategy against
any deterministic player in the two-person game. The initial position, in which
p and a are both the empty string, is winning for C if and only if there exists
an adaptive offline adversary Q such that for any deterministic algorithm A,

(13.1)

Now, the randomized algorithm R is a probability distribution over deter
ministic algorithms Ax. Taking the expectation of (13.1) over all x, we have
EX[cAx(Q)] > Ex[~[cQ(Ax)]], and thus E[CR(Q)] > E[~[cQ(R)]], where Ex[] de-

379

ONLINE ALGORITHMS

notes the expectation over random strings x. This contradicts our assumption
that R is ~-competitive, so that C does not have a winning strategy in the game.

To complete the proof, we show that if C does not have a winning strategy,
then there is a deterministic ~-competitive algorithm. Now, a position (p,a) is
a winning position for C if and only if there exists a request Pn+l such that,
for every answer an+h the position (pPn+l,aan+l) is again a winning position for
C. Therefore, if (p,a) is not a winning position for C, it follows that for every
request Pn+l there exists an answer an+l (due to the finiteness of the answer
set) resulting in a position that is not winning for C. Thus if D counters with
such an answer at each step, it has a winning strategy and thus a deterministic
~-competitive algorithm. D

By combining the results of Theorem 13.1 and Theorem 13.4, we conclude
that no randomized online algorithm for the paging problem can achieve a
competitiveness coefficient smaller than k, against adaptive offline adversaries.
This is in marked contrast to the oblivious adversary, against which we have seen
a randomized online algorithm achieving competitiveness coefficient O(log k).
How well can a randomized algorithm perform against an adaptive online
adversary? We can infer a limitation from the following theorem, which relates
the three adversaries.

Theorem 13.5: Suppose R is ~-competitive against any adaptive online adversary,
and there is a p-competitive randomized algorithm against any oblivious adversary;
then R is (~p)-competitive against any adaptive offline adversary.

PROOF: Fix an adaptive offline adversary Q, and view R as a probability dis
tribution on deterministic algorithms Ax. We will prove that EX[cAx(Q)] ~
Ex [~[P[cQ(Ax)]]].

Let H be the randomized algorithm that is p-competitive against any oblivious
adversary. Viewing H as a probability distribution on deterministic algorithms
Hy, we have for every nand p E 'Rn

, Ey[CHy(P)] ~ P[c(p)].
For each fixed y, define an adaptive online advers~ry Sy = (Q, Py) in such a

way that for any deterministic online algorithm A, it sets b(A, Sy) = Hy(p(A, Q)).
Thus this adaptive online adversary uses Q to generate the request sequence. On
the other hand, it uses Hy to answer the requests, independently of A. Now, R is
~-competitive against this adaptive online adversary, and in turn this adaptive
online adversary is p-competitive against any oblivious adversary. Thus for
every fixed y,

Ex[CAx(Sy)] ~ Ex[~[csy(Ax)]]. (13.2)

Taking the expectation of (13.2) over y, we have

Since the adaptive online adversary is "borrowing" the request sequence from

380

13.5 THE ADAPTIVE ONLINE ADVERSARY

the adaptive offline adversary, we have for any y, p(Ax, Sy) = p(Ax, Q) = pz.
Then, we have

Ex [CAx(Q)] - Ey[Ex [CAx(Sy)]]

:s;; Ey [~[Ex [cSy (pz)]]]

- ~[Ex[Ey [CHy (pz)]]]

:s;; ~[Ex[P[c(pz)]]]

- Ex [~[P [cQ(Ax)]]].

D

Let us again consider online algorithms for the paging problem. By Theo
rems 13.4 and 13.5, we have that Cdet ~ CaonCobl

• This tells us something about
the performance of randomized online paging algorithms against adaptive online
adversaries: we may infer that

Cdet

caon ~ c obl = O(k/Hk).

In Section 13.5, we will further study randomized online algorithms against
adaptive adversaries.

Exercise 13.2: Suppose that we have an online algorithm that is a-competitive
against any adaptive online adversary, for a request-answer game. Show that
this implies the existence of a deterministic online algorithm for the game that is
a 2-competitive.

13.5. The Adaptive Online Adversary

One of the goals of this section is to determine the value of Caon for the paging
problem. We do so by studying a generalization of the paging problem studied
above. The problem, known as weighted paging, is the following. As before, we
have a two-level store whose cache can store k items at a time, while a slower
memory can hold an infinite number of items. Again, we have a sequence of
requests to items, and an item that is not in the cache when requested must be
brought into the cache. And as before, an item in the cache must be evicted to
make room for it.

Each item x that can be requested has associated with it a positive real weight,
which is denoted w(x). An algorithm that manages the cache incurs a cost of
w(x) every time it brings x from the slow memory to the cache. The total cost
incurred by an algorithm on a sequence of requests is the sum of these costs.
Clearly, when w(x) = 1 for all x, we have the paging problem studied before.
But when the weights of items differ substantially, a good algorithm will perhaps
be more willing to evict a "light" item than a "heavy" one. Certainly, it is easy

381

ONLINE ALGORITHMS

to force algorithms such as LRU and F1[FO (which are known to be optimal
online algorithms for the paging problem) to perform poorly because they do
not account for the weights of the items.

As in the paging problem, we may again define the competitiveness of an
online algorithm, comparing its cost on a sequence to that of an optimal
offline algorithm. Also, we may define as. before the three types of adversaries
for randomized online algorithms for weighted paging. We begin by giving
a simple randomized algorithm that achieves a competitiveness coefficient of
k against adaptive online adversaries. A lower bound to be presented in
Section 13.6 will allow us to conclude that no randomized online algorithm
for the weighted paging problem (including all special cases such as the paging
problem) can achieve a competitiveness coefficient lower than k against adaptive
online adversaries. Thus the algorithm below is optimal in its performance.

We now describe this simple randomi:~ed algorithm, called Reciprocal. The
behavior of Reciprocal depends only on the weights of the items in the cache
and is independent of the past. Let X., ••• , Xk be the items in the cache when an
item not in the cache is requested. The Reciprocal algorithm uses the following
simple, probabilistic eviction rule: evict Xi with probability Pi where

l/w(xi)
Pi = k •

2:j =1 l/w(xj)

Theorem 13.6: The Reciprocal algorithm is k-competitive against any adaptive
online adversary.

PR 0 0 F: The proof uses a device that is common in the competitive analysis of
online algorithms - a potential function. The typical use of a potential function
is as follows: it is a measure of the discre:pancy between a configuration of the
online algorithm and a configuration of the offline algorithm.

We will study the expected change in this potential function after each request
and compare this to the costs incurred by the online and offline algorithms on
that request.

Let .siR be the set of items kept in the cache by Reciprocal after the ith
reference, and SiADV be the set of items ke:pt by the adversary. Let

<l»i = L w(x) - k L W(X),
XES! XES!\S~DV

and a<l»i = <l»i - <l»i-I. Letting ff denotle the cost incurred by Reciprocal in
servicing the ith request and f~DV the corresponding cost of the adversary, we
define

Xi = ff - kftDV - L\<I»i.

Consider the following two actions that c:ause the two parties (Reciprocal, and
the adversary) to incur costs.

382

13.5 THE ADAPTIYE ONLINE ADVERSARY

1. The adversary evicts an item. We can assume that the adversary brings an
item into the cache only immediately before a reference to that item. Also,
without affecting the analysis of the cost except by an additive term, we can
charge the adversary for the item it evicts rather than for the item it brings
into the cache; thus ItDV = W(Xi), if the adversary evicts Xi on reference i
(and 0 otherwise).

2. The Reciprocal algorithm evicts an item on a miss and is charged for the
weight of the item it brings into the cache.

We examine the effects of these two actions on 2:~"'1 Xj. By showing that in
either case, E[Xi] ~ 0 (and noting that <1»0 is bounded), we will argue that the
theorem follows. Below, we drop the subscripts for SR, SADV, and a<l» because
we consider the actions of each party in isolation; the reader may wish to think
of the ith request, say to X, as being processed first by the (malicious) adversary,
then by Reciprocal.

1. The adversary brings X into the cache and evicts x'. Then ItDv = w(x'),
and -L\<I» ::s;; kw(x'). (Equality is realized when x' E SR n SADV and x ¢ SR.)
Thus, the contribution of the adversary's action to E[XiIXi-t. ... ,Xtl is never
positive.

2. Reciprocal misses on a reference to item x, so that If = w(x). Just before
Reciprocal's action, ISR \ SADV I > 1. By substituting the probabilities used by
Reciprocal,

k ISR \ SADVI
- w(x) -- + k=-----

2:YESR l/w(y) 2:YESR l/w(y)

> w(x).

Thus, the contribution of Reciprocal's action to E[XiIXi-t. ... ,Xtl is also less
than O.

After a sequence of requests, we have E[2: Xi] ~ 0; noting that <1»0 and <l»n
are bounded, it follows that

L(E[ffl - kE [ftD v])
i

is bounded, yielding the theorem. (The reader is reminded that the additive term
in the definition of competitiveness can depend on the weights of the items in
the problem, as here. It cannot of course depend on the length of the request
sequence.) D

It is interesting to note that the special case of the Reciprocal algorithm for
the (unweighted) paging problem evicts, on each miss, an item chosen uniformly
at random from the k items in the cache. It follows from Theorem 13.6
that this algorithm, known as Random in the paging literature, is k-competitive
against any adaptive online adversary. Is k the lowest achievable competitiveness
coefficient against the adaptive online adversary for the paging and weighted
paging problems? We will answer this question in the affirmative in Section 13.6
below.

383

ONLINE ALGORITHMS

Exercise 13.3: It is important to note that the potential function analysis above does
not apply to adaptive offline adversaries. Explain why such an analysis fails against
adaptive offline adversaries.

The result of Problem 13.5 shows that the Random algorithm cannot achieve
a competitiveness coefficient less than kHk against adaptive offline adversaries.
Thus we have an instance where the inequality of Theorem 13.5 is tight:
Random achieves a competitiveness coefficient of k against any adaptive online
adversary and a competitiveness coefficient of kHk against any adaptive offline
adversary, and there is a randomized algorithm for the paging problem that is
Hk-competitive.

13.6. The k-Server Problem

We now study a generalization of the weighted paging problem above - the
k-server problem. The setting of the k-server problem is a metric space. An online
algorithm manages k mobile servers, each of which resides at one point of the
metric space at any time. The algorithm is presented with a sequence of requests
Ph P2,":' PN, where each request is a point in the space. In response to a request
Pi, the algorithm must move a server to Pi unless it already has a server at Pi'
Whenever the algorithm moves a server from point u to point v, it incurs a cost
of cuv , the distance between u and v in the metric space.

Given a sequence of requests PhP2",.,PN, let M A(PhP2, ... ,PN) denote the
total cost incurred by an online algorithm A in servicing the requests in the
sequence, and let MO(Ph P2, . .. , PN) denote the optimal offline cost of servicing
the same sequence. We say that A is C-competitive if for every request sequence

Ph P2,···, PN,

MA(P),P2, ... ,PN) - ex MO(PhP2, ... ,PN)::S;; b

for a constant b independent of N. The competitiveness coefficient of A, denoted
CA , is the infimum ofC such that A is C-competitive. These definitions are similar
to the ones we made for the paging problem (and used for the weighted paging
problem as well). As before, we can define the three kinds of adversaries for
randomized server algorithms and the corresponding notions of competitiveness.

A moment's thought shows that the paging problem is a special case of the
k-server problem, one in which there is a point in the metric space corresponding
to each item that can be requested and the distance between any two points is
one. Each of the k servers corresponds to one of the k cache locations. Moving
a server in response to a request corresponds to making a miss on a requested
item and bringing it into the corresponding cache location. The point from
which the server is brought corresponds to the memory item that is evicted to
make room for the new item.

384

U~ THE K-SERVER PROBLEM

Exercise 13.4: Show that the weighted paging problem can be formulated as a
special case of the k-server problem.

Other instances of the server problem arise in planning the motion of two
headed disks and in the maintenance of data-structures. Ultimately, though, it is
the simplicity of the statement of the k-server problem that has lent it much of
its appeal. In addition, the problem was originally posed along with a tantalizing
conjecture that for every metric space, there is a deterministic online algorithm
that is k-competitive. We will say more about this conjecture presently.

Exercise 13.5: The greedy server algorithm is the following: given a request at a
point v, choose the closest server (the server at the vertex u that minimizes cuv) to
service this request. Show that the greedy algorithm is not competitive for any k > 1,
by giving an example of a cost matrix and a request sequence that forces the greedy
algorithm to pay an unbounded cost whereas an offline algorithm pays a bounded
cost on the same sequence.

From the lower bound of Theorem 13.1, we know that there is a special case
of the server problem (namely, the paging problem) in which no deterministic
online algorithm achieves a competitiveness coefficient smaller than k. We
generalize and extend this result now, showing that no randomized algorithm
can achieve a competitiveness coefficient smaller than k for any server problem
against adaptive online adversaries. Note that the following result does not
use the minimax principle for the lower bound, but rather relies on' a simple
counting argument.

Theorem 13.7: Let R be a randomized online algorithm that manages k servers
in any metric space. Then c,;n ~ k.

PROOF: We will exhibit an adaptive request sequence P)' P2, ... , P N that forces
R to pay a certain cost M R(PhP2, ... ,PN), and an online algorithm that on the
same sequence pays an expected cost that is at most M R(PhP2, ... ,PN)/k. These
together define the strategy of the adaptive online adversary that yields the
theorem.

Let H be any subset of k + 1 points in the space that includes the k points that
R's servers initially occupy (we can assume that R never places two of its servers
on the same point). At each step, there is one point in H that is not occupied
by any of R's servers; we always make this the next request. Thus R's starting
position and its subsequent actions determine a (random) sequence Ph P2,···, PN
of requests. Since R moves a server from Pi+1 to Pi to service request Pi, the total
cost that R incurs on this sequence is given by

N N

M R(PI,P2,···,PN) = LCPi+IPi = LCPiPi+l.

i=1 i==1

385

ONLINE ALGORITHMS

We have defined the adaptive request sequence; it remains to describe the
online adversary's own actions. We actually exhibit a family of k online algo
rithms that together pay a cost of at most MR(Ph P2, ... , PN) on the sequence
P)'P2, ... ,PN. Then, a randomly chosen one of these k online algorithms pays
an expected cost that is no more than MR(PhP2, ... ,PN)/k on the sequence
PhP2, ... ,PN, and we are done.

Let PI. Uh U2, ••• , Uk be the points in H (recall that H contains Ph a vertex that
is initially uncovered by R and is therefore the site of the first request, and k
other vertices that are the initial positions of R's servers). The online algorithm
Bj in our family initially places its k servers at all the points in H except for Uj,

for 1 < j < k. Algorithm Bj processes request Pi as follows: for i = 1, it uses the
server at U j, and for i > 1 if it has no server at Pi, then it moves its server at PH
to Pi. We will establish that 2:~=1 MBj(p),P2,···,PN) = MR(PhP2, ... ,PN), and
that therefore there exists j such that MBj(Ph P2, . .. , PN) :s; MR(p), P2,· . . , PN)/k.

The observation that will be crucial to establishing the above is the following:
at any time in the sequence Ph P2, .. . , PN, the set of k points occupied by B/s
servers is not the same as the set of k points occupied by Bm's servers, for
j =1= m. If we can prove this it follows that on each request Pi, exactly one of
the algorithms B j , for 1 :s; j < k, moves a server at a cost of Cpi_IPi. Summing
over all i and j, we see that the total cost incurred by all the algorithms Bj , for
1 <j<~, is 2:[:~1 CPiPi+1 + 2:~=1 CUjP1 = MR(p),P2, ... ,PN).

It remains to prove the claim that algorithms Bj and Bm, for j =1= m, always
occupy different sets of points. Let Sj and Sm be the sets of k points occupied
by Bj and Bm, respectively, before request Pi is processed. We will show that if
Sj =1= Sm, then the two sets are different after Pi is processed by Bj and by Bm.
By our construction, the sets of points initially occupied by Bj and by Bm are
different, so this will provide an inductive proof.

Therefore, suppose that Sj =1= Sm. If Pi is in both Sj and Sm, neither set is
changed in processing Pi, so the inductive invariant holds. If only one of them,
say Sj> has no server at Ph it adds Pi and drops Pi-I; on the other hand, Sm
maintains a server at Pi-I. and so the difference remains non-empty.

Thus, exactly one of the algorithms Bj moves a server on request Pi, incurring
a cost .CPI-1P1 • Therefore

k

LMBj(PI,P2, ... ,PN) = MR(PI,P2,···,PN).
j=1

D

The reader may notice that the algorithm Bj for which M Bj (p)'P2, ... ,PN):S;
MR(PhP2, .•. ,PN)/k may not begin with its servers at the same points as R.
Could it be that Bj derived an unfair advantage from this? Recall that in our
definition of competitiveness, we allowed an additive constant that may depend
on the distances between points in the metric space. We thus imagine that all
the algorithms Bi begin with their servers at the same points as R. Then, at
the first request, each algorithm Bi first moves its servers to the points specified

386

13~ THE K-SERVER PROBLEM

in the proof of Theorem 13.7, paying a one-time cost that is absorbed in the
additive term in the definition of competitiveness. Subsequently, Bi serves the
requests as described above.

The importance of Theorem 13.7 is that it applies to any metric space, and
consequently to the weighted (as well as the unweighted) paging problem. Thus,
Reciprocal is optimal for the weighted paging problem.

Notes

The model for the paging problem presented at the beginning of the chapter was
introduced by Sleator and Tarjan [379]. The lower bound of Theorem 13.1 as well
as the proof of the k-competitiveness of LRU and FIFO appear in the same paper.
The optimality of the MIN algorithm was established by Belady [49] and by Mattison,
Gecsei, Slutz, and Traiger [298]. The term "competitiveness" and related definitions
first appeared in a paper of Karlin, Manasse, Rudolph, and Sleator [235]. Borodin,
Linial, and Saks [76] were the first to demonstrate the power of randomization in online
algorithms in the context of the so-called metrical task systems.

The Marker algorithm for paging against oblivious adversaries (together with the
lower bound of Hk) was discovered by Fiat, Karp, Luby, McGeoch, Sleator, and
Young [145]. The improved algorithm achieving competitiveness coefficient Hk is due to
McGeoch and Sleator [306].

The notion of mUltiple types of adversaries for randomized algorithms arose from
the work of Raghavan and Snir [352]. The distinction between the two types of
adaptive adversaries was first noticed by Karlin. The relations (Theorems 13.4 and
13.5) between them are established in a paper by Ben-David, Borodin, Karp, Tardos,
and Wigderson [51]. The Reciprocal algorithm appears in the article by Raghavan and
Snir [352], for a slightly more general version of the weighted paging problem (see
Problem 13.11 below). For the version of weighted paging we consider here, there is
in fact a deterministic k-competitive algorithm for weighted paging due to Chrobak,
Karloft', Payne, and Viswanathan [98].

The k-server problem was introduced by Manasse, McGeoch, and Sleator [290], who
gave a lower bound of k on the competitiveness coefficient of any deterministic algorithm
for any server problem (thus generalizing Theorem 13.1). They also gave a deterministic
2-competitive algorithm for the case k = 2, for all metric spaces. While the results
presented in this chapter give a fairly complete characterization of the paging problem
(the special case of the server problem when all distances are 1), our understanding of
the server problem for general k and for general metric spaces is far from complete. The
first result giving a deterministic online algorithm achieving a competitiveness coefficient
depending on k alone, in all metric spaces, is due to Fiat, Rabani, and Ravid [146]. The
competitiveness coefficient of the algorithm is exponential in k log k.

The lower bound of Theorem 13.2 tells us that there are metric spaces for which no
randomized algorithm can achieve a competitiveness coefficient lower than Hk against
oblivious adversaries. The same lower bound is conjectured to hold for general metric
spaces:

~ Research Problem 13.1: Show that no randomized online algorithm can achieve
a competitiveness coefficient lower than Hk in any metric space, against oblivious
adversaries.

387

ONLINE ALGORITHMS

Karloff, Rabani, and Ravid [238] initiated progress on this question by establishing
two results:

1. provided the metric space has at least k + 1 points, they give a lower bound of
Q(log logk);

2. for metric spaces with sufficiently many points, their bound is Q(logk).

Subsequently, the lower bound for metric spaces of size at least k + 1 has been improved
by Blum, Karloff, Rabani, and Saks [62] to O(Jlogk/ loglogk).

We know of relatively few cases where randomization against an oblivious adversary
beats the lower bound of k for deterministic algorithms that follows from Theorem 13.7.
A discussion of these cases may be found in the paper by Karlin, Manasse, McGeoch,
and Owicki [236].

The situation is slightly better in regard to adaptive adversaries. The Harmonic
algorithm, due to Raghavan and Snir [352], is the following. Let di be the distance
between the ith server managed by the algorithm to the requested point, for 1 :s; i :s; k.
The algorithm chooses (independently of the past) the jth server with probability

l/dj
k •

2:i-1 l/di

Notice that this resembles the Reciprocal algorithm of Section 13.5, although the prob
abilities are not quite the same. Notice also that for the paging problem, in which all
di equal 1, this becomes the Random algorithm. The reader should note that Reciprocal
and Harmonic are two different generalizations of the Random algorithm for paging.
Given that Random is k-competitive for the paging problem against adaptive online
adversaries, one might hope that Harmonic is k-competitive for the server problem in
all metric spaces. However, it is known that there are metric spaces for which Harmonic
cannot achieve a competitiveness coefficient lower than k(k + 1)/2 (see Problem 13.13
below).

For Harmonic, Raghavan and Snir [352] proved an upper bound of 6 for k = 2,
and this was later improved to the (tight) bound 3 by Chrobak and Larmore [99].
A breakthrough was achieved by Grove [186], who gave an upper bound of (5k2k)/4
on the competitiveness coefficient of Harmonic in any metric space, and for all k.
An important implication of this is the existence (by the result of Exercise 13.2) of a
deterministic algorithm whose competitiveness coefficient is exponential in k, improving
the result of Fiat, Rabani, and Ravid [146]. The most general class of metric spaces for
which we know of a k-competitive algorithm against adaptive online adversaries follows
from the work of Coppersmith, Doyle, Raghavan, and Snir [112]; their algorithm
works in a class of metric spaces they call resistive metric spaces. There is, however, a
deterministic (2k - I)-competitive algorithm for any metric space, due to Koutsoupias
and Papadimitriou [269]. It remains to be seen whether the approach of Koutsoupias
and Papadimitriou will result in a k-competitive deterministic algorithm. This would
shift the focus to randomized algorithms against oblivious adversaries:

~ Research Problem 13.2: Determine the best possible upper bound for the obliv
ious competitiveness coefficient for the k-server problem, in general metric spaces.

The work of Karlin, Manasse, McGeoch, and Owicki [236] shows that the value of
the oblivious competitiveness coefficient for the k-server problem will depend on the

388

PROBLEMS

actual distances in the metric space, even for k = 2. However, it is plausible that this
variation is relatively small, so that an asymptotic bound such as 0(logk) is possible.

The list update problem is the following. An online algorithm maintains a linear list
containing n items. It is given a sequence of requests, where each item specifies one of the
n items. If the item requested is at the ith position in the list, the algorithm incurs a cost
of i for that request; thus, a request to the item at the head of the list costs 1. When an
item is requested, the algorithm has the option of moving that item to the front of the list,
or leaving it where it is. Given a request sequence, the notions of cost to the online and
offline algorithms, and of competitiveness, can be made in the usual sense. Sleator and
Tarjan [379] introduced this model. They showed that the deterministic algorithm that
always moves the item that is accessed to the front of the list achieves a competitiveness
coefficient of 2. A lower bound of 2 - 1/ L is known for the competitiveness coefficient
of any deterministic algorithm, where L is the number of items in the list. Irani [206]
gave a randomized online algorithm for this problem that achieved a competitiveness
coefficient slightly less than 2 against oblivious adversaries. This was improved to ..[3
by Reingold, Sleator, and Westbrook [355]; an interesting feature of their algorithm is
that it can be implemented so that it makes some random choices once at the beginning
of the request sequence, and is wholly deterministic thereafter. It remains deterministic
irrespective of the length of the request sequence, making no further random choices.
This implementation can be shown to be <..[3+e)-competitive. Clearly, this hinges on the
adversary being oblivious. Recently, Albers [10] has given a cP-competitive randomized
algorithm for list update, where cP is the golden ratio (1 + ..[5)/2. Teia [395] gives a lower
bound of 1.5 on the competitiveness coefficient of any randomized algorithm, against an
oblivious adversary.

~ Research Problem 13.3: Determine a tight bound on the competitiveness coef
ficient of randomized online algorithms for list update, against oblivioos adver
sanes.

There is considerable current interest in randomized online algorithms for problems
arising in many diverse settings, including task systems [76], robot navigation [63, 144,
327], finding short paths in graphs [144, 327], and finance [135]. The reader is referred
to these and the other papers cited above for a host of research questions that remain
open in this area.

Problems

13.1 (Due to D.O. Sleator and R.E. Tarjan [379].) Show that the LRU algorithm
for paging is k-competitive. What can you say about its competitiveness
coefficient?

13.2 (Due to D.O. Sleator and R.E. Tarjan [379].) Show that the FIFO algorithm
for paging is k-competitive. What can you say about its competitiveness
coefficient?

13.3 Show that the LFU algorithm does not achieve a bounded competitiveness
coefficient.

13.4 (Due to A. Bar-Noy, R. Motwani, and J. Naor [45].) Given an undirected
graph G(V, E), an edge coloring is an assignment of indices 1, ... , C to the

389

ONLINE ALGORITHMS

edges of G such that no two edges incident on a vertex have the same label.
The indices are referred to as colors, and the smallest value of C for which
such a coloring can be achieved is called the of the graph. Vizing's Theorem
states that a graph with maximum degree fl. has chromatic index either fl.
or fl. + 1; moreover, while distinguishing these two cases is an NP-hard
problem, there is a polynomial time algorithm for coloring any graph with
fl. + 1 colors. Consider the problem of online edge coloring: suppose that the
edges of a graph with maximum degree fl. are presented one by one, and
as each edge is specified it must be irrevocably assigned a color.

(a) Devise a deterministic online algorithm that uses at most 2fl. - 1 colors.

(b) Show that there does not exist any deterministic algorithm that uses
fewer than 2fl. - 1 colors in the worst case. For what range of values of
fl. can you prove this result? (Hint: Consider an adversary that generates
a sequence of edges that constitute a graph composed of disjoint stars,
where each star consists of a center vertex v with fl. - 1 neighbors of
degree 1. Once the algorithm has committed to a coloring of these stars,
an adversary can introduce further edges from a distinguished vertex to the
centers of appropriately chosen stars, forcing the online algorithm to use a
large number of additional colors.)

(c) Show that there does not exist any deterministic algorithm that uses
fewer than 2fl. - 1 colors in the worst case. For what range of values of fl.
can prove this result? (Hint: See the hint for part (b).)

13.5 (Due to A.A. Karlin.) Show that the competitiveness coefficient of the Random
algorithm for paging against adaptive offline adversaries is at least kHk •

13.6 Show that the competitiveness coefficient of the Random algorithm for paging
against Oblivious adversaries is at least k.

13.7 Show that when the number of distinct items in memory is k + 1, the Marker
algorithm is Hk-competitive.

13.8 Consider a server problem in which the online algorithm has K servers, and
the offline algorithm has k servers. For K ~ k, show that the competitiveness
coefficient of any online algorithm against adaptive online adversaries is at
least K/(K - k + 1).

13.9 Consider the following algorithm for the 2-server problem in an arbitrary
metric space. Label the servers 0 and 1. The algorithm services any request
as follows. Let do be the distance from server 0 to the request, and d1 the
distance from server 1 to the request. Let d be the distance between the
servers. For i e {O, 1}, let

d +d1-l-dl
PI = 2d

Server i is used to select the request with probability PI. Show that this
algorithm is 2-competitive against adaptive online adversaries.

13.10 (Due to A.M. Karp and P. Raghavan.) Show that the competitiveness coeffi
cient of any randomized online algorithm for maintaining a linear list against
an oblivious adversary is at least 9/8. (Hint Consider a list with 2 items.)

390

PROBLEMS

13.11 Consider the Reciprocal algorithm for weighted paging, in the scenario of
Problem 13.8: Reciprocal manages a cache with K pages, while the adversary
has k pages. Show that Reciprocal achieves a competitiveness coefficient of
K/(K - k + 1), matching the lower bound of Problem 13.8.

13.12 (Due to S.S. Irani [207].) Consider the list update problem again, with the
following modification in the cost function: the cost of accessing the item at
the ith position in the list is i - 1, rather than i (thus the item at the head of
the list is accessed at cost zero). For lists with two items, show that 3/2 is
a tight bound on the competitiveness coefficient of randomized algorithms
against oblivious adversaries, under this cost function.

13.13 Give a metric space for which you can prove a lower bound of k(k + 1)/2
on the competitiveness coefficient of the Harmonic algorithm ag~inst an
adaptive online adversary. (Hint: Make use of the result of Problem 6.7.)

391

CHAPT ER 14

N umber Theory and Algebra

The theory of numbers plays a central role in several areas of great importance
to computer science, such as cryptography, pseudo-random number generation,
complexity theory, algebraic problems, coding theory, and combinatorics, to
name just a few. We have already seen that relatively simple properties of
prime numbers allow us to devise k-wise independent variables (Chapter 3),
and number-theoretic ideas are at the heart of the algebraic techniques in
randomization discussed in Chapter 7.

In this chapter, we focus on solving number-theoretic problems using ran
domized techniques. Since the structure of finite fields depends on the properties
of prime numbers, algebraic problems involving polynomials over such fields
are also treated in this chapter. We start with a review of some basic concepts
in number theory and algebra. Then we develop a variety of randomized al
gorithms, most notably for the problems of computing square roots, solving
polynomial equations, and testing primality. Connections with other areas, such
as cryptography and complexity theory, are also pointed out along the way.

There are several unique features in the use of randomization in number
theory. As will soon become clear, the use of randomization is fairly simple in
that most of the algorithms will start by picking a random number from some
domain and then work deterministically from there on. We will claim that with
high probability the chosen random number has some desirable property. The
hard part usually will be establishing this claim, which will require us to use
non-trivial ideas from number theory and algebra. Further, all the resulting
algorithms will turn out to be extremely practical. Finally, for most non-trivial
problems, such as primality testing, the only known efficient (polynomial time)
algorithms involve the use of randomization.

14.1. Preliminaries

We start by introducing some basic notation and ideas. Unless otherwise
specified, all numbers should be assumed to be from the domain of non-

392

14.1 PRELIMINARIES

negative integers. We will adopt the convention that the symbols a, b, ... , m, n,
will refer to arbitrary numbers; we will reserve the symbol p for denoting prime
numbers. Symbolic variables will be denoted by uppercase letters X and Y. The
expression a J b will denote that a is a divisor of b, while a J b will denote that a
does not divide b; note that for any number a =1= 0, alO. The greatest common
divisor (gcd) and lowest common multiple (lcm) of a pair of numbers a and b
are defined as follows:

gcd(a, b) - max{f I fla,flb}
ab

lcm(a,b) -
gcd(a, b)

By convention, gcd(O,O) = 0 and Icm(O,O) = o. We will say that a and bare
coprime if gcd(a,b) = 1, i.e., if a and b have no common factors. A number is
prime if and only if it is coprime to all smaller positive numbers.

An important issue is the measure of complexity for a number-theoretic al
gorithm. An integer n can be represented by a bit-string of length 0(log n).
Thus, when n is the input to an algorithm, the algorithm's running time
should be measured in terms of the input length, which is log n, and not
the input value, which is n. This is the standard measure for number
theoretic algorithms and is sometimes referred to as the bit complexity mea
sure. For example, computing gcd(a, b) in polynomial time requires an algo
rithm that runs in time polynomial in log a and log b. Our model of com
putation is similar to that described in Chapter 7. We will use the unit
cost RAM model to measure the running time of an algorithm. In partic
ular, the operations of addition, subtraction, multiplication, division, com
parison, or choosing a random element take unit time, provided the magni
tude of the operand numbers is polynomially related to that of the input.
Thus, given input n, arithmetic operations on O(log n)-bit numbers take unit
time.

How may we compute the gcd in polynomial time? The naive approach
of trying all possible numbers smaller than a and b takes exponential time,
given that the length of the input is logarithmic in the values of a and b. An
other approach, which we all learned in high school, is to apply the following
rule repeatedly: replace the larger of the two numbers by their difference. The
process terminates when the smaller number is 0, and the larger number at
that point is the desired gcd. It is not very hard to see that even this al
gorithm takes exponential time in the worst case. (Consider the case where
a is large and b is a very small constant.) We describe the ancient algo
rithm of Euclid for computing the gcd and prove that it runs in polynomial
time.

We use a mod b and a div b to denote the remainder and the quotient, respec
tively, for the division of a by b. Euclid's algorithm takes two numbers a and
b such that a > b > 0, and determines their gcd by computing the following

393

NUMBER THEORY AND ALGEBRA

sequence starting with ro = a and rl = b.

r2 = ro mod rl
r3 = rl mod r2

q2 = ro div rl
q3 = rl div r2

(0 < r2 < rd
(0 < r3 < r2)

The sequence rj is strictly decreasing, implying that the algorithm terminates in
a finite number of stages. Termination occurs when rk-I mod rk = 0, i.e., rklrk-I.
Observe that this is just a more efficient implementation of the high school
algorithm described above. Instead of subtracting the smaller number from
the larger, which may have to be done repeatedly, Euclid's algorithm subtracts
the largest possible multiple of the smaller number from the larger; then, the
remainder replaces the larger number. We will soon see that this algorithm gives
us a number of interesting constructions besides the gcd itself.

Theorem 14.1: In Euclid's algorithm, rk = gcd(a,b).

PROOF: .Denoting gcd(a, b) by g, we will show that rklg and glrk to establish
that g = rk.

Observing that rk Irk-I and rk-2 = rk-I qk + rb we obtain that rk Irk-2. Similarly,
since now rk Irk-I. rk Irk-2, and rk-3 = rk-2qk-I + rk-h it follows that rk Irk-3' This
argument can be applied inductively to verify the hypothesis that if rklrj and
rklri-h then rklrj-2, since rj-2 = ri-Iqi + rio In particular, we can show that rkirl
and rklro; since ro = a and rl = b, this establishes that rklg.

To establish the converse, we reverse the direction of the above argument.
Note that giro and girl' Since for all i, rj = ri-2 - qirj-h it follows that if glri-2
and glrj-h then glrj. Thus, we conclude inductively that glrk. 0

I t remains to be shown that this is a polynomial time algorithm. Each
of the, k stages involves essentially one division operation, and all operands
(the intermediate numbers) are smaller than the larger input. Therefore, the
total running of this algorithm is O(k). The following exercise shows that the
worst-case value of k is polynomially bounded.

Exercise 14.1: Let Fn denote the nth Fibonacci number. Show that the worst case for
Euclid's algorithm is when a and b are consecutive Fibonacci numbers. If a = Fn+1
and b = Fn, then the number of stages k equals n. Noting that Fn '" ¢n / J'S, where ¢ is
the golden ratio 1.618 ... , prove that the running time of this algorithm is polynomial
in the lengths of a and b.

The following theorem highlights an interesting aspect of Euclid's algorithm.

394

14.2 GROUPS AND FIELDS

Theorem 14.2: For all a > b > O. there exist integers x and y such that

gcd(a, b) = ax + by.

Moreover, x and y can be computed in polynomial time.

We provide only a sketch of the proof, leaving the details for Problem 14.1.
Recall that rj = rj-2 - qjrj_l. Since rk can be similarly expressed as a linear
combination of rk-I and rk-2, we can easily express rk as a linear combination of
ro and rl by repeatedly substituting any remainder rj with a linear combination
of the previous two remainders. Since ro = a, rl = b, and gcd(a,b) = rk, we
obtain the desired result. The coefficients x and y of the linear combination
can be computed in polynomial time using the same strategy. The re,sulting
extension of Euclid's algorithm, which computes x and y along with the gcd, is
sometimes referred to as extended Euclidean algorithm.

14.2. Groups and Fields

Before we discuss sophisticated number-theoretic algorithms, we briefly review
the group-theoretic concepts underlying these algorithms. We start by developing
additional notation.

We define the equivalence relation of congruence modulo n as follows. Two
numbers a and b are congruent modulo n if a mod n = b mod n; equivalently
nl(a - b). Usually, this is denoted a = b (mod n), but sometimes. we will
abbreviate this to a =n b. The operations +n and Xn denote addition and
multiplication modulo n, i.e., the result of the operation is reduced modulo n.

There are two groups that can be defined with respect to any number n > 1.
The set Zn = {O, 1, ... , n - 1} contains all numbers smaller than n, and it
forms a group under addition modulo n. We also define Z: = {x I 1 ~ x ~
nand gcd(x, n) = 1} as the numbers in Zn that are coprime to n; this forms
a group under multiplication modulo n. (Notice that 0 ft Z:.) The elements
of Zn are the canonical elements of the congruence equivalence classes and are
referred to as the residues modulo n.

Exercise 14.2: Verify that Zn and Z; form groups under the operations +n and X n,
respectively.

Exercise 14.3: Verify that for a prime p, the set Zp forms a field under the operations
of +p and xp.

Since Z: is a multiplicative group, each of its elements has a multiplicative
inverse in Z:. It is not obvious that we can compute these inverses efficiently,
but it turns out that the extended Euclidean algorithm can be adapted for this
purpose. To compute the multiplicative inverse of Z E Z:, we run the algorithm

395

NUMBER THEORY AND ALGEBRA

with ro = nand rl = z. By Theorem 14.2, we can compute in polynomial time
two numbers x and y such that gcd(n, z) = nx + zy. Noting that this gcd must
be 1, we obtain zy = 1 (mod n). Thus, y is a multiplicative inverse of z and
must lie in Z;.

Theorem 14.3: For any n, the multiplicative inverse of a number z E Z; can be
computed in polynomial time.

We give a simple application of this result to the constructive version of the
well-known Chinese Remainder Theorem.

Theorem 14.4 (Chinese Remainder Theorem): Let nl, ... , nk be a sequence of
pairwise coprime numbers (for i =1= j, gcd(nj,nj) = 1), and define n = rr~=1 ni. For
any sequence of residues rl E Znl' ... , rk E ZtIk' there is a unique r E Zn such that

r = ri (mod ni) (for 1 ~ i ~ k).

Moreover, r can be computed in polynomial time.

PROOF; We first show that there exists at least one such r. By the pairwise
coprime property of the n/s, we have gcd(n/nj, ni) = 1 for each i. It follows that
there exists a multiplicative inverse mi for n/ni in the group Z~, and therefore

n
mi- = 1 (mod ni).

ni

It is easy to verify the following two congruences for each i.

n
mi- = 1 (mod ni)

ni
n

mi- == 0 (mod nj) (for all j =1= i).
ni

We conclude that the following value of r satisfies the desired congruences.

k

r = L rimj'!!. (mod n)
i-I ni

The uniqueness of the choice of r follows from the following simple counting
argument. The number of distinct choices of each ri is nj, and so there are
exactly n distinct sequences (ri). Each such sequence has at least one associated
r E Zn. Since each choice of r determines a distinct sequence (ri), it follows that
there is a one-to-one correspondence between these sequences and the choices
of r. The value of r can be easily computed in polynomial time since it involves
a polynomial number of multiplications, additions, and inverse computations.

o
In effect, this theorem states that Zn is identical to the cartesian product
Znl X Zn2 X ••• X ZtIk.

Consider now the problem of computing d< over some group (G, 0), given
a E G and k. For the additive group (Zn, +n), exponentiation corresponds to

396

14.2 GROUPS AND FIELDS

the arithmetic multiplication of a and k. The situation is more complex for
the multiplicative group (Z:, xn). The naive strategy of repeatedly multiplying
by a is not a polynomial time algorithm since it requires a total of k - 1
multiplications. The problem is that the number of multiplications required
by this method is proportional to k, rather than log k. A simple strategy for
exponentiating in polynomial time is that of repeated squaring. The idea is to
compute the powers Ai = a2i

, for 0 < i ~ t = LlogkJ. Since Ai+1 is the square
of Ai, this sequence can be computed in increasing order of i using O(logk)
multiplications. Consider the binary representation of k as a sequence of bits
bo, ... , br, where bo is the least significant bit. Since k = E:-o bi2i, it follows that
cf = rr:-oAri. The latter product can be computed in time O(logk), given the
precomputed values of the A/s.

Theorem 14.5: In the group (Z:, x n), exponentiation can be performed in poly
nomial time.

It is clear that IZnl = n, but the size of Z: has a more complex behavior.
The Euler totient function q,(n) is defined to be the number of elements of Zn
that are coprime to n, which is precisely IZ: I. In the case where n is a prime,
Z: = Zn \ {O} and q,(n) = n - 1. In general, we can compute q,(n) in polynomial
time when the prime factorization of n is known.

Theorem 14.6: Let n have the prime factorization p~1 p~2 ... P~', where the primes
Pi are distinct and have exponents ki > O. Then,

r

q,(n) = rrp~i-l(Pi - 1).
i=l

It is easy to verify that the above expression can be computed in polynomial
time provided that the prime factorization of n is known. The following exercise
outlines the proof of this theorem.

Exercise 14.4: Verify the following properties of the totient function.

• ¢(1) = 1.

• For prime p, ¢(p) = p - 1.

• For prime p and k > 0, ¢(pk) = pk-1(p -1).

• For nand m such that gcd(n, m) = 1, ¢ (nm) = ¢ (n)¢ (m).

Using these properties, prove Theorem 14.6 and verify that ¢(n) can be computed in
polynomial time from the prime factorization of n.

It is widely believed that the prime factorization of a number n cannot
be computed in polynomial time; in fact, it appears hard in general to find
any non-trivial factors of a given number. Thus, it would be desirable to

397

NUMBER THEORY AND ALGEBRA

have an alternative method for evaluating c/>(n) when the prime factorization
is not known. Unfortunately, it can be shown (see Problems 14.3-14.4) that
the knowledge of c/>(n) can be used to efficiently compute the factorization of
n, implying that it is unlikely that an efficient algorithm exists for evaluating
c/>(n). We present the idea behind this for the special case where n = pq
for two distinct primes p and q. First note that Theorem 14.6 implies that
c/>(n) = c/>(pq) = (p - 1)(q - 1). Therefore, p + q = pq + 1 - c/>(n) = n - c/>(n) + 1,
and we know that pq = n. It is now a simple matter to see that given p + q and
pq, we can compute p and q in polynomial time.

Of course, c/>(p) is easy to compute when p is a prime. What about c/>([f)
where [f is a prime power? In Exercise 14.5 it is shown that for any number
x = yZ, there is a polynomial time algorithm for computing y and z from x.
Thus, prime powers can be recognized and factored in polynomial time. Then
computing c/>([f) is a trivial task.

Exercise 14.5: Devise a polynomial time algorithm for finding positive integers y
and z > 1, given the value of x = yZ. The algorithm may fail if the input x cannot be
expressed in this form. (Hint: Consider the logarithms of x and yZ.)

We now examine the structure of the groups (Zn, +n) and (Z:, xn). Consider
a group'(G,o) under the operation 0, with the identity element I. (For the groups
we are considering, the operation ° is commutative.) We define the order of the
group as the number of elements in it, IGI. For any element x E G, we define
the powers of x as follows.

xO -

Jd< - x ° Jd<-l (for k > 0)

~ Definition 14.1: For any group (G,o) and any x E G, the order of x is given by

ord(x) = min{k > 0 I Jd< = I}.

Th~ following propositions are easy to prove and left as exercises.

Proposition 14.7: For any finite group (G,o), and any x E G, ord(x) divides IGI.
Therefore, it is always the case that x lGI = I.

Proposition 14.8: For any finite group (G, 0), and any sub-group (H, 0) with
H ~ G, IHI divides IGI.

Consider the additive group (Zn, +n) with 1 = O. Suppose for some x E Zn
that ord(x) = k. This means that the k-fold addition of x to itself is congruent
to 0 modulo n, that is to say kx =n O. We conclude that nlkx, and so it follows
from the definition of order that kx = lcm(n,x). Notice that Proposition 14.7
says that kin.

398

14.2 GROUPS AND FIELDS

Proposition 14.9: For all n and x E Zn, the order of x in the additive group
(Zn, +n) is given by

n lcrn(n, x)
ord(x) = d()-gc n.,x x

In the case where n = p is a prime and x =1= 0,

ord(x) = p = IZpl.

The order of the identity 0 is 1.

The situation is more complicated with respect to Z:. Here the group order is
c/>(n) and I = 1. Consider any element x E Z: and let its order be k. Then, ~ =n 1
and Proposition 14.7 implies that klc/>(n). We may conclude that xq,(n) =n 1, and
this gives us the famous theorem of Euler.

* Theorem 14.10 (Euler's Theorem): For all n and x E Zn'

x 4l(n) == 1 (mod n).

Specializing this to the case where n is a prime yields the theorem of Fermat.

Theorem 14.11 (Fermat's Theorem): For prime p and x E Z;,

xp
-

I = 1 (mod p).

As we remarked earlier, computing c/>(n) is as hard as factoring n. More
generally, the same can be shown for determining the order of an arbitrary
element of the multiplicative group Z:. In fact, the difficulty in computing the
order underlies most of the issues we will deal with later. Contrast this with the
case of the additive group where the order is almost trivial to compute. This
property of the additive group will be useful in devising efficient algorithms
later.

Another distinction between the additive and multiplicative groups involves
the existence of generators. A generator g in a group G is an element whose
order equals the size of group, i.e., ord(g) = IGI. A group is said to be cyclic if it
contains a generator. It is easy to verify that a cyclic group G can be viewed as the
set of all distinct powers of any generator g E G, that is G = {gO, gl, ... , gIGI-l}.

It is an immediate consequence of Proposition 14.7 that any finite group
whose order is a prime number is a cyclic group. The additive grour (Zn, +n) is
cyclic since the element 1 has order n. The multiplicative group (Zn' xn) is not
cyclic in general.

Exercise 14.6: Verify that the group (Z:, xs) is not cyclic.

However, we show below that for primes p, the group (Z;, xp) is cyclic. Note
* that the cyclicity of groups of prime order does not imply the cyclicity of Zp

399

NUMBER THEORY AND ALGEBRA

since the order of this group is 4>(p) = p - 1, which is even and therefore not a
prIme.

The following lemma will be useful for showing the cyclicity of Z;. It states
that the sum of the totient function values for all the divisors of n will always
equal n.

Lemma 14.12: For all n > 0, Edln 4>(d) = n.

PROOF: For all g, define the set

Ag = {x 11 < x <n and gcd(x,n) = g}.

Clearly Ag is non-empty only if g divides n; these non-empty sets form a partition
of {1,2, ... ,n}. Thus,

Suppose we could show that IAgl = 4>(n/g). We could then conclude the desired
result as follows:

L 4>(d) = L 4>(n/g) = L IAgl = n.
din gin gin

It remains to be shown that IAgl = 4>(n/g). Let d = n/g and consider any
x E Z;. The following equivalences are easy to verify:

x E Z; <=> gcd(xg,dg) = g x gcd(x,d) = g

<=> gcd(xg,n) = g

<=> xg E Ag .

Thus, there is a one-to-one correspondence between the elements of Z; and Ag,
and this implies that IAgl = 4>(d) = 4>(n/g). 0

Theorem 14.13: For any prime p, the group Z; is cyclic.

PROO,F: Recall that if any x E Z; has order k, then kl(p - 1). For each k that

divides p - 1, let Ok = {x E Z; I ord(x) = k}. We claim that lOki is either 0 or
4>(k), deferring the proof for the moment.

Since the sets Ok partition Z;,

L IOkl=p-l.
kl(p-l)

We know that each Ok has size either 0 or 4>(k) and so,

L lOki < L 4>(k).
kl(P-l) kl(p-l)

(14.1)

Now by Lemma 14.12, the latter sum equals exactly p - 1. Thus, the only way
(14.1) can hold is if each term in the summation is non-zero. In other words,

400

14.1 GROUPS AND FIELDS

for all k such that kl(p - 1), lOki = q,(k). In particular, this would imply that for
k = p - 1, lOp-II = q,(p -1) = q,(q,(p». But each element of Op-I is a generator,
and since this set is non-empty, the group has generators and is cyclic.

We now complete the proof by showing that if Ok is non-empty, then lOki =

q,(k). Each element a E Ok has the property that ak =p 1 and is then;fore a root
of the polynomial X k - 1 over the field (Zp, +p, x p). Since Ok is non-empty,
this polynomial has at least one root r in Ok. In fact, each element in the set
{rO, rl, r 2, ••• , ,k-I} is a root of this polynomial; moreover, these are all distinct
roots since order) = k, and so this set contains all the k roots of the polynomial.
Thus, the elements of Ok are exactly those powers of r that have order k.
Observing that'; has order k/ gcd(k, I), we obtain

Ok = {al I gcd(k, I) = 1} = {a l II E Z;}.

This implies that lOki = IZ;I = q,(k). o
The next theorem characterizes the set of all numbers n whose multiplicative .

groups are cyclic. The interested reader is referred to a number theory text for
the proof.

Theorem 14.14: The multiplicative group (Z:, xn) is cyclic if and only if n is either
1, 2, 4, I, or 21, for some non-negative integer k and an odd prime p.

It is usually easier to deal with numbers (such as primes) for which the
multiplicative group (Z:, xn) is cyclic, because this cyclic group's structure is
isomorphic to that of the additive group modulo q,(n). Let g E Z: be any
generator. Consider any two elements x, y E Z:. Since g generates the entire
group, there exist a and b such that x =n ga and y:En gb. For z = xy, we can
write z = gC where c = a+4I(n)b. (Recall that ord(g) = IZ:I = q,(n).) Thus, the
multiplicative group (Z:, xn) can be seen to be isomorphic to the additive group
(Z4I(n), +4I(n»; in effect, this is like working with the logarithms of the numbers
in Z: using the generator g as the base of the logarithm. This is a particularly
useful view in the case of a prime number p since we are always guaranteed that
the mUltiplicative group modulo p is cyclic.

Of course, we need to lay our hands on a generator to be able to make
use of this structural correspondence. For the multiplicative group modulo a
prime p, all known polynomial time algorithms for finding a generator require
a factorization of q,(p) = p - 1; we describe one such algorithm, which is
randomized. The basic idea is to observe that in the proof of Theorem 14.13
we showed that the number of elements of order p - 1 in Z; is given by
lOp-Ii = q,(p - 1). The next lemma shows that this quantity must be reasonably
large, i.e., the generators are relatively dense in the multiplicative group.

Lemma 14.15: For all n > 1, q,(n) = n (-1 1).
n ogn

401

NUMBER THEORY AND ALGEBRA

PROOF: Let n have the prime factorization p~lp~2 ... p~r. By Theorem 14.6, we
know that

t

<J>(n) - II p~i-I(Pi - 1)
i=1

t _ nxII Pi- 1.
i-I Pi

Since all prime factors must be at least 2, the number of distinct prime factors
cannot exceed log n. It is a simple exercise to verify that for any choice of
t < logn numbers Pi, the product in the above expression is 0(1/logn). This
gives the desired result. 0

We now present our first randomized number-theoretic algorithm. The algo
rithm picks a random element x E Z; and checks whether its order is p - 1.
Clearly, any element that passes this test is a generator. The probability of
finding a generator in a single trial is simply 4>(p - 1)/(p - 1) = 0(1/ logp). To
boost the probability of success we can repeat this process k times, for any k
that is polynomial in log p. A simple Las Vegas algorithm can also be devised,
using techniques described in Chapter 1.

The only problem with this approach is that it is unclear how we can compute
the order of any element in polynomial time. This is exactly the place where we
need to know the factorization of p - 1. Suppose that Ph ... , Pt are the distinct
prime factors of p - 1. If ord(x) < p - 1, then it must be the case that ord(x)
is a proper divisor of p - 1. In other words, for some Pi. ord(x)l(p - 1)/Pi. This
means that to verify that ord(x) = p - 1, it suffices to check for each Pi that
X(P-I)/Pi :1= 1 (mod p). The number of distinct prime factors of p - 1 is at most
O(log p), and exponentiation can be done in polynomial time, implying that the
entire process can be implemented in polynomial time.

Theorem 14.16: Let p be any prime number. Given the prime factorization of
p - 1, a generator for the group (Z;, x p) can be found in polynomial time by a
randomized (Las Vegas or Monte Carlo) algorithm.

Observe the extreme simplicity of this randomized algorithm. As we remarked
earlier, most randomized algorithms for number-theoretic problems have a
similar flavor. A non-trivial mathematical analysis establishes that a simple
random choice suffices to solve the problem at hand.

14.3. Quadratic Residues

We have seen that the exponentiation problem - to compute y = xD (mod n)
given a, x and n - is relatively easy. There are two related problems that turn
out to be unexpectedly difficult. The discrete log problem is: given x, y, and n,

402

14.3 QUADRATIC RESIDUES

find an exponent a such that y = JCl (mod n). The root finding problem is: given
a, y, and n, find an x such that y = xQ (mod n). For prime n, the latter problem
is a special case of finding roots of polynomials over finite fields, or factoring
such polynomials; in this case the polynomial is p(x) = JCl - Y (mod n).

The discrete log problem is believed to be extremely hard, and no efficient
solution is known at this point. We have already seen that the problem of
computing c/>(n) is equivalent to factoring n, in that an efficient algorithm
for one problem implies ~n efficient algorithm for the other. It remains an.
interesting open question to relate (in either direction) the hardness of the
discrete log problem to that of the factoring problem. In fact, it is believed
that the discrete log problem is hard even in the average case, i.e., it is hard to
solve for random inputs. Formally establishing the average-case hardness-of the
discrete log problem would have important consequences in cryptography and
pseudo-random generation. This is because it would imply that exponentiation
is a one-way function (a function that is easy to compute and hard to invert),
which is a long-sought building block in these two areas.

The situation is slightly better in the case of the root finding problem. We will
see that efficient randomized algorithms are known for this problem provided n
is a prime power, and these algorithms can be generalized to solve the related
problems of finding roots of polynomials, factoring polynomials, or finding
irreducible (prime) polynomials. Unfortunately, for general n, even the problem
of finding square roots modulo n can be shown to be equivalent (via randomized
reductions) to factoring n. We start by describing an algorithm for finding square
roots when n is a prime.

~ Definition 14.2: A residue a E Z: is said to be a quadratic residue if there exists
* some x E Zn such that

a = x? (mod n).

If a is not a quadratic residue, then it is referred to as a quadratic non-residue.

Notice that both x and -x (or n - x) are square roots of a. In the following
exercise and in Problem 14.6, the number of distinct square roots of a quadratic
residue is precisely determined.

Exercise 14.7: For an odd prime p and any k ~ 1, show that any quadratic residue
modulo pk has exactly two distinct square roots.

For the moment, we consider only quadratic residues over the field Z; for a
prime p. The multiplicative group is cyclic, and the following lemma characterizes
those powers of generators in this group that are quadratic residues. As is usual,
we will consider only the odd primes. (Is the following lemma meaningful if
p = 2?)

403

NUMBER THEORY AND ALGEBRA

Lemma 14.17: Let p be an odd prime, and g E Z; be any generator. Then, gk is
a quadratic residue if and only if k is even.

PROOF; Clearly, for even k, gk/2 is an element of Z; and is therefore a square
root of gk.

Consider now the case where k = 21 + 1 is odd, and assume for contradiction
that there exists an x E 7l; such that x2 = g21+1 (mod p). But since g is a
generator, x = gm for some non-negative integer m.- This implies that g2m = g21+1

(mod p), and switching to the additive group modulo c!>(p), we can restate this
as

2m = 21 + 1 (mod c!>(p».

Since c!>(p) = p - 1, we conclude that (p - 1)1(21- 2m + 1). But P - 1 is even and
21 - 2m + 1 is odd, and an even number cannot divide an odd number. This
gives the desired contradiction. D

This results in the following theorem, which is popularly referred to as Euler's
Criterion for quadratic residuacity.

Theorem 14.18 (Euler's Criterion): For prime p, an element a E 7l; is a quadratic
residue if and only if

a9 = 1 (mod p).

PROOF; Suppose a is a quadratic residue. Then let x = gk be a square root of a,
where g is any generator for 7l;. Clearly, a = g2k (mod p), and therefore

a9 = gk(P-l) = (gP-l)k = 1k = 1 -p -p -p -p'

Suppose now that a is not a quadratic residue. Then by Lemma 14.17 we
know that a is an odd power of the generator g. Assuming that a = g21+1, we
obtain that

a9 = gl(P-l)g9 = g9 -p -p'

Since g has order p - 1, it cannot be the case that the last term is congruent to
1. D

For any generator g the power g9 is exactly -1. This is because this power
of g must be a square root of 1 other than 1 itself, and each quadratic residue
modulo a prime has exactly two square roots. This motivates the following
definition.

~ Definition 14.3 (Legendre Symbol): For any prime p and a E Z;, we define
the Legendre symbol

if a is a quadratic residue (mod p)
if a is a quadratic non-residue (mod p)

404

14.3 QUADRATIC RESIDUES

Alternatively, it can be defined as

[~] = a9 (mod p)

where we treat p - 1 as -1.

The Legendre symbol can be computed in polynomial time by suitably
exponentiating a. Thus, we can decide in polynomial time whether an element
of 7l; is a quadratic residue or a non-residue. The distribution of quadratic
residues and non-residues among the elements of Z; is extremely irregular and
can be fruitfully thought of as being "pseudo-random." This creates a problem
when we wish to find an element of 7l; that is guaranteed to be a qqadratic
non-residue. (A quadratic residue can be found by picking any number and
squaring it.) However, the following exercise shows that this problem is trivial if
we are willing to settle for a randomized solution. No deterministic polynomial
time algorithm is known for this problem.

Exercise 14.8: Prove that for any prime p, exactly half the elements of Z; are
quadratic residues. Using this observation, devise efficient (polynomial time) ran
domized algorithms, both Monte Carlo and Las Vegas, for finding a quadratic non
residues in Z;. (See Problem 14.8 for a generalization to quadratic non-residues
modulo non-primes.)

It is known that if a mathematical hypothesis known as the Extended Rie
mann Hypothesis holds, then 7l; must contain a quadratic non-residue among

its o (log2 p) smallest elements. Then a quadratic non-residue can be easily
identified by trying all these numbers and computing their Legendre symbols.
The statement of the ERH and its proof are outside the scope of this book and
are omitted. We now describe the QuadRes algorithm for computing square
roots modulo a prime p. The only need for randomness in this algorithm is
that it requires a quadratic non-residue. Clearly, this algorithm can be made
deterministic if the ERH holds.

Fix an odd prime p and a quadratic residue a E 7l;, whose square root
modulo p is to be found. The algorithm assumes the availability of a quadratic
non-residue bEll;, which can be chosen as described above. It can easily verify
all this by computing the Legendre symbols for a and b. The basic idea behind
the algorithm is to find an odd power of a, say a21+1, which has residue 1 modulo
p. This would imply that a21+2

=p a, and then it is easy to see that ±a1+1 are the
desired square roots.

Since p is an odd prime, its residue modulo 4 must be either 1 or 3. The
easy case is when p = 3 (mod 4). Let k be such that p = 4k + 3 and note
that (p + 1)/2 = 2k + 2. Since a is a quadratic residue, we know that a9 =p 1.
Multiplying by a on both sides, we have af!! =p a. But (p + 1) /2 = 2k + 2 is even,

405

NUMBER THEORY AND ALGEBRA

and setting x = ±d'+l (mod p) it is easily seen that x2
=p a. Thus, the square

roots of a can be computed in polynomial time via a simple exponentiation.
On the other hand, when p = 1 (mod 4), the residue of p modulo 8 is either

1 or 5. Consider first the case where p = 8k + 5. Now (p + 1)/2 = 4k + 3 is
odd and we cannot use the same idea as before. However, we still know that
a4k+2 =p 1, implying that a2k+1 is a square root of 1. If a2k+1

=p 1 then we are
done by the same argument as in the earlier case. The problem is that it might
happen that a2k+1 =p - 1. This is where the quadratic non-residue b comes in
handy. Since (p - 1)/2 = 4k + 2, the Legendre symbol of b is b4k+2

=p - 1. This
implies that a2k+1b4k+2 = 1 (mod p), or equivalently

a2k+2b4k+2 = a (mod p).

Since both exponents on the left are even, we conclude that +d'+lb2k+1 (mod p)

are the square roots of a. Once again we need only a small number of
multiplications and exponentiations.

The really hard case is when p = 8k + 1, implying that a4k
=p 1. While the

argument from the second case does not apply directly, it can be appropriately
generalized with some effort. Let k = 2r R for some odd number R. The values
of rand R can be computed in polynomial time by repeatedly dividing k by 2.
The Legendre symbol for a can now be rewritten as A = a2·+

2R = 1 (mod p).
The basic problem now is that the exponent is not odd (otherwise, multiplying
A by a would give an even power of a that equals a, so that the square root
is easily computed). However, computing the square root of A is easy since we
can compute aPR by exponentiating a, for any j > O. What about the obvious
strategy of repeatedly taking square roots of A until the term 2j in the exponent
disappears? The only difficulty with this is that we also need the fact that A =p 1,
and this need not remain true as we continue taking square roots.

Assume that aR ¥p 1; otherwise we can easily check that the converse is true
and hence identify the square roots of a as +a(R+l)/2. Now, there must be a
value j such that 0 < j < r + 2 and Aj = a2iR is not congruent to 1 modulo
p, but Aj+l = A; is congruent to 1. This j is easy to find by repeatedly taking
square roots of A. It must be the case that Aj =p - 1. We can now use the trick
of multiplying Aj by B = b4k = b2·+

2R to obtain a number that is congruent to
1 modulo p. Once again we can start taking square roots of AjB with the aim
of reducing the exponent of a to the odd number R. This is possible since the
exponent of b has a larger power of 2 than that of a. Of course, we get stuck
again if the square root at some point gives -1 instead of 1. But then we can
supply another factor of b4k to restore the property of being congruent to 1
modulo p.

Basically this process continues until the exponent of a is exactly R. The
power of 2 in the exponent of a drops by at least 1 before each multiplication
by b4k ; thus the number of such stages cannot exceed r < logp. Also, at all
times, the various powers of b have a strictly larger power of 2 in their exponent
than does a. Thus, upon termination we obtain a number y = aRbz, where z is
the sum of the exponents of b and is even. Since y =p 1, we can use the previous

406

14.3 QUADRATIC RESIDUES

trick of multiplying by a and halving the exponents to obtain the square root.
It is also fairly easy to verify that each stage of this algorithm takes polynomial
time. The algorithm is summarized below.

Algorithm QuadRes:

Input: Odd prime p and quadratic residue a E Z; .

Output: An x E Z; such that x2
=p a.

1. choose a quadratic non-residue b E Z; using random sampling.

2. choose the appropriate case.

Case A. [p = 3 (mod 4) or p = 4k +3]

A.1. return x = ±ak+l (mod p).

Case B. [p = 5 (mod 8) or p = 8k +5]

B.1. A +- a2k+1 (mod p).

B.2. if A =p 1 then return x = ±ak+l (mod p)

else return x = ±ak+1b2k+1 (mod p).

Case C. [p = 1 (mod 8) or p = 8k + 1]

C.1. compute r and odd R such that k = 2' R .

C.2. if aR = 1 (mod p) then return x = ±a~ (mod p).

C.3. compute largest j < r + 2 such that a~R=I=p 1.

C.4. a +- 2i R; P +- 2,+2R.

C.S. A +- all' (mod p); B +- bP (mod p).

C.6. repeat forever

C.6.1. while AB =p 1 and a =1= R do
a +- a /2; P +- P /2;
A +- all' (mod p); B +- bP (mod p).

C.6.2. if a = R then return x = ±.JaAB (mod p)

else P +- P + 2,+2R and B +- bP (mod p).

We now indicate how this algorithm generalizes to the case of prime powers.
Assume that q = If for an odd prime p. The problem now is to find an x
such that x2 =q a. We can use the QuadRes algorithm to find the square root
of a modulo p. Let rl be such that rr = a (mod p). We first show that this
information can be used to find a square root '2 of a modulo p2; we refer to
this as the "lifting" of the square root to integers modulo r. It will then be
clear that the same method can be used to solve the general problem.

407

NUMBER THEORY AND ALGEBRA

By definition, r~ - a = 0 (mod p2) and therefore it must be the case that
r~ - a == 0 (mod p). The latter implies that r2 = rl (mod p). In other words, for
some choice of d E lLp, r2 = rl + pd, and our goal is to identify d. Substituting
this expression for r2 into the congruence r~ - a = 0 (mod p2), we obtain the
following.

(rl + pd)2 - a

=> rr + 2rlpd + p2d2 - a

=> (rr - a) + 2rlpd

= 0 (mod p2)

= 0 (mod p2)

= 0 (mod p2)

Now, observe that pl(a-rf) and we can define y = (a-rr)/p. Thus, 2rlpd-py = 0
(mod p2) or, equivalently, 2r1d - y = 0 (mod p). Defining z = (2rd-1 (mod p)
to be the unique multiplicative inverse of 2rl in lL;, we see that 2rlzd - yz = 0
(mod p), or d = yz (mod p). Thus, we have shown that there is a unique choice
of d such that r2 = rl + pd (mod p2), and this value of d can be easily computed.
The following proves formally that choosing y = (a-rf)/p, z = (2rd-1 (mod p),
and d = yz (mod p), we obtain a square root r2 = rl + pd of a in lL;.

(rl + pyz)2 _ rr + (2rlz)py + p2lz2 (mod p2)

_ rr + py (mod p2)

_ rr + (a - rr) (mod p2)

_ a (mod p2)

It is an easy exercise to show that square roots can be lifted into the integers
modulo If in a similar fashion.

Exercise 14.9: For any odd prime p, q = pk, and quadratic residue a E Z;, show that

the square root of a in Z; can be found in polynomial expected time by a randomized
algorithm.

In fact, we can find square roots in lL: for any odd number n, given the prime
factorization of n. Assume that n has the prime factorization p~1 p~2 ... p~r. Define
nj = p~i for 1 :::; i < t, and note that the terms nj are pairwise coprime. We can
easily compute roots rj E lLni such that r; = a (mod nj), using the randomized
algorithm described above. Let r be the unique element in lLn such that r = rj
(mod nj), where r can be computed as in Theorem 14.4. It is now easy to see
that r2 == a (mod nj) for each i. But then it is clear that r2 = a (mod n).

Recall that a quadratic residue modulo an odd prime power has exactly two
square roots. In the above computation, we could have chosen -rj instead of
rj for any i. In fact, there are 2t distinct sequences that we could have used in
the above computation, by trying all possible signs and combinations for the
roots rjo Since each of these gives a distinct square root of a modulo n, we
obtain the following theorem. (The case of the solitary even prime is slightly
more complicated and is discussed in Problem 14.7, giving a generalization of
this theorem to the case of even numbers.)

408

14.3 QUADRATIC RESIDUES

Theorem 14.19: For an odd number n with t distinct (odd) prime factors and
any quadratic residue a modulo n, there are 2t distinct square roots of a modulo
n.

We have seen that computing square roots in 7l: is easy using randomization,
provided that a prime factorization of n is known. The next result shows that
computing square roots is as hard as factoring n. This is established by providing
a randomized reduction from factoring to computing square roots. The following
lemma will be useful for this purpose.

Lemma 14.20: Suppose x2 = y2 (mod n) and x :1= ±y (mod n). Then neither
gcd(x + y, n) nor gcd(x - y, n) equals 1 or n.

PROOF: Since x2 = y2 (mod n), we have (x + y)(x - y) =n 0 or, equivalently,
nl(x + y)(x - y). Suppose that gcd(x + y, n) = 1; then it must be the case that
nl(x - y). But this implies that x =n y, contradicting the conditions of the lemma.
A similar argument shows that gcd(x - y, n) f 1. Finally, notice that the neither
of the two gcd's can be n for essentially the same reason. D

We are now ready to provide the desired reduction.

Theorem 14.21: Suppose that there is a polynomial time, possibly randomized,
algorithm Al that can compute square roots modulo any n. Then there is a ran
domized polynomial time algorithm A2 for factoring any n.

PROOF: If n is even, it is easy to find the highest power of 2 that divides nand
reduce to the case of odd n; therefore, we assume throughout that n is odd.
The algorithm A2 will decompose n into factors each of which is a prime power.
These can then be determined using Exercise 14.5. Of course, if n is a prime
or a prime power, A2 will fail to find any non-trivial factors but Exercise 14.5
applies again.

The factoring algorithm A2 will use Al as a blackbox. It starts by choosing
bEll: uniformly at random. This is not entirely trivial; the algorithm will have
to pick a random element b from tln and compute its gcd with n to test whether
it also belongs to 7l:. If g = gcd(b, n) f 1, then g is a non-trivial factor of n, and
n = gh for h = n/g. The algorithm can now recursively factor g and h. Thus,
the hard case is when the chosen element b does indeed lie in 7l:.

Algorithm A2 now computes a = b2 (mod n). It then uses algorithm Al to
find a square root x for a modulo n. Since n is not a prime power, it must
have t ~ 2 distinct prime factors. By Theorem 14.19, there must be 2t distinct
square roots of a modulo n. Since b was chosen randomly, and Al has no
knowledge of b other than that b2 = a, the probability that x = ±b is at most
2/2t ~ 1/2. Of course, if A2 is unlucky and gets back ±b as the square root, the
entire process can be repeated for an independent, new choice of b. Therefore,
with high probability, A2 is guaranteed to find x and b such that x2 =n b2 but

409

NUMBER THEORY AND ALGEBRA

x =/=n ±b. Lemma 14.20 now applies to x and b, and it is clear that neither
gcd(x + b, n) nor gcd(x - b, n) can equal 1 or n. Let g = gcd(x + b, n); since g
is not 1 or n it must be a non-trivial factor of n. Setting h = n/g, we obtain a
partial factorization of n into gh. Repeating this process recursively for g and h,
A2 obtains a factorization of n into prime powers. By Exercise 14.5, the prime
powers can be factored individually. 0

Exercise 14.10: Estimate the expected running time of algorithm A2 in Theorem 14.21
when it is required to factor n with probability at least 1/2, assuming that A, runs in
time T(n).

Exercise 14.11: Suppose that the algorithm A, in Theorem 14.21 can only find square
roots modulo a specific n, rather than for all n. Show that if n = pq, for primes p and
q, then there is a Las Vegas algorithm A2 that can factor this specific n in polynomial
expected time.

Extend this result to arbitrary n (not necessarily of the form pq). Observe that a
square root modulo n yields a square root modulo f, for any factor f of n.

Even when the factorization of n is known, finding the smallest square root
of a qua?ratic residue modulo n is an NP-hard problem.

14.4. The RSA Cryptosystem

We remarked earlier that cryptography relies heavily on number-theoretic tools.
In particular, systems based on the (assumed) hardness of problems in number
theory, such as factoring and discrete log, form an important part of modern
cryptography .. We illustrate this by a famous cryptographic scheme, the RSA
cryptosystem named after Rivest, Shamir, and Adleman. But first we need to
review the basic idea behind a public-key encryption scheme.

In a public-key cryptosystem, an individual (Alice) can set up a mechanism
whereby she can receive and decode encoded messages from an arbitrary person.
This message can be transmitted over a public channel because the system
ensures that nobody else can decode the message. She advertises an encoding
function E, which has the property that anyone may efficiently compute E(M)
for a message M, but no one but Alice may efficiently compute M from E(M).
In fact, Alice has a decoding function D such that, for all M, D(E(M)) = M.

In the RSA scheme, Alice constructs functions E and D as follows. She
first chooses two distinct odd primes p and q, and computes n = pq. Alice
keeps the primes secret, while n is given to the pUblic. Alice also chooses an
element k E Z~n)' with k > 1, and advertises k along with n. (Observe that
cp(n) = (p - 1)(q - 1) is easy to compute given p and q.) The encoding function
E is given by E(M) = Mk (mod n), assuming that messages correspond to the
elements of Zn. Knowing cp(n), Alice can easily compute the multiplicative

410

1« THE RSA CRYPTOSYSTEM

inverse I = k-I for k in the group Z:(n). The decoding function D is given by
D(C) = CI (mod n). It is easy to verify that if C = E(M), then D(C) = Mkl = M
(mod n), since kl = 1 (mod q,(n)).

Why is this system secure against an eavesdropper Eve? We show that if Eve
can compute I from the (public) knowledge of nand k, then she can factor n.
This will then imply that completely breaking the RSA scheme is at least as
hard as factoring n. Suppose Eve successfully computes I; then she knows that
q,(n)l(kl -1). We have shown earlier that for n = pq, knowing q,(n) lets us factor
n efficiently. Eve knows a multiple of q,(n), and it is not very hard to see that
even this is sufficient to allow the factorization of n (see Problems 14.3-14.4).

A problem with this result is that it only proves the hardness of breaking
the RSA scheme completely by computing the value of I itself. It is entirely
possible that some clever scheme could infer the messages without determining
the decryption key. In practice, we would like stronger guarantees, for example
that it is impossible to be able to decode the encryptions of more than a
vanishingly small fraction of messages. Let C(A) be the set of all x E Z: such
that the algorithm A can compute xl (mod n), given that A knows only nand
k. The next theorem shows that if there is an algorithm Al for which C(Ad
is not too small in size, then there is another algorithm A2 that can compute xl
(mod n) for all x E Z:.
Theorem 14.22: Suppose there exists a (possibly randomized) polynomial time
algorithm Al for which IC(Adl > EIZ: I. for some E > O. Then there exists a Las
Vegas algorithm A2 for which C(A2) = Z:. and the expected running ti,!,e of A2
is polynomial in logn and liE.

PROOF: Fix any x E Z:, and we will show that the algorithm A2 can compute xl
(mod n) using algorithm Al as a blackbox. The algorithm A2 chooses a random
element y E Z: and computes z = xyk. Then it runs the algorithm Al on the
input z. Notice that zl = xlykl = xly (mod n), and since A2 can compute the
multiplicative inverse of y modulo n, the value of xl is easily inferred from that
of zl. Thus, algorithm A2 succeeds if Al succeeds on z, or equivalently z E C(AI).

We claim that z is uniformly distributed over Z: and therefore the probability
that z E C(Ad is at least E. This claim follows from the observation that the
operations of mUltiplication and raising to the power of k are functions that are
one-to-one and onto in the group Z:, that is, they are permutations. Thus, for
a random y, the number z = xyk is also uniformly distributed in Z:.

Since A2 succeeds with probability E, it is easy to see that independent
iterations will boost the probability of success to any desired level. Also, it is
possible to convert this into a Las Vegas algorithm whose expected running time
is polynomial in log nand 1 IE. 0

The algorithm A2 described above has a polynomial expected running time
provided E = Q(l/poly(logn)). Thus, it has polynomial running time unless AI'S

411

NUMBER THEORY AND ALGEBRA

ability to break the RSA scheme is restricted to a set of messages of size smaller
than any polynomial fraction of Z: .

It is also important to realize that from our description of A2 (as also the
assumption about AI), it is not clear that the value of I is actually determined
by these algorithms. All they do is to compute xl and n via indirect methods.
Thus, all that this result really says is that if the RSA scheme has even a slight
weakness - in that it can be broken on some small fraction of the inputs - then
it is totally insecure. This does not directly relate the hardness of breaking RSA
to that of factoring.

This theorem has an interesting application to a variant of the RSA scheme
due to Rabin. Recall Theorem 14.21, which says that finding square roots
modulo n is as hard as factoring n. Suppose now that in the RSA scheme we
had used the exponent k = 2. Now the task of decoding an encoded message is
exactly equivalent to taking square roots. The above theorem says that if there
is even a small chink in RSA's armor for a specific n, then there is an algorithm
for finding all square roots modulo this n. While Theorem 14.21 does not apply
directly, as it requires an algorithm for finding square roots modulo all possible
n, the result in Exercise 14.11 can be used to show that this n = pq can now
be factored in randomized polynomial time. Thus, the problem of breaking the
Rabin cryptosystem is as hard as factoring.

Ther~ is one technical problem with this cryptosystem. Since q,(n) is even, the
exponent 2 is not coprime with respect to q,(n). Therefore, there is no unique
way of inverting the encoding function as in the case of RSA. In fact, we know
that there are four distinct square roots of any quadratic residue modulo n = pq,
and the decoding process (finding square roots) need not give the same result
as the original encoded message. Fortunately, the following exercise shows that
there exists a simple method for computing all four square roots in this instance,
and so some simple convention can be used to disambiguate the choice of the
decoded message (see Problem 14.9).

Exercise 14.12: Show that for any quadratic residue a modulo n = pq. for odd primes
p and q. the four square roots of a are given by ±x and ±Y. where y == X(PQ-l _ qP-l)
(mod n).

A drawback with the Rabin cryptosystem is that anyone with temporary
access to a blackbox for decoding can compute square roots and hence factor
n. The RSA cryptosystem does not appear to have this drawback, precisely
because it is not known to be as hard as factoring.

14.5. Polynomial Roots and Factors

We turn to the problem of finding roots and factors of polynomials over finite
fields. Recall that the order of any finite field is a prime power, and that fields

412

14.5 POLYNOMIAL ROOTS AND FACTORS

of a particular order are unique up to isomorphisms. When the order of a finite
field is a prime p, it must be isomorphic to the field (Zp, +p, x pl. (No such
simple number-theoretic characterization is available for fields of order P', for
k > 1.) We focus on the case where the underlying field is (Zp, +P' x p), and the
polynomial is of degree 2. In what follows, we will denote the symbolic variable
in a polynomial by X. We also assume that the reader is familiar with standard
algorithms for adding, subtracting, multiplying, and dividing polynomials; these
can be implemented in polynomial time for polynomials over the finite fields
that are under consideration.

Consider a degree 2 polynomial f(X) over a field of prime order p. We can
assume without loss of generality that the polynomial is monic, i.e., the leading
coefficient is 1; otherwise, the remaining coefficients can be divided by it to
achieve the same effect. We also assume that the polynomial is not irreducible,
which means that it has roots over the field Zp and can be factored into linear
terms as follows:

f(X) = X2 + aX + p = (X - a)(X - b).

Here ~, P E Zp are the coefficients, and a, b E Zp are the roots of the polynomial.
If the polynomial is indeed irreducible, the algorithm described below will fail
to find roots or factors, thereby indicating this fact. We make the simplifying
assumption that the two roots are distinct; otherwise, if a is the only root, it
must be the case that ~ = -2a (mod p) and p = a2 (mod pl. These equations
can be easily checked and would yield the desired root. Furthermore, we can
assume that neither root is 0, since otherwise the polynomial is easily factored.
Finally, we note that the problem of finding square roots of a quadratic residue
r is the special case where the polynomial is f(X) = X 2 - r. Thus, the algorithm
to be presented below yields an elegant alternative to the QuadRes algorithm
described earlier.

Proposition 14.23: An element r E Z; is a quadratic residue modulo an odd

prime p if and only if X - r is a factor of the polynomial X~ - 1.

This proposition follows from Euler's Criterion, since X - r is a factor if
and only if r is a root of the polynomial X~ - 1. We start by applying
this proposition to the root-finding problem for a special class of degree 2
polynomials. Suppose that the roots a and b of f(X) are such that [~] =1= [!].
In particular, assume that [~] = 1 and [!] = -1, that is to say a is a quadratic
residue while b is a quadratic non-residue. By Proposition 14.23, we have

It then follows that

(X -a) I X~-1
(X - b) 1 X~ - 1.

gcd(f(X),X~ -1) = (X - a).

413

NUMBER THEORY AND ALGEBRA

Thus, the polynomial f(X) can be factored via a single gcd computation. We
leave it as an exercise to show that polynomial gcd can also be computed by
Euclid's algorithm.

Exercise 14.13: Adapt Euclid's algorithm for gcd of integers to the computation of
the gcd of polynomials over the field Zp. Show that this algorithm also runs in time
polynomial in the degrees of the .input polynomial.

A problem with using the result from this exercise is that the above application
requires the goo of a polynomial of degree Q(p) and a quadratic polynomial. A
naive application of Euclid's algorithm will require time polynomial in prather
than log p. Fortunately, in this case the polynomial of higher degree has a very
simple structure and we can finesse the problem of computing the gcd. The key
observation is that the very first step of Euclid's algorithm will compute the
remainder from the division of X~ - 1 by f(X), and that remainder will be of
degree at most 2. Moreover, the quotient and the polynomial X~ - 1 need not
be referred to in the remaining steps of the goo computation. Thus, it suffices
to compute the remainder efficiently.

How may we compute this remainder efficiently? Recall the repeated squaring
trick used to perform exponentiation (see Theorem 14.5). Suppose we were to
express X~ in terms of the powers of the type gi(X) = X2i. Now, the remainder
of each gi(X) upon division by f(X) can be computed efficiently from the
corresponding remainder for gi-l(X). Thus, working modulo !(X), we can easily
compute the remainder of X~ upon division by f(X). The details are left as
an easy exercise.

Exercise 14.14: Show that repeated squaring modulo f(X) can be used to compute
gcd(f(X), xer -1) in polynomial time, provided that the degree of f(X) is polynomially
bounded.

Of course, there is no reason why an arbitrary polynomial of degree 2 should
have roots with differing Legendre symbols. We show that this problem can
be handled by suitably modifying the given polynomial f(X). Recall from
Exercise 14.8 that exactly half the elements of Z; are quadratic residues. Thus,
for r chosen uniformly at random from Z;, the probability that r is a quadratic
residue is exactly 1/2. If f(X) had random roots, we would be able to claim that

with probability 1/2 it is the case that [~] =1= [~]. Our idea is to deliberately
"randomize" the roots of f(X).

Consider r chosen uniformly at random from Zp. Define the polynomial
fr(X) = f(X - r) = (X - a - r)(X - b - r) (mod pl. Clearly, the roots of fr(X)
are a + rand b + r, which are both uniformly distributed over Z; (we may
assume that neither of a + rand b + r is 0, since then we already have a root

414

14.5 POLYNOMIAL ROOTS AND FACTORS

for the polynomial). This polynomial can be written as

fr(X) - X2 - (a + b + 2r)X + (ab + (a + b)r + r2)

- X2 + (cx - 2r)X + (P - cxr + r2).

The coefficients of the polynomial fr(X) = X 2 + cxrX + Pr can be easily computed
given that' they depend only on the values of cx, p, and r. Also, given the roots
of fr(X), it is easy to obtain the roots of i(X) by subtracting r. It does not seem
unreasonable to hope that the roots of fr can be computed via the goo trick,
since the roots are now effectively "randomized."

The problem is that although the roots of fr(X) are randomly distributed,
they are strongly correlated. The underlying assumption in the gcd trick is that·
the two roots are random and independent. For example, suppose that 'all the
odd elements of Zp are quadratic residues, while the even elements are quadratic
non-residues. Then, consider the case where a = 2 and b := 4. For most choices
of r, a + rand b + r would be smaller than p, so their residues modulo p would
have the same parity and, therefore, the same Legendre symbol. However, we
can circumvent this problem using the following lemma, which is reminiscent of
two-point sampling (Section 3.4).

Lemma 14.24: Let a, b E Zp and a =1= b. For s, t chosen independently and
uniformly at random from Zp, the random variables U = as + t (mod p) and
V = bs + t (mod p) are independent and uniformly distributed over Zp.

.
PROOF: It is clear that the random variables U and V are uniformly distributed
over Zp. The hard part is to show that they are independent, but note that it
suffices to verify that for each k, I E Zp the probability that U = k and V = I is
exactly 11p2.

Since we are working over the field Zp and a =1= b, it is easy to see that U = k
and V = I if and only if

k-l
s = a _ b (mod p)

k-l
t - k - a--

b
(mod pl.

a-

Since 's and t are uniform and independent, the probability that they take on
these values is exactly 1/r. 0

It is now clear that we could randomize the roots of f(X) using both sand t as
described in the above lemma. Instead, we now use this lemma to show that the
original method of randomizing the roots, while yielding correlated roots, has
the desired properties from the point of view of the Legendre symbols. These
properties are captured by the event £(X, Y) which occurs if either at least
one of X and Y is 0, or their Legendre symbols differ. Clearly, the algorithm
succeeds when £(a + r, b + r) occurs.

415

NUMBER THEORY AND ALGEBRA

Lemma 14.25: Let a, b, E Zp and a =F b. For r chosen uniformly at random from
Zp, the random variables A = a + r (mod p) and B = b + r (mod p) satisfy

Pr [£(A, B)] = ~ - O(~).

PROOF: Suppose that we choose sand t, and define U and V exactly as in
Lemma 14.24. It is then clear that the probability pf £(U, V) is at least 1/2.
Suppose that instead of choosing r at random, we set its value to ts-1 (mod p),
assuming for now that s =F O. Then, it is easy to verify that A = Us-1 and
B = V S-I. Recall that, by the definition of the Legendre symbol,

[x;] = [~] [~] .
It is now easy to see that regardless of the value of S-1 ,

[;] = [!] ~ [~] = [:] .

This implies that £(A, B) occurs with the same probability as £(U, V), and this
probability is at least 1/2.

Of course, all of this is based on choosing r = ts-1, instead of a random
r. But s.ince t is uniformly distributed, it follows that ts-1 is also uniformly
distributed. Thus, even when r is chosen uniformly at random, £(A, B) occurs
with probability at least 1/2. Since the probability that s = 0 is l/p, removing
the conditioning on s =F 0 gives the desired result. 0

These ideas are summarized below as Algorithm PolyRoot.

Algorithm PolyRoot:

Input: Odd prime p and a non-irreducible, monic, square-free, degree 2 polyno-
mial f(X) = X2 +aX +P (mod p).

Output The roots a and b of f(X) over Zp.

1. choose r uniformly at random from Zp.

2. compute the coefficients of the polynomial g(X) = X2 + a' X + P' such that
g(X) = f(X - r), as follows.
a' -a -2r;
P' _ P - a r + r2.

3. If P' = 0 then return a = -r and b = -r -a'.

4. compute h(X) = gcd(g(X), xe; - 1) using Euclid's algorithm.

5. If h(X) = g (X) or h(X) = 1 then go to Step 1.

6. let h(X) = X - c and compute A - c, B - -(x' - A.

7. return a = A - rand b = B - r.

416

14.6 PRIMALITY TESTING

Since PolyRoot succeeds in each iteration with probability at least 1/2, it
follows that it is a Las Vegas algorithm with polynomial expected running time.

Theorem 14.26: Algorithm Poly Root is a Las Vegas algorithm that factors a de
gree 2 polynomial over Zp in polynomial expected time, provided p is an odd prime.

14.6. Primality Testing

One of the most interesting open problems in computational number theory
is whether factoring is NP-hard. In the theory of NP-completeness, we deal
with decision problems (equivalently, language recognition problems), .rather
than optimization or function computation problems. The decision problem
associated with factoring is that of deciding the compositeness or the primality
of a given number n > 1; the corresponding languages are called COMPOS
ITENESS and PRIMALITY, and they are the complements of each other. It
is easy to see that COMPOSITENESS E NP, since any non-trivial factor of a
number is a polynomial-length proof of its compositeness, which can be verified.
in polynomial time using a single division. This implies that the complemen
tary problem PRIMALITY E co-NP, by the definition of co-NP. (Recall that
P s; NP n co-NP.) It is not known at this point whether COMPOSITENESS
is NP-complete. We start by providing some evidence that this problem is not
NP-complete. Thus, like graph isomorphism (see Section 7.7), this problem is ex
pected to have intermediate hardness, somewhere between P and NP-complete.
We then focus on the solution of the compositeness and primality problems
using randomized algorithms.

The evidence that COMPOSITENESS is not NP-complete consists of demon
strating that this problem, or equivalently PRIMALITY, lies in NP n co-NP. If
any problem in NP n co-NP is shown to be NP-complete, we would trivially
obtain that NP = co-NP, a very unlikely outcome. The following theorem
shows that PRIMALITY E NP, thereby also proving that COMPOSITENESS
E NPnco-NP.

Theorem 14.27: PRIMALITY E NP.

PROOF: Our goal is to show that any prime number n has a polynomial length
"certificate" of primality whose validity can be verified in polynomial time. For
any n, the certificate can be non-deterministically guessed and then verified
efficiently.

We claim that n is a prime if and only if Z: has an element of order n - 1.
Clearly, for prime n, the multiplicative group has a generator and its order is
n - 1. For the converse, if Z: has an element of order n - 1, then IZ: I > n - 1.
Since Z: contains only the coprimes smaller than n, it follows that every number
smaller than n is coprime to it, implying that n is a prime.

417

NUMBER THEORY AND ALGEBRA

The certificate of primality is an element g E Z: along with a proof that g
has order n - 1. The proof just needs to show that for non-trivial divisors m
of n - 1, gm =1= 1 (mod n). It suffices to verify this for the values of m that are
(n - 1)/Pi, where the p/s are distinct prime factors of n - 1. The verification of
the proof is easy once the factorization of n - 1 is known. The certificate of
primality needs to include the factorization of n -1, which is q,(n) assuming that
n is indeed a prime. It is essential that the factorization be complete, in that
each of the factors is itself a prime; otherwise the verification of the order of g
could be fallacious. Thus, the certificate must also include proofs of primality
of the distinct prime factors of n - 1.

The primality of the various prime factors can be proved recursively by
including certificates of primality of these factors. Since the number of prime
factors is O(log n) and each is of length O(log n), this recursive certificate is of
polynomial length and can be checked in polynomial time. 0

Exercise 14.15: Compute a bound on the length of the certificate of primality de
scribed in Theorem 14.27, and show that it can be validated in polynomial time.

Of co.urse, this does not tell us how to check the primality (or compositeness)
of a given number efficiently, even if we allow the use of randomization. In
what follows, we will describe some randomized algorithms for this purpose.
Intuitively, randomized algorithms for a decision problem can be devised only if
there is a set that can be sampled efficiently and is dense in proofs of membership
for the language. In concrete terms, a randomized algorithm for testing primality
requires a set of potential certificates such that for any prime p, this set contains
a large number of certificates of p's primality. For COMPOSITENESS, a naive
belief might be that for composite n, Zn contains a large number of elements

. that are not coprime with n, and such an element is a proof of compositeness
that can be found by random sampling. However, when n = pq for two roughly
equal primes p and q, it is easily seen that the size of the set Zn \ Z: is O(1/n).
This implies that random sampling is unlikely to yield the desired proof. What
about' PRIMALITY? Considering the complex structure of the best known
certificates, it seems even less likely that a naive sampling will do the trick.

There is some hope for primality testing in Fermat's Theorem, which says that
if n is a prime, then for all a E Z: it must be the case that an- 1 = 1 (mod n).
Call this equation the Fermat congruence for a. Suppose that the converse of
this theorem is also true: if n is not a prime then there exists a E Z: for
which an- 1 =1= 1 (mod n). Then, we can choose an element a E Zn at random
and verify that gcd(a, n) = 1, since otherwise we know that n is composite. If
indeed a E Z:, then we hope that with reasonably high probability a violates
Fermat's congruence when n is composite. Failure to prove compositeness using
this strategy could be taken as evidence of primality. Of course, it would also
be necessary to show that the number of such compositeness certificates is

418

14.6 PRIMALITY TESTING

reasonably high. Unfortunately, there exist pseudo-primes, composite numbers
satisfying the property in Fermat's Theorem, implying that its converse is not
true.

~ Definition 14.4: A Carmichael number is a composite number n such that, for all
* aEZn ,

an
-

1 == 1 (mod n).

The smallest example of a Carmichael number is 561, which can be factored
into 3 x 11 x 17. A more interesting Carmichael number is 1729, the number
observed by Ramanujan to be the smallest number expressible as the sum of
two cubes in two distinct ways. In Problem 14.10, we describe a simple method
for checking whether n is a Carmichael number, provided the factorization of n
is known.

The existence of Carmichael numbers need not kill the entire approach. If
there are only finitely many Carmichael numbers, a randomized algorithm could
afford to verify that the input n is not one of the Carmichael numbers, and
otherwise perform the procedure described above. But we still need to show that
for non-Carmichael composite numbers, the set Z: is not dense in the elements
a that satisfy Fermat's congruence.

~ Definition 14.5: For any number n, the set Fn of elements that do not violate
Fermat's Theorem is defined as

Fn = {a E Z: I an- 1 == 1 (mod n)}.

Obviously, the set Fn is the same as Z: for prime n. The following lemma
shows that for non-Carmichael composite numbers, the set Fn cannot be too
large.

Lemma 14.28: Let n be a composite non-Carmichael number. Then,

1 * IFni < llZn I·

PROOF: Since n is not a Carmichael number or a prime number, it is clear
that Fn =1= Z:. It is easy to verify that (F", xn) forms a group, and therefore is
a proper sub-group of (Z:, xn). By Proposition 14.8, it must be the case that
IFni I IZ: I. But since the two cardinalities are not equal, it must be the case that
IZ: I/lFnl > 1. This gives the desired result. 0

We now know that IFn I is either the same as IZ: I, or no more than half of
it. Since the former happens only in the case of primes or Carmichael numbers,
this suggests that the simple randomized strategy described above will be able
to test for primality. Unfortunately, it has recently been shown that there are,

419

NUMBER THEORY AND ALGEBRA

in fact, infinitely many Carmichael numbers. The good news is that there are
techniques for dealing with the problem posed by the existence of Carmichael
numbers.

We will first need to define the Jacobi symbols, a generalized form of the
Legendre symbols. Recall that for a prime n and any a E 7l:, the Legendre
symbol [~] denotes a~ (mod n). The Jacobi symbol is defined for all odd n,
and it is the same as the Legendre symbol when n is a prime; we therefore use
the same notation for both symbols.

~ Definition 14.6 (Jacobi Symbol): Let n be an odd number with the prime
factorization p~J,l22 ... p~r. Then, for all a such that gcd(a, n) = 1, the Jacobi
symbol is given by

U~] = IT [a.] k
i

n . 1 P,
1=

Like that of the Legendre symbol, the value of the Jacobi symbol is also
either 1 or -1. At first glance, it may appear that computing the Jacobi
symbol requires knowledge of the prime factorization of n. Fortunately, there
is a polynomial time algorithm for computing the Jacobi symbol without us
ing the· prime factorization of n. The reader is asked to provide a proof in
Problem 14.11.

Theorem 14.29: The Jacobi symbol satisfies the following properties whenever it
is defined for the specified arguments. Using these. a polynomial time algorithm
can be devised for computing the Jacobi symbol. given only a and n.

2., For a = b (mod n). [*J = [~] .

3. For odd coprimes a and n. [*J = (-1)~~ [~J .

4. [~]=l.

s. [~] = {
-1 forn=30r5 (mod 8)

1 for n = 1 or 7 (mod 8)

~ Example 14.1: We show below a sequence of application of these properties for

420

14.6 PRIMALITY TESTING

computing the Jacobi symbol [;i].

U~~] - (-1>[i~~]
- (-1) U:l]
- (-1) [1~1]3 [1~\]
_ (-1)2(+ 1)3 [lil]
- [141]
- [.21]2
_ (_1)2

= 1

(By Property 3)
(By Property 2)

(By Property 1)

(By Properties 5 and 3)

(By Property 2)

(By Property 1)

(By Property 5)

The following primality testing algorithm is an RP algorithm for COMPOS
ITENESS. Such an algorithm outputs PRIME or COMPOSITE to indicate its "guess"
about the input number n. It returns COMPOSITE only if n is indeed composite,
but there is a possibility that it would label as PRIME a number that is not
a prime. Thus, the output PRIME should be interpreted as "probably prime,"
while the output COMPOSITE should be interpreted as "definitely composite."
This primality testing algorithm, called Primalityl is similar to the (fallacious)
randomized algorithm described above, except that it uses the Jacobi symbol
instead of Fermat's Theorem to find certificates. The underlying observation is
that if n is a prime, then [~] = a~ (mod n) for all a; on the other hand, for
composite n, there exist a large number of a E Z: such that [~] =1= a~ (mod n).

Algorithm Prlmality1 :

Input: Odd number n.

Output PRIME or COMPOSITE.

1. choose a uniformly at random from Zn\{O}.

2. compute gcd(a, n).

3. If gcd(a, n) =1= 1 then return COMPOSITE.

4. compute [~] and a¥ (mod n).

5. if [~] == a¥ (mod n) then return PRIME

else return COMPOSITE.

This algorithm is always correct when it returns COMPOSITE, because it then
finds an a E Z" such that either gcd(a, n) =1= 1 or [;i] =1= a~ (mod n), both of
which can only be possible for composite n. We now show that the probability
the algorithm's returning PRIME when a is composite is at most 1/2.

~ Definition 14.7: For any odd number n, the set J" is defined by

J" = {a E Z: I [*J = a~ (mod n)}.

421

NUMBER THEORY AND ALGEBRA

For prime n, J" = 7l:. The following lemma is similar in spirit to Lemma
14.28, and it shows that for composite n the set J" is substantially smaller.

Lemma 14.30: For all composite n, IJ"I < !17l:I.

PROOF: It is easy to verify that J" c 7l: is a group, given the first property of
Jacobi symbols. As in Lemma 14.28, all we need to show is that it is a proper
subgroup of 7l:, thereby implying the desired result.

Assume, for contradiction, that J" = 7l: for some composite n. Consider the
prime factorization of n, say p~1 p~2 ... p~r, and for convenience define q = p~1 and
m = p~2 ... p~r. Fix a generator g for 7l;, and consider the element a E 7l: that
satisfies the following congruences:

a - g (mod q)

a == 1 (mod m).

Theorem 14.4 implies that such an element a must always exist. Notice that a = 1
(mod Pi) for all i > 2, since pdm and ml(a - 1).

We now divide the proof into two cases depending on the factorization of n
and derive a contradiction in each case. Consider first the case where kl = 1.
We can write n = qm, where q = PI is a prime and gcd(q, m) = 1; notice that
m =1= 1 sillce n is not a prime. We can compute the Jacobi symbol for a and n as
follows.

[;;] - t [a t ni=1 P; (By Definition)

- [:] n~=2 [~t (Since q = PI. kl = 1)

- [!] n~=2 [~t (By Property 2)

- [!] (By Property 4)

Since the Legendre and Jacobi symbols agree for a prime modulus, and a

generator cannot be a quadratic residue in 7l;, we obtain [;;] = [!] = -1. By

assumption, J" = 7l: and so
.-1

aT = -1 (mod n).

Since min, it must also be the case that

a~ = -1 (mod m),

which contradicts our choice of a = 1 (mod m).

The second (easier) case is where kl > 2. By assumption J" = 7l:, and
therefore

a~ = ±1 (mod n)

=> a,,-I == 1 (mod n)

=> g,,-I = 1 (mod q).

422

14.6 PRIMALITY TESTING

The last congruence follows from the observation that qln and a = g (mod q).
Since g is generator for 7l;, its order is cp(q) and that must divide n - 1. Also,
for kl > 2, pt!cp(q), implying that pt!(n - 1). But no prime number can divide
both nand n - 1, giving us the desired contradiction. 0

In Problem 14.10 we will see that a Carmichael number is always a product
of distinct primes. Thus the first (harder) case in the above proof was exactly
the one that had to deal with Carmichael numbers!

By the preceding discussion, it is clear that the Primalityl algorithm makes
an error only if n is composite, and then the random choice a E 7l: lies in J".
Lemma 14.30 now shows that the probability of error is at most 1/2.

Theorem 14.31: The Primalityl algorithm always returns PRIME for prime n, and
returns COMPOSITE for composite n with probability at least 1/2.

This theorem essentially says that COMPOSITENESS E RP and hence
PRIMALITY E co-RP. As usual, it can be repeated independently to reduce
the error probability, or to obtain a Las Vegas algorithm with polynomial
expected time.

There is a simpler version of this algorithin that has the disadvantage that
it makes 2-sided errors (a BPP algorithm), unlike the above algorithm, which
makes only 1-sided errors. The algorithm is based on the following observation.

Lemma 14.32: Let n be an odd composite number that is not a prime power.
* Suppose that for some a E 7l" ,

.-1

aT = -1 (mod n).

Then, the set

SrI = {x E 7l: I x~ = ±1 (mod n)}

has cardinality IS"I ~ ~ 17l: I.

PROOF: Let n have the prime factorization p~lp~2 ... p~t. We are guaranteed
that t > 2. Define q = p~1 and m = n/q; note that gcd(m,q) = 1 and m is a
non-trivial factor of n. Using Theorem 14.4, choose b E 7l: such that it satisfies
the following congruences:

b - a (mod q)

b - 1 (mod m).

It is now easy to verify the following congruences:
11-1 11-1

bT =q aT =q -1
.-1

bT =m 1.

If it were the case that b~ = 1 (mod n), then the residues modulo both q and
m would also be 1; similarly, for b~ = -1 (mod n), the residues modulo the

423

NUMBER THEORY AND ALGEBRA

two factors of n would be both -1. Since we have chosen b such that bY. has
differing residues modulo the the two factors, it follows that

0-1

bT =1= +1 (mod n).

But then b ¢ S,., and so S,. is a proper subset of 7l:. Clearly, S,. is a sub-group
of 7l: and the result follows. 0

In Lemma 14.30 we formulated a test based on the equality of the Jacobi
symbol and (n - 1)/2th power; in contrast, here we have a test that requires
only that this power be +1, and so the power might have a different sign than
the Jacobi symbol. The algorithm suggested by this lemma is now clear. Of
course, we must first rule out the case where n is composite but has only one
prime factor. But this is easily done using the test for prime power outlined in
Exercise 14.5. We describe below a version of this algorithm that achieves error
probability 0(1/2') for any desired t.

Algorithm Prlmallty2:

Input: Odd number nand t.

Output: PRIME or COMPOSITE . .
1. If n is a perfect power then return COMPOSITE.

2. choose bb b2, ••• , bt independently and uniformly at random from Zn \{O}.

3. If for any b;, gcd(b;, n) =1= 1 then return COMPOSITE.
n-1

4. compute rl = b;-r (mod n), for 1 ~ i ;s; t.

5. If for any i, r; =1= ± 1 (mod n) then return COMPOSITE.

6. If for all i, r; == 1 (mod n) then return COMPOSITE

else return PRIME.

It is easy to verify that this algorithm runs in polynomial expected time,
provided t is polynomially bounded. The following theorem shows that it is a
BPP algorithm.

Theorem 14.33: For all odd n, the probability that Algorithm Primality2 errs is
at most 0(1/2').

PROOF: Suppose that n is a prime. Clearly, the only place where the algorithm
can err is in Step 6. Now ri is exactly the Legendre symbol for bi, when n is a
prime. The algorithm will return COMPOSITE in Step 6 if and only if all bi'S are
quadratic residues. The probability that a random non-zero element modulo a
prime is a quadratic residue is exactly 1/2.

On the other hand, suppose that n is a composite number. Once again, the
only possible error can be in Step 6, and only if n is not a prime power. But

424

14.6 PRIMALITY TESTING

now Lemma 14.32 applies to n. This algorithm returns PRIME only if at least one
of the rj, say r., is -1 and the remaining rj values are either 1 or -1. In this
case, the probability that a random element lies in S" is at most 1/2. Thus, the
probability that the values rj, for i > 2, are all + 1 is at most 1/2t-

1
• 0

Finally, we present a second RP algorithm for compositeness. This algorithm
is almost the same as the earlier one based on Lemma 14.28, which we had
discarded due to the existence of Carmichael numbers. Moreover, this algorithm
has the advantage that it can be made deterministic under the ERH. Consider
a,,-l, for a random a E Z" \{O}. If this is not 1 (mod n), then we have proved
that n is composite. Otherwise, we keep replacing this (even) power of a by its
precomputed square root until the result is something other than 1 o~ we are
reduced to an odd power of a. If we reach a square root of 1 other than ± 1,
then n is composite; otherwise, the algorithm claims that n is prime, and this is
the only place where it may make an error.

Algorithm Prlmallty3:

Input Odd number n.

Output: PRIME or COMPOSITE.

1. compute rand R such that n - 1 = 2r R, and R is odd.

2. choose a uniformly at random from Zn \{O}.

3. for i = 0 to r compute b; = a~R.

4. If an- 1 = br =1= 1 (mod n) then return COMPOSITE.

5. If aR = bo == 1 (mod n) then return PRIME.

6. let j = max{i I b; =1= 1 (mod n)}.

7. If bj == -1 (mod n) then return PRIME

else return COMPOSITE.

For prime n, this algorithm always returns PRIME. We want to show that the
probability that the algorithm returns PRIME on a composite input n is at most
1/2. By Lemma 14.28, if n is not a Carmichael number, then Step 4 will detect
the composite ness of n with probability at least 1/2. In Problem 14.14, you will
be required to show that Steps 6 and 7 will detect a Carmichael number with
probability at least 1/2.

Theorem 14.34: Algorithm PrimaIity3 is an RP algorithm for COMPOSITE
NESS.

This algorithm can be made deterministic under the ERH, in much the same
way as the algorithm QuadRes.

425

NUMBER THEORY AND ALGEBRA

Notes

There are many excellent books on number theory and we mention only a few: Hardy
and Wright [194], Hua [204], leVeque [275], Niven and Zuckerman [321]. and Vino
gradov [407]. The book by Davenport [121] is an excellent source for material on the
Extended Riemann Hypothesis (ERH). The reader may refer to these for the history
and sources of the various number-theoretic results described here. The algebraic back
ground that is assumed here can be reviewed in any text on algebra, such as those by
Herstein [199] and van der Waerden [404]. Knuth [259] provides an excellent treatment
of algorithmic number theory. The survey articles by Bach [44] and by Lenstra and
Lenstra [273] are also excellent sources for more recent and advanced results. For
overviews of randomized algorithms in number theory and algebra, the reader may refer
to the articles by Johnson [216] and by Rabin and Shallit [345]. The book by Zip
pel [423] provides comprehensive coverage of randomized and deterministic algorithms
for problems involving polynomial and number-theoretic problems. The lecture notes
on algorithmic number theory by Angluin [27] is still among the best introductions to
this area

Euclid's ged algorithm was first formalized in his Elements, and we refer the reader
to the above sources (most notably Knuth [259]) for a history of this algorithm and
its variants. Algorithm QuadRes for quadratic residues is due to Adleman. Manders,
and Miller [2]. The result connecting the ERH to the existence of small quadratic
non-residues was obtained by Ankney [29]. Algorithm PolyRoot is a special case of
the algori~hm due to Berlekamp [57], and is also attributed to Lehmer: see also the
articles by Rabin [343] and Ben-Or [52]. The NP-completeness of finding the least
square root was proved by Manders and Adleman [291]. The RSA scheme is due to
Rivest, Shamir, and Adleman [358], and the modification using quadratic residues is due
to Rabin [346].

The certificates of primality used to show that PRIMALITY is in NP were devised
by Pratt [335]. Carmichael numbers were defined by Carmichael [87], and the proof that
there are infinitely many such numbers is due to Alford, Granville, and Pomerance [16].
The Primalityl algorithm is due to Solovay and Strassen [382], while Algorithm Pri
mality3 was devised by Rabin [341, 342] and is related to a deterministic algorithm
(assuming the ERH) due to Miller [310].

The primality testing algorithms described here all have the feature that if the in
put is a prime, then the output is always PRIME, while for composite inputs there
is a sm.;ill probability of making errors. This is essentially the same as proving
COMPOSITENESS E RP, or PRIMALITY E co-RP. There is no known easily
described algorithm that errs in the reverse direction. Goldwasser and Kilian [178]
gave such an algorithm, but this algorithm cannot be guaranteed to work correctly
for a small set of exceptional primes. However, an extremely complex result of Adle
man and Huang [3] provides such an algorithm and shows that PRIMALITY E RP.
Thus, we can now construct Las Vegas algorithms with polynomial expected run
ning time for both PRIMALITY and COMPOSITENESS. Finally, we remark that
an important area that has not been covered here is that of devising algorithms
for factoring composite numbers. While none of these algorithms is of polyno
mial running time, several SUb-exponential time algorithms are known. We refer the
reader to the survey articles described above for a more detailed review of such algo
rithms.

426

PROBLEMS

Problems -----------

14.1 Prove Theorem 14.2 by giving a detailed description of the extended Eu
clidean algorithm and its analysis. To prove a polynomial time bound for
this algorithm, you will need to argue that the lengths of the operands in the
intermediate computations are suitably bounded.

14.2 Show how to compute multiplicative inverses modulo a prime P via a single
exponentiation. Does this work modulo composite n?

14.3 Show that given any number nand <I> (n), the prime factorization of n can be
computed by a randomized polynomial time algorithm.

14.4 Devise a randomized polynomial time algorithm for factoring a number n
that is the product of two primes, given that some multiple of <I>(n) is also
provided as a part of the input. Can you generalize this to arbitrary n?

14.5 Show that for any odd prime p. the set {X2 11 ~ x ~ er} is exactly the set of
all quadratic residues modulo p.

14.6 Let a be a quadratic residue modulo n = 2!'. Show that

• for k = 1, a has one square root modulo n;

• for k = 2, a has two square roots modulo n;

• for k > 2, a has four square roots modulo n.

14.7 Generalize Theorem 14.19 to allow the possibility of even numbers. (Hint:
Use Problem 14.6.) .

14.8 (a) Show that for any odd n with t distinct prime factors, the number of
quadratic residues in Z; is (/J (n)/2'.

(b) Using Problem 14.7, generalize this to the case of even n.

(c) Can these observations be used to devise a randomized algorithm for
finding a quadratic non-residue modulo n?

14.9 (Due to M.O. Rabin [346].) Consider the Rabin cryptosystem with n = pq
such that p == 3 (mod 8) and q == 7 (mod 8).

(a) Prove that for all x the Jacobi symbols satisfy [;] = [-~,x] = - [2,:].
(b) Using this observation and Exercise 14.12, show that we can choose
the messages to lie in a subset of Zn such that there is a canonical way
to determine the message from among the four square roots of its square
modulo n.

14.10 Let n have the prime factorization P~' p~2 ... p~t. where each Pi is an odd
prime.

(a) Show that n is a Carmichael number if and only if

for 1 ~i ~t.

(b) Conclude that the Carmichael numbers can be characterized as products
of distinct primes n = n:-l Pi, such that for each i, (Pi - 1)I(n -1).

427

NUMBER THEORY AND ALGEBRA

14.11 (a) Prove all the properties of the Jacobi symbol provided in Theorem 14.29.

(b) Using these properties, devise a polynomial time algorithm for computing
[~] without knowing the prime factorization of n or a.

14.12 We have seen how to test if a number is prime. In several applications,
it is necessary to pick large prime numbers at random. For example, in
the RSA scheme Alice must have two large primes p and q, but she would
like to choose them randomly since they are to be kept secret. Suggest
a randomized algorithm for generating a random 9(log n) bit length prime.
Analyze the expected time to generate such a prime. (Hint: Refer to the
Prime Number Theorem described in Section 7.4.)

14.13 Suppose you are given an algorithm S for computing square roots modulo
a prime number. Using this algorithm as a blackbox, design an efficient
randomized (RP) algorithm for compositeness. (Hint The idea is to choose
a random element a E Z;, and run algorithm S on b = a2 • If S fails to find
a square root, then n is not a prime. On the other hand, if S finds a square
root other than ±a, then again n is not a prime.)

14.14 (Due to M.O. Rabin [341,342].) Show that when the input n is a Carmichael
number, Algorithm Prlmallty3 will return PRIME with probability at most
1/2. (Hint: Use the characterization of Carmichael numbers described in
Problem 14.10.)

428

APPENDIX A

Notational Index

The following is a list of the commonly used notation. The first entry is the
symbol itself, followed by its meaning or name (if any), and the page number
where the definition appears. Note that some standard symbols are not defined
elsewhere in the text, e.g., R. for real numbers. The page number for these
symbols is replaced by *. Some overloaded notation may have more than one
definition or name associated with it.

00 infinity •
{a, ... ,z} set notation •
[I, u] interval on the real line •
[n] the set {1, ... ,n} •
[13] bibliographic reference to item 13 •
(/) empty set •
n set intersection •
U set union •
S set complement •
\ set difference •
c proper subset •
c subset •
.1(t) relative pointwise distance •
E set membership •
1\ Boolean conjunction (and) •
V Boolean disjunction (or) •
/ Boolean negation (not) •
=> implies •
<=> Boolean equivalence •
V for all •
3 there exists •
~ approximate equality •

equivalence • -
'" asymptotic equality •

429

NOTATIONAL INDEX

oc proportional to *
=1= not equal to *
<,>,<,> standard inequalities *
~ mapping, approaches *
rxl ceiling of x *
lxJ floor of x *
a+b a is a divisor of b 393
af b a is not a divisor of b 393
a div b quotient in the division of a by b 393
a mod b remainder in the division of a by b 393
a (mod p) residue of a modulo p *
a = b (mod n) a is congruent to b modulo n 395
a=n b a is congruent to b modulo n 395
+n addition modulo n 395
Xn multiplication modulo n 395
cp(n) Euler totient function 397

[~] Legendre symbol 404

[~] Jacobi symbol 420
IXI absolute value, length, cardinality *
L:~ summation from i = 0 to n *
I17-0 product from i = 0 to n *
J~=o integral from x = 0 to 1 *
JX square root *
1X kth root *
2s power set of S *
n! factorial of n *
(Z) binomial coefficient *
r-I(y) the preimage {x I f(x) = y} *
f'(x) first derivative of function f(x) *
f"(x) second derivative of function f(x) *
f(k)(X) kth derivative of function f(x) *
f(k) (x)Jx==a kth derivative evaluated at x = a *
aTb vector inner product L:j ajb j *
aob outer product matrix M with Mij = ajbj 183
x T transpose of the vector x *
Ilxlll LI-norm of the vector x 435
Ilxll Lrnorm of the vector x 435
Ilxlloo Loo-norm of vector x 435
AT transpose of the matrix A *
A-I inverse of the matrix A *
Ajj ij minor of the matrix A *
adj(A) adjoint of the matrix A *
b(k; n,p) binomial distribution's density function 445
B(n,p) binomial distribution with parameters n, p 445

430

NOTATIONAL INDEX

r(v) neighbors of the vertex v 8
r(S) neighbors of the set of vertices S 8
d(v) degree of vertex v 8
e base of the natural logarithm *
exp(x) exponential function of x *
E[X] expectation of random variable X 442
E [X I Y] conditional expectation of X given Y 84
& event 439
det(M) determinant of matrix M 165
F+(/l, c5) Chernoff bound on the upper tail of binomial distribution 69
F-(/l, c5) Chernoff bound on the lower tail of binomial distribution 71
1F a field, event space 439
1F[x] polynomials in x over the field 1F *
Fx(x) probability distribution function of X 441
Gx(z) probability generating function of X 444
G(V,E) graph with vertices V and edges E *
gcd(a, b) greatest common divisor of a and b 393
Hn harmonic number: 1 + 1/2 + ... + lin *
i.i.d. independent, identically distributed (random variables) *
lcm(a, b) lowest common multiple of a and b 393
limn-+OCl limit as n approaches 00 *
Ai ith eigenvalue of a matrix 144
lnx natural logarithm *
10gb X logarithm to base b *
logx logarithm to base 2 *
n4 kth moment of random variable X 443
/lx expectation of random variable X 443
/l~ kth central moment of random variable X 443
Mx(z) moment generating function of X 445
N non-negative integers *
O(f(x» the big-oh notation 433
o(f(x» the little-oh notation 433
!l(f(x» the big-omega notation 433
0(f(x» the big-theta notation 433
(j) elementary event 439
!l sample space 439
(!l,F,Pr) probability space 439
(!l, Pr) probability space with F = 2{} 439
ord order of a group or its element 398
Px(x) probability density function of X 442
Pr probability measure 439
Pr[&1 1&2] conditional probability of &1 given &2 440
1t the constant pi, a permutation *
¢ golden ratio (1 + .j5)/2 *

431

NOTATIONAL INDEX

n a problem *
R real numbers *
R+ non-negative real numbers *
R- non-positive real numbers *
(1x standard deviation of random variable X 443
(12 x variance of random variable X 443
Sn symmetric group of permutations of order n 165
sgn(n) sign of permutation n 165
7l integers *
7lp integers modulo p *
7l* multiplicative group of integers modulo p * p

432

APPENDIX B

Mathematical Background

This appendix is devoted to some elementary mathematical material that is used
throughout this book. We start by reviewing the asymptotic notation such as
the big-oh notation (see, for example, Knuth [261]). We also provide some
important identities and approximations for binomial coefficients, as well as a
few useful analytic inequalities. Good sources for this material are the books
by Graham, Knuth, and Patashnik [182], Greene and Knuth [183], Hardy,
Littlewood, and Polya [195], Knuth [258], and Mitrinovic [311]. Finally, we
review some elementary material from linear algebra; the book by Strang [387]
is a good source for this material.

Notation for Asymptotics

We start by defining the big-oh notation. The article by Knuth [261] gives more
details on the following definitions .

• Definition B.l: Let f(n), g(n) : R ~ R be two non-negative real-valued
functions.

1. We say that f(n) = O(g(n» if there exist positive numbers c and N such
that, for all n > N, f(n) < cg(n).

2. We say that f(n) = Q(g(n» if there exist positive numbers c and N such
that, for all n > N, f(n) > cg(n).

3. We say that f(n) = 8(g(n» if f(n) = O(g(n» and f(n) = Q(g(n» both
hold.

4. We say that f(n) = o(g(n» if limn oo f(n)Jg(n) = O. In this case, we also
say that g(n) = w(f(n».

5. We say that f(n) '" g(n) if limn oo f(n)J g(n) = 1. (If f and g are mul
tivariate functions, it will be necessary to specify the argument, which is
assumed to approach 00. This is usually done by saying that: for large n,
f(n, m) '" g(n, m). The interpretation is that m is held fixed, while n ~ 00.)

433

MATHEMATICAL BACKGROUND

Note that the equality f(n) = O(g(n» does not use "=" in a symmetric
fashion.

Combinatorial Inequalities

We now turn our attention to the binomial coefficients, defined as follows. Let
n > k > O.

(n) (n) n!
k = n-k = k!(n-k)!

If k > n > 0 we define (~) = O. The reason for the name "binomial coefficients"
is their appearance in the binomial expansion:

(p + q)n = t (n)pkqn-k.
k-o k

Proposition B.l (Stirling's Formula):

n! = J2nn (;)" (1 + l~n +0(:2))
From this one obtains the following inequalities involving binomial coeffi

cients.

Proposition B.2: Let n > k > O.

1. (~) :S; ~.

2. For large n. (~) '" ~.

3. (~) :S; (~e t
4. (~) > onk.

The Jollowing power series expansions sometimes allow us to obtain useful
inequalities.

In(1 + x)

We list below several inequalities involving the exponential function. The
reader may refer to Mitrinovic [311] for the derivations and other variants.

Proposition B.3:

1. For all t E R. et ~ 1 + t with equality holding only at t = O.

434

MATHEMATICAL BACKGROUND

2. For all t, n E R. such that n ~ 1 and It I :s;; n,

et (1 _ :) < (1 + ~) n :s;; et
•

Note that this holds even for negative values of t.

3. For all t, n E R+.

(t) n (t) n+t/2 l+n <et:s;; l+n

For any n E N, we define the nth Harmonic number Hn as follows:

1 1
Hn = 1 + - + ... + -.

2 n

Proposition B.4: For any n EN, the nth Harmonic number is

Hn = Inn + 0(1).

The nth Fibonacci number is defined as follows:

Fo = Fl = 1,

and for n > 2,

Proposition B.5: For all n E N. Fn = 0(cpn). where cp = (1 + vts)/2 is the golden
ratio.

Linear Algebra

Consider the field R of real numbers under addition and multiplication, and
the real vector space R n of n-dimensional vectors over R. This vector space is
an inner product vector space, where we define the inner product of two vectors
v, wE R n as

n

vTw = LViWi,

i=1

where Vi and Wi are the ith components of the vectors v and w. The vectors
v and ware said to be orthogonal, denoted v ..1 w, if their inner product vT w
equals O. A subspace W of a vector space V is a subset W c V, which forms a
vector space; its orthogonal subspace is W.1. = {v E V I 'Vw E W,v ..1 w}. The
vector space V is a direct sum of the orthogonal subspaces Wand W.1.. In other
words, every vector v E V can be uniquely expressed as v = w + w', where w E W
and w' E W.1..

We define three norms for vectors in an inner product vector space.

435

MATHEMATICAL BACKGROUND

LI-norm: Ilvlll = L::'I IVil·
L2-norm: Ilvll = JVTV = VL::'I vf.
Loo-norm: Ilvlloo = max~1 IVil·

A unit vector is a vector v with Ilvll = 1. We state some standard facts about
these norms. While the familiar triangle inequality is valid for any norm, we
state it only for the L2 norm.

Proposition B.6 (Triangle Inequality): For any two vectors v and w,

Ilv + wll < Ilvll + Ilwll·

The classical theorem of Pythagoras can be generalized as follows.

Proposition B.7 (Pythagoras Theorem): For any two orthogonal vectors x and y,
let v = x + y. Then

An immediate consequence of the Pythagoras Theorem is the following useful
fact.

Proposition B.8 (pythagoras Inequality): For any two orthogonal vectors x and
y, let v = x + y. Then

Ilxll < Ilvll

and

Ilyll ~ Ilvll·

Note that orthogonality is important in this proposition. For example, the result
is not true for x = -yo

Proposition B.9 (Cauchy-Schwartz Inequality): Let a and " be two real vectors.
Then

with equality holding if and only if the vectors are linearly related.

Finally, we establish some relations between the different norms.

Proposition B.10: For any vector v,

and

Ilvll < Ilvlll < .Jnllvll

Ilvlloo < Ilvlll < nllvlloo .

436

MATHEMATICAL BACKGROUND

We briefly indicate the proof of the first series of inequalities in Proposition B.lO.
Note that the LI and L2 norms are identical for any vector that points along the
direction of one of the coordinate axes. Expressing the vector v as the sum of
vectors aligned with the n coordinate axes and applying the triangle inequality
leads to the inequality Ilvll < Ilvlll. To obtain the inequality Ilvlll :s ,Jnllvll,
we employ the Cauchy-Schwartz inequality with aj = Vj and bj = Ivd/vj, for
1 <i< n.

A basis for a vector space V is a collection of linearly independent vectors
bl , ... , bn that span V. Each vector in V can be uniquely expressed as a linear
combination of the basis vectors. An orthonormal basis is a collection of pairwise
orthogonal, unit vectors bh ... , bn that form a basis for V.

Proposition B.11: Let pER n be any vector, and bl , bn be any orthonormal
basis for Rn. Further, let p = L:::"I cjbj be the unique expression of p as a linear

combination of the basis vectors. Then the Lrnorm of P is given by lip II = VL:j cf.

Consider any n x n symmetric matrix A over R. The characteristic equation
for A is

Ax = AX,

where X E R n and A E R. We say that A is an eigenvalue of A if there exists
a non-zero vector X satisfying the characteristic equation. A solution x is said
to be an eigenvector corresponding to the eigenvalue A. The following result
characterizes the eigenvalues.

Proposition B.12: The eigenvalues of A are the roots of the following polynomial
in A:

det(A - AI) = 0,

where I denotes the n x n identity matrix.

Since the coefficient of An is always (-I)n, this is a polynomial of degree n. For
symmetric A, the polynomial has n real roots, and so the sum of the multiplicities
of the eigenvalues of A is exactly n. It is easy to prove that any collection of
eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal. If
the eigenvalues all have multiplicity 1, the corresponding eigenvectors form a
basis for Rn. The n eigenvalues of A are canonically numbered (accounting for
multiplicities) such that Al > A2 > ... > An.

Since A is symmetric, it is possible to choose a set of pairwise orthogonal, unit
vectors eh ... , en such that, for 1 < i < n, ej is an eigenvector for Aj. Notice that
even though the eigenvalues may have multiplicities, for each distinct eigenvalue
we can choose as many orthogonal eigenvectors as its multiplicity. These vectors
eh ... , en form an orthonormal basis for Rn.

437

APPENDIX C

Basic Probability Thleory

In this appeDdL~ we review basic ideas from probability theory. Starting with
an axiomatic \iew of probability theory, we develop the following concepts:
events, probabilities, independence, random variables, and their distributions
and moments. After presenting some fundamental theorems without proof, we
describe the properties of some common probability distributions. This appendix
is provided for the sake of completeness only and should be supplemented by
standard probability texts such as those by Billingsley [61], Feller [142, 143],
and Grimmen and Stirzaker [185].

Any probabilistic statement must refer to an underlying probability space.
A probabili~' space is defined in terms of a sample space with an algebraic
structure and a probability measure imposed on it. A sample space n is an
arbitrary I pDt...'"Iltially infinite) set, and its elements are referred to as elementary
events. A sub50et E c n is referred to as an event.

Intuiti\·ely. the sample space represents the set of aU possible outcomes in
a probabilistic experiment, and an event represents a collection of possible
outcomes. For example, if the experiment consists of a sequence of four coin
flips, then n =~HHHH,HHHT, ... , TTTT} and the event "the number of
HEADS exceeds the number of TAILS by two" is the subset {HHHT,HHTH,
HTHH, THHH}. Sometimes it is convenient to defin~ the underlying sam
ple space ,;\ith0ut considering each elementary event separately. For exam
ple, if we ~h to focus on the number of HEADS only, then we could define
n = {O.1.:'3A;. An example of an infinite sample ~pace comes from the
following experiment: flip an unbiased coin until HEAdS appears for the first
time. Here the sample space n is {H, TH, TTH, TTTH, TTTTH, ... }. The
event that -me number of TAILS seen is odd" is gi~en by the infinite set
{TH, TTTH. TTTTTH, ... }.

At times we may wish to concentrate on only a subqollection of the events
over a panicu1ar sample space n rather than consider al~ the possible events in
the power set~. However, not all subcollections of 20i lead to a well-defined
probabili~' ~. It is for this reason that we make the following definition.

438

BASIC PROBABILITY THEORY

• Definition C.1: A u-field· (0, F) consists of a sample space n and a collection
of subsets F satisfying the following conditions.

1. 0 E F.

2. & E F => "& E F.

The last condition is that of closure under countable union, and together with
the second condition it implies closure under count4ble intersection. Observe
that the first two conditions imply that !l E F. For convenience, we will adopt
the convention of referring to F itself as a u-field when the sample space !l is
clear from the context.

• Definition C.2: Given au-field (0, F), a probability measure Pr : F ~ R+ is a
function that satisfies the following conditions.

1. VA E F, O:s; Pr[A] :s; 1.

2. Pr[!l] = 1.

3. For mutually disjoint events &1, &2, ... , Pr[Ui~;] = 2:i Pr[&;].

• Definition C.3: A probability space (0, F, Pr) consists of au-field (0, F) with a
probability measure Pr defined on it.

When specifying a probability space, F may be omitted and it is understood
then that the u-field referred to is (!l,2n).

Consider the following example of a probability space with !l = (0,1], i.e.,
the half-open unit interval. An elementary event is the choice of a point in
this interval. The collection F consists of all possible subsets of !l that can be
expressed as a union of disjoint half-open subintervals. That is, any & E F can
be written as & = Ui(li, Ui], where 0 < Ii < Ui < IHI < 1. The probability measure
is defined to be such that for any & E F, Pr[&] is the total length of the intervals
in it.

An easy way to combine distinct probability spades (!It, Ft, Prd and (!l2'
F2, Pr2) is to take their product space (!l, F, Pr). In the new space, !l = !ll x !l2,
F = FI X F2, and for events & lEFt, &2 E F2, the probability of the joint event
(&t,&2) is given by the product of the two events' Ptobabilities. The product
corresponds to performing independent experiments with respect to each of the
two probability spaces.

In the rest of this appendix we will assume some fixed underlying probability
space. We can apply the set operators of union, inteIisection, and complemen
tation to combine events in complex ways; sometimes the boolean operators of
disjunction (V), conjunction (/\), and negation (-,) are also used to denote these
operations.

439

BASIC PROBABILITY THEORY

Proposition C.l (Principle of Inclusion-Exclusion): Let CI. C2 • ..•• c n be arbi
trary events. Then

Pr[U;!..I Ci] = L Pr[ci] - L Pr[ci n Cj] + L Pr[ci n Cj n Ck]
i i<j i<j<k

-'" + (_1)1+1 L Pr[n~=lc;J + ...
it<i2<"'<i,

Proposition C.2 (Boole-Bonferroni Inequalities): Let CI. C2 • ..•• c n be arbitrary
events. Then. for even k

k L '+1 Pr[U;!..lc;] > (-1)1 L Pr [rTt=l Cir]

j=1 it<i2<"'<ij

andfor odd k

k

Pr[U;!..lci] < L(-I)i+1 L Pr [rTt=l c;J.
j=1 it<i2<"'<ij

• Defbiition C.4: The conditional probability of CI giiven C2 is denoted by
Pr[c I I C2] and is given by

assuming that Pr[c2] > O.

This corresponds to the probability that an experiment has an outcome in
the set CI when we already know that it is in the set C2.

Proposition C.3: Let CI. C2 • ..•• Ck be a partition of the sample space n. Then
for a'!y event C

k

Pr[c] = L Pr[c I C;]Pr[Ci].
i-I

Since Pr[CI n C2] = Pr[CI I c2]Pr[c2] = Pr[c2 I ct1Pr[ct1, we obtain Bayes'
rule from the previous proposition.

Proposition C.4 (Bayes' Rule): Let CI. C2 • •..• Ck be a partition of the sample
space n. Then for any event C

Pr[Ci I c] = Pr[ci n c] = Pr[c I ci]Pr c;]
Pr[c] L:~=I Pr[c I Cj] r[cj]

440

BASIC PROBABILITY THEORY

• Definition COS: A collection of events {t'i liE I} is independent if for all subsets
S r;;; I,

Pr[niest';] = IT Pr[t'il
ieS

These events are said to be k-wise independent if every subcollection consisting of
k events is independent. The special case of 2-wise independence is often referred
to as pairwise independence.

Equivalently, using the definition of conditional expectations, we can say that
a collection of events {t'i liE I} is independent if for any j E I and all subsets
Sr;;;I\{t'j},

Pr[t'j I niest'i] = Pr[t'j].

In particular, if the events are pairwise independent then Pr[t'i I t'j] = Pr[t';], for
all i =1= j.

Usually the events we deal with c~m be expressed in terms of real-valued
functions called random variables. The argument of stich a function is generally
omitted as it always corresponds to a single experiment from the underlying
probability space.

• Definition C.6: A random variable X is a real-valued function over the sample
space, X : n -+ R, such that for all x E R,

{w En I X(w) ~ x} E F.

This gives us a compact representation of complex events since Pr[X < x] is
just another way of denoting Pr[{w E n I X(w) < x}].

• Definition C.7: The distribution junction F : R -+ [0,1] for a random variable
X is defined as Fx(x) = Pr[X ~ x].

A discrete random variable is a function over the sample space whose range is
either a finite or countably infinite subset of R. Typi~ally, we will be interested
in discrete random variables that are integer-valued. An indicator variable is a
discrete random variable that takes on only the values 0 or 1. An indicator
variable X is used to denote the occurrence or non-C!>Ccurrence of an event t',
where t' = {w E n I X(w) = I} and t' = {w E n I X(w) = O}. Observe that
the notions of conditional probability and independence carry over to random
variables, since they are just another way of denoting events. More precisely,
two random variables X and Yare said to be independent if for each x, y E R,
the events {X = x} and {Y = y} are independent.

A random variable X is said to be continuous if it has a distribution function
F whose derivative F' is a positive, integrable functi~n. (In other words, F is
absolutely continuous.) The function F' is referred to as the density function of
the random variable X. From here on all random variables are assumed to be

441

BASIC PROBABILITY THEORY

discrete, although with some carel the following definitions can be extended to
continuous random variables.

• Definition C.8: The density function p : R -+ [0,1] for a random variable X is
defined as px(x) = Pr[X = xl

It is sometimes useful to combine the density or distribution functions for
dependent random variables.

• Definition C.9: The joint distribution function F X,Y : R x R -+ [0,1] for random
variables X and Y is defined as

Fx,Y(x,y) = Pr[{X < x} n {Y < y}].

The joint density function PX,Y : R x R -+ [0,1] for random variables X and Y
is defined as

PX,y(x,y) = Pr[{X = x} n {Y = y}].

Thus, Pr[Y = y] = L:xp(x,y), and

Pr[X = x I Y = y] = p(x, y)
Pr[Y = y]

We can now restate the independence of X and Y as requiring that the joint
density function be the product of the individual density functions of the two
random variables.

• Definition C.IO: Random variables X and Yare said to be independent if for
all x, y E R,

p(x,y) = Pr[X = x]Pr[Y = y]

or, equivalently,

Pr[X = x I Y = y] = Pr[X = x].

These definitions extend to a set X.,X2, ••• of more than two random variables,
and the notion of k-wise independence can be defined as in Definition C.S.

The following discussion of expectations is in terms of sirngle random variables,
but they have the obvious generalizations to function$ of multiple random
variables using their joint density function.

• Definition C.II: The expectation of a random variable X with density function
p is defined as E[X] = L:x xp(x), where the summation is over the range of X.

1 Basically all the definitions can be made in terms of the distribution fuijction for the discrete random
variable, and then carried over to the continuous case. For example, we say that two continuous random
variables X and Y are independent if for each x, y E R., the events {X ~ x} and {Y ~ y} are independent.

442

BASIC PROBABILITY THEORY

Note that the expectation may not be well-defined if the summation does not
converge absolutely. For any real-valued function g(X), we extend the definition
of expectation to E[g(X)] = L:x g(x)p(x). For any two random variables X
and Y, E[X + Y] = E[X] + E[Y]. The remarkable thing about this property is
that it does not assume anything about the independence of the two random
variables. In fact, this can be generalized as follows.

Proposition C.S (Linearity of Expectation): Let Xl, ... , X k be arbitrary random
variables, and h(Xb ... , X k) a linear function. Then

This does not generalize to nonlinear functions, although with the assuIJlption
of independence we can prove a similar result for any polynomial h using the
following.

Proposition C.6: For independent random variables X and Y,

E[XY] = E[X]E[Y].

Here are some other useful properties of expectations. We say that ran
dom variable X stochastically dominates random variable Y if, for all Z E R,
Pr[X > z] ~ Pr[Y > z].

Proposition C.7: Let X and Y be random variables with finite expectations.

1. If X stochastically dominates y, then E[X] ~ E[Y]; equality holds if and only
if X, Yare identically distributed.

2. IE[X] I :$ E[IXI].

3. For a non-negative integer-valued random variable X, E[X] = L:~ Pr[X ~
x].

The density function of a random variable can be characterized in terms of
the following expectations .

• Definition C.12: For kEN, the kth moment n4 and the kth central moment J.l.~
of a random variable X are defined as follows:

m~ = E[Xk]

J.l.~ = E[(X - E[X])k].

The expected value of X is sometimes denoted by J.l.x = mk. The variance
of X is denoted var[X] or oJ and this is J.l.k; the standard deviation (Jx is the
positive square root of the variance.

Proposition C.S: var[X] = mk - (J.l.x)2 = E[X2] - E[X]2.

443

BASIC PROBABILITY THEORY

Note that the next proposition does not generalize to arbitrary linear functions
since var[cX] = c2var[X].

Proposition C.9: For independent random variables X and y,

var[X + Y] = var[X] + var[Y].

The use of generating functions to describe a density function often leads to
simplified analysis of the moments .

• Definition C.13: Let X be a non-negative integer-valued random variable with
the density function p. Then the probability generating junction (pgf) of X is

XJ

Gx(z) == E[zx] = LP(i)Zi.
i=O

The summation in the definition of Gx(z) always converges for Izl < 1, and so
we assume that the symbolic variable z lies in the interval [-1, 1]. The following
results can be obtained by suitable differentiation and algebraic manipulation of
Gx(z). The reader should keep in mind that the pgf Gx may not be well-defined
for all real values of z, but whenever Gx is well-defined, so are its derivatives
with respect to z. In the sequel, for a function j, we denote by f' its derivative
and by j<k) its kth derivative.

Proposition C.IO: Let X be a non-negative integer-valued random variable with
the pgf G(z).

1. G(I) == 1.

2. E[X] = G'(I).

3. E[X2] = G"(I) + G'(I).

4. var[X] = G"(I) + G'(I) - G'(1)2.

PropOsition C.ll: Let Xl, ... , X k be independent random variables with the pgf's
G1(z), ... , Gk(z). Then the pgf of the random variable Y == L:~=l Xi is given by

k

G(z) = II Gi(z).
i=l

Proposition C.12: Let Xl, X 2, ... be a sequence of independent and identically
distributed (U.d.) random variables with the common pgf Gx(z). If Y is a random
variable with the pgf Gy(z) and Y is independent of all the Xi, then S = Xl +
X2 + ... +Xy has the pgf

Gs(z) = Gy (Gx(z».

444

BASIC PROBABILITY THEORY

The following class of generating functions is even more useful, especially
since it does not require that X be integer-valued. I

• Definition C.14: Let X be a random variable with density function p. Then the
moment generating function (mgf) of X is

Mx(z) = E[ezx].

Proposition C.13: For random variable X with mgf M(z),

E[Xk] = M(k)(z)lz=o'

Proposition C.14: Let Xl, ... , Xk be independent random variables with the mgf's
MI(Z), ... , Mk(Z). Then the mgfofthe random variable Y = L:~=IXi is given by

k

M(z) = II Mi(Z).
i=l

We now describe some commonly encountered di$tributions and enumerate
their properties. Note that the mgf for these distributions can be easily obtained
since Mx(z) = Gx(e) for non-negative integer X. We omit the subscript X
in the moments, distribution, density, and generating functions when it is clear
from the context that we are referring to the random variable X.

Bernoulli distribution. Suppose we flip a coin whose probability of HEADS is
p. Let X be the random variable that has value 1 if the result is HEADS, and
o otherwise. Then X has the Bernoulli distribution with the parameter p. The
density function for X is given by

{

I - p. if x = 0
p(x) = p if x = 1

o otherwise.

Let q = 1 - p. Then E[X] = p, var[X] = pq, and G(z) = q + pz.

Binomial distribution. Let XI. X 2, .•. , Xn be i.i.d. random variables whose
common distribution is the Bernoulli distribution with parameter p. The random
variable X = Xl + X 2 + ... + Xn denotes the number of HEADS in a sequence of n
coin flips. The random variable X has the binomial distribution with parameter
nand p, sometimes abbreviated B(n,p). The density function is denoted by
b(k; n,p), and for integer k with 0 < k < n we have

b(k;n,p) = Pr[X = k] = (~)p'q'-k,
For binomial X, E[X] = np, var[X] = npq, and G(z) =I: (q + pz)n.

1 A related class of generating functions is the characteristic function ljJ(z) = E[eizx]. where i = A.

445

BASIC PROBABILITY THEORY

Geometric distribution. Suppose we flip a coin repeatedly until HEADS appears
for the first time. Assuming that each coin flip has the Bernoulli distribution
with parameter p, the random variable X denoting the total number of coin
flips has the geometric distribution with parameter p. Its density function is as
follows.

(x) = {pqX-I for x . 1,2,3, ...
p 0 otherwIse.

For geometric X, E[X] = l/p, var[X] = q/p2, and G(z) = pz/(l - qz). An
important property of the geometric distribution is its memorylessness: let k and
I be positive integers; then

Pr[X = k + I I X > I] = Pr[X = k].

Thus, knowing that the first I trials were "failures" does not affect the distribution
of subsequent trials.

Negative binomial distribution. Let XI. X 2, ••• , Xn be Li.d. random variables
whose common distribution is the geometric distribution with parameter p. The
random variable X = Xl + X 2 + ... + Xn denotes the number of coin flips
needed to obtain n HEADS. The random variable X has the negative binomial
distribution with parameters nand p. The density function for this distribution
is defined only for x = n,n + 1,n + 2, ... :

(
X -1) Pr[X = x] = pnqx-n.
n-1

The characteristics are: E[Xl = nip, var[X] = nq/r, and G(z) = (pz/(l - qz»n.

Poisson distribution. Let A be a positive real number. Then the Poisson
distribution with parameter A has the following density function.

(x) = {AXe-A/X! for x . 0, 1,2, ...
p 0 otherwIse.

For large n, the Poisson distribution is a good approximation to the binomial
distrioution B(n,A/n). The characteristics of a Poisson random variable X are:
E[X] = A, var[X] = A., and G(z) = el(z-l).

446

References

[1] L. Adleman. Two theorems on random polynomial. time. In Proceedings of the
19th Annual IEEE Symposium on Foundations of Coft,puter Science, pages 75-83,
1978.

[2] L. Adleman, K. Manders, and G.L. Miller. On ~aking roots in finite fields.
In Proceedings of the 18th Annual IEEE Symposium Ion Foundations of Computer
Science, pages 151-163, 1977.

[3] L.M. Adleman and AM.-D. Huang. Recognizing pri.mes in random polynomial
time. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
pages 462-469, 1987.

[4] A Aggarwal and R.J. Anderson. A random NC alg~rithm for depth first search.
Combinatorica, 8:1-12, 1988. .

[5] AV. Aho, lE. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974. .

[6] AV. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, MA, 1983.

[7] RK. Ahuja, T.L. Magnanti, and J.B. Orlin. Network! Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[8] M. Ajtai, l Komlos, and E. Szemeredi. Sorting in c l~g n parallel steps. Combina
torica, 3(1):1-19,1983.

[9] M. Ajtai, J. Komlos, and E. Szemeredi. DeterminsitiCi simulation in logspace. In
Proceedings of the 19th Annual ACM Symposium on theory of Computing, pages
132-140, 1987.

[10] S. Albers. Improved randomized on-line algorithms fpr the list update problem.
To appear in the 1995 ACM-SIAM Symposium on D~screte Algorithms.

[11] OJ. Aldous. Random walks on finite groups and rap~dly mixing Markov chains.
In Semina ire de Probabilites, volume 986 of Springer-Verlag Lecture Notes in Math
ematics XVII, pages 243-297. Springer-Verlag, New Y~rk, 1981-82.

[12] D.J. Aldous. Probability Approximations via the Poisson Clumping Heuristic.
Springer-Verlag, New York, 1989.

[13] OJ. Aldous. Reversible Markov chains and random walks on graphs, 1994.
Unpublished Monograph, Berkeley. .

[14] R Aleliunas. Randomized parallel communication. In ACM-SIGOPS Symposium
on Principles of Distributed Systems, pages 6(}-72, 1982;

[15] R. Aleliunas, RM. Karp, RJ. Lipton, L. Lovasz, and C. Rackoff. Random walks,

447

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

REFERENCES

universal traversal sequences, and the complexity of maze J!>roblems. In Proceedings
of the 20th Annual Symposium on Foundations of Compute~ Science, pages 218-223,
San Juan, Puerto Rico, October 1979. .
W.R Alford, A Granville, and C Pomerance. There are in~nitely many Carmichael
numbers. University of Georgia Mathematics Preprint Serfs, 1992.
N. Alon. Eigenvalues and expanders. Combinatorica, 6(2)1:83-96, 1986.
N. Alon. A parallel algorithmic version of the locallemm~. In 32nd Annual IEEE
Symposium on Foundations of Computer Science, pages 58~593, 1991.
N. Alon, L. Babai, and A Itai. A fast and simple randQrnized algorithm for the
maximal independent set problem. Journal of Algorithms,: 7 :567-583, 1986.
N. Alon and F.RK. Chung. Explicit construction of linea~ sized tolerant networks.
Discrete Mathematics, 72:15-19, 1988.
N. Alon, Z. Galil, and O. Margalit. On the exponent of t~e all pairs shortest path
problem. In Proceedings of the 32nd Annual IEEE Symplpsium on Foundations of
Computer Science, pages 569-575, 1991. .
N. Alon, Z. GaIil, O. Margalit, and M. Naor. Witne$ses for boolean matrix
multiplication and for shortest paths. In Proceedings 01 the 33rd Annual IEEE
Symposium on Foundations of Computer Science, pages 41 V-426, 1992.
N. Alon and V.D. Milman. Eigenvalues, expanders and superconcentrators. In Pro
ceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science,
1984.
N. Alon and J. Spencer. The Probabilistic Method. Wiley!Interscience, New York,
199.2.
H. Alt, L.J. Guibas, K. Mehlhorn, R.M. Karp, and A \\ligderson. A method for
obtaining randomized algorithms with small tail proba~ilites. Technical Report
TR-91-057, International Computer Science Institute, Be~keley, 1991.
I. Althofer. On sparse approximations to randomized str~tegies and convex com-
binations. Linear Algebra and its Applications, 199:339-3$5, 1994. .
D. Angluin. Lecture notes on the complexity of some prqblems in number theory.
Technical Report 243, Department of Computer Science, [Yale University, 1982.
D. Angluin and L.G. Valiant. Fast probabilistic algorithm~ for Hamiltonian circuits
and matchings. Journal of Computer and System Sciencest 19:155-193, 1979.
N.C Ankney. The least quadratic nonresidue. Annals oJ Mathematics, 55:65-72,
1986. ,

CR. Aragon and RG. Seidel. Randomized search tree~. In Proceedings of the
30th Annual IEEE Symposium on Foundations of Computer Science, pages 54(}-545,
1989.
S. Arora. Probabilistic Checking of Proofs and Hardness o}Approximation Problems.
PhD thesis, University of California at Berkeley, 1994. I

S. Arora, C Lund, R. Motwani, M. Sudan, and M. Szcfgedy. Proof verification
and hardness of approximation problems. In Proceedings pf the 33rd Annual IEEE
Symposium on Foundations of Computer Science, pages 14f-23, 1992.
S. Arora and S. Safra. Probabilistic checking of proofs:i A new characterization

I

of NP. In Proceedings of the 33rd Annual IEEE Symppsium on Foundations of
Computer Science, pages 2-13, 1992.
J. Aspnes and O. Waarts. Randomized consensus in expec~ed O(n logl n) operations
per processor. In Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science, pages 137-146, 1992. .
Y. Azar, AZ. Broder, AR. Karlin, and E. Upfal. aalanced allocations. In
Proceedings of the 26th Annual ACM Symposium on Thdory of Computing, pages

448

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

REFERENCES

593-602, 1994.
K. Azuma. Weighted sums of certain dependent random variables. Tohoku
Mathematical Journal, 19:357-367, 1967.
L. Babai. Monte-Carlo algorithms in graph isomorpijism testing. Technical Re
port DMS 79-10, Departement de Mathematique et ~e Statistique, Universite de
Montreal, 1979.
L. Babai. Trading group theory for randomness. In Prqceedings of the 17th Annual
ACM Symposium on Theory of Computing, pages 421-129, 1985.
L. Babai. E-mail and the unexpected power of intera~tion. In Proceedings of the
5th Annual Conference on Structure in Complexity The~ry, pages 30-44, 1990.
L. Babai. Transparent (holographic) proofs. In Proceedfngs 10th Annual Symposium
on Theoretical Aspects of Computer Science, pages 52*534, 1993.
L. Babai and L. Fortnow. Arithmetization: a new metijod in structural complexity
theory. Computational Complexity, 1 :41-66, 1991. ' .
L. Babai, L. Fortnow, L. Levin, and M. Szegedy. !Checking computations in
polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, pages 21-31, 1991. •
L. Babai, L. Fortnow, and C. Lund. Non-determi,istic exponential time has
two-prover interactive protocols. Computational Compfexity, 1 :3-40, 1991.
E. Bach. Number-theoretic algorithms. Annual Review pf Computer Science, 4:119-
172,1990. .
A Bar-Noy, R. Motwani, and J. Naor. The greedy algqrithm is optimal for on-line
edge coloring. Information Processing Letters, 44:251-~53, 1992.
I. Biminy and Z. FUredi. Computing the volume is difficult. Discrete and Compu-
tational Geometry, 2:319-326, 1987. '
D. Beaver and J. Feigenbaum. Hiding instances in QIultioracle queries. In Pro
ceedings of the 7th Annual Symposium on Theoretical 4spects of Computer Science,
Lecture Notes in Computer Science, pages 37-48. ~pringer-Verlag, New York,
1990.
J. Beck. An algorithmic approach to the Lovasz local ~emma I. Random Structures
and Algorithms, pages 343-365, 1991. ,
L.A Belady. A study of replacement algorithms fOI1 virtual storage computers.
IBM Systems Journal, 5:78-101, 1966.
M. Bellare and M. Sudan. Improved non-approximaijility results. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, pages 184-193, 1994.
S. Ben-David, A Borodin, R.M. Karp, G. Tardos, ~Lnd A Wigderson. On the
power of randomization in on-line algorithms. Algori~hmica, 11(1):2-14, 1994.
M. Ben-Or. Probabilistic algorithms in finite fields. lIn Proceedings of the 22nd
Annual IEEE Symposium on Foundations of Computer Science, pages 394-398,1981.
M. Ben-Or, S. Goldwasser, J. Kilian, and A Wigderspn. Multi-prover interactive
proofs: How to remove intractability assumptions. 'In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pats 113-131, 1988.
S.W. Bent and J.W. John. Finding the median re uires 2n comparisons. In
Proceedings of the 17th ACM Annual Symposium on eory of Computing, pages
213-216, 1985. .
B. Berger and J. Rompel. Simulating (loge n)-wise ind~pendence in NC. Journal of
the ACM, 38:1026-1046, 1991.

I

S.J. Berkowitz. On computing the determinant in sma11 parallel time using a small
number of processors. Information Processing Letters,: 18 :147-150, 1984.
E.R. Berlekamp. Factoring polynomials over large ~nite fields. Mathematics of

449

REFERENCES

Computation, 24:713-735, 1970.
[58] D. Bertsimas and R Vohra. Linear programming r~laxations, approximation

algorithms and randomization: a unified view of cov~ring problems. Technical
Report OR 285-94, MIT, 1994.

[59] F. Bien. Constructions of telephone networks by group tepresentations. Notices of
the American Mathematical Society, 36:5-22, 1989. •

[60] N. Biggs. Algebraic Graph Theory. Cambridge Universi~y Press, 1974.
[61] P. Billingsley. Probability and Measure. John Wiley, Net York, 1979.
[62] A. Blum, H.J. Karloff, Y. Rabani, and M. Saks. A defomposition theorem and

bounds for randomized server problems. In Proceedingsl of the 33rd Annual IEEE
Symposium on Foundations of Computer Science, pages 1~7-207, 1992.

[63] A. Blum, P. Raghavan, and B. Schieber. Navigating in unramiliar geometric terrain.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
494-504, 1991. .

[64] M. Blum, A.K. Chandra, and M.N. Wegman. Equivaleqce of free Boolean graphs
can be decided probabilistically in polynomial time. Info~mation Processing Letters,
10:80-82, 1980.

[65] M. Blum, R.W. Floyd, V. Pratt, RL. Rivest, and R.E. frarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7:44-8461, 1973.

[66] M. Blum and S. Kannan. Designing programs that check Itheir work. In Proceedings
of the 21st Annual ACM Symposium on Theory of Comp~ting, pages 86-97, 1989.

[67] M. Blum, RM. Karp, O. Vornberger, C.H. Papadimit,ou, and M. Yannakakis.
The complexity of testing whether a graph is a super~oncentrator. Information
P,ocessing Letters, 13: 164-167, 1981.

[68] M. Blum, M. Luby, and R Rubinfeld. Self-testing/cotrecting with applications
to numerical problems. In Proceedings of the 22nd A~nual ACM Symposium on
Theory of Computing, pages 73-83, 1990.

[69] B. Bollobas. Random Graphs. Academic Press, New Yo~k, 1985.
[70] B. Bollobas. The chromatic number of random graphs~ Combinatorica, 8 :49-55,

1988.
[71] J. A. Bondy and U.S.R Murty. Graph Theory With Appli~ations. American Elsevier,

New York, 1977. I

[72] RB. Boppana, J. Hastad, and S. Zachos. Does co-lfP have short interactive
proofs? Information Processing Letters, 25:127-133, 198V.

[73] RB. Boppana and R Hirschfeld. Pseudo-random g~nerators and complexity
classes. In S. Micali, editor, Randomness and Computint (Advances in Computing
Research), volume 5, pages 1-26. JAI Press. Greenwich,iCT, 1989.

[74] ·A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, an~ M. Tompa. Two appli
cations of inductive counting for complementation prqblems. SIAM Journal on
Computing, 18(3):559-578, June 1989. See also 18(6): 12~3, December 1989.

[75] A. Borodin and J.E. Hopcroft. Routing, merging, and ~'orting on parallel models
of computation. Journal of Computer and System Scienc s, 30:130-145, 1985.

[76] A. Borodin, N. Linial, and M. Saks. An optimal online gorithm for metrical task
systems. Journal of the ACM, 39:745-763, 1992.,

[77] A. Borodin, P. Raghavan, B. Schieber, and E. Upfal. How much can hardware
help routing? In Proceedings of the 25th Annual ACMi Symposium on Theory of
Computing, pages 573-582, 1993. .

[78] A. Borodin, W.L. Ruzzo, and M. Tompa. Lower bound$ on the length of univer
sal traversal sequences. Journal of Computer and Systeth Sciences, 45(2):180-203,
October 1992.

450

• -I
I
I

:1,

-

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

REFERENCES

A Borodin, J. von zur Gathen, and J.E. Hopcroft. ~t parallel matrix and gcd
computations. Information and Computation, 32:251-2~, 1986.
O. BorUvka. 0 jistem problemu minimillnim. Prada Moravske P,irodovedecke
Spolecnosti, 3 :37-58, 1926.
D.P. Bovet and P. Crescenzi. Introduction to the TheJry of Complexity. Prentice-
Hall, Englewood Cliffs, NJ, 1994. ,
RS. Boyer and 1.S. Moore. A fast string searching al$orithm. Communications of
the ACM, 20(10), 1977.
AZ. Broder. How hard is it to marry at random? ! In Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, pages 50-58, May 1986.
AZ. Broder, AM. Frieze, and E. Upfal. Existence and ~onstruction of edge disjoint
paths on expander graphs. In Proceedings of the 24th 14nnual ACM Symposium on
Theory of Computing, pages 140-149, 1992.
AZ. Broder and AR Karlin. Bounds on covering time$. In 29th Annual Symposium
on Foundations of Computer Science, pages 479-487, White Plains, NY, October
1988.
G. Buffon. Essai d'arithmetique morale. Supplement a il'Histoire Naturelle, 4, 1777.
RD. Carmichael. On composite numbers which sati~fy the Fermat congruence.
Americal Mathematical Monthly, 19:22-27, 1912.
J.L. Carter and M.N. Wegman. Universal classes or: hash functions. Journal of
Computer and System Sciences, 18(2):143-154, 1979.
AK. Chandra, P. Raghavan, W.L. Ruzzo, R Smolenskr, and P. Tiwari. The electri
cal resistance of a graph captures its commute and coyer times. In Proceedings of
the 21st Annual ACM Symposium on Theory of Compufing, pages 574-586, Seattle,
May 1989.
B. Chazelle and H. Edelsbrunner. An optimal algqrithm for intersecting line
segments in the plane. Journal of the ACM, 39:1-54, ~992.
B. Chazelle and J. Friedman. A deterministic view or random sampling' and its
use in geometry. Combinatorica, 10(3):229-249, 1990.
B. Chazelle and J. Friedman. Point location among hYPerplanes and undirectional
ray-shooting. Computational Geometry: Theory and A~plications, 4:53-62, 1994.
H. Chernoff. A measure of asymptotic efficiency for ~ests of a hypothesis based
on the sum of observations. Annals of Mathematical Sratistics, 23 :493-509, 1952.
L.P. Chew. Building Voronoi diagrams for convex Rolygons in linear expected
time. Report, Department of Mathematics and Computer Science, Dartmouth
College, Hanover, NH, 1985.
AL. Chistov. Fast parallel calculation of the ranI{: of matrices over a field
of arbitrary characteristic. In Proceedings of the Intetnational Conference on the
Foundations of Computation Theory, Springer-Verlag tecture Notes in Computer
Science, 199, pages 63-69, 1985. .
B. Chor and C. Dwork. Randomization in Byzantin~ agreement. In S. Micali,
editor, Randomness and Computing (Advances in Comp~ting Research, vol. 5), pages
443497. JAI Press, Greenwich, CT, 1989.
B. Chor and O. Goldreich. On the power of two-Roint sampling. Journal of
Complexity, 5:96-106, 1989.
M. Chrobak, H.J. Karloff, T. Payne, and S. Vishwanat~an. New results on server
problems. In Proceedings of the 1st Annual ACM-SI{tM Symposium on Discrete
Algorithms, pages 291-300, 1990. •
M. Chrobak and L.L. Larmore. HARMONIC is 3~competitive for 2 servers.
Theoretical Computer Science, 98 :339-346, May 1992.

451

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]

REFERENCES

V. Chvatal. Linear Programming. W. H. Freeman, New york, 1983.
K.L. Clarkson. A probabilistic algorithm for the post offi<je problem. In Proceedings
of the 17th Annual ACM Symposium on Theory ofCompuring, pages 175-184, 1985.
K.L. Clarkson. New applications of random sampling in! computational geometry.
Discrete and Computational Geometry, 2:195-222, 1987. '
K.L. Clarkson. Applications of random sampling in cOfPutational geometry, II.
In Proceedings of the 4th Annual ACM Symposium on I Computational Geometry,
pages 1-11, 1988. ,
K.L. Clarkson. A Las Vegas algorithm for linear progr,mming when the dimen
sion is small. In Proceedings of the 29th Annual IEEE $ymposium Foundations of
Computer Science, pages 452456, 1988.
K.L. Clarkson. A randomized algorithm for closest-poipt queries. SIAM Journal
on Computing, 17 :830-847, 1988. ,
K.L. Clarkson and P.W. Shor. Algorithms for diametriC

r
' I pairs and convex hulls

that are optimal, randomized, and incremental. In Proc edings of the 4th Annual
ACM Symposium on Computational Geometry, pages 12-,7, 1988.
K.L. Clarkson and P.W. Shor. Applications of random s,mpling in computational
geometry, II. Discrete and Computational Geometry, 4:38~421, 1989.
A. Cohen and A. Wigderson. Dispersers, deterministic a~plification, and weak ran
dom sources. In Proceedings of the 30th Annual IEEE Symposium on Foundations
of Computer Science, pages 14-19, 1989.
C.J. Colboum. The Combinatorics of Network Reliability.! Oxford University Press,
New York, 1987. '
R, Cole. Parallel merge sort. SIAM Journal on Computi~g, 17(4):770-785, 1988.
S.A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64(1-3):2-22, 1985. •
D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. R~ndom walks on weighted
graphs, and applications to on-line algorithms. Journal 'of the ACM, 40:454476,
1993.

[113] D. Coppersmith and S. Winograd. Matrix multiplicatiqn via arithmetic progres
sions. Journal of Symbolic Computation, 9:251-280, 1990J

[114] T. Cormen, CE. Leiserson, and R.L. Rivest. Introduction ito Algorithms. MIT Press
and McGraw Hill, New York, 1990.

[115] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5:618-623, 1976. '

[116] J.H. Curtiss. Monte Carlo method. National Bureau of $tandards Applied Mathe-
matics Series, 12, 1951. I

[117] 'n.M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Granhs. Academic Press, New
York, 1979. '

[118] P. Dagum, M. Mihail, M. Luby, and U.V. Vazirani. P~lytopes, permanents and
graphs with large factors. In Proceedings of the 29th An~ual IEEE Symposium on
Foundations of Computer Science, pages 412422, 1988. '

[119] G.B. Dantzig. Minimization of a linear function of vari*bles subject to linear in
equalities. In T.C Koopman, editor, Activity Analysis of eroduction and Allocation,
pages 339-347. John Wiley, New York, 1951. i

[120] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[121] H. Davenport. Multiplicative Number Theory. Springer-~erlag, New York, 1980.
[122] K. de Leeuw, E.F. Moore, CE. Shannon, and N. Shapirio. Computability by

probabilistic machines. In C.E. Shannon and J. Mcduthy, editors, Automata

452

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

------ -----------------------------------

REFERENCES

Studies, pages 183-212. Princeton University Press, Princeton, NJ, 1955.
RA DeMillo and RJ. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7:193-195, ~978.
M. Dietzfelbinger, A Karlin, K. Mehlhorn, F. M~'er auf der Heide, H. Rohnert,
and RE. Tarjan. Dynamic perfect hashing: Up r and lower bounds. In 29th
Annual IEEE Symposium on Foundations of Comput Science, pages 524-531, 1988.
E.W. Dijkstra. A note on two problems in conne4tion with graphs. Numerische
Mathematik, 1 :83-89, 1976. I

I.H. Dinwoodie. A probability inequality for the occ~pation measure of a reversible
Markov chain. Unpublished manuscript, Depart¥ent of Mathematics, Tulane
University, 1994.
B. Dixon, M. Rauch, and R E. Tarjan. Verifica~on and sensitivity analysis of
minimum spanning trees in linear time. SIAM Journql on Computing, 21 :1184-1192,
1992. .
W.E. Donath and AJ. Hoffman. Lower bounds Cpr the partitioning of graphs.
IBM Journal of Research and Development, 17 :420-1425, 1973.
J.L. Doob. Stochastic Processes. John Wiley, New York, 1953.
P.G. Doyle and 1.L. Snell. Random Walks and Electric Networks. The Mathematical
Association of America, 1984. .
L.E. Dubins and L.J.Savage. How to Gamble If lfou Must. McGraw Hill, New
York,1965. .
M. Dyer, A Frieze, and R Kannan. A random pol~nomial algorithm for approx
imating the volume of convex bodies. Journal ofth~ ACM, pages 1-17, 1991.
H. Edelsbrunner. Algorithms in Combinatorial Ge~metry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Sp~nger-Verlag, Heidelberg, West
Germany, 1987. .
J. Edmonds. Systems of distinct representatives ~nd linear algebra .. Journal of
Research of the National Bureau of Standards. 71B,14:241-245, 1967.
R EI-Yaniv, A Fiat, RM. Karp, and G. Turpin. C~mpetitive analysis of financial
games. In Proceedings of the 33rd Annual IEEE i Symposium on Foundations of
Computer Science, pages 327-333, October 1992. :
P. Elias, A Feinstein, and C. E. Shannon. Note! on maximum flow through a
network. IRE Transactions on Information Theory, ~T-2:117-199, 1956.
P. Erdos and L. Lovasz. Problems and results on i 3-chromatic hypergraphs and
some related questions. In A Hajnal et aI., editor,i Infinite and Finite Sets, pages
609-628. North-Holland, Amsterdam, 1975. !

P. Erdos and J.L. Selfridge. On a combinatorial g~me. Journal of Combinatorial
Theory. Series A, 14:298-301, 1973. ,
P. Erdos and 1. Spencer. The Probabilistic MethoU in Combinatorics. Academic
Press, San Diego, 1974. .
T. Feder and R Motwani. Clique partitions, gra~h compression and speeding
up algorithms. In Proceedings of the 25th Annual ~CM Symposium on Theory of
Computing, pages 123-133, 1991. :
U. Feige, S. Goldwasser, L. Lovasz, S. Safra, an4 M. Szegedy. Approximating
clique is almost NP-complete. In Proceedings of t~e 32nd Annual Symposium on
Foundations of Computer Science, pages 2-12, 1991.1
W. Feller. An Introduction to Probability Theory 4nd Its Applications, volume I.
John Wiley, New York, 1968. '
W. Feller. An Introduction to Probability Theory ard Its Applications, volume II.
John Wiley, New York, 1968.

453

REFERENCES

[144] A. Fiat, D.P. Foster, H.J. Karloff, Y. Rabani, Y. Ravid, land S. Vishwanathan.
Competitive algorithms for layered graph traversal. In Proceedings of the 32nd
Annual IEEE Symposium on Foundations of Computer Scienc~, pages 288-297,1991.

[145] A. Fiat, RM. Karp, M. Luby, L. A. McGeoch, D.O. Sleator, and N. Young.
Competitive paging algorithms. Journal of Algorithms, 12:~85-699, 1991.

[146] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algqrithms. In Proceedings
of the 31st Annual IEEE Symposium on Foundations of C~mputer Science, pages
454-463, 1990.

[147] EE. Fich, E Meyer auf der Heide, P.L. Ragde, and A. Wig4erson. One, two, three
.. , infinity: Lower bounds for parallel computation. In Jfroceedings of the 17th
Annual ACM Symposium on Theory of Computing, pages 41t-58, 1985.

[148] MJ. Fischer and N.A. Lynch. A lower bound for the ti~e to assure interactive
consistency. Information Processing Letters, 14:183-186, 19$2.

[149] MJ. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility qf distributed consensus
with one faulty process. Journal of the ACM, 32:374-382, ~985.

[150] R W. Floyd. Algorithm 97: Shortest path. Communicatio~s of the ACM, 5:345,
1962.

[151] R. W. Floyd and R.L. Rivest. Expected time bounds for selqction. Communications
of the ACM, 18:165-172, 1975. .

[152] L.R. Ford and D.R. Fulkerson. Maximal flow through la network. Canadian
Journal of Mathematics, 8 :399-404, 1956.

[153] L. Fortnow, J. Rompel, and M. Sipser. On the power of ~ulti-prover interactive
protocols. In Proceedings of the 3rd Annual Conference on Structure in Complexity
Theury, pages 156-161, 1988.

[154] M. Fredman and D. E. Willard. Trans-dichotomous algorithJns for minimum span
ning trees and shortest paths. In Proceedings of the 31st A~nual IEEE Symposium
on Foundations of Computer Science, pages 719-725, 1990. I

[155] M.L. Fredman and J. Komlos. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Computing, 5:61~8, 1984.

[156] M.L. Fredman, J. Komlos, and E. Szemeredi. Storing a ~parse table with 0(1)
worst case access time. Journal of the ACM, 31 :538-544, J~y 1984.

[157] R Freivalds. Probabilistic machines can use less running Itime. In B. Gilchrist,
editor, Information Processing 77. Proceedings of IFIP Cong~ess 77, pages 839-842.
North-Holland, Amsterdam, 1977. :

I

[158] O. Gabber and Z. Galil. Explicit construction of linear-si~d superconcentrators.
Journal of Computer and System Sciences, 22 :407-420, 1981.

[159] H.N. Gabow, Z. Galil, T. Spencer, and RE. Tarjan. E~cient algorithms for
finding minimum spanning trees in undirected and directed raphs. Combinatorica,
6:109-122, 1986. •

[160] H.N. Gabow, Z. Galil, and T.H. Spencer. Efficient implementation of graph
algorithms using contraction. In Proceedings of the 25th An~ual IEEE Symposium
on Foundations of Computer Science, pages 347-357, 1984. i

[161] D. Gale and L. S. Shapley. College admissions and the Istability of marriage.
American Mathematical Monthly, 69:6-15, 1962. .

[162] Z. Galil and V. Pan. Improved processor bounds for com~inatorial problems in
RNC. Combinatorica, 8:189-200, 1988.

[163] B. Gartner. A subexponential algorithm for abstract optimization problems.
In Proceedings of the 33rd Annual IEEE Symposium on Fo~ndations of Computer
Science, pages 464-472, 1992. :

[164] B. Gartner and G.M. Ziegler. Random simplex algorithms pn Klee-Minty cubes.

454

REFERENCES

In Proceedings of the 35th Annual IEEE Symposiurtz on Foundations of Computer
Science, pages 502-510, 1994.

[165] P. Gemmell, R Lipton, R Rubinfeld, M. Sudap, and A. Wigderson. Self
testing/correcting for polynomial~ and for approxilate fu?ctions. In Proceedings
of the 23nd Annual ACM Symposlum on Theory of omputrng, pages 3242, 1991.

[166] J. Gill. Computational complexity of probabilistic T ring machines. SIAM Journal
on Computing, 6(4):675-695, December 1977. I

[167] D. Gillman. A Chernoff bound for random walksi on expander graphs. In 34th
Annual IEEE Symposium on Foundations of Computer Science, pages 680-691,1994.

[168] F. Gobel and A.A. Jagers. Random walks on gr~phs. Stochastic Processes and
their Applications, 2 :311-336, 1974. :

[169] M.x. Goemans and D.P. Williamson. New 3/~~pproximation algorithms for
MAX SAT. To appear in the SIAM Journal on Di~rete Mathematics, 1993.

[170] M.X. Goemans and D.P. Williamson. 0.878-appro 'mation algorithms for MAX
CUT and MAX-2SAT. In Proceedings of the 26t Annual ACM Symposium on
Theory of Computing, pages 422431, 1994. .

[171] A.V. Goldberg and R.E. Tarjan. A new approach tp the maximum flow problem.
Journal of the ACM, 35:921-940, 1988. .

[172] A.V. Goldberg, S.A. Plotkin, and P.M. Vaidya Su~linear-time parallel algorithms
for matching and related problems. Journal of Alg~rithms' 14:180-213, 1993.

[173] M. Goldberg and T. Spencer. A new parallel algo thm for the maximal indepen
dent set problem. In Proceedings of the 28th Annua Symposium on Foundations of
Computer Science, pages 161-165, 1987. :

[174] O. Goldreich. A taxonomy of proof systems. 1. SI

1
ACT News, 24 :2-13, 1993.

[175] O. Goldreich. A taxonomy of proof systems. 2. SI ACT News, 25 :22-30, 1994.
[176] O. Goldreich, S. Micali, and A. Wigderson. Proo s that yield nothing but their

validity or all languages in NP have zero-know edge proof systems. JACM,
38:691-729, 1991. "

[177] M. Goldwasser. Linear programming in randomize~ subexponential time. Unpub
lished manuscript, Computer Science Department, ~tanford University, 1993.

[178] S. Goldwasser and J. Kilian. Almost all primesi can be quickly certified. In
Proceedings of the 18th Annual ACM Symposium ~n Theory of Computing, pages
316-329, May 1986. ,

[179] S. Goldwasser, S. Micali, and C. Rackoff. The kno1edge complexity of interactive
proof-systems. SIAM Journal on Computing, 18:18 208, 1989.

[180] RE. Gomory and T.C. Hu. Multi-terminal networ flows. SIAM Journal, 9:551-
570, 1961. i

[181] R L. Graham and P. Hell. On the history of the m~nimum spanning tree problem.
Annals of the History of Computing, 7:43-57, 1985.!

[182] RL. Graham, D.E. Knuth, and O. Patashnik. Cl~ncrete Mathematics. Addison-
Wesley, Reading, MA, 1989. .

[183] D.H. Greene and D.E. Knuth. Mathematics fqr the Analysis of Algorithms.
Birkhauser, Boston, 1990.

[184] D. Grigoriev and M. Karpinski. The matching I problem for bipartite graphs
with polynomially bounded permanents. In Procee~ings of the 28th Annual IEEE
Symposium on Foundations of Computer Science, pa~es 166-172, 1987.

[185] G.R Grimmett and D.R Stirzaker. Probability arrd Random Processes. Oxford
University Press, Oxford, 1988. .

[186] E. Grove. The harmonic online k-server algorithm I is competitive. In Proceedings
of the 23rd Annual ACM Symposium on Theory ofdpmputing, pages 260-266,1991.

455

REFERENCES

[187] L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incr,mental construction of
Delaunay and Voronoi diagrams. Algorithmica, 7:381413,11992.

[188] D. Gusfield and RW. Irving. The stable marriage problem: srructure and algorithms.
MIT Press, Cambridge, 1989. :

[189] T. Hagerup and CRlib. A guided tour of Chernoff bounds. I Information Processing
Letters, 33 :305-308, 1990. !

[190] A Hall. On an experimental determination of 7t. Messeng. kath., 2:113-114, 1873.
[191] P. Hall and CC Heyde. Martingale Limit Theory and its IApplication. Academic

Press, New York, 1980. i

[192] J. Hao and lB. Orlin. A faster algorithm for finding the m~nimum cut in a graph.
In Proceedings of the 3rd Annual ACM-SIAM Symposium pn Discrete Algorithms,
pages 165-174, 1993. !

[193] E Harary and E.M. Palmer. Graphical Enumeration. Aca~mic Press, New York,
1973. !

[194] G.H. Hardy and E.M. Wright. An Introduction to the The~ry of Numbers. Oxford
University Press, London, 1965. 4th Edition. .

[195] G.H. Hardy, J.E. Littlewood, and G. P6lya. Inequalities. i Cambridge University
Press, Cambridge, 1989. !

[196] J. Hastad, ET. Leighton, and M. Newman. Reconfiguri*g a hypercube in the
presence of faults. In Proceedings of the 19th Annual ACAt Symposium on Theory
of Computing, pages 274-284, 1987. 1

[197] D. Haussler and E. Welzl. Epsilon-nets and simplex rang~ queries. Discrete and
Computational Geometry, 2:127-151, 1987. '

[198] R Hayward and CJ.H. McDiarmid. Average case analyt·s of heap building by
repeated insertion. Journal of Algorithms, 12:126-153, 1991.

[199] I.N. Herstein. Topics in Algebra. John Wiley, New York, 1 64.
[200] CAR Hoare. Algorithm 63 (Partition) and algorithm 65 (ind). Communications

of the ACM, 4:321-322, 1961. I

[201] CAR. Hoare. Quicksort. Computer Journal, 5:10-15, 1962

t [202] W. Hoeffding. Probability inequalities for sums of boun ed random variables.
Journal of the American Statistical Association, 58 :13-30, 1 63.

[203] J.E. Hopcroft and RM. Karp. An n5/ 2 algorithm for aximum matching in
bipartite graphs. SIAM Journal on Computing, 2:225-231, 973.

[204] L.K. Hua Introduction to Number Theory. Springer-Verla Berlin, 1982.
[205] R Impagliazzo and D. Zuckerman. How to recycle rando bits. In Proceedings

of the 30th Annual IEEE Symposium on Foundations of C mputer Science, pages
2~2-227, 1989. i

[206] S.s. Irani. Two results on the list update problem. Informa~ion Processing Letters,
38:301-306, 1991. :1"

[207] A Israeli and Y. Shiloach. An improved parallel algorithm ~or maximal matching.
Information Processing Letters, 22:57-60, 1986. L

[208] J. Jui. An Introduction to Parallel Algorithms. Addison-~esley, Reading, MA,
1992 I

[209] S. Janson. Large deviation inequalities for sums of indicat!r variables. Technical
Report 34, Department of Mathematics, Uppsala Universit , 1993.

[210] M. Jerrum and U. Vazirani. A mildly exponential approxim tion algorithm for the
permanent. In Proceedings of the 33rd Annual IEEE Sympo ium on Foundations of
Computer Science, pages 320-326, 1992. I

[211] M.R. Jerrum and A Sinclair. Approximating the permanfnt. SIAM Journal on
Computing, 18(6):1149-1178, December 1989. I

I

456

[212]

[213]
[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

REFERENCES

I

M.R Jerrum, L.G. Valiant, and v.v. Vazirani. Randdm generation of combinatorial
structures from a uniform distribution. Theoretical ~omputer Science, 43 :169-188,
1986.!
Wang Jianhua The Theory of Games. Clarendon ptess, London, 1988.
A. Joffe. On a set of almost deterministic k-indepen~ent random variables. Annals
of Probability, 2(1):161-162, 1974. I

D.B. Johnson. Efficient algorithms for shortest pat~s in sparse networks. Journal
of the ACM, 24:1-13, 1977. I

D.s. Johnson. Computing in the Math Department: Part I (The NP-completeness
column: An ongoing guide). Journal of Algorithms, 7:584-601, 1986.
D.S. Johnson. Interactive proof systems for fun an profit (the NP-completeness
column: An ongoing guide). Journal of Algorithms, 9:426-444, 1988.
D.S. Johnson. The tale of the 2nd prover (the P-completeness column: An
ongoing guide). Journal of Algorithms, 13 :502-524, 1992.
D.S. Johnson. Approximation algorithms for com inatorial problems. Journal of
Computer and System Sciences, 9:256-278, 1974. :
D.S. Johnson. The NP-completeness colunm: A~ ongoing guide. Journal of
Algorithms, 5:284-299, 1984. '
D.S. Johnson. The NP-completeness colunm: Ap ongoing guide. Journal of
Algorithms, 5:433-447, 1984. I

N.L. Johnson and S. Kotz. Urn Models and Their Jrtpplications. John Wiley, New
York, 1977. l
L.R Ford Jr. and D.R Fulkerson. Flows in networfs. Princeton University Press,
Princeton, N J, 1962. I

J.D. Kahn, N. Linial, N. Nisan, and M.E. Saks. ¢>n the cover time of random
walks in graphs. Journal of Theoretical Probability, 12(1):121-128, 1989.
C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivi<;>us routing
in the hypercube. In Proceedings of the 3rd Annua, ACM Symposium on Parallel
Algorithms and Architectures, pages 31-36, 1991. .
G. Kalai. A subexponential randomized simplex al orithm. In Proceedings of the
24th Annual ACM Symposium on Theory of Comput·ng, pages 475-482, 1992.
G. Kalai and D.J. Kleitman. A quasi-polynomial bo nd for the diameter of graphs
of polyhedra. Bulletin of the AMS, 26:315-316, Ap ·1 1992.
A. Kamath, R Motwani, K. Pal em, and P. Spirak·s. Tail bounds for occupancy
and the satisfiability threshold conjecture. In Procee ings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, pa es 592-603, 1994.
D.R. Karger. Random sampling in matroids, wi h applications to graph con
nectivity and minimum spanning trees. In Procee ·ngs of the 34th Annual IEEE
Symposium on Foundations of Computer Science, pa es 84-93, 1993.
D. Karger, R Motwani, and M. Sudan. Approxim te graph coloring by semidef
inite programming. In Proceedings of the 35th Ann al IEEE Symposium on Foun-
dations of Computer Science, pages 2-13, 1994. i

D.R Karger. Global min-cuts in RNC, and other ra~ifications of a simple min-cut
algorithm. In Proceedings of the 4th Annual ACMtSIAM Symposium on Discrete
Algorithms, pages 21-30, 1993. .
D.R Karger, P.N. Klein, and RE. Tarjan. A ran omized linear-time algorithm
for finding minimum spanning trees. To appear in he Journal of the ACM, 1995.
D.R Karger and R Motwani. Derandomization th ough approximation: An NC
algorithm for minimum cuts. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, pages 497-506, 1994. I

I

457
,

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

REFERENCES

D.R. Karger and C. Stein. An O(n2) algorithm for minim~m cuts. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computi*g, pages 757-765,1993.
AR. Karlin, M.S. Manasse, L. Rudolph, and D.O. Sleat~r. Competitive snoopy
caching. Algorithmica, 3(1):70-119, 1988.
AR. Karlin, M.S. Manasse, L.A McGeoch, and S. OwickJ. Competitive random
ized algorithms for non-uniform problems. In Proceeding~ of the 1st ACM-SIAM
Symposium on Discrete Algorithms, pages 301-309, 1990. I!
H.J. Karloff. A Las Vegas RNC algorithm for maximum ~atching. Combinatorica,
6:387-391, 1986.,
H.J. Karloff, Y. Rabani, and Y. Ravid. Lower bounds i for randomized server
algorithms. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, pages 278-288, 1991.
N. Karmarkar, R.M. Karp, R. Lipton, L. Lovasz, and M.: Luby. A Monte Carlo
algorithm for estimating the permanent. In preparation. !

R.M. Karp, M. Luby, and N. Madras. Monte-Carlo appro~imation algorithms for
enumeration problems. Journal of Algorithms, 10:429-448'!11989.
R.M. Karp and V. Ramachandran. Parallel algorithms fpr shared memory ma
chines. In J. van Leeuwen, editor, Handbook of Theorerical Computer Science,
pages 869-941. Elsevier/The MIT Press, Amsterdam, 1990.
R.M. Karp, E. Upfal, and A Wigderson. Constructing a! perfect matching is in
random NC. Combinatorica, 6:3548, 1986. .
R.M. Karp. An introduction to randomized algorithms. {Jiscrete Applied Mathe
matics, 34:165-201, 1991.
R.M. Karp. Probabilistic recurrence relations. In Proceedfngs of the 23rd Annual
ACM Symposium on Theory of Computing, pages 190-197, i1991.
R.M. Karp and R. Lipton. Turing machines that take! advice. L'enseignment
Mathematique, 28:191-209, 1982. •
R.M. Karp and M. Luby. Monte-Carlo algorithms for enufneration and reliability
problems. In Proceedings of the 24th Annual IEEE Sympqsium on Foundations of
Computer Science, pages 56-64, 1983. '
R.M. Karp and M. Luby. Monte Carlo algorithms for t~e planar multiterminal
network reliability problem. Journal of Complexity, 1 :4~, 1985.
R.M. Karp, N. Pippenger, and M. Sipser. A time randonlness tradeoff. In AMS
Conference on Probabilistic Computational Complexity, 198$.
R.M. Karp and M.O. Rabin. Efficient randomized patte~-matching algorithms.
IBM Journal of Research and Development, 31 :249-260, M rch 1987.
R.M. Karp, E. Upfal, and A Wigderson. The complexity of parallel search. Journal

• I

of Computer and System Sciences, 36:225-253, 1988. I

R.M. Karp and A Wigderson. A fast parallel algorithm fot the maximal indepen
dent set problem. Journal of the ACM, 32 :762-773, 1985. :
AV. Karzanov and E.A Timofeev. Efficient algorithm for finding all minimal
edge cuts of a non-oriented graph. Kibernetika, 22:156-16~, 1986. Translation in
Cybernetics 22. I
J.G. Kemeny, J.L. Snell, and AW. Knapp. Denumerabl~ Markov Chains. The
University Series in Higher Mathematics. Van Nostrand, Pfinceton, NJ, 1966.
T. Kimbrel and R. Sinha. A probabilistic algorithm for veprying matrix products
using O(n2) time and log2 n+O(1) random bits. Informa~ion Processing Letters,
45:107-110, 1993. i

V. King. A simpler minimum spanning tree verification a~gorithm. Unpublished
manuscript, 1993. I

!

458

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]
[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

REFERENCES

V. King, S. Rao, and R.E.Tarjan. A faster determi~istic maximum flow algorithm.
In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 157-164, 1993.
P.N. Klein and R.E. Tarjan. A randomized lin~ar-time algorithm for finding
minimum spanning trees. In 'Proceedings of the 26fh Annual ACM Symposium on
Theory of Computing, pages 9-15, 1994. ,
D.E. Knuth. Fundamental Algorithms, volume 1 of ~e Art of Computer Program-
ming. Addison-Wesley, Reading, MA, 1969. ,
D.E. Knuth. Seminumerical Algorithms, volume 2 i of The Art of Computer Pro
gramming. Addison-Wesley, Reading, MA, 1971. '
D.E. Knuth. Sorting and Searching, volume 3 of TheiArt of Computer Programming.
Addison-Wesley, Reading, MA, 1973. i,

D.E. Knuth. Big omicron and big omega and big th~ta SIGACT News, 8(2) :18-24,
1976.
D.E. Knuth, lH. Morris, Jr., and V.R. Pratt. FaSt pattern matching in strings.
SIAM Journal on Computing, 6(2) :240-267, 1977. ;
D.E. Knuth. Mariages stables (in French). Les Pres~es de l'Universite de Montreal,
Montreal, 1976. i

D.E. Knuth and A C-C. Yao. The complexity o~ nonuniform random number
generation. In J. F Traub, editor, Algorithms and ¢omplexity, Recent Results and
New Directions, pages 375-428. Academic Press, N~w York, 1976.
K-1. Ko. Some observations on probabilistic' algo~thms and NP-hard problems.
Information Processing Letters, 14:3943, 1981.
V.F Kolchin, V.P. Chistiakov, and B.A Sevastian<i>v. Random Allocations. Y.H.
Winston, New York, 1978.
A Kolmogorov. Grundbegriffe der Wahrscheinlichk~itsrechnung. Springer, Berlin,
1933. ,
J. Komlos. Linear verification for spanning trees. dombinatorica, 5:57-65, 1985.

I

E. Koutsoupias and C.H. Papadimitriou. On the k-sctver conjecture. In Proceedings
of the 26th Annual ACM Symposium on Theory of C~mputing, pages 507-511,1994.
J.B. Kruskal. On the shortest spanning subtree pf a graph and the traveling
salesman problem. Proceedings of the American !4tathematical Society, 7:48-50,
1956.
FT. Leighton. Introduction to Parallel Algorithms a~d Architectures: Arrays, Trees,
Hypercubes. Morgan-Kauffman, San Mateo, CA, 1992.
FT. Leighton, B. Maggs, and S. Rao. Universal pac*et routing algorithms. In Pro
ceedings of the 29th Annual IEEE Symposium on Fo~ndations of Computer Science,
pages 256-269, 1988. ':
AK. Lenstra and Jr. H.W. Lenstra. Algorithms tn number theory. In J. van
Leeuwen, editor, Handbook of Theoretical Compute~ Science, pages 675-715. Else-
vier Science Publishers, Amsterdam, 1990. '
A Lev, N. Pippenger, and L.G. Valiant. A fast patallel algorithm for routing in
permutation networks. IEEE Transactions on Comp~ters, C-30:93-100, 1981.
W.J. LeVeque. Fundamentals of Number Theory. A~dison-Wesley, Reading, MA,
197~ !

H.R. Lewis and C.H. Papadimitriou. Symmetric I space-bounded computation.
Theoretical Computer Science, 19:161-187, 1982. 'I

R.J. Lipton. New directions in testing. In Distributedl Computing and Cryptography,
DIMACS Series in Discrete Mathematics and T~eoretical Computer Science,
Volume 2, pages 191-202. American Mathematical $ociety, Providence, RI, 1991.

!

459

[278]

[279]

[280]

[281]
[282]

[283]

[284]

[285]

[286]

[287]
[288]

[289]

[290]

[291]

[292]

[293]
[294]

[295]

[296]

[297]

[298]

[299]

REFERENCES

R.I. Lipton and N. Young. Simple strategies for large zerd-sum games with appli
cations to complexity theory. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, pages 734-740, 1994.
L.H. Loomis. On a theorem of von Neumann. Proceedings (jf the National Academy

I

of Sciences of the U.S.A., 32:213-215,1946.
L. Lovasz. On determinants, matchings and random alg~rithms. In L. Budach,
editor, Fundamentals of Computing Theory. Akademia-Verl~g, Berlin, 1979.
L. Lovasz and M.D. Plummer. Matching Theory. Academic! Press, New York, 1986.
M. Luby. A simple parallel algorithm for the maximal ~ndependent set. SIAM
Journal on Computing, 15:1036-1053, 1986.
M. Luby. Removing randomness in parallel computatiqn without a processor
penalty. In Proceedings 29th Annual IEEE Symposium on Prundations of Computer
Science, pages 162-173, October 1988.
M. Luby. Removing randomness in parallel computatiqn without a processor
penalty. Journal of Computer and System Sciences, 47:25O-t86, 1993.
M. Luby, 1. Naor, and M. Naor. On removing randomne~s from a parallel algo
rithm for minimum cuts. Technical Report TR-093-007, International Computer
Science Institute, Berkeley, CA, 1993. •
M. Luby, A Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algo
rithms. Information Processing Letters, 47:173-180,1993 ..
R. Luce and H. Raiffa. Games and Decisions. John Wiley, ~ew York, 1957.
e. Lund, L. Fortnow, H.I. Karloff, and N. Nisan. Algebraicimethods for interactive
proof systems. In Proceedings of the 31st Annual IEEE Symposium on Foundations
of Computer Science, pages 2-10, 1990.
F. Maffioli, M.G. Speranza, and e. Vercellis. Rando~ized algorithms. In
M. O'hEigertaigh, 1.K. Lenstra, and AH.G. Rinooy K~n, editors, Combinato
rial Optimization: Annotated Bibliographies, pages 89-105 .• ohn Wiley, New York,
1985.
M.S. Manasse, L.A McGeoch, and D.O. Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11 :208-230, 1990. '
K. Manders and L. Adleman. NP-complete decision Rroblems for quadratic
polynomials. In Proceedings of the 8th ACM Symposium oh Theory of Computing,
pages 23-29, 1976. ,
G.A Margulis. Explicit constructions of concentrators. Pr~blemy Peredachi Infor
mats ii, pages 71-80, 1973. English translation in Problem4 of Information Trans
mission, 9:325-332.
AA Markov. Ischislenie veroiatnostel. 2 ed. 1912.
J. 'Matousek. Derandomization in computational geometry. Submitted for publi
cation, 1994.
1. MatouSek, M. Sharir, and E. Welzl. A subexponential'i bound for linear pro
gramming. In Proceedings of the 8th Annual ACM Sympqsium on Computational
Geometry, pages 1-8, 1992.
P.e. Matthews. Covering problems for Brownian motion i on spheres. Annals of
Probability, 16:189-199, 1988. .
P.e. Matthews. Covering problems for Markov chains. ; Annals of Probability,
16:1215-1228, 1988. .
R.L. Mattison, 1. Gecsei, D.R. Slutz, and I.L. Traiger. Ev~luation techniques for
storage hierarchies. IBM Systems Journal, 9(2), 1971. I

I

D.W. Matula. Determining edge connectivity in O(nm). I, In Proceedings of the
28th Annual IEEE Symposium on Foundations of Computer $cience, pages 249-251,

i

460

REFERENCES

1987.
[300] B. Maurey. Construction de suites symetriques. Co',npt. Rend. A cad. Sci. Paris,

288:679-681, 1979.
[301] 1.e. Maxwell. A Treatise on Electricity and Magnetisf. Clarendon, London, 1918.
[302] C.J.H. McDiarmid. On the method of bounded diferences. In J. Siemons, ed

itor, Surveys in Combinatorics: Invited Papers at t~ 12th British Combinatorial
Conference, pages 148-188. Cambridge University Pr~ss, 1989.

[303] e.1.H. McDiarmid. On a random recolouring meth~ for graphs and hypergraphs.
Combinatorics, Probability and Computing, 2:363-365~ 1993.

[304] C.J.H. McDiarmid and R. Hayward. Strong concen~ration for quicksort. In Pro
ceedings of the 3rd Annual ACM-SIAM Symposium qn Discrete Algorithms, pages
414-421, 1992. '

[305] C.J.H. McDiarmid and B.A. Reed. Building heaps f~st (data structures). Journal
of Algorithms, 10:352-365, 1989.

[306] L.A. McGeoch and D.D. Sleator. A strongly co~petitive randomized paging
algorithm. Algorithmica, 6:816-825, 1991.

[307] N. Megiddo. Linear programming in linear time When the dimension is fixed.
Journal of the ACM, 31 :114-127, 1984.

[308] S. Micali and V.V. Vazirani. An O(JiViIEI) algori.thm for finding maximum
matching in general graphs. In Proceedings of the *st Annual IEEE Symposium
on Foundations of Computer Science, pages 17-27, 1930.

[309] M. Mihail. The approximation of the permanent is stih open. Man~script, Harvard
University, 1987.

[310] G.L. Miller. Riemann's hypothesis and tests for p~ality. Journal of Computer
and System Sciences, 13:300-317, 1976.

[311] D.S. Mitrinovic. Analytic Inequalities. Springer-Verla~, New York, 1970.
[312] R. Motwani. Expanding graphs and the average~case analysis of algorithms

for matchings and related problems. In Proceedin~s of the 21st Ann~al ACM
Symposium on Theory of Computing, pages 550-561, 1989.

[313] R. Motwani, 1. Naor, and M. Naor. The probabili$tic method yields determin
istic parallel algorithms. In Proceedings of the 30th ,Annual IEEE Symposium on
Foundations of Computer Science, pages 8-13, Octob~ 1989.

[314] R. Motwani, 1. Naor, and P. Raghavan. Randomiz*ion in approximation algo
rithms. In D. Hochbaum, editor, Approximation Algo~ithms. To appear, 1995.

[315] K. Mulmuley. A fast planar partition algorithm, L In Proceedings 29th IEEE
Symposium on Foundations of Computer Science, page$ 580-589, October 1988.

[316] K. Mulmuley. Computational Geometry: An Intr04uction Through Randomized
Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 199~.

[317] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. M~tching is as easy as matrix
inversion. Combinatorica, 7 :105-113, 1987.

[318] H. Nagamochi and T. Ibaraki. Computing edge conpectivity in multigraphs and
capacitated graphs. SIAM Journal on Discrete Mathematics, 5 :54-66, 1992.

[319] 1. Naor and M. Naor. Small-bias probability space~: efficient constructions and
applications. SIAM Journal on Computing, 22 :838-56~ 1993.

[320] N. Nisan. Pseudorandom generators for space-bounded computation. Combina
torica, 12 :449-461, 1992.

[321] I. Niven and H.S. Zuckerman. An Introduction to tAe Theory of Numbers. John
Wiley, New York, 1960.

[322] v. Pan. How to mUltiply matrices faster. In Spri~ger-Verlag Lecture Notes in
Computer Science 179. Springer Verlag, New York, 1984.

461

REFERENCES

[323] V. Pan. Fast and efficient algorithms for the exact in~ersion of integer matri
ces. In Proceedings of the Fifth Annual Conference on th~ Foundations of Software
Technology and Theoretical Computer Science. Springer-Verlag LNCS 206, 1985.

[324] C.H. Papadimitriou. Games against nature. Journal pf Computer and System
Sciences, 31 :288-301, 1985.

[325] c.H. Papadimitriou. On selecting a satisfying truth asstgnment. In Proceedings
of the 32nd Annual IEEE Symposium on Foundations of Computer Science, pages
163-169, 1991.

[326] C.H. Papadimitriou. Complexity Theory. Addison-Wesleyp Reading, MA, 1994.
[327] c.H. Papadimitriou and M. Yanakakis. Shortest paths wiithout a map. Theoretical

Computer Science, 84:127-150, 1991.
[328] M.S. Paterson. Improved sorting networks with O(login) depth. Algorithmica.

5:75-92, 1990.
[329] M.S. Paterson and EE Yao. Efficient binary space parthions for hidden surface

removal and solid modeling. Discrete and Computatio$l Geometry, 5 :485-503.
1990.

[330] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27:228-234, 1980.

[331] D. Peleg and E. Upfal. A time-randomness tradeoff for oblivious routing. SIAM
Journal on Computing, 19:256-266, 1990.

[332] S. Phillips and J. Westbrook. Online load balancing. and network flow. In
Proceedings of the 25th Annual ACM Symposium on The'ory of Computing, pages
402-411, 1991.

[333] M .• Pinsker. On the complexity of a concentrator. In 7t~ International Teletraffic
Conference, pages 318/1-318/4, 1973.

[334] V.D. Podderyugin. An algorithm for finding the edge conij,ectivity of graphs. Vopr.
Kibernetika, 2 :136, 1973.

[335] V. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing.
4:214-220, 1975.

[336] EP. Preparata and M.1. Shamos. Computational Gedmetry: an Introduction.
Springer-Verlag, New York, 1985.

[337] R.C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technical Journal, 36:1389-1401, 1957.

[338] K. Pruhs and U. Manber. The complexity of controlled s¢lection. Information anti
Computation, 91 :103-127, 1991.

[339] W. Pugh. Skip lists: A probabilistic alternative to balanc~ trees. Communications
of the ACM, 33(6):668-676, 1990.

[340] rvt.O. Rabin. Probabilistic automata. Information and Co~trol, 6:230-245, 1963.
[341] M.O. Rabin. Probabilistic algorithms. In 1.E Traub, editor, Algorithms and

Complexity, Recent Results and New Directions, pages 21-39. Academic Press, New
York, 1976.

[342] M.O. Rabin. Probabilistic algorithm for testing primal~ty. Journal of Number
Theory, 12:128-138, 1980.

[343] M.O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computing.
9:273-280, 1980.

[344] M.O. Rabin. The choice coordination problem. Acta informatica, 17:121-134.

[345]

[346]

1982.
i,

M.O. Rabin and 1.0. Shallit. Randomized algorithms in number theory. Commu-
nications in Pure and Applied Mathematics, 39:239-256, 1986.
M.O. Rabin. Digitalized signatures and public-key funftions as intractable as

462

[347]

[348]

[349]

[350]

[351]

[352]

[353]

[354]

[355]

[356]

[357]
[358]

[359]

[360]

[361]

[362]

[363]

[364]

[365]

[366]

[367]

[368]

REFERENCES

factorization. Technical Report MIT jLCSjTR-212, MIT, January 1979.
M.O. Rabin. Randomized Byzantine generals. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, pagc;s 403-409, 1983.
M.O. Rabin and v.v. Vazirani. Maximum matchin,s in general graphs through
randomization. Technical Report TR-15-84, Aik~n Computation Laboratory,
Harvard University, 1984.
M.O. Rabin and V.V. Vazirani. Maximum matchin$s in general graphs through
randomization. Journal of Algorithms, 10:557-567, 1989.
P. Raghavan. Randomized Rounding and Discrete H~m-Sandwich Theorems. PhD
thesis, University of California, Berkeley, July 1986 .•
P. Raghavan. Probabilistic construction of detennin~tic algorithms: Approximat
ing packing integer programs. Journal of Computer~nd System Sciences, 37 :130-
143, 1988.
P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.
IBM Journal of Research and Development, 38:683-7P7, 1994.
P. Raghavan and C.D. Thompson. Randomized rounding. Combinatorica, 7 :365-
374, 1987. .
1.H. Reif. Synthesis of Parallel Algorithms. Morg~n-Kauffman Publishers, San
Francisco, 1993.
N. Reingold, D.O. Sleator, and 1. Westbrook. Randofnized competitive algorithms
for the list update problem. Algorithmica, 11(1):15-3~, 1994.
R. Reischuk. Probabilistic parallel algorithms for $orting and selection. SIAM
Journal on Computing, 14(2):396-409, 1985. .
A. Renyi. Probability Theory. North-Holland, Amst~rdam, 1970.
R.L. Rivest, A. Shamir, and L. Adleman. A method f~r obtaining digital signatures
and public-key cryptosystems. Communications of th~ ACM, 21 :120-126, 1978.
F. Romani. Shortest-path problem is not harder· than matrix multiplication.
Information Processing Letters, 11 :134-136, 1980.
R. Rubinfeld. A Mathematical Theory of Self-Ch~cking. Self-Testing and Self
Correcting Programs. PhD thesis, Computer Scienc~ Department, University of
California, Berkeley, 1990.
H. Ryser. Combinatorial Mathematics. The Mathematical Association of America,
1963.
M. Saks and A. Wigderson. Probabilistic Boolean deqsion trees and the complexity
of evaluating game trees. In Proceedings of the 27thl Annual IEEE Symposium on
Foundations of Computer Science, pages 29-38, Torortto, Ontario, 1986.
J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff~Hoeffding bounds for appli
cations with limited independence. In Proceedings oJ the 4th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 331-340, 1Q93.
A. Schonhage, M. Paterson, and N. Pippenger. Fin~ing the median. Journal of
Computer and System Sciences, 13:184-199, 1976. .
U. Schoning. Oraph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37:312-323, 1988. .
A. Schrijver. Theory of Linear and Integer Programming. John Wiley, New York,
1986.
J.T. Schwartz. Fast probabilistic algorithms for verific4tion of polynomial identities.
Journal of the ACM, 27(4):701-717, October 1980. :
R.O. Seidel. A simple and fast incremental randod:tized algorithm for comput
ing trapezoidal decompositions and for triangulati,g polygons. Computational
Geometry: Theory and Applications, 1 :51-64, 1991. !

463

REFERENCES

[369] R.O. Seidel. Small-dimensional linear programming and convex hulls made easy.
Discrete and Computational Geometry, 6:423-434, 1991.

[370] R.O. Seidel. On the all-pairs-shortest-path problem. In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pages ~45-749, 1992.

[371] R.O. Seidel. Backwards analysis of randomized geometrik; algorithms. In 1. Pach,
editor, New Trends in Discrete and Computational GeomJtry, volume 10 of Algo-

I

rithms and Combinatorics, pages 37-68. Springer-Verlag, New York, 1993.
[372] A Shamir. IP = PSPACE. Journal of the JACM, 39:869t-877, 1992.
[373] E. Shamir and 1. Spencer. Sharp concentration of the chromatic number on

random graphs Gn,p. Combinatorica, 7:121-129, 1987. :
[374] M. Sharir and E. Welzl. A combinatorial bound for ~near programming and

related problems. In Proceedings of the 9th Symposiunt,. on Theoretical Aspects
of Computer Science, volume 577 of Lecture Notes in Computer Science, pages
569-579. Springer-Verlag, New York, 1992.

[375] A Sinclair. Algorithms for Random Generation and Coq,nting; A Markov Chain
Approach. Progress in Theoretical Computer Science. Birlchauser, Boston, 1992.

[376] A Sinclair and M.R. Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation, 82:93-133, 1989.

[377] A1. Sinclair. Improved bounds for mixing rates of Markbv chains and multicom
modity flow. Combinatorics, Probability and Computing, 1':351-370, 1992.

[378] M. Sipser. Expanders, randomness Or time verSUS space. In Proceedings of the 1 st
Structure in Complexity Theory Conference, page 325, 1986.

[379] D.O. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202-208, February 1985.,

[380] D.O. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32:652-686, July 1985.

[381] M. Snir. Lower bounds on probabilistic linear decision tr~s. Theoretical Computer
Science, 38:69-82, 1985.

[382] R. Solovay and V. Strassen. A fast Monte-Carlo test for ~rimality. SIAM Journal
on Computing, 6(1):84-85, March 1977. See also SIAM J;'urnalon Computing 7, 1
February 1978, 118.

[383] 1. Spencer. Six standard deviations suffice. Transactions' of the American Mathe
matical Society, 289(2):679-706, June 1985.

[384] 1. Spencer. Ten Lectures on the Probabilistic Method. SI~M, Philadelphia, 1987.
[385] R. Sprugnoli. Perfect hashing functions: A single pro~ retrieving method for

static sets. Communications of the ACM, 21(11):606-611,1979.
[386] L.J. Stockmeyer. On approximation algorithms for #P. S~AM Journal on Comput-

ing, 14:849-861, 1985. .
[387] O. Strang. Linear Algebra and Its Applications. Harcou~t Brace Jovanovich, San

Diego, CA, 1988.
[388] M. Sudan. Efficient Checking of Polynomials and Proofs land the Hardness of Ap

proximation Problems. PhD thesis, University of Califom,a at Berkeley, 1992.
[389] R.M. Tanner. Explicit construction of concentrators from generalized n-gons.

SIAM Journal on Algebraic and Discrete Methods, 5 :287-~93, 1984.
[390] R.E. Tarjan. Applications of path compression on balaqced trees. Journal of the

ACM, 26:690-715, 1979. .
[391] R.E. Tarjan. Data Structures and Network Algorithms .. CBMS-NSF Regional

Conference Series in Applied Mathematics. SIAM, Phila~elphia, 1983.
[392] R.E. Tarjan and A Yao. Storing a sparse table. Com~unications of the ACM,

22 :606-611, 1979.

464

REFERENCES

[393] M. Tarsi. Optimal search on some game trees. J014rnal of the ACM, 30:389-396,
1983.

[394] P.-L. Tchebyshef. Des valeurs moyennes. Journal de Mathematiques pures et ap
pliquees. ser. 2, 12:177-184, 1867.

[395] B. Teia. A lower bound for randomized list update algorithms. Information
Processing Letters, 47 :5-9, 1993.

[396] P. Tetali. Random walks and the effective resist~nce of networks. Journal of
Theoretical Probability, pages 101-109, 1991.

[397] A. Treat. Experimental control of ear choice in t~e moth ear mite. X I. Interna
tionaler Kongress fUr Entomologie, pages 619-621, 1960.

[398] W.T. Tutte. The factorization of linear graphs. Jour,*al of the London Mathematical
Society, 22:107-111, 1947.

[399] E. Upfal. Efficient schemes for parallel communJcation. Journal of the ACM,
31 :507-517, 1984.

[400] L. G. Valiant and G. J. Brebner. Universal schemes ror parallel communication. In
Proceedings of the 13th Annual ACM Symposium an Theory of Computing, pages
263-277, Milwaukee, WI, May 1981.

[401] L.G. Valiant. The complexity of computing the peItmanent. Theoretical Computer
Science, 8:189-201, 1979.

[402] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410-421, 1979.

[403] L.G. Valiant. A scheme for fast parallel communication. SIAM Journal on Com
puting, 11 :350-361, 1982.

[404] B. L. van der Waerden. Algebra. Ungar, 1970.
[405] V.V. Vazirani. Parallel graph matching. In 1.H. R~if, editor, Synthesis of Parallel

Algorithms, pages 783-811. Morgan-Kauffman Publishers, San Francisco, 1993.
[406] V.V. Vazirani. A theory of alternating paths and blossoms for proving correctness

of O(JVE) graph maximum matching algorithms. Combinatorica, 14(1):71-109,
1994.

[407] I. M. Vinogradov. Elements of Number Theory. Dover, New York, 1954.
[408] 1. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,

100:295-320, 1928.
[409]

[410]
[411]

[412]

[413]
[414]

[415]

[416]

[417]

1. von Neumann. Various techniques used in conneCtion with random digits (notes
by G.E. Forsythe). National Bureau of Standards. Applied Mathematics Series,
12:36-38, 1951.
1. von Neumann. Collected Works, volume 5. Pergamon Press, New York, 1963.
1. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ, 1953.
1. von zur Gathen. Parallel linear algebra. In 1.H. ~if, editor, Synthesis of Parallel
Algorithms, pages 573-617. Morgan-Kauffman Publishers, San Francisco, 1993.
S. Warshall. A theorem on Boolean matrices. Jourt"al of the ACM, 9:11-12, 1962.
M.N. Wegman and 1.L. Carter. New hash functions!and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265-279, 1981.
DJ.A. Welsh. Randomised algorithms. Discrete Applied Mathematics, 5:133-145,
1983.
DJ.A. Welsh. Complexity: Knots. Colourings and Cbunting. Cambridge University
Press, 1994.
E. Welzl. Partition trees for triangle counting and o~her range searching problems.
In Proceedings of the 4th Annual ACM Symposium on Computational Geometry,
pages 23-33, 1988.

46S

REFERENCES

[418] M. Yannakakis. On the approximation of maximum satisilability. In Proceedings
of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 1-9, 1992.

[419] A. C-c. Yao. Probabilistic computations: Towards a unified Imeasure of complexity.
In Proceedings of the 17th Annual Symposium on Foundations of Computer Science,
pages 222-227, 1977.

[420] A. c-c. Yao. Should tables be sorted? Journal of the ACi\f, 28(3):615-628, 1981.
[421] G. Yuval. An algorithm for finding all shortest paths usin~ n2•81 infinite-precision

mUltiplications. Information Processing Letters, 4:155-156, i1976.
[422] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of

EUROSAM 79, volume 72 of Lecture Notes in Computer Science, pages 216-226,
Marseille, 1979.

[423] R.E. Zippel. Efficient Polynomial Computations. Kluwer Academic Publishers,
Boston, 1993.

[424] D. Zuckerman. Simulating BPP using a general weak rardom source. In Pro
ceedings of the 32nd Annual Symposium on Foundations of domputer Science, pages
79-89, 1991.

466

Index

Boldface page numbers are used to denote the location in the text where the index term

is formally stated or defined for the first time.

abstract optimization problem, 275, 277
adaptive adversary, 373
Adleman's Theorem, 39
Adleman, L., 41, 410, 426
Aggarwal, A, 362
Aho, AV., 25, 187, 189, 302
Ahuja, R.K., 303
Ajtai, M., 156, 160, 361
Albers, S., 389
Aldous, DJ., 64, 155, 332
Aleliunas, R, 96, 155
Alford, W.R, 426
all-pairs shortest paths, 278-288, 302
Alon, N., 97, 122, 123, 156, 160,302,361
Alt, H., 24
AlthOfer, 1.,41
amortization, 200
amplification of randomness, see probability

amplification
Anderson, RJ., 362
Angluin, D., 66,426
Ankney, N.C., 426
APD, 279-288, 302
APD algorithm, 282-284, 287, 288
approximation

hardness results, 188
APSP algorithm, 288
Aragon, C.R, 229, 230
arithmetization, 177
Arora, S., 122, 188, 192
arrangement of line segments, 255
arrangement of lines, 259, 274
Arthur-Merlin games, 187
Aspnes, J., 97
ASYNCH-CCP algorithm, 358, 367

autopartition, 13, 14, 102,253,255,273
Azar, Y., 63
Azuma's inequality, 92, 97
Azuma, K., 97

Babai, L., 24, 187, 188, 361
Bach, E., 426
backwards analysis, 235, 274

convex hull algorithm, 238
half-space intersection, 243
trapezoidal decomposition, 250

Bar-Noy, A, 389
Barany, I., 332
basis

linear programming, 263
BasisLP algorithm, 270, 272, 274,277
Bayes' rule, 440
Beaver, D., 188
Beck, J., 123
Belady, LA., 387
Bellare, M., 122
Ben-David, S., 387
Ben-Or, M., 188, 426
Bent, S.w., 63
Berger, B., 123, 361, 362
Berkowitz, SJ., 362
Berlekamp, E.R., 23, 426
Bernoulli distribution, 44S
Bernoulli trial, 67
Bernstein, S.N., 63, 96
Bertrand's Postulate, 220
Bertsimas, D., 96
Bien, F., 123, 155
Biggs, N., 155
Billingsley, P., 97,438
binary partition, 252, 273

467

INDEX

3 dimensions, 254-256
planar, 11-14, 102

binary tree
endogenous, 198
full, 198

binomial coefficients, 434
binomial distribution, 59, 67, 44S
birthday problem, 45
Blum, A, 388
Blum, M., 63, 156, 186, 188, 189, 193, 232
Bollobas, B., 97
Boole-Bonferroni inequalities, 44, 440
Boolean circuit family, 38
Boolean decision diagram, 187
Boppana, R.B., 24, 41, 187
Borodin, A, 96, 155, 362, 387
Boruvka's algorithm, 297-298, 303
Bovet, D.P., 25
BoxSort algorithm, 339-341, 361, 363
Boyer, R.S., 187
BPP, 22, 151, 309, 337,423
BPWM algorithm, 28Cr-288, 302, 304
Brebner, G.J., 96
Broder, AZ., 63, 123, 155, 332
Buffon, G., 24
Byzantine agreement problem, 358-361, 363
ByzGen algorithm, 360, 361, 363, 367

Carmichael number, 419, 420, 423, 426-428
Carmichael, R.D., 426
Carter, J.L., 229, 232, 233
Cauchy-Schwartz inequality, 436
Chandra, AK., 155, 186, 189
characteristic equation, 437
characteristic vector, 160
Chazelle, B., 123, 273, 274
Chebyshev bound, 47, 63
Chebyshev, P.L., 63
Chebyshev-Cantelli bound, 64
Chernoff bound, 67-79

global wiring, 79
oblivious routing, 77
occupancy problem, 73
sum of geometric variables, 98

Chernoff, H., 63, 96
Chew, L.P., 274
Chinese Remainder Theorem, 396, 408, 422,

423
Chistiakov, V.P., 63, 97
Chistov, AL., 362
choice coordination problem, 355-358, 363
Chor, B., 63, 363
Chrobak, M., 387, 388

chromatic number, 93, 97
Chung, F.R.K., 160
Chvatal, V., 274
Clarkson, K.L., 273, 274
clique number, 91
CNF,18
co-BPP, 27
Cohen, A, 123, 156
co-lP, 192
Cole, R., 361
commute time, see random walk, commute

time
competitive analysis, 368

Marker algorithm, 376
Reciprocal algorithm, 382

competitiveness, 370
complexity classes, 18-23
composite ness, 417
concave function, 107, 124
conditional probability, 121,440
conductance, see Markov chain
connected component, 139
co-NP, 20, 143, 173, 177,417
Contract algorithm, 290--292, 294, 303, 305
contraction, 290, 297
convex function, 98
convex hull, 236, 239

3 dimensions, 241
planar, 23Cr-239

Cook, S.A, 155, 361
co-PP, 27
Coppersmith, D., 187, 193, 302, 388
co-PSPACE, 20
Cormen, T., 302
co-RP, 21, 191,423,426
coupon collector's problem, 57-63

sharp threshold, 61-63
Courant-Fisher equalities, 147, 159
cover time, see random walk, cover time
Crescenzi, P., 25
cryptography, 187
Csanky, L., 362
Cvetkovic, D.M., 155

Dagum, P., 332
Dantzig, G.B., 275
data structures, 197-233

DELETE operation, 197
FIND operation, 197

468

INS operation, 197
JOIN operation, 197
MAKESET operation, 197
PASTE operation, 197

INDEX

SPLIT operation, 197
Davenport, H., 426
Delaunay triangulation, 245-247

of a convex polygon, 248
de Leeuw, K., 23
De Millo, R.A, 187
de randomization, 39,63, 120, 121,274, 302,

303, 346, 364
determinant, see matrix
diameter

graph, 281
point set, 25Cr-258
polytope, 275

dictionary problem
dynamic, 214, 218
static, 213

Dietzfelbinger, M., 229
Dijkstra, E.W., 302, 303
Dinwoodie,I.H., 156
discrete log problem, 402
disjunctive normal form, see DNF
distributed algorithms, 97
distributional complexity, 34
Dixon, B., 303
DNF,307
DNF counting problem, 310--315
Donath, W., 156
Doob, J .L, 97
Doob, M., 155
doubly stochastic matrix, see matrix
Doyle, P.G., 155, 388
duality, see geometric duality
Dubins, L.E., 97
Dwork, C., 363
Dyer, M.E., 332
Dymond, P.w., 155

Edelsbrunner, H., 273, 274
edge coloring, 389
Edmonds matrix, 167
Edmonds' Theorem, 167
Edmonds, J., 167, 187, 190
effective resistance, 135

Short-cut Principle, 138
triangle inequality, 138

eigenvalue, 437
eigenvector, 437
electrical networks, 135-137

Short-cut Principle, 138
Elias, P., 302
Erdos, P., 122, 123
ERH, 405, 425, 426
Euclid's algorithm, 393, 394,414

extended version, 395, 427
Euler totient function, 397
Euler's Criterion, 404, 413
Euler's Theorem, 399
EXP, 20
expanders, 108-112, 123, 143, 145, 152

application to probability amplification,
110--112, 151-155

existence proof, 109-110
explicit construction, 110
Gabber-Galil, 145
magnifiers, 156
rapid mixing property, 144
relation to e~genvalues, 144-151
super-concentrators, 156

extended Euclidean algorithm, 395, 427
Extended Riemann Hypothesis, see ERH

factoring, 399,401,403,409-412,417,426
Fasteut algorithm, 294, 303
Feder, T., 187,302
Feige, U., 188
Feigenbaum, J., 188
Feinstein, A, 302
Feller, w., 63, 97, 438
Fermat congruence, 418
Fermat's Theorem, 399,418
Fermi, E., 24
Fiat, A, 387, 388
Fibonacci number, 191, 435
Fich, F.E., 41
FIFO, see paging problem, FIFO algorithm
Find algorithm, 15, 24, 26
fingerprint, 161, 168, 190, 214
Fischer, M.J., 363
Floyd, R.W., 63, 302
Ford, L.R., 302
Fortnow, L., 18,8, 192
FPAS, see fully polynomial approximation

scheme
FPRAS, see fully polynomial randomized

approximation scheme
Fredman, M.L., 229, 233, 303
free Boolean graphs, 186
Freivalds' technique, 162
Freivalds, R., 186
Friedman, J., 123,274
Frieze, AM., 123, 332
Fulkerson, D.R., 302
fully polynomial approximation scheme, 308
fully polynomial randomized approximation

scheme, 309
function

469

INDEX

linear, 185
nearly linear, 185

Fiiredi, Z., 332

Gartner, B., 275
Gabber, 0., 123, 156
Gabow, H., 303
Gale, D., 63
Galil, Z., 123, 156,302,303,362
game theory, 31-34
game tree evaluation, 28-30, 102·
Gartner, B., 275
Gathen, J. von zur, see von zur Gathen, J.
Gecsei, J., 387
Gemmell, P., 188
geometric algorithms, 234-277
geometric distribution, 10, 57, 300,446
geometric duality, 239-241
Gill, J., 23, 41, 155
Gillman, D., 156
global wiring, 79-83
Gobel, E, 155
Goemans, M.x., 96, 122
Goldberg. A, 303, 362
Goldberg, M., 361
golden ratio, 435
Goldreich, 0., 63, 187, 188
Goldwasser, M., 275
Goldwasser, S., 187, 188,426
Gomory, RE., 302
Graham, RL., 229, 303, 433
Granville, A, 426
graph algorithms, 278-305
graph isomorphism, 173, 187
graph non-isomorphism, 173, 187
Greedy MIS algorithm, 342
Greene, D.H., 433
Grigoriev, D., 362
Grimmett, G.R., 97, 438
Grove, E., 388
Guibas, LJ., 24, 274
Gusfield, D., 63

Hagerup, T., 96
half-plane intersection, 239
half-space intersection, 241-245
Hall, A, 24
Hall, P., 97
Hao, J., 302
Hardy, G.H., 426, 433
Harmonic algorithm, see k-server problem,

Harmonic algorithm
Harmonic numbers, 204, 435

hash functions, 21 S
nearly-2-universal, 233
perfect, 215, 222, 223
strongly k-univell'sal, 221
strongly universal, 221
universal, 213-221,232

hash table, 215
hashing, 213-221
Hastad, J.T., 123, 187
Haussler, D., 274
Hayward, R, 97
heaps, 97, 201
Hell, P., 303
Herstein, LN., 426
Heyde, C.C, 97
Hirschfeld, R., 24
hitting time, see random walk, hitting time
Hoare, CAR, 24
Hoeffding's bound, 98
Hoeffding, W., 96--98
Hoffman, AJ., 156
Hopcroft, J.E., 25, 96, 187, 189,302, 362
Hu, T.C, 302
Hua, L.K., 426
Huang, AM-D., 426
hypercube, 75, 112

Ibaraki, T., 303
Impagliazzo, R, 156
Inclusion Exclusion Principle, 440
indicator variable, 441
interactive proof systems, 175, 172-180, 187

zero-knowledge, 187
IP, 176, 188, 191
Irani, S.S., 389, 391
Irving. R.W., 63
isolating lemma, 284, 349-350, 362, 365-367
isomorphism, 173
Israeli, A, 362
Itai, A., 361
iterative reweighting, 266
lterSampLP algorithm, 267

Jacobi symbol, 420.428
Jagers, AA, 155
Jila, J., 361
Janson, S., 96
Jerrum, M.R., 332, ~34
Joffe, A, 63
John, J.W., 63
Johnson, D.B., 302
Johnson, D.S., 24, 122, 187, 188,426
Johnson, N.L., 63, 97

470

INDEX

k-CNF,117
k-point sampling. 53
k-SAT,117
k-server conjecture, 385
k-server problem, 384-387

Harmonic algorithm, 388
greedy algorithm, 385
lower bound, 385, 387

kth moment method, 53
kth central moment, 53
kth moment, 443
k-wise independence, 221, 441
Kahn, J.D., 158
Kaklamanis, C, 96
Kalai, G., 274, 275
Kamath, A, 97, 100
Kannan, R, 332
Kannan, S., 186, 189,232
Karger, D.R., 24, 65, 96, 126,302,303,305,

361,364
Karlin, AR, 63, 155,229,387,388,390
Karloff, HJ., 188, 362, 365, 387, 388
Karmarkar, N., 332
Karp, RM., xi, 24, 41, 42, 66, 123, 155, 156,

187, 190, 191, 331-333, 361, 362, 366,
387,390

Karpinski, M., 362
Karzanov,AY., 302
Kemeny, J.G., 155
Kilian, J., 188, 426
Kimbrel, T., 186
King. V., 303
Kirchhoff's Law, 135
Kirchhoff, G., 331
Klee-Minty cube, 275
Klein, P., 303
Kleitman, OJ., 275
Knapp, AW., 155
Knuth, D.E., 24, 25, 64, 187, 229, 274, 426,

433
Ko, K-I., 27
Kolchin, V.E, 63, 97
Kolmogorov, AN., 63
Kolmogorov-Doob inequality, 92
Komlos, J., 156, 160,229, 233, 303, 361
Kotz, S., 63, 97
Koutsoupias, E., 388
Krizanc, D., 96
Kruskal, J.B., 303

Lamport, L., 363
Larmore, L.L., 388
Las Vegas algorithm, 9, 22, 24

lower bounds, 34, 35
lattice approxinlation problem, 99
LazySelect algprithm, 48, 50, 63, 125
Leeuw, K. de, .see de Leeuw, K.
Legendre symbol, 404, 420
Lehmer, E., 426
Leighton, ET., 123, 361
Leiserson, CE., 302
Lenstra, AK., 426
Lenstra, H.W, 426
Lev, A, 362
LeVeque, MJ., 426
Levin, L., 188
LFU, see paging problem, LFU algorithm
linear functioq, 185
linear programming. 262-272
linearity of expectation, 4, 10, 443
Linial, N., 158, 387
Lipschitz condition, 93
Lipton, RJ., 4[, 155, 187-189, 332
list update problem, 389
Littlewood, J.E., 433
log<ost RAM, see RAM
Loomis' TheOItem, 33
Loomis, L.H., 33, 41
Lovasz, L., 123, ISS, 187, 188,332,362
Lovasz Local Lemma, lIS, 120
LRU, see paging problem, LRU algorithm
Luby, M., 24, ~3, 122, 188, 193, 331--333,

361, 364, j65, 387
Luce, R,4O
Lund,C, 122, 188
Lynch, N.A, 363

Madras, N., 331, 333
Maffioli, E, 24
Maggs, B., 123
Magnanti, T.L" 303
magnifiers, see expanders
Manasse, M.S., 387, 388
Manber, U., 24
Manders, K., 426
Margalit, 0., 302
Margulis, G.A" 123
marker algorithm, see paging problem,

Marker al~orithm
Markov chain, 129-134,319

absorbing state, 156
aperiodic, 131

471

aperiodic state, 131
conductance, 323
irreducible, 131
memorylessness property, 129

INDEX

non-null persistent state, 130
null persistent state, 130
periodic state, 131
periodicity of a state, 131
persistent state, 130
rapid mixing. 320, 323, 332
relative pointwise distance, 148, 159
stationary distribution, 131
time reversible, 322, 334
total variation distance, 159
transient state, 130
transition probability matrix, 129

Markov inequality, 46
Markov,A.A.,63
martingale sequence, 156
martingales, 83-96

difference sequence, 85
Doob,90, 91, 92
Lipschitz condition, 93
sub-martingale, 85
super-martingale, 85

matching, 167
maximal, 347, 363
maximum, 167, 190, 347, 355, 362, 365
perfect,. 167, 190, 307, 315, 347-355, 365,

366
Matousek, J., 274,275
matrix

adjoint, 348, 354
determinant, 165,315,347,348,351,354
determinant and spanning trees, 307
doubly stochastic, 134, 148, 150, 157
Edmonds, see Edmonds matrix
inverse, 348, 354
minor, 348
multiplication, 187
permanent, 315, 316
permanent approximation, 316
rankI 187, 190, 365
row-major form, 183
similar, 189
skew-symmetric, 190
stochastic, 157
Tutte, see Tutte matrix

matrix multiplication, 187, 280, 282, 302
Boolean, 279, 280, 283
integer, 279, 280, 283, 284
witness, 283-287

matrix product verification, 162-163
matrix-tree theorem, 331
Matthews, P.C, 155, 157
Mattison, R.L., 387
Matula, D.W., 302

Maurey, B., 97
max-flow, 289, 290, 303
MAX-SAT, 104, 12~, 188

approximation algorithm, 105
integer programIll1ing formulation, 106

max-cut, 103, 123
maximal independent set, 341-346,364

lexicographically first, 342
maximal matching, 347, 363
maximum matching, 167, 190, 347, 355, 362,

365
McDiarmid, C.J.H., 97, 155, 157
McGeoch, L.A., 381, 388
Megiddo, N., 274
Mehlhorn, K., 24, 229
method of bounded differences, 92, 97
method of conditional probabilities,

120-123,361
method of pessimistic estimators, 123
Meyer auf der Heide, E, 41, 229
Micali, S., 187, 188
Mihail, M., 332
Miller, G.L., 426
Milman, V.D., 156
min-cut, 7, 9, 289-295, 302, 303, 305, 362
Minimax Principle, 31-34

lower bounds, 34-37
minimum spanning forest, 296
minimum spanning tree algorithm, 296--303
MIP, 188, 192
Mitrinovic, D.S., 433, 434
mixed strategy, 33
model of computation, 16
moment generating function, 68, 445
Monte Carlo algorithm, 9

STCON,142
Moore, E.E, 23
Moore, J .S., 187
Morgenstern, 0., 40
Morris, J.H., 187
Motwani, R., 65, 96, 97, 100, 122, 123, 126,

187, 188, 302, j03, 332, 361, 362, 389
MST,296--302
MST algorithm, 3011, 303
MST verification, 296, 297, 299, 303
Mulmuley games, 2104-206
Mulmuley, K., 229, 273, 274, 362, 365-367
multigraph, 7
multiset identity, 232

Nagamochi, H., 303
Naor, J., 97, 123-125, 186, 189,361,362,

365,366,389

472

INDEX

Naor, M., 123, 186,302,361,362,365
lV<7, 336, 342,346, 348, 362, 364-366
nearly-linear function, 185
negative binomial distribution, 299, 300, 446
network flow, 9
Neumann, J. von, see von Neumann, J.
Newman, M., 123
lVEXP, 20, 181, 188
Nisan, N., 158, 188,229,233
Niven, I., 426
non-uniform algorithm, 40, 140, 141, 159
norms, see vector norms
lVP,20, 191,306,307,417
lVPSPA<7E,20

oblivious adversary, 373
oblivious routing, 74-79

randomized, 75-79, 112-115
occupancy problem, 73, 97

tail bounds, 97
offline algorithm, 368
Ohm's Law, 135
one-sided error, 21
one-way function, 403
online algorithm, 368-391

adaptive adversary, 373
adaptive offline adversary, 373
adaptive online adversary, 373
adversary, 372
oblivious adversary, 373
potential function analysis, 382
relation between adversaries, 377-381

Orlin, J.B., 302, 303
Owicki, S., 388

P, 19, 307
#P, 177, 307, 309, 315, 316, 331
P6lya, G., 433
packet routing, 74-79
paging problem, 369

FIFO algorithm, 369, 370, 387, 389
LFU algorithm, 369, 370, 389
LRU algorithm, 369, 370, 387, 389
MIN algorithm, 370, 387
Marker algorithm, 376, 387
Random algorithm, 383, 384, 388
lower bound, 374-376
weighted, 381

pairwise independence, 51, 52,220,221,362,
364.441,442

Palem. K., 97, 100
Pan, Y .. 302, 362

Papadimitriou, C.H., 25, 155, 156, 187, 188,
191,388

parabolic transformation, 246
parallel algorithms, 335-355
ParaDel Matc:bing algorithm, 354, 355, 362,

365
ParaDeI MIS 3ilgorithm, 343, 346, 361,364
parallel random access machine, see PRAM
PAS, see polynomial approximation scheme
Patashnik., 0., 433
Paterson, M.S.,. 24, 63, 273, 361, 363
pattern matching, 170, 190

two-<iimensi<lmal, 191
Payne, T., 387
payoff matrix, 31
P<7P, ISO, 188
Pease, M., 363
Peleg, D., 123
perfect hash function, 215
perfect matching, 66, 145, 167, 190,347-355,

365,366
permanent, see matrix
permutation

sign, 165, 351
value, 351

permutation routing, 74, 112
lower bound. 75

Phillips, SJ., 303
Pinsker, M., 123
Pippenger, N.J., 63, 123,362
Plotkin, S., 362
Plummer, M.D., 362
Podderyugin, V.D., 302
point location, 259-262
Poisson distribution, 59, 446
Poisson heuristic, 59
Poisson trials, 68
polynomial approximation scheme, 308
polynomial product verification, 164
polynomial randomized approximation

scheme, 309
polynomial reduction, 20
polynomial time, 19
Poly Root algorithm. 416. 41 7, 426
Pomerance, c., 426
PP,22
PRAM, 7~ 335,337
PRAS, see polyno",j~1 rUI"lomized

approximation q';/lI:IllC

Pratt, Y.R., 63, 187. ,..16
Prim, R.C., 303
primality

certificate of, 411

473

INDEX

testing. 417-425
Primalityl algorithm, 421, 423, 426
Primality2 algorithm, 424
Primality3 algorithm, 425, 426, 428
Prime Number Theorem, 168,428
Principle of Deferred Decisions, 55, 56, 163,

175,300
probabilistic method, 14, 101-126

kth moment inequality, 124
expanders, 108
oblivious routing. 112
universal traversal sequences, 141

probabilistic recurrence, IS, 24
probabilistically checkable proofs, 180
probability amplification, 53, 110-112,

151-155
probability measure, 439
probability space, 439
probability vector, 131, 143
program checking, 162, 186, 188
proof verification, 180-187
Pruhs,K.,24
PSPACE, 20, 176, 177, 188, 191
public-key encryption, 410
Pugh, W.; 229, 232
pure strategy, 33

QBF,191
quadratic residue, 403, 405, 408
QuadRes algorithm, 405,407,413,425,426
quantified Boolean formula, 191
quicksort, 337, 363

sharp concentration, 97

Rabani, Y., 387, 388
Rabin cryptosystem, 412, 427
Rabin, M.O., 23, 187, 190, 191, 273, 362,

363,365,367,412,426-428
Rackoff, C, ISS, 187
Ragde, P.L., 41
Raghavan,~,96,97, 123, 155,387,388,390
Raiffa, H., 40
RJ\M, 16,229,234,335

log-cost, 18, 171
uniform, 18
unit-cost, 18, 162,393

Ramachandran, y.L., 361
RandAuto algorithm, 13, 102, 126, 252, 253,

255,273
random graph, 66, 90, 97, 109, 111, 112, lIS,

143,299,332
random sampling

geometric algorithms, 258-262

linear programming, 262
point location, 259-262

Random Simplex algorithm, 275
random treap, 203
random variable, 441
random walk, 127-160, 362

2-SAT algorithm, 129, 136
application to probability amplification,

151-155
commute time, 133
cover time, 133, 137-139
expanders, 143-155,320
graph connectivity, 139-143, 148
hitting time, 133
stationary distribution, 132
transition matrix, 129

randomized incremental algorithm, 234
Delaunay triangulation, 247
half-space intersection, 241
linear programming. 268
trapezoidal decomposition, 248

randomized rounding. 81, 96, 105, 106
RandQS algorithm, 3-5, 24, 99
rank,365

in ordered set, 4
matrix, 187, 190

Rao, S., 123,303
rapid mixing. 144, 148, 320, 323, 331, 332
Rauch, M., 303
Ravid, Y., 387, 388
Reciprocal algorithm, 382, 383, 387, 388, 391
Reed, B.A., 97
Reif, J.R., 361
Reingold, N., 389
Reischuk, R., 361
relative pointwise distance, 148, 159, 322
request-answer game, 378
Rivest, R.L., 63, 302, 410, 426
RLP, 139
RIVC, 337, 342,346,347,349,362-367
Rohnert, R., 229
Romani, E, 302
Rompel, J., 123, 188, 192, 361, 362
row-major form, see matrix
RP, 21, 23, 52, 110, 112, 151, 337,423
RSA scheme, 410-412, 426, 428
Rub, C, 96
Rubinfeld, R., 188, 193
Rudolph, L., 387
Ruzzo, W.L., 155
Ryser, R., 331

Sachs, R., 155

474

INDEX

Safra, S., 188, 192
Saks, M.E., 41, 158,387,388
SampLP algorithm, 264
SAT, 19, 115,117,128, 155, 176

arithmetization, 177
counting, 188
counting version, 176

Savage, LJ., 97
Schonhage, A, 63
Schieber, B., 96
Schmidt, J.P., 96
Schoning, U., 188
Schrijver, A, 274
Schwartz, J.T., 165, 187
Schwartz-Zippel Theorem, 165
search tree, 258

balanced, 200
binary,S, 198
finger, 230
rotation, 199
splay operation, 200

second moment method, 53
Seidel, R.G., 229, 230, 274, 302
SeideLP algorithm, 268, 269, 274
selection algorithm, 47-51, 363
self-reducibility, 316
Selfrdige, J.L., 123
semidefinite programming, 122
set-balancing problem, 73, 99, 102, 120, 122
set-cover problem, 99
Sevastianov, B.A., 63, 97
Shallit, J.O., 426
Shamir, A, 188, 191, 192,410,426
Shamir, E., 97
Shannon, CE., 23, 302
Shapiro, N., 23
Shapley, L.S., 63
Sharir, M., 274, 275
sharp threshold, 63
Shen, A, 192
Shiloach, Y., 362
Shmoys, O.B., 362
Shor, P.W., 273
shortest path algorithm, 278-288
Shostak, R., 363
Siegel, A, 96
a-field, 439
similar matrices, see matrix
simplex algorithm, 263
Sinclair, A, 24, 332, 334
Sinha, R., 186
Sipser, M., 123, 188, 192
skew-symmetric matrix, 190

ski p lists, 209-213
Sleator, D.O., 228, 387, 389
Slutz, O.R, 387
smallest enclosing ball, 277
Smolensky, R, 155
Snell, J.L., 155
Snir, M., 40, 387, 388
Solovay, R., 23, 426
sorting algorithm, 3, 9, 235, 337
spanning trees

counting problem, 307
Spencer, J.R., 97, 122, 123
Spencer, T., 303, 361
Speranza, M.G., 24
Spirakis, P., 97, 100
Sprugnoli, R, 229
Srinivasan, A, 96
stable marriage problem, 53-57

Amnesiac Algorithm, 56
Proposal Algorithm, 54, 63, 66

stationary distribution, see Markov chain,
stationary distribution

STCON,142
Stein, C, 303
Stirling's formula, 434
Stirzaker, O.R., 97, 438
s-t min-cut, 26, 289
stochastic domination, 56, 213, 299, 300, 443
stochastic matrix, see matrix •
Stockmeyer, LJ., 331
Strang. G., 433
Strassen, v., 23,426
strong component, 130
strongly k-universal hash functions, 221
strongly universal hash functions, 221
Sudan, M., 96, 122, 188
super-concentrators, see expanders
symmetric order, 198
SYNCH-CCP algorithm, 356
Szegedy, M., 122, 188
Szemeredi, E., 156, 160,229,233,361

tail probability, 43
Tanner, R.M., 156
Tardos, G., 387
Tarjan, R.E., 63, 229, 302, 303, 387, 389
Tarsi, M., 41
Teia, B., 389
Tetali, P., 155
Thompson, CD., 96
Timofeev, E.A, 302
Tiwari, P., 155
Tompa, M., 155

475

total variation distance, 159
Traiger, I.L., 387
transition probability matrix, 129, 148

doubly stochastic, 134, 148
transparent proofs, 188
trapezoidal decomposition, 248-252
treap, 201-208

random, 203
weigh ted, 230

Treat, A., 363
tree isomorphism, 188
triangle inequality, 436
truth assignment, 19
Tsantilas, T., 96
Turing machine, 16, 140

log-space, 139, 159
probabilistic, 17, 23, 139

Tutte matrix, 190, 347, 348, 351, 365
Tutte's Theorem, 190,347,351
Tufte. W.T., 187, 190
two-point s~rling. 51, 53
two-sided error, 22

Ulam, S., 24
Ullman, J.D., 25, 187, 189,302
uniform algorithm, 38
universal hash functions, 170, 213-221
universal traversal sequence, 140
Upfal, E., 24, 63,96, 123,362,366
USTCON,139

Vaidya, P., 362
Valiant's scheme, see oblivious routing.

randomized
Valiant, L.G., 66, 96, 331, 332, 362
van der Waerden, B.L., 426
Vandermonde matrix, 165
Vazirani, U.V., 187, 332, 362, 365-367
Vazirani, V.V., 187, 190,332,362,365-367
vector norms, 435
vector space, 435

basis, 437
orthogonal subspace, 435
orthonormal basis, 437
subspace, 435

INDEX

Vercellis, C, 24
Vinogradov, I.M., 426
Viswanathan, S., 387
Vizing, Y.G., 362
Vohra, R., 96
volume estimation, 329-331
von Neumann's Minimax Theorem, 33
von Neumann, J., 24, 25, 33, 40
von zur Gathen, J., 362
Vomberger, 0., 156
Voronoi diagram, 145, 258

Waarts, 0., 97
Wang, J., 40
Warshall, S., 302
Wegman, M.N., 186, 189, 229, 232, 233
weighted paging problem, 381

Reciprocal algorithm, 382, 383, 387, 388
Welsh, DJ.A., 24, 331
Welzl, E., 274, 275
Westbrook, J., 303, 389
Wigderson, A., 24, 41, 123, 156, 187, 188,

361,362,366,387
Willard, D., 303
Williamson, D.P., 96, 122
Winograd, S., 187,302
Wright, E.M., 426

Yannakakis, M., 122, 156
Yao's Minimax Principle, 35

randomized paging. 374-376
Yao, A. C-C, 24, 25, 35, 41, 229
Yao, EE, 24, 273
Young. N., 41,387
Yuval, G., 302

Zachos, S., 188
zero-knowledge interactive proof, 187
zero-sided error, 22
Ziegler, G.M., 275
Zippel, R.E., 165, 187,426
ZNC, 337
ZPP, 22, 337
Zuckerman, D., 24, 156, 159
Zuckerman, H.S., 426

476

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 351
 176

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

